
TOTAL OF 10 PAGES ONLY
M~A Y H£ XEROXED

(Wilhoul Aulhor·~ P.:mlission)

Color Segmentation Based on

Adjustable Fuzzy Neural Networks

and High Level Understanding of

St. John's

Maps

by

©Ning Zhong

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Memorial University of Newfoundland

August 2004

DEC 0 5 2005

Newfoundland

Color Segmentation Based on Adjustable Fuzzy Neural Networks and

High Level Understanding of Maps

Ning Zhong

Memorial University of Newfoundland, School of Graduate Studies, 2004

ABSTRACT

To digitize and record electronically the huge collection of topographical maps,

development of a framework for computer-based color segmentation and high-level

map understanding has shown an increasing importance.

Color map segmentation requires special treatment with respect to line features.

However, few research efforts have been put into this area. A novel approach of color

segmentation based on adjustable fuzzy neural networks is proposed. The approach

is capable of capturing pixel variations along thin line features. Based on a physics

model, two heuristics have been derived, which suggest certain pixel variation behav-

iors in overlapping and boundary areas respectively. Fuzzy neural networks combined

with self-adjustment components have been developed. The self-adjustment compo-

nents dynamically adjust sample pixels among different sample clusters in neural

network training. A feature that distinguishes this method from previous supervised

neural computing methods is t hat, by adoption of self-adjustment architectures, it

does not strictly require that all samples should have their desired outputs given

in advance. Experiments show that the developed method can produce satisfactory

segmentation results.

ll

This study also proposes a novel method for high-level map understanding. A

Description Logics (DL) language, QA.CC(R, 'D), is introduced to represent spatial ob­

jects and t heir relationshi~~. A set of derivation rules is then proposed to derive a

special grammar, called map grammar, from the DL representation. Thus, the map

understanding process can be treated as a grammar parsing process. The map gram­

mar is different from traditional grammars in that: (1) it allows for ambiguity; and

(2) the input is a collection of primitive map objects instead of an ordered sequence of

tokens. A map grammar parsing algorit hm based on t he Multiple Path Stack (MPS)

is proposed. One advantage of this approach is that the knowledge representation

is verifiable at design time. In addition, the implementation based on this approach

is more robust and highly reusable, since the knowledge representation is separated

from the inference mechanism. This research is a first step towards applying DL the­

ory to map understanding. A prototype map understanding system was developed

and applied on several test maps. The results show that this method can obtain a

satisfactory interpretation of map phenomena.

Keywords: Conceptual Modeling, Knowledge Based System, Map Understand­

ing, Description Logics, Syntactic Analysis, Color Segmentation, Fuzzy Logic, Neural

Networks, Image Analysis , Pattern Recognit ion, Feature Extraction, Geographic In­

formation Systems, Meta-Data Modeling.

lll

Acknowledgments

Writing a dissertation is very challenging work. Without the generous help of

others, it would be virtually impossible to finish this work. A lot of people have
•

offered invaluable support, advice, guidance, assistance, and inspiration either directly

or indirectly. I would like to thank all t hose people who made this thesis possible and

gave me continuous support during the program.

First of all , I wish to express my highest gratitude to Dr. John Shieh, who guided

this work and helped whenever I was in need. Without his constant support, guidance,

challenges and encouragement, this thesis would not have taken this final form. I

would also like to express my deep appreciation to the members of my supervisory

committee, Dr. Siwei Lu and Dr. Krishnamurthy Vidyasankar, who took great efforts

in reviewing and providing valuable advice and comments regarding various aspects

of the thesis.

Thanks are due to the graduate students and postdoctoral fellows in the depart-

ment for vigorous and helpful discussions. Those long nights at the computer in

the department lab will not be forgotten. Special thanks to Dr. Bating Yang, Dr.

Guangda Hu, Yaguang Chen, Vasantha Adluri, Kaleem Momin, Xueming Li, Jianmin

Su and many more.

I am greatly indebted to the faculty and staff of the Department of Computer

Science, Dr. Paul Gillard, Mr. Nolan White, Ms. Elaine Boone, Mrs. Jane Foltz,

Ms. Sharon Deir and many more, for their assistance and support throughout my

IV

program.

I would also like to thank Dr. Robert Gravina for his advice and the time he spent

on proofreading the thesis.

-~

Last but not the least , i would like to thank my family: my father , Chunxiang

Zhong; my stepmother, Dan Zuo; my wife, Yi Miao; my brother, William Zhong; and

my adorable daughter, Denise. Without their endless encouragement, support and

love for me, I would never have been able to finish this thesis.

This thesis is dedicated to the memory of my mother, Huiqian Wang.

v

Contents

Abstract

Acknowledgments

Table of Contents

List of Figures

List of Tables

1 Introduction

1.1

1.2

1.3

Problem Description and Motivation

Summary of Contribut ions

Dissertation Organization

2 Related Work

2.1 Color Image Segmentation Techniques

2.2 Automatic Map Interpretation

Vl

11

lV

Vl

Xl

XVI

1

1

11

14

15

16

26

2.2.1 Low Level Image Processing Techniques 27

2.2.2 Knowledge-based interpretation . . 28

2.2.3 Description Logics Based Methods 32

3 Color Segmentation of Map Images 35

3.1 Overview ..
•••• 0 •• 0 •• ••• 0 • •• 0 • • •• 0 • 35

3.2 Introduction
•••••••••• • ••• • • • • • • 0 • 0 •• • • • 0 36

3.3 Reflection Model
• 0 •• 0 •••• •• •••• 0 • 0 • 0 •• •• • 37

3.4 Fuzzy Neural Approach . 43

3.4.1 Fuzzy eural Architecture 44

3.4.2 Self-Adjustment Architecture 48

3.5 Experiments and Results
• ••• • • 0 • • •• • • ••••• 0 •• 0 • • 0 54

3.6 Conclusions
••• • •• • • •••• •• 0 • • 0 0 • • 0 • •• 66

4 Conceptual Modeling and Description Logics 67

4.1 Concept ual Modeling 68

4.2 Knowledge Representation Using Descript ion Logics . 71

4.3 Formalization of Semantics 74

4.3.1 Implicit vs. Explicit Representation . 75

4.3.2 Description Logics
• • 0 •••••••••• • • •• •• • • •• 76

4.4 Generalized A.CC(V) ...
• ••• •••••••• 0 ••• •••• • • •• 80

5 R epresenting Knowledge for Map Understanding 97

Vll

5.1 Modeling with Description Logics

5.2 Expressing Map Knowledge .. .

5.3 Summary of Typical Concepts and Roles
~:r.

6 Map Understanding Process

6.1 Understanding of Maps ...

6.2 Object-Instance-Relation Graphs

6.3 Building a Complete OIR Graph

6.4 Augmentation Rules

98

104

118

120

121

124

129

134

7 Mapping Description Logics to Grammatical Representation 140

7.1 Role Types 142

7.2 Specification of Grammar 146

7.3 Symbols Representing Constraints . 150

7.4 Refinement of the Derived Grammar Rules 157

7.5 Implementation of t he Map Grammar Parser . 158

7.5.1 LR(1) Parser • 0 •• 160

7.5.2 Characteristics of the Map Grammar Parser 161

7.5.3 Multiple Path Stack (MPS) 163

7.6 The Map Parsing Algorithm 174

7.7 An Example 178

7.7.1 A simple map grammar MQ . 179

Vlll

7.7.2 Constructing a Characteristic Finite State Machine 182

7.7.3 Illustration of the Parsing Process . 190

7.8 Prototype System Architecture
.~

199

7.9 Dealing with Uncertainty in Map Understanding Process 202

7.10 Discussion 205

8 Experiments and Results 207

8.1 Data Acquisition and Preprocessing 207

8.2 Map Parsing and Results 213

9 Conclusions 222

9.1 Review of The Research 223

9.2 Future Research . . 225

9.3 Other Applications 226

Appendices 228

A Description Logics 228

A.1 Definitions of Concrete Domains, Concepts, and Roles . 228

A.2 Definitions of Models and Interpretations . 230

A.3 Terminological Reasoning 232

A.4 The Assertional Language 233

A.5 Assertional Reasoning . . 235

lX

B List of Maps Used for Testing 237

C Map Grammar CMQ 239

D Color Segmentation Results 244

E Map Understanding Results 247

Bibliography 251

X

List of Figures

1.1 A city map of Winnipeg, Manitoba. Map image courtesy ofUT Library

Online 5

1.2 An overview of system development activities. 11

1.3 Graphical depiction of map understanding output .. 12

3.1 Light reflection on an area painted with one color. 39

3.2 Distribution of overlapping colors. 43

3.3 A fuzzy neural network to classify m colors. 44

3.4 A generalized bell function. 0 •••• •• 0 •••••••• 0 ••••••
46

3.5 H.1 structure shown inside the dashed line area. 50

3.6 H.2 structure shown inside the dashed line area. 53

Xl

3.7 (a) Original image (Portion of National Atlas of Canada Series, 1981.

Natural Resources Canada). (b) Red color, without using H.1 struc­

ture. (c) Blue colw, without using H.1 structure. (d) White color,

without using H.2 structure. (e) Red color, by using H.1 structure.

(f) Blue color, by using H.1 structure. (g) White color, by using H.2

structure.

3.8 A portion of the regional map of Denver, Colorado. Original scale

1:500,000 U.S. National Atlas 1970

3.9 The red color layer obtained using a fuzzy neural network without self

56

57

adjustment components. 58

3.10 The red color layer obtained by taking account of overlapping and

boundary pixel variations. 60

3.11 The red color layer obtained using fuzzy c-means clustering method. 61

3.12 The red layers obtained based on Comaniciu and Meer's algorithm. (a)

Constructed with 1 of 6 clusters produced by undersegmentation; (b)

Constructed with 5 of 26 clusters produced by oversegmentation. . . . 63

4.1 Two instances of MADE_OF relationship

4.2 An object-relationship graph

4.3 T hree intersecting highway routes ..

4.4 Upcast viewed as relation generalization.

5.1 The DL conceptual modeling philosophy.

X ll

70

72

83

89

98

5.2

5.3

5.4

5.5

A complex river section with an island and two bridges ..

Concepts involved in a complex river section ..

Two instances of rpad joints ..

Meaning of a "leg" instance. .

5.6 The object-relationship graph of river networks.

5.7 Different river intersections.

5.8 Articulation pairs.

6.1 An example of an OIR graph.

6.2

7.1

7.2

A simple test map.

Constraint symbols and their scopes.

An overview of a parser system. . . .

7.3 An MPS node N and its parent and children ..

7.4 Part of the MPS involved in a reduce action.

7.5 Reusable tokens. ••••••• 0 ••• • ••• • 0 ••••••••••••

7.6 CFSM for MQ. .

7.7 A test map with only road networks.

7.8 Arrowed lines that represent MPS node relationships.

7.9 Illustration of the parsing process.

7.10 Illustration of the parsing process. (cont'd)

7.11 Illustration of the parsing process. (cont'd)

7.12 Illustration of the parsing process. (cont 'd)

Xlll

99

103

107

110

111

113

113

126

128

153

159

165

171

181

182

190

191

191

192

194

195

7.13 The complete OIR produced by the parser. 198

7.14 Prototype system architecture . . 199

7.15 Modeling broken line features . .
.~

204

8.1 City map of Calgary, Canada. U.S. Department of State 1988. 208

8.2 Image layer of linear features. 209

8.3 Skeletonized image layer of linear features with many small dangling

line segments. 210

8.4 Skeletonized image layer of road features where small spurs are trimmed. 212

D.1 The blue color layer extracted from the map of Denver using the pro-

posed fuzzy neural network. 244

D.2 The same fuzzy neural network used for the map of Denver is applied to

the map of Cincinnati without retraining. (a) Original map. Original

scale 1:500,000 U.S. rat ional Atlas 1970. (b) Red color layer. (c) Blue

color layer. 245

D.3 The same fuzzy neural network used for the map of Denver is applied

to the map of Boston without retraining. (a) Original map. Original

scale 1:500,000 U.S. National Atlas 1970. (b) Red color layer. (c) Blue

color layer. 246

E.1 Extracted road network from the map of Calgary. 247

E.2 A portion of the regional map of Denver. 248

XlV

E.3 Extracted road network from the map of Denver. 248

E.4 A portion of the city map of Ottawa. 249

E.5 Extracted road ne'twork from the map of Ottawa. 249

E.6 A portion of the city map of Halifax. 250

E.7 Extracted road network from the map of Halifax. 250

XV

List of Tables

7.1 The action table for M9. 187

7.2 The go to table for M 9. 188

7.3 Remaining parse steps of the example. 196

8.1 Primitives in the map used in experiments. 214

8.2 Recognized instances 217

8.3 Wrongly recognized individuals. 218

XVl

Chapter 1

Introduction

1.1 Problem Description and Motivation

With the rapid progress in Geographic Information Systems (GIS), it is more and

more desirable to develop computer based map image processing systems. To build

such a system, various computer vision and image processing techniques and method­

ologies have to be analyzed, applied and integrated. This study is concerned with

the problem of color map interpretation. Specifically, it focuses on two commonly en­

countered topics when building a map understanding system: (1) methods to achieve

robust color map segmentation, and (2) methods to achieve a meaningful high-level

description of a map.

The term "map" is a concept frequently used in all aspects of our daily life. A

map is a graphic depiction which is drawn usually on a plane surface. It represents all

or a part of a geographic realm in which the territorial features have been emulated

1

using conventional signs in their correct spatial locations at a reduced scale, serving

as a method of visually interpreting the data representing real-world features. The

conventional signs (legends) used on a map are normally printed in the margins of

the map.

In a general sense, understanding means that we acquire and conceptualize infor­

mation in the way we are familiar with, so that the information is ready to be applied

to solve problems. To understand a map means to grasp its meaning expressed in

the drawing. Scanned color map images contain raw geographic data which are 2-

dimensional arrays of pixels. The computer based map understanding system usually

starts from raw data, and then goes through a complex conversion process to obtain a

meaningful high-level description in terms much closer to the ones human beings use

in their thinking. Such terms can be "river", "road", "bridge", "near", "on", "over",

"cross", and so on, which human beings feel comfortable to use in their daily lives. As

a specialized form of image understanding, map understanding is usually carried out

at two different levels: low-level and high-level. Unfortunately, most of the research

to date only addresses the issues of low-level processing, such as automatic segmenta­

tion and recognition of isolated and primitive map features (line segments and point

symbols). Although the word "understanding" has been used a lot in the literature, it

carries different meanings in most cases , since it is not clearly defined. By "high-level

map understanding", we mean an understanding of rather complicated phenomena

at a conceptual level on a scanned map. A complex phenomenon may involve many

2

basic map features. The entire map scene can be looked at as one single map phe­

nomenon, which in turn can contain other map phenomena, such as river networks.

A map phenomenon may also refer to a group of other phenomena that share com­

mon properties, such as "the cities that are flown through by the Mississippi river"

and "all the road networks and river networks found on the map". To understand a

map scene, that is, to acquire all kinds of geographical and spatial information in the

scene, means to explicitly represent the contents of the scene in a comprehensive and

concise way. For a human being, understanding a map is a process that converts the

geographical and spatial information encoded in a physical map into an explicit and

structural representation, conforming to his natural way of thinking. An important

property of such a representation is that it can be directly and intuitively applied to

a problem. Similarly, automatic map understanding is a process used by a computer

system to convert the same map information into a descript ion that can be directly

used to carry out computer vision tasks involving map information. Consider, for ex­

ample, the following query: Locate a lake that is within 3 miles of the Charles river ,

that is north of highways 95 and 14, and that is surrounded by a number of buildings.

This type of query would be answered in a simple and straightforward manner if the

relevant spatial objects and relationships are stored in a taxonomic format. By un­

derstanding, the intended meanings (usually implicitly) encoded in the physical map

are described in an organized and well classified fashion, so that manipulation of such

understanding results can be carried out naturally by computers. The understanding

3

results can further be applied to various applications. There has been no system that

can perform such kind of high-level understanding tasks on maps.

In this dissertation, the issue of how to separate map images into different color

layers is discussed first , then an approach to high-level map understanding based

on the results of low-level image processing is presented. Since colors are widely

used to distinguish map features, robust methods are needed to take advantage of

the color information. The scribed sheets used by the modern printing industry to

mass produce maps can provide a desirable means to distinguish features of different

colors. However, such scribed sheets are not always available or easily accessible. For

example, the large collection of historical color maps does not have available printing

scribes. In order to store them in digital format , color segmentation method based

on a printed map is indispensable to ensure the quality of the digitization. A physics

model is used to describe light reflection on maps, so that factors that cause pixel

variations are studied. A novel method, which is able to capture pixel variations in

overlapping and boundary areas, is proposed.

Consider, for example, a sample map image in Figure 1.1. Shown on this map

are river networks, road networks and some point symbols, such as city and bridge

symbols. The following basic building components can be found on a typical map:

circles, polygons, areas, and line segments. Through existing low-level image inter­

pretation techniques, we can extract these features. However, we cannot understand

this map only by putting together these basic features , even for such a simple map.

4

Figure 1.1: A city map of Winnipeg, Manitoba. Map image courtesy of UT Library
Online.

Instead, by saying that we understand a map, we have to be able to answer questions

such as:

• How are the basic map features grouped together to represent certain geographic

phenomena, especially those that occupy a large area?

This question requires us to specify how a map feature can be defined with

other map features. Usually we look at a map at different abstract levels.

5

Sometimes we may just want to have a rough idea of what are in the map by

asking questions such as "How many roads are there?" and "How many rivers

are there?" . There are also times when much detailed information needs to be
.~

"'

obtained. "How many branches does a road system have?" and "What is the

location of a particular road?" are examples of such questions.

Occasionally t he map information is revealed from different viewpoints. The

same map may be explained very differently by different users. A driver sees a

map as a drawing of roads and cities, so that he can figure out how to travel

from city to city using the road system, while a traveler by train may only want

to know how areas are connected by railroads.

• How are map features interrelated?

Answering this question means revealing various relationships among a number

of map objects, especially the spatial relationships. Suppose, for example, that

we want to visit those cities and attraction sites along highway 93 when we

drive from New York to Boston. The map understanding system has to go

beyond the extraction of isolated map objects and discover relationships among

highway symbols and other point symbols.

• How does a map feature represent its counterpart in real world?

This is a question regarding the semantics of a map feature. It is known that a

map is an analogical representation of a real world scene. It cannot be under-

6

stood merely by what are explicitly drawn on a map. The intended meaning

of a map object may not b e told by its metrical and topological properties. Its

context (relationships with other spatial objects) also plays an important role
~·

in determining its meaning. For example, a segment of a line drawn with blue

color may be recognized as a river. But it can also be seen as part of a river

bank, or even part of a lake boundary. A cartographer's intent ions in drawing

these blue lines are not necessarily reflected in the map itself. Although map

features are symbolized according to government standards and rules, common-

sense knowledge is still needed to accurately capture the semantics of a map

feature.

The language we use to describe the map understanding results should be able to

describe not only pieces of geometry objects (polylines, circles, and line segments),

but also those meaningful ent ities in the real world (bridges, cit ies, and highways) .

Whether an understanding is sufficient enough depends upon the purpose. For ex-

ample, if we have to carry out the task of storing the map information contained in

Figure 1.1 in a GIS database, the facts about the map that are needed in further

analyses and queries have to be extracted . We have to understand the fact that the

map includes one river system and one road system. Further information about how

the road network and the river network are made of road sect ions and river sections

respectively has to be obtained. The understanding process will keep exploring the

map until we have made explicit all the details that must be stored in GIS.

7

Generally, high-level map analysis and understanding cannot be directly per-

formed on original map images. A series of preprocessing or low-level feature ex-

traction steps is needed to convert maps into formats appropriate for high-level un-

1\~

derstanding. A source of inaccuracy results from the data acquisition stage. Paper

maps are usually more or less distorted by tears and wrinkles . One important t ask of

map understanding, therefore, is to correct some of t he errors generated from previous

stages.

Hence, automatic map understanding is an extremely challenging task. In an

attempt to obtain a systematic and effective approach for automatic high-level map

understanding, a novel approach is proposed in this dissertation to overcome the

following limitations of current methods:

1. Current research in this field only advances on the experimental frontier. The

problem is not stated in a formal fashion. This dissertation attempts to for-

malize the concepts and the reasoning mechanism involved in solving the map

understanding problem. The formal approach enables us to combine and ex-

tend existing theories such as Descriptions Logics and formal language parsing

theory into a more comprehensive, coherent and general theory for map un-

derstanding. One of the outstanding advantages of formal descriptions, which

cannot be achieved by current methods, is that we can verify the consistency

of our knowledge representation. Any conflicts in the knowledge base can be

discovered at design time. The precise nature of formal representation makes it

8

easier and more flexible to be extended to other domains.

2. Almost all the current methods address the issue of knowledge representation

and the underlying inference mechanism. However, the formation of those
•" ~·

knowledge representations (rules, semantic networks) or inference algorithms

is an ad-hoc process. From an overview of the current methods, we can see

that only general strategies, such as top-down or bottom-up, are given, which

are not enough to solve a complicated problem. A formal approach enables us

to explicitly manipulate any piece of knowledge involved and any inference step

taken. Thus, the analysis of the reasoning process becomes much easier.

3. Understanding has to reveal information about a phenomenon at various ab-

stract levels and from different viewpoints. It is still a challenge for current

methods to handle hierarchies of various objects, especially in the context of

maps. Features on such maps have more hierarchies than certain drawings

(cadastral and utility maps) have. Cadastral maps and utility maps are usually

drawn with objects of regular geometric shapes, whereas maps are full of irregu-

lar shapes, since they are abstractions of the real world surface features. Based

on Description Logics, this dissertation provides an effective and well-formalized

way to capture the semantics of objects and relationships.

4. Most existing solutions are difficult to adapt to other application domains, be-

cause the knowledge representation and the reasoning mechanism are not clearly

9

~----------------------------

separated. Through the formal representation of map objects and their relation­

ships, the reasoning algorithms can be specified without reference to a specific

domain.

Figure 1.2 shows an overview of activit ies involved in the development of a map

understanding system using the proposed methodology. The ovals represent a series of

development steps. The input and output specifications for the steps are represented

by underlined phrases.

The tasks of each step are elaborated in more detail in the rest of this work. A

brief description of the several stages undergone to obtain a solut ion is given be­

low. An initial step of building the system is to identify objects and relationships

among objects. The result of this step is an object-relationship graph. The identified

objects and relationships are further formalized with a DL language, QA.CC(.e, D).

QA.CC(.e, D) is an extension of the conceptual language A.CC(D) [38]. With the help

of a set of derivation rules, a map grammar different from traditional grammars is

obtained. Then a parsing algorithm designed specially for the map grammar is pro­

posed and implemented. The output of a map understanding system should give an

accurate and meaningful representation of map objects and their relationships suit­

able to be stored in computers [75]. Figure 1.3 gives a graphical sketch of objects and

relationships involved in the construction of a road network.

10

1.2

Map World

1
Identify relevent knowledge

Objects and relationships,etc.

l
Object- Relationship Graph

1
Formalize the semantics

Description Logic Representation

(Assertional Language and Reasoning)

\
Mapping to grammar representation

!
Grammar

!

Understanding Task

Maplmage ~
--- --~--·-·- --

Understanding Results
(low and intermediate level)

Figure 1.2: An overview of system development activities .

Summary of Contributions

The main contributions of this work are summarized as follows.

Firstly, a novel approach is proposed to attack the problem of color map segmen-

tation. A physics model that describes light reflection from paper maps is presented.

Two application specific heuristics that describe color pixel variations in overlapping

11

"lj
aq·
c
...;
C1l

1-'

w

0
...;
~
"d
p-'
c:;·
~ MAP

0..
C1l
"d
() .,...
0

1-' ~
tv

0 ,...,
s .g
c
~
0..
C1l
...;
00 .,...
~
0..
~

Otl
0 c .,...
"d
c
;+

rs#l
-------o

city# I

rs#2

rs#6

Clty#2 Q

~rs#7

/

bndge#2

~s#8

p#l "\rs#)

\

and boundary areas are derived. Based on the heuristics, a unique fuzzy neural ar-

chitecture with self-adjustment components is proposed. This approach is capable of

capturing pixel variations along thin line features. A color segmentation system based
~:"'

on the fuzzy neural architecture is then designed and implemented. A feature that

distinguishes our fuzzy model from previous supervised neural computing methods is

that, by adoption of self-adjustment architectures, it does not strictly require that all

samples should have their desired outputs given in advance.

Secondly, this dissertation proposes a novel method for map understanding based

on Description Logics, a formal representation system. In this work, map under-

standing is treated as a process of transforming the analog format of geographical

information (color maps) into a high-level interpretation. With Description Logics as

the conceptual modeling tool, we can clearly separate implicit and explicit represen-

tations of spatial knowledge. A DL language, 9A.CC(t', D), is proposed by extending

A.CC(D) with n-ary roles. The DL language is then applied to formalize the seman-

tics of map objects and their relationships. A set of derivation rules is presented to

formulate a special grammar, called the map grammar, from the DL based knowl-

edge representation. The map grammar is defined to distinguish between existential

symbols and constraint symbols. An algorithm that employs a special data structure

called multiple path stack is designed to carry out the map parsing process. To deter-

mine the feasibility of the proposed method, a prototype map understanding system

has been developed and applied on several test maps.

13

1.3 Dissertation Organization

The organization of the rest of this dissertation is given below. Chapter 2 gives a
...
" review of color image segmentation and automatic map interpretation methods. The

main techniques are presented and summarized. Chapter 3 presents the color segmen-

tation method based on adjustable fuzzy neural networks. The discussion is centered

around how to capture pixel variations along line features. Chapter 4 briefly reviews

the motivations of conceptual modeling in map understanding. Then the general is-

sues concerning using DL as the modeling tool are discussed. In the same chapter,

a conceptual language QA.CC(f, D) is proposed by extending A.CC(D). Chapter 5 is

devoted to the formalization of map knowledge based on the Description Logics the-

ory. Typical concepts and roles in the domain of map understanding are presented.

Chapter 6 covers the map understanding process, which is viewed as a process to

build a data structure that holds object instances and relation instances. Chapter 7

describes the method to establish a reasoning mechanism for the map understanding

system. A method to form a set of grammar rules for map understanding tasks is

presented. It is demonstrated that a map understanding process can be treated as a

grammar parsing process. The experiments conducted and the results obtained are

presented in Chapter 8. Finally, this dissertation is concluded in Chapter 9.

14

Chapter 2

Related Work

There are different types of images, such as medical images, remote sensing images,

X-ray images, and map images. Among t he topics in image processing and interpre­

tation, map image processing is a relatively under-researched area. Different types of

images are obtained from different sources, or produced with different devices, using

different methods, and with different focuses of interest. Although they share some

general methodologies in terms of processing techniques, each of them has exclusive

characteristics t hat have to be treated individually.

Maps are an analog or an abstraction of real world phenomena, which do not

directly depict naturally occurring objects. There exist a limited number of colors and

symbols on maps. The number of constrained interactions among the map symbols is

also limited. However, it is very difficult to capture the semantics of map features and

the constraints among them because a lot of domain specific knowledges are implied

in those analog formats and abstractions.

15

There is a large amount of literature aimed at drawing analysis and interpre­

tation at the lexical and the syntactic level, such as character recognition, symbol

recognition, and line feature extraction. The amount of publications dealing with the

high-level image interpretation is very small, and most of them are confined within

some particular application domains. In this chapter, we will review various research

efforts related to the whole or part of a map understanding process, as well as low-level

image processing methodologies, which are the basis for map understanding.

2.1 Color Image Segmentation Techniques

Automatic map feature extraction and recognition is an active research area and is

especially demanded in GIS applications. An effective color map analysis system

should be able to separate colors on maps where each type of feature is designed to

be painted with a unique color. Color image segmentation is generally viewed as a

process of dividing an image into a number of disjoint areas, each of which contains

pixels representing one color. This kind of research can be roughly classified into two

groups: (1) feature space analysis techniques, and (2) physics-based segmentation

techniques.

The feature space analysis techniques [25, 84, 20] are widely used for solving low

level image understanding tasks. In general, pixels belonging to the same signifi­

cant feature appear to be similar. By mapping the feature vectors into the space

spanned by their components, significant features can usually be classified because

16

they correspond to high density regions.

The clustering methods are further divided into supervised and unsupervised

methods. When prior knowledge about objects is available, supervised color clas-

sification methods can be used . Some researchers [65, 85] have used an unsupervised

method, k-nearest neighbors, in color image classification. Pixels are assigned to

classes based on the distribution of their "nearest neighbors". Usually the classifica-

tion algorithm selects the K pixels with known classes which are closest to the pixel

being investigated and selects the class which has more pixels in the neighborhood.

One of the drawbacks of this method is that the process of searching the k-nearest

neighbors for each point is time consuming. Another Clustering method, the k-means

algorithm, also has been used in color image segmentation tasks [1] . Traditional k-

means methods aim at minimizing the sum of squared distances of all pixels to their

preassigned cluster centers. It involves an iterative scheme that operates over clus-

ter centers. The disadvantages of this technique are that it is time-consuming and

that the number of cluster centers must be known in advance. Some variants of the

k-means algorithm use the unsupervised method. These variants are more adaptive

since estimation methods are used to compute the initial clusters. However, some

of the resulting clusters may be high density spots within a limited local region.

Such clusters cannot constitute significant features themselves. They, in turn, should

belong to some other clusters. Moreover, the effectiveness of traditional clustering

methods lies in the assumption that individual clusters obey multivariate normal

17

distributions.

To avoid the drawbacks mentioned above, Comaniciui and Meer [25] have used a

non-parametric density estimation procedure based on the mean shift algorithm to
~.,.

estimate density gradients. First, an adequate number of search windows are defined

at random locations in the space. The mean shift vector is then computed and the

search window is translated by that amount . This is repeated until convergence.

The computation model of this method is simple, but this method only focuses on

extracting high density centers. For some images, finding the cluster centers means

a key step for segmentation, while for some others, the issue is how to discern those

pixels with close values but belong to different clusters.

When the standard pixel values corresponding to each specific color are known

in advance, the categories of pixel values can be told through their distances from

the standard ones. Valavanis [90] takes advantage of this observation in his method.

A single-value total color difference (TCD) measurement for scene segmentation is

proposed and evaluated experimentally. Both chrominance and luminance difference

criteria are considered. The luminance component is defined by a unit in luminance

change expressed in terms of MacAdam's Just Noticeable Difference (JND) . The chro-

maticity component is derived directly from JND. Experiments using both pixel and

region analysis show that the proposed TCD can effectively indicate object boundaries

over a wide range of luminance changes. This method is based on the assumption

that a color clusters around a standard value. It cannot take into account other fac-

18

tors, such as overlapping colors, poor scanner quality, or boundary colors. It is very

easy for human vision to distinguish different colors, but it is difficult to assign the

standard values.

The methods mentioned above assume that the same color in a map image has

approximately the same pixel value. The pixel variance is only caused by noises and

random errors. Therefore, the pixel values will be centered around cluster centers.

The closer any two pixel values are, the more possibly they belong to the same cluster.

The methods are suitable when prior knowledge about pixel behaviors is known and

the pixel changes are predictable. The difficulty is that without enough knowledge on

the color pixel distribution, the difference criteria are difficult to obtain. Therefore,

more accurate and flexible methods are needed to avoid the above problems.

Neural networks are another class of color clustering techniques. The strength

of neural networks is their learning and adaptation abilities via parameter training.

It has been argued that a three layer neural network can form arbitrary complex

decision regions and can therefore separate populations of patterns [27, 95] . How­

ever, the quality of training depends on the samples given. Some pixel classification

methods have used neural networks to perform supervised classification tasks. There

are different kinds of neural networks, each of which, in its own way, has advantages

and disadvantages. Yan and Wu [91] proposed a multi-layer neural network based

technique for extracting characters and lines from geographic color map images. This

neural network is first trained with feature values at known characters, lines, and

19

background pixels, and then used for image classification. The image segmentation

problem is treated as a pattern classification process and a neural network classifier

is used to generate non-linear decision regions to separate the foreground and back-
t;~

ground of an image that may contain a number of non-uniform regions with different

colors. This method produces better results than the adaptive thresholding method

does. However, it aims to separate lines and characters from the background. The

characters, river lines and road lines are treated as one feature, and the issue of further

separating them is not addressed.

Unsupervised learning methods, such as Hopfield networks, competitive networks

and self-organizing maps (SOM) , are also used in color clustering [62, 63, 5, 6]. Most

of them combine clustering and histogram threshold techniques. Color image segmen-

tation is frequently based on pixel classification, either supervised or unsupervised,

without considering spatial information. By applying histogram analysis, the promi-

nent color clusters are obtained. A segmented image can be obtained by assigning

the mean color of each cluster to the corresponding pixels of the image. The meth-

ods assume that homogeneous regions in an image correspond to color clusters which

generate at least one visible histogram peak. Tseng et al. [64] proposed a circular

histogram thresholding which takes the periodic property into account . The hue

component plays a very important role in recognition, because the human eye can

only detect a few dozen intensity levels in a complex image, but can perceive thou-

sands of chromatic variations. This method uses a 3-D cylindrical colorspace (IHS) ,

20

where hue is a periodic function of angles with period 360°. Unlike the tradit ional

histogram method, this method does not treat pixels at hues H(0°) and H(359°) as

two far-apart clusters, so that it yields better segmentation results than a traditional

histogram method does. The drawback of histogram-based methods is that t heir ef­

fectiveness relies on the proper threshold selections. The segmentation results are less

satisfactory when the histogram does not provide distinguishable cluster information.

There have been growing interests in using fuzzy logic theory in color image seg­

mentation [11 , 12] . Unlike t raditional color clustering methods, which make crisp

decisions about whether a pixel belongs to a cluster, fuzzy logic based methods allow

ambiguous boundaries between clusters. Huntsberger et al. proposed an iterative

optimization method, which decides the memberships of a pixel in each cluster ac­

cording to the distances between the pixel and the cluster centers. A criterion function

is used in each iteration in order to minimize the distance between a pixel and its

cluster center, and to maximize the distances among cluster centers.

Fuzzy c-means is a clustering method that has been applied to various color image

segmentation tasks [13, 14]. Lim and Lee [2] presented a two-stage (coarse and fine)

segmentation algorithm. Histogram thresholding is used for coarse segmentation with

the purpose to automatically find the number of clusters and the center of each cluster.

At the fine stage, fuzzy c-means is used to assign the unclassified pixels to the closest

cluster using the detected cluster centers . Like most thresholding techniques, this

method is based on t he assumpt ion that the histograms show valleys that suggest

21

coarse cluster information.

Physics based techniques [3, 4] are based on physical models which describe the

effects of light reflecting, shading, and highlights in a scene, especially the reflection
,.~

and illumination interaction that is responsible for the color differences in an image.

Through the modeling of the luminance and reflection behaviors of objects in the

scene, these approaches analyze the influences of models on pixel values and establish

criteria to classify the pixels. The traditional methods of color image segmentation

suffer from too many erroneous regions because they have not accounted for the in-

fluence of optical effects on object colors [8, 9]. Physics based approaches are used to

deal with various color images. Unfortunately they are seldom used on map images.

Drew et al. [26] have proposed a linear-transform approach to describe illumination

change among RGB channels within a certain illumination environment. An underly-

ing principle different from that usually suggested was proposed. The resulting new

method , the Linear Color algorithm, is more accurately illuminant-invariant than the

previous methods. An implementation of the method uses a combination of wavelet

compression and DCT transform to fully exploit the technique of low-pass filtering for

efficiency. The method can produce very encouraging results for extracting objects

that cover continuous regions.

Klinker [89] proposed an approach based on an intrinsic model to describe the ef-

fects of shading and highlighting in a scene. This method shows that the description

of physically feasible color changes on one object can guide an algorithm in interpret-

22

ing color images. The algorithm finds characteristic color clusters in an image and

relates their shape to hypotheses about the object color and degree of shading, as

well as the strength, position, and color of the highlights on the object. Although the
*-~

photos of the images used in this study were taken under a controlled condition in or-

der to eliminate certain noise effects, this method demonstrates that physical models

can lead to reliable and effective color image segmentation methods. One limitation

of the physics based methods is that they are only used to model light interaction

phenomena in a scene. Light interacts in many complex ways with the environment,

and there is no single model that can take all the factors into consideration and give

an exact description of pixel variations in the scene. Therefore, most methods based

on physics models have to concentrate on relatively few significant factors that affect

pixel values.

In the methods discussed above, color information is primarily used for segmen-

tation; spatial information is not taken into consideration. In many cases, spatial

information also plays an important part in the determination of color clusters. Hop-

field based methods are such an example of considering relations of neighboring pixels.

The Hopfield network provides a general algorit hm for finding approximate solutions

for "hard" combinatorial optimization problems [7, 62] . The segmentation problem

is treated as one of minimizing a suitable energy function for Hopfield networks. In

the design of the energy function, the assignment of adj acent pixels to the same class

is favored. Huang [7] presented a method to locate the significant peaks by applying

23

histogram analysis and designed three different networks (one for each color feature).

The segmentation results of the three color components are combined to get t he final

image. RGB color features, the Il , I2 and I3 color features, and the Karhunen-Loeve
~~

transformation of the RGB color features (KL-RGB) have been used in the exper-

iments. Campadelli [62] proposed an algorithm to build a single Hopfield network

with M x N x S neurons to segment color images. M, N are the image size, and Sis

the number of selected clusters obtained by histogram analysis. For both algorithms,

histogram analysis is very important since it produces the coarse segmentations and

determines both network structures and their initializations. In the algorithms, t he

spatial information is also considered in order to produce consistent color pixel label-

ing.

Region growing and splitting algorithms are usually used in combination with

color, contour, and shape information for color image segmentation [44, 61, 74, 79].

Okamoto [92] used a method for color segmentation by integrating color and range

data. The segmentation consists of two steps: initial segmentation and region split-

ting. The initial segmentation is based on the histogram of the entire image. The

brightness, hue and saturation information are used. In low saturation regions, hue

information is not important, so it is not used. The image is first divided into two

categories according to the saturat ion. Low saturation regions are segmented by

brightness, and high saturation regions by brightness and hue. Since similar color

regions may still be grouped in one region, they should further be split into the corre-

24

sponding regions using edge information obtained from both the brightness and hue.

Initial regions are then merged by using color and range information. However, this

method is only effective in segmenting 3-D scenes with some 3-D objects of regular

shapes and planes, such as~"indoor scenes with a few boxes, tables and walls.

So far there is no universal methodology for color image segmentation. In other

words, all the currently existing methods are application dependent, and no colorspace

representation is applicable to all color images. Color map images are one class of

color images that have attracted much less attention than others. In addit ion, while

many of the assumptions and pixel level treatments can be applied, with or without

adaption, to a vast range of color images, such assumptions and treatments are not

suitable for color map images, not even to a small degree. Most of the current work

on color image segmentation is performed with the goal to segment objects or regions

from one another. Most approaches define objects (regions) as continuous areas on

images that have similar color, or show certain patterns of behaviors. Color map

images, on the other hand, display a largely different nature from those color images

that have been heavily researched. The most significant features on maps are line

features. They extend across a large portion of a map and usually a whole map,

and they do not bear any resemblance to usual regions. They express fairly complex

spatial phenomena, yet the pixels they take only constitute a small percentage of the

total pixel number of an image. Moreover, overlapping colors make the segmentation

tasks much more challenging. Some segmentation techniques, such as histogram

25

thresholding, clustering, and region growing, cannot be applied to color map images

in the usual way, since t he thin line features can easily become ignored. It is essential

to supplement any solutions with a priori knowledge of the specific color images. As

a result, it is necessary to develop a color segmentation method specifically designed

for color map images.

2.2 Automatic Map Interpretation

A number of works in automatic map interpretation have been reported. They all

work towards revealing spatial properties of geographical entities and their relation­

ships with minimal human intervention. For a human the process of understanding

a map is associated with forming a mental image through his vision system [43]. Au­

tomating such a process using computers is a very difficult task. Human beings treat

the map pictorially as a whole, but computers have to start the process from primi­

tives such as lines and points and go through a lot of computations before reaching

a conclusion. To verify a spatial fact (such as parallelism of two roads) using human

eyes is much easier than using computing algorithms. Most of the high-level image

understanding methods use a knowledge based approach [46, 48, 66, 71, 72, 69], which

tries to incorporate human intuition and experience.

26

2.2.1 Low Level Image Processing Techniques

After the color segmentation stage, a number of map layers containing various features

are produced. Feature extraction is always the key step in the whole recognition

process. The purpose of feature extraction is to discern interesting features from

a group of features. It can be found in the literature that most of the research

concentrates on the design of algorithms for features with topologic attributes, such

as curve lines, characters, and symbols. To extract features from map images, different

situations have to be dealt with [42, 45, 53, 60]. Most of the time we need to apply

different techniques to solve different problems. Different techniques in combination

may undertake the overall task of feature extraction. Therefore, the techniques in

feature extraction can be divided according to the sub-problems to solve. They are

usually divided into the following categories: (1) techniques to separate different

objects [46, 55, 56, 58, 73, 81], (2) techniques to detect line objects [41, 47, 50, 70], (3)

techniques to track and reconstruct defective line objects [54, 56, 67, 76, 80, 86, 87, 88],

and (4) techniques to vectorize line objects with accuracy [78, 93, 94]. Since the

quality of low-level feature extraction methods has extensive impact on high-level map

understanding, their capabilities and limitations can be viewed as part of the domain

specific knowledge that high-level understanding should take into consideration.

27

2.2.2 Knowledge-based interpretation

Knowledge-based interpretation is a necessary tool toward application-independent

systems. The knowledge can take many forms, depending on the type of application

and the knowledge engineer 's design.

Starting from the examination of various aspects of human visual information

processing, Tjahjadi and Henson [68] proposed a knowledge-based model for image

understanding. The model was proposed for depicting general principles in the knowl­

edge acquisition and application. Only a basic structure has been given and a lim­

ited detailed knowledge has been provided. Mayer [29] presented an approach for

knowledge based automatic extraction of map objects, such as roads, pavements, and

buildings. This approach was based on a multi-level model. Each level describes

objects and certain relations. However, only two relations (part/part-of and spe­

cialization/ generalization) are considered. Only model-driven and data-driven search

strategies are given as the knowledge utilization mechanism. Domain specific relation

semantics and knowledge inference mechanism are not provided.

In order to make knowledge-based systems practical, many researchers confine

their work within certain types of drawings instead of general images. Janssen [32]

reported a model based method for cadastral map interpretation. This kind of in­

terpretation is directed by the models, which specify map objects to be recognized,

t he properties these objects should possess, and how to detect these objects . The

limitation of this method is that it lacks flexibility. This method works only with

28

"well-defined" objects, such as straight lines, curved lines, and characters. The model

can clearly define the criteria and thresholds the objects should satisfy, so that the

interpretation algorithms cart' check against these criteria and thresholds to determine

which category an object belongs to. In topographical maps, objects intervene with

one another. It is hard to specify the criteria and thresholds without considering

the effects of neighboring objects, let alone handle the high-level understanding task

involving hierarchies of various objects.

Abdelmoty [30] explored a rule-based method for ordnance survey map reading,

especially rules for road network identification and road naming. This approach de­

pends on identifying rules which exploit spatial properties of map objects. It assumes

that a map is represented by a set of lines and points with associated feature codes.

Each map feature (such as an island) corresponds to several rules that are formed to

express how t'o search the map and find the feature by calculating geometric and topo­

logic attributes (distance, connectivity, and angle between vectors). Except at the

rule expression level, the map knowledge is still represented in a procedural way. Most

of the spatial attributes and relations are not symbolized explicitly. Furthermore, de­

spite the efficiency and simplicity of reasoning, vectorization introduces unwanted

inaccuracies. VVithout morphology information, mere calculations of geometric and

topologic attributes may not be sufficient for extracting map features.

Hartog [31] described a knowledge-based interpretation method for utility maps.

Through primitive extraction, a representation of an image by its connected compo-

29

nents is obtained. The prior knowledge in the method is represented in a semantic

network. The primitives and the semantic network are used as the input of the

interpretation process. The search strategy of this method is based on the context

reasoning mechanism. The interpretation process proceeds by matching the geometry

description of the object type being searched with that of primitives, and by adding

a series of new search actions based on the relationships specified by the semantic

network. One issue with this method is that generating new search actions is not at

all t rivial; that is, it is not as simple as finding related object types and updating the

search list with newly expected types. For example, relationship names "contains",

"chained with", and "bridge over river" require well coordinated search actions and

properly stored history information. The drawback of the semantic network based

methods is their lack of precise semantic characterization [10]. The ultimate result of

this was that every system behaved differently from the others, in many cases despite

virtually identical-looking components and even identical relationship names. Differ­

ent users can have very different interpretations of the relationships. Therefore, in

many occasions, the success depends on whether a semantic network suitable for the

understanding task is identified, and proper reasoning strategies are employed.

The following are the main problems most researchers attempt to attack: (1)

Identifying the knowledge representation for map objects and relationships to be rec­

ognized, and (2) Establishing an efficient search strategy for the application of the

knowledge. However, relatively little research has been described regarding the is-

30

sue of capturing accurate semantics of map objects and relations. In addition, most

existing map interpretation methods do not use declarative knowledge to represent

domain knowledge other than geometric properties of map objects. In order to make

improvements in drawing understanding, the knowledge representation should be bet­

ter organized and structured [59, 77]. Description Logics [10, 38, 21, 22, 23], which

evolved from semantic networks, formalize the semantics of objects and relationships,

and in the mean time retain the taxonomic structure of semantic networks. Descrip­

tion Logics provide us with a tool to express and reason with complex definitions of

objects, classes, and relations. The author proposes to use DL languages to formally

describe geographical entities and their relationships in map understanding systems.

Not only geometric and topologic attributes of map objects, but also the relations

among map objects, task specific knowledge, states of interpretation process, and

other control knowledge can be represented explicitly with accurate semantics. This

lends us the opportunity to achieve maximum separation of declarative and proce­

dural knowledge, and therefore to adopt more flexible search strategies. Especially

for topographic maps, DL based approaches make it easier to incorporate human in­

tuition and expertise into domain knowledge representation, such as the expertise to

remedy distorted features resulting from the low-level primitive extraction methods.

Furthermore, the declarative knowledge can be easily adapted and reused for new un­

derstanding tasks, because it provides improved readability and better understanding

of map features.

31

2.2.3 Description Logics Based Methods

There are two categories of approaches for knowledge representation: formal and non-

formal methods. Usually in the development of domain applications the non-formal

methods are more popular, because they can evolve from intuition. Frequently we

can start building applications without capturing all facts and relations about the

world. A lot of problems can be left to be explored, refined, and solved during the

later stage of the process. Some formalism may be used, but only to be expected

as general purpose thinking or idea exchanging tools. The formal methods require

unambiguous identification of properties and relations. All facts of interest that may

participate in the future inference process have to be explicitly symbolized and their

semantics to be clearly defined. No conflicts may occur in the formal specification,

which is a requirement difficult to meet. Formal methods may seem unnatural for

human beings because most of the time human begins make decisions based on belief,

experience, and natural reasoning, instead of formalized logical reasoning. Nonethe-

less, through intensive analysis and well understanding, formal methods can be used

in many domain applications, and the same solution can be applicable to different

types of problems. Description Logics are such a modeling tool that provides the

power and general machinery of formalism. It also allows the use of intuitive terms

that are similar to the ones we currently use.

Current DL languages are derived from KL-0 E [39], which is a direct result of

formal analysis of the shortcomings of semantic networks. It introduced most of the

32

key notions on DL languages. Most of the focus of t he original work on KL-0 E

was on how to present the concepts and how to reason with these concepts. The key

characteristics of Description Logics reside in the formal definitions of the following:

(1) Elements in the domain; (2) Concepts that are groups of elements sharing cer­

tain common properties; (3) Relationships of concepts; (4) Attributes of elements;

and (5) Complex concept terms constructed by atomic concepts and roles. The basic

relationships among concepts are value restrict ions (VR.C) and exists-in restrictions

(::JR.C). A DL knowledge base includes two parts: T-Box and A-Box. Concepts are

given set-theoretic interpretation: a concept is interpreted as a set of individual ele­

ments and a role is interpreted as a set of individual relations. The syntax and the

semantics make it suitable for modeling all kinds of applications at an abstract level.

Description Logics have been used in the following domains: natural language pro­

cessing, software engineering, database management, configuration, medicine, digital

libraries, web-based information system, and other domains [15 , 16, 17, 18, 19].

Recently, there has been a growing interest towards content based image retrieval.

It shares some common features with image understanding in terms of knowledge

representation. Both t ry to recognize some objects or features of images by some kinds

of thermal or structural descriptions of visual properties (color, shape and texture).

The difference is that content based retrieval searches a collection of images and

finds a matching image, while image understanding needs to retrieve those objects of

interest and their relations on a single image. Meghini et al. [40] presented an image

33

retrieval model based on DL. A syntactic representation in DL to represent image

form and image contents is given, as well as a formal query language. However, no

example is given to demonstra te the application of such a model. The effectiveness

of the model is yet to be verified.

34

Chapter 3

Color Segmentation of Map Images

3.1 Overview

Segmentation of color map images is very challenging because of the difficulty to

capture pixel variations in overlapping and boundary areas along thin line features.

This dissertation provides an effective method to solve this problem. Based on a

physics model that describes the reflection property on maps, two heuristics have

been derived which suggest certain pixel variation behaviors in overlapping areas and

along boundary areas respectively. Fuzzy neural networks combined with self adjust­

ment components have been developed that dynamically adjust sample pixels among

different sample clusters in fuzzy network training. A feature that distinguishes the

proposed fuzzy model from previous supervised neural computing methods is that,

by adoption of self adjustment architectures, it does not strictly require that all sam­

ples should have their desired outputs given in advance. For some sample data, the

35

desired outputs are decided automatically in learning. This can make preparation of

sample data much easier when obtaining representative samples from overlapping and

boundary areas. The self adjustment ability provides a flexible way to design a fuzzy
.~

model with a priori knowledge. Experiments show that the developed method can

produce satisfactory segmentation results and is capable of capturing pixel variations

which are crucial to guarantee high segmentation quality.

3.2 Introduction

Most existing color segmentation algorithms work with the assumption that each

of the different colors on a color image has similar pixel values. This assumption

is suitable and applicable for segmenting large color regions in images, combined

with other supplementary image processing techniques, such as region growing and

color region grouping. However, the features of interest on maps include not only

regional features, but also line features which may extend throughout the whole map.

Before subsequent recognitions, the information of line features must be extracted

with certain accuracy, especially in complex regions, such as areas where different

features intersect and overlap.

So far the color segmentation methods that aim at line feature recognition are

not extensively researched. It is true that some image segmentation methods based

on gray-scale value information can also be used to deal with color images if color

images are treated as having only the intensity component . But they will suffer the

36

information loss when pixels of different colors happen to have the same gray-scale

value.

Most color segmentation methods fall short to deal with the color segmentation

of maps because of the following reasons: (1) Some line features are very thin; (2)

Color variations along a line feature that spreads all over the map are difficult to

grasp; and (3) Colors overlap with one another. This research is special in that color

information of thin line features is captured in a much more accurate manner.

A novel method that is capable of capturing color pixel variations and adaptively

learning from samples is presented in this chapter. In Section 3.3, a reflection model

is given to describe the light interaction on a map surface. The model indicates that

pixel variations normally happen along boundaries and in overlapping areas, and obey

certain heuristics that have been exploited to develop the self adjustable structures

described in Section 3.4.2. In Section 3.4, a fuzzy neural structure is presented,

which is able to classify base colors through training. In Section 3.4.2, after the

limitations of the fuzzy neural network are analyzed, it is shown how to incorporate a

self adjustment structure into the neural network in order to capture pixel variations

without supervision. Finally, experimental results are given in Section 3.5.

3.3 Reflection Model

To study the physics that cause pixel variations on topographic maps, the map pro-

ducing process is first briefly reviewed in this section. The printing of a topographic

37

map involves several steps. Once the map manuscript is compiled , a map-size film

negative is obtained from the compiled manuscript by photographic reduction. The

image on this negative film is th~n photochemically reproduced on several thin plas­

tic sheets to which a soft translucent coating (called scribecoat) has been applied.

The next step is scribing. Engraving instruments are used to etch the map's lines

and symbols. This is done by removing the soft coating from the hard plastic guide

sheet . A map is edited several times before final scribed sheets are completed. A

lithographic (photo-offset) plate is made for each color. A series of scribed sheets,

each containing the map details of a single color, is prepared from the multiple plastic

sheets. The actual printing is done by using a set of special inks. For each color, t he

map paper is put through the press once. Each t ime a new plate is put in the press,

and the printing ink is replaced.

When digital files are available, computer-assisted technologies are increasingly

used in the production of new maps and revision of existing ones. Some maps are

printed in CMYK (four-color offset printing) method. At first , four color printing is

not appropriate for map printing because of t he difficulty to print very thin lines. On

some occasions, publishers can print color maps on demand using CYMK method

for customers with t he help of special raster technologies. However, the majority of

maps produced by USGS and NTS are still printed in conventional ways. In this

dissertation, the color pixel variations on the traditionally printed maps are studied.

T he light source and illumination conditions of a scanner are strictly controlled.

38

This lends us an opportunity to study the physics of light reflection from paper

maps. When a ray of light hits a paper map, it is reflected on the paper or the color

pigments painted. Depending on where a ray hits, three cases are considered: (1)

hits the paper directly; (2) bits areas painted with only one color; and (3) hits areas

painted with more than one color. It is assumed that a piece of paper is made of

opaque material, whereas pigments used on maps are considered semi-transparent

materials. The optical properties determine the power distribution spectrum of the

reflected lights.

Light Source

Pign1.ent layer a

Pigment layer b

Figure 3.1: Light reflection on an area painted with one color.

Let us consider the light reflected from a point on the map where only one color

A is painted. A certain percentage of the light that penetrates through the pigment

layer is reflected on the paper material, as shown in Figure 3.1. The total reflected

light Ca(.A) can be described as a mixture of the light Ta(.A) reflected by color A

39

pigment layer and the light Tp(.A) reflected by the paper beneath the pigment layer:

(3.1)

Moreover, it is assumed that the reflected lights Tp(.A) and Ta(>-) are proportional

to the amount of light energy that each layer receives. Therefore, the reflection

equation 3.1 can be rewritten as

Ca(A) = ka · Ra(A) + (1 - ka) · P(.A) (3.2)

where 0 ~ ka ~ 1 gives the percentage of energy that the pigment layer receives, and

Ra(>-) and P(.A) are reflected light spectral distributions when the full amount of light

energy is received. For the same reason the reflection equation for color B is given by

(3.3)

When two colors are painted on the map, for example, when A is painted on top of

B, part of the amount of energy which was solely received by B is taken away by A.

Thus, the strength of the reflected energy distributions of both layers will be reduced

to a certain level because of the existence of each other. The energy which was solely

applied on layer A has to distribute among A and B. Suppose that k2 percentage is

applied on layer B , while the other 1 - k2 percentage is on layer A. As a result, the

40

reflection energy distribution on layer A should be (1 - k2) · ka · Ra(>..), and that on

layer B be k2 · kb · Rb(>..). The energy distribution Cab(>..) from the overlapped area is

Cab(>..) = kt · (1 - k2) · ka · Ra(>..) + kt · k2 · kb · Rb(>..)

+(kt- k1 · k2 · kb- kt · (1- k2) · ka) · P(>..) (3.4)

where 0 < k1 < 1. When two layers of pigments are painted and more energy is

absorbed, · the reflection strength on each layer is correspondingly weakened. The

coefficient k1 reflects this phenomenon. From the equations above a linear expression

can be derived, that is,

(3.5)

Note that k 1 depends on k2. It is found that k1 -+ 1 when k2 -+ 0, and also k1 -+ 0

when k2 -+ 1. This means that Equation 3.4 degrades to Equation 3.2 or 3.3 when

k2 = 0 or 1 respectively.

The scanner sensors consist of a set of three receptors with sensitivit ies s1 (>..),

s2 (>..) , s3 (>..) , and the light source spectral power distribution is given byE(>..) . Thus

the RGB value p at a certain location on the map is,

p = k · J E(>..) · C(>..) · si(>..)d>.. for i = 1, 2, 3. (3.6)

41

where C (>.) is t he reflection and k is the scaling constant. Therefore, the RGB values

of pixels corresponding to color A , B and the overlap color of A and B also obey the

linear relationship. That is,

(3 .7)

with Pab, Pa, and Pb being vector representations for color A , B , and their overlapped

color respectively.

Based on this reflection model, two application specific heuristics are discovered

and given below:

• Heuristic H.l: Plotting the vectors representing colors A , B and their over­

lapped color into the RGB space, the overlapped color of A and B will distribute

within a narrow wedge shaped space which is defined by color A and B , as il­

lustrated in Figure 3.2. Since 0 < k1 , k2 < 1, (1 - k2) · Pa + k2 · Pb falls on the

line between Pa and Pb, and Pab is confined in the narrow wedge shaped space

defined by Pa, Pb, and the origin of t he feature space.

• Heuristic H.2: The RGB values of pixels along the boundary areas of two

neighboring colors approximately obey a linear distribution. That is

(3 .8)

where Pa, Pb are RGB values of two neighboring colors A and B . Two cases are

42

0

Figure 3.2: Distribution of overlapping colors.

considered: (1) the paper color and a pigment color, (2) two pigment colors. For

case (1), Equation 3.2 holds. For case (2), the neighboring areas are regarded as

overlapping areas. Since the degree of overlapping is low, k1 ~ 1. With k1 = 1,

Equation 3. 7 describes exactly a linear relationship.

Visualization of the pixel color distribution with the aid of a 3D tool Geomview

conforms to these two heuristics.

3.4 Fuzzy Neural Approach

In the color map situation, it is important to embed a priori knowledge about the pixel

variation behavior into the proposed color segmentation system as much as possible.

The fuzzy neural model has been proven to be a useful tool to construct intelligent

systems. The proposed fuzzy neural method for segmentation of color map images is

43

described below.

3.4.1 Fuzzy Neural Architecture

Input s t--A------1 0· l

Pattern

First Second Third Fourth Output

Figure 3.3: A fuzzy neural network to classify m colors.

The architecture of the proposed fuzzy learning model, shown in Figure 3.3, has

three inputs and m outputs 0 1 , 0 2 , ... , Om, which correspond to the m colors to

be classified. There are four layers in the fuzzy neural network. Nodes at the same

44

layer have similar functions. The first layer is the input layer, which takes three input

values that correspond to the HSV components of a sample pixel. The second layer

is designed as a fuzzy member function filter, which measures the membership grade

of a fuzzy linguistic value, such as "Hue is around O(red)". A color cluster i (i=1,

2, ... , m) corresponds to three MF nodes in the second layer. The three MF nodes

connect to an N node, the weighted sum of whose output and a constant 1 is taken

as the input of an f node at the fourth layer. The output Oi of this f node suggests

the desired target of color i. In this model the generalized bell function is chosen as

the member function:

1
MF(x) = ------=-

1 + I x~c 12b
(3 .9)

where a, b, c are the parameters which define the bell shape of the function (see Fig-

ure 3.4) . By iteratively updating these parameters, the learning algorithm can reshape

member functions until they suggest cluster centers in the most approximate fashion.

The output of an N node in the third layer is given by

i=1, 2, ... , m (3.10)

where Oh,i, Os,i, and Ov,i are the outputs of the three MF nodes of the second layer.

An N node ensures that the output is high (close to 1) only when all its three input

values (hue, saturation, and intensity) are high. Each output gives the fire strength

of a rule, such as

45

0.9

0.8
~'·

0.7

0.6

o.s

0.4

0.3

0.2

0.1

0
-10 -5 0 10

Figure 3.4: A generalized bell function .

IF Hue is around Hi , and

Saturation is around Si, and

Intensity is around Ii

THEN Classify the pixel as Color Cluster i.

Related to a node in the last layer is an adaptive function

1
f(x) = 1 + e - (wl ·02+w2) (3.11)

where wl and w2 are weights associated with the connections between the third and

fourth layers. This function is used to enhance the output from the previous layer.

The learning algorithm uses a steepest descent method that is often referred to as

backpropagation learning. The error at the output nodes is propagated backwards to

46

the first layer. The set of parameters to be trained are: wl, w2 in Equation 3.11 , as

well as a, b, c in Equation 3.9. The calculation of the gradients for all other weights

except a, b, c is well known, so only the error computation for the MF nodes at the

second layer is given here. The weight corrections 6..a , 6..b and 6..c are defined by the

delta rule:

(3.12)

(3.13)

(3.14)

where rJ is the learning rate parameter, and 6 is the error at this layer, which is

defined by

(3.15)

The partial derivatives of the member function MF can be calculated as follows:

oMF

oa
2b I x-c l2b 2b
- a = -MF(1 - MF)
a (1 + I x~c l2b)2 a

47

(3.16)

oMF =-2lnl x-c I I~ 12b =-2lnl x-c IMF(I-MF)
ob a p + 1 x~c l

2
b)2 a

(3.17)

oMF = 2b(x- c) I ~ l(2
b-

2
) = { 0,

OC a2 (1 + I x-c 12b)2
a x~/viF(I - MF),

if X= C,

(3.18)

if X ::j= C.

3.4.2 Self-Adjustment Architecture

In a supervised learning system, the performance of a network depends on sample

patterns provided. If samples are not sufficiently representative, the trained network

would not be powerful enough to classify all the color pixels. Thus, it is expected

that sample points should catch pixel variations of the color they represent. It is

necessary to obtain samples from boundary and overlapping areas where most of the

pixel variations take place. When preparing samples, there is a dilemma. Boundary

and overlapping areas are places where different pixels are densely mixed. They pro-

vide the essential information for capturing pixel variations, but it is hard to discern

different samples. Even when extreme care is exercised by a user to select samples

from these areas, some "noises" may still creep in. These noises will greatly degrade

the network's performance. If the noise level rises to a certain degree, the network

training will not converge. Therefore, the very nature of map color segmentation

48

necessitates a classification method that should not strictly require all the represen­

tative samples be collected and grouped into distinctive clusters by a human operator

in advance. The method should be able to incorporate a priori knowledge into the

network and have the ability for self distinguishment and adjustment. The self ad­

justment structure developed below meets these needs. It exploits the two heuristics

described in Section 3.3.

The problem and the self-adjustment architecture are described as follows. Sup­

pose that N colors, C1 , C2, ... , CN, need to be classified, and that N + Nf sample

pixel sets, S1 , S2 , . . . , SN+M can b e obtained. These sample sets are categorized into

two groups. The first one is the pure color group GP = { S1, S2 , .. . , SN } , which consists

of sample sets obtained from areas painted with solely one color. The second is the

composite color group Gc = {SN+l, ... , SN+M } , in which each of theM sample sets

is obtained from "vague" areas where most of the color pixel variations are difficult

to capture. An element in Gc is called a "vague" cluster in which the "vague" pixels

come from overlapping or boundary areas. It is difficult to determine exactly which

cluster a "vague" pixel belongs to when a human operator is preparing samples. The

samples of a composite color group thus cannot be readily used to train the neural

network. This causes a design problem. If Gp samples are used in the t raining, the

pixel variations cannot be captured . Additionally, the Gc samples have much pixel

variation information hidden behind but cannot be exploited by a traditional super­

vised learning method. Our solution is to incorporate a self adjustment architecture

49

into the fuzzy model introduced in Section 3.4.1. Hence Gc samples can now be

included in the training process. In this way it enhances the network's ability to cap-

ture pixel variations. The flJ;nction of this fuzzy model is to gradually find the cluster .
centers, while the purpose of the self adjustment architecture is to dynamically adjust

the sample sets with the environment change.

'

i §~ w2 Q(~
0 ' ~;:;:".;\ w ~

i 0~ f -----· S;

: 0 /
'

Input s t---A----.------7"­

Pattern

First Second

Oh,i w2

w~
·---=-~-3>(N l--_:_:__::=------.>(f l------ s-1

Third Fourth Ou tpu

Figure 3.5: H.l structure shown inside the dashed line area.

Two types of self adjustment structures have been developed: H.l structure and

50

H.2 structure, which aim to exploit t he two heuristics described in Section 3.3 respec­

tively. Figure 3.5 schematizes a typical H.l structure, which is designed to capture

pixel variations in an overlapping area. The H.l structure is built on the three subnets

corresponding to the three clusters si, sj, and sk, where sk represents the overlapping

cluster of Si and Sj. An adjustment component is incorporated into the network in

Figure 3.3. Each small circle inside the dashed line box represents the cluster center

component of its corresponding MF function (i.e., parameter c in Equation 3.9) . The

adjustment component takes these member function parameters from the second layer

as inputs and produces signals (refer to Equations 3.19- 3.21 on how the adjustment

component produces outputs) to guide samples to one of the three clusters si, sj, or

Sk. Suppose that a sample set Sk of group Gc that is from an overlapping area of two

colors A and B is to be used in the training. Since pixel samples in Sk are obtained

from "vague" areas, it cannot be told exactly which color cluster each sample belongs

to in advance. However, according to the type of the "vague" area, those color clus­

ters over which the Sk samples may distribute can be easily told. Samples in Sk may

belong to one of the following three color clusters: A , B , or overlapping color of A

and B (let us denote it as O{ab})·

In a supervised training process, a target value should be assigned to a sample

before it is fed into the network. While for Sk samples, no predefined target value

is available. Therefore, an adjustment component is employed to guide the samples

to their proper target color clusters. On each iteration of the learning process, an Sk

51

sample will be temporally guided to one of three color clusters A , B , or O{ab} , de-

pending on which is t he most favored by the adjustment component . The adjustment

component uses the following criteria to set the direction where the Sk sample should ..
go. From Heuristic H.1 , it is known that O {ab} sample values should be restricted in

a narrow wedge shaped space defined by A and B. The cluster centers corresponding

to A and B have been suggested by the parameters of the member functions of t he

second layer. In Figure 3.5, parameters Ch,i, Cs,i and Cv,i suggest the cluster center

of color A , Ch,j, Cs ,j and Cv,j suggest that of B , and Ch,k, Cs,k and Cv,k suggest that

of O{ab} · To decide if O{ab} is favored, the adjustment component checks if all of the

following three inequalities can be satisfied:

(3.19)

(3.20)

Vs < min(Cv,i, Cv,j) (3 .21)

where H5 and Vs are the hue and intensity values of the sample. dist(U, V) is defined

as follows

{

I U - VI
dist(U, V) =

360- 1 u- vI

if I u - v 1 ~ 180

if I u - v 1 > 180

The above inequalities select those samples that fall into the narrow wedge shaped

52

--------------------------------- - --- ---- - ----

)---------' S;

Inputs t---X----­
Pattern

First Second Third Fourth

Figure 3.6: H.2 structure shown inside the dashed line area.

S· J

Outpu

space and have intensity values smaller than the samples of clusters si and sj. If these

conditions are satisfied, the sample is treated as a color O{ab} sample; otherwise, the

adjustment component checks the outputs of nodes Ni and Nj. The node with a

sufficiently large output will be favored and the sample will be treated as belonging

to the corresponding cluster.

An H.2 structure is shown in Figure 3.6, which captures pixel variations along

53

boundary areas. It is used to adjust samples between clusters Si and S1, which are

the sample sets of two neighboring colors. Ch,i and Ch,j are member function param-

eters used by the adjustment component to decide the adjustment criteria. Due to

Heuristic H.2, the adjustment component can use the following criterion to determine

the direction in which samples along a boundary area are adjusted according to the

target value computed as follows:

target = { si,
sj) otherwise

3.5 Experiments and Results

To demonstrate the effectiveness of the proposed fuzzy-neural approach, a prototype

system has been developed to segment colors on topographic maps. The system is

running on SUNOS 4.1.4 and Redhat Linux 6.2. Experiments are performed on six

sample color images taken from some topographical and city maps.

The first map to be classified is a portion of a map with a scale of 1:250,000. The

image has a size of 154 x 136 in pixels, which is scanned into the computer by an HP

laserj et II scanner with a resolut ion of 300dpi. Pixel samples for each color cluster

are manually prepared using an image ROI extraction utility.

Image processing tools GIMP and KHOROS1 are used to extract color pixel sam-

1 GIMP is a freely distributed image manipulation tool (refer to www.gimp.org for more informa­
t ion). KHOROS is an integrated system of tools and programming environment for image processing
and visualization.

54

ples from raw images. An image is magnified first using GIMP, so that it is easier for

human operators to locate and select small areas from maps. For each color, five or

six small areas from different regions of a map are collected. In this way a sufficient

number of pixel samples are selected. Each sample cluster contains 180 to 250 pixels.

Then KHOROS is used to convert the pixel samples into the input format used by

the color segmentation system.

Six colors often used on maps: red , green, blue, brown, black, and white, are

classified in our experiment. Six GP sets and two Gc sets have been identified. One

of the two Gc sets is collected from overlapping areas of red and blue, the other one

from boundary areas of red and white colors. With these Gc sets, the performance of

the self adjustment structures described in Section 3.4.1 has been tested. It took 267

seconds to finish the training on a Pentium IV (1.4 MHz) machine running RedHat

Linux 8.0. The results show that most of pixels around "vague" areas can be correctly

classified due to the presence of the self adjustment structures. The original image

(Figure 3.7(a)) shows a scene with red, blue and brown line features. Figure 3.7(b)­

(g) shows some of the segmentation results. Experiments were also performed on

the sample portion of the map, but with higher resolutions (600dpi and 1200dpi).

The result shows little difference from those scanned with 300dpi, because there is no

significant change in the patterns of pixel variation.

More experiments are carried out on several city maps of scale 1:500,000. These

maps show relatively complex map features, since several thin line features, such as

55

~~- Blue

~~~~r"+---An overlapping 
area of red and blue 

~r+--lloo'-+--=-- Red 
.,.___Brown _ __ .....;:o...._.. _ _.._ 

(a) 

// \ / r~ 
X~ ·-· \ v 

(b) (c) 

/ \ 

"-/·, ')-~ X v 
(e) (f) (g) 

Figure 3.7: (a) Original image (Portion of National Atlas of Canada Series, 1981. 
Natural Resources Canada). (b) Red color, without using H.l structure. (c) Blue 
color, without using H.l structure. (d) White color, without using H.2 structure. (e) 
Red color, by using H.l structure. (f) Blue color, by using H.l structure. (g) White 
color, by using H.2 structure. 

roads, rivers, as well as isolines, are present. These experiments aim to separate the 

maps into a set of color layers, especially layers with road and river networks. An 

ideally segmented layer would be one that has all the major areas painted with the 

target color correctly shown and does not include significant noise. 

In one of the experiments, the proposed approach is applied to separate the map 

56 



Figure 3.8: A portion of the regional map of Denver, Colorado. Original scale 
1:500,000 U.S. National Atlas 1970. 

image (945 x 1024 pixels) shown in Figure 3.8 into the following six color layers: 

red, blue, black, white, light yellow, and yellow. Since the effects of overlapping and 

boundary colors are disregarded, a fuzzy neural network similar to the one in Fig-

ure 3.3 is constructed, yet without any self adjustment components. As the most fre-

quently seen feature on topographical maps, the road network (the red layer) reaches 

almost all regions and interacts with other features. Therefore, it is the most difficult 

layer to extract. The effectiveness of the proposed approach can be demonstrated 

using the segmentation result of the red layer. The extracted red layer is shown in 

Figure 3.9. It can be seen that many parts of the red color areas are faintly recognized; 

57 



and in many places, road lines become fragmented. 

Figure 3.9: The red color layer obtained using a fuzzy neural network without self 
adjustment components. 

In a further experiment, the overlap of red and light yellow, and that of red and 

yellow are taken into consideration. Pixel variations of two neighboring colors, red 

and white, are considered as well. As a result , t hree H.l and one H.2 self adjustment 

components are added to the fuzzy neural network. The obtained red layer is shown 

in Figure 3.10. A remarkably improved result is achieved. The roads are drawn with 

very thin lines with a width of one or two pixels. The pixel values vary towards 

their neighboring colors. It is natural for an H.2 structure to capture such variations. 

58 



Although some road lines are still broken by gaps, this happens much less often, 

and the gaps are smaller. Through observation, we can still find some fine line 

features that can be identified by human eyes but not by the neural networks with 
> 

self-adjustment components. This is a very interesting phenomenon. The author 

specifically extracted the pixels from these features and compared their values with 

those from other clusters. The result shows that the values stray away from their 

target cluster and are close to one of the other clusters. As a result, the variation is 

not captured by the proposed system. The possible reason may be that human eyes 

have the ability to adjust their distinguishing criteria based on the context, while 

computer based systems do not . 

One limitation of the supervised methods is that training samples have to be 

prepared manually and a target value has to be assigned to each sample by the 

user. The learning is supervised to improve results gradually based on the feedback 

of each epoch. Unsupervised methods do not have the burden to associate desired 

outputs with input samples. However, an unsupervised method receives no feedback 

on an outcome. Learning has to rely on the existing intrinsic structure of the sample 

data to group pixels into a number of clusters. This intrinsic structure does not 

necessarily reflect the distribution of color clusters, because (1) pixel variations of 

color images are difficult to predict, and (2) different types of color images show 

totally different characteristics in pixel variations. By including representative pixels 

in training samples, a priori knowledge about pixel clusters can be captured. For 

59 



.. 
I 

Gou ... 
•SI"" -

r 

Figure 3.10: The red color layer obtained by taking account of overlapping and bound­
ary pixel variations. 

those color images (such as map images) that have very thin line features (one or 

two pixels wide) and require delicate image segmentation methods, it is believed 

that a priori knowledge about the color cluster distribution makes a great difference 

in segmentation results. Another issue with the unsupervised methods is that the 

proper segmentation resolution (the number of target clusters) has to be known in 

advance. If the resolution is too high, the pixels of a single color may be scattered 

into many clusters. On the other hand, if the resolution is too low, one cluster may 

contain pixels from multiple colors. 

60 



Figure 3.11: The red color layer obtained using fuzzy c-means clustering method. 

As a comparison, the fuzzy c-means method was used to extract the red color layer. 

Experiments were carried out with different predefined cluster numbers, among which 

the best result is obtained using cluster number 7 (shown in Figure 3.11) . 

As a further comparison, the color image segmentation algorithm provided by 

Comaniciu and Meer [25] was applied to separate the map of Denver. This method 

is a general technique that avoids drawbacks of the traditional clustering methods 

and achieves efficient and robust color feature extraction. It takes three parameters 

characterizing three levels of segmentation resolutions: undersegmentation, overseg-

mentation, and quantization, which mean low, intermediate, and high resolutions, 

61 



respectively. 5 clusters are obtained with undersegmentation option, 39 clusters with 

oversegmentation option, and 50 clusters with quantization option. The quantization 

result is far from acceptable because, through posterior analysis, it is found that the 

red color pixels are distributed into at least 8 clusters. The undersegmentation and 

oversegmentation results are shown in Figure 3.12. Human observation is needed to 

pick the proper clusters from the oversegmentation result to construct the red layer. 

The undersegmentation option shows good results except at the overlapping areas. It 

seems the pink pixels are considered closer to red pixels than those from the overlap­

ping areas, because most of the pink pixels are shown in the result. One interesting 

phenomenon is that some black pixels are also classified as red (see the word "DEN­

VER" at the bottom-left corner). The reason is that only five colors are determined 

to be significant ones. Black color is not one of them, since the total number of black 

pixels is much smaller. Some black pixels are assigned to the red cluster, because the 

algorithm determines t hat it is the closest cluster to these black pixels. 

In some further experiments, the trained network built for one map image is also 

applied to some other maps produced using similar methods. This shows that signif­

icant retraining time can be saved. Some of the experimental results are presented in 

Appendix D. The quality of the results depends on the patterns of pixel variations. 

If a map is printed under a different condition, the neural network usually has to be 

retrained. By comparing the segmentation results with the original map, it can be 

observed that except in the downtown areas (yellow colored areas) , most red color 

62 



(a) 

(b) 

Figure 3.12: The red layers obtained based on Comaniciu and Meer's algorithm. (a) 
Constructed with 1 of 6 clusters produced by undersegmentation; (b) Constructed 
with 5 of 26 clusters produced by oversegmentation. 

63 



pixels can be extracted. The downtown areas happen to be places where multiple 

features (road, river, city boundary and texts) interweave, so that the patterns of 

pixel variations are much more difficult to predict. This means to extract such pixels, 

it is still necessary to retrain the network with samples picked specifically from these 

areas. Better results may be achieved by training the network with pixel samples 

from different maps and then applying it to the maps individually. Better results are 

obtained for blue color features with a width of more than three pixels. However, very 

thin blue color features (one or two pixels wide) are difficult to extract. T he reason is 

that the intensity values of the pixels from such blue lines are relatively higher that 

those from other blue areas due to the contrast with the white background. This 

means that to capture the pixel variations represented by these pixels, it is necessary 

to pay more attention to such thin lines to make sure pixel samples from these thin 

lines constitute a significant percentage. 

Experiments were also conducted on maps scanned in resolutions 600dpi and 

1200dpi. The results are very similar to those obtained from previous experiments 

with the resolution 300dpi. This shows that the resolution 300dpi is sufficient enough 

to capture the typical pixel variations. 

From the experiments described above, it can be concluded that by taking into 

consideration overlapping and boundary pixel variations, much more detailed and 

accurate segmentation can be obtained. The limitation of the method is that some 

noises are introduced. It can be seen that although the result shown in Figure 3.10 is 

64 



much better than that in Figure 3.9, it still includes a few spots that should not be 

classified as red. To determine what contributes to the misclassification, histogram 

analysis was performed on the pixel values of those error spots. One reason is that 

some totally unrelated small areas show very similar pixel values. Because these 

pixels are usually mixed in their context, human eyes are not able to perceive their 

difference from the context. Another reason is that areas with overlapping colors 

usually exhibit more unpredictable variances. While pixel variations in overlapping 

areas are captured, some other pixels that have similar pixel values but are not from 

overlapping areas, are picked up. Fortunately these cases do not happen very often, 

and if they do, they do so at a few small and isolated spots. A large part of the 

noises can be removed using proper noise removal techniques, such as mathematical 

morphology operators. 

The proposed color segmentation method can be directly applied to large size 

maps . The processing speed will be proportional to the map size. More dynamic color 

variations may occur on large maps. However, this will not affect the effectiveness 

of the proposed method, because the color printing process is strictly controlled and 

such variations have a narrow range. In addition, the variations can be captured by 

adopting effective sampling methods. 

65 



3.6 Conclusions 

In this dissertation, a novel fuzzy neural network combined with self adjustment 

components has been presented for solving color segmentation problems on maps. 

The color segmentation system built based on the proposed method can be applied 

to different color maps printed on paper. This method can also be utilized for other 

color segmentation tasks, such as segmentation of colors on pictures produced with 

techniques similar to those used on maps. A heuristic similar to the one that is 

used to treat areas with two overlapping colors may be developed to deal with areas 

with three or more overlapping colors. Interactions of multiple pigment layers make 

the pixel variations in areas where three or more colors overlap more difficult to 

predict and capture. Fortunately such interactions do not have unlimited effect on 

color variations, because most of the reflected light energy is contributed by the few 

pigment layers on the top. The idea of self adjustable fuzzy model can also be used in 

some feature space analysis problems, where only vague clusters can be obtained. In 

addition, with the existence of self adjustment structures, the network is a so called 

" partially " supervised learning network, whose dynamic properties still need to be 

further explored. 

66 



Chapter 4 

Conceptual Modeling and 

Description Logics 

In any application, one of the most important tasks is to capture and express the most 

relevant information of the problem to solve. Frequently the design of applications 

is described inadequately and equivocally in natural languages. Different methods 

are developed in an attempt to accurately model application domains in detail. Most 

models, including Description Logics (DL), view the world as a collection of interre­

lated components, so that it is easy to build and extend information systems. DL 

languages push the limits further by introducing terminological and assertional rea­

soning facilities to automatically reveal subsumption relations between concepts and 

allow consistency check on DL representations. Thus many of the relationships of 

concepts that may not be intuitively recognized by model builders can be discovered . 

The purpose of this chapter is to present DL as a conceptual modeling tool. A brief 

67 



review of the motivations of concept modeling in the high-level map understanding 

will be presented first. Description Logics languages are viewed as the tool for knowl­

edge representation. General issues concerning using DL as the modeling mechanism 

for map understanding are then discussed. In Section 4.4, a conceptual language 

9A.C.C(t', 'D) is proposed by the author, which extends A.C.C('D) by allowing roles that 

represent n-ary relations. 

4.1 Conceptual Modeling 

All the currently existing techniques for high-level map understanding use domain 

specific knowledge. However, those knowledges are not readily applicable to map 

understanding systems. It is necessary to decide what knowledge is needed and 

how to represent it. It is a well known problem solving strategy to identify a set 

of objects, t heir properties and interactions. In this section, an object-relationship 

graph approach that aims to form a concise description of map features and their 

relationships will be discussed. As a graphical notation, such a graph offers a natural 

and flexible specification of map information. 

There are two types of map objects: primitive and derivative. Primitive objects 

are those geometric features obtained from the low-level image processing algorithms. 

They can be line segments, areas, characters and digits. Primitives are characterized 

by object properties, such as location, size, direction, and angle. Derivative objects are 

features derived from primitive objects or other derivative objects in the interpretation 

68 



process. A derivative object can be, for example, a road network, a river network, 

or a map scene. Some relationships represent spatial information, such as "connect" , 

"on", "touch", "near" and "intersect" . Others represent aggregation information. For 

example, the "made of" relationship is used to represent the fact that a map object 

is made of a number of river networks or road networks. 

An object-relationship graph consists of a set of nodes and a set of arcs that 

interconnect the nodes. There are two types of nodes: object nodes and relationship 

nodes. A relationship node represents the existence of a certain relationship between 

two object nodes or among more than two object nodes. An arc only exists between 

an object node and a relationship node, since the arc represents the participation of 

the node in a relationship. 

Note that the concept of object node refers to a category of objects which pos-

sess certain properties in common, not just a single object instance. The concept of 

relationship node represents the category of relation instances among objects from 

different categories . Thus a relationship node refers to a set of relationship instances. 

Each of the object nodes that is connected to a relationship node R is said to partic-

ipate in R. 

Let us take as an example a relationship node MADE_OF among three object 

nodes ROAD__NETWORK, ROAD_SECTION, and ROAD_JOINT. This re-

lationship node indicates how a road network is built up by a set of road joints and 

a set of road sections. Each relationship instance associates a road network object, a 

69 



set of road joint objects, and a set of road section objects. This example is illustrated 

in Figure 4.1, where each relationship instance Ii is shown connected to the objects 

that participate in h In Figure 4.1, road network r 1 is made of road joints j1 , j 2 , ]3, 

j
4

, and road sections 81, 82, 83, 84, 8s, and road network r 2 is made of Js , ]6, j7, j 8 , j 9 

and 86, 87, 8s, 8g, 810· 

ROAD_JOINT 

ROAD_NETWORK 

MADE_ OF 

Figure 4.1: Two instances of MADE_OF relationship 

In many conceptual representations, the relation edges are drawn as directed. The 

edge directions indicate the different roles of objects in the relations. For example, we 

can say that "a map instance contains a road network instance" . But the description 

70 



from the other direction is not correct - - we cannot say "a road network instance 

contains a map instance". In some conceptual graphs in this dissertation, the direction 

information is ignored, because the role of each participating object is specified in the 

semantics of the relationship node. 

4. 2 Knowledge Representation Using Description 

Logics 

In order to acquire knowledge for map interpretation, it is essential to study the 

information contained in maps. We must be aware that it is extremely difficult to 

produce an ideal semantic representation in one pass. It is always necessary to go 

through several iterations before sufficient information is captured. The first iteration 

may result in a somewhat rough representation with the most basic and directly 

perceivable information. Later on the representation is refined or enhanced through 

further analysis. Figure 4.2 is an object-relationship graph with some significant map 

objects and relationships. 

In Figure 4.2, spatial information of different abstract levels has been described. 

Structural objects and relationships are concrete objects that exist on maps; by 

intuition, they are usually identified and mapped from real world into the object­

relationship graph with little abstraction. All the currently existing methods rep­

resent this kind of knowledge explicitly in one way or the other. However, there 

71 



Figure 4.2: An object-relationship graph 

are some categories of knowledges which are usually selectively incorporated in algo­

rithms, and thus are not explicitly represented. In the setting of map understanding, 

this kind of implicitly represented knowledge is hard to be shared and reused in other 

situations. Consider, for example, the algorithm to make up a gap in a broken line. 

Such an algorithm is usually implemented with a procedure that examines certain 

spatial relations, such as line directions, acceptable distances, and the context. The 

relevant spatial knowledge is implicitly represented in the procedure. The procedure 

can gain some flexibility by taking user-defined parameters and thresholds. However, 

72 



this is not sufficient to make the procedure adaptive to complex scenarios. When a 

large number of phenomena are involved, it is not possible to encode the situational 

activities and control strategies into parameters. If the spatial knowledge is separated 

from the procedure and represented explicitly, the algorithm will become more adap­

tive. Description Logics provide us a tool to explicitly represent spatial information. 

Unlike DL, rule based representations are not logic based. They are basically derived 

from human experiences and generalizations of practical problem solving strategies. 

The rule based map understanding is one alternative for explicit representation, but 

it is still not formalized enough and not verifiable. 

Although difficulties always exist in determining what kind of objects and rela­

t ionships may be described in an explicit form , generally the following categories of 

knowledges deserve to be made explicit: 

• Objects and relationships that have to do with the goals of the interpretation. 

For example, consider a request to query the cities near a certain road. The 

"city" objects and their relations with the "road" objects should be explicit in 

the object-relationship graph. 

• Concepts that describe partially recognized objects. During the interpretation 

process, many instances are made explicit through an incremental recognizing 

process. For example, the concept of a road network is not established in one 

step. Part of it is recognized first, then the rest of it is gradually built up over 

a number of steps. 

73 



• Concepts that represent the state of interpretation. The interpretation of maps 

involves complex sequences of inferences to achieve its goals. Sometimes we 

have to draw conclusions about the status of the currently recognized objects. 

One example is that we may need to explicitly represent the fact that "no more 

road sections connected with the current partially recognized road network can 

be found". 

• Concepts about condition and action information. For example, when line fea­

tures are tracked, certain unexpected situations may emerge, such as a gap or 

a city symbol breaking a line. Explicitly representing the conditions and sub­

sequent actions to be taken will guide the system on how to proceed with the 

interpretation. 

4.3 Formalization of Semantics 

Figure 4.2 only gives a scheme of t he objects and relationships. It is equally important 

to properly represent the semantics of those connected nodes. The semantics of 

object nodes are given by their attributes . The relationship nodes cannot be defined 

without specifying their participating object nodes. In order to accurately capture 

their semantics, the relationship nodes have to be formally defined. 

In this dissertation, a fully formalized theory, Description Logics, is applied to 

accurately specify semantics of map features . This section gives a brief introduction 

74 



to a particular Description Logics system A£C('D) (there are a number of variants) 

first proposed by Baader [38]. An important point is that there exists a sound and 

complete algorithm that decides the consistency of a knowledge representation based 

on DL. This distinguishes the proposed method from traditional methods. The main­

tenance of consistency of the knowledge representation of most existing solutions 

depends on the designer's personal experience rather than on a reliable and verifiable 

formalism. In Chapter 5, we extend A£C('D) with more relation constructs so that 

some constraints existing among objects can be accurately captured. 

4.3.1 Implicit vs. Explicit Representation 

In some respects, the power of knowledge based systems lies in their ability to discover 

the implicit meaning derived from the explicit representations. Nonetheless, solving a 

problem does not mean to uncover all implicit knowledge in a domain; it is in fact not 

necessary and not possible. A balance between implicit and explicit representations 

has to be maintained. 

To decide what kind of knowledge is suitable to be represented implicitly or ex­

plicitly depends on the nature of the problem. Some knowledges are suitable to be 

sliced into smaller-grained and manipulatable pieces, since diverse interactions and 

behaviors exist among the elements, while some other knowledges are better put 

into the implicit category. This happens when the interactions among the elements 

are uniform and it is suitable to use some serialized batch processing. For example, 

75 



low level image processing tasks are usually carried out using procedural approaches. 

Declarative representation is not suitable for describing pixel level knowledge. The 

knowledge representation becomes too granulated if each pixel in an image is specified 

with a declarative symbol. 

Formalized approaches, especially explicit representations, offer the following ben­

efits: 

1. Capture of details. Users have easy access to object properties and relations in 

which they are interested. The information users need will be readily available 

for manipulation if it is expressed explicitly. 

2. Reuse of knowledge. Explicit representations make it easier to compare the 

vocabulary and terms used to express concepts and relationships, so that the 

same knowledge representation can be reused in similar situations. 

4.3.2 Description Logics 

Description Logics can be used to describe an application domain in a structured and 

well-understood way. A DL representation works by first formalizing the relevant 

concepts in the application domain. Through concept expressions, concepts can be 

defined using atomic concepts and roles. Concepts can be considered as unary predi­

cates that are interpreted as sets of individuals. Roles are binary predicates that are 

interpreted as binary relations between individuals. The concepts are used to specify 

objects and their properties, while the roles specify relationships among concepts. 

76 



What makes A£C(D) advantageous over other pure abstract logic representations 

is that concrete domains and predicates on those domains are integrated into concep­

tual languages. This is especially important to map understanding system modeling 

since it involves a lot of pixel level calculations. As stated in the previous section, if 

pixel level information and operations are explicitly represented, the resulting defini­

tion and model would be inefficient and too complex to manage. The map itself is 

a multi-abstract level and multi-facade phenomenon. It contains both overview and 

detailed information. 

Readers can refer to Appendix A for the basic definitions and results of Description 

Logics. Some basic definitions and notations will be recalled. The reader is assumed 

to be familiar with the non-formalized set theory and theory of first order logic. For 

a more detailed study of Description Logics, the reader is referred to [38]. 

To give examples of DL representations, suppose that company and manufacturer 

are two concepts. Then company n manufacturer and company n • manufacturer are 

two concept terms describing those companies that are in manufacturing business 

and those companies that are not, respectively. Suppose, in addition, that a role 

hasProductn and a concept car are introduced. The concept terms, company n 

:JhasProductn . car and company n VhasProductn . j_ , can be formed , denoting the 

companies that produce cars and those companies that do not have any products. If 

only companies with a large enough size are considered, this situation can also be rep­

resented by concept expressions using predicates on concrete domains. For instance, 

77 



an expression of the form company n ~50 (EmployeeNumber) can b e used to describe 

companies with no less t han 50 employees. Here ~50 denotes a unary predicate, { n I 

n ~ 50} , on the natural numbers. Expressing such properties directly with reference 

to a concrete domain seems to be easier and more natural than encoding them into ab­

stract concept expressions [38]. The introduction of concrete domains and predicates 

on these domains enable us to incorporate procedural knowledge representations. In 

the context of map understanding, discoveries of many spatial relations rely on pixel 

level computations and computations of geometric attributes, which are difficult to 

handle at the abstract logical level. The set of concrete objects is denoted by OD, 

and the set of abstract objects denoted by OA. 

Next, two concrete domains to be used in modeling map objects and t heir rela­

tionships are presented. ote that we use the first quadrant of the coordinate system 

to represent map information, without loss of generality. 

1. The concrete domain POINT 

The domain of POINT is defined as the set of all pairs of coordinates in a 

two-dimensional plane. That is, dom(POINT) = PT {( s, t)ls E I , t E I} , 

where I is the set of non-negative numbers. 

pred(POINT) = { identical , proximate, noLidentical, noLproximate, Top-poiNT, 

Bottom-poiNT } 

identical is a binary predicate denoting that two points are identical, and prox­

imate is a binary predicate denoting that two points are very near each other. 

78 



Usually two points are said to be proximate if they are within a predefined dis­

tance of each other. The predefined distance can be tuned according to various 

situations of maps, such as types of map features and relations. It is not directly 

dependent on the scale of t he map. 

not_identical = identical 

noLproximate = proximate 

2. The concrete domain 9£0M 

We intend to use QEOM to deal with facts concerning simple geometric objects 

(points and poly lines) on a 2-dimensional plane. Let PLine be the set of all 

possible polylines in a 2-dimensional plane. The domain of 9£0M is defined 

as the joint set of dom(POINT) and PLine, in symbols dom(9£0M) = 

dom(POINT) u PLine. 

pred(9£0M) = { is_point, is_not_point, is_polyline, is_noLpolyline, join_at, noLjoin_at, 

endpoints_of, not_endpoints_of, intersect, not_intersect , Topgt:CJM, BottomaEOM 

} 

is_point: a unary predicate name for the set PT. 

is_polyline: a unary predicate name for the set PLine. 

join_at: a ternary predicate name that signifies the fact that two polylines join 

ends at a point. That is, 

{(h, l2 ,pt) I is_polyline(h), is_polyline(l2) , is_point(pt), hand l2 are not identical, 

79 



and pt is t he only common endpoint of it and l2 . } 

endpoints_of is a ternary predicate name indicating the relation of a polyline 

and its end points, which is defined as 

{ ( l1, P1, P2) I P1 and P2 are t he two end points of polyline l1.} 

intersect is a binary predicate defined as 

{ (it, l2 ) I it and l2 intersect at a common point other than their end points.} 

It is easy to verify that domains POINT and 9£0M are admissible. 

4.4 Generalized A£C(V ) 

T he conceptual language AL.:C(V) discussed in previous sections is sufficient for mod­

eling applications of different natures. Conceptual models offer more expressive fa­

cilities than conventional modeling tools. However, the roles in AL.:C(V) are only 

interpreted as binary relations in models. On many occasions, it is desirable to over­

come this restriction. In this section, the author proposes to to extend A.CC(D) 

with n-ary roles. The extended conceptual language, called QA.CC(£, V) , has more 

expressive power than AL.:C(D) does. Such an extension is necessary because a map 

phenomenon usually involves more than two types of map objects. N-ary roles are 

needed to accurately express how multiple map objects are put together to represent 

a higher level concept. 

80 



Definition 4.1 9 A £C (£, D) can be obtained by extending the definition of A £ C(D ) 

(i .e., Definition A . 3) by allowing the forming of concept terms using the fo llowing 

expressions: 

1. :JR.C1 @ Cz 0 · · · @ Cm ((m+ 1}-ary exist-in restriction), and 

2. VR.C1 @ Cz 0 · · · @ Cn ((m+ 1)-ary value restriction) . 

where£ is called maximum role size,£ E N and£:;;:: 2, which defines the upper 

bound of the role size, and we have m, n ~ £ - 1. 

Respectively, t he syntax and semantics of QA£C (£, D) can be defined as follows: 

Definition 4.2 (interpretation and models of 9A£C (£, D )) 

Definition A.4 in Appendix A is extended to include the fo llowing: 

{x E dom(I ) I there exist Y1, Yz, · · ·, Ym such that (x, Y1, yz, · · ·, Ym) E RI and 

Y1 E C1, Yz E C2, · · ·, Ym E Cm} 

{ x E dom(I ) I for all Y1, Yz, · · ·, Yn such that (x, Y1, Y2, · · ·, Yn) E RI, we have 

Y1 E C1, Yz E C2, · · ·, Yn E Cn } 

To describe individual concept and role instances, the assertional language for 

9 A£C(£, D) is defined by extending that of A £C(D ). In addit ion to the axioms 

81 



allowed in an A-box of A.CC(D) , an A-box with respect to QA.CC(f, D ) will also 

allow assertional axioms of the form (a1 , · · ·, an) : R, where R is an n-ary role. An 

interpretation I of QA.CC(f, D ) satisfies (a1 , · · · , an) : Riff (af, · · ·, a~) E RI. 

In general, conceptual modeling of domain knowledge is a subjective process. 

There are often many possible ways of modeling the map objects and their rela­

tions. Different knowledge engineers may use different sets of concepts, roles and 

features to describe the same map phenomena. The choice of modeling approaches 

can have a large impact on the applicability and adaptability of a design. One im­

portant modeling decision is the arity of roles . For a given scenario, some use binary 

roles, while others may prefer to use higher arity ones. In many cases, the choice 

between binary and higher arity only reflects different viewpoints of knowledge rep­

resentation. However, sometimes higher arity relations supply more direct and nat­

ural descriptions. Consider, for example, t he scenario shown in Figure 4.3, where 

highway intersections are explicit ly represented using small circles. It is natural to 

identify three concepts (hw_route, route_section, and hw_intersection) and one ternary 

role (RCHAINED_WITHR)· The construction relationship among these three concepts 

can be defined using the following terminological axiom: 

hw_route = :J RCHAINED_WITHR • route_section ® hw_intersection 

It is apparent that the ternary role RCHAINED_WITHR is not simply the addition 

of the three binary roles between any two of these three concepts. It is possible to 

82 



route2 

Figure 4.3: Three intersecting highway routes. 

substitute a higher arity role with a number of binary roles. However, t his is accom­

plished by looking at the scenario from a different standpoint. In particular , a new 

concept routesec_with_intersection and a new role RLCHAINED _WITHR ar_e identified, 

and the "highway route" concept is defined as 

hw_route = :3 RLCHAINED_WITHR • routesec_with_intersection 

This means that the two types of map objects described earlier by the two concepts 

route_section and hw_intersection are in fact defined as the building blocks of the new 

concept named routesec_with_intersection. From this perspective, a highway route 

is made of a series of entities, and each of such entities is a highway section with 

intersection symbols at one or both of its end points. From this example, it can 

be seen that the new concepts and binary roles may not reflect our natural way of 

thinking. In many cases, the subtle semantic differences between the binary and n-ary 

roles may not be recognized easily. Allowing engineers to use higher arity roles can 

enable them to identify concepts and roles in an intuitive and flexible way, and thus 

83 



give them more expressing power. 

In A.CC(V), the reasoning algorithm has been established to decide the consis­

tency of an A-box, which means the consistency of the knowledge representation can 

be verified at design t ime. This calls for a mechanism to transform a knowledge rep­

resentation in QA..CC (.e, V) to that in A.CC(V), since the analysis of an A.CC(V) rep­

resentation is easier and readily available. In the following section, we will show that 

for any QA.CC(.e, V) , there exists an A.CC(V ) such that all models of the QA.CC(f, V ) 

are also models of the corresponding A.CC(V). The transformation rules described in 

the next section can be applied to obtain an A.CC(V) from a QA..CC(.e, V). 

Before the formal definition of the transformation rules is presented, we shall give 

an example of mapping a QA.CC(.e, V ) representation to an A.CC(V) one. Consider the 

ternary role supply among these three concepts: manufacturer, product and customer. 

The assertionallanguage of QA..CC(f, V) can be exploited to express facts regarding 

the manufacturers, products, customers, and their relationships. For example, the 

fact that "manufacturer m 1 supplies product p1 to customer p1" can be represented 

using the following axioms: 

{ (m1 , p1 , c1) : supply, m1 : manufacturer, P1 : product, c1 : customer } 

Axiom ( m1 , p1 , c1) : supply can be viewed as a relation instance of the ternary 

relationship expressed by supply. It is obvious t hat supply naturally is not a binary 

role. In order to take advantage of the fruitful research on A.CC (V) , it is desirable 

to study the relationship between A.CC(V) and QA.CC(.e, V). An intuitive treatment 

84 



may be to replace the role supply with two binary roles; one role (provide) describes 

the relationship between manufacturer and product, the other one (used_ by) describes 

the relationship between product and customer. In other words, an instance of role 

supply, (m1, P1, cl) : supply, is substituted by (m1, p1) : provide and (p1, c1) : 

used_by, which mean facts "m1 provides p1" and "p1 is used by c1", respectively. It is 

easy to tell that semantically provide and used_by in combination are not equivalent 

to supply. However, the two binary roles partially preserve the semantics of supply, 

and thus can be considered a weak form of substitution. This type of substitution 

is regarded as a process of semantic generalization due to the fact that some specific 

information is missing in the process. One the one hand, the role instance (m1, p1, c1) 

: supply implies (m1, pi) : provide and (p1, c1) : used_by. On the other hand, the 

two facts (m1, pi) : provide and (p1, c1) : used_by do not imply that the fact (m1, 

p1, c1) : supply is true, instead they may be the result of (m1, p1, c2) : supply and 

(m2, p1, c1) : supply. In other words, the product p1 used by c1 is not necessarily 

provided by m 1 . 

In general, an n-ary role can be replaced with n - 1 binary roles in the same way 

we treat role supply. Although this means some information loss, it is beneficial in 

terms of analysis of knowledge representation. Next we will introduce the concept 

of S-equivalency, which means in order to check the validity of the model design, we 

do not need to perform consistency test directly on a QA.CC(t', TJ) representation. A 

consistency test based on the corresponding A.CC (D) representation is sufficient. 

85 



Mapping a QA.CC (£, D) language into an A.CC(D) language 

Let Q.C =< C , R , F , D, 7 > be a QA.CC(£, D) language, where C and F are con-

cepts and features in A.CC(D), D is the concrete domain, R is t he set of roles, and 

7 is the set of axioms. 

R is written as follows: 

R = {~ li = 1, 2, · · · , n}, where Ri is a p,(i)-ary role. Function p, is defined as a 

mappmg: 

p,: TI -+ N, where TI is t he set of integers and N is the set of natural 

numbers. 

Since Q.C has an upper bound f., we have p,(i) ~ £. 

We can obtain an A.CC(D) language .C, expressed as < Ct, Ft, Dt, R t, 7 t>, from 

Q.C, where 

c t = C , R t = w(R) , F t = F, Dt = 'D, yt = 8(7 ) 

.C directly uses the concepts, features, and concrete domain of g .C. Functions \[r 

and 8 map Q.C's role set and axiom set to those of .L's respectively. Given R = {R1 , 

n 

R t = w(R ) = U ?j;(~) 
i=l 

86 



Let 9t be the set of all possible roles. The mapping '1/J : 9t -+ 2!R in turn is defined 

as follows: 

if ~ is a binary role, 

if R is an (m+l)-ary role, and m ~ 2. 

where ~,1, · · · , ~.m are binary role names. 

Given T = {T1 , T2 , · · · , Tk} , k EN. 

G(T) = {B(Ti)li=l, 2, ··· ,k} 

Assume that 'ljJ (R) = { R~, R~, · · ·, R'-m}, and let '! be the set of all possible axioms. 

Then the mapping e: '! -+ '!performs the following substitutions on an axiom, say 

For each occurrence of :3R.C1 ® · · · ® Cm and VR.C1 ® · · · ® Cm inTi , 

where m ~ 2, 

• replace ::JR .C1 ® · · · ® Cm with ::JR~ .(C1 n :3 ~ .(C2 n · · · (Cm-1 

• replace VR .C1 ® · · · ® Cm with VR~ .(C1 n V ~ .(C2 n · · · (Cm_1 

It has been seen syntactically how a QA.CC('D) is mapped to an A.CC('D). Now 

we are going to consider how a QA.CC('D) interpretation is mapped to an A.CC('D) 

87 



one. Let I be an interpretation of Q £, then T is considered as an interpretat ion of 

£ with respect to mapping (<I>, 8), as long as the following conditions are satisfied: 

1. For those concepts, roles and functions that are taken directly from Q £, their 

interpretations are the same as those in £. 

2. For those roles that are derived from the m-ary roles (m ?;! 3) in Q£, their 

interpretations are obtained as follows: 

Given an m-ary role (m ?;! 3) R. Then 't/!(R) = {R~, R~ , · · ·, R~_1 }. Let RI = 

Then we have 

E R}, where k = 1, 2, · · ·, m-1. 

It can be seen that the outcome of this operation is to substitute each n-ary 

relation in g £ with a set of binary relations in £, which is called relation 

up cast. 

A relation upcast can be viewed as a process of generalization, as shown in Fig-

ure 4.4. 

Therefore, we can define the (<I>, 8) morphism as follows: 

Let the (<I> , 8) morphism of A-box A be denoted as AM. 

For axiom x that does not have any occurrence of a higher arity (?;! 3) 

role, x E A iff x E AM. 

88 



Figure 4.4: Upcast viewed as relation generalization. 

For any occurrence of a higher arity role, it is substituted with its corre­

sponding concept term defined by mapping e. This is to say, each axiom 

of the form 

corresponds to the axiom 

Each axiom of the form (c1 , · · ·, em) : R, m ~ 3, is replaced by m- 1 

axioms (c1 , c2) : R~, · · ·, (cm_1, em) : R'-m_1, where <I>(R) = {R~ , 

R'-m- 1}. 

It is important to note that £ is not equivalent to Q£. As an example, let us 

consider mapping a QA£C(1J) language 

QM = <{A, B, C}, {R}, F , D , T > 

89 



to an A.CC('D) language 

M =<{A, B, C}; {R1 , R2 }, F , D , T'> 

using <I>(R) = {R1 , R2 } and 8(T) = T'. 

However, 8 can also map a different interpretation of R to the same R 1 and R2 . 

be seen that I and I are obvious different interpretations of R. The function 8 can 

I 

still map them to the same set of binary roles. That is, 8(RI) = 8(RI ). 

In fact, the model of£ can be looked at as a generalization of 9£. One feature of 

the mappings (<I> , 8) is that it preserves t he property of verifiability. Let Ao be an 

A-box for QA£C(f, 'D), A 1 be an A-box obtained through mappings (<I>, 8). If A1 is 

not consistent, Ao is also inconsistent, and vice versa. 

An A-box A is said to be inconsistent iff it contains at least one of the following 

clash rules: 

1. A contains axioms (a, x) : f and (a, b) : f for a feature name f This is an 

obvious contradiction because an abstract object (b) and a concrete object (x) 

cannot be identical. 

90 



2. A contains axioms (a, x) : f and a : Vf.C. This is an obvious contradiction 

because the concrete object (x) cannot be an element of a concept. 

3. A contains axioms a : A and a : ·A for a concept name A. 

4 A . . ( (1) (1)) . p ( (k) (k)) . T) d h . contains axwms x1 , · · · , Xn 1 . 1 , · · · , x1 , · · ·, Xnk . rk an t e corre-

sponding conjunction /\~=1 Pi (~(i)) is not satisfiable in V. This is a contradiction 

because V is admissible. 

We only need to prove that if there exists one clash in A0 , the same axioms 

involved in t his clash can also be found in A 1. 

Definition 4.3 (Transformation Rules) 

Let M be a finite set of A-boxes, and let A be an element of M. 

1. The conjunction rule. Assume that a : ( C n D) is in A and a : C or a : D is 

not in A. The A-box A' is obtained from A by adding the two axioms a : C, a 

: D to A. 

2. The disjunction rule. Assume that a : (C U D) is in A and neither a : C nor 

a : D is in A. The A -box A' is obtained from A by adding a : C to A, and 

A-box A" is obtained from A by adding axiom a : D to A. 

3. The exists-in restriction rule. Assume that a : :3R.C1 ® · · · ® Cm is in A and 

that there are no object names c1, c2, · · ·, Cm in OA such that the axioms (a, c1, 

c2, · · ·, em) : R and c1 : C1, · · ·, Cm : Cm are in A. Let b1, · · ·, bm E OA be 

91 



"new" abstract names (i.e, names not occurring in A). Then we add the m+1 

new axioms to A. 

4. The value restriction rule. Assume that a : V R.C1 ® · · · ® Cm and (a, b1 , · · ·, 

bm) : R are in A and that b1 : C1, · · · , bm : Cm are not in A. The A-box A' is 

obtained from A by adding the axioms b1 : C1, · · ·, bm : Cm· 

5. The predicate restriction rule. Assume that a : P(u1, · · ·, un) is in A and that 

the following does not hold: 

For the feature chains ui = fi1 · · · fin;' i = 1, 2, · · · n, there are object names 

bi
1

, · · ·, bin;-l E OA and Xi E OC such that the A-box A contains axioms (a, 

bil) : fil1 (bil, bi2) : fi2, · · ·, (bin;-1, Xi) : in;' and (x1, · · ·, Xn) : P. 

For each of the feature chains Ui, we choose new object names bi1 , · · ·, bin;-1 

E OA and xi E OC, and augment the A-box by the axioms (a, bil) : fil, (bil, 

bi2) : fi2 , · · ·, (bin;-1, Xi) : fin;· New forks may be created, which means two 

different names are assigned to the same object. They are deleted by using a 

unique name for each object. Finally we add (x1, · · ·, Xn) : P to obtain the 

A-box A'. 

Algorithm 4.1 (Consistency Test) 

The following procedure takes an A-box Ao as an argument and checks whether it is 

consistent or not. 

define procedure check_consistency( Ao) 

92 



A
1 

= eliminate_forks(Ao) 

r = 1 

while 'a transformation rule is applicable to M[r]' do 

r=r+1 

M[r] = apply-a-transformation-rule(M[r- 1]) 

done 

if 'there is an A E M[r] that does not contain a clash' 

then return consistent 

else return inconsistent 

Proposition 4.1 Let Ao be an A-box ofQA£C(£, 'D) , and A 1 be an A-box of A£C(1J), 

which is obtained from Mo through the morphism (<I>, 8). Then Ao is inconsistent 

iff A 1 is inconsistent. 

Proof. Suppose the consistency test applied on Ao suggests it has a clash. We 

just need to show that A
1 

also contains a clash. Conversely, we need to show that if 

A
1 

contains a clash, Ao does as well. 

The proposition is the consequence of Lemma 4.1. 

• 
Before we move on to prove Lemma 4.1, let us introduce the concept synonymous 

axiom and the concept S-equivalence between A -boxes. 

93 

-



Definition 4.4 (Synonymous Assertional Axioms} 

We say two axioms x andy are Synonyms iff x andy are identical or y is the (<I>, 

8) morphism form of x. Two sets of axioms are synonymous iff for each axiom of 

one set we can find a corresponding synonymous axiom in the other set. 

Definition 4.5 (S-equivalence) 

Let A 1 and A2 be two A-boxes. At is said to be S-equivalent to A2 iff for each axiom 

of the form (a, b) : f, (a, y) : f, a : C, or (y1, · · ·, Yn) : P in At , there exists a 

synonymous counterpart in A2 . 

Lemma 4.1 A0 violates clash rules 1, 2, 3, and 4 iff At violates clash rules 1, 2, 

3, and 4, respectively. 

Proof. Let MAo be the complete set of A-boxes obtained from Ao by applying 

the consistency test, and let NIA1 be that obtained from At. 

Let B 0 be a QA.CC A-box, Bt be an A.CC one. Let B 0 and Bt be S-equivalent. 

By applying a transformation rule on B0 and B 1, new A-boxes B~ (and B~) and 

B~ (and B~) are obtained. We will see that B~ and B~ are also S-equivalent. To prove 

this, we just need to show that for each new axiom added to B0 , the transformation 

rule also requires its synonymous form be added to B1 , since B~ and B~ are obtained 

by augmentation of B 0 and B 1 respectively. 

If an axiom (a , e) : f (a, e are abstract objects) is newly added to B~, it can be 

determined that it results from either the fact t hat a : ~f.E is in B0 and there is no 

94 



e : E so that (a, e) : /, or the fact that a : Pis in B0 , where Pis such a predicate 

that a : P implies (a, e) : f. Such a fact also applies to B1 , since B0 and B1 are 

S-equivalent. Consequently, (a, e) : f is also an axiom added to B~ . 

If (a, y) : f (y is a concrete object) in B~ is newly added, it must be the result of 

the following case: 

a: P(u1 , · · · , f , · · ·, un) is in Bo and there exists no axiom (a, y) : fin 

Bo. 

Since B1 isS-equivalent to B0 , the axiom a: P(u1 , · · · , f , · · ·, un) also appears in 

B 1 , and (a, y) : f is not in B1 . As a result , (a, y) : f appears in B~ . 

If an axiom a : C is newly added to B~, according to t he transformation rules, 

this may be the result of the following cases: 

1. An axiom a : (C n D ) is in B0 and a: Cis not in B 0 . Thus we have a: <I> (C 

n D ) (i.e., a : <I>(C) n <I>(D)) in B1 , and a : <I>(C) is not in B1 . According to 

the transformation rules, a : <P(C) will be a newly added axiom in B~, which is 

synonymous to a : C. 

2. An axiom a : ( C U D) is in B 0 and a : C is not. This requires that the axiom 

a : <P(C) U <I>(D) be in B1 and a : <P(D) not be in B1 . Therefore one of the 

two augmented A-boxes, say, B~, is S-equivalent to B~. 

3. a: 3 R.C1 ® · · · ® Cm is in B0 , and one of the concept terms, say, Ck, is actually 

C. The synonymous counterpart of this axiom in B1 will be a: 3 R~ .(<P(C1 ) n 

95 



3 R~.(<I?(C2 ) n · · · 3 R~.<I?(Cm))). If bk : C is not in B0 and is added as a new 

axiom, its synonymous form, bk : <I?(C), is also not in B 1 . To obtain B~, the 

transformation rules are applied a number of times and bk : <I?( C) is added. 

4. a: \:1 R .C1 ® · · · 3f.C · · · ® Cm and (a, bb · · ·, bm) : Rare in Bo, and bk : C 

is not in B0 . According to the definition of S-equivalence, we will have axioms 

a: \:1 R~.(<I?(C1) n \:1 R~.(<I?(C2 ) n · · · \:1 R~. <I?(Cm) ···)) and (a, bl) : R~, · · ·, 

(bm_1 , bm) : R~ in B 1 . But bk : <I?(C) is not in B1 . It is obvious bk : <I?(C) also 

has to be added to B1 to obtain B~. 

If the transformation rules add new axioms to B 0 , their synonymous items are 

also added to B 1 . Thus the resulting B~ and B~ are S-equivalent. 

Now consider the scenarios when clash rules are violated. From the above discus­

sion, we have known that the consistency test algorithm maintains the S-equivalence 

b etween NIAo and MA
1 

in the process of A-box augmentation. Consequently we can 

draw the conclusion that MAo violates a clash rule iff MA1 violates the same clash 

rule as well. 

• 

96 



Chapter 5 

Representing Knowledge for Map 

Understanding 

In the previous chapter a Description Logics language was introduced to capture 

knowledge of the world. Such a representation language is very useful in the design 

of knowledge based applications. Various applications have been developed based on 

Description Logics. The close interaction between theory and practice is the key to 

exploiting the expressive power of Description Logics. Description Logics can also be 

utilized in the knowledge representation of map understanding systems. The success 

of the system design relies on a precise characterization of the knowledge base. 

This chapter concerns how to model map knowledge based on Description Logics. 

In particular, examples are presented to demonstrate the modeling process. 

97 



5.1 Modeling with Description Logics 

Up to this point, we have been concentrating on the theoretical aspects of the concep-

tuallanguage A.CC(V) and its assertional language. The two closely related formal 

languages provide us a special viewpoint to treat object instances and their relations 

in an application domain. Terminological axioms (T-box) and assertional axioms 

(A-box) are used to describe knowledge about the real world. 

ext, an example is used to summarize the approach to apply the Description Log-

ics theory to represent spatial data such as topographic maps. The philosophy of the 

modeling of map knowledge and subsequent applications is illustrated in Figure 5.1. 

Formal Theory 

I 
I • Concrete Domain 

)> 

Expertise 
:::l 

I 
Ql 

• T- box -< 
(Jl 

• A- box 
u;· 
Ql 
:::l 
c. 

~ )> 
"0 
""Q. 
(i" ____.. !!l.. a· 

' 
:::l 

I ~ Application Domain Model and Interpretation 
I 

Figure 5.1 : The DL conceptual modeling philosophy. 

Expertise is obtained from application domains through inquiry, research and de-

velopment activities. It is in t he form of intuitive knowledge, which is acquired from 

the application domain being researched. Through recognition and analysis, repre-

sentations based on a formal theory are established. These representations (concrete 

98 



domain, T-box, and A-box) capture the essential properties and relations of the el­

ements in the application. A model is regarded as an interpretation of the formal 

conceptual and assertional languages. It can also be seen as an abstraction of the 

application domain, since the model does not try to capture all aspects of the real 

world (which is impossible) , but those specific aspects that are most representative. 

The model also affects the evolution of the formal theory (verification, modification, 

and extension). 

The conceptual language QA.CC(£, V) can be used to represent the following map 

knowledge: (1) map object types and object instances; (2) relationships among map 

objects and relation instances; and (3) abstract concept hierarchy. For the sake of 

simplicity, we choose a simple map scene -- a complex river section shown in 

Figure 5.2 -- as our example. The terminological and assertional knowledge about 

the river section will be presented. 

Figure 5.2: A complex river section with an island and two bridges. 

Any map scene is an integrated entity which is composed of a number of building 

parts. There exist innately complex interactions among those parts. An initial step 

toward the construction of a map scene model from a Description Logics viewpoint is 

99 



to identify the concrete domains. For the example in Figure 5.2, the concrete domain 

QEOM defined in Section 4.3.2 of Chapter 4 is used. 

A T-box T A.C.C(QWM) is then defined, which is the result of considering how a 

complex river section is constructed using other defined concepts. A T-box contains 

two different kinds of concepts: derived and primitive. Derived concepts occur on the 

left hand side of a terminological axiom, while all other concepts are primitive. In 

this example, the primitive concepts are defined as follows 

{bridge, island , elementary _river _portion} 

The derived concepts are 

{ complex_river _section, part_of_complex_river _section, river _section_with_bridge, 

complex_river _segment, river _portion_with_island } 

The following roles are defined: 

{CHAINED_WrTHR, HAs_B_PARTR, HAs_RYARTR , BUILD_WITHR} 

The following features are defined: 

{B_PART_OFp , R _PART_QF_ONEp, R _PART_OF_OTHERp , ERP_FART_OFp, 

IS_PART_OFp } 

The predicates defined are 

{ PREJorm_riversbridge_connection, PRE_contain_in__middle} 

Mathematically, the following terminological axioms in TA.cc (QWM) are given. 

100 



complex_river _section = \I CHAINED_ WITHn. part_of _complex_river _section 

parLoLcomplex_river _section = river __section_with_bridge 

river__section_with_bridge = :J HAs_B _PARTn .bridge n :J 

HAs_R_F ART R . complex_river _segment n 

PRE_form_riversbridge_connection(B....PART _OFp, R....PART _OF _ONEp , 

R_PART _OF _OTHERp) 

complex_river _segment = river _portion_with_island U elementary _river _portion 

river _portion_with _island = :J BUILD_ WITHn • elementary _river _portion n :J 

BUILD_WITHn • island n PRKcontain_in_middJe(ERP ....PART _OFp , 

IS_PART_OFp) 

The T-box allows us to define a new concept based on other previously defined 

concepts. The operations used to build the new concept provide both sufficient and 

necessary conditions for classifying an individual as a member of the new concept . 

The T-box's main task is to show how groups of instances with common properties 

are related with one another. However, interrelated individuals are encoded in the 

semantics of roles; that is, a subset of the product dom('D) x dom('D). In the real 

world, when it comes to specifying the semantics of roles, the following two approaches 

are usually used: 

• Enumerate all the ordered pairs (relation instances). 

101 



• Establish a set of constraints or properties that determines whether a given 

relation instance belongs to the role. 

Enumerating through the whole set of relation instances is not practical since it 

may be a huge set depending on the types of maps. For a given map, the number 

of relation instances is finite. However, the semantic constraints have to be defined 

on the domain of all the map instances that may participate in the relation, which 

may be a huge collection of instances. The better way to apprehend the meaning of 

a role is to specify what kind of scenarios may suggest the happening of the role. For 

instance, in map understanding applications, the role "inside" can be represented as 

a truth-value function (or algorithm) . It is not necessary to list all t he individuals 

that are inside another instance. Sometimes, special constraints are put forward to be 

incorporated into the syntax of the roles. For example, the role name R~2 indicates 

that given a, U{b I (a, b) E R:r} ~ 2. 1 

The A-box contains extensional knowledge of individuals in both abstract and 

concrete domains. It includes membership assertions and role assertions. To distin­

guish one individual from another, an "extrinsic" identification scheme that assigns 

a number to each individual is used. Suppose there is a need to express the follow­

ing facts: (1) An instance of the complex river section, crs_l , is composed of two 

attached parts: pcs_l and pcs_2; (2) pcs_l and pcs_2 are also instances of complex 

sections with bridges on them; and (3) rpwLl is a portion of river with an island 

1The operation " returns the number of elements in a set. 

102 



inside. Figure 5.3 is a graphical illustration of the facts. With assertional axioms, 

these facts can be expressed as follows: 

complex_river_section 

complex_section_ with_bridge 
.------L------~ ,------~----~ 

complex_river_segment 

b_l b_2 

ri ver_portion_ with_ island 

erp_ l erp_ 2 
erp_3 

Figure 5.3: Concepts involved in a complex river section. 

{ crs_l : complex_river _section , pcs_l : parLoLcomplex_section , 

pcs_2 : parLoLcomplex_section , (crs_l , pcs_l) : CHAINED_WITHn, 

(crs_l , pcs_2) : CHAINED_WITHn, pcs_l : river_section _with_bridge, 

103 



pcs_2 : river _section_with_bridge, crg_l : complex_river _segment, 

crg_2 : complex_river _segment, crg_3 : complex_river _segment, 

(pcs_l , crg_l) : HASJLPART_ONEn, (pcs_l, crg_2): HAS_R_PART_OTHERn, 

b_l : bridge, (pcs_l , b_l) : HAS_B_PARTn, 

(b_l, crg_l , crg_2) : PRE_form_riverbridge_connection 

(pcs_2, crg_2) : HAS_R_PART_ONEn, (pcs_2, crg_3) : HAS_R_PART_OTHERn, 

b _2 : bridge, (pcs_2, b _2) : HAS_BYARTn, 

(b_2 , crg_2, crg_3) : PRE_form_riverbridge_connection. 

crg_l : river _portion_with_island , crg_2 : elementary _river _portion , 

crg_3 : elementary _river _portion , erp_l : elementary _river _portion , 

(crg_l , erp_l ) : BurLD_WITHn, i_l : island, 

(crg_l, i_l) : BUILD_WITHn, (erp_l , Ll) : PRE_contain_in...middle} 

5.2 Expressing Map Knowledge 

In this section QA.CC(£, D) is applied to the domain of map understanding. The 

whole process is expressed below. 

Let dom(I) be an arbitrary set of all possible instances on a map in scope. We start 

with the definition of the primitive concepts used in map knowledge representations. 

{ city, bar _line, road _segment, island , elementary _river _portion , simple_river _segment } 

A concrete domain can be viewed as a mechanism for modeling primitive objects 

104 



and predicates, which are indispensable in a knowledge engineering system. The 

predicates represent procedural reasoning algorithms that work on concrete objects. 

It is obvious that all sorts of spatial objects and symbols can be built up with pixel 

level objects, such as points and chained line segments. The predicates are specified 

over the concrete objects. To decide whether a predicate is satisfied, t he DL systems 

take various algorithms to compute positions of and relations among the objects. 

In this dissertation we define an admissible domain 'Dmap_understanding, which is the 

union of a number of "smaller" admissible domains. One such domain is 'Dgeometry, 

which consists of a set of points and continuous line segments, and a set of predicates 

defining positions, geometrical properties , and spatial relations of objects. 

The following is a set of axioms which make up the T-box, where concept names 

and predicate names are written in Sans serif font and role names written in Small 

caps font . Predicate names are prefixed with PRE_. 

1. map = :3CONTAINSn . roadnetwork_or _rivernetwork n :3 CONTAINSn . other_feature 

This axiom means that a map contains a set of instances, each of which can 

be either a road network or a river network, and other map features. Role 

CONTAINSR is defined as such : 

a,b E dom(I); (a,b) E CONTAINS~ iff bE roadnetwork_or_rivernetwork 

or b E other _feature. 

2. other _feature = isolated _lake U buildings 

105 



The concept other _feature includes isolated lakes and buildings. 

3. roadnetwork_or _rivernetwork = road _network U river _network 

This means a roadnetwork_or _rivernetwork instance is either a road network or a 

river network. 

4. road _network = :J R oad_N etwork_H asn . road_section 

A road_network can be viewed as being made of a collection of road_section in­

stances. Note t hat t here are two types of map phenomena; one is t he physically 

visible objects, such as line segments and city symbols, the other is t he invisible 

ones, such as gaps between broken line segments. The existence of invisible 

objects depends on other objects' existence, or the context. Ideally, we t hink 

of a joint as a simple point where more t han two legs join. However , in our 

application , a road joint carries a meaning that takes into account the complex 

situations on real maps. For example, as shown in Figure 5.4, sometimes road 

legs join at a city, while other times roads are not exactly joined at a point (this 

occurs frequent ly) . Therefore, the concept joint is an indispensable part in the 

proposed DL system. 

It may be asked why road_section instances are identified as the building blocks 

of a road network. Usually, a road network is made of a set of road legs and a set 

of joints. The role R oad_N etwor k_H as R may be considered a ternary relation 

among road networks, joints and road sections. However , R oad_Network_Hasn 

106 



Figure 5.4: Two instances of road joints. 

is defined as a binary role in this representation. It is better to view the joint 

instances as attributes of road networks, since the existence of a joint depends 

on the intersecting road sections. 

5. road_section == :3 Has_As_TwoEndPointsp . endpoints n :3 Has _As _LegF . leg n 

PRE_leg_joint(Has_As_Jointp Posp, Has_As_Legp First_Endp Posp, 

Has_As_Legp Other_Endp Posp) 

Feature Has_As_Jointp refers to the joint part of a joinUeg_pair. Has_As_Legp 

refers to the leg part of a joinUeg_pair. Note that PRE_Leg_Joint is a predicate 

restriction. The feature chain Has_As_Jointp Posp picks up the position of a 

joint. Has_As_Legp First_Endp Posp means the position for one of the end 

points of the leg. The predicate PRE_Leg_Joint means that t he position of the 

joint of a joinUeg_pair should coincide with one of the end points of its leg. 

ote that we can bestow on this predicate different meanings according to what 

types of constrictions we intend to have. For example, it can be defined as 

(Has_As _Jointp Posp) = (Has_As _Legp First_Endp Posp) V (H as_As_Jointp 

107 



Posp) = (Has_As_Legp Dther_Endp Posp) 

Unfortunately, this is only the case with ideal situations. In most cases, it is 

important to allow for some variations. On maps, it is possible that a joint 

actually does not touch its connecting legs. Thus we have 

dist ( (HAS_JOINT Pos)- (HAS_LEG FIRST _END Pos)) :::;; threshold 

V dist ( (HAS_JOINT Pos)- (HAS_LEG OTHER_END Pos)) :::;; threshold 

This is a good example of separating representation from implementation. We 

can consider the application's declarative aspects first, and delay implementa­

tion to a later stage. As a result, flexibility is achieved in adapting representa­

tions to different situations. 

6. leg = (:3 Compose_String_Of R • parLoLieg U :3 Is_Simple F • road_segment) n 

V More_PartsR . _l_ 

This means that a "leg" is composed of a string of leg parts, or just a simple 

road segment. The concept term More_PartsR. _j_ means that the parLoLieg 

instance cannot connect to any more leg parts (already the longest among its 

class). Next we define what exactly these leg parts are. 

7. parLoLieg = leg_parLwith_gap U leg_parLwith_city U leg_parLwith_bridge 

Obviously this axiom defines that a leg part can be a leg_parLwith_gap, or a 

leg_part_with_city, or a leg_parLwith_bridge. 

8. leg_part_with_gap = :3 Has_One_Endp . road_segments n :3 Has_Other_Endp . 

108 



road _segment n PRE_forming_gap_jnbetween(Has_One_Endp, Has_Other _Endp) 

This describes the scenario that a "leg part" instance in turn has one "road 

segment" instance at one end and another "road segment" at the other end, 

forming a "gap" in between. The predicate PREJorming_gap_jnbetween takes 

the corresponding geometric forms of the two "road segment" instances and 

checks whether they satisfy the criteria for forming a gap. Such criteria may 

require that the two road segments meet the following conditions: (1) They are 

close enough to each other; and (2) They follow each other's curve. 

9. leg_part_with_city = ~ Has_One_Endp . road_segment n ~ Has_Other _Endp 

road_segment n ~ Has_In_Betweenp • city n PRE_with_city_jnbetween 

(Has_One_Endp Georn_Forrnp , Has_Other _Endp Geom_Formp, Has_In_Betweenp 

Georn_Forrnp) 

This axiom defines that a "leg part with city" instance is built with two "road 

segment" instances and one "city" instance that satisfy certain criteria. 

10. leg_parLwith_bridge = ~ Has_One_Endp . road_segment n ~ Has_Other _Endp 

road_segment n ~ Has_In_Betweenp . bridge n PRE_with_bridge_jnbetween 

(Has_One_Endp, Has_Other _Endp, Has_In_Betweenp) 

Axioms 6 to 10 share the same structure. The basic meanings behind them are 

more easily illustrated by a diagram in Figure 5.5. Note that we look at a part 

of a leg as having three smaller parts: one road segment at one end, another 

109 



road segment at the other end, and a bridge symbol in between. 

----- -------- -- --' B : 
~K: 

r----- -------

! ..Zo~ 
' --- ---------

' ---- ----- -------

leg_part_ with_gap leg_part_ w i th_bridge leg_part_ with_city 

,----------- - ----~ 

' B ' 
: ~K : : ' 

r -----------

i ..Zo~ 
B : 

~~: 
' 

city 
r----- --- ------ bridge 
' 

!~ 
r- -- -, 

: I I : 
' ' 

: 0 : B 

~ ' : ___ ____________________ ___ __ ___ ___________ , 

Figure 5.5: Meaning of a "leg" instance. 

11. bridge = :3 First_Bar F • bar _line n :3 Other_Bar F • bar _line n PRE_Bridge 

(First_Barp, Other_Barp) 

It is obvious that a bridge on a map is drawn with two bar lines. The predicate 

PRE_Bridge states the restriction that only two bar lines that are reasonably 

short and approximately parallel to each other can make a bridge symbol. 

12. river _network = :3 Ri ver_Network_Has F • joinLsection_pair 

Just like road networks, a river network is made up of joints and sections. T he 

110 



object-relationship graph in Figure 5.6 gives a general sketch of the concepts and 

relationships involved. During the knowledge engineering process, the accurate 

semantics of those concepts and roles are gradually refined. 

Figure 5.6: The object-relationship graph of river networks. 

13. joinLsection_pair = 3 Has_Jointp • river_joint n :3 Has_Sectionp . river_section 

n ((PRE_Is_Complex_Joint(Has_Jointp ) n PRE_Is_Complex_Section 

(Has_Sectionp) n PRE_Complex_Section_Joint(Has_Joint p Geom_Formp, 

Has_Sectionp Geom_Formp)) U (PRE_Is_Mix_Joint(Has_Jointp) n 

PRE_Is_Mix_Section(Has_Sect ionp) n PRE_Mix_Section_Joint(Has_J oint F 

111 



Georn_Forrnp, Has_Sectionp Georn_Forrnp)) 

u (PRE_Is_Simple_Joint(Has _Joint p) n PRE_Is_Simple_Bection(Has_Sectionp) 

n PRE_Simple_Section_Joint(Has _Jointp Georn_Forrnp, Has _Sectionp 

Georn_Forrnp))) 

This axiom describes how a "joint section pair" instance can be constructed 

from "river joint" and "river section" instances. 

Through role names Has_Jointp and Has_Sectionp, it states that a "joint 

section pair" has a "river j oint" and a "river section" as its parts. Three different 

types of joints and sections are considered: complex, mixed, and simple. River 

sections with two explicitly drawn banks are called complex, while those with 

only one bank called simple. Similarly, a spot where two complex sections join 

is called a complex joint. Two simple ones are connected with a simple joint. 

In particular, a mixed joint is where a complex section and a simple one come 

together. 

Further details of the semantics involved in this axiom are defined by the axioms 

below. 

14. river _joint = complex_joint U mixed_joint U simple_joint 

To capture the meaning of river networks in detail , we first analyze different 

forms of intersections of a river system. Shown in Figure 5.7 are some typical 

river intersections. 

112 



Figure 5.7: Different river intersections. 

15. complex_joint = :J Complex_Joint_Connect R • complex_river _section 

This axiom states that a "complex joint" instance connects a number of "com-

plex river section" instances. 

It is convenient to think that complex river sections are connected by pairs of 

articulations, as illustrated in Figure 5.8. We have to explicitly symbolize the 

end points (A1 , A'1, B1 , B~, C1 , C~) of the complex river sections. 

Figure 5.8: Articulation pairs. 

Alternative terminological axioms can be used to represent the same map knowl-

edge. For example, axioms 13 and 14 can be substituted with the following: 

113 



joinLsection_pair = complex_joinLsection_pair U mixture_joinLsection_pair 

U simple_joinLsection_pair 

complex_joinLsection_pair = ::1 Has _Complex_Joint F • complex_joint n 

::1 Has_Complex_SectionF . complex_section n 

PRE_Complex_Section_Joint(Has_Complex_] oint F, 

Has_Complex_SectionF) 

mixture_joinLsection_pair = ::1 Has_Mixture_JointF • mixture_joint 

n PRE_Mixture_Section_Joint(Has_Mixture_J oint F, 

Has_Mixture_SectionF) 

simple_joinLsection_pair = ::1 Has_Simple_Jointp . simple_joint 

n PRE_Simple_5ection_Joint(Has_Simple _]oint F> 

Has_Simple_Sectionp) 

16. river _section = complex_river _section U simple_river _section 

River sections can be either complex sections or simple ones. 

17. complex_river _section = (::1 Compose _String_Of R • part_of_complex_section 

U ::1 Is_Complexp . complex_river_segment) n • ::1 More_Partsn . T 

This axiom states that a "complex river section" instance is composed of a string 

of "part of complex section" instances. The role name Compose_String_Of R 

requires that the building parts of a complex river section be connected together 

in a consecutive manner. 

114 



T he concept term -, 3 More_PartsR . T describes those complex river sections 

that do not have any more other parts . 

18. part_of_complex_section = complex_section_with_bridge_case1 U 

complex_section_with_bridge_case2 

T his axiom distinguishes two different ways in which a br idge is drawn: (1) 

wit h an explicit bridge symbol; and (2) implied in the context . 

19. complex_section_with_bridge_case1 = 3 Has_First_EndF . complex_river _segment 

n 3 Has_Other _EndF . complex_river _segment n 3 Has_In_BetweenF • bridge 

n PRE_with_bridge_in_betweenl (Has _One _EndF, Has_Other _EndF, 

Has_In_BetweenF) 

T his axiom states t hat a "complex river section with a bridge" instance should 

be made of three parts: a complex river segment at one end, another complex 

river segment at the other end , and a "bridge" symbol between t he two river 

segments. 

Sometimes there is no bridge symbol drawn at t he intersection of a road section 

and a river section. T his sit uation is dealt with by the next axiom. 

20. complex_section_with_bridge_case2 = 3 Has_One_EndF . complex_river _segment 

n 3 Has_Other_EndF . river_segment n 3 Has_Road_CrossF . road_segment 

n PRE_with_bridge_in_between2(Has_One_EndF, Has_Other_EndF, 

Has_Road_Cr os s F) 

115 



This axiom deals with the scenario when an explicit "bridge" instance is not 

drawn on the map. 

21. complex_river _segment = river _portion_with _island U elementary_river _portion 

A "complex river segment" instance appears either as a river portion with an 

island symbol in the middle or as an elementary river portion. 

22. river _portion_with_island = 3 Has__Ri ver_PortionF . elementary_river _portion 

n 3 Has_Islandp . island n PRE_islandJn(Has_Ri ver_PortionF, Has _Islandp) 

A "river portion with island" instance in turn is made of an elementary river 

portion with an island in the region covered by the river portion. 

23. simple_river _section = 3 Compose_String_Of R • parLof ...simple_section 

n --, 3 More_Partsn . T 

This axiom tells us a simple river section is assembled with a string of parts 

and contains no other parts. 

24. parLof ...simple_section = simple_section_with _bridge U simple_section_with_gap 

A "part of simple section" instance is either a "simple section with bridge" or 

a "simple section with gap" . 

25. simple_section_with _bridge = simple_section_with_bridge_casel 

U simple_section_with_bridge_case2 

116 



We distinguish two cases in the next two axioms: (1) the presence of a bridge 

on the river section is explicitly represented by a bridge symbol; and (2) the 

presence of a bridge is implied in the context. 

26. simple_section_with_bridge_casel = :3 Has _One_Endp • simple_river _segment 

n :3 Has_Other _Endp . simple_river _segment n :3 Has_In_Betweenp • bridge n 

PRE_witb_bridgejn_between(Has _One_Endp, Has_Other _Endp, 

Has_In_Betweenp) 

In this scenario, a simple river section is made of two simple river segments with 

an explicitly drawn bridge symbol sitting in between. 

27. simple_section_with_bridge_case2 = :3 Has_One_Endp • simple_river _segment 

n :3 Has_Other_Endp . simple_river _segment n :3 Has.-Road_Cross p . road _segment 

n PRE_witb_bridgeJn_between(Has_One_Endp, Has_Other _Endp, 

Has_Road_Crossp) 

In this scenario, there is no explicitly drawn bridge symbol in between the two 

simple river segments. However, since the simple river segments intersect with 

a road segment, a reasonable conclusion can be drawn about the presence of a 

bridge. 

28. simple_section_with_gap = :3 Has_One_Endp • simple_river _segment 

n :3 Has_Other_Endp • simple_river _segment 

n PREJorming_gap_between(Has_One_Endp, Has_Other _Endp) 

117 



Duo to t he quality of low-level image processing algorithms, a continuous road 

may appear as a number of separated line segments. To overcome this is­

sue, we consider two simple river segments as belonging to the same river 

section as long as they comply with the restrictions implied in the predicate 

PREJorming_gap_between. 

5.3 Summary of Typical Concepts and Roles 

From the above discussions, it is seen that in order to deal with spatial objects and 

their relations, features and phenomena of interest have to be explicitly symbolized. 

In this section, the semantics of some typical concepts and roles used for modeling 

spatial knowledge will be summarized. 

• Chained_Withn: a finite set of objects (called chaining-objects) {'Y1 , · · · , 'Yw}, 

is said to form a chain iff t hese objects ('Y1, · · ·, 'Yw) can be arranged into an 

ordered series 'Y~, · · ·, 'Y~ (where 'Y~ E {'Y1, · · ·, 'Yw}) so that 

1. each chaining-object 'Y~ is associated with a pair (h1 ('Y~), h2 ('Y~)) (called 

hooks), and 

2. there exists a predicate P (link condition) such that P(h2 ('Y~), h1('Y;)) , 

P(hz ('Y;), h1('Y;)) , · · ·, P(hz('Y~_1 ), h1('Y~ )). 

We define Chained_Withn::r as {(c, 'Y) I 'Y is one of the chaining objects that 

form the chain c.} 

118 



• Containsn: this is a one-to-many relation, which represents the relation among 

a collection ins.tance and its member instances. An instance e is viewed as a 

collection of some other instances, then 

Contains RI = { ( e, y) \ y belongs to the collection represented by e.} 

• Networked_Withn : a number of instances o1 , · · · , Ov are said to be networked 

iff they meet the following constraints: 

1. Each oi , i=l , · · ·, v, has a pair ( p1 (oi), p2(oi) ) (end points). 

2. No two such instances are identical, i.e., oi i= Oj iff i i= j , i,j = 1, · · ·, v . 

3. The instances are connected either directly or indirectly with one another. 

Two different instances are directly connected with each other iff they 

have joined end points, i.e., 

CONNECTED(oi, Oj) = JOINED(pl (oi), Pl(oj)) U JOINED(pl(oi), 

P2(oj)) U JOINED(p2(oi), P1 (oj)) U JOINED(p2(oi), P2(oj)) 

Two different instances oi and Oj are indirectly connected with each other 

iff there exists a (non-empty) set of instances ok+1, ok+2, · · ·, ok+q such 

that 

CONNECTED(oi, Ok+l ) U CONNECTED(ok+1, ok+2) U · · · U CON­

NECTED(ok+q, Oj )· 

119 



Chapter 6 

Map Understanding Process 

In previous chapters we have shown how to formalize map knowledges. However, 

to achieve the task of map understanding, we have to employ an appropriate rea­

soning mechanism that works effectively on the basis of DL representations. One of 

t he desirable practices used by knowledge-based system designers is t o separat e the 

knowledge representation as much as possible from the reasoning mechanism. In this 

chapter, the reasoning mechanism based on a DL specification will be discussed. It 

will be shown that just like the formalization of knowledge representations, t he rea­

soning process of map understanding can be formally defined . In particular , it will 

be shown that the map understanding process is actually a process that builds a so 

called complete object-instance-relation (OIR) graph. 

120 



6.1 Understanding of Maps 

In order to understand maps, it takes a considerable effort to process raw image data 

and draw inferences based on the domain knowledge. Understanding maps means 

being able to do more than simply finding the facts, such as, "How big is the area 

covered by the map?" or "How many colors are used in the map making?". Most 

frequently asked questions about a map are these: (I) Where is the location of a 

specific object? (2) How to travel there? and (3) What is the distance from here to 

that place? The visual information presented to a map reader does not answer all 

the questions directly. He has to ident ify, search, match, index, correlate, analyze, 

guess, confirm, and summarize the facts implicitly shown on the map. In a sense, a 

map may be viewed as a special kind of database. However, it is not organized in 

lists of data records, but presented in an analog format that needs to be processed 

by human eyes, a sophisticated biological vision system. This database holds spatial 

information and serves as a guidance tool. It will be frequently referred to when 

answering those questions mentioned above. One thing to note is that each of these 

questions concerns just a portion of a map. To answer them does not require dealing 

with all the information stored in the map. This means that map understanding 

depends on the tasks it intends to achieve. Different understanding tasks may involve 

different instances, attributes, and relations. 

In this section, the term "understanding" will be defined in a formal fashion first. 

The word "understanding" is widely used in human communication. Yet it is very 

121 



difficult to define and evaluate. There is no generally agreed-upon scientific meaning. 

However, it is possible to explore some of the significant aspects of what are involved. 

Instead of trying to define a general meaning, we concentrate our attention on what it 

means by understanding in the context of GIS and similar computer applications. An 

understanding process can be described by telling what kind of output it produces. A 

map is understood by a computer system when its output has adequately revealed the 

information (either explicit or implicit) that the maker of the map intends to convey. 

The output can give a highly structured and classified description, based on which 

other applications can carry out further analysis. It will be shown that a complete 

OIR graph introduced later in this section can be such an understanding result. In 

general, an understanding of a map is nothing more than revealing map objects and 

relationships. 

We formalize the term understanding through the following definition. 

Definition 6.1 (Understanding task) 

An understanding task T is a pair (T, OIR(T )), where T is a concept t erm, and 

0 IR (T) is a complete object-instance-relation graph that covers T . 

Since a new concept name can be defined using a concept term, sometimes we 

also call T the task concept. We will first show that any understanding task centers 

around a concept T , whose formal definition has been given in Appendix A. The 

output of an understanding process is a graph structure OIR(T). In the next section, 

the formal definition of OIR will be given. 

122 



In Description Logics systems, a concept is defined as a subset of dom(I), and 

thus it virtually can refer to any set of instances with some common properties. Any 

phenomenon (or phenomena) on a map can be viewed as a concept. Therefore, it can 

be said that to understand a map phenomenon (or a group of phenomena) is actually 

to understand a concept in DL systems in an abstract sense. Understanding a concept 

means revealing the instances of this concept as well as the possible instances that are 

related to it either directly or indirectly. The following examples are used to illustrate 

this idea. 

Task 6.1 Suppose we intend to store a map into a GIS in digital format, which means 

we have to understand the phenomenon "map". From discussions in Section 5.2, we 

know that all sorts of map phenomena of interest can be represented in concepts or 

concept terms. 

Such a task can be represented by a task concept Map and a complete OIR 

that covers Map. The OIR graph includes different abstract levels of map concepts 

and roles that are related to the concept Map, where all the relevant concept and 

role instances are explicitly represented. Due to the varying usages of digital maps, 

different GIS systems may put their emphasis on different types of information to 

capture. 

Task 6.2 Suppose we are gwen a map and want to drive from New York city to 

Los Angles by the shortest route. We have to understand relevant phenomena on the 

123 



map. All those m eaningful things involved in our understanding can be abstracted into 

concepts or concept terms. The concepts we identify for this task are these: city, road 

section, path, path between New York to Los Angles, and the shortest path between 

them. 

Note that we also take into consideration those concepts which are usually com­

puted using procedural algorithms, such as the shortest path between two cities. 

6.2 Object-Instance-Relation Graphs 

In this section, an introduction to OIR graphs is presented, which is a special struc­

ture we propose to be used for representing a map understanding process, as well as 

for describing and analyzing map understanding systems. 

Definition 6.2 (Object-Instance-Relation graph). 

An object-instance-relation graph (OIR) is a graph T 

where 

1. 0 = { o1 , o2 , . .. , Om } is a set of instance hoLders. 

2. I = { i 1 , i 2 , .. . , in } is a set of instances. 

3. A placement function G 1 is a partial mapping: 

124 



4. NR is a set of relationships, and each of its elements R ~ I x I is a set of 

edges. 

5. Prim C 0 is a set of primitive instance holders. 

An OIR graph is actually a graphical illustration of object classes and relation­

ships among them. Each element in 0 is called an instance holder, which corresponds 

to a concept name. The individuals in a given map world compose the set I. The 

placement function G1 is a many-to-one mapping that assigns instances to each in­

stance holder in the OIR graph. NR may be viewed as the set of role names in a 

DL system. In a graphical illustration of an OIR graph, instance holders are drawn 

as ovals, and object instances drawn as small black boxes. The relation instances are 

represented by edges between object instances. The primitive instance holders are 

represented by ovals with bold lines. Figure 6.1 gives an example of an OIR graph. 

OIR graphs can be viewed as an alternative representation of maps. According 

to an OIR, a new map can be created as long as those map features and relations of 

interest are specified in the OIR. Multiple OIRs that describe different regions can 

be merged to form a larger map. Take the simplified map in Figure 6.2 as an exam­

ple. The OIR graph in Figure 6.1 can depict, in a declarative manner, the object 

instances on this map and their relations at different abstract levels. At this stage, 

we contend ourselves with the current OIR depiction by just demonstrating the ex­

istence of certain instances and relations. The detailed properties or the nature of 

individual instances and relations are absent. In the proposed methodology, an OIR 

125 



map 

Figure 6.1: An example of an OIR graph. 

only serves as a tool to capture proceedings of a map understanding process. The 

internal representation of a DL system deals with details of instances and relations. 

As can be seen in Figure 6.1 , the instances are drawn inside the concept holders, 

indicating that they are assigned to these holders. Each concept holder has an asso­

ciated concept name, indicating its corresponding concept in the DL system. Each 

instance is also associated with a name, which corresponds to its instance name in the 

126 



assertional language. Hence, an OIR graph can be looked at as a visual version of a 

set of assertional axioms. For example, an instance Bl in the instance holder labeled 

bridge can be represented as an axiom: Bl : bridge. Each edge in an OIR graph 

corresponds to an axiom of the form (a, b) : R , where a, b are two concept instances 

connected by the edge, and the edge is a relation instance that belongs to R . T he 

edge between Bl and BLI corresponds to t he axiom (Bl , BLI) : 0NEJ3AR1 . Note 

that a terminological axiom of the form A = B is actually equivalent t o A= V R.B, 

where R is an identity role, that is, R I = {(s, s) I s E dom(I)}. 

The OIR graph reveals facts of interest to us from the simple map in Figure 6.2. It 

indicates that the map contains one road network RNI and two river networks RvNl 

and RvN2. RNI in t urn is made of six joinUeg_pair instances. Each joinUeg_pair 

has a joint and a leg, and so forth. 

Solving a problem by computer is different from doing so by human beings. For 

a human being to solve a problem, he can take steps to reach t he solution without 

a complete specification of the problem. Computers can only achieve a solution 

by manipulating clearly defined representations. A complete OIR graph has t he 

following characteristics: 

1. It is a symbolic representation, which provides a basis for comput ing solutions. 

2. It provides an explicit and tangible description of concept and role instances 

1 For the sake of simplicity, the edges in Figure 6.1 are not labeled with corresponding role names. 
However, t he role names can be figured out based on the participating concepts. 

127 



RSI PLI _lJ---~ 
-------~--~-, -------h._~ /--

Legend 

Road 

River 

0 City 

\\ Bridge 

CS I 

------~-\ J'h 

I RS4 

m~ 
"'!~ 
( 
~---~s1o 

RS6 / L 

PLJ ~C2 
5 

I ' YLL6 CSJ 

RS7\L~\\BJ 
4 RJ2~~ -

PL4 82 

\ Rss 
\ 

PL5~RS9 

~ 

Figure 6.2: A simple test map. 

that are implicitly encoded in a map. 

The OIR graph in Figure 6.1 is a complete OIR graph, which is formally defined 

in t he next section. 

128 



6.3 Building a Complete OIR Graph 

In this section we shall give an informal introduction to the map understanding pro­

cess. This is done by means of an example that performs the task of storing the simple 

map in Figure 6.2 in digital format. Such a task requires the explicit representation 

of the map objects and relations illustrated in Figure 6.1. 

As discussed in Chapter 1, low-level image processing methods are first applied 

against raw map images in order to obtain elementary features. Before we start a 

high-level map understanding process, all other derived features and relations remain 

encoded in the raw map except those instances of primitive concepts, such as city, 

bar _line, road _segment, island , elementary_river _portion , and simple_river _segment. This 

can be viewed as the initial state of a map understanding, which can be represented 

by an initial OIR graph. 

An instance holder that is not occupied by any instances is called empty. An 

instance holder is called full if no more instances in the domain can be added to 

it. An OIR graph whose primitive instance holders are full and whose non-primitive 

holders are empty is called an initial OIR. 

As can be seen from the preceding discussion, the output of a map understanding 

process is a complete OIR graph in Figure 6.1. From an abstract viewpoint, the 

understanding of the simple map is indeed a process that starts from an initial OIR 

graph, goes through a series of understanding steps, and finally, builds up the complete 

OIR graph. T his can also be considered an incremental structuring process. 

129 



In Figure 6.1, t here are thirty instance holders , among which six are primit ive 

instance holders. In the beginning, only primit ive instance holders have instances 

inside, while all the other instance holders, which are also called derived instance 

holders, are empty. During the understanding process, the number of instances in 

derived instance holders may increase, which indicates that various derived instances 

are made explicit and assigned to the corresponding holders. 

An understanding step can be defined as an action that reveals new information. 

Such an action can put a "new" instance into an instance holder, which indicates a 

concept instance being made explicit. It can also be one that adds an edge between 

two existing instances, which indicates that a relation between the two instances has 

been established. Each understanding step decides an action to take based on the 

current state of the OIR graph. Consider, for example, t he six bar _line instances, 

BLl , · · ·, BL6, shown in Figure 6.2. Suppose that an algorithm is used to decide 

whether two bar lines constit ute a bridge2
. BLl and BL2 are determined to be such 

a pair of bar lines. This fact can be denoted by 

(Bll, BL2) E PRE_Bridge(One_BarF, Dther_BarF) 

According to axiom 11, we know that a bridge is defined as something that has 

two bar lines which fulfill the predicate P RE_Bridge(One_Bar F, Dther_Bar F) . Thus 

we can put a new instance Bl in the holder bridge, and add two edges (Bl, BLl) 

2There are different algorithms for this purpose, depending on how bridge symbols are drawn on 
maps. One method is to check their relative positions and their parallelism. 

130 



and (Bl, BL2) to the graph, indicating that bridge Bl is made of BLl and BL2. 

This understanding step produces new instances and edges. Following this step, 

suppose that bridge Bl is connected to a road segment RS4 at one side and RS5 at 

the other side. It is known that Bl , RS4 and RS5 make up a leg_parLwith_bridge 

instance. Then an instance LBl is placed in the leg_parLwith_bridge holder, and 

three edges, (LBl, Bl), (LBl, RS4), and (LBl , RS5) , are added. Therefore, we 

can keep on exploring for new instances and relations, until t he OIR graph gradually 

evolves into a complete OIR graph in Figure 6.1. 

In DL systems, each concept participates in at least one relationship (role). Some 

concepts play an indispensable part in other concepts. Given a terminological axiom C 

= D, let DefC( C) denote the set of concepts occurring in D, and let DefR( C) denote 

the set of roles occurring in D. The concepts in DefC( C) are called the defining 

concepts of C, and the roles in DefR( C) are said to be the defining roles of C. 

Let a be an instance of C. The defining relations of a are the role instances 

in DefR (C) that specify relations among a and certain instances in DefC( C). The 

instances in DefC (C) that are related to a are called its defining instances. 

Initially, the instance holder of Cis empty, since it is a derived concept. In many 

cases, the instance holders of its defining concepts are also empty. After a number of 

understanding steps, the holders of its defining concepts are starting to get populated 

with explicitly recognized instances. Typically, when certain instances of the defining 

concepts are available, they may suggest the existence of some instances of the derived 

131 



concept. For example, when a line segment in red color is recognized , a conclusion 

can be drawn that there exists a road section instance. There is no need to wait until 

all the line segments that compose the road section are recognized. The recognition 

of a new instance requires that all its defining instances and relations be explicit ly 

represented. A number of understanding st eps are usually needed. We distinguish two 

recognit ion states for the explicit ly represented instances in an OIR: full and partial. 

If an instance is placed in a holder wit hout having all its defining instances and 

relations explicit ly shown, it is labeled as a part ially recognized instance; otherwise 

it is called fully recognized. In an OIR, the relations among a derived instance and 

its defining inst ances are characterized by a set of edges that are called assembly 

edges. A fully recognized instance is therefore an instance with all its assembly edges 

explicit ly shown. 

OIR with respect to task C 

Each map understanding task concerns a specific set of concepts and roles. It is 

not necessary to discover the individuals and relations irrelevant to the task concept. 

In other words, only those concep ts and roles t hat directly or indirectly define the task 

concept need to be considered. DefC+ (C) is called the d efining concept closure of 

C, which is obtained by recursively substit uting any concept in DefC( C) with it s direct 

defining concepts unt il no new concept name can be added. All t hose terminological 

axioms relevant to C form a T [C]-box, which is a subset of the T-box. 

Given a task concept C, an OIR graph with respect to a T[C]-box is constructed 

132 



as follows: 

• Start with creating a new instance holder CH in correspondence to C. 

• For each newly added instance holder CII, repeat the following procedure until 

no new holders are available: 

Consider its associated terminological axiom. If it is in the form C = E 1 U · · · 

U Ek or C = E1 n · · · n Ek, add new instance holders corresponding to concept 

terms E 1 , · · ·, Ek, k > 1. 

If it is in the form C = 3 R . D 1 ® · · · ® Dk, add new instance holders corre­

sponding to concept terms D 1 , · · ·, Dk. 

An understanding task C can be regarded as a special concept, that is, an instance 

holder in an OIR. Based on the above discussion, the term "complete OIR graph" 

with respect to a task is defined. Given a task C , the complete OIR with respect to 

Cis defined as an OIR graph G = (C U DefC+(c ), I, G1, NR, Prim), where 

1. All the instance holders are full. 

2. All the instances in I are fully recognized. 

This means that all the instances and their assembly edges of interest are explicitly 

shown in a complete OIR. 

133 



6.4 Augmentation Rules 

One advantage of OIR approaches is that representation and reasoning are sepa­

rated and both are provided explicit descriptions. Providing explicit descriptions for 

both knowledge representation and reasoning is very important for capturing com­

plex semantics of an application. OIR graphs provide a satisfactory representat ion 

of instances and their relations, which define the state of an understanding process. 

The understanding process starts from the initial state with only primitive instances 

recognized, followed by a series of understanding steps, each of which recognizes some 

new instances and relations. This results in the OIR graph representing the current 

state of understanding being transformed to a new OIR graph with some new in­

stances and edges added. The transformations of OIR graphs reflect the track of 

an understanding process. Up to this point the remaining issue is how to explicitly 

describe the understanding process. 

Each understanding step is regarded as an augmentation action. The augmenta­

tion rules for OIR graphs, which are used to guide the understanding process, are 

presented below. 

Definition 6.3 {OIR augmentation rule) 

Let OA be the set of abstract objects, let A be an initial OIR, C, D be instance 

holders, R be a role name, and a, b, c be instances. Also suppose there exist derived 

instance holders corresponding to C U D, C n D, :3 R. C, and V R. C. The set of 

augmentation rules are presented as follows : 

134 



1. If a : C, a : D are in A, and a : C n D is not in A, then add a : C n D to A. 

2. If a : C or a : D is in A and a : C U D is not in A, then a : C U D is added 

to A. 

3. If axioms b : C, (a, b) : R are in A, and a : :JR.C is not in A, then add a : 

:JR.C to A. 

4. Let rel(a, R) be defined by {xI x E dom(I) and (a, x) E R}. Ifrel(a, R) ~ C, 

then add a : VR.C to A. 

5. If the following holds: 

For the feature chains Ui = Ji1 · · · fin;~ for i = 1, · · ·, n, there are 

instance names bi1, · · ·, bin;-l E OA and xi, fori = 1, · · ·, n, such 

that the A-box A contains axioms (a, bil) : fi1, (bil, bi2) : fi2, 

{bin;-1
1 

Xi) : fin; 1 and (x1, · · ·, Xn) : P. 

then add axiom a : P(u1, · · ·, un) to A. 

The above augmentation rules are derived from the definitions of concept terms. 

Take rule 3 as an example. Assume that b : C and (a, b) : R are in A and a : :J 

R. C is not in A, according to the definition of concept term :J R . C, we have a : :J 

R.C. Note that rules 1 to 5 state the construction of OIR graphs in a "bottom-up" 

fashion. Current research papers only d iscuss the "top-down" rules, which are used 

135 



in the consistency test algorithm. In this dissertation, we introduce the "bottom-up" 

rules, which are useful in constructing concepts from other defined concepts. 

An important feature of DL systems is that there exists a sound and complete 

algorithm which is able to verify the consistency of an A-box of A.CC(D). An A-box 

A is consistent if it does not have contradictions. One question may be asked: Do the 

augmentation rules in Definition 6.3 preserve consistency? We call an augmentation 

rule consistency preserving if, after applying the rule to an A-box A, the resulting 

A-box is still consistent. Next we shall prove that they do preserve consistency. 

Theorem 6.1 The augmentation rules in Definition 6. 3 are consistency preserving. 

Proof Let A be a consistent A-box of A.CC(D), and A1 be the A-box obtained from 

A by applying a given augmentation rule. To prove that A1 is also a consistent A­

box, we have to demonstrate that no contradictory concept terms are implied. The 

conclusion can be reached by showing that the contrary leads to a contradiction. 

Since each augmentation rule adds some concept terms to A, we just need to prove 

those added terms do not contradict to other concepts terms in A. 

(a). Augmentation rule 1 adds a : (C n D) to A. If a : (C n D ) contradicts with 

any concept term in A , then a : •( C n D) is implied by A. Since a : C and a 

: Dare also in A, they are in contradiction with a : •(C n D). Thus, a : •(C 

n D) should not be implied in A. Then the case with rule 1 is proved. 

(b). Augmentation rule 2 adds a : (C U D) to A. If it contradicts with any concept 

term in A, then a : • (C U D) must be implied by A. If either a: Cor a : D 

136 



is in A, it will contradict with a : •(C U D). Thus a : •(C n D) should not 

be implied in A. 

(c). Augmentation rule 3 adds a : 3R.C to A. If it contradicts with any concept 

term in A , then a : ·3R.C is implied in A. a : ·3R.C is equivalent to a : 

VR.•C. Since (a, b) E R is also in A , according to the definition of VR.•C, we 

have b E •C. This is contradictory to b : C, which is also in A. 

(d) . Augmentation rule 4 adds a : VR.C to A. If it contradicts with any concept 

term in A , then a : -,\j R.C is implied in A. a : -,\j R .C is equivalent to a : 

3R.• C. This means that there exists an instance c such that (a , c) E •C. This 

contradicts with the fact rel(a, R) ~ C. 

(e). Augmentation rule 5 adds a : P (u1 , · · · , un ) to A. If it contradicts with any 

concept term in A, t hen we need to consider the following two cases: 

(1) the conjunction 

A k p. (x(i)) 
I \~=1 ~ -

is not satisfiable in D. Here x(i) denotes (x~i), · · ·, (x~]), and P1(x(l)) = 

P(u1 , · · ·, un) · This is not possible since by definition the satisfiability 

problem for finite conjunctions of the above mentioned form is decidable. 

(2) a : •P(u1 , · · · , un) is implied in A. By definition this means that there 

exist r1 , · · · , rn E dom(D) such that uf(a) = r1, · · ·, u~(a) = rn and (r1, 

· · ·, r n) E -,p . Since the following condition holds: 

137 



For the feature chains ui = fil · · · fin;, for i = 1, · · ·, n , there are 

instance names bi1 , · · ·, bin;-l E OA and Xi, fori= 1, · · ·, n, such 

that the A-box A contains axioms (a, bil) : fi1 , (bil, bi2) : fi2, · · ·, 

(bin;-1 > Xi) : fin;> and (xl, .. ·, Xn) : P. 

By definition, the feature chains u 1 , · · · , Un are partial functions , so they 

uniquely decide r1, · · ·, rn. Then we have r 1 = u1, · · ·, rn = Un. So (x1, 

· · ·, Xn) : P contradicts with (r1, · · ·, rn) E •P. 

It can be seen that the concept terms produced by these rules do not contradict with 

those already existing in A. Thus, their consistency preserving property has been 

proved. 

• 
Theorem 6.1 plays a substantial role in guaranteeing a consistent understanding 

process . It has been mentioned that an understanding process starts with a set of 

explicitly represented primitive instances. It is obvious that these primitive instances 

correspond to an A-box Aprim, which contains only axioms of the form ai : C, where 

ai is a primitive instance. According to the consistency checking algorithm (Algo­

rithm 4.1 in Chapter 4), Avrim is a complete A-box. By applying the augmentation 

rules, various instances and relations are recognized successively, until no further in­

stances and relations can be added. Since each augmentation preserves consistency, 

138 



the outcome after a series of augmentations is still consistent. This means a complete 

OIR graph, which is built as a result of the map understanding process, is consistent. 

139 



Chapter 7 

Mapping Description Logics to 

Grammatical Representation 

In the previous chapters , we have concentrated on issues concerning knowledge rep­

resentation for map understanding. An equally important problem is how to conduct 

the reasoning process on the basis of explicitly represented knowledge. One important 

point to note is t hat the knowledge represented is of little use if it does not support 

an efficient mechanism for reasoning. It is not enough to only express the facts and 

truth about map objects and their relationships. The knowledge that is made explicit 

must be inference-oriented. 

The primary objective is then to design a mechanism to perform a variety of 

inference operations and particularly the sequences of inferences that lead us to fulfill 

the desired understanding task. As introduced in the previous chapter, OIR graphs 

serve as a well-defined representation in the context of map understanding. It has 

140 



been known that an understanding process is one during which instances and relations 

are gradually recognized and made explicit in an OIR graph, until a complete OIR 

graph is reached. Since the OIR graph is an abstract structure, designing a reasoning 

mechanism for map understanding is actually designing such a mechanism that works 

on OIR graphs. To obtain actions taken for reasoning, we just need to focus on new 

instances and relations to be produced and under what kind of circumstances they 

are produced. 

In this chapter, a method to transfer a Description Logics representation to a 

grammatical representation is proposed. The knowledge reasoning mechanism is built 

on the resulted grammatical representation instead of on the DL representation di­

rectly. Therefore, the map understanding process is treated as a grammar parsing 

process. The reasons to adopt such an approach are presented as follows. First, 

grammar has been successfully used in a lot of other applications, especially language 

processing applications. Second, a grammar parser can be automatically generated 

according to the given grammar. There exist a large number of grammar analysis 

methods that are readily available. Third, a DL representation can be converted to 

a grammar which preserves the semantics of the DL representation. Fourth, map un­

derstanding is a bottom-up process that can be characterized by a grammar parsing 

process, because grammar parsing is also a bottom-up process that discovers higher 

level symbols based on the currently recognized symbols. 

141 



7.1 Role Types 

Augmentation rules in Definition 6.3 govern the understanding process in general 

terms. They are not enough to guide the understanding process, since they do not 

reveal domain specific relationships. In other words, they specify what can be added 

to the OIR when certain new instances and relations are discovered based on the 

current state of the OIR, but not how to explicate the facts. Take the role name 

Road_Network_Hasn as an example. In Section 5.2, axiom 4 states that the con­

cept roadnetwork is defined as having a relationship with the concept joinUeg_pai r. 

Such a relationship in Description Logic systems is formally treated as a subset of 

dom(I) x dom(I). However, this subset is encoded in the raw map image, not in 

the OIR. Exactly what instance pairs make up this subset has to be revealed dur­

ing the understanding process. This is a question that can only be answered with 

the domain knowledge. Since a joinUeg_pair is always a part of a road network, 

we know that for a joinUeg_pair instance, there is an edge connecting it with one 

and only one road_network instance. These actually are the constraints that the role 

Road_Network_Hasn should obey, which can be expressed as follows: 

(Gl) For all a E joinUeg_pair, t here exists b E road_network such that (a, b) E 

ROAD_NETWORK_HAS. 

(G2) For all a E joinUeg_pair and all b E road_network, (a, b) E RoAD_NETWORK_HAS 

and (a, c) E ROAD_NETWORK_HAS imply b =c. 

142 



(G3) Let a, b E joinLieg_pair, v, w E road_network, (v, a) E RoAD_NETWORK_HAS , 

(w, b) E ROAD_NETWORK_HAS, (a, jl) E HAS_JOINT, (a, h) E HAS_LEG , (b, 

j 2) E HAS_JOINT, and (b, l2) E HAS_LEG. If j 1 = j 2 or h = l2, then V = w. 

These constraints mean that two joinLieg_pair instances are two parts that belong 

to the same road network if they have a common leg or a common joint. Thus in the 

OIR graph, they are connected to the same road _network instance. It is said that a 

is connected to b if there is an edge between a and b. 

In general, each role name represents certain information and defines particular 

constraints that should hold among multiple concepts. Next we are going to summa­

rize some typical role types used in map understanding and specify the constraints 

for each of them. 

1. CONTAINS 

This is a one to many role. Just as shown in Figure 6.1 , there is only one 

instance in instance holder "map", and all the instances in holder "roadnet­

work_or_rivernetwork" should be connected with it. Let A and B be two con­

cepts, let CONTAINS ~ A x B be such a role, and let a, b, c be instances. The 

following are the constraints CONTAINS should hold. 

• If b E B , then there exists a such that a E A. 

• If b E B and c E B , then a= b. 

2. COMPOSE_STRING_OF _LEG 

143 



This is a sequence constraint. Let A = :JCOMPOSE_STRING_OF. B be an axiom. 

Then its constraint can be expressed as 

• If a E A , then there exists a subset {b1 , b2, · · ·, bn} ~ B such that the 

following hold: 

(a, b1) E COMPOSE_8TRING_OF, · · · , (a, bn) E COMPOSE_STRING_OF; 

h(b1, b2), h(b2, b3), · · ·, h(bn-1, bn), and there do not exist bo , bn+l E B 

such that h(bo , bi) and h(bn, bn+l) · 

where his a predicate denoting that bi and bi+1 are two parLoLieg instances 

connecting to each other. 

• If b E B, then there exists a such that a E A. 

3. RIVER_NETWORKJIAS 

Let A = :JRIVER_NETWORK_HAS.B be an axiom. 

• For all b E A , there exists a E A , such that (a , b) E RIVER_NETWORK_HAS. 

• For all a : A and b : B , (b, a) E RIVER_NETWORK_HAS and (b , c) E 

RIVER_NETWORKJIAS imply a = c. 

• Let a, b E A , v, w E B , (a , v ) E RIVER_NETWORK_HAS, (b, w) E 

RIVER_NETWORKJIAS , v E Pre_Section_Joint(HAs_JOINT D _JOINT, 

HAS_SECTION D_SECTION) (i.e. , (v, Jv) E HAs_JOINT, (jv, jvd) E D _JOINT, 

(v, sv ) E HAS_SECTION , (sv, jsd) E D_SECT ION), w E 

Pre_Section_Joint(HAs_J OINT D _JOINT, HAS_SECTION D _SECTION) (i .e., 

144 



(w, Jw) E HAS_JOJNT, (jw, jwd) E D_JOINT, (w, sw) E HAS_SECTION, 

(sw, swd) E D_SECTION) , Jv = Jw or Sv = Sw, then a =b. 

ote that features D_JOINT and D_SECTION are subsets of dom(I ) x 

dorn('Did), where dom('Did) is a concrete domain of the unique ID numbers 

of abstract objects. 

4. COMPLEX-JOINT _HAS 

The role should satisfy the circular constraint. Let A = 3COMPLEX_JOINT _HAS.B 

be an axiom, a E A , and b1 , · · · bn E B. Then 

(a, b1) E COMPLEX_JOINT_HAS, · · · , (a, bn) E COMPLEX_JOINT_HAS, 

iff b1, · · ·, bn are connected together in a circular form. 

Let there exist 

• ep1, · · ·, epn E end_pair such that (b1, ep1) E HAS__END_PAIR, · · · , 

(bn, epn) E HAS_END_PAIR, 

• P1,1, P1,2 E position such that (ep1, P1,!) E POSITIONED_AT, and 

( ep1, P1,2) E POSITIONED __AT, · · · , Pn,l, Pn,2 E position such that 

(epn, Pn,!) E POSITIONED__AT, (epn, Pn,2) E POSITIONED__AT, 

then Pi,2 = Pi+l,l, i = 1, · · ·, n, and Pn,2 = Pl,l· 

5. COMPOSE_STRING_OF _RSECTION 

This role also specifies a sequence constraint. The only difference between 

COMPOSE_5TRING_OF_RSECTION and COMPOSE_5TRING_OF_LEG is that their 

145 



definitions of predicate h are different. In the constraint definition of CoM­

POSE_STRING_OF _RSECTION, h decides whether two part_of_complex_section in­

stances are connected. 

In a general sense, features are considered special roles. For each feature name f 

in A.CC('D) , its constraint can be derived from its definition: 

If (x, y) E ji and (x, z) E ji, then y = z. 

7.2 Specification of Grammar 

In the following, an approach to convert Description Logics semantics to a set of 

grammar productions will be shown in detail. It has been mentioned that the under­

standing process is the evolving of an initial OIR graph into a complete OIR graph, 

and that the augmentation rules give the actions that incrementally build the com­

plete OIR graph. To implement the understanding system, a control mechanism is 

needed to interweave and collaborate the understanding steps. The idea is to derive a 

set of grammar productions from a Description Logics representation. Thus the map 

understanding process can be carried out based on the grammar rules, and a parser 

will be automatically generated. This parser serves as such a control mechanism. 

The grammar derivation takes two phases. The first phase is to map T[S], a T­

box with respect to the task S, into a set of grammar rules, while the second phase 

enhances and refines the grammar production set obtained from the first phase. 

Each element of the production set P = {Pi I i = 1, 2, · · ·, m} has the form 

146 



The left hand side Pi represents a piece of knowledge such as a : C in A. The 

right hand side represents a list of symbols, each of which also represents a piece of 

knowledge. 

The author proposes to consider first how each single terminological axiom corre­

sponds to a set of productions. T hen t he corresponding production sets of all axioms 

in the T-box are put together to obtain the so called map understanding grammar. 

Recall t hat in Definition 6.3 a set of augmentation rules is given. These augmen­

tation rules state general semantics of terminological axioms that are used in the 

understanding process. T hey t herefore are the general reasoning rules that the map 

understanding process should follow. Additionally, the particular semantics of various 

instances and t heir relations should be taken into consideration in the formation of 

t he reasoning mechanism as well. In t he previous chapter, we studied t he semantics 

of various role types and features and brought about t he constraints of each role in 

the understanding process. Since an understanding step takes actions to explore and 

reveal "new" instances and relations based on the existing instances and relations, 

the general augmentation rules together with the role-specific constraints can serve 

as reasoning rules for the understanding process. However, although these reasoning 

rules are sufficient to build a reasoning algorithm, they are not expressed in a compact 

and unified form. Users have to provide a knowledge inference mechanism to guide 

the process to select and apply t hem. T he inference mechanism has the rules work 

147 



m concert to solve problems. By mapping a knowledge representation to a gram-

mar, the automatically generated grammar parser can serve as a reasoning control 

module. Knowledge control, collaboration, subgoal decision, and optimization can be 

incorporated in the parser. 

Before the definition of the derivation rules is given, an equivalent rewriting of a 

T-box Tis introduced. 

Definition 7.1 (Well-formed T-box) 

Not losing generality, assume that all concept terms are in negation normal form. 

• For those non-atomic concept terms in axioms of the form A = B 1 U · · · U Bk, 

say, Bi11 • • · , Biq, substitute them with newly created atomic concept terms B i
1

, 

· · ·, Bi
1 

respectively, and add to T the following new axioms: Bi
1 

= Bi1 , 

BJ = Bi. •q q 

• Consider those concept t erms in the right hand side of axioms of the form A = 

B1 n · · · n Bk. If Bi, 1 < i < k, is not atomic and appears in the form Bi1 n 

· · · n B iw, substitute Bi with an atomic concept term Bi and add to T an axiom 

Bi = Bi . If Bi, 1 < i < k, appears in the form :JR. Bi' or V R. Bi', and Bi' is 

not an atomic concept t erm, substitute Bi' with newly created atomic concept 

term B':t, and add to T a new axiom B':t = Bi' . 
l l 

• For the non-atomic concept term B in axioms of the form A = :JR . B or A 

V R. B , substitute B with newly created atomic concept term B*, and add B* 

148 



B toT. 

These rewriting procedures are applied repeatedly until the T-box no longer changes. 

The resulting T-box is called a well-formed T-box. 

A well-formed T-box assures that in an axiom, any role related restriction (:JR.C 

or V R. C) is imposed on an atomic concept term; that is, Cis required to be atomic. 

Based on a well-formed T-box with respect to task S, the derivation rules can be 

defined. 

Definition 7.2 (Derivation Rules) 

For each terminological axiom a , a set P of productions can be derived. 

The derived grammar 9r is defined as follows: 

• If a is in the form A = B 1 U · · · U Bk, a set of production rules are added into 

P: A ::= B1, · · ·, and A ::= Bk, where A, B1 , · · · , Bk are grammar symbols 

corresponding to A, B1, · · ·, Bk . 

• If a is in the form A = B 1 n · · · n Bk, and B1, · · ·, Bk are atomic concept 

terms, a production rule A ::= B1 · · · Bk is created and added into P, where A, 

B1 , · · ·, Bk are grammar symbols corresponding to A, B 1 , · · · Bk. 

Each of the production rules constructed in this way describes a single under­

standing step that examines the current state of the interpretation process ( OIR 

graph), and tries to discover certain pieces of knowledge (facts on instance properties 

149 



and existence of relations). For example, a production rule A* ::= B* C* , which is 

derived from axiom A = B n c, can indicate that if b : BI and c: cr, then put a 

new fact a : AI in the OIR. 

In the next section, we proceed to the second phase of production rule derivation. 

7.3 Symbols Representing Constraints 

It is known that roles in DL systems can be treated as constraints on the product 

dom(I) x · · · x dom(I). One important task is to use production rules to specify those 

constraints. The grammatical representation has to describe not only information 

about object instances, but also relative spatial constraints over them. It is necessary 

to introduce some special grammar symbols to deal with the relative constraints. 

The grammatical restriction symbols are now defined more precisely. First, some 

related terms have to be defined. 

Definition 7.3 (membership, property and constraint symbols) 

Three types of symbols used in building production rules are distinguished. The first 

one is the membership symbol (m-symbol), which represents the knowledge of a 

certain instance's m embership. The second one is the property symbol (p-symbol), 

which represents one of the properties of another instance. A p-symbol itself may be 

an instance of either an abstract or a concrete domain. Membership and property 

symbols together are called existential symbols. The third one is the constraint 

150 



symbol (c-symbol), which specifies the knowledge of a single relation instance among 

two or more individuals. 

For example, a membership symbol can stand for the fact specified by an asser­

tional axiom a : C. Constraint symbols can be used to represent facts, such as (a, 

b) : R, since the role R can be specified as a set of restrictions on dom(I) x · · · x 

dom(I). If such a constraint symbol occurs in a production rule, the interpretation 

action taken is usually associated with an algorithm to examine whether (a, b) is a 

relation instance of R. Therefore, we can also use a predicate logical formula Pn(a, 

b) to represent the constraints. That is, Pn(a, b) is an alternative representation of 

the semantics of this constraint symbol. 

Since special symbols are taken into consideration in the construction of gram­

matical rules used in map understanding, it is obvious there are some syntactical 

differences between the map grammar and the traditional ones. Based on the above 

discussion, the definition of a grammar for map understanding can be given. 

Definition 7.4 (Map grammar) 

Given n ;? 1, a map grammar is a collection of production rules in the form 

where the left hand side is a single membership symbol, and the right hand side is 

a string of one or more symbols, each of which is either an existential or a constraint 

symbol. In particular, a 1, · · ·, an represent continuous strings of existential symbols, 

151 



which we refer to as existential symbol chunks. r 1 , r n are strings of one 

or more constraint symbols, referred to as constraint symbol chunks. We also 

define the membership chunk (ap) appearing immediately before a certain constraint 

symbol rp as its restriction scope. In other words, each c-symbol in rp only specifies 

constraints among membership instances in its participant set. It does not specify any 

restrictions over m-symbols or p-symbols at its right hand side. 

An example of a simple map grammar production rule is given below. 

where Q at the left hand side is a membership symbol. A, B, c, D, and E are also 

m-symbols. R1 , R2 and R3 are constraint symbols. R1 and R2 's restriction scope 

includes A, B and c, while R3 's restriction scope is made of D and E. 

The symbols Q , A, B, c, D , and E may have been derived from assertional axioms 

q : Q, a : A, b : B, c : C, d : D, and e : E. What is important is the semantics 

of constraints R1 , R2 and R3 . The constraint predicate symbolized by R1 may be 

applied on both A and B, or on A alone. c is included in R1 's restriction scope, but 

R1 does not specify any restrictions over it. R2 can impose restrictions on all three 

of A, B and c. R1 can be used to specify facts like (a, b) : R1 . 

The presence of a constraint symbol fm in a production rule indicates that after 

a sequence of symbols a 1 f 1 a 2 f 2 · · · am are shifted in during the parsing process, 

a situation is met such that we have to determine whether r m will impose certain 

152 



restrictions on some of the precedent symbols already shifted, that is, restrictions 

on symbols in r m 's scope. The actions t hat deal with this situation and examine 

whether certain conditions hold are abstracted into a symbol i'm· The problem t hen 

becomes to determine whether the next token to shift in is an instance of i'm. To 

decide whether a r m token exists and what kind of restrictions to impose on symbols 

in its scope, a so called restriction evaluation function associated with i' m is evaluated . 

Suppose that t he result of the evaluation is a true/false value, which decides whether 

there exists a constraint symbol corresponding to the evaluation function. Such an 

evaluation function is obtained according to the semantics implied in the constraint 

symbol. Consider, for example, a constraint symbol, attaching, which has two m-

symbols RS1 and RS2 in its scope. RS1 and RS2 indicate the existence of two "road 

section" instances. The evaluation function associated with attaching is t hen used to 

decide whether RS1 and RS2 are attached to each other. Therefore, the constraint is 

discovered by the evaluation function. 

1 1 l I m 
Figure 7.1: Constraint symbols and their scopes. 

Consider Figure 7.1. It shows a production rule with 9 membership symbols and 

5 constraint symbols. Also shown are them-symbols on which the c-symbols impose 

restrictions. Note that it is not necessary for each c-symbol to enforce constraints 

153 



over all m-symbols in its scope. 

Since an understanding step is not expected to take on excessive semantics other 

than specifying facts about the membership of a few individuals and the relations 

t hat they participate, typically t he production rule shown in Figure 7.1 may also be 

presented as follows: 

u(u : U) ::= xi[b : X1] x 2[c : X2] X3 [d : X3] R1[b, c] R2[b, c, d] YI[b : Y1] Y2[e : 

Y2] R3[b, e] Z1[b : Z1] z2[b : Z2] Z3[f : Z3] Z4[g : Z4] R4[b, f] R5 [b, g] 

The semantics of the above production can be given as: 

Given individuals b, c, d , e, f, and g, concepts X1, X2, X3, Y1, Y2, Z1 , Z2, 

Z3, and Z4 , and roles R1, R2 , R3, R4, and R 5 , 

b E Xf n c E Xf n d E Xf n (b, c) E Rf n (b, c, d) E RJ n b E Y{ n 

e E ~In (b, e) E Hf n b E Zf n b E Zf n f E Zf n g E Zf n (b, f) E 

Rf n (b, g) E Rf ===? u E U. 

Usually, to decide whether the token represent ing an m-symbol t can be shifted 

in, we just need to determine whether typeof (t , Yi) is true. However, if a restriction 

symbol has derived a restriction Ri on it, to decide whether to shift it in, we have to 

evaluate typeof(t, Yi) 1\ Ri(Y;) . 

For example, consider the c-symbol p_form_bridge[l,m] in the production below: 

BRIG[b:brig] ::= 

T _LNS[I :Ins] p_is_barline[l] T _LNS[m:lns] p_is_barline[m] p_form_bridge[l ,m] 

154 



It represents whether there exists a second bar line that forms a bridge together 

with the first bar line token already shifted in. If there exists such a bar line, it will 

impose a restriction on the two "bar line" symbols I and m. 

The following additional rules are followed to deal with the translation of termi­

nological axioms into a set of production rules. According to the derivation rules in 

Definition 7.2, an axiom which is a disjunction of several concept terms corresponds 

to a set of production rules, each of which deals with a disjunctive term. Therefore, 

we just need to consider those axioms in the form A = B 1 n ... n B q, where Bi 

is either an atomic concept term or an atomic restrictive concept term, which 

refers to a concept term in the form :3 R . C1 ® · · · ® Cm or V R . C1 ® · · · ® Cm, 

where C1, ··· ,and Cm in turn are atomic concept terms (referred to as participating 

concepts) . 

Before further conversion, we have to rearrange the order of the right hand side 

of an axiom A, if necessary. Let Bi and B1, 1 ~ i, j ~ q, be two concept terms 

that occur in A, where Bi is an atomic concept term, and B1 is an atomic restrictive 

concept term. If Bi is at a place after B1, it will be removed from its current place 

and put in a place before B1. For example, A = B n :3R.C n D will become A = B 

n D n ::JR.C. The idea behind this is to make sure those facts about the existence 

of instances are examined first, then restrictions imposed on them can be checked. 

Obviously such permutations will not change the axiom's semantics. 

Before moving forward, two types of roles in Description Logics have to be distin-

155 



guished. 

Definition 7.5 (Roles with fixed or varied number of participants) 

!-roles are the type of roles with fixed number of participants, while v-roles are those 

roles with variable number of participants. 

In this study, we will not consider roles without an upper bound on the numl>er 

of participating instances, because any map is a collection of a finite number of map 

symbols. 

Let us first consider those atomic concept terms. In the corresponding production 

rule, each of them will appear as a symbol like SYM[a : S]. 

Let us consider each restrictive concept term Bt = :3 (or \7') R. C1 ® · · · ® Cm and 

its preceding m-symbol chunk. If R is an f-role, we will map each restricted atomic 

concept term C in the scope to a symbol CSYM[c: CJ. If any of C1 , · · ·, Cm, say Cq, 

is not in the scope, we will add a new symbol (like CSYMq[c : Cq]) to the rule. For 

Bt itself, we will use a symbol R[ a1 , · · ·, ap] as its representation in the rule, where 

ai, 1 ~ i ~ p corresponds to an m-symbol ZsYM[ai : ZJ in front of R[a1 , · · ·, ap]· 

For terms with v-roles, we will resort to the derivation rules discussed in the next 

section. 

156 



7.4 Refinement of the Derived Grammar Rules 

The previous section deals with t he syntax level derivation of production rules from 

terminological axioms. To obtain a full-fledged grammar that is appropriate for a 

grammatical analysis process, semantic level derivations have to be conducted as 

well. Aggregation roles, which are an important class of roles in map understanding, 

are discussed. 

A typical example of an aggregation-entity relation is role ContainsR· Recall the 

terminological axiom 1 presented in Section 5.2 of Chapter 5, which states that each 

instance in the concept map corresponds to a set of a varying number of instances of 

concept roadnetwork_or _rivernetwork. Two production rules can be derived according 

to the semantics of the concepts and t he roles involved: 

Pl MAP[a : map] ::= PartialMAP[b: partial_map] Pre_no_more[b] 

P2 PartialMap[a : partial_map] ::= PartialMap[b : partiaLmap] RNRN[c : roadnet-

work_or _rivernetwork] 

Note that an intermediary m-symbol "PartialMap" with a corresponding concept 

partial_map is introduced. A partial_map instance refers to a partially interpreted 

map (i.e., the collection of roadnetwork_or_rivernetwork instances already shown in the 

OIR). Rule Pl states that a map instance is built with a collection of road or river 

networks to which no more instances of concept roadnetwork_or_rivernetwork can be 

added. The symbol "Pre_noJnore[b]" stands for a predicate indicating the fact that 

157 



there exists no individual in dom(I) that can be added into b to form a new collection. 

This is an example of symbolizing an action to check the true/false value of a fact. 

Also note that recursive definitions are used in these rules. However, we will limit 

the use of recursive treatment to terminological axioms with aggregation roles. Since 

the aggregation roles are applied on concepts with a finite number of elements, there 

exists an upper bound on recursive cycles. 

7.5 Implementation of the Map Grammar Parser 

For t he standard form of a parsing procedure [37] of a programming language, the 

scanner first takes in a source program and generates a string of tokens, t hen the 

parser inputs the tokens one by one and produces the parse tree. In some respects, 

the proposed syntax-based map interpretation system, a map parser, is similar to a 

classic parser. The input of t he map parser is not a program, but a map; that is, 

map data obtained from low-level image processing procedures. Given the complex 

nature of map information, we need to construct a parsing/interpretation system to 

address issues encountered during a map interpretation process. Figure 7.2 gives an 

overview of the proposed interpretation system. 

Just like a language parsing system, the map interpretation system has a parser 

generator as well. The parser generator , or grammatical analyzer, takes in a context­

free map interpretation grammar as input and generates the parser. The map in­

terpretation grammar consists of the productions derived from a DL representation 

158 



Map Image 
(intermediate level) 

Map Interpretation Grammar 

Parser Generator 

-[:::::>- Interpretation results 

Figure 7.2: An overview of a parser system. 

using the method described in Section 6.3. The input to the parser is the map image 

to be interpreted. The map image is represented by a collection of map elements, 

such as line segments and city symbols, each of which is in raster or vector format. 

The output of the parser is the interpretation result. 

In this section, a unique parsing mechanism for the map grammar is introduced. 

The map grammar parser can be viewed as a generalization of the standard LR(k) 

parser because they share the same basic concepts of shift and reduce. Since map 

grammars have grammatical features (such as constraint symbols) different from those 

of standard context-free grammars, their parsing algorithms call for special data struc-

tures and control structures. The standard LR(l) parsing mechanism will be briefly 

reviewed first , then the unique concepts involved in a map grammar parser are intro-

duced, followed by a discussion of the multiple path stack (MPS) , which is the 

basic structure for holding parsing states and helping with the control mechanism. 

159 



7.5.1 LR(l) Parser 

A shift-reduce parser of a grammar puts its main concern on determining when the 

right hand side of a production rule can be replaced by its left hand side symbol. It 

works in a bottom-up fashion. The process of map understanding fits naturally in 

this mechanism. Comparably, map understanding also works in a bottom-up fashion 

by starting from a set of primitive objects. Just like a traditional parser using a series 

of parsing actions to recognize a sentence, its inference mechanism of exploring facts 

and relations and discovering new instances and relations in an OIR can be viewed 

as a shift-reduce parsing process. 

In the following, the mechanism of the shift-reduce parser will be reviewed first. 

It has an initially empty parser stack, which will contain symbols already parsed. At 

the beginning, the input queue has a string of all the lexical elements (called tokens) 

of a sentence. The following actions are repeatedly taken: shift and reduce. The 

basic idea behind this is to shift tokens from input onto the parse stack until the top 

of the stack matches a right-hand side (handle) of a production. Then the handle 

is reduced by substituting it with the left-hand side symbol of the production. The 

process will end with either the goal state reached or syntax errors reported. 

To find out the parsing actions, two tables have to be constructed based on the 

grammar: ACTION and GOTO. The ACTION table is exploited to decide the next 

action to take. The GOTO table tells which parse state we reach after a token is 

shifted in. It is also necessary to look up the next parse state from the GOTO table 

160 



when a reduce action takes place and a left-hand side nonterminal is put on the parse 

stack. At first, the initial state S0 is pushed onto the empty parse stack. Then the 

parsing process repeats the following operations: (1) Obtain S, the state at the top 

of parse stack (the current parse state, usually an integer), and T , the current input 

token, useS and T to index into the ACTION table to get the next action ACTION(S, 

T); (2) If the next action is shift, push GOTO(S, T) into the parse stack; and (3) 

If the next action is reduce, pop up those states on top of the stack that correspond 

to the right hand side of t he matching production, and then use the resulting parse 

stack top, S, and the left hand side of the matching production, A, to index into the 

GOTO table to obtain the new parse state and push it into the stack. The ACTION 

table also contains a special "Success" value and a number of "Error" values. If 

"Success" is met, t he parse process finishes successfully. If "Error", the parsing has 

to be aborted due to a syntax error. If a different language has to be parsed , we only 

need to reconstruct the ACTION and GOTO tables without changing the parser 

algorithm itself. 

7.5.2 Characteristics of the Map Grammar Parser 

Unlike the traditional parsers [37], the input to a map parser is not an ordered list of 

elements, but an unordered set of map primitives. In classical parsing, there is always 

a "next" element waiting in the input stream. It will be shifted in to the parse stack 

after the "current" element has been processed. Since map primitives do not have a 

161 



linear structure, there is not a readily-prepared next primitive from the input. Instead, 

the input to the parser is an unstructured collection of map primitives. However, it 

is inevitable that we assign an appropriate order in which those in the primitive 

collection should be fed into the interpretation system. Fortunately this problem can 

be solved by taking advantage of the formal grammatical representation. It is known 

that for a context-free grammar there exists a finite state machine characterizing the 

transitions of parse states. For each such parse state, there is a set of input symbol,s 

through which other parse states can be reached. Such a set contains the possible 

symbols that can be chosen as the "next" symbols. 

Another characteristic of the map parser is its ability to deal with restriction 

function symbols. In the standard parsing of languages, the existence of a symbol, or 

token, does not depend on the parse state. In the map grammar, restriction function 

symbols indicate that in one production, the symbols recognized earlier may impose 

constraints on the following symbols to be recognized; that is, the existence of certain 

symbols is dependent on the parsing context. Therefore, when the system has to 

decide what kind of symbol to feed into the parser, it has to make sure the symbol 

satisfies the constraints. 

One more characteristic of our parser to note is that it allows for ambiguities in 

the grammar. Ambiguities indicate that there exists more than one interpretation for 

certain parts of a map. There is no necessity to eliminate the ambiguities. Typical 

parsers usually work in a deterministic style. Parsing actions like "shift" and "reduce" 

162 



have to be uniquely decided at each step. Tracking back to previous parsing states 

is not allowed. However, the map grammar parsing mechanism allows such back 

tracking. The next section will present the data structure used for back tracking. 

7.5.3 Multiple Path Stack (MPS) 

The multiple path stack (MPS) is a central concept in map grammar parsing. It 

is the device that we use to handle and organize pivotal actions, such as candidate 

preparation and selection, shifting, reducing, and tracking back. 

An MPS is an acyclic directed graph with a root node. At the very beginning of a 

map grammar parsing process, the graph does not contain any nodes other than the 

root. With the advance of the map understanding process, an MPS will grow into a 

tree like structure with multiple nodes. 

Two different nodes occur in an MPS: parse state nodes (p-node) and candi­

date nodes ( c-node). The information stored at each p-node can be regarded as a 

summary of the context of the "current" parsing state (or map understanding state) . 

Since a map understanding process is also reflected in the process to build a complete 

OIR from its initial state, t he parse state represented by each p-node is also a sum­

mary of facts of map instances and their relations marked as explicitly recognized. In 

addition, a list of c-nodes called candidate node list is attached to each p-node. 

Candidate Node List 

The p-nodes are connected by path arrows. Except for the root node, each p-

163 



node in an MPS has one and only one incoming path arrow from another p-node (its 

parent) and a set of outgoing path arrows to other p-nodes (its children). Starting 

from a root p-node, the MPS branches out by adding new p-nodes connected with 

path arrows. Another type of arrow, which points from a p-node to its attached 

candidate node list, is called a candidate arrow. Each p-node in an MPS can have 

more than one path arrow and one and only one candidate arrow. It serves as a 

parse state, which indicates a state of an ongoing map understanding process (OIR 

building process). Such a state can also be treated as a representation encoded in the 

partially recognized map phenomena (instances and relations). Figure 7.3 illustrates 

a p-node Nand its incoming and outgoing arrows, where path arrows are drawn with 

concrete lines, and candidate arrows with dotted lines. A, B1 , · · · , B x are p-nodes, 

and CN is the candidate node list of N . 

The children of a p-node refer to its "next" parse states. Just like in a standard 

parsing algorithm, a next state is a state reached when a shift or a reduce action is 

taken based on the "current" parse state. Note that unlike the parse stack of the 

traditional parsers, where a "next" parse state is decided uniquely, the map grammar 

parser works in a non-deterministic manner. 

The candidate arrows are a unique feature of the MPS. Each of them points to a 

list of candidate nodes. In Figure 7.3, the candidate node list CN is represented by an 

array of boxes. While in the candidate list , a candidate node does not represent any 

parse state. Later on, we will talk about how to remove a c-node from a candidate 

164 



BI 

• 
• 

A 

N 
Bx 

CN 

Figure 7.3: An MPS node Nand its parent and children. 

list and make it a p-node. A candidate node is associated with a type attribute. The 

type attribute defines the type of a terminal symbol. 

Obtaining the Candidate List 

The candidate node list associated with a p-node is obtained through the help of 

the ACTION table. Read across the row corresponding to the parse state represented 

by the p-node and select the occupied table cells first, then find the column headings 

corresponding to these occupied cells. The candidate list is made of the terminal 

types represented by the selected column headings. Take the action table shown in 

Table 7.1 on page 187 as an example. A p-node with parse state 1 has a candidate 

list (full_prs (T5) , T _SRS (T6) , T _CITY (T12) , T _LNS (T14)) . This tells that when 

a "single road segment" instance is shifted in (parse state 1 is reached), terminals of 

165 



the four types listed in this candidate list may be the possible lookahead symbols. 

During the parsing process, the candidate list of each MPS node is further divided 

into two lists: a "visited" list and a "not yet visited" list. Initially, the visited list 

is empty. All the candidate nodes are marked "not yet visited" . At a certain parse 

state, the nodes in the "not yet visited" list will be examined one by one to see 

whether an instance from the input collection (explained later in the next section) 

matches one of the candidate nodes. If no match is found, the c-node is removed from 

the "not yet visited" list and placed in the "visited" list. If a matching instance is 

found, the current c-node under examination is filled with the instance and becomes 

the current lookahead token. If this c-node is shifted in, it is converted to a p-node. 

It will remain at the top of the "not yet visited" list. The parser will stop examining, 

at least temporarily, the rest of the "not yet visited" list at this point, because the 

parsing has reached a new parse state. The parser considers this new parse state 

and tries to repeat the process. In this way the parser constantly pushes the parsing 

process by expanding the MPS. However, with the progress of the parsing procedure, 

it may come to a point that a back tracking action has to be triggered. That is, the 

parser has to go back to the previous active top in the history and try alternative 

paths other than those taken before (Refer to Section 7. 7 for an example on how the 

back tracking operation works and how the previous active top is determined). 

Input Selector 

Similar to the standard parser, a map grammar parser employs a device called 

166 



input selector to feed the input tokens one by one into the parser. The function 

of the input selector is similar to the scanner of a traditional parser. The difference 

is that a standard scanner does nothing more than fetch tokens from an ordered 

string, whereas the input selector of the map parser does not work on an ordered 

string of tokens. The input selector of the map parser sifts through a collection 

of primitive map instances and the collection of already recognized instances and 

relations (OIR). One by one it picks up the appropriate object or relation instance 

as the "next" token. The input collection is made up of two parts: the OIR and 

the primitive collection. The primitive collection contains those primitive map 

objects extracted from raw images using low-level image processing algorithms and 

systems. Line segments, route numbers, cities, and bridges are examples of instances 

in an input collection. 

A map grammar parsing process is characterized by a series of parsing steps. Each 

parse step pushes the process from one parsing state to another. Based on a particular 

parse state, the parser has to decide what type of tokens to look for. Then it instructs 

the input selector to produce a token of this type for it. As discussed earlier , in a 

map grammar we consider not only existential facts (m-symbols, p-symbols), but also 

relational facts ( c-symbols) . For example, if the input selector has been instructed 

to find an m-symbol, it can search through either the input collection or the OIR 

to retrieve the symbol. If a c-symbol is requested to be discovered by the selector, 

the constraint represented by the c-symbol may already have been explicitly encoded 

167 



in the OIR, or a special fact checking algorithm is invoked by the selector. A fact 

checking algorithm is used to check whether certain constraints are satisfied by certain 

c-symbols. 

When the map size is small, the input selector can search through the whole set 

of primitive collection to pick the next token. However, when dealing with large size 

maps, it is not possible for the selector to cover all t he primitives in the collection. The 

performance of the system will degrade dramatically when the map size increases. One 

solution is to search only the neighboring areas of the current active top of t he MPS 

(discussed in the next section). This will produce a much smaller candidate list each 

time a next token is needed. A quadt ree data structure can be used to represent the 

primitive collection. Since the primitive collection can be viewed as a representation 

of the map, it can be recursively decomposed into four equal area blocks until the 

leaf area blocks are small enough. Given a primit ive, it is straightforward to retrieve 

the neighboring map objects of the primitive by locating its siblings in the quadtree 

representation. As a result , the input selector's performance can be greatly improved. 

Active Top of MPS 

Unlike the stack structure that expands or shrinks in one direction, t he MPS is 

a t ree structure that grows or shrinks along multiple paths. Therefore, it may have 

mult iple stack tops, which are p-nodes that do not have child p-nodes. Among the 

stack tops, t here is one that is called the active stack top. The active stack top 

indicates the current parse state. Similar to the t radit ional parser , the parse state 

168 



represented by the active top and the next input token are used to determine the 

parse action to take. At any given moment) there is only one active top. Note that 

the parent of the active top is not necessary its previous active top. Initially) only the 

root p-node is present in the MPS and the root is marked as the current active top. 

Suppose that the current active top T and the lookahead symbol L suggest a shift 

action) which requires a new parse state be arrived and a new p-node Q be introduced. 

Q is "pushed)) into the MPS. In other words) Q becomes a child ofT and the current 

active top. T is no longer the active top) but t he previous active top. A path arrow is 

drawn from T to Q. In the mean time) another type of arrow) called a back tracking 

arrow) is drawn from Q to T. Such an arrow points to the previous active top each 

time a new active top comes into existence. Therefore) a mechanism to keep record 

of the transitions of active tops is established. 

Back Tracking 

When a new parse state) whose corresponding MPS node is labeled as the active 

top) is reached and its candidate list obtained) the parser needs to pick a terminal 

from the primitive collection as the current lookahead token. It is possible that no 

candidate lookahead tokens can be found; that is) no currently available terminals 

have a matching type in the candidate list. In standard parsing) this usually means 

an error. However) in the context of map parsing) this does not necessarily mean an 

error) but that a back tracking action has to be triggered. Such a back tracking 

action will mark the active top as a "visited)) one) which means that no further parsing 

169 



based on this parse state is needed. The control is given back to the previous active 

top. That is, it becomes the active top again. Algorithm 7.1 shows the pseudo code 

for back tracking. 

Algorithm 7.1 (Backtracking Function) 

procedure regress_to_previous_active_top () is 

begin 

If the current active top is root, indicate error. 

If there does not exist a previous active top, indicate error. 

Put the current active top into the "visited" list of its parent. 

S et the previous active top as the current active top. 

end 

Reduce Action 

Let us consider the behavior of the MPS when the input token currently under 

examination suggests a reduce action. Figure 7.4 illustrates the part of an MPS 

affected when a reduce action is needed. The state of the MPS before the reduce 

action is carried out is contained inside the dashed lines. N0 , N 1, · · · , and Nk are a 

string of p-nodes connected by path arrows, which indicates the MPS has progressed 

through a series of parse states. Note that each of the p-nodes should have an attached 

candidate node list. To save space, only Nk's is shown. 

Assume that at this point Nk is the current active top of the MPS. V and I 

together compose the candidate node list associated with Nk, where Vis the list that 

170 



' 
' 

handle 

----------------------
1 
I 

v 

--- - ----------- ------------ ------- - --- ----- ------- --------~ 

------ Back Tracking Arrow 

----c> Path Arrow 

~ Candidate Arrow 

' I 
' 

I 
' I '---------------------' 

Figure 7.4: Part of the MPS involved in a reduce action. 

holds the c-nodes marked as "visited", and I holds all those not yet visited. Let Li 

be the c-node holding the current lookahead symbol. The next action is determined 

by looking up the ACTION table using Nk and Li· 

Suppose a reduce action is suggested and the production to reduce is decided. 

The map parser will behave much differently from the standard parser in the way it 

deals with a handle (the string of shifted-in symbols on the top of the parse stack 

that matches the right hand side of a production). Rather than popping the handle 

from the parse stack, the map parser will keep those MPS nodes corresponding to the 

handle in the MPS. The reason is that these MPS nodes still hold important history 

information. Later on we will see that the parser may need to track back to Nk again. 

171 



In an MPS, the handle corresponds to a series of MPS nodes (p-nodes) chained 

with path arrows. In Figure 7.4, nodes N1 , · · · , Nk are such a node chain referred to as 

a handle. It is obtained by following in the reverse direction of path arrows from the 

current active top. To achieve the same effect as popping up the handle, the parser 

locates the immediate ancestor of the node chain, which is N0 from Figure 7.4. Then 

a new MPS node M Nnew that represents the left hand side symbol is created. The 

new MPS node represents a new parse state reached after the reduce action is carried 

out. The new parse state is given by GOTO(S(N0), NT(M Nnew)) , where S(N0 ) is 

the parse state represented by No, and NT(M Nnew) is the parse state by M N new· 

N0 will treat the newly added M Nnew as one of its children. This is indicated in 

Figure 7.4 through a path arrow pointing from No to NINnew · Moreover, NINnew 

is put immediately before N1 , which was the top item of N0 's "not yet visited" 

candidate list. Therefore, M Nnew becomes the current top item of No's "not yet 

visited" candidate list. Next, it is made the current active top, indicating that it 

represents the latest parser state. Subsequent parse actions take place based on the 

parse state represented by NI Nnew· Iote that a back-tracking arrow pointing from 

M Nnew to Nk has to be established. This indicates that Nk is the previous active 

top. If later on M Nnew is deemed "not explorable", the control has to be returned to 

Nk . Then Nk can pick the next top item in its "not yet visited" candidate list, Li+1 , 

as the next alternative, to expand the MPS. 

Candidate Node Trimming 

172 



When processing maps of large sizes, the size of the MPS will also become very 

large. In order to improve the performance of the grammar parser, it is necessary to 

study how the MPS grows as the map understanding process advances. 

Let P be the number of the productions in the map grammar, let Mp be the 

maximum possible size of the right hand side of a production, and let S be the 

number of primitives in the primitive collection. S represents the size of the map. In 

the extreme case, an MPS path may need to expand all the productions. Therefore 

the upper bound of the lengths of MPS paths is P x Mp. In the worst case scenario, 

each MPS node may include all the primitives in the collection in its candidate list. 

This means that each MPS node may have S child MPS nodes. Consequently, the 

number of the possible paths in the MPS may be sPx M p-l. This indicates that the 

size of the MPS grows exponentially as the size of the primitive collection increases. 

In addition, the upper bound of the sizes of the candidate lists is equal to the size 

of the primitive collection. This will consume a huge amount of memory space and 

computing power. 

To improve the performance of the parsing algorithm, the following have to be 

addressed: (1) How to reduce the size of a candidate list? and (2) How to reduce the 

size of the MPS? The size of the candidate list associated with each MPS node can be 

dramatically cut down by enabling the input selector with ability to choose candidate 

primitives from a small neighboring region. The MPS can also be shrunk to a much 

smaller size by trimming some of the paths that are traveled earlier. As has been 

173 



mentioned earlier, each p-node is associated with a back-tracking arrow in case the 

parser needs to track back into the history and start a new path by choosing a new 

candidate token from the candidate list . Fortunately, it is not always necessary to 

track back to the parent p-node. When a p-node representing a higher-level feature 

is shifted in, this feature has been recognized with a high degree of confidence and 

therefore there is no need to tracking back to the history. Take a look at the OIR 

shown in Figure 6.1. If simple_river_section instances CSl, CS2 and CS3 are 

recognized with a high degree of confidence, the possibility that CSl , CS2 and CS3 

be popped from the MPS is low enough so that it is not necessary to maintain the 

back-tracking arrows when these simple_river _section instances are shifted in. This 

means that the candidate list associated with the MPS node pointed to by the back­

tracking arrow can be trimmed. Recall that a back-tracking arrow traces its way back 

to the root MPS node. Therefore, all the MPS nodes along the back tracking path, 

as well as their associated candidate lists, can be removed. 

7.6 The Map Parsing Algorithm 

The parsing algorithm in a pseudo programming language is shown in Algorithm 7.2. 

Algorithm 7.2 (Map Parsing Algorithm} 

procedure Parsing() is 

begin 

I I Initially the MPS is empty. The first p-node pushed in is the root. 

174 



II Push the start state S0 onto the MPS. And make it the 

I I current active top. 

push{S0 , MPS}; 

I I Prepare candidate list of the current stack top. 

prepare_candidates (); 

II Continue until told to stop 

Ll : 

loop while parsing_not_done 

I I Ask the input selector to pick up the next input token from 

I I the input collection. 

scan(}; 

I I If no appropriate look ahead token is found fTOm the 

I I candidate list, we need to track back to the previous 

I I active top. 

if no_proper _candidate_is_found 

regress_to_previous_active_top (); 

goto L1; 

end if 

175 



I I Based on the lookahead, look up the ACTION table. 

I I Let S be the current parse state, T be the input token. 

act = geLaction(S, T); 

if no proper action can be determined 

an error occurred, stop parsing. 

end if 

if act indicates shift action 

I I Create an MPS node N 0 which holds the next parse 

I I state and the shifted in symbol. 

N 0 = create_node(GOTO(S, T), T) 

I I Push the input token to the MPS. That is, make the current 

II active top (Top) the parent of No. 

push(No); 

seLactive_top(No); 

I I Point a backtracking arrow to the previous active top . 

seLprevious_active_top(Top ); 

end if 

if act indicates reduce action 

176 



I I Obtain the left hand side symbol "lhs" and the size 

I I "size_of_handle" of the handle of the production to reduce. 

geLlhs_and_handle_size(}; 

I I Let TCa point to the current active top, that is, 

I I remember it for later reference. 

TCa = get_active_top_of_mps(MPS}; 

I I Remove the node that holds the current input token and. 

I I mark it as "visited". 

put_token_to_visited(TCa); 

I I let pta point to the current top. 

pta = TCa; 

I I Loop for size_of_handle times. This loop will try to find 

I I the current top's ancestor asize_of_handle" levels up. 

loop from 1 to size_of_handle 

I I let pta points to its own parent by tracing back in the direction 

I I of its incoming path arrow. 

pta = parent_of (pta); 

end loop 

I I Create a new MPS node and make it hold the left hand side symbol. 

177 



M Nnew = new_mps_node{lhs_symbol); 

I I Let TC0 be its previous active top. 

set_previous_active_top(M Nnew, TCo); 

I I Push M Nnew into the MPS. 

push(M Nnew); 

end if 

if act indicates the accept action. 

I I indicate parsing is successfully finished. 

set_fiag ( parsing_is_done); 

end if 

end loop 

end 

7.7 An Example 

As an example, a map grammar MQ that deals with a limited set of map symbols 

is given in Section 7.7.1. Note that the identifiers that occur in the same production 

rule, such as a in M[a:map] , refer to the same instances. The same instance identifiers 

occurring in different rules are not related. Also note that symbols with prefix "T _" 

stand for terminals t hat represent m-symbols. Non-terminals are written in upper­

case letters, p-symbols and c-symbols written in lower-case. Brief descriptions of t he 

178 



meanings of t he map symbols can be found in Appendix C. 

7.7.1 A simple map grammar MQ 

0. M[a :map] ::= RNS[b:rns] is_fullrns[b] 

1. $START ::= M[a:map] EOF[eof] 

2. RNS[b:rns] ::= RNS[c:rns] RN[d:rn] 

3. RNS[c:rns] ::= RN[c:rn] 

4. RN[c:RN] ::= PRN[c:prn] is_fullprn[e] 

5. PRN[b:prn] ::= PRN[b:prn] RS[r:rs] attaching[(b, r) :rnh] 

6. PRN[b:prn] ::= RS[r:rs] 

7. RS[r:rs] ::= PRS[p:prs] full_prs[p] 

8. PRS[p:prs] ::= T _SRS[s:srs] 

9. PRS[p:prs] ::= PRS[u:prs] BRIG[b:brig] f_barline_of[b:x] p_brig_srs_connecting[u , x] 

f_barline_of[b:y] p_other _barline[b, x, y] T _SRS[v:srs] p_noLin_prs[v] 

p_brig_srs_connecting[v,y] p_form _two_sides[u , x, v, y] 

10. PRS[p:prs] ::= PRS[u:prs] T _CITY[c:city] p_touch[u, c] T _SRS[v:srs] p_noLin_prs[u] 

p_touch[v , c] 

179 



11. PRS[p:prs] ::= PRS[u:prs] T _SRS[v:srs] p_not_in_prs[u] p_form_gap[u,v] 

12. BRIG[b:brig] ::= T_LNS[I:Ins] p_is_barline[l] T _LNS[m:lns] p_is_barline[m] 

p_form_bridge[l,m] 

Mg is a map grammar for modeling a map that contains road networks. It is 

derived from the relevant terminological axioms given in Section 5.2 of Chapter 5. 

These axioms are 1, 4, 5, and 6. Standard LR(k) parsers deal with grammars without 

ambiguities. However , this is not the case with the proposed map grammars. Nor­

mally, ambiguities are common in many language sentences. Because map grammars 

are syntactically more flexible than t ext grammars, ambiguities are almost inevitable. 

For example, consider production rules 10 and 11 in Mg. This results in a conflict 

between the shift action ofT _CITY[t:city] and that ofT _SRS[v:srs]. 

There are two types of grammar ambiguities: shift-shift and shift-reduce conflicts . 

In standard parsers, ambiguities are usually resolved by specifying priorities or as­

sociations. In map parsers , those terminals involved in a shift-shift conflict indicate 

all the possible "next" tokens under the "current" parse state. They are actually or­

ganized as the candidate list associated with the MPS node representing the current 

parse state. 

One point to note is the reusability of tokens. For standard parsers, once a token 

produced by the input scanner is consumed, that is, shifted in, it will be removed from 

the input token list and cannot be reused. However, in the map parsing process, an 

180 



prsl 

Figure 7.5: Reusable tokens. 

input token can be reused. That is, after a token is selected from the input collection 

and shifted in, it may not be removed from the input collection and prevented from 

participating in the further parsing process. Such a token can be shifted in multiple 

times under different parsing states. For example, as illustrated in Figure 7.5, through 

a reduce action based on production 7 in MQ, a PRS symbol prs1 is built with two 

RSEG symbols rseg1 and rseg2. In turn, rseg1 is built with symbols srs1, brig1, and 

srs2, and rseg2 built with srs2, brig2, and srs3. It is obvious that after being shifted 

to build rseg1, srs2 can be shifted in again to build rseg2 through a reduce action with 

respect to production rule 9. Also note that after participating in the formation of 

symbols rseg1 and rseg2, srs2 can no longer be shifted in when the parser is working 

towards reducing to a RSEG symbol. That is why a constraint symbol p_noLin _prs is 

181 



introduced. It indicates that a predicate has to be evaluated to make sure a T _SRS 

symbol is not a middle part of a PRS. Therefore, srs2 is such a symbol that does not 

fulfill this predicate. 

7.7.2 Constructing a Characteristic Finite State Machine 

Figure 7.6: CFSM for M9. 

182 



It is well known that a finite state machine called Characteristic Finite State 

Machine (CFSM) can be built based on a grammar. Each CFSM state holds a set of 

configurations. A configuration is an item of the form 

where A, X 1 , · · · , and Xj are map symbols in a grammar production, l is a list of 

lookahead terminals. 

The CFSM of MQ is shown in Figure 7.6. Note that State 8 is the accept state. 

The parse states are given below. For the sake of simplicity, the brackets following 

each symbol are ignored. 

State [OJ: 

PRS ::= • PRS LSRS p_noUn_prs p_form_gap, { full_prs, T _SRS, T _CITY, T _LNS } 

PRS ::= • T_SRS, { f ull _prs, LSRS, T_CITY, T_LNS} 

PRN ::= • PRN RS attaching , { is_fu llprn , T _SRS} 

RNS ::= • RNS RN , { is_fullrns, T _SRS } 

PRS ::= • PRS T _CITY p_touch T _SRS p_noUn_prs p_touch , { full _prs, T _SRS, T _CITY , T _LNS} 

RS ::= • PRS fuiLprs , { is_fullprn, T _SRS } 

RN ::= • PRN is_fullprn , { is_fu llrns, T _SRS } 

5 ::= • M EOF, { >. } 

PRS ::= • PRS BRIG Lbarline_of p_brig_srs_connecting f_barline_of p_other _barline T _SRS p_noUn_prs 

p_brig_srs_connecting p_form_two_sides , { ful l_prs, T _SRS, T _CITY, T _LNS } 

PRN : := • RS , { is_fullprn, T _$RS } 

RNS ::= • RN , { is_fullrns, T _SRS } 

M ::= • RNS is_fullrns , { EOF } 

State [1]: 

PRS ::= T _SRS • , { full _prs, T _SRS, T _CITY , T _LNS } 

183 



State [2): 

PRS ::= PRS • T_CITY p_touch T _SRS p_noLin_prs p_touch , { full_prs , T _SRS, T _CITY, T_LNS} 

RS ::= PRS • full _prs , { is_fullprn , attaching, T _SRS } 

BRIG ::= • T _LNS p_is_barline T _LNS p_is_barline p_form_bridge , { L barline_of } 

PRS ::= PRS • BRIG Lbarline_of p_brig_srs_connecting Lbarline_of p_other_barline T _SRS p_noLin_prs 

p_brig_srs_connecting p_form_two_sides , { full_prs , T _S RS , T _CITY, T _L NS } 

PRS ::= PRS • T _SRS p_not_in_prs p_form _gap, { full _prs, T _SRS, T _CITY, T _LNS } 

I 

State [3): 

PRN ::= RS • , { is_fullprn , T _SRS } 

State [4): 

PRS ::= • T _SRS , { full _prs, T _SRS, T _CITY, T _LNS } 

PRN ::= PRN • RS attaching , { is_fullprn, T _SRS } 

PRS ::= • PRS T_CITY p_touch T _SRS p_not_in_prs p_touch, { full_prs , T _SRS, T_CITY, T _LNS } 

RS ::= • PRS full_prs , { attaching } 

RN ::= PRN • is_fullprn , { is_fullrns , T _SRS } 

PRS ::= • PRS BRIG Lbarline_of p_brig_srs_connecting Lbarline_of p_other_barl ine T _SRS p_noLin_prs 

p_brig_srs_connecting p_form _two_sides , { full _prs, T _SRS, T _CITY, T _LNS } 

PRS ::= • PRS T _SRS p_not_in_prs p_form _gap , { fu ll_prs, T _SRS, T _CITY, T _LNS } 

I State [5): 

RNS ::= RN • , { is_fu llrns, T _SRS } 

State [6): 

PRS ::= • PRS T _SRS p_noLin_prs p_form_gap , { full_prs , T _SRS, T _CITY, T _LNS } 

PRS ::= • T _SRS, { fu ll_prs, T _SRS, T _CITY, T _LNS } 

RNS ::= RNS • RN , { is_fullrns, T _SRS } 

PRN ::= • PRN RS attaching , { is_fullprn, T _SRS } 

PRS ::= • PRS LCITY p_touch T _SRS p_noLin_prs p_touch , { full_prs , T _SRS, T _CITY, T _LNS } 

RS ::= • PRS fuiLprs , { is_fullprn, T _SRS } 

RN ::= • PRN is_fullprn , { is_fullrns, T _SRS } 

PRS ::= • PRS BRIG Lbarline_of p_brig_srs_connecting Lbarline_of p_other_barline T _SRS p_noLin_prs 

p_brig_srs_connecting p_form_two_sides , { full_prs , T _SRS, T _CITY, T _LNS } 

PRN ::= • RS , { is_fullprn , T _SRS } 

M ::= RNS • is_fullrns , { EOF } 

184 



I State [7]: 

5 ::= M • EOF, { A } 

I State [8]: 

5 : := M EOF o , { A } 

I State [9]: 

M ::= RN5 is_fullrns • , { EOF } 

State [10]: 

RN5 ::= RN5 RN • , { is_fullrns, T _5R5 } 

State [11]: 

PRN ::= PRN R5 • attaching , { is_fullprn, T _5R5 } 

State [12]: 

RN ::= PRN is_fullprn • , { is_fullrns , T _5R5 } 

State [13] : 

PRN ::= PRN R5 attaching • , { is_fullprn, T _5R5 } 

State [14]: 

PR5 ::= PR5 T _5R5 • p_noLin_prs p_form_gap , { fuiLprs , T_5R5, T_CITY, T _LN5} 

State [15]: 

R5 ::= PR5 fuiLprs • , { is_fullprn, attaching, T _5R5 } 

State [16]: 

PR5 ::= PR5 T _CITY o p_touch T_5R5 p_noLin_prs p_touch , { full_prs, T_5R5, T_CITY, T_LN5 } 

State [17]: 

BRIG ::= T _LN5 • p_is_barline T_LN5 p_is_barline p_form_bridge , { Lbarline_of} 

State [18]: 

PR5 .. - PR5 BRIG • Lbarline_of p_brig_srs_connecting Lbarline_of p_other _barline T _5R5 p_noLin_prs 

p_brig_srs_connecting p_form_two_sides , { full_prs, T _5R5, T _CITY, T _LN5 } 

State [19]: 

PR5 .. - PR5 BRIG Lbarline_of • p_brig_srs_connecting Lbarline_of p_other_barline T _5R5 p_noLin_prs 

p_brig_srs_connecting p_form_two_sides , { fuiLprs , T _5R5, T _CITY, T _LN5 } 

State [20]: 

PR5 .. - PR5 BRIG Lbarline_of p_brig_srs_con necti ng • Lbarline_of p_other _barl i ne T _5R5 p_noLin_prs 

p_brig_srs_connecting p_form_two_sides , { full_prs , T _5R5, T _CITY, T _LN5 } 

State [21]: 

PR5 .. - PR5 BRIG Lbarline_of p_brig_srs_connecting Lbarline_of • p_other _barline T _5R5 p_noLin_prs 

p_brig_srs_connecting p_form_two_sides , { fuiLprs , T ..SR5, T _CITY, T _LN5 } 

185 



State (22]: 

PRS .. - PRS BRIG Lbarline_of p_brig..srs_connecting Lbarline_of p_other _barline • T_SRS p_noLin_prs 

p_brig_srs_connecting p_form_two_sides , { full_prs , T _SRS, T _CITY, T _LNS } 

State (23]: 

PRS .. - PRS BRIG Lbarli ne_of p_brig_srs_con necti ng L barline_of p_other _barline T _SRS • p_noLin_prs 

p_brig..srs_connecting p_form_two_sides , { fuiLprs , T _SRS, T _CITY, T _LNS } 

St at e (24]: 

PRS .. - PRS BRIG Lbarline_of p_brig..srs_con necti ng L barline_of p_other _barline T _SRS p_noLin_prs • 
p_brig..srs_connecting p_form_two_sides , { full_prs , T _SRS, T _CITY , T _LNS } 

State (25]: 

PRS .. - PRS BRIG Lbarline_of p_brig..srs_connecting Lbarline_of p_other _barline T _SRS p_noLin_prs 

p_brig_srs_connecting • p_form_two..sides , { full _prs, T _SRS, T _CITY, T _LNS } 

State (26]: 

PRS .. - PRS BRIG Lbarline_of p_brig..srs_connecting Lbarline_of p_other _barline T _SRS p_noLin_prs 

p_brig..srs_connecting p_form_two_sides • , { full _prs, T _5RS, T _CITY, T _LNS } 

State (27]: 

BRIG ::= T _LNS p_is_barline • T _LNS p_is_barline p_form _bridge , { Lbarline_of } 

State (28): 

BRIG : := T _LNS p_is_barline T _LNS • p_is_barline p_form_bridge , { Lbarline_of } 

State (29]: 

BRIG : := T _LNS p_is_barline T _LNS p_is_barline • p_form_bridge , { Lbarline_of } 

State (30]: 

BRIG : := T _LNS p_is_barline T _LNS p_is_barline p_form_bridge • , { Lbarline_of } 

State [31]: 

PRS ::= PRS T _CIT Y p_touch • T _SRS p_noLin_prs p_touch , { fuiLprs , T _SRS, T _CITY, T _LNS} 

State (32): 

PRS ::= PRS T _CITY p_touch T _SRS • p_noLin_prs p_touch , { ful l_prs, T _SRS, T _CITY, T _LNS } 

St ate (33]: 

PRS ::= PRS T _CITY p_touch T _SRS p_noLin _prs • p_touch , { full_prs, T _SRS, T _CITY, T_LNS } 

St ate (34]: 

PRS ::= PRS T _CITY p_touch T _SRS p_noLin_prs p_touch • , { full_prs, T _SRS, T _CITY, T _LNS } 

State (35]: 

PRS ::= PRS T _SRS p_noLin_prs • p_form...gap , { full_prs , T_SRS, T_CITY, T _LNS } 

State (36]: 

PRS ::= PRS T _SRS p_noLin_prs p_form...gap • , { fu ll_prs, T _SRS, T_CITY, T _LNS } 

186 



State Lookahead Terminals 
TO T2 T3 T4 T5 T6 T7 T8 T9 T10 Tll T 12 T13 T14 T15 T16 T17 

0 s 
1 R8 R8 R8 R8 
2 s s s s 
3 R6 R6 
4 s s 
5 R3 R3 
6 s s 
7 A 
8 
9 RO 
10 R2 R2 
11 s 
12 R4 R4 
13 R5 R5 
14 s 
15 R7 R7 R7 
16 s 
17 s 
18 s 
19 s 
20 s 
21 s 
22 s 
23 s 
24 s 
25 s 
26 R9 R9 R9 R9 
27 s 
28 s 
29 s 
30 R12 
31 s 
32 s 
33 s 
34 R10 R10 R10 R10 
35 s 
36 Rll Rll Rll Rll 

Table 7.1: The action table for MQ. 



State Symbol 
TO T2 T3 T4 T5 T6 T7 T8 T9 TlO Tll Tl2 Tl3 Tl4 Tl5 T l 6 Tl7 NTO NT! NT2 NT3 NT4 NT5 NT6 NT7 

0 1 7 6 5 4 3 2 
1 
2 15 14 16 17 18 
3 
4 12 l ll 2 
5 
6 9 l 10 4 3 2 
7 8 
8 
9 

10 
ll 13 
12 
13 
14 35 
15 
16 31 
17 27 
18 19 
19 20 
20 21 
21 22 
22 23 
23 24 
24 25 
25 26 
26 
27 28 
28 29 
29 30 
30 
31 32 
32. 33 
33 34 
34 
35 36 
36 

Table 7.2: The goto table for MQ. 



The ACTION and GOTO tables obtained from the CFSM are shown in Tables 7.1 

and 7.2 respectively. Column headings starting with T stand for terminals, and those 

starting with NT stand for non-terminals. Their corresponding map grammar symbols 

are given below: 

TO: EOF, Tl: error, T2: is_fullrns, T3: is_fullprn , T4: attaching, T5: full _prs, 

T6: T _SRS, T7: p_noLin_prs, T8: Lbarline_of, T9: p_brig_srs_connecting, 

T10: p_other _barline, Tll: p_form_two_sides, T12: T _CITY, T13: p_touch, 

T14: T _LNS, Tl5:p_is_barline, Tl6: p_form_bridge, T17: p_form_gap 

NTO: S, NTl: M, NT2: RNS, NT3: RN, NT4: PRN, NT5: RS, NT6: PRS, 

NT7: BRIG 

Note that T1 is the symbol indicating an error state. In Table 7.1, "S" denotes a 

shift action, "R" denotes a reduce action, and the integer following the "R" specifies 

t he production number used for the reduce action. Note that T 1 is ignored from the 

tables, because an empty cell in the table represents an error state. In the system, 

these tables are stored as a list of table rows. However, the length of a row is not 

equal to the number of cells in each row. Each element in a row is a pair ( terminaliD, 

terminalValue) . An empty cell value (error state) does not appear in the row. The 

last element in a row is a special value indicating the end of the row. 

189 



7. 7.3 Illustration of the Parsing Process 

Now that the basic data structures needed by a map parser have become available, we 

are ready to follow the trace of the map parser on the test map shown in Figure 7.7. 

The first few steps of the parsing process are discussed in detail, followed by a table 

that lists the changes made to the MPS by the remaining parsing steps. 

~s6 
gapl \ 

Road 0 City ~ Bridge 

Figure 7.7: A test map with only road networks. 

During the parsing process, the MPS experiences a series of parse states. Its 

structure at certain important points of the trace will be shown. In the beginning, 

the MPS for the parser has only one p-node with parse state 0, shown in Figure 7.9. 

The initial OIR graph associated with this parse state is also shown. All of its 

instance holders, except primitive instance holders, are empty. With the progress of 

the parsing, more than one p-node with the same parse state may emerge, so each 

p-node is given a node name, appearing at the upper left corner. Its candidate list 

has only one c-node, which expects a terminal of type T _SRS. At this point, p-node 

190 



NO is the active top. Note that p-nodes are drawn as square boxes, and c-nodes are 

drawn as rounded boxes. The current active top item is represented by means of 

marking it with a black dot. ote that different styles of arrowed lines are used to 

indicate different types of relations between the MPS nodes (see Figure 7.8). 

~ --·-·--·-··-·······~ 

To child nodes To candidate nodes To previous top item 

Figure 7.8: Arrowed lines that represent MPS node relationships. 

NO~ 

~' \. 
8 

Possible Lookaheads : srs I, srs2, ... , srs6 

0 
M 

RNS 

~ 
0 

BRIG 
• srsl • u&2 • ,rsl • .sn;4 • srsS • "·s6 

T_CITY 
~-----TT_SRS 

Figure 7.9: Illustration of the parsing process. 

In each of the illustrations, the possible lookahead symbols of the current active top 

item are also listed. These lookahead symbols are grabbed from the input collection 

based on the types given in the associated candidate list. Usually multiple input 

symbols may be appropriate for lookaheads. We may randomly choose one from such 

a list as the lookahead, or we may use other selection strategies. For instance, a rule 

191 



based system may be exploited to deal with a large list of possible lookaheads, since 

the order of examining is very important to the system's performance. We may avoid 

excessive "tracking back" operations if the "right" lookaheads are examined earlier. 

In this example, srs1 is picked as the next lookahead. According to the action 

table, srs1 suggests a shift operation so that a new p-node N1 with parse state 1 is 

created. The new p-node N1 takes control and becomes the active top, which is shown 

in Figure 7.10. The currently shifted-in terminal srs1 is put under its corresponding 

active top Nl. The shift operation does not change the state of the OIR. 

NO~J 
0 1 • 

srsl 

Possible Lookaheads: srsl, srs2, ... , srs6, cl, tlnl, tln2 

Figure 7.10: Illustration of the parsing process. (cont'd) 

There may or may not be a "tracking back" operation at this stage. If later on a 

"tracking back" operation is triggered and p-node NO becomes the active top again, 

it means sr s1 has been determined not to be a fit for the lookahead. Another symbol 

should then be picked from the possible candidate list as the current lookahead, and 

the parsing process continues. Afterwards, sr s1 will be removed from the candidate 

list and marked "visited". 

The candidate list ofp-node N1 (Figure 7.10) indicates that four types of terminals 

192 



are expected: fulLprs (T5), T_SRS (T6), T_CITY (T12), and T_LNS (T14). There 

may exist zero or more instances for each listed type. Since a road section is viewed 

as a partial road section that cannot be stretched any more, T5 (full_prs) means a 

fact specifying that the parts currently under consideration compose a road section. 

Such a fact is established by invoking a function, or procedure, that draws conclusions 

based on the overall situation of the current parse stage, which is the current state of 

the OIR and the primitive collection. In this example, since there are some instances 

attached to srs1 , we can draw the conclusion that no terminal of type T5 can be 

found. As a result, c-node T5 is marked "visited" with a diagonal line. We then 

examine whether any T6 instance can become the next lookahead symbol. 

Note that although srs1 is already shifted in, it is still listed as a lookahead 

candidate for p-node 1. This is different from the standard parser, which does not 

use a shifted-in token more than once. The reason is that a single object can take 

part in the construction of more than one higher level map object. For example, a 

"bridge" instance may be shifted in as a building block of a river section, and later 

shifted in again as a building block of a road section. 

To proceed from p-node Il, what was performed on p-node NO is repeated on 

p-node Nl. Assume that srs1 is picked as the current lookahead, which indicates a 

reduce action with respect to production 8. According to the parsing algorithm, a 

new p-node N2 is created to represent the left hand side of the production 8, which 

is prs1 . Again, its candidate list is also shown. Since p-node NO is the immediate 

193 



NO 

Possible Lookahead: srsl, srs2, .. . , srs6, cl, tlnl, tln2 

RNS 

RS 

~GAP 

~ 
0 

BRIG 
sri I • srsl • srsJ • srs4 • srsS • srs6 

T_CITY ---------:T;c-;_SRS 

Figure 7.11: Illustration of the parsing process. (cont'd) 

ancestor of the handle, p-node N2 becomes one of its children. Note that p-node N2 

turns into the active top, and p-node Nl is its previous top. The resulting MPS is 

shown in Figure 7 .11. 

The OIR graph is modified due to the reduce action. Production 8 specifies that 

the existence of a type "T _SRS" (simple road segment) instance implies the existence 

of an instance of type "RS" (road section). A new instance prsl , which stands for a 

194 



partially recognized instance of type "RS", is placed in the RS instance holder. At 

this point, only one assembly edge has been explicit ly shown. Later on more assembly 

edges are added to this instance with the proceeding of the parsing. Each t ime new 

assembly edges are added, a different name is used to label the instance, until it is 

fully recognized. For example, the parser will change its label from prs1 to prs2 if c1 

and srs4 are also determined to be parts of the road section (see step 38 and 39 in 

Table 7.3 on page 196) . This means that the road section instance has changed from 

one "partially-recognized" state to another "partially-recognized" state. 

The p-node N2 is also associated with a candidate list consisting of T5, T6, T12 

and T14. Once again the function checking for predicate symbols indicates that no 

instance of type T5 is available. A type T6 terminal sr s1 is shifted in and parse state 

14 is reached, as depicted in Figure 7.12. 

NO 

Possible Lookahead: p_not_in_prs 

Figure 7.12: Illustration of the parsing process. (cont'd) 

The first few steps of the parsing process are sufficient to illustrate how the parse 

actions (shift and reduce) affect t he MPS. To save space, we will list the rest of the 

195 



parsing steps in Table 7.3, where each row lists the following information: (1) step 

number, (2) current top node, its parse state, and the shifted-in symbol, (3) the 

previous top item, ( 4) the parent node, (5) the candidate list of the current top node, 

and (6) the lookahead selected for the current top and the action based on the current 

top and the lookahead. Actions can be shift (S), reduce (R) and tracking back (TK). 

Visited terminal types in the "Candidate List" column are underlined. If the action 

is reduce or tracking back, the lookahead symbol is not shown, since any instance of 

the current candidate types is enough for the parser to decide the next action. 

Table 7.3: Remaining parse steps of t he example. 

Step MPS LK/ ACT 

C.TjP.S/SYM P.Top p Candidate List 

(4) N3/14/ srsl N2 N2 T7 -/ TK 

(5) N2/ 2/ prsl N l NO T5 ,T6,T12,T14 srs2/S 

(6) N4/14/ srs2 N2 N2 T7 p..not_in_prsl/ S 

(7) N5/35jp_notJn_prsl N4 N4 T17 -/ TK 

(8) N4/14/srs2 N2 N2 T7 -/TK 

(9) N2/2/prsl N l NO T5,T6,T12,T14 srs3/S 

a series of steps similar to (5)(6)(7)(8) repeated on srs3,srs4,srs5,srs6 

(25) N2/ 2/ prsl N l NO T5,T6,T12,T14 cl/S 

(25) N6/16/cl N2 N2 T13 p_touchl/ S 

shift-ins of srsl,srs2,srs3 result in track backs 

(35) N7 / 31/ p-t ouchl N6 N6 T6 srs4/S 

(36) N8/32/,srs4 N7 N7 T7 p..noLin_prs2/ S 

(37) N9/33/p..notJn_prs2 N8 N8 T13 p_touch2/S 

(38) N10/34jp_touch2 N9 N9 T5 ,T6,T12,T14 -/ RIO 

(39) Nll/ 2/ prs2 NlO NO T5,T6 ,T12,T14 fulLprsl / S 

196 



(40) Nl2/15/fu1Lprs l N2 N2 T3,T4,T6 -/R7 

(41) Nl3/3/rsl N l2 NO T3,T6 -/R6 

(42) N14/4/prnl N13 NO T2,T6 srs2/ 8 

(43) Nl5/ l /srs2 Nl4 Nl4 T5,T6 -/R8 

(44) Nl6/2/prs2 N l5 Nl4 T5,T6,Tl2,Tl4 t lnl/8 

(45) Nl7/17/tlnl N2 N2 T l 5 p_is_barlinel/8 

(46) Nl 8/27fp_is_barlinel Nl7 17 T l 4 tln2/8 

('17) Nl9/28/tln2 Nl8 Nl8 Tl5 p_is_barline2/8 

(48) N20 /29fp_is_barline2 N19 Nl9 T l 6 p_form_bl/8 

(49) N21/30 f p_form_bridgel N20 N20 T8 -/ Rl2 

(50) N22/18/brigl N21 Nl6 T8 Lbarline_of/8 

(51) N23/19/tlnl N22 N22 T9 p_bs_ctl /8 

(52) N24/20fp_bs_ct l N23 N23 T8 Lbarline_of/8 

(53) N25/2lfp_bs_ct l N24 N24 TlO p_other_b/8 

(54) N26/22fp_other _b N25 N25 T6 srs3/8 

(55) N27/23/srs3 26 N26 T7 p..noUn_prs3/8 

(56) N28/24/p..noUn_prs3 N27 N27 T9 p_bs_ct2/8 

(57) N29/25fp_bs_ct2 N28 N28 Tll p_ftsl/8 

(58) N30/26fp_ftsl 129 N29 T5,T6,Tl2,Tl4 -/R9 

(59) N31/2/prs3 N30 Nll T5,T6,Tl2,Tl4 fu1Lprs2/8 

(60) N32/15/fu1Lprs2 N31 N31 T3,T4,T6 -/R7 

(61) N33/11/rs2 N32 Nll T4 attachingl/ S 

(62) N34/13/ attaching! N33 N33 T3,T6 -R 5 

(63) N35/4/prn2 N34 NO T3,T6 srs5/8 

{64) N36/ l /srs5 N35 N35 T5,T6 -/R8 

(65) N37/2/prs4 N36 N35 T5,T6,Tl2,Tl4 srs6§ 

(66) N38/14/srs6 N37 N37 T7 p..not_in_prs4/8 

(67) 39/35/ p..noU n_prs5 N38 N38 Tl7 p_form_gapl/ S 

(68) N 40/36/ p_form_gapl N39 N39 T5,T6,Tl2,Tl4 -/Rll 

(69) N41/2/prs5 40 N35 T5,T6,Tl2,Tl4 fu1Lprs3/8 

(70) N42/15/fu1Lprs3 N41 N41 T3,T4,T6 -/R7 

197 



(71) N43/11/rs3 N42 N35 T4 attaching2/ S 

(72) N44/13/attaching2 N43 N43 T3,T6 - / R5 

(73) N45/4/prn3 44 NO T3,T6 is.fullprnl/ S 

(74) 46/12/ is.fullprnl N45 N45 T2,T6 -/ R4 

(75) N47 /5/rnl N46 NO T2,T6 -/R3 

(76) N48/6/rnsl N47 NO T2,T6 is.fullrnsl /S 

(77) N 49/9 /is.fullrnsl N48 N48 TO -/RO 

(78) N50/7/ml N49 NO T O Accept 

Figure 7.13 shows the output of the parsing process, which IS a complete OIR 

graph. 

T_CITY 

Figure 7.13: The complete OIR produced by the parser. 

198 



7.8 Prototype System Architecture 

In this section an illustration of the architecture of the prototype system is given 

in Figure 7.14. The steps and tools used in the implementation of the prototype 

system are also described. Subsystem modules are represented by rectangles. The 

filled arrows indicate the invocation relations between modules. The empty-headed 

arrows specify the external data input. 

Map Grammar 
and Parser Generator 

Embedded Code 

Primitive 
Collection Selector 

Guidance 

Figure 7.14: Prototype system architecture. 

The system was implemented in Java (JDK 1.3) and C programming languages. 

The following steps are involved in the prototype development process: 

1. Development of the parser generator for the map grammar. The parser genera-

tor module takes in the grammar representation and produces the Java source 

199 



code for the map parser. The parser is then compiled and becomes a part of the 

interpretation system. Note that this parser generator is different from the tra­

ditional ones in t hat it has to implement the map parsing algorithm described 

in Section 7.6. 

2. Specification of the map grammar and embedded Java code. Users have to 

specify the map grammar to be used in the format required by the parser 

generator. The embedded Java code is invoked to handle each reduce action 

performed. One advantage of this system is that we can adapt the system to 

other interpretation problems by simply changing the grammar. 

3. Development of the selector module. The selector performs the task to pick 

the next input token from the primitive collection. Since the parser input is 

not organized as a string of tokens, a number of data structures, such as hash 

tables, heaps and linked lists, are provided to facilitate the efficient indexing 

and retrieving of primitive objects. 

4. Development of the guidance module. The guidance module is a key part in 

the parsing process. Its function is to guide the selection of primitives and 

constraint checking functions using domain knowledge. For example, domain 

expertise is required to define the thresholds and parameters of the gap filling 

function. Sometimes the parameters have to be adaptive according to different 

situations. In the current implementation, if the distance between the two closer 

200 



end points of two line segments is smaller than 5 pixels, they are considered to 

belong to one line. If the distance is bigger than 5 pixels and smaller than 15 

pixels, t hey belong to the same line only if they fit in a fiat curve. We chose 

the Levenberg-Marquardt nonlinear regression algorithm as the curve fitting 

algorithm. The parser and guidance modules work in coordination with each 

other. In t he current system, the logic of the guidance modules is implemented 

directly in the selection module or the constraint checking functions. Rule 

engines are a powerful mechanism to store and apply domain knowledge. The 

possibility of using JESS ( v5. 0), an expert system shell, as a rule engine has 

been studied. A mechanism to map Java objects to JESS facts can be adopted. 

In future research, a rule engine based on JESS may be integrated into the 

proposed system. In such a system, a constraint checking function does not 

have to implement the knowledge inference logic. It only has to prepare the 

Java objects that indicate the current states of the parser and the primitive 

collection. At the JESS side, these Java objects can appear in the form of JESS 

facts on which the JESS rules can perform the constraint checking reasoning. 

The result is then sent back to the constraint checking function at the Java 

side. In this way the procedural knowledge and the declarative can be further 

separated. 

5. Development of the support module. This module is designed to hold and 

manage a set of low-level image process procedures written in C programming 

201 



language. These procedures are executed when it is necessary to verify a spatial 

object or relation in case such information is not readily included in the primitive 

collection. Java native interface is used to enable Java code to invoke these C 

programs. 

Just like traditional parser development, each map grammar production is at­

tached with a procedure implemented in Java. Such a procedure implements the 

operations to be performed after a reduce action is triggered. The map grammar, 

together with the associated procedure in the form of embedded codes, is supplied 

to the parser generator as input. The parser generator produces the map parser in 

Java code. The map understanding system is built around the generated map parser, 

whose implementation is discussed in detail in Section 7.5. The map parser works 

together with three other modules: selector, guidance and support. 

7.9 Dealing with Uncertainty in Map Understand-

ing Process 

Map grammar parsing can be considered a heuristic search process. Each map gram­

mar production expresses a heuristic that can be applied in the OIR formation, which 

tells what kind of "new" instances and relations can be discovered given a certain con­

text (existence of relevant instances and relations). On many occasions, complexities 

of maps prevent us from adding correct new instances or relations to an OIR. 

202 



Two types of uncertainties are considered in the map understanding process: (1) 

distorted or missing features resulted from the low-level map processing; and (2) map 

objects with fuzzy features. A lot of low-level processing algorithms can satisfactorily 

extract and vectorize line features and other map features. However, each such algo­

rithm also has its own limitations, which generates various di~torted results. Some 

map features are difficult to be described with precise terms. Therefore, Uncertainty 

measures are needed in many map understanding process steps. 

One advantage of the proposed semantic representation is that it provides a nat­

ural and intuit ive approach to deal with uncertainty reasoning. One of the common 

problems is the broken line phenomenon; that is, line features are broken into anum­

ber of segments caused by poor quality results of previous image processing options. 

Various forms of gaps have to be filled . Therefore, gaps should be introduced as a 

concept category in the proposed semantic representation. Its relationship with other 

concepts has to be explicitly represented as shown in Figure 7.15. 

Let a be a "partial road section" instance and b be a "road segment" instance. We 

say a and b are two consecutive sections of another "partial road section" instance 

if they form a "gap" in between. To decide whether a and b form a gap, we check 

whether t hey are close to each other and can fit in a line or a smooth curve. It is 

obvious the conclusion can only be drawn with a degree of confidence. The results 

produced by all kinds of image processing algorithms have varied error rates, especially 

when applied in different contexts. 

203 



Continuous Road Segment 

Figure 7.15: Modeling broken line features . 

A certainty factor can be attached to some object and relation instances, and 

later be used in the parsing process. The confidence levels for the existence of certain 

objects and relations can be determined by their checking algorithms or by special 

evaluation algorithms based on the current parsing context or commonsense knowl­

edge. Take a look at production rule 9 of CM9 (see Appendix C). If a bridge instance 

b (type BRIG) is shifted in with a high confidence level, the road segment instance v 

(type T _SRS) shifted in later will also be assigned a high confidence level. This stems 

from the fact that if a bridge is present, there must exist connected road segments at 

both ends of the bridge. 

The uncertainty issue can also be addressed through the syntax of map grammars. 

For example, a special confidence symbol is introduced into the grammar production 

204 



shown below: 

PRS[p:prs] ::= PRS[u:prs] T _SRS[v:srs] p_not_in_prs[u] p_form_gap[u,v] p_conf_gap[u ,v] 

The symbol p_form _gap[u,v] is used to determine whether two road segments, u and 

v, form a gap based on the position and direction information. p_conLgap[u ,v] uses 

the commonsense knowledge to evaluate the confidence level. Since the confidence 

factors are set by t he parser based on the parameters generated by the constraint 

symbol checking algorithms like p_form_gap. If the gap between two road segments is 

bigger, a smaller confidence factor value is given. 

7.10 Discussion 

The disadvantages of the existing rule based approaches are as follows: 

• Many rules intend to represent commonsense knowledge and are formed through 

intuition. Sometimes they can be either too general or too specific. It is not 

easy to verify whether they are incorrect. 

• They may fail to handle unusual situations. Since rules are experimental and 

heuristic knowledge directly obtained from real world experience, we may not 

be aware of certain exceptions. 

The disadvantages of the existing semantic based map interpretation approaches 

are as follows: 

205 



• So far they are usually applied on utility maps or cadastral maps that are 

characterized by less complex features than topographic maps. 

• They concentrate on the structural objects and their part/part-of relationships, 

but contribute less to reasoning processes. Therefore, in terms of the utilization 

of the explicitly represented knowledge, these approaches usually only present 

very general reasoning strategies, such as goal-driven (top-down) and data­

driven (bottom-up) search strategies. 

A syntax based approach for the interpretation of maps is presented. The advan­

tages of the proposed syntactic method are as follows: 

• It aims at representing structural knowledge, as well as knowledges that support 

reasoning processes. 

• Knowledge of the recognition of object instances and their relationship in­

stances, as well as knowledge of reasoning processes, is formalized as a grammar 

like representation, which is easier for analysis and verification. 

• It provides a system developer the ability to easily enhance and modify the 

grammar. As a result, many other supporting analysis and interpretation utili­

t ies need not to be changed. Since knowledge engineering is an evolving process, 

the ability to modify is very important. 

• It is possible to represent a large set of complex map phenomena with a finite 

number of concepts, since recursive grammar rules enable us to achieve this. 

206 



Chapter 8 

Experiments and Results 

This chapter presents the results obtained from the experiments that are carried 

through on test maps. Details of the methods utilized to acquire and preprocess the 

experimental data are given, followed by the description of the map parsing procedures 

performed on the data, and the analysis of the results. 

8.1 Data Acquisition and Preprocessing 

To demonstrate the feasibility of the methodology proposed in this work, experiments 

were carried out by applying the prototype map understanding system on a number of 

city or regional maps . These maps comprise the following map objects: road networks, 

river networks, route number symbols, bridges, location symbols and characters. An 

example of such a map used in the experiments is shown in Figure 8.1. These city or 

regional maps are stored in TIFF format. 

207 



Figure 8.1 : City map of Calgary, Canada. U.S. Department of State 1988. 

Preprocessing operators or low-level image processing algorithms are then applied 

to each scanned image. The primary purpose of preprocessing is to remove noises and 

non-linear features such as characters. Another important goal is to vectorize the map 

image. The map understanding system is not able to work directly on raster format 

images, because skeletonized image layers present important topologic and geometric 

information which is not readily available in images. In addition, vectorization is of 

great significance in terms of reducing the amount of data to be stored and processed. 

Since it is considerably easier for the inference modules to manipulate and reason 

208 



Figure 8.2: Image layer of linear features. 

on vectorized data, vectorization can greatly improve the performance of the map 

understanding system. Software packages Khoros 2.2.0 and Grass 5.0.1 are used for 

preprocessing. 

Image processing algorithms such as color segmentation, adaptive threshold, edge 

detection and mathematical morphology operations are adopted first to decompose 

the original color or graylevel map into a number of image layers. For example, the 

image layer with road and river bank features shown in Figure 8.2 is obtained by 

applying the k-means clustering algorithm (for line feature extraction) and median 

209 



Figure 8.3: Skeletonized image layer of linear features with many small dangling line 

segments. 

filtering operation (for noise removal). Sometimes dilation and erosion operations are 

applied alternatively and repeated a number of times in order to separate line features 

from other point features. 

The following steps are taken to obtain the vectorized image layers with road 

features. 

1. Use histogram analysis and dynamic thresholding to separate white color from 

other graylevels. As a result, an image layer with only road and river features 

210 



is obtained. 

2. Separate river features from roads by applying mathematical morphology algo­

rithms to obtain an image layer with only road features and characters. 

3. Perform the thinning algorithm to reduce features to one pixel wide, and vec­

torize the thinned image layer. 

4. Remove short and dangling line segments. Noises caused by isolated areas are 

almost eliminated. Although noises resulted from characters are already short 

fragmented line segments at this stage, this step cannot remove them because 

characters usually touch road lines. 

5. Use mathematical morphology operators to remove those thinned lines with a 

width of one pixel. 

6. Subtract the result of step 5 from that of step 4. 

7. Go through the thinning and trimming operations again. 

After step 3, an intermediate result (see Figure 8.3 for an example) with a lot of 

small dangling lines is obtained. After all seven steps are carried out, the image layer, 

depicted in Figure 8.4, shows much less dangling line segments. 

Each image layer can be viewed as a collection of one or more types of map 

objects. Further image processing or interpretation algorithms can easily access and 

manipulate objects in image layers without complex analysis. In the map parsing 

211 



Figure 8.4: Skeletonized image layer of road features where small spurs are trimmed. 

process, the information that forms the primitive collection does not come from just 

one image layer, but from all image layers obtained. Both vector and raster format 

image layers will be utilized. Since each image layer focuses on revealing a map image 

from a certain aspect, there will be times in the reasoning process when information 

from more than one layer needs to be referenced to provide complementary details 

to the image layer currently under processing. Take the vector format image layer 

shown in Figure 8.4 as an example. To make up for the gaps we meet in the line 

tracking process, we need to decide whether two line segments are actually part of 

212 



one road. One method is to use image layer in Figure 8.2 as a condition layer, which 

means that any filled gap has to happen in areas where pixel values are ls in the 

condition layer. Therefore, one important task of t he map grammar is to express the 

control knowledge when referring to a condition layer. 

8.2 Map Parsing and Results 

A map grammar CMQ (see Appendix C), which is obtained by making a few exten­

sions to MQ in Chapter 7, is used for the experiments. The main focus is to see how 

the map grammar directs the interpretation system to handle various situations in 

the process of extracting the road network. River networks are not considered in the 

current experiments. 

The primitive collections are obtained using the preprocessing method described 

in the previous section. An assumption is made that existing algorithms and methods 

(see [33, 34, 35, 36, 49, 51, 52, 57, 82, 83, 91]) are available to extract and recognize 

geometric shapes of point symbols such as route numbers and bridge symbols. Due 

to the difficulties and the tremendous workloads involved in obtaining and customiz­

ing those existing algorithms, these point symbols are treated as already correctly 

recognized in the experiments, and are manually indexed and placed in the primitive 

collection. 

To evaluate and analyze the experimental results , a mechanism that contains 

certain evaluation criteria is employed. In our experiments, a standard OIR graph, 

213 



called target OIR, is assigned to the map image to be processed. Such a standard 

OIR is created based on human judgment. It serves as a structured description of 

certain map objects and their relations, which is considered to be the desired output of 

the map parsing system. The result produced by the system, which can be represented 

by an OIR, is compared against its target OIR. If the obtained result matches the 

target OIR by a certain percentage, it can be considered satisfactory. Therefore, the 

key is to find out those wrongly classified map objects and relations. 

In this section, experimental results of some typical test maps will be presented. 

These maps include the following: the regional map of Denver (see figure E.2), the 

city map of Ottawa (see figure E.4), the city map of Halifax (see figure E.6), and 

the city map of Calgary (see figure 8.1). The numbers of the primitive objects in the 

maps are reported in Table 8.1. 

map Denver Ottawa Halifax Calgary 

size 712x480 493x589 1002x478 761x604 

nodes 707 476 302 1060 

line fragments 770 544 439 1151 

route number symbol 3 0 0 2 

Table 8.1: Primitives in the map used in experiments. 

In the context of map parsing, some low-level object instances may be the building 

blocks of many high-level concepts, either directly or indirectly. For example, the 

correct recognition of road segments and how they relate to other point symbols are 

essential to the extraction of a whole road network. To measure errors in each of the 

214 



experiments, we keep track of the following objects: 

• the number of individuals wrongly classified, 

• t he number of individuals missed, 

• the number of noisy individuals removed, and 

• the number of individuals wrongly added. 

In the process of recognizing road networks, different scenarios of broken lines and 

dangling lines have to be handled. The grammar can guide the parser to deal with 

various situations based on the context. Assume, at a certain parse state, p_form_gap 

is chosen as the type of the possible next token. The selector is instructed to call 

a function to check whether the immediately previous two line segments shifted in 

belong to one road section. Usually the criteria to examine whether two line segments 

8 1 and 8 2 form a gap are defined as follows: (1) one end point of 8 1 is close to an end 

point of 8 2 , and (2) 8 1 and 8 2 approximately fit into a curve. The threshold we specify 

to check the closeness is 15 pixels. A curve-fitting algorithm based on Levenberg­

Marquardt nonlinear regression [24] is employed to analyze the direction of a line 

segment. A number of discrete points are taken from the line segment and passed to 

the curve-fitting algorithm. As a result , a third degree polynomial is generated and 

a correlation operation is performed to see whether the other line segment fits in the 

curve defined by the polynomial. In the experiments, we also consider the scenario 

when road lines are fragmented by gaps larger than the predefined threshold. In this 

215 



case, we will try to extend a line segment following its curve direction as much as 

possible until it meets the other line segment. 

During the parsing process, a number of small dangling line segments may be en­

countered. They should be discarded because commonsense knowledge suggests that 

road sections are usually represented by relatively long lines and connected to road 

networks. In order to handle such a situation, some special semantics are assigned to 

symbol is_fullprn to treat a partial road network composed of very short road sections: 

IF the partial network does not have any more unrecognized road section, and 

the sum of all its road sections does not exceed a threshold 

THEN discard the short line segments. 

From the above discussion, it can be seen that the map grammar is especially 

appropriate for fitting the abstract representation of relations among constructing 

primitives into the interpretation process. It is concluded that the control mechanism 

is very flexible. When some new situations need to be addressed, we just need to des­

ignate c-symbols and m-symbols that represent the constraints and the participating 

concepts and put the symbols in the appropriate places in the grammar. In general, 

the system separates declarative and procedural knowledge clearly and makes reuse 

and evolution of knowledge much easier. 

Table 8.2 shows the results produced by the understanding system. The recog­

nition of the features listed in the table is critical to showing the correct topologic 

structure of the road network. 

216 



map Denver Ottawa Halifax Calgary 
no. road network 1 1 1 1 
no. road section 407 208 317 1093 

no. road intersections 327 152 242 406 
no. route symbol 3 0 0 2 

no. dangli ng line segments removed 11 27 41 26 
no. brok en road section repaired 5 8 3 31 

Table 8.2: Recognized instances. 

Due to the complexities associated with map phenomena, some errors occur in 

the process of map parsing. In one of the experiments, a portion of the color map of 

Denver was used. The color segmentation method described in Chapter 3 was utilized 

to extract the red color layer, followed by application of the preprocessing operations 

presented in the previous section. Unfortunately, some of the text features in this 

map are also drawn in red color. These texts happen to be very close to each other 

and to the road lines. In addition, the size of the texts is relatively larger. This means 

a number of dilation operations are needed to fill the space in the texts to make them 

solid areas. However, too much dilation will cause other features that are close to 

one another become connected. We chose less aggressive dilation operations to avoid 

this problem. As a result, some of the texts were not effectively removed by the 

mathematical morphology operations and were misclassified as small road segments. 

The two parallel red lines that depict the portion of the highway in this map are 

too close that at some locations they touch each other. These touching points will 

be taken as road intersections. Therefore the dilation and erosion operations are 

217 



performed alternatively for two times to fill the gap between the two highway lines 

and to make it appear like one single line. During this process, some fragmented short 

lines in other parts of the map are lost. Because of the above mentioned factors , the 

error rate of misclassified line segments was higher, especially in the downtown area, 

where different line and text features overlap with one another. The misclassified line 

segments caused by the texts are especially short in size (mostly < 10 pixels). Each 

text symbol creates a number of such segments in the small area it covered. This is 

why the misclassified line segments for the map of Denver make a high percentage 

of the total number. The result may be improved by applying rules that specially 

treat such line segments. For example, short line segments that display sharp curves 

or appear twisted can be seen as the remnants of the texts and be removed. Map 

grammar symbols for special constraints can be designed to capture the geometric 

features of these line fragments. It can be observed that the error rates for the other 

test maps were much lower. This may be attributed to the fact that the low level 

primitive extraction algorithms are more effective on these maps. Shown in Table 8.3 

are the line features that are wrongly recognized. 

map Denver Ottawa Halifax Calgary 
% % % % 

missed road section 14 3.44 3 1.44 12 3.79 37 3.39 
missed road intersection 19 5.81 5 3.29 3 1.24 49 4.48 

unrepaired broken line segment 12 2.95 4 1.92 7 2.21 12 1.14 
wrongly added line segment 73 17.94 1 0.48 6 1.89 14 1.28 

Table 8.3: Wrongly recognized individuals. 

218 



Many reasons may lie behind the erroneous recognition. It is not possible to 

eliminate all such errors. The following are the factors that directly contribute to the 

problem: 

1. Information loss caused by preprocessing operations. The mathematical mor­

phology operators used to separate point symbols of different sizes may leave 

gaps on line segments. In most cases, these gaps can be repaired by some spe­

cial error correcting algorithms. However, sometimes the information about line 

segments is lost in the process of vectorizing and trimming. Many of the road 

sections and their associated intersections are lost along the map boundaries. 

2. The error correcting algorithms are not sophisticated enough to deal with severely 

distorted line segments. These algorithms are devised to deal with various sce­

narios involving distorted line segments resulting from the vectorization process. 

Even if well-tuned thresholds and adaptive measures are used, it is not easy to 

capture all the unpredictable behaviors of distorted features . For example, the 

gap filling algorithms are not able to deal with those broken road sections with 

big gaps . 

3. Interference among different types of map objects. Digits and characters that 

touch or are close to road sections may cause unwanted small line segments, 

which are often incorrectly taken as road sections. This is because the mathe­

matical morphology methods cannot remove all such digits and characters. If 

219 



aggressive dilation and erosion operations are used to eliminate the characters, 

the nearby road sections will be badly fragmented. 

It is obvious that t he places on maps where errors take place involve very small 

line segments. Although on many occasions they do not affect the overall parsing 

result very much, sometimes they do cause the incorrect extraction of certain signifi­

cant road sections. The following measures may be taken to improve the recognit ion 

results: (1) applying more advanced low-level image processing methods to obtain 

better preprocessing results , (2) using refined commonsense knowledge in the parsing 

process, (3) using post-parsing edit ing tools to correct the parsing results. The recon­

structed road networks of the test maps based on the parsing results are displayed in 

Appendix E. 

The limitation of the current implementation is its dependency on the availability 

of high quality low-level image processing algorithms. The map parser attempts 

to make use of detailed attributes of primitives and their relations. Many existing 

algorithms are not readily available for the map understanding task . For example, it is 

hard to obtain an algorithm that decides whether two line segments are parallel in the 

context of geographical maps. The highway route lines on maps that are considered 

"parallel" are actually not parallel in terms of geometry definition. At some points, 

they may be very close to each other, but at other points, they are far apart from each 

other. Under many such situations, the domain knowledge has to be used. However, 

this mean that map objects have to be examined in the context of a much larger area 

220 



and in a more accurate manner. This in turn means the performance may become 

poor. The chance of accumulated error may become bigger as well because of the 

large number of objects involved when confirming a single constraint. 

The main focus of the current implementation is the recognition of point and line 

features on maps, because the point and line features have already possessed those 

typical abstractions and constraints to be dealt with in a map understanding system. 

The proposed method can also be directly applied to recognize region features such 

as lakes, recreation parks, and woods areas. In general, region features can be viewed 

as composite features that are comprised of a number of point, line, or other simpler 

region features. For example, a recreation park can be represented by a polygon with a 

number of road and point symbols inside. As long as its properties and relations with 

other features are identified and specified, a region feature can be represented using 

DL concepts and roles and thus be processed by the map understanding system. 

221 



Chapter 9 

Conclusions 

Representations such as geographic maps have played an indispensable part in our 

daily life and will continue to be the primary tool for obtaining knowledge of a region 

or an area. Meanwhile, computers and Internet have become extremely popular dur­

ing t he past decade. With efforts continuing to be made to improve their performance 

and to lower the cost, it can be expected that in the near future their popularity will 

increase dramatically. A large collection of topographical maps, just like other text 

based contents, constitutes a large part of the information that is expected to be 

processed or stored by computers, to be transfered across the Internet, and to be ac­

cessed by various users for numerous applications. As an analog format of expression, 

geographic maps encode a vast range of spatial information, which is very difficult to 

decipher automatically by a computer system. It will be immensely valuable to de­

velop a map understanding system that is capable of discovering heretofore implicit 

map features and relationships. High-level map understanding, which attempts to 

222 



describe map phenomena declaratively, is in particular a research area that needs a 

great amount of effort. 

9.1 Review of The Research 

In this dissertation, a novel approach for color map segmentation was presented. 

Color segmentation is a very important low-level image analysis method. Due to the 

fact that colors are one of the most prominent attributes to distinguish map features, 

successful color segmentation is crucial for further map image interpretation. Since 

the pixel values of areas drawn with the same color tend to cluster around a center, 

any statistical clustering method can correctly categorize most of the pixels. However, 

one key issue is how to capture the pixel variances. The accuracy of color segmen­

tation depends on whether those "gone astray" pixels are also correctly classified. 

Unfortunately the more detailed an area is, the more varied the pixels are, and the 

more fine-tuned classification is needed. The pixels of an area having relatively high 

density will be much more difficult to classify because different map features may 

interweave with one another and the variation of pixel values becomes more compli­

cated. Usually color segmentation is regarded as a clustering problem without taking 

into consideration the physical process that causes the pixel variations. To catch the 

pixel variation over the boundary or overlapping areas of colors, a physical reflection 

model was proposed. It characterizes the relationship of factors that may affect the 

resulting color image, such as a paper surface, transparency, and illumination envi-

223 



ronment. Two heuristics, H.l and H.2, were discovered based on the reflection model. 

H.l suggests that pixels in an area where two colors overlap distribute within a narrow 

wedge shaped space. H.2 indicates that pixel values along the boundary areas of two 

colors approximately obey a linear distribution. A fuzzy neural architecture with self­

adjustment components was proposed for color map segmentation. Based on the two 

heuristics, two types of self-adjustment components were introduced to capture pixel 

variations in overlapping and boundary areas. They are capable of adjusting sample 

pixels dynamically among different clusters in neural network training. A color map 

segmentation system based on the proposed method was designed and implemented. 

In this dissertation, a methodology for high-level map understanding was also 

presented. Map understanding is considered to be a process that converts a map 

from its low-level format (raw map) into an accurate and meaningful representation 

of map objects and their relationships. The terms that are used to describe map 

objects and relations should be similar or close to those we use in our daily life and 

conform to human beings' intuitive way of thinking. The proposed methodology is 

based on a formal language called Description Logics, which is particularly suitable 

for representing knowledge about individuals, classes of individuals (concepts), and 

relationships (roles) . Furthermore, the semantics and the reasoning mechanism were 

also provided. This method is superior to traditional methods in that it is possi­

ble to represent knowledge based on formal theories, thus it can prove consistency 

and establish precise mapping rules that automatically verify a representation. In 

224 



Chapter 4, we presented the essence of conceptual modeling for domain knowledge of 

maps and knowledge representation using Descript ion Logics. Later we introduced 

QA.CC(V), a DL system that extends A.CC(V) to have roles representing n-ary re­

lations. In Chapter 6, the theory of Description Logics was applied to the task of 

map understanding. Having established the method to formalize knowledge repre­

sentation, we turned to discuss what kind of reasoning mechanism can effectively 

and efficiently make use of the formalism. We defined that the map understanding 

process aims to build an object-instance-relation graph, which is a representation for 

map object instances and their relations. A special grammar, called map grammar, is 

derived from the DL based knowledge representation. In the map grammar, we rep­

resent not only the structural information, but also knowledges about interpretation 

processes. A map grammar parsing algorithm, which works on a multiple path stack 

(MPS), was presented. Therefore, we have offered a viable approach to build a map 

understanding system. 

9.2 Future Research 

This dissertation studies a number of aspects of the establishment of a methodology 

for map understanding. There are a lot of potential future research directions for this 

research. Some interesting problems that need further investigation are given. 

• A knowledge engineering environment that enables knowledge developers to cre­

ate, edit, and verify Description Logics representations (concepts, roles, axioms) 

225 



using visual design aid tools. 

• Extensibility. Very often in knowledge engineering, due to the lack of under­

standing of the domain, an iterative refining process may be necessary. For 

instance, rewriting some of t he axioms may cause the semantics of other ax­

ioms to be changed, or sometimes even cause conflicts. The study of semantics 

evolution therefore is very important. 

• Reuse of knowledge. Different types of geographical maps may look very dif­

ferent in detail. There exist , however, intrinsic similarities among the ways in 

which map features are represented. It would be very useful to study and de­

velop a methodology that borrows pieces from the conceptual model of one type 

of map and uses them in the design process of another map type. 

• Taking into consideration more complex map objects and relationships would 

help us deal with a wider range of map phenomena and build better map un­

derstanding systems. 

9. 3 Other Applications 

The methodology introduced in this dissertation is not unique to understanding of 

geographical maps. In this section, several other application areas that can adopt the 

methodology presented in this work are listed. 

1. Automatic Image Annotation. 

226 



To achieve highly efficient storage and retrieval of image format data, the tech­

nique known as automatic image annotation is used to label certain features 

on images with names. Thus queries in terms of keywords, texture, or some 

structural descriptions can be formed to retrieve information from a very large 

image collection. 

2. Video Encoding 

The MPEG-4 video compression standard specifies the ability to code seman­

tically separate objects independently to achieve high compression rate. This 

requires extraction of meaningful objects from raw natural video sequences. 

3. Automatic Image Scene Interpretation. 

As one branch of computer vision, automatic image scene interpretation or 

picture interpretation is one of those research topics that interpret an image 

once primitive level objects are recognized [28]. 

227 



Appendix A 

Description Logics 

A.l Definitions of Concrete Domains, Concepts, 

and Roles 

D efinition A.l A concrete domain 'Dis a pair (dom('D), pred('D)) , where dom('D) 

is a set of elem ents called domain, and pred('D) is a set of predicate names. Each 

predicate name Pis associated with an arity n, and an n-ary predicate pv ~ dom('Dt . 

A concrete domain is called admissible iff (1) pred('D) is closed under negation and 

contains a name for dom('D }; and (2) the satisfiability problem fo r finite conj?J.nctions 

of predicates is decidable. 

ote that pred('D) is required to be closed under negation, i.e. , if P is an n-ary 

predicate in pred('D) , then there has to exist a predicate P in pred('D) such that Pv 

= dom('Dt - pv. The next definition shows how to combine two disjoint domains. 

228 



Definition A.2 Let Th and 1)2 be admissible concrete domains with pred(1J1) = 

{P1,1, ... , P1,nJ and pred({V2) = {P2 ,1, ... , Pz,nJ such that dom(D1) n dom('Dz) = 

0. Then 1J1 EB 'Dz can be constructed as follows: 

• the predicates of 1J1 EB 'Dz are 

-- ----Q1,1, · · ·' Q1,n1' Q1,1' · · ·' Q1,n1 

Qz,1, ... , Qz,n2' ~' ... , ~ 

where the predicates are defined by 

(x1, ... , Xn) E ~iff (x1, ... , Xn) E Pi,j or there is a k such that xk E dom(1J11(i)), 

{ 

0 if i = 1, 
where p,( i) = 

1 if i = 0. 

Baader and Hanschke [38] show that the combination of admissible domains is 

still admissible. 

Now we are ready to define the conceptual language A.CC(V). 

Definition A.3 (concept terms and terminologies of A.CC(V)) 

Let C, R and F be disjoint sets of concept, role, and feature names. The set 

of concept terms are inductively defined. As a starting point of the induction, any 

element of C is a concept term (atomic terms). Now let C and D be concept terms, let 

229 



R be a role name or feature name, P E pred(JJ) be an n-ary predicate name, and u 1, 

u2, ... , Un be feature chains. Then the following expressions are also concept terms: 

1. C U D (disjunction), C n D (conjunction), and •C (negation), 

2. 3R.C (exists-in restriction) and \:fR.C(value restriction), 

3. P(u1 , u2, .• • ,un) (predicate restriction). 

Let A be a concept name and let D be a concept term. Then A=D is a terminological 

axiom. A terminology (T-box) is a finite set T of terminological axioms with the 

additional restrictions that (i) no concept name appears more than once as a left 

hand side of a definition, and (ii) T contains no cyclic definitions. 

The above definition gives the syntax of A.CC(JJ). Then we define its semantics. 

A.2 Definitions of Models and Interpretations 

Definition A.4 (interpretations and models) 

An interpretation I for A.CC(JJ) consists of a set dom(I), the abstract domain of 

the interpretation, and an interpretation function. The abstract domain and the given 

concrete domain have to be disjoint, i.e., dom(1J) n dom(I) = 0. The interpretation 

function associates with each concept name A a subset AI of dom(I), with each role 

name R a binary relation ni on dom(I), i.e., a subset of dom(I) x dom(I), and 

with each feature name fa partial function JI from dom(I) into dom(I) U dom(JJ ) . 

230 



For such a partial function P the expression p:(x) = y is sometimes written as 

(x, y) E ji. If u = h, · · ·, fn is a feature chain, then ui denotes the composition 

ff o · · · o JJ of the partial functions ff, · · ·, JJ. The interpretation fun ction, which 

gives an interpretation for atomic terms, can be extended to arbitrary concept terms 

as follows: 

Let C and D be concept terms, let R be a role name or feature name, P E pred(D) 

be an n-ary predicate name, and u 1, ... , Un be feature chains. Assume that ex and 

DI are already defined. Then 

1. (e u D)I =ex u DI, (en D)I =ex n DI, and (-,e)I = dom(I) \ex, 

2. (VR: e)I = {x E dom(I); for ally such that (x, y) E RI we have y E ex} and 

(:JR: e)I = { x E dom(I); there exists y such that (x, y) E RI andy E ex}, 

3. P(u1, ... , Un )I= {x E dom(I); there exist r 1, .. . , rn E dom(V) such that 

uf (x) = r1, ... , u~ (x) = rn and (r1, ... , rn) E pD}. 

An interpretation I is a model of the T-box T iff it satisfies AI = DI for all 

terminological axioms A = D in T. 

Lemma A.l shows how to obtain equivalent expressions. 

Lemma A.l Let V be a concrete domain such that pred(V) is closed under negation 

and contains a name for dom(V). Assume that this name is Topv, let Top be an 

abbreviation for the concept term A U -, A where A is an arbitrary concept name. 

231 



Let C, D be concept terms of A.CC('D), R be a role name, f be a feature name, P be 

an n-ary predicate in pred(D ), and u 1 , · · · , Un be feature chains. Then the fo llowing 

transformations preserve the equivalence of concept terms: 

1. • (C U D) -t ((•C) n (• D)), •(C n D) -t ((•C) u (•D)), • (•C) -t C, 

·(VR.C) -t f]R .C), and •fJR .C) -t (VR .•C). 

2. •(if. C) -t (fJf. •C) U Topv(f)) and •(3f.C) -t ((if.•C) U Topv(f)). 

3. • P(ul, · · ·, Un} -t (P(ul, · · ·, un) U (iun.Topv(f)) U · · · U (iun.Topv (f) ) . 

A.3 Terminological Reasoning 

T he syntax and the semant ics of A.CC (D) provide a basis for a formal representation. 

An important feature is to deduce new facts from a given T-box. In t his section , 

we will discuss the subsumption problem (also called classification problem), which 

computes the sub-super relationship between two concepts in a T-box. 

Subsumption can be formally defined as follows. 

D efinition A.5 Let 7 be a T-box and A , B be concept names, B is said to subsume 

A with respect to 7 iff A I ~ B I holds for all models I of 7 . 

The subsumption problem can be reduced to the satisfiability problem, which can 

be defined as follows. 

232 



Definition A.6 Let C be a concept name, then C is said to be satisfiable iff there 

exists an interpretation I such that CI =/= f/J. 

A.4 The Assertional Language 

In the previous section, concepts and their relationships are formally defined. The 

symbols, terms and notation used to denote A.CC('D) do not deal with the properties 

of individual instances. Instead, t hey concentrate on the common characteristics of 

groups of instances (concepts) and what kind of relationship may occur among them. 

However, as we have discussed earlier, a concept is actually a group of instances each 

of which has its own properties, while a role is a set of individual relation instances. 

Therefore, it is necessary to have a modeling language to describe what kind of 

instances exist and how they are related. In this section, we will show that a DL 

system with assertional capabilities is such a language. This assertional part of the 

system uses the concept terms for making statements about parts of a given world. 

We now show how to integrate a concrete domain into an assertional language. 

Let 'D be an arbitrary concrete domain. It is known that we have to deal with two 

different kinds of objects: the individuals of the concrete domain and the individuals 

in t he abstract domain (see Definition A.4). The names for objects of the concrete 

domain will come from a set OC of object names, and the names for objects of the 

abstract domain from a set OA. 

Definition A.7 (assertional axioms and A-boxes for A.CC('D)) 

233 



Let OC and OA be two disjoint sets of object names. The set of all assertional 

axioms is defined as follows. Let C be a concept term of A.CC ('D), R be a role name, f 

be a feature name, and P be an n-ary predicate name of'D, and let a, b be elements of 

OA and Y1, Y2, · · ·, Yn be elements of OC. Then the following are assertional axioms: 

a: C, (a, b) : R, (a, b) : f, (a, y) : f , (yl , ... , Yn) : P. 

An A-box is a finite set of such assertional axioms. 

Definition A.S (interpretations and models) 

An interpretation for the assertionallanguage is simply an interpretation for A.CC('D) 

which, in addition, assigns an object ai E dom(I) to each object name a E OA, and 

an object xi E dom('D) to each object name x E OC. Such an interpretation satisfies 

an assertional axiom 

a: C iffai E CI, (a, b}:R iff (ai, bi) E RI, (a, b):fiff f i(ai) = bi, (a,y): f iff 

F (ai )=yi, (yl, ... , Yn) : P iff (yf, . .. , y;,) E pD. 

An interpretation is a model of an A-box A iff it satisfies all the assertional axioms 

of A, and it is a model of an A-box A together with a T-box 7 iff it is a model of 7 

and a model of A. 

The definition shows that we do not require unique names for t he objects. 

Considering an A-box without a corresponding T-box means that all the concepts 

names occurring in concept terms are assumed to be primitive. 

234 



A.5 Assertional Reasoning 

In the following, A will always denote an A-box, T aT-box, C , D concept terms, a, 

b E OA names of abstract objects, and x; y E OC names of concrete objects. 

An obvious requirement on t he represented knowledge is that it should not be con­

tradictory. Otherwise, it would be useless to deduce other facts from this knowledge 

since logically, everything follows from an inconsistent set of assumptions. However , 

for a given A-box (or an A-box together with a T-box) it is not necessary to have 

a model. For example, an A-box containing the axioms a : C and a : -,C , or the 

axioms (a, b) : f , (a, y) : f for a feature name f is cont radictory, and thus cannot 

have a model. 

We say that an A-box (an A-box together with aT-box) is consistent iff it has a 

model. Otherwise, it is called inconsistent. 

For the above mentioned reason it is important to have an algorithm which decides 

consistency of a given A-box. In addition, it will t urn out that such an algorithm can 

also be used to solve all the other important inference problems, namely subsumption 

between concepts, satisfiability of concepts, consistency of an A-box together with a 

T-box, and the so-called instant iation problem. 

This last problem is defined as follows. The abstract object a is an instance of C 

with respect to A (with respect to A together with T) iff ai E CI for all models of 

A (for all models of A together with T ). 

Consistency of-- as well as instantiation with respect to -- an A-box together 

235 



with aT-box can easily be reduced to the corresponding problems for A-boxes alone. 

In fact, one must simply unfold the corresponding T-box, and then replace all defined 

concept names occurring in concept terms of the A-box by their definitions, in the 

unfolded T-box. 

In addition, the instantiation problem can be reduced to the consistency problem 

as follows: a is an instance of C with respect to A iff the A-box A U a : ·C is 

inconsistent. 

Finally, t he satisfiability problem for concept terms (and thus also the subsump­

tion problem) can also be reduced to the consistency problem for A-boxes. In fact, 

C is satisfiable iff the A-box {a : C} is consistent. 

236 



Appendix B 

List of Maps Used for Testing 

1. Name: Portion of Ontario, Canada. National Atlas of Canada Series, 1981. 

Source: Queen Elizabeth Library, Memorial University of ewfoundland. Pub­

lisher: Natural Resource of Canada. Size: 154 x 136 pixels. Resolution: 300dpi. 

2. Name: Portion of Denver, Colorado. Source: University of Texas at Austin 

Library Online Map Collection. P ublisher: US Geological Survey (USGS). Size: 

945 x 1024 pixels. Resolution: 200dpi. 

3. Name: City Map of Calgary, Canada. Source: University of Texas at Austin 

Library Online Map Collection. Publisher: U.S . Department of State, 1988. 

Size: 571 x 453 pixels. Resolution: 150dpi. 

4. Name: Portion of Cincinnati, Source: University of Texas at Austin Library 

Online Map Collection. Publisher: US Geological Survey (USGS). Size: 363 x 

274. Resolution: 200dpi. 

237 



5. Name: Portion of Boston, Massachusetts. Source: University of Texas at Austin 

Library Online Map Collection. P ublisher: US Geological Survey (USGS). 

Resolution: 200dpi. 

6. Name: Portion of Minneapolis, Minnesota. Source: University of Texas at 

Austin Library Online Map Collection. Publisher: US Geological Survey (USGS). 

Resolution: 200dpi. 

7. Name: City Map of Ottawa, Canada. Source: University of Texas at Austin 

Library Online Map Collection. Publisher: U.S. Department of State, 1988. 

Size: 493 x 589 pixels. Resolut ion: 150dpi. 

8. Name: City Map of Halifax, Canada. Source: University of Texas at Austin 

Library Online Map Collection. Publisher: U.S. Department of State, 1988. 

Size: 1002 x 478 pixels. Resolution: 150dpi. 

238 



Appendix C 

Map Grammar CMQ 

1. M(a:map] ::= RWS(c:rws] is_fullrws(c] RNS(b:rns] is_fullrns(b] 

2. RNS(b:rns] ::= RNS[c:rns] RN[d :rn] 

3. RNS[c:rns] ::= RN[c: rn] 

4. RN[c:RN] ::= PRN(c:prn] is_fullprn[e] 

5. PRN[b:prn] ::= PRN[b:prn] RS[r:rs] p_attaching[(b, r) :rnh] 

6. PRN(b:prn] ::= RS[r:rs] 

7. RS[r:rs] : := PRS[p:prs] full _prs[p] 

8. PRS(p:prs] ::= T _SRS[s:srs] 

9. PRS[p:prs] ::= PRS[u :prs] BRIG[b:brig] Lbarline_of[b:x] p_brig_srs_connecting(u , x] 

Lbarline_of[b:y] p_other _barline[b, x, y] T _SRS[v:srs] p_not_in_prs[v] 

239 



p_brig_srs_connecting[v,y] p_form_two_sides[u, x, v, y] 

10. PRS[p:prs] ::= PRS[u:prs] T _CITY[c:city] p_touch[u, c] T _SRS[v:srs] p_not_in_prs[u] 

p_touch[v, c] 

11. PRS[p:prs] ::= PRS[u:prs] T _SRS[v:srs] p_noLin _prs[u] p_form _gap[u ,v] 

12. BRIG[b:brig] ::= T _LNS[I:Ins] p_is_barline[l] T _LNS[m:lns] p_is_barline[m] 

p_form _bridge[l,m] 

13. RWS[c:rws] ::= RWS[d :rws] RW[e:rw] 

14. RWS[c:rws] ::= RW[c:rw] 

15. RW[e:rw] ::= PRW[p:prw] is_fullprw[p] 

16. RW[e:rw] ::= PRW[p:prw] RWSEC[r:rwsec] p_attaching[(p,r) :rnh] 

17. PRW[p:prw] ::= RWSEC[r:rwsec] 

18. RWSEC[r:rwsec] ::= T _SRS[t:srs] p_form _railway[t] 

The meanings of the grammar symbols are given below. 

M -- an instance representing a map scene. 

RWS -- an instance representing a set of railroad networks. 

RNS -- an instance representing a set of road networks. 

is_fullrws[c] -- a predicate representing the fact that no more instances can be 

added to the set of railroad networks represented by c. 

240 



is_fullrns[b] - - a predicate representing the fact that no more instances can be 

added to the set of road networks represented by b. 

RN -- an instance representing an individual road network. 

PRN - - an instance representing a partially recognized road network; that is, a 

road network where some parts are not yet explicitly shown. 

is_fullprn[e] -- a predicate representing the fact that the PRN instance e does 

not have any parts that are not explicitly shown. 

RS -- an instance representing a road section. 

p_attaching[(b ,r) :rnh] --a predicate representing the fact that a road section r 

is attached to a partially recognized road network b. 

PRS -- an instance representing a partially recognized road section. 

full _prs[p] -- a predicate representing the fact that no more parts can be attached 

to the partially recognized road section p. 

T _SRS -- a terminal instance representing a simple road section. 

BRIG -- an instance representing a bridge. 

Lbarl ine_of[b:x] - - a function symbol that designates the barline attribute of 

BRIG b, which is represented by x. 

p_brig_srs_connecting[u,x] -- a predicate representing the fact that a bridge u is 

connected with a barline x of a simple road section. 

p_other _barline[b,x,y] - - a predicate representing the fact that x and y are two 

different barlines of bridge b. 

241 



p_noLin _prs[v] -- a predicate representing the fact that a simple road section v 

is not part of a partial road section. 

p_form _two_sides -- a predicate represent ing the fact that two simple road sec­

t ions u and v and two bridge barlines x and y form a road section with a bridge in 

the middle. 

T _CITY -- a terminal instance represent ing a city symbol. 

p_touch[u,c] -- a predicate representing t he fact that a partial road section u 

touches a city symbol c. 

p_form _gap[u,v] -- a predicate representing the fact that t here is a gap between 

two part ial road sections u and v t hat in fact belong to one whole road section. 

T _LNS -- a terminal instance representing a polyline. 

p_is_barline[l] -- a predicate represent ing t he fact that a T _LNS instance can be 

recognized by a barline, a part of a bridge. 

p_form _bridge[l ,m] -- a predicate representing t he fact that two barlines (I and 

m) can form a bridge. 

RW -- an instance represent ing a railroad. 

PRW -- an instance representing a part ially recognized railroad . 

is_fullprw[p] --a predicate represent ing the fact that no other parts can be added 

to t he partial railroad p. 

RWSEC -- an instance representing a railroad section. 

p_form _railway[t] -- a predicate representing the fact that a T _SRS inst ance can 

242 



be recognized as a railroad. 

243 



Appendix D 

Color Segmentation Results 

Figure D.l: The blue color layer extracted from the map of Denver using the proposed 
fuzzy neural network. 

244 



(c) 

Figure D.2: The same fuzzy neural network used for the map of Denver is applied to 
the map of Cincinnati without retraining. (a) Original map. Original scale 1:500,000 
U.S. National Atlas 1970. (b) Red color layer. (c) Blue color layer. 

245 



ll 

(a) 

(b) 

(c) 

Figure D.3: The same fuzzy neural network used for the map of Denver is applied 
to the map of Boston without retraining. (a) Original map. Original scale 1:500,000 
U.S. National Atlas 1970. (b) Red color layer. (c) Blue color layer. 

246 



Appendix E 

Map Understanding Results 

Figure E.l: Extracted road network from the map of Calgary. 

247 



Figure E.2: A portion of the regional map of Denver. 

Figure E.3: Extracted road network from the map of Denver. 

248 



0 
Parlililm( 

H/'11 

Figure E.4: A portion of the city map of Ottawa. 

Figure E.5: Extracted road network from the map of Ottawa. 

249 



H 

t 
Figure E.6: A portion of the city map of Halifax. 

Figure E.7: Extracted road network from the map of Halifax. 

250 



Bibliography 

[1] L. Lucchese, S.K. Mitra, "Unsupervised Segmentation of Color Images Based on 

k-means Clustering in the Chromaticity Plane", IEEE Workshop on Content­

Based Access of Image and Video Libraries, pp. 74-78, June 22- 22, 1999, Fort 

Collins, Colorado. 

[2] Y. W. Lim and S. U. Lee, "On the Color Image Segmentation Algorithm Based 

on t he Thresholding and the Fuzzy c-means Techniques", Pattern Recognition, 

Vol. 23, No.9, 935-952, 1990. 

[3] G. Healey, S. Shafer, L. Wolff (eds.), Physics-based Vision: Principles and 

Practice, COLOR, Jones and Bartlett, Boston, 1992. 

[4] G. Healey, "Modeling Color Images for Machine Vision," in Advances in Image 

Processing and Machine Vision, J. Sanz editor, Springer-Verlag, 1996. 

[5] T. Uchiyama, M.A. Arbib, "Color Image Segmentation using Competitive 

Learning" , IEEE t ransactions on Pattern Analysis and Machine Intelligence, 

Vol 16, No. 12, pp. 1197-1206, December 1994. 

251 



[6] Jan Puzicha, Thomas Hofmann and Joachim Buhmann, "Histogram Cluster­

ing for Unsupervised Image Segmentation", Proceedings of the IEEE Interna­

tional Conference on Computer Vision and Pattern Recognition (CVPR'99) , 

Fort Collins, pp. 602-608, 1999. 

[7] C. L. Huang, "Pattern image segmentation using modified Hopfield model", 

Pattern Recognition Letters, 13 (1999), 345-353. 

[8] A. P. Petrov and L. L. Kontsevich, "Properties of Color Images of Surfaces 

under Multiple Illuminants", Optical Society of America, Vol. 11 , No. 10, 2745-

2749, Oct. 1994. 

[9] B. A. Maxwell and S. A. Shafer, "Physics-based Segmentation: Moving Be­

yond Color", IEEE International Conference on Computer Vision and Pattern 

Recognition, 742-749, 1996. 

[10] D. Nardi, R. J. Brachman, "An Introduction to Description Logics", Description 

Logic Handbook, edited by F. Baader, D. Calvanese, D.L. McGuinness , D. 

Nardi, P.F. Patel-Schneider, Cambridge University Press, 2002, pages 5-44. 

[11] T. L. Huntsberger, C. L. Jacobs and R. L. Cannon, "Iterative Fuzzy Image 

Segmentation", Pattern Recognition, Vol. 18, No. 2, 131-138, 1985. 

[12] A. Moghaddamzadeh and N. Bourbakis, "A Fuzzy Technique for Image Segmen­

tation of Color Images", IEEE Word Congress on Computational Intelligence: 

FUZZY-IEEE, Orlando, Florida, June 1994. 

252 



[13] Zhong, D. X., Yan, H. , "Color image segmentation using color space analysis 

and fuzzy clustering", Neural Networks for Signal Processing X, 2000. Proceed­

ings of the 2000 IEEE Signal Processing Society Workshop Volume: 2, 2000, 

pp. 624-633 vol. 2. 

[14] Noordam, J. C., van den Broek, W.H.A.M., Buydens,L.M.C., "Geometrically 

guided fuzzy C-means clustering for multivariate image segmentation", Pattern 

Recognition, 2000. Proceedings. 15th International Conference on Volume: 1, 

2000, pp. 462-465. 

[15] A. Borgida, M. Lenzerini, R. Rosati. "Description Logics for Databases", De­

scription Logic Handbook, edited by F. Baader, D. Calvanese, D.L. McGuin­

ness, D. Nardi, P.F. Patel-Schneider, Cambridge University Press, 2002, pp. 

472-494. 

[16] A. Borgida, "Description Logics in Data Management", IEEE Transactions on 

Knowledge and Data Engineering vol.7, No. 5, October 1995, pp. 671-682. 

[17] Ragnhild VanDer Straeten, Mira Casanova, "The Use of DL in Component Li­

braries- First Experiences" , KI-2002 Workshop on Applications of Description 

Logics ADL'02 , Aachen, Germany September 16th, 2002. 

[18] Daniela Berardi, Diego Calvanese, Guiseppe De Giacomo, "Reasoning on UML 

Class Diagrams using Description Logic Based Systems", KI-2001 Workshop on 

Applications of Description Logics Vienna, Austria September 18, 2001. 

253 



[19] Michael Eisfeld, "Model Construction for Configuration Design", KI-2002 

Workshop on Applications of Description Logics ADL'02 Aachen, Germany 

September 16th, 2002. 

[20] A. K. Jain and R. C. Bubes, "Algorithms for Clustering Data" , Englewood 

Cliff, NJ: Prentice Hall, 1988. 

[21] F. Baader, "A Formal Definition for the Expressive Power of Terminological 

Knowledge Representation Languages", Journal of Logic and Computation, 

6(1) : 33-54, 1996. 

[22] H. J . Levesque and R. J. Brachman, "Expressiveness and t ractability in knowl­

edge representation and reasoning" , Computational Intelligence Journal 3, 78-

93 (1987). 

[23] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi, "Reasoning in Ex­

pressive Description Logics", in Handbook of Automated Reasoning, A. Robin­

son and A. Voronkov(eds), Elsevier Science Publishers (North-Holland), Ams­

terdam, 2001, pp. 1581-1634. 

[24] G. A. F. Seber and C. J. Wild, Nonlinear R egression, Wiley, New York, p. 624, 

1989. 

[25] D. Comaniciu and P. Meer, "Robust Analysis of Features Spaces: Color Image 

Segmentation", Proc. of IEEE Conf. on Computer Vision and Pattern Recog­

nition, San Juan, Puerto Rico, pp. 750-755, June 1997. 

254 



[26] Mark S. Drew, Jie Wei, and Ze-Nian Li, "On Illumination Invariance in Color 

Object Recognition", Pattern Recognition, Vol.31, No. 8, pp. 1077-1081, 1998. 

[27] Lippman R. P., "An Introduction to Computing with Neural Nets", IEEE ASSP 

Magazine, Vol. 4, pp. 14, 1987. 

[28] Sandy Dance and Terry Caclli, "On the Symbolic Interpretation of Traffic 

Scenes", ACCV93 Proceedings of the Asian Conference on Computer Vision, 

pages 798- 801, Osaka Japan, November 1993. 

[29] Helmet Mayer, "Automatic Knowledge Based Extraction of objects of the real 

world from scanned maps" , International Archives of Photogrammetry and Re-

mote Sensing(30) 3/2, pp. 547-554, 1994. 

[30] A. I. Abdelmoty, M. H. Williams and J M P Quinn, "A rule-based approach 

to computerized map reading", Information and Software Technology, Vol. 35, 

No. 10, October 1993. 

[31] J. E. Den Hartog, T. K. Ten Kate, and J. J . Gerbrands, "Knowledge-based 

Interpretation of Utility Maps" , Computer Vision and Image Processing, vol. 

63, No. 1, pp. 105-117, 1996. 

[32] Rik D. T . Janssen, The Application of Model-based Image Processing to the 

Interpretation of Maps, Ph.D thesis, Delft University of Technology, Delft , the 

etherland, 1995. 

255 



[33] Fletcher L.A and Kasturi R., "A robust algorithm for text string separation 

from mixed text/graphics images", IEEE trans. PAMI, 10, pp. 910-918, 1988. 

[34] John Shunen Shieh, "Recursive Morphological Sieve Method for Searching Pic­

torial Point Symbols on Maps", Proc. the 3rd Int. Conf. on Documentation 

Analysis and Recognition, Montreal, Canada, pp. 931-935, Aug. 14-16, 1995. 

[35] Masanori Anegawa, Osamu Shiku , Akira Nakamura, Terumitsu Ohyama, and 

Hideo Kuroda, "A System for Recognition Numeric Strings from Topographical 

Maps", Proc. t he 3rd Int. Conf. on Documentation Analysis and Recognition, 

Montreal, Canada, pp. 940-943, Aug. 14-16, 1995. 

[36] Hiromitsu Yamada, Kazuhiko Yamamoto, and Masanobu Nakamura, "Increas­

ing the Performance of MAP(Multi-Angled Parallelism) Erosion-Dilation for 

Feature Extraction through Unary /Binary Operations", IEEE trans. of Infor­

mation Processing Society of Japan, Vol. 31, No. 6, June 1990. 

[37] Karen A. Lemone, Design of Compilers: techniques of programming language 

translation, CRC Press, Inc., 1992. 

[38] F. Baader and P. Hanschke. "A Scheme for Integrating Concrete Domains into 

Concept Languages", in Proceedings of the 12th International Joint Conference 

on Artificial Intelligence, IJCAI-91 , pp. 452-457, Sydney (Australia), 1991. 

[39] R. J . Brachman and J . G. Schmolze. An overview of the KL-ONE knowledge 

representation system. , Cognitive Science, 9(2): 171:216, 1985. 

256 



[40] Carlo Meghini, Fabrizio Sebastiani, Umberto Straccia, "The Terminological Im­

age Retrieval Model", ICIAP (2), pp. 156-163, 1997. 

[41] Masakazu Ejiri, et al., "Automatic Recognition of Design Drawings and Maps", 

Seventh International Conference on Pattern Recognition, pp. 1296-1305, Mon­

treal, Canada, 1984. 

[42] Rangachar Kasturi , "Image-Analysis Techniques for Information Systems", Im­

age Analysis Applications, pp. 127-163, Kasturi R. and M. Trivedi(editors) , 

Marcel Dekker, Vol. 24, 1990. 

[43] J. M.P. Quinn, et al., "Knowledge-based Systems for Geographical Information 

Systems", The Yearbook of the Association for Geographic Information, J. 

Cadoux-Hudson and D. I. Heyword(eds) , pp. 423-430, 1992. 

[44] Terry Caelli and David Reye, "On the Classification of Image Regions by Color, 

Texture and Shape", Pattern Recognition , Vol. 26, No. 4, pp. 461-470, 1993. 

[45] H. Yamada, et al., "Directional Mathematical Morphology and Reformalized 

Hough Transformation for the Analysis of Topographic Map", IEEE Trans on 

Pattern Analysis and Machine Intelligence, Vol. 15, No. 4, pp. 380-387, 1993. 

[46] S. Shimotsuji, et al., "A Robust Recognition System for a Drawing Superim­

posed on a Map", IEEE Computer, Vol. 25, No. 7, pp. 56-59, July 1992. 

257 



[47] Oivind Due Trier and Torfinn Taxt, "Data Capture from Maps Based on Gray 

Scale Topographic Analysis", Proc. of 3rd Int Conf. on Document Analysis and 

Recognition, Vol. 2, pp. 923-926, Montreal, Canada, 1995. 

[48] Desachy Jachy, "A Knowledge-based System for Satellite Image Interpretation", 

11Th International Conf. of Pattern Recognition, Vol. 1, pp. 198-201, 1992. 

[49] Yu Zhong, et al., "Locating Text in Complex Color Images", Proc. of 3rd Int 

Conf. on Document Analysis and Recognition, Vol. 2, pp. 146-149, Montreal, 

Canada, 1995. 

[50] Heutte L., et al., "Two Aspects of Automatic Map Treatment: Road and Texture 

Extraction", 11th Int. Conf. Of Pattern Recognition, Vol. 3, pp. 109-112, 1992. 

[51] Mohamed Kamel, et al., "Binary Character/Graphics Image Extraction: a New 

Technique and Six Evaluation Aspects", 11t h Int. Conf. Of Pattern Recognition, 

Vol. 3, pp. 113-116, 1992. 

[52] David S. Doermann, et al., "Logo Recognition Using Geometric Invariants" , 

IEEE International Conference on Document Analysis and Recognition, pp. 

894-901, Japan, Oct. 1993. 

[53] H. Yamada, et al. , "MAP: Multi-Angled Parallelism for Feature Extraction 

from Topographical Maps" , Pattern Recognition, Vol. 24, No. 6 , pp. 479-488, 

1991. 

258 



[54] M. T. Musavi, et al., "A Vision Based Method to Automatic Map Processing", 

Pattern Recognition , Vol. 21, No. 4, pp. 319-326, 1988. 

[55] R. Kasturi, et al., "A System for Interpretation of Line Drawings", IEEE Trans. 

on Pattern Analysis and Machine Intelligence, Vol. 12, No. 10, pp. 978-991, Oct. 

1990. 

[56] V. Nagasamy and N. A. Langrana, "Engineering Drawing Processing and Vec­

torization System", Computer Vision, Graphics and Image Processing, Vol. 49, 

pp. 379-397, 1990. 

[57] Huizhu Luo, et al., "Directional Mathematical Morphology Approach for Line 

Thinning and Extraction of Character Strings from Maps and Line Drawings", 

Proc. of 3rd Int Conf. on Document Analysis and Recognition, Vol. 2, pp. 257-

260, Montreal, Canada, 1995. 

[58] S. V. Ablameiko, "A System for Automatic Vectorization and Interpretation of 

Graphic Images" , Pattern Recognition and Image Analysis, Vol. 3, No. 1, pp. 

39-52, 1993. 

[59] P. Vaxiviere and K. Tombre, "Knowledge Organization and Interpretation Pro­

cess in Engineering Drawing Interpretation" , Document Analysis Systems, A. 

Lawrence and Andreas Dengel, Eds, pp. 307-317, World Scientific Publishings, 

1995. 

259 



[60] Boris Pasternak, "Processing Imprecise and Structural Distorted Line Drawings 

by an Adaptable Drawing Interpretation Kernel", Document Analysis Systems, 

A. Lawrence and Andreas Dengel, Eds, pp. 318-337, World Scientific Publish­

ings, 1995. 

[61] F. Meyer, "Color Image Segmentation", IEEE Int Conf. Image Processing and 

Its Applications, pp. 303-306, Veniee, the Netherlands, 1992. 

[62] P. Campadelli, "Color Image Segmentation Using Hopfield Networks", Image 

and Vision Computing, Vol. 15, pp. 161-166, 1997. 

[63] Jander Moreira, et al., "Neural-based Color Image Segmentation and Classi­

fication Using Self-Organization Maps" , Anais do IX SIBG RAPI, pp. 47-54, 

1996. 

[64] Din-Chang Tseng, et al., "Circular Histogram Thresholding for Color Image 

Segmentation, Proc. of 3rd Int Conf. on Document Analysis and Recognition, 

Vol. 2, pp. 673-684 , Montreal, Canada, 1995. 

[65] Rafael Santos, et al. , "Supervised Image Classification with Khoros and the 

Classify Toolbox- Tutorial Outline" , Faculty of Computer Science and Systems 

Engineering, Kyushu Institute of Technology-Iizuka, Fukuoka, Japan. 

[66] Kazuhiko Yamamoto, "Recognition of Elevation Symbols and Reconstruction 

of 3D Surface from Contours by Parallel Method", IEICE Trans. Information 

and Systems, Vol. E77-D, No. 7, pp. 749-753, July, 1994. 

260 



[67] Wei Lu, T. Okuhashi and M. Sakauchi, "A Proposal of Efficient Interactive 

Recognition System for Understanding of Map Drawings", Proc. of 3rd Int. 

Conf. on Document Analysis and Recognition, Vol. 2, pp. 520-523, Montreal, 

Canada, 1995. 

[68] T. Tjahjadi, et al. , "A Knowledge Based System for Image Understanding", 

Int . Conf. on Image Processing & Its Application, pp. 88-116, July, 1989. 

[69] C. Kim, et al. , "Understanding Three-View Drawings Based on Heuristics", 

11th Int. Conf. Pattern Recognition, Vol. 1 , pp. 514-663, The Hague, t he 

etherlands, 1992. 

[70] L. Lam, et al., "A Knowledge-based Boundary Convergence Algorithm for Line 

Detection" , Pattern Recognition Letters, Vol. 15, pp. 383-392, 1994. 

[71] Y. Zhu, " Iew Line-based Thinning Algorithm" , lEE Proceedings-Vision and 

Image Signal Process, Vol. 142, No. 6, pp. 351-358, Dec. 1995. 

[72] Palol Pulite, et al. , "Knowledge-Based Approach to Image Interpretation", Im­

age and Vision Computing, Vol. 11 , No. 3, pp. 122-128, Apr. 1993. 

[73] V. M. Kiyko, "Recognition of Objects in Images of Paper Based Line Drawings", 

Proc. of 3rd Int. Conf. on Document Analysis and Recognition, Vol. 2, pp. 970-

973, Montreal, Canada, 1995. 

261 



[74] G. Jiao, et al. , "On the Extraction of Various Regions in Vector Maps", IEICE 

Trans. Information and Systems Vol. E78-D, No. 12, pp. 1539-1545, Dec. 1995. 

[75] Spatial Data Transfer Standard(SDTS), Federal Information Processing Stan­

dards Publication 173, US Geological Survey(USGS) , 1998. 

[76] Line Eikvil, K Aas, Hans Koren, "Tools for Interactive Map Conversion and 

Vectorization", Proc. of 3rd Int Con£. on Document Analysis and Recognition, 

Vol. 2, pp. 927-930, Montreal, Canada, 1995. 

[77] B. Pasternak, "The Role of Taxonomy in Drawing Interpretation" , Proc. of 3rd 

Int Con£. on Document Analysis and Recognition, Vol. 2, pp. 799-802, Montreal, 

Canada, 1995. 

[78] Markus Roosli , et al., "A High Quality Vectorization Combining Local Quality 

Measures and Global Constraints", Proc. of 3rd Int Con£. on Document Analysis 

and Recognition, Vol. 2, pp. 243-248, Montreal, Canada, 1995. 

[79] Zbigniew M. Wojcik, "An Approach to the Recognition of Contours and Line­

Shaped Objects" , Computer Vision, Graphics, and Processing, Vol. 26, pp. 

184-204, 1984. 

[80] S. Ablameyko, et al., "Fast Raster-to-vector Conversion of Large-size 2-D Line­

drawings in a Restricted Computer Memory", IAPR Workshop on Machine 

Vision Applications, pp. 59-62, Tokyo, Dec. 1992. 

262 



[81] Rafael Santos, Takeshi Ohashi, Takaichi Yoshida, Toshiaki Ejima, TUtorial: 

Supervised Image Classification with Khoros and the Classify Toolbox Khoros 

Symposium '97 proceedings, pp.179-191, March 26, 1997. 

[82] Thien M. Ha, et al., "Design, Implementation, and Testing of Perturbation 

Method for Handwritten Numeral Recognition", IEEE Transactions on Pattern 

Analysis and Machine Intelligence, pp. 535-539, Vol. 19, No. 5, May 1997. 

[83] S. Liang, et al., "Segmentation oflnterference Marks Using Morphological Ap­

proach", Proc. of 3rd Int Conf. on Document Analysis and Recognition, Vol. 2, 

pp. 1042-1046, Montreal, Canada, 1995. 

[84] Hong Yan, "Color Map Image Segmentation Using Optimized Nearest Neighbor 

Classifiers", Proceedings of the Second International Conference on Document 

Analysis and Recognition, pp. 111-118, Tsukuba Science City, Japan, Oct. 1993. 

[85] Feng Yucai, et al., "An Algorithm for Layering Map Image By Colour", Journal 

of Software, Vol. 6, No. 7, pp. 435-439, 1995. 

[86] S. Ablameyko, "Line-drawing Description: From Skeleton to Hierarchical Vector 

Representation", Pro c. of IEICE Workshop on Pattern Rec. and Understanding, 

Japan, Oct. 1991. 

[87] S. Ablameyko, et al., "Knowledge Based Technique for Map-drawing Interpre­

tation", Proceedings of the International Conference on Image Processing and 

Its Application, pp. 550-554, Maastricht, the Netherlands, 1992. 

263 



[88] S. Ablameyko, et al., "A System for Automatic Vectorization and Interpretation 

of Graphic Images" , Pattern Recognition and Image Analysis Systems, Vol. 3, 

No. 1, pp. 39-52, 1993. 

[89] Gudrun J. Klinker, "A Physical Approach to Color Image Understanding", A 

K Peters, Ltd. Wellesley, Massachusetts, 1993. 

[90] Valavanis KP, "A Total Color-Difference Masure For Segmentation In Color 

Images" , Journal Of Intelligent & Robotic Systems, Vol. 16, No. 3, pp. 269-313, 

July 1996. 

[91] Yan H, Wu J, "Character And Line Extraction From Color Map Images Using 

A Multilayer Neural-Network", Pattern Recognition Letters, Vol. 15, No. 1, pp. 

97-103, Jan. 1994. 

[92] A. Okamoto, "Integration of Color and Range Data for Three-Dimensional 

Scene Description", IEICE Trans. Information and Systems, Vol. E76-D, No.4, 

Apr. 1993. 

[93] Dori D., "Orthogonal ZIGZAG -- An Algorithm for Vectorizing Engineering 

Drawings Compared with Hough Transform" , Advances in Engineering Soft­

ware, Vol. 28, No. 1, pp. 11-24, Jan. 1997. 

[94] T . Pavidis, "A Vectorizer and Feature Extractor for Document Recognition", 

Computer Vision, Graphics and Image Processing, Vol. 35, pp. 111-127, 1986. 

264 



[95] Limin Fu, "Neural Networks in Computer Intelligence", McGraw-Hill, Inc. 1994. 

265 






