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Abstract 

One major goal of this research was to increase the fuel efficiency and cell 

performance of direct methanol fuel cells (DMFCs) by decreasing the methanol crossover 

from the anode to the cathode. Polypyrrole/Nafion composite membranes were prepared, 

and factors influencing the modification procedures were studied. An optimized, 

reproducible modification procedure was developed. The composite membranes 

outperformed pure Nation 115 but need a longer activation time. The polarization and 

electrochemical impedance spectroscopy measurements showed that the activation 

process was due to two main factors: slow membrane hydration and slow cathode 

activation. The composite membranes showed an over 40% reduction in methanol 

crossover and a 70% increase in membrane resistance relative to Nafion 115. To further 

decrease the membrane resistance, counter ions were provided in the modification process. 

Poly[3-(pyrrole-l-yl)propanesulfonate ]/Nafion composite membranes were also prepared 

to address this problem. 

Another major goal was to develop and characterize a micro reference electrode to 

resolve the anode and cathode behavior in a fuel cell. An edge type Pt wire Dynamic 

Hydrogen Electrode (DHE) reference electrode was developed and used in a hydrogen 

proton exchange membrane fuel cell and a DMFC. The advantage of this DHE is that it is 

easy to use and does not require modification of the fuel cell hardware. This reference 

electrode provided good qualitative information. However, potential drift over long times 

makes it inappropriate for long-term measurements. 
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Chapter 1 

General Review of Fuel Cells 



1.1 Introduction to Fuel Cells 

A fuel cell can be defined as an instrument that can continuously convert chemical 

energy to electrical energy and heat, 1 without combustion. Unlike a battery, the fuel cell 

does not need recharging. As long as fuel (such as hydrogen, methanol, propane, etc.) and 

an oxidizing agent (pure oxygen or air) are supplied, it can continue to supply an 

electrical current indefinitely. 

The fuel cell is not a new device. More than one and a half centuries ago, the British 

chemist Sir William Robert Grove first demonstrated a hydrogen-air fuel cell (what he 

called a "gas battery") in 1839? But the fuel cell did not begin to reach a fraction of its 

potential because of economic factors and materials problems. Almost a century later, in 

1932, Francis Bacon produced a successful device in the first major fuel cell project. 

Subsequently, fuel cells were applied as power sources for NASA space flights in the 

Gemini and Apollo space programs in the 1960s. 3 It was then that fuel cells were pulled 

out of the lab and into the mainstream of modern technology. 

The key advantages of the fuel cell are high efficiency and the lack of emissions. 

The high efficiency arises from the electrochemical nature of energy conversion. A fuel 

cell converts the chemical energy of the fuel directly into electricity without going 

through an intermediate combustion step for internal combustion and other heat engines. 

It therefore is not limited by the Carnot cycle. Fuel cells can also significantly reduce 

carbon dioxide emission, and are also free from other harmful emissions, such as Nox, 

2 



SOx and airborne particles. 4'
5 Moreover, fuel cells have no moving parts and noise 

pollution can be reduced. 6 

These numerous advantages make fuel cells the perfect candidates for an alternative 

energy source. With their high efficiency, low maintenance, and low pollution production, 

fuel cells will make a valuable contribution to future power generation facilities. 

1.2. Principles of Fuel Cells 

The basic structure of all fuel cells is similar. The cell consists of an anode 

(negatively charged electrode) and a cathode (a positively charged electrode) which are 

separated by an electrolyte (a conductor of ions) and which are connected by an external 

circuit. In a hydrogen cell, the hydrogen gas separates into protons and electrons at the 

anode under the activation of a catalyst, and the electrons are conducted through a wire, 

forming an electrical current. The protons move through the electrolyte, where they 

combine with oxygen and electrons at the cathode to produce heat and water as 

bypro ducts. 

Since the fuel cell operates isothermally, all the free energy ( !J.G) associated with 

this reaction should in principle be converted to electrical energy. The cell voltage is 

related to the Gibbs free energy change of the fuel oxidation via:7 

(1.1) 

where n is the number of electrons involved in the reaction, F is the Faraday constant, and 

3 



~E0 is the thermodynamic equilibrium voltage of the celL 

For the case of a hydrogen/oxygen fuel cell, the overall reaction is: 

H2+ 112 02 ---P H20, with ~G = -273kJ I mol at 25 °C (1.2) 

The thermodynamic equilibrium voltage for standard conditions is M 0 = 1.23V . 

However, slow kinetics mean that the equilibrium value is never achieved. The real 

cell potential M is always lower than the equilibrium voltage described by the Nernst 

equation and decreases as current is drawn from the cell due to the mass transfer 

hindrance within both electrode reactions together with the net resistive components of 

the cell. ~E is expressed in Equation 1.3: 

~E = Ecathode- Eanode - iR (1.3) 

The potential of the each electrode is determined by: 

Ecathode or anode = Eeq - llkinetic - llconc. (1.4) 

Where Eeq is the equilibrium potential of the electrode, r]kinetic is the kinetic overpotential, 

and llconc. is the concentration overpotential. 

Eeq. is given by the Nernst equation: 

(1.5) 

llkinetic is due to slow charge transfer at the electrode and it can be expressed as the 

Tafel equation at large overpotentials. 

r]kinetic = a + blog(i) (1.6) 

where a is a constant, b is the Tafel slope, and i is the current density. 
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'!leone. is due to slow mass transport of fuel or oxygen in the cell and it dominates the 

cell's performance at high current densities. 

The ohmic resistance drop is due to the resistance of the electrolyte and cell contacts 

and is mainly determined by the resistance of the electrolyte. 

1.3 Types of Fuel Cells 

There are numerous types of fuel cells that have been made. According to the 

electrolyte employed, a fuel cell can be classified as a Phosphoric Acid Fuel Cell, Molten 

Carbonate Fuel Cell, Solid Oxide Fuel Cell, Alkaline Fuel Cell or Proton Exchange 

Membrane Fuel Cell (PEMFC).8
'
9
'
1° Fuel cells are also classified based on the fuel 

employed. In a Direct Methanol Fuel Cell (DMFC), for example, methanol is directly fed 

into the fuel cells without the intermediate step of reforming into hydrogen.n DMFCs 

based on PEMFC technology are the focus of this thesis and are therefore reviewed in 

detail in 1.4. The other types are briefly reviewed below. 

1.3.1 Alkaline Fuel Cells (AFCs) 

Alkaline fuel cells were one of the first fuel cell technologies developed, and they 

were the first type of fuel cell to be used by NASA on space missions. These fuel cells use 

a solution of potassium hydroxide in water as the electrolyte and can use a variety of 

non-precious metals as a catalyst at the anode and cathode. 

5 



One main advantage of AFCs is the faster kinetics of the oxygen reduction reaction 

in base. Their efficiency can up to 70 percent. However, this type of fuel cell is easily 

poisoned by trace amounts of carbon dioxide (C02), which makes it necessary to purify 

both the hydrogen and oxygen used in the cell. This purification process is costly. Also, 

susceptibility to poisoning shortens lifetimes. Moreover, hydrogen oxidation kinetics are 

slower in base than in acid. 

1.3.2 Phosphoric Acid Fuel Cells (PAFCs). 

PAFCs are commercially available today. The electrolyte is liquid phosphoric acid 

which is usually soaked into a SiC-based matrix. Recently, polybenzimidazole (PBI) 

membranes doped with phosphoric acid have been produced. PAFCs are typically 

operated in the range of 150-200°C. At lower temperatures, phosphoric acid is a poor 

ionic conductor, and carbon monoxide (CO) poisoning of the Platinum (Pt) 

electro-catalyst in the anode becomes severe. 

One of the main advantages of this type of fuel cell is that it can use impure hydrogen 

as a fuel. PAFCs can tolerate a CO concentration of about 2%, which broadens the choice 

of fuels they can use. 

1.3.3 Molten Carbonate Fuel Cells (MCFCs ). 

MCFCs use a liquid solution of lithium, sodium and/or potassium carbonates as the 

6 



electrolyte. The molten carbonate is stabilized in a reinforced matrix (such as a Ah03 

supported LiAl02 matrix). The use of a molten carbonate as the electrolyte solves the 

electrolyte carbonation problem for AFCs. They operate at about 650 °C to achieve 

sufficient conductivity of the electrolyte. The high operating temperature serves as a big 

advantage because this allows the flexibility to use more types of fuels and inexpensive 

catalysts. A disadvantage to this, however, is that high temperatures enhance corrosion 

and the breakdown of cell components. 

1.3.4 Solid Oxide Fuel Cells (SOFCs) 

SOFCs use a solid ceramic of yttria-stabilized zirconia as the electrolyte, which is an 

excellent conductor of negatively charged oxygen (oxide) ions at high temperatures. Solid 

Oxide Fuel Cells (SOFCs) are the highest-temperature fuel cells in development currently 

and can be operated above 1 000°C. 12 The high temperature enables them to tolerate 

relatively impure fuels. However, the high temperatures require more expensive 

construction materials. 

1.3,5 Proton Exchange Membrane Fuel Cells (PEMFCs) 

Proton exchange membrane fuel cells (PEMFCs), also called polymer electrolyte 

membrane fuel cells, use a thin proton exchange membrane, mainly Nafion by DuPont, 13 

as the electrolyte. The PEM separates the anode and cathode and also serves as the proton 

7 



conductor between these two electrodes. Compared to other fuel cells, PEMFCs deliver 

high power density and offer the advantages of low weight and volume. They need only 

hydrogen, oxygen or air, and water to operate and do not require corrosive fluids like the 

other fuel cells. Typically, PEMFCs are fueled with pure hydrogen supplied from storage 

tanks or with a H2/C02 mixture from a reforrner. 

PEMFCs are generally operated at 80-1 00°C because of the limitations imposed by 

the therrnal properties of the PEM. That makes it quick to bring the cell to its operating 

temperature. However, recent research has been focused on high temperature PEMFCs. 14 

The operating temperature is supposed to be up to 200°C, so that the fuel cell is more 

resistant to carbon monoxide impurities in the hydrogen, and water and heat management 

are simpler and more cost-effective. 

Direct methanol fuel cells are often based on proton exchange membrane fuel cells. 

Compared with a hydrogen PEMFC, direct methanol fuel cells have tremendous 

advantages. Operating a fuel cell with a liquid fuel is considered to be essential for 

transport applications. Methanol can be safely stored, transported and supported from the 

existing gasoline distribution network. 15 Moreover, DMFCs also have some system 

design advantages over hydrogen PEMFCs. For instance, DMFCs eliminate the heavy 

and bulky fuel processor (or reforrner) for the hydrogen reforrner cell. 16
'
17 The DMFC 

system doesn't need the complex humidification and heat management hardware used 

hydrogen PEMFC systems. 
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1.4 Direct Methanol Fuel Cells 

1.4.1 Introduction to Direct Methanol Fuel Cells 

Direct Methanol Fuel Cells represent an exciting area of fuel cell research because of 

their high energy density, simple system design and operation. People began to study 

DMFCs early in the 1960s. 18 As methanol and other small organic molecules are more 

reactive in basic media than in acid media, an alkaline electrolyte was used at that time. 

As in the AFC, carbonation of the electrolyte (caused by the complete oxidation of 

methanol to carbon dioxide) decreased the cell efficiency by decreasing the electrolyte 

conductivity and cathode electrode depolarization. 19 Thereafter, researchers studied the 

use of concentrated sulfuric acid as an electrolyte?0 The recent rapid development of 

DMFCs is thanks to the introduction of proton exchange membranes, an electronic 

insulator that allows protons to migrate through it. The best available PEM to date is the 

Nafion perflurosulfonic acid series of membranes. Nafion was invented by Dupont in the 

1960s, and initially used as a separator in electrolysis cells. 21 
'
22 However, Nafion 

membranes began to gain popularity as solid polymer electrolytes in fuel cells until 

1990?3 Although significant performance gains have been achieved using Nafions, many 

problems, especially methanol crossover, still exist that must be overcome. The properties 

ofNafion and other alternative PEMs are discussed in detailed in Section 1.5. 

1.4.2 Principles of the DMFC 
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The key part of a DMFC is the membrane electrode assembly (MEA). The 

components of a MEA are shown in Fig.l.l. It consists of five layers, which include gas 

and liquid diffusion layers, a catalytic methanol anode and a catalytic oxygen cathode 

layer, separated by a proton conducting membrane. Generally, the MEA is prepared by 

hot-pressing the cathode and the anode onto each side ofthe membrane. 

Membrane 

Catalyst layer 

Cathode Anode 

MeOH 

Fig. 1.1. Schematic diagram of a Membrane Electrodes Assembly (MEA) of a DMFC 

The mam DMFC processes include methanol oxidation on the anode, oxygen 

reduction on the cathode, liquid transport and oxygen gas permeation through the backing 

and catalyst layers, proton and water transport in the PEM layer, and the methanol 

crossover as shown in Figure 1.1. 
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The DMFC has a thermodynamic voltage of 1.18V at 25 °C, determined by the 

electrochemical oxidation of methanol (in acid electrolyte): 

Anode reaction: CH30H + H 20 ~ C02 + 6H+ + 6e- E~ = 0.046V (1.7) 

Cathode reaction: 3 I 202 + 6H+ + 6e- ~ 3H20 E~ = l.23V (1.8) 

Overall reaction: CH30H + 3/202 ~ C02 + 2H20 E~eu = 1.18V (1.9) 

While the structure and thermodynamic characteristics of DMFCs are similar to 

those of hydrogen PEMFCs, the performance of each is very different. Like hydrogen 

PEMFCs, DMFCs are also limited by the poor oxygen reduction activity of the cathode. 

Unlike the PEMFC, the DMFC anode is also limited by poor methanol electro-oxidation 

activity. Electro-oxidization of hydrogen is a fast reaction on a low Pt loading catalyst. 

On the other hand, the methanol oxidation reaction rate is at least 3 to 4 orders magnitude 

slower, even on an optimized Pt!Ru catalyst. 

At present, the two most serious technical problems for DMFCs are poor catalyst 

activities and methanol crossover to the cathode. The latter issue is due to the fact that 

methanol from the anode compartment permeates the electrolyte and reacts directly with 

oxygen at the cathode, significantly decreasing the efficiency of methanol utilization and 

causing a mixed cathode potential. The main available energy losses of DMFCs are 

attributed to the poor activities of the cathode and anode and methanol crossover.24 The 

cathode overpotential can also be increased by methanol crossover. In order to develop a 
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practical energy production device, the serious problems of poor anode activity and 

methanol crossover must be solved. 

1.4.3 Anodes for Direct Methanol Fuel Cells 

To increase the efficiency of the anode reaction, it is important to understand the 

reaction mechanism. In the last few years, a large amount of research has been carried out 

to identify the nature and rate-limiting step of electro-oxidation of methanol.25
'
26 

The best single metal catalyst that displays the necessary reactivity and stability to 

adsorb and break the C-H bond of methanol in an acidic environment is Pt?7
,
28 The 

electrochemical oxidation of methanol on Pt involves several intermediate steps29
,
30 and 

the mechanism can be generally presented as in Fig. 1.2.31 At first, methanol molecules 

adsorb onto the Pt surface (step i in Fig. 1.2.). Then a sequence of dehydrogeneration 

steps and surface rearrangement steps give rise to adsorbed carbon monoxide (step ii-v in 

Fig. 1.2.). 

i) CH30H + Pt--+ Pt- CH30H 

ii) Pt-CH30H -+Pt-CH20H +H+ +le

iii) Pt-CH20H +Pt--+ Pt-CHOH +H+ +le

iv) Pt-CHOH + Pt--+ Pt -CHO+ H+ + le

v) Pt-CHO-+Pt-CO+H+ +le-

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

However, the CO intermediates strongly adsorb and therefore poison the Pt catalyst. 

12 



To remove these CO intermediates, water disassociation occurs at high anodic potentials 

and forms Pt-OH species on the surface (vi, vii in Fig. 2). 

H 

H-o 

Fig. 1.2. A reaction scheme describing the probable methanol electrooxidation process 

(Steps ito viii) within a DMFC anode. Only Pt-based electrocatalysts show the necessary 

reactivity and stability in the acidic environment ofthe DMFC to be of practical use. 

Reprinted from M.P. Hogarth, T. R. Ralph. Platinum Metals Rev., 2002,46 (4): 146-164 

Copyright 2002. Reproduced with the permission of Johnson Matthey. 
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(1.15) 

At last, Pt-OH reacts with Pt-CO to produce carbon dioxide (viii in Fig. 2.). 

viii) Pt-OH +Pt-C0~2Pt+C02 +1e- (1.16) 

The overall oxidation process involves six electron transfer and the 

rate-determination step is the water-discharging step (equation 1.15). 32 On a pure Pt 

catalyst, the chemisorbed hydroxide group only forms when the potential is greater than 

0.5-0.6 V.33
•
34

•
35 This large overpotential relative to the methanol oxidation standard 

potential causes great performance losses for DMFCs. Researchers have shown that the 

CO adsorption is less pronounced with increasing temperature. 36
•
37

•
38 However, the 

methanol and water crossover rate greatly increases at high temperature. In general, 

DMFCs are therefore operated at 60-100 °C. 

An active methanol oxidation catalyst should give rise to the hydroxyl group at low 

potentials and could also catalyze the oxidation of carbon monoxide. Many efforts are 

devoted towards the development of the binary alloys (Pt with Ru, Sn, Os, Co, Cu, Mo, W, 

Pd, or Rh),39,4°·41
•
42 ternary (PtRuW, PtRuMot3

•
44 and quaternary alloys (PtRuirOs)45 as 

highly activity methanol oxidation catalysts. Among them, the Pt-Ru binary catalysts 

have been extensively investigated and are currently regarded as the most active and 

durable for methanol and CO electro-oxidation.46
•
47

•
48

•
49

•
50 

Although the enhancement effect of ruthenium on methanol oxidation has been used 

m DMFC for decades, the mechanisms are not well understood. A bi-functional 
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mechanism is considered to be responsible for the enhancement effect. 51 At lower 

overpotential (0.25V, compared with pure Pt),52 water discharging occurs on Ru sites and 

forms hydroxyl group at the catalyst surface: 

(1.17) 

Then Ru-OH groups can oxidize the neighbouring Pt-CO and therefore liberate Pt active 

sites for methanol oxidation. 

Ru-OH +Pt-CO~Ru+Pt+C02 +H+ +le

Moreover, the addition of Ru can weaken the of Pt-CO bond. 53 

(1.18) 

There are many factors that affect anode polarization, such as particle size and 

particle size distribution, oxidation state of the Pt and Ru, the morphology of the catalyst, 

and its composition, etc. 54
'
55

'
56 The composition and especially the surface composition 

of the Pt-Ru catalyst may be one of the most important factors. 57
'
58 Gasteiger et al. 

reported that 30% Ru is the optimum ratio,59 while others claim that 50% Ru is the 

best. 60 Also, the inconsistency in the literature about the oxidation state of Ru is another 

issue. Rolison et al. indicated that hydrous ruthenium oxide, rather than ruthenium, is 

more active in the oxidation of methanol on the Pt-Ru catalyst,61 while other researchers 

reported that the pure Pt-Ru alloy is preferred for methanol oxidation.62
'
63 

1.4.4 Cathodes for Direct Methanol Fuel Cells 

The most widely used catalyst employed in DMFCs for oxygen reduction is Pt.64 As 
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for hydrogen PEMFCs, the cathode oxygen reduction reaction of a DMFC is very 

complex and involves a four electron multi-step process.65 In excess of 300 mV are lost 

from the thermodynamic potential for oxygen reduction, even at low current densities. 

One possible mechanism is presented in Fig. 1.3.66 In order for the reduction of 

oxygen reaction to occur, three species (electrons, protons, and oxygen molecules) must 

meet at the catalyst surface. The catalyst layer is generally a mixture of three different 

substances: catalyst particles, solid polymer, and a porous carbon support. The solid 

polymer provides pathways for the protons whereas the carbon and pores allow electrons 

and oxygen respectively to reach the catalyst sites. 

Ptz Pt~OH Ptz 

Ptz+ 0.., ""'o 2H+ 
4e-

" I 2H+ 
+ 2H20 

0 z+1 
Ptv Pt-OH Ptz 

Fig. 1.3. The bridge model of oxygen reduction on Pt 

DMFCs are generally fuelled with methanol solution, which will crossover the 

Nafion-type membrane to reach the cathode side. The crossover methanol is oxidized on 

the cathode and creates a mixed electrode potential which reduces the cell voltage. 67 

Moreover, poisoning of Pt also occurs. CO intermediates form on Pt and reduce the 

cathode activity over time. Fig. 1.4 shows a cyclic voltammogram of a DMFC cathode 
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Fig. 1.4. Cyclic voltammogram (20 m V /s) of a Pt cathode after running a DMFC at 60 oc for 2 hours. The CV was measured at 

60 oc with H2 flow through the anode and H20 through the cathode. 



after running with air and methanol for 2 hours. The peak from 400 to 600 m V in the first 

cycle is attributed to the oxidation of adsorbed CO. 

In a DMFC, water management in the cathode compartment also takes on a critical 

role in the performance. Water builds up readily by three means: 68 1) diffusion from the 

methanol solution in the anode; 2) electro-osmotic drag of water molecules along with 

proton migration;69
'
70 and 3) formation of water by oxygen reduction. The high water 

flux to the cathode may cause flooding of its porous structure even at low currents, 

thereby limiting oxygen supply to the active catalyst sites. In order to prevent the cathode 

from flooding, a large excess over stoichiometric airflow is usually employed. 71 

A highly active catalyst, and good electronic and ionic conductivities are three crucial 

requirements for an ideal cathode. Much effort has been made to increase cathode 

performance. A number of methanol tolerant cathodes have been developed to suppress 

the effect of methanol crossover, (i.e. RuSe/C, PtFe/C).72
'
73

'
74

'
75

'
76 While Thomas and 

coworkers claimed that cathode performance losses due to methanol crossover are 

marginal when the Pt air cathode in a DMFC has a sufficient Pt loading and cell operation 

conditions are optimized.77 Increasing the cathode ionic conductivity is another effective 

way to improve cathode performance. It has been found that the cathode ionic 

conductivity can be increased by loading Nafion into the Pt catalyst layer 78 and 

modification the Pt catalyst surface with sulfonated silane. 79 Results in our group showed 

that the DMFC performance increased with loading Nafion ionomer into the cathode 
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catalyst layer up to ca. 20%, and after which the performance declined with Nafion 

loading.80 

1.4.5 Proton Exchange Membranes for Direct Methanol Fuel Cells 

A good proton exchange membrane for a DMFC must perform three major functions: 

1) high proton conductivity; 2) effective physical separation of the anode and cathode and 

a barrier for fuel permeation; and 3) insulation for electronic conduction. In addition, 

good mechanical strength and stability are also required. 

The membranes commonly used nowadays in DMFCs, such as Nafion (Dupont) and 

Dais membrane (sulfonated polystyrene-b-poly(ethylene-r-butylene) block copolymers, 

Dias-Analytic Co.), were originally developed for hydrogen PEMFC applications. The 

drawback of their use in DMFCs is that they are not optimal for methanol blocking. These 

membranes suffer from high methanol crossover rates when methanol is directly passed 

through the anode. This process is due to the similar properties of methanol and water 

(e.g., dipole moment). As described before, the presence of methanol on the cathode side 

not only lowers fuel efficiency but also further polarizes the cathode. Therefore, it is very 

important to reduce the methanol crossover while maintaining proton conductivity and 

mechanical strength of the PEM. Many kinds of proton exchange membranes have been 

developed to decrease the methanol crossover and can be roughly classified into three 

groups: 81 1) modified perfluorosulfonic acid membranes, 2) alternatives sulfonated 
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aromatic polymers, and 3) acid-base polymer membranes. 

1.4.5.1 Perfluo.rosulfonic Acid Membranes 

Although several types of perfluorosulfonic acid membranes are commercially 

available, such as Nafion (DuPont), Flemion (Ashashi Glass), Aciplex (Ashashi 

Chemicals) or Dow (Dow Chemicals), 82 none is more researched or seen as the standard 

than the Nafion membranes developed by E. I. DuPont de Nemours & Company. 

The chemical structure of Nafion is shown in Fig. 1.5. It consists of a hydrophobic 

polytetrafluoroethylene (PTFE) like backbone and regularly spaced perfluorovinyl ether 

side-chains terminated with strong hydrophilic sulfonic acid groups ( -S03H). The 

Teflon-like main chain gives Nafion excellent mechanical strength, chemical stability and 

thermal stability, while the sulfonated side chains endow Nafion with high proton 

conductivity. The x andy values in Fig. 1.5 determined the equivalent weight (EW, as 

average molecular weight, is defined as the gram of polymer per mole of sulfonate groups) 

of the membranes. It should be noted that as the EW decreases below 1000 g/equiv, 

Nafion becomes soluble in water because there is not enough hydrophobic matrix to keep 

. . 1 l'k t 83 1t m a ge - 1 e sta e. 

The configuration and morphologies ofNafion have been intensely studied84
•
85

•
86

•
87

•
88 

and several models have been proposed to describe how ionic groups aggregate within 

Nafion membranes. Eisenberg first postulated the existence of ion clusters in Nafion.89
•
90 
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Based on that, two popular models, Gierke's network model91
'
92 and Yeager's three 

phase model,93 were proposed. Though the actual morphology of Nafion membranes is 

still disputed, all research has showed that a well-hydrated membrane contains two phases: 

a nanometer scale ionic phase ( 4-5 nm in diameter), which is involved in proton 

conduction, and a nonionic phase which is associated with the PTFE backbone. Short 

pathways (1 nm in diameter) connect the ionic clusters and continuous water containing 

channels are formed. 

Fig. 1.5. General Chemical Structure ofNafion. X=6-10 

As described before, methanol crossover through the Nafion membranes is one of 

the two major limitations for DMFCs. 94 To reduce methanol crossover, Nafion 

membranes have been modified by low dose electron beam exposure,95 by forming 

sandwich structures with, for example, sulfonated poly( vinyl alcohol) (PVA) 96 or 
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polybenzimidazole (PBI)97
, or by producing various Nafion based composites.98 

Mauritz et al. developed a sol-gel technique to introduce Si02 into the hydrophilic 

channels of Nafion membranes. 99 Watanabe et a!. have also applied Nafion/Si02 

membranes in the fuel cell field. 100 Antonucci et al. introduced this type of 

nanocomposite into DMFCs as a high temperature (145 °C) PEM in 1999. 101 The better 

mechanical strength and self-humidification properties of Nafion/Si02 membranes 

compared with original Nafion membranes, which will degrade and dehydration under 

high operation temperature, favour their application at high temperatures. After 

investigating the methanol uptake and permeation as a function of temperature, Miyake et 

al. reported that Nafion/silica hybrid membranes with high silica content (20wt.%) have 

significantly reduced methanol permeation rates and are potentially useful for both low 

and high temperature DMFCs. 102 Nafion/Ti02 membranes were also produced by Uchida 

et al. recently. 103 These membranes showed increased self-humidification even at low 

Ti02 loadings. All the studies of Nafion/inorganic nanocomposites appear to suggest that 

they are suitable for DMFCs. However, their proton conductivities are substantially lower 

than for pure Nafion and no better performance results than unmodified Nafion have been 

reported. 

Pickup et al. have developed poly(l-methylpyrrole)/Nafion 104 
• 

105 and 

polypyrrole/Nafion composites membranes. 106 
• 

107 
• 

108 These membranes display a 

significant reduction of methanol crossover. 
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1.4.5.2 Alternatives Sulfonated Aromatic Polymer Membranes 

The main motivation of development of alternative PEMs is to lower the material 

cost. From the chemical structure and physical properties point of view, sulfonated 

polysiloxane is a good candidate for proton exchange membranes. It is very strange that 

no report concerning its application in fuel cells has been published. 

Sulfonated polystyrene (SPS) membranes were the first generation ofPEMs. Though 

this type of membrane suffers severe thermal degradation due to the weak tertiary C-H 

bonds in the main chain, which are easily oxidized by oxygen, they are still studied in 

many research groups since it is easy to manipulate the structure to study the relationship 

between the morphology and ion conductivity. 109
,
110

,
111 

Most studies have focused on aromatic polymers with phenylene backbones. 

However, polymers consisting of pure linked benzene rings, such as polyphenylene (PP), 

lack flexibility and processability, though their thermal stability is good. Introduction of 

flexible ether chain links (C-0-C) gives such aromatic polymers good processabilty. 

Membranes based on sulfonated poly( etheretherketone) (SPEEK) has been actively 

0 t' t d 112,113,114,115 mves 1ga e , 

Fig. 1.6. General Chemical Structure of Sulfonated PEEK 
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The chemical structure of SPEEK is shown in Fig. 1.6. The proton conductivity can 

be controlled through the degree of sulfonation. As illustrated in Fig. 1. 7, SPEEK has a 

different microstructure than Nafion membranes.ll 6 When well-hydrated, the hydrophilic 

channels are narrower and more branched with increased dead-ends in SPEEK compared 

with Nafion. These characteristics of SPEEK significantly reduce methanol and water 

permeation. However, the low methanol crossover of SPEEK is always accompanied by 

lower proton conductivity. An approach to solve this problem is to increase the 

sulfonation degree 117
,1

18 or use thin membranes, but that always results in poor 
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Fig. 1.7. Schematic comparison of the microstructures of Nafion and sulfonated PEEK 

Reprinted from K. D. Kreuer. J. Membr. Sci., 2001, 185: 29-39 

Copyright 2001. Reproduced with permission of Elsevier Science. 
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mechanical properties. 119 Cross-linking the polymer or making composite membranes 

may be two ways to reinforce the membranes. 

1.4.5.3 Acid-base Polymer Membranes 

Basic polymers can be doped with an acid, such as phosphoric acid or sulphuric acid, 

as a donor and an acceptor to conduct protons. Acid-doped polybenzimidazole (PBI) has 

been well addressed in the past few years. 120
,
121

,
122 

PBI (chemical structure showed in Fig. 1.8.) based membranes have good chemical 

resistance and excellent mechanical strength. Pure PBI is not conducting. The 

conductivity of acid-doped PBI is strongly dependent on the doping level. The presence 

of free or unbounded acid is necessary to improve its conductivity. It is reported that these 

PEMs have high ionic conductivity, 123 low methanol crossover rate, 124 excellent thermal 

stability, 125 and a nearly zero water drag coefficient. 126 However, the severe problem of 

small molecular acid (e.g. H3P04) leakage hinders their application in DMFCs. Research 

in the Pickup group has shown that the performance of phosphoric acid doped PBI 

membranes deteriorates quickly in the DMFC as the proton conductors are washed out. 

Fig. 1.8. The chemical structure ofPBI. 
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This problem could be solved by substituting the small molecular acid by acid 

polymers, such as sulfonated polysulfone. 127
•
128

'
129 Kerres et al. produced a series of 

sulfonated polyaryl doped PBI composite membranes and applied them to DMFCs. 130
•
131 

This type of membrane greatly decreases methanol crossover with comparable 

performance to Nafion membranes and shows a promising future for DMFCs. 

1.5 Evaluation of DMFC Pe:rfo:rmance 

The most common way to evaluate a fuel cell is a polarization curve measurement 

(V vs I curve), where cell voltage is plotted as a function of current density. Fig. 1.9 

shows a typical polarization curve for a DMFC. A polarization curve can provide 

information on kinetic, ohmic, and mass transfer losses. 132 A higher current density at an 

acceptable cell voltage (e.g. 500 m V) indicates better performance. 

As described in section 1.2, the kinetic polarization is reflected in the low current 

density region and can be analyzed with the Tafel equation. Ohmic loss is observed in the 

linear region at medium current density and governed by Ohm's law. Mass transport can 

be diagnosed in the high current density region from the typical feature of the steep cell 

voltage drop. 

With the help of a reference electrode (such as the dynamic hydrogen electrode used 

by Ren et al. 133
), the individual electrode polarizations can be resolved. The polarization 

information of the anode and the cathode is crucial to improving cell performance and 
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optimizing operation conditions. For a DMFC, a cathode mass transport region is seldom 

observed due to the low activity of the anode catalyst. Cells cannot reach the high current 

densities where oxygen mass transfer dominates. 
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Fig. 1.9. A direct methanol fuel cell polarization, anode polarization and cathode 

polarization curves, showing kinetic, ohmic loss, and mass transport regions. 

Electrochemical impedance spectroscopy (EIS) is another very powerful technique 

to characterize fuel cells. However, a full discussion of this method is beyond the scope 

of this thesis. Only a short introduction is presented here. EIS measures the impedance of 

an electrochemical cell as a function of the frequency of a series of ac excitation signals. 

As a diagnostic tool, EIS can provide not only the resistance of the PEM, but also more 
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dynamic information on the interfacial charge transfer resistance, mass transport 

resistances in the catalyst layer and backing diffusion layer, and ionic and electronic 

resistances. 134
'
135

'
136 Until now, most EIS research has been concerned with hydrogen fuel 

cells. Few efforts have been dedicated to the EIS study of DMFCs137
•
138

'
139 mainly due to 

the more complex methanol electrochemical reactions and mass transport properties. The 

formation of large amounts of C02 in the liquid feed anode side make the spectrometry 

more complex to explain. More research is underway. 

1.6 Thesis Objectives 

The general goal of the work described in this thesis was to produce polypyrrole 

modified Nafion membranes to decrease methanol crossover in direct methanol fuel cells 

and improve DMFC performance. 

In Chapter Three, factors affecting the in situ polymerization of polypyrrole in 

Nafion are described. An optimized modification procedure to produce 

polypyrrole/Nafion composites was determined. The characterization results are displayed 

in Chapter Four, which shows that the modification procedure has very good 

reproducibility. 

To resolve the anode performance and cathode performance, the development of a 

more convenient reference electrode is presented in Chapter Five. This reference 

electrode was examined in both a hydrogen PEMFC and a DMFC. 
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Unless stated otherwise, all commercial chemicals and solvents were used as 

received without purification. Nanopure water was used to prepare all aqueous solutions 

and for washing membranes. 

2.1. Electrochemical Instruments 

Electrochemical experiments were performed using the following two instruments: 

Solartron 1286/1250 

A Solartron 1286 electrochemical interface (Schlumberger) and 1250-frequency 

response analyzer controlled by custom software. Electrochemical Impedance Spectra 

(EIS) were acquired using Z-plot software (Scribner Associates, Inc). 

EG&G PAR 273A Potentiostat/Galvanostat/ 5210 Lock-in Amplifier 

A EG&G PAR 273A Potentiostat/Galvanostat (Princeton Applied Research), 

equipped with a 5210 lock-in amplifier, was controlled by EG&G/PAR M270 

electrochemical software. EIS data was collected with PAR Powersuite software. 

2.2 Membrane Electrode Assembly Preparation 

2.2.1 Materials 

Nation membranes were cleaned in 80 °C 15% H20 2(aq.) for one hour to remove 

organic residues in the membranes (until the membranes became colourless), washed with 

deionized water then soaked in 80 °C 1 M nitric acid and 1 M sulphuric acid for one hour, 
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respectively, to remove inorganic residues. The membranes were then washed with a 

large volume of deionized water several times. The clean Nafion membranes were stored 

in deionized water. 

The PtRu anodes were prepared by Dr. Brad Easton. 1 They were composed of ca. 4 

mg/cm2 Pt!Ru black alloy (50% Pt and 50% Ru) with 10-20% Nafion binder apply onto a 

6 mil Toray carbon fiber paper (CFP, T090) impregnated with 10-15% Nafion. The Pt 

black cathodes were provided by Ballard Power System, which consisted of a total Pt 

loading of 4 mg/cm2 on CFP (T090) bound with 11 % PTFE. 

2.2.2 MEA Preparation 

Two sizes ofMEAs, 1 cm2 and 5 cm2
, were prepared. All MEAs were assembled by 

hot-pressing a Nafion membrane (or modified membrane) between two electrodes at 130 

°C at a pressure of 100-200 pound/cm2 for 180s. A 1 cm2 die and a 5 cm2 die were used to 

align the electrodes. 

2.3 Fu.el Cell Testing 

MEAs were tested in 1 or 5 cm2 cells. The in-house made 1 cm2 cell was constructed 

from Plexiglass with an open current collector ring on each side and was sealed by two 

0-rings on each side of the MEA. Gas/liquid flow could pass through each electrode. The 

1 cm2 fuel cell is designed for room temperature experiments. 
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The 5cm2 cell was a commercial model sold by ElectroChem. Inc. A scheme of the 

cell is showed in Fig. 2.1. The anode and cathode of the MEA were contacted on their 

rear with graphite plates with serpentine flow-fields. The channels supply methanol to the 

anode and oxygen (or air) to the cathode. The stainless steel end-plates functioned as 

current collectors. Electrical heaters were placed behind each of the stainless steel plates 

in order to heat the cell to the desired temperature. Silicone rubber gaskets are used to 

seal this cell. 

Figu:re 2.1. Schematic diagram of a fuel cell with serpentine flow fields 

A schematic diagram of the DMFC test system is shown in Figure 2.2. The methanol 

solution was supplied from a 50 mL syringe using a Compact Infusion Pump (Harvard 

Apparatus Co. Inc., Model 975), equipped with flow rate control. Gases were supplied 

directly from tanks and the flow rate was controlled by flow meters (Cole-Parmer). In 

some experiments, humidified hydrogen gases was used instead of the methanol solution 
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by passing the gas flow through a water tank prior to entering the celL For the high 

temperature measurements, a 50 minutes temperature stabilization time is required before 

every experiment. 

Cell Heaters 

Thennocouple 

MeOH 

~ethanol Dump 

Temperature Controller 

Figure 2.2. Schematic diagram of a direct methanol fuel cell testing system 

The DMFC was operated with 1M methanol and air as the fuel and oxidant. The 

performance was tested by applying a constant current from a potentiostat. Measurements 

were recorded after allowing sufficient time for the reading to stabilize, typically 180 

seconds. 
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Impedance measurements were carried out after purging the cathode compartment 

with N2 and were conducted with a small perturbation amplitude of 10 m V over a 

frequency range of 65 KHz to 0.1 Hz. The high frequency real axis intercept is taken as 

the resistance of the membrane. This is not influenced by the kind of gas passed through 

the cathode, but the low frequency impedance is, even at open circuit potential. This is 

discussed in Chapter Four and Chapter Five. 

Methanol crossover was measured using the voltammetric method developed by Ren 

et al. 2'3 Nitrogen was passed through the cathode compartment and the cell voltage was 

set at 0.8-0.9V (i.e. the fuel cell cathode was made positive relative to the anode). Under 

these conditions, crossover methanol on the cathode side is oxidized to carbon dioxide 

completely and H2 is evolved at the anode side. Then the limiting crossover current was 

recorded and served as a measure of the membrane's permeability. 

2.4 Attenuated Total Reflectance Fourier Transform Infrared Spectra 

Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectra were 

obtained by a Bruker Tensor 27 infrared spectrometer equipped with a MIRacle ATR 

accessory. 

2.5 Nuclear Magnetic Resonance Spectra 

Nuclear Magnetic Resonance spectra were acquired on a Bruker A VANCE 
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3.1 Introduction 

Direct Methanol Fuel Cells (DMFC) are currently being developed by many 

companies as promising candidates for portable and stationary power sources. DMFCs 

have attracted much attention since 1990 with the introduction ofNafion proton exchange 

membranes into fuel cells. 1 Due to its excellent chemical, thermal, and mechanical 

properties, Nafion is prevalently used as the PEM. Though DMFCs have safety 

advantages over H2 fuel cells, methanol crossover through the Nafion membrane from the 

anode to the cathode creates very challenging problems. 2'3 '
4

'
5 Methanol crossover 

strongly affects DMFC performance since the presence of methanol in the cathode not 

only lowers the fuel utilization efficiency but also causes a mixed potential on the cathode 

side.6
'
7 As shown in section 1.4.3, crossover methanol will be oxidized on the Pt cathode 

forming CO species which poison the catalyst for oxygen reduction. 

3.1.1 Methanol Crossover Measurement Methods 

Methanol permeation is such an important factors affecting DMFC's performance 

that a reliable and convenient method to determine methanol crossover is needed. 

The most conventional method is by monitoring the C02 flux from the cathode 

effluent gas using an optical infrared C02 sensor. 8
'
9

'
10 The C02 can also be monitored by 

gas chromatographic analysis11
'
12 or mass spectrometry. 13 These methods are based on 

the assumption that the crossover methanol is completely oxidized to C02 at the cathode 
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and that there is no COz permeation from the anode to the cathode. However, in a 

practical DMFC, COz can diffuse through the Nafion PEM, which results an 

underestimated crossover effect at low current density and overestimated crossover effect 

at high current density in DMFC. 14 In addition, these methods need complex and 

expensive equipment. Chu and Jiang et al. simplified this approach by applying the more 

accurate gravimetric method of determination BaC03 to analyze the amount of C02 

produced at the cathode, and corrected for the C02 permeation effect by also monitoring 

the C02 flow at the anode. 15 The equivalent current for methanol crossover can be 

calculated from the discharge current of the fuel cell and the sum of dry BaC03 

precipitate collected at the anode and the cathode exhausts. The method developed by 

Chu et al is a reliable method to measure methanol crossover during operation of the cell, 

but not a convenient technique due to the complexity of the DMFC system, the long times 

for the C02 collection, precipitate collection and desiccation, and so on. 

Ren and coworkers developed a reliable and convenient voltammetric method to 

measure the methanol crossover. 16
' 

17 It is a very useful tool for membrane 

characterization and was adopted in this research. Fig. 3.1 outlines the transport and 

electrode reactions involved in the measurement. A methanol solution and inert Nz were 

fed to the left side and right side, respectively. Methanol will crossover from the left side 

to the right side. By applying a positive external voltage on the right side (0.8-0.9V), the 

crossover methanol will be oxidized to COz with hydrogen evolution as the counter 
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electrode process on the left side (as a dynamic hydrogen electrode, DHE). 

6Ir + 6e-

3H2 

Fig. 3.1. Schematic diagram of the measurement of methanol crossover in a direct 
methanol fuel cell. Electrode reactions are also shown in the diagram. 

The methanol permeation parameters can be determined from the steady-state limiting 

current density (Jlim) resulting from complete electro-oxidization of the crossover 

methanol to C02 at the Pt fuel cell cathode: 

(3.1) 

where Dm is the diffusion coefficient, Cm is the methanol concentration within the 

membrane, ki1 is the drag coefficient, d is the thickness of the Nafion membrane, and F is 

the Faraday constant. 
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When methanol crossover is only determined by diffusion, kd1 is unity. However, the 

elctro-osmotic drag due to the proton movement, results in ~1<1. At open circuit potential, 

the effective methanol crossover current density (Jcrossover) is higher than the measured 

limiting current density. 

Jcrossover _ 6; · Xo 

J 1im ln(l + 6; · x0 ) 

(3.2) 

where q is the elctro-osmotic drag coefficient and x0 is the molar fraction of methanol in 

the feed methanol solution. For simplicity, J1im is used in this thesis as a relative measure 

of crossover and used directly to compare the methanol crossover properties of different 

membranes. 

3.1.2 Conducting Polyme:r/Nafion Composite Membranes 

Composites are an important class of materials that can take advantages of desired 

properties of different components. To reduce methanol crossover through Nafion 

membranes, significant research efforts have focused on the preparation of Nafion based 

hybrid composite membranes (e.g. Si02/Nafion, Ti02/Nafion, PVA/Nafion, et 

al). 18 ' 19
' 
20 ,21 , 22 ' 23 However, the decreased methanol crossover of these modified 

membranes is always accompanied by low proton conductivities. 

The polymerization of aromatic compounds within Nafion membranes has shown to 

be a good potential for the preparation of composite membranes for DMFCs. 
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Poly(l-methylpyrrole)/Nafion composite membranes have displayed a 40% reduction of 

methanol permeation without a significant increase in resistance.24
•
25 

In this work, pyrrole was selected over 1-methylpyrrole as the monomer due to its 

higher water solubility, which simplifies the polymerization process. Pyrrole can be easily 

loaded into the acid form ofNafion and polymerized by water-soluble oxidants. Moreover, 

polypyrrole is insoluble in water and is not washed out of the membrane during fuel cell 

operation.26 In addition, preliminary results in our group have shown that the polypyrrole 

modified N afion membranes have better performance than poly( 1-methylpyrrole) 

modified ones.Z6 

Polypyrrole/Nafion membranes have been prepared and studied in DMFCs in our 

lab.27
•
28 However, systematic work was required to elucidate the factors that influence the 

rate, and extent of polypyrrole incorporation into Nafion membranes. 

In this chapter, the factors that determine the production of polypyrrole in Nafion 

membranes are examined. A reproducible and optimized preparation procedure is 

established. 

3.2 Experimental 

3.2.1 Mate:rials 

Nafion membranes (Dupont; donated by H Power Corp.) were cleaned following 

section 2.2.1. Pyrrole (Aldrich) was distilled under N2. Every pyrrole solution used in the 
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experiments was freshly prepared. Nanopure DI water was used to prepare all aqueous 

solutions and for washing membranes. All other chemicals were used as received. 

All electrodes used in the work in this chapter are Pt black cathodes provided by 

Ballard Power Systems, which consisted of a total Pt loading of 4 mg/cm2 on CFP (T090) 

bonded with 11% PTFE. 

3.2.2 Preparation of Polypyrrole/Nafion Composite Membranes 

Polypyrrole/Nafion membranes were prepared according to the three steps shown in 

Fig. 3.2. Nation 115 was immersed in a pyrrole solution to load the monomer; then 

transferred to an oxidizing reagent solution (such as Fe3
+, or H20 2) to polymerize the 

pyrrole; and finally removed from the oxidizing solution and rinsed with water to stop the 

polymerization. The composite membranes were then washed with 1M HN03 and 1M 

H2S04 until the acid wash remained colorless. The membranes were washed with DI 

water after every step. The polypyrrole/Nafion membranes were then stored in a large 

volume of DI water before use. 

I Monomer : Wash wi~ I In-situ : Wash wi~! Termination 
I Permeation I DI water I Polymerization i DI water I & Cleaning 

Fig. 3.2. Schematic of the procedure for modification ofNafion with polypyrrole 
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3.2.3 Fu.el CeU Experiments 

Methanol crossover was measured in the 1cm2 fuel cell. The cell was fed with 1M 

methanol solution and N2 gas with a methanol pumping rate of 0.153 ml/min and a N2 

flow rate of 12.3 ml/min. A two-step chronoamperometry experiment was applied. The 

fuel cell was conditioned at 0. 7 V for 50 seconds prior to measurements to oxidize the 

methanol accumulated on the cathode side. The potential was then stepped to 0.9 V for 

100 seconds, and then stepped to 0.8 V for 100 seconds. Fig. 3.3 shows a typical 

chronoamperometric current density vs. time diagram for Nation 115. After a sharply 

decaying charging current at the beginning of the potential step from 0.7 V to 0.9 V, the 

crossover current stabilized after ca. 30 seconds. On the second step, the charging current 

sharply decreased at the beginning of the potential step from 0.9 V to 0.8 V and then 

stabilized at a constant value. The crossover current ofNafion 115 was determined from 

the average of the last 20 seconds ofthe two potential steps (0.9 V and 0.8 V). Table 3.1 

summarizes the methanol crossover currents collected by the same method for different 

composite membranes. 

Ionic resistances were measured by impedance spectroscopy on fully hydrated 

membranes sandwiched (pressure contact) between two 1 cm2 Ballard cathodes. Fig.3.4 

shows a Nyquist plot for Nation 115. The membrane resistance is determined by the 

average of the two intercepts on the real resistance axis as shown in the inserted figure in 

Fig. 3.4. The resistances ofthe membranes are collected and recorded in Table 3.1. 
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All electrochemical data in this chapter were collected with an EG&G PAR 273A 

Potentiostat/Galvanostat/5210 Lock-in Amplifier electrochemical analysis system at 

ambient temperature (22 ± 3°C). 

3.3 Results an.d Discussion. 

Nafion membranes are composed of three distinct regions as showed in Fig. 3.5 (A): 

the hydrophilic anion clusters, the hydrophobic PTFE backbone and an interfacial region 

between the two. Pyrrole monomer can easily partition into the strongly acidic 

hydrophilic anion clusters in Nafion membranes (showed in Fig. 3.5 (B)), and this is 

followed by protonation and polymerization. The presence of polypyrrole in the 

hydrophilic region effectively blocks methanol permeation. 

Hydrophobic region 
,~--~ 

/ ' 
/ ,' ',...._, 

Water-filled pore 

A 

Hydrophobic region 

Polypyrrole 

B 

Fig.3.5. Schematic structure of fully hydrated membranes before (A. Nafion) and after 

modification (B. polypyrrole/Nafion composites) 
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Many factors could affect the polymerization of polypyrrole in Nafion membranes, 

and thus influence the permeation properties and ionic conductivities of the composite 

membranes. One of the most important is the choice of oxidizing agent. H20 2 is chosen as 

the oxidizing agent instead of Fe3
+ in all the experiments for two reasons: 1) Fe3

+ can 

promote the formation of polypyrrole at the outer surface of the membrane;29
•
30 and 2) a 

small amount of Fe3
+ residue can remarkably influence the 02 reduction kinetics at aPt 

cathode. 31 H202 can drive the polymerization of pyrrole in an acid environment and 

introduces no impurities into the Nafion membranes; H 20 2 + 2H+ + 2e- ~ 2H20. The 

modification process could be easily controlled by varying the concentration of the 

pyrrole solution, loading time, and the polymerization time. 

The conditions used for N afion modification are listed in Table 3.1, together with 

methanol crossover currents measured in a 1 cm2 cell and resistance measured by 

impedance in a sandwich cell. All modification conditions have been repeated at least 

once and the electrochemical measurement results have shown excellent reproducibility. 

The crossover limiting current density and impedance data shown in this table are 

averaged for MEAs made from different modification experiments. Their standard 

deviations were less than 5%. The polypyrrole modified Nafion membranes all exhibited 

excellent reduction of methanol crossover. However, their impedances were higher than 

the pristine membrane. 

Different pyrrole concentration solutions, from 0.1 M to 0.5 M, were used to load 
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Table 3.L Methanol crossover currents and resistances ofpolypyrrole/Nafion composite membranes 

Membrane Resistance Methanol Crossover 
Polymerization Conditions 

code (0 cm2)a (mA/cm2)a 
Jll5 / Jm Pyrrole Loading 

Time in 5% Hz02 
Concentration, Time 

Nafion 115 0.27 28.3 1 

A 0.44 12.0 2.35 0.1 M, 20 min 1 h 

B 0.42 10.6 2.66 0.1 M, 20 min 2 h 

'-" c 0.42 14.6 1.93 0.1 M, 20 min 6 h 
00 

D 0.41 14.4 1.96 0.1 M, 20 min 12 h 

E 0.36 16.4 1.72 0.1 M, 20 min 18 h 

F 0.43 11.5 2.46 0.1 M, 40 min 12 h 

G 0.59 5.9 4.79 0.1 M, 60 min 12 h 

H 1.03 3.2 8.88 0.1 M, 120 min 12 h 

I 0.78 11.4 2.48 0.2 M, 20 min 12 h 

J 3.02 0.1 353 0.5 M, 20 min 12 h 

a Measured at room temperature. 



the monomer. With increasing monomer concentration, more monomer could be loaded 

into the Nafion membranes under same loading time. However, polypyrrole is an 

electronic conducting polymer. With increase of the polypyrrole content, the composite 

membranes' properties can change from flexible and ionic conducting to stiff and 

electronic conducting. Relatively low polypyrrole loading (1-5 wt.%) is required for the 

composite membranes to decrease the methanol crossover but maintain high proton 

d 
. . 24 

con uct1v1ty. 

To study other aspects of the modification process, 0.1 M pyrrole solution was used 

in all the other modifications. 

3.3.1 Influence of Polymerization Time in HzOz 

Pieces of Nafion membranes were immersed in O.lM aqueous pyrrole solutions for 

20 mintues, and then the pyrrole was polymerized in 5% H202 solutions for 1 to 18 hours. 

The crossover limiting currents and impedance are showed in Table 3 .1. 

Fig. 3.6 shows the methanol crossover current as a function of polymerization time. 

Methanol crossover sharply dropped during the first 1-2 hours of polymerization. With 

longer H202 treatment times, methanol crossover increased a little and then remained 

nearly constant from 6-12 hours. These results show that pyrrole is rapidly polymerized in 

Nafion by 5% H202 and that the degradation of the resulting polymer by excess Hz02 is 

very slow. Even after oxidization with 5% H202 for weeks (>2 weeks), a large amount of 
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Fig. 3.6. Methanol crossover through polypyrrole/Nafion modified membranes at different polymerization times 



polypyrrole remained in composite membranes. However, when 30% H20 2 was used, 

rapid polymerization was followed by fast degradation of the polypyrrole. Hot 30% Hz02 

can be used to return the membranes to a clear colourless unmodified state in minutes. A 

5% H20 2 solution was used here in all modifications because it is effective for the 

polymerization of pyrrole in Nafion and its relatively low oxidation activity is useful for 

removal of polypyrrole from the membrane's surface but it does not induce severe 

degradation. 

Methanol transport through the membrane is accomplished by diffusion through the 

ion cluster pores and the connecting ion channels. From equation 3.1, three variables, k dl , 

Dm and Cm control the crossover limiting current. At low pyrrole loadings, polypyrrole 

maybe formed mainly in the ionic pores and so may not significantly interrupt the 

transport properties of Nafion membranes. kd1 and Dm are almost the same as for 

unmodified Nafion membranes. However, the presence of polypyrrole in Nafion will 

decrease the ionic pore size and thus reduce the concentration of methanol in the 

membrane (em in equation 3.1). Ren et al. 16 and Skou et al.32 have reported that the 

methanol concentration within Nafion pores is the same as that of the feed methanol 

solution ( C0 ). Hence, Cm is determined by the membrane porosity, & . 

(3.3) 

For composite membranes, their porosity (em) is given by equation 3 
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5 m = E Nafion -
vpolypyrrole (3 .4) 

vmembrane 

where SNafion is the porosity of pure Nafion membrane, V po!ypyrrole and V membrane are the 

volume of polypyrrole inside the membrane and the volume of the membrane, 

respectively. 

The reduction of methanol crossover is thus expected to be proportional to the 

content of polypyrrole in the modified membranes. Lower methanol crossover current is 

assumed to mean higher polypyrrole content. The partitioning of pyrrole into Nafion 

membranes has been studied by a gravimetric method by Yepez and Pickup. 33 The 

reduction of the methanol crossover current was approximately proportional to the 

amount of polypyrrole in the modified membranes at relatively low pyrrole loadings 

(1-20 wt.%). 

In the above discussion, it was assumed that kd1 and Dm do not change by 

modification of the membrane. However, as the ionic pores size decreases, the bulk-like 

water content decreases and the proton transfer mechanism could be affected 

significantly.34 The mechanism of proton transport through PEMs is still debated.35 In 

general, a decrease of the membrane's porosity always results in lower proton 

conductivity. The gravimetric results also showed that the resistances for composite 

membranes increased with the increasing of polypyrrole content?3 Fig. 3.7 shows the 

resistances of modified membranes plotted against the polymerization time. These data 
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support the above conclusions that rapid polymerization is followed by slow degradation 

of the resulting polypyrrole. The highest resistance was reached after polymerization for 1 

hour. A slow decrease in resistance was observed at longer times. 

3.3.2 In:flu.ence of Py:rrole Loading Time 

Nafion membranes were soaked in O.lM pyrrole solutions for various times and then 

immersed in 5% H202 for 12 hours to complete the polymerization. The monomer 

loading times and crossover limiting currents and resistance of each membrane are shown 

in Table 3.1. 

As described in section 3.3 .1, the methanol crossover and the conductivity of the 

polypyrrole/Nafion composite membranes, which are directly related to the membrane's 

porosity, have a linear relationship with their polypyrrole content. The uptake of pyrrole 

could be estimated from the crossover current of the composites membranes by assuming 

that the same percentage of pyrrole monomer loaded into the Nafion is polymerized in 

each experiment. 

Fig. 3.8 shows the methanol crossover current plotted against the square root of the 

pyrrole partition time. The crossover limiting current was found to decrease linearly with 

the square root of pyrrole loading time ( t 112 
), indicating a diffusion-controlled process. 

This affirms our previous UV results. 26 

Fig. 3.9 shows membrane conductivity against the square root of pyrrole partition 
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time. The conductivity of the modified membranes decreased linearly with the square root 

of pyrrole loading time, again indicating diffusion control of the pyrrole loading process. 

This provides strong evidence that the extent of the polymerization of loaded pyrrole 

is not influenced in every experiment. 

3.3.3 Selectivity of Polypyrrole/Nafion Composite Membranes 

It is clear that the composite membranes prepared in this work can effectively reduce 

methanol crossover but this is accompanied by significantly higher resistances than for 

the unmodified membrane. It is a challenge to prepare a composite membrane with high 

methanol blocking ability and relatively low resistance. Selectivity for blocking methanol 

vs. proton transport can be assessed as follows. 

A crossover reduction factor is proposed and defined as the ratio of Nafion 115's 

crossover current to that of the modified membrane ( J 115 I J m ). According to equation 3.1, 

methanol crossover can be depressed by increasing the thickness of the membrane. 36 The 

membrane's resistance is controlled by Ohm's Law: 

d 
R=p

A 
(3.5) 

where p is the resistivity of the membrane and A is its area. 

For a series of different thickness Nafion membranes with the same equivalent 

weight of 1100 (Nafion), Jm I J m has a linear relationship with resistance (shown in Fig. 

3.10 as the unmodified membrane tendency line). Any membranes that have a higher 
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crossover selective factor but lower impedance are promising candidate for DMFCs. In a 

straightforward way, the higher the data point above the unmodified tendency line, the 

better membrane performance is expected. 

The composite membranes' crossover reduction factors are plotted in Fig. 3.10. 

Membranes G, H, I and J are not shown in this figure because of their extremely high 

resistances compared with the other modified membranes. Membrane B showed the 

highest crossover reduction factor (about 2.7) and an acceptable resistance (0.42 Q ·cm2 

compared with 0.27 Q · cm2 for Nafion 115). 

3.4 Conclusions 

Polypyrrole/Nafion composite membranes have been prepared and their methanol 

crossover currents and resistances have been measured, respectively, by two-step 

chronoamperometry using a 1 cm2 DMFC and EIS using a sandwich cell. The following 

conclusions summarize the results presented here. 

1. H202 can polymerize pyrrole and overoxidize polypyrrole at the same time. In the 

first hours, the polymerization reaction is dominated and polypyrrole is quickly formed. 

When the monomer has been consumed, further oxidation by H202 leads to overoxidation 

of the polypyrrole. Use of 5% H20 2 does not cause severe degradation ofpolypyrrole. 

2. Methanol crossover limiting current and the conductivity of the composite 

membranes decrease linearly with the square root of the pyrrole loading time, indicating 
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that the pyrrole loading process is diffusion-controlled. 

3. Compared with unmodified Nafion membranes, the composite membranes have 

lower methanol crossover but higher resistance. However, the modified membranes do 

not follow the unmodified Nafion membrane tendency line. Membrane B shows excellent 

potential for DMFC applications because of its high crossover reduction factor of 

1Iim11m=2.7 and an acceptable resistance (only 50% higher than Nafion 115). 
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Chapter 4 

Characterization of Polypyrrole/N afion Modified 

Membranes in Direct Methanol Fuel Cells 
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4.1 Introduction 

Polypyrrole/Nafion 1s not a new material and has been exploited in many 

applications. 1 Sata et al. have prepared polypyrrole/Nafion ion exchange membranes that 

remarkably decrease the permeation of alkali earth metal cations relative to sodium ions 

and neutral molecules. 2 Moreover, research in the Pickup group has shown that 

polypyrrole/Nafion composite membranes have reduced methanol permeability that 

makes them very attractive for direct methanol fuel cells (DMFCs). 

The preparation of polypyrrole/Nafion composite membranes is described in Chapter 

Three. These membranes showed less methanol crossover and therefore significantly 

decrease the energy efficiency losses due to methanol crossover in a DMFC. The steps 

that compose the modification process were studied by electrochemical methods, and an 

optimized modification procedure was developed. In this chapter, the properties of 

polypyrrole/Nafion composite membranes are characterized in an operational DMFC. 

Methanol crossover and DMFC performances were evaluated and are compared with 

those of unmodified Nafion 115 membranes. 

Because polypyrrole is a positively charged conducting polymer when doped, it can 

interacted with the sulfonate groups in the ion pores and ion channels of the Nafion, and 

thus reduced the membrane's proton conductivity. Two approaches were therefore applied 

to decrease the resistance of the composite membranes: the provision of negatively 

charged counter ions during the polymerization and the use of a pyrrole solfonate 
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monomer. Preliminary results are presented at the end of this chapter. 

4.2 Experiment 

4.2.1 MEA Preparation 

Polypyrrole/Nafion composite membranes were prepared according to section 3.2.2 

using the same modification conditions as membrane B. All further modification are 

applied to this kind of membrane and coded as B-X (e.g. B-4). 

Anodes used in this chapter were PtRu anodes prepared by Dr. Brad Easton (Pt/Ru 

loading 4 mg/cm2
, described in section 2.2.1). Pt cathodes were provided by Ballard 

Power Systems (Pt loading 4 mg/cm2
, described in section 2.2.1 ). MEAs were prepared 

by hot pressing at 130 °C under 100 poundlcm2 pressure for 180s. 

4.2.2 Fuel Cell Experiments 

Membranes were evaluated at 60 °C in a commercial 5 cm2 active area fuel cell 

(ElectroChem. Inc.) as previously described (section 2.3). Electrochemical data in this 

chapter were collected by a Solartron 1286/1250 electrochemical analysis system 

(Schlumberger). 

In DMFC polarization measurements, the fuel cell was fed with 1 M methanol 

solution at 0.153 mL/min and air at a fixed flow rate of 73.1 mL/min, corresponding to a 

stoichiometry of 3.7 mol 02/4 mol electrons at 200 mA/cm2. The cell was conditioned at 
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0.5V (or 100 mA/cm2) before polarization measurements until a steady-state current 

density (or voltage) was reached. Polarization data were recorded by applying a constant 

current from the potentiostat. The voltage at each current was recorded after stabilization 

for 3 min. Cell resistances were measured by impedance spectroscopy. 

Anode polarization curves were obtained by passing H2, instead of air, through the 

cathode compartment of the fuel cell at a flow rate of 25.6 mL!min. A positive potential 

was applied to the anode. Under these conditions, the cathode evolves H2 and behaves as 

a dynamic hydrogen electrode (DHE). 

Methanol crossover was measured by a two-step chronoarnperometry method 

developed by Ren et al.3 (described in section 3.2.3). 1 M methanol solution was fed at 

2.25 mL/min and N2 was flushed through the cathode side at 23 mL/min. For the purpose 

of relative comparisons, the correction for electro-osmotic drag was not applied. 

4.3 Characterization of Polypyrrole/Nafion Composite Membranes 

MEAs were evaluated in a commercial 5cm2 fuel cell for all of the work in this 

chapter. Because the mass-transport characteristics of the 5cm2 cell are different from that 

of the lcm2 cell (used in the work in chapter 3) and the two cells were run at different 

temperatures, the crossover current results are not directly comparable. 

Membranes prepared according to procedure B exhibited excellent blockage of 

methanol crossover. Table 4.1 summarizes the crossover currents, membrane resistances 

77 



and open circuit potentials obtained with the composite membranes. Due to the low 

methanol crossover rate, modified membranes yield higher open circuit potentials (OCPs) 

than unmodified N afion 115. 

Table 4.1. Methanol crossover, resistance and open circuit potential (OCP) of 

polypyrrole/Nafion composite membranes 

Membrane Code 
MeOH crossover 

Cell resistance ( Q ) OCP (mV) 
(mA/cm2) 

Unmodified 115 126.5 0.037 768.7 

B-1 a 73.4 0.066 779.3 

B-3b 110.2 0.041 778.6 

B-4c 75.0 0.065 827.3 

B-7c 76.8 0.065 836.5 

a. no further washing step; b. Washing with hot H20 2 for 30 seconds after 

modification; c. Washing with hot H202 for 10 seconds after modification. 

B-1 was modified strictly following procedure B. A more than 40 % reduction of 

crossover current was achieved. Fig. 4.1 showed the performance improvement of B-1 

with time. Surprisingly, its peak performance in the DMFC was very poor even after full 

hydration (Fig.4.1 ). The poor performance of the B-1 membrane might be due to the 
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presence of polypyrrole on its surface. The surface properties of the Nation membrane 

would be changed and this could cause poor bonding with the electrodes, which would 

result in low catalyst utilization. 

4.3.1 Surface Cleaning to Improve the Composite Membrane/electrode Interface 

Nation solution has been widely used to prepare fuel cell catalyst layer to improve 

their proton conduction properties and bonding to Nation membranes.4 Dipping these 

composite membranes in Nation solution have been shown as an effective method for the 

improvement of membranes bonding with electrodes.5 To improve the Nation character 

of the composite membranes, a surface-cleaning step was developed. 

The surface functionality of composite membranes was characterized by attenuated 

total reflectance Fourier transform infrared (ATR-FTIR, Bruker Tensor 27 with a MIRacle 

ATR accessory) and the spectra obtained are shown in Fig. 4.2. B-7 was prepared by 

modification Nation 115 according to procedure B followed by a washing step with a hot 

(80 °C) 30% H20 2 solution for 10 seconds. Washing for a longer period in hot H202 (e.g. 

30 seconds for B-3 membrane) caused severe polypyrrole degradation (indicated by the 

high methanol crossover ofB-3 in Table 4.1). Membrane F was prepared as described in 

chapter 3 with a higher polypyrrole content than B series membranes. 

N afion 115 has a broad adsorption peak at 3000-3 600 cm-1
, which is due to adsorbed 

water. It is clear that B-7 membrane has more Nation-like surface characteristics 
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than B-1 and F (this can also be seen from the peak at 1620 cm-1 and the fingerprint 

region of 650-950 cm-1
). The increased hydrophobic polypyrrole content on membrane 

surface would decrease the hydrophilic properties of the Nafion surface and thus leads to 

a poor electrode/membrane interface. This can also explain an observed increase in the 

water/composite membrane's contact angles with increased polypyrrole loading. 

It can be seen from Table 4.1 that short time surface washing with H202 only 

oxidizes the polypyrrole on the membrane surface and does not significantly interrupt the 

polypyrrole within these membranes. Moreover, the short time washing step has very 

good reproducibility. B-4 and B-7 were prepared and washed in the same way. After 

washing, their methanol crossover limiting currents (75-76.8 mA/cm2
) and resistances 

(0.0650) were almost the same as for the unwashed B-1 form (73.4 mA/cm2
, 0.0660). 

As described above, longer washing times cause severe degradation of polypyrrole inside 

the membrane and result in high crossover currents, e.g. 110.2 mA/cm2 for B-3 and lower 

resistance (0.041 0 for B-3). 

4.3.2 Performance of Polypyr:role/Nafion Composite Membranes 

The performances of composite membranes in a DMFC are shown in Fig. 4.3. 

Excellent DMFC performances are achieved after surface washing. The cell potential 

significantly increased from 299.2 mV (B-1) to 370.5 mV (B-4 or B-7) at 100 mA/cm2
. 

At low current densities, all composite membranes gave higher performances than 
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Nafion 115 as a result of their lower methanol crossover. In the Ohmic loss region and 

mass transport region, B-1 showed the worst performance due to the low catalyst 

utilization (shown in section 4.3.1) and high resistance. B-4 and B-7 outperformed Nafion 

115 in the kinetic region and ohmic loss region, but had poorer performance than Nafion 

115 at high current density. After compensation for the IR loss in Fig. 4.4, the B-4 and 

B-7 outperformed Nafion 115 in all three regions. This verified that the lower 

performance of surface cleaned composite membranes at higher current density is due to 

their high resistance. 

From Fig. 4.4, one can also find that the effects of reduced methanol crossover 

become less prominent at high current density: the performance difference between B-4 

(or B-7) and Nafion 115 decreases at high current density. This agrees with the results of 

Chu et al. that methanol crossover decreased significantly with increasing discharging 

current. 6• 
7 Therefore the effect of methanol crossover is small at high current density and 

results in similar performances for composite membranes and Nafion 115. Researchers 

have proposed to run DMFCs at higher current density to eliminate the methanol 

crossover problem. 8 However, increasing the discharge current density will result in a 

low fuel cell voltage, leading to low efficiency of energy conversion. Decreasing 

methanol crossover is still an important issue for direct methanol fuel cells. 

The improved DMFC performances attained with the modified membranes can be 

explained directly by the higher cathode activity resulting from their reduced methanol 

84 



00 
v. 

900 

800 

700 

E¥ 600 
> 
E 
'-' 

] 500 
t=: 
B 
0 

0-. 

~ 400 
u 

300 

200 

100 

0 

0 20 40 60 80 100 

-+-Performance of B-7 

.......... Performance of B-1 

Perfmmance ofNafion 115 

-·X:- Performance of B-4 

120 140 160 

Current Density (rnNcm2
) 

180 200 

Fig .4.4. Perfonnance curves for Polypyrrole/Nafion composite membranes and unmodified Nafion 115 after compensation for 
IR loss. (60 °C, 73 mL/min air, 0.153 mL!min 1M methanol solution) 



crossover. Fig. 4.5 compares anode polarization curves for the composite membranes and 

Nafion 115. Membrane B-1 has the worst anode performance because of its poor 

catalyst/membrane interface. The anode polarization curves for B-4 and B-7 were almost 

the same as for N afion 115. The cathode polarization curves were calculated from the cell 

performance minus the anode performance and were also shown in Fig. 4.5. The 

improved cathode performances of the composite membranes than that of unmodified 

Nafion 115 (B-4 and B-7) were due to their low methanol crossover. Again, the influence 

of methanol crossover is small at high current densities and results in similar cathode 

polarizations for composite membranes and Nafion 115. Due to membrane B-1 's poor 

electrodes bonding but high methanol reduction rate, its cathode polarization 

outperformed Nafion 115 at low current densities and poor performed than Nafion 115 at 

high current densities. 

4.3.3 Impedance Spectroscopy of DMFCs with Polypyrrole/Nafion Composite 

Membranes 

Electrochemical Impedance Spectrometry (EIS) is a powerful technique for fuel cell 

study. However, most research has focused on Hz/02 PEMFCs.9
'
1o,u The reactions, 

charge transfer, and mass transfer processes at both the cathode and anode of the DMFC 

are so complicated and so hard to separate that only 4 papers on the EIS of DMFCs have 

been published. 12
'
13

'
14

'
15 
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The impedance of an MEA can be physically separated into three parts: the 

membrane impedance, anode impedance and cathode impedance. The membrane 

impedance can be determined from the real intercept of the impedance at high frequency. 

Muller et al. have proposed a standard procedure by replacing air with H2 at the cathode 

to separate the anode impedance and cathode impedance. 12'13 When the cathode is 

supplied with H2, protons are reduced to H2 and the cathode will behave as a DHE. Then 

the contribution of the cathode to the impedance can be neglected due to the fast electrode 

reaction. Hence, the impedance spectra measured between anode and the DHE in a 

complete cell can be taken as approximately equal to the sum of membrane resistance and 

the anode impedance. Normal cell impedance spectra are then recorded by flowing air 

through the cathode. The cathode impedance spectra can then be determined by 

subtracting the anode impedance and membrane resistance from the normal impedance 

spectra. Impedance spectra measured at different electrode overpotentials can provide 

more diagnostic information. However, the spectra are more difficult to explain. More 

work is needed to appropriately design EIS experiments to separate every factor that 

influences DMFC performance. Because EIS is not the main focus of this thesis, only 

spectra measured at open circuit are discussed here. 

Fig. 4.6 shows the Nyquist plots for DMFC with B-1, B-7 and urJIDodified Nafion 

115. Spectra were obtained at the open circuit potential under DMFC operation conditions. 

The intercept of the high frequency 45° region with the real impedance axis (Z' axis) is 
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the membrane resistance and is recorded in Table 4.1. In general, a DMFC impedance 

spectrum is composed of three regions: a high frequency region determined by membrane 

ionic resistance and catalyst layer resistance and capacitance; a medium frequency region 

controlled by the charge transfer resistance; and a low frequency region attributed to mass 

transfer resistance. 

Replacing air with a continuous stream of H2, produced the impedance spectra 

shown in Fig. 4.7. At high frequency, the first semicircle (flattened in the case of the 

unmodified membrane) intercepts to the Z' axis at a point corresponding to the membrane 

resistance. The intercept values were identical to the membrane resistance values listed in 

Table 4.1. Subtracting the membrane ionic resistance, anode impedance spectra are 

obtained as shown in Fig. 4.8. The first semicircle in the high-medium frequency region 

in Fig 4.8 is due to methanol electro-oxidization kinetics. The much larger semicircle at 

the low frequencies is dominated by electrode capacitance and does not show in this 

figure. The poor interface between B-1 and the anode leads to low catalyst utilization and 

results in poor charge transfer properties as indicated by the larger high frequency 

semicircle. Good bonding of B-7 to the anode resulted in nearly the same charge transfer 

properties as N afion 115. 

Nyquist plots of DMFC cathode impedance spectra are shown in Fig. 4.9. These 

were obtained by subtracting anode impedance spectra and membrane resistances from 

the full cell impedance spectra. The first semicircle in Fig. 4.9 is due to the charge 
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transfer resistance for the oxygen reduction reaction. Muller et al. reported that when pure 

oxygen is used, the mass transfer semicircle is avoided. 12 In our measurement, air was 

flushed through the cathode side. The presence of the second semicircle is strongly 

related to oxygen mass transfer. It is verified again that B-1 has the poorest surface 

bonding within these three MEAs. Unexpectedly, B-7 also showed poorer charge transfer 

properties than Nafion 115. This is may be a possible reason that the performance of B-7 

did not improve more significantly over N afion 115 even with a 40% methanol crossover 

reduction. 

As seen from Fig. 4.8 and Fig. 4.9, it is clear that the anode charge transfer resistance 

and mass transfer resistance are in the same frequency region as the cathode charge 

transfer region at the open circuit potential. Measuring impedance spectra at different 

overpotentials, it becomes more complicated to separate each factor. Charge-transfer on 

the cathode side involves three phases (gas, catalyst, electrolyte) and thus has a much 

bigger charge transfer resistance than that of the anode. The Pt cathodes used in this 

research were using PTFE as a catalyst binder and showed strong hydrophobic properties. 

The strong hydrophobic properties of the cathode have a tremendous advantage to 

prohibit cathode flooding by water. However, it also reduces the proton transfer rate from 

the membrane surface to the catalyst surface. Adding Nafion into the catalyst layer has 

been proved to be an effective way to improve an electrode's proton conductivity.5
•
16 

In performance measurements, MEAs made from polypyrrole/N afion composite 
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membranes typically reach peak DMFC performance after about three days (e.g., Fig. 

4.10 for B-7), compared to less than one day for unmodified Nafion 115. It has been 

speculated that the longer activation time is due to the formation ofpolypyrrole in Nafion 

connecting channels. 17 A long "break in" time is needed for the full hydration of 

modified membranes. Obviously, the blocking of such channels results in higher 

membrane resistance, as seen in Table 4.1. The resistance of B-7 decreases from 0.100 Q 

to 0.065 Q in three days, shown in Fig. 4.11. However, the improvement of cell 

performance cannot be explained solely by that. The charge transfer and mass transfer 

properties of the B-7 MEA changed significantly with time and then became constant 

after three days. 

The anode impedance spectra and cathode impedance spectra were also monitored 

for 4 days and are recorded in Fig. 4.12 and Fig. 4.13, respectively. The aqueous methanol 

solution supplied to the anode and the Nafion binder used in catalyst preparation favored 

the rapid hydration of the catalyst layer. Anode impedance spectra were nearly constant 

with time. The large charge transfer semicircle in the cathode impedance decreased 

significantly with time and reached a constant state after 3 days which corresponds to the 

slow activation process of the cathode charge transfer. In conclusion, the tardy optimum 

performance of B-7 was thus mainly due to a slow cathode activation process and in part 

to slow membrane hydration. 
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4.3.4 Cyclic Voltammet:ry of DMFC Cathodes 

Cyclic voltammetry (CV) has long been used to measure the active area of Pt 

catalysts. Specifically, the coulombic charge under the hydrogen adsorption/desorption 

peaks is considered as a measure of the active area. 18 It is assumed that 210 J!C/cm2 is 

used to produce a monolayer of adsorbed H on the Pt catalyst. 19 The Pt catalyst active 

area is thus determined as: 

fIdE 
A=----~ 

210,.uC I cm 2 
(4.1) 

where I is current density, dE is the differential potential. The charge is calculated by 

integrating the IdE from -10 mV to 340 mV. 

Cathode CV s was measured by running the DMFC at 60 °C with a stream of H2 at a 

25.6 mL!min through the anode and 0.153 mL/min water flushed through the cathode. 

The anode is a reversible hydrogen electrode (RHE) and served as a reference electrode 

and counter electrode in these measurements. 

Fig. 4.14 shows the cathode CV s with B-1, B-7 and unmodified Nafion 115. The two 

oxidization/reduction peaks in the potential region between -1 0 m V and 340 m V are due 

to the desorption/adsorption of hydrogen. The broad peaks above 600 m V are attributed 

to the oxidization and reduction of the Pt catalyst surface. It is clear from the CV s that the 

active area for B-7 and N afion are similar while the active area is very low for B-1. This 

supports the hypothesis that B-1 produces a poor membrane electrode interface. This 
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explains the poor charge transfer properties and poor cell performance obtained for B-1. 

The interfacial properties between B-7 and the catalyst are much better, showing a great 

improvement with surface washing. 

4.4 Increasing the Ionic Conductivity of Composite Membranes 

It is clear that the composite membranes prepared in this work effectively reduce 

methanol crossover and leads to better DMFC overall performance. However, the 

increased membrane resistance offsets part of the benefits of the low methanol crossover. 

Polypyrrole is positively charged and easily bonds with the anionic sulfonate group inside 

the Nafion hydrophilic pores and channels. Sungpet has reported that the ion exchange 

capacity of polypyrrole/Nafion composites was over 10% less than the unmodified acid 

form of Nafion.20 Providing counter anions in the polymerization step was therefore 

expected to weaken the polypyrrole/sulfonate group interactions. Another approach is to 

synthesize anionic monomers. 

4.4.1 Provision of Counter Anions During Modification Process 

A membrane was modified according to a modified B procedure in which 5% H202 

in 2M H2S04 was used to polymerize the pyrrole. The resulting membrane is coded as 

B-SA2M. Fig. 4.15 shows the DMFC results for this membrane. B-SA2M showed 

increased cell performance over Nafion in all three regions but had a slightly higher 
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resistance. It reduced methanol crossover by 20%. Because of the high acid concentration 

outside the membrane, loaded pyrrole was easily washed out during the polymerization 

reaction. More work is needed to optimize this modification method and elucidate the 

improvement mechanism. 

4.4.2 Preparation of Poly[3-(pyrrole-1-yl)propanesulfonate]/Na:fion Composite 

Membranes 

3-(pyrrole-1-yl)propanesulfonate (abbreviated as "pyrrole sulfonate", structure 1) 

was synthesized by substitution of the pyrrole ring with a sulfonated pendant group. After 

bulk polymerization or copolymerisation with pyrrole into Nation membranes, it can 

provide anionic groups and moderate the polymer interaction with the sulfonate groups in 

Nafion. 

4.4.2.1 Synthesis of Sodium 3-(pyrrole-1-yl)propanesulfonate 

104 

+ 
Na ) 

(1) 



Sodium pyrrole sulfonate was synthesized following the literature. 21 ·22 Pyrrole 

sodium salt was synthesized by re:fluxing 10 g pyrrole with 1.6 g sodium at 105 oc for 12 

hours. 6.5 g 1,3-propanesultone (Aldrich) was then added at 60°C and reacted for 12 

hours. All reactions were under N2 protection. The product was then washed with hot 

tetrahydrafuran (THF) to remove the unreacted propanesultone. The product was 

characterized by 1H NMR (Bruker A VANCE 500MHz), as shown in Fig. 4.16. 

4.4.2.2 Preparation of Poly[3-(pyrrole-1-yl)propanesulfonate ]/Nafion Membranes 

Poly[3-(pyrrole-l-yl)propanesulfonate ]/Nafion membranes were prepared by loading 

pyrrole sulfonate into Nafion 115 for 20 min, then polymerizing in 5% H20 2 for 2 hours. 

The preliminary results were shown in Fig. 4.17. The poly(pyrrole sulfonate)/Nafion 

membranes could increase the cell performance without a significant increase in 

membrane resistance. However, the high concentration of sulfonate groups in the Nafion 

pores strongly inhibits permeation of the pyrrole sulfonate anion into the membrane, and 

so high loadings have not been achieved. More work needs to be done to increase the 

monomer loading. 
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4.5 Conclusions 

Polypyrrole/Nafion composite membranes have been characterized in DMFC in this 

chapter. Modified membranes have been shown to outperform Nafion 115. The improved 

cell performance is due to the lower methanol crossover, which leads to increased cathode 

performance. 

Poor interfacial bonding between the electrodes and membrane results in lower 

catalyst utilization. Surface cleaning with H202 increases the modified membranes' 

Nafion surface character and improves the membrane/electrode bonding. 

EIS is a powerful tool for fuel cell study and can provide diagnostic criteria to 

evaluate DMFC performance. Impedance spectra show that the improvement of cell 

performance with composite membranes with time is not only due to the slow hydration 

of composite membranes, also the activation of the cathode plays an important role. 

To take advantage of the low methanol crossover of composite membranes but avoid 

the offset of their high resistance, two alternatives are proposed: providing anionic 

counter ions and using a new anionic monomer. The preliminary results showed that these 

two methods are promising and warrant further research. 

In conclusion, a standard modification procedure to prepare polypyrrole/Nafion 

composite membranes has been developed and evaluated. The modified membranes 

decreases methanol crossover by 40% and outperform Nafion in a DMFC with tolerable 

resistances. Moreover, this procedure has very good reproducibility. 
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Chapter 5 

Characterization of a Dynamic 

Hydrogen Reference Electrode for 

Direct Methanol Fuel Cells 
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5.1 Introduction 

While the benefits of direct methanol fuel cells as power sources for portable or 

mobile applications have long been demonstrated, their performances are still lower than 

hydrogen fuel cells and are far from commercialization.1
•
2 The overall performance of a 

DMFC depends on many factors, such as catalyst activation on both electrodes, 

membrane ionic conductivity, and water management on cathode. Optimization of each 

component of DMFCs will lead to a significant enhancement of fuel cell performance. 

Therefore, a reference electrode is needed to measure and monitor both of the anode and 

cathode independently.3
•
4 

Unfortunately, no commercial reference electrodes are available for direct methanol 

fuel cell studies. Unlike liquid electrolyte systems, where the working electrode potential 

can be obtained by placing a reference electrode in a Luggin capillary in the main current 

flow path close to the working electrode, the geometric restriction of thin PEMs makes it 

very hard to insert a reference electrode between the anode and cathode. Researchers have 

tried to sandwich a reference electrode between two pieces of membranes. 5•
6 However, 

this kind of configuration causes an increase in the membrane resistance by a factor of 

two or more. Moreover, the presence of a reference electrode in the main current flow 

path may affect the current distribution in the membrane. 

The anode and cathode performance can also be resolved by bonding a dynamic 

hydrogen electrode (DHE) on the exposed Nafion membrane as a reference electrode.7
•
8 
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A schematic diagram of a literature DHE is showed in Fig. 5.L This electrode has been 

considered as the most reliable reference electrode. However, it is difficult to construct 

and use, The DMFC setup with an internal DHE reference electrode becomes very 

complicated and needs special design and fabrication. 

Fig. 5.1. Schematic diagram of the configuration of a DHE in a DMFC: (a) and (g) 

graphite blocks with cross-patterned flow field; (b) and (f) carbon cloth backings; (c) and 

(e) anode and cathode catalyst layers; (d) Nafion membrane; (h) DHE electrode; and (i) 

counter DHE electrode. 

Reprinted from X. Ren, T.E. Springer, and S. Gottesfeld, J Electrochem. Soc. 2000, 147: 

92-98. Copyright 2000, Reproduced with the permission of the Electrochemical Society. 

Another popular method, used in Chapter Four to obtain anode polarization curves, 
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is to pass H2 through the cathode compartment of the cell and assume that the cathode 

behaves as a reversible hydrogen electrode (RHE).9
•
10 The main advantage of this method 

is that no modification of the fuel cell setup is needed. However, the measurement is 

performed under different operating conditions. Therefore the anode polarization curve 

recorded in this way may not reflect the real anode performance of an operating DMFC. 

A simple edge type DHE reference electrode configuration has been developed in 

the Pickup group. 11 In this chapter, this kind of reference electrode was characterized in a 

PEMFC and DMFC. The Pt wire reference electrode is easy to use and can provide good 

qualitative information for fuel cell diagnostic. However, this reference electrode suffers 

from potential drift when applied in DMFCs. The potential drift makes quantitative 

diagnosis unreliable. 

5.2 Experimental 

5.2.1 Configuration of the Dynamic Hydrogen Electrode (DHE) Reference Electrode 

Fig. 5.2 shows a schematic diagram of the configuration of the DHE reference 

electrode used in this chapter. Two O.lmm diameter Pt wires (Aldrich) were placed on the 

exposed Nafion membrane surface on the cathode side, and served as the DHE reference 

electrode and counter electrode, respectively. The distance between the Pt wires ends and 

the cathode edge was 0.5 em, larger than three times of the Nafion 115 membrane 

thickness (125 J.lm) to avoid potential gradients. 12 Hydrogen is evolved on the cathodic Pt 
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wire, which serves as the dynamic hydrogen electrode. A current of 2-4 ~A was passed 

through the two Pt wires to sustain hydrogen coverage on the cathodic Pt wire. Before 

measurements, the fuel cell was supplied with H2 gas through the anode side and air 

through the cathode side. The anode side is then considered being a reversible hydrogen 

electrode (RHE) with a potential of zero. The DHE reference electrode potential was then 

adjusted to zero relative to the RHE by adjusting the current. A laboratory DC power 

supply (GW, model GPS-1830D) and a resistance box (General Radio Co., type 1434-G) 

were used to control the reference electrode potential and to maintain the current through 

the DHE. 

MEA 

Power Source 
Cathode 

t 
Reference Electrode 

Fig. 5.2. Schematic diagram of the configuration of the DHE reference electrode. 

5.2.2 Fuel Cell Measurements 

Nafion 115 membranes (Dupont) were cleaned with 10% H20 2, 1M HN03, 1M 
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H2S04 and water following the standard protocol in section 2.2.1. PtRu anodes used in 

this chapter consisted of 4 mg/cm2 Pt/Ru black and 15 % Nafion on Toray carbon fiber 

paper (prepared by Dr. Brad Easton, described in section 2.2.1 ). Pt cathodes consisted of 

4 mg/cm2 Pt and 14 % PTFE on Toray carbon fiber paper (provided by Ballard Power 

Systems). MEAs were prepared by hot pressing at 130°C under 100 pound/cm2 pressure 

for 180s. 

Electrochemical measurements were performed using a commercial 5cm2 fuel cell 

(ElectroChem. Inc.) at 60 °C. Electrochemical data were recorded using a Solartron 

1286/1250 electrochemical analysis system (Schlumberger). 

5.3 Results and Discussion 

5 . .3.1 Characterization of the DHE in a Hydrogen PEMFC 

The electrode polarizations could be separated by measuring each electrode potential 

versus the reference electrode. Afterwards the fuel cell performance curve could be 

obtained by subtracting the anode polarization from the cathode polarization. Due to the 

reference electrode design, the anode and cathode versus reference electrode potential 

could be determined simultaneously. However, an ideal reference electrode should have 

certain stability over a period of time. Therefore, the cell performance, the anode 

polarization and cathode polarization curves were measured consecutively. 

The hydrogen cell was operated with humidified H2, by passage H2 through a 
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Fig. 5.3. Anode, cathode, and full cell polarization curves for a 5cm2 fuel cell with a DHE reference electrode (RE) at 60 °C. The 

cell was operated with 24.6 mL/min humidified H2 and 73.1 mL/min air. 



temperatUI'e-controlled water bottle, and air at flow rate of24.6 mL/min and 73.1 mL/min, 

respectively. The single electrode polarization curves and fuel cell performance curves are 

shown in Fig.5.3. At low current density, the cathode overpotential increases significantly 

with increasing current density. This reveals the slow kinetics of the oxygen reduction 

reaction. Then the cathode potential decreases linearly with further increase of current 

density. For the anode polarization, the anode can be considered as a reversible hydrogen 

electrode at low current density (i.e. very little overpotential). However, the anode 

overpotential becomes significant at high current densities. This confirms the result of 

Thomas et a/. 13 A remarkable result in Fig.5.3 is that the calculated fuel cell polarization 

curve (Ecen) is almost identical to the measured ones. It can be concluded that the 

potential of DHE reference electrode has good stability during the hydrogen fuel cell 

measurements. 

5.3.2 Characterization of the DHE in a DMFC 

The reference electrode also characterized in a DMFC. The fuel cell was supplied 

with 1 M methanol solution and air at flow rates of 0.153 mL!min and 73.1 mL/min, 

respectively. Fig.5.4 shows the polarization curves of a PtRujNafion115jPt MEA. The 

fuel cell performance curve is nearly equal to the cathode minus the anode polarization 

curve. This confirms that the reference electrode showed reasonable stability during the 

measurements. However, it was found that the DHE potential drifted by up to 50-200m V 
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Fig. 5.4. Anode, cathode, and full cell polarization curves for a 5cm2 DMFC with a DHE reference electrode (RE) at 60 oc. The 

cell was operated with 0.156 mL/min 1 M methanol solution and 73.1 mL/min air. (PtRu/Nafion 115/Pt) 



when doing long-term experiments, such as the monitoring of polypyrrole/Nafion 

membranes. The drift is believed to be caused by poisoning of the DHE by methanol. 

When the reference electrode power source shut down, methanol can permeate to the Pt 

wire surface and adsorb. The poisoning effect could be diminished by maintaining the 

current through the DHE all the times. However, the RE potential drift still could not be 

prevented, making the long-term measurement unreliable. A methanol tolerant reference 

electrode is preferred to approach this problem. 

Seen from Fig. 5 .4, there are large overpotentials for both the PtRu anode and Pt 

cathode even at low current densities. This reflects the slow kinetics of methanol 

oxidization on anode and oxygen reduction on cathode. In this case, the cell performance 

is limited by the methanol mass transfer on the anode. 

The electrochemical impedance spectra for the DMFC are shown in Fig. 5.5 and Fig. 

5.6. Again, the agreement of the sum of the anode impedance and cathode impedance 

with the full cell impedance certified the validation of the DHE reference electrode. The 

reference electrode showed certain stability when current flow through the DMFC 

electrodes. 

5.3.3 Comparison of Different MEAs in a DMFC 

As the reference electrode shows reasonable stability, a comparison of different 

MEAs were done to test its usefulness. Two different MEAs were assembled using the 
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Fig. 5.5. Nyquist impedance spectra for a 5cm2 DMFC with a DHE reference electrode at 

open circuit potential (65,000 to 0.82Hz). The inset shows an expansion of the high 

frequency region of the plots. The cell was operated at 60 oc with 0.156 mL!min 1 M 

methanol solution and 73.1 mL/min air. 
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Fig. 5.6. Nyquist impedance spectra for a 5 cm2 DMFC with a DHE reference electrode 

(RE) at 200 rnA (65,000 to 0.82 Hz). The cell was operated at 60 °C with 0.156 mL/min 1 

M methanol solution and 73.1 mL/min air. 
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same Pt cathode but different anodes: a) PtRuiNafionl15IPt and b) PtiNafionl15IPt. 

Fig. 5.7 shows results for these two MEAs. The "anode polarization" in Fig. 5.7 was 

measured by the conventional method used in Chapter Four, by passing H2 instead of air 

through the cathode. For each MEA, their anode vs. DHE, cathode vs. DHE and full cell 

data agreed very well. Unexpectedly, their cathode performances appear to differ 

significantly even though the cathodes were the same. One possible reason is that the RE 

potential was different for MEAs. 

It is clear that the Pt anode needs a much higher overpotential than the PtRu anode to 

oxidize methanol. However, as the anode overpotential exceeds 400m V, the electrode 

activity improves due to the desorption of CO from the Pt surface. It is anticipated that 

the Pt anode will have better performance than the PtRu anode at very high current 

density because of more available catalyst sites. The "anode polarization curve" is also 

shown in Fig. 5.7. At low current density, the anode vs. DHE curve is nearly identical to 

the "anode polarization". However, the two polarization curves deviate from each other 

with increasing current density. One possible reason is that the "anode polarization" 

records the average potential along the electrode. For the DHE reference electrode, the 

measurement values may be affected by the current distribution on the electrode. 14
,!

5 At 

low current density, the current is more evenly distributed on the electrodes. Thus the 

anode vs. DHE is close to the "anode polarization". With increasing current density, the 

current is less homogeneously distributed on the electrodes. 
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Fig. 5.7. Comparison of polarization curves for different MEAs in a 5cm2 DMFC with a reference electrode at 60 °C. The cell 
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5.4 Con.ch.nsimns 

A reference electrode that can monitor electrode performance during operation of a 

fuel cell is very important. In this chapter, an edge type Pt wire reference electrode was 

characterized by polarization measurements and impedance spectra measurements. Both 

experiments showed that the DHE reference electrode has some stability in a DMFC. It is 

easy to use and can provide good qualitative diagnostic information for DMFCs without 

modification of the cell hardware. However, the accuracy of this DHE reference electrode 

is questionable. The potential drift makes it inappropriate for long-term measurements. 

The DHE potential has to be adjusted frequently by passing H2 through the anode or 

cathode frequently. A methanol tolerant reference, such as Ir/Ir oxide, is suggested. 
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Chapter 6 

Summary 
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Methanol crossover through the Nafion proton conducting membrane is one of the 

two main factors that decrease the energy efficiency and limit the performance of direct 

methanol fuel cells. In this thesis, polypyrrole modified Nafion membranes were used to 

improve the fuel cell efficiency by decreasing methanol crossover. 

Steps that compose of the modification procedure have been studied. The pyrrole 

loading is roughly proportional to the square root of the loading time, indicating a 

diffusion-controlled process. Polypyrrole is mainly formed inside the water filled pores in 

the Nafion membranes. The reduction of methanol crossover current is proportional to the 

amount of polypyrrole inside the Nafion membranes, which is due to the decrease of 

composite membranes' porosity. Higher polypyrrole contents produce lower methanol 

crossover rates. However, the membrane's resistance also increases with modification. An 

optimized modification procedure was determined as a compromise between the effects 

of increased membrane resistance and decreased methanol crossover. 

The optimized polypyrrole/Nafion composite membranes were characterized in a 

DMFC. However, the presence of polypyrrole on the membrane surface caused poor 

interfacial bonding between the composite membranes and electrodes, and resulted in 

poor cell performance. After further surface cleaning of the polypyrrole on the surface 

with H20 2, the composite membranes showed superior performance than Nafion 115. In 

addition, this modification procedure has good reproducibility. The modified membranes 

decrease the methanol crossover by 40% relative to unmodified Nafion 115, but their 
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resistance is 70% higher. Polarization studies showed that the composite membranes 

usually reach their peak performance after running for three days. Anode polarization 

measurements and electrochemical impedance spectroscopy studies showed that the slow 

activation of the MEAs made from composite membranes can be attributed to two 

processes: the slow hydration of the modified membranes and activation of the cathode 

catalyst. 

In order to take advantage of the low methanol crossover of composite membranes 

but avoid the offset of their high resistance, two alternative approaches were proposed by 

providing counter ions in the modification process or by using new pyrrole sulfonate 

monomer. The preliminary results showed the modified membranes prepared by these 

two methods are promising and warrant further research. 

It is very important to introduce a reference electrode to acquire the performance 

behaviour of each electrode in an operating cell to improve cell performance. However, 

the DHE reference electrode used nowadays either requires a complex fuel cell design 

and construction, such as the external DHE, or needs major perturbation of the cell by 

passing H2 through the anode or cathode compartment. A simple edge type Pt wire DHE 

reference electrode was introduced in this thesis. Both polarization experiments and 

impedance experiments have shown that this reference electrode has good short term 

stability in DMFCs and can provide good qualitative information. However, the DHE 

potential drifts over long time, making it inapplicable for long-term measurements. 
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