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Abstract 

This thesis applies a self-consistent field theory of compressible, fully hydrated 

phospholipid binary mixtures to an idealized model of binary bilayers. The theory is 

extended to calculate the average order parameter and gauche isomer number on each 

layer, as well as distributions of the chain-segments. It then makes calculations for a 

series of mixtures to present systematically the effects of composition and chain length 

mismatch on the structural properties, and to make comparison with experiments. In the 

theory, the effective fields, and the inhomogeneous particle and bond distributions 

throughout the bilayer interior are related self-consistently. This allows numerical 

calculation of all these properties. 

Experimental results for binary mixtures such as distearoylphosphatidylcholine (DSPC)/ 

dimyristoylphosphatidylcholine (DMPC) and galactosylceramide (GalCer)/1-stearoyl-2-

oleoyl phosphatidylcholine (SOPC) show the influence of chain length mismatch and 

composition on each component, in particular a feature called the "second plateau" in the 

order parameter profile near the tail of the long chain. To interpret and compare with 

these systems and phenomena are the foci of this work 
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Chapter 1 

Introduction 

1.1 Phospholipid Membranes 

1 

A major element of cell membranes belongs to a chemical class called phospholipids. 

These macromolecules are usually composed of a phosphate headgroup and two attached 

hydrocarbon chains. If the hydrocarbon chains have no double bonds, C=C, then such 

phospholipids are saturated, otherwise they are unsaturated. 

Water molecules are extremely polar and form strong hydrogen-bond (H-bond) 

networks. Because the headgroups of phospholipids are polar, they interact 

electrostatically with surrounding water molecules. This interaction leads to a reduction 

in electrostatic energy that can compensate for the entropic penalty associated with the 

fact that they may not form H-bonds with surrounding water. Thus, the headgroups of 

phospholipids incur no significant free energy cost when immersed in water, and are 

hydrophilic. In contrast, the hydrocarbon tails of phospholipids are not polar. When 

immersed in water, they disturb the H-bond network of the water molecules, and thus 

cause an increase in the electrostatic energy and a loss in entropy, i.e., increase the free 

energy of the system. Hence, the hydrocarbon tails are hydrophobic. In order to reach the 

minimum free energy, phospholipids in water usually form bilayers so that hydrocarbon 

tails and water are separated by surfaces of headgroups. In this thesis we concentrate on 

modeling and simulating bilayers of Diacyl phosphatidylcholines (PC's), a kind of 

phospholipid, because they are very common in cell membranes, and because the 
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experimental results by Morrow and Lu [2, 3] on binary mixtures of PC's provide an 

excellent opportunity for comparison with our theoretical work. However, it should be 

noted that while diacyl PCs have been useful for simple bilayers and model membranes, 

biological membranes are rich in unsaturated lipids, phospholipids with headgroups other 

than phosphatidylcholine, and with lipids other than phospholipids. 

Fully hydrated single-component bilayers usually have a well-defined phase transition 

in which the lipids transfer from a relatively ordered gel state to liquid crystal state. 

Generally the phase behavior of single-component bilayers is as follows [4]: At low 

enough temperature, the lipids are in a lamellar crystalline state conventionally 

designated lc' or lc depending on whether the lipids are tilted or not; as temperature is 

increased to some temperature T = Ts , the lipids undergo a subtransition to a lamellar gel 

state denoted as l fl' or l fJ , also depending on whether the chains are tilted or not; then 

with the further increase of temperature, some bilayers may pass through a ripple phase 

Pp' or Pp in which the surface of the bilayer breaks up into a series of periodic, 

quasilamellar segments so that the bilayer surfaces may be modeled as sawtooth like, 

partly melted or sinusoidal. The hydrocarbon chains in all the phases mentioned to this 

point are well ordered and almost fully stretched. If we further increase the temperature 

to a certain point T =~,the chains undergo the cooperative gel/fluid transition (or chain­

melting phase transition) in which the chains lose their order and come into liquid crystal 

phase designated la. For different kinds of lipids and different water contents, the main 

phase transition temperature ~ and phase behavior are also different. In general, the 
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main phase transition temperature increases with chain length and hydrostatic pressure, 

but decreases with degree of unsaturation. 

The phase behavior of mixtures is much more complicated. For binary mixtures, 

which are the focus of this thesis, if the chain length difference is equal to or larger than 

four [5], there may be phase separation in addition to these phase transitions. For 

example, in some membranes of living cells, some component lipids are in the gel phase 

and are not miscible with the surrounding lipids in the fluid phase, so they form small 

domains in the gel phase. Such small domains may have important biological functions. 

In this thesis, we concentrate on bilayers in the liquid crystal phase, and the systems are 

all at high enough temperature so that there is no phase separation. 

1.2 NMR and the Order Parameter 

An important method of studying these systems is Deuterium Nuclear Magnetic 

Resonance ( 2 H - NMR) experiments, in which some hydrogen atoms at specific 

positions or all the hydrogen atoms along each lipid are replaced by deuterium atoms. 

This is called deuteration. For fast, axially symmetric reorientation of a lipid molecule 

about the bilayer normal, the 2 H NMR spectrum of a deuteron of a hydrocarbon chain is 

a pair of lines split by a frequency proportional to 

(1.1) 
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where fJ is the angle between the bilayer normal and the magnetic field, and Bcv is the 

angle between the C-D bond axis and bilayer normal. The average is over motions of the 

chain. 

Bilayers formed by dispersing lipids into water tend to form closed multi-lamellar 

vesicle assemblies in which all orientations of bilayer normal are equally likely. The 

result of this effective spherical distribution is that orientations of the bilayer normal 

perpendicular to the magnetic field (/3 = 90°) are most likely and orientations of the 

bilayer normal parallel to the magnetic field (/3 = oo) are the least likely. The resulting 

superposition of splittings gives rise to the characteristic Pake doublet powder pattern. 

Relative to the magnetic field, the largest density of bilayer normal orientations is 

near f3 = 90° for which the splitting is proportional to 

(1.2) 

The lowest density of bilayer normal orientations is near f3 = oo for which the splitting is 

proportional to 

(1.3) 

The Pake doublet powder pattern is thus characterized by prominent edges, 

corresponding to the splitting for lipids reorienting about bilayer normals perpendicular 

to the magnetic field. The splitting of these prominent edges is proportional to the 

orientational order parameters, 
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S = (3cos
2 

BcD -1) 
CD 2 

(1.4) 

For lipids deuterated at each position along the hydrocarbon chain, the spectrum is a 

superposition of Pake powder doublets scaled by the orientational order parameters 

corresponding to each position along the chain. The de-Paking technique developed by 

Bloom and coworkers [6, 7] is used to extract orientational order parameter for each 

hydrocarbon unit from the superposed Pake Doublet powder patterns, and then the 

smoothed orientational order parameter profile can be further obtained. ("Smoothed" is 

used because the orientational order parameters are ordered according to their relative 

magnitudes, not necessarily according to their positions along a chain, so the profile is a 

smoothed monotonic curve.) 

The smoothed orientational order parameter profiles for all single-component bilayers 

are similar: there is a plateau from the beginning to the middle of the chain, followed by a 

fast decrease from the middle to the end of the chain. However, almost all real 

membranes are mixtures of lipids of different chain lengths. Chain length mismatch 

causes changes in the smoothed order parameter profiles from the corresponding single-

component bilayers [2, 3]. In mixtures, with the decrease in the fraction of one 

component, its order parameter profile tends to approach that of the major component in 

its single-component bilayer. If the long chains are in the minority, near their free end, 

the slope of the order parameter profile becomes less negative. This gives rise to a feature 

called the second plateau by Lu, Morrow and Grant [2]. This second plateau becomes 

more prominent with increases in the chain length difference and short chain percentage. 
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Chain length mismatch can cause a very fluid central region in bilayers. The second 

plateau can provide information about this region where the largest density fluctuations 

may occur to facilitate ion permeation [8] or information transmission across the bilayer. 

1.3 Theoretical Approaches 

A number of approaches have been developed to model the bilayers. Among them, the 

molecular dynamics (MD) and Monte Carlo (MC) methods are used extensively. 

In molecular dynamics calculations [4], the various interactions involved are modeled 

as near to the true interactions as possible; the CH 2 groups and CH 3 groups in many 

cases are considered as "single-atom" centers. By using Newtonian equations of motion 

combined with physically-motivated constraints such as / ..!:_ Imivi2
) = "ik8 T, one can 

\2 i=l 2 

simulate the evolution of the system from a given initial state over a series of tiny time 

intervals. After each time interval, a new state of the system can be obtained. Then after 

long enough time, the time and ensemble average over the entire trajectory will give the 

various observable properties of the system. MD is one of the simulations nearest to real 

bilayer systems. Many of its results agree with the experiments very well. For example, 

Robinson et al. [32] made MD calculations for DMPC bilayer. From a starting state with 

interdigitation of the chains at the bilayer center, after 200 ps of simulation, the system 

behaved as in a liquid crystal phase: the lipid chains were melted, most of the free 

volume between lipids was filled, and the interdigitation was greatly reduced. They also 

observed the fluctuation of the headgroup regions. The mean frequency of gauche 
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isomers per myristoyl chain of dimyristoylphosphatidylcholine (DMPC) from their 

simulation was about 2.6, which is in excellent agreement with the experimental results 

of Mendelsohn et al. [33]. Their calculated orientational order parameter profiles were 

also in good agreement with the experimental results of Seelig et al. [30] and Oldfield et 

al. [34]. Zaraiskaya et al. [44] made MD simulations for galactosylceramide 

/dipalmitoylphosphoglycerol (GalCer/DPPG) lipid bilayers. Their results for orientational 

order parameters, area per lipid and bilayer thickness are in good agreement with 

experiments. They also revealed the cooperative bilayer undulations, which are expected 

in the liquid crystalline phase. Gurtovenko et al. [ 45] also applied MD method to bilayers 

of DMPC and the cationic lipid dimyristoyltrimethylammonium propane (DMTAP). 

Their simulation revealed the electrostatic origin of the dependence of the area per lipid 

on the DMT AP concentration, and explained the change of the electrostatic properties of 

the bilayer with changing DMT AP concentration and the influence of this change on the 

surrounding water and ions. However, in MD, the calculation complexity will increase 

quickly with the size of the system and the complexity of the molecules, so MD is usually 

applied to systems with limited number of lipid molecules, and periodic boundary 

conditions are used. 

In Monte Carlo (MC) simulations for equilibrium systems [9], starting from a selected 

initial state, the system samples in sequence a series of states according to various 

strategies reflecting the Boltzmann distribution (in fact, the efficiency of MC usually 

depends on these strategies). In this way, a collection of sampling states satisfying the 

Boltzmann distribution is generated, and the ensemble averages over all these states will 
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give the various statistical quantities we want. For example, Xu and Cafiso [35] detected 

terminal methyls in the vicinity of the headgroup/hydrocarbon interface. This result 

suggests the existence of backward pointing bonds, which are called the "stepping back"­

type of bonds in the paper of Whitmore et al. [1]. However, it is difficult to give 

quantitative description of such bonds through experiments. Monte Carlo simulations of 

H. L. Scott [36] provided the probability of such bonds at each carbon atom along a 

DMPC chain. Their results are comparable to the values obtained by Whitmore et al. [1]. 

Using a two-state, two-component, Ising-type model, Sugar et al. [42] made MC 

simulations for DMPC/DSPC bilayers. They found that when the temperature is between 

the main transition temperatures of DMPC and DSPC, there can form domains of gel­

phase DSPC in a fluid phase continuum of DMPC. They also obtained the excess heat 

capacity curves, the fluorescence recovery after photobleaching (FRAP) threshold 

temperatures, the most frequent center-to-center distances between the DSPC domains, 

and the fractal dimensions of DSPC domains. Based on the same model, the MC 

simulations of Ekaterina et al. [43] gave a quantitative description of phase separation 

and formation of small domains in the DMPC/DSPC bilayers. Compared with MD, the 

dynamic strategies in MC are based not on Newtonian equations, but directly on 

Boltzmann distribution. This may help MC to acquire enough states to reflect Boltzmann 

distribution faster than MD does, so MC can deal with larger systems than can MD. 

However, MD can give more details about a system, especially those beyond equilibrium 

statistics. Besides, in MC, sampling only a small number of possible states may lead to 
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statistical noise in the partition function, which makes it problematic to calculate 

expectation values by taking the derivative of partition function. 

The theoretical approach used in this thesis is a lattice-based, self-consistent field 

(SCF) theory. Leermakers and Scheutjens [10, 11] may be the first to apply a lattice­

based self-consistent field theory to bilayer, after which Meijer et al. [12, 13] made 

important extensions. In their theory, the lipids and the solvent can distribute throughout 

the system, which makes the separation of the potential energy into separate surface and 

interior contributions inappropriate. All the interactions between these constituents are 

modeled as contact forces, and then further expressed as the interaction between a 

component and a self-consistent, spatially inhomogeneous effective field, which also 

incorporates the constraint that the average total occupancy of each lattice site sums to 

unity. Besides, the hard-core repulsions were also realized in the theory. The systems in 

their model can self-organize into a stable bilayer [10]. Then by further incorporating the 

spatial correlations between successive units of the lipid molecules in the statistical 

weight of each configuration, they [11] obtained an anisotropic effective field, and saw a 

phase transition in their improved model, which maintains the ability of self-organizing 

bilayers. The theory is also in resonable qualitative agreement with many experimental 

results. For example, it predicts that the phase transition temperature increases with chain 

length, although the increase is not as much as shown by experiments. However, in their 

theory [10- 13], there remain some problems such as full intercalation in the gel phase, 

too small bilayer thickness, too large solvent content in bilayer interior, and neglect of 

vacancies in bilayer interior. 
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By incorporating vacancies in the model and by adopting a more realistic lattice, 

Whitmore et al. [1] addressed the above problems and developed a SCF theory of 

compressible single-component bilayers. The theory incorporates the effects of 

hydrostatic pressure. Their quantitative results such as bilayer thickness, water content in 

bilayer interior, density change on passing through the main phase transition, and average 

orientational order parameter, are in considerable agreement with experiments. They also 

showed that the thickness of a bilayer in liquid crystal phase increases with applied 

hydrostatic pressure, which may be somewhat counter-intuitive, but agrees with 

experiments [39, 40, 41]. Then Geehan and Whitmore [14] extended this theory to deal 

with binary mixtures. The work presented in this thesis follows from the work of Geehan 

[14], and Whitmore et al. [1]. 

We can make the following general comments on the application of SCF theories to 

fully hydrated lipid systems [1, 10- 13, 15, 16, 17- 22]. SCF theories can explain the 

self-organization of phospholipids into bilayers. Incorporation of the connectivity within 

the lipids in SCF theories leads to anisotropy of the effective field, which is crucial in 

modeling the gel/liquid main phase transition. Existence of vacancies in the model 

enables simulating the behavior of bilayers under hydrostatic pressure. SCF theories have 

strong ability to give microscopic and detailed physical pictures of the systems being 

modeled. Although SCF theory, MD and MC can all give results in good qualitative 

agreement with experiments for a number of structural properties, SCF theory can make 

detailed treatment of those aspects of their behavior currently beyond MD and MC 

simulations. 
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1.4 Goals and Outline of Thesis 

The goal of this thesis is to use the SCF theory to understand the behavior of lipids in 

binary mixtures, with a focus on the orientational order parameter. In the second chapter 

we present the SCF theory for fully hydrated binary mixtures. We apply it to a simplified 

bilayer model in the third chapter. Then, in the fourth chapter, the equation of state and 

the partial lipid Gibbs free energy are given. In the fifth chapter, the equations and 

methods for calculating the orientational order parameter, the order parameter by layer, 

the gauche isomers by layer, and the segment distributions are derived and explained. 

Finally, in the sixth chapter, we make calculations for a series of systems to understand 

the behavior of lipids in binary mixtures, and to compare with experiments. Our foci are 

on how short and long chains affect each other, how the order parameter profiles compare 

and change, how they are influenced by the local environment, and in particular the 

nature and cause of the second plateau. 
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Chapter 2 

Self-Consistent Field Theory 

The self-consistent field theory presented here is based on the work of Whitmore et al. [1] 

and the thesis of Geehan [14]. The theory in this chapter applies to any fully hydrated 

lipid/solvent mixture that is planar and periodic. In the next chapter, we apply it to a 

particular model of a bilayer. 

In this chapter, we first write down the partition function of a mixture based on a 

model of lipids, water molecules, vacancies and interactions, then transform it to a 

functional integration using a standard method. To proceed further, the functional integral 

is approximated by the maximum of the integrand, and then the resulting formulas are 

applied to layered structures. 

2.1 Partition Function 

Consider a system of lipids and solvent molecules at a temperature T and ambient 

pressure P0 • There are two kinds of lipids. Each lipid has a headgroup and two chains of 

the same length. Since in this paper we are mainly concerned with the effects of mixing 

hydrocarbon chains with different length, instead of with different headgroups, we 

require in our model that the two kinds of lipids have identical headgroups, but different 

length chains. The solvent should be mainly water because the highly polar water 

molecules play a dominant role in the formation of bilayer structures. In real systems, 

there are often other ingredients. For example, in experimental studies, lipids are 
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typically hydrated in various buffers. In biological objects, the cell bilayers exist in much 

more complicated environments. In our model, we assume there is only a single solvent. 

We are interested in the fully hydrated phase, so in our model the solvent molecules 

are in excess. In the equilibrium state, such a system should separate into two 

macroscopic phases, namely, a mixture of lipid and solvent, and a solvent phase having 

negligible lipid concentration due to strong hydrophobic interactions, and thus playing 

the role of a solvent reservoir for the mixture. In the lipid/solvent phase, the lipids can 

form periodic structures. We will be interested in periodic layered structures. We want to 

calculate the equilibrium phases and structural properties of these layers. The two kinds 

of lipids in each layer could be mixed or separate into two "macrophases", with one of 

them rich in long-chain lipids, and the other rich in short-chain lipids. The phase, or 

phases, could be liquid crystal or gel. Our ultimate goal is to determine this, and the 

properties of each phase. The fundamental approach is to calculate the minimum free 

energy under the assumption that the lipids are uniformly mixed. If this assumption is 

incorrect, then there is some negative curvature in the function of the free energy vs. 

composition. 

Since the highly polar water molecules play a dominant role in the formation and 

properties of bilayers, we concentrate on systems with solvent of pure water. We further 

model the solvent molecules as structureless hard spheres. Since our interests are mainly 

in the bilayer interior instead of solvent molecules, such simplification is defensible. We 

label solvent molecules as s. There are two kinds of lipids. We denote the lipids with 

longer chains as 1, and the lipids with shorter chains as 2. The chains are made up of a 
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series of CH2 units, and a terminal CH3 unit. Similar to what we have done for solvent 

molecules, we model these units as identical hard spheres labeled c, which are the same 

size as the units of solvent molecules. Similarly, each headgroup consists of identical 

hard sphere units denoted as h and having the same size as the other two kinds of units. In 

our model, the headgroups do not change their size and shape, whereas the internal 

conformations of each chain, which can be described by the position of each c unit, or by 

the bond sequence, are in constant change. The sequences of trans and gauche isomers 

can also be calculated by the above descriptions. This model does not take into account 

the effects due to the orientation and internal structure of solvent molecules, and the 

differences among the CH2 units, the CH3 units and the C = 0 complex which is at the 

beginning of each chain. When modeling the interactions of c, h and s, we also neglect 

their structures. 

The lipid/solvent mixture occupies a volume V, and contains a fixed number of long 

lipid molecules, 1 N1 , and short lipid molecules, 2 N1 • The total number of lipid molecules 

is N1 =1N1 +2N1 • Because of the existence of the reservoir of excess solvent molecules, the 

number of solvent molecules in the mixture can vary. Its equilibrium value is determined 

by its chemical potential, Jls , which is a function of temperature and pressure. We will 

see that we can calculate the equilibrium density and pressure effects by fixing V, 

The partition function of this system is given by 

z 1 Nz z 2 Nz z N~ [( \ l 
Z(T N N V) L I I ....::2__:_1_ s e-/3 UA+WA !J1,N~ 

•I 1•2 l'Jls, = --
N 1 N 1 NsA1, A I I· 2 l' 

(2.1) 
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In this expression, A labels a particular configuration of the entire mixture, N: is the 

number of solvent molecules present in configuration A, 1 z1 and 2 z1 are, respectively, 

the factors due to the kinetic energy of a long lipid and a short lipid, zs is the kinetic 

energy factor of a solvent molecule, UA and WA together represent the potential energy 

of configuration A, and fJ = lj(k8 T), where k8 is the Boltzmann constant. The 

summation is over all possible configurations. The obvious difference between this 

partition function and the one used by Whitmore et al. [1] is the replacement of z(1 
/ N 1! 

by two such factors, which is due to the presence of two kinds of lipids. 

According to the routine procedure to get some physical interpretation of Z, we 

differentiate Z with respect to fJ and obtain [1] 

1 
- -lnZ =A- " (N ) = F fJ rs s 

(2.2) 

Here A is the Helmholtz free energy, and (Ns) is the average number of solvent 

molecules. 

The first contribution to the potential energy, UA, is the total energy due to the 

shapes, namely, the total energy of all the gauche isomers, of all the lipid molecules in 

configuration A. The calculation of UA will involve four consecutive units in one lipid, 

and thus cannot be combined into WA, which, in our present model, involves only the 

interactions between the nearest neighbors, as will be discussed afterwards. U A can be 

calculated using the Rotational Isometric State approximation (RIS approximation) [23], 
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in which each C-C bond is in one of three discrete states. The entire system can be 

embedded in and described by a diamond lattice, and the shapes of a lipid can be 

enumerated by walks on the diamond lattice. Not all the lattice sites are occupied, which 

incorporates the finite compressibility of the system into the model. 

The second contribution to the potential energy, WA, arises from all the other 

interactions. Since UA and WA are all due to interactions between different units, the 

division of potential energy into UA and WA might appear to risk double counting. 

However, as mentioned above, since we will include only nearest neighbor interactions in 

WA and since the gauche isomer energy is not a nearest neighbor interaction, UA and 

WA are different. It is convenient to separate WA into hard-core repulsions and long-

range interactions. The hard-core repulsions imply that no two units can occupy the same 

region of space, namely, the same lattice site, no matter whether they are from the same 

molecule or two different ones. It is imposed by including only those configurations A 

satisfying this constraint. So WA can refer only to the longer-range parts of the 

interactions. It should depend on the density distribution of each component in 

configuration A. In our model, we consider only two-body forces, so WA can be given 

by 

w A = .!. I I Pt (r )wkk' (r, t)p~ (-r) 
2 k,k' r.r' 

(2.3) 

where k,k' = c, hands, r denotes a lattice site, Pt(r) is the number density of species k 

at point r in a configuration A , and W kk' (r, r) is the interaction energy between a unit of 
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species k at point r and a unit of species k' at r . Since all the units in the model are 

abstracted as structureless points, the densities can be expressed as delta functions. 

2.2 Self-Consistent Field Approximation 

By introducing field variables wk (r), we can write the partition function as [1] 

Z(T N N V) _ 4'1.(-1 rr [ d (-) -,BF[{mk(r)}] 
'I 1'2 t,f1,., --''l = wk r e (2.4) 

k,i' 

Here wk (r) is a field variable of species k at position r, 9{ is a normalization constant, 

and F denotes a free-energy functional given by 

(2.5) 

where}= 1, 2 refers to the long or short chains respectively. 

The above functional integrations over wk(r) cannot be done exactly. We 

approximate the functional integrations by the maximum value of the integrand, which 

corresponds to finding the minimum of F with respect to the {wk (r )} . We denote the 

various values obtained by the minimization with a superscript 0. The minimization 

yields a set of self-consistent equations 

w~(r)= PL:wkk,(r,r)p~,(r) (2.6) 
k'r' 

and 
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(2.7) 

where 

E~ = fJU/\ + LP:(r)mZ(r)-N:(lnz. + fJp.)+lnN.A! (2.8) 
k,r 

The last two formulas can also be written as 

(2.9) 

where 

I 

E~ = {JU/\ + LP:(r)mZ(r)- N:(lnZ. + fJpJ = E~ -InN:! (2.10) 
k.r 

I 

where the E~ is the energy associated with configuration A, so it is obvious that PZ (r) is 

the equilibrium density of component k at r. Then mZ(r) is the statistical mean (or 

effective) value of the longer range part of the interaction experienced by a unit of 

species k at point r, i.e., it is a mean field. From equations (2.6) - (2.8), m2(r) and 

PZ(r) can be calculated from each other, i.e., they are self-consistent. These are why 

equations (2.6) - (2.8) are regarded as a self-consistent, mean-field description of both 

the equilibrium densities and the effective potentials. Thus the partition function becomes 

(2.11) 

where F 0 = F[{mZ(r)}]. 
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Next, we should apply the above general results to what we are interested in, the 

layered structures. We require that the system be composed of a series of parallel planes 

within each of which the equilibrium density distribution is uniform, and the equilibrium 

density distributions are periodic in the direction normal to these planes. We label this 

period by R, and the area of the planes by A. The system is composed of a series of 

identical unit cells of dimensions AxR. We further require that each unit cell contain 

one bilayer and surrounding solvent. There are a total of L/ R of such unit cells, where 

L = V /A is the total length of the mixture. Our calculation should determine the number 

of lipids per bilayer, bilayer thickness and shapes of lipids. Choosing the x-axis to be 

normal to the layer planes, we have PZ (r) ~ PZ (x), and wZ (r) ~ wZ (x) in equations 

(2.6)- (2.8). Their periods are all R. The equilibrium density on layer xis given by 

(2.12) 

where 

E~ = j]UA + IN:(x)wZ(x)-N:(lnz,. + {Jp,.)+lnN:! (2.13) 
k,x 

and 

(2.14) 
y,z 

which is the total number of units k on layer x when the mixture is in configuration A. 

For the layered system, the minimized free energy can be written as 

(2.15) 

where 
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A 
/

0 
=-LP~(x)w~(x) 

2 k,x 

(2.16) 

and 

Q 0 = Iexp{- E~ +1N1 lnC z1 )-InC N 1 !)+ 2N1 ln( 2 z1 )-ln( 2 N1 !)} (2.17) 
A 

Up to this point, we have used the states of the entire system, A, to label the 

configurations of the system. They can also be expressed by the states of individual 

molecules and associated occupation numbers. We now use this idea to reformulate the 

summations over configurations. The state of a single solvent molecule can be fully 

specified by the layer it resides on. The states of a single lipid of type j can be specified 

by (x, A, j). Here x is the layer occupied by its headgroup unit bonded to either one of the 

hydrocarbon chains, and A specifies the sequence of all the bond vectors. It is worth 

noticing that at this point, the defining layer "x" can be in any layer in the system. The 

states of the entire system can then be specified by sets of occupation numbers {1 N;. (x )} , 

{ 2 N;.(x)} and {Ns(x)}. Here 1N;.(x) and 2 N;.(x) denote, respectively, the number of 

lipids in state (x, A, j), and N. (x) denotes the number of solvent molecules on layer x. 

Since these states are independent of where the molecules are within the layer x, a given 

set of occupation numbers generally corresponds to many distinct configurations, A. 

The sums over configurations A can be re-expressed in terms of summations over sets 

of these occupation numbers as 
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(2.18) 

where the quantity in the square bracket is the number of allowed configurations of the 

system that can be characterized by the sets t N A (x )} , {2 N A (x )} and {N., (x )} . 

Since the numbers of long and short lipids are all fixed, the sum should be over all 

possible sets satisfying the constraint that 

L jNA(x)=jNl (2.19) 
X,A 

There is no corresponding constraint on the solvent because of the existence of the 

solvent reservoir. For each configuration, Ns is simply the sum of the Ns (x). 

The hard core repulsions should be incorporated into the model through the function g 

in equation (2.18). It is just the number of ways to add sequentially all the bonds of all the 

lipids as well as all the solvent molecules to the system. It should not include 

configurations having doubly occupied sites. For most cases, it is impossible to evaluate 

g exactly, so g has to be approximated. The function of g given by Whitmore et al. [1], 

which is based on the generalization by Leermakers and Scheutjens [11] of earlier work 

by Dimarzio [24], can be used in our case without any revision. In this method, the 

probability that a bond can be added to a layer in an existing collection of molecules 

depends not only on the number of vacancies on that layer, but also on the number of 

each type of bonds associated with that layer. This contributes to the anisotropy of the 

effective field, self-organization of the bilayer, and the phase transition. 

In a diamond lattice, there are four distinct possible C-C bond vectors (or eight 

counting antiparallel vectors). However, for approximating g, it is convenient to combine 
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them into two types of bonds, labeled V and H. Bonds of type V join monomers on two 

adjacent layers, and bonds of type H joins two monomers within the same layer. The 

form of g is 

-TI (A- 'I'v (x ))!(A-'¥ H (x ))! 
g- x A!(A-N(x))! (2.20) 

where N(x) is the total number of units, due to long and short chains and solvent 

molecules, on layer x, 'I'v (x) is the total (including long and short chains) number of 

bonds joining units on layer x and layer x+1, and 'I'H(x) is the total number of bonds 

within layer x. In order to express them with L N 2 (x )} and {N. (x )} , we define j n~ (x' I x) 

and j n1 (x'l x), respectively, as the number of hydrocarbon and headgroup units on layer 

x and belonging to one lipid of type j in state (x',A., j). The number of units of type k on 

layer x, for k = c or h, can now be expressed as 

Nk(x) = L 1N2 (x')1n1(x'! x)+ L 2 N2 (x')2 n1(x'! x) (2.21) 
x',,t x',,t 

We can express the total number of units of all types on layer x as 

N(x)= L:tN,.(x')1n1(x'! x)+2N2 (x')2 n1(x'! x)}+ N.(x) (2.22) 
x',..t,k 

We then define jm¢(x'!x) and jm~(x'!x) respectively as the number of bonds 

connecting units on layers x and x+ 1, and the number of bonds within layer x, associated 

with one lipid molecule of type j in state (x',A., j). Note that jm¢(x'! x) includes both 

bonds beginning on x and ones beginning on x+ 1. Then 

'I'b(x) = L t N,. (x')1 m;(x'l x )+2N2 (x')2m;(x'l x )} (2.23) 
x',,t 
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where b = V, H. 

Equation (2.12) and (2.17) can be rewritten with (2.18) and (2.20)- (2.23) as 

where k = c and h, and 

Q0 = L exp { w [LN.dx')},{2N..l(x')},{N,}l } (2.25) 
{ 1 N2 (x')},{2 N,~ (x')},{N..} 

The solvent density can be expressed similar to (2.24). Here Wis given by 

- ~ ,N, (x{PE,rh + ln(,N, (x))+ ~ ,n1(x I x')to~(x')-ln(,z1 )] 
- LNs(x)[ln(Ns(x))+w~(x)-P.Us -lnzJ 

X (2.26) 
+ L [A- 'Pb (x )]ln[A- 'Pb (x )] 

x,b 

- L[A-N(x)]ln[A-N(x)]- LAlnA 
X X 

Here E g is the energy of a gauche bond relative to a trans bond for long or short chains, 

and j 1J A. is the total number of gauche isomers in a particular sequence A of long or short 

chains depending onj. Stirling's approximation has also been used where appropriate. 

Next we use the most probable set of occupation numbers for each component to 

approximate the above summations over sets of occupation umbers because the latter 

cannot be done exactly. These most probable sets of occupation numbers, which we 

denote by tNA.(x)}, {2 NA.(x)} and {Ns(x)}, can be found by minimizing Wwith respect 
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to them, subject to the constraint of constant numbers of each kind of lipid. This 

minimization gives 

and 

Ns (x) = Ae-[e,(x)-,B.u,-lnz,] 

where 

i£;. (x) = fJEg /h + Z:Ln~ (xI x')mc(x')+ in~(x I x')mh (x')] 
x' 

+ ~ i m; (x I x')ln(l-lj/ b (x'))-~ in;. (xI x')ln(l- p(x')) 
x,b x 

where in"(x I x')= in~ (xI x')+ in~(x I x'), 

£,. (x) = m,. (x) -ln(l- p(x )) 

and 

For the above equations we have used 

-( )- N(x) px ---
A 

and 

- - 'Pb(x) 
lf/b --A-

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

With (2.22) and (2.23), we use LN;.{x)} and {Ns(x)} to calculate N(x) and 'Pb(x). From 

now on, the "bar" over a quantity means that the quantity is calculated from the set of 
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most probable occupation numbers. The quantities calculated from these barred quantities 

are obtained in the self-consistent field, or SCF, approximation. 

Using these most probable sets of occupation numbers for all the components, we can 

approximate the summations in (2.24) and (2.25) as 

(2.34) 

and 

(2.35) 

where k = c and h, and 

(2.36) 

for the solvent. Then the total average density on layer xis 

(2.37) 

where k = c, h and s. The definition of potential mk (x) in (2.29) and (2.30) should still be 

(2.6), except using pk (x) instead of p~ (r'). 

The equilibrium value of the total number of solvent molecules in the mixed phase, 

Ns, is a function of the solvent chemical potential, which is 

_ 1 1 (QsAzsJ f.J - -- n =-==--""" s fJ Ns 

with 

X 

(2.38) 

(2.39) 
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By substituting (2.27) and (2.28) into (2.34) for Q , and approximating / 0 defined in 

(2.16) as l with pk(x), we can obtain the SCF approximation for the free energy, which 

is 

(2.40) 

From the properties of individual molecules immersed in effective fields determined 

by bond and density, we can calculate the SCF approximation of pk (x), lf/b (x) and 

mk (x), and then obtain F by the above equation. We can first fix the repeat distance R as 

any reasonable value, and then make SCF calculations until we get F . In principle, we 

then vary R and repeat the calculations, searching for the value of R which minimizes F . 

The results give the equilibrium values of R and F, whose physical meaning is the 

minimum free energy at repeat distance R. 
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Chapter 3 

Simplified Model Bilayers 

3.1 Physical Description 

The above self-consistent mean-field theory is applicable to any fully hydrated 

lipid/solvent mixture that is periodic and planar. Now we will apply it to a simplified 

model of the mixture whose one unit cell and bilayer is shown in Figure 3.1, and which 

can be defined by the following six assumptions and related approximations. 

First, each unit cell of the periodic mixture structure exhibits mirror symmetry about 

the central plane of its bilayer. 

Second, in this model the headgroup complex of each lipid is composed of two series 

of h units all perpendicular to the bilayer plane. We assume this headgroup orientation 

does not change throughout the temperature and pressure ranges of interest. 

At either side of each bilayer, all the bonds linking headgroups to hydrocarbon chains 

should undergo thermal fluctuations about a plane defining the average position of these 

. 
bonds, leading to a finite width for the headgrouplhydrocarbon interface. However, the 

fluctuations will produce large enthalpic penalties which will in tum limit this width. Our 

third assumption is to neglect such fluctuations and suppose that these 

headgroup/hydrocarbon bonds are restricted to a single layer on each side of the bilayer. 

Fourthly, we assume that the hydrocarbon chains of any lipid cannot penetrate into or 

beyond the headgroup regions, i.e., we neglect the conformations with such penetration, 

which will result in large enthalpic penalties. 
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Figure 3.1 Diagram of one unit cell of fully hydrated model bilayer. The acyl chains 
are represented by light lines, the headgroups by darker lines, the vacancies 
by open circles, and the solvent molecules by solid circles. The broken 
lines in the C region represent the parts of the acyl chains whose other parts 
are not in the plane. The figure is for a bilayer of h = 6, 11 =14 and lz = 10. 
The thicknesses of bilayer interior and the full bilayer are tc = 21 and tB = 
33. 

We also assume that the long and short chain lipids are randomly mixed. 



29 

In this model, we assume that the cross-sectional area of each headgroup is equal to 

that of two fully extended hydrocarbon chains. For some lipids such as PE's, this 

assumption is reasonable, but for some others such as PC's, the headgroup is broader. As 

well, in this model, the headgroups are not allowed to tilt and the surfaces are not allowed 

to fluctuate. All these assumptions mean that this model is most suitable for the liquid 

crystal phase of PE's and PC's, as well as the gel phase and main transition of PE's. 

The structure of each unit cell is shown in Figure 3.1. The twoS regions are composed 

of pure solvent. The H1 and Hz are headgroup regions composed of all the headgroup 

units of a bilayer and solvent. The C region contains all the hydrocarbon units and some 

solvent. Because of the hydrophobic effect, the amount of solvent in this region is very 

small, which is also experimentally true, so we neglect solvent in this region. 

Associating a volume v0 with each site, we can calculate the volume of each region. 

The S region has 2s lattice planes, so its volume is .Qs = 2sAv0 • The total headgroup 

region, H = H 1 u H 2 , has 2h layers, so its volume is .QH = 2hAv0 • The C region contains 

tc layers and has a volume .Qc = tcAv0 • The whole bilayer is composed of both the 

hydrocarbon chains and the headgroups, so its thickness is t 8 = tc + 2h. The overall 

repeat distance is R = t 8 + 2s . 

Since the headgroups are perpendicular to the layer planes, h is determined by the 

number of headgroup units per lipid molecule. However, the flexibility of hydrocarbon 

chains makes t 8 and tc variable. Let 11 be the number of hydrocarbon units in each long 

chain, so that their maximum values are t~ = 211 and t~ = 2(11 +h). The bilayer can 
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assume such maximum value when every long chain of it is fully extended, i.e., has no 

gauche isomers, and the chains from opposite sides of the bilayer do not penetrate into 

each other. 

3.2 Interactions 

We need six two-body potentials, Wk.e(r), to fully specify the longer range interactions of 

all the three distinct species of the system. In this work, we approximate them with 

effective, nearest-neighbor interactions, which reduce the expression for the self-

consistent fields to 

(3.1) 

where each of the Wkk' is only the effective, nearest-neighbor part of the interaction, and 

(7\ (x )) = .!_ [pk (x -1) + 2pk (x) + Pk (x + 1)] 
4 

which is a local density average. 

We define X kk' as 

(3.2) 

(3.3) 

which is proportional to the usual Flory parameters [25], and the proportionality constant 

depends on the lattice constant and coordination number. 

For non-polar polymer systems whose change in the density of each component is 

small within the range of the interactions, the above nearest-neighbor approximation is 

generally considered to be appropriate in mean field treatments. However, because of the 
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complexity of the interactions, the interaction parameters cannot be calculated from first 

principles. Instead, they are usually determined by fitting to various experiments. 

However, for different temperature, molecular weights and overall blend composition, 

the fitted results are often different, which means that the mean-field theory neglects 

some other effects. 

In this work, we apply the above nearest-neighbor simplification to all interactions, 

including those involving polar constituents. This is questionable. Its advantage is to 

make it possible for us to treat all the interactions in a consistent and relatively simple 

way. The Wkk' are obtained by fitting this model to experiments, as in most polymer 

theories, instead of calculating from first principles. 

In addition, treating the compressibility of bilayers requires including all six 

interaction parameters, Wkk', not just the zkk, parameters. 

3.3 Density and Bond Distributions 

In Chapter 2, we showed SCF equations from which the density distribution of each 

component could, in principle, be calculated. We now apply them to the simplified model 

to acquire explicit SCF equations for the bond and density distributions within the C 

region and will find that such application will lead to considerable simplification. 

First we should note that the headgroup units are confined to the H regions where their 

density is uniform, so we have 



if XES 

if XE H 

if XE C 

Here ph =21p1 +22p1 , where 1p1 and 2 P1 are given by 

and 
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(3.4) 

(3.5) 

(3.6) 

which are, respectively, the number of longer chain length lipid molecules per unit area at 

each interface, and the number of shorter chain length lipid molecules per unit area at 

each interface. 

For solvent, with the same method as that of Whitmore et al. [1], we can show that the 

solvent (water) density is exponentially smaller than the vacancy concentration, which is 

itself small in the C region, and is equal to 1- ph to within exponentially small 

corrections in H region. So for most cases, with negligible error, we can use 

{

Po 

Ps(x)= ~-Ph 
if XES 

if XE H 

if XE C 

(3.7) 

where p 0 is the solvent density in the reservoir. However, in the expressions for the 

entropy, pressure and free energy, there are terms of the form ln(l- p(x )) , which will 

cause divergence if equation (3.7) is used. This divergence is because equation (3.7) 



33 

neglects the tiny vacancy density in water. Whitmore et al. [1] calculated this vacancy 

density. Their results are adopted in this thesis to solve this divergence problem. 

In the model, the hydrocarbon units are confined to the region C, so we have 

if XES 

if XE H 

if XE C 

(3.8) 

The calculation of Pc (x) is far more complicated than Ps (x) and ph (x), although their 

above expressions are similar. We calculate Pc(x) by the SCF method. 

Since in the model there is mirror symmetry about the bilayer mid-plane, we can use it 

through the following new notation. First of all, we note that there are only two states for 

headgroup complexes in one unit cell, namely, the headgroup being on either side of the 

bilayer in each unit cell. We label these two headgroup states by a = i and a =-1- , which 

are mirror images of each other. Then it is straightforward to change the label of lipid 

states from (x,/L,j) to (i,a,/Lc,j), where i specifies the unit cell holding the lipid, a 

denotes the headgroup state we have just defined, and /!,c specifies the state of the 

hydrocarbon chains. 

We now consider lipids in a particular unit cell, i. For lipids in each state (i,a,/Lc,j), 

we introduce two new symbols: jn~ (x) is the number of hydrocarbon units on layer x, 

and jm:.._c (x) is the number of bonds of type b, b = 1,2, associated with layer x and 

belonging to hydrocarbon chains of type j. For headgroups, we also introduce two similar 

symbols: j n: (x) is the number of headgroup units on layer x and j m:;. (x) is the number 
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of bonds of type b, associated with layer x and belonging to headgroups. For both units c 

and h, the bond of type 2, which connects units on layer x and x + 1, is associated with 

the unit on layer x. 

The form of jcA.(x) given by (2.28) can also be simplified by the assumption that the 

lipids are confined to the bilayer and thus do not penetrate into other unit cells. 

Furthermore, since all the headgroup/hydrocarbon junctions are confined to two planes 

per bilayer, jcA.(x)----7= if xis not one of these planes. We can also denote the mirror 

image of lipid state (i, i,A-c, j) by (i, -1-,A-c *, j ), where A,c* is the mirror image of state Ac. 

These two states should have the same energy because of the reflection symmetry of the 

bilayer. 

The self-consistent equations can be rewritten by the above analysis and notations. 

First of all, we can express the average hydrocarbon density on layer x within the bilayer 

i as 

(3.9) 

We should also notice that in this model, the headgroups cannot enter the C region, and 

the hydrocarbon chains cannot enter the headgroup regions. No matter whether the bonds 

are associated with headgroups or with hydrocarbon units, the bond density throughout 

the bilayer can be written as 

(3.10) 

where 
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(3.11) 

and 

(3.12) 

In addition, in state (i, 1',.Ac, j) (or its mirror image), 

(3.13) 
X x,b 

and 

(3.14) 
X x,b 

Equations (3.1), (3.2) and (3.9)-(3.14) are the self-consistent equations used in 

calculating Pc (x), lf/b (x) and OJk (x). In the program, the hydrocarbon density and bond 

density are acquired from propagators, G(m)(fo,f I fJ2 ,fJ1) and Q(m)(f I jJ2,fJ1). Since many 

other quantities such as orientational order parameter, gauche isomer, and etc., can also 

be obtained from propagators, calculating propagators first in the program can bring great 

convenience to the subsequent calculations. Here we use the definition given by 

Whitmore et al. [1]: 

Propagator a(ml(fo,f I fJ2 ,fJ1) is proportional to the probability that a chain with m + 1 

units has unit 0 at fa, terminates with its mth unit at r, its last bond is of type fJ1 , and, if 

m;:::: 2, its second last bond is type jJ2 • 
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Propagator Q(ml(;: I /J2 ,/J1) is proportional to the probability that a chain with m + 1 

units has unit 0 at r, its first bond is of type fJ1 , and, if m ~ 2, its second bond is type 

/J2 , but its terminal point is unspecified. 

The calculation of the propagators, the Pc (x), the lf/b (x) and other related quantities, 

which is based on the RIS approximation, is described by Whitmore et al. [1] 

Finally, in this model, the bond and unit densities associated with the headgroup units are 

very simple. We summarize them in Table 3.1. 

Table 3.1 
Bond and particle densities associated with the headgroup and solvent regions, 
corresponding to Figure 3.1. See text for definition of p0 and Ps (x). 

Layer, x If/~ (x) If/~ (x) p(x) 

x::;s 0 0 Po 

x = s+1 Ph/2 ph Ps(x)+ Ph 

s+2::;x::;s+h-1 0 ph Ps(x)+ph 

x=s+h 0 0 Ps(x)+ph 

S + h + t c + 1 ::; X ::; S + 2h + t c - 1 0 ph Ps(x)+ph 

x = s+2h+tc ph/2 0 Ps(x)+ph 

X ~ S + 2h + t c + 1 0 0 Po 

In table 3.1, p 0 is the solvent density in the reservoir, and 
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(3.15) 

whose derivation is given in the paper of Whitmore et al. [1]. Except when calculating 

ln(1- p(x )) , we use Ps (x) z 1- ph in the headgroup regions, then p(x) z 1. 
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Chapter 4 

Equation of State, Partial Lipid Gibbs Free Energy and the 

Stability of Mixtures 

4.1 Equation of State and the Partial Lipid Gibbs Free Energy 

In our calculations, we need the internal pressure to be equal to the applied pressure, and 

we need to minimize the Gibbs free energy in order to find the equilibrium thickness. 

Hence, we need their expressions as well as the basic thermodynamic relations. 

Within the saddle point approximation, the pressure, P, can be expressed as 

(4.1) 

Using equation (2.14) for F 0 and equation (2.24) for Q0
, and noticing that W is 

evaluated at its extremum, we can obtain from the above formula 

(4.2) 

Combining the results from the analysis of the simplified model, we can rewrite it as 

(4.3) 
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where Xhs, which is defined by (3.3), is proportional to the relevant Flory parameter and 

reflects effective headgroup-solvent interaction, p~1 ) is the carbon unit density on layers x 

= s + h + 1 and x = s + h +tc, and Po is the ambient pressure, which comes from the 

summation over the 2s layers of pure solvent region. 

Applying (2.39) to a system of pure solvent, we obtain the free energy appropriate to 

the reservoir. Differentiating it with respect to volume, as in ( 4.1 ), we get 

Po = 2p;wss - ~ ln(1- Po) (4.4) 

This equation relates the environmental hydrostatic pressure, P0 , temperature, and 

solvent density, p0 , in the reservoir. It was used in deriving equation (4.3) from (4.2). 

For an equilibrium system, P , which is the pressure obtained from the SCF 

calculation, can be calculated from either (4.2) or (4.3), which is the equation of state. 

The Gibbs free energy of the system is important in analyzing the system at constant 

pressure. For our system, the Gibbs free energy is the sum of the partial Gibbs free 

energy of the lipids and solvents. The contact of the mixture with the reservoir makes the 

chemical potential of the solvent molecules constant, regardless of the lipid structure. 

Consequently, we can consider only the partial Gibbs free energy of lipids of each kind, 

which is j N1 j f.11 , with the j f.11 being the lipid chemical potential of the long or short 

chain length lipids. Given F =A- f.ls(Ns) as in (2.2), we have 

(4.5) 
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Substituting (2.39) and (4.2) for F and P, we can express the SCF approximation for 

(4.6) 

which implies that 

(4.7) 

We can see that it has the same form as (2.37) for the solvent chemical potential. 

Using equation (3.12), (3.14), (3.4), (3.1), (3.2), and (3.3) in this sequence, from 

equation (4.6), we get 

where fj is the fraction of long or short length lipids. 

Since only changes in 0 1, rather than its absolute value, are important, we have the 

freedom to subtract off the Gibbs free energy of a reference state. The reference state we 

choose is the state in which all the lipids are fully extended and closely packed, and in 

equilibrium with the bulk so P = P0 , and the mixture separates into two phases, with one 

phase being composed of only long chains and having thickness 211 , and the other being 

composed of only short chains and having thickness 212 • The Gibbs free energy of this 

reference state can be obtained by considering each phase separately and by noticing that 
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in each phase there are no gauche isomers, all the bond densities are either equal to zero 

or equal to the carbon or headgroup density on each layer, and jQc depends only on 

interaction energies. By subtracting the Gibbs free energy of this reference state from 

(4.8), we obtain 

llG1 = 2h(P0 - P )+ (Whh- Ws,.)p~1 ) + 2(Wss- Whs )+ 2zsh [4h -1 + (4- 8h)ph] 
Nl 

+2Xch[p~!) -1]-2XscP~1 ) 

+ ~[+- ~')+In( p;)- 2ln(l- p,)] (4.9) 

+ Itj[-2ljP _ _!_lnjQc -4WcJj +_!_lnfj] 
~ p p 

Equation (4.3) is the equation of state, for which the solvent between bilayers 

contributes only to P and only through the term 2s(P -Po), which will vanish in 

equilibrium. Consequently, the equilibrium state of our model bilayer is independent of 

the thickness of the solvent region, except that it should be large enough to screen the 

interactions between the headgroups of neighboring unit cells. The pressure can be 

calculated from equation (4.3). Equation (4.9) is used to calculate Gibbs free energy. In 

the actual calculation, we first fix the thickness of the bilayer, then do the SCF 

calculations to obtain a converged solution, with P = P0 • We make such calculations for 

a series of bilayer thickness. The equilibrium bilayer thickness is found by minimizing 

the Gibbs free energy. 
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4.2 Stability of Mixtures 

The calculations so far are to find the bilayer thickness minimizing the Gibbs fee energy, 

namely, the equilibrium thickness, for a certain composition, which we can describe 

simply by the fraction of the long chains, / 1 , since the fraction of the short chains is 

/ 2 = 1- / 1 • The resulting minimum of Gibbs free energy is for a homogeneous mixture 

with a composition of / 1 everywhere. We can find the equilibrium thickness for all the 

compositions and generate a composition dependence of Gibbs free energy, G1 (!1). 

However, sometimes the system can further minimize its Gibbs free energy by phase 

separating into two phases, each having a different value of long-chain fraction / 1 , but 

the composition of the whole system not changing. 

Consider a mixture with long-chain fraction / 1 • Since it is a mixture, / 1 ::f::. 0 or 1 . 

Now, suppose there is a tiny fluctuation of the system so that the system phase separates 

into two phases with long-chain fractions of / 1' = /1 -51 and ft = /1 +52 , respectively, 

where 51 and J 2 are very small positive quantities. Let the fraction of all the lipids in the 

phase with long-chain fraction of f/ be x, the fraction of all the lipids in the phase with 

long-chain fraction of f 1n be (1 - x). To ensure that the average composition of the whole 

system is / 1 , we must have 

ft = xft' + (1- x )Jt (4.10) 

Equation (4.10) can be rewritten as 

f
n_ ft -xft' 

I -
1-x 

(4.11) 



According to equation (4.10) 

! 1 = xf/ + (1- x)J!H 
=x(J1 -51 )+(1-x)(j1 +52) 

Then the Gibbs free energy becomes 

0 1 (J/, x) = xG1 (!/) + (1- x )01 (J/} 

The change in Gibbs free energy due to this fluctuation is 

D.G1 = xG1 (J/) + (1 - x )G1 (J/)- G1 (!1) 

= xG1 (!1 - 51)+ (1- x)G1 (!1 +52)- G1 (x(f1 - 51)+ (1- x)(J1 +52)) 
= xG1 (!1 - 51)+ (1- x)G1 (!1 +52)- G1 (!1 - x51 + (1- x)52) 
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(4.12) 

(4.13) 

= xG1 (!1)- xG/(!1 )51 + 
512 xG1~!1 ) + (1- x )G1 (!1) + (1- x )G/(!1 )52 + 

5
J (1- x )G1~!1 ) 

2 2 

- Gl (!1)- [(1- X )52 - x51 JG/(!1)- _!_ Gz~f1 )[(1- X )52 - x51 y + o(53
) 

2 

= _!_ Gz~f1 )[x(1- X )5( + x(1- X )JJ + 2x(1- X )5152] + 0(53
) 

2 

= x(1; x) (51 +52 Y Gt~f1) + o(53
) (4.14) 

Since 01 and 0 2 are all very small, the term o(o3
) can be omitted. Furthermore, since 

0< x< 1, then 

(4.15) 

if G1~f1 ) < 0. The physical meaning of this is that a tiny fluctuation will lower the Gibbs 

free energy if G1~f1 ) < 0. This means that such a system with G1~f1 ) < 0 is unstable with 

respect to phase separation. The points where G1~f1 ) = 0 are called spinodals. 

If G1~f1 ) > 0 , the system is either stable or metastable. To explore this further, we 

return to equation (4.13). It can be written as 
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G1 (J/,x) = xG1 (!/)+ (1- x)G1(!1
- xf/) 

1-x 
(4.16) 

Minimizing G1(J/,x) with respect to x and f/ gives, respectively, the following two 

equations 

(4.17) 

(4.18) 

Equation ( 4.17) tells us that the slope of G1 at f/ should be equal to that at f 1n • 

Equation ( 4.18) tells us the value of this slope. Equations ( 4.17) and ( 4.18) also mean 

that, if we draw a double tangent to the curve G1 (!1 ), the touch points are just !/ and 

f 1n, as shown in Figure 4.1. These points are called the binodals. If f 1 is between these 

binodals, the system can lower its Gibbs free energy by phase separation. The decrease in 

Gibbs free energy is the difference between G1 (!1 ) and the value given by the tangent 

line at the same f 1 • Systems with compositions between a binodal and its neighboring 

spinodal are metastable even though G1~f1 ) > 0 

To summarize, if the long-chain fraction, f 1 , is between the spinodals, a tiny 

fluctuation will lower the Gibbs free energy, and the system is unstable. If f 1 is between 

a binodal and the neighboring spinodal point, a tiny fluctuation will increase the Gibbs 

free energy of the system, so the system will return to f 1 • However, since there are 

phase-separated states with lower Gibbs free energy, a big enough fluctuation will make 

the system jump into and then stay at such states. Hence, the single phase is metastable at 
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/ 1 • For / 1 outside these regions, there are no phase-separated states with lower Gibbs 

free energy. So after either small or big fluctuation, the system will return to /
1

, and the 

system is stable. Finally, if a2G1 (!1 )/a/1
2 2: 0 for all compositions, then there are no 

phase-separated states with lower Gibbs free energy, so the mixture is stable at all 

compositions, and there is no phase separation. 

Gibbs 
Free 
EnerQ)' 

Figure 4.1 

f/ spinodal spinodal Jt 

Composition dependence of the Gibbs free energy. There are two binodals 
/ 1' and / 1n, and two spinodals. 



46 

We should notice that the Gibbs free energy of the reference state we chose is linear in 

f 1 , i.e., its second derivative disappears, so we have 

(4.19) 

Combing this with the fact that N 1 is a positive constant number, we have that if 

a 2 !1G1 )aj1
2 ~ 0 for all compositions, the mixture is stable, and there is no phase 

Nt 

separation. The systems and temperatures in this thesis are all chosen so that 

az !1G1 )aj1
2 > 0 at all compositions, so there is no phase separation. 

Nt 
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Chapter 5 

The Orientational Order Parameter, Gauche Isomer and 

Segment Distribution 

5.1 Orientational Order Parameter Profile 

The orientational order parameter can be measured by NMR experiments in which the 

hydrogen atoms of interests are replaced by deuterium atoms. It is also convenient to 

calculate it in our model. The orientational order parameter is an important comparing 

point to test our theoretical work. We calculate it for long chain lipids and short chain 

lipids separately. 

We define the orientational order parameter associated with each carbon in the long 

chain or the short chain similarly as 

(5.1) 

where jB~ is the angle between the C-D bond and the reorientation axis, which is the 

bilayer normal in our model. The average is taken over the conformations of the long 

chains or the short chains depending onj. In our calculations, we take each cos2CB~) as 

the average over the two deuterium atoms bonded to the carbon m. We should notice that 

075:jB~ <Jr. 

In our model, the orientational order parameter associated with carbon atom m is 

decided by the bond joining unit m - 1 and unit m as well as the bond joining unit m and 

unit m + 1. For example, for m < n, where n is the last hydrocarbon unit, if the bond 
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connecting atom m - 1 and atom m is from layer x - 1 to layer x, and the bond connecting 

atom m and atom m + 1 is from layer x to layer x + 1, the two C-D bonds all lie in the 

layer X, i.e., e~ = n for both the C-D bonds; so s~ = _.!_ . For a fully extended chain, 
2 2 

for all carbon atom m, all its C-D bonds are parallel to the plane of bilayer, and thus 

S~ = -~ and ls;vl = ~ for m < n, which is the largest value that ls;vl can assume. This 

is a highly ordered state, and there are no gauche isomers. The presence of gauche 

isomers increases the disorder of the system, and thus decreases the magnitude of the 

orientational order parameter. 

In the actual calculation, we use one dimensional propagators G(m) (x0 , xiPz, p,) and 

Q(m) (xiPz, pJ. The P, and Pz are bond type. We have a total of four types of bonds, 

which are denoted as 1, 2, 3 and 4. Bonds of type 1 are from layer x- 1 to x, bonds of 

type 4 are from layer x + 1 to x, and bonds of types 2 and 3 are within layer x. The 

relationships of the one dimensional propagators with the three dimensional propagators 

defined in Section 3.3 are 

(5.2) 

where f = (x,y,z) and f0 = (x0 ,y0 ,z0 ); and 

(5.3) 
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where r = (x, y, z). Expressions for all the one-dimensional propagators are given in the 

Appendix C of the paper of Whitmore et al. [1].Their physical interpretations are as 

follows. 

Propagator G(1
) (x0 , xi,B1) is proportional to the probability that a chain with 2 units has 

unit 0 on layer x0 , terminates with its first unit on layer x, its last bond is of type ,81 (in 

fact, it has only one bond); 

Propagator G(m) (x0 , xi,B2 , ,BJ, m ~ 2, is proportional to the probability that a chain 

with m + 1 units has unit 0 on layer x0 , terminates with its unit m on layer x, its last bond 

is of type ,81, and its second last bond is type ,82 ; 

Propagator Q(1l(xi.BJ is proportional to the probability that a chain with 2 units has 

unit 0 on layer x, its first bond is of type ,81 ( in fact it has only one bond ); 

Propagator Q(m) (xi,B2 , ,81), where m ~ 2, is proportional to the probability that a chain 

with m + 1 units has unit 0 on layer x, its first bond is of type ,81 , and its second bond is 

type ,82 , but its terminal point is unspecified. 

The orientational order parameter can be calculated from these propagators. For 

example, for 2 ::; m ::; n - 2 , 

jS~v = II>>(x0 -(s+h+1))II[c(ml(x0 ,xl,82 ,,81 )jPc~(,BP,B;) 
X Xo {JtfJdJ{fJ; (5.4) 

X e -[e2(p,,f3;)+e3(p2,p{)+e3(p,.~)]Q(n-m) (xI ,8~' ,B;)] 

where 



e -<z (p
1 
./lz) = {0 if /J1 and /]2 form backfolding 

1 otherwise 

Here bond sequences 1 and 4, or 2 and 3 would form backfolding. 

if /Jl = fJz 

if /Jl -::f; fJz 

j Pc'; (/J1 ,/];) = _!_(3cos2 C 8~ )-1) 
2 
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(5.5) 

(5.6) 

(5.7) 

where /]1 and p; are respectively the bonds ending and starting at carbon atom m, 

cos2 Ce~) is the average value for the two C-D bonds associated with carbon atom m, 

and 8 3 is just the energy due to gauche isomer. 

5.2 Order Parameter by Layer 

We want to probe the bilayer environment as a function of depth within the bilayer. We 

do so by introducing the following two quantities, which are defined mathematically in 

what follows. 

1. The average orientational order parameter on layer x, (scv(x)). For a given layer, 

it can have contributions from chains from either side of the bilayer, and many 

units on each chain. Both long and short chain lipids contribute. 

2. The average order parameter due to all the units on layer x due to all the chains of 

a given type that start on one side of the bilayer. To calculate this, we choose 
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either long or a short chains, tethered at x0 = 0 . We denote this quantity by 

It is, in fact, non-trivial to relate these quantities directly to the measured average 

order parameters. In experiments, each deuteron visits many layers during the effective 

averaging time of the measurement. Thus, the experiment and the resulting definition of 

the order parameter both necessarily include multiple layers. With these quantities we are 

introducing here, we are taking a snapshot of the bilayer and averaging over all deuterons 

which are in one layer at a particular time. 

Consider all the lipids of one kind (long or short) with headgroups on the left. They 

have a total of N chains. Each chain has n carbons. If we are considering lipids of type j, 

then N =2 j N1 and n = l j • Let chain i be in configuration Y; . The n carbons will be in 

layers x~, m = 1 ton, and the order parameter associated with carbon m is S~h(m). The 

total number of carbons on layer x is 

N c(x) = IIJ(x- x~) (5.8) 
i=l m=! 

The average order parameter associated with all the carbons on layer xis 

1 N n ( ) (s2l(x))= LL8 x-x~ S~b(m) 
Nc(x) i=I m=I 

(5.9) 

We can transform the sum over chains to a sum over the configurations of a single 

chain by 

(5.10) 
i=! r 
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where Pr is the probability of a configuration y . We then have 

(5.11) 

where Cr (x) =I J(x- x~ ), which is the number of carbons on layer x when a chain is in 
m=l 

configuration y . The average then becomes 

(5.12) 

r 

We next want to express (sgl(x)) in terms of propagators. 

We should notice that S~v(m) depends only on the C-C bond ending at m, a~, and 

the C-C bond starting at m, a~+l . Here a~ and a~+l can only be the integers from 1 to 4. 

Hence, 

m = 1, 2, ... , n -1 (5.13) 

where Pc~ is in fact the same as j PJ; defined in section 5.1. 

For the last atom, there is no a~w We have S ~D (n) = P;v (a~), where 

P;v (a~)=_!_ (3 cos 2 eg -1). In diamond lattice model, knowing only a~, we can decide 
2 
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the angles of the three C-D bonds attached to the carbon atom n, then cos 2 0~£ means 

the value averaged over these three C-D bonds. 

We should also notice that 

prJ(x- X~ )s~D(m) = PrJ(x- X~ )p~ (a~ ,a~+!) 

= L PrJ(x- X~ fc~ (fJl' {J;)Ja~,p1 ga~."fJ{ p,p; 
(5.14) 

for atom 1, 2, ... , n - 1, where {31 and p; are all from 1 to 4. 

For atom n, 

PrJ(x- x: )s~D (n) = PrJ(x- x: )Pc~ (a:) 
= L PrJ(x- x: )P;D (fJ1 )J a: ,fJ, 

p, 

(5.15) 

So equation (5.12) can be expressed as 

(5.16) 

Since Pc~ (fJ1, p;) and P;D (fJ1) do not depend on y, (5.16) can be further expressed as 

(5.17) 
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Here I Pyo(x- X~ )oa~.pl oa~+l•p; is proportional to the total probability that the atom m of 
y 

a chain is on the layer x, with C-C bond fJ1 ending at atom m and C-C bond p; starting 

at atom m. Thus, if m = 1, 

"\;' p o(x-xr \~ o oc "\;'G(l)(x xjfJ \_-[e2(PI.P;)+e3(pi,,82)]Q(n-l)(xjfJ' fJ') 
L.J y m JU aY p ar p' L.J 0 ' I F 2 ' 1 
Y m• I m+l' I ,Bl 

(5.18) 

Form= n -1 

(5.19) 

Form= 2, 3, ... , n- 2 

(5.20) 

Since I Pro(x- x: )o a: . .0
1 

is proportional to the probability that the nth atom of a chain is 
y 

on the layer x, with the C-C bond fJ1 ending at atom n, we have 

IPro(x-x:)oa: . .o
1 

oc IG(nl(x0 ,xj{J2 ,fJJ 
y ,82 

(5.21) 

On the whole, 
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[
I I G(1)(xo ,xl/31 ~-[Ez(Pt.!J;}+e3(Pt.~)]ScD (/31 'fJ;)Q(n-1)(xlfJ~' p;) 
Pt p;~ 
n-2 

+ I I I G(m) (xo' xl/32' /31 ~ -[ez(Pt,P;}+EJ(Pz,p;)+eJ(Pt,p;)J S CD (/31 'fJ;)Q(n-m) (xl/3~' p;) 
m=2PtPzP;~ 

+I I G(n-1)(xo ,xl/32 ,/31 ~-[Ez(Pt.P;}+EJ(Pz,p;)]ScD (/31' fJ;)Q(1)(xlfJ;) 
PtPz p; 

+ Ic(nl(x0 ,xlf32,f31 ~cD(/31 ,-1)] 
(sg~ (x)) = --=-P_tPz ________ --==-----------------

[
I I G(1)(x

0 
,xl/31 ~-[Ez(Pt.P;}+e3(Pt,p;)]Q(n-1)(xl/3~ ,p;) 

Pt p;p; 
n-2 

+I I I c(m)(xo ,xl/32' /31 ~-[ez(Pt.P;)+e3(Pz.P;)+£3(Pt,p;)JQ(n-m)(xlf3~ ,p;) 
m=2 PtPz p;p; 

+I I G(n-1)(xo ,xl/32 ,/31 ~-[ez(Pt . .B;)+£3(Pz.P;)]Q(1)(xlf3;)+ I G(n)(xo ,xlfJz ,/31 )] 
M.B; M 

(5.22) 

where S cD (/31' p;) gives the corresponding order parameter for an atom with bond /31 

ending at it and bond p; starting at it. The last carbon atom attaches three hydrogens. In 

the diamond lattice model, depending wholly on the bond ending at it, the associated 

orientational order parameter can only be 1/6 or -1/6, which is the value averaged over 

all the three C-D bonds attached to the last carbon atom. This is different from all the 

other carbon atoms in a chain. For the last atom, the program sets p; = -1 so that 

S CD (/31' p;) can distinguish it as the last atom and give an order parameter of ± 1/6 

according to /31. In fact, the S CD (/31, p;) is equivalent to Pc";; (/31, p;) and P;D (/31). 

Equation (5.22) is similar to the expression for s;D in the paper of Whitmore et al. 

[1]. They have the same ingredients, but here we replace I for I 
m x 
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With ( S g~ (x )) , we want to further acquire the average orientational order parameter 

by layer for both the long and short chains from both sides of the bilayer, ( S cv (x )) . 

Now consider a chain of type j. Let j Y; denote the configuration of chain i of length 

l j, including the layer it starts on. Let there be j N of these chains. j N1 and j Nr denote 

respectively the number of chains of type j anchored to the left and right sides. 

The total number of carbons in layer x is 

Nc(x)= L:I±o(x-x~r;) (5.23) 
j i=l m=l 

The average order parameter associated with all the carbons on layer xis 

(5.24) 

We can transform the sum over chains to a sum over the configurations of a single 

chain by 

(5.25) 

where a= lor r, depending on whether the chain is attached to the left side or right side 

of the bilayer, and P " is the probability that a chain of type j anchored to the side (J is in 
iY 

configuration j ya. We then have 

Nc(x)= LLL jNaPr" ±o(x-x~r") 
j lT jY" 

1 
m=I (5.26) 

= LL jNaLPr,Cjr"(x) 
j a j r" 1 
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where C jr" (x) =I o(x- x~r" ), which is the number of carbons on layer x when a chain 
m=l 

of type j anchored to the side a is in configuration J ya . The average then becomes 

.Na 
Now let ft = -1

- , where N is the total number of chains. 
N 

The denominator is equivalent to 

L [( JN1 (x)) + ( JNr(x))]_!_ 
J N 

= 2~t[Cpl(x))+Cpr(x))] 

- (p(x)) 
2{5 

(5.29) 

where ( 1 N
1 (x )) = average number of units on layer x due to chains of type j coming 

from the left, and so on, and p = N , which is the area density of chains on the 
2A 

CNI(x)) 
headgroup/hydrocarbon-chain interface, and ( J p 1 (x )) = A , etc., and define 

L [( J p 1 (x)) + ( J pr (x))]= (p(x)). Then we have 
j 
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(5.30) 

The numerator has a sum over left and right anchored chains, and a sum over long and 

short chains. Consider one of these terms, e.g., chains of type 1 from the left. 

I 

T/ = 275f/LPr IJ(x- x~)s~v(m) 
r m=l 

where y now refers to configurations of a chain of type 1 anchored to the left. 

Comparing with equation (5.12), we can write this as 

T/ = 275f/ (1 sgb (x))LPrCr(x) 
r 

where ( 1 S gb (x )) is for chains of type 1 anchored at left. 

We then finish with 

275ft' L PrCr (x) 
r 

N' 
= 275-1 -Z:PrCr(x) 

N r 

_ ( 1 N' (x)) 
=2p....:....,_--'-

N 

( 1N 1 (x)) 
A 

=( 1P'(x)) 

. 275 N 1 1 
smce -=--=-.So 

N AN A 

Adding all four contributions, all of which have same denominator 

(5.31) 

(5.32) 

(5.33) 

(5.34) 
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(5.35) 

5.3 Gauche Isomers by Layer 

In this section, we define and derive the equations for the average number of gauche 

isomers of a given chain on layer x. To calculate this, we choose either a long or a short 

chain, tethered at x0 = 0. We denote this quantity by (r/1)(x)). 

Consider a chain of one kind (long or short) with headgroup on the left and chain 

length of n. If it is in configuration y , the n carbons will be in layers x~ , m = 1 to n. We 

denote the gauche isomer number associated with carbon m as 1Jr (m), with 1Jr (m) = 1 or 

0 depending on whether or not there is a gauche isomer associated with m. Then we have 

(5.36) 

where Pr is the probability of a configuration y. The denominator is equal to unity, but 

is included this way for purposes below. 

We next want to express (17(1)(x)) in terms of propagators. Although 1Jr(m) depends 

on the sequence of three bond vectors, starting at carbons m-1, m, and m+ 1, it can 

actually be specified using only the C-C bond ending at m, a~ , and the C-C bond 

starting at m + 1, a~+z . So 
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m = 1, 2, ... , n - 2 (5.37) 

m = n-1,n (5.38) 

Here 17(a~, a~+2 ) = 1 if a~ and a~+2 form a gauche isomer, otherwise 17(a~, a~+2 ) = 0 . 

There are no gauche isomers beyond carbon n - 2. 

We should also notice that, for then- 2 atoms, 

Prb'(x- x~ )17r (m) = Pr <>(x- x~ )17(a~, a~+2 ) 

= ~ prJ(x- X~ }7(fJ1 ' {J~ )J a~.Pt J a~+2 .P2 
P1P2 

(5.39) 

where {J1 and fJ~ are all from 1 to 4. 

Equation (5.36) can be expressed as 

(5.40) 

Since J7(fJ1 , fJ~) does not depend on y, (5.40) can be further expressed as 

(5.41) 

Here L Prb'(x- x~ )ga~.P~ ga~+2 .P2 is proportional to the total probability that the atom m 
r 

of a chain is on layer x, with C-C bond {J1 ending at atom m and C-C bond fJ~ starting 

at atom m + 1. Thus, if m = 1, 
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Form=2,3, ... ,n-2 

"'\:' p J(x _ xr \ ~ t5 ex: "'\:' G(m) (x xif3 f3 L -[ez(fJ,,tJ;)+e3(flz,f11)+<3(fJ,,p;)JQ(n-m) (v!f3' f3') 
L... r mJOar fJ ar fJ' L... 0' 2' 1JC ""I 2' 1 

y m• I mt2• 2 flzflt 

(5.43) 

It is also obvious that 

(5.44) 

So (5.41) can be expressed as 

[L L G(1) (xo, xl/31 ~ -[ez(fJ,,fJI)+e3(fJ,,fJ~)]TJ(J31, /3~ )Q(n-1)(xlf3~, p;) 
flt f11fJ~ 

+I L ~ (G(m)(xo, xif32, p
1 
~ -[ez(fJ,,fJ1)+e3(flz,fJ;)+e3(fJ,,fJ2)] X TJ(/3

1
, /3~ )Q(n-m) (xl/3~, p;))l 

J (1) (x)) _ m=2 {J,flz {J,flz J 
\TJ - LQ(n)(xolfJ~,fJ;) 

f11fJ~ 

(5.45) 

5.4 Segment Distributions 

We define the segment distribution as the probability that a certain carbon of one chain is 

on layer x within the bilayer. We denote it as Pc (m, x), where m is the carbon number, and 

x is the layer number. It is clear that Pc (m,O) and Pc (m,tc) are equal to 0 since the 

carbon density is 0 on these two layers. For the others, we can use the propagators again. 

For 2 :::; m :::; n - 2 , where n is the chain length, the probability that carbon atom m is 

on layer x is proportional to 

L L G(m) (xo, xl/32, /31 ~ -[ez(fJ,,fJ;)+e3(flz,fJ;)+e3(fJ,,fJ~)]Q(n-m) (xl/3~, p;) (5.46) 
fltflz fJifJ~ 
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Since this carbon atom must be somewhere between layer 1 and layer tc -1 inclusive, 

the normalization constant should be 

(5.47) 

It should be proportional to the sum of the probabilities of all the configurations. Because 

all the propagators are calculated with the same proportionality constant, (5.47) is equal 

to L Q (n) (x0 IP~, p;), which is also proportion;! to the sum of the probabilities of all the 
Pl/32 

configurations. 

Thus, for 2 '5. m '5. n - 2 , 

L L G(m) (x
0

, xi/Jz, p
1 
~ -[e2(fJI,fJI}te3(fJ2,fJI}te3(fJ1,fJ2)]Q(n-m) (xi,B~, p;) 

~(m,x)=~~~~~~~~~---------==-~~~--~--------------2: Q(n) (xo IP~' p;) 
(5.48) 

fJI/32 

Similarly we have 

L L G(1) (xo 'xl/31 ~ -[e2(fJI,fJ{)+e3(fJI,f32)]Q(n-1) (xi,B~' p;) 
p (1 ) _:_fll~fJ.!:....!{fJ2'-------==---:~~----.~---

c ,X = LQ(n)(xoi/J~,p;) (5.49) 

fJI/32 

L L G(n-1)(xo 'xi/Jz ',81 ~ -[e2(fJI,fJI)+e3(fJ2,fJ;)]Q(1) (xi,B;) 

P(n-1x)-~~~~~fl~1 -------==-~~~--~----------
c ' - LQ(n)(xoi/J~,p;) 

(5.50) 

fJI/32 

L G(n) (xo, xlfiz, /J1) 
P(nx)-~~=~~~~--~ 

c ' - LQ(n)(xoi/J~,p;) 
(5.51) 

Pl/32 
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Chapter 6 

Results and Experimental Comparisons 

6.1 Model Parameters 

Our present work for mixtures uses the parameters adopted by Whitmore et al. [1]. They 

are summarized in Table 6.1. 

Table 6.1 
Material and interaction parameters used in the calculations. For convenience, 
the interaction parameters are expressed here in units of k8 T0 , with 

T0 = 300 K. The interaction parameters, Wkk', and gauche isomer energy, Eg, 

are defined in Sections 2.2 and 3.2. 

C-C bond Layer thickness Vo h l Eg jk8 (K) 

0 0 0 3 6 14-24 1.5A 1.25A 16A 250 

wee wes weh wss whs whh 

-1 -0.5 -1 -5 -5.2095 -5 

Xes 
Xeh Xhs 

2.5 
2 

-0.2095 

0 

The C-C bond distance is 1.5 A . Its projection along the bilayer perpendicular is 

0 

1.25 A, which is the layer thickness in our model. v0 is the volume associated with each 

unit, including one carbon and two hydrogen atoms. 
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Each hydrocarbon unit along a chain is modeled as a unit in our model, and we include 

the initial C=O complex, so the units per chain is l = 14, 16, 18 and 20 respectively for 

dimyristoyl phosphatidylcholine (DMPC), dipalmitoyl phosphatidylcholine (DPPC), 

distearoyl phosphatidylcholine (DSPC) and diarachinoyl phosphatidylcholine (DAPC). 

From experimental results we can obtain the volume of headgroup. Dividing this value 

by v0 , we can get the uni~s per headgroup, 2h, which should be rounded to an integer in 

our model. For all the PC's the appropriate value is h = 6, while for all the PE's h = 5. 

The work in this thesis is all for h = 6. 

6.2 The Calculation Procedure 

Our goal is to find the equilibrium phase and structure of the bilayers. First, we assume 

that the lipids mix, and find the equilibrium thickness and areal density of the mixture at 

the given temperature T and external pressure P0 • We need to minimize the partial Gibbs 

free energy, I:!.G1 , subject to the condition that P = P0 , where P is the internal pressure, 

given by equation (4.3). For a specific composition, the procedure is to conduct self­

consistent calculations at a series of thicknesses, with P = P0 satisfied at every thickness, 

thus obtaining a curve of I:!.G1 as a function of bilayer thickness, and then find the 

minimum I:!.G1 • There may be more than one local minimum. The location and value of 

the global minimum give the equilibrium thickness and partial Gibbs free energy for that 

composition, T and P0 • The corresponding value of areal density p1=1p1+2p1 is the 

equilibrium areal density. We then repeat the procedure for all the compositions to check 
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that the mixtures are stable (The calculations in this thesis are all done for high enough 

temperature so that the systems are in the liquid crystal phase). Once we have located the 

minimum l:l.G1 for a certain composition, and made sure that the system is in a stable 

liquid crystal phase, we calculate other properties and quantities such as gauche isomers, 

orientational order parameter, segment distribution, etc. 

The core calculations are the SCF calculations at each thickness. Each calculation is 

carried out for a specific system at a particular T and P0 • The system is specified by the 

headgroup and tail lengths of the two lipids in the mixture, i.e. the values of h, [1 and /2 , 

and the proportion of each one. The SCF calculation is restricted to the hydrocarbon core, 

so the thickness can be specified by fc. 

We also need a convenient way of specifying the average density. In the calculations, 

we use the average free volume, rjJ, in the interior. Simple geometric volume 

considerations give 

(6.1) 

where /1 and /2 are, respectively, the chain lengths of the long and short chains, and 1 p1 

and 2 p1 are, respectively, the number densities of the hydrocarbon units for long and 

short chains. 

Because there are almost no vacancies in the headgroup regions, the overall proportion 

of unoccupied sites in the whole bilayer is 
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(6.2) 

and the proportion of the occupied sites of the bilayer is 1- <1>1 • 

To calculate 1101 for a given thickness, we first choose a reasonable value for rjJ, carry 

out the SCF calculation, and then calculate P. In general, P of. P0 at this step. We then 

repeat for different values of rjJ , searching until we find the value of rjJ for which P = P0 • 

We then calculate 1101 for that thickness. 

We then repeat this for different thicknesses, thus generating the function 1101 vs. 

thickness. The detailed description of the self-consistent calculations for each thickness 

and density can be found in the paper of Whitmore et al. [1]. 

The pressure scale in the calculations is k8 jv0 =8.62xl05 Nm-2 =8.62bar, which 

derives from the energy scale and the unit cell volume. Under this scale, ambient pressure 

corresponds approximately to Po = 0.1. In experiments, pressures on the order of 

hundreds of atmospheres are needed to affect the bilayers. Accordingly, we can choose 

Po = 0 to model ambient pressure in our calculations. All the results presented in this 

thesis are for this pressure. 

6.3 Free Energy and Free Volume of Mixtures 

Figures 6.1 to 6.4 show results for a typical mixture, which is a 50:50 blend of DMPC 

and DPPC, with l = 14 and 16, respectively. The temperature is 338 K, which is above 

their main transition temperatures of 297 K for DMPC and 314 K for DPPC [37]. For this 
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system, the free volume at each thickness is shown in Figure 6.1. When the thickness is 

smaller than 29, the free-volume/thickness relation gives a smooth curve, which reaches 

maximum at about thickness 17, while in the results of Whitmore et al. [ 1] for single 

component DPPE bilayer, the free volume reaches its maximum at about thickness 18. 

0.04 

l) 

§ 0.0.1 
0 
> 
1) 

~ 
~ 

0.02 

0.01 

0 1._2_.____1 '-4----''----'1 ('-J ___. _ _.18-"' ___._2_..(-.l ____.__::__..)~-. ___,__2_..4--"--2...L6--"--2...LR--"--3.L..0-..____,32 

lnt~rior ·rhickm:ss 

Figure 6.1 
The relationship between the free volume and the interior thickness, for the 
binary mixture of equimolar DPPC and DMPC. The temperature is 338 K and 
the pressure is the ambient pressure. 

For larger thicknesses up to 30, the free volume can be fitted to a power law function, 

with the result 

(6.3) 
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28 

29 

30 

-1 -2 .. 
-.) -4 -5 -6 

In( 1 - t/30.3) 

The relationship of ln ~ and ln(1- tc /30.3), for the binary mixture of 

equimolar DPPC and DMPC. The temperature is 338K and the pressure is the 
ambient pressure. 

where t~ = 30.3. This fit is shown in Figure 6.2. It can be compared with the results of 

Whitmore et al. [1] for single component DPPE bilayer. They obtained the same form, 

but t~ = 32, and power 0.55. So we can see that from single component bilayer to binary 

bilayer, the power remains essentially the same, while t~ shifts. For our binary system, 

the linear relationship between ln~ and ln(1- tc /30.3) can be seen in Figure 6.2. The 

free volume decreases sharply at thickness 30 instead of at thickness 32 as in the results 

of Whitmore et al. [1] for pure DPPE bilayer. This is reasonable because the presence of 
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50% length-14 chains, which requires such a sharp decrease at thickness 28 in the case of 

pure length-14 chains, plays an important role. 

We can also see that, at thickness 31, the free volume increases sharply to about 

0.0325, while in the result of Whitmore et al. for single component DPPE bilayer, the 

free volume decreases smoothly at thickness 31, and then decreases to very near zero at 

thickness 32. The following calculation will help to explain the increase in free volume at 

larger thickness for binary bilayers: 

Physically, the minimum possible value for rjJ, r/Jmin , will occur if the short chains are 

fully extended over their whole length 12 , the longer chains are fully extended up to 12 , 

and there are no vacancies in the region up to 12. If tc > 212, for low enough fraction of 

long chains, there will be some free volume in the middle. We can calculate the minimum 

overall free volume as follows. If there are N1 lipids altogether, then the total volume of 

this bilayer is N1 • t c . If there are 1 N1 long lipids and 2 N1 short lipids, then the total 

lipid). The fraction of sites occupied is thus 

face= 2LNt11+2Nl12]j[Nl ·tc] 

= 2[/111 + f21J/tc 
(6.4) 

where /;are the fractions of lipids. The overall free volume is rjJ = 1- focc. Using 

/ 2 = 1- / 1 , we get 

(6.5) 

In our calculations, 11 = 16, 12 = 14 and tc = 31. Substituting all these in gives 
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¢min = 0.09677- 0.129 J; (6.6) 

The free-volume/percentage-of-long-chain relationship is plotted in Figure 6.3 

together with ¢min. We can see that when the percentage oflong chains is lower than 65, 

the actual free volume is very near l/Jm1n , which is a linear relationship. For example, for 

50% of short chains, ¢min = 0.0323, while the SCF result is 0.0325. Their difference is 

only 0.02 percent. 

O.OS 

ti (1.06 
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Limiting Value 

o~-L~~~~-L~~~~-L~~~~-L~-L~~~~-L~~-L~~ 

(J 5 10 15 20 25 }0 35 40 45 50 55 60 65 70 75 80 85 90 95 100 
Percentage of Long Chains 

Figure 6.3 
The relationship between the free volume and the long-chain percentage, for 
the binary mixture of DPPC and DMPC. The temperature is 338K, the 
pressure is the ambient pressure, and the thickness of the bilayer interior is 
31. The black line is the predicted limiting value, ¢min , while the red line is 
the calculated value. 
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This observation is very useful for obtaining convergent results for a thickness near 

double the long chain length. For such thicknesses, we usually first calculate for 100% of 

long chains, then make further calculations by decreasing 5% or even 1% of long chains, 

and increasing the percentage of short chains correspondingly. Each time we use the 

converged mean field obtained by the last calculation. Under these circumstances, 

without the above analysis, it is very hard to make a good initial guess. 

With the self-consistent solutions corresponding to each point on Figure 6.1, we can 

calculate the partial Gibbs free energy, !J..G1 , at each thickness. The results are shown in 

Figure 6.4. The global minimum of Figure 6.4 gives the equilibrium state. Its location is 

the equilibrium thickness. On Figure 6.4, the global minimum happens at tc ~ 19, and 

the corresponding state is a liquid crystal phase. The actual minimum is found by 

interpolation. 

For binary mixtures, we then make the above calculations for a series of compositions, 

and obtain the curve of partial Gibbs free energy vs. composition. Figure 6.5 shows this 

for binary mixtures of lipids of chain lengths 16 and 14, 18 and 14, as well as 20 and 14. 

The temperature is 338 K. It is obvious that the curvature, namely, the second derivative, 

of all three curves is always positive, which means that there is no phase separation in 

any of these three mixtures. The three curves all start at the same left point, which is the 

pure DMPC bilayer, but they have different right ending points, which correspond 

respectively to single-component bilayers of lipids with chain length 16, 18 and 20. The 

results show that under the same environment, the partial Gibbs free energy of single-
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component bilayers increases with chain length, so the transition temperature also 

increases with chain length. Figure 6.5 also tells us that, at a given composition, mixing 

with lipids with longer chains will result in higher Gibbs free energy, and thus will lead 

to higher phase transition temperatures. 
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Figure 6.4 

Interior Thickness 

The dependence of Gibbs free energy on thickness, for the binary mixture of 
equimolar DPPC and DMPC. The temperature is 338K, and the pressure is 
the ambient pressure. 
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JO() 

The relationship between the Gibbs free energy and the long-chain 
percentage, for the binary mixtures of DPPC/DMPC, DSPC/DMPC, and 
DAPC/DMPC. The temperature is 338K, and the pressure is the ambient 
pressure. 

6.4 Order Parameters 

6.4.1 Average Order Parameters 

Figure 6.6 shows the dependence of the average orientational order parameter on 

composition for mixtures of DSPC and DMPC. The temperature is 338 K. The average 

orientational order parameter is the summation of the orientational order parameters 

corresponding to all the carbon atoms along a chain divided by the number of carbon 
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atoms along a chain. In this thesis we denote it as SeD. On Figure 6.6, the left hand side 

corresponds to pure DMPC (short chains) and the right hand side corresponds to pure 

DSPC (long chains). The upper and lower curves are the average order parameters of the 

short and long chains respectively. The left end of the upper curve corresponds to pure 

short chains, and the right end of this curve corresponds to a single short chain in a 

bilayer of long chains. Similarly, the right end of the lower curve corresponds to pure 

long chains, and the left end of this curve corresponds to a single long chain in a bilayer 

of short chains. 

Figure 6.6 

0 40 60 70 100 
P~rccmagc of Long Chains 

The relationship between the average orientational order parameter and the 
long-chain percentage, for the binary mixture of DSPC (chain length 18) and 
DMPC (chain length 14). The temperature is 338 K, and the pressure is the 
ambient pressure. 
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From this figure, we see that at any composition, the average orientational order 

parameter of the short chains is always larger in magnitude than that of the long chains. 

The magnitude of average orientational order parameter of single component bilayer of 

lipids of chain length 14, 0.198, lies below the average orientational order parameter of 

single component bilayer of lipids of chain length 18, 0.202. This observation can be 

generalized as that for single-component bilayer, under the same environment, the 

magnitude of the average orientational order parameter increases with increasing chain 

length. This is in agreement with the experimental results of Morrow et al. [26]. 

Figure 6.6 also shows that adding long chain lipids to a bilayer of short chain lipids 

increases the magnitude of average orientational order parameter of the short chains, 

while adding short chain lipids to a bilayer of long chain lipids reduces its value for long 

chain lipids. When there is only one lipid of chain length 18 in a single component 

bilayer of lipids of chain length 14, the magnitude of average orientational order 

parameter of the long chain is smaller than that of the host lipids. This is partly because 

the long chain is in a relatively thin bilayer, so it has to be more disordered to be 

accommodated. On the contrary, if a single lipid of chain length 14 is put in a single 

component bilayer of lipids of chain length 18, its average order is greater than that of the 

host lipids. Similarly, this is partly because the short chain is in a relatively thick bilayer, 

so its average extension, along with the magnitude of the average orientational order 

parameter, will increase. 
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6.4.2 Order Parameter Profiles 

Figures 6. 7, 6.8 and 6.9 show the orientational order parameter profiles of all components 

for mixtures of DPPC/DMPC, DSPC/DMPC, and DAPC/DMPC, respectively, at a 

temperature of 338 K. Each figure shows results for three compositions, which can be 

described as 0% DMPC, which means one DMPC molecule in a bilayer of the other 

component, 50% DMPC, which means equal mixture, and 100% DMPC, which means 

one DPPC, DSPC or DAPC molecule in a bilayer of DMPC. All results presented here 

are at the equilibrium thicknesses for the particular mixtures, determined through a full 

set of calculations as described in the Sections 6.2 and 6.3. 
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Figure 6.7 
The orientational order parameter profiles for binary mixtures of DPPC and 
DMPC. The temperature is 338 K, and the pressure is the ambient pressure. 
Here 0: 100 means one DPPC in a DMPC bilayer, 50:50 means 50% DPPC, 
and 100:0 means one DMPC in a DPPC bilayer. 
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We begin with Figure 6. 7, DMPC and DPPC, which have a chain length difference of 

two units. The longer black dash-dotted curve is pure DPPC. The short red solid curve is 

pure DMPC. The curves are qualitatively the same. They start at the same value, 

IS CD I ::::: 0.335, initially oscillate, then decrease monotonically to a common final value of 

IS col::::: 0.041. Throughout most of the chains, from m::::: 3 to m::::: 13, the individual 

values of IS cD (m ~ for the longer chain are greater than for the shorter chain. 

The shorter red dash-dotted curve is for one short-chain molecule in the long-chain 

bilayers. It starts and ends at the same values as the case of pure bilayers. However, in 

between, IScD(m~ is increased above its values in pure DMPC, partly but not completely 

to the corresponding values of the long-chain hosts. Similarly, the long black solid curve 

describes a single long-chain molecule in a short-chain host. In this case, IS CD (m ~ for the 

long chains is reduced, partly but not completely to the corresponding values for the 

hosts. One can see that mixing short and long chains generally reduces the order 

parameter of the long chains, and increases that of the short chains, except at the two ends 

of all the chains. 

Perhaps the most interesting qualitative effect occurs near the free end of the long 

chain. For pure long chains, Is CD (m ~ decreases monotonically in this region. However, 

as short chains are added, the values are nearly unchanged for the last two carbons, but 

decrease for the other ones. The result is the development of "plateau" in this region near 

the tail, which is called the "second plateau" by Lu et al. [3], to distinguish it from the 

first one that occurs at the other end of the chain. 
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Figure 6.8 and 6.9 show the effects of increasing differences in chain lengths. There 

are both quantitative and qualitative effects. 

-0.3 

-0.2 

:::: -· ~ 
":!~ 

-0.1 

Figure 6.8 

0:100 
0:100 
50:50 
50:50 
100:0 
100:0 

Carbon Atom 

The orientational order parameter profiles for binary mixtures of DSPC and 
DMPC. The temperature is 338 K, and the pressure is the ambient pressure. 
Here 0:100 means one DSPC in a DMPC bilayer, 50:50 means 50% DSPC, 
and 100:0 means one DMPC in a DSPC bilayer. 

First of all, one can see that the order parameter profile for each unit in a long chain in 

a bilayer of pure long chains (the longer dash-dotted curve) is always above that of the 

corresponding unit in a short chain (the shorter solid curve) in bilayer of pure short 

chains, except very near the headgroup. The difference increases with increasing chain 

length difference. 
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Secondly, IS CD (m ~ for a long chain in pure short chain bilayer is reduced to about the 

same as that of the host short chains up to m "" 13 . They even cross, by a small amount. 

The IS cD (m ~ for a short chain in pure long chain bilayer is increased, but not as close to 

that of the host long chains, and the larger the chain length difference, the greater their 

difference is. 
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The orientational order parameter profiles for binary mixtures of DAPC and 
DMPC. The temperature is 338 K, and the pressure is the ambient pressure. 
Here 0:100 means one DAPC in a DMPC bilayer, 50:50 means 50% DAPC, 
and 100:0 means one DMPC in a DAPC bilayer. 

Thirdly, for pure long chains, IScD(m~ decreases monotonically in the region near the 

free end of the long chain. However, as short chains are added, all IS cD (m ~ initially 
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decrease. For example, in the 50:50 mixture, they all are below the corresponding values 

in the pure long-chain bilayers. However, as further short-chain lipids are added, a new 

effect occurs. The js cv (m ~ near the chain end increase, while those in the middle of the 

chain continue to decrease. The values of the last two units for one DAPC molecule in 

DMPC are even slightly greater than those for pure long chain bilayer. The result is a 

very prominent second plateau in the region near the tail. Comparing the three figures, 

one can see that the larger the chain length difference, the clearer the second plateau 

becomes. In Figure 6.9, for one long chain in pure short chain bilayer, there is even a 

minimum near the free end of the long chain, at m = 14. 

6.5 Interpretation of the Previous Results 

We now want to probe in more details the reason for the changes in the order parameter 

profile, and the mutual effects of the long and short chains. We will argue, in particular, 

that the second plateau is due to the penetration of the longer chains beyond the middle of 

the bilayer. 

We first need to show what the bilayer thickness is. This is shown in Figure 6.10 for 

the various systems at 338 K. The thickness increases smoothly and linearly with 

composition. The middle of the bilayer is, of course, always at one half of the thickness. 
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We next examme where the last units are, as a measure of how far the chains 

penetrate. Figure 6.11, 6.12 and 6.13 are the segment distributions of the last units of 

each chain for the various systems we considered. The maxima of the distribution profiles 

for the long chains always are approximately at the bilayer midplane. We see this by 

comparing Figure 6.10 and Figure 6.11 to 6.13. 
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The distribution of the end segment for binary mixtures of DPPC and 
DMPC. The temperature is 338 K, and the pressure is the ambient pressure. 
Here 0:100 means one DPPC in a DMPC bilayer, 50:50 means 50% DPPC, 
and 100:0 means one DMPC in a DPPC bilayer. 

We consider the 16/14 and 20/14 mixtures in detail. The results are similar for the 

18/14 mixtures. From Figure 6.11, we see that the maximum in the distribution ofthe last 

segment of the long chain in the pure long-chain system is at about layer 11. As seen 

from Figure 6.10, the thickness of this bilayer is about 21.5, so the midplane is about 

layer 10.7, very near 11. As short chains are added, the maximum in the distribution 

shifts to about layer 10 for the single long chain in DMPC. In this case, Figure 6.11 

shows that the midplane is about 9.5. So, again, the maximum in the distribution is about 
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the midplane. Similarly, for the 20/14 mixtures, the maximum in the distribution of the 

last segment of the long chain in the pure long-chain system is at about layer 13. As seen 

from Figure 6.10, the thickness of this bilayer is about 26, so midplane is about layer 13. 

As short chains are added, the maximum in the distribution shifts to about layer 1 0 for the 

single long chain in DMPC. In this case, Figure 6.10 shows that the midplane is about 

9.5. So, again, the maximum in the distribution is about the midplane. 
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Figure 6.12 
The distribution of the end segment for binary mixtures of DSPC and 
DMPC. The temperature is 338 K, and the pressure is the ambient pressure. 
Here 0:100 means one DSPC in a DMPC bilayer, 50:50 means 50% DSPC, 
and 100:0 means one DMPC in a DSPC bilayer. 



84 

For short chains, in pure short-chain bilayer, the maximum in the distribution of the 

last segment is, again, at about one half of the thickness. However, for one short chain in 

pure long-chain bilayer, the location of the maximum occurs before the midplane, 

especially when the chain length difference is large. For example, for one DMPC in pure 

DAPC bilayer, Figure 6.13, the maximum of the distribution of the last segment in the 

DMPC is at about layer 11, which is smaller than the one half of the thickness, 13. 

It is also obvious that the long chains have considerable probability to pass across the 

bilayer midplanes and to reach low number layers. 
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Figure 6.13 
The distribution of the end segment for binary mixtures of DAPC and 
DMPC. The temperature is 338 K, and the pressure is the ambient pressure. 
Here 0: 100 means one DAPC in a DMPC bilayer, 50:50 means 50% DAPC, 
and 100:0 means one DMPC in a DAPC bilayer. 
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We next tum to the average order parameter on each layer, (ScD(x)). This is shown in 

Figure 6.14 to 6.16 for 18/14 at pure short, 50:50 and pure long. Because of the 

ambiguity inherent in the interpolation for ( S CD (x )) for non-integral thickness, these are 

shown at the integer thickness closest to the equilibrium thickness in each case. In all 

cases, ( S CD (x )) is symmetric about the midplane, has a maximum (in magnitude) a 

distance of about 1/6 thickness from each side, and a minimum at the center. There is 

little difference between these results for the three cases shown. 

We next consider whether there is any difference in the environment sampled by the 

segments near the end of the long chains. Figures 6.14 to 6.16 also show the end-segment 

distribution functions for the corresponding integer thickness (These are the same as 

those shown in Figure 6.11 to 6.13). The maxima in the end-segment distributions are 

always at the middle of the bilayer, and the end-segment distribution always terminates at 

layer 18. In pure long-chain system, the thickness is about 24, but the end-segment 

distribution ends at layer 18, so the end segment cannot sample the five layers closest to 

the right side (here and below, layer 24 is not included, since it is the interface to the 

headgroup region and has no hydrocarbon units). In the 50:50 mixture, the end-segment 

distribution still ends at layer 18, but the thickness is reduced to 21, so only 2 layers to 

the right cannot be sampled. For one long chain in pure short-chains, the end-segment 

distribution still ends at 18, but the thickness is just 19, so all the layers can be sampled, 

which means that the chain in the mixture penetrates well into the opposite side. 
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The average orientational oraer parameter on each layer and the distribution 
of the last segment of DSPC in a bilayer of equimolar DSPC and DMPC. 
The temperature is 338 K, and the pressure is the ambient pressure. 
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The average orientational order parameter on each layer and the distribution 
of the last segment of DSPC in a bilayer of pure DSPC. The temperature is 
338 K, and the pressure is the ambient pressure. 

One can notice that the maxima in the segment distributions are at about the same 

layers as the corresponding minima in I(ScD (x ))I; the distributions to the left of the 

bilayers are qualitatively the same in all cases; the important difference is in the right side 

of the bilayers. The end segment of a long chain in a pure short-chain bilayer has non-

negligible probability of being in the region of higher I( S CD (x ))I near the opposite side, 

even reaching the layers near and beyond the maximum in I( S cD (x ))I· This contrasts with 

the case of long chains in pure long-chain bilayer where the end-segment distribution 

decays relatively quickly beyond the minimum of I(ScD(x))l in the midplane, so does not 

experience layers of higher I( S cD (x ))I· This suggests that the increase in js cD (m ~ for 
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segments near the chain end is due to their penetration well beyond the midplane to 

layers of large j( S cv (x ))j. 

To further probe these details, we consider ( s2b (x )) . They are shown in Figures 6.17 

and 6.18. As described in Chapter 5, this is the average order parameter of all the units on 

chains attached to the left side which are on layer x. On each layer x, it includes 

contributions from units x to I for each chain, where I is the length of the chain. The 

curves all end at the same value. This is because, when x = I, the only contribution to 

( sgb (x )) is that of the terminal unit of a fully extended chain. 
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The average orientational order parameter on each layer for chains attached 
to the left side of binary bilayers of DSPC and DMPC. The temperature is 
338 K, and the pressure is the ambient pressure. Here 0:100 means one 
DSPC in a bilayer ofDMPC, 50:50 means equimolar mixture ofDSPC and 
DMPC, and 100:0 means one DMPC in a bilayer ofDSPC. 
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Layer x = l has contributions only from unit m = l ; layer x = l -1 has contributions 

from units m = l -1 and l, layer x = l- 2 has contributions from units m = l - 2, l - 1 

and l, and so on. This implies that the layers most distant from the tethering point have 

contributions mainly from the far end of the chain, which are, on average, relatively 

disordered. One might have expected, therefore, that I( S g~ (x ))I would decrease 

monotonically with x, in a fashion qualitatively similar to the way Scv(m) normally 

decreases. This is, however, not the case. Instead, j( S g~ (x ))j behaves much like the other 

function j(scv(x))j, qualitatively following the average order parameter on each layer. 

Both j(scv(x))j and j(sg~(x))j have an initial maximum at about the same point, and a 

minimum at about the same point. They both increase beyond that minimum, but the 

second maximum in I( S g~ (x ))j is lower than the first, and then this function terminates at 

layer x = l. For pure long chain bilayer, the left maximum of j( S g~ (x ))j of long chains is 

at layer 3, the minimum is at layer 12, and the right maximum is at layer 17. For one long 

chain in pure short-chain bilayer, the left maximum of j( S g~ (x ))j of the long chain shifts 

to layer 2 with decreased value, the minimum shifts to layer 10 with decreased value, and 

the second maximum shifts to layer 15 with increased value. The shifts are consistent 

with thinner bilayers, and the reduction in most values is also due to thinner bilayers. The 

increase in the value of the second maximum is consistent with the fact that the end 

segments sample regions near the second maximum in j( S cv (x ))j , which is due to the 
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chains from the right. This increase in j(s2b(x))j arises as chains from the left penetrate 

farther into the more ordered parts of the chains from the right. This observation supports 

the view that the second plateau is due to increased penetration of the longer chains into 

the region of the opposite chains which are more ordered. 

Figure 6.18 shows j(s2b(x))j for the various binary bilayers composed of equimolar 

long and short chains. The temperature is 338 K. 
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The average orientational order parameter on each layer for chains attached 
to the left side of equimolar binary bilayers of DPPC/DMPC, DSPC/DMPC, 
and DAPC/DMPC. The temperature is 338 K, and the pressure is the 
ambient pressure. 
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The results in Figure 6.18 show that at the same composition, when the chain length 

difference is larger, the difference between the maxima and the minimum of j( S g~ (x ))j 

will also be greater. This may have some relationship with the observation of larger chain 

length difference will lead to more prominent second plateau. 

6.6 Gauche Isomers 

Figure 6.19 shows the average number of gauche isomers as a function of the C-C bond 

number, 1J(m), for the various 18/14 systems at temperature 338 K. There is some 

similarity between the structure of the curves in this figure and that of the curves in 

Figure 6.8. For 2 ~ m ~ 5, the curves in both figures show a plateau-like structure. After 

m ::::: 5 , with increasing m, 1J(m) increases, while the order parameter decreases. Both 

show a decreasing order toward the ends of the chains. For the long chains, after m ::::: 12, 

the gauche isomer curves all show a plateau and there is a weak maximum at m = 15 . 

Besides, for most m, 1J(m) increases with decreasing fraction of long chains. However, 

after m ::::: 12, the influence of composition on 1J(m) tends to become less with increasing 

m. Especially for m > 14, 1J(m) for the long chains in pure long chain bilayer becomes 

less than that in 50:50 mixture, or even less than that in 100:0 mixture. One can find 

some similarity between the behaviors described above and those shown in Figure 6.8. 
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The gauche isomer profiles for binary mixtures of DSPC and DMPC. The 
temperature is 338 K, and the pressure is the ambient pressure. Here 0:100 
means one DSPC in a bilayer of DMPC, 50:50 means equimolar mixture of 
DSPC and DMPC, and 100:0 means one DMPC in a bilayer of DSPC. 

6. 7 Experimental Comparison 

Lu et al. [2] studied mixtures consisting of small concentrations of N-stearol galactosyl 

ceramide and N-lignoceroyl galactosyl ceramide in SOPC. N-stearol galactosyl ceramide 

is usually written as 18:0 GalCer or 18:0 GC; N-lignoceroyl galactosyl ceramide is 

usually written as 24:0 GalCer or 24:0 GC. Both 18:0 GC and 24:0 GC are 

glycosphingolipids, which have a single acyl chain, attached by an amide linkage to a 

sphingosine backbone. The length of the acyl chain of 18:0 GC is 18, and the length of 

the acyl chain of24:0 GC is 24. The acyl chains of both 18:0 GC and 24:0 GC have no 
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double bonds. The chain length of SOPC is 18, and there is one double bond per SOPC 

molecule. 

In Figure 6.20, there are two experimental systems, one is 10 mol% 24:0 GC in SOPC; 

the other is 10 mol%18:0 GC in SOPC; the temperatures for the experiments are 325 K. 

The theoretical system in Figure 6.20 is 24/18 mixture with 5% long chains. We make 

such choice of composition because there is only one acyl chain of length 24 per 24:0 GC 

and the chain length of the sphingosine is 18 or near 18. 

In Figure 6.20, we show the orientational order parameter profile for the single acyl 

chain of glycosphingolipids of both 24:0 GC and 18:0 GC in the experiments, and show 

the profiles for both DLPC and DSPC in the theoretical system. The gel/liquid main 

transition temperature of SOPC is 6 o C , so the experimental temperature is 46 o C above 

the transition temperature. The theoretical gel/liquid transition temperature for DSPC is 

about 48 ° C , so we conduct calculation at 48 + 46 = 94 o C , which is 367 K. 

In the thesis of Lu [27], it was first argued that the order parameter profile for the 

single acyl chain of glycosphingolipid of 18:0 GC in Figure 6.20 can be used to 

approximate that of SOPC in the 24:0 GC/SOPC experiment. The following three 

conclusions were then drawn for 24:0 GC and SOPC in the 24:0 GC/SOPC experiment 

shown in Figure 6.20: 

1. Their order parameters are very close to each other from C(2) to C(15); 

2. For each segment from C(16) to C(18), the magnitude of the order parameter of 

24:0 GC is greater than that of SOPC; 



94 

3. The IScv(m~ from C(19) to C(24) for 24:0 GC are all smaller than jScv(17~ for 

SOPC, which leads to the second plateau in the profile of 24:0 GC. 

Figure 6.20 
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The orientational order parameter profiles. There are two experimental 
systems: one is 10 mol% 24:0 GC in SOPC, and the other is 10 mol% 18:0 
GC in SOPC; the temperatures for the experiments are 325 K. The 
theoretical system is binary mixture of DLPC and DSPC with 5% DLPC, at 
a temperature of 367 K. The green line is for the single acyl chain of 
glycosphingolipids 18:0 GC, the blue line is for the single acyl chain of 
glycosphingolipids 24:0 GC, the red broken line is for DSPC, and the black 
line is for DLPC. 

These conclusions can be compared with the calculation results shown in Figure 6.20. 
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For conclusion 1, the calculation results also show that orientational order parameter 

profiles of the short and long chains are about the same over the length of short chains. 

The calculation does not agree with conclusion 2. For conclusion 3, the calculated 

IScv(m~ from C(19) to C(24) for the long chains are also smaller than IScv(17~ for the 

short chains, and the long chains have also the second plateau, but the nature of the 

second plateau is different: there is a monotonic decrease in the experiment, but an 

increase in the theoretical results. 

There are double bonds on the lipids in majority, SOPC, in the above experimental 

system, which will considerably lower the gel/liquid main transition temperature, and 

influence the environment. Because our present model does not consider double bond, we 

will next make comparison with the experimental systems that have no double bonds. 

Figure 6.21 shows the calculated orientational order parameter profiles for 

DSPCIDMPC blends of various compositions at 333 K. Lu, Vavasour and Morrow have 

done the experiments for the same systems at the same temperature [3]. Their smoothed 

profiles are shown in Figure 6.22. The chain length difference is four for the present 

system. 

In all the panels of Figure 6.22, the filled squares and circles are, respectively, the 

smoothed orientational order parameter profiles of DSPC in single component bilayers of 

DSPC, and DMPC in single component bilayers of DMPC. In panel (a), the open squares 

and circles are, respectively, the smoothed orientational order parameter profiles of 

DSPC and DMPC in binary bilayers of DSPC and DMPC with 25 mol% DSPC. In panel 

(b), the open squares and circles are, respectively, the smoothed orientational order 
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18 

Calculated orientational order parameter profiles for mixtures of DSPC and 
DMPC. The temperature is 333 K, and the pressure is the ambient pressure. 
Here 0: 100 means one DSPC in a bilayer of DMPC, 100:0 means one 
DMPC in a bilayer of DSPC, 25:75 means mixture with 25% DSPC, and 
etc. 

parameter profiles of DSPC and DMPC in bilayers of equimolar DSPC and DMPC. In 

panel (c), the open squares are the smoothed orientational order parameter profile of 

DSPC in bilayers of DSPC and DMPC with 75 mol% DSPC. The open circles are the 

smoothed orientational order parameter profile of DMPC in bilayers of DSPC and DMPC 

with 70 mol% DSPC. The experimental results show a plateau for m :5: 8, then IS cv (m ~ 

decreases quickly with m. In panel (a), except for the last carbon atom, the order 
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Figure 6.22 
Experimental smoothed orientational order parameter profiles at 333 K. (a) 
DSPC-d1o (•), DMPC-ds4 (e), DMPC-DSPC-d1o atfnsPc = 0.25 (o), DMPC­
ds4-DSPC at /nsrc = 0.25 (o). (b) DSPC-d1o (•), DMPC-ds4 (e), DMPC­
DSPC-d7o at /nsrc = 0.50 (o), DMPC-ds4-DSPC at fnsrc = 0.50 (o). (c) 
DSPC-d1o (•), DMPC-ds4 (e), DMPC-DSPC-d1o atfnsrc = 0.75 (o), DMPC­
ds4-DSPC atfnsrc = 0.70 (o). Herefnsrc is the fraction ofDSPC. 

parameter profile for DSPC in bilayers with 25 mol% DSPC is considerably closer to the 

order parameter profile for DMPC in pure DMPC bilayer than is the profile for DSPC in 

pure DSPC bilayer. However, the ending points of both the two DSPC profiles are very 

close. Consequently, compared with the order parameter profile of DSPC in pure DSPC 

bilayers, the magnitude of the order parameter profile of DSPC in bilayers of 25 mol% 

DSPC has a lower starting point, and decreases faster from C(9) to C(12), then decreases 

more slowly after C(12), and reaches an ending point closer to that of pure DSPC 

bilayers. So we can notice that, from C(14) to C(17), the order parameter profile of DSPC 

in bilayers of 25 mol% DSPC is not as steep as that in bilayers of pure DSPC. This 

phenomenon was called the appearance of a "second plateau" by Lu et al. [3]. In panel 

1 
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(b), the percentage of DSPC is doubled, and the second plateau becomes less clear. In 

panel (c), the DSPC are in majority, and there is almost no such structure. If we compare 

the three panels, we can see that except the ending points, with the increase of DSPC 

percentage, the order parameter profile of DMPC becomes closer to that of DSPC in pure 

DSPC bilayer, and with the increase of DMPC percentage, the order parameter profile of 

DSPC becomes closer to that of DMPC in pure DMPC bilayer. The ending points seem 

to depend weakly on composition. The middle parts of the order parameter profiles are 

sensitive to composition change. 

In our calculation results, IS CD (m ~ fluctuates until m z 7 , then decreases fast and 

monotonically until m z 12. Here, the IS CD (m ~ of short chains continues its fast 

decrease, while that of the long chains shows the seco1;1d plateau, especially in mixtures 

that the long chains are in minority. 

One can also notice that in theoretical results the various orientational order parameter 

profiles all start at approximately the same point, and the ending points for the long 

chains and short chains separately are also similar. The largest differences for different 

compositions happen at the middle of the chains. Nagle has pointed out that [28] the 

orientational order parameter near the headgroup end of the acyl chains reflects the area 

per lipid molecule in the bilayer. The experimental results show that it is true only for 

very dilute binary mixtures that the orientational order parameter profiles for different 

compositions start at approximately the same point. But they also show, as do our 

theoretical results, that for long or short chains separately, after the middle of a chain, the 
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orientational order parameters for various compositions become progressively similar to 

each other until they have very close ending points. 

In addition, both the theoretical and experimental results support that for a mixture 

with a high fraction of one component, the orientational order parameter profile of the 

major component becomes insensitive to composition change and is closest to that for 

single component bilayer of this major component, and the orientational order parameter 

profile of the minor component progressively approaches that of the major component. 

The experimental results [3] show that with the increase of the long chain percentage, 

the plateau of the DMPC profile is extended, and with the increase of the short chain 

percentage, the phenomenon of the second plateau in DSPC profile become clearer, as we 

have described. From Figure 6.21, one can see that for DMPC, the !SeD (m~ values 

increase with increasing fraction of DSPC, and for the left half of the DMPC chain, the 

rate of the change of IS CD (m ~ with composition increases with m. This extends the 

plateau region of the orientational order parameter profile of DMPC with increasing 

fraction of DSPC. For the right half of the DSPC chain, as discussed in section 6.4.2, 

with the increasing percentage of DMPC, the second plateau in the orientational order 

parameter profile of DSPC appears and becomes more clear. All these observations are in 

agreement with the experiment [3]. 

The experiment [3] also tells us that the difference between the DSPC and DMPC in 

mean chain extension at a given temperature is almost independent of composition. The 

theoretical results of the average orientational order parameter vs. composition for the 

above DSPC/DMPC system are shown in Figure 6.23. One can see that the lines for 
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DSPC and DMPC are almost parallel. At the left end, i.e., one DSPC in DMPC bilayer, 

the difference, which may be the largest among all compositions, is 0.019; while at the 

right end, i.e., one DSPC in DMPC bilayer, the difference, which may be the smallest 

among all the compositions, is 0.017. The difference between these two values is only 

10%. This means that at a certain temperature the difference in average orientational 

order parameter of long and short chains is only weakly dependent on composition. The 

mean chain extension can be approximately related to the average order parameter by the 

following formula [38]. 

(6.7) 

0 

where 10 = 1.25 A, and n is the number of bonds per chain. In the derivation of this 

equation, it is assumed that the bonds not pointing towards the bilayer center are rare and 

can be neglected. With this equation, we can calculate the mean chain extensions for both 

the long and short chains. They are shown in Table 6.2. 

Table 6.2 
The calculated mean chain extensions for various binary mixtures of DSPC 
and DMPC. The temperature is 333 K. the pressure is the ambient pressure. 

Percentage 
0 Difference of the Mean 

Mean Chain Extension ( A ) 0 
ofDSPC 

DSPC DMPC Chain Extensions (A ) 

0 15.40 12.30 3.10 
25 15.50 12.40 3.10 
50 15.62 12.49 3.13 
75 15.77 12.59 3.18 
100 15.95 12.70 3.25. 
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Figure 6.23 

Pcrccnlagc of l.ong Chains 

The relationship between the calculated average orientational order 
parameter and the percentage of DSPC, for mixtures of DSPC and DMPC. 
The temperature is 333 K, and the pressure is the ambient pressure. 

The smallest difference between the mean chain extensions of DSPC and DMPC is 

0 

about 3.1 A, which happens at one DSPC molecule in a DMPC bilayer, and the largest 

0 

difference is about 3.3 A, which happens at one DMPC molecule in a DSPC bilayer. The 

change is only about 5%. This means that at a given temperature, the difference in mean 

extensions of the long and short chains depends only weakly on composition. Using 

0 

Equation 6.7, Lu et al. [3] found that DSPC chain extends about 3.1 A further than the 
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DMPC chain for all the experimental results shown in Figure 6.22. This is in good 

agreement with our calculation results. 

Whitmore et al. [1] have mentioned several possible reasons for large order parameter 

values near the headgroup such as sharp headgroup/hydrocarbon interface, failure to 

exclude all g ± g + bond sequences (Here g + and g- denote gauche isomers rotating in 

the opposite direction. Because g + g- and g-g + sequences can lead to extremely strong 

overlap between hydrogen atoms bonded to carbon atoms, they should be eliminated in 

statistical-mechanical calculations), and the ordering effect introduced by placing all the 

chains on a lattice. Another possible reason may be the neglect of the headgroup 

movement. The headgroups can rotate and tilt about the bilayer normal, and there are also 

conformational fluctuations in headgroups. These can also decrease the order of the 

hydrocarbon units near the headgroups. However, the model does not include them. 

Besides, Seelig et al. have pointed out that the smoothed profiles may be not an accurate 

reflection of the detailed behavior near the headgroup end of the chain [29]. Several 

experiments [30, 31] also show that there exists variation in the plateau region of the 

smoothed profile, although it may not be big enough to fully explain the discrepancy. 

For the composition independence of the plateau value in our model, one explanation 

may be that since the plateau value is relevant to the difference between the temperature 

and the main transition temperature, while our model predicts a weaker dependence of 

the main transition temperature on the chain length, consequently the calculated plateau 

value will also have weaker dependence on the chain length, and thus similar plateau 

values for long and short chains and their mixtures. 
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In this thesis, we made calculations for DPPC/DMPC, DSPC/DMPC and DAPC/DMPC 

at various compositions, at a temperature of 338 K, and ambient pressure. The 

temperature and pressure ensure that all these systems are in liquid crystal phase. The 

chain lengths ofDMPC, DPPC, DSPC and DAPC are respectively 14, 16, 18 and 20. 

In section 4.2, for the model of binary bilayers, were-derived the stability criteria: a 

mixture will be unstable, metastable, and stable, respectively, in the regions between 

neighboring spinodals, between a spinodal and neighboring binodal, and the other 

regions. If the second derivative of the partial relative Gibbs free energy l:l.G1 / N1 is not 

negative for all the compositions, the mixtures under constant pressure have no phase 

separation. We plotted the curves of l:l.Gj N1 vs. composition for all these binary 

mixtures and saw positive curvature for all the compositions, which ensures that there is 

no phase separation in all of them. We also found that, under the same environment, the 

partial Gibbs free energy of single-component bilayers increases with chain length, so the 

transition temperature also increases with chain length, and at a given composition, 

mixing with lipids with longer chains will result in higher Gibbs free energy, and thus 

will lead to higher phase transition temperatures. 

For the average order parameter, our results give the following conclusions. For 

single-component bilayers, the average order parameter increases with chain length. In 

binary mixtures, at any composition, the average order parameter of the short chains is 
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always larger in magnitude than that of the long chains. This shows that in order to be 

accommodated, the long chain has to be more disordered than the short chain. With the 

increase of short-chain percentage, the magnitude of the average order parameter of both 

long and short chains will decrease; one reason for this may be that the chains have to be 

more disordered to adapt to a thinner bilayer since the thickness also decreases with the 

increase of short-chain percentage. 

From our calculated results for order parameter profiles, one can obtain the following 

conclusions. Except very near the headgroup, the order parameter for pure long-chain 

bilayer is larger at each unit than that for pure short-chain bilayer, and this difference 

increases with the chain length difference. With the decrease of the long-chain 

percentage, the order parameter profile of the long chain will move close to that of short 

chain in pure short-chain bilayer until they overlap in dilute long-chain mixture. With the 

decrease of the short-chain percentage, the order parameter profile of the short chain will 

move close to that of long chain in pure long-chain bilayer, but their difference remains 

even in dilute short-chain mixture, and this difference also increases with the chain length 

difference. When the long chains are in minority, a second plateau appears, and it 

becomes more prominent with the increase of short-chain fraction and chain length 

difference. The starting and ending points of order parameter profile seem to depend only 

weakly on chain length and composition. 

The second plateau may be due to the penetration of bilayer midplane by the long 

chains. With this assumption in mind, we first plotted the thickness/composition curves 
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for all the above systems, and found that the bilayer thickness increases almost linearly 

with long-chain percentage. 

After knowing the thickness for each system, the penetration of the bilayer midplane 

can be seen directly from the distribution of the last segment. Our results show that the 

maxima of the distribution profiles for the long chains occur at approximately the bilayer 

midplane and the long chains have considerable probability of reaching beyond the 

bilayer midplane. For short chains, if they are in minority, the maximum in the 

distribution of its last segment occurs before the midplane, especially when the chain 

length difference is large. 

We then turned to the average order parameter on each layer, (seD (x)), which reflects 

the inner environment of bilayers. Our results show that I( S CD (x ))I, which is symmetric 

about the midplane, has a maximum a distance of about 1/6 thickness from each side, and 

a minimum at the center. When we compared the distribution of the last segment to 

( S CD (x )) , things became clearer: the lower the long-chain percentage, the thinner the 

bilayer is, and the farther the long chains penetrate into the opposite side. This increases 

the probability that the long chains sample the maximum of I( seD (x ))I at the other side. 

This can be explained in more detail as follows. The maxima in the segment distributions 

of the long chains are at about the same position, the midplanes of bilayers, as the 

corresponding minima in I\ S CD (x ))I· The distributions to the left of the bilayers are 

approximately the same in all cases. The important difference is in the right side of the 

bilayers. The end segment of a long chain in pure short-chain bilayers has a relatively 
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high probability of sampling the region of higher I( S cD (x ))I near the opposite side and 

even reaching the layers near and beyond the maximum in I( S CD (x ))I· This is not the case 

for long chains in pure long-chain bilayer where the end-segment distribution decays 

relatively quickly beyond the minimum of I(ScD(x))l in the midplane, so does not sample 

layers of higher I( S CD (x ))I· This suggests that the increase in S CD (m) for segments near 

the free end, and consequently the second plateau, are because these segments penetrate 

well beyond midplane to layers of large I( S CD (x ))I· 

We probed this further by calculating the average order parameter on each layer of the 

segments on long or short chains anchored to the left side, ( S g~ (x )) . It qualitatively 

follows (scD(x)) instead of ScD(m), although the right maximum of l(sg~(x))l is lower 

than its left maximum. With the increase of the short-chain percentage, the bilayer 

becomes thinner, and the minimum and maxima shift left. Meanwhile, the left maximum 

becomes lower because the chains become more disordered to adapt to a thinner bilayer, 

while the right maximum becomes higher because the end segments can sample region of 

second maximum in I( S CD (x ))I· We also found that at the same composition, when the 

chain length difference is larger, the difference between the maxima and the minimum of 

I( S g~ (x ))I will also be greater. This may have some relationship with the observation of 

larger chain length difference will lead to more prominent second plateau. Another 

interesting observation about ( S g~ (x )) is that they all end at the same value of -1/6, 
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which is because the only contribution to ( S gh (z )) , where l is the chain length, is that of 

the terminal unit of a fully extended chain. 

There is some similarity between the gauche isomer profile and the order parameter 

profile, which may be because the larger gauche isomer number means the more 

disordered states, and thus the lower order parameter. 

To compare with the experiment on GalCer in SOPC by Lu et al. [2], we made 

calculations for 24/18 mixture with 5% long chains at 367 K. Consistent with the 

experiment [2], the calculations give the orientational order parameter profiles for the 

short and long chains that are about the same over the length of short chain, the 

calculated IS CD (m ~ from C(19) to C(24) for the long chains are also smaller than 

IS CD (17 ~ for the short chains, and the long chains also have a second plateau. However, 

the nature of the second plateaus is very different: there is a monotonic decrease in 

experiment, but an increase in the theoretical results. 

To compare with the experiment on DSPC/DMPC mixture at 333 K by Lu et al. [3], 

we made calculation for 18/14 mixtures of various compositions at 333 K. The chain 

length difference is four for this system. The experimental results show a plateau for 

m ~ 8, then IS cD (m ~ decreases quickly and monotonically with m; for the mixtures that 

the long chains are in minority, there is a modest second plateau near the free end of the 

long chains. In our calculations, IS CD (m ~ fluctuates until m :::::: 7 , then decreases fast and 

monotonically until m :::::: 12. Here the IS cD (m ~ of short chains continues its fast decrease, 
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while that of the long chains shows the second plateau, especially in mixtures that the 

long chains are in minority. 

In the theoretical results, the various orientational order parameter profiles all start at 

approximately the same value, and the ending points for the long chains and short chains 

separately are also similar. The largest differences for different compositions happen in 

between. The experimental results show that it is true only for very dilute binary mixtures 

that the orientational order parameter profiles for different compositions start at 

approximately the same point. But they also show, as our theoretical results, that for long 

or short chains separately, after the middle of a chain, the orientational order parameters 

for various compositions become progressively similar to each other until they have very 

close ending points. 

Besides, both the theoretical and experimental results show that, for a mixture with a 

high fraction of one component, the orientational order parameter profile of the major 

component becomes insensitive to composition change and is close to that for single 

component bilayer of this major component, and the orientational order parameter profile 

of the minor component progressively approaches that of the major component. 

Both the theoretical and the experimental results [3] show that with the increase of the 

long chain percentage, the plateau of the DMPC profile is extended, and with the increase 

of the short chain percentage, the DSPC profile begins showing clearer second plateau. 

At any given temperature, in agreement with the experiment [3], the difference in the 

mean extensions of the long and short chains depends only weakly on composition. 

In the future, the following two problems should be addressed: 
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1. The theoretical results give more prominent second plateaus than experimental 

results do; 

2. The theoretical results give larger order parameter value near the headgroup than 

experimental results do. 

The first problem, within the present model, according to the argument in section 6.5, 

could be due to penetration, i.e., the theory may predict greater penetration than the true 

bilayers do. However, it is also possible that we obtain the correct description of 

penetration, but higher maxima of I( S cD (x ))I near head groups than true bilayers. After all, 

the present theory indeed predicts higher order parameter values near the headgroups, 

which is the second problem noted above. So in the near future we should manage to 

decide which one is the dominant reason. 

For the second problem, in section 6.6, we have mentioned the possible reasons such 

as sharp headgroup/hydrocarbon interface, failure to exclude all g ± g '~' bond sequences, 

the ordering effect introduced by placing all the chains on a lattice, and the neglect of the 

headgroup movement. So we can next attempt a more detailed model of headgroup, 

headgroup movement and fluctuation, and headgroup/solvent interactions, and see what 

changes to the results can be brought about. The progress in the second problem may also 

bring down the maxima of I( S cD (x ))j, and thus help the solution of the first problem. 
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