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ABSTRACT

This dissertation proposes a novel analytical approach for elastic plastic analysis of thick

wall cylinders under internal pressure . It involves two parametric functions and piecewise

linearization of the stress strain curve. A deformation type of relationship is combined

with Hooke's law in such a way that stress strain law has the same form in all linear

segments of the material curve, but each segment involves different material parameters.

This approach incorporates the deformed geometry in elastic plastic analysis of thick wall

cylinders. Using an iterative procedure based on the principle of virtual work, this

approach accounts for the effect of deformed geometry due to high internal pressure. The

resulting analytical formulation is capable of predicting stress, strain, displacement, and

energy on a moving boundary basis.

The analytical formulation for autofrettaged cylinders obeying work hardening material

behavior has also been presented. An iterative implementation procedure for shakedown

pressure calculation has been developed . Shakedown pressures have been calculated for

both undeformed geometry and deformed geometry . The proposed formulation has also

been applied to plastic collapse load estimation. Calculations indicate that the moving

boundary approach provides conservative plastic collapse load estimation compared with

the traditional small deformation theory.

This moving boundary approach is appropriate for inelastic analysis including

autofrettage, shakedown, and limit analysis on thick wall cylinders. The comparison of

the analytical formulation with the ANSYS inelastic finite element analysis is favorable.

The effect of deformed geometry on inelastic analysis has been assessed on thick wall

cylinders subject to high internal pressure. The discrepancy of results between the

proposed method and small deformation theory has been analyzed. Calculation indicates

that the difference of energy is significant for high internal pressures.



The J integral of thick wall cylinders with circumferential flaw has been evaluated using

the ANSYS finite element program. The result indicates a significant difference between

the analysis using large deformation and small deformation theories. This difference

depends on the magnitudes of the internal pressure, and is dependent on the material

behavior. It indicates that neglecting the difference can be unconservative when

evaluating the inelastic fracture parameter, J integral. Therefore the proposed approach is

appropriate for representing energy of deformation in the energy approach in fracture

mechanics, as it incorporates the effect of geometric change due to high internal

pressures.

As the analytical approach can be implemented by MAPLE program, this method

represents an alternative assessment tool that can be used for inelastic analysis of thick

wall cylinders, which is usually performed by the more expensive and elaborate nonlinear

finite element analysis.
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1. INTRODUCTION

Advances in high pressure technology were largely based on the theoretical

understanding of the behavior of a pressurized thick wall cylinder since an obvious

structural shape to contain high pressure is the thick wall cylinder.

For several centuries, the military cannon was the only significant application of high

pressure technology in which pressure is contained by a cylindrical vessel. Little was

known of the stress analysis in cylindrical vessels until 1833, when Lame derived the

elastic stress distribution in a thick wall cylinder, and made it possible to understand the

strength of high pressure vessels . Since then, efforts have been continually made to

increase the analysis sophistication and accuracy of high pressure cylindrical vessels,

which are now being extensively used in chemical, petrochemical, and food sterilizing

industries.

The design of high pressure cylindrical vessels usually requires elastic plastic analysis.

For example, the pre-loads induced residual stress needs to be determined by elastic

plastic analysis. Compressive residual stresses in many applications such as autofrettage,

not only increase the pressure or load bearing capacity of the component , but also

enhance the component's fatigue life. The presence of these beneficial residual stresses

reduces the probability of crack initiation and retards the growth of fatigue cracks.

Reliable prediction of the influence of residual stresses on the critical crack length and

fatigue life of the components requires an accurate prediction of the actual residual stress



field in the component. It is therefore essential to develop accurate and reliable methods

to calculate residual stresses induced by pre-loads. Inelastic analyses, which are less

sophisticated, more understandable, and easy to implement but still accurate, have been

realized by more and more practicing engineers and researchers (Seshadri 1994, Jahed

and Dubey 1997).

1.1 INELASTIC ANALYSIS BASED ON LINEAR ELASTIC SOLUTIONS

The traditional method of analyzing the structural integrity of high pressure vessels is the

use of closed form solutions, which are typically valid for the elastic materials. To

describe the elastic plastic behavior, however, theory of plasticity is required. In general,

the theory of plasticity has not been completely exploited by practicing engineers.

Usually it takes considerable effort to understand and implement the analytical

techniques for plastic analysis (Jahed 1997).

Numerical method provides an alternative technique to perform plastic analysis. Among

various numerical techniques, the nonlinear finite element method is an inelastic analysis

technique that has been well developed and widely used. Nonlinear finite element

analysis (NLFEA) is an incremental or iterative computational method to solve nonlinear

problems by relating small changes of load with small changes of displacements.

However, the iterative process of nonlinear FEA requires high-end computer resources to

handle relatively large load and sub-load increments, thus makes the procedure often

elaborate, expensive, and time consuming. Besides, the merit of applying detailed



nonlinear FEA for a given problem is sometimes questionable due to convergence

problems and requirement of results interpretation knowledge.

In view of the limitations of the prevailing methods, it has increasingly attracted research

attentions to develop alternative or simplified methods of inelastic analysis based on

linear elastic analysis. These methods provide simpler techniques to approximate the

elastic plastic behavior of components and therefore are attractive to practicing engineers.

In recent years, considerable research efforts have been directed to this direction and a

number of methods have been well established and applied successfully to a wide range

of engineering problems (Seshadri 1991, Mackenzie and Boyle 1993).

1.2 MOTIVATI ONS AND OBJECTIVES

In general, current simplified inelastic methods rely on the supplement of numerical

procedures, which are typically implemented by linear FEA to simulate nonlinear FEA. It

has been noticed that inadequate research effort has been directed to the analytical

perspective for simplified inelastic method without recourse to FEA based methods.

Actually, simplified inelastic method in the analytical form can be more convenient to

provide insights into some aspects of the behavior than numerical methods. Therefore,

the major motivation of this research is to develop a simplified inelastic method in the

analytical perspective, which will largely reduce the excessive dependence on extensive

and expensive computer resources and commercial FEA software. Another motivation

for this research is that the current analytical inelastic approaches rarely account for the



effect of geometric change for cylindrical vessels subject to high pressure, which may

make pronounced difference in inelastic analysis.

Firstly, the objective of this dissertation is to establish a simplified inelastic method for

high pressure cylindrical vessels in an analytical perspective. This method should be

appropriate for inelastic analysis by predicting the stress, strain and displacement based

on linear elastic solutions. It should also be capable of predicting mechanically induced

residual stress, strain and displacement fields. Unlike conventional methods, this method

should be able to employ the concept of piecewise linearization to approximate the actual

material stress strain curve. The proposed method will then be applied to problems

involving autofrettage, shakedown, and collapse load estimation.

Secondly, the proposed method accounts for the effect of moving boundary. The

boundary value problems are formulated in terms of deformed geometry. A procedure is

developed that helps evaluate the deformed geometry as an integral part of the solutions.

The effect of deformed geometry to inelastic solutions is investigated.

1.3 OUTLINE AND CONTRIBUTIONS

The dissertation consists of eight chapters. The current chapter discusses the problem

definition, motivation, and objectives. The fundamental concepts and theories that are

related to the proposed research are reviewed in chapter 2. The literature related to

simplified inelastic method based on linear elastic solutions is reviewed in chapter 3. A



general introduction in the topic of high pressure technology including various theories of

elastic plastic analysis for pressurized thick wall cylinders is also given in chapter 3.

The moving boundary approach for elastic plastic analysis, which is an analytical method

for carrying out inelastic analysis based on elastic solutions, is proposed in chapter 4. A

generalized method for axisymmetric analysis on thick wall cylinders subjected to high

internal pressure is formulated based on the piecewise linearization concept. The

deformed geometry is incorporated in the formulation by using an iterative procedure

based on the virtual work principle. Then the proposed formulation is applied to cylinders

for various dimensions in the evaluations of stress, strain, displacement, and energy of

deformation. Results are obtained to assess the effects of geometric change and compared

with finite element analysis implemented by the ANSYS finite element program.

An analytical formulation for autofrettage cylinders obeying work hardening stress strain

law is proposed in chapter 5. The Bauschinger effect is included in the analysis for

kinematic work hardening material. Analytical solutions based on deformed geometry are

obtained and compared with the ANSYS nonlinear finite element analysis. An iterative

calculation procedure for shakedown pressure estimation is also given in this chapter. For

cylinders of various end conditions, shakedown pressures are calculated on both the

moving boundary basis and the fixed boundary basis. The effects of geometric changes

and end conditions on shakedown pressure estimations are also examined.
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