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Abstract 

Two competing analytical approaches, namely, the generalized method of moments 

(GMM) and quasi-maximum likelihood (QML) are widely used in statistics and econo

metrics literature for inferences in stochastic volatility models (SVMs). Alternative 

numerical approaches such as Markov chain Monte Carlo (MCMC) , simulated max

imum likelihood (S fL) and Bayesian approaches are also available. All these later 

approaches are, however, based on simulations. Tagore (2010) revisited the analytical 

estimation approaches and proposed simpler and more efficient method of moments 

(MM) and approximate GQL (AGQL) inferences for the estimat ion of the volatility 

parameters. However , Tagore (2010) did not consider the estimation of the intercept 

parameter ( l'o) in the SV model, and also the model was confined to the normal based 

errors only. 

In this thesis, we first extend Tagore's MM and AGQL approaches (Tagore 2010) 

to the est imation of all parameters of the SV model including the so-called intercept 



iii 

parameter /'O· Second , we modify the existing QML approach and unlike Tagore 

(2010) include this approach in the simulation study. Furthermore, all three ap

proaches are applied to analyze a real life dataset. 

Next , we consider at-distribution based SV model, and apply the aforementioned 

estimation approaches for all parameters including a new degrees of freedom param

eter of the t-distribution. Simulation studies are conducted to examine the relative 

performances of the estimation approaches. We also compute the kurtosis of the t

distribution based SV models and make an exact comparison with those of normal 

distribution based SV models. The estimation effect of parameters on the kurtosis is 

given for a special case. 
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Chapter 1 

Introduction 

1.1 Background of the Problem 

For many financial time series data., it is more important to study the variation in 

responses over t ime as opposed to studying the changes in the mean. For example, in 

financial problems dealing with exchange rates and stock returns, data. may exhibit 

high variation in one time range, but low variation in another time range, and so 

on. This makes the variance of t he responses non-stationary over t ime. To make 

prediction of the responses a.t a. given time or future time, it is, therefore, important 

to understand the t ime series dynamics in variances. This non-stationary variation 

problem is referred to a.s the volatility problem. For the purpose, the variance of a. 
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response y1 at a desired time t conditional on its history of data is referred to as a 

volatility parameter. We will denote this conditional variance as (J'z. The modeling 

of the relationship between (JZ and the variances from the past such as (Jf_e, £ being a 

suitable lag, is however not so easy. Many authors, such as Taylor (1986), Melino and 

Turnbull (1990), Taylor (1994), Harvey, Ruiz and Shephard (1994), Jacquier, Polson 

and Rossi (1994), Ruiz (1994), Harvey et.al (1994), Anderson and Sorensen (1996), 

and Mills (1999, p.127-128) have used a simple Gaussian type AR(1) relationship to 

model such non-stationary variation. To be specific, this simple model can be written 

as 

Yt 

log( (J'z) = ht 

t = 1, . . . , T , 

t = 2, . . . , T, 

(1.1 ) 

(1.2) 

vvhere in (1.1 ), E1's are independently and identically (iid) distributed with mean 

zero and variance one, i.e., Et i)::! (0, 1). This non-stationary variance model (1.1 ) -

(1.2) is referred to as the stochastic volatility (SV) model, where 'Yo is t he intercep t 

parameter , 'Yl is the volatility persistent parameter , and '17t i)::! N(O, (}'~) with (}'~ being 

the measure of uncertainty about future volatility. Furthermore, E1 's in (1.1) and 17t's 

in (1.2) are assumed to be independent. As a result, Et and (J't are independent , and 

Yt should have zero mean (or shifted to zero) . The initial variance (}'? at time t = 1 
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can be reasonably modeled as 

( 
2 ) 2 iid /O CJ '7 

log(cr1 ) = h 1 '""N --, 2 . 
1- / 1 1- l l 

(1.3) 

[Lee and Koopman (2004, eqn(1.1c))]. Note that this simple volatility model (1.1) -

(1.2) ensures that the kurtosis of the responses defined by 

(1.4) 

would be larger than Gaussian assumpt ion based kurtosis. Further note that a larger 

kurtosis in practice helps to understand that there can be some larger or outlying 

responses present in the data which in turn helps to understand the variation in 

variances. This raises issues to know the kurtosis which requires the efficient and 

consistent estimates for the parameters /o, 11 and cr~ under the model (1.2). 

Note that the original work of Taylor (1986) was confined to the univariate case, 

and it was extended by Harvey et al. (1994) [see also Harvey (2013, P. 8)] as well 

as Jacquier et al. (1995) and Shephard (1996) to a mult ivariate SV setup. To be 

specific, Harvey et al. (1994) proposed a multivariate SV models where Et and "7t 

all become multivariate normal random vectors wi th constant covariance matrices. 

Jacquier et al. (1995) and Shephard (1996) have considered multivariate factor SV 

models, where an emphasis is given to construct a small number of factors when the 

multivariate observation at a given time has large dimension. 
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Traditionally for the model (1. 1) - (1.2), it is assumed that Et 'S follow N (O , 1) 

[Ruiz (1994), Harvey et .al (1994) , Anderson and Sorensen (1996) , and Mills (1999, 

p.127-128)]. Some authors such as Nelson (1988), Harvey et al. (1994) , Barndorff

Nielsen (1997), Gallant et al. (1997), Mahieu and Schotman (1998) , Sandmann and 

Koopman (1998), Steel (1998), Liesenfeld and Jung (2000) , Anderson (2001) and 

Watanabe and Asai (2001) have extended the normality assumpt ion for Et to the 

heavy tailed distributions. More specifically, these authors have used Et ~ tv(O, 1), 

tv (0, 1) being at-distribution with v degrees of freedom. Note that this t-distribution 

assumption for Et makes the fl: tO in (1.4) much larger than normality based kurtosis. 

In turn, this will accommodate much more volatility in the data. 

In model (1. 1) - (1.2), a-1• responds to negative and posit ive returns (Yt) symmet

rically. But in some practical situations, O"t can respond to negative and positive 

returns asymmetrically, which is referred to as t he leverage effect [Black (1986)]. In 

order to incorporate the leverage effect , Harvey and Shephard (1996) proposed an ex

tension to the basic SV models where Et and 'r/t.+ l are negatively correlated , and So et 

al. (2002) developed a threshold SV model where two sets of model parameter values 

are considered and the model can be switched between them based on the reactions 

of the individuals according to the rising and falling of t he response Yt · To further 

allow for long memory persistence in condi tional variance, Breidt et al. (1998) and 
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Harvey (1998) proposed independently the long-memory SV (LMSV) model. 

Note that as opposed to the SV model (1.1) - (1.2) where variances were mod-

eled, there exist another modeling approach where CJZ is considered to be related to 

both CJ_;'s and Ys 's with s < t . For example, Bollerslev (1986) proposed the gener-

alized autoregressive conditional heteroscedastic (GARCH) model of order m and v 

(GARCH(m, v)) given by 

Yt (1.5) 

m v 

ao + L aiYZ- i + L (JjCJz_j, (1.6) 
i= l j = l 

h . iid (0 1) 0 > 0 {3 > 0 l '1\'max(m,v) ( . + {3·) 1 . h W ere agam Et rv , , eta > , cti _ , j _ , anc u i= l ct2 2 < Wit 

ai = 0 for i > m and (Jj = 0 for j > v. The difference among various volatility 

models relies on how CJZ is related to CJ; 's and Ys 's with s < t . Further note that when 

ai = 0 for ·i = 1, · · · , m, t he model (1.5) - (1.6) becomes ARCH model which was 

introduced by Engle (1982) . Due to the success of GARCH model and for alleviating 

its weakness, there appeared its revised versions such as the exponent ial GARCH 

(EGARCH) model of Nelson (1991), and the threshold GARCH (TGARCH) model 

of Glosten, Jagannathan and Runkle (1993) and Zakoian (1994). Even though the 

GARCH type models are popular in econometrics, there are still some weakness 

and disadvantages limiting their application in financial time series. For example, 
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GARCH models require the volatility to be observable, but frequently in financial 

time series the vola tility is not directly observable; moreover , when generalizing t he 

univariate GARCH models to the multivariate cases, a proliferation of parameters can 

happen without a systematic and convincing approach to handle. For these reasons, 

even though some authors such as Harvey (2013 , Chapter 4) considered t-error based 

GARCH model, we do not include this problem in the thesis. 

Note that when GARCH models are compared to the SV models, the SV models 

assume from the beginning that volatility is unobservable, in agreement with the basic 

properties of many financial t ime series, and can be naturally generalized to multi

variate cases. The SV models also capture the main empirical propert ies of many 

financial time series such as uncorrelated but dependent responses, more extreme 

values than normal case indicating higher kurtosis, and non-stationary variation over 

time. Furthermore, the SV models agree with and are the natural discretization of 

the modern continuous-t ime financial theory including the Black-Scholes theory and 

continuous-time Orstein-Uhlenbeck process, thus concept ually promising as a tool for 

applying modern financial theory to real data analysis . Therefore the SV models got 

popular soon in the area of financial time series, and also have many applications in 

econometrics. 

In comparison with the GARCH model, the SV models involve an extra random 
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variable 7]1. as shown in (1.2) , increasing greatly the flexibility of the model in describ

ing the evolution of (Jz, but also making the parameter estimation more difficult . For 

example, the responses {yt} are not conditionally Gaussian now, thus difficult to ap

ply the maximum likelihood approach for parameter estimation. Nevertheless, there 

exist some widely used analytical estimation approaches, namely, the quasi-maximum 

likelihood (QML) of Nelson (1988) and Harvey et al. (1992), and the so-called gener

alized method of moments (GMM) of Anderson and Sorensen (1996). In QML, (1.1) 

is first writ ten a.s 

(1 . 7) 

where 1Lt = logEz + 1.27 follows a log(x i) distribution with E(ut) = 0 and Var (ut) = 

n2 / 2. By treating {ut} as though it were NID (O,n2 / 2), (1.7) and (1.2) form a linear 

state space model, with (1.7) being the measurement equation and (1.2) t he transi

tion equat ion. The Kalman filt er can then be applied to obtain the prediction errors 

and their variances, which are used to construct the exact likelihood for conditionally 

Gaussian case, but only quasi-likelihood in this case where {log(yl) } are not condi

tionally Gaussian. Then the parameters are estimated by numerically maximizing 

the resulting quasi-likelihood function. The approximations int rinsic to the QML 

estimators can make them biased and inefficient. As an illustration, Figure 1.1 gives 

a comparison between normal and log(xi) densities, indicating that to approximate 
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Figure 1.1: Comparison of the log(x i) density (thin solid line) with the N (O, 1r2 / 2) 
density (thick solid line). 
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log(xT) density with a normal density is rather inappropriate. In the GMM approach 

of Anderson and Sorensen (1996), with some arbitrariness, the authors first chose 

24 unbiased moment functions to construct an 24 x 1 vector, then with some ap

proximation and still some arbitrariness, the estimator of the covariance matrix of 

the vector was selected . The GMM estimating equation could then be writ ten out 

and solved iteratively. This approach is too complicated and algebraically painstaking 

without showing any substantial efficiency gain in estimation [Anderson and Sorensen 

(1997) , Ruiz (1997)] over other competing approaches such as the QNIL estimation 

approach, and the lack of guidelines for selecting the moment functions further makes 

this approach unconvincing and less favorable. 

Note that to obtain consistent estimates in a finite sample set up (i.e, for a time 

series with moderate length) , as opposed to the GMM and QML approaches, there 

exist several numerical approaches such as Bayesian approach by Jacquier et.al (1994) 

and t he simulated ML (SML) approach which is considered to be an improvement over 

the so-called Markov chain Monte Carlo (MCMC) approach. For SML approach, we 

refer to Danielsson (1994) , Shephard and Pitt (1997) , Durbin and Koopman (1997), 

Liesenfel and Richard (2003) and Lee and Koopman (2004). It is, however , recog

nized that these numerical techniques are computationally intensive. For this reason, 

and also because in practice such as in financial or environmental analysis one may 
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encounter a large t ime series, similar to Anderson and Sorensen (1996, 1997), Tagore 

(2010) revisited the basic SV model (1.1) - (1.2) and proposed simpler alternative 

inferences for the volatility parameters, as compared to the existing GMM [Anderson 

and Sorensen (1996)] and QML [Nelson (1988) and Harvey et al. (1992)] approaches. 

However, the author did not consider the estimation of the intercept parameter ('"y0 ) 

in the SV model, and also the model was confined to the normal based errors. In the 

thesis, we further pursue this inference problem to accommodate these issues. 

1.2 Objective of the thesis 

Because the intercept parameter /o in the SV model (1.2) is important to understand 

the magnitude of t ime dependent variances, in this t hesis, we further revisit t he 

normality based SV model and inference procedures studied by Tagore (2010), and 

extend the estimation to include the intercept parameter l o· T his inference for full 

family of parameters is t hen generalized to achieve our main goal where we will deal 

with t-distribution based SV model in order to accommodate much larger kurtosis. 

To be precise and clear , the specific objectives of the thesis are as follows . 

In Chapter 2, we first modify the normality based MM inferences due to Tagore 

(2010) to accommodate the estimation of t he additional parameter / o (intercept). 
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The GQL approach considered by Tagore (2010) is also modified to include the es-

timation of /'O · Note that even though QML approach was included in discussion, 

Tagore (2010) however did not study its relative finite sample performance with MM 

and GQL approaches. In this chapter, we propose a simplification to the existing 

QML estimating equations by approximating the associated covariance matrix with 

a simpler tri-diagonal matrix. All three approaches, i.e., MM, GQL and modified 

QML are compared through a simulation study for the estimation of all parameters 

including the intercept parameter l'o· The applications of these three methods are 

also illustrated by analyzing a real life data set on exchange rates of some popular 

currencies. 

In Chapter 3, we generalize the above normality based estimation approaches to 

the inferences for the t-distribution based SV model parameters. This generaliza-

tion helps to make inferences for more volatile data as compared to normality based 

volatile data. Therefore, to understand the reflection of larger volatility, we study the 

kurtosis, and estimate them, using a t-distribution based SV model. Note however 

that this generalization is challenging ;Jecause of the need of estimation of a further 

degrees of freedom parameter which reflects the heavy t ails of the data as compared 

i 
to standard normality based volatile data. The relative performances of the MM, 

GQL and modified QML approaches are compared through a new simulation study. 
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The thesis concludes in Chapter 4. 



Chapter 2 

Parameter Estimation for Gaussian 

Volatility Models 

Under the assumption that Et (t = 1, · · · , T ) in (1.1) follow the standard normal 

distribution, many authors have studied the inference for the parameters involved in 

the model ( 1.1) - ( 1.2) . Recently, Tagore (2010) has dealt with the same model but 

proposed a simpler method of moments (MM) for the est imation of I I and <J~, as 

compared to the existing GMM and QML approaches. However, the author did not 

address the estimation of the intercept parameter / o in (1.2). Thus, t he inference 

remains incomplete. As pointed out in Chapter 1, in this chapter we revisit the same 

SV model and following Tagore (2010) we carry out the same simple MM estimation 
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and discuss the estimation of all three parameters, namely ')'o, /'I and O"~. For this 

purpose, we first briefly describe t he estimation proposed by Tagore (2010) which we 

refer to as partial inference for SV model. 

2.1 Partial Inference for SV Models 

Unlike using 24 or 34 moments by GMM technique (Anderson and Sorensen (1996)) , 

Tagore (2010) has used only two unbiased estimating equations for the estimation of 

two parameters ')'1 and O"~ . 

2.1.1 Unbiased Moment Estimating Equation for O"~ 

Tagore (2010) considers an intercept free volatility model, that is, chooses /'o = 0 in 

the volatility model (1.2). Furthermore, even though logO"? is supposed to be random 

following N (o, O"~ 2 ) as shown in (1.3), for convenience, one may choose a small 
1 - /'] 

value close to mean zero for this initial variance. In order to develop an estimating 

equation for O".~ , it is clear from (1.2) that O"f's maintain a non-stationary dynamic 

relationship, stationarity being a special case. Now if O"z's were stationary, that is, 

E[O"Zj = h* (O"~ ) , a suitable constant funct ion of O".~, then one would have estimated 
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h*(cr~) consistently by using t he raw second order moment 

(2. 1) 

E[Yt lcrlJ being zero . However , in t he present case, crz's are unobservable and their log 

values satisfy a non stationary Gaussian AR(1) type relationship given by (1.2), with 

errors Tit~ N(O, cr~ ) . This leads to the expected value of S 1 as 

T 

. EalE[~ L Yl I crlJ 
t = l 

1 [ T ( 2 t - 2 ) ] 
T cr~ + {; exp rf-1 

log cr~ + ~~ ~ 1~7• 

91(/J , cr~, ern , say. (2.2) 

Thus, for given 1 1 and cr? , Tagore solved the unbiased estimating equation 

(2 .3) 

to obtain a consistent estimate for cr~ . 

Note t hat t he solution of (2.3) requires a good initial value for cr~, which Tagore 

suggests to obtain by solving an asymptotic unbiased estimating equation. It is clear 

that for a suitable large T0 , for any t > T0 , ri- 1 
----> 0 for lr11 < 1. Further, the 

expectation of yz for t > T0 becomes stationary, producing 

l2.~ E[Y?J = exp [ ~~ (1 ~If ) ] (2.4) 

9w b l , cr~) , say . 
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T hus, if the series under consideration is large, i.e, T-> oo, replacing the exact E [Y?J 

for t > T0 by lim E[Y/] = 910 (1'1 , (}~), one can consistently estimate t he stationary 
t--+oo 

1 T 
mean function, namely 910 (.) by using S10 = """' YZ. Consequently, for 

T-To ~ 
t=To+l 

known It = r1 (0), we may obtain a very reasonable initial value for (}~ by solving 

0 . (2.5) 

We denote this initial value of (}~ by (J~(O ) . 

2.1.2 Unbiased Moment Estimating Equation for /'I 

Next, to construct an unbiased estimating equation for 11 , one not ices that 11 is t he 

lag 1 dependence parameter in the Gaussian AR(1) model (1.2). Tagore, therefore, 

chooses a lag 1 based function given by 

T 

1 """' 2 2 T _ 1 ~ Yt- lYt 
t= 2 

(2.6) 
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to construct the moment equation for 'Yl· For this purpose, the expected value of S2 

is computed as 

and the unbiased estimating equation 

0 (2.8) 

is solved iteratively for ')'1 . 

Remark on Large Sample Estimation 

When t ime series is quite long such as T = 5000 or more, one may obtain much 

sirnpler estimating equat ions than used in Sections 2.1.1 and 2.1.2. 

Note that an initial value of O"~ was obtained by (2.5) based on large sample. 

In fact , for large sample cases, one can always use this estimate. Thus, when large 

sample based estimate for ')'1 is available, we estimate O"~ by using 

a~ = 2(1- i~) log(S10), (2.9) 

where i r is the large sample based e~:timate for ')'1 to be obtained as follows. 
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To construct an asymptotic moment function based estimating equation for 11, 

1 T . 
we use 520 = ""' yz_ 1yz, and similar to (2.4) , compute the asymptotic 

T-T0 -1 ~ 
t=To+1 

expectation of 520 by using 

exp [__5_] 
1 - /1 

(2.10) 

where the formula for g2 (r1 , (}~,(}f) is given in (2.7). 

Hence the asymptotic moment based unbiased estimating equation for 1 1 is written 

as 

(2.11) 

which has a closed-form solution 

/ 1 

2 

1 - -----,(}--,'7'----:-

ln(S2o)' 
(2.12) 

The improved value of 11 from (2.12) is then used in (2.9) for obtaining improved 

estimate for (};. This cycle of iterations cont inues until convergence. 

2.2 Infe rences for Complet e SV models 

Unlike in Section 2.1 , we now include / o in our estimation . T hus, we develop three 

estimating equations for three parameters, namely, / o, (}; and 1 1 , as follows. 
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2.2 .1 MM for All Parameters 

In the presence of [o, we first generalize the MM estimating equations for 1 1 (2.7) 

and O"; (2 .2) , which now contain /o as well , as given by 

T 

E[S2] Ea;E[T ~ 1 L YZ-JYZ] 
t=2 

Te= 1 [O"i exp ( 11logO"i + ~; ) 
T ( t - 3 

+ L exp lo (1 + rd L 1i + 1i-1 log O"i + ri- 2log O"i 
t=3 l=O 

+ ~; { ( 1+ 1'1 )2 ~ 'Yi' + 1}) l 
92(ro,/J,O"; , O"i) , say, (2.13) 

and 

~ [ai + t, exp ( 1'1- ' IoguJ + 'Yo~ 1'; + ~ ~ 'Yi") ] 

gl(ro, [ J, O";,O"i), say . (2.14) 

Because /o is unknown, it is important to est imate this parameter consistent ly. For 

this purpose, define 

1 T 
T Llog (y;), 

l = l 

(2.15) 
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and notice that 

( 
'Yo ) ( 1 1 - "Yf ) 1 h ( 1 - "Yf ) - - 1 - - + - 1 + 1'\;1 

1 - 1'1 T 1 - 1'1 T 1 - 1'1 ' 

where n; 1 = E (log ci} = - 1.270363. By equating E(S3 ) to S3 and solving for /'o, we 

obtain the MM estimating equation for 'Yo as 

(2.16) 

For convenience of computation, we provide an est imation algorithm as follows. 

Step 1. For a small initial value /'J = ')'1(0), we calculate "Yo(O) by (2.16) and then 

choose the ini t ial value of 0'.~ = 0'~(0) by solving the asymptotic unbiased estimating 

equation (2.5) . To be specific, 

0'~ (0) = 2 (ln (Sw) - "Yo (O ~ ) ) (1- 1'~(0) ) . 
1 - /'I 0 

(2.17) 

St ep 2. Once the initial values are chosen/computed as in Step 1, we solve S2 -

92(/'o, 1'1, 0'~, O'f) = 0 iteratively to obtain an improved value for /'J· Note that in large 

sample case, one may ignore O'i or put a small value. T he iterative equation has t he 

form 

(2.18) 

where i 1(r) is the value of ')'1 at t he rth iteration , and [.][r] denotes t hat the value of 

the expression in the square bracket is evaluated at ')'1 = i 1(r). 
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Step 3. In this step , we est imate '"Yo· For this, we use the estimate of ')'1 obtained 

from Step 2 in MM equation (2.16) for '"Yo· 

Step 4. The estimates of '"Yo and '/'I obtained from Steps 2 and 3 are then used to solve 

51 - g1 (1'0 , ')'1 , a~ , aD = 0 iteratively to obtain an improvement over a~(O), computed 

in Step 1. The iterative equation has the form 

(2.19) 

where O"~('r) is the value of a~ at the rth iteration, and [.][1'] denotes t hat the value of 

the expression in the square bracket is evaluated at a~ = O"~ (r). 

This 4 steps cycle of iterations continues until convergence. Let the final est imates 

for ')'o, 1'1 and a~ be denoted by io,MM, i 1,MM and o-;,,MM> respectively. 

2.2.2 An Approximate GQL (AGQL) Approach for the Es-

timation of Parameters 

Tagore has also used an approximation to construct a GQL approach following Su-

tradhar [Sutradhar (2003, Section 3.1)] for t he estimation of two parameters '/'I and 

a;, . To save space we do not reproduce these equations. Rather, we now modify these 

equations by accommodating '"Yo· Note that '"Yo will be estimated as before following 

the moment equation (2 .16) . For the purpose of approximation, we first write the 
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GQL estimating equations for ')'1 and a-~ as functions of ')'o as follows. 

Consider two basic vectors of statistics as 

2 2 2 I d [ 2 2 2 2 2 2] ' 
u = [yl , · · ·, Yt , · · ·, Yrl , an v = Y1Y2 , · · · , Yt- lYt , · · ·, Yr-IYT ' (2.20) 

respectively. Let 

E[U] = [>.1, .. . , At, .. . , >-r]' 

E[V] = [Vh2 , .. . , '1/Jt- l ,t, . . . , 1/Jr- I,rJ', (2.21) 

and 

(2.22) 

One may then write the GQL estimating equations [Sutraclhar (2004)] for a-~ and ')'1 

as 

0, (2.23) 

0 (2.24) 

respectively. 
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In (2.21) , 

[see also (2.2)], and 

'1/Jt- l ,L ('Yo, ')'J , CT~) = E[~:_~~2 l = e(7;_ ['(7lE[~:_~~2 ICTz_ l ,CTZJ 

CTi exp [ 11 log CTi + ~; ] for t=2 

exp [ 2")'o + "'L-2 ( log C/2 _ __1Q_ ) + "'L-1 ( log C/2 _ __]Q_) 
1 - ")' J 11 1 1-")'1 11 1 1 -")' J 

+ ~; ( (! + 7I)
2 ~ 7i' +I)] fort~ 3, ... , T. 

(2.26) 
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Note that t he diagonal elements of I; ( ')'o, 'Yl , <7~) matrix may be computed by using 

D"tt ( f'o, /'1, <7.~ ) = Var["Y?J 

for t = 1 

3 exp [ 2/'o + 2'"'~t- 1 (log <72 _ .....1!L) + 2 <72['"t -=_2 '"'~2'" ]] 1-')' I I ] 1 ] -')'] 'T} U T-0 11 

for t = 2, . . . , T , 

(2.27) 

and for lag k = 0, , . . . , T - 1, the off-diagonal elements of the I; matrix may be 

computed by using 

for t = 1, 

exp [ 2/'o + '"'~t- 1 (log <72 _ .....1!L. ) + '"'~t- k- 1 ( log <72 _ .....1lL) 
1- ')'I I] I 1- ')' I 11 I 1- ')'I 

+ 0"2~ ((1 + '"Vlk )2 t~l=k-0 2 '"Vl2l + ~,.·=-01 '"'112'") ] A ( 2) A ( 2) 1 L......t 1 L......t 1 - t - k f'o, /'1, <7r1 t f'o, /'1 , O"'T/ 

for t = 2, . .. , T. 

(2 .28) 

However, unlike the elements of I; (/'0 , ')'1 , <7.~ ) , the computation of the elements of 

n ('Yo, /'1, <7~ ) is very complicated, result ing in further difficulties for n - l ('Yo , /'1, 0".~ ) . 
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As a remedy to t he numerical difficulty, similar to Tagore (2010), we now provide an 

approximation to t he GQL estimat ing equation (2.23) and (2.24), where we ignore 

the off-diagonal elements of both 2: ( f'o, ')'1 , O"~) and 0 ( f'o, ')'1 , O"~) matrices. 

Note that (2.25) and (2.27) give the kurtosis K;t(/'1 , O"~) as 

E (Y:4) [ ( 1 _ 2(t-1))] - 2 - t - 2 1'1 K;t b1 , O".TJ) - 2 - 3 exp O" "TJ 2 [E (Y?)] 1 - 1'1 

(2.29) 

A pproximat e GQL Equations: 

When off-diagonal elements are ignored , we replace 2: ( /'o, ')'1 , O"~) by I:d ( /'o, ')'1 , O"~ ) , 

say, where 

(2.30) 

with Var(Y?) = O"tt (/'o , 1'1, O"~) as in (2.27) . Similarly, 0 (1'0 , /' I , O"~) will be replaced 

by od ( /'o, 1'1, ()~ ) ' where 

(2.31) 
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In (2.31), 

V ar [~:_ 1 ~2 ] = 

9aiexp [ 1~'Y~1 +2r 1 (logai- 12~1 ) +2a~] - 'l/Ji2 (/o,/1,a~) fort=2 

9 exp [_i]Q__ + 2 ( ""t- 2 (log a 2 
- __JQ_) + ""t- l (log a 2 

- __JQ_) ) 1-'Yl 11 1 1- 'Yl 11 1 1- 'Yl 

+2a~((l+r1)2 I:f;:g ,r1 +1) ] - 'l/JL 1 , t (lo ,/1 , a~) fort=3, ... ,T , 

(2.32) 

where 'l/Jt - l ,t ( / o, /1 , a~) is given in (2.26). 

The approximation based GQL (AGQL) estimating equations have the forms: 

0, (2.33) 

and 

0, (2.34) 

for a~ and / J, respectively. 

Note tha t / o is estimated by MM as in (2.16). Thus, after each estimation of 11 

by (2.34), i'o has to be updated by (2.16). 

Let the final estimates obtained from (2.16), (2.34) and (2 .33) be denoted by 

i'o,AGQL, i'1,AGQL and a~ ,AGQL respectively. 
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The formulas for the first derivatives in (2.34) and (2.33) are given as follows: 

The first derivatives of 'l/Jt-l ,t (/'0 , 11 , 0'~) w.r.t r l fort= 2 is given by 

o'l/J1,2 (/o,/t, O'~) 
o11 

and for a general t = 3, .. . , T, t he derivative has the expression as 

o'l/Jt-t ,t (ro,/J,O'~ ) 
o11 

'1/Jt- t ,t (/o,/t,O'~ ) [(1 _?~1 )2 [2 - (1 + 11hf- 2
] 

-~ [(t - 2) (1 + rdri-3 + ri-2
] 

1 - 11 

( t - 2)rf-3 log O'i + ( t - 1 hf-2 log O'i 

+ ~; ( 2 (J+ 7I) ~ 7i1 + (J+ 7tl' ~(2lhl2l-l)) l 
The derivative of At w.r.t 0'~ is 

OAt ( / o, 1'1, 0'~ ) 
00'~ 

fort= 1 

{ 

0 

t \ '\'t-2 21' f t 2 T 2"'t L.n·=or1 or = , ... , . 

27 

We remark that the AGQL estimating equations for I I (2.34) and 0'~ (2.33) are 

similar to the well known weighted least square (WLS) equations for t he corresponding 

parameters. 
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2.2.3 A Modified QML (MQM L) Approach for All P arame-

ters 

Note that so far we have made improvements over the MM and AGQL estimation 

done by Tagore (2010) by accommodating /'o parameter. We have also estimated 

this /'o parameter by the method of moment. As mentioned earlier, there also ex

ists another widely used so-called QML (quasi Maximum likelihood) approach which 

estimates the three parameters, ')'o, l'l and O"~, through a Kalman filtering approach, 

where predicated errors are used to form a conditional likelihood to obtain the like

lihood equations. The existing QML approach is numerically not so cumbersome 

as compared to the GMM approach. However , because of normal approximation to 

the log chi-square distribution, it may not produce efficient estimation in all possible 

situations. 

Further note that for an asymptotic comparison with t he proposed simpler MM 

approach, Tagore (2010) has simplified QML equations for the estimation of /'l and O"~. 

We however find that these estimating equations in Tagore (2010) can be improved 

for numerical approximation by modifying the so-called covariance matrix «<> to be 

discussed below. This modification mainly aims to use a band form for this«<> matrix. 

Furthermore, unlike Tagore (2010), we include /'o parameter in the proposed modified 
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QML approach. For the purpose, we first describe the existing QML approach as 

follows. 

Existing QML Approach Including /o 

We first rewrite (1. 1) as 

t = 1, · · · ,T , (2.35) 

where ht = log a}, compute E(z1) = m1 and Cov(zu, z1) = q,1, 1, and form 

z (z1, ·· · ,z1, · · · ,zr)', 

m (m 1 • • • rnt · · · mr)' 
I ) ' ) ' - ) 

and 

It then follows that the quasi-maximum likelihood (QML) approach solves a normality 

based pseudo likelihood equation, where the log pseudo likelihood function has the 

form 

* ( 2) 1 I I 1 [ I - 1 l log LQ / o, 1 1, CJ'1 = c0 - 21og <I> - 2 (z- m) <I> (z - m) , (2.36) 

[Shephard, 1996 eq: 1.17]. In (2.36), c0 is a normalization constant. The functions m1 

and q,u, may be computed as in Tagore (2010) except that now m 1 will involve /o· 
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The new formula for mt and <Put are as follows: 

and for t 2:: 2 

E( ) 
l o (1- 1 f-

1
) t - 1

1
_ 

'm t = Z t = + l 1 ~I + K:1 , 
1- I t 

where K:1 = E [log(E?)] = -1.2703630 

where K:2 = var(log( Ei)) = 1r2 / 2, a nd for t 2:: 2 

0 , 

<Pu var (zt) = E [( zt- E(zt))2
] = E [ (ht - E (zt) + log(Ez))

2
] 

E [ { 'r/t + 'r/t- 111 + 0 0 0 + 'r/zl f-
2 + (log (EZ) - K:1) } 

2
] 

2 [ 2 2(t- 2)] 
CJ,) 1 + 1 1 + 0 0 0 + 1 1 + 1);2 

2 - I J 
[

1 2(t- J) l 

CJry 1 -If + K:2 , 

30 
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and for 2 :S u < t 

It then follows from (2 .36) that the quasi maximum likelihood (QML) estimates for 

11 and CJ?, can be obtained by solving 

and 

Defining l = log L'Q (!0 , 11 , CJ?,), we have 

Because 

a log I<P I 
811 
f}(p - 1 

811 

8 log L'Q ( /o, 1'1, CJ?,) 
f) 2 = 0. 

(J1) 

(2.37) 
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and so on, we write 

8l 1 [ _18<I> ] 8m' _1 1 ( )' _1 8<I> _1( ) - =--trace <I> - + - <I> (z - m) + - z - m <I> - <I> z - m 
811 2 811 811 2 811 

(2.38) 

0l 1 [ -1 0<I>] 1( 1 -1 0<I> - 1 ( ) - =- -trace <I> - + - z - m) <I> - <I> z - m . 
OCY~ 2 OCY~ 2 OCY~ 

(2.39) 

vVe further define 

Q ( :; ) 

and need to compute 

(
81 ) ~ = 8·n 

OO'. 8l 

a a;, 
and 

()2l ("'' 8'1 ) ~ 8·naa;, 
8a8a' 8 2 1 CJ2 j 

0')'1 aa;, aa;, 2 

for the QML estimation of 'YI and CY~ . To be specific, to solve the likelihood equations, 

namely, 

~=0 
8a ' 

for a, we use the Taylor's expansion 
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leading to the Newton-Raphson iterative equation 

[( a2z )-l (az )] 
ar+l =a,.- 8a8a' 8a · 

[!·] 

(2.40) 

The formulas for 8
81 and 8

81
2 are given in (2.38) and (2.39) , respectively. The second 

/'1 0' ') 

order derivatives can be computed as follows. 

where we applied am' = 0 and 82
<I> = 0 

8a~ 8a~ 2 
· 
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We now provide the formulas for all the first and second order derivatives that we 

need for (2.40). 

Fort ~ 2 

Bmt 
8a2 

'7 

EJ2m1 

Of'f 

1- 1i-1 
- (t - 1)(1- 1'1hi-

2 
( )I· t-2 

'Yo ( )2 + t - 1 ~1 1'1 1- /'1 

'Yo 1'1 2 - , I'J + (t - 1)hnf- 2 [ 
1 - t- 1 (t- 1) t- 2] 

( 1 - /'l ) 1 - /'1 

0 

{ 
2(1-11)( 1 -,~-l )-(t-1)/f-

2
(1-')'1)

2 
- (t - 1) ['i-2+(t-2hf- 3 (1-')'l) ] } 

l'o (1_,1)4 (1- 11)2 

+(t - 1)(t- 2)h1f'i- 3
. 

For t = 1, · · · , T , 

Fort ~ 2 

1 2(t- l) 
- 1'1 
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For 2 ::; u < t 

2 [2[1 (ri-u- rf+tt-2) + (1- rn [(t- u)rf-1L-1- ('tt + t - 2)/~L+f.-3] l 
CJ,) (1 - ,f)2 

2 [2 (ri-u+l- rf+u-1) (t - u)ri-u-1 - (u + t- 2)/~'+t-3 ] 
CJ,) (1 - , ?)2 + (1 - , f) 

Fort 2: 2 

For 2 ::; u < t 

EP <Pu 
8r1 8CJ~ 

02 <'Pu 

(8CJ~)2 
0 

02 ¢ tLL _ 2[1 (ri-u- ri+u-2) + (1- rn [(t - u)ri-u-1- (u + t - 2)/l'+t-3] 
a,la(J~ - (1 - 1?)2 

0
2

<'Put 0 
(8CJ~)2 
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cP<Put 
(8rtF 

36 

(J2 [
2 

4(1 - 71h, (7:-"+1 - 7;•+<-l) + [ (t- u + 1 ht" - ( u + t - 1hr+'-'] (1 - 71l\ 
T/ (1- rD4 

2 (t-u)l'f-"-(u+t-2)1';' +1- 2 +(1-l'fl (t-u) (t - u - l)l'f-"- 2 -(u+t-2)(u+t-3)1'l"+t-4
] 

( 1-"n 
= (J2 [2 4 (rf-u+2

- rr+t ) + [(t- u + 1)ri-u .- ('u + t - 1)rl'+t-2
] (1- rn + 

ry (1 - r?)3 

Note that in each iteration using (2.40) , ro is updated by the new 1 1 with (2 .16). 

Proposed Band Modification for <P 

Computation using full dimension of¢ is cumbersome and t ime consuming. This is 

especially true when inverting <P . For this reason, we approximate ¢ by a tridiagonal 
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band matrix 

<I> 

<l>ll 

<I> 12 

0 

0 

0 

0 

<1>12 

<1>22 

<1>23 

0 

0 

0 

0 

<1>23 

<1>33 

<1>34 

0 

0 

0 

0 

<1>34 

<I> 44 

0 

0 

0 

0 

0 

<I> 45 

0 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

<I>r - 2,T-1 <I>r-1 ,T-1 <l>r-1,T 

0 <l>r - 1,T 

Then the determinant of <I> is given by the recursive formula 

det[<I>]{I , ,n} <I>nn det [<l>]{I ,. .. ,n- 1} - <I>n,n- 1 <I>n-1,n det [<l>]p ,. .. ,n-2}· 

Because <I> is symmetric, it then follows that 

det[<l>]{l ,. .. ,n} <I>nn det [<l>]p ,. . ,n- 1} - <t>;,- 1,n det [<l>]{l,. .. ,n- 2} · 

37 

(2.41) 

Here det[<I>]{l , ·· ,k} denotes the kth principal minor, that is, [<I>]{l ,··· ,k} is the submatrix 

formed by the first k rows and columns of <I>. If we also define det[<t>] _1 = 0 and 

det [<I>]o = 1, then the formula can start from n = 1. Note that the tridiagonalization 

makes the computation quite manageable as opposed to dealing with full <I> matrix. 

In Usmani (1994) , he gave an elegant and concise formula for the inverse of the 
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tridiagonal matrix <P as 

2 = J, (2.42) 

Here ei = det[<P]{l,. .. ,i}, i = 1, · · · , T , and the sequence { ¢i} is defined by the recur-

renee formula 

-+. . = <]) .-+.. 1 - <]) "+ 1<]) +1 ·"'·+2 'f't 1.1.'f't+ t ,'l 1. ,1, 'f'1. ' i = T , T - 1, · · · , 3 , 2, 1 

cPT+l = 1, cPT+2 = 0 . (2.43) 

If <P - 1 is approximated by a band matrix, then computing <P- 1 is relatively easy. 

Because the log likelihood in the present setup has the formula given by 

l = log LQ = c0 - ~ log I<I>I - ~[(z - m)'<P- 1(z- m)], (2.44) 

we may now apply (2.41) and (2 .42) to (2.44) and compute the likelihood function 

in an easier way. Note however that computing I<PI , which appears in the formula 

for every element of <P- 1, is still not so easy. Following Usmani (1994) , we develop 

below a sirnpler formula to compute <P- 1
. This revision of the formula, i.e., alternative 

derivation of <P- 1
, is given as follows: 
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Eqo (2041) can be written with ei as 

B- 1 = 0, 80 = 1 

i = 1, 0 0 0 , T 0 (2045) 

Divided by ei- l, it becomes 

Defining 

then we have 

i = 2, 0 0 0 ,T 0 (2046) 

Dividing Eqo (2043) by cPi+ l , we obtain 

1 
<I> <I> <I> </>i+ 2 0 

ii - i,i+l 'i+ l ,i <l>i+ J 

Defining 
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we have 

(2.47) 

i = 2, . . . ' T - 1. 

Note that u/ s are the quotient of the neighbouring principal minors, and v/s are the 

similar thing for the submatrices starting from the opposite conner of the matrix <I> , 

so they should be real numbers small enough to be processed by computers. 

According to Usmani (1994) , we have 

(2.48) 

which can also be derived as follows: 

<f>l l <T)I 2 0 0 0 0 0 0 

<f) 12 <l>n <1'>23 0 0 0 0 0 

0 <P2:J <l>:n <1>3,1 0 0 0 0 

0 0 <f>:J4 ij)4,1 <l\45 0 0 0 

<Pj- l ,j 

0 0 0 0 0 

0 0 0 0 0 
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Determinant of <I> is the summation of a series of terms. Observing t his matrix, we 

have the following statements that in these terms, 

• <I>J- 1,J and <I>j ,j - 1 must appear together; 

• <I>.i . .i+ l and <I>J+1,.i must appear together; 

• <I>.i,.i • any of <I> j- 1,j and <I> j,j- 1 , or any of <I>j,j+1 and <I>J+1,j cannot appear together. 

So we have 

I<I> I summation of terms without <I>j ,j+1 and <I>J+1,.i 

+summation of t erms with <I>J,j+ l and <I>j+ I ,j 

According to Formula (2.42), for i< T , 

1 

1 

tL - <]) + 1 .<]) + I V · ' 1. t ;z t,z t 

and 

1 
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For i< j , according to Formula (2.42), for j < T, 

(<I>-1) . . = 
'1.] 

and 

( -1 )i+.i <I>i,i+ 1 <I>i+l ,i+2 · · · <I> j-1,jei-l ¢j+ 1 

e.i¢.i+l- <I>j+t,j<I>j,j+lej- J¢j+2 

(- 1)i+.i¢. ·+1¢+1 '+2 . .. <I> '- ] .· l. , ~ l, ,t J ,J 

42 

( - 1)i+.iq> . '+·t<I>+l '+2 . .. <I> - 1 . t,t 't ,'L J ,J 

!!.t_ <I> <I> e2-1 ¢;+2 
e,_, - .i+1,.i .i,j+l e,_J <PH I 

Since <I> and <I> - 1 are symmetric matrices, t he above formula define t he whole <I>- 1. 

We can see that these formulas contain only u/s and v/s without 8/s and ¢ / s, so 

they can be processed by computers . We numerically t ested the program to invert 

<I> with these formula. The order of the maximum element differen ces between <I><I> - 1 

and the identity matrix are given in t he following table for different T. 

T 10 100 1000 3000 

order of diff'erence w- 16 w- 14 w-13 w-12 

The formula for calculating the second derivat ives of log-likelihood l are revised 

for this approach as 
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(2.50) 

(2.51) 

Since <I> is a tridiagonal matrix, the elements of <I> - 1 goes to zero with the increase 

of the distance of t he elements from the diagonal line, which we call off-diagonal 

distance. So we can approximate <I> - 1 with a band matrix of half-band-width p, i.e., 

(<I> - 1 
)ij = 0 if IJ- il > p. The half-band-width of the tridiagonal matrix <I> is 1. 

Note that under this proposed MQML approach , we still estimate "Yo by us-

ing MM estimating equation (2 .16), and /'I and cr~ are obtained by solving the 

MQML estimating equations (2 .40) , with second order derivatives calculated by 

(2.49)-(2.51). For convenience, we denote all these estimates under the MQML ap-

proach as &.MQM L = ( i 1,M QM L, er~,MQM L) and i o,MQM L respectively. 
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2.3 Illustration of the Estimation Approaches: A 

Simulation Study 

Recall that the existing G MM approach is cumbersome and can be less efficient as 

compared to the proposed MM approach . Note that the proposed approaches, t he 

MM approach in particular, are much more simpler than the QML and G MM ap

proaches. Similar to Tagore (2010), in this section, we examine both small and large 

sample estimation performances of the proposed MM and AGQL approaches through 

a simulation study. The difference between Tagore (2010) and the present simulation 

lies in the fact that we are now also estimating ')'o, whereas Tagore (2010) evaluated 

the performance of the estimating methods only when "Yo = 0. For the purpose, we 

choose T as small as 200, and several finite but large values such as T = 1000, 2000, 

and 3000. Note tha t these values ofT are chosen to indicate that unlike the existing 

GMM approach (where length of t ime series requires to be infinitely large such as T 

= 10,000 or 15,000, . .. , and so on) , the proposed approaches produce good estimates 

based on a practically reasonable length of the time series . 

In the small sample case the initial variance (}"? will have some effects on the 

est imation of the main volatility parameters, as expected. We assume that it can 

be estiamated effectively from previous data, then since log d is assumed to have a 
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normal distribution with mean /'o/ (1- 1'1 ) as shown in (1.3) , we choose the value of 

/'o/ (1 - /'I) for log(aD in our simulation study. Now, to examine the small sample 

estimation performance for /'o, /'I and a~ by the MM approach, we solve the MM 

est imating equation (2 .8) for /'1, and (2.3) for a~, iteratively, "Yo being updated by 

(2.16) after obtaining new /'I · For the large sample case, we solve the asymptotic 

estimating equations (2.11) and (2.17) for 1 1 and a;, respectively, and still update /'o 

by ( 2.16) after obtaining new /'J. The simulated means ( SM) along with simulated 

standard errors (SSE) for the MM estimates based on 500 simulations are reported 

in Tables 2.1 - 2.3. For the estimation of /'o, /'J and a; by the AGQL approach , we 

solve the AGQL estimating equations (2.34) for /'J, and (2.33) for a;, iteratively, and 

update /'o by (2.16) after obtaining new /'I · Note that t hese equations are available 

for both small and large T. The simulated means and t heir st andard errors for the 

AGQL estimates are given in Tables 2.4 - 2.6. 

T he columns 6 to 9 in Tables 2.1 - 2.3 show that for a reasonably large time 

series with length between T= 2000 and 10,000, the proposed MM approach performs 

very well in estimating /'o, /'t and a~. This is a big improvement over the existing 

GMM and MQML approaches mainly because of the fact that proposed MM approach 

is simpler and computationally quitr~ efficient. Also, unlike the existing GMM and 

l\IIQML approaches, the MM approach does not encounter any convergence problems. 
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Table 2.1 : Simulated mean (SM) and simulated standard error (SSE) of MM estimates 
for selected parameter values based on 500 simulations. 

T ime Series Length (T) 
Parameters Quantity 200 500 1000 2000 3000 5000 10,000 

/'a = 0.05 SM 0.0318 0.0395 0.0409 0.0487 0.0478 0.0488 0.0492 
SSE 0.0967 0.0779 0.0606 0.0428 0.0341 0.0253 0.0180 

/' I = 0.25 SM 0.2500 0.2151 0.2190 0.2267 0.2510 0.2550 0.2555 
SSE 0.3706 0.3405 0.3014 0.2543 0.2224 0.1774 0.1231 

a~ = 0.25 SlVI 0.3227 0.2693 0.2537 0.2399 0.2378 0.2421 0.2461 
SSE 0.2097 0.1474 0.1213 0.0866 0.0810 0.0639 0.0435 

')'a = 0.05 SM 0.0361 0.0434 0.0518 0.0486 0.0508 0.0503 0.0498 
SSE 0.1201 0.0835 0.0606 0.0434 0.0351 0.0241 0.0188 

1'1 = 0.25 SM 0.2180 0.2415 0.2282 0.2419 0.2505 0.2462 0.2485 
SSE 0.3501 0.3133 0.2463 0.1789 0.1478 0.1288 0.0921 

a~ =0.5 SM 0.5195 0.4706 0.4644 0.4900 0.4802 0.4880 0.4934 
SSE 0.2937 0.2209 0.1552 0.1092 0.0873 0.0708 0.0493 

l 'o = 0.05 SM 0.0425 0.0479 0.0486 0.0477 0.0508 0.0500 0.0511 
SSE 0.1527 0.0989 0.0658 0.0484 0.0351 0.0278 0.0198 

/'1 = 0.25 SM 0.1664 0.1978 0.2087 0.2190 0.2279 0.2376 0.2502 
SSE 0.3000 0.2491 0.2067 0.1532 0.1236 0.1133 0.0996 

2 a,1 = 1.0 SM 0.9458 0.9485 0.9676 0.9910 0.9947 0.9970 0.9841 
SSE 0.3770 0.2889 0.2066 0.1577 0.1186 0.1111 0. 1008 

f'o = 0.05 SlVI 0.0536 0.0430 0.0517 0.0484 0.0495 0.0489 0.0492 
SSE 0.1073 0.0694 0.0524 0.0335 0.0281 0.0237 0.0149 

1'1 = 0.5 SM 0.3010 0.3945 0.4409 0.4790 0.4826 0.4974 0.5058 
SSE 0.3597 0.3493 0.2909 0.2363 0.2055 0. 1768 0.1208 

a~ = 0.25 SM 0.3561 0.2733 0.2597 0.2469 0.2456 0.2435 0.2457 
SSE 0.2287 0.1777 0.1353 0.1127 0.0926 0.0822 0.0586 

/'a = 0.05 SM 0.0576 0.0510 0.0502 0.0516 0.0508 0.0498 0.0498 
SSE 0.1239 0.0822 0.0503 0.0331 0.0275 0.0233 0.0166 

/'I = 0.5 SM 0.3780 0.4222 0.4502 0.4677 0.4761 0.4980 0.4965 
SSE 0.3412 0.2882 0.2336 0.1785 0.1617 0.1379 0.1001 

a.~ = 0.5 SM 0.5309 0.5038 0.5012 0.4992 0.4967 0.4875 0.4948 
SSE 0.3015 0.2531 0.2023 0.1528 0.1270 0.1190 0.0816 

')'o = 0.05 SM 0.0631 0.0571 0.0530 0.0570 0.0513 0.0538 0.0518 
SSE 0.1547 0.0899 0.0631 0.0388 0.0332 0.0265 0.0182 

/'I = 0.5 SM 0.3181 0.3853 0.4187 0.4446 0.4560 0.4705 0.4859 
SSE 0.2837 0.2315 0.2007 0.1522 0.1387 0.1371 0.1120 

a~ = 1.0 SM 1.0633 1.0220 1.0280 1.0316 1.0264 1.0088 0.9962 
SSE 0.4482 0.3382 0.3110 0.2334 0.2063 0.2176 0.1738 
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Table 2.2: Table 2.1 Contd .. .. 

Time Series Length (T) 
Parameters Quantity 200 500 1000 2000 3000 5000 10,000 

/'O =0.1 SM 0.0757 0.0856 0.0958 0.1012 0.0965 0.0987 0.0996 
SSE 0.1241 0.0967 0.0637 0.0535 0.0405 0.0321 0.0225 

/'1 = 0.25 SM 0.2199 0.2104 0.2172 0.2247 0.2533 0.2600 0.2474 
SSE 0.3547 0.3443 0.3005 0.2455 0.2183 0.1708 0.1259 

CT~ = 0.25 SM 0.3329 0.2770 0.2507 0.2435 0.2405 0.2425 0.2468 
SSE 0.2152 0. 1604 0.1149 0.0861 0.0792 0.0628 0.0419 

/'0 = 0.1 SM 0.0911 0.0932 0.0969 0.0978 0.0995 0.1006 0.1000 
SSE 0.1354 0.0979 0.0664 0.0450 0.0386 0.0293 0.0201 

/'! = 0.25 SM 0.2289 0.2117 0.2438 0.2308 0.2473 0.2438 0.2474 
SSE 0.3400 0.3053 0.2455 0.1833 0.1524 0.1247 0.0859 

a; = 0.5 SM 0.4937 0.4755 0.4726 0.4932 0.4877 0.4921 0.4964 
SSE 0.2903 0.2044 0. 1551 0.1145 0.0903 0.0756 0.0487 

')'o = 0.1 SM 0.0978 0.1219 0.1067 0.1012 0.1031 0.1007 0.1012 
SSE 0.1551 0.1042 0.0729 0.0493 0.0401 0.0321 0.0232 

1'1 = 0.25 SM 0.1731 0.1768 0.2081 0.2267 0.2221 0.2426 0.2428 
SSE 0.3031 0.2420 0.1966 0.1500 0.1207 0.1251 0.0881 

CT~ = 1.0 SM 0.9223 0.9364 0.9710 0.9814 0.9946 0.9865 0.9955 
SSE 0.3892 0.2716 0.2058 0.1489 0.1130 0.1221 0.0737 

/'O = 0.1 SM 0.1113 0.1182 0.1071 0.1061 0.0963 0.0993 0.0985 
SSE 0.1339 0.0969 0.0759 0.0521 0.0388 0.0358 0.0255 

/'J = 0.5 SM 0.2930 0.3529 0.4347 0.4542 0.4991 0.4914 0.5046 
SSE 0.3689 0.3367 0.3025 0.2213 0. 1986 0.1743 0.1293 

CT~ = 0.25 SM 0.3380 0.2901 0.2522 0.2570 0.2447 0.2473 0.2447 
SSE 0.2152 0.1688 0.1385 0.1076 0.0968 0.0838 0.0620 

/'o = 0.1 SM 0.1056 0.0999 0.1082 0.1021 0.1006 0.1017 0.0996 
SSE 0.1378 0.0853 0.0659 0.0449 0.0362 0.0316 0.0231 

/'1 = 0.5 SM 0.3530 0.4366 0.4406 0.4715 0.4879 0.4939 0.5034 
SSE 0.3511 0.2872 0.2381 0.1796 0.1514 0.1297 0.1029 

CT~ = 0.5 SM 0.5462 0.4943 0.5010 0.4993 0.4959 0.4889 0.4882 
SSE 0.3319 0.2501 0.1943 0.1553 0.1320 0.1104 0.0848 

/'o = 0.1 SM 0.1471 0.1245 0.1148 0.1100 0.1055 0.1041 0.1021 
SSE 0.1613 0.1012 0.0699 0.0474 0.0392 0.0315 0.0270 

1'1 = 0.5 SM 0.3281 0.3763 0.4153 0.4554 0.4644 0.4816 0.4877 
SSE 0.2928 0.2422 0.1888 0.1574 0.1417 0.1275 0.1136 

a; = 1.0 SM 1.0251 1.0492 1.0439 1.0145 1.0107 0.9980 0.9971 
SSE 0.4599 0.3811 0.2911 0.2373 0.2079 0.1982 0.1804 
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Table 2.3: Table 2.1 Contd .... 

T ime Series Length (T) 
Parameters Quantity 200 500 1000 2000 3000 5000 10,000 

/'O = 0.2 SM 0.1597 0.1901 0.1962 0.1985 0.1981 0. 1975 0.2006 
SSE 0.1505 0.1253 0.1002 0.0786 0.0631 0.0474 0.0330 

/'! =0.25 SM 0.2192 0.2089 0.2334 0.2446 0.2435 0.2531 0.2471 
SSE 0.3700 0.3454 0.3141 0.2636 0.2147 0. 1672 0.1180 

a~ =0.25 SM 0.3422 0.2732 0.2481 0.2377 0.2460 0.2414 0.2483 
SSE 0.2201 0.1614 0.1217 0.0913 0.0757 0.0592 0.0419 

/'0 =0.2 SM 0.1858 0.1988 0.2061 0.2016 0.2027 0.1979 0.1997 
SSE 0.1562 0.1210 0.0879 0.0601 0.0511 0.0392 0.0289 

/'1 = 0.25 s il 0.2016 0.2151 0.2184 0.2397 0.2318 0.2506 0.2513 
SSE 0.3433 0.3210 0.2421 0.1845 0. 1489 0.1348 0.0921 

a~ = 0.5 SM 0.5092 0.4685 0.4827 0.4829 0.4953 0.4918 0.4981 
SSE 0.2779 0.2138 0.1625 0.1028 0.0932 0.0791 0.0518 

/'o = 0.2 SM 0.2144 0.2159 0.2072 0.2033 0.2039 0.2016 0.2037 
SSE 0.1882 0.1144 0.0815 0.0570 0.0476 0.0422 0.0285 

/'1 = 0.25 SM 0.1635 0.1927 0.1957 0.2197 0.2354 0.2489 0.2410 
SSE 0.3036 0.2322 0.1854 0.1495 0.1315 0.1189 0.0795 

a~ = 1.0 SM 0.9455 0.9599 0.9900 0.9935 0.9873 0.9746 0.9947 
SSE 0.4156 0.2741 0.2000 0.1542 0.1309 0.1061 0.0708 

/'o = 0.2 SM 0.2248 0.2502 0.2224 0.2061 0.2036 0.1978 0.1970 
SSE 0.1837 0.1520 0.1155 0.0964 0.0764 0.0681 0.0471 

/'1 =0.5 SM 0.3122 0.3450 0.4250 0.4737 0.4830 0.4994 0.5053 
SSE 0.3802 0.3364 0.2853 0.2409 0.1945 0. 1760 0.1223 

a~ = 0.25 SM 0.3621 0.2878 0.2631 0.2484 0.2484 0.2452 0.2444 
SSE 0.2420 0.1648 0.1360 0.1127 0.0946 0.0830 0.0590 

/'o = 0.2 SM 0.2513 0.2317 0.2143 0.2082 0.2090 0.2084 0.1974 
SSE 0.1887 0.1385 0.0964 0.0784 0.0663 0.0496 0.0440 

/'1 = 0.5 SM 0.3370 0.4010 0.4469 0.4824 0.4747 0.4733 0.5059 
SSE 0.3654 0.3129 0.2267 0.1827 0.1595 0.1206 0.1090 

a~ = 0.5 SM 0.5451 0.5033 0.4992 0.4850 0.5012 0.5077 0.4867 
SSE 0.3245 0.2499 0.1933 0.1546 0.1339 0.0992 0.0894 

/'o = 0.2 SM 0.2562 0.2495 0.2241 0.2235 0.2071 0.2063 0.2044 
SSE 0.1885 0.1263 0.0942 0.0671 0.0606 0.0566 0.0458 

/'! = 0.5 SM 0.3564 0.3772 0.4253 0.4355 0.4768 0.4848 0.4907 
SSE 0.2971 0.2315 0.1997 0.1411 0.1418 0.1361 0.1102 

a 2 = 1 0 1) 0 
SM 1.0179 1.0547 1.0334 1.0385 1.0004 0.9897 0.9945 
SSE 0.4658 0.3673 0.3054 0.2066 0.2200 0.2113 0.1779 
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Table 2.4: Simulated mean (SM) and simulated standard error (SSE) of AGQL esti
mates for selected parameter values based on 500 simulations. 

T ime Series Length (T) 
Parameter:; Quantity 200 500 1000 2000 3000 

[O = 0.05 SM 0.0256 0.0379 0.0422 0.0485 0.0483 
SSE 0.0947 0.0763 0.0613 0.0426 0.0339 

l'l = 0.25 SM 0.2718 0.2219 0.1997 0.2188 0.2410 
SSE 0.3633 0.3097 0.2695 0.2396 0.2083 

0"~ = 0.25 SM 0.3051 0.2741 0.2618 0.2449 0.2410 
SSE 0.2140 0.1446 0.1154 0.0844 0.0772 

[O = 0.05 SM 0.0309 0.0454 0.0514 0.0488 0.0507 
SSE 0.1154 0.0846 0.0604 0.0432 0.0352 

/ 1 = 0.25 SM 0.2273 0.2176 0.2240 0.2432 0.2493 
SSE 0.3205 0.2762 0.2347 0.1810 0.1485 

2 o-.,1 = 0.5 SM 0.5285 0.4846 0.4680 0.4873 0.4813 
SSE 0.2849 0.2046 0.1485 0.1087 0.0883 

l'o = 0.05 SM 0.0343 0.0506 0.0495 0.0475 0.0514 
SSE 0.1390 0.0972 0.0660 0.0481 0.0359 

l'l = 0.25 SM 0.1601 0.1904 0.2060 0.2174 0.2233 
SSE 0.2878 0.2386 0.2032 0.1532 0.1245 

a; = 1.0 SM 0.9621 0.9607 0.9718 0.9941 1.0010 
SSE 0.3747 0.2769 0.2014 0.1575 0.1198 

l'o = 0.05 SM 0.0440 0.0448 0.0543 0.0509 0.0515 
SSE 0.1049 0.0709 0.0537 0.0342 0.0275 

/ 1 = 0.5 SM 0.3048 0.3488 0.4048 0.4459 0.4607 
SSE 0.3485 0.3016 0.2620 0.2104 0.1853 

0"~ = 0.25 SM 0.3598 0.3050 0.2796 0.2613 0.2553 
SSE 0.2317 0.1675 0.1240 0.1015 0.0812 

[ O = 0.05 SM 0.0562 0.0493 0.0527 0.0536 0.0516 
SSE 0.1158 0.0800 0.0508 0.0320 0.0271 

/'I = 0.5 SM 0.3547 0.4002 0.4217 0.4598 0.4660 
SSE 0.3189 0.2603 0.2110 0.1659 0.1503 

2 a-,, = 0.5 SM 0.5449 0.5186 0.5182 0.5083 0.5059 
SSE 0.2750 0.2261 0.1781 0.1403 0.1164 

/ O = 0.05 SM 0.0666 0.0625 0.0526 0.0566 0.0516 
SSE 0.1481 0.0873 0.0617 0.0381 0.0323 

l'l = 0.5 SM 0.3179 0.3728 0.3992 0.4372 0.4547 
SSE 0.2773 0.2217 0.1800 0.1431 0.1400 

0"~ = 1.0 SM 1.0451 1.0472 1.0669 1.0449 1.0293 
SSE 0.4367 0.3260 0.2720 0.2092 0.2050 



2.3 ILLUSTRATION OF THE ESTIMATION APPROACHES: A SIMULATION 8TUDY50 

Table 2.5: Table 2.4 Contd .... 

T ime Series Length (T) 
Parameters Quantity 200 500 1000 2000 3000 

/'O = 0.1 SM 0.0586 0.0838 0.0993 0.1009 0.0976 
SSE 0.1071 0.0872 0.0606 0.0521 0.0406 

/'! =0.25 SM 0.2555 0.2269 0.2029 0.2261 0.2443 
SSE 0.3536 0.3135 0.2835 0.2416 0.2067 

a~ =0.25 SM 0.3324 0.2818 0.2502 0.2435 0.2437 
SSE 0.2122 0.1550 0.1104 0.0855 0.0761 

/'O =0.1 SM 0.0767 0.0921 0.1006 0.0973 0.1006 
SSE 0.1215 0.0953 0.0693 0.0448 0.0382 

1'1 = 0.25 SM 0.2345 0.1933 0.2226 0.2334 0.2395 
SSE 0.3205 0.2721 0.2329 0.1825 0.1461 

a~ = 0.5 SM 0.5086 0.4919 0.4796 0.4924 0.4905 
SSE 0.2868 0.1997 0.1418 0.1138 0.0870 

/'o = 0.1 SM 0.0883 0.1193 0.1047 0.1028 0.1031 
SSE 0.1442 0.0965 0.0731 0.0495 0.0398 

/'! = 0.25 SM 0.1929 0.1726 0.2156 0.2206 0.2309 
SSE 0.2797 0.2306 0.1947 0.1465 0.1190 

a~ = 1.0 SM 0.9338 0.9465 0.9635 0.9838 0.9926 
SSE 0.3840 0.2529 0.2081 0.1424 0.1138 

/'O = 0.1 SM 0.0988 0.1107 0.1149 0.1096 0.1037 
SSE 0.1138 0.0866 0.0728 0.0508 0.0366 

/'1 = 0.5 SM 0.3027 0.3393 0.3922 0.4351 0.4611 
SSE 0.3442 0.3056 0.2783 0.2018 0. 1781 

a~ =0.25 SM 0.3569 0.3071 0.2698 0.2662 0.2590 
SSE 0.2134 0.1649 0.1254 0.0990 0.0845 

/'o = 0.1 SM 0.1008 0.1149 0.1112 0.1033 0. 1020 
SSE 0.1289 0.0879 0.0639 0.0415 0.0345 

/'1 = 0.5 SM 0.3272 0.3985 0.4101 0.4650 0.4821 
SSE 0.3121 0.2684 0.2127 0.1656 0.1417 

a~ = 0.5 SM 0.5861 0.5199 0.5314 0.5083 0.5029 
SSE 0.3127 0.2330 0.1764 0.1419 0.1226 

/'O = 0.1 SM 0.1380 0.1150 0.1145 0.1114 0.1065 
SSE 0.1448 0.0962 0.0670 0.0466 0.0376 

/'! = 0.5 SM 0.3155 0.3714 0.4116 0.4448 0.4644 
SSE 0.2639 0.2170 0.1800 0.1488 0.1315 

a~ = 1.0 SM 1.0757 1.0917 1.0624 1.0313 1.0189 
SSE 0.4326 0.3555 0.2803 0.2189 0.1941 
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Table 2.6: Table 2.4 Contd .. .. 

T ime Series Length (T) 
Parameters Quantity 200 500 1000 2000 3000 

/O =0.2 SM 0.1389 0.1890 0.2027 0.1997 0.2017 
SSE 0.1290 0.1082 0.0983 0.0774 0.0620 

1'1 =0.25 SM 0.2510 0.1909 0.2240 0.2454 0.2302 
SSE 0.3469 0.3059 0.2947 0.2569 0.2054 

0'.~ =0.25 SM 0.3582 0.2934 0.2464 0.2371 0.2479 
SSE 0.2231 0.1509 0.1170 0.0892 0.0718 

/O =0.2 SM 0.1656 0.1881 0.2070 0.2017 0.1983 
SSE 0.1344 0.0968 0.0860 0.0604 0.0491 

/ 1 =0.25 SM 0.2097 0.2221 0.2053 0.2307 0.2402 
SSE 0.3135 0.2614 0.2286 0. 1850 0.1478 

cr2 = 0 5 T/ • SM 0.5377 0.4971 0.4907 0.4893 0.4972 
SSE 0.2735 0.1885 0.1536 0.1055 0.0905 

/o = 0.2 SM 0.1815 0.2108 0.2108 0.2030 0.2054 
SSE 0.1558 0.1090 0.0802 0.0575 0.0483 

/ 1 = 0.25 SM 0.1830 0.1868 0.1908 0.2244 0.2294 
SSE 0.2695 0.2190 0.1796 0.1493 0.1253 

0'~ = 1.0 SM 0.9768 0.9747 0.9882 0.9881 0.9921 
SSE 0.3823 0.2711 0.1914 0.1503 0.1273 

/ O = 0.2 SM 0.2045 0.2271 0.2339 0.2219 0.2155 
SSE 0.1454 0.1089 0.1054 0.0844 0.0669 

/1 = 0.5 SM 0.3037 0.3534 0.3858 0.4328 0.4521 
SSE 0.3312 0.2882 0.2621 0.2059 0.1677 

cr2 = 0 25 ,, . SM 0.4074 0.3248 0.279 0.2690 0.2643 
SSE 0.2329 0.1543 0.1227 0.0965 0.0831 

/ o = 0.2 SM 0.2034 0.2244 0.2230 0.2176 0.2144 
SSE 0.1308 0.1132 0.0927 0.0719 0.0583 

/ 1 = 0.5 SM 0.3724 0.4095 0.4255 0.4605 0.4617 
SSE 0.3022 0.2567 0.2074 0.1637 0.1412 

0'~ = 0.5 SM 0.5763 0.5304 0.5242 0.5009 0.5112 
SSE 0.2987 0.2298 0.1767 0. 1353 0.1211 

/ o = 0.2 SM 0.2425 0.2367 0.2365 0.2218 0.2152 
SSE 0.1566 0.1194 0.0876 0.0679 0.0640 

/ 1 = 0.5 SM 0.3219 0.3961 0.4056 0.4380 0.4605 
SSE 0.2603 0.2185 0.1766 0.1439 0.1416 

cr2 = 1 0 1J . SM 1.0991 1.0329 1.0602 1.0384 1.0240 
SSE 0.4497 0.3419 0.2553 0.2133 0.2045 
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Table 2.7: Simulated mean (SM) and simulated standard error (SSE) of MQML 
estimates for selected parameter values based on 500 simulations. 

Time Series Length (T) 
Parameters Quantity 1000 3000 

/'o =0.05 SM 0.0481 0.0433 
SSE 0.0569 0.0368 

/'1 = 0.5 SM 0.4329 0.5171 
SSE 0.4059 0.3368 

(J'~ =0.25 SM 0.3239 0.2616 
SSE 0.2855 0.2193 

/'o =0.05 SM 0.0451 0.0508 
SSE 0.0504 0.0282 

/'1 = 0.5 SM 0.4929 0.4689 
SSE 0.2018 0.1125 

(J'~ = 1.0 SM 0.9960 1.0318 
SSE 0.4845 0.2974 

/'O =0.2 SM 0.2340 0.1979 
SSE 0.1629 0.1285 

1'1 = 0.5 SM 0.3794 0.4911 
SSE 0.4094 0.3299 

(J'~ = 0.25 SM 0.3697 0.2756 
SSE 0.3046 0.2263 

/'o =0.2 SM 0.1962 0.2102 
SSE 0.0857 0.0455 

/'1 = 0.5 SM 0.4937 0.4689 
SSE 0.2043 0.1123 

(J'~ = 1.0 SM 0.9960 1.0318 
SSE 0.4900 0.2972 
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The results in columns 6 and 7 in Tables 2.4 - 2.6 show that the proposed AGQL ap

proach performs similarly to the MM approach. Note however that to save time and 

space we have considered T = 2000 and 3000 in this case. As the length of the series 

increases, both MM and AGQL approach appears to perform better as expected. To 

be specific, when T = 3000, for example, the MM approach provides estimates for 

'Yo= 0.05, l'l = 0.5 and a~ = 1.0 as :Yo,MM = 0.0513 with its simulated standard error 

0.0332, :YI,MM = 0.456 with its simulated standard error 0.139 and &~,MM = 1.026 

with its standard error 0.206. For the same parameter values, when T = 10,000, t he 

MM approach produces :Yo,M M = 0.0518 with its simulated standard error 0.0182, 

:Y1,MM = 0.486 with its simulated standard error 0.112 and &~,MNI = 0.996 with its 

standard error 0.17 4. Thus, it is clear that the MM approach works very well even if 

the length of the series is as small as T = 3000. However, as expected, t he standard 

errors of the estimates improves considerably when T increased from 3000 to 10,000. 

As mentioned earlier , the AGQL approach behaves similarly to the MM approach. 

For example, for t he same parameter values, when T = 3000 the AGQL estimates 

give :Yo,AGQL = 0.0516 with simulated standard error 0.0323, :Yl ,AGQL = 0.455 with its 

simulated standard error 0.140 and &~,AGQL = 1.029 with its simulated standard error 

0.205. Thus AGQL approach appears to produce similar estimates for /'o, l'l and a~ 

with similar standard errors. So we can use either of them. 
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As far as the small sample performance is concerned, both MM and AGQL ap

proaches provides somewhat reasonable, but not so satisfactory estimates. For ex

ample, when T = 500, the MM approach provides estimates for 'Yo = 0.05 , 11 = 0.5 

and O"~ = 0.5 as io,MM = 0.0510, i 1,MM = 0.422 and a~,MM = 0.504, respectively, 

with corresponding simulated standard errors 0.0822, 0.288 and 0.253. For the same 

parameter values, t he AGQL provides i o,AGQL = 0.0493 with its simulated standard 

error 0.0800, ,:Y1,AGQL = 0.400 with its simulated standard error 0.260 and a~,AGQL 

= 0.519 with its standard error 0.226. These and other results in Tables 2.1 - 2.6 

indicate that the estimates of O"~ appears to be close to the true values, whereas the 

estimates of 'Yo and especially 1 1 are not so satisfactory. But, the estimates of 'Yo and 

/ J get closer to the true values when the length of the series is increased. 

The simulated means and standard errors of MQML method for selected param

eter values based on 500 simulations are given in Table 2.7. The estimation results 

are not as good as those from the MM and AGQL approaches given in Tables 2.1 

and 2.4. For example, for 'Yo = 0.05, 11 = 0.5, O"~ = 0.25, and T = 1000 case, the 

MQML estimates give i o,MQ!v!L = 0.0481 , i J,MQML = 0.433 and a~,MQML = 0.324, 

which are all farther away from the true parameter values than the MM estimates of 

i o,Jv!JI1 = 0.0517, ,:YJ,MM = 0.441 and a~,MM = 0.260, while the simulated standard er

rors for i o,MQML, i 1,MQML and a~,MQML in MQML approach are respectively 0.0569, 
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0.406 and 0.285, which are all greater than the corresponding simulated standard 

errors in MM approach , which are 0.0524, 0.291 and 0.135 respectively. In Tagore 

(2010) , it has been established that the MM and AGQL approaches are asymptot-

ically more efficient than the MQML method. Our above simulation results agree 

with this asymptotic conclusion. 

Note that in the simulation study we have considered small values for ')'o (0.05, 0.1 

and 0.2) and moderately large values for ')'1 (0.25 and 0.5) along with a wider range 

for (j~ ranging from 0.25 to 1.0. These small values for ')'o and ')'1 are expected mostly 

in practice, because of t he fact t hat (jz is an exponential function in these parameters. 

However, the proposed method works well for larger ')'1 values. For example, t he real 

life data that we discuss below provides ')-1 ~ 0.7 which was obtained without any 

convergence problem. 

2.4 Illustration of the Estimation Approaches: A 

R eal Life D ata Analysis 

In this section, the stochastic volatility model is fi tted to US-Dollar/ Swiss-Franc 

exchange rate. The data consist of daily observations of weekdays close exchange 

rates from J uly 24, 2007 to July 24, 2012, which are denoted as Pt. 



2.4 ILLUSTRATION OF THE ESTIMATION APPROACHES : A REAL LIFE DATA 

ANALYSIS 56 

Univariate models were fitted to the log return of the exchange rates with mean 

subtracted, that is, 

Y, = 6 log P,- (~ 6 log P,) j (T- 1), t = 1, · · · , T- 1, 

where 6log Pt =log Pt+l -log Pt. In Ruiz (1994), the QML estimation method was 

applied to this log return of Yen/ Dollar exchange rate from 1/ 10/ 81 to 28/ 6/ 85 to 

fit the stochastic volatility model. Note that t he QML estimation method was also 

applied by some researchers in multivariate setup. For example, Harvey et.al (1994) 

illustrated the fitting of multivariate stochastic volatility model with the log return 

of Pound/ Dollar , Deutschmark/ Dollar, Yen/ Dollar and Swiss-Franc/Dollar exchange 

rates from 1/ 10/ 81 to 28/ 6/85 . 

Turning back to the US-Dollar/Swiss-Franc exchange rate data set, we use the 

variance of the first 100 Yt 's to estimate CJi, and then fit the models (1.1 ) - (1.2) to 

the next 1000 Yt's. That is, we estimate the parameters of the model, namely, ')'o, ')'1 

and CJ~ , by using the proposed MM, AGQL and MQML approaches. T he estimates 

of the parameters for these three approaches are given in Table 2.8. 

Now to examine the performance of these three estimation approaches, we choose 

to compare the fitted mean and variance of yz with the observed mean and variance 

of yz , respectively. For the calculation of fitted mean and variance of yz, we simply 

use the estimates of the parameters from Table 2.8 to the formulas for E [Y? J in (2.25) 
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Table 2.8: The estimated parameter values for fi t ting the stochastic volatility model 
to the 1000 observations of the log return of the daily US-Dollar / Swiss-Franc exchange 
rates from July 24, 2007 to July 24, 2012. 

Method 
MM 

AGQL 
MQML 

/ o 
-3.585664 
-3.880882 
-10.87192 

/ 1 
0.6897393 
0.6641959 

0.05930448 

1.191857 
1.269635 
5.834532 

and Var[Y/] in (2.27). Next for the computation of the observed mean and variance 

of yf , we consider a group of 50 observations represented by YZ+t (l = 0, · · · , 49), 

take the mean and variance of these 50 observations, and report them at t ime point 

t = 1, 51, 101 , · · · , and so on . The observed means are displayed in Figure 2.1 and 

variances are displayed in Figure 2.2. The expected values E [Y? J obtained by MM, 

AGQL and MQML approaches are also given in Figure 2.1, whereas the est imated 

Var[Y?J under MM and AGQL approaches are given in Figure 2.2. 

In Table 2.8, the estimat ion results for / o, 11 and 17~ from MM and AGQL ap-

proaches are quite close to each other, which is consistent with F igures 2.1 and 2.2, 

where the curves for means and variances under the MM and AGQL approaches al-

most overlap each other. All these agree with our observat ion in Section 2.3 that 

the MM and AGQL methods give similar estimat ion results. In contrast , the MQML 

estimat ion results are quite different from those by MM and AGQL approaches. Fig-

ures 2.1 and 2.2 indicate that t he MM and AGQL estimates are considerably bet ter 
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Figure 2.1: The estimated means of ~2 for the 1000 data from the log return with 
mean subtracted of the US-Dollar/Swiss-Franc daily exchange rates from July 24, 
2007 to July 24, 2012. 
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Figure 2. 2: The estimated variances of ~2 for t he 1000 data from the log return with 
mean subtracted of the US-Dollar/ Swiss-Franc daily exchange rates from July 24, 
2007 to July 24, 2012. 
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than the MQML estimates. 

60 

In Figure 2. 1, in general, the sample means of {yl} appear to lie either above 

or below the E [Y/] level in a sequence, which shows positive correlations among Yl· 

This posit ive correlation can also be understood in theory by studying the patterns 

for lag covariances. To be specific, because 

(2.52) 

it is obvious that for 0 < ')'1 < 1, Cov (Y? , ~~k) > 0 and -----+ 0 as 1 1 -----+ 0 for all 

posit ive integer k. For negative ')'1 , obviously correlations will be negative for odd k, 

but for the present data set ')'1 estimate is found to be positive. 

To explain this issue further , the MM and AGQL approaches give 1'l estimates as 

i 1,M M = 0.690 and i 1,AGQL = 0.664, which are all positive and can account for t he 

posit ive correlation in F igure 2.1, while the MQML estimate of i i ,MQML = 0.0593 

can be too small to explain this positive correlation. In addition, in Figure 2.1, t he 

values for sample means appear to be close to the curves for the estimated mean by 

MM and AGQL approaches, indicating a reasonable fitting, while these sample values 

appear to be far away from the mean curve under the MQML method, implying that 

the MQML approach can not be applied to fit this data set, which may be due to the 

large standard errors of the MQML estimators. 

Similar to the results for means shown in Figure 2.1, the curves for variances under 



2.4 ILLUSTRATION OF THE ESTIMATION APPROACHES : A REAL LIFE DATA 

ANALYSIS 61 

MM and AGQL approaches almost overlap each other, indicating the similarity of t he 

estimates by the two approaches. Except the first several t ime points, the estimated 

variance of Yl by MQML approach is on the order of 10- 5 , which is considerably larger 

than the sample variances and the estimated variance values by MM and AGQL 

approaches, causing a scaling problem to accommodate t he MQML results in t he 

same figure. In comparison, the MM and AGQL curves have good agreement with 

the sample estimation points in Figure 2.2, indicating a better estimation than t he 

MQML approach . 



Chapter 3 

Parameter Estimation for 

t-Distribution Based Volatility 

Models 

In Chapter 2, we have discussed an improved estimation technique for the existing SV 

model with Gaussian error , as compared to the existing competitive approaches. Note 

that there also exist some studies dealing with SV models under the assumption that 

Et ( t = 1, · · · , T) follow a heavy tailed t-distribution instead of Gaussian distribution. 

This produces much larger kurtosis than using normal distribution based SV model. 

See, for example, Harvey et al. (1994, Section 6) and Lee and Koopman (2004, 
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Section 6). However , in these studies, the estimation of t he parameters have been 

done mainly following the GMM and/or QML approaches. 

As far as the models for time dependent variances are concerned , in Chapter 

2, similar to t he exist ing studies, we have considered lognormal distribut ion based 

AR(l) type model. The t-distribut ion based SV models are also developed based 

on lognormal AR(l) type relationship for the variances. There also exist some SV 

models where certain positive orthant distributions such as exponential and gamma 

distributions are used to model the time dependent variances (Abraham et al. , 2006). 

However , they still use normal distribution for { Et}· One could use t-distribution for 

those { Et} on top of using t he gamma distributions based model for the variances. 

This is however beyond the scope of the present thesis. 

In this chapter , we study the existing t-errors based SV model with variances 

satisfying the lognormal AR(l ) model, but provide an improved estimation technique 

for all parameters including t he degrees of freedom of the t-error distribution. To be 

more specific, in this chapter , we deal with a generalization of t he model considered 

in Chapter 2, but use simpler MM, AGQL and MQML approaches for the estimation 

of the parameters. T he degrees of freedom parameter in all cases is estimated by 

using the MM. 
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3.1 t-Distribution Based SV Models 

We now t urn back to the t-distribution based SV model studied by Harvey et al. 

(1994) [see also Lee and Koopman (2004)], but use the improved estimation technique 

introduced in Chapter 2 [see also Tagore (2010)]. To be specific, we recall the model 

form (1.1)- (1.2) and rewrite it here with a change in distribution of Et, · That is, 

t = 1, · · · , T (3.1 ) 

l o + 1 1ht-1 + 17t t = 2, · · · ,T, (3.2) 

where Et i;ij t(O, 1, u). That is, we use the distribut ion of Et as 

r (~) 1 1 

r ( ~ ) JV1f ( 1 + ( ~) ) (v+l)/2 , 
(3.3) 

where u is referred to as the shape or degrees of freedom parameter. Note that the 

t-distribut ion in (3.3) has t he basic properties: 

0 (3.4) 

Var ( Et) 
I/ 

(3.5) 
u-2 

(u - 2)(1/- 4) 
(3.6) 

Further note that the t-distribut ion (3.3) for Et, consequent ly, produces larger kurtosis 

for the data {yt} as compared to the Gaussian distribut ion based kurtosis. To be 
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specific, to compute kurtosis under the t-model (3.1) - (3.2), we evaluate E (Y?) and 

[ ] { ( ) 
2 ( 2(t-1) ) } 1/ /O t- 1 / O CJ1J 1 - l 1 = -- exp -- + I t h1 - -- + - 2 

1/ - 2 1 - /1 1 - / 1 2 1 - f 1 
(3 .7) 

4 ( 4 ) ( 4 ) [ 3u
2 

] [ 4 ] [ 31/
2 

] [ 2h, J E(~ ) = E CJt E Et = (u- 2)(u- 4) E CJt = (u- 2)(u- 4) E e 

31/ / o + 2 t - 1 h / o + 2 2 - / 1 
[ 

2 ] { 2 ( ) ( 1 2(t -1)) } exp -- 11 t - -- CJ 1J 2 . 
(u - 2)(u - 4) 1- 11 1 - 11 1 -[1 

(3.8) 

The above moments in (3.7) - (3.8) yield the kurtosis as 

which is a function of I/ parameter as well. When (3.9) is compared to the kurtosis 

(2.29) under t he normal error, it is clear that the kurtosis in (3.9) under t-error 

distribution is ~=~ t imes larger than the Gaussian based kurtosis. Thus, the kurtosis 

(3.9) models the heavy tails of the data through u, CJ~ and I I · 
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3.2 Estimation of Parameters including Degrees of 

Freedom Parameters 

As compared to the last chapter, it is clear that we now have one more (additional) 

parameter v to estimate. Thus, all together we estimate /'o, 1 1 , a~ and v . 

Because v is a new parameter as compared to the Gaussian model, we need an 

extra. estimating equation for v , whereas we can use the same estimating equations 

for other parameters as in Chapter 2, however, with slight adj ustment due to the 

involvement of I/ . 

3.2.1 MM Approach for All Parameters 

For the estimation of a~ and 11 , we recall their equations from (2.3) to (2.8), and now 

make the adjustment for replacing Gaussian distribution of { Et} with t-distribution . 

Thus, the moment equation for estimating a~ is given by 

(3.10) 

where 5 1 is defined in (2.1 ), and g1 is given by (2.14) . Comparing with the moment 

equation (2 .14) for the Gaussian case, the only change is the insertion of mult iplying 

factor v~2 in t he equation. 
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Similarly, the new moment equation for estimating "(1 is given by 

T 2 T 

1 "" 2 2 ( v ) [ 1 "" 2 2] E[S2] Ea~E[T _ 1 ~ Yt-tYt ] = v _ 2 E T _ 1 ~ O't- 10't 
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(v ~ 2) 
2 

92 = S2, (3.11) 

where S2 is defined in (2.6), and 92 is given by (2.13) . Comparing with the moment 

equation (2.13) for the Gaussian case, t he only change is the insertion of multiplying 

factor ( ,_,~ 2 ) 2 
in t he equation. 

Next for "Yo estimation, we modify the Gaussian based equation as follows. 

"Yo 

T 

{[S3- E (logEi)] (1 - "fd- ~h1 (1- "fi)} (1- "fl ) 
1 - "Yl- ~ (1 - 1n (3.12) 

where S3 = ~ I:: log (yZ) as in (2.15), and since Et = b._ for any t , with u being a 
1.= 1 y v / v 

standard normal random variable and v an independent chi-square random variable 

of degrees of freedom v, 

E logEz Elogu2
- Elogv + logv 

·lj; ( ~) + log 2 - 'ljJ ( ~) - log 2 + log v 

[ 'ljJ ( ~) - log ( ~)] - [ 'ljJ ( ~) - log ( ~) J . (3.13) 

Note that E log v is general as compared to finding E log u2 , as u2 is simply xi. For 

E logv, we use the formula available from Chan (1993). In (3 .13), 'l/; (.r ) is diagamma 
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function, which is calculated by the following formula [Beal, M. J. (2003)] 

'l/J (x ) 
1 1 1 1 1 5 

ln(x) - 2x - 12x2 + 120x4 - 252x6 + 240x8 - 660x 10 

691 7 3617 43867 ( 1 ) 
+ 32760x12 - 84x14 + 8160x16 - 14364x18 + 0 x20 

1 
- + 'l/J(x) . 
X 

'l/J(x + 1) 
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We followed Beal's suggestion [Beal, M. J. (2003)] of using the above recurrence to 

shift x to a. value greater than 6 and then applying the above expansion with terms 

above x14 cut oft:', which yields "more than enough precision" . 

As far as the estimation of 1.1 parameter is concerned , we write an additional 

equation by using sample statistics 

for which 

(v - 2) (v - 4) 94' 
(3.14) 

with 

(3 .15) 
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where we used the result for E(ai) in (2.27). Equating (3.14) with 54 and combining 

it with Eqs. (3.10) , we have 

9f (l/- 4) 
= 94 lJ- 2 , 

(3.16) 

yielding the estimating equation for I/ as 

lJ (3.17) 

For the purpose of kurtosis estimation, we assume that I/ > 4. 

For ')'o = 0.05, ')'1 = 0.5, a~ = 0.25, I/ = 10 and 500 simulations, the estimation 

results are given in Table 3.1, which shows that the estimates are reasonably good. 

This is especially true for ')'1 and v , for which the estimates are reasonably quite close 

to the true parameter values, for even T = 1000. Note that under the normal SV 

model, we have chosen /'o values ')'o = 0.05 , 0.1 and 0.2 . The estimates were found 

to be reasonable. Here we have taken /'o = 0.05 case only to see how much this and 

other parameters are affected by v . Estimates were found to be good here as well. 

Other values of ')'o were not chosen to save space. 
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i o i l 
T = 1000 Simulation Mean 0.03530586 0.4202329 

Simulation SE 0.05059033 0.3799676 
T = 3000 Simulation Mean 0.03990508 0.4929931 

Simulation SE 0.03811798 0.3000582 

Table 3. 1: Estimation results for ')'o = 0.05, '"Yl = 0.5, a~ 
simulations with method of moments. 

3.2.2 AGQL for A ll Parameters 

70 

a-~ v 
0.2280030 10.55707 
0.1658846 8.846058 
0.2164728 11.31905 
0.1426227 14.73339 

0.25, v = 10 and 500 

Recall that from (2.34) and (2.33) , the AGQL estimating equat ions for ')'1 and a.~ 

have the form 

and 

respectively, where 

and 
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However, their expectations and covariances will have slightly different formula. be-

cause of the use of t-distribution for E1. Thus, we need to compute 

,\ E [U] 

2: cov(U) 

'1/J E [V] 

S1 cov(V) 

under t-distribution for Et· The new formulas are as follows. 

A1 = E(Y1 ) = -- E((J'1) = -- e 1
, 2 [ I/ ] 2 [ 1/ ]h 

v-2 v-2 
(3.18) 

and for t ~ 2 

[ ] { ( ) 

2 ( 2(t- 1) ) } I/ /'O t - 1 /'O ar1 1- /'1 -- exp -- + {'1 h1 - -- + -
2 

. 1/ - 2 1 - /'1 1 - /'1 2 1 - 1'1 (3.19) 

(3.20) 
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Fort 2 2 

and fort 2 2 

1/Jt E[~2~,~ ~ J = Eal,az+ 1 [~
2~~~ IO"Z , O"Z+l] 
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(3.21) 

C~2 ) 2 exp { ~~~1 + ( h1 - 1 2~1 ) /'~- l (1 + /'J) +a; [(1 + /'I ) c-~~~:l ) ) + 1] }, 

Fort 2 2 
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3v 4 4 _ 3v 4 21t2 

[ 
2 ]2 [ 2 ]2 

(v- 2) (v- 4) E [!J1!J2 ] - (v - 2)(v - 4) !J1 E [e ] 

[ 
3v

2 

] 

2 
4 { 210 ( /o ) 2 } 

( ) ( ) 
!J 1 exp -- + 211 h1 - -- + 2!J,

7 
• 

v - 2 v - 4 1 - / 1 1 - / J 

Fort~ 2 

v 4 4 - v 2(h t+ht+l) 
[ 

3 2 ]
2 

[ 3 2 ] 2 
(v - 2)(1/ - 4) [!Jt!Jt+1] - (v- 2)(v- 4) [e ] 

[ 
3v

2 
] 

2 

{ 4/ o ( / o ) t-J 
(v- 2)(v - 4) exp 1 -{1 + 2 h1 - 1 -/I 11 (1 + I I) 

[ ( 
1 2(t-l)) l } 

+ 2!J~ ( 1 + / J) ~ =1
/1 + 1 . 

Then 
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For convenience, we now write an algorithm for the desired estimation, with fol-

lowing two steps . 

Step 1: Estimating 11 iteratively with 

' .. ' [ ( 8'1/;' - 1 8'1/; ) -
1 

( 8'1/;' - 1 ) l / 1(7 + 1) = l1(r ) + a nd a a nd (v- '1/; ) . 
f1 f1 f1 [Tj 

In each iteration, /o should be updated by the new 11 with 

io = 
{[53- E (logE?)] (1 -,I) - ~h~ (1 -~n } (1 -,I) 

1 ( T) 1 - /'1 - r 1 - / 1 

where 

T 

53 ~ Llog (y?) , 
t = l 
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and v should be updated by the new v with 

1/ 

Step 2 : Estimating O"~ iteratively with 

This two step circle of iterations continues until convergence. 
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For /o = 0.05,1 1 = 0.5, O"~ = 0.25, v = 10 and 500 simulations, the estimation 

results are given in Table 3.2. It appears from this table that similar to the MM 

approach, the AGQL approach also estimates the parameters well. When standard 

errors are compared , they appear to be similar under both MM and AGQL approaches 

for the estimation of /o, / J and O"~ . However, the AGQL approach appears to estimate 

v with much smaller standard error as compared to the MM approach. 

io / 1 
T = 1000 Simulation Mean 0.03645553 0.4153435 

Simulation SE 0.05856634 0.4302302 
T = 3000 Simulation Mean 0.03828042 0.5063921 

Simulation SE 0.03791588 0.3157161 

Table 3.2: Estimation results for /o 
simulations with AGQL. 

0.05, / 1 0.5, 0"~ 

a-; 
0.1887665 
0.1732873 
0.2072618 
0.1489828 

0.25, I/ 

1/ 

9.469515 
5.950574 
10.50157 
9.251301 

10 and 500 
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We have discussed the quasi-maximum likelihood approach in Section 2.2.3 for Gaus-

sian model where, for Zt defined in (2.35), z = (z1 , · · · , Z t , · · · , zr )' was approximated 

by a mult ivariate normal distribution, even though truly log EZ follows a log xi dis-

tribution under norrnal { Et.} . However , in the present case, we assume { Et} follow 

t-distribution as in (3.3) . This change in distribution of Et influences the MQML 

estimating equations only through 11:1 = E[log EZ] and 11:2 = var[log EZ]· So for t-

distribution based SV model, the only change we need to make is to calculate E[log EZ] 

and var [log EZ] for Et "" t (O, 1, v), for replacing the 11:1 and 11:2 in Section 2.2.3 by the 

new E [log EZ] and var [log EZJ respectively, and estimate v by 

!I 
2 

2 + S2 ' 1 (94 
- s49r 

then all the other formulas remain the same as in Section 2.2.3. 

E[log EZ] was computed in (3. 13) . We now compute var [log EZ] as follows. Let 

:r "" Gamma( a , (3) and 

y = log(x) ===? x = eY. 
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The pdf of y is 

76 

J(y) {301 
(01- l )y -f3eY y _ {301 

01y - e (y+ log /3) __ 1_ 01 (y + log {3) - e(y+log(J) 

r(a ) e e e - r (a ) e - r (a) e 

1 o:tu-e1.u 

r(a )e ' 

where w = y + log (3 being a log-gamma random variable, and according to Chan 

(1993) 

E[y] E[w]- log (3 = 'lj; (a) - log(/3) 

var[y] var[w] = 7j;' (a). (3.22) 

Applying (3 .22) we now compute the variance of log EZ = log z2 - log v + log v as 

var [logEz] = var[logz2
] + var [logv] = 'lj;' (~) + 'lj;' (~) . (3.23) 

For 'Yo = 0.05, 1'1 = 0.5, CT~ = 0.25, v = 10 and 500 simulations, the estimation 

results are shown in Table 3.3. Comparing with Tables 3.1 and 3.2 for the proposed 

MM and AGQL approaches respectively, the estimation of I/ by MQML is as good 

as those from 1\!IM and AGQL approaches. However , the estimate of /'l by MQML 

is relatively much farther away from the true parameter value than the other two 

approaches, and the estimates of 'Yo and CT~ by MQML are considerably worse than 

those from the other two approaches, showing that the proposed MM and AGQL 

approaches are improved estimating methods for the SV models. 
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io i l ' .2 
(}1) v 

T = 1000 Simulation Mean 0.01815647 0.6104038 0.1500680 9.080930 
Simulation SE 0.04933629 0.4295255 0.1948482 6.594675 

T = 3000 Simulation Mean 0.02552030 0.6542555 0.1455136 9.653351 
Simulation SE 0.03669045 0.3459653 0.1671992 8.623688 
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Table 3.3: Estimation results for 'Yo 
simulations with MQML. 

0.05, /'1 0.5, (}~ 0.25, v 10 and 500 

3.2.4 Kurtosis for t-distribution Case 

To understand the volatility, that is, to understand the changes in variance pattern 

in the time series, it is recommended to examine the kurtosis of the data over time. 

See, for example, Jacquier et.al (1994, p.387) Shephard (1996, p.23), Mills (1999, 

p.129) , Ruiz (2004, p.615) and Tsay (2005, p.134) ). The kurtosis for Gaussian SV 

model and t-distribution based SV model can be calculated with (2.29) and (3.9) 

respectively, whereas it is known that Gaussian distribution based kurtosis is: "'= 3, 

and the t-distribution based kurtosis is: "'= 3(v- 2) / (v- 4). The plots of kurtosis 

fort-distribution based SV model with different v values, and for normal distribution 

based SV model are given in Figures 3.1 - 3.5. Also the standard kurtosis for t 11 

(t-distribution with v degrees of freedom) and normal distributions are shown in the 

same figures . For comparison, they are plotted with the same kurtosis range. We 

have also plotted in Figure 3.4 the estimated kurtosis with MM both for normal and 

t-distribution based SV models. 
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Note that it is expected that the kurtosis under the Gaussian SV model ( 1.1) - ( 1. 2) 

will be larger than the Gaussian based kurtosis ( = 3) . Similarly, the kurtosis under the 

t-distribution based SV model (3.1) - (3.2) will also be larger than the t-distribution 

based kurtosis(= 3(u-2)/(v- 4)). Now because t-distribution has heavier tails than 

the Gaussian distribut ion, it is expected t hat the kurtosis for t-distribut ion based SV 

model will be much larger than the simpler Gaussian distribut ion based kurtosis. 

Further note that these figures 3.1 - 3.5 provide a clear feeling on the changes in the 

magnitude of kurtosis for various t-distributions. To be specific, when v gets smaller , 

the kurtosis gets larger. Figure 3.4 shows that the estimated kurtosis are quite close to 

the t rue kurtosis as expected. This is because the MM approach produces satisfying 

estimates for all the parameters. 
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Figure 3.1: The kurtosis for the t-distribution-based SV model with parameters v = 
5, / 1 = 0.5 and a~ = 0.5 (- ) , for t-distribution with parameter v = 5 (- - - ), for the 
normal distribution-based SV model with parameters / J = 0.5 and a~ = 0.5 (- · · · · · ), 
and for normal distribution (· - · - ) . 
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Figure 3.2: The kurtosis for the t-distribut ion-based SV model with parameters v = 

6,11 = 0.5 and cr~ = 0.5 (- ) , for t-distribution with parameter v = 6 (- - - ), for the 
normal distribution-based SV model with parameters 1 1 = 0.5 and cr~ = 0.5 (- . . . . . ), 
and for normal distribution (- - · - ) . 
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Figure 3.3: The kurtosis for the t-distribut ion-based SV model with parameters v = 
8, r l = 0.5 and (]"~ = 0.5 (- ) ' for t-distribution with parameter v = 8 (- - - )' for the 
normal distribution-based SV model with parameters I I = 0.5 and o-~ = 0.5 (- · · · · · ) , 
and for normal distribution (- - · - ). 
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Figure 304 : The kurtosis for t he t-distribution-based SV model with parameters v = 
10, /'1 = 0°5 and (},~ = 005 (- ), for t-distribution with parameter v = 10 (- - - ), 
for t he normal dist ribut ion-based SV model with parameters 1'1 = 005 and (J~ = 00 5 
( 0 0 0 0 0 0), and for normal distribut ion (- - 0 -), and the estimated kurtosis for the 
t-distribution-based SV model with T = 3000 and parameters I/ = 10, 1'1 = 005 and 
(}~ = 005 (-- - ),and for the normal distribution-based SV model with T = 3000 
and parameters f'1 = 005 and(},~ = 005 (- - - -)0 
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Figure 3.5: The kurtosis for the t-distribution-based SV model with parameters v = 
15, 1'1 = 0.5 and O".~ = 0.5 (- ), for t-distribution with parameter v = 15 (- - - ), 
for the normal distribution-based SV model with parameters "YI = 0.5 and O"~ = 0.5 
(- · · · · · ), and for normal distribution (· - · - ) . 



Chapter 4 

Concluding Remarks 

To fit the volatility model, the existing GMM and QML approaches are widely 

used. However, the GMM approach uses a large number of moments [Anderson 

and Sorensen (1996, p. 350-351) , Anderson and Sorensen (1997, sections 3, p . 399-

400)] to construct the GMM estimating equations for the consistent estimat ion of the 

volatility parameters, and the QML approach uses a normal approximation to a log 

chi-square distribution that arises in the construction of the so-called likelihood esti

mating equations. In this thesis, it is demonstrated that unlike the GMM approach, 

the moment estimating equations for three volatility parameters can be constructed 

by using only three unbiased moment functions selected carefully following the nature 

or definition of the parameters. This simpler approach has been referred to as the 
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MM (method of moments) approach. As the GMM approach is complex, it was not 

included for any comparison in this thesis. We have also provided a modification to 

the QML approach by using a modified (simpler) covariance matrix involved in the 

QML estimating quation. The finite sample behaviour of the proposed MM estima

tion approach was studied intensively, and it is found that the MM approach works 

very well in estimating all volatility parameters for time series size as small as 1000. 

The drawbacks of the QML approach is discussed. An AGQL approach was also 

considered. This AGQL approach performs similarly to the MM approach, however, 

it is computationally more involved than the MM approach. All three methods, MM, 

AGQL and QML were applied to fit the SV model (1.1)- (1.2) to a real life financial 

time series with length T = 1000, and it is found that the MM and AGQL approaches 

provide relatively much better fitting than the QML approach. 

We also applied the MM, AGQL and MQML approaches to the heavy tailed t

distri bu tion based SV model ( 3.1) - ( 3. 2) , and proposed the moment estimation for 

the degrees of freedom of the t-distribution. Simulation study shows that the three 

approaches give reasonably good estimates of the model parameters including the 

degrees of freedom parameter. Finally we compared the kurtosis for the SV models 

under Gaussian and t distributions. Our results show that the estimated kurtosis 

are quite close to the true kurtosis because the proposed MM approach produces 
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satisfactory estimates for all the parameters. It was further demonstrated that the 

kurtosis under the Gaussian SV model (1.1) - (1.2) are larger, as expected , than 

the Gaussian based kurtosis ( =3) ; and similarly the kurtosis under the t-distribution 

based SV model (3. 1) - (3.2) are larger than the t-distribution based kurtosis (= 

3(1/ - 2)/(1/ - 4)). Consequently, because the t-distribution has heavier tails than the 

Gaussian distribution, the kurtosis fort-distribution based SV model are much larger 

than the simpler Gaussian distribution based kurtosis. Consequently, this heavy tails 

based SV model becomes practically useful as some financial data appear to show 

high volatility. 
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