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parameter vy. Second, we modify the existing QML approach and unlike Tagore
(2010) include this approach in the simulation study. Furthermore, all three ap-
proaches are applied to a1 7 7ze a real life dataset.

Next, we consider a t-distribution based SV model, and apply the aforementioned
estimation approaches for all parameters including a new degrees of freedom param-
cter of the t-distribution. Simulation studies are conducted to examine the relative
performances of the estimation approaches. We also compute the kurtosis of the t-
distribution based SV modcls and make an exact comparison with those of normal
distribution based SV models. The estimation effect of parameters on the kurtosis is

given for a special case.
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1.1 BACKGROUND OF THE PROBLEM 2

response 1 at a desired time ¢ conditional on its history of data is referred to as a
volatility paramecter. We will denote this conditional variance as ¢2. The modcling
of the relationship between of and the variances from the past such as of_,, £ being a
suitable lag, is however not so easy. Many authors, such as Taylor (1986), Melino and
Turnbull (1990), Taylor (1994), Harvey, Ruiz and Shephard (1994), Jacquier, Polson
and Rossi (1994), Ruiz (1994), Harvey et.al (1994), Anderson and Sorensen (1996),
and Mills (1999, p.127-128) have used a simple Gaussian type AR(1) relationship to
model such non-stationary variation. To be specific, this simple model can be written

as

Yt = Oy €, tzl, ...,T, (11)

log(e))=hy = Yo+m hor + 0, t=2,...,T, (1.2)

where in (1.1), ¢’s are independently and identically (iid) distributed with mean
zero and variance one, lLe., € e (0,1). This non-stationary variance model (1.1) -
(1.2) is referred to as the stochastic volatility (SV) model, where 7 is the intercept
parameter, 7, is the volatility persistent parameter, and 7, > N (0, o) with o2 being
the measure of uncertainty about future volatility. Furthermore, ¢,’s in (1.1) and n,’s

in (1.2) arc assuined to be independent. As a result, ¢, and o, are independent, and

y, should have zero mean (or shifted to zero). The initial variance o? at time t = 1
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can be reasonably modeled as

iid ol
log(o?) = h, £N<1 10%, - _”72>. (1.3)
1

[Lee and Koopman (2004, equ(1.1c))]. Note that this simple volatility model (1.1) -

(1.2) ensures that the kurtosis of the responses defined by

oy B
’{t(’y()a Y1 07]) - [E()/tz)]z’ (1'4)

would be larger than Gaussian assumption based kurtosis. Further note that a larger
kurtosis in practice helps to understand that there can be some larger or outlying
responses present in the data which in turn helps to understand the variation in
variances. This raises issues to know the kurtosis which requires the efficient and
consistent estimates for the parameters -, v, and 072] under the model (1.2).

Note that the original work of Taylor (1986) was confined to the univariate case,
and it was extended by Harvey et al. (1994) [see also Harvey (2013, P. 8)] as well
as Jacquier et al. (1995) and Shephard (1996) to a multivariate SV setup. To be
specific, Harvey et al. (1994) proposed a multivariate SV models where ¢ and 7
all become multivariate normal 1‘andom vectors with constant covariance matrices.
Jacquier et al. (1995) and Shephard (1996) have considered multivariate factor SV
models, where an emphasis is given to construct a small number of factors when the

multivariate observation at a given time has large dimension.
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Traditionally for the model (1.1) - (1.2), it is assumed that €’s follow N(0,1)
[Ruiz (1994), Harvey ct.al (1994), Anderson and Sorensen (1996), and Mills (1999,
p.127-128)]. Some authors such as Nelson (1988), Harvey et al. (1994), Barndorff-
Nielsen (1997), Gallant et al. (1997), Mahieu and Schotman (1998), Sandmann and
Koopman (1998), Steel (1998), Liesenfeld and Jung (2000), Anderson (2001) and
Watanabe and Asai (2001) have extended the normality assumption for € to the
heavy tailed distributions. More specifically, these authors have used ¢, ug t,(0,1),
t,(0,1) being a t-distribution with v degrees of freedom. Note that this t-distribution
assumption for e, makes the x¢() in (1.4) much larger than normality based kurtosis.
In turn, this will accommnodate much more volatility in the data.

In model (1.1) - (1.2), oy responds to negative and positive returns (y,) symmet-
rically. But in some practical situations, o, can respond to negative and positive
returns asymmetrically, which is referred to as the leverage effect [Black (1986)]. In
order to incorporate the leverage effect, Harvey and Shephard (1996) proposed an ex-
tension to the basic SV models where ¢ and 7,41 are negatively correlated, and So et
al. (2002) developed a threshold SV model where two sets of model parameter values
are considered and the model can be switched between them based on the reactions
of the individuals according to the rising and falling of the response y;. To further

allow for long memory persistence in conditional variance, Breidt et al. (1998) and
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Harvey (1998) proposed independently the long-memory SV (LMSV) model.

Note that as opposed to the SV model (1.1) - (1.2) where variances were mod-
eled, there exist another modeling approach where o} is considered to be related to
both ¢2’s and y.’s with s < t. For example, Bollerslev (1986) proposed the gener-
alized autoregressive conditional heteroscedastic (GARCH) model of order m and v
(GARCH(m,v)) given by

Yy = 07 € (1.5)

m v

o} = O[O+Zaiyt,2—i+ 6.1'03—]’7 (1.6)
i=1 1

j=
where again ¢, i (0,1), @ > 0, @; > 0, ; > 0, and Z;":lx(m’v)(ai + 3) < 1 with
a; = 0 for i > m and 3; = 0 for j > v. The difference among various volatility
models relies on how o2 is related to 02’s and y,’s with s < t. Further note that when
a; = 0 for ¢« = 1,--- ,m, the model (1.5) - (1.6) becomes ARCH model which was
introduced by Engle (1982). Due to the success of GARCH model and for alleviating
its weakness, there appeared its revised versions such as the exponential GARCH
(EGARCH) model of Nelson (1991), and the threshold GARCH (TGARCH) model
of Glosten, Jagannathan and Runkle (1993) and Zakoian (1994). Even though the

GARCH type models are popular in econometrics, there are still some weakness

and disadvantages limiting their application in financial time series. For example,
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GARCH models require the volatility to be observable, but frequently in financial
time series the volatility is not directly observable; moreover, when generalizing the
univariate GARCH models to the multivariate cases, a proliferation of parameters can
happen without a systematic and convincing approach to handle. For these reasons,
even though some authors such as Harvey (2013, Chapter 4) considered t-error based
GARCH model, we do not include this problem in the thesis.

Note that when GARCH models are compared to the SV models, the SV models
asswine from the beginning that volatility is unobservable, in agreement with the basic
properties of many financial time series, and can be naturally generalized to multi-
variate cases. The SV models also capture the main empirical properties of many
financial time scries such as uncorrelated but dependent responses, more extreme
values than normal case indicating higher kurtosis, and non-stationary variation over
time. Furthermore, the SV models agree with and are the natural discretization of
the modern continuous-time financial theory including the Black-Scholes theory and
continuous-time Orstein-Uhlenbeck process, thus conceptually promising as a tool for
applying modern financial theory to real data analysis. Therefore the SV models got
popular soon in the area of financial time series, and also have many applications in
econometrics.

In comparison with the GARCH model, the SV models involve an extra random
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variable 7y as shown in (1.2), increasing greatly the flexibility of the model in describ-
ing the evolution of o2, but also making the parameter estimation more difficult. For
example, the responses {y;} are not conditionally Gaussian now, thus difficult to ap-
ply the maximum likelihood approach for parameter estimation. Nevertheless, there
exist some widely used analytical estimation approaches, namely, the quasi-maximum
likelihood (QML) of Nelson (1988) and Harvey et al. (1992), and the so-called gener-
alized method of moments (GMM) of Anderson and Sorensen (1996). In QML, (1.1)

Is first written as
log(y?) = —1.27+4 hy + uy, (1.7)

where u, = log €? + 1.27 follows a log(x?) distribution with E(x;) = 0 and Var(u;) =
72/2. By treating {u,} as though it were NID(0,72/2), (1.7) and (1.2) form a linear
state space model, with (1.7) being the measurement equation and (1.2) the transi-
tion equation. The Kalman filter can then be applied to obtain the prediction errors
and their variances, which are used to construct the exact likelihood for conditionally
Gaussian case, but only quasi-likelihood in this case where {log(y?)} are not condi-
tionally Gaussian. Then the parameters are estimated by numerically maximizing
the resulting quasi-likelihood function. The approximations intrinsic to the QML
estimators can make them biased and ineflicient. As an illustration, Figure 1.1 gives

a comparison between normal and log(x?) densities, indicating that to approximate
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Figure 1.1: Comparison of the log(x3) density (thin solid line) with the N(0,72/2)
density (thick solid line).
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log(x?) density with a normal density is rather inappropriate. In the GMM approach
of Anderson and Sorensen (1996), with some arbitrariness, the authors first chiose
24 unbiased moment functions to construct an 24 x 1 vector, then with some ap-
proximation and still some arbitrariness, the estimator of the covariance matrix of
the vector was selected . The GMM estimating equation could then be written out
and solved iteratively. This approach is too complicated and algebraically painstaking
without showing any substantial efficiency gain in estimation [Anderson and Sorensen
(1997), Ruiz (1997)] over other competing approaches such as the QML estimation
approach, and the lack of guidelines for selecting the moment functions further makes
this approach unconvincing and less favorable.

Note that to obtain consistent estimates in a finite sample set up (i.e, for a time
series with moderate length}), as opposed to the GMM and QML approaches, there
exist several numerical approaches such as Bayesian approach by Jacquier et.al (1994)
and the simulated ML (SML) approach which is considered to be an improvement over
the so-called Markov chain Monte Carlo (MCMC) approach. For SML approach, we
refer to Danielsson (1994), Shephard and Pitt (1997), Durbin and Koopman (1997),
Licsenfel and Richard (2003) and Lee and Koopman (2004). It is, however, recog-
nized that these nuinerical techniques are computationally intensive. For this reason,

and also because in practice such as in financial or environmental analysis one may
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encounter a large time series, similar to Anderson and Sorensen (1996, 1997), Tagore
(2010) revisited the basic SV model (1.1) - (1.2) and proposed simpler alternative
inferences for the volatility parameters, as compared to the existing GMM [Anderson
and Sorcusen (1996)] and QML [Nelson (1988) and Harvey et al. (1992)] approaches.
However, the author did not consider the estimation of the intercept parameter (vy)
in the SV model, and also the model was confined to the normal based errors. In the

thesis, we further pursue this inference problem to accommodate these issues.

1.2 Objective of the thesis

Because the intercept parameter -y, in the SV model (1.2) is important to understand
tlie magnitude of time dependent variances, in this thesis, we further revisit the
normality based SV model and inference procedures studied by Tagore (2010), and
extend the estimation to include the intercept parameter y. This inference for full
family of parameters is then generalized to achieve our main goal where we will deal
with t-distribution based SV model in order to accommodate much larger kurtosis.
To be precise and clear, the specific objectives of the thesis are as follows.

In Chapter 2, we first modify the normnality based MM inferences due to Tagore

(2010) to accommodate the estimation of the additional parameter ~y, (intercept).
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The GQL approach considered by Tagore (2010) is also modified to include the es-
timation of 79. Note that even though QML approach was included in discussion,
Tagore (2010) however did not study its relative finite sample performance with MM
and GQL approaches. In this chapter, we propose a simplification to the existing
QML estimating equations by approximating the associated covariance matrix with
a simpler tri-diagonal matrix. All three approaches, i.e., MM, GQL and modified
QML are compared through a simulation study for the estimation of all parameters
including the intercept parameter . The applications of these three methods are
also illustrated by analyzing a real life data set on exchange rates of some popular
currencies.

[n Chapter 3, we generalize the above normality based estimmation approaches to
the inferences for the t-distribution based SV model parameters. This generaliza-
tion helps to make inferences for more volatile data as compared to normality based
volatile data. Therefore, to understand the reflection of larger volatility, we study the
kurtosis, and estimate them, using a t-distribution based SV model. Note however
that this generalization is challenging »ecause of the need of estimation of a further
degrecs of freedom parameter which reflects the heavy tails of the data as compared
to standard normality based volatile datd The relative performances of the MM,

GQL and modified QML approaches are compared through a new simulation study.
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The thesis concludes in Chapter 4.
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*f 2 Sie dMo 5 : 2
h*(o;) consistently by using the raw second order moment

1
S = ?ny, (2.1)

t=1

E[Y:|0?] being zero. However, in the present case, o7’s are unobservable and their log
values satisfy a non stationary Gaussian AR(1) type relationship given by (1.2), with

errors 1 u N(O, 05) This leads to the expected value of S as

T

1
ES)] = EofE[TZ%Z | o]
=1
1 T 0_2 t—2
= = [af + Z exp (*y{_l logo? + 777 Z ’yf")]
t=2 r=0
= gi(m,02,01), say. (2.2)

Thus, for given v, and g?, Tagore solved the unbiased estimating equation
S] —91(7170'72],0'3) =0 (23)

to obtain a consistent estimate for 0,2].

2

Note that the solution of (2.3) requires a good initial value for o;, which Tagore
suggests to obtain by solving an asymptotic unbiased estimating equation. It is clear
that for a suitable large Ty, for any ¢ > Ty, vi~! — 0 for |y| < 1. Further, the

expectation of y? for ¢ > Ty becomes stationary, producing

lim E[Y;?] = exp [g( ! )} (2.4)

t—o0 1 —_ ’y%

= 910(’7170;2,), say.
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Thus, if the series under consideration is large, i.e, T — oo, replacing the exact E[Y?]

for t > Ty by tlil'n E[Y?] = 910(71,03), one can consistently estimate the stationary
—00

1
T-T,

T
Z y?. Consequently, for

t=Tp+1

known v; = ¥1(0), we may obtain a very reasonable initial value for 0727 by solving

mean function, namely gi0(.) by using Sip =

S — 910(7170;2,) = 0. (2.5)

We denote this initial value of o2 by ¢2(0).

2.1.2 Unbiased Moment Estimating Equation for v,

Next, to construct an unbiased estimating equation for ~;, one notices that ~; is the
lag 1 dependence parameter in the Gaussian AR(1) model (1.2). Tagore, therefore,

chooses a lag 1 based function given by

T
1 2 2
Sy = T_lgyt—lyt (2.6)
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to construct the moment equation for ;. For this purpose, the expected value of Sy

is computed as
1 I
ElS) = EpBlm— viavi]
=2

1 2 1 U‘;zl
= = exp og o’
T7_1|% XPMogo T

I
+ZCXP< “logot +~{logot + T’{l+7 ny >J
t=3

= ga(m, 07, 0%), say, (2.7)

and the unbiased estimating equation
Sy — gg('yl,a,,?],af) =0 (2.8)

is solved iteratively for ;.
Remark on Large Sample Estimation
When time series is quite long such as T" = 5000 or more, one may obtain much
simpler estimating equations than used in Sections 2.1.1 and 2.1.2.

Note that an initial value of U,ZT was obtained by (2.5) based on large sample.
In fact, for large sample cases, one can always use this estimate. Thus, when large

sample based estimate for 7, is available, we estimate 0 by using
ae = 2(1—73})log(S), (2.9)

where 4, is the large sample based estimate for 4, to be obtained as follows.
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To construct an asymptotic moment function based estimating equation for -,
T
1 G } .
we use Sy = ——— yi_,u;, and similar to (2.4), compute the asymptotic
T-Ty—1 &
t=Tp+1
expectation of Sy by using

2

ag

. 2 21 . 2 2 __ n
Jims Bl )= a0 o) = o0 |77

- 920(,71,0-;2]), say, (210)

2

where the formula for gs(v1, 07, 07) is given in (2.7).

Hence the asymptotic moment based unbiased estimating equation for ~; is written

as
S20 — 920(’71>U727) =0, (2.11)
which has a closed-form solution

o= 11— —2—. (2.12)

The improved value of «; from (2.12) is then used in (2.9) for obtaining improved

estimate for crf). This cycle of iterations continues until convergence.

2.2 Inferences for Complete SV models

Unlike i1 Section 2.1, we now include 7, in our estimation. Thus, we develop three

estimating equations for three parameters, namely, vq, ag and 7, as follows.
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2.2.1 MM for All Parameters

In the presence of 7y, we first generalize the MM estimating equations for =, (2.7)

and o (2.2), which now contain ~, as well, as given by

T
1
E[S)] = EafE[ﬁZy?—w?]
t=2

e'YO 0'2
= [Uf exp (fn log o + —")

T-1 2
T -3
+) exp <’m L+7) > 9+ 9 logo] + 44 % log o}
t=3 {=0
o, 2 2
+o {0 +m) Z% +1}
=0
= gy, m,0% 07), say, (2.13)
and
1 T
—_ , — 2
E[Sl} = EnfE[T ;yt]
1 T t—2 o2 t—2
= ?{of+Zexp (7{_1logof+702’ﬁ 7727 )]
t=2 =0
= g1(7017170-72,a0-‘1‘2)7 say. (214)

Because v is unknown, it is important to estimate this parameter consistently. For

this purpose, define

T

|
S5 = 72 log(u), (2.15)

t=1
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and notice that

_ Yo _11—7T
E(S,) = (1_%) (1 Tl_%>+

where £, = E (loge?) = —1.270363. By equating E(S3) to Sz and solving for v, we

obtain the MM estimating equation for 7y, as

30 = {(Ss — K1) (I =) — %l(l)g(gf) (1 - 71T)} (1=m) . (2.16)
1=y —75(-9)

For convenience of computation, we provide an estimation algorithm as follows.

Step 1. For a small initial value v; = «,(0), we calculate v,(0) by (2.16) and then

2
n

clhioose the initial value of 03 = 02(0) by solving the asymptotic unbiased estimating

equation (2.5). To be specific,

o310 =2 (1n(5i0) - 7200 ) (1= 200, (217)

Step 2. Once the initial values are chosen/computed as in Step 1, we solve Sy —
92(v0, 71, a?], 0?) = 0 iteratively to obtain an improved value for ;. Note that in large
2

sample case, one may ignore o2 or put a small value. The iterative equation has the

form

) . 9g2(v0, 11,00, 05)\
71(7‘+1)=71(r)+[< 2(08711 ’ 1)) (Sz—gz(%m,aﬁ,af)ﬂ o (218)
]

where 41(r) is the value of 4, at the rth iteration, and [.]; denotes that the value of

the expression in the square bracket is evaluated at v; = (7).
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Step 3. In this step, we estimate ~y. For this, we use the estimate of ; obtained
from Step 2 in MM equation (2.16) for ~,.

Step 4. The estimates of 7y and v, obtained from Steps 2 and 3 are then used to solve
51— g1(v0, M, 02, 01) = 0 iteratively to obtain an improvement over o7(0), computed

in Step 1. The iterative equation has the form

| a b 70-270-2 -1
&3<v-+1>=a—3<r>+[( 91000 1, 9 ”) (sl—.qlmom,o—?,,af))} (219
{r]

2
(90”

where 62

»(r) is the value of o7 at the rth iteration, and [.];; denotes that the value of

the expression in the square bracket is evaluated at o2 = 62(r).
This 4 steps cycle of iterations continues until convergence. Let the final estimates

for 7y, v and 0;27 be denoted by 4o arar, Y1000 and 572,,1\41»17 respectively.

2.2.2 An Approximate GQL (AGQL) Approach for the Es-
timation of Parameters

Tagore has also used an approximation to construct a GQL approach following Su-
tradhar [Sutradhar (2003, Section 3.1)] for the estimation of two parameters ~; and
072]. To save space we do not reproduce these equations. Rather, we now modify these
equations by accommodating vq. Note that 49 will be estimated as before following

the moment equation (2.16). For the purpose of approximation, we first write the




2.2 INFERENCFS FOR COMPLETE SV MODELS

22

GQL estimating equations for v, and a?] as functions of vy as follows.

Comnsider two basic vectors of statistics as

9 2 27 , 129 2 9 2 a9y
w=[yi, - Y- ypl, and v =1[yiys, . Yi1Vise > Y 1Y7)

respectively. Let

I3

A(10,7,02) = E[U]=[A1,. ., Ay A

(% (’70,’71,03) = E[V] = [’¢’12,~--,T/)t—l,u-~-7’(/)T—1,T],»

and

b)) ('yo,'yl,of,) = Cov(U), Q ('yo,'yl, 0‘3) = Cov(V).

(2.20)

(2.21)

(2.22)

One may then write the GQL estimating equations [Sutradhar (2004)] for ag and v,

as

0/\’ Yo, Y ’0-;2 - : ;

P ) (03 o)) = 0

81/’/ ('YO~7170127)
O

Q~1 (70,’717 0-12]) (V - /([) ('7()7 T, 012])) = 0

respectively.

(2.23)

(2.24)
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In (2.21),

M (v0im,0p) = BV = B E[Y/|o}]

o2 for t=1
= 0_2 t—2 (225)
exp {1—_7% + 47 (log o2 — =)+ ?77 Z'yfr} fort=2,...,T
r=0
[see also (2.2)], and
(I (70,717 072,) = E[Ytg—lytz] = Eo?_l,ofE[)/tz—l)/tg‘atz—hatz]
( 0_2
of exp [71 logo? + 7”} for t=2
exp [% 4 A2 <log ot — 11(1“) + it <log o? — 11%)
02 t—3
+5 ((1+%)sz$’+1>} fort=3,...,T
1=0

(2.26)
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Note that the diagonal elements of ¥ ('yo, V1,0 ) matrix may be computed by using

Ot (’70,717 ) Vdr[Y ]

;

3of — A2 for t =1
3 exp [ - 4 2 <log o? — ) + 20300 A
\ —\? ('yo,'yl,a;‘;) fort=2,....,T,
(2.27)
and for lag & = 0,,...,T — 1, the off-diagonal elements of the ¥ matrix may be
computed by using
Ottt (’7’0;’71,03) = COV[Yt27 YfQ—A]
U%/\t (7077170-72]) - /\1/\t (7077170-2) for t = ]-a
= exp [170— + 4t (logo% - ) 4 A=Al (loga'i2 — 1—:%)

However, unlike the elements of ¥ ('yo,'yl, ) the computation of the elements of

Q ('yo, Y1, 0,2]) is very complicated, resulting in further difficulties for Q! ('yo,’yl, 0‘3).

2 t—k-2 —
( 14 9f)° Z " +ny}”)] — Ak (Y0, 71, 92) Ae (Y0, 71, 03)
r=0

fort=2,...,
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In (2.31),

Var[Y2, Y]

’

I

90} exp [1%7% + 2, (log o? — 1—3%) + 20,2]} — 2, (70”71, 0'72,) for t=2

9 exp {1—4_72— + 2(%‘2 (log of — 1—“’_07) + i (log ot — 1_7_%) >
+203((1+%)2 st + 1)] — 921, (0,11, 02) fort=3,...,T,
\

where ¢y 14 (v, 1, 07) Is given in (2.26).

The approximation based GQL (AGQL) estimating equations have the forms:

N (70-71, 0;2,)

803, E«Il (’7077170";2]) (u - A ('707'717 (7,27)) = 0, (2.33)

and

Ollv/)l (’YOa 1, 0'72])
I

le (’70’71’ 072]) (V - 1/) (’70a Y15 03,)) = O, (234)

for o2 and 7, respectively.

Note that ~y is estimated by MM as in (2.16). Thus, after each estimation of v,
by (2.34), 4o has to be updated by (2.16).

Let the final estimates obtained from (2.16), (2.34) and (2.33) be denoted by

~ ~ . ~92 " i+
Y0,AGOLs M1.4crL and 0,.4GQr respectively.
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The formulas for the first derivatives in (2.34) and (2.33) are given as follows:

The first derivatives of 3,1, (’yo, ’yl,ag) w.r.t v for t = 2 is given by

Cr)/(/f’] 2 (’y()v T, Urzl)
om

= 12 (y0.m,0%) logoi,

and for a general t = 3,...,7, the derivative has the expression as

albt—l,t (70» 1, 0-3)
omn

(1—m)

[(t—2)1 + )y + 4477

1- Tt
(t — 2y logo? + (t — )i 2log o}

i
+

N5 E

t—3
(2 L+m) Y A+ (1 +m)?
=0

=0

The derivative of Ay w.r.t o} is

0/\1 (’)/0,’)/1’0';2]) _ 0 fort=1

do? 5
7 NS 24 fort=2,...,T.

r=

= Y1y (’70,7’1,0727) [LQ [2 - (1+ ’Yl)’Yi_Q]

-3
(20 Y

)}

We remark that the AGQL estimating equations for v (2.34) and (772] (2.33) are

similar to the well known weighted least square (WLS) equations for the corresponding

paraineters.
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2.2.3 A Modified QML (MQML) Approach for All Parame-
ters

Note that so far we have made improvements over the MM and AGQL estimation
done by Tagore (2010) by accommodating o parameter. We have also estimated
this v parameter by the method of moment. As mentioned earlier, there also ex-

ists another widely used so-called QML (quasi Maximum likelihood) approach which

estimates the three parameters, g,y and 0;2,, through a Kalman filtering approach,

where predicated errors are used to form a conditional likelihood to obtain the like-

lihood equations. The existing QML approach is numerically not so cumbersome
as compared to the GMM approach. However, because of nornial approxiniation to
the log chi-square distribution, it may not produce efficient estimation in all possible
situations,

Further note that for an asymptotic comparison with the proposed simpler MM
approach, Tagore (2010) has simplified QML cquations for the estimation of v; and (7,2].
We however find that these estimating equations in Tagore (2010) can be improved
for numerical approximation by modifying the so-called covariance matrix ® to be
discussed below. This modification matnly aims to use a band forin for this ® matrix.

Furthermore, unlike Tagore (2010), we include v, parameter in the proposed modified
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The new formula for m,; and ®,, are as follows:
mi = E(z)=h+ E [log(e})] = h1 + 1,

and fort > 2

Yo (1= _
my = E(z)= (1 71 ) +7i Yhy + Ky,
-7

where k) = E [log(e})] = —1.270363.
@y, = var(z) = var(h; + log(e?)) = ko,
where o = var(log(e?)) = n2/2, and for £ > 2

By = cov(z,z) = B[(z1 — B(21)) (2 — E(2))]
= E[(log(e}) — x1) (m +m—rm1 + -+ 12917 % + (log(ef) — k1))
Y

= var(s) = B [(2 = B()] = B[ (b — B(=) + log(e}))’]
= B [{m e+ ey + (log(e]) — m)}g]

= o} [1+7§+---+7f“‘2’J + K
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and for 2 <u <t

D, = cov(zy, ) = Ef(zy — E(2.)) (20 — E(2))]
=F [{7]u + y1y1+ o+ 7]27{‘*2 + (log(eﬁ) - nl)}
{m+m-am + -+ + (log(e) — 1) }]

_ U?, h;x+t-4 + ,ﬁ+t—6 bt ,yi—u]

t—u u+t—2
— 2|7 T
I A

It then follows from (2.36) that the quasi maximum likelihood (QML) estimates for

~1 and 0;2] can be obtained by solving

0 log Lz) (’70) 1, 0-,5) — 0
o do;;

_810;2 L*Q_('yﬂ, Y, 072’)

=0, (2.37)

Defining [ = log Ly, ('70, Y1, (772]), we have

ol 10log|®|  d(z —m) 1 ,0P!

= O Nz—m)— Z(z—m z—m
On 2 Om om ( ) 2( ) Om ( )
ol 10log|®| 1 ,00~1
9o = 3 ooz 2 ™M gz m)
Because
Jlog | D { _10@)]
——— = trace |® —
o om
op~! B _@7192®_1

omn a omn
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and so on, we write

ol 1 od om'’ 1 0P
— = — —trace |®7 ' —— (2 — —(z—=m)® ' —® (2 -
o 5 trace [ (971} + o (z —m)+ 2(z m) o (z —m)

(2.38)

Al

OO’,‘]

1
= — —trace q)—l
5 r'1(9|:

0P 1

We further define

and need to compute

82 51
0%l om?® 071007

Jada’

32 52l
Imdol b2 2

for the QML estintation of v, and 037. To be specific, to solve the likelihood equations,

natuely,

ol
= =
Do )

for «r, we use the Taylor’s expansion

ol D%

da + 8&8@’(a"ew —a) =0,
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leading to the Newton-Raphson iterative equation

st = 0y — [(%)d (%)] | (2.40)

(]

The formulas for z—- and 2 are given in (2.38) and (2.39), respectively. The second

order derivatives can be computed as follows.

_ ?;;71/ ‘lg—ié_l(z —m)+(z—m) aa(ill gfi@ Yz —m)
+ %(z - Tn)’@_lg—iz%@_l(z —m)
=— %traee {0;_11 g—i @_laj%} + gzrln;@_l(z —m) + %:—ilaal;i(z —m)
gl m)® 50— )
0002,252 __ %a%g (trace {qug:%}) bz m)'a(;l;l %@*1(3 —m)
__ %traco [%‘I;—;%] (s —m) 8;;; gf;@ 1z = m),
where we applied 2% = 0 and £ = 0.
070120103, - %“m [%% - _187012;;%} - gzlq’_laa;qﬂ(z -
+(z—m) 0;11 gf;@ Yz —m)+ %(z — m)"b_laiz(;pggqfl(z —m).
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We now provide the formulas for all the first and second order derivatives that we

need for (2.40).

8m1 . 87711 -0
8’71 B (90’,2, -
Fort > 2
om; 1=~ =t =11 — )i 2 =2
o E (1 —m)? - Do
B T—y ™ (= -2
- Ll'%)g L=m =D
ony
9z~
9*m. 2(1-71) (1= 7)==y 2 (1—m)? M= P (1)
o o { (1-m)* — (-1 [ 1 (1—711)2 1 }

+H(t = Dt = 2y

Fort=1,.-.,T,

o0, 0%y, 0
6’71 - 80',2] e
For t > 2
r 2(t—1 9t ;
oo 7 (1=7) = = D9 =)
Is = 0
o ! (1—7)?
B 2(t—1
202 20} (1 — )> (t — 1)y33
e O" —_ r
' (1—-71)? (1 =%)
Ad., 1 ')/12('5“1)
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For2 <u<t
a(I)-ut _ 2'71 (’V1 — t+u 2) (1 — ryi‘z) [(t _ u),yi—lb—l (LL ‘l"t 2),}/u+f 3]
on B (1-— 7%)2
_ 2 t o t+“_l) (t — VT (e — 2)*#“‘3
(1 =) (=)
aq)ut B ,.y —u u.+t;2
doz — 1- 7? ‘
Fort > 2
2 1 — 2(t—1) _( 1) 2t— '3(1__ 2
a (I)tt o 271 71 ")/1 f}/l)
(9’7100'72] (1 B 712)2
(Do2)? o
22
0@, [H0 =D (1-270) + - 26— s (- a))
2 = 20—71 I
(On) (=)
—(t _ 1) T ( )71 ( 71)}
(1- 71)
42 (1 = 2(t—1) 1—(2 D~22] (1 — ~2
, |4 7 + 1= (2t = 1) (1 —9d)
20,
(1— 'Yl)
N AL s
(1- 71)
For2<u<t

D*D _2m ( fmu _ yHu=2y (1—~2) [t — u)'yf”“_l — (4t — 2323

AP,
(00 )
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0,

(Om)?

2 [0 = )y (T =) A [ ut D = (ud - 1t (1 - %)

! (1 -~

2[(t—u)y T = (=27 T T (1) [(E—w) (t—u— 1)y} T - (ut=2) (ut =3 }
(1-2%)°

. [24(7§ G [ ut Dy = (w = D) (1 - +

! (1— ’YL)

2[(t—w)yy = (=D T 2+ (1) [ (t—u— 1)y T TR (u = 2) (utt=3) 4}

(1_71)2

Note that in each iteration using (2.40), v, is updated by the new v, with (2.16).

Proposed Band Modification for &

Computation using full dimension of ® is cumbersonie and time consuming. This is

especially true when inverting ®. For this reason, we approximate ® by a tridiagonal
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band matrix

0O o0 0 0 0 - Dprora Prara Proar

0 o o o0 0 - 0 Groy 7 brr

Then the determinant of @ is given by the recursive formula
(16t{(b]{l,--' np o = (I)nn det[(p]{l, n—1} — q)n,n—lq)n—l,n det [(I)}{], n—2}-
Because @ is symmetric, it then follows that

det[®] (1, ) = Ppu det[®(1 no1y — P2y, det[®](1,. o2y (2.41)

n—1n

Here det[®](;, . k) denotes the kth principal minor, that is, [®]; ... »} is the submatrix
formed by the first & rows and columns of ®. If we also define det[®] ; = 0 and
det[®@]y = 1, then the formula can start from n = 1. Note that the tridiagonalization
makes the computation quite manageable as opposed to dealing with full ® matrix.

In Usmani (1994), he gave an elegant and concise formula for the inverse of the
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tridiagonal atrix ® as

(=) P i1 Pigriga - Py i1y /0, 1 <],
(7, = { i /Or, = (242)

(=)0, ;Do jr1 - Piimabi_ 1041 /07, > g

\

Here 6; = det[®]f1,.. 55, ¢ = 1,--+ , T, and the sequence {¢;} is defined by the recur-

rence formula

¢i - q)ii¢i+1 - q)i,i+1(bi+l‘i¢i+2a Z = T7 T - 17 T 137 2) 1

Or =1, ¢’I‘+2 =0. (2-43)

If ! is approximated by a band matrix, then computing ®~! is relatively easy.

Because the log likelihood in the present setup has the formula given by
* 1 1 Id/—1
l=log Ly =co— 5 log |®| — 5[(: —m)'®7 (2 —m)], (2.44)

we may now apply (2.41) and (2.42) to (2.44) and compute the likelihood function
in an easier way. Note however that computing |®|, which appears in the formula
for every element of ®~!  is still not so easy. Following Usmani (1994), we develop
below a shmpler formula to compute ®~'. This revision of the formula, i.e., alternative

derivation of @71, is given as follows:
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Eq. (2.41) can be written with 6; as

0.1 =0, =1

0 = @46 — @iy 1Py ibi0, 1=1,---,T. (2.45)

Divided by #;_, it becomes

; Bio\
- (I)u (I)i i— (I)i— i
01 e (91'«2)
Defining
t;
u; = N
B
then we have
th
(41 o 1 11
Uu; = (I)ii — @i,i_l@i_l,iuf_ll, 1= 2, AN ,T . (246)
Dividing Eq. (2.43) by ¢4, we obtain
i Gira Dit1 1
— =0, =D 1 Piy = = —.
¢‘i+1 L ¢i+1 ¢z (1)111' — @i,i_‘_l@i_{_] iil+2
P41
Defining
Gita

Giv1 ’
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we have

1 1 _ P12

] = = = O, 247
Oy — Dy 11 Pigr v e ( )

9 UT -
(I)TT ¢T+1

Note that u;’s are the quotient of the neighbouring principal minors, and v;’s are the
similar thing for the submatrices starting from the opposite conner of the matrix @,
so they should be real numbers small enough to be processed by computers.

According to Usmani (1994), we have
Or = 00541 — Pjs1;Pj 41010542, J=T1,T 1, ,2,1, (2.48)

which can also be derived as follows:

G Dy 0 0 0 0 0 0
By By Poy O 0 e e 0 0 0
0 (1)23 q):m by, 0 . A ce PR o 0 0 0
0 0 Dy by Dy oo - cee see e 0 0 0
d = T T
Pijr Py Piyn
Pyt
0O 0 0 0 0 o0 .- ... e Bplggny By By
0 0 0 0 0 0 by g Doy
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Determinant of @ is the summation of a series of terms. Observing this matrix, we

have the following statements that in these terms,
e &, ,; and ®;;_; must appear together;
e &;.. and $;,,; must appear together;
o &;; anyof ®;_;; and ®,;_,, or any of ®,;;, and ®,,, ; cannot appear together.

So we have

|®| = summation of terms without ®; ;11 and @4

+ summation of terms with ®,;,, and ®,4, ;
= i1 — 1 Pj 10510542 -

According to Formula (2.42), for i < T,

((I)_l) _ 9i—1¢i+1 _ 1
@ Oidiv1 — Pig1:Piiv10i—10i42 Y F S

i1 Litl,
1

b
w; — Piy1,i P

and
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For i < j, according to Formula (2.42), for j < T,

((1)_1) . (_1)i+jq)i,i+lq)i+l,i+2 o "Dj—l,jHi—1¢j+1 — (—1>i+jq)i,i+l(pi+l,i+2 e '(I)j—l,j
ij o ¢

. .. . . 0'.
00541 — Pj41,;Pj5+165-10512 7 Py P

1 Vil Yyl

(=D ® i1 Pigrir2 - Py

bl
Wi~ ’ILJ' - (I)j+1,j(1)j‘j+lui e ’U,j_l'l)j

+T
(=1)" D i1 Pirigo Proar

U+ UT

(@) =
Since ® and ®~! are symmetric matrices, the above formula define the whole ®~!.
We can see that these formulas contain only u;’s and v;’s without 6;’s and ¢;’s, so
they can be processed by computers. We numerically tested the program to invert
® with these formula. The order of the maximum element differences between @1

and the identity matrix are given in the following table for different 7.

T 10 100 1000 3000 |

order of difference | 1071 10~ 1013 1012

The formmula for calculating the second derivatives of log-likelihood [ are revised

for this approach as

2‘ (I) 2 207 / a}
5} 12 =—1—trace o1 0 o1 ae qua <12> 0 m2<I>“1(z ) — om (I)_ldm
a’h 2 8’71 8’71 84! (971 871 871 |
om’ 0P od od |
— ' —d - m)—z—m)P T —d 'z —m |
om o ( )~ ) o o ( ) |
1 0’
—(z—m)d ' —d (2 - :
+ 2(2 m) . (z—m) (2.49)
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ot 1 L 00 0D 0% 0%
— Ztrac 1o 1 | (2 —m) — 9 —d - 2.50
527 2trdce [CIJ 802<I) 802] (z—m)'® 952 902 (z—m) | )
n U n 7 n
0%l 1 od ov 9%P om’ od
=_trace |[®7!—@71_— — ¢! — Ol —— (2 -
oot 2 race[ an 907 (97100,2,} Em 907 (z —m)
oP 0P 9P
e mY P 1 (s Ay —mYd! Ly —m).
(z—m) o 307 (z—=m)+ =(z —m) 602 (z —m)
(2.51)

Since @ is a tridiagonal matrix, the elements of ®~! goes to zero with the increase
of the distance of the elements from the diagonal line, which we call off-diagonal
distance. So we can approximate ®~! with a band matrix of half-band-width p, i.e.,
(@°Y),; = 0if [j — i| > p. The half-band-width of the tridiagonal matrix @ is 1.
Note that under this proposed MQML approach, we still estimate 7y by us-
g MM estimating equation (2.16), and v, and (7,27 are obtained by solving the
MQML estimating equations (2.40), with second order derivatives calculated by

(2.49)-(2.51). For convenience, we denote all these estimates under the MQML ap-

. 5 — (A 22 - . :
proach as apgarr = (71,1\1QML, UT]’MQML) and Yo arQarr respectively.
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2.3 Illustration of the Estimation Approaches: A

Simulation Study

Recall that the existing GMM approach is cumbersome and can be less efficient as
compared to the proposed MM approach. Note that the proposed approaches, the
MM approach in particular, are much more simpler than the QML and GMM ap-
proaches. Similar to Tagore (2010), in this section, we examine both small and large
sample estimation performances of the proposed MM and AGQL approaches through
a simulation study. The difference between Tagore (2010) and the present simulation
lies in the fact that we are now also estimating g, whereas Tagore (2010) evaluated
the performance of the estimating methods only when vy = 0. For the purpose, we
choose T as small as 200, and several finite but large values such as T = 1000, 2000,
and 3000. Note that these values 0. . are chosen to indicate that unlike the existing
GMM approach (where length of time series requires to be infinitely large such as T
=10,000 or 15,000, ..., and so on), the proposed approaches produce good estimates
based on a practically reasonable length of the time series.

In the small sample case the initial variance o? will have some effects on the
estimation of the main volatility paramcters, as expected. We assume that it can

be estiamated effectively from previous data, then since log g? is assumed to have a
3 1
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normal distribution with mean ~o/(1 — 71) as shown in (1.3), we choose the value of
Y0/(1 — ;) for log(o?) in our simulation study. Now, to examine the small sample
estimation performance for ~g, v, and as by the MM approach, we solve the MM
estimating equation (2.8) for v, and (2.3) for cr%, iteratively, 7o being updated by
(2.16) after obtaining new +;. For the large sample case, we solve the asymptotic
estimating equations (2.11) and (2.17) for v, and 03, respectively, and still update
by (2.16) after obtaining new ~;. The simulated means (SM) along with simulated
standard crrors (SSE) for the MM cstimates based on 500 simulations are reported
in Tables 2.1 - 2.3. For the estimation of v, v; and ag by the AGQL approach, we
solve the AGQL estimating equations (2.34) for 1, and (2.33) for o7, iteratively, and
update vy by (2.16) after obtaining new 7. Note that these equations are available
for both small and large T. The simulated means and their standard errors for the
AGQL estimates are given in Tables 2.4 - 2.6.

The columns 6 to 9 in Tables 2.1 - 2.3 show that for a reasonably large time
series with length between T= 2000 and 10,000, the proposed MM approach performs
very well in estimating o, v, and 0727. This is a big improvement over the existing
GMM and MQML approaches mainly because of the fact that proposed MM approach

is simpler and computationally quite efficient. Also, unlike the existing GMM and

MQML approaches, the MM approach does not encounter any convergence problems.
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Table 2.1: Simulated mean (SM) and simulated standard error (SSE) of MM estimates

for selected parameter values based on 500 simulations.

Time Series Length (1),

Paramecters  Quantity 200 500 1000 2000 3000 5000 10,000
Yo =0.05 SAI 0.0318 0.0395 | 0.0409 0.0487 0.0478 0.0488 0.0492
SSE 0.0967 0.0779 | 0.0606 0.0428 0.0341 0.0253 0.0180

v =0.25 SM 0.2500 0.2151 | 0.2190 0.2267 0.2510 0.2550 0.2555
SSE 0.3706  0.3405 | 0.3014 0.2543 0.2224 0.1774 0.1231

U?, =(.25 SM 0.3227 0.2693 | 0.2537 0.2399 0.2378 0.2421 0.2461
SSE 0.2097 0.1474 | 0.1213 0.0866 0.0810 0.0639 0.0435

Yo —u.uo oM 0.0361 0.0434 | 0.0518 0.0486 0.0508 0.0503 0.0498
SSE 0.1201 0.0835 | 0.0606 0.0434 0.0351 0.0241 0.0188

v =0.25 SM 0.2180 0.2415 | 0.2282 0.2419 0.2505 0.2462 0.2485
SSE 0.3501 0.3133 | 0.2463 0.1789 0.1478 0.1288 0.0921

(7;2, =0.5 SM 0.5195 0.4706 | 0.4644 0.4900 0.4802 0.4880 0.4934
SSE 0.2937 0.2209 | 0.1552 0.1092 0.0873 0.0708 0.0493

Yo =0.05 SM 0.0425 0.0479 | 0.0486 0.0477 0.0508 0.0500 0.0511
SSE 0.1527 0.0989 | 0.0658 0.0484 0.0351 0.0278 0.0198

v =0.25 SM 0.1664 0.1978 { 0.2087 0.2190 0.2279 0.2376 0.2502
SSE 0.3000 0.2491 | 0.2067 0.1532 0.1236 0.1133 0.0996

0;2] =1.0 SM 0.9458 0.9485 | 0.9676 0.9910 0.9947 0.9970 0.9841
SSE 0.3770 0.2889 | 0.2066 0.1577 0.1186 0.1111 0.1008

Yo =0.05 SM 0.0536  0.0430 | 0.0517 0.0484 0.0495 0.0489 0.0492
SSE 0.1073 0.0694 | 0.0524 0.0335 0.0281 0.0237 0.0149

v =0.5 SM 0.3010 0.3945 | 0.4409 0.4790 0.4826 0.4974 0.5058
SSE 0.3597 0.3493 | 0.2909 0.2363 0.2055 0.1768 0.1208

0;2, =0.25 SM 0.3561 0.2733 | 0.2597 0.2469 0.2456 0.2435 0.2457
SSE 0.2287 0.1777 | 0.1353 0.1127 0.0926 0.0822 0.0586

Yo =0.05 SM 0.0576 0.0510 | 0.0502 0.0516 0.0508 0.0498 0.0498
SSE 0.1239 0.0822 | 0.0503 0.0331 0.0275 0.0233 0.0166

v, =0.5 SM 0.3780 0.4222 | 0.4502 0.4677 0.4761 0.4980 0.4965
SSE 0.3412  0.2882 | 0.2336 0.1785 0.1617 0.1379 0.1001

O';‘); =0.5 SM 0.5309 0.5038 | 0.5012 0.4992 0.4967 0.4875 0.4948
SSE 0.3015 0.2531 | 0.2023 0.1528 0.1270 0.1190 0.0816

Yo =0.05 SM 0.0631 0.0571 | 0.0530 0.0570 0.0513 0.0538 0.0518
SSE 0.1547 0.0899 | 0.0631 0.0388 0.0332 0.0265 0.0182

y1 =0.5 SM 0.3181 0.3853 | 0.4187 0.4446 0.4560 0.4705 0.4859
SSE 0.2837 0.2315 | 0.2007 0.1522 0.1387 0.1371 0.1120

(7,2, =1.0 SM 1.0633 1.0220 | 1.0280 1.0316 1.0264 1.0088 0.9962
SSE 0.4482 0 ¥?R2> 1 o010 (0.2334  0.2063  0.2176  0.1738
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Table 2.2: Table 2.1 Contd....

Time Series Length (T)

Porameters  Quantity 200 000 1000 2000 3000 5000 10,000
7 =0.1 SM 0.0757 0.0856 | 0.0958 0.1012 0.0965 0.0987 0.0996
SSE 0.1241 0.0967 | 0.0637 0.0535 0.0405 0.0321 0.0225

71 =0.25 SM 0.2199 0.2104 | 0.2172 0.2247 0.2533 0.2600 0.2474
SSE 0.3547 0.3443 | 0.3005 0.2455 0.2183 0.1708 0.1259

0;2/ =0.25 SM 0.3329 0.2770 | 0.2507 0.2435 0.2405 0.2425 0.2468
SSE 0.2152 0.1604 | 0.1149 0.0861 0.0792 0.0628 0.0419

v =0.1 SM 0.0911 0.0932 | 0.0969 0.0978 0.0995 0.1006 0.1000
SSE 0.1354 0.0979 | 0.0664 0.0450 0.0386 0.0293 0.0201

v =0.25 SM 0.2289 0.2117 | 0.2438 0.2308 0.2473 0.2438 0.2474
SSE 0.3400 0.3053 | 0.2455 0.1833 0.1524 0.1247 0.0859

rf?] =0.5 SM 0.4937 0.4755 | 0.4726 0.4932 0.4877 0.4921 0.4964
SSE 0.2903 0.2044 | 0.1551 0.1145 0.0903 0.0756 0.0487

v =0.1 SM 0.0978 0.1219 | 0.1067 0.1012 0.1031 0.1007 0.1012
SSE 0.1551 0.1042 | 0.0729 0.0493 0.0401 0.0321 0.0232

v =0.25 SM 0.1731 0.1768 | 0.2081 0.2267 0.2221 0.2426 0.2428
SSE 0.3031 0.2420 | 0.1966 0.1500 0.1207 0.1251 0.0881

05 =1.0 SM 0.9223 0.9364 | 0.9710 0.9814 0.9946 0.9865 0.9955
SSE 0.3892 0.2716 | 0.2058 0.1489 0.1130 0.1221 0.0737

v =0.1 SM 0.1113 0.1182 | 0.1071 0.1061 0.0963 0.0993 0.0985
SSE 0.1339 0.0969 | 0.0759 0.0521 0.0388 0.0358 0.0255

v =0.5 SM 0.2930 0.3529 | 04347 0.4542 0.4991 0.4914 0.5046
SSE 0.3689 0.3367 | 0.3025 0.2213 0.1986 0.1743 0.1293

0,2/ =0.25 SM 0.3380 0.2901 | 0.2522 0.2570 0.2447 0.2473 0.2447
SSE 0.2152 0.1688 | 0.1385 0.1076 0.0968 0.0838 0.0620

o =0.1 SM 0.1056  0.0999 | 0.1082 0.1021 0.1006 0.1017 0.0996
SSE 0.1378 0.0853 | 0.0659 0.0449 0.0362 0.0316 0.0231

¥ =0.5 SM 0.3530 0.4366 | 0.4406 0.4715 0.4879 0.4939 0.5034
SSE 0.3511 0.2872 | 0.2381 0.1796 0.1514 0.1297 0.1029

(I',Z, =0.5 SM 0.5462  0.4943 | 0.5010 0.4993 0.4959 0.4889 0.4882
SSE 0.3319 0.2501 | 0.1943 0.1553 0.1320 0.1104 0.0848

Yo =0.1 SM 0.1471 0.1245 | 0.1148 0.1100 0.1055 0.1041 0.1021
SSE 0.1613 0.1012 | 0.0699 0.0474 0.0392 0.0315 0.0270

v =0.5 SM 0.3281 0.3763 | 0.4153 0.4554 0.4644 0.4816 0.4877
SSE 0.2928 0.2422 | 0.1888 0.1574 0.1417 0.1275 0.1136

a;“; =1.0 SM 1.0251 1.0492 | 1.0439 1.0145 1.0107 0.9980 0.9971
SSE 0.4599 0.3811 | 0.2911 0.2373 0.2079 0.1982 0.1804
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Table 2.3: Table 2.1 Contd....

Time Series Length (T)

Parameters  (guanuivy aun 500 1000 2000 3000 5000 10,000
0 =0.2 SM 0.1597 0.1901 | 0.1962 0.1985 0.1981 0.1975 0.2006
SSE 0.1505 0.1253 | 0.1002 0.0786 0.0631 0.0474 0.0330

1 =0.25 SM 0.2192 0.2089 | 0.2334 0.2446 0.2435 0.2531 0.2471
SSE 0.3700 0.3454 | 0.3141 0.2636 0.2147 0.1672 0.1180

03 =0.25 SM 0.3422 0.2732 | 0.2481 0.2377 0.2460 0.2414 0.2483
SSE 0.2201 0.1614 | 0.1217 0.0913 0.0757 0.0592 0.0419

o =0.2 SM 0.1858 0.1988 | 0.2061 0.2016 0.2027 0.1979 0.1997
SSE 0.1562 0.1210 { 0.0879 0.0601 0.0511 0.0392 0.0289

v1 =0.25 SM 0.2016 0.2151 | 0.2184 0.2397 0.2318 0.2506 0.2513
SSE 0.3433 0.3210 | 0.2421 0.1845 0.1489 0.1348 0.0921

0;2, =0.5 SM 0.5092 0.4685 | 0.4827 0.4829 0.4953 0.4918 0.4981
SSE 0.2779 0.2138 | 0.1625 0.1028 0.0932 0.0791 0.0518

v =0.2 SM 0.2144 0.2159 | 0.2072 0.2033 0.2039 0.2016 0.2037
SSE 0.18%2 0.1144 | 0.0815 0.0570 0.0476 0.0422 0.0285

v =0.25 SM 0.1635 0.1927 | 0.1957 0.2197 0.2354 0.2489 0.2410
SSE 0.3036 0.2322 | 0.1854 0.1495 0.1315 0.1189 0.0795

o?, =1.0 SM 0.9455 0.9599 | 0.9900 0.9935 0.9873 0.9746 0.9947
SSE 0.4156 0.2741 | 0.2000 0.1542 0.1309 0.1061 0.0708

Yo =0.2 SM 0.2248 0.2502 | 0.2224 0.2061 0.2036 0.1978 0.1970
SSE (.1837 (.1520 | 0.1155 0.0964 0.0764 0.0681 0.0471

41 =0.5 SM 0.3122 0.3450 | 0.4250 0.4737 0.4830 0.4994 0.5053
SSE 0.3802 0.3364 | 0.2853 0.2409 0.1945 0.1760 0.1223

03 =0.25 SM 0.3621 0.2878 | 0.2631 0.2484 0.2484 0.2452 (.2444
SSE 0.2420 0.1648 | 0.1360 0.1127 0.0946 0.0830 0.0590

vy =0.2 SM 0.2513 0.2317 | 0.2143 0.2082 0.2090 0.2084 0.1974
SSE 0.1887 0.1385 | 0.0964 0.0784 0.0663 0.0496 0.0440

v =0.5 SM 0.3370 0.4010 | 0.4469 0.4824 04747 0.4733 0.5059
SSE (.3654 0.3129 | 0.2267 0.1827 (.1595 0.1206 0.1090

03 =0.5 SM 0.5451 0.5033 | 0.4992 0.4850 0.5012 0.5077 0.4867
SSE 0.3245 0.2499 | 0.1933 0.1546 0.1339 0.0992 0.0894

Yo =0.2 SM 0.2562 0.2495 | 0.2241 0.2235 0.2071 0.2063 0.2044
SSE 0.1885 0.1263 | 0.0942 0.0671 0.0606 0.0566 0.0458

v =0.5 SM 0.3564 0.3772 | 0.4253 0.4355 0.4768 0.4848 0.4907
SSE 0.2971 0.2315 | 0.1997 0.1411 0.1418 0.1361 0.1102

o?, =1.0 SM 1.0179 1.0547 | 1.0334 1.0385 1.0004 0.9897 0.9945
SSE 0.4658 0.3673 | 0.3054 0.2066 0.2200 0.2113 0.1779
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Table 2.4: Simulated mean (SM) and simulated standard error (SSE) of AGQL esti-

mates for selected parameter values based on 500 simulations.

Time Series Length (T)

Parameters Quantity 200 500 1000 2000 3000
vo =0.05 SM 0.0256 0.0379 | 0.0422 0.0485 0.0483
SSE 0.0947 0.0763 | 0.0613 0.0426 0.0339

v =0.25 SM 0.2718 0.2219 | 0.1997 0.2188 0.2410
SSE 0.3633 0.3097 | 0.2695 0.2396 0.2083

0;2, =0.25 SM 0.3051 0.2741 | 0.2618 0.2449 0.2410
SSE 0.2140 0.1446 | 0.1154 0.0844 0.0772

Yo =0.05 SM 0.0309 0.0454 | 0.0514 0.0488 0.0507
SSE 0.1154 0.0846 | 0.0604 0.0432 0.0352

v1 =0.25 SM 0.2273  0.2176 | 0.2240 0.2432 0.2493
SSE 0.3205 0.2762 | 0.2347 0.1810 0.1485

0;2] =0.5 SM 0.5285 (.4846 | 0.4680 0.4873 0.4813
SSE 0.2849 0.2046 | 0.1485 0.1087 0.0883

Yo =0.05 SM 0.0343 0.0506 | 0.0495 0.0475 0.0514
SSE 0.1390 0.0972 | 0.0660 0.0481 0.0359

v1 =0.25 SM 0.1601 0.1904 | 0.2060 0.2174 0.2233
SSE 0.2878 0.2386 | 0.2032 0.1532 0.1245

o,ﬁ =1.0 SM 0.9621 0.9607 | 0.9718 0.9941 1.0010
SSE 0.3747 0.2769 | 0.2014 0.1575 0.1198

Yo =0.05 SM 0.0440 0.0448 | 0.0543 0.0509 0.0515
SSE 0.1049 0.0709 | 0.0537 0.0342 0.0275

v =0.5 SM 0.3048 0.3488 | 0.4048 0.4459 0.4607
SSE 0.3485 0.3016 | 0.2620 0.2104 0.1853

o,?] =0.25 SM 0.3598 0.3050 | 0.2796 0.2613 0.2553
SSE 0.2317 0.1675 | 0.1240 0.1015 0.0812

Yo =0.05 SM 0.0562 0.0493 | 0.0527 0.0536 0.0516
SSE 0.1158 0.0800 | 0.0508 0.0320 0.0271

v =0.5 SM 0.3547 0.4002 | 0.4217 0.4598 (.4660
SSE 0.3189  0.2603 | 0.2110 0.1659 0.1503

a;"; =(0.5 SM 0.5449 0.5186 | 0.5182 0.5083 0.5059
SSE 0.2750 0.2261 | 0.1781 0.1403 0.1164

¥o =0.05 SM 0.0666 0.0625 | 0.0526 0.0566 0.0516
SSE 0.1481 0.0873 | 0.0617 0.0381 0.0323

¥ =0.5 SM 0.3179 0.3728 | 0.3992 0.4372 0.4547
SSE 0.2773 0.2217 | 0.1800 0.1431 0.1400

03 =1.0 SM 1.0451 1.0472 | 1.0669 1.0449 1.0293
Rl 0.4367 0.3260 | 0.2720 0.2092 0.2050
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Table 2.5: Table 2.4 Contd....

Time Series Length (T)

Parameters  Quantity 200 500 1000 2000 3000
Yo =0.1 SM 0.0586 0.0838 | 0.0993 0.1009 0.0976
SSE 0.1071 0.0872 | 0.0606 0.0521 0.0406

v1 =0.25 SM 0.2555 0.2269 | 0.2029 0.2261 0.2443
SSE 0.3536 0.3135 | 0.2835 0.2416 0.2067

072] =0.25 SM 0.3324 0.2818 | 0.2502 0.2435 0.2437
SSE 0.2122 0.1550 | 0.1104 0.0855 0.0761

Yo =0.1 SM 0.0767 0.0921 § 0.1006 0.0973 0.1006
SSE 0.1215 0.0953 | 0.0693 0.0448 0.0382

v =0.25 SM 0.2345 0.1933 | 0.2226 0.2334 0.2395
SSE 0.3205 0.2721 | 0.2329 0.1825 0.1461

0'72’ =0.5 SM 0.5086 0.4919 | 0.4796 0.4924 0.4905
SSE 0.2868 0.1997 | 0.1418 0.1138 0.0870

v =0.1 SM 0.0883 0.1193 | 0.1047 0.1028 0.1031
SSE 0.1442 0.0965 | 0.0731 0.0495 0.0398

v =0.25 SM 0.1929 0.1726 | 0.2156 0.2206 0.2309
SSE 0.2797 0.2306 | 0.1947 0.1465 0.1190

0,21 =1.0 SM 0.9338 0.9465 | 0.9635 0.9838 0.9926
SSE 0.3840 0.2529 | 0.2081 0.1424 0.1138

7o =0.1 SM 0.0988 0.1107 | 0.1149 0.1096 0.1037
SSE 0.1138 0.0866 | 0.0728 0.0508 0.0366

v =0.5 SM 0.3027 0.3393 | 0.3922 0.4351 0.4611
SSE 0.3442  0.3056 | 0.2783 0.2018 0.1781

0,2] =0.25 SM 0.3569 0.3071 | 0.2698 0.2662 0.2590
SSE 0.2134 0.1649 | 0.1254 0.0990 0.0845

Yo =0.1 SM 0.1008 0.1149 | 0.1112 0.1033 0.1020
SSE 0.1289 0.0879 | 0.0639 0.0415 0.0345

v =0.5 SM 0.3272  0.3985 | 0.4101 0.4650 0.4821
SSE 0.3121  0.2684 | 0.2127 0.1656 0.1417

U',‘)} =0.5 SM 0.5861 0.5199 | 0.5314 0.5083 0.5029
SSE 0.3127 0.2330 | 0.1764 0.1419 0.1226

0 =0.1 SM 0.1380 0.1150 | 0.1145 0.1114 0.1065
SSE 0.1448 0.0962 | 0.0670 0.0466 0.0376

vy =0.5 SM 0.3155 0.3714 | 0.4116 0.4448 0.4644
SSE 0.2639 0.2170 | 0.1800 0.1488 0.1315

0;2] =1.0 SM 1.0757 1.0917 | 1.0624 1.0313 1.0189
SSE 0.4326  0.3555 | 0.2803 0.2189 0.1941
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Table 2.6: Table 2.4 Contd....

Time Series Length (T)

Paramcters  Quantity 200 500 1000 2000 3000
Yo =0.2 SM 0.1389 0.1890 | 0.2027 0.1997 0.2017
SSE 0.1290 0.1082 | 0.0983 0.0774 0.0620

v1 =0.25 SM 0.2510 0.1909 | 0.2240 0.2454 0.2302
SSE 0.3469 0.3059 | 0.2947 0.2569 0.2054

0;2, =0.25 SM 0.3582  0.2934 | 0.2464 0.2371 0.2479
SSE 0.2231 0.1509 | 0.1170 0.0892 0.0718

y0 =0.2 SM 0.1656 0.1881 | 0.2070 0.2017 0.1983
SSE 0.1344 0.0968 | 0.0860 0.0604 0.0491

v =0.25 SM 0.2097 0.2221 | 0.2053 0.2307 0.2402
SSE 0.3135 0.2614 | 0.2286 0.1850 0.1478

(f,‘fl =0.5 SM 0.5377 0.4971 | 0.4907 0.4893 0.4972
SSE 0.2735 0.1885 | 0.1536 0.1055 0.0905

v =0.2 SM 0.1815 0.2108 | 0.2108 0.2030 0.2054
SSE 0.1558 0.1090 | 0.0802 0.0575 0.0483

v =0.25 SM 0.1830 0.1868 | 0.1908 0.2244 0.2294
SSE 0.2695 0.2190 | 0.1796 0.1493 0.1253

0,2, =1.0 SM 0.9768 0.9747 | 0.9882 0.9881 0.9921
SSE 0.3823 0.2711 | 0.1914 0.1503 0.1273

vo =0.2 SM 0.2045 0.2271 | 0.2339 0.2219 0.2155
SSE 0.1454 0.1089 | 0.1054 0.0844 0.0669

v =0.5 SM 0.3037 0.3534 | 0.3858 0.4328 0.4521
SSE 0.3312 0.2882 | 0.2621 0.2059 0.1677

(772, =0.25 SM 0.4074 0.3248 | 0.279  0.2690 0.2643
SSE 0.2329 0.1543 | 0.1227 0.0965 0.0831

Yo =0.2 SM 0.2034 0.2244 | 0.2230 0.2176 0.2144
SSE 0.1308 0.1132 | 0.0927 0.0719 0.0583

v1 =0.5 SM 0.3724 0.4095 | 0.4255 0.4605 0.4617
SSE 0.3022  0.2567 | 0.2074 0.1637 0.1412

05 =0.5 SM 0.5763 0.5304 | 0.5242 0.5009 0.5112
SSE 0.2987 0.2298 | 0.1767 0.1353 0.1211

Yo =0.2 SM 0.2425 0.2367 | 0.2365 0.2218 (.2152
SSE 0.1566 0.1194 | 0.0876 0.0679 0.0640

v =0.5 SM 0.3219 0.3961 | 0.4056 0.4380 0.4605
SSE 0.2603 0.2185 | 0.1766 0.1439 0.1416

U'f, =1.0 SM 1.0991 1.0329 | 1.0602 1.0384 1.0240
SSE 0.4497 0.3419 | 0.2553 0.2133 0.2045
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Table 2.7: Simulated mean (SM) and simulated standard error (SSE) of MQML
estimates for selected parameter values based on 500 simulations.

Time Series Length (T)

Parameters Quantity 1000 3000
v =0.05 SM 0.0481 0.0433
SSE 0.0569 0.0368

v =0.5 SM 0.4329 0.5171
SSE 0.4059 0.3368

072} =0.25 SM 0.3239 0.2616
SSE 0.2855 0.2193

v =0.05 SM 0.0451 0.0508
SSE 0.0504 0.0282

v =0.5 SM 0.4929 0.4689
SSE 0.2018 0.1125

072] =1.0 SM 0.9960 1.0318
SSE 0.4845 0.2974

v =0.2 SM 0.2340 0.1979
SSE 0.1629 0.1285

v =0.5 SM 0.3794 0.4911
SSE 0.4094 0.3299

03 =0.25 SM 0.3697 0.2756
SSE 0.3046 0.2263

Yo =0.2 SM 0.1962 0.2102
SSE 0.0857 0.0455

v =0.5 SM 0.4937 0.4689
SSE 0.2043 0.1123

o2 =1.0 SM 0.9960 1.0318

SSE 0.4900 0.2972
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The results in columns 6 and 7 in Tables 2.4 - 2.6 show that the proposed AGQL ap-
proach performs similarly to the MM approach. Note however that to save time and
space we have considered T = 2000 and 3000 in this case. As the length of the series
increases, both MM and AGQL approach appears to perform better as expected. To
be specific, when T = 3000, for example, the MM approach provides estimates for
v = 0.05, v; = 0.5 and 05 = 1.0 as Yo arar = 0.0513 with its simulated standard error
0.0332, ¥1,arar = 0.456 with its simulated standard error 0.139 and &72,,/\/1/\1 = 1.026
with its standard crror 0.206. For the same parameter values, when T = 10,000, the
MM approach produces g arar = 0.0518 with its simulated standard error 0.0182,
A.arar = 0.486 with its simulated standard error 0.112 and ‘5127,1\1/\1 = 0.996 with its
standard error 0.174. Thus, it is clear that the MM approach works very well even if
the length of the series is as small as T = 3000. However, as expected, the standard
crrors of the estimates improves considerably when T increased from 3000 to 10,000.
As mentioned earlier, the AGQL approach behaves similarly to the MM approach.
For example, for the same paramcter values, when T = 3000 the AGQL estimates
give Y9, agor = 0.0516 with simulated standard error 0.0323, ¥ acor = 0.455 with its
simulated standard error (.140 and (}5,AGQL: 1.029 with its simulated standard error
0.205. Thus AGQL approach appears to produce similar estimates for vy, 7 and O‘_g

with similar standard errors. So we can use either of them.
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As far as the small sammple performance is concerned, both MM and AGQL ap-
proaches provides sommewhat reasonable, but not so satisfactory estimates. For cx-

ample, when T 500, the MM approach provides estimates for vy = 0.05, v; = 0.5

2

and o,

= 0.5 as Yo = 0.0510, A1asn = 0.422 and &7 5,y = 0.504, respectively,
with corresponding simulated standard errors 0.0822, 0.288 and 0.253. For the same
parameter values, the AGQL provides 4y acor = 0.0493 with its simulated standard
error 0.0800, 41 acor = 0.400 with its simulated standard error 0.260 and &S,AGQL
= 0.519 with its standard error (0.226. These and other results in Tables 2.1 - 2.6
indicate that the estimates of a% appears to be close to the true values, whereas the
estimates of yp and especially v, are not so satisfactory. But, the estimates of v, and
v get closer to the true values when the length of the series is increased.

The simulated nieans and standard errors of MQML method for selected param-
eter values basced on 500 simulations are given in Table 2.7. The estimation results
are not as good as those from the MM and AGQL approaches given in Tables 2.1
and 2.4. For example, for 79 = 0.05, 7, = 0.5, 0;3 = (.25, and T = 1000 case, the
MQML estimates give 5o aroarr, = 0.0481, 41 poarr, = 0.433 and &%’MQA,,L = 0.324,
which are all farther away from the true parameter values than the MM estimates of

Yo,arar = 0.0917, 4y arar = 0.441 and &3,,\“\, = (.260, while the simulated standard er-

rors for Yo arqare, Y1,arQar and &%YA,,QML in MQML approach are respectively 0.0569,
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0.406 and 0.285, which are all greater than the corresponding simulated standard
errors in MM approach, which are 0.0524, 0.291 and 0.135 respectively. In Tagore
(2010), it has been established that the MM and AGQL approaches are asymptot-
ically more cfficient than the MQML method. Our above simulation results agree
with this asymptotic conclusion.

Note that in the simulation study we have considered simall values for v (0.05, 0.1
and 0.2) and moderately large values for v, (0.25 and 0.5) along with a wider range
for 03 ranging from (.25 to 1.0. These small values for vy and «; arc expected mostly
in practice, because of the fact that o? is an exponential function in these parameters.
However, the proposed method works well for larger v, values. For example, the real
life data that we discuss below provides 4; ~ 0.7 which was obtained without any

convergence problen.

2.4 Illustration of the Estimation Approaches: A

Real Life Data Analysis

In this scction, the stochastic volatility model is fitted to US-Dollar/Swiss-Franc
exchange rate. The data consist of daily observations of weekdays close exchange

rates from July 24, 2007 to July 24, 2012, which are denoted as P;.
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Univariate models were fitted to the log return of the exchange rates with mean

subtracted, that is,

T—
Yt=AlogPt—(ZlAlogPt> /(T =1), t=1..-,T -1,
t=1

where Alog P, = log Piy1 — log P, In Ruiz (1994), the QML estimation method was
applied to this log return of Yen/Dollar exchange rate from 1/10/81 to 28/6/85 to
fit the stochastic volatility model. Note that the QML estimation method was also
applied by some researchers in multivariate setup. For example, Harvey et.al (1994)
illustrated the fitting of multivariate stochastic volatility model with the log return
of Pound/Dollar, Deutschmark/Dollar, Yen/Dollar and Swiss-Franc/Dollar exchange
rates from 1/10/81 to 28/6/85.

Turning back to the US-Dollar/Swiss-Franc exchange rate data set, we use the
variance of the first 100 y,’s to estimate ¢%, and then fit the models (1.1) - (1.2) to
the next 1000 y,’s. That is, we estimate the parameters of the model, namely, vy, 11
and a;“;, by using the proposed MM, AGQL and MQML approaches. The estimates
of the parameters for these three approaches are given in Table 2.8.

Now to examine the performance of these three estiination approaches, we choose
to compare the fitted mean and variance of y? with the observed mean and variance

of y7, respectively. For the calculation of fitted mean and variance of y?, we simply

use the estimates of the parameters from Table 2.8 to the formulas for E[Y}?] in (2.25)
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Table 2.8: The estimated parameter values for fitting the stochastic volatility model
to the 1000 observations of the log return of the daily US-Dollar /Swiss-Franc exchange
rates from July 24, 2007 to July 24, 2012.

Method Yo M 6?]

MM | -3.585664 0.6897393 1.191857
AGQL | -3.880882 0.6641959  1.269635
MQML | -10.87192 0.05930448 5.834532

and Var[Y}?] in (2.27). Next for the comiputation of the observed mean and variance
of y2, we consider a group of 50 observations represented by yf_H (l =0,---,49),
take the mean and variance of these 50 observations, and report them at time point
t = 1,51,101,---, and so on. The observed means are displayed in Figure 2.1 and
variances are displayed in Figure 2.2. The expected values E [Y,?] obtained by MM,
AGQL and MQML approaches are also given in Figure 2.1, whereas the estimated
Var[Y;?] under MM and AGQL approaches are given in Figure 2.2.

In Table 2.8, the estimation results for 7y, v; and O’% from MM and AGQL ap-
proaches are quite close to each other, which is consistent with Figures 2.1 and 2.2,
where the curves for means and variances under the MM and AGQL approaches al-
most overlap each other. All these agree with our observation in Section 2.3 that
the MM and AGQL methods give similar estiimation results. In contrast, the MQML
estimation results are quite different frc  those by MM ' AGQL approaches. Fig-

ures 2.1 and 2.2 indicate that the MM and AGQL estimates are considerably better
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Figure 2.1: The estimated means of Y;? for the 1000 data from the log return with

mean subtracted of the US-Dollar/Swiss-Franc daily exchange rates from July 24,
2007 to July 24, 2012.
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Figure 2.2: The estimated variances of Y,? for the 1000 data from the log return with
mean subtracted of the US-Dollar/Swiss-Franc daily exchange rates from July 24,

2007 to July 24, 2012.
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thau the MQML estimates.
In Figure 2.1, iu general, the sample means of {y?} appear to lie either above
or below the E [Y,?] level in a sequence, which shows positive correlations among y7.

This positive correlation can also be understood in theory by studying the patterns

W 1- 'Yf(t—l)

it is obvious that for 0 < v, < 1, Cov (Y,{Ytik) > 0 and — 0 as v — 0 for all

for lag covariances. To be specific, because

Cov ()/;2, )/;ik) = /\t/\l,—i-k {exp

positive integer &. For negative v;, obviously correlations will be negative for odd &,
but for the present data set ~, estimate is found to be positive.

To explain this issue further, the MM and AGQL approaches give 7, estimates as
Yiarar = 0,690 and 41 acor = 0.664, which are all positive and can account for the
positive correlation in Figure 2.1, while the MQML estimate of 4y aroar = 0.0593
can be too small to explain this positive correlation. In addition, in Figure 2.1, the
values for sample means appear to be close to the curves for the estimated mean by
MM and AGQL approaches, indicating a reasonable fitting, while these sample values
appear to be far away from the mean curve under the MQML method, implying that
the MQML approach can not be applied to fit this data set, which may be due to the
large standard crrors of the MQML cstimators.

Similar to the results for means shown in Figure 2.1, the curves for variances under
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MM and AGQL approaches alimost overlap each other, indicating the similarity of the
estimates by the two approaches. Except the first several time points, the estimated
variance of y? by MQML approach is on the order of 107, which is considerably larger
than the sample variances and the estimated variance values by MM and AGQL
approaches, causing a scaling problem to accommodate the MQML results in the
same figure. In comparison, the MM and AGQL curves have good agreecment with
the sample estimation points in Figure 2.2, indicating a better estimation than the

MQML approach.




Chapter 3

Parameter Estimation for
t-Distribution Based Volatility

Models

In Chapter 2, we have discussed an improved estimation technique for the existing SV
model with Gaussian error, as compared to the existing competitive approaches. Note
that there also exist some studies dealing with SV models under the assumption that
e (t=1,---,T) follow a heavy tailed t-distribution instead of Gaussian distribution.
This produces much larger kurtosis than using nrormal distribution based SV model.

See, for example, Harvey et al. (1994, Section 6) and Lee and Koopman (2004,
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Section 6). However, in these studies, the estimation of the parameters have been
done mainly following the GMM and/or QML approaches.

As far as the models for time dependent variances are concerned, in Chapter
2, similar to the existing studies, we have considered lognormal distribution based
AR(1) type model. The t-distribution based SV models are also developed based
on lognormal AR(1) type relationship for the variances. There also exist some SV
models where certain positive orthant distributions such as exponential and gamma
distributions are used to model the time dependent variances (Abraham et al., 2006).
However, they still use normal distribution for {¢;}. One could use t-distribution for
those {e;} on top of using the gamma distributions based model for the variances.
This is however beyond the scope of the present thesis.

In this chapter, we study the existing t-errors based SV model with variances
satisfying the lognormal AR(1) model, but provide an improved estimation technique
for all parameters including the degrees of freedom of the t-error distribution. To be
more specific, in this chiapter, we deal with a generalization of the model considered
in Chapter 2, but use simpler MM, AGQL and MQML approaches for the estiination
of the parameters. The degrees of freedom parameter in all cases is estimated by

using the MM.
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3.1 t-Distribution Based SV Models

We now turn back to the t-distribution based SV model studied by Harvey et al.
(1994) [see also Lee and Koopman (2004)], but use the improved estimation technique
introduced in Chapter 2 [see also Tagore (2010)]. To be specific, we recall the model

form (1.1) - (1.2) and rewrite it here with a change in distribution of €,,. That is,

ylor = o t=1,---.T (3.1)

m(o})=h = wt+nho+tm  t=2,-,T (3.2)

iid : N
where € ~ t(0,1,v). That is, we use the distribution of ¢, as

I(¥) 1 1

L(g) vvm (1+ (‘,—?))(m)/? |

fle) (3.3)

where v is referred to as the shape or degrees of freedom parameter. Note that the

t-distribution in (3.3) has the basic properties:

E(e) = 0 (3.4)

Var (e;) = ui2 (3.5)
32

E(e) = TR (3.6)

Further note that the t-distribution (3.3) for €;, consequently, produces larger kurtosis

for the data {y,} as compared to the Gaussian distribution based kurtosis. To be
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specific, to compute kurtosis under the t-model (3.1) - (3.2), we evaluate F (Y;?) and

E (Y1) as

(3.8)
The above moments in (3.7) - (3.8) yield the kurtosis as
*( 2) E Y 312 (v —2)? o [ 1— 712(t_1)
Kk (v,m,0.) = —— = exp (o) | ————
(AP 0y (E (YtZ)JQ (v—=2)(v—4) 2 P 1—~f
3(v—2) o (1=
= ——e — 1, 3.9
(v —4) P I:U"( 1—~72 (3:9)

which is a function of v paramcter as well. When (3.9) is compared to the kurtosis
(2.29) under the normal error, it is clear that the kurtosis in (3.9) under t-error
distribution is “j—:% times larger than the Gaussian based kurtosis. Thus, the kurtosis

(3.9} models the heavy tails of the data through v, a% and ;.
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3.2 Estimation of Parameters including Degrees of

Freedom Parameters

As compared to the last chapter, it is clear that we now have one more (additional)
parameter v to estimmate. Thus, all together we estimate ~g, ¥1, 0;27 and v.

Because v is a new parameter as compared to the Gaussian model, we need an
extra estimating equation for v, whereas we can use the same estimating equations
for other parameters as in Chapter 2, however, with slight adjustment due to the

involvement of v.

3.2.1 MM Approach for All Parameters

For the estimation of 02 and 7, we recall their equations from (2.3) to (2.8), and now
make the adjustment for replacing Gaussian distribution of {¢;} with t-distribution.

Thus, the moment equation for estimating 072’ is given by

E[S] = E,E|

. v 1 v
D l=—5EEY ol = —a =5  (310)

t=1 t=1

el

where S; is defined in (2.1), and g, is given by (2.14). Comparing with the moment

ecquation (2.14) for the Gaussian case, the only change is the insertion of multiplying

factor %5 in the equation.
=
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Similarly, the new moment equation for estimating v, is given by

T 2 T
1 v 1
Bl = EaBl vkt = (+25) By Sootadd
t=2 t=2

2

2

- ( ! >92:52, (3.11)
v—2

where S5 is defined in (2.6), and gs is given by (2.13). Comparing with the moment

equation (2.13) for the Gaussian case, the only change is the insertion of multiplying

v
v—2

factor ( )2 in the equation.

Next for 7, estimation, we modify the Gaussian based equation as follows.

5 = {[Ss—E(logef)](l—%)l— thi (1=)} (0 —m) (3.12)
l=m—z(1-)

Y1=51

p
C2Y ae . o _ .
f; log (y,) as in (2.15), and since ¢ = \/m for any ¢, with u being a

|—

where S5 = :

w3

standard normal random variable and v an independent chi-square random variable

of degrees of freedom v,

Flogel = Elogu®— Elogv +logv

1 v
= 9 (5) +log2 — <§> —log2 + logv

(RO RTERNO RS

Note that E'logv is general as compared to finding Elogu?, as u? is simply x?. For

E'logv, we usc the formula available from Chan (1993). In (3.13), ¢(r) is diagamma
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function, which is calculated by the following formula [Beal, M. J. (2003)]
1 1 1 1 1 )
. = Ip(g) — — — _ : _
Vi) = ) = 5r ~ 157 ¥ Toow 25205 T 24005 66021
N 691 7 n 3617 43867 1
32760z'2 84z 8160x16  14364z18 z?0
1
Yla+1) = - + Y(x) .

We followed Beal's suggestion [Beal, M. J. (2003)] of using the above recurrence to

shift @ to a value greater than 6 and then applying the above expansion with terms

above 2t cut off, which yields “more than enough precision”.

As far as the estimation of v parameter is concerned, we write an additional

equation by using sample statistics

for which

t=1
(3.14)

with
T 2(t—1)
3 279 -1 ( Yo > 2 (1—m
< —+2 hy——— ) 420> | ———— , 3.15
{ R Gl ey R G 319
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where we used the result for E(o}) in (2.27). Equating (3.14) with S; and combining

it with Eqgs. (3.10), we have

53 g (v—4
1 J1 3.16
Si g4 \V —2 ’ ( )

yielding the estimating cquation for v as
v = 24— (3.17)

For the purpose of kurtosis estimation, we assume that v > 4.

For vy = 0.05,v = 0.5,0‘,27 = 0.25,» = 10 and 500 simulations, the estimation
results are given in Table 3.1, which shows that the estiinates are reasonably good.
This is especially true for v, and v, for which the estimates are reasonably quite close
to the truc parameter values, for even T = 1000. Note that under the normal SV
model, we have chosen ~, values 7y = 0.05,0.1 and 0.2. The estimates were found
to be reasonable. Here we have taken vy = 0.05 case only to see how much this and
other parameters are affected by v. Estimates were found to be good here as well.

Other values of 7, were not chosen to save space.
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Yo M o: v
T =1000 Simwacion Mean | 0.03530586 0.4202329 0.2280030 10.55707
Simulation SE | 0.05059033 0.3799676 0.1658846 &.846058
T = 3000 Simulation Mean | 0.03990508 0.4929931 0.2164728 11.31905
Simulation SE | 0.03811798 0.3000582 0.1426227 14.73339

0.25,r = 10 and 500

0.05,v; = 0.5, 02

Table 3.1: Estimation results for g n

simulations with method of moments.

3.2.2 AGQL for All Parameters

Recall that from (2.34) and (2.33), the AGQL estimating equations for v, and o}

have the form

oy’
Qv — =0
371 d ( ¢)
and
N
Llu—X) = 0,
60';2] d ( )
respectively, where
u o= (v Y Y vl
and
Vo= [ vt il
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causc of the use of t-distribution for ¢,. Thus, we need to compute

A = E[U
L = cov(U)
Y = E[V]
Q = cov(V)

under t-distribution for ¢,. The new formulas are as follows.

2 2(t—1)
Yo -1 "o gy (1=
+ hy — STl s R
L=y (“ 1—71)+2 ( [

However, their expectations and covariances will have slightly different formula be-

(3.18)

(3.19)

(3.20)
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Fort > 2

E (YY) = E (o) E(e) = [(—r—ﬁ—_ﬂ Blei] = [(—;ﬂ]

E
3v? ] 270 1 < Yo ) 2 [ 1— 7120_1)
= - | exp 4+ 2977 { hy — + 207 [ ————
{(V—2)w—4) {1—% ' ol "\ 1-9%

U = E[Y?YS] = E[YPIE[YS] = Mg,
and for t > 2

'l/)t - E[)/t2)/t3—l]:Ea?,af+1[)/tz)/ti—l|at2ao-t2+l]

= (” )2 c 270 } Yo\ At o2 1*712(“1)
= (pm) expyy -2 )n A+ + 3 [(L+m) ——— |+t 1|

awl 3/\2
— = Miz— =il
871 18’)/] #1 1
Fort > 2
Ot { 270 ( 0 ) ‘ Yo
= = Uyt h— t—1 ‘“21+ 4+ A t-111
(3’)/] t (1 _ ,.)/1)2 1 1 _ ’y] [( )’YI ( ’y]) ’71 ] (1 _ 71)27] ( + ’Y])
R i, (122 = 20 = 131 = )]
20 I=m " (1 —m)?
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EMY,] = [G;jjgﬁ%j;ZST?E[afag ::[(__—ézi——ZS}QUfE[emm]

= 3—1/2 20'46)( 2% + 2 hy — o + 202
T 2w —a] TP VT T\ T T nfr

For ¢t > 2
302 : 302 :
dv 4 — 4 4 — Q(ht+h(+1)
E[Y; YH—l] Ii(l/—?)(l/—él)} [Utat+1] {(1/—2)(1/—4)] [e ]
32 ]2 { 47 ( Yo ) t—1
= —_— ex +2( h — 1+
|:<I/—2)(I/—4) P 1__’)/1 1 1_’)/1 71 ( 71)
1— 72(t~1)
+202 [(1 + ) (—1 ) + 1]}
I—m
Then

Var(VPYiR,) = EV'YL] -9t

For convenience, we now write an algorithm for the desired estimation, with fol-
lowing two steps.

Step 1: Estimating v, iteratively with

- _ oY o YN (O oy
W) = i >+[(G%Qd ) (Gear w>)]

In each iteration, 7, should be updated by the new ~; with

{[53 - E(loge%)] (1=m)— %hl (1 - ’Y;T)} (1—-m)
1=y —5(1=1{)

(]

Yo =

bl

M=%

where

1T
Sy = —fZlog(yf),
t=1
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and v should be updated by the new v with

1 - o

497

2

Step 2: Estimating o; iteratively with

‘ oN AN\t /oN
a2 e —_ ~27., il —1_ bl -1 _
Uw/(' + 1) 01](7) + l:<00_32d 60',2}) <60'7272d (U. /\))]

This two step circle of iterations continues uutil convergence.

]

For 74 = 0.05,7; = 0.5,03 = 0.25,v = 10 and 500 simulations, the estimation
results are given in Table 3.2. It appears from this table that similar to the MM
approach, the AGQL approach also estimates the parameters well. When standard
errors are compared, they appear to be siinilar under both MM and AGQL approaches
for the estimation of g, v, and a?]. However, the AGQL approach appears to estimate

v with much smaller standard error as comipared to the MM approach.

- ~ AQ ~
Yo 1 a, 4

T = 1000 Simulation Mean | 0.03645553 (1.4153435 0.1881('665 9.469515
Simulation SE | 0.05856634 0.4302302 0.1732873 5.950574
17'= 3000 Simulation Mean | 0.03828042 0.5063921 0.2072618 10.50157
Simulation SE | 0.03791588 0.3157161 0.1489828 9.251301

Table 3.2: Estimation results for v = 0.05,4; = 0.5,02 = 0.25,» = 10 and 500
simulations with AGQL.
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3.2.3 Modified QML (MQML) for All Parameters

We have discussed the quasi-maximum likelihood approach in Section 2.2.3 for Gaus-
sian model where, for z, defined in (2.35), z = (21,- -+ , 2, - -+ , 27)" was approximated
by a multivariate normal distribution, even though truly loge? follows a log x? dis-
tribution under normal {¢}. However, in the present case, we assume {¢} follow
t-distribution as in (3.3). This change in distribution of €, influences the MQML
estimating equations only through x; = Elloge?] and sy = var[loge?]. So for t-
distribution based SV model, the only change we need to make is to calculate E[log ¢?]
and var[log€?] for ¢ ~ ¢(0,1,v), for replacing the x; and &y in Section 2.2.3 by the

new E[loge}] and var[log €?] respectively, and estimate v by

2

_ Stgu’
5491

vy = 2+

then all the other formulas remain the same as in Section 2.2.3.
Ellog€f] was computed in (3.13). We now compute var[loge?] as follows. Let

& ~ Gamma(a, ) and

y = log(z) = z = €Y.
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The pdf of y is

f) = Lot g B oo L aigriogsy-ctrins
' Ne) MNe) INa)
L e
T T

wlhere w = y + log# being a log-gamma random variable, and according to Chan

(1993)

Ely] = E[w]—logf = y(a)~log(5)

varly] = varfw] = ¢/'(a). (3.22)
Applying (3.22) we now compute the variance of loge? = log 2? — logv + log v as
2 2 l 1 (Y
var(loge;] = varllogz®] + var[logv] = ¢ 5)t P <§) . (3.23)

For v = 0.05,v = 0.5,0;2, = 0.25,» = 10 and 500 simulations, the estimation
results are shown in Table 3.3. Comparing with Tables 3.1 and 3.2 for the proposed
MM and AGQL approachies respectively, the estination of v by MQML is as good
as those from MM and AGQL approaches. However, the estimate of v; by MQML
is relatively much farther away from the true parameter value than the other two
approaches, and the estimates of g and 0727 by MQML are considerably worse than
those from the other two approaches, showing that the proposed MM and AGQL

approaches are improved estimating methods for the SV models.
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Yo N a: 12

T = 1000 Simulation Mean | 0.01815647 0.6104038 0.1500680 9.080930
Siimulation SE | 0.04933629 0.4295255 0.1948482 6.594675

+'=3000 Simulation Mean | 0.02552030 0.6542555 0.1455136 9.653351
Simulation SE | 0.03669045 0.3459653 0.1671992 8.623688

Table 3.3: Estimation results for v = 0.05,v, = ().5,0;‘; = 0.25,v = 10 and 500
simulations with MQML.

3.2.4 Kurtosis for t-distribution Case

To understand the volatility, that is, to understand the changes in variance pattern
in the time series, it is recommended to examine the kurtosis of the data over time.
See, for example, Jacquier et.al (1994, p.387) Shephard (1996, p.23), Mills (1999,
p.129), Ruiz (2004, p.615) and Tsay (2005, p.134)). The kurtosis for Gaussian SV
model and t-distribution based SV model can be calculated with (2.29) and (3.9)
respectively, whereas it is known that Gaussian distribution based kurtosis is: & = 3,
and the t-distribution based kurtosis is: & = 3(v — 2)/(v — 4). The plots of kurtosis
for t-distribution based SV miodel with different v values, and for normal distribution
based SV model are given in Figures 3.1 - 3.5. Also the standard kurtosis for t,
(t-distribution with v degrees of freedom) and normal distributions are shown in the
same figures. For comparison, they are plotted with the same kurtosis range. We
have also plotted in Figure 3.4 the estimated kurtosis with MM both for normal and

t-distribution hased SV modcls.
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Note that it is expected that the kurtosis under the Gaussian SV model (1.1) - (1.2)
will be larger than the Gaussian based kurtosis (=3). Similarly, the kurtosis under the
t-distribution based SV model (3.1) - (3.2) will also be larger than the t-distribution
based kurtosis (= 3(r —2)/(v—4)). Now because t-distribution has heavier tails than
the Gaussian distribution, it is expected that the kurtosis for t-distribution based SV
model will be much larger than the simpler Gaussian distribution based kurtosis.
Further note that these figures 3.1 - 3.5 provide a clear feeling on the changes in the
magnitude of kurtosis for various t-distributions. To be specific, when v gets smaller,
the kurtosis gets larger. Figure 3.4 shows that the estimated kurtosis are quite close to
the true kurtosis as expected. This is because the MM approach produces satisfying

estimates for all the parameters.
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Figure 3.1: The kurtosis for the t-distribution-based SV model with parameters v =

5,m = 0.5 and 0} = 0.5 (—), for t-distribution with parameter v =5 (- - -), for the
nornial distribution-based SV model with parameters v, = 0.5 and 02 =05(---- ),

and for normal distribution (- — - —).
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Figure 3.2: The kurtosis for the t-distribution-based SV model with parameters v =
6,7 = 0.5 and o2 = 0.5 (—), for t-distribution with parameter v = 6 (- - -), for the
normal distribution-based SV model with parameters v, = 0.5 and 03 =05 (-~ ),
and for normal distribution (- — - —).
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Figure 3.3: The kurtosis for the t-distribution-based SV model with parameters v =
8,7 = 0.5 and 07 = 0.5 (—), for t-distribution with parameter v = 8 (- - -), for the
normal distribution-based SV model with parameters v; = 0.5 and ag =05 ),
and for normal distribution (- — - —).
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Figure 3.4: The kurtosis for the t-distribution-based SV model with parameters v =
10,v; = 0.5 and 0,3 = 0.5 (—), for t-distribution with parameter v = 10 (- - =),
for the normal distribution-based SV model with parameters v, = 0.5 and ag =05

CEEREE ), and for normal distribution (- — - —), and the estimated kurtosis for the
t-distribution-based SV model with 7" = 3000 and parameters v = 10,~v, = 0.5 and
0'72’ = 0.5 (= = =), and for the normal distribution-based SV model with 7" = 3000

and parameters vy, = 0.5 and 0,,2] =05 (---).
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Figure 3.5: The kurtosis for the t-distribution-based SV model with parameters v =
15,7 = 0.5 and ¢} = 0.5 (—), for t-distribution with parameter v = 15 (- - -),
for the normal distribution-based SV model with parameters v, = 0.5 and a,?) =05
CREERE ), and for normal distribution (- — - —).




Chapter 4

Concluding Remarks

To fit the volatility model, the existing GMM and QML approaches are widely
used.  However, the GMM approach uses a large number of moments [Anderson
and Sorensen (1996, p. 350-351), Anderson and Sorensen (1997, sections 3, p. 399-
400)} to construct the GMM estimating equations for the consistent estimation of the
volatility parameters, and the QML approach uses a normal approximation to a log
chi-square distribution that arises in the construction of the so-called likelihood esti-
mating equations. In this thesis, it is demonstrated that unlike the GMM approach,
the moment estimating equations for three volatility parameters can be constructed
by using only three unbiased moment functions selected carefully following the nature

or definition of the parameters. This simpler approach has been referred to as the
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MM (method of moments) approach. As the GMM approach is complex, it was not
included for any comparison in this thesis. We have also provided a modification to
the QML approach by using a modified (simpler) covariance matrix involved in the
QML cstimating equation. The finite sample behaviour of the proposed MM estima-
tion approach was studied intensively, and it is found that the MM approach works
very well i1 estimating all volatility parameters for time series size as small as 1000.
The drawbacks of the QML approach is discussed. An AGQL approach was also
considered. This AGQL approach perfornis similarly to the MM approach, however,
it is coniputationally more involved than the MM approach. All three methods, MM,
AGQL and QML were applied to fit the SV model (1.1) - (1.2) to a real life financial
time series with length T = 1000, and it is found that the MM and AGQL approaches
provide relatively much better fitting than the QML approach.

We also applied the MM, AGQL and MQML approaches to the heavy tailed t-
distribution based SV model (3.1) - (3.2), and proposed the moment estimation for
the degrees of freedom of the t-distribution. Simulation study shows that the three
approaches give reasonably good estimates of the model parameters including the
degrees of freedom parameter. Finally we compared the kurtosis for the SV models
under Gaussian and t distributions. Our results show that the estimated kurtosis

arc quite close to the true kurtosis because the proposed MM approach produces
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