FURTHER PROGRESS TOWARDS ENANTIOSELECTIVE
TOTAL SYNTHESIS OF THE
BISBENZYL TETRAHYDROISOQUINOLINE
ALKALOID (−)-CYCLEANINE

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

NINGZHANG ZHOU
FURTHER PROGRESS TOWARDS ENANTIOSELECTIVE TOTAL SYNTHESIS OF THE BISBENZYL TETRAHYDROISOQUINOLINE ALKALOID (-)-CYCLEANINE

by

Ningzhang Zhou

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of
Master of Science
Department of Chemistry
Memorial University of Newfoundland
December, 2004
St. John's, Newfoundland and Labrador, CANADA
Abstract

Bisbenzylisoquinoline (BBIQ) alkaloids are a large group of compounds which outnumber those of most of the other alkaloid families. These compounds occur in many different plants and usually display a variety of pharmacological properties such as antitumor and antibacterial activities. The two benzylisoquinoline subunits in BBIQs can be connected through an oxygen atom or by carbon-carbon linkage. The subunits may have the same or opposite configurations at their asymmetric centres. BBIQs may also contain dihydroisoquinoline or tetrahydroisoquinoline units. A vast number of possible structures may be constructed in this way which make BBIQs very interesting synthetic targets.

In this thesis, the asymmetric synthesis of the BBIQ (−)-cycleanine was attempted. A chiral auxiliary-assisted diastereoselective Bischler-Napieralski cyclization was used to form the two correct tetrahydroisoquinoline subunits. Two different methods of recently reported improved Ullmann coupling methods, namely (a) \(N,N\)-dimethylglycine-promoted coupling, and (b) 2,2,6,6-tetramethylheptane-3,5-dione-accelerated coupling were first employed to build the framework of the target molecule. The use of a methodology of using a mild \(S_{N}\)Ar reaction between phenols and electron-deficient aryl fluorides was also evaluated. In addition, some efforts at making some intermediates for the total synthesis more synthetically accessible are also discussed.
Acknowledgements

I would like to express my deep appreciation to my supervisor Dr. Paris E. Georghiou for his guidance and instruction during my study and work on this research and for his assistance in the completion of this thesis.

My appreciation is also extended to my supervisory committee members Dr. D. W. Thompson and Dr. R. A. Poirier for their criticisms and precious suggestions. Also, I would like to show my gratitude to Ms. L. Winsor, Ms. K. Zhang for MS spectral data and NMR spectra.

I would also like to thank all my family members, for their love and support.

Much gratitude is also extended to Professor G. Bodwell, Professor S. V. Pansare, Professor Y. Zhao and entire organic group and the staff in the Chemistry Department for their enthusiastic and generous help.

Financial support of this research from the Natural Sciences and Engineering Research Council (NSERC), Memorial University of Newfoundland and in part, the Prime Pharmaceutical Corporation, Toronto, Ontario, is also gratefully appreciated.
Chapter 1

Introduction

1.1 Definition and structural classification of BBIQ alkaloids....................... 1
1.2 Pharmacological activities of BBIQ alkaloids........................................... 3
1.3 Sources of BBIQ alkaloids................................................................. 5
  1.3.1 Botanical sources...................................................................... 5
  1.3.2 Syntheses of BBIQ alkaloids.................................................... 6
1.4 Cycleanine...................................................................................... 8
  1.4.1 Pharmacological activities of cycleanine..................................... 9
  1.4.2 Previous synthetic efforts towards cycleanine............................ 9
1.5 Recent advances in the synthesis of isoquinolines................................. 11
1.6 Recent developments in the formation of diaryl ethers......................... 21
Chapter 2

Synthesis of 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) and 4-iodophenylacetic acid (80)

2.1 Introduction .............................................................................. 27

2.2 Results and discussion .............................................................. 31

2.2.1 Synthesis of 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) .......... 31

2.2.1.1 First attempt using THP-protected vanillin as starting material ... 31

2.2.1.2 Attempted synthesis of 79 using gallic acid as the starting material .................................................................................. 33

2.2.1.3 Diazotization approach using vanillin (67) as the starting material ..................................................................................... 34

2.2.1.4 Some literature reports concerning the introduction of a hydroxy group to an aromatic ring .................................................. 35

2.2.1.5 Methodology eventually adopted for synthesizing 3-benzyloxy-
4,5-dimethoxybenzyl alcohol (79) .................................................. 39

2.2.2 Synthesis of 4-iodophenylacetic acid (65) .................................. 41

2.3 Summary ................................................................................... 41

2.4 Experimental ............................................................................ 43

Chapter 3

Synthetic efforts towards (-)-cycleanine

3.1 Introduction ................................................................................ 55
3.2 Results and discussion..................................................................................................................55

3.2.1 First attempts towards (-)-cycleanine by improved Ullmann coupling reactions..........................55

3.2.1.1 Synthesis of the tetrahydroisoquinoline..................................................................................58

3.2.1.2 Using improved Ullmann coupling reactions to form the diaryl ether linkages in (-)-cycleanine..........................................................61

3.2.2 Second synthetic effort towards (-)-cycleanine by SNAr-based reaction.................................70

3.2.2.1 Synthesis of the fluorobenzylisoquinoline subunit.....................................................................71

3.2.2.2 Using of a SNAr-based reaction to build the framework of (-)-cycleanine..................................73

3.3 Summary and conclusions.........................................................................................................78

3.4 Experimental................................................................................................................................79

Chapter 4

Future work

4.1 Further studies of the formation of the benzylisoquinoline subunit.............................................101

4.2 Further proposal for the formation of diaryl ether linkages by heterocoupling................................102

4.3 Further proposal for the diaryl ether formation step........................................................................103

References............................................................................................................................................106

Appendix. \textsuperscript{1}H and \textsuperscript{13}C NMR Spectra........................................................................112
Lists of tables

Table 1.1 The pharmacological activities of several BBIQ alkaloids............................4
Table 1.2 An outline of the botanical sources of some BBIQ alkaloids.........................6
Table 3.1 Ullmann coupling reaction in the presence of 2,2,6,6-tetramethylheptane-3,5-dinone...........................................................................................................56
Table 3.2 Coupling reaction of aryl halides with phenols under the catalysis of CuI and $N,N$-dimethylglycine .................................................................57
List of figures

Figure 1.1 Some examples of alkaloids..........................................................2
Figure 1.2 Some BBIQ alkaloids with different structures............................3
Figure 1.3 Structures of (+)-tetrandrine (14), (-)-phaeanthine (17), and (+)-isotetrandrine (18).................................................................5
Figure 1.4 (-)-cycleanine (25)......................................................................8
Figure 1.5 The X-ray structure of 46a............................................................16
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APCI-MS</td>
<td>atmospheric pressure chemical ionization-mass spectrometry</td>
</tr>
<tr>
<td>AcOH</td>
<td>acetic acid</td>
</tr>
<tr>
<td>BBIQ</td>
<td>bisbenzyltetrahydroisoquinoline</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>BNC</td>
<td>Bischler-Napieralski cyclization</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>CA</td>
<td>chiral auxiliary</td>
</tr>
<tr>
<td>Cbz</td>
<td>benzylxycarbonyl</td>
</tr>
<tr>
<td>DCC</td>
<td>dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DHP</td>
<td>dihydropyran</td>
</tr>
<tr>
<td>DMF</td>
<td>$N,N$-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>i-Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>LC/MS</td>
<td>liquid chromatography/mass spectrometry</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>m.p.</td>
<td>melting point</td>
</tr>
</tbody>
</table>
MTBE  methyl t-butyl ether
MW  microwave
NBS  N-bromosuccinimide
n-Bu  n-butyllithium
NMP  1-methyl-2-pyrrolidinone
NMR  nuclear magnetic resonance
Ph  phenyl
PLC  preparative layer chromatography
PPTS  pyridinium p-toluenesulfonate
PSC  Pictet-Spengler cyclization
rt  room temperature
TBDMS  tert-butyldimethylsilyl
THF  tetrahydrofuran
THP  tetrahydropyran
TMHD  2,2,6,6-tetramethylheptane-3,5-dione
Chapter 1

Introduction

1.1 Definition and structural classification of BBIQ alkaloids

Since ancient times man has utilized alkaloids as medicines, poisons, or as "magical potions". The term "alkaloid" or "alkali-like", was first proposed by W. Meissner in 1818.\(^1\) It is usually applied to basic, nitrogen-containing compounds of plant origin. Two further qualifications are usually added to this definition: alkaloids have complex molecular structures, and they manifest a variety of significant pharmacological activities. When classifying a compound as an alkaloid, its chemical, pharmacological and botanical properties must all be considered. Some well-known alkaloids such as nicotine (1), cocaine (2), quinine (3), and morphine (4) are presented in Figure 1.1.\(^2\)

Bisbenzylisoquinoline (BBIQ) alkaloids are a large and diverse group of alkaloids that exist in many plant species, particularly in members of the Menispermaceae, Berberidaceae, Ranunculaceae, Annonaceae, and Monimiaceae.\(^3\) Many of the plants that contain these compounds enjoy a folkloric reputation as medicines in various cultures. It is believed that some indigenous South American tribes used a BBIQ alkaloid as a component of the arrow poison Curare.\(^4\)

The most obvious structural characteristic of BBIQ alkaloids is that there are two benzylisoquinoline subunits in each molecule. The two benzylisoquinoline subunits can be bound by diaryl ether bridges, by carbon-carbon linkages or by methyleneoxy linkages. When the linkage involves two benzyl groups, it is called a "tail-to-tail" linkage. If the linkage is between one isoquinoline and one benzyl group
unit, it is called a “head-to-tail” linkage. There may also be different numbers of diaryl ether linkages in different BBIQs. Figure 1.2 shows some BBIQ alkaloids with representative structures. There are examples known with one, e.g. 5; two, e.g. 6; or three, e.g. 7, diaryl ether linkages. There are BBIQs known with only one biphenyl linkage such as 8. There are also BBIQs known with one diaryl ether linkage and one biphenyl linkage such as 9. And finally, there are BBIQs known with one diaryl ether linkage, one biphenyl linkage and one methylenedioxy linkage such as 10. The two coupled isoquinoline subunits may have the same or opposite absolute configurations, and either or both may be isoquinolines, dihydroisoquinolines or tetrahydroisoquinolines.
Magnoline (5)

Pisopowine (8)

Singly-linked dimers

Berbamine (6)

Antioquine (9)

Doubly-linked dimers

Trilobine (7)

Medelline (10)

Triply-linked dimers

Figure 1.2 Some BBIQ alkaloids with different structures

Therefore, a vast number of structures can be constructed in these ways, and up to now a total of at least over 350 BBIQs are known.

1.2 Pharmacological activities of BBIQ alkaloids

The history of alkaloids is almost as old as civilization itself. This can be
attributed to the pharmacological activities which alkaloids possess. It is said that
humankind has used drugs containing alkaloids in potions, medicines, teas, poultices and
poisons for over 4000 years. As one of the most important groups in all of the alkaloids,
BBIQ alkaloids also have been found to possess various kinds of biological activities
such as antimicrobial, anti-arrhythmic, anti-inflammatory, antibiotic, anti-tumor, anti-
hypertensive and antiplasmodial activities. Table 1.1 lists some of the pharmacological
activities of several BBIQ alkaloids.

Table 1.1 The pharmacological activities of several BBIQ alkaloids

<table>
<thead>
<tr>
<th>Alkaloids</th>
<th>Pharmacological Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berbamine (6)</td>
<td>Antiplasmodial, anti-inflammatory, antioxidant</td>
</tr>
<tr>
<td>Cepharanthine (11)</td>
<td>Anti-inflammatory, analgesic</td>
</tr>
<tr>
<td>Aromoline (12)</td>
<td>Anti-inflammatory, antiplasmodial</td>
</tr>
<tr>
<td>Tetrandrine (13)</td>
<td>Antiplasmodial, anti-inflammatory</td>
</tr>
<tr>
<td>Oxyacanthine (14)</td>
<td>Anti-inflammatory, antioxidant, antiproliferative</td>
</tr>
<tr>
<td>(-)-Repandine (15)</td>
<td>Antiplasmodial, anti-inflammatory</td>
</tr>
<tr>
<td>Fangchinoline (16)</td>
<td>Antiplasmodial, anti-inflammatory</td>
</tr>
</tbody>
</table>

Since the 1970s, much work has been conducted with the aim to disclose the
relationship between the structural features of BBIQ alkaloids and their pharmacological
activities. Some researchers recognized that their pharmacological activities are
somewhat dependent on their chirality and their substitution patterns. For example,
although (+)-tetrandrine (13), (-)-phaeanthine (17), and (+)-isotetrandrine (18)
(Figure 1.3) have very similar structures, they have quite different pharmacological activities due to their different absolute configurations.\textsuperscript{10, 11}

\begin{center}
\includegraphics[width=0.5\textwidth]{structure.png}
\end{center}

\textbf{Figure 1.3} Structures of (+)-tetrandrine (13), (-)-phaeanthine (17), and (+)-isotetrandrine (18)

Although it is presumed that there is a close relationship between the activities of BBIQ alkaloids and their molecular structures, how these structural features of BBIQ alkaloids exactly influence their biological activities still remains unknown.

\section*{1.3 Sources of BBIQ alkaloids}

\subsection*{1.3.1 Botanical sources}

In spite of the large number of BBIQ alkaloids whose structures have been confirmed and whose biological activities have been reported, to date most can only be obtained from their respective plant sources. Usually the nature and the quantities of BBIQ alkaloids found in plants are decided by ecological factors. Different groups of BBIQs are normally found in different genera. In general, several different BBIQ alkaloids are found in a single plant with one being a major component, along with other
minor alkaloids. Furthermore, the relative proportions of one alkaloid in a plant differ in
the different parts of the plant.\(^4\) Table 1.2 is a list of some of the botanical sources of
some BBIQ alkaloids.

**Table 1.2** An outline of the botanical sources of some BBIQ alkaloids

<table>
<thead>
<tr>
<th>Name of the plant</th>
<th>Plant parts</th>
<th>Alkaloids</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>T. minus Linn</em></td>
<td>Above ground parts</td>
<td>Thalmethine (19)(^{12})</td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>Thalfine (20), thalfinine (21)(^ {13})</td>
</tr>
<tr>
<td></td>
<td>Whole plant</td>
<td>Thalmine (22)(^ {14})</td>
</tr>
<tr>
<td><em>T. patens Oliv</em></td>
<td>Root and stem</td>
<td>Cocsuline (23)(^ {15})</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Aromoline (12)(^ {16})</td>
</tr>
<tr>
<td><em>C. pareira Linn</em></td>
<td>Whole plant</td>
<td>Cissampareine (24)(^ {17})</td>
</tr>
<tr>
<td></td>
<td>Root and leaf</td>
<td>Cycleanine (25)(^ {18})</td>
</tr>
<tr>
<td><em>C. leaeba DC</em></td>
<td>Root</td>
<td>Oxyacanthine (14)(^ {19})</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Menisarine (26)(^ {20})</td>
</tr>
<tr>
<td><em>D. species</em></td>
<td>Bark</td>
<td>Isotenuipine (27)(^ {21})</td>
</tr>
<tr>
<td><em>Heracleum Wallichii</em></td>
<td>Root</td>
<td>Cycleanine (25)(^ {22})</td>
</tr>
<tr>
<td><em>S. tetrandra S. Moore</em></td>
<td>Tuber</td>
<td>Tetrandrine (13)(^ {23})</td>
</tr>
</tbody>
</table>

### 1.3.2 Syntheses of BBIQ alkaloids

Most of the total synthetic work on BBIQ alkaloids was undertaken in the 1960s
and the early 1970s.\(^6\)\(^-\)\(^9\),\(^{24}\) Among them, the achievements of Tomita’s group, Inubushi’s
group and Kametani’s group are well known.\(^{25}\)-\(^{35}\) A brief review of their work done at
that time reveals that two pivotal steps are usually employed for the synthesis of BBIQs: one is the reaction for the formation of the diaryl ether linkage, usually by the classic Ullmann coupling reaction; and the second is the cyclization process for the formation of the isoquinoline subunit, usually by a Bischler-Napieralski cyclization (BNC) or a Pictet-Spengler cyclization (PSC) reaction. However, a review of these two key steps in the work undertaken at that time will will show that the results obtained from both of them are far from ideal. First, the yields obtained from the classic Ullmann coupling were generally quite low, and the reaction conditions were very harsh. Secondly, the cyclization process always resulted in the formation of a mixture of stereoisomers which either required a chiral resolution step to isolate, or could not be separated at all.

Many new methodologies have been developed to overcome these two problems. For the formation of the diaryl ether linkage, improved Ullmann coupling with high yields and new methodologies involving different mechanisms such as (i) SNAr reactions; (ii) thallium(III)-mediated oxidative cyclizations; (iii) palladium-catalyzed diaryl ether syntheses; (iv) cycloaddition reactions such as Diels-Alder cycloadditions; and (v) Robinson annulations have been developed. At the same time, numerous procedures have been developed to control the diastereoselectivity of the cyclization process while constructing the isoquinoline subunit. One example of such an approach is the first enantioselective total synthesis of (-)-tejedine (28) by Wang and Georghiou. (-)-Tejedine is a seco-bisbenzyltetrahydroisoquinoline which was first extracted from Berberis vulgaris as a minor component in 1998. In their synthesis, a chiral auxiliary-assisted diastereoselective Bischler-Napieralski cyclization strategy was utilized with
satisfactory results. A mild Cu(OAc)$_2$-mediated diaryl ether coupling methodology which had recently been reported by Evans and Chan$^{47,48}$ was successfully used. Later in this thesis, in order to make the work described for this thesis more understandable, some of these new advances in forming biaryl ether linkages and controlling the stereochemistry during the synthesis of some isoquinolines will be introduced.

1.4 Cycleanine

In 1937, Kondo et al. first isolated cycleanine (25) from *Cyclea insularis* (MAKINO) DIELS and *Stephania cepharantha* HAYATA.$^{49}$ Later, its exact structure was established and it was found that cycleanine, also called *O*,*O*-dimethylisochondrodendrine, is a *C*$_2$-symmetrical compound with two benzyltetrahydroisoquinoline subunits connected by two diaryl ether linkages. It is a “head-to-tail” dimer with the two isoquinolines having the same absolute configuration (Figure 1.4)$^{50}$.

![Figure 1.4 (-)-Cycleanine (25)](image)
1.4.1 Pharmacological activities of cycleanine

The early evidences of the pharmacological activities of cycleanine can be traced back to ancient Southern Nigeria and other coastal regions of West Africa. At that time, the root bark of the plant Synclisia scarbrida, which contained cycleanine, had been used widely as a medicine to treat various ailments such as acute psychosis, dysmenorrhea and to prevent spontaneous abortion. Later, it was found that cycleanine also has analgesic, muscle relaxant and anti-inflammatory activites. Recent investigations have shown that cycleanine has effects on the central nervous system.

1.4.2 Previous synthetic approaches towards cycleanine

Although cycleanine was isolated from plants a long time ago and its structure has also long been established, efficient synthetic approaches to this alkaloid have not yet been achieved. The only report on the synthesis of cycleanine was reported by Tomita et al in 1966. In this synthetic approach, the reaction of an amino acid derivative (29) with methyl ester (30) with the aid of DCC in dichoromethane formed the amide 31, which was further converted to 32 by a series of steps. Bischler-Napieralski cyclization of 32 followed by sodium borohydride reduction in methanol afforded a mixture of tetrahydroisoquinolines 33. Treatment of 33 with formalin, then with sodium borohydride yielded the N-methyl derivatives of (±)-cycleanine along with its isomers (Scheme 1.1). Tomita’s approach was not synthetically useful due to the very low overall yield and the formation of a mixture of diastereomers.
In order to overcome the drawbacks of Tomita's synthesis, Cui and Georghiou\textsuperscript{7} initiated a new synthetic effort using a different approach. Although they obtained the tetrahydroisoquinoline subunits with the desired stereochemistry, they did not obtain the desired cyclic product when they tried to combine the two subunits by formation of biaryl
ether linkages. This attempt will be discussed in greater detail in a later section of this thesis.

1.5 Recent advances in the synthesis of isoquinolines

As mentioned previously, BNC and PSC are two classical ways to produce isoquinolines. Both reactions with modifications are still the most frequently employed methodologies for such syntheses but with modifications. The BNC usually commences with refluxing of a mixture of a phenethylamide e.g. 34 and a Lewis acid, most often POCl₃, in benzene, which first leads to the dihydroisoquinoline 37. Compound 37 can be further reduced by NaBH₄ to give the tetrahydroisoquinoline 38 (Scheme 1.2).

\[
\begin{align*}
34 & \xrightarrow{\text{POCl}_3} 37 & \xrightarrow{\text{NaBH}_4} 38
\end{align*}
\]

**Scheme 1.2**

Outlined in Scheme 1.3 is the mechanism for the BNC. The intermediate 35 is first formed between the phenethylamide 34 and the Lewis acid. Electrophilic attack by the aromatic ring followed by re-aromatization leads to intermediate 36, which then results in the formation of dihydroisoquinoline 37 by elimination of a molecule of HPO₂Cl₂. Reducing this dihydroisoquinoline 37 produces the final tetrahydroisoquinoline 38 usually as a mixture of enantiomers. If the R group in 38 is a benzyl group, the products are benzylisoquinolines. In order to overcome the drawback of the formation of
undesired enantiomers, currently several methodologies have been reported which seem
to be promising.

\[ \text{Scheme 1.3} \]

In Scheme 1.4, dihydroisoquinolinium salt 39a with an incorporated chiral
hydrazonium functionality was used as a substrate by Kibayashi et al. in the synthesis of
\((R)-(-)-\text{cryptostyline}\).\(^{58}\) Reduction of 39a by employing NaBH\(_4\) followed by two
additional steps resulted in the tetrahydro product 40 with excellent enantioselectivity
(90-96\% ee).

Sodium triacyloxyborohydride 41, prepared from NaBH\(_4\) and \(N,N\)-phthaloyl-
protected (phth) amino acids, was used by Hajipour and Hantehzadeh in the synthesis of
benzyltetrahydroisoquinoline \((S)-(-)-\text{norcryptostyline} 40b\).\(^{59}\) The enantioselectivity
(65-75% ee) increased when the reduction of 40a was performed in the presence of ZnCl₂ (72-87% ee) or carried out under solid-state conditions (83-100% ee) (Scheme 1.5).

As mentioned before, (-)-tejedine (28) has been synthesized enantioselectively in 2002. In that multistep synthesis, (S)-α-methylbenzylamine was used as a very efficient chiral auxiliary to control the enantioselectivity of the crucial cyclization step.

The key intermediate 42 was prepared from chiral amine 43 (obtained from
vanillin in 13 synthetic steps) and carboxylic acid 44 (synthesized from 4-hydroxybenzaldehyde in 11 steps). Cyclization of 42 using POCl₃ in benzene followed by reduction gave the desired regioisomer of tetrahydroisoquinoline 45 in 40% yield and with 99% de. Then, the synthesis of the final alkaloid (-)-tejedine was completed after an additional series of transformations (Scheme 1.6).

A strategy similar to the above example was developed by Cui and Georghiou when they attempted the synthesis of (-)-cycleanine. In Cui's work, the important intermediate 46a was prepared from compound 47 by BNC using (R)-α-methylbenzylamine as a chiral auxiliary. After obtaining an X-ray crystal structure for 46a, they were
able to verify that the configuration of the asymmetric carbon center in 46a was correct (Scheme 1.7 and Figure 1.5).\textsuperscript{7}
Figure 1.5 The X-ray structure of 46a\textsuperscript{7}
PSC is also a frequently employed way to construct isoquinolines. It involves the condensation of β-arylethylamines, e.g. 48, with aldehydes, e.g. 49. In this method the stereogenic center at C₁ is generated during the ring closure in a one-pot process (Scheme 1.8).²⁶

$$ \text{R}^1\text{O} \quad \text{R}^2\text{O} \quad \text{NH}_2 \quad + \quad \text{R}^3\text{H} \quad \xrightarrow{\text{HCl}} \quad \text{R}^1\text{O} \quad \text{R}^2\text{O} \quad \text{NH} \quad \text{R}^3 $$

Scheme 1.8

There are several advantages to the use of PSC to construct the framework of isoquinolines, such as the use of milder reaction conditions and the lack of a requirement for a reduction step. Recently, several synthetic methodologies have been developed to control the stereoselectivity of the PSC reaction. In order to effect this, the reaction was usually carried out in an asymmetric manner. The chirality transfer occurred from a chiral auxiliary introduced in either the β-arylethylamine 48 or the aldehyde 49 component, thus involving a stereoselective synthesis.

An example of a stereoselective synthesis of an isoquinoline by PSC has been reported by Gremmen et al. (Scheme 1.9).⁶¹ In this report, N-p-tolylsulfinylphenylethylamine 51 was obtained by first treatment of the phenylethylamine 52 with n-butyllithium and then with a commercially available Andersen reagent, (1R,2S,5R)-menthyl-(S)-p-toluenesulfinate in 86% yield. A PSC between 51 and
phenylacetaldehyde afforded 53 in 38% yield with excellent diastereopurity. Removal of the chiral auxiliary proceeded without racemization by treatment with HCl in ethanol, at 0 °C, and gave 54 in 90% yield with a 98% ee.
Another interesting example of stereoselective PSC uses a chiral aldehyde to control the formation of the asymmetric carbon center (Scheme 1.10). The PSC between 55 and 56 in boiling MeOH gave 57 in a yield of approximately 80%. Treatment of 57 with an excess of ethyl chloroformate afforded 58 (56%). Subjecting 58 to methanolic ammonia removed both carbonic ester functions, and afforded 59 in a yield of 93%. Methylation of 59 at the phenolic hydroxyls with iodomethane in the presence of K₂CO₃ gave 60 in 86% yield. Aldehyde 61 was obtained through oxidation of 60 with sodium periodate (93%). Treatment 61 with 62 in THF gave 63 in 64% yield. Finally, treating 63 first with SOCl₂, and then with LiAlH₄, in an one-pot reaction afforded the benzyltetrahydroisoquinoline 64 in 88% yield.⁶²

Unfortunately, due to the unsuccessful attempts to obtain the necessary precursor for the cyclization, the application of PSC methodology in an earlier effort for the synthesis of cycleanine by M. Ralph in the Georghiou laboratory was abandoned.⁶³ As a result, only BNC was selected as the strategy to build the benzylisoquinoline subunits for the final target molecule cycleanine in this thesis.
Scheme 1.10
1.6 Recent developments in the formation of Diaryl ethers

A mild Cu(OAc)$_2$-mediated diaryl ether coupling methodology recently reported by Evans$^{47}$ and Chan$^{48}$ was successfully used by Wang and Georghiou in their enantioselective total synthesis of (-)-tejedine.$^{46}$ This methodology for the diaryl ether cross coupling employs Cu(OAc)$_2$ in the presence of triethylamine at room temperature. Cui also employed this method to build the diaryl ether bonds in his attempts to synthesize cycleanine. However, when he used the correct regioisomer $65$ for the homocoupling reaction for constructing the macrocyclic dimer $66$, he reported that the reaction failed to produce the desired product (Scheme 1.11).$^7$ Therefore, the focus of the research described in this thesis was on the use of alternative methods.

![Scheme 1.11](image)

In 2002, an improved version of Ullmann coupling was reported by Buck et al.$^{64}$ In this report, 2,2,6,6-tetramethylheptane-3,5-dione (TMHD) was found to accelerate greatly the normally difficult Ullmann coupling reaction, and allowing it occur at more moderate temperatures. In the presence of TMHD, aryl halides $67$ and phenols $68$ were
shown to form ethers \textbf{69} in NMP with cesium carbonate as base and CuCl as the catalyst (Scheme 1.12).

![Scheme 1.12](image)

The reaction was also shown to tolerate electron-rich aryl bromides and electron-neutral or poor phenols. This represents a significant improvement over the classical conditions, which generally do not work with aryl halides with strong electron-donating groups and phenols with electron-withdrawing groups. As a general procedure, the aryl halide, the phenol, TMHD, and cesium carbonate were added to anhydrous NMP. To this mixture was added CuCl. This mixture was then heated under nitrogen to 120 °C. After completion of the reaction, the reaction mixture was diluted with MTBE and filtered. The filtrate was washed with aqueous acid, followed by base, and then the desired product was isolated by column chromatography, or by direct crystallization. According to the authors, the formation of a complex involving the Cu(I), diketone as well as the phenolate presumably accelerated the rate-determining step.\textsuperscript{64}

In 2004, a similarly interesting development in Ullmann coupling methodology was reported by Ma et al.\textsuperscript{65} In this report, the diaryl ether syntheses were performed at even lower temperature by using either aryl iodides or aryl bromides as the substrates with phenols in the presence of \textit{N,N}-dimethylglycine (Scheme 1.13).
In this methodology, aryl iodides or aryl bromides with different substituents such as alkoxy, amino, fluoro, nitro, carbonyl or cyano groups, can tolerate the reaction conditions. As a result, this method potentially can also be employed for the synthesis of more complex diaryl ethers such as those are found in some natural products.

In addition to the methods above, which are simple variations on the classic Ullmann coupling, another very interesting method for diaryl ether synthesis is the use of an SNAr reaction.

An example from the Carrington group illustrates the nature of this kind of SNAr reaction for forming diaryl ether bonds.66 In this example, compound 70 was successfully cyclized in relative high yield to the macrocycle 71, an intermediate for the synthesis of the naturally occurring 23-membered polyamine lactam alkaloid cadabicine (Scheme 1.14).
Using a similar strategy, compound 72 was cyclized to a mixture of atropisomers that was subsequently reduced via two further operations to the 15-membered macrocycle 73, which was an important intermediate for the synthesis of the antiviral/antibacterial agents, kistamicins A and B (Scheme 1.15).
Recently, Zhu et al. have used $\text{K}_2\text{CO}_3$ as the base, to convert compound 74 to 75 in 45% yield over two steps when they attempted to synthesize RA-VII, a natural product with potent antitumor activity (Scheme 1.16).^68^
In their synthesis of (-)-tejedine, Wang and Georghiou prepared the important intermediate compound 76 by a base-mediated S_{N}Ar reaction between compound 77 and 78 (Scheme 1.17).^{46}

From all of the examples described above, it is easy to realize that the use of either improved Ullmann coupling methodologies or S_{N}Ar-based reactions are potential ways to construct the biaryl ether bonds in the target molecule cycleanine. The use of both of these approaches will be discussed in this thesis.
Chapter 2

Synthesis of 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) and 4-iodophenylacetic acid (80)

2.1 Introduction

In chapter 1 were outlined a brief description of cycleanine, endeavors previously reported toward its synthesis, and a brief review of some recently developed methodologies with potential application for its synthesis. In this chapter and the next the synthetic efforts toward cycleanine conducted by this author will be described. From Chapter 1 we have noted that usually there are two key steps for preparing BBIQ alkaloids such as cycleanine: (i) the stereoselective tetrahydroisoquinoline ring formation, and (ii) the efficient formation of diaryl ether linkages. One of these two problems had previously been resolved by Georghiou’s group: the tetrahydroisoquinoline subunit needed for cycleanine had been synthesized with well-controlled stereoselectivity as shown in their synthesis of tejedine.

The remaining task was to find a suitable method to construct the diaryl ether linkages. The improved Ullmann coupling reactions or a SNAr reaction are potential methodologies which could be used for the formation of diaryl ether linkages in cycleanine. As a result of all of these considerations, an initial retrosynthetic analysis for (-)-cycleanine using improved Ullmann coupling was considered (Scheme 2.1). If such a coupling methodology were employed, the correct precursor for (-) cycleanine should be 81, in which both halide and phenolic hydroxy groups are present. Compound 81
should be readily derived from 46a, which had been synthesized previously in the Georghiou laboratory by using vanillin as a starting material.

![Scheme 2.1]

**Scheme 2.1**

Outlined in Scheme 2.2 is the strategy employed in the synthesis of 46a by Cui. Vanillin (82) was first converted to compound 83 by bromination and reduction. Then in order to obtain compound 79, the hydroxy group on 83 was protected as the tert-butylidimethylsilyl (TBDMS) ether to give 84. After 84 was converted to the phenol 85, the TBDMS group was removed to afford the benzyl ether 79. After several more steps, the arylacetic acid 86 was obtained. After this, the chiral auxiliary group was introduced into 86 via the corresponding acid chloride to form compound 87. Amide 88 was
Scheme 2.2
synthesized from 87 first by reducing the amide group with BH₃ followed by a Schotten-Baumann reaction. Compound 88 was the precursor for the required BNC, which provided 46a. However, re-evaluation of this work for the current research revealed two drawbacks: (1) An additional protection step for forming 84 was used, and the protecting reagent, TBDMSCl, is expensive; and (2) an indirect bromine-hydroxyl exchange from compound 84 to form 85 needed to be accomplished by a lithiation-boronation sequence which was also demanding and expensive. Of course, if they were involved for only a short synthetic route, these problems would not necessarily be serious. But for the synthesis of a complex compound such as cycleanine, they cannot be ignored. In the previous synthetic effort by Cui, the failure to complete the synthesis of cycleanine can also be attributed in part to a failure to resolve these two problems. This previous effort was already very close to the final target molecule, but since there were insufficient amounts of the precursors to allow a systematic investigation of the key birayl ether formation step, the ultimate target was not eventually obtained. Since cycleanine demonstrates various pharmacological activities, there is the potential that this compound may be of pharmaceutical interest. This also makes it meaningful to establish a relatively cheap and concise process for producing the required starting materials and the intermediates. It is because of all of these reasons that the major focus of this chapter is mainly given to the synthesis of 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79), a simple-looking, but very important, intermediate that is essential for the total synthesis of cycleanine.
2.2 Results and discussion

2.2.1 Synthesis of 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79)

2.2.1.1 First attempt using THP-protected vanillin as starting material

The first attempted improvement for the synthesis of 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) was tried by using a less expensive protecting group for the phenolic hydroxy group instead of the more expensive TDMSCl. The main consideration for choosing a protecting group is that it should withstand the subsequent reaction conditions, it should not interfere with other substituents on this molecule, and it should be easily removed at a later stage. Based on these considerations and also on our previous experience, a synthetic pathway toward compound 79 employing THP as protecting group, as outlined in Scheme 2.3, was first employed. Bromination of vanillin produced the desired 5-bromovanillin (89) in 95% yield, under the ortho-directing effect of the hydroxy group on vanillin (82). Compound 90 was produced by methylation of 89 (99%). Reduction of the aldehyde moiety of 90 with NaBH₄ gave the 5-bromo-3,4-dimethoxybenzyl alcohol (83) in a yield of 99%. At this stage, the hydroxy group was protected as the THP ether 91 in a very high yield (96%) by the reaction of 83 with DHP using PPTS as the catalyst. The key step of converting the bromo group to a phenolic hydroxy group by a lithiation-boronation-oxidation sequence was then conducted. However, when the same procedure, which was used by Cui, was employed with THP-protected 91, the desired compound 92 was not obtained, but most of the starting material was recovered.
Conditions: a) Br$_2$, AcOH, 95%; b) Me$_2$SO$_4$, NaOH, H$_2$O, CH$_2$Cl$_2$, Adogen 464®, 99%; c) NaBH$_4$, MeOH, THF, 99%; d) DHP, PPTS, CH$_2$Cl$_2$, 96%; e) n-butyllithium, B(OCH$_3$)$_3$, H$_2$O$_2$.

Scheme 2.3
2.2.1.2 Attempted synthesis of 79 using gallic acid as the starting material

As a result of the unsuccessful attempt at using THP as a protecting group to form 92, the second approach for the synthesis of 5-benzoxy-3,4-dimethoxybenzyl alcohol (79) was attempted. This time gallic acid (93) was selected as a starting material (Scheme 2.4). The planned approach was that gallic acid could be selectively methylated to form compound 94. If 94 could be obtained, then treating it with a suitable reducing reagent should easily afford compound 95. Although there are two hydroxy groups in 95, it should be easy to convert it to 5-benzoxy-3,4-dimethoxybenzyl alcohol (79) by a selective benzylation due to the more acidic character of the phenolic hydroxy than that of the alcoholic hydroxy group.

However, it was found that after gallic acid (93) was treated with dimethyl sulfate in a mixture of CH₂Cl₂ and aqueous NaOH containing phase-transfer catalyst, Adogen®, methyl 3,4,5-trimethoxybenzoate (96) and methyl 3,4-dihydroxy-5-methoxybenzoate (97) were both obtained in yields of only 14% (Scheme 2.5).
Conditions: \((\text{CH}_3\text{SO}_4, \text{H}_2\text{O}, \text{CH}_2\text{Cl}_2, \text{NaOH}, \text{Adogen}^{\circledast}, \text{yield 14\% of 96 and 14\% of 97.})

\[
\begin{align*}
\text{COOH} & \quad \text{COOCCH}_3 \\
\text{OH} & \quad \text{OCH}_3 \\
\text{OH} & \quad \text{CH}_3O \\
\text{93} & \quad \text{96} & \quad \text{97}
\end{align*}
\]

Scheme 2.5

2.2.1.3 Diazotization approach using vanillin (67) as the starting material

The third approach examined for the synthesis of 79 is outlined in Scheme 2.6. In this approach vanillin (82) was employed once again as the starting material, but the key step of introducing the hydroxy group was planned by using a diazotization reaction sequence. Thus, subjecting vanillin (82) with fuming HNO₃ in glacial acetic acid afforded compound 98 (76%). Following the method of Sato et al., 70 methylation of the potassium salt of 98 with dimethyl sulfate produced 3,4-dimethoxy-5-nitrobenzaldehyde (99) in a yield of 91%. It was expected that a direct reduction of the nitro group followed by a diazotization reaction would introduce the hydroxyl group onto the aromatic ring. However, considering the aldehyde moiety in 99 would not survive the relatively harsh diazotization reaction conditions, 99 was first converted to 100 and then to 5-amino-3,4-dimethoxybenzyl alcohol (101) by two successive reduction steps in 85% and 75% yields, respectively. With compound 101 in hand, the diazotization reaction was conducted. However when 101 was treated with HNO₂ in an acidic medium, a product was produced which could not be analyzed by either NMR or GC-MS. The failure of this
reaction to afford the desired 95 is most probably due to the fact that the primary alcohol group was not protected. No protecting groups, however, were examined.

2.2.1.4 Some literature reports concerning the introduction of a hydroxyl group onto an aromatic ring

Because all attempts failed to afford 79, an extensive review of the relevant literature was undertaken to find a more practical methodology for the synthesis of 79.

In 1983, Linuma et al had described an indirect route to introduce a hydroxy group onto a aromatic ring.\textsuperscript{71} In their route, 3,4-dimethoxy-5-hydroxy-benzaldehyde (102) was
prepared by using o-vanillin (103) as starting material. The process involved five steps, with an overall yield of approximately 20% (Scheme 2.7). The key reactions in this route are a Baeyer-Villiger reaction with peroxyformic acid, followed by a Rosenmund-Von Braun cyanation with cuprous cyanide at 200°C. The interesting aspect of this example is that the final product 102 is the direct precursor of our desired compound 79.

The above reaction sequence, however, was deemed undesirable due to the low overall yields obtained and harsh reaction conditions.

![Chemical Structure](image)

**Scheme 2.7**

A synthesis of hydroxybenzaldehyde 102 from bromobenzaldehyde 90 via lithiated Schiff’s bases had been reported by Jacob and Shulgin when they attempted the synthesis of 5-hydroxypiperonal and related compounds (Scheme 2.8).

In their report, a procedure for the replacement of a bromine with a hydroxyl group in the readily available bromobenzaldehyde 90 was successfully performed using the Schiff’s base, 105, to protect the aldehyde group.
In a similar report, 102 was synthesized from bromobenzaldehyde 90 via the reaction of *in situ*-generated, lithiated α-morpholinobenzyl alkoxide 106 with nitrobenzene.\(^{73}\) The detailed process is outlined in Scheme 2.9. The aldehyde functional group of 90 was protected *in situ* by reacting 90 at \(-50\) °C with lithium morpholide 107 to give 106. The lithiated morpholinoalkoxide 108 was generated by reacting 106 with \(n\)-BuLi at \(-75\) °C. Reaction of 108 with nitrobenzene for 4 h at \(-75\) °C first gave 109 followed by an acidic workup to furnish the desired 102 in 55% yield.
In each of these methodologies an inexpensive method was employed for protection the aldehyde group which otherwise would have affected the lithium-halogen exchange step. However, both methods outlined above employed a lithiation, boronation and peroxidation process which is difficult to conduct on large scale. Fortunately, this problem was resolved very well by the report of a procedure by Ellis and Lenger for a synthesis of 102. The actual process also included a step of converting a bromo group to a hydroxy group, but here the change was accomplished by a direct hydrolysis, by treating 90 with an aqueous solution of NaOH in the presence of three mole % of copper powder, at refluxing temperature. This process produced 110 in 70%
yield. After this, compound 110 was converted to 102 by a selective methylation (Scheme 2.10).

Obviously, the step of changing 5-bromovanillin (90) to 5-hydroxyvanillin (102) by hydrolysis using this methodology is a great advance over all prior reports. It is very economical and also extremely practical for large-scale synthesis due to the minimum of manipulative steps.

2.2.1.5 Methodology eventually adopted for synthesizing 3-benzylxy-4,5-dimethoxybenzyl alcohol (79)

With all the above reports in mind, and also based on the previous work in our laboratory, an economical and practical synthetic pathway to 79 was eventually designed. Scheme 2.11 is the route employed. Compound 90 was obtained as previously described. Treating 90 by employing the methodology of Ellis indeed gave the desired precursor compound 110 in the reported yield of 66%. Selective methylation of 110
produced compound 102 in an acceptable yield. Reaction of 102 with benzyl bromide in the presence of potassium carbonate produced 3-benzyloxy-4,5-dimethoxybenzaldehyde (111) in 85% yield. The desired 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) was obtained in 97% yield by reduction of 111 with NaBH₄.

Scheme 2.11
2.2.2 Synthesis of 4-iodophenylacetic acid (65)

Although the synthesis of 79 had required much of the research effort that is described in this thesis, the synthesis of 4-iodophenylacetic acid (80) was accomplished in a relatively smooth way with a small modification of the methodology developed by Cui and Georgiou (Scheme 2.12). Using 4-iodotoluene (112) as starting material, 113 was produced by utilizing a radical reaction with NBS as the bromination reagent (51%). Treating 113 with NaCN in DMSO resulted in the formation of 4-iodophenylacetonitrile (114) in a 94% yield. The desired 4-iodophenylacetic acid (80) was then obtained in a 95% yield by base-mediated hydrolysis of 114.

```
  \[ \text{NBS, } h\nu, \text{CH}_2\text{Cl}_2 \rightarrow \text{Br}\rightarrow \text{I}\rightarrow 113 \]
  \[ \text{NaCN, DMSO, Benzene, 94%} \rightarrow \text{NC}\rightarrow \text{I}\rightarrow 114 \]
```

Scheme 2.12

2.3 Summary

Two intermediates required for the total synthesis of cycleanine, 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) and 4-iodophenylacetic acid (80) were prepared in synthetically useful yields. In particular, the synthesis of 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) required a great amount of time and effort. At first it
seems unworthy to take such great pains for the synthesis of such a simple compound as 79. However, although these compounds are structurally simple and probably many different methodologies may be chosen to produce them, they may not be easy to synthesize in an economical and practical way. On the other hand, if these simple compounds are used as synthetic intermediates for the beginning stages of a lengthy total synthesis, such as the synthesis of cyceleanine, contemplated in this thesis, the development of economical and practical ways for preparing them is really crucial to the final success. With all these considerations in mind, therefore, it should be recognized that the effort expended for preparing these intermediates in an efficient manner was a worthwhile endeavour.
2.4 Experimental

General

Flash column chromatography was performed using 240-400 mesh silica gel and preparative layer (1 mm) chromatography (PLC) was conducted using 60 mesh silica gel. All solvents and reagents were either of the highest commercial grade available or were redistilled (CH₂Cl₂, hexane, and benzene distilled over CaH₂). ¹H and ¹³C NMR spectra were obtained on the Bruker Avance 500 MHz instrument with a TXI inverse-detection gradient probe in CDCl₃ unless otherwise specified, and shifts are relative to an internal tetramethysilane signal. The following abbreviations are used in descriptions of the ¹H NMR spectra: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and b (broad). The ¹³C NMR spectra shifts were measured relative to the solvent. Overlap may have prevented the reporting of all resonances. Low-resolution mass spectral data were obtained from the V.G. Micromass 7070HS instrument or obtained from Atmospheric Pressure Chemical Ionization-Mass Spectrometry (APCI-MS). Mass spectral data and intensity (%) are described as MS (m/z) or APCI-MS (m/z). Melting points (m.p.) were determined using a Fisher-Johns hot stage apparatus, and are uncorrected.
3-Benzylxlo-4,5-dimethoxybenzyl alcohol (79)

To a solution of 111 (2.3 g, 8.6 mmol) in MeOH (20 mL) and THF (20 mL) was added NaBH₄ (0.18 g, 4.8 mmol) in three portions over a period of 1.5 h. The mixture was stirred at room temperature for 15 h before by removal of the solvent on a rotary evaporator. The yellow residue obtained was dissolved in aqueous 10% HCl (20 mL), the solution was transferred to a separatory funnel and the mixture was extracted with EtOAc (20 mL × 2). The combined organic layers were washed with brine (10 mL × 2), dried over MgSO₄, filtered and the solvent was evaporated to give 79 as a yellow oil (2.3 g, 97%). The product was pure enough to be used in the next step without further purification; ¹H NMR (500 MHz): δ 7.31-7.45 (m, 5H, Ar-H), 6.64 (s, 1H, H-6), 6.61 (s, 1H, H-2), 5.13 (s, 2H, H-α), 4.59 (s, 2H, H-α'), 3.87 (s, 6H, OCH₃); MS (m/z): 274 (M⁺, 30), 243 (2), 91 (100).

4-Iodophenylacetic acid (80)

A mixture of 114 (7.5 g, 31 mmol) in 95% ethanol (150 mL) and aqueous 6.0 M NaOH (30 mL) was heated at reflux for 16 h. The reaction mixture was then cooled to room temperature and the ethanol was removed on a rotary evaporator. Water (80 mL) was added, and the mixture was extracted with CH₂Cl₂ (30 mL × 3) to remove any remaining starting material. The aqueous layer was acidified with aqueous concentrated HCl to pH = 1 and was re-extracted with CH₂Cl₂ (40
mL × 3). The combined organic layers were washed with brine (30 mL × 2), dried over anhydrous MgSO₄, filtered, and the solvent was evaporated on a rotary evaporator to give 80 (7.7 g, 95%) as a white solid. The product was used in the next step without purification; ¹H NMR: δ 7.67 (d, J = 8.0 Hz, 2H, H-2, H-6), 7.04 (d, J = 8.0 Hz, 2H, H-3, H-5), 3.60 (s, 2H, -CH₂-).

3-Bromo-4,5-dimethoxybenzyl alcohol (83)

To a solution of 90 (20 g, 80 mmol) in MeOH (75 mL) and THF (75 mL) was added NaBH₄ (1.6 g, 40 mmol) in portions over a period of 1.5 h. The solution was stirred at room temperature for 11 h, before removal of the solvent on a rotary evaporator. The yellow solid was dissolved with aqueous 10% HCl (80 mL), and the solution was transferred to a separatory funnel. The aqueous layer was extracted with EtOAc (30 mL × 3) and the combined organic layers were washed with brine (40 mL × 2), dried over MgSO₄, filtered, and the solvent was evaporated to give a yellow-tinted oil. The product was used in the next step without purification (21 g, 99%); ¹H NMR: δ 7.12 (d, J = 2.0 Hz, 1H, H-2), 6.89 (d, J = 1.5 Hz, 1H, H-6), 4.62 (d, J = 6 Hz, 2H, H-α), 3.87 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃); MS (m/z): 248 (M⁺+2, 98), 246 (M⁺, 100), 231 (15), 96 (98), 84 (12).
3-Bromo-4-hydroxy-5-methoxybenzaldehyde (89)

Bromine (11 mL, 34 g, 0.22 mol) was added dropwise to a solution of vanillin 23 (30 g, 0.20 mol) in glacial acetic acid (140 mL). After stirring for 2 h, the reaction mixture was diluted with ice-water (400 mL). The resulting precipitate was filtered, washed with water (50 mL × 2), and dried over P₂O₅ under reduced pressure to give 89 as a white solid (44 g, 95%); m. p. 162-64 °C (lit. m.p. 164-166 °C); ¹H NMR: δ 9.79 (s, 1H, CHO), 7.65 (d, J = 1.8 Hz, 1H, H-2), 7.37 (d, J = 1.8 Hz, 1H, H-6), 6.57 (s, 1H, OH), 3.99 (s, 3H, OCH₃).

3-Bromo-4,5-dimethoxybenzaldehyde (90)

A mixture of 89 (42 g, 0.18 mol), sodium hydroxide (20 g, 0.50 mol), dimethyl sulfate (30 mL, 0.18 mol), Adogen 464° (5.0 mL), water (350 mL) and CH₂Cl₂ (350 mL) was vigorously stirred at room temperature. After 17 h, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (100 mL × 2). The combined CH₂Cl₂ extracts were thoroughly washed with aqueous ammonium hydroxide (30 mL of 30% NH₃ (aq.) diluted to 130 mL with water), water (100 mL), dried over MgSO₄, and filtered, and the solvent was evaporated to give an oily residue. The residue was purified by column chromatography (10% EtOAc/hexane) to afford 90 as a colorless solid (44 g, 99%); m. p. 58-60 °C (lit. m.p. 63-64 °C); ¹H NMR: δ 9.85 (s, 1H, CHO), 7.65 (d, J = 1.5 Hz, 1H, H-2), 7.39 (d, J = 1.5 Hz, 1H, H-6), 3.95 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃); MS (m/z): 246 (M⁺+2, 98), 229 (M⁺, 95), 207 (M⁺-CH₃, 43), 163 (M⁺-2CH₃, 12), 116 (M⁺-3CH₃, 14), 105 (M⁺-4CH₃, 11), 93 (M⁺-5CH₃, 9), 82 (M⁺-6CH₃, 6), 71 (M⁺-7CH₃, 2), 60 (M⁺-8CH₃, 1).
244 (M⁺, 100), 173 (18), 94 (50).

3-Bromo-1,2-dimethoxy-5-(tetrahydropyranoxyl) methyl benzene (91)

A mixture of 83 (4.4 g, 18 mmol), DHP (3.0 g, 35 mmol), PPTS (0.50 g, 5.9 mmol) in CH₂Cl₂ (30 mL) was stirred at a reflux temperature. After 2 h, the reaction mixture was diluted with diethyl ether (30 mL), washed with aqueous saturated NaHCO₃ (30 mL), brine (30 mL), water (30 mL) and dried over MgSO₄, filtered, and the solvent was evaporated to afford 91 as a yellow-tinted oil (5.7 g, 96%). The product was used in the next step without purification; ¹H NMR: δ 7.14 (s, 1H, H-2), 6.87 (s, 1H, H-6), 4.69 (m, 1H, H-8), 4.69 (d, 1H, J = 12Hz, H-7), 4.41 (d, 1H, J = 12Hz, H-7), 3.54-3.57 (m, 1H, H-12), 3.87 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.54-3.58 (m, 1H, H-12), 1.54-1.90 (m, 6H, H-9, H-10, H-11); ¹³C NMR: δ 153.8, 145.9, 135.6, 124.1, 117.7, 111.4, 98.0, 68.2, 62.5, 60.7, 56.2, 30.7, 25.6, 19.6; MS (m/z): 332 (M⁺+2, 10), 330 (M⁺, 10), 246 (8), 231 (100), 151 (81), 85 (35).

Methyl 3,4,5-trimethoxybenzoate (96) and methyl 3,4-dihydroxy-5-methoxybenzoate (97)
A mixture of gallic acid (0.50 g, 2.9 mmol), sodium hydroxide (0.35 g, 8.8 mmol),
dimethyl sulfate (0.74 mL, 7.8 mmol), phase-transfer catalyst Adogen 464® (1 drop),
CH₂Cl₂ (15 mL), and water (15 mL) was stirred at room temperature. After 7h, aqueous
5% NaOH (10 mL) was added. The organic layer was isolated and the aqueous layer was
extracted with diethyl ether (20 mL x 2). The combined organic layers were washed with
water, dried over MgSO₄, filtered, and the solvent was evaporated. The residue was
purified by column chromatography using ethyl acetate-hexane (3:7) as an eluent to afford
96 as a white solid (90 mg, 14%); ¹H NMR: δ 7.30 (s, 2H, H-2, H-6), 3.91 (s, 12H,
OCH₃); MS (m/z): 226 (M⁺, 100), 211 (65), 155 (50), 125 (30), 66 (45).

The aqueous layer was acidified with aqueous concentrated HCl to pH = 1, then it
was extracted with diethyl ether (20 mL x 2), washed with water, dried over MgSO₄,
filtered, and the solvent was evaporated. The residue was purified by column
chromatography (50% EtOAc/hexane) to give 97 as a grey-yellow solid (82 mg, 14%);
¹H NMR: δ 9.52 (s, 1H, OH), 7.11 (d, J = 1.5 Hz, 1H, H-2), 7.04 (d, J = 1.5 Hz, 1H, H-6),
3.80 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 3.33 (s, 1H, OH); ¹³C NMR: δ 167.9, 153.7,
151.2, 141.1, 126.6, 111.7, 105.3, 60.8, 56.6; MS (m/z): 198 (M⁺, 100), 183 (75), 155
(12), 127 (45), 81 (16), 67 (20).
4-Hydroxy-3-methoxy-5-nitrobenzaldehyde (98)

To a solution of vanillin in glacial acetic acid (20 g, 150 mL) was added fuming nitric acid (8 mL) dropwise while keeping the temperature around 15 °C. After the addition of HNO₃, the reaction mixture was filtered. The solid was washed with cool methanol (10 mL) and then dried in air to afford **98** as a green-yellow solid (19 g, 76%); m. p. 174-175 °C (lit. 74 m.p. 175-176 °C); ^1^H NMR: δ 9.91 (s, 1H, CHO), 8.24 (d, J = 1.5, 1H, H-6), 7.66 (d, J = 1.5, 1H, H-2), 4.04 (s, 3H, OCH₃), 1.55 (s, 1H, OH); MS (m/z): 197 (M⁺, 100), 182 (55), 149 (35), 135 (46), 79 (75), 51(81).

3,4-Dimethoxy-5-nitrobenzaldehyde (99)

Compound **98** was heated on a steam bath with 1 eq of aqueous 1M KOH. The resultant clear solution was allowed to cool, and the precipitated potassium salt was filtered and dried. A mixture of the well-dried 5-nitrovanillin salt, and dimethyl sulfate (0.30 mL, 3.2 mmol) in xylene (30 mL) was stirred at 125 °C for 4 h. After the reaction cooled down, aqueous 5% KOH (15 mL) was added. The mixture was filtered. Diethyl ether (15 mL) was added to the filtrate, and the organic layer was separated. The aqueous layer was extracted with diethyl ether (15 mL). The combined organic layers were washed with water (15 mL), dried over MgSO₄, and concentrated to afford **99** as yellow solid (0.51 g, 91%) which was crystallized from 60% aqueous EtOH; m. p. 87-88 °C (lit. 68 m.p. 90-91 °C.); ^1^H NMR: δ 9.92 (s, 1H,
3,4-Dimethoxy-5-nitrobenzyl alcohol (100)

A solution of 99 (3.7 g, 18 mmol) in THF (15 mL) was added dropwise into a suspension of NaBH₄ (1.4 g, 36 mmol) in THF (15 mL). After the addition, the reaction was allowed to proceed for an additional 1 h. The excess NaBH₄ was destroyed by addition of water (15 mL) and a few NaH₂PO₄ crystals. The THF and water were removed on a rotary evaporator. Water (15 mL) was added to the residue, and the resulting mixture was extracted with diethyl ether (15 mL × 3). The combined ether layers were washed with brine, dried over CaCl₂, filtered and the solvent was evaporated. The residue was purified by column chromatography (ethyl acetate/hexane = 1:1) to afford 100 as a yellow solid (3.3 g, 85%); ¹H NMR: δ 7.31 (s, 1H, H-6), 7.16 (s, 1H, H-2), 4.70 (d, J = 5.2 Hz, 2H, H-α), 3.97 (s, 1H, OCH₃), 3.94 (s, 1H, OCH₃); MS (m/z): 213 (M⁺, 100), 166 (25), 137 (25), 77 (31), 53(30).

5-Amino-3,4-dimethoxybenzyl alcohol (101)

Hydrogen gas was added to a mixture of 100 (3.2 g, 0.015 mmol), 10% Pd/C (0.15 g) in anhydrous methanol (30 mL) at atmospheric pressure. After stirring at room temperature for 4.5 h, the mixture was filtered and concentrated to a red oil. Purifying this red oil by column
chromatography (EtOAc/hexane = 1:1) afforded 101 (2.1 g, 75%) as yellow solid; \(^1\)H NMR: \(\delta\) 6.39 (s, 1H, H-2), 6.37 (s, 1H, H-6), 4.54 (s, 2H, H-α), 3.85 (s, 1H, OCH\(_3\)), 3.81 (s, 1H, OCH\(_3\)); MS (m/z): 183 (M\(^+\), 100), 168 (89), 108 (49), 80 (52), 53 (24).

4,5-Dimethoxy-3-hydroxybenzaldehyde (102)  

Compound 110 (10 g, 60 mmol), dimethyl sulfate (7.5 g, 60 mmol) and sodium carbonate (7.0 g, 66 mmol) were added into acetone (200 mL). The reaction mixture was heated at reflux for 4.5 h and then cooled to room temperature. After filtering to remove inorganic salts, the acetone was evaporated. To the residue was added water (20 mL) and CH\(_2\)Cl\(_2\) (20 mL). The resulting mixture was acidified to pH = 1 with aqueous concentrated HCl. The organic layer was isolated and the aqueous layer was extracted with CH\(_2\)Cl\(_2\) (20 mL × 2). The combined organic layers were washed with brine, dried over MgSO\(_4\) and filtered. After the CH\(_2\)Cl\(_2\) was evaporated on a rotary evaporator, the red oil obtained was purified by column chromatography (EtOAc/hexane = 3:7) to afford 102 as a white solid (7.6 g, 71%); m. p. 59-60 °C (lit.\(^{72}\) m.p. 64-65 °C); \(^1\)H NMR (DMSO): \(\delta\) 9.80 (s, 1H, CHO), 9.74 (s, 1H, OH), 7.06 (s, 1H, H-2), 7.05 (s, 1H, H-6), 3.84 (s, 3H, OCH\(_3\)), 3.77 (s, 3H, OCH\(_3\)); MS (m/z): 182 (M\(^+\), 100), 167 (38), 111 (30), 96 (28), 65 (25).
3,4-Dihydroxy-5-methoxybenzaldehyde (110)

Compound 90 (20 g, 90 mmol), sodium hydroxide (25 g, 0.61 mol) and copper powder (0.10 g, 1.6 mmol) were combined as a slurry in 0.30 L water. The reaction mixture was heated at reflux for 26 h. Sodium hydrogen phosphate (0.45 g, 3.2 mmol) was added for the last 0.5 h of reflux.

The reaction was then cooled to 50 °C, filtered to remove the precipitate of cupric hydrogen phosphate and the filtrate was acidified with aqueous concentrated hydrochloric acid (46 g). The reaction mixture was placed in a continuous extractor and extracted with ethyl acetate (0.30 L). The ethyl acetate solution was stirred with activated carbon and filtered. The filtrate was washed with saturated aqueous EDTA solution followed by brine solution. The organic solution was then dried over MgSO₄ and filtered and the solvent evaporated to afford a solid. The crude product was dissolved in boiling toluene (0.20 L), treated with activated charcoal, filtered, cooled and allowed to crystallize to yield 110 as a grey solid (8.8 g, 66%); m. p. 129-130 °C (lit. m.p. 132-133 °C.); ¹H NMR (DMSO):

δ 9.70 (s, 1H, CHO), 9.49 (s, 1H, OH), 9.43 (s, 1H, OH), 7.03 (d, J = 1.5 Hz, 1H, H-2), 7.37 (d, J = 1.5 Hz, 1H, H-6), 6.47 (s, 1H, H-8), 3.98 (s, 3H, OCH₃); MS (m/z): 168 (M⁺, 100), 125 (30), 97 (41), 51 (29).
3-Benzoxy-4,5-dimethoxybenzaldehyde (111)

To a suspension of anhydrous potassium carbonate (9.8 g, 71 mmol) in acetone (80 mL) was added 102 (2.0 g, 10 mmol) and benzyl bromide (2.2 mL, 20 mmol). After heating at reflux for 5 h, the reaction mixture was cooled, filtered and concentrated on a rotary evaporator, to the residue 20 mL aqueous 5% NaOH was added and the mixture was extracted with CH$_2$Cl$_2$ (25 mL × 2). The combined organic extracts was washed with brine (20 mL), dried over anhydrous MgSO$_4$, filtered and the solvent evaporated on a rotary evaporator. The residue was purified by column chromatography (EtOAc/hexane = 15:85) to afford 111 as a white solid (2.5 g, 85%); $^1$H NMR: δ 9.84 (s, 1H, CHO), 7.33-7.47 (m, 5H, Ar-H), 7.17 (s, 1H, H-6), 7.15 (s, 1H, H-2), 5.21 (s, 2H, H-a), 3.96 (s, 3H, OCH$_3$), 3.95 (s, 3H, OCH$_3$); MS (m/z): 272 (M$^+$, 15), 244 (3), 181 (5), 91 (100), 65 (16).

4-Iodobenzyl bromide (113)

To CH$_2$Cl$_2$ (6 mL) was added 112 (0.50 g, 2.3 mmol), NBS (0.45 g, 2.5 mmol) and a few crystals of dibenzoyl peroxide. The mixture was stirred under the light of a 100-watt lamp at a gentle reflux. After 1 h, the reaction was stopped. Brine (4 mL) with KI (0.13 g) was added to the reaction mixture. Then aqueous Na$_2$S$_2$O$_3$ solution (10 mL) was added to remove the produced I$_2$. After this, the organic layer was separated and the aqueous layer was extracted by CH$_2$Cl$_2$ (4 mL × 3). The combined organic layers were
washed by brine (4 mL), dried with MgSO₄, filtered and the solvent was evaporated to give crude 113 which was purified by recrystallization by using EtOH to afford 113 as white solid (0.35 g, 51%); m. p. 77-78 °C (lit. m.p. 78-79 °C.); ¹H NMR: δ 7.68 (d, J=8.5 Hz, 2H, H-2, H-6), 7.14 (d, J=8.5 Hz, 2H, H-3, H-5), 4.42 (s, 2H, -CH₂Br); MS (m/z): 298 (M⁺+1, 10), 296 (M⁺-1, 9), 217 (100), 127 (41), 90 (74), 63 (43).

4-Iodophenylacetonitrile (114)

To a solution of 4-iodobenzyl bromide (113) (9.8 g, 33 mmol) in DMSO (40 mL) and benzene (60 mL) was added NaCN powder (4.2 g, 86 mmol) in four portions. After stirring for 3 h at room temperature, the reaction was poured into water (50 mL) and the mixture was extracted with benzene (40 mL x 3). The combined organic layers were washed with brine (30 mL x 2), dried over anhydrous MgSO₄, filtered, and the solvent was evaporated in vacuo to afford 114 (7.5 g, 94%) as a white powder. The product was used in the next step without purification; ¹H NMR: δ 7.72 (d, J=8.0 Hz, 2H, H-2, H-6), 7.08 (d, J=8.0 Hz, 2H, H-3, H-5), 3.69 (s, 2H, -CH₂CN); MS (m/z): 243 (M⁺+1, 100), 116 (98), 89 (50).
Chapter 3

Synthetic efforts towards (-)-cycleanine

3.1 Introduction

As indicated in Chapter 1, the work described in this thesis is a continuation of the efforts of the previous work conducted in the Georghiou group on the synthesis of (-)-cycleanine (25). The successful aspects of the previous work were retained and continued and the unsatisfactory aspects were improved or replaced by newer and improved methodologies.

In Chapter 2, the preparation of the two intermediates 79 and 80 needed in relatively large amounts to explore the synthesis of the tetrahydroisoquinoline subunits of (-)-cycleanine had been accomplished with fairly satisfactory results. With these two important precursors in hand, the tetrahydroisoquinoline subunits 46a can be synthesized by following the methodology previously developed by Cui and Georghiou (Scheme 2.2). In this chapter, the major attention will be focused on the attempts to connect the two tetrahydroisoquinoline subunits 46a by forming the diaryl ether linkages.

3.2 Results and discussion

3.2.1 First attempts towards (-)-cycleanine by improved Ullmann coupling reaction

The first attempt towards (-)-cycleanine using improved Ullmann coupling reaction conditions in this thesis were based upon Buck’s and Ma’s methodologies which have been described in Chapter 1 and were shown in Schemes 1.12 and 1.13. The reasons for selecting these two methodologies are that, besides the various advantages which they offer and which have been discussed before, in some entries of
coupling reactions in the two original published reports, the structures of the phenols and biaryl halides used have much similarity with the precursors for forming the two diaryl ether linkages in (-)-cycleanine (Table 3.1 and Table 3.2). In the initial retrosynthetic analysis described in Chapter 2 (Scheme 2.1), compound 81 will be used as the precursor to construct the framework of (-)-cycleanine through the improved Ullmann coupling reactions. In compound 81, the hydroxyl group is located on the same aromatic ring as the two methoxyl groups which are $o$- and $m$- to the hydroxy group. As for the iodo

**Table 3.1** Ullmann coupling in the presence of 2,2,6,6-tetramethylheptene-3,5-dione$^{64}$

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar-X</th>
<th>ArOH</th>
<th>Isolated yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td><img src="image3.png" alt="Image" /></td>
<td><img src="image4.png" alt="Image" /></td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td><img src="image7.png" alt="Image" /></td>
<td><img src="image8.png" alt="Image" /></td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td><img src="image9.png" alt="Image" /></td>
<td><img src="image10.png" alt="Image" /></td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td><img src="image11.png" alt="Image" /></td>
<td><img src="image12.png" alt="Image" /></td>
<td>68</td>
</tr>
</tbody>
</table>
group, it is on the benzyl group of the benzylisoquinoline subunit, with a methylene group para to it. So if the structure of this benzylisoquinoline is compared with the entries outlined in Table 3.1 and Table 3.2, two molecules of compound 81 should be easy be connect by forming diaryl ether linkages using the newer Ullmann coupling procedure. The first attempts at the synthesis of (-)-cycleanine were undertaken using modified Ullmann coupling conditions.

**Table 3.2** Coupling reaction of aryl halides with phenols under CuI and N,N-dimethylglycine catalysis\(^65\)

<table>
<thead>
<tr>
<th>Entries</th>
<th>Aryl halides</th>
<th>Phenols</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{MeO-} \text{I})</td>
<td>(\text{HO-} \text{Me})</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>(\text{Me} \text{I})</td>
<td>(\text{HO-} \text{MeO})</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>(\text{Me} \text{I})</td>
<td>(\text{HO-} \text{MeO})</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>(\text{OMe} \text{I})</td>
<td>(\text{HO})</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>(\text{Br})</td>
<td>(\text{HO-} \text{MeO})</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>(\text{Br})</td>
<td>(\text{HO-} \text{OMe})</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>(\text{Br})</td>
<td>(\text{HO-} \text{MeO})</td>
<td>64</td>
</tr>
</tbody>
</table>
3.2.1.1 Synthesis of the tetrahydroisoquinoline

Outlined in Scheme 3.1 and Scheme 3.2 are the synthetic approaches for the benzylisoquinoline subunit which are based on the previous work in the Georghiou laboratory.\(^7\)

Treating 3-benzyloxy-4,5-dimethoxybenzyl alcohol (79) with SOCl\(_2\) gave the benzyl chloride 115 in a yield of 94%. Subjecting 115 to NaCN in DMSO produced 3-benzyloxy-4,5-dimethoxyphenylacetonitrile (116) (99%). Hydrolysis of 116 in NaOH/EtOH afforded the phenylacetic acid 86 (54%). At this stage the chiral auxiliary was introduced. Treatment of 86 with oxalyl chloride followed by reaction of the resulting acid chloride with (R)-(+)\(-\alpha\)-methylbenzylamine under Schotten-Baumann conditions resulted in the formation of amide 87 (97%). This amide was reduced to the corresponding chiral amine 117 by treating it with \(\text{B}_2\text{H}_6\cdot\text{THF}\) and \(\text{BF}_3\cdot\text{Et}_2\text{O}\) in refluxing THF followed by the usual work-up.

With compound 117 in hand, amide 88 was synthesized by employing another Schotten-Baumann reaction utilizing compound 80. Since two possible ring-closure sites, \(\text{para}\) and \(\text{ortho}\) to the benzyloxy group, are presented on the precursor amide 88, the BNC step would be anticipated to lead to a pair of ring-closure products 46a and 46b. Under normal BNC conditions, the iminium salts 118a and 118b were formed by refluxing the amide 88 with phosphorus oxychloride in anhydrous benzene. The mixture of the two iminium salts was reduced with NaBH\(_4\) which resulted in the formation of a pair of regioisomers 46a and 46b.
Conditions: a) SOCl₂, benzene, 94%; b) NaCN, DMSO, benzene, 99%; c) NaOH, EtOH, H₂O, 54%; d) oxalyl chloride, benzene; e) (R)-(+/−)-α-methylbenzylamine, 8% aqueous NaOH, 97%; f) B₃H₄•THF, BF₃•Et₂O, THF; g) aqueous HCl; h) 50% KOH, 99%.

Scheme 3.1
Conditions: a) oxalyl chloride, benzene; b) 117, NaOH, CH₂Cl₂, H₂O, 91%; c) POCl₃, benzene, reflux; d) NaBH₄, MeOH, -78 °C; e) aqueous HCl, 21% of 46a and 26% of 46b.

Scheme 3.2
Finally, 46a and 46b were separated by column chromatography as pure compounds in the relatively low yields of 21% and 26%, respectively, based upon the amount of 88 used. Obviously, a 47% overall yield for this BNC reaction was not an ideal result for such a long synthetic pathway as envisioned in this thesis, especially considering the fact that the products were a pair of regioisomers, one of which was not of further use. In order to increase the yield of this BNC reaction, several methods, such as employing MeCN and toluene as solvent, or utilizing P₂O₅ as catalyst, were tried, but none of them gave higher yields. Because of this low yield from the BNC reactions, all of the later steps in the synthesis were negatively affected due to limited amounts of precursor compounds. This will be discussed further in the later sections of this thesis.

3.2.1.2 Use of improved Ullmann coupling reactions to form the diaryl ether linkages in (-)-cycleanine

Although the yield of the BNC reaction was somewhat low, it provided the desired enantiomeric and regioisomeric iodotetrahydroisoquinolines 46a and 46b. The significance of this is that with these compounds in hand, just by removing the protecting benzyl group, the originally designed Ullmann coupling reaction for forming the framework of (-)-cycleanine (Scheme 2.1) could be attempted.

Initially, it was thought that the debenzylation process would be relatively simple and, according to numerous literature reports, a Pd/C catalyzed hydrogenolysis could accomplish this in a fairly high yield. However, when compound 46b was used as a model and subjected to the hydrogenolysis conditions, it did not give the expected phenolic compound. What was formed instead was compound 119 (Scheme 3.3). Thus,
hydrogenolysis removed the iodo group more rapidly than the benzyl group. As a result of this finding, hydrogenolysis of compound 46a itself was not attempted in order to save the valuable regioisomer for other attempts.

\[
\begin{align*}
46b & \xrightarrow{a} 119 \\
\text{Conditions: a) } & H_2, \text{Pd/C, MeOH, 84%}.
\end{align*}
\]

Scheme 3.3

A new synthetic route (Scheme 3.4) was therefore devised with the intent to acquire the correct precursor required for the Ullmann coupling reactions. This pathway was similar to that for the synthesis of compound 46a but with one difference: a commercially available carboxylic acid 120 could be used instead of compound 80. Thus, 120 was first treated with oxalyl chloride in benzene then with 117 under Schotten-Baumann reaction conditions to form the BNC precursor 121. Using a normal BNC reaction, the two benzyltetrahydroisoquinolines 122a and 122b were produced in yields of 23% and 23%, respectively. The stereochemistry of these two compounds was presumed to be as depicted, based upon the fact that they had fairly similar NMR spectra with those of compounds 46a and 46b.
The reason for replacing the iodine atom with a bromine atom in the benzylic phenyl unit is that a carbon-bromine bond is stronger than a carbon-iodine bond. It was anticipated that the bromine atom would survive the hydrogenolysis conditions necessary for the removal of the benzylic ether protecting groups in 122a or 122b. However, when the mixture of compounds 122a and 122b in methanol was treated with H₂ in the presence of Pd/C catalyst, four possible products 123a, 123b, 124a, and 124b were found in the mixture of crude products when analyzed by APIC-MS (Scheme 3.5). As a result, attempts to remove the benzyl group by hydrogenolysis had to be abandoned.
Conditions: a) H₂, Pd/C, MeOH

Scheme 3.5
According to many literature reports, acids, including both Brønsted acids and Lewis acids, have also frequently been used to realize the debenzylation process.\textsuperscript{82-85} For our research, considering that the other groups present including the chiral auxiliary may be sensitive to the harsh reaction conditions when Brønsted acids are utilized, a debenzylation procedure developed by Hori and Mukai's group\textsuperscript{86,87} utilizing the Lewis acids SnCl\textsubscript{4} or TiCl\textsubscript{4} was applied. First, with compounds 122\textit{b} and 46\textit{b} in model studies,

\begin{equation*}
\begin{array}{c}
\text{122\textit{b}} \\
\begin{array}{c}
\text{125\textit{b}} \\
\begin{array}{c}
\text{46\textit{b}} \\
\begin{array}{c}
\text{126\textit{b}}
\end{array}
\end{array}
\end{array}
\end{array}
\end{equation*}

Conditions: a) SnCl\textsubscript{4}, CH\textsubscript{2}Cl\textsubscript{2}, rt, 34%; b) SnCl\textsubscript{4}, CH\textsubscript{2}Cl\textsubscript{2}, rt, 57%.

Scheme 3.6
it was found that they did produce the corresponding desired products 125b and 126b when subjected to SnCl₄ in anhydrous CH₂Cl₂ (Scheme 3.6).

The desired reactions were therefore then conducted by treating the desired regioisomers 122a and 46a under the same conditions with SnCl₄ and TiCl₄ in anhydrous CH₂Cl₂ at room temperature. These reactions produced compound 125a and 126a respectively (Scheme 3.7). After successfully finding a suitable method to remove selectively the benzyl protecting group, the work in the next stage was concerned with the formation of the diaryl ether linkages by Ullmann couplings.

\[
\text{Conditions: a) SnCl}_4, \text{CH}_2\text{Cl}_2, \text{rt}, 43\%; \text{ b) TiCl}_4, \text{CH}_2\text{Cl}_2, \text{rt}, 64\%
\]

Scheme 3.7
Both Buck’s TMHD-accelerated Ullmann coupling and Ma’s \(N,N\)-dimethyl glycine-promoted Ullmann coupling procedures were potential methodologies for the formation of diaryl ether linkages for the framework of (-)-cycleanine. Considering the lower reaction temperature used, Ma’s method was first attempted using compounds 125a and 125b as reactants. A mixture of 125b or 125a, \(\text{Cs}_2\text{CO}_3\), copper catalyst, dioxane.

Conditions: \(\text{Cs}_2\text{CO}_3\), Cul, \(N,N\)-dimethyl glycine, dioxane 90 °C, 35h.

**Scheme 3.8**
\(N,N\)-dimethylglycine and anhydrous dioxane was heated at 90 °C under a nitrogen atmosphere for 35 h. However, this procedure failed to produce the desired products 127b and 66 and only unreacted starting material was recovered (Scheme 3.8). Therefore, attention was directed to Buck’s method using the aryl iodides 126b and 126a as substrates.

According to the reported general procedure, cesium carbonate, model compound 126b or compound 126a, TMHD, and CuCl was added to anhydrous NMP, and the mixture was warmed to 120 °C under nitrogen. After 24 h, the mixture was cooled to room temperature, diluted with ethyl acetate and the resulting mixture was worked up in the usual manner to give a dark red oil. Analysis of this red oil by APCI-MS revealed the presence of coupled products 127b and 66 (Scheme 3.9). Nevertheless, subsequent attempts at purification of these products were unsuccessful. There are two factors that could be responsible for this: (i) a suitable solvent system for chromatographic separation was not found, and; (ii) it could also be that the actual yields of 127b or 66 were very low since APCI-MS does not give quantitative results about the reaction without any prior calibration with authentic standards. Of course, the very small reaction scale used and the nature of the Ullmann coupling itself also caused difficulties in the isolation process for these structurally complex compounds. As a result of these difficulties, the following steps such as converting the chiral auxiliary group to a methyl group for the final product (−)-cyleanine could not be carried out.
Conditions: Cs₂CO₃, CuCl, TMHD, NMP, 120 °C, 24h.

**Scheme 3.9**

Usually, the outcome of Ullmann coupling is affected by many factors such as the concentration of substrate, the ratio of copper catalyst to the aryl halide, and also the temperature of the reaction. A further study by experimenting with these reaction parameters with our system could result in a better outcome. However, due to the difficulty in obtaining sufficient amounts of starting material as a result of the low yields obtained from the earlier BNC reaction, a more systemic study could not be conducted within a reasonable time frame available to this author. In the next section of this chapter, the attempts at connecting the two benzylisoquinoline subunits using a SNAr-based reaction will be discussed.
3.2.2 Second synthetic effort towards (-)-cycleanine by $S_{N}A r$-based reaction

The $S_{N}A r$-based reaction for biaryl ether formation involves a direct nucleophilic coupling of phenols to electron-deficient aryl halides. Nucleophilic substitution attack on an electron-rich aromatic ring is expected to be very slow under the normal $S_{N}A r$ reaction conditions. An electron-withdrawing group such as a nitro group is usually needed on the ortho or para position to the group which will be replaced. With these considerations in mind and also based on the work described previously, a retrosynthetic analysis for (-)-cycleanine by using a $S_{N}A r$-based reaction was devised as shown in Scheme 3.10.

![Scheme 3.10](image-url)
In this retrosynthetic analysis, the basic framework of (-)-cycleanine was designed to be obtained by a $S_N$Ar-based coupling of 128. A BNC reaction of amide 129 should lead to 128. Finally, a Schotten-Baumann reaction between 117 and 130 could form 129. Compound 117 had been synthesized previously as described in the early part of this thesis (Scheme 3.1). The synthesis of compound 130 could be achieved using 4-fluorobenzaldehyde (132) and the procedure will be described in the following Section 3.2.2.1.

3.2.2.1 Synthesis of the fluorobenzylisoquinoline subunit

The synthesis of the fluorobenzylisoquinoline subunit commenced with the preparation of compound 130 (Scheme 3.11). First, 4-fluoro-3-nitrobenzaldehyde (131)

![Chemical structures for the synthesis of 130](image)

Conditions: a) HNO$_3$, H$_2$SO$_4$, 0 °C, 74%; b) NaBH$_4$, THF, CH$_3$OH, 84%; c) PBr$_3$, CH$_2$Cl$_2$, 0 °C, 51%; d) Et$_4$NCN, CH$_3$CN, 43%; e) aq. conc. HCl, reflux, 95%.

Scheme 3.11
was obtained by nitration of 132 using a mixture of HNO₃ and H₂SO₄ (74%). Reduction of compound 131 with sodium borohydride produced the primary alcohol 133 in 84% yield. Subjecting 133 to PBr₃ in dichloromethane at low temperature afforded 4-fluoro-3-nitrobenzyl bromide (134) in 51% yield which, after cyanation with Et₄NCN in acetonitrile, formed 135 (43%). Then, a simple hydrolysis of 135 in aqueous concentrated HCl at refluxing temperature afforded the desired 4-fluoro-3-nitrophenylacetic acid (130).

After the carboxylic acid 130 was obtained, the subsequent work was to synthesize the fluorobenzylisoquinoline subunit 136a. This was accomplished using the same methodology that was used for compound 46a and 122a described earlier. Treating 130 with oxalyl chloride led to the respective acid chloride, then the chiral auxiliary was introduced by a reaction between the acid chloride with (R)-α- methylbenzylamine which produced the amide 137 (74%). After this, BNC reaction with 137 as substrate produced the two regioisomers 136a and 136b in yields of 21% and 30%, respectively (Scheme 3.12).
Conditions: a) oxalyl chloride, benzene; b) 117, NaOH, CH₂Cl₂, H₂O, 74%; c) POCl₃, benzene, reflux; d) NaBH₄, MeOH, -78 °C; e) aqueous HCl, 21% 136a and 30% 136b.

Scheme 3.12

3.2.2.2 Use of a S_NAr-based reaction to build the framework of (-)-cycleanine

With pure fluorotetrahydroisoquinoline 136a and 136b in hand, attention was then focused on conducting the S_NAr-based reaction to construct the (-)-cycleanine framework. In order to do this, 136b, which was utilized as a model compound as before,
and 136a were first treated with TiCl₄ which, as expected, led to 138b and 138a respectively, in average yields of 61% and 57% (Scheme 3.13).

\[
\begin{align*}
136b & \xrightarrow{a} 138b \\
136a & \xrightarrow{b} 138a
\end{align*}
\]

Conditions: a) TiCl₄, CH₂Cl₂, 5 h, 61%; b) TiCl₄, CH₂Cl₂, 5 h, 57%.

**Scheme 3.13**

The S_NAr reaction, as discussed before, is usually conducted with bases such as NaCO₃, K₂CO₃, and CsF in aprotic media such as DMF or DMSO. In this research, to affect the coupling process of building the skeleton of (-)-cycleanine, CsF in DMSO was used, based on the results obtained in the synthesis of (-)-tejedine. In order not to waste the valuable compound 138a, compound 138b was first used to conduct model studies for the coupling reaction (Scheme 3.14). Thus, compound 138b was stirred with CsF in
DMSO at room temperature under argon for 113 h. The reaction was worked up in the usual way to form a red residue. Although APCI-MS revealed the presence of the expected dimer 139b, it could not be separated or purified.

Scheme 3.14

Although pure 139b was not obtained from this model reaction, it still showed that the \( S_N \text{Ar} \)-based procedure could potentially be a effective method for forming the diaryl ether linkages for the final target compound (-)-cycleanine. Therefore, the coupling
reaction with the desired precursor was attempted next by employing the same procedure as the model reaction. When the reaction was finished after a reaction time of 92 h and worked up as before, the crude product was checked by APCI-MS. This time, two mass

Scheme 3.15
peaks were found, one corresponding to the ring dimer 139a, the other corresponding to the linear dimer 140 (Scheme 3.15). But just as before, all of the efforts attempted for isolating these products from the mixture failed. The subsequent steps such as removing the nitro and the chiral auxiliary groups, and the introduction of the methyl groups to the nitrogen atoms was therefore not be performed although these steps may have led to products which could be separable.

Thus, as with the improved Ullmann coupling reaction, S_NAr-based reactions also did not afford the desired products. However, if the results of the S_NAr reaction are compared, they still provide some useful information. The model coupling reaction with 138b via S_NAr reaction only produced a macrocyclic product with no linear dimer remaining in the crude reaction product according to APCI-MS. However, the coupling reaction of 138a using the same reaction conditions formed both linear dimer 140 and the macrocyclic dimer 139a. If the abundance of the M^+ ion is used as a reference peak in the MS for determining the ratio of product amounts, the linear dimer 140 appears to be formed in a greater amount than the macrocyclic product 139a. The macrocyclic dimer 139b (Scheme 3.15) formed by the homocoupling of 138b contains a 22-membered ring, whereas the dimer 139a (Scheme 3.16) formed from the homocoupling of reaction of 138a contains only an 18-membered ring. This meant that in the S_NAr-based reaction once the linear dimer of 138b was formed, it would undergo intramolecular ring closure to form the 22-membered macrocyclic product 139b relatively easily because of the relatively larger ring size. However, in case of 138a, possibly due to the constraints of the smaller 18-membered macrocycle, it is difficult to
form 139a from the linear dimer 140. This experiment needs to be further evaluated in the future in order to ascertain whether re-subjecting the product mixture to the reaction conditions would result in a changed 139a to 140 ratio. Of course, although the coupling of 138a using the SNAr-based reaction approach seemed to more easily give 140, it does not mean that this methodology is completely unsuitable for synthesizing the target (-)-cycleanine. As was discussed before, there are various factors which can affect the result of this coupling reaction. Since the MS data suggests that the desired dimer 139a formed, a more systematic investigation of this reaction could possibly lead successfully to the desired synthesis of (-)-cycleanine.

3.3 Summary and conclusions

In this chapter, an enantioselective synthesis of (-)-cycleanine was attempted. Both the improved Ullmann coupling methodologies and a SNAr-based aryl ether reaction were used to build the basic skeleton of the target molecule. However, neither of these two key reactions provided a satisfactory result. From the experience of this author, it is felt that both methods are still viable for synthesizing (-)-cycleanine, although the SNAr reaction appears to be more viable if the mild reaction conditions and the simplicity of isolating the product are considered. It is also felt by the author that the synthesis of the benzylisoquinoline subunit should also be given more attention. Although the BNC reaction in this thesis resulted in the desired product with correct stereochemistry, its low yield and lack of regioselectivity limited the experiments which could be undertaken in the subsequent steps.
3.4 Experimental

General

Flash column chromatography was performed using 240-400 mesh silica gel and preparative layer (1 mm) chromatography (PLC) was conducted using 60 mesh silica gel. All solvents and reagents were either of the highest commercial grade available or were redistilled (CH₂Cl₂, hexane, and benzene distilled over CaH₂). ¹H and ¹³C NMR spectra were obtained on the Bruker Avance 500 MHz instrument with a TXI inverse-detection gradient probe in CDCl₃ unless otherwise specified, and shifts are relative to an internal tetramethylsilane signal. The following abbreviations are used in descriptions of in the ¹H NMR spectra: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and b (broad).

The ¹³C NMR spectra shifts were measured relative to the solvent. Overlap may have prevented the reporting of all resonances. Low-resolution mass spectral data were obtained from the V.G. Micromass 7070HS instrument or obtained from Atmospheric Pressure Chemical Ionization-Mass Spectrometry (APCI-MS). Mass spectral data and intensity (%) are described as MS (m/z) or APCI-MS (m/z). Melting points (m.p.) were determined using a Fisher-Johns hot stage apparatus and are uncorrected.
1-(R)-(4-Iodobenzyl)-N-[(R)-α-methylbenzyl]-8-benzyloxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (46a) and
1-(R)-(4-Iodobenzyl)-N-[(R)-α-methylbenzyl]-6-benzyloxy-7,8-dimethoxy-1,2,3,4-tetrahydroisoquinoline (46b)

Compound 88 (0.99 g, 1.6 mmol), POCl₃ (6.0 mL) and benzene (17 mL) were combined under an atmosphere of argon and the mixture was brought to a gentle reflux. After approximately 5 h, the solvent and excess POCl₃ were evaporated on a rotary evaporator and finally on a vacuum pump for 1 h. The resultant residue was re-dissolved in MeOH (7.0 mL) and the solution was cooled to -78 °C in a dry ice bath. To this solution was added NaBH₄ (0.30 g, 7.9 mmol) in five portions over 3 h. The reaction was quenched by the addition of aqueous 10% HCl (10 mL), and the mixture was stirred at room temperature for 30 min. The MeOH was evaporated on a rotary evaporator. The residue was re-dissolved in CH₂Cl₂ (15 mL) and transferred to a separatory funnel
containing H₂O (5.0 mL). The combined aqueous layers were re-extracted with CH₂Cl₂ (3). The combined organic layers were washed with brine (5.0 mL × 2), dried over MgSO₄, filtered, and the solvent was evaporated in vacuo. The residue was purified by column chromatography (30% EtOAc/hexane) to give compounds 46a (120 mg, 21% based on used 88) as a colorless oil, 46b (150 mg, 26% based on used 88) also as a colorless oil and recovered 88 (400 mg); 46a: ¹H NMR (500 MHz): δ 7.41-6.47 (m, 15H, Ar-H), 5.20 (d, J = 9.7 Hz, 1H, H-α'), 4.20 (d, J = 9.7 Hz, 1H, H-α'), 3.91 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.73 (m, 1H, H-3), 3.60 (q, J = 7.3 Hz, 1H, H-α''), 3.50 (m, 1H, H-3), 3.39 (d, J = 6.0 Hz, 1H, H-4), 2.96 (m, 1H, H-4), 2.65 (d, J = 4.5 Hz, 2H, H-α), 2.43 (dd, J = 4.5 Hz, J = 17 Hz, 1H, H-1), 1.25 (d, J = 7.3 Hz, 3H, H-β'');

46b: ¹H NMR (500 MHz): δ 7.53-6.66 (m, 14H, Ar-H), 6.51 (s, 1H, H-5), 5.10 (d, J = 1.5 Hz, 2H, H-α'), 3.87 (s, 3H, OCH₃), 3.67 (m, 4H, H-3, OCH₃), 3.53 (q, J = 6.4 Hz, 1H, H-α''), 3.45 (m, 1H, H-3), 3.33 (m, 1H, H-4), 2.87 (m, 1H, H-4), 2.69 (m, 2H, H-α), 2.36 (dd, J = 4 Hz, J = 7.5 Hz, 1H, H-1), 1.23 (d, J = 4.3 Hz, 3H, H-β'').

3-Benzylxyloxy-4, 5-dimethoxybenzoic acid (86)

A solution of 116 (2.0 g, 7.1 mmol) in 95% ethanol (30 mL) and aqueous 4.0 M NaOH (3.5 mL) was heated at reflux for 20 h. The reaction mixture was then cooled to rt and the ethanol was removed on a rotary evaporator. Water (20 mL) was added and the mixture was extracted first with CH₂Cl₂ (15 mL × 3) to remove the remaining starting material 116. Then the aqueous layer was acidified with
aqueous concentrated HCl to pH = 1 and re-extracted with CH₂Cl₂ (5 mL × 3). The combined organic extracts were washed with brine (15 mL × 2), dried over anhydrous MgSO₄, filtered, and the solvent was evaporated to give crude 86, which was further purified by column chromatography (ethyl acetate/hexane = 1:5) to give 86 (1.2 g, 54%) as a yellow solid; ¹H NMR: δ 7.30-7.746 (m, 5H, Ar-H), 6.56 (s, 1H, H-2), 6.51 (s, 1H, H-6), 5.11 (s, 2H, H-α), 3.85 (s, 6H, OCH₃), 3.55 (s, 2H, H-α'); MS (m/z): 302 (M⁺, 18), 91 (100).

*N-*((R)-α-Methylbenzyl)-(3-benzyloxy-4,5-dimethoxy)phenylacetamide (87)

To a stirred solution of oxalyl chloride (0.87 mL, 10 mmol) in anhydrous benzene (30 mL) were added 86 (2.0 g, 6.7 mmol) in one batch and DMF (10 drops). The reaction mixture was stirred until the evolution of gas ceased. The benzene was evaporated using a rotary evaporator to give the crude acid chloride of 86, which was used directly in the next step. The crude acid chloride was re-dissolved in CH₂Cl₂ (15 mL) at 0 °C and the resulting solution was added dropwise to a stirred mixture of (R)-α-methylbenzylamine (1.4 mL, 7.9 mmol) and CH₂Cl₂/aqueous 5% NaOH (1:1.5, 30 mL) at 0 °C. After stirring at room temperature for 1 h, the reaction mixture was extracted with chloroform (30 mL × 3), washed with water (20 mL × 2), dried over anhydrous MgSO₄, filtered, and the solvent was evaporated. The residue was purified by column chromatography (30% EtOAc/hexane) to afford amide 87 (2.6 g, 97%) as a viscous oil; ¹H NMR: δ 7.42-7.17 (m, 10H, Ar-H), 6.48 (d, J = 1.5 Hz, 1H, H-2), 6.44 (d,
\[ J = 1.5 \text{ Hz}, 1\text{H, H-6}, \] 5.62 (d, \( J = 8.3 \text{ Hz}, 1\text{H, N-H} \)), 5.11 (q, \( J = 8.3 \text{ Hz}, 1\text{H, H-}\alpha") \), 5.08 (s, 2H, H-\( \alpha' \)), 3.87 (s, 3H, OCH\(_3\)), 3.82 (s, 3H, OCH\(_3\)), 3.47 (s, 2H, H-\( \alpha \)), 1.38 (d, \( J = 8.3 \text{ Hz}, 3\text{H, } \beta-\text{CH}_{3} \)); MS (\( m/z \)): 405 (M\(^+\), 46), 300 (7), 257 (8), 105 (98), 91 (100).

\( N\)-(\( R \)-\( \alpha \)-Methylbenzyl)-\( N \)-[(3-benzyloxy-4,5-dimethoxy)phenethyl]-4-iodophenyl acetamide (88)

To a solution of oxalyl chloride (0.08 mL, 0.45 mmol) in dry benzene (6.4 mL) were added 80 (0.20 g, 0.73 mmol) and DMF (1 drop). The mixture was stirred until the evolution of gas ceased. The benzene was removed by rotary evaporation to give the crude acid chloride. The acid chloride was re-dissolved in CH\(_2\)Cl\(_2\) (3 mL) at 0 \(^\circ\)C. Then it was added to a stirred mixture of 117 (210 mg, 0.54 mmol) and CH\(_2\)Cl\(_2\)-aqueous 5\% NaOH (1:1.5, 4.0 mL) at 0 \(^\circ\)C. After stirring at room temperature for 1 h, the mixture was extracted with chloroform (5.0 mL \( \times \) 3). The combined extracts were washed with water (5.0 mL \( \times \) 2), dried over MgSO\(_4\), filtered, and the solvent was evaporated in \textit{vacuo}. The residue was purified by flash column chromatography (30\% EtOAc/hexane) to afford 88 (0.31 g, 91\%) as a viscous oil; The \(^1\)H NMR spectrum of 88 was identical to that reported by Cui.\(^7\)
3-Benzyloxy-4,5-dimethoxybenzyl chloride (115)

To a solution of 79 (2.3 g, 8.7 mmol) in anhydrous benzene (30 mL) thionyl chloride (1.6 mL, 18 mmol) was added dropwise. After stirring at room temperature for 18 h, the reaction was quenched by addition of water (15 mL), and the mixture was extracted with ethyl acetate (20 mL × 3). The combined extracts were washed with aqueous saturated NaHCO₃ (10 mL × 2), water (15 mL × 2), dried over anhydrous MgSO₄, filtered, and the solvent was evaporated to afford 115 as a colorless oil of (2.3 g, 94%) which was directly used in the subsequent step: ¹H NMR: δ 7.32-7.47 (m, 5H, Ar-H), 6.66 (d, J = 1.9 Hz, 1H, H-6), 6.62 (d, J = 1.9 Hz, 1H, H-2), 5.13 (s, 2H, H-α), 4.51 (s, 2H, H-α'), 3.88 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃); MS (m/z): 292 (M⁺, 13), 91 (100).

3-Benzyloxy-4,5-dimethoxyphenylacetonitrile (116)

To a solution of 115 (15 g, 51 mmol) in DMSO (9.5 mL) and benzene (4.4 mL) was added powdered NaCN (6.3 g, 18 mmol) in 3 portions. After stirring for 2 h at room temperature, the reaction mixture was poured into water (40 mL) and extracted with benzene (40 mL × 3). The combined organic layers were washed with brine (30 mL × 2), dried over anhydrous MgSO₄, filtered, and the solvent was evaporated to afford 116 as a colorless oil (14 g, 99%) which was directly
used in the next step; $^1$H NMR: δ 7.31-7.45 (m, 5H, Ar-H), 6.57 (s, 1H, H-6), 6.53 (s, 1H, H-2), 5.13 (s, 2H, H-α), 3.87 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.66 (s, 2H, H-α'); $^{13}$C NMR: δ 154.0, 153.2, 138.9, 136.9, 128.8, 128.3, 127.5, 125.4, 118.0, 107.6, 105.7, 71.5, 61.2, 56.5, 24.0; MS (m/z): 283 (M⁺+1, 24), 91 (100).

$\textit{N-((R)-α-Methylbenzyl)-(3-benzyloxy-4,5-dimethoxy)phenethylamine (117)}$

To a solution of chiral amide 87 (960 mg, 2.4 mmol) in anhydrous THF (30 mL) under argon was added BF₃/Et₂O (0.16 mL, 1.1 mmol). The mixture was heated to gentle reflux and BH₃/THF (1.0 M solution in THF, 6.7 mL, 6.0 mmol) was then added dropwise. The reaction mixture was refluxed for 2 h, then cooled to 0 °C and aqueous 20% HCl (50 mL) was added to the mixture. The reaction mixture was stirred at 0 °C for 1 h and then at room temperature overnight, and then it was basified to pH = 13 with aqueous 50% KOH solution. The mixture was then extracted with CH₂Cl₂ (25 mL × 3). The combined organic layers were washed with water (20 mL × 2), dried over anhydrous MgSO₄, filtered, and the solvent was evaporated to afford 117 (930 mg, 99%) as a colorless oil, which was pure enough to be used directly in the next step; $^1$H NMR: δ 7.21-7.44 (m, 10H, Ar-H), 6.41 (d, $J = 1.6$ Hz, 1H, H-2), 6.37 (d, $J = 1.6$ Hz, 1H, H-6), 5.08 (s, 2H, H-α'), 3.85 (s, 3H, OCH₃), 3.8 (s, 3H, OCH₃), 3.74 (m, 1H, H-α''), 2.69 (m, 4H, H-α, H-β), 1.31 (d, $J = 6.5$ Hz, 3H, H-β''); APCI-MS: 392.20 (M⁺+1, 100).
1-(R)-(4-Benzyl)-N-[R-\alpha-methylbenzyl]-6-benzyloxy-7,8-dimethoxy-1,2,3,4-tetrahydroisoquinoline (119)

To anhydrous methanol (5.0 mL) was added 46b (0.10 g, 0.16 mmol) and 10% Pd/C catalyst (30 mg). The mixture was stirred under H₂ at atmospheric pressure (maintained using a balloon) for 4 h. The Pd/C catalyst was removed by filtration and the solvent was removed on a rotary evaporator. The residue obtained was purified by column chromatography (CHCl₃:MeOH:NH₄OH = 9:1:0.1) to afford 119 as a colorless oil (66 mg, 84%); \(^1\)H NMR: \(\delta\) 7.48-6.66 (m, 15H, Ar-H), 6.51 (s, 1H, H-5), 5.09 (s, 2H, H-\(\alpha'\)), 3.87 (s, 3H, OCH₃), 3.80 (m, 1H, H-3), 3.66 (s, 3H, OCH₃), 3.56 (q, \(J = 6.4\) Hz, 1H, H-\(\alpha''\)), 3.48 (m, 1H, H-3), 3.31 (m, 1H, H-4), 2.90 (m, 1H, H-4), 2.80 (m, 2H, H-\(\alpha\)), 2.37 (dd, \(J = 4.5\) Hz, \(J = 17.5\) Hz, 1H, H-1), 1.22 (d, \(J = 6.0\) Hz, 3H, H-\(\beta''\)); \(^{13}\)C NMR: 151.6, 151.2, 146.1, 141.1, 140.9, 137.5, 136.8, 132.1, 130.7, 129.9, 129.8, 128.7, 128.3, 128.1 128.0, 127.9 , 127.8, 127.5, 127.4, 127.3, 126.3, 125.6, 125.1, 109.4, 71.1, 61.1, 60.7, 58.9, 56.6, 41.5, 38.6, 22.7, 22.4; APCI-MS (m/z): 494.2 (M⁺+1, 100).
To a solution of oxalyl chloride (0.28 mL, 1.5 mmol) in anhydrous benzene (30 mL) were added 120 (0.54 g, 2.5 mmol) and DMF (3 drops). The mixture was stirred for 0.5 h. The benzene was removed on a rotary evaporator to afford the acid chloride which was immediately redissolved in CH$_2$Cl$_2$ (20 mL) at 0 °C. The solution was added to a stirred mixture of 117 (1.6 mg, 4.0 mmol) and CH$_2$Cl$_2$- aqueous 5% NaOH (1:1.5, 20 mL). After stirring at room temperature for 1 h, the mixture was extracted with chloroform (10 mL × 3). The combined extracts were washed with water (15 mL), dried over MgSO$_4$, filtered, and the solvent was evaporated in vacuo. The residue was purified by flash column chromatography (30% EtOAc/hexane) to afford 121 (2.2 g, 91%) as a viscous oil; The $^1$H NMR spectrum of 121 was similar to that of compound 88 described earlier in this thesis. APCI-MS (m/z): 590.1 (M$^+$+1, 100); 588.1 (M$^+$-1, 98).
1-(R)-(4-Bromobenzyl)-N-[(R)-α-methylbenzyl]-8-benzyloxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (122a) and
1-(R)-(4-bromobenzyl)-N-[(R)-α-methylbenzyl]-6-benzyloxy-7,8-dimethoxy-1,2,3,4-tetrahydroisoquinoline (122b)

![Structural diagrams of 122a and 122b](image)

Compound 121 (0.18 g, 0.31 mmol), POCl₃ (2.5 mL) and CH₃CN (5 mL) were combined under an atmosphere of argon and brought to a gentle reflux. After approximately 6 h, the solvent and excess POCl₃ were evaporated on a rotary evaporator and finally on a vacuum pump for 1 h. The resultant residue was re-dissolved in MeOH (5.0 mL) and the solution was cooled to -78 °C in a dry ice bath. To this solution was added NaBH₄ (0.10 g, 2.8 mmol) in two portions over 4 h. The reaction was quenched through the addition of aqueous 10% HCl (10 mL), and the mixture was stirred at room temperature for 30 min.
The MeOH was evaporated on a rotary evaporator. The residue was re-dissolved in
CH₂Cl₂ (10 mL) and transferred to a separatory funnel containing H₂O (5.0 mL). The
combined aqueous layers were re-extracted with CH₂Cl₂ (5.0 mL × 3). The combined
organic layers were washed with brine (5.0 mL × 2), dried over MgSO₄, filtered, and the
solvent was evaporated in vacuo. The residue was purified by PLC (30% EtOAc/hexane)
to give compounds 122a (41 mg, 23%) as a colorless oil, 122b (39 mg, 23%) also as a
colorless oil; 122a: ¹H NMR: δ 7.33-6.50 (m, 15H, Ar-H), 5.19 (d, J = 10 Hz, 1H, H-α'),
4.20 (d, J = 10 Hz, 1H, H-α'), 3.91 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.73 (m, 1H, H-
3), 3.60 (q, J = 7.3 Hz, 1H, H-α''), 3.48 (m, 1H, H-3), 3.39 (d, J = 6.0 Hz, 1H, H-4), 2.95
(m, 1H, H-4), 2.66 (d, J = 4.5 Hz, 2H, H-α), 2.43 (dd, J = 5.0 Hz, J = 16.5 Hz, 1H, H-1),
1.26 (d, J = 7.3 Hz, 3H, H-β''); ¹³C NMR: δ 152.1, 150.6, 146.4, 140.6, 139.9, 137.2,
131.9, 130.8, 130.5, 129.5, 128.5, 128.4, 128.3, 127.3, 126.6, 124.2, 119.3, 107.7, 75.6,
61.1, 58.9, 57.1, 56.1, 40.5, 38.5, 23.1, 22.9, 22.3.

122b: ¹H NMR (500 MHz): δ 7.35-6.51 (m, 14H, Ar-H), 6.23 (s, 1H, H-5), 5.10 (d, J =
2.0 Hz, 2H, H-α'), 3.87 (s, 3H, OCH₃), 3.68 (m, 4H, H-3, OCH₃), 3.53 (q, J = 6.4 Hz, 1H,
H-α''), 3.45 (m, 1H, H-3), 3.33 (m, 1H, H-4), 2.87 (m, 1H, H-4), 2.69 (m, 2H, H-α), 2.36
(dd, J = 3.7 Hz, J = 17.5 Hz, 1H, H-1), 1.23 (d, J = 4.3 Hz, 3H, H-β''); ¹³C NMR: δ
151.5, 151.3, 145.9, 140.9, 140.3, 137.4, 131.7, 130.8, 130.7, 128.7, 128.1, 127.5, 127.4,
126.5, 124.6, 119.4, 109.4, 71.1, 61.1, 60.7, 58.8, 56.6, 40.8, 38.6, 22.6, 22.3; APCI-MS
(m/z): 574.2 (M⁺+1, 100), 572.2 ( M⁺-1, 96).
1-(R)-(4-Bromobenzyl)-N-[(R)-α-methylbenzyl]-6-hydroxy-7,8-dimethoxy-1,2,3,4-tetrahydroisoquinoline (125b)

To a solution of 122b (108 mg, 0.19 mmol) in anhydrous CH$_2$Cl$_2$ (10 mL) was added SnCl$_4$ (0.10 mL) at room temperature. After stirring for 7 h, the reaction solution was poured into cold aqueous saturated NaHCO$_3$. The combined mixture was filtered through a pad of Celite, and the organic layer was isolated. The aqueous layer was extracted with CH$_2$Cl$_2$ (10 mL × 2). The combined organic layers were washed with brine (10 mL × 2), dried over anhydrous MgSO$_4$, filtered and the solvent was removed on a rotary evaporator. The obtained residue was purified by PLC (EtOAc/hexane = 2:8) to give 125b as a syrup (31 mg, 34%); $^1$H NMR (500 MHz): $\delta$ 7.33-6.68 (m, 9H, Ar-H), 6.51 (s, 1H, H-5), 5.62 (bs, 1H, OH), 3.87 (s, 3H, OCH$_3$), 3.68 (m, 1H, H-3), 3.60 (s, 3H, OCH$_3$), 3.52 (q, $J = 6.4$ Hz, 1H, H-α"), 3.42 (m, 1H, H-3), 3.33 (m, 1H, H-4), 2.87 (m, 1H, H-4), 2.62 (m, 2H, H-α), 2.38 (dd, $J = 3.7$ Hz, $J = 14.5$ Hz, 1H, H-1), 1.23 (d, $J = 4.3$ Hz, 3H, H-β"); $^{13}$C NMR: $\delta$ 150.3, 147.9, 146.0, 140.2, 138.0, 131.7, 131.5, 130.8, 128.1, 127.4, 126.6, 123.4, 119.4, 110.3, 60.9, 60.2, 58.9, 56.5, 41.1, 38.6, 22.3.
1-(R)-(4-Iodobenzyl)-N-[(R)-α-methylbenzyl]-6-hydroxy-7,8-dimethoxy-1,2,3,4-tetrahydroisoquinoline (126b)

To a solution of 46b (55 mg, 0.089 mmol) in anhydrous CH$_2$Cl$_2$ (5.0 mL) was added SnCl$_4$ (0.1 mL) at room temperature. After stirring for 7.5 h, the reaction solution was poured into cooled aqueous saturated NaHCO$_3$. The combined mixture was filtered through a Celite pad, and then the organic layer was isolated. The aqueous layer was extracted with CH$_2$Cl$_2$ (10 mL × 2). The combined organic layers were washed with brine (10 mL × 2), dried over anhydrous MgSO$_4$, filtered and the solvent was removed on a rotary evaporator. The residue was further purified by PLC (EtOAc/hexane = 3:7) to give 126b as a syrup (27 mg, 57%); $^1$H NMR: δ 7.53-6.66 (m, 9H, Ar-H), 6.51 (s, 1H, H-5), 5.57 (bs, 1H, OH), 3.86 (s, 3H, OCH$_3$), 3.67 (m, 1H, H-3 ), 3.60 (s, 3H, OCH$_3$), 3.53 (q, $J = 6.4$ Hz, 1H, H-α"), 3.41 (m, 1H, H-3), 3.33 (m, 1H, H-4), 2.87 (m, 1H, H-4), 2.69 (m, 2H, H-α), 2.36 (dd, $J = 4.0$ Hz, $J = 16.5$ Hz, 1H, H-1), 1.23 (d, $J = 4.3$ Hz, 3H, H-β"); $^{13}$C NMR: δ 147.9, 146.1, 140.9, 138.0, 136.8, 132.1, 128.1, 127.4, 126.6, 123.5, 110.3, 90.7, 77.3, 77.2, 76.8, 76.7, 60.9, 58.9, 56.6, 41.2, 38.6, 22.4, 22.3; APCI-MS (m/z): 530.0 (M$^+$+1, 100).
To a solution of 122a (160 mg, 0.28 mmol) in anhydrous CH₂Cl₂ (20 mL) was added SnCl₄ (0.15 mL) at room temperature. After stirring for 4 h, the reaction solution was poured into cooled aqueous saturated NaHCO₃. The combined mixture was filtered through a Celite pad, and then the organic layer was isolated. The aqueous layer was extracted with CH₂Cl₂ (10 mL × 2). The combined organic layers were washed with brine (10 mL × 2), dried by MgSO₄, filtered and the solvent was removed on a rotary evaporator. The obtained residue was further purified by PLC (EtOAc/hexane = 2:8) to give 125a as a viscous oil (40 mg, 43% based on used 122a) and recovered 122a (50 mg); ¹H NMR: δ 7.31-6.71 (m, 9H, Ar-H), 6.25 (s, 1H, H-5), 5.75 (s, 1H, OH), 3.78 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.81 (m, 1H, H-3), 3.58 (q, J = 6.4 Hz, 1H, H-α'''), 3.39 (m, 1H, H-4), 3.31 (m, 1H, H-4), 2.85 (m, 1H, H-4), 2.71 (m, 2H, H-α), 2.36 (dd, J = 4.5 Hz, J = 16.5 Hz, 1H, H-1), 1.23 (d, J = 4.3 Hz, 3H, H-β''); ¹³C NMR: δ 150.6, 146.8, 146.0, 140.3, 133.5, 132.6, 131.8, 131.1, 130.8, 128.1, 127.4, 126.4, 119.4, 117.9, 117.4, 103.7, 61.2, 58.9, 56.4, 55.9, 39.6, 38.9, 23.1, 22.1; APCI-MS (m/z): 484.1 (M⁺+1, 100).
To a solution of 46a (84 mg, 0.14 mmol) in dry CH₂Cl₂ (10 mL) was added TiCl₄ (0.1 mL) at room temperature. After stirring for 5 hours, the reaction solution was poured into cooled aqueous saturated NaHCO₃. The combined mixture was filtered through a Celite pad, and the organic layer was isolated. The aqueous layer was extracted with CH₂Cl₂ (5.0 mL × 2). The combined organic layers were washed with brine (5.0 mL × 2), dried over anhydrous MgSO₄, filtered and the solvent was removed on a rotary evaporator. The residue obtained was further purified by PLC (EtOAc/hexane = 3:7) to give 126a as a syrup (46 mg, 64%); ¹H NMR: δ 7.50-6.70 (m, 9H, Ar-H), 6.25 (s, 1H, H-5), 5.75 (s, 1H, OH), 3.87 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.81 (m, 1H, H-3), 3.57 (q, J = 6.4 Hz, 1H, H-α"), 3.39 (m, 1H, H-3), 3.31 (m, 1H, H-4), 2.87 (m, 1H, H-4), 2.69 (m, 2H, H-α), 2.36 (dd, J = 4.0 Hz, J = 17 Hz, 1H, H-1), 1.24 (d, J = 4.3 Hz, 3H, H-α"); ¹³C NMR: δ 150.6, 146.8, 146.0, 140.3, 133.5, 132.6, 131.8, 131.2, 130.8, 128.1, 127.4, 126.4, 119.4, 117.9, 117.4, 103.7, 61.2, 58.9, 56.4, 55.9, 39.6, 38.9, 23.1, 22.1; APCI-MS (m/z): 530.1 (M⁺+1, 100).
4-Fluoro-3-nitrophenylacetic acid (130)

To a flask was first added 135 (0.60 g, 3.3 mmol) then concentrated hydrochloric acid (10 mL). The reaction mixture was heated at reflux overnight, then cooled to room temperature. Water (10 mL) was added, followed by extraction with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over anhydrous MgSO\(_4\) and concentrated in vacuo. The residue was purified by column chromatography (30% ethyl acetate in hexane) to give 130 as white solid (0.62 g, 95%); \(^1\)H NMR: \(\delta 8.01\) (dd, \(J = 2.1, 7.2\), 1H, H-2), 7.55-7.58 (m, 1H, H-5), 7.29 (dd, \(J = 8.7, 10.5\) Hz, 1H, H-6), 3.74 (s, 2H, -CH\(_2\)-); MS \((m/z)\): 199 (M\(^+\), 100), 154 (99), 122(77), 108 (99), 97 (48), 77 (50).

4-Fluoro-3-nitrobenzaldehyde (131)

To a solution of 4-fluorobenzaldehyde (132) (3.9 g, 32 mmol) in concentrated sulfuric acid (15 mL) at 0 °C was added 70% nitric acid (2.1 mL) slowly. The resulting reaction mixture was stirred under Argon for 2 h and then was poured into ice water (100 mL), and extracted with benzene (30 mL × 3). The combined benzene extracts were washed with water, dried over anhydrous MgSO\(_4\), and concentrated in vacuo. The residue was purified by column chromatography (EtOAc/hexane = 5:95) to afford 131 (3.9 g, 74%) as white solid; \(^1\)H NMR: \(\delta 10.04\) (s, 1H, CHO), 8.61 (dd, \(J = 2.1, 7.2\) Hz, 1H, H-2), 8.21 (m, 1H, H-6), 7.51 (dd, \(J = 8.3, J =

94
9.3, 1H, H-5); MS (m/z): 169 (M+, 97), 168 (100), 122(55), 94 (56), 75 (97).

4-Fluoro-3-nitrobenzyl alcohol (133)

To a solution of 131 (3.8 g, 22 mmol) in THF (20 mL) and methanol (20 mL) was added sodium borohydride (0.50 g, 13 mmol) in portions. The reaction mixture was stirred for 2 h, and then concentrated to give a residue which then was dissolved in CH₂Cl₂ (20 mL) and water (20 mL) containing aqueous 1M HCl solution (12 mL). The organic phase washed with water, dried over anhydrous MgSO₄. Then the solvent was removed to yield a yellowish oil. It was purified by column chromatography (silica gel, 20% EtOAc in hexane) to afford 133 as yellowish oil (3.2 g, 84%); ¹H NMR: δ 8.07 (dd, J = 1.5, 7.0, 1H, H-2), 7.63 (m, 1H, H-5), 7.29 (dd, J = 8.7, 10.5 Hz, 1H, H-6), 4.77 (s, 2H, -CH₂-), 2.18 (bs, 1H, OH); MS (m/z): 171 (M+, 78), 154 (30), 125 (99), 107 (86), 95 (100), 75 (73).

4-Fluoro-3-nitrobenzyl bromide (134)

To a solution of 4-fluoro-3-nitrobenzyl alcohol (133) (22 g, 0.13 mol) in CH₂Cl₂ (400 mL), PBr₃ (10 mL, 0.12 mol) was added dropwise under 0 °C. After 3 h of stirring at 0 °C, the reaction mixture was quenched by addition of water, the organic phase was washed with aqueous NaHCO₃, water, dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography (ethyl acetate:hexane = 2:8) to afford 134 as a colourless solid (17 g, 51%); ¹H NMR: δ 8.10 (dd, J = 2.0, 7.2, 1H, H-2), 7.67 (dddd, J =
2.1, 4.2, 8.7 Hz, 1H, H-5), 7.29 (dd, $J = 8.4$, 10.6 Hz, 1H, H-6), 4.48 (s, 2H, -CH$_2$-); MS (m/z): 235 (M$^+$ +2, 3), 233 (M$^+$ -1, 3), 154 (99), 108 (100), 96 (23), 81 (28).

4-Fluoro-3-nitrophenylacetonitrile (135)

To a solution of 134 (1.8 g, 7.7 mmol) in MeCN (30 mL) was added Et$_4$NCN (1.6 g, 9.6 mmol). The resulting deep green solution was stirred at room temperature for 5 h. The solvent was removed on a rotary evaporator, and the residue was purified by column chromatography (EtOAc:hexane = 3:7) to give 135 as red oil (0.61 g, 43%); $^1$H NMR: δ 8.06 (dd, $J = 2.1$, 7.2, 1H, H-2), 7.64-7.67 (m, 1H, H-6), 7.36 (dd, $J = 8.7$, 10.5 Hz, 1H, H-5), 3.84 (s, 2H, -CH$_2$-); MS (m/z): 180 (M$^+$, 100), 134 (80), 122(77), 107 (99), 95 (74), 81 (50).

1-(R)-(4-Fluoro-3-nitrobenzyl)-N-[(R)-α-methylbenzyl]-8-benzyloxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (136a) and 1-(R)-(4-fluoro-3-nitrobenzyl)-N-[(R)-α-methylbenzyl]-6-benzyloxy-7,8-dimethoxy-1,2,3,4-tetrahydroisoquinoline (136b)
Compound 137 (0.14 g, 0.31 mmol), POCl₃ (3.0 mL) and benzene (10 mL) were combined under an atmosphere of argon and the mixture was brought to a gentle reflux. After approximately 5 h, the solvent and excess POCl₃ were evaporated on a rotary evaporator and finally on a vacuum pump for 1 h. The resultant residue was re-dissolved in MeOH (5.0 mL) and the solution was cooled to -78 °C in a dry ice bath. To this solution was added NaBH₄ (80 mg, 2.1 mmol) in five portions over 3 h. The reaction was quenched through the addition of aqueous 10% HCl (10 mL), and the mixture was stirred at room temperature for 30 min. The MeOH was evaporated on a rotary evaporator. The residue was re-dissolved in CH₂Cl₂ (10 mL) and transferred to a separatory funnel containing H₂O (5.0 mL). The combined aqueous layers were re-extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layers were washed with brine (5.0 mL × 2), dried over MgSO₄, filtered, and the solvent was evaporated in vacuo. The residue was purified by PLC (30% EtOAc/hexane) to give compounds 136a (28 mg, 21%) as a colorless oil, 136b (41 mg, 30%) also as a colorless oil; 136a: ¹H NMR (500 MHz): δ 7.47-6.51 (m, 14H, Ar-H), 5.22 (d, J = 9.7 Hz, 1H, H-α'), 4.28 (d, J = 9.4 Hz, 1H, H-α'), 3.91 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.73 (m, 1H, H-3), 3.60 (q, J = 7.3 Hz, 1H, H-α''), 3.45 (m, 1H, H-3), 3.44 (d, J = 2.0 Hz, 1H, H-4), 2.96 (m, 1H, H-4), 2.75 (d, J = 4.2 Hz, 2H, H-α), 2.45 (d, J = 4.8 Hz, 1H, H-1), 1.28 (d, J = 7.0 Hz, 3H, H-β''); ¹³C NMR: δ 155.0, 152.9, 152.4, 150.5, 145.9, 140.7, 138.0, 137.9, 137.2, 137.1, 137.0, 130.8, 129.3, 128.7, 128.5, 128.3, 127.4, 127.0, 126.8, 126.7, 123.3, 117.0, 116.9, 107.9, 75.7, 61.2, 60.6, 58.8, 56.7, 56.1, 39.9, 38.6, 22.5; APCI-MS (m/z): 557.3 (M+1, 100);
136b: $^1$H NMR (500 MHz): $\delta$ 7.65-6.68 (m, 13H, Ar-H), 6.53 (s, 1H, H-5), 5.10 (d, $J$ = 5.4 Hz, 2H, H-α'), 3.88 (s, 3H, OCH$_3$), 3.73 (s, 3H, OCH$_3$), 3.68 (d, $J$ = 7.5 Hz, 1H, H-3), 3.53 (q, $J$ = 6.4 Hz, 1H, H-α''), 3.39 (m, 1H, H-3), 3.38 (m, 1H, H-4), 2.88 (m, 1H, H-4), 2.78 (m, 2H, H-α), 2.37 (d, $J$ = 15 Hz, 1H, H-1), 1.26 (d, $J$ = 4.3 Hz, 3H, H-β''); $^{13}$C NMR: $\delta$ 151.4, 140.9, 137.2, 128.8, 128.2, 127.4, 127.5, 126.7, 126.6, 117.4, 117.2, 109.3, 71.1, 61.1, 60.8, 56.8, 40.1, 22.5; APCI-MS (m/z): 557.3 (M$^+$+1, 100).

$N$-[(R)-α-Methylbenzyl]-$N$-[(3-benzyloxy-4,5-dimethoxy)phenethyl]-4-fluoro-3-nitrophenyl acetamide (137)

To a solution of oxalyl chloride (0.30 mL, 1.7 mmol) in anhydrous benzene (25 mL) were added 130 (0.62 g, 3.1 mmol) and DMF (2 drops). The mixture was stirred for 0.5 h. The benzene was removed by rotary evaporation to give the acid chloride which was redissolved in CH$_2$Cl$_2$ (12 mL) at 0 °C. This solution was added to a stirred mixture of 117 (0.80 g, 2.0 mmol) and CH$_2$Cl$_2$-aqueous 5% NaOH (1:1.5, 12 mL). After stirring at room temperature for 1 h, the mixture was extracted with chloroform. The combined extracts were washed with water, dried over anhydrous MgSO$_4$, filtered, and the solvent was evaporated in vacuo. The residue was purified by column chromatography (30% EtOAc/hexane) to afford 137 (0.86 g, 74%) as a viscous oil; since this product is a mixture of rotamers, its $^1$H NMR spectrum was too complex to characterize. APCI-MS (m/z): 573.3.1 (M$^+$+1, 100).
1-(R)-(4-Fluoro-3-nitrobenzyl)-N-[(R)-α-methylbenzyl]-8-hydroxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (138a)

To a solution of **136a** (21 mg, 0.040 mmol) in anhydrous CH$_2$Cl$_2$ (5.0 mL) was added TiCl$_4$ (0.050 mL) at room temperature. After stirring for 5 hours, the reaction solution was poured into cooled aqueous saturated NaHCO$_3$. The combined mixture was filtered using a Celite pad, and then organic layer was isolated. The aqueous layer was extracted with CH$_2$Cl$_2$ (5.0 mL × 2). The combined organic layers were washed with brine (5.0 mL × 2), dried by MgSO$_4$, filtered and the solvent was removed on a rotary evaporator. The residue was purified by PLC (MeOH/CHCl$_3$ = 3:7) to give **138a** as a viscous oil (10 mg, 57%); $^1$H NMR: $\delta$ 7.67-6.71 (m, 8H, Ar-H), 6.27 (s, 1H, H-5), 5.83 (s, 1H, OH), 3.90 (s, 3H, OCH$_3$), 3.86 (s, 1H, OCH$_3$), 3.79 (m, 1H, H-3), 3.56 (q, $J = 6.4$ Hz, 1H, H-α"), 3.37 (m, 1H, H-3), 3.35 (m, 1H, H-4), 2.90 (m, 2H, H-α), 2.75 (m, 1H, H-4), 2.37 (d, $J = 17$ Hz, 1H, H-1), 1.27 (d, $J = 7.5$ Hz, 3H, H-β"); APCI-MS (m/z): 467.1 (M$^+$+1, 100).
1-(R)-(4-Fluoro-3-nitrobenzyl)-N-[(R)-α-methylbenzyl]-8-hydroxy-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (138b)

To a solution of 136b (27 mg, 0.050 mmol) in anhydrous CH$_2$Cl$_2$ (5.0 mL) was added TiCl$_4$ (0.050 mL) at room temperature. After stirring for 5 h, the reaction solution was poured into cooled aqueous saturated NaHCO$_3$. The combined mixture was filtered through a Celite pad, and then the organic layer was isolated. The aqueous layer was extracted with CH$_2$Cl$_2$ (5.0 mL × 2). The combined organic layers were washed with brine (5.0 mL × 2), dried over anhydrous MgSO$_4$, filtered and the solvent was removed on a rotary evaporator. The residue was further purified by PLC (EtOAc/hexane = 3:7) to give 138b as a viscous oil (14 mg, 61%); $^1$H NMR: δ 7.63-6.68 (m, 8H, Ar-H), 6.53 (s, 1H, H-5), 5.61 (bs, 1H, OH), 3.88 (s, 3H, OCH$_3$), 3.67 (s, 3H, H-3, OCH$_3$), 3.65 (m, 1H, H-3), 3.53 (q, $J = 6.4$ Hz, 1H, H-α"), 3.38 (m, 1H, H-3), 3.36 (m, 1H, H-4), 2.88 (m, 1H, H-4), 2.78 (m, 2H, H-α), 2.38 (d, $J = 18$ Hz, 1H, H-1), 1.27 (d, $J = 6.5$ Hz, 3H, H-β"); APCI-MS (m/z): 467.1 (M$^+$+1, 100).
4.1 Further studies of the formation of the benzylisoquinoline subunit

All of the BNC reactions described in this work resulted in low yields. This was mainly because a mixture of regioisomers can be produced when there are two available ring-closure sites. Consequently, the difficulty in achieving the total synthesis increased due to the effort required for the separation of the two regioisomers. In order to

![Chemical reaction and structures]

Scheme 4.1
circumvent this problem, the use of a blocking group may possibly prevent the formation
of the undesired regioisomer. This blocking group must be robust enough to survive all
of the reaction conditions used, and be easily and selectively removed at a later stage.
With the above considerations in mind, a bromine atom, for example, could be used as a
blocking group. Briefly outlined in Scheme 4.1 is one such proposal. In this scheme, the
nitro group is introduced into compound 111, which can subsequently be removed via a
diazotization reaction.

4.2 Further proposal for the formation of diaryl ether linkages by heterocoupling

So far, all efforts towards the synthesis of the diaryl ether linkages with the aim to
build the macrocycle of (-)-cycleanine were approached by a homocoupling strategy using
either improved Ullmann coupling or SNAr reactions. It is proposed that heterocoupling
using both Ullmann coupling and a SNAr reaction might possibly yield the desired
product as shown in Scheme 4.2. Reaction of 136a with 126a could lead to 143, which,
after removal of the benzyl and nitro groups, could be subjected to Ullmann reaction
conditions to give the key intermediate 66. Two successive steps including removing the
chiral auxiliary group and introducing the methyl group on to the nitrogen atom will
produce the desired final product (-)-cycleanine.
4.3 Further proposal for the diaryl ether formation step

The results obtained during this research demonstrated that the diaryl ether formation step using either the Ullmann coupling or the $S_N Ar$ reaction did not produce
ideal results. However, this does not mean these two methodologies are completely untenable. A systematic study was not done due to time constraints. Since various reaction conditions may affect the outcome of such complex coupling reactions, such a systematic study is necessary. Of course, this systemic study should not be limited to only using the same methodologies described in the previous chapters of this thesis.

For the S_{N}Ar reaction, in this research CsF was selected as the base and DMSO was chosen as the reaction solvent. As mentioned before, both the base and the solvent are important factors which could affect the result of such reaction. So, besides CsF and DMSO, the use of other bases such as Na_{2}CO_{3}, K_{2}C_{O_{3}} and reaction solvents such as DMF could be also attempted.

For the improved Ullmann coupling, only Ma and Buck's methodologies were employed in this thesis. Currently, many research groups are working on developing better methods for the synthesis of diaryl ethers in order to find new synthetic routes for a wide range of biologically active compounds. For example, a procedure developed by Palomo involving the use of catalytic P_{4}-t-Bu base gives better yields of diaryl ethers at lower temperatures than the traditional Ullmann coupling (Scheme 4.3).^{89}

\[
\begin{align*}
\text{R}_1 \quad \text{X} \quad \text{HO} & \quad \text{CuBr, P}_{4}\text{-t-Bu, Cs}_{2}\text{CO}_{3}, \text{toluene, reflux} \quad \text{R}_1 \quad \text{O} \\
\text{R}_1 & \quad \text{67} & \quad \text{R}_2 & \quad \text{68} & \quad \text{R}_1 & \quad \text{69} \\
\end{align*}
\]

Scheme 4.3
Another interesting example was reported by Li et al. where the traditional Ullmann coupling reaction was accelerated greatly using a microwave process (Scheme 4.4).\textsuperscript{90}

\[ \begin{align*}
\text{R}_1 & \quad \text{X} \quad \text{HO} \quad \text{R}_2 \\
\text{57} & \quad + \quad \text{58} \\
\end{align*} \]

\[ \begin{align*}
\text{K}_2\text{CO}_3/\text{DMSO, MW} \quad 5-10 \text{ Min.} \\
\rightarrow \quad \text{R}_1 \\
\text{59} \\
\end{align*} \]

Scheme 4.4

Obviously, these newer methodologies can also potentially be applied in the synthesis of (-)-cycleanine.
References


(16) Dwuma-Badu, D.; Ayim, J. S. K.; Tackie, A. N.; Knapp, J. E.; Slatkin, D. J.; Schiff,


(45) Chrzanowska, M.; Rozwadowska, M. D. *Chemical Reviews*, in press.


(49) Kondo, H.; Tomita, M.; Uyeo, S. *Ber.*, **1937**, 70B, 1890;


(57) Li, J. "*Name Reactions,*" Springer-Verlag, New York, **2002**, pp. 36


(60) Li, J. "*Name Reactions,*" Springer-Verlag, New York, **2002**, pp. 283.


(63) Ralph, M. S. *M. Sc. Thesis*, Memorial University of Newfoundland, **2001**.


(76) Vogl, W. Monatsh., 1899, 20, 383.


Appendix

$^1$H and $^{13}$C NMR Spectra
119
126b
136a
138a