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ABSTRACT

This dissertation proposes a novel analytical approach for elastic plastic analysis of thick

wall cylinders under internal pressure . It involves two parametric functions and piecewise

linearization of the stress strain curve. A deformation type of relationship is combined

with Hooke's law in such a way that stress strain law has the same form in all linear

segments of the material curve, but each segment involves different material parameters.

This approach incorporates the deformed geometry in elastic plastic analysis of thick wall

cylinders. Using an iterative procedure based on the principle of virtual work, this

approach accounts for the effect of deformed geometry due to high internal pressure. The

resulting analytical formulation is capable of predicting stress, strain, displacement, and

energy on a moving boundary basis.

The analytical formulation for autofrettaged cylinders obeying work hardening material

behavior has also been presented. An iterative implementation procedure for shakedown

pressure calculation has been developed . Shakedown pressures have been calculated for

both undeformed geometry and deformed geometry . The proposed formulation has also

been applied to plastic collapse load estimation. Calculations indicate that the moving

boundary approach provides conservative plastic collapse load estimation compared with

the traditional small deformation theory.

This moving boundary approach is appropriate for inelastic analysis including

autofrettage, shakedown, and limit analysis on thick wall cylinders. The comparison of

the analytical formulation with the ANSYS inelastic finite element analysis is favorable.

The effect of deformed geometry on inelastic analysis has been assessed on thick wall

cylinders subject to high internal pressure. The discrepancy of results between the

proposed method and small deformation theory has been analyzed. Calculation indicates

that the difference of energy is significant for high internal pressures.



The J integral of thick wall cylinders with circumferential flaw has been evaluated using

the ANSYS finite element program. The result indicates a significant difference between

the analysis using large deformation and small deformation theories. This difference

depends on the magnitudes of the internal pressure, and is dependent on the material

behavior. It indicates that neglecting the difference can be unconservative when

evaluating the inelastic fracture parameter, J integral. Therefore the proposed approach is

appropriate for representing energy of deformation in the energy approach in fracture

mechanics, as it incorporates the effect of geometric change due to high internal

pressures.

As the analytical approach can be implemented by MAPLE program, this method

represents an alternative assessment tool that can be used for inelastic analysis of thick

wall cylinders, which is usually performed by the more expensive and elaborate nonlinear

finite element analysis.
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1. INTRODUCTION

Advances in high pressure technology were largely based on the theoretical

understanding of the behavior of a pressurized thick wall cylinder since an obvious

structural shape to contain high pressure is the thick wall cylinder.

For several centuries, the military cannon was the only significant application of high

pressure technology in which pressure is contained by a cylindrical vessel. Little was

known of the stress analysis in cylindrical vessels until 1833, when Lame derived the

elastic stress distribution in a thick wall cylinder, and made it possible to understand the

strength of high pressure vessels . Since then, efforts have been continually made to

increase the analysis sophistication and accuracy of high pressure cylindrical vessels,

which are now being extensively used in chemical, petrochemical, and food sterilizing

industries.

The design of high pressure cylindrical vessels usually requires elastic plastic analysis.

For example, the pre-loads induced residual stress needs to be determined by elastic

plastic analysis. Compressive residual stresses in many applications such as autofrettage,

not only increase the pressure or load bearing capacity of the component , but also

enhance the component's fatigue life. The presence of these beneficial residual stresses

reduces the probability of crack initiation and retards the growth of fatigue cracks.

Reliable prediction of the influence of residual stresses on the critical crack length and

fatigue life of the components requires an accurate prediction of the actual residual stress



field in the component. It is therefore essential to develop accurate and reliable methods

to calculate residual stresses induced by pre-loads. Inelastic analyses, which are less

sophisticated, more understandable, and easy to implement but still accurate, have been

realized by more and more practicing engineers and researchers (Seshadri 1994, Jahed

and Dubey 1997).

1.1 INELASTIC ANALYSIS BASED ON LINEAR ELASTIC SOLUTIONS

The traditional method of analyzing the structural integrity of high pressure vessels is the

use of closed form solutions, which are typically valid for the elastic materials. To

describe the elastic plastic behavior, however, theory of plasticity is required. In general,

the theory of plasticity has not been completely exploited by practicing engineers.

Usually it takes considerable effort to understand and implement the analytical

techniques for plastic analysis (Jahed 1997).

Numerical method provides an alternative technique to perform plastic analysis. Among

various numerical techniques, the nonlinear finite element method is an inelastic analysis

technique that has been well developed and widely used. Nonlinear finite element

analysis (NLFEA) is an incremental or iterative computational method to solve nonlinear

problems by relating small changes of load with small changes of displacements.

However, the iterative process of nonlinear FEA requires high-end computer resources to

handle relatively large load and sub-load increments, thus makes the procedure often

elaborate, expensive, and time consuming. Besides, the merit of applying detailed



nonlinear FEA for a given problem is sometimes questionable due to convergence

problems and requirement of results interpretation knowledge.

In view of the limitations of the prevailing methods, it has increasingly attracted research

attentions to develop alternative or simplified methods of inelastic analysis based on

linear elastic analysis. These methods provide simpler techniques to approximate the

elastic plastic behavior of components and therefore are attractive to practicing engineers.

In recent years, considerable research efforts have been directed to this direction and a

number of methods have been well established and applied successfully to a wide range

of engineering problems (Seshadri 1991, Mackenzie and Boyle 1993).

1.2 MOTIVATI ONS AND OBJECTIVES

In general, current simplified inelastic methods rely on the supplement of numerical

procedures, which are typically implemented by linear FEA to simulate nonlinear FEA. It

has been noticed that inadequate research effort has been directed to the analytical

perspective for simplified inelastic method without recourse to FEA based methods.

Actually, simplified inelastic method in the analytical form can be more convenient to

provide insights into some aspects of the behavior than numerical methods. Therefore,

the major motivation of this research is to develop a simplified inelastic method in the

analytical perspective, which will largely reduce the excessive dependence on extensive

and expensive computer resources and commercial FEA software. Another motivation

for this research is that the current analytical inelastic approaches rarely account for the



effect of geometric change for cylindrical vessels subject to high pressure, which may

make pronounced difference in inelastic analysis.

Firstly, the objective of this dissertation is to establish a simplified inelastic method for

high pressure cylindrical vessels in an analytical perspective. This method should be

appropriate for inelastic analysis by predicting the stress, strain and displacement based

on linear elastic solutions. It should also be capable of predicting mechanically induced

residual stress, strain and displacement fields. Unlike conventional methods, this method

should be able to employ the concept of piecewise linearization to approximate the actual

material stress strain curve. The proposed method will then be applied to problems

involving autofrettage, shakedown, and collapse load estimation.

Secondly, the proposed method accounts for the effect of moving boundary. The

boundary value problems are formulated in terms of deformed geometry. A procedure is

developed that helps evaluate the deformed geometry as an integral part of the solutions.

The effect of deformed geometry to inelastic solutions is investigated.

1.3 OUTLINE AND CONTRIBUTIONS

The dissertation consists of eight chapters. The current chapter discusses the problem

definition, motivation, and objectives. The fundamental concepts and theories that are

related to the proposed research are reviewed in chapter 2. The literature related to

simplified inelastic method based on linear elastic solutions is reviewed in chapter 3. A



general introduction in the topic of high pressure technology including various theories of

elastic plastic analysis for pressurized thick wall cylinders is also given in chapter 3.

The moving boundary approach for elastic plastic analysis, which is an analytical method

for carrying out inelastic analysis based on elastic solutions, is proposed in chapter 4. A

generalized method for axisymmetric analysis on thick wall cylinders subjected to high

internal pressure is formulated based on the piecewise linearization concept. The

deformed geometry is incorporated in the formulation by using an iterative procedure

based on the virtual work principle. Then the proposed formulation is applied to cylinders

for various dimensions in the evaluations of stress, strain, displacement, and energy of

deformation. Results are obtained to assess the effects of geometric change and compared

with finite element analysis implemented by the ANSYS finite element program.

An analytical formulation for autofrettage cylinders obeying work hardening stress strain

law is proposed in chapter 5. The Bauschinger effect is included in the analysis for

kinematic work hardening material. Analytical solutions based on deformed geometry are

obtained and compared with the ANSYS nonlinear finite element analysis. An iterative

calculation procedure for shakedown pressure estimation is also given in this chapter. For

cylinders of various end conditions, shakedown pressures are calculated on both the

moving boundary basis and the fixed boundary basis. The effects of geometric changes

and end conditions on shakedown pressure estimations are also examined.



In chapter 6, the proposed method is used to estimate plastic collapse loads of thick wall

cylinders for material exhibiting work hardening behavior. Results for different end

conditions are calculated to assess the effect of end conditions. Plastic collapse loads

calculated by deformed geometry theory are compared with those by undeformed

geometry theory in order to evaluate the effect of geometric change. The ANSYS

nonlinear finite element program is used for the purpose of comparison .

In chapter 7, the effect of geometric changes is further assessed in terms of the difference

of the energy required for deformation using large deformation and small deformation

theories, respectively. Using the ANSYS finite element analysis, the effect of large

deformation on the fracture parameter, J integral, is examined for inelastic materials. The

numerical examples include a range of diameter-ratio cylindrical pressure vessels with a

circumferential flaw. The nonlinear energy release rates are calculated and compared for

small deformation and large deformation theories.

The major contributions of this research are:

I. The effect of the moving pressure boundary on inelastic analyses for thick wall

cylinders being incorporated into the proposed analytical approach;

2. the development of a generalized formulation in terms of parametric functions for

inelastic analyses on thick wall cylinders using piecewise linearization of actual

stress strain curves;



3. the development of iterative calculation programs for inelastic solutions and

shakedown pressures on moving boundary basis without recourse to FEA based

methods; and lastly

4. the assessment of effects of deformed geometry on inelastic analyses and the

fracture parameter, J integral.

Firstly, the significance of the research lies in the generalized formulation in terms of

accommodating different stress strain relationships, which is mathematically simpler to

use than the incremental theory of plasticity. As an analytical method, it provides

practitioners an alternative assessment and benchmarking tool that can be used for

inelastic analysis, which is usually performed by the elaborate and time-consuming

nonlinear finite element analysis.

The significance also includes the effect of deformed geometry, which is incorporated

into the proposed method of inelastic analysis for thick wall cylinders, which was rarely

considered in known prior research. Due to high internal pressure, cylindrical vessels

could experience large deformations. Neglecting the effect of geometric changes can be

unconservative in the context of integrity and reliability assessment of vessels subject to

high pressures. The development of the proposed method can also provide insights into

the effects of geometric change on inelastic analysis and the fracture parameter (J

integral).



2. THEORETICAL BACKGROUND

2.1 INTRODUCTION

Two tasks are generally involved in structural design and analysis : the determination of

the internal force field acting on the structural material, and the determination of the

response of the material to that force field. The determination of the internal force

involves an analysis of the stresses acting within the structures and materials due to the

application of externally applied mechanical and/or thermal loads. The determination of

the response often requires a constitutive model or knowledge of the stress strain

relationship. The linear relationship that exists between stress and strain in an idealized

material forms the basis of infinitesimal theory of elasticity, which has been applied

widely in practice to estimate stresses or strains in the real life materials and structural

components under stipulated load conditions. The design codes for pressure vessels,

which have evolved by reliance upon the engineering practice of decades and centuries,

restrict the stresses to be less than a specified allowable stress level that is chosen as some

fraction of the yield strength of the material or its ultimate strength (Fryer and Harvey,

1998).

Theory of plasticity, on the other hand, provides an adequate understanding of the

behavior of actual materials in which linear relationship of stress and strain is no longer

valid. It represents a necessary extension of the theory of elasticity, because it furnishes

more realistic estimates of load-carrying capacities of structures and provides a complete



theory for structural analysis in both plastic and elastic ranges. Theory of plasticity

endeavors to quantify and predict the behavior of solids, generally metals, undergoing

pennanent (irreversible) deformation. There are four major components for the prediction

of elastic plastic deformation, which are:

I. A stress strain relationship, which describes the uniaxial loading behavior of

material;

2. a yield criterion, which defines the limits of elasticity under combined state of

multiaxial stresses;

3. a flow or deformation rule, which relates the stresses to the corresponding strains

or strain increments; and lastly

4. a hardening rule, which describes the subsequent increase of yield stress in plastic

deformation.

First, a brief introduction of the constitutive relationships, yield criteria, flow or

deformation rules, and hardening rules is given in this chapter. As well, equilibrium

equations, compatibility equations, and constitutive equations, which are basically the

three major components of boundary value problems, are discussed. Then a brief

introduction of the virtual work principle is given at the end of this chapter.

2.2 INELASTIC BEHAVIOR IN SIMPLE TENSION TEST

A material's response to uniaxial loading is assessed most often by means of tension and

compression test. Standard test procedures and size specimens are used to determine the



physical properties of material for pressure vessels and structural steels. Of these, the

simplest and most widely used is the tension test. This consists of pulling a 0.5 in. (1.27

cm) diameter, 2 in. (5.08 cm) gage length specimen and then estimate the proportional

limit, yield strength, ultimate strength, elongation in the gage length, and the reduction in

the cross-sectional area at failure. Figure 2.1 shows such a stress strain curve. The well­

known uniaxial stress strain diagram affords a useful representation of the plastic as well

as the elastic behavior.

~ -+-+-d(j

E

Fig. 2.1 Stress strain curve in simple tension test
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2.2.1 Stress Strain Curve in Simple Tension Test

Fig. 2.1 shows a typical uniaxial stress strain curve for a strain-hardening material. The

yield point is a most important characteristic since it represents the point at which plastic

flow commences. Ductility is measured as the elongation of the test specimen gage

length, and uniform elongation and reduction in area occur up to the ultimate strength, at

which time necking begins and further elongation becomes localized. The area under the

stress strain curve represents the amount of work required to produce elastic plastic

deformation. It can describe the characteristic of a material, since it depends on both its

strength and ductility .

2.2.2 Material Properties of Inelastic Behavior

Material properties, such as the modulus of elasticity, tangent modulus, plastic modulus,

and Poisson 's ratio are obtained from a uniaxial stress strain experimental data curve.

Fig. 2.1 shows the definition of elastic, tangent, and plastic moduli. For material with

linear elastic behavior, the modulus of elasticity is simply expressed as:

(2.1)

However , because the elastic plastic stress strain curve of the material is nonlinear in

nature, an incremental procedure is often adopted. The increment of strain in elastic

11



plastic defonnation consists of two parts: the elastic strain increment, de" , and the plastic

strain increment, de'", such that

(2.2)

The infinitesimal stress increment, da , 'is related to the infinitesimal strain increment,

de , by

da=E,dc (2.3)

where E, is the tangent modulus that varies during plastic deformation, In Fig. 2.1, E, is

the instantaneous slope of the nonlinear stress strain curve. If the plastic strain, e" is

separated from the total strain, e , then the plastic strain increment and stress increment

are related by

(2.4)

where Ep is referred to as the plastic modulus, which in the case of uniaxial loading is

the slope of the a - e " curve . The elastic strain increment de ", is related to the

increment stress by the modulus of elasticity E:

da =Ede '

12

(2.5)



Substitution of de in Eq. 2.3, de " in Eq. 2.4, and de e in Eq, 2.5 into Eq. (2.2) leads to

the relationship between the three moduli E" E, and E P

1 1 1
-=-+­
E, E E p

(2.6)

Besides the modulus of elasticity , Poisson's ratio is also an important material parameter,

which describes the lateral behavior of materials under axial load. Poisson's ratio is

defined as

V=- eta/erat
8 o.x;0/

(2.7)

Although Poisson's ratio is not explicitly defined by the stress strain curve, it is often

measured and calculated by the same simple unaxial loading test.

2.3 MODELING OF UNIAXIAL BEHAVIOR IN PLASTICITY

Experimental stress strain curves of material are often idealized to obtain elastic plastic

solution (Chen and Han, 1987). Four types of idealized stress strain curve are discussed

herein.

13



2.3.1 Elastic Perfectly Plastic Model

In some cases, it is permissible and convenient to neglect the effect of work hardening

and assume that the plastic flow occurs as the stress has reached the yield stress, a y •

Thus, the uniaxial stress strain relation may.be expressed as

a
for a <ay (2.8a)&=-

E

&=:!.-+&P for a=ay (2.8b)
E

This material behavior model is shown in Fig. 2.2a.

2.3.2 Elastic-Linear Work-Hardening Model

For material with work hardening behavior, the experimental stress strain curve can be

approximated by two straight lines, thus replacing the smooth transition curve by a sharp

breaking point, the ordinate of which is taken to be the elastic limit stress or the yield

strength. The first linear branch of the diagram has a slope of modulus of elasticity, E.

The second linear branch, representing the work hardening range in an idealized fashion,

has a slope of E, < E (Fig. 2.2.b). The stress strain relation has the following form:

a
&=-

E

14

(2.9a)



for a> a )' (2.9b)

2.3.3 Elastic-Exponential Hardening Model

For work hardening material, stress strain relations can be approximated in the following

power expression:

a=EE:

a=kE: n

for a ~ay

for a >ay

(2. lOa)

(2.10b)

where k and 11 are two characteristic constants of the material to be determined to best

fit the experimentally obtained curve. Clearly, the power expression is only applicable to

the work hardening range, as shown in Fig. 2.2c.

2.3.4 Ramberg-Osgood Model

Ramberg and Osgood (1943) proposed a relation of representing the nonlinear stress

strain behavior (Fig. 2.2d) in the following expression:

(2.11)

where material constants a and m are the yield offset and the hardening exponent,

respectively. The initial slope of the curve takes the value of elastic modulus at a = 0,

15



and decreases monotonically with increasing load. Since this model has three parameters,

it allows for a close fit of real stress strain curves. This method of idealization is usually

utilized in the deformation theory of plasticity.

a

E

(a)

a

E,

E

(b)

(c) (d)

Fig. 2.2 Idealized stress strain curves

(a) Elastic perfectly plastic model

(b) Elastic-linear work-hardening model

(c) Elastic-exponential hardening model

(d) Ramberg-Osgood model

16



2.4 YIELD CRITERIA

The yield criterion defines the elastic limits of a material under combined states of stress.

For structural elements with multiaxial stresses, a yield criterion describes how each

stress component contributes to yielding due to a complicated set of loads.

Depending on which type of material, yield criteria can be dependent or independent of

hydrostatic pressure. However, it is generally agreed that most of ductile metals is

hydrostatic pressure independent. Although many yield criteria have been proposed, the

maximum shear stress criterion, also know as Tresca yield condition, and the maximum

distortion energy criterion, also referred to as the von Mises yield condition, best

represent actual material behavior while preserving mathematical tractability (Chen and

Han, 1987).

2.4.1 The Maximum Shear Stress Criterion

In 1864, Tresca historically proposed the first yield criterion for a combined state of

stress of metals. According to his theory, yielding would occur when the maximum shear

stress at a point reaches a critical value. Tresca yield criterion can be expressed as

(2.12)
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where O"max and O"min are the maximum and minimum principal stresses, and O"y is the

yield stress in tension. For a biaxial state of stress, the yield locus is obtained as a

hexagon, shown in Fig. 2.3 .

Tresca Hexagon

von Mises Ellipse

Fig. 2.3 Yield locus for a biaxial stress state

Tresca's equivalent stress, O"~, may be defined in the following form:

(2.13)
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The definition comes from Eq. (2.12), where the left hand side of it is taken as a

representation of the state of equivalent stress at a given material point. The definition of

equivalent stress is essential when working with hardening materials as initial yielding is

not the only concern.

2.4.2 The Maximum Distortion Energy Criterion

The maximum shear stress criterion is simple, however it does not reflect any influence

of the intermediate principal stress. The maximum distortion energy criterion, which was

developed in 1913, is based on an alternative theory that yielding begins when the

distortion energy for a complex stress state is equal to the distortion energy at yield in a

simple tension test. The maximum distortion energy criterion is also known as von Mises

criterion. von Mises criterion is represented using the deviatoric stress tensor, O"~, and the

yield stress O"y' which can be expressed

(2.14)

and

(2.15)

where Sij is the Kronecker delta. The von Mises criterion in terms of principal stresses is
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(2.16)

where 0"1 ' 0"2' and 0"3 are the principal stresses. For the case of a biaxial state of stress

(0" 3 =0), the yield locus is an ellipse as shown in Fig. 2.3.

The von Mises criterion takes the intermediate principal stress into consideration. The

von Mises equivalent stress is defined by

(2.17)

The Tresca and von Mises yield criteria never give dramatically different prediction of

the yield behavior under combined stress. The experimental work (Osgood 1947) shows

that the yield points fall between the Tresca hexagon and the von Mises ellipse, though

closer to the latter. The maximum distances from the origin to the Mises ellipse and the

Tresca hexagon in Fig. 2.3 have the ratio of 1.155. Hill (1950) suggested that solutions

obtained using the Tresca criterion may be scaled by this factor to give estimations based

on the von Mises criterion.
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2.5 STRESS STRAIN RELATIONS

Generalized Hooke's law describes the linear elastic response of materials during

multiaxial elastic and plastic deformation. Two other basic approaches describe the

plastic response. The first type of formulation is the deformation theory in the form of the

total stress strain relation. Another type of formulation is the incremental theory or flow

theory. This type of formulation relates the increment of plastic strain components to the

state of stress.

2.5.1 Linear Elastic - Generalized Hooke's Law

The generali zed Hooke 's law constitutes the linear elastic relationship

(2.18)

where G, E and v are the shear modulus , elastic modulus and Poisson's ratio ,

respectively.

This relationship applies not only prior to yielding but also after yielding, except that in

the latter case it gives only the elastic portions of the strains. The total strains are

obtained by adding the plastic portion to the elastic portion :

(2.19)
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2.5.2 Deformation Theory of Plasticity

In 1924, Hencky formulated a theory to describe the relationship between total plastic

strains and stresses. Assuming small strains, the formulation may be written as

(2.20)

where ¢ is a scalar valued function determined by experiments. To calibrate this scalar, a

strain variable called the equivalent plastic strain is introduced and defined as

(2.21)

Using the definition of equivalent stress (J' eq (e.g. Mises equivalent stress) and equivalent

strain c~ leads to an expression for the parameter function ¢:

¢=~ c~
2 « ;

2.5.3 Incremental Theory of Plasticity

(2.22)

Levy (1871) and von Mises (1913) independently proposed a relationship between strain

increments and the current state of stress. Prandtl (1924) extended the earlier Levy-von
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Mises theory to plane strain case for an elastic perfectl y plastic material. Reuss (1930)

extended the Prandtl equations to the three-dimensional case and gave the general form

of

(2.23)

or in terms of the components of the strain increments and stresses as

d~l~ == d~f2 == d~fJ == d~li == d~l~ == d~f3 == dJ.
0"11 0"22 0"33 0"12 0"13 0"23

(2.24)

where dJ. is a factor of proportionality, which may be found by considering plastic work

increments. Hill (1950) suggested that the increment of plastic work per unit volume for

the von Mises yield criterion is

(2.25)

where the equivalent plastic strain increment is defined as

(2.26)

Therefor e, dJ. can be determined by the following equation:
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3 d&~
dJ.,==-­

2 « ;
(2.27)

Both deformation theory and incremental theory have been used for plastic analysis of

materials . There have been many studies, especially during the 1950's and 1960's,

comparing the two theories. Many of these studies emphasized that deformation theory

cannot adequately describe the phenomena associated with plastic deformation due to the

assumption of loading-path-independent behavior, while some (Hodge and White 1952,

Budiansky 1959, Chen 1973) have pointed out the applicability of deformation theory.

Experimental results (Mroz and Olszak, 1963) show that the Prandtl-Reuss equation,

which is path dependent, is the most accurate relationship. However, due to the

mathematical complexity arising from the incremental formulation, deformation theory is

preferred for many applications and has been used extensively in practice for the solution

of elastic plastic problems because of its comparative simplicity, less computational time

and reasonable accuracy. These applications can be found in notch analysis (Seeger

1985), cyclic plasticity (Dowling 1993), and fracture mechanics (Chen 1996).

2.6 HARDENING RULES

Engineering material usually exhibits a work hardening behavior. The rule that specifies

the post yield response of the material is called the hardening rule. Hardening rules

describe how the yielding criterion changes during the course of plastic deformation. For

unloading situations, they also describe the onset of reversed yielding. For a material
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element under a reversed loading condition, the subsequent yield stress is usually

determined by the following hardening rules: 1) isotropic hardening and 2) kinematic

hardening.

Although it is necessary to work with a hardening rule for complex loading and

unloading problems, neither isotropic hardening rule nor kinematic hardening rule is able

to capture all features of material behavior. For example, an experimental stress strain

curve of the material AISI 4333 has a minor work hardening behavior in loading while

showing a significant hardening effect upon unloading. The Bauschinger effect is not

captured even by the kinematic hardening rule because the curve is close to perfectly

plastic response in loading. Unlike during loading, the material transition from elastic

unloading to reversed yielding is smooth in the actual stress strain curve. Therefore

utilizing the actual stress strain curve can lead to accurate estimation of material

response, where it is applicable.

2.6.1 Isotropic Hardening Rule

The isotropic hardening rule is based on the assumption that the initial yield surface

expands uniformly without distortion and translation as plastic flow occurs . The center of

the yield surface remains fixed. Such behavior is shown schematically in Fig 2.4. The

diagram is drawn in two dimensions, but the basic geometric ideas are readily extended

to three-dimensional spaces. Using the von Mises yield criterion, the yield surface is

described by

25



(2.28)

Isotropic hardening rule cannot account for the Bauschinger effect that has been

experimentally observed for many metals (Milligan et. al. 1966). Isotropic hardening

model is considered to best describe material behavior for large strains. Therefore, this

rule is applied more in metal forming problems.

o,

Subsequent Yield Surface

Fig. 2.4 Yield surface for isotropic hardening material
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2.6.2 Kinematic Hardening Rule

The kinematic hardening rule is based on the assumption that during plastic deformation,

the loading surface translates as a rigid body in stress space, maintaining the size, shape ,

and orientation of the initial yield surface. This hardening rule was first proposed by

Prager (1957) as a way to model the Bauschinger effect. This rule is illustrated

schematically in Fig. 2.5.

a,
Subsequent Yield Surface

Loading Path

Initial Yield Surface

Fig. 2.5 Yield surface for kinematic hardening material

27



For von Mises material, the yield surface equation is expressed as

(2.29)

where a ij is the shift tensor that accommodates translation . Different relations for the

shift tensor increment have been proposed. Ziegler (1959) modified Prager's rule by

proposing the following evolution form for the shift tensor

(2.30)

a

Isotropic Hardening

Fig. 2.6 Isotropic and kinematic hardening
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Kinematic hardening rule provides a simple means of accounting for the Bauschinger

effect. This hardening rule is used mostly in fatigue analysis and cyclic plasticity. Fig. 2.6

shows the possible unloading paths of isotropic hardening and kinematic hardening

materials on the uniaxial stress strain curve .

2.7 BOUNDARY VALUE PROBLEMS

Formulation of boundary value problems requires considerations of: 1) the equilibrium

equation , 2) the compatibility condition, and 3) the constitutive equation. It is essential to

understand and enforce these considerations in analytical or numerical formulations of

solid mechanics because complete and reliable solutions are achieved only if equilibrium

and compatibility are maintained, and the correct constitutive relation is employed.

2.7.1 Equilibrium Equations

The state of stress at a point in a body is completely determined by the components of the

Cartesian stress tensor (Y ij' Naturally, the stresses vary within the body. The equations

governing the distribution of stresses are known as the equations of equilibrium and are

derived from the application of the fundamental physical principles of linear and angular

momentum.

Consider a body of volume V enclosed within surface r. The body is in equilibrium if

the stress tensor satisfies the following equation
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(2.31)

where F; is the body force.

The equilibrium equation (Eq. 2.31) ensures the equilibrium of stresses of the material

interior to I" . The stress and displacement fields must be such as to conform to the

conditions of loading imposed at the boundaries. If the prescribed boundary condition

consists of tractions, 1;, and displacements, u j· , then the following two conditions must

be satisfied to ensure the equilibrium and compatibility on the boundary:

(2.32)

for traction 1; over the boundary [1 and

(2.33)

for displacement u; over the boundary [ 2' The surface consists two parts

(2.34)
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2.7.2 Compatibility Equations

The Lagrangian strain tensor ct is defined by

(2.35)

In small strain theory, the displacement gradients Il k,; are small in comparison to unity,

then products of such term are negligible in Eq. (2.35) and they may be dropped . For

such case, the definition of small or infinitesimal strain tensor c ij is introduced:

(2.36)

Note that no restriction is placed on the magnitude of the II i terms but only the gradients.

It is thus theoretically possible at this point to describe relatively large deformation by

infinitesimal strains (Gould 1983).

In the analysis of stress, equilibrium equation ensures the body is always in equilibrium

state. In the analysis of strain, the compatibility condition must be imposed on the strain

components so that the deformed body remains continuous, which are illustrated in the

following equation:

(2.37)
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The compatibility equation is the necessary and sufficient condition required to ensure

that the strain components give single-valued continuous displacements (Chen and Han,

1987).

2.7.3 Constitutive Laws

The equilibrium equation that involves only stresses is independent of the compatibility

condition that involves only strains . The constitutive laws connect the stress and strain

through the mechanical properties of materials. Therefore, knowledge and understanding

of the material behavior is necessary and important.

Throughout this work, only homogeneous and isotropic materials are considered. A

homogeneous material displays identical properties throughout the body and the

properties are identical in all directions at a point for an isotropic material. Hencky's

relation and Prandtl-Reuss equation, which have been discussed earlier, are two examples

of constitutive laws. In chapter 4, a set of constitutive relations analogous to the

generalized Hooke's law is established and applied to describe elastic plastic behavior of

boundary value problems.

2.8 PRINCIPLE OF VIRTUAL WORK

Analysis of stress and deformation can be accomplished through the use of energy

methods , which provides an alternative to the methods based upon analytical solutions of
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differential equations. Applications of energy methods, such as the principle of virtual

work, have been proved effective in situations including various solid mechanics

problems and offering concise and relatively simple approaches for structure and

structural elements. In particular, the principle of virtual work, which is developed from

the law of conservation of energy, has proved very powerful as a technique in solving

problems with both elastic and inelastic material behavior.

The equation of virtual work principle connects two separate and unrelated sets: the

equilibrium set and the compatible set, as shown in Fig. 2.7. The equilibrium set and the

compatible set, which are independent to each other, are brought together in the equation

of virtual work principle:

(2.38)

where A and V are the whole area and volume of the body, respectively. The quantity T;

is external surface force and F; is body force. In Eq. 2.38, the equilibrium set consists of

T;, F;, and a if while the compatible set consists of 1I; and c;. The stress field a if is any

set of stresses, real or virtual, in equilibrium with body forces F; within the body and

with surface forces T; on the surface where they are prescribed. Similarly, the strain field

c; represents any set of strains compatible with the real or virtual displacements 1I;' of

the points of application of the external forces T; and F;.

33



An essential point of virtual work principle is that neither the equilibrium set nor the

compatible set need be the actual state, nor need the equilibrium and compatible sets be

related in any way to each other (Chen and Han, 1987).

u/

(a) Equilibrium set (b) Compatible set

Fig. 2.7 Two independent sets in the equation of virtual work

2.8.1 Principle of Virtual Displacement

In the case of that virtual displacements &; are applied to a system in equilibrium under

a set of real surface tractions and body forces, the principle of virtual work is expressed
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fT; ou;dA+ fF;OIl ;odV= faij&~dV
A V V

(2.39)

This is the principle of virtual displacements, which can be used to determine the external

reactive forces on the body or the unknown internal loading in the body (Gould 1983) .

2.8.2 Principle of Virtual Force

Similarly, when virtual forces are applied to a system in equilibrium, the principle of

virtual work is expressed as:

fOT;II ;dA+ foF;ll;dV= foaijG~dV
A v V

(2.40)

This is the principle of virtual force, which describes compatibility between internal

deformation and external displacements. The principle of virtual force is usually helpful

to calculate external displacements (Gould 1983).
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3. REVIEW OF LITERATURE

In this chapter, a general review of literature starts from the topic of elastic plastic

analysis based on linear elastic solutions, as the proposed method is an analytical method

for inelastic analysis based on elastic solutions. The piecewise linearization of nonlinear

stress strain law, which is one of the main features of the proposed formulation, employs

the concept of reduced modulus to describe the inelastic behavior. A general introduction

of the topic of high pressure technology is given including various theories of elastic

plastic analysis for thick walled cylinders, and related design aspects.

3.1 ELASTIC PLASTIC ANALYSIS BASED ON ELASTIC SOLUTIONS

Linear elastic behavior of materials is a well-established branch of solid mechanics.

Unified understanding of the linear elastic response of materials has been achieved.

Linear elastic formulations of problems are mathematically simple and their solutions are,

for the most part, readily attainable. Most practical problems in this field possess either

analytical or numerical solutions that are in good agreement with experimental

observation .

Plasticity, however, is much more complicated. Although a unified theory of plasticity

began to emerge after 1950's, the understandings of plastic behavior are diversified even

today. In practice, plasticity theory, which has been formulated from some experimental

observations and conjecture, needs to be further justified by more experiments. Besides,

36



theoretical plasticity with complex mathematics is a matter of debate itself. Therefore,

simplified methods of elastic plastic analysis have attracted increasing attention amongst

researchers in the practical field of plasticity. The simplicity of linear elasticity and

difficulties with nonlinear plasticity has made way for researchers to attempt solving

elastic plastic problems by adapting a modified form of available elastic solutions. The

idea of estimating the elastic plastic behavior by using elastic analysis can be traced back

to Nadai (1930) who carried out a plastic analysis of a thin wide plate with a circular hole

using a linear elastic method.

3.1.1 Method of Successive Elastic Solution

Ilyushin (1946) proposed a method of using successive elastic solutions to perform

plastic analysis on a thin shell. This method uses the following constitutive relation

(3.1)

where c; is the total accumulated plastic strain up to, but not including the current

increment of loading I:'J.c;. The method allows the plastic strain increment to be related to

the stresses through any yield criterion and the associated flow rule, but the Prandtl-Ruess

relations are preferred. The loading path is divided into a number of increments. For the

first increment of load, a distribution is assumed for the components of plastic strain

increments I:'J.c; . The components of total plastic strain c; are zero. Therefore, the
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boundary value problem formed by the above constitutive equation can be solved as for

any elastic problem to give a first approximation for the stresses and total strains. The

assumed values for Lie; give an equivalent plastic increment Se": From the uniaxial

stress strain curve, the corresponding value of equivalent stress is obtained and new sets

of Lie; are calculated from the Prandtl-Reuss relation. Using the new plastic strain

increments, the boundary value problem is solved again as a new elastic problem. This

process is continued until convergence is obtained. Mendelson (1968) records a

collection of work on different plastic problems using this method.

3.1.2 Reduced Modulus Method

Plastic analysis investigates components and structures both at global and local level. At

global level, limit load that results in plastic collapse needs to be determined. There are a

number of techniques to calculate structural limit load, the state of art analysis technique

is the incremental finite element analysis implemented by specialist nonlinear programs

such as ANSYS, ABAQUS and I-DEAS, etc. However, calculation of limit loads by

detailed inelastic analysis can be difficult and computationally expensive. In practice,

limit load analysis for design considerations is often performed using simplified methods,

most commonly based on elastic analysis. Jones and Dhalla (1981) investigated the

inelastic response, rather than performing an elastic analyses, using iterative linear elastic

analyses in which highly stressed regions of the structure were systematically weakened

by reduction of the local modulus of elasticity in order to simulate the effect of local

inelasticity . First an elastic analysis is performed and the equivalent stress and strain at
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the most highly loaded location noted . A rough estimate of the inelastic strain

corresponding to the elastically calculated stress is then made . The minimum secant

modulus is defined as the ratio of the effective elastic stress to the estimated inelastic

strain:

(3.2)

where A is the most highly loaded location. Once the minimum secant modulus is

defined, three values of reduced moduli between the minimum secant modulus and

Young's modulus are defined . Next, an elastic analysis is performed in which these

reduced modulus values are assigned to the most highly stressed local regions of the

component.

Marriott (1988) proposed a method that adopted a truly iterative elastic procedure. An

initial elastic analysis is performed and all elements with a maximum difference in

principal stress greater than stress Sm' which is to be defined by pressure vessel design

code, are identified. The elastic moduli of these elements are then individually reduced

on an element-by-element basis, obeying the following equation

(3.3)
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where ER and Eoare the reduced and previous values of modulus, respectively. Sm is the

code allowable stress and SI is the element stress (i.e., the maximum difference in the

principal stresses). Then a second elastic analysis is carried out to obtain a reduced

modulus analysis solution. The modulus reduction procedure is then repeated in an

iterative manner until the maximum element stress, SI, is less than Sm. The stress field

obtained satisfies all the conditions of being statically admissible. The applied load of the

solution implies a lower bound on the exact limit load.

Seshadri (1990 and 1991) developed the generalized local stress strain analysis (GLOSS) .

It is a systematic method for inelastic evaluation on components and structures using two

linear elastic FEA. Seshadri calculated the reduced modulus on an element-by-element

basis. The reduced modulus required for perfectly plastic behavior is calculated by the

following equation:

(3.4)

where E , is the reduced elastic modulus, Eo is original elastic modulus, O"y is yield

stress and O"e is theoretical equivalent stress. This theory was developed on the basis of a

comparison between multiaxial and uniaxial stress relaxation process, which was

presented by Seshadri and Mikulcik (1989). It was postulated that multiaxiality either

"speed up" or "slow down" the uniaxial stress relaxation process . Multiaxial stress

relaxation and uniaxial behavior are related by the constraint parameter I, which
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characterizes the effect of multiaxiality. The multiaxial stress relaxation model is

expressed as

(3.5)

where a , is the von Mises equivalent stress, Band n are creep parameters. Therefore,

when I is known, the multiaxial stress relaxation can be determined.
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Fig. 3.1. Local system relaxation response on the GLOSS diagram

Seshadri et al. (1992) laid out a procedure for determining limit loads based on two

elastic FEA. This method is to identify load controlled locations in the cross section of a

structure at which the stress did not change as the solution progressed from the initial

elastic solution to the final stationary solution. The aim of this method is to find these

points called redistribution nodes or r-nodes. In this method , a linear elastic solution is
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first obtained . A location j is then arbitrarily chosen. The moduli of all other elements

are then modified according to the following equation:

(3.6)

where CYnrh is an arbitrary non-zero stress value. The second linear elastic FEA is

performed . Based on the two linear elastic analyses, the r-node element is identified and

by interpolation, the exact location of the r-node is obtained. Since r-nodes are statically

determinate locations, the effective stresses at the r-nodes are linearly proportional to

externally applied loads as a consequence of equilibrium. This method has been

successfully applied to a wide range of structures.

Mackenzie and Boyle (1993) developed an elastic compensation method that uses

conventional elastic finite element analysis to determine limit loads for bounding

theorems of classical plasticity. The elastic compensation method requires only a few

linear elastic finite element analyses of a structure. After each iteration, the elastic

modulus of each element is modified according to the equation

(3.7)

42



where subscript i is the present iteration number, an is a nominal stress value and aU-I)

is the maximum nodal equivalent stress associated with the element from the previous

solution. After a few iterations, an estimate of the limit load is calculated .

Seshadri and Mangalaramanan (1997) proposed a method for improved lower bound

limit load: rna -multiplier method using ' a modulus adjustment scheme. This method

extended Mura 's variational formulation to include local plastic collapse mechanisms. A

multiplier, rna' is obtained on the basis of two linear elastic FEA. The l imit loads

obtained by this theory are lower bound estimates. Further research discussion and

assessment about the variational concepts in limit analysis and improved lower-bound

limit load estimate were presented by Seshadri (2000), Reinhardt and Seshadri (2003).

3.2 HIGH PRESSURE TECHNOLOGY

The origin of high pressure technology can be traced back to fourteenth century when the

first known cannon was invented. Today, the high pressure technology has been

developed from the early basic science to the major applications that have driven the

technology. An obvious structural shape to contain high pressure, which may be in the

range from 10,000 psi (0.690x10 2 MPa) to approximately 200,000 psi (1.379x103 MPa),

is the thick wall cylinder. The advances of high pressure technology were based on the

theoretical understanding of thick wall cylinder subject to internal pressure. Thick wall

cylinders subjected to high internal pressure are widely used in various industries, such as

petrochemical, gun barrels, and hydrostatic extrusion, etc. In general, vessels under high
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pressure require a strict analysis for an optimum design for reliable and secure

operational performance. Efforts have been continually made to obtain a thorough

understanding of the behavior of the pressurized thick wall cylinder and to increase

reliability of design . Solutions have been obtained either in analytical form or with

numerical implementations.

3.2.1 Thick Wall Cylinders Subject To High Internal Pressure

In 1833, Lame proposed equations for an elastic stress distribution in a thick wall

cylinder, which made it possible to understand the strength of high pressure vessels. This

theory also made possible an understanding of the differences between high pressure

technology and low pressure technology.

For a cylinder with the inside radius 'i and outside radius Yo' subjected to internal

pressure of Pi and external pressure of Po' Lame's solution can be expressed as:

a , =C1 -§­
alJ =C1 +§-

where C1 and C, are constants, given by
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(3.9)

(3.10)

For cylinder under internal pressure only, C, and C, are

(3.11)

(3.12)

Hill et al. (1951) developed a numerical solution to solve partially plastic closed-end tube

under internal pressure. Hill et al. assumed there was no work hardening, and the plastic

behavior obeyed Prandtl-Reuss rule . Mendelson (1968) proposed a numerical method for

cylinders under internal pressure and thermal stress. It worked for both incremental

theory and Hencky theory. The material behavior followed the actual material loading

curve. Durban (1979) developed a closed form method based on deformation theory. The

material behavior obeyed Ramberg-Osgood model with no elastic part. Chen (1992)

proposed a numerical method with the following assumptions: a) Tresca yield criterion,

b) deformation theory, c) linear hardening behavior, and d) plane stress condition. This

method was used to determine stress, strain and displacement. Durban and Kubi (1992)

suggested an analytical method for solving pressurized elastic plastic tubes in plane strain
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based on defonnation theory . It applied to cylinders in plane strain condition that is

described by the Ramberg-Osgood model.

Jahed and Dubey (1996 and 1997) proposed a numerical method for solution of a

boundary value problem for elastic-plastic thick wall cylinders using deformation theory

of plasticity. In his theory, the constitutive relations are written in a form that is

analogous to elastic relations , but allow material parameters to vary in a systematic way .

For instance, the effective Young 's modulus was reduced on the basis of approximating

actual stress and strain curve . Based on this formulation, numerical implementation on a

thick wall cylinder was made to get the complete elastic plastic solution on the basis of

equivalent elastic solution.

In their theory, Jahed and Dubey assumed that plastic behavior is given by Hencky's total

deformation theory

(3.13)

where sij is the deviatoric stress , and ¢ is scalar valued function given by

¢=~ G~
2 « ;
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where &~ is the equivalent plastic strain and O"eq is the equivalent stress, as defined

below:

(3.15)

The constitutive equation can be expressed as:

(3.16)

where EejJ and vejJ are the effective Young's modulus and Poisson ratio, respectively,

where:

E =~
ejJ 3+2E¢

v = 3v+E¢
elf 3+2E¢

(3.17)

(3.18)

These effective parameters depend on the values of stresses, v, and E at a point. The

constitutive equation employed in this theory is used to describe inelastic behavior. The

forms of effective moduli are discussed and expressed:
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for elastic-perfectly plastic behavior, and

(3.19)

(3.20)

(3.21)

(3.22)

for a uniaxial stress strain curve obeying Ramberg-Osgood model, where CJ'0 and Co are

stress and strain at initial yield, respectively.

To implement a procedure for determination of effective moduli, three numerical moduli

adjustment scheme were used and discussed in their research, which are projection

method , arc-length method, and energy method.

Dubey and Seshadri (2000) presented a concept of analytical method for a pressurized

thick wall cylinder using parametric functions. For a bilinear work hardening material,
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the stress distribution can be expressed in terms of two chosen parametric functions, g(r)

and f(r) , which satisfy

(J, =g-f

(Jo =g+ f

(3.23)

(3.24)

(3.25)

Dubey and Seshadri assigned a constant value for g =A for the elastic or Lame's

solution. Eq. (3.25) was then solved to obtain f = B/r 2
, which involves the coordinate

function 1/r 2
• As a consequence, the general expressions for stresses in the elastic

solution are A ± B/ r' . In the case of perfectly plastic solid, f is assigned a constant C.

Eq. (3.25) then yields a solution g = A + 2C Inr , which involves the coordinate function

Inr. Dubey and Seshadri showed that a general solution of the boundary value problem

involves both two coordinate functions 1/r 2 and In r. Supposing that the solution is

continuous across the elastic plastic boundary, the choice of

(3.26)

(3.27)
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satisfies the equilibrium as well as the continuity condition, where fj is the elastic plastic

boundary . The elastic perfectly plastic solution can be obtained by choosing

glro
2- g2r/ =O. These choices make the boundary value problem statically determinate.

The generalized Hooke's law for linear isotropic elastic behavior is split in volumetric

and deviatoric parts:

1-2v
CU=-e(Jkk

In the plastic region, the respective relationships are of the form

1-2v 1-2v,
Cu =--(Ju =--- (Jkk

E E2

C' .=(~+~ (J-(JyJ(J~.
Y E E

p
(J Y

(3.28)

(3.29)

(3.30)

(3.31)

This method provides a unified solution for the thick wall cylinder problems, and it has

been applied to a sample problem and results were encouraging.
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3.2.2 Autofrettage

The application of autofrettage originates in the gun barrel industry of the nineteenth

century. With the development of high pressure technology, the application of

autofrettage is not limited to the armament industry, but is widely used in industries

utilizing high pressure cylindrical vessels, such as chemical reactors and hydrostatic

extrusion chambers. The purpose of autofrettage is to obtain a favorable initial stress

pattern, by applying a sufficiently high internal pressure to produce plastic flow in the

inner portion of pressure vessel as a means of increasing the maximum allowable

pressure that the vessel can withstand . This process of autofrettage is carried out by

means of hydraulic pressurization, or by pushing an oversized mandrel, or swage through

the forging, etc. Once the required permanent deformation is reached, the pressure is

released. While the outer layers tend to return to their original dimensions, the inner

layers, having been considerably expanded due to plastic deformation, tend to maintain

their enlarged diameter. Thus , a residual stress field is introduced in the cylinder's wall.

This residual stress is compressive at inner layers and tensile at outer ones. Apart from

increasing the pressure bearing capacity of the vessel, the residual stress induced by

autofrettage enhances the vessel's fatigue life. The presence of compressive stresses at

the bore reduces the probability of crack initiation and slows the growth of fatigue cracks.

This enhancement may result in an extension of fatigue life by a factor of up to three

(Perl and Arone, 1988).

A reliable prediction of the influence of the autofrettage on the critical crack length and

fatigue life of a thick wall cylinder under high pressure requires an accurate prediction of
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the actual residual stress field. Therefore it is essential to develop accurate and reliable

methods to calculate the residual stress field induced by autofrettage.

Adapting the assumption that the shear strain is inversely proportional to the square of the

cylinder radius, Franklin and Morrison (1960) proposed a method of residual stress

calculation . Their method requires full knowledge of the shear stress strain properties of

the material in pure torsion. In their two-step method, the cylinder is first divided into an

even number of equal layers and successive values of strain at the external boundary are

assumed. By using the basic assumption that the total shear strain is inversely

proportional to the square of the cylinder radius, the shear strain in different layers is

calculated . Based on this calculation and using the shear stress-strain curve, the

corresponding stress value is read from the torsion curve. With the plane strain state

assumed, this method gave reasonable estimate to the residual hoop stress field when

compared with experimental measurements of residual stress. However, the axial strain

predicted from this method did not agree with experimental results, especially in the

proximity of the bore.

Chen (1986) presented a method that incorporated both the Bauschinger effect and the

hardening effect due to unloading. From experimental observations of high strength steel

behavior, the Bauschinger effect factor is found to be important in determining the range

of elastic unloading. After reversed yielding occurs, a very large degree of strain

hardening will develop, even when the initial tensile test exhibits very little strain

hardening. Chen argued that any discrepancy between the different solutions and the
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experimental results was due to two factors: 1) the Bauschinger effect factor dependency

on the value of reversed yielding, and 2) the linear hardening response during elastic­

plastic unloading. Chen's solution is a two step closed form solution. The first step

involves loading of the cylinder. During loading the material is assumed to be elastic­

perfectly plastic , obeying Tresca's yield criterion and associated flow theory. In the

second step, if the pressure is not sufficient to cause reversed yielding, the unloading is

purely elastic . However, if the pressure is high enough to cause reversed yielding, by

introducing a Bauschinger factor and a hardening factor, elastic-plastic unloading is

analyzed. This method is capable of using a better model of the unloading curve, once the

Bauschinger factor and hardening parameter are selected based on actual unloading

curve. However, this method is restricted to the elastic-perfectly plastic behavior and

Tresca's yield criterion.

Perl and Arone (1994) proposed an axisymmetric stress release method for measuring the

autofrettage level in thick wall cylinders. The experimental method is based on

measuring the hoop strain while axisymmetrically releasing the residual stress field

prevailing in the cylinder's wall. The proposed method was studied numerically by

performing finite element simulations of the process for some relevant cylinders with

wall thickness ratios from 1.6 to 2.2 and the autofrettage level 50-100 percent. Their

study yielded a simple empirical relation that readily enables the determination of the

level of autofrettage from released strain measurements.
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Seshadri (1994) presented a method for estimating residual stresses and assessing

shakedown on the basis of two linear finite element analysis (GLOSS method) . Practical

pressure components exhibit some local elastic follow-up, and thereby induce smaller

residual stresses than those estimated by uniaxial models. GLOSS analysis of sample

thick wall cylinders has indicated that the effectiveness of autofrettage can be affected by

local follow-up action.

Jahed and Dubey (1997) performed numerical investigation on autofrettaged tubes using

a variable material property approach. In their work, three different examples for

predicting residual stress field were examined. The first one is the residual stress field

based on actual material behavior curve . The other two are based on idealized models,

which are isotropic hardening and kinematic hardening models. The residual hoop stress

predicted by this method using the actual material curve agrees very well with the

experimental measurements near the bore. The authors argued that a closer result to the

experimental results could be achieved by using von Mises yield criterion.

Perl (2000) developed an analytical model for predicting the level of autofrettage

following either inner, outer, or combined machining of gun barrel based on Hill's

solution (1950) for the autofrettage residual stress field. The analysis resulted in simple

algebraic expressions for the post-machining level of autofrettage in terms of the original

level induced in the blank tube and the geometrical changes the barrel underwent. A

finite element analysis of the machining process is performed in which the residual stress

54



field is simulated by an equivalent thermal load. The numerical results are found to be in

excel1entagreement with the analytical ones.

Parker (2001) employed a numerical procedure, which generally followed that proposed

by Jahed and Dubey (1997), to calculate a wide range of autofrettage pressures and a

limited number of hoop and axial residual stress fields for tubes under open end covering

tube diameter ratios up to 3.0 and all possible levels of overstrain from 0% to 100%. By

focusing upon the value of residual hoop stress at the bore, Parker formulated a design

procedure that provides accurate representation over a range of overstrains and of tube

diameter ratios. The numerical procedure was also used to compare residual hoop stress

values with the relevant section of the ASME Code. The code is shown generally to be

modestly conservative, albeit limited to a maximum of 40 percent overstrain for design

based upon a specific pressure. This work also extended Jahed and Dubey 's numerical

procedure (1997) to calculate autofrettage hoop strains at ill and OD for a tube of radius

ratio 2 under open end, closed end, and plane strain conditions using von Mises criterion .
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4. MOVING BOUNDARY APPROACH

4.1 INTRODUCTION

The moving boundary approach is an analytical method to calculate nonlinear plastic

response for cylinders under internal pressure. It incorporates the moving boundary in

elastic plastic analysis of thick walled cylinders. Using an iterative procedure based on

the principle of virtual work, this approach accounts for the effect of deformed geometry

due to high internal pressure.

In this chapter, firstly the constitutive equation is established for elastic plastic analysis

based on piecewise linearization concept. It starts from a simple form of bilinear elastic

plastic model. Then the concept is extended to actual stress strain curves, which can be

modeled as a multi-linear behavior for finite domains of the material. The general form of

linearized constitutive equation for finite domains is developed.

Secondly, a generalized method for axisymmetric analysis on thick wall cylinder under

high internal pressure is formulated using parametric functions . The formulation provides

a generalized solution for thick wall cylinders, which yields Lame's solution and the

classical elastic perfectly plastic solution as special cases. As well, it provides elastic

plastic solution in closed form for work hardening material using the linearized

constitutive equation.
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The rules of ASME Pressure Vessels Code, Section VIII, Division 3 constitute general

guidance for pressure vessels design with pressure ranging from 10,000 psi (0.690x 102

MPa) to approximately 200,000 psi (1.379xI03 MPa) . Under such high pressure,

cylindrical vessels can undergo relatively large deformations and therefore the effect of

moving boundary becomes a concern to designers. The proposed method is formulated to

take into consideration the deformed geometry. Using the principle of virtual work, an

iterative procedure is proposed to obtain elastic plastic solutions on the moving boundary

basis. The effects of geometric change on elastic plastic analysis for thick wall cylinder

are assessed.

In this research, materials for pressure vessels are assumed homogeneous and isotropic.

The components are assumed isothermal.

4.2 PIE CEWISE LINEARIZATION OF STRESS STRAIN CURVE

The piecewise linearization approach is a technique to approximate actual stress strain

curve for developing a simplified constitutive equation in inelastic analysis. Using this

concept, the constitutive equation relates total strains to the current value of stresses in a

linear fashion. The nonlinear material behavior of actual stress strain curve is accounted

for by dividing the material curve into linear segments, accordingly the material is

divided into domains. In each domain, stress and strain relationship is linearized and

described by the corresponding constitutive equations. Throughout the material, same

form of linearized constitutive equation is adopted, however in each domain different
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material parameters are used in the expression of constitutive law. For isotropic materials,

the material parameters are E and v.

4.2.1 Bilinear Model

The generalized Hooke's law for isotropic linear elastic solid can be expressed in the

form:

(1 + v)o-ij -vakkbij

E
(4.1)

Although the stress strain behavior for plastic deformation is nonlinear, it can be

linearized for analysis. For instance, the incremental theory is an example of a linear

relationship between stress and strain increments. Given a bilinear stress strain curve with

work hardening behavior, as shown in Fig. 4.1, the constitutive equation for an

axisymmetric component can be expressed in a form that resembles the generalized

Hooke 's law:

(1+v2)a~-v2akkbijl + (1+Vl)a~-Vlakkbijl

2 r=r, I r=r,

(4.2)

where E I = E and VI = V in the elastic segment, E2 and v2 are the corresponding modulus

and Poisson 's ratio in the plastic segment. The stresses reach yield point at the boundary
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1j between elastic and plastic segments . The mechanical parameters of material, E2 and

v
2

, are related to plastic modulus E p and v p by following equations:

I I I
-=-+­
£ 2 £ e,

(4.3a)

(4.3b)

The second and third terms are included in Eq. (4.2) for correction to the plastic strain,

which is overestimated by the linearization of stress strain curve in plastic domain. The

overestimated strain, e" shown in Fig. 4.1, has to be subtracted from the total strain.

a

Domain 2: E2, lh

Domain 1: E, v

o

Fig. 4.1 Bilinear stress strain behavior
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dividing the after yield region into k -1 equal segments , which start from initial yield

point to ultimate stress point.

Domain 2 Domaink

(a) (b)

Fig. 4.2 Cylinder geometry and load condition

(a) Two domains model

(b) Finite domains model
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E:0 e1

E:0 eJ
Domain 1 Domain 2 Domain 3

Fig . 4.3 Three domains piecewise linearization of stress strain curve
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To derive the generalized formulation of k domains in elastic plastic solid, first consider

the case of three domains shown in Fig.4.3 . It indicates that strains in domains 2 and 3 are

over estimated if it is based entirely on the respective linear stress strain curve . To find

the true strain, it is necessary to apply a correction for each crossing from one domain to

the next. For example, linear stress strain law of domain 2 overestimates the true strain by

coe l
• This value must be subtracted from the strain of the constitutive equation to obtain

actual strain in this domain. Similarly, a crossing from domain 2 to domain 3 would

require a correction of c oe2
• In this example, the plastic region consists of two domains.

The concept can be readily extended to 'k' domains.

Fig.4.2 (b) illustrates that cylinders can be divided into finite domains in the cross section

plane. The k _l 'h domain and the k 'hdomain share the common boundary at rk _l • In the

case of a high strength low-alloy steel 30 Cr Mo 4 (0.3 C, 0.95 Cr and 0.2 Mo) used for

cylindrical vessel construction, the experimental stress strain curve of the material can be

approximated by a finite number of segments, as shown in Fig. 4.4 .

Strain obtained from Eq. (4.1) overestimates the value in k 'hdomain by an amount

(4.4)

The material parameters of this domain can be expressed in terms of plastic modulus

because of
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(4.5)

When the material is incompressible in plastic deformation, v p = 1/2 , and strain

overestimated due to crossing of the boundary r =rk _1 is:

& koe =~[~__ l )(j '1
ij 2 E E ij r=rl _' ·

p k pk- I

Therefore, the total overestimated strain including all the previous domains is

& ~e = ~ ~ {[~__1 )(j'}
lj 2 L. ij

m=2 E pm E pm -I r=r
m

_ ,

In summary, the strain in the k ,hsegment can be expressed as:
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{1+vJO"ij -VkO"ppOij

s,
(4.9)

Eq. (4.9) is a deformation type of stress strain relationship, which is combined with

Hooke' s law in such a way that stress-strain law has the same form in all segments , while

each segment involves different material parameters. For axisymmetric problems , Eq.

(4.9) provides a constitutive equation to conduct elastic plastic analysis for materials

exhibiting work hardening behavior.
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4.3 GENERALIZED METHOD OF INELASTIC ANALYSIS FOR CYLINDERS

4.3.1 Introduction

For the most general case, the problem is static indeterminate nonlinear nature. One

would need to solve concurrently the equation of equilibrium, strain displacement

equation, and constitutive equation along with the appropriate boundary conditions.

Further, the general problem will be non-symmetric, and will require arbitrary loading

and unloading sequence (Lubliner 1990).

The proposed method provides a generalized solution of inelastic analysis for thick wall

cylinders. Solution of the problem is expressed in terms of two parametric functions. The

parametric functions satisfy the equilibrium condition, boundary conditions and

continuity at the interface between elastic and plastic domains. These two parametric

functions involve several constants to describe material behaviors. The relationship

between them suggests that Lame's elastic solution and solution for perfectly plastic

material depend on special choices for these parameters.

The piecewise linearization of stress strain curve provides a linearized constitutive

equation for nonlinear plastic analysis for materials exhibiting work hardening behavior.

One important restriction in the selection of parametric functions is that stress strain field

associated with each set must be consistent with the chosen segment of the stress strain

curve. The restriction is imposed to allow for unloading and reloading, if necessary. This

requirement leads to another feature used in the analysis. It involves stress strain law in
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plastic deformation. The deformation type of relationship is combined with Hooke's law

in such a way that the constitutive equation has the same form in all segments, but each

segment involves different material parameters.

Using an iterative procedure based on the principle of virtual work, this method accounts

for the effect of deformed geometry due to high internal pressure. The resulting analytical

formulation is capable of predicting stress, strain, displacement distribution, and energy

for deformation on a moving boundary basis . The formulation is applicable to the

analysis of inelastic thick wall cylinders, autofrettage, shakedown and limit analysis.

4.3.2 Thick Wall Cylinders subject to Internal Pressure

4.3.2.1 Formulation

Consider a long cylinder simultaneously expanded by the internal pressure and closed at

both ends either by plugs firmly attached to the cylinder, or by floating pistons which

allow it to expand freely. The length of the cylinder is assumed so great in relation to its

mean diameter that the distribution of stress and strain sufficiently far from the ends does

not vary along the cylinder. It then follows that any originally plane cross section remains

plane (Hill, 1950). As illustrated in Fig. 4.2, the boundary condition for a thick wall

cylinder under internal pressure can be prescribed in the form:

a , =0 at the outside boundary r = ro
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a , ::: -P, at the inside boundary r = rn (4.10)

For an elastic solid, the maximum stresses occur at the inside boundary, where it is

therefore expected to yield first. Beginning from the internal boundary, the plastic zone

spreads in an assumed axisymmetrical pattern as the loading increases. It is possible that

for some loading, part of the cylinder including the inside surface becomes plastic while

the rest including the outside boundary remains elastic, as shown in Fig. 4.2 (a).

Equilibrium equation for cylinder undergoing axisymmetric deformation can be

expressed as:

dO" r + O"r - 0"0 =0
dr r

(4.11)

For a general solution of the equation of equi librium, introduce two parametric functions

g{r) and f{r) such that

a, =g{r)- f{r) , ao=g{r)+ f{r)

These functions satisfy the equilibrium equation (Eq . 4.11) provided:
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According to the bilinear stress strain curve, it is possible to divide an axisymmetric

component, for instance, a cylinder, into two domains as shown in Fig. 4.2(a), where the

proposed stress strain relationships can be applied.

4.2.2 Formulation for Finite Domains

The material curve can be divided into a finite number of segments. A linear stress strain

relationship is assumed for each segment, but the slope of the curve differs from segment

to segment. Correspondingly the cylinder is divided into sections or domains as shown in

Fig. 4.2 (b) . Linearized stress strain curve implies constant value for material parameters

in each linear segment. Since it is possible to divide the axisymmetric components into

circular domains such that the stress strain law of one segment describes the material

behavior in that domain, if the segments are sufficiently small, then the piecewise

linearization closely approximates the true stress strain curve .

For a bilinear model, the two segments of a tensile stress strain curve are naturally

decided by the two points on the actual material curve obtained by material tests, where

initial yield and ultimate stress occur. The multilinear model, on the other hand, can be

obtained by dividing the actual stress strain curve into multi-segments. The size of the

segments can be determined according to the desired accuracy of the approximation to

the actual material curve. To approximate a tensile stress strain relationship using a k

segments curve, segment one is elastic region, which is from the coordinate origin to the

initial yield point of the stress strain curve . Segment two to segment k may be defined by
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In the case of elastic or Lame's solution, a constant A is assigned to g(r). The above

equation is then solved to obtain f(r) =:: B/ r2
, where B is a constant. The coordinates

function of f(r) is 1/r2 and the general form for stresses in the elastic solution is

A ± B/ r 2
• The Lame's solution is applicable only for elastic or linear elastic materials.

In the case of perfectly plastic solid (Hill, 1950 or Chakrabarty, 1987), f(r) is assumed

constant as C. The above equation then yields a solution g(r)=:: 2C Inr involves the

coordinate function In r . This solution does not include the coordinate function 1/r2
• A

general solution of the boundary value problem may involve both coordinate functions,

1/r 2 and In r (Dubey and Seshadri, 2000). For elastic plastic solids, it can be obtained by

choosing

g(r)=:: A+2Clnr

f(r)=::C+7 (4.14)

The constants of the problem A, B, and C can be determined by the boundary and other

relevant conditions.

The above solution is constructed on the basis of known elastic and perfectly plastic

solutions that already exist in the literature . Further the equation of strain displacement

relationship, equilibrium equation as well as constitutive equation are fully considered in

the solutions .
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Suppose the solution is continuous across the elastic plastic interface, which is located at

r =1j , as illustrated in Fig. 4.2 (a). To maintain continuity of stresses across the elastic

plastic boundary, choose the plastic domain parameters such that there is no jump in

stresses across the interface. This condition leads to

(4.15)

where suffix 1 refers to the constants in domain 1 or elastic domain, while suffix 2 is for

domain 2 or plastic domain. Choice in the above equation satisfies equilibrium as well as

the continuity conditions. As a result, stresses in the plastic domain can be obtained as:

a, =-AI (~-IJ+C2(~-1-2ln2J
r r r

(4.16)

Both elastic and plastic solutions are embedded in the above general solutions. As a result

of the choice C2 =0 , Lame 's solution is recovered from the generalized form. The

plastic solution discussed by Hill (1950) and Chakrabarty (1987) is for elastic perfectly

plastic or non work hardening solid . It can be obtained from the generalized solution by

choosing B2 = A
J
f o

2
- C21j2 = 0. Such a choice makes the boundary value problem
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statically determinate. In this regard, the choices are useful. However, they put restriction

on the generality of solutions for elastic plastic solids.

In order to obtain the generalized solution for elastic plastic solids, it is necessary to find

an independent condition to evaluate the constants in Eq. (4.16) . For this purpose,

consider first the constitutive equation. Strains in the elastic domain are obtained from the

generalized Hooke 's law,

s,
a , - va o -vaz

E

&0
a o-var -vaz

E

e,
a z -var -vao

E

(4.17)

The compatibility condition,

(4.18)

and equilibrium equation (Eq . 4.2) yield

(4.19)
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In view of the constitutive equation and the expression for stresses, the above equation

leads to:

!!-(2AI- VO"Z) = ~(2AI(I- V
2

) _ V&z) = 0
dr E dr E

(4.20)

Since AI is constant, this equation suggests that both axial stress and strain remain

constant in the elastic domain. The constant value for axial strain suggests that plane

sections normal to the axis remain plane and normal. According to Hill (1950), this

assumption is expected to hold away from the two ends of cylinders.

Suppose &z, is the axial strain and e; and &0,are the radial and hoop strains at the elastic

plastic interface r = fj . Use the following version of the linearized stress strain relation in

plastic domain

C,
0", - v20"0 -v20"z 0", -v20"0 -V20" zl +&

E2
E r,

2 r='i

Co
0"0 -V20", -V20"z 0"0 -V20", -v20"z l +& (4.21)

E2
E 0,

2 r =rl

e, o , - V20", -V20" 0 O"z - V20", -v20"01 +&.
. E2

E z,
2 r= 'i

The compatibility condition (Eq. 4.18) and the equation of equilibrium (Eq. 4.2) yield
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(4.22)

Using the piecewise linear constitutive relation, the above equation can be rewritten as

follows:

(4.23)

The assumption that plane sections normal to the axis remain plane and normal implies

s, = constant. To satisfy this condition, choose

(4.24)

or, if assume plastic incompressibility, v p =1/2 ,

(4.25)

Eq. (4.24) or (4.25) provides the additional equation to solve for constants AI and C2 •

Eq. (4.25) and the boundary condition at the inside surface
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(4.26)

along with the yield criterion provide three equations to solve for three constants.

Therefore, they make the boundary problem statically determinate.

Tresca yield criterion yields

(4.27)

where G'y is the initial yield stress. For Mises' solid,

(4.28)

Besides, three end conditions of cylinders that have been used in the calculation are:

G' z =0 open end

plane strain

G'z =AI closed end
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The corresponding values for axial strains are:

2vA,
[; =--

Z E
open end

plane strain

closed end

(4.30)

4.3.2.2 Deformed Geometry and Undeformed Geometry

Deformation due to external load causes the geometry to change. As a result, the load

applied to a boundary moves it from its undeformed to deformed position. In the classical

theory, displacement is assumed small and hence it is permissible to replace the deformed

position of a particle by its initial undeformed position. This argument can be reversed in

favor of deformed geometry. That is, it is permissible to use the deformed position of a

particle in place of its undeformed position because of small displacement. Further, the

consistency of analysis requires the use of deformed geometry if the boundary value

problem is formulated in terms of true stress and true traction. Hence, the deformed

geometry is incorporated in this research to predict elastic plastic behavior. Thus, the

traction boundary conditions are satisfied on the deformed radii.

Suppose the radial displacement

u =r-R
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where Rand r are respectively the initial and deformed radii . For an axisymmetric

component, it is possible to express deformed radius in terms of initial radius and hoop

strain:

(4.32)

The proposed formulation is both admissible for original geometry and deformed

geometry.

4.3.3 Application of the Virtual Work Principle

Energy density of deformation can be expressed as:

(4.33)

The term involving axial stress and strain may drop out because of the constant axial

strain. Therefore , this leads to the following expression for energy density:

u, = f(Uo+ur)d(&o +cJ+(uo-ur)d(&o-cJ
2

According to its definition, the energy of deformation can be therefore written as
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In elastic segment of a bilinear solid, the elastic strain energy density is

(4.35)

open end

plane strain

closed end

(4.36)

(4.37)

(4.38)

Therefore, the strain energy required for elastic deformation can be obtained from

[
A2 2 A2( 4 4 4 4)]_ _~ I -rl +r l v+rO +rO v

Vel-2Jr E + 2Er/ open end (4.39)

Alternatively, a general form of strain energy density can be derived using the variational

method. Virtual strain energy Of.} can be acquired in a body of volume V as a result of

virtual straining,
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(4.42)

Using Eq. (4.1), the virtual strain energy density can be expressed as:

(4.43)

Applying the summation convention, Eq. (4.43) can be written as:

OU =0[(1 + v)a~ -va~k]
o 2£

(4.44a)

(4.44b)

Therefore, a general form of strain energy density for elastic solids can be expressed as:

2£

(1+v)a~ -va~k
UOel
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The general expression of energy density required for elastic plastic deformation, which

consists of elastic strain energy and plastic energy dissipation , can be obtained using the

piecewise linearized stress strain curve :

(I+ V2 )o-~ -VP}k
v., 2£2

+(l+v)o-~ - V(J"~I
2£

r=r l

(I+ v2 )o-~ - VP }kI

2£2 r=r,
(4.46)

The energy required for deformation in plastic zone of the cylinder is therefore

The work done by the external traction is

w = ;rPnk -R;)
2

(4.47)

(4.48)

where R, and rn are the initial inside radius and deformed inside radius, respectively.

The principle of work energy balance or W =U can be used to derive the condition
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(4.49)

Eq. (4.49) provides the condition to solve boundary value problems on a moving

boundary basis . The principle of virtual energy can be used to create an iterative

calculation scheme to account for the deformed geometry in elastic plastic analyses since

it is applicable for both elastic and plastic materials.

4.4 IMPLEMENTAnONS

4.4.1 Analytical Method

The proposed method is an analytical technique for elastic plastic analysis. To obtain a

valid solution of the deformable solid, three basic equations must be satisfied, namely,

equilibrium equation, compatibility equation and constitutive equation. For the solid

undergoing permanent deformation, a yield criterion is also needed to predict and

quantify the plastic behavior.

As discussed earlier in this chapter, equilibrium and compatibility conditions have been

formulated in the form of first order differential equations. The constitutive equation is

linearized to describe the inelastic material behavior by the piecewise linearization

concept.
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Considering the axisymmetric boundary conditions and other components of predicting

plastic behaviour of solids, the following equations can be obtained to initiate the solving

procedure for a thick wall cylinder of materials obeying von Mises criterion:

(4.50)

(4.51)

(4.52)

where q is a parameter determined by the assumed end condition. For plane stress

condition, q = 0 ; for plane strain condition, q = 2v ; and q =I for closed end condition.

For material obeying Tresca criterion, Eq. (4.52) is replaced by the following equation to

solve the boundary value problem:

(4.53)
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4.4.2 Iterative Technique for Moving Boundary Solutions

Stress and strain distribution can be expressed in terms of two parametric functions by

solving the formulated boundary value problem . The displacement field and energy

required for elastic and plastic deformation can also be expressed in terms of the two

parametric functions. Solutions obtained in this step are based on the undeformed

geometry.

To obtained solutions on a moving boundary basis, the principle of virtual energy can be

used to develop a program for calculating plastic response. The program accounts for the

deformed geometry using an iterative updating scheme.

The formulation for elastic plastic analysis is implemented by equating work done by

external pressure and internal energy required for deformation, which consists of strain

energy and plastic energy dissipation. Geometry or boundary of the cylinder is updated

using the deformation calculated by the principle of virtual work. Then a successive

analysis is carried out, and energy for deformation and work done by external pressure

are evaluated on a moving boundary basis. The current solutions are used to update the

geometry of the cylinder and the parametric functions in an iterative manner. The final

solutions are obtained until the convergence at required accuracy is achieved.

This iterative calculation procedure is illustrated in the following flow chart:
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Fig.4 .5 Iterative calculation procedure for moving boundary solutions
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4.5 EXAMPLES AND CALCULATIONS

The proposed method differs from the conventional analytical method for thick wall

cylinders in the following aspects: it is capable of performing elastic plastic analysis on

the moving boundary basis ; and the generalized solution is expressed in terms of two

parametric functions to represent the work hardening behavior.

In this study, thick wall cylindrical pressure vessels are treated as cylinders subjected to

internal pressure. Various geometries of cylinders in this study include inside radii,

diameter ratios, and various end conditions, such as closed end, open end, and plane

strain. The material is assumed to obey linear hardening behavior, as a simple example of

the piecewise linearization of the actual stress strain curve . Properties of the material are:

E =30 x 106 psi (2.068 x 105 MPa)

a y =30,000 psi (2.068 x l 02 MPa)

v =0.3

v p =0.5

Maple 6.0 programming language has been used to perform elastic and inelastic analyses

on the moving boundary basis. As well, finite element models have been developed. The

ANSYS finite element computer program has been used to generate the FEA models and

perform linear and nonlinear analysis. The 2-D solid element, Plane 42, is used with

axisymmetric option to calculate elastic plastic deformation. Results of finite element

analysis (FEA) have been obtained to compare with those of the proposed method.
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4.5.1 Internal Pressure

The proposed method can be used to perform analyses on both moving boundary and

original boundary basis . When the internal pressure is lower than the initial yielding

pressure , the results based on undeformed geometry are the same as Lame's solution. If

the internal pressure is increased to the values greater than the initial yielding pressure,

plastic deformation initiates at the inside surface and proceeds outward through the

cylinder wall. The interface between the plastically deformed region and the elastic

region will eventually reach the outer surface at a value of pressure, known as the 'plastic

collapse pressure '. The limit pressure that causes yielding throughout the wall thickness

can be determined by the proposed approach .

For closed end cylinders, the elastic plastic interface and its corresponding internal

pressure are calculated by the moving boundary approach. Results are plotted in Fig. 4.6.

The cylinders have a same inside radius of 6 in. (0.152 m) but with diameter ratios

(d )dn ) varying from 2 to 3. The material is assumed to follow the linear hardening

behavior with the tangent modulus £ 2 =30 x 104 psi. (2.068 x l 03 MPa) . In FigA .6, the

internal pressure is normalized by yield stress and the elastic plastic interface is

normalized by the inside radius.
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The calculation indicates that for a work hardening material, the influence of wall

thickness of cylinders on initial yielding and ultimate collapse are different. It may be a

common sense that increase of wall thickness can certainly enhance the pressure bearing

capability . However, Fig. 4.6 shows that the increase of plastic collapse pressure due to

increased wall thickness is much larger than that of initial yield pressure.

4.5.2 Stress and Strain Distributions

Stress and strain distributions have been calculated by the proposed method on the

moving boundary basis . For the purpose of comparison, finite element models have been

established and detailed linear and nonlinear finite element analyses have been performed

using the ANSYS computational program. The element type is PLANE 42 with key

option 3 for axisymmetric problem. The analysis type is static on the large deformation

basis .

4.5.2.1 Closed End Cylinders

Fig. 4.7 shows the successive distributions of hoop, radial and axial stresses for a thick

wall cylinder undergoing plastic deformation. The cylinder under study has a 6 in. (0.152

m) inside radius and a 12 in. (0.305 m) outside radius. Results indicate the pattern of

stress distributions as the internal pressure increases in magnitude and the plastic region

grows from inside surface towards outside surface.
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For a closed end cylinder having a 4 in. (0.102 m) inside radius and a 20 in. (0.508 m)

outside radius, stresses obtained by the proposed method are compared with those of the

detailed FEA. The comparison in FigA.8 shows the difference between the results using

proposed method and finite element analysis with relatively coarse meshing . Fig. 4.8

indicates the difference in terms of hoop and radial stresses mainly occurs in the vicinity

of elastic plastic interface . However, as a finer mesh is employed in finite element

analyses, the difference is significantly reduced. Eventually the results of these two

methods coincide when the size of finite elements is small enough in nonlinear FEA.

There is some discrepancy between proposed method and FEA in term of axial stress,

mainly in the near bore region. It occurs because the assumption of plane sections

remaining plane is involved in the formulation of the proposed method. In general, results

of the inelastic analysis using the proposed method and nonlinear finite element analysis

are in good agreement.

In the same manner, strain distributions using the proposed method and finite element

analysis are plotted in Fig. 4.9. As well, the comparison indicates a general consistency

between results using the moving boundary method and nonlinear FEA.

4.5.2.2 Open End Cylinders

Open end condition refers to plane stress of cylindrical tube. Fig. 4.10 shows the stress

components and equivalent stress distributions as the internal pressure increases from

0.70"y to 0.90"y for an open end cylinder. The inside radius of the cylinder is 4 in.
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(0.102m). The diameter ratio is 5. Fig. 4.11 shows the patterns of strain distributions

when the applied internal pressures are O.7cry, 1.0cry, 1.3cry, and 1.6cry, respectively.

The axisymmetric plastic zone expands from inside surface to outside surface due to

increased internal pressure.

4.5.2.3 Plane Strain Cylinders

Fig. 4.12 shows the stress distribution of thick wall cylinders of plane strain condition.

The diameter radio of the studied cylinder is 5 and its inside radius is 4 in. (0.102 m). The

internal pressure is 30,000 psi (2.068xI02 MPa). The ANSYS nonlinear finite element

analysis (NLFEA) has been performed for the purpose of comparison. The FEA model

uses 40 plane 42 elements of axisymmetric condition. Analysis type is the static analysis

on large deformation basis. This figure shows that the results of radial and hoop stress

obtained by the moving boundary approach are in good agreement with those of the large

deformation NLFEA.

Strain distribution of the plane strain cylinder has been evaluated by the moving

boundary approach. Results are compared with those by nonlinear finite element analysis,

as shown in Fig. 4.13. The comparison indicates the results calculated by the proposed

method are generally consistent with those by nonlinear finite element analysis.
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4.5.3 Effect of End Conditions

In general, closed end, open end, and plane strain are the three types of end conditions for

thick wall cylinders. Plane strain condition is intermediate to closed end and open end

conditions. It is nearer to the closed end condition and is strictly equivalent when the

material is incompressible. In all three cases, the radial and hoop stresses are the same

and only depend on internal pressure. The axial or longitudinal stress has different

distribution for different end conditions. Results in Fig. 4.7, Fig. 4.8, Fig. 4.10, and Fig.

4.12 show that axial stress is intermediate to those of radial and hoop stress components.

If Tresca criterion is adopted, the yield pressure depends on yield stress of the material

and the diameter ratio of the cylinder. In the case of von Mises criterion, the end

condition affects the yield pressure because the axial stress depends on the end condition.

Yield pressure can be expressed in the following equation:

(4.54)

where t is diameter ratio ~ and q is the end condition parameter. For plane stress, plane
d n

strain and closed end, q is 0, 2v, and 1, respectively. Fig 4.14 shows the yield pressure

estimate for cylinders under various end conditions. The inside radius of the cylinders

under study is 4 in. (0.102 m). The overall effect of end conditions is trivial because the

difference made by various end conditions is less than 1%.
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4.5.4 Displacement Calculations

Classical theory of cylinders and ASME Pressure Vessel code are based on the

assumption that boundary displacement caused by external load is negligible, therefore

fixed or original model is used to investigate the behaviour of solid whose geometry

actually has already deformed or the boundary has moved.

The above assumption simplifies the procedure of calculating displacement fields while it

can still offer reasonable results in elastic plastic analysis. However, for thick wall

cylinders subject to internal pressure from 10,000 psi (0.690xI02 MPa) to approximately

200,000 psi (1.379x10 3 MPa), the geometric change induced by high internal pressure

can be an important concern for design and analysis.

The cylinder used in displacement calculations has a dimension of a 4 ill. (0.102 m)

inside radius and a 20 ill. (0.508 Ill) outside radius . The end condition is assumed to be

plane strain. In this study, stress distributions do not show significant changes with

respect to undeformed geometry and deformed geometry. However, as Fig 4.15 shows,

inside surface radial displacements calculated on the moving boundary basis are larger

than those of the original boundary theory. The difference is negligible for elastic

material behaviour but increases with the internal pressure for plastic material behaviour.

For example, the difference is 3.8% when internal pressure is 50,000 psi (3.447xl02

MPa) and 10.7% when the pressure is 55,000 psi (3.792xl02 MPa) . Nonlinear finite

element analyses have been performed using the ANSYS software . The two dimensional

solid element Plane 42 with axisymmetric option is used for generating the FEA model.
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The numerical solutions of nonlinear FEA have demonstrated the same characteristic as

the moving boundary approach.

Fig 4.15 also compares the displacements at inside radius calculated by the proposed

approach and nonlinear FEA. Both methods yield same results for elastic material

behaviour. However, for plastic material behaviour, results obtained by the proposed

method are greater in magnitude than those by nonlinear FEA. The difference increases

with the internal pressure. In nonlinear finite element analysis, stresses in the surface may

couple with the stiffness to generate the effect of stress stiffening. Therefore, the cylinder

under high pressure may have an increased stiffness and less radial deformation in the

vicinity of bore, owing to the high stress intensity at the inside surface where high

internal pressure applies.

Fig 4.16 shows the elastic plastic interface estimation by the proposed method and

NLFEA. The results obtained by the two methods are generally consistent with each

other. They all show the effect of geometric change on elastic-plastic interface

estimation. The difference of results by the moving boundary formulation and original

boundary theory increases with the internal pressure. The magnitude of difference,

however, is much less than that of the radial displacements at inside radius. As well,

similar characteristic is illustrated in the radial displacement calculations at outside

radius, as shown in Fig. 4.17.
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4.5.5 Energy Calculations

It is important to appropriately represent strain energy in the energy approach in fracture

mechanics. An appropriate calculation of energy can be helpful in the evaluation of

fracture parameters, such as J integral.

Calculations have been conducted on the cylinder having a 4 in. (0.102 m) inside radius

and a 20 in. (0.508 m) outside radius. Numerical solutions of the nonlinear FEA have also

been performed using the same type of element and related options as those in

displacement calculations. For both methods, the end condition is assumed to be plane

strain.

Fig. 4.18 demonstrates how the moving boundary may affect the calculation of energy

required for elastic plastic deformation. The percentage of energy difference is defined

Difference of energy U om 'iog - Uoriginal x l 00%

U original

(4.55)

where Umoving and U original are the energy calculated on the moving boundary basis and

original boundary basis, respectively. Since the percentage is postitive, the energy

calculated on the moving boundary basis is greater than original boundary theory. When

the internal pressure is below 35,000 psi (2.413x102 MPa) , the difference made by

moving boundary in term of energy is generally less than 1.0 %. Therefore, in this case,
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the geometric change has no significant effect on the calculated energy including strain

energy and energy dissipation. When internal pressure increases to 45,000 psi (3.103x I02

MPa) , the difference of energy calculated by the proposed moving boundary approach

and original boundary theory is 2.4%. If the cylinder is loaded with a higher internal

pressure, such as 55,000 psi (3.792xI02 MPa), the difference of energy obtained by the

moving boundary theory and original boundary theory is 12.0%. These results indicate

that geometric change of cylinders subject to high internal pressure has a considerable

effect on the energy calculation.

In Fig. 4.18, energy obtained by large deformation FEA is 1.8% greater than that of small

deformation FEA when the internal pressure ,is 45,000 psi (3.103xl02 MPa). The

difference goes up to 6.0% when the internal pressure increases to 55,000 psi (3.792xl02

MPa). Therefore, the numerical solution of nonlinear finite element analysis shows the

same characteristic as the moving boundary method. Fig. 4.18 shows when the internal

pressure is lower than 35,000 psi (2.413xl02 MPa), results by the moving boundary

approach are in good agreement with those by NLFEA. As the internal pressure

increases, the magnitude of difference that large deformation condition can make on

energy calculation becomes noticeably less than those calculated by the moving boundary

theory. For cylinders subjected to high internal pressure, the stress stiffening effect at

inside surface where high internal pressure applies may reduce the effect of geometric

change on energy calculation by NLFEA.
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Fig. 4.19 shows the energy results calculated by the moving boundary approach and the

ANSYS nonlinear finite element analyses. The comparison is favourable in the pressure

range up to 50,000 psi (3.447x1 02Mpa). Therefore, the proposed moving boundary

theory is generally consistent with nonlinear finite element analysis.
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4.6 REMARKS

The proposed moving boundary approach represents an analytical method to calculate

stress and plastic response on a moving boundary basis for cylinders under high internal

pressure. The work involves several features. Firstly , this approach incorporates the

geometric change in its formulation . Using an iterative procedure based on the principle

of virtual work, it accounts for the effect of deformed geometry due to high internal

pressure. Secondly, as a generalized method for thick wall cylinders, solution of the

problem is expressed in terms of parametric functions. The formulation yields Lame's

solution and the classical elastic perfectly plastic solution as special cases. Thirdly, the

general form of piecewise linearized constitutive equation was developed in this study. It

provides a necessary condition to solve cylinder problems for inelastic materials

exhibiting work hardening behavior.

The Maple 6.0 mathematical program was used for implementing the proposed method.

Stress, strain, displacement, and energy were calculated for elastic and plastic material on

a moving boundary basis. The effects of geometric change on elastic plastic response for

thick wall cylinders under internal pressure have been assessed. Calculations indicated

two characteristics. Firstly, radial displacements calculated on a moving boundary basis

are larger than those of the original boundary theory. The difference is negligible for

elastic material but increases with the internal pressure for plastic material behaviour.

Secondly, energy calculated on a moving boundary basis is greater than that by the
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original boundary theory . For cylinders subject to high internal pressure up to 55,000 psi

(3.792x l 02 MPa) , the energy calculation on moving boundary basis can be 12% greater

than that on original boundary basis . Therefore, geometric change has a significant effect

on the evaluation of energy required for deformation.

The numeric al solutions of nonlinear FEA have demonstrated the same characteristic

about the effect that the moving boundary can make on radial displacements and energy

calculations. Howe ver, magnitudes of energy difference and radial displacement

difference estimated by nonlinear FEA are less than those by the moving boundary

approach, respecti vely . For cylinders analyzed by nonlinear FEA, the stress stiffening

effect at inside surface where high internal pressure applies may reduce the effect of

geometric change .

The comparison of inelastic solutions calculated by the moving boundary approach with

nonlinear finite element analyses is favourable. In general, the proposed moving

boundary theory is consistent with the nonlinear finite element method in calculations of

stress, plastic response , and energy.
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5. AUTOFRETTAGE AND SHAKEDOWN

5.1 AUTOFRETTAGE

5.1.1Introduction

A favorable initial stress pattern, from a standpoint of design enhancement can be

obtained by applying a sufficiently high internal pressure to produce plastic deformation

in the inner part of the cylinders, and then removing the pressure. Consequently, a

residual stress will persist in the wall. Material is strengthened by the existence of

compressive hoop stress distribution in the inner portion of the cylindrical vessels.

Materials strengthened by this process are now suitable for the repeated application of

internal pressure in that the accompanying hoop or tangential tensile stress must

overcome the induced residual compressive stress . In this manner, the internal pressure

that a cylinder can withstand is considerably increased. Not only does it increase the

strength of a component, but it also has a favorable effect in increasing fatigue life. This

method is frequently used in the design of accumulators, hydraulic ram cylinders, gun

barrels, and other such applications. This strengthening process is known as autofrettage.
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5.1.2 Problem Formulation

When the internal pressure is removed after the cylinder material has been brought to an

elastic plastic condition, a residual stress will remain in the wall. This can be calculated

by assuming that during unloading the material follows Hooke 's law, the stresses

obtained by Eq. (4.16) to be subtracted while unloading are those given by Eq. (5.1) and

Eq. (5.2):

(J --D (~ - I)r ,ul - ul r 2 (5.1)

(5.2)

Like AI and C1 in Eq. (4.16), Dill is a constant that depends on the internal pressure Pn •

The above two equations are the special cases of Eq. (4.16) for elastic material behavior.

The unloading procedure may be simulated by superposing a radial tension, or negative

pressure P; on the inside surface to cancel that pressure causing the initial elastic plastic

deformation . Therefore, the residual stresses in that case can be obtained from:

(5.3)
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(5.4)

This is best illustrated by a particular case for which the stresses and residual stresses are

shown in Fig. 5.1. The cylinder calculated in this example is subject to an internal

pressure of 30,000 psi (2.068 x 102 MPa). Its inside radius is 4 in. (0.102 m) and outside

radius is 20 in. (0.508 m). Curve 1 and 2 in Fig. 5.1 (a) are determined by Eq, (4.16).

Curve 3 and 4 are determined by Eq, (5.1) and Eq. (5.2) . Superposing of loading and

unloading leads to the residual stresses illustrated in Fig. 5.1 (b).

In the case of inelastic unloading, the formulation can be expressed as:

where DUI and Hul are the constants during inelastic unloading .
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Fig. 5.1 Residual stresses in an autofrettaged thick wall cylinder
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5.1.3Work Hardening Models

Classical theory of autofrettage assumes that the material is perfectly plastic and that it

yields under the action of a shearing stress. The proposed method, however, will cover

not only the material following perfectly plastic behavior but also the material exhibiting

work hardening behavior.

5.1.3.1 Isotropic Hardening

Isotropic hardening rule states that the reverse compressive yield stress is assumed equal

to the tensile yield stress. Therefore the isotropic hardening model completely neglects

the Bauschinger effect as it assumes that an increased yield point in tension carries over

equally in compression. The hardening rule may be expressed mathematically in terms of

equivalent stresses in order to utilize the uniaxial stress strain curve. It can be written in

the form of Eq. (5.7). The reverse yielding will not occur as long as the difference in

equivalent stress before and after unloading is less than twice of the equivalent stress

before unloading.

(5.7)
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5.13.2 Kinematic Hardening

Kinematic hardening rule states that the elastic range is assumed to be unchanged during

hardening. Thus, the kinematic hardening rule considers the Bauschinger effect. The

reverse yielding will not occur as long as the difference of equivalent stress before and

after unloading is less than the twice of initial yield stress . Kinematic hardening rule may

be expressed in the form:

(5.8)

Kinematic hardening rule provides a simple means accounting for the Bauschinger effect.

Possible unloading paths of isotropic hardening and kinematic hardening materials on the

uniaxial stress strain curve can be illustrated in Fig. 2.6.

5.1.4 Banschinger Effect

In general , the material properties were considered to be unaffected by strain beyond the

yield strength, and yield strength in compression remained equal to the yield strength in

tension. However, experimental studies (Chen 1986) show that stress strain curves of

material for pressure vessel fabrication have demonstrated work hardening behavior. For

an autofrettaged cylinder, the yield strength of the material in compression decreases

because of prior deformation in tension. This phenomenon is known as the Bauschinger
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effect (BEF) , which is defined as the ratio of the yield strength after reverse loading to

the initial yield strength:

BEF
(J'comp.Y.P.a/t eroverstrain in tension

O' comp .Y .P.initially

(5.9)

Making the usual assumption that the initial yield strength in tension and compression are

equal, this becomes

BEF =a compoY.?

a ren . y .?

(5.10)

Fig. 5.2 illustrates the characteristic of the Bauschinger effect: for the material preloaded

to a~ in tension , its corresponding compressive yielding occurs at a stress level a;

which is less than the initial yield stress a y and the subsequent yield stress a~. The

decrease of yield strength in compression shows the phenomenon of the Bauschinger

effect.

The proposed method can account for the Bauschinger effect for the kinematic hardening

model used in formulation as the Bauschinger effect influences the stress level that needs

to be considered for the cracking conditions. It involves piecewise linearization of stress

strain curve during unloading to the point where reverse yielding occurs. The actual

unloading stress and strain curve may be linearized in the same piecewise manner as

employed in loading process.
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Fig. 5.2 The Bauschinger effect

5.1.5 Examples

In this study, a closed end autofrettaged cylinder is treated as a thick wall cylinder having

an inside radius of 4 in. (0.102m), an outside radius of 20 in. (0.508m), and a length so

great in relation to its mean diameter that the sections sufficiently far from the ends
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remain plane in deformation. The first yield pressure of the cylinder is calculated and

found to be 1.663xl04
psi (1.l46xI02 MPa). The autofrettage pressures applied are

20,000 psi (1.379x I02 MPa) , 25,000 psi (1.724xl02 MPa) , and 30,000 psi (2.068xl02

MPa), respectively . The material behavior is assumed to be bilinear with work hardening.

The material parameters used in the examples are:

ery == 30,000pSi.(2.068 x 102 MPa) ,

£ == 30 x 106 psi. (2.068 x 105 MPa)

£ 2 == 30 x l 04 psi .(2.068 x 103 MPa)

Maple 6.0 programming language has been used to perform autofrettage calculation on

the moving boundary basis . As well , finite element models have been developed. The

ANSYS finite element computer program has been used to generate the FEA models and

perform autofrettage calculation. 2-D solid element, Plane 42, is used with axisymmetric

option to calculate residual stress and strain. Results of nonlinear finite element analysis

(NLFEA) have been obtained to compare with those of the proposed method.

Residual stress and strain distributions obtained by the proposed method and the NLFEA

with various meshing intensity are plotted in Fig. 5.3 and Fig. 5.4. The applied internal

pressure is 30,000 psi (2.068xl02 MPa). Fig. 5.3 indicates that there is a minor

discrepancy between the results of residual stress using proposed method and finite

element analysis attributable to the relatively coarse meshing. However, the difference is

significantly reduced as finer meshing is employed in finite element analysis, and

eventually the results coincide. Therefore, the proposed method and finite element
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analysis are consistent in autofrettage calculations. Fig. 5.4 shows the results of residual

strain calculated by the proposed method are in good agreement with those by nonlinear

finite element analysis.

Fig. 5.5 demonstrates the successive residual stress distributions as the internal pressure

varies in magnitude of 20,000 psi (1.379xI02 MPa), 25,000 psi (1.724xI02 MPa), and

30,000 psi (2.068xI02 MPa), respectively. Results in Fig. 5.5, as well, indicate the

consistency of the proposed method and nonlinear finite element analysis.
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5.2 SHAKEDOWN

5.2.1 Introduction

The concept of shakedown provides an avenue to deal with the design of thick wall

cylinders under cyclic loadings. Essentiall y, a structure develops residual state of stress

and strain under certain loading and unloading conditions. The structure is said to

shakedown if its behavior is elastic during subsequent cycle of same loading and

unloading.

5.2.2 Formulation

For a cylinder that has experienced shakedown, stresses during the subsequent loading of

internal pressure can be obtained using the superposition illustrated in Fig. 5.1 and Eqs.

(5.1), (5.2), (5.3), and (5.4) since the subsequent reloading cycles are elastic . Therefore ,

the stresses of such cylinders can be written in a form similar to Eqs (5.3) and (5.4) :

(5.11)

(5.12)
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where a r,res and a u.res are the residual radial and hoop stresses at radius r. The constant

As depends on the applied internal pressure . The radial stress would vanish at the

external boundary r = ro . At this point, therefore, the only non-zero stress in plane stress

condition is

(5.13)

After a loading and unloading cycle, residual radial stresses at the external and internal

boundaries are zero since there is no load applied on the boundaries. Therefore, from Eq.

(5.11), stresses at r = rn during subsequent loading to internal pressure Ps are

At the external boundary r = ro '

ar lr=r
o

=0

126

(5.14)

(5.15)

(5.16)

(5.17)



5.2.3 Implementation

The proposed method calculates the shakedown pressure on a moving boundary basis . To

obtain shakedown pressures of moving boundary basis, the principle of virtual energy can

be used to create an iterative updating scheme to account for the deformed geometry

because it is applicable for both elastic and plastic materials.

Firstly, stresses and residual stresses are calculated on the original boundary basis for an

inelastic loading and elastic unloading cylinder. Shakedown pressure for the undeformed

geometry is implemented by applying the kinematic work hardening rule. Geometry or

boundary of the cylinder is updated using the deformation calculated by the principle of

virtual work. Then a successive calculation is carried out, and energy for deformation and

work done by external pressure are evaluated on a moving boundary basis. The current

solutions are used to update the geometry of the cylinder and the parametric functions in

an iterative manner. The final solution of shakedown pressure is obtained until the

convergence at required accuracy is achieved.

This iterative calculation procedure for shakedown pressures is illustrated by the flow

chart in Fig. 5.6
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Fig. 5.6 Shakedown pressure calculation on a moving boundary basis
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5.2.4 Examples

Shakedown pressures are calculated by the proposed moving boundary approach . Results

are compared with those obtained by classical small deformation theory. The analyzed

models are thick wall cylinders having an inside radius 4 in (0.102 m) with plane strain ,

open end and closed end conditions. Diameter ratio ranges from 1.8 to 6. The material

behavior is assumed to follow kinematic work hardening rule because the Bauschinger

effect generally occurs in the materials for pressure vessel fabrication. The material

parameters used in these examples are :

CTy == 30,000psi.(2.068 X 102 MPa) ,

E == 30 xI0 6 psi. (2.068 x 105 MPa)

£2 == 30 x 104 psi. (2.068 x 103 MPa)

5.2.4.1 Effect ofMoving Boundary

The difference of shakedown pressure estimation for original boundary and moving

boundary is defined by the following equation:

Difference ofShakedown Pressure Estimation == Ps
_ original - Ps

mo,';ng x l 00% (5.18)
PS _ original
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where P s _ origillol and P S _III 0Villg are the shakedown pressure on original boundary basis and

moving boundary basis , respe a:ctively.

Calculation has been perfommed to investigate the effect of deformed geometry on

shakedown pressure estimatiotm and the results are shown in Fig. 5.7. For the plane strain

condition , the differece of slll'hakedown pressure estimation drops down as the cylinder

diameter ratio decreases. The : reason for this phenomenon could be the geometric change

has less effect on shakedown I pressure for cylinders with wall thinner than 2.2. In general,

results indicate the difference ~ on shakedown pressure estimation due to geometric change

is generall y less than one I percent. Therefore, the effect of deformed geometry on

shakedown pressure calculatioons is negligible.

5.2.4.2 Effect ofEnd Conditioans

Calculation in this study indi~icates that shakedown pressure estimations are different for

various end condition. The results in Fig. 5.8 indicate that the shakedown pressure

estimation may be significa~nt1y affected by end conditions as the difference between

open end and closed end or p ~,lane strain can be approximately 16 percent.

5.2.4.3 Effect ofDiameter naauo

Fig. 5.8 shows that the cuIJrves of shakedown pressures vs. diameter ratios undergo

relatively abrupt slope chan plges when diameter ratios are in a range of 2.2 to 2.3 for
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various end conditions. This indicates that estimation of shakedown pressure is subjected

to the influence of the diameter ratio of cylinders. For the diameter ratios smaller than

2.2, the gradient of the curve is greater than that of diameter ratios greater than 2.2.

Therefore, for diameter ratios smaller than 2.2, the shakedown pressure increases more

than that of diameter ratios greater than 2.2 as the cylinder wall thickness increases.
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5.3 Remarks

An analytical method for autofrettaged cylinders obeying work hardening stress strain

law has been described in this chapter. Analytical solutions based on deformed geometry

have been obtained and then compared with finite element analysis. The moving

boundary formulation has been verified by comparing results of the analytical method

and inelastic FEA. While results are obtained for linear elastic unloading, it is possible to

apply this formulation to inelastic unloading using the piecewise linearization technique.

As well, the Bauschinger effect has been included in the presented analysis for a

kinematic work hardening material.

An iterative procedure for shakedown pressure estimation has been developed using the

principle of virtual work. Shakedown pressures have been calculated for both the

undeformed geometry and the deformed geometry for cylinders of closed end, open end,

and plane strain conditions. It has been found that difference in shakedown pressure

estimation due to geometric change is not particularly pronounced, as the difference is

generally less than one percent. Calculations have indicated that the shakedown pressure

estimation may be significantly affected by end conditions as the difference between

open end and closed end or plane strain can be as much as 16 percent.
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6. ESTIMATION OF PLASTIC COLLAPSE LOADS

6.1 INTRODUCTION

As an analytical approach for elastic plastic analysis, the proposed method is able to

describe the spreading process of the contained plastic flow for thick wall cylinder under

internal pressure on a moving boundary basis. Yet it also provides an alternative method

for estimating limit loads of cylindrical geometries. In general, the classical limit analysis

applies strictly to the idealized structures or components, in which the material is

assumed perfectly plastic, and deformation is small . Therefore, geometric description of

structure remains invariant. The proposed method can, however, calculate the plastic

collapse loads of thick wall cylinders exhibiting work hardening behavior and involving

geometric changes.

Plastic collapse load for thick wall cylinder is the load under which the uncontained or

unrestricted plastic flow occurs. This approach can be used to obtain plastic collapse

loads for situations involving the geometric change of boundary, by invoking the

principle of virtual work. The piecewise linearization of material curve enables the

estimation of plastic collapse load for work hardening material. In this chapter, the

proposed method has been applied to cylinders with an inside diameter 8 in. (0.203 m)

and an outside diameter ranging from 12.8 in . (0 .325m) to 40 in . (1.016 m). The

dimensions of cylinders are expressed by diameter ratios. The calculated plastic collapse

pressures are normalized by making use of the yield stress. The material behavior is
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assumed to be an elastic plastic model with linear work hardening. The material

parameters are:

CYy == 30,000psi.(2.068 x 102 MPa) ,

£ == 30 x l 06 psi .(2.068 x 105 MPa)

£ 2 == 30 x l 04 psi. (2.068 x 103 MPa)

In this study, plastic collapse loads under different end conditions including closed end,

plane stress and plane strain are calculated to understand the effect of end conditions.

Plastic collapse loads estimated on the original boundary basis are compared with those

on a moving boundary basis to assess the effect of geometric changes.

The proposed method is implemented using the Maple 6 software . For the purpose of

comparison, inelastic finite element analyses for small deformation theory and large

deformation theory are conducted using the ANSYS software. The finite element models

are generated using Plane 42, the 2-D solid element, in finite element routines.

6.2 EFFECT OF END CONDITIONS

For cylinders with various stipulated diameter ratios, Fig 6.1 shows that the choice of end

conditions for cylindrical vessels makes a difference in plastic collapse load estimation.

For a given set of dimensions, the closed end condition cylinders have the highest load

bearing capability, while the open end cylinders demonstrate the least load bearing

capability . The case of plane strain is intermediate to the other two cases, yet it has plastic
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collapse load values nearer to those of closed end cylinders , as stress equations for plane

strain are intermediate to the other two cases.
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Fig. 6.1 Plastic collapse load estimations for various end conditions
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6.3 EFFECT OF DEFORMED GEOMETRY

Besides the effect of end conditions, Fig. 6.1 also reveals the effect of deformed

geometry on plastic collapse load estimations. Results indicate that plastic collapse loads

calculated on a moving boundary basis are less than those on the original boundary basis.

The effect of deformed geometry due to high internal pressure is further assessed in Fig.

6.2. It shows the difference of plastic collapse load estimated on deformed geometry and

undeformed geometry.

In Fig. 6.2, the percentage of difference is calculated using the following formula:

pD _pU
Percentage of Difference =~ xl 00%,

Pc
(6.1)

where P~ is the plastic collapse load calculated on the deformed geometry basis and p%

is the plastic collapse load calculated on the undeformed geometry basis.

Several characteristics are shown in Fig. 6.2. Firstly, the difference is dependent on the

end conditions for von Mises material. For cylinders with closed end condition, the

difference is larger than the other two end conditions. For cylinders having an inside

diameter of 8 in. (0.203 111) and an outside diameter of 40 in. (1.016 111), the difference is

about 3.0%. For cylinders with open end condition, the difference is the least. For
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cylinders with plane strain conditions, the difference is intermediate to the other two

conditions.

Secondly, the difference in plastic collapse load estimation is affected by the diameter

ratio of thick wall cylinder having the same inside diameter. Consider cylinders with

closed end conditions for examples. When diameter ratio is 1.6 (the inside diameter is 8

in. (0.203 m) and outside diameter is 12.8 in. (0.325 m)), the difference the deformed

geometry can make on the value of plastic collapse load is about 0.5%. The difference

increases with the diameter ratio. For a thick wall cylinder having an outside diameter of

40 in. (1.016 m) and an inside diameter 8 in . (0.203 m), the difference of plastic collapse

loads estimation is about 3.0%.

The negative values of the difference in Fig. 6.2 reveal that plastic collapse loads

estimated on a moving boundary basis are less than those on the original boundary basis .

Therefore , the proposed moving boundary approach provides conservative solutions in

plastic collapse load estimation.
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6.4 EFFECT OF WORK HARDENING

The plastic collapse loads have been calculated for cylinders exhibiting linear work

hardening materials. The effect of work hardening has been assessed using the moving

boundary theory and small deformation theory . Results have been plotted in Fig. 6.3 and

Fig. 6.4, respectively. Young's modulus of the material is 30x10 6 psi (2.068xl05 MPa).

The analyzed plane strain cylinders have an inside diameter of 8 in. (0.203 m) and an

outside diameter ranging from 12.8 in. (0.325 m) to 40 in. (1.016 m).

Fig.6.3 indicates that the plastic collapse load depends on the work hardening behavior.

For a particular material whose tangent modulus of plastic region is 30x 105 psi

(2.068xl04 MPa) , the plastic collapse load of the cylinder is 9.333x104 psi (6.435xI02

MPa). For a material exhibiting less work hardening behavior, whose tangent modulus of

plastic region is 12xl05 psi (0.827xl04 MPa) , the calculated plastic collapse load is

6.928x104 psi (4.777xI02 MPa). The plastic collapse loads calculated by small

deformation theory are shown in Fig. 6.4, where the same characteristic found in moving

boundary solutions can be observed.
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6.5 RESULTS COMPARISON WITH INELASTIC FEA

Inelastic finite element analyses have been performed using the ANSYS software. The

two dimensional solid element with axisymmetric option is used for generating the FEA

models for cylinders having an inside diameter of 8 ill. (0 .203 m) and an outside diameter

ranging from 12.8 ill. (0 .325 m) to 40 ill. (1.016 m) . The work hardening behavior is

postulated as £ 2/£ =1/100 , where £2 is the tangent modulus of the plastic region on

stress and strain curve. The numerical solutions of inelastic FEA have been calculated for

large deformation theory and small deformation theory. Plastic collapse loads estimated

by inelastic FEA are compared with those obtained by the moving boundary approach.

The comparison in Fig. 6.5 indicates that the results obtained by the moving boundary

approach are in good agreement with those by the large deformation inelastic FEA.

Inelastic FEA results in Fig. 6.6 indicate that the plastic collapse loads estimated by large

deformation finite element analyses are less in value than those by small deformation

finite element analyses. It demonstrates the same characteristic observed in the plastic

collapse load calculation using the moving boundary approach. Therefore, the proposed

formulation is appropriate in plastic collapse load estimation for work hardening material.

Conservative solutions can be obtained by the moving boundary approach as it has

incorporated the effect of deformed geometry.
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Fig. 6.6 Plastic collapse load estimation by inelastic finite element analysis
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6.6 REMARKS

The calculations in this chapter indicate that the proposed formulation is appropriate to

carry out plastic collapse load estimation for thick wall cylinders of work hardening

material. For von Mises material with same dimensions, cylinders of closed end condition

have the highest plastic collapse load while open end cylinders demonstrate the least load

bearing capability. Thick wall cylinders of plane strain condition are intermediate to the

other two cases yet its load bearing capability is nearer to closed end cylinders. It has

been observed in calculations that plastic collapse load for a thick wall cylinder depends

on the work hardening behavior of material.

Plastic collapse loads calculated by the moving boundary approach are less than those

calculated by small deformation theory. This difference in plastic collapse loads

estimation is affected as dimensions of cylinders changes. For cylinders having a same

inside diameter, the difference increases with the diameter ratio. Therefore, the moving

boundary approach provides conservative solutions in plastic collapse load estimation.

Results by the moving boundary approach have been compared with those by the

inelastic finite element analyses. In general, the solutions are comparable and consistent.

As an analytical method implemented by the mathematical software MAPLE 6, this

method provides an economical and powerful complement to nonlinear finite element

analysis since it requires much less calculating cost and implementing efforts.
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7. FRACTU RE CONSIDERATI ONS

7.1 INTRODUCTION

The J integral, which was developed by Rice in 1968, is an important inelastic fracture

parameter that characterizes nonlinear material behavior ahead of a crack. Rice found that

the nonlinear energy release rate for nonlinear materials cou ld be expressed as a path­

independent integral evaluated along an arbitrary contour around a crack, as illustrated in

Fig. 7.1.

-==-01.--__..._X

Fig . 7.1 J integral contour around the tip of a crack
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The current J integral estimations of crack tip are based primarily on small deformation

formulation in which the changes of geometry are assumed to be infinitesimal. The

appropriateness of the small deformation theory is based on the condition that the results

with this assumption are assumed to be the same or without significant difference with

those from deformed geometry formulation . However, it has been observed in this study

that energy calculated on the basis of the deformed geometry differs with those obtained

on traditional small deformation theory, and the difference can be quite significant.

Therefore, it may be inappropriate to neglect the difference for thick wall cylinders under

high internal pressure.

In this chapter, energy calculations are carried out for sample cylinders of material with

various levels of work hardening behavior. The difference of energy estimations for the

undeformed and deformed geometry is further addressed and its effect on the Griffith­

type energy balance in elastic plastic fracture mechanics is discussed. Subsequently, the

effect of moving boundary on J integral estimations is examined for an inelastic material.

The numerical examples involve various cylindrical pressure vessels with a postulated

circumferential flaw. The inelastic energy release rates are calculated and compared for

both small deformations as well as large deformations based formulations.
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7.2 ENERGY CALCULAnON ON DEFORMED GEOMETRY

The proposed formulation has been applied to sample thick wall cylindrical vessels in

order to calculate the energy stored on the basis of theories that use deformed geometry

as well as undefonned geometry for boundaries where the internal pressure is applied .

The results of two sample cylinders are listed and compared in Table 7.1 and Table 7.2.

The material properties are:

a y =30,000 psi.(2.068 x l 02 MPa), E =30 x l 06 psi .(2.068 x 105 MPa)

Elastic plastic material exhibiting linear work hardening behavior is assumed for both

cylinders. Table I is listed for a cylinder having an inside radius of 4 in. (0.102 Ill) and an

outside radius of20 in. (0.508 Ill), while Table 2 is for a cylinder with an inside radius of

6 in. (0.152 Ill) and an outside radius of 36 in. (0.914 Ill). The cylinder in Table 1 is

subjected to an internal pressure of 50,000 psi (3.447xI02 MPa), while the one in Table 2

is under an internal pressure of55,000 psi (3.792xI02 MPa) .

The comparison of results indicates that the difference of strain energy obtained by

formulations based on deformed and undefonned pressure boundaries is not negligible

especially when E], the tangent modulus of the plastic domain, is small . Thus, the effect

of geometric change of the pressure boundary can be significant, and it is therefore

appropriate to take the effect into account using the proposed formulation in the energy

approach of fracture mechanics.
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Table 7.1: Energy required for elastic and inelastic deformation
r

ll
= 4 in. (0.102m) ro = 20in. (0.508m)

P
II

=50,000 psi. (3.447 x 102 MPa)

Energy
In.lb (N.m)

Deformed
geometry

0.609x 104 (0.688x 103
)

Undeformed
geometry

0.606x 104 (0.685x 103
)

1.rtc« 104 (2.000x 103
)

Modulus
ratio

3.230xl04 (3.650xI03
)

3.708xl04 (4.189xl03
) 3.930xl04 (4.440xI03

)

Table 7.2: Energy required for elastic and inelastic deformation
r

ll
= 6 ill . (0.152m) ro = 36 ill . (0.914m)

P" =55,000 psi . (3.792 x 102 MPa)

Energy
IIl.lb (N.m)

0.164xl05 (0.185xI04
)

Undeformed
geometry

0.163xl05 (0 .184xI04
)

Modulus
ratio

0.516x 105 (0.583x 104
) 0.526xl05 (0 .594xI04

)

1.282x 105 (1.448x 104
)

151



7.3 ENERGY APPROACH IN FRACTURE MECHANICS

Many strength failures are caused by dominant plastic deformation where they lead to

uncontained large plastic flow, or dominant fracture in that fracture precedes net-section

yielding. For thick wall cylinders, failures that are fracture related could occur due to

flaws in the material or imperfection generated during fabrication . Research in fracture

mechanics, especially the works of Griffith (1920), Wells (1955), Rice (1968), and

Hutchinson (1968), provide a basis for modem fracture mechanics. The energy approach

is one of the most popular methods that have been applied in engineering design. It was

proposed by Griffith (1920) and then further developed by Irwin (1956). Griffith

formulated his fracture mechanics theory on the basis of the energy balance principle.

According to his theory, a crack can form or an existing crack can grow only if such a

process causes the total energy where crack growth occurs to decrease or remain

constant. In order for this crack to increase in size, sufficient potential energy must be

availabl e from the internal energy and external work to overcome the surface energy of

the material.

7.3.1 Griffith Energy Balance

The Griffith model is based on a global energy balance: for fracture to occur or crack to

increase in size , the energy stored in the structure must be sufficient to overcome the

surface energy of the material. The Griffith energy balance for an incremental increase in

the crack area , dA, under equilibrium conditions can be expressed in the following way :
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(7.1)

where Ws is the work required to create new surfaces and n is the potential energy

supplied by the internal strain energy and external forces, as defined in the following

equation:

n=u-W

7.3.2 Energy Release Rate, G

(7.2)

In 1956, Irwin proposed an energy approach equivalent to the Griffith model using the

concept of energy release rate, G:

G=-~
dA

(7.3)

where n is potential energy and A is crack area. G is a measure of the energy available

for an increment of crack extension and it is also called the crack extension force or the

crack driving force .

There are two parameters that describe the behavior of cracks: the energy release rate G

and the stress intensity factor K. The energy release rate describes global behavior by
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quantifying the net change in potential energy that accompanies an increment of crack

extension; the stress intensity factor K is a local parameter as it characterizes the stresses,

strains, and displacements near the crack tip. For linear elastic materials, the relationship

between K and G for both plane stress and plane strain can be expressed by the following

equation:

G==~
E'

E' == E for plane stress and

E' == 1~V 2 for plane strain

7.3.3 J Integral

(7.4)

(7.5a)

(7.5b)

J integral is a path-independent contour integral for analysis of cracks, which is equal to

the energy release rate in a nonlinear elastic body that contains a crack. Thus, J for Mode

1 opening is defined by the following equation:

(7.6)
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For a cracked body that exhibits a nonlinear load displacement behavior, we can express

J in terms of load and displacement:

K
al1 )J == - dP for load control,

o aa p

Rap)J == - - dt: for displacement control.
o aa t:,

where a is length of crack, 11and P are displacement and load respectively.

(7.7)

(7.8)

The work of Rice (1968) proved that the J integral could be successfully applied to

nonlinear materials including nonlinear elastic material and elastic plastic material,

provided no unloading occurs . Therefore, an analysis that assumes nonlinear elastic

behavior may be valid for an elastic plastic material as long as the stresses in both

materials increase monotonically.

As a path-independent line integral, the J integral measures the amplitude of the

singularity in terms of the stresses and strains near a crack tip. For a crack in its two

dimensional form as shown in Fig. 7.1, the J is given by:

f J( au au y )J== Uody- T,----2:..+Ty - ds
r r ax ax
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where: I" = any path surrounding the crack tip

Ua= strain energy density (that is, strain energy per unit volume)

T,= traction vector along x axis

Ty = traction vector along y axis

11= unit outer normal vector to path I"

u = displacement vector

s = distance along the path I'
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Fig. 7.2 A cylindrical vessel with a circumferential crack
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7.4 NUMERICAL CALCULA nON OF J INTEGRAL

The analysis of defects, such as circumferential flaws in pressure vessels, is of

importance in the evaluation of the fracture integrity of welds in nuclear reactor pressure

vesselS. In this research, pressure vessels with a circumferential flaw are treated as thick

wall cylinders having a flaw with a crack length of a in the radial direction. The flaw is

assumed to be circumferentially continuous, as illustrated in Fig. 7.2.

Two sizes of sample cylinders are used to calculate the J integral in this study. They are

cylinders with an inside radius of 4 ill. (0.102 m) and an outside radius of 8 ill. (0.203 m)

and 20 ill. (0.508 m). The material behavior is assumed to be elastic plastic characterized

with linear work hardening. The following values of material properties are used in the

analysis:

E =30 x 106 psi (2.068 x 105 MPa);

a y =30,000 psi (2.068 xl 02 MPa); v =0.3

The inelastic J integral is calculated using the ANSYS finite element software with large

deformation option to examine the effect of geometric change. The procedure of J

integral calculation consists of the following operations:

1. Calculate the strain energy density

2. Define a path for line integral

3. Map the strain energy density onto the path defined

4. Map the component stresses onto the path defined

5. Define the path unit normal vector
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6. Calculate T, and T;

7. Shift the path a small distance in the positive and negative x directions to calculate

the derivatives of the displacement vectors oUr and Ouy ,as shown in Fig. 7.3.
ax ax

Displacements u}!) are mapped onto the path r --T; while displacements u?)

Llx du o U ~2) -//1)

are mapped onto the path r +-, then --.!... == -'--'- .
2 dx Llx

8. Integrate the strain energy density with respect to global y, and integrate

[
au au ,)

T, -----.!.. + Ty -----.L with respect to the path distance sax ax

9. Calculate J integral using Eq. (7.9).

7.4.1 FEA Modeling

The finite element model of the cylinder with circumferential crack is generated using the

ANSYS software. The 2-D eight-node PLANE82 element is used, which is a higher order

version of the 2-D, four-node element PLANE42. It provides more accurate results for

mixed (quadrilateral elements and triangular elements) automatic meshes and can tolerate

irregular shapes without as much loss of accuracy. Six crack tip elements (singular

elements) are used. The radius of the first array of elements at the tip of crack is 0.2a and

the ratio of size of the second row of elements to the first row is 0.5 . Only the upper half

of the cylinder is modeled because of symmetry considerations.
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Fig. 7.3 Calculation of derivatives of the displacement vector
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Fig. 7.4. 2D FEA model for a cylinder with circumferential crack
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7.4.2 J Integral Calculations for Small Deformation and Large deformation

Results of J integral estimation are shown in Fig . 7.5, Fig. 7.6, and Fig . 7.7 for cylindrical

vessels having a circumferential crack. The crack length is assumed to be half of the wall

thickness , a = 0.5T . The computed J integral values are normalized by making use of

(aery), i.e.,J=J/(aery) and normalized axial load is designated as Po/ery, where Po is

the remote axial stress applied on the top the crack model.

For a cylindrical vessel having an inside radius of 4 in (0.102 m) and an outside radius of

8 in (0.203 m), inelastic energy release rates have been calculated using inelastic finite

element analysis on both small deformation assumption and large deformation

assumption . The work hardening behavior is characterized by a postulated tangent

modulus of 30xl04 psi (2.068xI03 MPa). Results for cylinders under various internal

pressures are illustrated in Fig. 7.5.

Fig. 7.5 shows the results of large deformation and small deformation analyses are

coincident as the axial load increases up to about 0.255 (Internal pressure: 22,900 psi or

1.579x l 02 MPa). This would be the pressure range where the small deformation theory is

valid. For higher loads, discrepancy of J integral calculations occurs between large

deformation assumption and small deformation assumption. It is found that J integrals

calculated on large deformation basis has greater values than those calculated on small

deformation basis . Therefore, conservative estimations of energy release rates can be

achieved by the large deformation assumption.
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Calculation has been conducted to assess the effect of hardening material behavior on a

cylindrical vessel having an inside radius of 4 in (0.102 m) and an outside radius of 8 in

(0.203 m). For elastic plastic materials characterized with three postulated work

hardening levels, Fig. 7.6 shows the inelastic results of J integral estimation based on

small deformation assumption and large deformation assumption. In the case of same

material used, the comparison indicates that the values of J integral estimation using large

deformation analysis are larger than those obtained using small deformation analysis for

higher pressures. Besides, the difference increases as internal pressure or axial load

increases.

Fig. 7.6 also demonstrates that for the same axial load, materials exhibiting less work

hardening characteristic have higher energy release rate. Another characteristic in Fig. 7.6

is that the difference in term of J integral between the large deformation analysis and the

small deformation analysis depends on the hardening material behavior. For example,

when the internal pressure is 22,800 psi (1.572xI02 MPa), the difference of J integral

calculations due to pressure boundary change is about 2.0% for material I, 10.2% for

material II, and up to around 17.7% for material III, the one exhibiting the least hardening

behavior among the three materials. Therefore, the less work hardening behavior the

material characterizes, the more significant effect the geometric change can generate in

the context of energy release rate estimation.
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For all three materials, a special point on each curve can be found. For example, this

point is at Pa/ay =0.245 (Internal pressure : 22,100 psi or 1.524x10 2 MPa) for material

II; while at Pa/ a y =0.255 (Internal pressure: 22,900 psi or 1.579x102 MPa) for material

1.If the applied axial loads are greater than the axial load at this point, J integral estimates

based on small deformation assumption are less than those on large deformation theory.

The difference becomes noteworthy as the load increases from this point. Therefore, the

conventional small deformation theory provides reasonable J integral estimates for

cylindrical vessels subjected to internal pressures up to this point. For higher internal

pressures, however, analyses based on large deformation assumption may be appropriate

as it can obtain conservative estimates of energy release rate.

For a cylindrical vessel having an inside radius of 4 in (0.102 m) and an outside radius of

20 in (0.508 m), inelastic energy release rates have been calculated based on both small

deformation assumption and large deformation assumption. Results are plotted in Fig.7.7,

where the similar characteristics can be observed as in Fig. 7.5.

164



7.00E-03,.---------------------,

2.00E-03

6.00E-03

5.00E-03

b
l::l

~
Q) 4.00E-03
~
Q)
III
III
Q)

~ 3.00E-03
>.

~
w

1.00E-03

~J-integralusingsmalldeformationanalysis

-B-J-integralusinglargedeformationanalysis

0.280.260.240.220.2
O.OOE+OO +---~---.,...---r------.-----r-..I

0.18

Axial load Palay

Fig . 7.5 J integral estimations for a cylinder with a circumferential crack
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7.5 REMARKS

The computational evaluation of J integral on thick wall cylinders with a circumferential

flaw has shown that there can be significant difference between analyses using large

deformation and small deformation theory. This difference increases as internal pressure

or axial load increases . It is found that the difference is also influenced by material

behavior. If a lower work hardening material is used in analysis, then the effect of

geometric change is more significant.

The proposed formulation is appropriate in evaluating strain energy for fracture

considerations, since it incorporates the effect of geometric changes due to high internal

pressures. Therefore, the new formulation is appropriate for elastic plastic fracture

calculation in the context of the determination of energy release rate based on fixed and

deformed geometry makes a considerable difference. It can be seen that neglecting this

difference in designs would likely lead to unconservative situations.
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8. CONCLUSIONS AND FUTURE RESEARCH

8.1 CONCLUSIONS

In this dissertation, a moving boundary approach for thick wall cylinders under high

internal pressure is developed. The proposed analytical approach is capable of predicting

stress, strain, displacement, and energy for deformation on a moving boundary basis. The

moving boundary formulation is applicable to analyses for inelastic thick wall cylinders,

autofrettage, shakedown and limit analysis.

The moving boundary approach differs from the conventional analytical method for thick

wall cylinders with an important feature, which is the incorporation of deformed

geometry into the analytical formulation for inelastic analyses on thick wall cylinders.

Known prior research can hardly be found on this topic as inelastic formulations are

usually based on the basic idealization of original geometry in place of deformed

geometry . Such idealization, though may appear to be seemingly simple, yet might not

replicate in situ conditions with the reasonable accuracy when the deformation is caused

by high pressure. In this study, the principle of virtual work has been employed in the

development of an iterative calculation program for inelastic solutions on a moving

boundary basis. Using this iterative procedure, the proposed approach accounts for the

effect of deformed geometry due to high internal pressure.
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The proposed work also involves features in the following aspects. Firstly, a generalized

method for axisymmetric analysis on thick wall cylinder has been formulated using

parametric functions . Secondly, it provides a generalized elastic plastic solution for thick

wall cylinders, which yields Lame's solution and the classical elastic perfectly plastic

solution as special cases. Thirdly, it is shown that the actual uniaxial stress and strain

curves of materials for high pressure vessels can be linearized in a piecewise manner to

simulate the nonlinear material behaviors. The general form of piecewise linearized

constitutive equation has been developed in this study. It provides a necessary condition

to solve cylinder problems for inelastic materials exhibiting work hardening behavior.

The Maple 6.0 mathematical program has been used for implementing the moving

boundary approach. Stress, strain, displacement, and energy have been calculated for

elastic and plastic material on a moving boundary basis. The effects of geometric change

on elastic plastic analyses for thick wall cylinders under internal pressure have been

assessed . Calculations indicate two characteristics. Firstly, radial displacements

calculated on a moving boundary basis are larger than those of the original boundary

theory. The difference is negligible for elastic material but increases with the internal

pressure for plastic material behavior. Secondly, energy calculated on a moving boundary

basis is greater than that by the original boundary theory. For cylinders subject to high

internal pressure, geometric change has a significant effect on the evaluation of energy

required for deformation.
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For the purpose of comparison, nonlinear finite element analyses (NLFEA) have been

conducted using the ANSYS program. The comparison of inelastic solutions calculated

by the moving boundary approach with those of nonlinear finite element analyses is

favorable . The numerical solutions of NLFEA have demonstrated the same characteristic

as the moving boundary approach about the effect that the moving boundary makes on

radial displacements and energy calculations. In general, the proposed moving boundary

theory is consistent with NLFEA .

The moving boundary formulation for autofrettaged cylinders obeying work hardening

stress strain law has also been developed. Analytical solutions based on deformed

geometry have been obtained. The moving boundary formulation has been verified by

comparing results of the analytical method and inelastic FEA. As well, the Bauschinger

effect has been included in the presented analysis for kinematic work hardening

materials.

An iterative implementation procedure for shakedown calculation has been developed

using the principle of virtual work to account for the effect of geometric change.

Shakedown pressures have been calculated on both the undeformed geometry and the

deformed geometry for cylinders of closed end, open end, and plane strain conditions. It

has been found that difference in shakedown pressure estimation due to geometric change

is not particularly pronounced. However, it has been shown that the shakedown pressure

calculation can be significantly affected by various end conditions as the difference

between open end and closed end or plane strain is not negligible.
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The moving boundary approach has been applied to plastic collapse load estimations

wherein it has been compared with inelastic finite element analyses. In general, the

solutions are comparable and consistent. Plastic collapse loads calculated by the moving

boundary approach are less than those calculated by small deformation theory . This

difference in plastic collapse loads estimation is affected as dimensions of cylinders

changes. For cylinders having a same inside diameter, the difference increases with the

diameter ratio. The moving boundary approach provides more conservative plastic

collapse loads than the traditional small deformation theory . Therefore, the proposed

formulation is appropriate for plastic collapse load estimations of large deformation thick

wall cylinders exhibiting work hardening.

The computation of the J integral for thick wall cylinders with circumferential flaw using

the ANSYS program indicates that there is a significant difference between analyses

using large deformation and small deformation. This difference depends on the

magnitudes of the internal pressure or axial load, and also the influence of material

behavior. As a lower work hardening material is used in the analysis, the effect of

geometric change is more significant. This confirms that the proposed formulation is

appropriate for representing energy in fracture mechanics evaluation as it incorporates the

effect of geometric change due to high internal pressures. Because the determination of

energy release rate based on undeformed and deformed geometry exhibits a considerable

difference, it can be concluded that neglecting this difference can be unconservative in

the evaluation of the inelastic fracture mechanics parameter.

172



In summary, the moving boundary approach presented in this dissertation is appropriate

for inelastic analysis, including autofrettage, shakedown, and limit analysis of thick wall

cylinders because the effect of deformed geometry is incorporated in the formulation.

This approach is also appropriate for the inelastic fracture calculation because the

incorporation of deformed geometry can avoid an unconservative situation as it pertains

to the design integrity of high pressure cylindrical vessels. Furthermore, since the

proposed formulation of stress strain law is mathematically simpler to use than the

incremental theory of plasticity, it represents an alternative assessment tool that can be

used for inelastic analysis, which is usually performed by expensive and elaborate

nonlinear finite element analyses.
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8.2 FUTURE RESEARCH

The moving boundary approach has been found to be useful and appropriate for

determining inelastic response for thick wall cylinders subjected to high internal pressure.

Continuing efforts should be directed to further explore its usefulness in other

applications of inelastic analyses incorporating the effect of geometric change.

Future research should focus on extending the moving boundary formulation and solving

three-dimensional pressure components, such as cylinders with T-junction openings.

Another area for further work is the determination of inelastic fracture mechanics

parameters using the moving boundary theory. Preliminary efforts have been made in this

dissertation and should be continued and extended to the applications of three­

dimensional pressure components with defects. The nature of high pressure vessels is

such that analyses of components with flaws require safe and conservative calculations in

inelastic fracture mechanics. The moving boundary approach would serve as an

appropriate means in evaluation of inelastic fracture parameters. It would be therefore

highly rewarding to conduct research in this area.
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APPENDIX A: Maple 6 Programs For Inelastic Analyses

This appendix lists the MAPLE 6 procedur e for implem enting the inelastic analysis on

thick walled cylinders subject to high internal pressure based on deformed geometry and

undeformed geometry .

A.I Maple 6 Program for Inelastic Stress Calculations

Elastic Plastic Analysis of Thick Walled Cylinder

General Procedure for Closed Ends, Plane Strain , and Plane Stress Conditions

Formulation Based on Virtual Work Principle

In Plane Stress , q=O; in Plane Strain, q = 2*nu; q = 1 for Closed Ends

Plane Strain

> restart: Digits:=10:with(linalg): with(plots):

Properties and Conditions

> S_Y :=30000;

> E_ l :=30*10"6;

> E_2:=E_l/l00;

> E-p:=I /«(1/E_2)-(l/E_l)):

> nu_l :=0.3: nu-p:=0.5 : nu_2:=E _2*«nu_l/E_l)+(0.5/E-p )):

> p_O:=O: p_n :=30000 :

> R_O:=20.0: R_n:=4.0: r_O:=R_O: r_n:=R_n: t=r_O/r_n: T:=R_O/R_n:

> 'E_ l '=E_ l,' E_2'=E_2,'E-p'=E-p,'p_n'=p_n;

> q:=2*nu_l ;

Original Geometry
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> g_I:=xI\2*S_Y/sqrt(3*r_O I\4+(1-q)"'2*xI\4):

> g_2:=g_1 *(1+nu-p)*E_2*r_OI\2/(2*(1-nu_21\2)*E-p*x I\2):

> f:=g_1*(r_OI\2-r_nI\2)-g_2*«xI\2-r_nI\2)-2*r_nI\2*ln(x/r_n))-p_n*r_nI\2:

> r_l :=fsolve(f,x): x:=r_l: g_lc:=g_1 :g_2c:=g_2: x:='x':

> '[g_ 1c,g_2c,r_I] '=[g_1 c,g_2c,r_1];

> Eenel:=3.14159*g_l cI\2*(1+nu_l)*(r_OI\2-r_l I\2)/E_l *(r_OI\2/r_l I\2+(1-2*nu_l));

> sigrnaJP:=-g_lc*(r_OI\2/r"2-1)+g_2c*(r_l I\2/r"2-1-2*ln(r_l/r)) :

> sigrna_tP:=g_lc*(r_O"2/r"2+1)-g_2c*(r_l I\2/r"2-1+2*ln(r_l/r)):

> sigrna_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigrna_rE:=-g_lc*(r_OI\2/r"2-1):

> sigrna_tE:=g_lc*(r_OI\2/r"2+ 1):

> sigrna_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l *sigma_rE-nu_l *sigma_zE)/E_l:

> r:=r_O:etEO:=etE: r:='r':

> u_O:=r_O*etEO;

> sijsijPrvsigma_rP I\2+sigma _tP"2+sigma _zP1\2:

> skk_P :=sigrnaJP+sigma_tP+sigma_zP:

> sijsiLE:=sigrnaJEI\2+sigma_tE I\2+sigma_zE I\2:

> skk_E :=sigma_rE+sigma_tE+sigma_zE :

> r:=r_ l .sij sij Pl :=sijsiLP:skk]1 :=skk_P :sijsiLEI :=sijsiL E:skk_E l :=skk_E:r:='r':

> eta:=« I+ nu_2)*sij siL P-nu_2*skk_PI\2)/(2*E_2)-«(1+nu_2)*sij siL P1-

nu_2*skk_P11\2)/(2* E_2)+«(1+nu_l)*sijsiLE1-nu_l *skk_El I\2)/(2*E_l):

> Eenpl:=2*3.14159*int(eta*r,r=r_n..r_l);

> Energy:= Eenel + Eenpl;

> Work :=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work) :

> y_c:=solve(FF,u_n); u_n:=y_c; W:=Work ;

> print('[ r_O,r_ 1,r_n,g_1,g_2,Energy ,Work]'=[r_O,r_1,r_n,g_1c,g_2c,Energy, W]);

> sigmaJP:=-g_lc*(r_O"2/r"2-1)+g_2c*(r_l I\2/r"2-1-2*ln(r_l/r)) :

> sigrna_tP :=g_lc*(r_OI\2/r"2+ 1)-g_2c*(r _l I\2/r"2-1 +2*ln(r _l /r)) :
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> sigma_zP:=4*nu_2*g_2c*ln(r/r_1)+q*g_lc:

> sigma_rE:=-g_lc*(r_OI\2/rI\2-1):

> sigma_tE:=g_lc*(r_OI\2/r"2+1):

> sigma_zE:=q*g_lc:

> p_e :=plot([sigmaJE,sigma_tE,sigma_zE],r=r_I ..R_O):

> py:=plot([sigmaJP ,sigma_tP ,sigma_zP],r=R _n..r_I ):display( {p_e,py} );

Deformed Geometry

> for i from 1 to 5 do

> g_l :=xI\2*S_Y/sqrt(3*r_O I\4+(1-q)A2*xI\4):

g_2:=g_1 *(1+nuy)*E_2*r_OI\2/(2*(1-nu_21\2)*Ey*xI\2):

f:=g_1*(r_OI\2-r_nI\2)-g_2*«xI\2-r_nI\2)-2*r_nI\2*ln(x/r_n))-p_n*r_nI\2:

> r_ 1:=fsolve(f,x): x:=r_1: g_lc:=g_1:g_2c:=g_2: x:='x':

'[g_l c,g_2c,r_1]'=[g_l c,g_ 2c,r_1];

> Eenel:=3.14159*g_l cI\2*(1+nu_1)*(r_OI\2-r_11\2)/E_1*(r_OI\2/r_1 1\2+(1-2*nu_1));

> sigma_rP:=-g_lc*(r_OI\2/r"2-1)+g_2c*(r_1 1\2/r"2-1-2*ln(r_l/r»):

> sigma_tP :=g_lc*(r_OI\2/r"2+ 1)-g_2c*(r_1 1\2/r"2-1+2*In(r_l/r)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_1)+q*g_lc:

> sigmaJE:=-g_lc*(r_OI\2/r"2-1):

> sigma_tE:=g_lc*(r_OI\2/r"2+1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_1 *sigma_rE-nu_1 *sigma_zE)/E_1:

> r:=r_O:etEO:=etE : r:='r':

> u_O:=r_O*etEO;

> sijsij P'<sigmaJPl\2+sigma_tPl\2+sigma_zP1\2:

> skk_P:=sigma_rP+sigma_tP+sigma_zP:

> sijsiLE:=sigma_rEI\2+sigma_tEI\2+sigma_zE I\2:

> skk_E:=sigma_rE+sigma_tE+sigma_zE:

> r:=r_ I: sij sij] 1:=sij siL P:skk_P1:=skk] :sij siL E1:=sij siL E:skk _E1:=skk_E:r:='r':
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> eta:=«I+nu_2)*sijsij]-nu_2*skk_P/\2)/(2*E_2)-«(1+nu_2)*sijsiLPl­

nu_2*skk_Pl /\2)/(2*E_2)+« 1+nu_l)*sijsiLEl-nu_l *skk_El /\2)/(2*E_ l ):

> Eenpl:=2*3.14159*int( eta*r,r=r_n..r_1);

> Energy:= Eenel + Eenpl ;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> y_c:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n':

> print('[r_O,r_l,r_n,g_l,g_2,Energy,Work]'=[r_O,r_l,r_n,g_lc,g_2c,Energy,W]);

> od:

> sigmaJP:=-g_lc*(r_O/\2/rA2-1)+g_2c*(r_l /\2/rA2-1-2*ln(r_l/r)):

> sigma_tP:=g_lc*(r_O/\2/rA2+1)-g_2c*(r_l /\2/r/\2-1+2*ln(r_l/r)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_1)+q*g_1c:

> sigmaJE:=-g_lc*(r_O/\2/rA2-1):

> sigma_tE :=g_lc*(r_O /\2/rA2+1):

> sigma_zE:=q*g_lc:

> p_em :=plot([sigma_rE,sigma_tE,sigma_zE],r=r_l ..r_O):

> pym:=plot([sigmaJP ,sigma_tP,sigma_zP],r=r_n..r_1):

> display( {p_e,py,p_em,pym} );

> c:=O:stepy:=(r_l-r_n)/8:step_e:=(r_0-r_l)/8:

> for r from r_n by stepy to r_l do

> c:=c+1:r:=r:

> rad[c]:=r :

> Iprint(rad[c]);

> od:

> r_ll:=r_l +step_e:

> for r from r_ll by step_e to r_Odo

> c:=c+1:r:=r:

> rad[c]:=r:

> Iprint(rad[c]) ;
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> od:

> c:=0:stepy:=(r_l-r_n)/8:step_e:=(r_0-r_l)/8:

> for r from r_n by stepy to r_l do

> c:=c+ 1:r:=r:sigmaJP:=-g_lc*(r_Ql'2/r"2-1)+g_2c*(r_l I\2/r"2-1-2*ln( r_ lI r» :

> rad[c]:=r:sigmaJP[c]:=sigma_rP:

> lprinusigmarl'[cj);

> od:

> r_ll :=r_l +step_e:

> for r from r_Il by step_e to r_O do

> c:=c+ 1:r:=r:sigma_rE:=-g_1 c*(r_01\2/r"2-1):

> rad[c] :=r:sigma_rE[ c] :=sigma_rE:

> lprinusigmarfijcj);

> od:

> c:=0:stepy:=(r_l-r_n)/8:step_e:=(r_0-r_l)/8:

> for r from r_n by stepp to r_l do

> c:=c+ 1:r:=r:sigma_tP:=g_lc*(r_OI\2/r"2+ 1)-g_2c*(r_l I\2/r"2-1+2*ln(r_lIr»:

> rad[c]:=r:sigma_tP[c]:=sigma_tP:

> Iprint(sigma_tP[c]);

> od:

> r_ll:=r_1+step_e:

> for r from r_l1 by step_e to r_O do

> c:=c+ 1:r:=r:sigma_tE:=g_lc*(r_01\2/r"2+ 1):

> rad[c]:=r:sigma_tE[c]:=sigma_tE:

> Iprint(sigma_tE[c]);

> od:

> c:=0:stepy:=(r_l-r_n)/8:step_e:=(r_0-r_l)/8:

> for r from r_n by stepy to r_l do

> c:=c+ 1:r:=r:sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:
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> rad[c]:=r:sigrna_zP[c]:=sigrna_zP:

> Iprint(sigma_zP[c]);

> od:

> r_11 :=r_1+step_e:

> for r from r_11 by step_e to r_O do

> c:=c+l:r:=r:sigma_zE:=q*g_lc:

> rad[c] :=r: sigrna_zE[ c] :=sigrna_zE:

> Iprint(sigma_zE[c]);

> od:

A.2 Maple 6 Program for Determining Displacements

General procedure for inelastic analysis

Displacement calculation at inside and outside boundaries

Calculations of elastic plastic interface

Plane strain

In plane stress, q=O; in plane strain, q = 2*nu; and in closed end, q = I .

> restart: Digits:=IO:with(linalg): with(plots):

Properties and Conditions

> S_Y:=30000;

> E_I:=30*IOI\6;

> E_2:=E_l/lOO;

> E-p:=l/«I/E_2)-(1 /E_I)):

> nu_I:=0.3: nu-p:=0.5 : nu_2 :=E_2*«nu_l/E_1)+(0.5/E-p )):

> p_0:=0: p_n:=30000:

> R_O:=20.0: R_n:=4.0: r_O:=R_O: r_n :=R_n: t=r_O /r_n : T:=R_O/R_n:

> 'E_I '=E_I,'E_2'=E_2,'E-p'=E-p,'p_n'=p_n;
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Elastic Plastic Solutions:

Original Geometry

> g_1:=x I\2*S_Y/sqrt(3*r_OI\4+(1-2*nu_l)1\2*xI\4):

> g_2:=g_1 *(1+nuy)*E_2*r_OI\2/(2*(1-nu_2 1\2)*Ey*xI\2):

> f:=g_l *(r_OI\2-r_nI\2)-g_2*«x I\2-r_nI\2)-2*r_nI\2*ln(x/r_n»-p_n*r_nI\2:

> r_l :=fsolve(f,x): x:=r_l: g_lc:=g_l :g_2c:=g_2: x:='x':

> '[g_l c,g_2c,r_1)'=[g_l c,g_2c,r_1];

> Eenel:=3.14159*g_lcI\2*(1+nu_l)*(r_OI\2-r_l I\2)/E_l *(r_OI\2/r_l I\2+(1-2*nu_l»;

> sigma_rP:=-g_lc*(r_OI\2/r"2-1)+g_2c*(r_l I\2/r"2-1-2*ln(r_l/r»:

> sigma_tP:=g_lc*(r_OI\2/r"2+1)-g_2c*(r_l I\2/r"2-1+2*ln(r_l/r»:

> sigma_zP :=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigma_rE:=-g_lc*(r_OI\2/r"2-1):

> sigma_tE:=g_lc*(r_OI\2/r"2+1) :

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l *sigmaJE-nu_l *sigma_zE) /E_l:

> r:=r_O:etEO:=etE: r:='r':

> u_O:=r_O*etEO;

> sijsijPrssigmaJPl\2+sigma_tPl\2+sigma_zP1\2:

> skk_P:=sigmaJP+sigma_tP+sigma _zp:

> sijsiLE:=sigmaJEI\2+sigma_tEI\2+sigma_zEI\2:

> skk_E :=sigmaJE+sigma_tE+sigma_zE:

> r:=r_ l :sijsij] 1:=sij sij] :skk] 1:=skk] :sij siL E1:=sijsiL E:skk_E l :=skk_E:r:='r':

> eta:=«1+nu_2)*sijsij]-nu_2*skk]1\2)/(2*E_2)-«1+nu_2)*sijsij]l­

nu_2*skk_Pl I\2)/(2*E_2)+«1 +nu_l)*sijsiLE1-nu_l *skk_E11\2)/(2*E_ l );

> Eenpl:=2*3 .14159*int(eta*r,r=r_n..r_l);

> Energy:= Eene! + Eenpl;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):
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> y_c:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O: =R_O+u_O; u_n:='u_n':

> print('[ u_O,r_1,u_n,g_1,g_2,Energy ,Work ]'=[u_O,r_ 1,r_n-R_n,g_1 c,g_2c,Energy, W]);

Deformed Geometry

> for i from 1 to 10 do

> g_I:=xI\2*S_Y/sqrt(3*r_OI\4+(1-2*nu_l )"2*x I\4):

> g_2:=g_1 *(I+nuy)*E_2*r_OI\2/(2*(I-nu_21\2)*Ey*xI\2):

> f:=g_1 *(r_OI\2-r_nI\2)-g_2*«xI\2-r_nI\2)-2*r_nI\2*ln(x/r_n))-p_n*r_nI\2:

> r_l:=fsolve(f,x): x:=r_l : g_lc:=g_1 :g_2c:=g_2: x:='x':

> '[g_1c,g_2c,r_1]'=[g_1c,g_2c,r_ 1];

> Eenel:=3.14159*g_l cI\2*(1+nu_ l )*(r_01\2-r_ lI\2)/E_ l *(r_OI\2/r_l I\2+(1-2*nu_l));

> sigma_rP: =-g_lc*(r_OI\2/rI\2-1)+g_2c*(r_l I\2/rI\2-1-2*ln(r_l/r)):

> sigma_tP:=g_lc*(r_OI\2/r"2+1)-g_2c*(r_l I\2/r"2-1+2*ln(r_l/r)):

> sigma_zP :=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigmaJE:=-g_lc*(r_OI\2/r"2-1) :

> sigma_tE: =g_lc*(r_OI\2/r"2+1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_ l *sigma_rE-nu_l *sigma_zE)/E_l :

> r:=r_O:etEO:=etE: r:='r' :

> u_O:=r_O*etEO;

> sijsijPr-sigmaJPl\2+sigma_tPl\2+sigma _zP1\2:

> skk_P :=sigma_rP+sigma _tP+sigma_zP:

> sijsiLE:=sigmaJEI\2+sigma_tEI\2+sigma_zEI\2:

> skk_E :=sigma_rE+sigma_tE+sigma_zE:

> r:=r_ l .sijsij Pt :=sijsiLP:skk]1 :=skk_P:sijsiLE1:=sijsiL E:skk_El :=skk_E:r:='r':

> eta:=« I+nu_2)*sij sij] -nu_2*skk_PI\2)/(2*E_2)-«(1+nu_2)*sij siL P1-

nu_2*skk_P1 1\2)/(2*E_2)+« 1+nu_l)*sijsiLE1-nu_l *skk_El I\2)/(2*E_l);

> Eenpl :=2*3.14159*int(eta*r,r=r_n..r_l) ;

> Energy := Eenel + Eenpl ;
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> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> Lc:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n':

> print('[u_O,u_n,r_l,g_l,g_2]'=[ u_O,r_n-R_n,r_l,g_lc,g_2c]);

> od:

A.3 Maple 6 Program for Inelastic Strain Calculations

Elastic Plastic Analysis of Thick Walled Cylinder

Formulation Based on Virtual Work Principle

Closed End

In Plane Stress, q=O; in Plane Strain, q = 2*nu; q = 1 for Closed Ends

> restart: Digits:=10:with(linalg): with(plots) :

Properties and Conditions

> S_Y:=30000;

> E_l:=30*10 1\6;

> E_2:=E_l/100;

> E-2:=I /«1/E_2)-(1/E_l»:

> nu_l :=0.3: nU-2:=0.5: nu_2:=E_2*«nu_11E_1)+(0.5/E-2 »:
> p_0:=0: p_n:=30000:

> R_O:=20.0 : R_n:=4 .0: r_O:=R_O: r_n:=R_n: t=r_O/r_n : T:=R_O/R_n:

> 'E_l'=E_l,'E_2'=E_2,'E-2'=E-2,'p_n'=p_n;

> q:= I;

Elastic Plastic Solutions :

Original Geometry
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> g_1 :=x1\2*S_Y/sqrt(3 *r_01\4+(l-q) 1\2*x I\4):

> g_2:=g_1 *(1+nuy)*E_2*r_OI\2/(2*(I-nu_21\2)*Ey*xI\2):

> f:=g_1 *(r_01\2-r_nI\2)-g_2*((x I\2-r_nI\2)-2*r_nI\2*ln(x/r_n))-p_n*r_n1\2:

> r_l :=fsolve(f,x): x:=r_l: g_lc:=g_1 :g_2c:=g_2: x:='x':

> '[g_1 c,g_2c,r_1]'=[g_1 c,g_ 2c,r_1];

> Eenel:=3.14159*g_l cI\2*(1+nu_l )*(r_OI\2-r_l I\2)/E_l *(r_OI\2/r_l I\2+(1-2*nu_l));

> sigmaJP:=-g_lc*(r_OI\2/r"2-1)+g_2c*(r_l I\2/r"2-1-2*ln(r_lIr)):

> sigma_tP:=g_lc*(r_OI\2/r"2+ 1)-g_2c*(r_l I\2/r"2-1 +2*ln(r_lIr)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigmaJE:=-g_lc*(r_01\2/rI\2-1):

> sigma_tE:=g_lc*(r_OI\2/r"2 +1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l *sigma_rE-nu_l *sigma_zE)IE_l:

> r:=r_O:etEO:=etE: r:='r':

> u_O:=r_O*etEO;

> sijsiLP:=sigma_rPI\2+sigma_tPI\2+sigma_zPI\2:

> skk_P:=sigma_rP+sigma_tP+sigma_zp:

> sijsiLE:=sigma_rEI\2+sigma_tEI\2+sigma_zEI\2:

> skk_E:=sigmaJE+sigma_tE+sigma_zE:

> r:=r_l .sijsijPl :=sijsij]:skk_Pl :=skk]:sijsiLEl :=sijsiLE:skk_El :=skk_E:r:='r':

> eta :=((1+nu_2)*sijsiLP-nu_2*skk _P I\2)/(2*E _2)-((1 +nu_2)*sijsiLP 1­

nu_2*skk_Pl I\2)/(2*E_2)+((1 +nu_l )*sijsiLE1-nu_l *skk_El I\2)/(2*E_l);

> Eenpl:=2*3 .14159*int(eta*r,r=r_n..r_l);

> Energy := Eenel + Eenpl;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> LC:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n :='u_n':

> print('[ r_O,r_1 ,r_n,g_1 ,g_2,Energy, Work ]'=[r_O,r_1 ,r_n,g_1 c,g_2c,Energy,W]);

> sigmaJP:=-g_lc*(r_01\2/r"2-1)+g_2c*(r_l I\2/r"2-1-2*ln(r_lIr)):

> sigma_tP:=g_lc*(r_01\2/r"2+ 1)-g_2c*(r_l I\2/r"2-1 +2*ln(r_lIr)):
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> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigmaJE:=-g_lc*(r_O"2/r"2-1):

> sigma_tE:=g_lc*(r_O"2/r"2+ 1):

> sigma_zE:=q*g_lc:

> rP:=(sigmaJP-nu_2*sigma_tP-nu_2*sigma_zP)/E_2;

> tP:=(sigma_tP-nu _2*sigmaJP-nu_2*sigma_zP)/E_2;

> zP:=(sigma_zP-nu_2*sigmaJP-nu_2*sigma_tP)IE_2;

> rE:=(sigmaJE-nu_l *sigma_tE-nu_l *sigma_zE) /E_I;

> tE:=(sigma_tE-nu_l *sigma_rE-nu_l *sigma_zE) /E_l;

> zE:=(sigma_zE-nu_l *sigma_tE-nu_l *sigmaJE)/E_I;

> r:=r_ l :

> rP_1 :=rP;tP_1 :=tP;zP_1 :=zP;rE_1 :=rE;tE_1:=tE;zE_1 :=zE;

> r:='r':

> eJP:=rP-rP_1+rE_l ;e_tP:=tP-tP_1+tE_I ;e_zp:=zp-zp_1+zE_l;

> e_rE:=rE;e_tE:=tE;e_zE:=zE;

> p_e:=plot([eJE,e_tE,e_zE),r=r_l ..R_O):p-p:=plot([e_rP,e_tP,e_zP),r=R_n..r_l):

> display( {p_e,p-p} );

Deformed Geometry

> for i from 1 to 5 do

> g_1:=x"2 *S_Y/sqrt(3 *r_0"4+( l-q) "2 *x"4):

> g_2:=g_1 *(1+nu-p)*E_2*r_O"2/(2*(1-nu_2 "2)*E-p*x"2):

> f:=g_1*(r_O"2-r_n "2)-g_2*((x "2-r_n "2)-2*r_n"2*ln(x /r_n))-p_n*r_n"2:

> r_l:=fsolve(f,x): x:=r_l: g_lc:=g_l:g_2c:=g_2: x:='x':

> '[g_1c,g_2c,r_1)'=[g_1c,g_2c,r_1);

> Eenel:=3.14159*g_lc"2*(1 +nu_l)*(r_0"2-r_l "2)/E_l *(r_O"2/r_l "2+(1-2*nu_l));

> sigmaJP:=-g_lc*(r_O"2/r"2-1)+g_2c*(r_l "2/r"2-1-2*ln(r_lIr)):

> sigma_tP:=g_lc*(r_O"2/r"2 +1)-g_2c*(r_l "2/r"2-1 +2*ln(r_ lI r)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigmaJE:=-g_lc*(r_O"2/r"2-1):
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> sigma_tE:=g_lc*(r_O"2 /r'2+1):

> sigma_zE:=q*g_lc:

> etE :=(sigma_tE-nu_1 "sigmajfi-nu} *sigma_zE)IE_1:

> r:=r_O:etEO:=etE: r:='r':

> u_O:=r_O*etEO;

> sijsij Pr-sigmaJP"2+sigma_tP"2+sigma_zP"2:

> skk_P:=sigmaJP+sigma_tP+sigma_zp:

> sijsiLE:=sigma_rE "2+sigma_tE"2+sigma_zE"2 :

> skk_E:=sigmaJE+sigma_tE+sigma_zE:

> r:=r_1 .sijsijPl :=sijsiLP:skk]1 :=skk_P:sijsiLE1 :=sijsiLE:skk_E1 :=skk_E:r:='r':

> eta:=«1+nu_2)*sijsiLP-nu_2*skk]"2) /(2*E_2)-«(l+nu_2)*sijsiLP1-

nu_2 *skk_P 1" 2)/(2*E_2)+«(1+nu_l)*sijsiLEl-nu_l *skk_El"2) /(2*E_1);

> Eenpl:=2*3.14159*int(eta*r,r=r_n..r_l);

> Energy:= Eenel + Eenpl;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> y_c:=solve(FF,u_n); u_n:=y_c; W:=Work;

> print('[r_O,r_1 ,r_n,g_l ,g_2,Energy,Work ]'=[ r_O,r_l,r_n,g_l c,g_2c,Energy,W]);

> od:

> sigmaJP:=-g_lc*(r_0"2 /r'2-1)+g_2c*(r_1 "2 /r'2-1-2*ln(r_l/r»:

> sigma_tP:=g_l c*(r_0 "2 /r'2+ 1)-g_2c*(r_1"2 /r'2-1 +2*ln(r_1 /r»:

> sigma_zP:=4*nu_2*g_2c*ln(r/r_1)+q*g_lc:

> sigma_rE:=-g_lc*(r_0"2 /r"2-1):

> sigma_tE:=g_lc*(r_0"2 /r'2+1):

> sigma_zE:=q*g_lc:

> rP:=(sigmaJP-nu_2*sigma_tP-nu_2*sigma_zP)/E_2;

> tP:=(sigma_tP-nu_2*sigma_rP-nu_2*sigma_zP)/E_2;

> zP:=(sigma_zP-nu_2*sigmaJP-nu_2*sigma_tP)/E_2;

> rE:=(sigma_rE-nu_1 *sigma_tE-nu_1 *sigma_zE)/E_1;

> tE:=(sigma_tE-nu_1 *sigmaJE-nu_l *sigma_zE)IE_1;
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> zE:=(sigma_zE-nu_I *sigma_tE-nu_I *sigmaJE)/E_I;

> r:=r_ I:

> rP_ 1:=r P;tP_ 1:=tP;z p_1 :=zP;rE_1 :=rE;tE_1 :=tE;zE_ 1:=zE ;

> r:= 'r':

> e_rP:=rP-rP_ 1+rE_I ;e_tP :=tP-tP_ 1+tE_I ;e_zP :=zP-zP _1+zE_I;

> eJE:=rE;e_tE:=tE;e_zE:=zE;

> p_em:=pIot([eJE,e_tE,e_zE]'r=r_I ..r_O):p-pm:=plot([eJP ,e_tP ,e_zP]'r=r_n..r_1) :

> display( {p_e,p-p,p_em ,p-pm});

> err :=O.OOI:

> c:=O:step-p:=(r_I-r_n) /8:step_e: =(r_O-r_I)/8:

> for r from r_n by stepji to r_I+err do

> c:=c+ 1:r:=r :

> rad[ c] :=r:

> Iprint(rad[c]);

> od:

> r_II :=r_1+step_e:

> for r from r_II by step_e to r_O+err do

> c:=c+ 1:r:=r:

> rad[ c] :=r :

> Iprint(rad[c]);

> od:

> c:=O:step-p:=(r_I-r_n) /8 :step _e:=(r_O-r_I) /8 :

> for r from r_n by step-p to r_I +err do

> c:=c+ 1:r:=r: eJP := rP-rP _1 +rE_1 :

> rad[c]:=r:e_rP[c] :=e_rP:

> Iprint(e _rP[c]) ;

> od:

> r_II :=r_1+step_e:

> for r from r_II by step_e to r_O+err do
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> c:=c+ 1:r:=r:eJE := rE:

> rad[c]:=r:e_rE[c]:=e_rE:

> Iprint(e_rE[c]);

> od:

> c:=O:stepy:=(r_I-r_n)/8:step_e:=(r_O-r_I)/8:

> for r from r_n by stepy to r_I +err do

> c:=c+ 1:r:=r:e_tP := tP-tP _I +tE_I:

> rad[c]:=r:e_tP[c]:=e_tP:

> Iprint(e_tP[c]);

> od:

> r_II:=r_l+step_e:

> for r from r_11 by step_e to r_O+err do

> c:=c+ 1:r:=r:e_tE := tE:

> rad[c]:=r:e_tE[c]:=e_tE:

> Iprint(e_tE[c]);

> od:

> c:=O:stepy:=(r_I-r_n)/8:step _e:=(r_ O-r_1)/8:

> for r from r_n by stepy to r_1+err do

> c:=c+ 1:r:=r :e_zP := zP-zP _I +zE_I :

> rad[c]:=r:e_zP[c]:=e_zP:

> Iprint(e_zP[c]);

> od:

> r_11 :=r_1+step_e:

> for r from r_11 by step_e to r_O+err do

> c:=c+ 1:r:=r:e_zE:=zE:

> rad[c] :=r:e_zE[c]:=e_zE:

> Iprint(e_zE[c]);

> od:
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A.4 Maple 6 Program for Calculations of Strain Energy and External Work

Formulation Based on Virtual Work Principle

General Procedure for Closed Ends, Plane Strain, and Plane Stress Conditions

In Plane Stress, q=O;in Plane Strain, q = 2*nu; in Closed Ends, q = I.

> restart: Digits:=10:with(linalg) : with(plots) :

Properties and Conditions

> S_Y:=30000;

> E_l :=30*10"6;

> E_2:=E_1I100;

> Ey:=1I«(l /E_2)-(lIE_l»:

> nu_l:=0.3: nuy:=O.5: nu_2:=E_2*«nu_lIE_I)+(0.5/Ey»:

> p_0:=0: p_n:=30000:

> R_O:=18.0: R_n:=4.0: r_O:=R_O: r_n:=R_n: t=r_O/r_n: T:=R_O/R_n:

> 'E_l'=E_l,'E_2'=E_2,'Ey'=Ey,'p_n'=p_n;

> q:=2*nu_l ;

Original Geometry

> g_1:=x"2*S_ Y/sqrt(3*r_O"4+(1-2*nu_I)"2*x"4):

> g_2:=g_1*(l +nuy)*E_2*r_O"2/(2*(I-nu_2 "2)*Ey*x"2):

> f:=g_1*(r_O"2-r_n"2)-g_2*«x"2-r_n"2)-2*r_n "2*ln(x /r_n»-p_n*r_n"2:

> r_I:=fsolve(f,x): x:=r_l: g_lc:=g_l:g_2c:=g_2: x:='x':

> '[g_1c,g_2c,r_1]'=[g_1c,g_2c,r_1];

> Eenel:=3.14159*g_lc"2*(l +nu_l)*(r_0"2-r_l "2)/E_l *(r_O"2/r_l "2+(l-2*nu_l» ;

> sigmaJP:=-g_lc*(r_O"2/r"2-1)+g_2c*(r_l "2/r"2-1-2*ln(r_lIr»:

> sigma_tP:=g_lc*(r_O "2/r"2+ 1)-g_2c*(r_l "2/r"2-1+2*ln(r_lIr»:

> sigma_zP:=4*nu_2*g_2c*ln(r /r_l)+q*g_lc:
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> sigma_rE:=-g_lc*(r_OI\2/r"2-1) :

> sigma_tE:=g_lc*(r_OI\2/r"2+1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l "sigmaj-E-nu T*sigma_zE) /E_l:

> r:=r_O:etEO:=etE: r:='r':

> u_O:=r_O*etEO;

> sijsijPrssigmaJPl\2+sigma_tPl\2+sigma _zP1\2:

> skk_P:=sigmaJP+sigma_tP+sigma _zp :

> sijsiLE:=sigma_rE I\2+sigma_tEI\2+sigma_zE I\2:

> skk_E :=sigmaJE+sigma_tE+sigma_zE:

> r:=r_l .sijsijPl :=sijsiLP:skk_Pl :=skk_P :sijsiLEl :=sijsiLE:skk_El :=skk_E:r:='r':

> eta:=«(l+nu_2)*sijsij]-nu_2*skk_PI\2)/(2*E_2)-«I+nu_2)*sijsiLP1­

nu_2*skk_Pl I\2)/(2*E_2)+«1 +nu_l)*sijsiLEl-nu_l *skk_El I\2)/(2*E_l);

> Eenpl:=2*3 .14159*int(eta*r,r=r_n..r_l);

> Energy:= Eenel + Eenpl;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> LC :=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n':

> print('[ u_O,r_1 ,u_n,g_1 ,g_2,Energy, Work]'=[u_O,r_1 ,r_n-R_n,g_1c,g_2c,Energy,W]);

Deformed Geometry

> for i from 1 to 10 do

> g_I:=x1\2*S_Y/sqrt(3*r_01\4+(l-2*nu_l)1\2*xI\4):

> g_2:=g_1 *(I+nuy)*E_2*r_01\2/(2*(l-nu_21\2)*Ey*xI\2):

> f:=g_1*(r_01\2-r_nI\2)-g_2*«xI\2-r_nI\2)-2*r_nI\2*ln(x/r_n»-p_n*r_nI\2:

> r_l:=fsolve(f,x) : x:=r_l: g_lc:=g_l :g_2c:=g_2: x:='x':

> '[g_1c,g_2c,r_ 1]'=[g_1 c,g_2c,r_1];

> Eenel:=3 .14159*g_l cI\2*(l +nu_ l )*(r_OI\2-r_ lI\2)/E_ l *(r_01\2/r_l I\2+(1-2*nu_l»;

> sigmaJP:=-g_lc*(r_01\2/r"2-1)+g_2c*(r_l I\2/r"2-1-2*ln(r_l /r»:
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> sigma_tP:=g_lc*(r_OI\2/1"2+ 1)-g_2c*(r_l I\2/1"2-1+2*ln(r _l /r)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigmaJE:=-g_1 c*(r_01\2/1"2-1):

> sigma_tE:=g_lc*(r_OI\2/1"2+1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l *sigma_rE-nu_l *sigma_zE)/E_l:

> r:=r_O:etEO:=etE: r:='r' :

> u_O:=r_O*etEO;

> sijsiLP:=sigma_rpI\2+sigma_tpI\2+sigma_zp I\2:

> skk_P:=sigma_rP+sigma_tP+sigma _zp:

> sijsij, E:=sigma JEl\2+sigma_tEI\2+sigma_zE1\2:

> skk_E:=sigma_rE+sigma_tE+sigma_zE:

> r:=r_l .sijsij P'l :=sijsij]:skk_Pl :=skk_P:sijsiLEI :=sijsiLE:skk_El :=skk_E:r:='r':

> eta:=((I+nu_2)*sijsiLP-nu_2*skk_PI\2)/(2*E_2)-((I+nu_2)*sijsiLP1­

nu_2*skk_Pl I\2)/(2*E_2)+((1 +nu_l)*sijsiLE1-nu_l *skk_El I\2)/(2*E _l);

> Eenpl:=2*3.14159*int(eta*r,r=r_n..r_l);

> Energy:= Eene! + Eenpl;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> y_c:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O :=R_O+u_O; u_n:='u_n':

> print(' [g_1,g_2,Energy, Work ]'=[g_1 c,g_2c,Energy, W]);

> od:
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A.5 Maple 6 Program for Autofrettage - Residual Stress

Autofrettage of Thick Walled Cylinder

Formulation Based on Virtual Work Principle

General Procedure for Closed Ends, Plane Strain, and Plane Stress Conditions

In Plane Stress, q=O; in Plane Strain, q = 2*nu; in Closed Ends, q = 1.

Closed End in This Example

> restart : Digits:=10:with(linalg): with(plots):

Properties and Conditions

> S_Y:=30000;

> E_l:=30*10"6;

> E_2:=E_I/I00;

> Ey:=I/((I/E_2)-(I/E_l)):

> nu_l:=0.3: nuy:=0.5: nu_2 :=E_2*((nu_l /E_I)+(0.5/Ey)):

> p_O:=O: p_n:=30000:

> R_O:=16.0: R_n:=4.0 : r_O:=R_O:r_n:=R_n: t=r_O /r_n: T:=R_OIR_n:

> 'E_l'=E_l ,'E_2'=E_2,'Ey'=Ey,'p_n'=p_n;

> q:= I ;

Original Geometry

> g_1:=x"2*S_Y/sqrt(3*r_O"4+(1-q) "2*x "4):

> g_2:=g_1*(1+nuy)*E_2*r_O"2/(2*(1-nu_2 "2)*Ey*x"2):

> f:=g_1*(r_O"2-r_n "2)-g_2*((x"2-r_n "2)-2*r_n"2*ln(x /r_n))-p_n*r_n"2:

> r_ l :=fsolve(f,x): x:=r_l : g_lc:=g_l :g_2c:=g_2: x:='x' :

> '[g_1c,g_2c,r _I ]'=[g_1 c,g_2c,r_1];

> Eenel:=3.14159*g_lc"2*(1 +nu_I)*(r_O "2-r_I "2) /E_I *(r_O"2/r_l "2+(1-2*nu_l));

> sigrna_rP:=-g_ l c*(r_O"2/r"2-1)+g_2c*(r_ I" 2/r"2-1-2*ln(r_ 1/r)):
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> sigma_tP:=g_lc*(r_OI\2/rI\2+1)-g_2c*(r_l I\2/rI\2-1+2*ln(r_l /r» :

> sigma_zP: =4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigma_rE:=-g_lc*(r_OI\2/rI\2-1):

> sigma_tE:=g_lc*(r_OI\2/~2+1) :

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l *sigma_rE-nu_l *sigma_zE) /E_l :

> r:=r_O:etEO:=etE: r:='r':

> u_O:=r_O*etEO;

> sijsijPr-sigmaJPl\2+sigma_tPI\2+sigma_zP1\2:

> skk_P:=sigma_rP+sigma _tP+sigma _zp:

> sijsiLE:=sigma_rE "2+sigma_tEI\2+sigma_zEI\2:

> skk_E:=sigma_rE+sigma_tE+sigma_zE:

> r:=r_ l :sijsij] 1:=sijsij] :skk] 1:=skk] :sij siL E1:=sijsiL E:skk_E l: =skk_E:r:='r':

> eta:=« 1+nu_2)*sijsij] -nu_2*skk]1\2)/(2*E_2)-« 1+nu_2)*sij siL P1­

nu_2*skk_Pl I\2)/(2*E_2)+«1 +nu_l)*sijsiLEl-nu_l *skk_El I\2)/(2*E_l):

> Eenpl :=2*3.14159*int(eta*r,r=r_n..r_l);

> Energy:= Eenel + Eenpl;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> LC:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n':

> print('[ r_O,r_1,r_n,g_l ,g_2,Energy, Work]'=[r_O,r_1,r_n,g_l c,g_2c,Energy, W]);

> sigma_rP:=-g_lc*(r_01\2/~2-1)+g_2c*(r_l I\2/~2-1-2*ln(r_1/r» :

> sigma_tP :=g_lc*(r_01\2/~2+1)-g_2c*(r_l "2/~2-1+2*ln(r_1/r»:

> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigmaJE:=-g_lc*(r_01\2/~2-1):

> sigma_tE :=g_ l c* (r_01\2/~2+ 1 ) :

> sigma_zE:=q*g_lc:

> g_3:=r_ nI\2*p_n/(r_01\2-r_n"2):

> usigmaJP:=g_3*(r_01\2/~2-1):usigma_tP:=-g_3*(r_01\2/~2+1):usigma_zP:=-q*g_3:

> usigmaJE:=g_3*(r_01\2/~2-1):usigma_tE:=-g_3*(r_01\2/~2+1):usigma_zE:=-q*g_3:
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> rsigma_rP:=sigma _rP+usigmaJP:rsigma_tP:=sigma_tP+usigma_tP:

> rsigma_zP:=sigma_zP+usigma_zP:

> rsigma_rE:=sigma_rE+usigma_rE:rsigma_tE:=sigma_tE+usigma_tE:

> rsigma_zE:=sigma_zE+usigma_zE:

> p_e:=plot([rsigma_rE,rsigma_tE,rsigma_zE],r=r_l ..R_O):

> p-r:=plot([rsigmaJP,rsigma_tP,rsigma_zP],r=R_n..r_l ):display( {p_e,p-r});

Deformed Geometry

> for i from 1 to 5 do

> g_1:=x"2*S_ Y/sqrt(3*r_O"4+(1-q)"2*x"4):

> g_2:=g_1*(1+nu-r)*E_2*r_O"2/(2*(I-nu_2"2)*E-r*x"2):

> f:=g_1*(r_O"2-r_n "2)-g_2*((x "2-r_n "2)-2*r_n "2*ln(x /r_n))-p_n*r_n "2:

> r_l:=fsolve(f,x): x:=r_l: g_lc:=g_1 :g_2c:=g_2: x:='x':

> '[g_1c,g_2c,r_1]'=[g_1c,g_2c,r_1];

> Eenel:=3.14159*g_lc"2*(1 +nu_l)*(r_0"2-r_l "2)/E_l *(r_O"2/r_l "2+(1-2*nu_ l ));

> sigma_rP :=-g_lc*(r_O"2/r"2-1)+g_2c*(r_l "2/r"2-1-2*ln(r_l/r)):

> sigma_tP:=g_1c*(r_O"2/r"2+1)-L2c*(r_l "2/r"2-1+2*ln(r_ l/ r)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigma_rE:=-g_lc*(r_O "2/r"2-1):

> sigma_tE:=g_lc*(r_O"2/r"2+1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l *sigma_rE-nu_l *sigma_zE)IE_l:

> r:=r_O:etEO:=etE: r:='r':

> u_O:=r_O*etEO;

> sijsiLP:=sigmaJP"2+sigma_tP"2+sigma_zP"2 :

> skk_P:=sigma_rP+sigma_tP+sigma_zP:

> sijsiLE:=sigmaJE"2+sigma_tE "2+sigma_zE "2:

> skk_E:=sigmaJE+sigma_tE+sigma_zE:

> r:=r_l :sijsij]I:=sijsij]:skk]I:=skk]:sijsiLE1:=sijsiLE:skk_El:=skk_E:r:='r':
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> eta:=«1+nu_2)*sijsij]-nu_2*skk]1\2)/(2*E_2)-«I+nu_2)*sijsiLPl­

nu_2*skk_PI I\2)/(2*E_2)+«(l +nu_I)*sijsiLEl-nu_1 *skk_El I\2)/(2*E_I):

> Eenpl :=2*3.14159*int(eta*r,r=r_n..r_l);

> Energy:= Eenel + Eenpl;

> Work :=3.14159*p_n*u_n*(R_n+r_n)l2;

> FF:=evalf(Energy - Work):

> y_c:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n' :

> print('[ r_O,r_ 1,r_n,g_1 ,g_2,Energy, Work ]'=[r_O,r_1 ,r_n,g_l c,g_2c,Energy,W));

> od:

> sigmaJP:=-g_1 c*(r_01\2/r"2-1 )+g_2c*(r_11\2/r"2-1-2*ln(r_l/r)):

> sigma_tP:=g_lc*(r_OI\2/r"2+1)-g_2c*(r_1 1\2/r"2-1+2*ln(r_l/r)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_I)+q*g_lc:

> sigma _rE:=-g_l c*(r_01\2/r"2-1):

> sigma_tE:=g_lc*(r_OI\2/r"2+1):

> sigma_zE:=q*g_lc:

> g_3:=r_n I\2*p_n/(r_0 1\2-r_nI\2):

> usigmaJP:=g_3*(r_01\2/rI\2-1):usigma_tP:=-g_3*(r_01\2/rI\2+1):usigma_zP:=-q*g_3:

> usigmaJE:=g_3*(r_01\2/r"2-1):usigma_tE:=-g_3*(r_01\2/r"2+1):usigma_zE:=-q*g_3:

> rsigma_rP:=sigma_rP+usigmaJP:rsigma_tP:=sigma_tP+usigma_tP:

> rsigma_zP:=sigma_zP+usigma_zP:

> rsigmaJE:=sigmaJE+usigmaJE:rsigma_tE: =sigma_tE+usigma_tE:

> rsigma_zE:=sigma_zE+usigma_zE:

> p_em:=plot([rsigma_rE,rsigma _tE ,rsigma _zE),r=r_l ..r_0):

> pym:=plot([ rsigma_rP ,rsigma _tP ,rsigma _zP),r=r_n..r_I) :

> display( {p_e,py,p_em,pym} );

> err:=O.OOl:

> c:=0:stepy:=(r_l-r_n)/8:step_e:=(r_0-r_I)/8:

> for r from r_n by stepp to r_l +err do

> c:=c+ 1:r:=r:
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> rad[c] :=r:

> Iprint(rad[ c]);

> od:

> r_ll :=r_1+step_e:

> for r from r_ll by step_e to r_O+err do

> c:=c+ 1:r:=r:

> rad[c]:=r :

> Iprint(rad[ c]);

> od:

> c:=0:step-p:=(r_l-r_n)/8:step_e:=(r_0-r_l)/8 :

> for r from r_n by step-p to r_l +err do

> c:=c+ 1:r:=r:rsigmaJP:=sigma_rP+usigmaJP:

> rad[c]:=r:rsigma_rP[c]:=rsigma_rP:

> lprintfrsigma j'l'[cj);

> od:

> r_ll :=r_l +step_e:

> for r from r_ll by step_e to r_O+err do

> c:=c+l :r:=r:rsigmaJE:=sigma_rE+usigma_rE:

> rad[c]:=r:rsigmaJE[c] :=rsigma _rE:

> Iprint(rsigma_rE[c]);

> od:

> c:=0:step-p:=(r_l-r_n)/8:step_e:=(r_0-r_l)/8:

> for r from r_n by step-p to r_1+err do

> c:=c+l:r:=r:rsigma_tP:=sigma_tP+usigma_tP:

> rad[c]:=r:rsigma_tP[c] :=rsigma _tP :

> Iprint(rsigma_tP[c]);

> od:

> r_11 :=r_1+step _e:

> for r from r_ll by step_e to r_O+err do
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> c:=c+ 1:r:=r :rsigma_tE:=sigma_tE+usigma_tE:

> rad[c] :=r: rsigma_tE[c] :=rsigma_tE:

> Iprint(rsigma_tE[c]);

> od:

> c:=0 :step-p:=(r_I-r_n)/8:step_e:=(r_0-r _l)/8:

> for r from r_n by step-p to r_l +err do

> c:=c+1:r:=r:rsigma_zP:=sigma_zP+usigma_zP:

> rad[c]:=r :rsigma_zP[c] :=rsigma_zP:

> Iprint(rsigma_zP[c]);

> od:

> r_ll :=r_ l +step_e:

> for r from r_ll by step_e to r_O+err do

> c:=c+ 1:r:=r :rsigma_zE :=sigma _zE+usigma_zE :

> rad[c] :=r:rsigma_zE[c] :=rsigma _zE:

> Iprint(rsigma_zE[c]);

> od:

A.6 Maple 6 Program for Autofrettage - Residual Strain

Autofrettage of Thick Walled Cylinder

Formulation Based on Virtual Work Principle

General Procedure for Closed Ends , Plane Strain , and Plane Stress Conditions

In Plane Stress , q=O; in Plane Strain , q = 2*nu; in Closed Ends , q = I .

Closed End in This Example

> restart: Digits:=lO:with(linalg) : with(plots):

Properties and Conditions
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> E_l:=30*IQ1'6;

> E_2:=E_l/l00;

> Ey:=l/«l/E_2)-(I /E_l)):

> nu_l:=0.3: nuy:=0.5: nu_2 :=E_2*«nu_l/E_l)+(0.5/Ey)):

> p_O:=O:p_n :=20000:

> R_O:=20.0: R_n:=4.0: r_O:=R_O:r_n:=R_n: t=r_O /r_n: T:=R_OIR_n:

> 'E_l'=E_l,'E_2'=E_2,'Ey'=Ey,'p_n'=p_n;

> q:= I ;

Original Geometry

> g_1 :=xI\2*S_Y/sqrt(3*r_01\4+(l-q)"2*xI\4):

> g_2:=g_1 *(1+nuy)*E_2*r_OI\2/(2*(I-nu_21\2)*Ey*xI\2):

> f:=g_1 *(r_OI\2-r_nI\2)-g_2*«xI\2-r_nI\2)-2*r_nI\2*ln(x/r_n))-p_n*r_nI\2:

> r_l:=fsolve(f,x): x:=r_l: g_lc:=g_l :g_2c:=g_2: x:='x':

> '[g_lc,g_2c,r_l]'=[g_lc,g_2c,r_l];

> Eenel:=3.14159*g_l cI\2*(l +nu_l)*(r_01\2-r_l I\2)/E_l *(r_OI\2/r_lI\2+(1-2*nu_l));

> sigmaJP:=-g_lc*(r_OI\2/r"2-1)+g_2c*(r_1 1\2/r"2-1-2*ln(r_l/r)):

> sigma_tP:=8-1c*(r_OI\2/r"2+1)-g_2c*(r_l I\2/rI\2-1+2*ln(r_l/r)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigma_rE:=-g_lc*(r_OI\2/rI\2-1):

> sigma_tE:=g_lc*(r_OI\2/r"2+1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l *sigmaJE-nu_l *sigma_zE)/E_l:

> r:=r_O:etEO:=etE: r:='r' :

> u_O:=r_O*etEO;

> sijsijPr-sigmaJPI\2+sigma_tpI\2+sigma_zP1\2:

> skk_P:=sigma_rP+sigma_tP+sigma_zp:

> sijsij , E:=sigmaJEl\2+sigma _tEI\2+sigma_zE1\2:

> skk_E:=sigma_rE+sigma_tE+sigma_zE:

> r:=r_ l :sij sij] I: =sij sij]:skk] I :=skk] :sij siL E l :=sijsiL E:skk_El :=skk_E:r:='r':
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> eta:=«l +nu_2)*sijsij]-nu_2*skk]1\2)/(2*E _2)-«1 +nu_2) *sijsij P'l­

nu_2*skk_P1 1\2)/(2* E_2)+« 1+nu_ 1)*sijsiL E1-nu_ 1*skk_E1 1\2)/(2*E_1);

> Eenpl :=2*3 .14159*int(eta*r,r=r_n..r_1) ;

> Energy:= Eenel + Eenpl;

> Work :=3.14159*p_n*u_n*(R_n+r_n)/2 ;

> FF:=eva1f(Energy - Work) :

> y_c:=solve(FF,u_n); u_n:=Lc; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n':

> print('[ r_O,r_l,r_n,g_l ,g_2,Energy, Work ]'=[ r_O,r_1 ,r_n,g_l c,g_2c,Energy,W]);

> sigmaJP:=-g_lc*(r_OI\2/~2-1)+g_2c*(r_1 1\2/~2-1-2*ln(r_lIr)):

> sigma_tP:=g_lc*(r_OI\2/rI\2+1)-g_2c*(r_1 1\2/rI\2-1+2*1n(r_lIr)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_1) +q*g_lc:

> sigmaJE:=-g_lc*(r_OI\2/~2-1):

> sigma_tE:=g_lc*(r_01\2/~2+1) :

> sigma_zE:=q*g_lc:

> g_3:=r_n I\2*p_n/(r_OI\2-r_nI\2):

> usigma_rP:=g_3*(r_OI\2/~2-1):usigma_tP:=-g_3*(r_OI\2/~2+1):usigma_zP:=-q*g_3:

> usigma_rE:=g_3*(r_OI\2/~2-1):usigma_tE:=-g_3*(r_OI\2/~2+1):usigma_zE:=-q*g_3:

> rsigmaJP:=sigmaJP+usigma_rP:rsigma_tP:=sigma_tP+usigma_tP:

> rsigma_zp :=sigma _zP+usigma_zP:

> rsigmaJE:=sigmaJE+usigmaJE:rsigma_tE:=sigma_tE+usigma_tE:

> rsigma_zE:=sigma _zE+usigma_zE:

> urE:=(usigma_rP-nu_1 *usigma_tP-nu_1 *usigma_zP)IE_1;

> utE :=(usigma_tP-nu_l *usigma_rP-nu_1 *usigma_zP)/E_1;

> uzE:=(usigma_zP-nu_1 *usigma_tP-nu_1 *usigma_rP)/E_1;

> rP:=(sigmaJP-nu_2*sigma_tP-nu_2*sigma_zP) /E_2;

> tP:=(sigma_tP-nu_2*sigma_rP-nu_2*sigma_zP)/E_2;

> zP:=(sigma_zP-nu_2*sigma_rP-nu_2*sigma_tP)IE_2;

> rE:=(sigmaJE-nu_1 *sigma_tE-nu_1 *sigma_zE)/E_1 ;

> tE:=(sigma_tE-nu_1 *sigmaJE-nu_1 *sigma_zE)/E_1;

> zE:=(sigma_zE-nu_1 *sigma_tE-nu_1 *sigma_rE)/E_1;

207



> r:=r_ 1:

> rP_1 :=rP;tP_ 1:=tP ;zP_ 1:=zP;rE_ 1:=rE ;tE_ 1:=tE;zE_ 1:=zE;

> r:='r':

> eJP:=rP-rP _ 1+rE_1+urE;e_tP:=tP-tP _ 1+tE_ 1+utE;e_zp :=zp-zP_ 1+zE_ 1+uzE;

> e_rE: =rE+urE ;e_tE :=tE+utE ;e_zE:=zE+uzE ;

> p_e:=plot([ e_rE,e_tE,e_z E],r=r_1..R_o) :p-p:=plot([ e_rP ,e_tP ,e_zP],r=R_n..r_1):

> display( {p_e,p-p});

Deformed Geometry

> for i from 1 to 5 do

> g_1 :=x/\2*S_Y/sqrt(3*r_O/\4+(1-q) /\2*x/\4):

> g_2 :=g_1 *(1+nu-p)*E_2*r_O/\2/(2*(1-nu_2/\2)*E-p*x/\2):

> f:=g_1 *(r_O/\2-r_n/\2)-g_2*«x/\2-r_n/\2)-2*r_n /\2*ln(x/r_n))-p_n*r_n/\2:

> r_l :=fsolve(f,x): x:=r_l : g_1c :=g_l :g_2c :=g_2: x:='x' :

> '[g_1c,g_2c,r_ 1]'=[g_1 c,g_2c,r_1] ;

> Eenel:=3 .14159*g_1c/\2*(1+nu_ 1)*(r_O/\2-r_ 1/\2)/E_ 1*(r_O/\2/r_1 /\2+(1-2*nu_ 1));

> sigmaJP:=-g_1c*(r_O/\2/~2-1)+g_2c*(r_1 /\2/r'2-1-2*ln(r_1/r)):

> sigma_tP :=g_1c*(r_O/\2/~2+1)-g_2c*(r_1 /\2/~2-1+2*ln(r_1/r)) :

> sigma_zP:=4*nu_2*g_2c*ln(r/r_1)+q*g_1c :

> sigma _rE:=-g_1 c*(r_O/\2/r'2-1):

> sigma_tE :=g_1c*(r_O/\2/~2+1) :

> sigma_ zE:=q*g_1c:

> etE :=(sigma_tE-nu _1 *sigma_rE-nu_ l *sigma_zE)/E_ 1:

> r:=r_O:etEO:=etE : r:='r' :

> u_O:=r_O*etEO;

> sijsijPr-sigmaJP/\2+sigma _tP/\2+sigma _zP/\2:

> skk_P: =sigma JP+sigma _tP +sigma _zp :

> sijsiLE:=sigma_rE/\2+sigma_tE/\2+sigma_zE/\2:

> skk_E:=sigma_rE+sigma_tE+sigma_zE:

> r:=r_1 .sij sij Pl :=sij sij] :skk] 1:=skk] :sij siL E1:=sijsiL E:skk_E1:=skk_E:r:='r':
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> eta:=«1+nu_2)*sijsij]-nu_2*skk]1\2)/(2*E_2)-«(l+nu_2)*sijsiLP1­

nu_2*skk]1 1\2)/(2*E_2)+«1+nu_l)*sijsiLE1-nu_l*skk_El I\2)1(2*E_l);

> Eenpl:=2*3.14159*int(eta*r,r=r_n..r_l);

> Energy:= Eenel + Eenpl;

> Work:=3.14159*p_n*u_n*(R_n+r_n)/2;

> FF:=evalf(Energy - Work):

> LC:=solve(FF,u_n); u_n:=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n' :

> print('[ r_O,r_1,r_n,g_l ,g_2,Energy, Work)'=[r_O,r_l,r_n,g_l c,g_2c,Energy, W]);

> od:

> sigma_rP:=-g_lc*(r_01\2/~2-1)+g_2c*(r_l I\2/~2-1-2*ln(r_1Ir)):

> sigma_tP:=g_lc*(r_01\2/~2+ 1)-g_2c*(r_l I\2/~2-1+2*ln(r_lIr)):

> sigma_zP:=4*nu_2*g_2c*ln(r/r_l)+q*g_lc:

> sigmaJE:=-g_lc*(r_01\2/~2-1):

> sigma_tE:=g_lc*(r_01\2/rI\2+1):

> sigma_zE:=q*g_lc:

> g_3:=r_n I\2*p_n/(r_01\2-r_nI\2):

> usigma_rP:=g_3*(r_01\2/~2-1):usigma_tP:=-g_3*(r_01\2/~2+1):usigma_zP:=-q*g_3:

> usigmaJE:=g_3*(r_01\2/~2-1):usigma_tE:=-g_3*(r_01\2/~2+1):usigma_zE:=-q*g_3:

> rsigmaJP:=sigmaJP+usigma_rP:rsigma _tP:=sigma_tP+usigma_tP:

> rsigma zl'r-sigmazl'vusigmazl':

> rsigmaJE:=sigmaJE+usigma_rE :rsigma_tE:=sigma _tE+usigma_tE:

> rsigma_zE:=sigma_zE+usigma_zE:

> urE:=(usigmaJP-nu_l *usigma_tP-nu_l *usigma_zP)IE_l;

> utE:=(usigma_tP-nu_l *usigma_rP-nu_l *usigma_zP)/E_l;

> uzE:=(usigma_zP-nu_l *usigma_tP-nu_l *usigma_rP) /E_l;

> rP:=(sigmaJP-nu_2*sigma_tP-nu_2*sigma_zP)/E_2;

> tP:=(sigma_tP-nu_2*sigma_rP-nu_2*sigma_zP)/E_2;

> zP:=(sigma_zP-nu_2*sigma_rP-nu_2*sigma_tP)IE_2;

> rE:=(sigma_rE-nu_l *sigma_tE-nu_l *sigma_zE) /E_l;

> tE:=(sigma_tE-nu_l *sigma_rE-nu_l *sigma_zE) /E_l;
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> zE:=(sigma_zE-nu_1 *sigma_tE-nu_1 *sigmaJE)IE_I;

> r:=r_ I:

> rP_I :=rP;tP_I :=tP;zP _I :=zP;rE_I :=rE;tE_I :=tE;zE_I :=zE;

> r:='r':

> eJP:=rP-rP_1+rE_1+urE;e_tP:=tP-tP_1+tE_1+utE;e_zp:=zp-zp_1+zE_1+uzE;

> eJE:=rE+urE;e_tE:=tE+utE;e_zE:=zE+uzE;

> p_em:=plot([e_rE,e_tE,e_zE],r=r_I ..r_O):p---'pm:=plot([e_rP,e_tP,e_zP],r=r_n..r_I):

> display( {p_e,p---'p,p_em,p---.pm});

> err:=O.OOI:

> c:=0:step---'p:=(r_I-r_n)/8:step_e:=(r_0-r_I)/8:

> for r from r_n by step---'p to r_1+err do

> c:=c+ 1:r:=r:

> rad[c] :=r:

> Iprint(rad[c]);

> od:

> r_II :=r_1+step_e:

> for r from r_ll by step_e to r_O+err do

> c:=c+ 1:r:=r:

> rad[c]:=r:

> lprint(rad[c]);

> od:

> c:=0:step---'p:=(r_I-r_n)/8:step_e:=(r_0-r_I)/8:

> for r from r_n by stepp to r_l +err do

> c:=c+ 1:r:=r:e_rP := rP-rP_I +rE_I +urE:

> rad[c]:=r:e_rP[c]:=e_rP:

> lprintte.rl'[cj);

> od:

> r_11 :=r_1+step_e:

> for r from r_ll by step_e to r_O+err do
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> c:=c+ 1:r:=r:e_rE := rE+urE :

> rad[c]:=r:e_rE[c] :=e_rE:

> Ipriut(eJE[c]);

> od:

> c:=O:stepy:=(r_l-r_n) /8:step_e:=(r_O-r_l)/8 :

> for r from r_u by stepy to r_l +err do

> c:=c+1:r:=r:e_tP := tP-tP_1+ tE_ 1+utE:

> rad[c]:=r:e_tP[c]:=e_tP:

> Ipriut(e_tP[c]);

> od:

> r_ll :=r_1+step_e:

> for r from r_Il by step_e to r_O+err do

> c:=c+l :r:=r :e_tE:= tE+utE :

> rad[c]:=r:e_tE[c] :=e_tE :

> Ipriut(e_tE[c]);

> od:

> c:=O:stepy:=(r_l-r_u)/8 :step_e: =(r_O-r_I)/8:

> for r from r_u by stepy to r_l +err do

> c:=c+l:r:=r:e_zP := zp-zp_1+ zE_1+uzE :

> rad[c]:=r:e_zP[c]: =e_zP :

> Ipriut(e_ zP[c]) ;

> od:

> r_ll :=r_l +step _e :

> for r from r_Il by step_e to r_O+err do

> c:=c+l :r:=r:e_zE:=z E+uzE:

> rad[c] :=r:e_zE[c]:=e_zE :

> Iprint(e_ zE[c]) ;

> od:
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A.7 Maple 6 Program for Shakedown Pressure Estimation - Deformed Geometry

Formulation Based on Virtual Work Principle

General Procedure for Closed Ends, Plane Strain, and Plane Stress Conditions

In Plane Stress , q=O; in Plane Strain , q = 2*nu; in Closed Ends, q = I.

Plane Strain in This Example

> restart : Digits:=lO:with(linalg): with(plots):

> S_Y:=30000 ;

> E_I: =30*IO"6;

> E_2:=E_ l/lOO;

> E-!,:=I /«l/E_2)-(l /E_I)):

> nu_1 :=0.3 : nu-!, :=0.5 : nu_2 :=E_2*«nu_l/E_I) +(0.5/E-!, )):

> R_O:=9.1: R_n :=4.0: r_O:=R_O: r_n:=R_n: t=r_O /r_n: T:=R_O/R_n:

> 'E_I'=E_I,'E_2'=E_2,'E-!,'=E-!,,'p_n'=p_n;

> q:=2*nu_ l ;

> for i from 1 to 10 do

> g_1:=x"2*S_Y/sqrt(3*r_O"4+(I-q)"2*x"4) :

> g_2:=g_1*(1+nu-!,)*E_2*r_O"2/(2*(l-nu_2"2)*E-!,*x"2):

> p_n:=g_1*(r_O"2-r_n"2)/r_n"2-g_2*«x"2-r_n "2)/r_n "2-2*ln(x/r_n)):

> sigma_rP:=-g_1 *(r_0"2/r"2-1 )+g_2*(x"2/r"2-1-2*ln(x/r)):

> sigma_tP:=g_1 *(r_O"2/r"2+ 1)-g_2*(x"2/r"2-1 +2*ln(x/r)):

> sigma_zP:=4*nu_2*g_2*ln(r/x)+q*g_l:

> sigmaJE:=-g_1 *(r_0"2/r"2-1) :

> sigma_tE:=g_1 *(r_O"2/r"2+ I) :

> sigma_zE :=q*g_l:

> g_3:=r_n"2*p_n/(r_O"2-r_n "2):

> usigma_rP:=g_3*(r_0"2/r"2-1) :usigma_tP :=-g_3*(r_0 "2/r"2+1):usigma_zP:=-q*g_3:

> usigmaJE:=g_3*(r_0"2/r"2-1):usigma_tE:=-g_3*(r_0"2/r"2+1):usigma_zE:=-q*g_3:

> rsigma_rP :=sigma _rP+usigma_rP :rsigma_tP:=sigma_tP+usigma _tP:

> rsigma_zP:=sigma_zP+usigma_zP:
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> rsigma _rE :=sigma _rE+usigma_rE:rsigma_tE:=sigma_tE+usigma_tE:

> rsigma_zE:=sigma_zE+usigma_zE:

> sigma_eqp: =sqrt(.5*«sigma_rP-sigma_tP)"2+(sigma_rP-sigma_zP)"2+(sigma_tP­

sigma_zP)"2»:

> rsigma_eqp:=sqrt(.5*«rsigma_rP-rsigma_tP)"2+(rsigma_rP-rsigma_zP)1\2

+(rsigma_tP-rsigma_zP)"2»:

> r:=r_n:sigma _eqpn:=sigma_eqp:rsigma_eqpn:=rsigma_eqp:r:='r':

> r_sd: =fsolve(sigma_eqpn+rsigma_eqpn=2*S_Y,x,x=r_n ..r_O);

> x:=r_sd:p_sd:=p_n;x:='x':r_1 :=r_sd:

> g_l :=r_11\2*S_Y/sqrt(3*r_OI\4+(1-q)"2*r_1 1\4);

> g_2:=g_1 *(1+nu-!,)*E_2*r_OI\2/(2*(1-nu_21\2)*E-!,*r_11\2);

> g_lc:=g_1 :g_2c :=g_2:

> '[g_l c,g_2c,r_1]'=[g_l c,g_2c,r_ 1];

> Eenel:=3.14159*g_l cI\2*(1+nu_1)*(r_O I\2-r_11\2)/E_1 *(r_OI\2/r_11\2+(1-2*nu_1» ;

> sigmaJP:=-g_lc*(r_OI\2/r"2-1) +g_2c*(r_1 1\2/r"2-1-2*ln(r_l/r»;

> sigma_tP :=g_lc*(r_OI\2/r"2 +1)-g_2c*(r_1 1\2/r"2-1+2*ln(r_l/r»;

> sigma_zP:=4*nu_2*g_2c*ln(r/r_1)+q*g_l c;

> sigmaJE:=-g_lc*(r_OI\2/r"2-1); sigma_tE:=g_lc*(r_OI\2/rI\2+1); sigma_zE:=q*g_lc;

> > etE :=(sigma_tE-nu_1 *sigma_rE-nu_1 *sigma _zE)/E_1;

> r:=r_O:etEO:=etE: r:='r': u_O:=r_O*etEO;

> sijsiLP:=sigmaJPI\2+sigma_tP I\2+sigma_zP I\2:

> skk_P:=sigma_rP+sigma_tP +sigma _zP:

> sijsiLE:=sigmaJEI\2+sigma_tEI\2+sigma_zEI\2:

> skk_E :=sigma _rE+sigma_tE+sigma_zE:

> r:=r_1 .sijsij Pl :=sijsij]:skk]1 :=skk]:sijsiLEl :=sijsiLE:skk_E1 :=skk_E:r:='r' :

> eta :=«1 +nu_2)*sijsij]-nu_2*skk]1\2)/(2*E _2)-«1 +nu_2)*sijsij]l­

nu_2*skk]1 1\2)/(2*E_2) +«1 +nu_1)*sijsiLE1-nu_1*skk_E1 1\2)/(2*E_1):

> Eenpl :=2*3 .14159*int(eta*r ,r=r_n..r_1);

> Energy := Eenel + Eenpl ;

> Work: =3 .14159*p _sd*u _n*(R_n+r_n)/2 ;

> FF:=evalf(Energy - Work) :
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> y_c:=solve(FF,u_n); u_n :=y_c; W:=Work;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n':

> print('[ r_O,r_1,r_n,g_l ,g_2,Energy, Work,Shakedown_Pressure]'

=[r_O,r_l,r_n,g_lc,g_2c,Energy,W,p_sd]);

> od:

A.8 Maple 6 Program for Shakedown Pressure Estimation - Undeformed Geometry

General Procedure for Closed Ends, Plane Strain, and Plane Stress Conditions

In Plane Stress, q=O; in Plane Strain, q = 2*nu; in Closed Ends, q = 1.

Plane Strain in This Example

> restart: Digits:=10:with(linalg): with(plots):

> S_Y:=30000;

> E_l:=30*1O "6;

> E_2:=E_l/lOO;

> Ey:=l/«l/E_2)-(l/E_l)):

> nu_l :=0.3: nuy:=0.5: nu_2:=E_2*«nu_l/E_l)+(0.5/Ey )):

> R_O:=12.0: R_n:=4 .0: r_O:=R_O:r_n:=R_n : t=r_O /r_n: T:=R_O/R_n:

> 'E_l'=E_l,'E_2'=E_2,'Ey'=Ey,'p_n'=p_n;

> q:=2*nu_l;

> g_l :=r_1"2*S_Y/sqrt(3*r_O"4+(1-q)"2*r_l "4):

> g_2:=g_I*(1+nuy)*E_2*r_O"2/(2*(I-nu_2"2)*Ey*r_l "2):

> p_n:=g_l *(r_O"2-r_n "2)/r_n "2-g_2*«r_l "2-r_n "2) /r_n"2-2*ln(r_l/r_n)):

> sigma_rP:=-g_1 *(r_O"2/r"2-1)+g_2*(r_I "2/r"2-1 -2*ln(r_l/r)):

> sigma_tP:=g_1 *(r_O"2/r"2+1)-g_2*(r_l "2/r"2-1+2*ln(r_l/r)):

> sigma_zP:=4*nu_2*g_2*ln(r/r_I)+q*g_l :

> sigma_rE:=-g_1 *(r_0"2/r"2-1):

> sigma_tE:=g_1 *(r_O"2/r"2 +1):

> sigma_zE:=q*g_l:

> g_3:=r_n "2*p_n/(r_O"2-r_n "2):
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> usigmaJP:=g_3*(r_O I\2/rI\2-1):usigma_tP:=-g_3*(r_OI\2/rI\2+1) :usigma_zP:=-q*g_3:

> usigmaJE:=g_3*(r_O I\2/rI\2-1):usigma_tE:=-g_3*(r_OI\2/rI\2+1) :usigma_zE:=-q*g_3 :

> rsigmaJP:=sigma_rP+usigmaJP:rsigma_tP:=sigma_tP+usigma_tP :

> rsigma_zP:=sigma_zP+usigma_zP:

> rsigmaJE:=sigmaJE+usigmaJE:rsigma_tE:=sigma_tE+usigma_tE:

> rsigma_zE:=sigma_zE+usigma_zE :

> sigma_eqp:=sqrt(.5*((sigmaJP-sigma_tP)"2+(sigmaJP-sigma_zP)"2+(sigma_tP­

sigma_zP)"2)):

> rsigma_eqp:=sqrt(.5*((rsigma_rP-rsigma_tP)"2+(rsigmaJP­

rsigma_zP)"2+(rsigma_tP-rsigma_zP)"2)):

> r:=r_n:sigma_eqpn:=sigma_eqp:rsigma_eqpn:=rsigma_eqp :r:='r' :

> r_sd:=fsolve(sigma_eqpn+rsigma_eqpn=2*S_Y,r_ 1,r_ 1=r_n..r_O);

> r_1 :=r_sd:p_sd:=p_n;

A.9 Maple 6 Program for Plastic Collapse Load Estimation - Deformed Geometry

General Procedure for Closed Ends, Plane Strain, and Plane Stress Conditions

Formulation Based on Virtual Work Principle

In Plane Stress, q=O; in Plane Strain, q = 2*nu; in Closed Ends, q = 1.

Closed End in This Example

> restart : Digits:=1O:with(lina1g): with/plots):

> S_Y:=30000;

> E_1:=30*101\6;

> E_2 :=E_1/1 00;

> E---'p:=1 /((1/E_2)-(1/E_1)):

> nu_1:=0.3: nU---'p:=0.5: nu_2:=E_2*((nu_1/E_1)+(0.5/E---'p )) :

> R_O:=16.8 : R_n:=4.0: r_O:=R_O: r_n:=R_n: t:=r_O/r_n : T:=R_O/R_n: p_O:=O:

> 'E_1'=E_1,'E_2'=E_2,'E---'p'=E---'p,'p_n'=p_n;

> q:= l ;

> for p_n from 51530 by 2 to 100000 do
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> for i from 1 to 10 do

> g_ I :=xI\2*S_Y/sqrt(3*r_OI\4+(l -q)A2*xI\4):

> g_2:=g_1*(1+nu-'p)*E _2*r_OI\2/(2*(l-nu_21\2)*E-'p*xI\2):

> f:=g_1*(r_OI\2-r_nI\2)-g_2*(( xI\2-r_nI\2)-2*r_nI\2*ln(x/r_n))-p_n*r_nI\2:

> r_l :=fsolve(f,x): x:=r_l: g_lc:=Ll :g_2c:=g_2 : x:='x':

> '[g_1c,g_2c,r_ 1]'=[g_1c,g_2c,r_1];

> Eenel :=3.14159*g_l cI\2*(l +nu_ l )*(r_01\2-r_ l I\2)/E_ l *(r_OI\2/r_l I\2+(l-2*nu_l));

> sigma_rP :=-g_lc*(r_OI\2/r"2-1) +g_2c*(r_l I\2/r"2-1-2*ln(r_ l/r)) :

> sigma_tP :=g_lc*(r_OI\2/r"2+1)-g_2c*(r_l I\2/r"2-1 +2*ln(r_l/r)):

> sigma_zP:=4 *nu_2*g_2c*ln(r /r_l)+q*g_lc:

> sigmaJE:=-g_lc*(r_OI\2/r"2-1):

> sigma_tE :=g_lc*(r_OI\2/r"2 +1):

> sigma_zE:=q*g_lc:

> etE:=(sigma_tE-nu_l "sigma rli-nu} *sigma_zE)/E_l :

> r:=r_O:etEO:=etE: r:='r': u_O:=r_O*etEO;

> sijsijPr-sigmaJPl\2+sigma_tPl\2+sigma_zP1\2:

> skk_P:=sigmaJP+sigma_tP+sigma_zp :

> sijsij, E:=sigma_rEI\2+sigma_tEl\2+sigma_zE1\2:

> skk_E :=sigmaJE+sigma_tE+sigma_zE:

> r:=r_l .sijsijPl :=sijsij]:skk]1 :=skk] :sij siL EI :=sijsiLE:skk_El :=skk_E:r:='r':

> eta:=((I+nu_2)*sijsij]-nu_2*skk]1\2)/(2*E_2)-((l +nu_2)*sijsij]1­

nu_2*skk]1 1\2)/(2*E_2)+((1+nu_ l )*sijsiLEl -nu_ l *skk_El I\2)/(2*E_ l );

> Eenpl :=2*3.14159 *int(eta *r,r=r_n ..r_l);

> Energy:= Eenel + Eenpl ;

> Work :=3.14159*p_n*u_n*r_n;

> FF:=evalf(Energy - Work):

> y_c:=solve(FF,u_n); u_n :=y_c; W:=Work ;

> r_n:=R_n+u_n;r_O:=R_O+u_O; u_n:='u_n' :

> print('[r_O,r_l ,r_n,Energy,Work,p_n]'=[r_O,r_ 1,r_n,Energy,W,p _n]);

> od:

> if (r_O-r_ l )<O.OOI then break;
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> fi;

> od:

> print('[ u_O,r_1 ,u_n,g_1,g_2,Energy,Work]'=[u_O,r_ 1,Lc,g_1c,g_2c,Energy,W]) ;

> 'Limit_Load'=p_n;

A.tO Maple 6 Program for Plastic Collapse Load Estimation - Un deformed

Geometry

General Procedure for Closed Ends, Plane Strain , and Plane Stress Conditions

In Plane Stress , q=O; in Plane Strain, q = 2*nu; in Closed Ends , q = I .

Closed End in This Example

> restart : Digits :=10 :with(\inal g): with(plots):

> S_Y:=30000 ;

> E_l:=30*10"6;

> E_2:=E_l/I00;

> E---'p:= l/«(1/E_2)-(1 /E_l)):

> nu_l :=0.3: nU---'p :=0.5: nu_2:=E_2*«nu _l /E_l)+(0 .5/E---'p )):

> R_O:=16.8 : R_n :=4.0: r_O:=R_O: r_n:=R_n: t:=r_O/r_n: T:=R_O/R_n: p_O:=O:

> 'E_l '=E_l,'E_2'=E_2 ,'E---'p'=E---'p,'p_n'=p_n ; q:=I ;

> for p_n from 52500 to 100000 do

> g_I :=x"2*S _Y /sqrt(3*r_0"4+(I-q )"2*x"4):

> g_2:=g_1*(1+nu---'p)*E_2*r_O"2/(2*( I-nu_2"2)*E---'p*x"2):

> f:=g_1*(r_O"2-r_n "2)-g_2* « x"2-r_n "2)-2*r_n"2*ln( x/r_n))-p_n *r_n"2 :

> r_l :=fsolve(f,x) : x:=r_l : g_lc :=g_l :g_2c :=g_2 : x:='x':

> '[g_lc,g_2c ,r_l]'=[g_lc,L2c,r_l] ;

> print('[r_O,r_l,r_n,p_n]'=[r _O,r_l ,r_n ,p_n]) ;

> if (R_O-r_l) <O.OI then break ;

> fi;

> od:
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APPENDIX B: ANSYS Programs For Inelastic Analyses

This appendix lists the ANSYS routines and macros for implementing the inelastic

analysis on thick walled cylinders subject to high internal pressure with large deformation

or small deformation.

B.l ANSYS Commands for Inelastic Analysis in Large Deformation

/BATCH , LIST

ITITLE, ELASTIC PLASTIC ANAYSIS OF LARGE DEFORMATION

IFILNAM ,CYLINDER

ICONFIG,NRES,I0000

/PREP7

RO=20

RN=4

ET,I,42",1

MP,EX,I ,30E6

MP,NUXY,I,0.3

!DEFINE A BILINEAR HARDENING PLASTICITY CURVE USING KINH

TB,KINH,I,I,2

TBPT ,,0.001,30000

TBPT,,0 .1,59700

!SET THE AXLES LABELS FOR THE STRESS-STAIN CURVE PLOT

IAXLAB,X ,STRAIN

IAXLAB,Y,TRUE STRESS (PSI.)

TBPL,KINH,1

!MODELLING

K,I,RN

K,2,RO

K,3,RO,.4
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K,4,RN,.4

A,I ,2,3,4

ESIZE,O.4

AMESH,ALL

fSOLU

D,ALL,UY,O

NLGEOM,ON

!NULL LOAD TO GIVE GRAPH STARTING AT ZERO

TIME,IE-6

LSWRIT

P_INT=30000

TIME,P_INT

KBC,O

DELTIM,5,1,20

AUTOTS,ON

PRED,ON

NSEL,S,LOC,X,RN

SFL,4,PRES,P_INT

NSEL,ALL

LSWRIT

OUTRES,ALL,ALL

SOLVE

FINI

fPOSTl

SET,LAST

ETABLE,STRS_R,S,X

ETABLE,STRS_T,S,Y

ETABLE,STRS_Z,S,Z

ETABLE,STRN_R,EPTO,X

ETABLE,STRN_T,EPTO ,Y

ETABLE,STRN_Z,EPTO,Z
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ETABLE,EQV_S,S,EQV

ETABLE,EQV_NE,EPEL,EQV

ETABLE,EQV_NP,EPPL,EQV

ETABLE,ENER,SENE

ETABLE,VOL,VOLU

*GET,MAXI,ELEM,O,COUNT

*CFOPEN,NONLIN20

TENER=O

*DO,KK,l,MAXI

*GET,SS,ELEM,KK,ETAB,EQV_S

*GET,SNE,ELEM,KK,ETAB,EQV_NE

*GET,SNP,ELEM,KK,ETAB,EQV_NP

*GET,SX,ELEM,KK,ETAB,STRS_R

*GET,SY,ELEM,KK,ETAB,STRS_T

*GET,SZ,ELEM,KK,ETAB,STRS_Z

*GET,SNX,ELEM,KK,ETAB,STRN_R

*GET,SNY,ELEM,KK,ETAB,STRN_T

*GET,SNZ,ELEM,KK,ETAB,STRN_Z

*GET,ENERD,ELEM,KK,ETAB,ENER

*GET,VOLUME,ELEM,KK,ETAB,VOL

TENER=TENER+ENERD*2.5

FTENER=TENER

SN=SNE/l.3+SNP/l.5

*VWRITE,KK,SS,SN,SX,SY,SZ,SNX,SNY,SNZ,FTENER

(X,F6.1,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X

,E15.8,3X)

*ENDDO

*CFCLOS

FINISH

220



8.2 ANSYS Commands for Inelastic Analysis of Small Deformation Theory

/BATCH , LIST

ITITLE, ELASTIC PLASTIC ANA YSIS OF SMALL DEFORMATION

IFILNAM,CYLINDER

ICONFIG,NRES,l OOOO

/PREP7

RO=20

RN=4

ET,1,42,,,1

MP,EX,1,30E6

MP,NUXY ,l ,O.3

!DEFINE A BILINEAR HARDENING PLASTICITY CURVE USING KINH

TB,KINH, 1,1,2

TBPT,,0 .001,30000

TBPT,,0.1 ,59700

!SET THE AXLES LABELS FOR THE STRESS-STAIN CURVE PLOT

IAXLAB,X,STRAIN

IAXLAB,Y,TRUE STRESS (PSI.)

TBPL,KINH,1

!MODELLING

K,I,RN

K,2,RO

K,3,RO,.4

K,4,RN,.4

A,I ,2,3,4

ESIZE,O.4

AMESH ,ALL
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/SOLU

D,ALL,UY,O

!NULL LOAD TO GIVE GRAPH STARTING AT ZERO

TIME,lE-6

LSWRlT

P_INT=30000

TIME,P_INT

KBC,O

DELTIM,5,1,20

AUTOTS,ON

PRED,ON

NSEL,S,LOC,X,RN

SFL,4,PRES,P_INT

NSEL,ALL

LSWRlT

OUTRES,ALL,ALL

SOLVE

FINI

/POSTl

SET,LAST

ETABLE,STRS_R,S,X

ETABLE,STRS_T,S,Y

ETABLE,STRS_Z,S,Z

ETABLE,STRN_R,EPTO,X

ETABLE,STRN_T,EPTO,Y

ETABLE,STRN_Z,EPTO,Z

ETABLE,EQV_S,S,EQV

ETABLE,EQV_NE,EPEL,EQV

ETABLE,EQV_NP ,EPPL,EQV

ETABLE,ENER,SENE
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ETABLE,VOL,VOLU

*GET,MAXI,ELEM,O,COUNT

*CFOPEN,NONLIN20

TENER=O

*DO,KK,l,MAXI

*GET,SS,ELEM,KK,ETAB,EQV_S

*GET,SNE,ELEM,KK,ETAB,EQV _NE

*GET,SNP,ELEM,KK,ETAB,EQV_NP

*GET,SX,ELEM,KK,ETAB,STRS_R

*GET ,SY ,ELEM,KK,ETAB,STRS _T

*GET ,SZ,ELEM,KK,ETAB,STRS _Z

*GET,SNX,ELEM,KK,ETAB,STRN_R

*GET,SNY,ELEM,KK,ETAB,STRN_T

*GET,SNZ,ELEM,KK,ETAB,STRN_Z

*GET,ENERD,ELEM,KK,ETAB,ENER

*GET, VOLUME,ELEM,KK,ETAB,VOL

TENER=TENER+ENERD*2.5

FTENER=TENER

SN=SNE/l.3+SNP/l .5

*VWRITE,KK,SS,SN,SX,SY,SZ,SNX,SNY,SNZ,FTENER

(X,F6 .1,E 15.8,3X,E 15.8,3X,E 15.8,3X,E15.8 ,3X,E15 .8,3X,E15.8,3X,E15.8,3X,E 15.8,3X

,E15.8,3X)

*ENDDO

*CFCLOS

FINISH
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B.3 ANSYS Commands for Autofrettage of Thick Walled Cylinders of Large

Deformation Formulation

/BATCH ,LIST

/TITLE, AUTOFRETTAGE OF THICK WALLED CYLINDERS

IFILNAM,CLOSEEND

/CONFIG,NRES,10000

/PREP7

RO=20

RN=4

ET,1,42",1

MP,EX,1,30E6

MP,NUXY,l ,O.3

TB,KINH, 1,1,2

TBPT,,0.001,30000

TBPT,,0.1,59700

/AXLAB,X,STRAIN

/AXLAB,Y,TRUE STRESS (PSI.)

TBPL,KINH,l

K,l,RN

K,2,RO

K,3,RO,0.4

K,4,RN,0.4

A,1,2,3,4

ESIZE,O.4

AMESH,ALL

/SOLU

D,ALL,UY,O

NLGEOM,ON

TIME,lE-6
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LSWRIT

P_INT=25000

TIME,P_INT

KBC,O

DELTIM,5,1,20

P_T=P _INT*(RN**2)/(RO**2-RN**2)

AUTOTS,ON

PRED,ON

NSEL,S,LOC,X,RN

SFL,4,PRES,P_INT

SFL,3,PRES,-P_T

NSEL,ALL

LSWRIT

OUTRES,ALL,ALL

SOLVE

P_INT=O !UNLOAD TO ZERO PRESSURE

P_T=P _INT*(RN**2)/(RO**2-RN**2)

SFL,4,PRES,P_INT

SFL,3,PRES,-P_T

LSWRIT

OUTRES,ALL,ALL

SOLVE

FINI

/POSTl

SET,LAST

ETABLE,STRS_R,S,X

ETABLE,STRS_T,S,Y

ETABLE ,STRS _Z,S,Z

ETABLE,STRN_R,EPTO,X

ETABLE ,STRN_T,EPTO,Y
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ETABLE,STRN_Z,EPTO,Z

ETABLE,EQV_S,S,EQV

ETABLE,EQV_NE,EPEL,EQV

ETABLE,EQV_NP,EPPL,EQV

ETABLE,ENER,SENE

ETABLE,VOL,VOLU

*GET,MAXI,ELEM,O,COUNT

*CFOPEN,NONLIN20

TENER=O

*DO,KK,l,MAXI

*GET,SS,ELEM,KK,ETAB,EQV_S

*GET,SNE,ELEM,KK,ETAB,EQV _NE

*GET,SNP,ELEM,KK,ETAB,EQV_NP

*GET,SX,ELEM,KK,ETAB,STRS _R

*GET,SY,ELEM,KK,ETAB,STRS _T

*GET,SZ,ELEM,KK,ETAB,STRS _Z

*GET,SNX,ELEM,KK,ETAB,STRN_R

*GET,SNY,ELEM,KK,ETAB,STRN _T

*GET ,SNZ,ELEM,KK,ETAB,STRN_Z

*GET,ENERD,ELEM,KK,ETAB,E ER

*GET,VOLUME,ELEM,KK,ETAB,VOL

TENER=TENER+ENERD

FTENER=TENER

SN=SNE/l.3+SNP/l.5

*VWRITE,KK,SS,SN,SX,SZ,SY,SNX,SNZ,SNY,FTENER

(X,F6.1,E15.8,3X,E15 .8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,El5.8,3X,El5.8,3X

,E15.8,3X)

*ENDDO

*CFCLOS

FINISH
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B.4 ANSYS Commands for Autofrettage of Thick Walled Cylinders of Small

Deformation Formulation

/BATCH, LIST

ITITLE, AUTOFRETTAGE OF THICK WALLED CYLINDERS

IFILNAM,CLOSEEND

ICONFIG,NRES,I OOOO

IPREP7

RO=20

RN=4

ET,I,42",1

MP,EX,I,30E6

MP,NUXY ,I,0.3

TB,KINH,I,I,2

TBPT ,,0.001,30000

TBPT,,0 .1,59700

IAXLAB,X,STRAIN

IAXLAB,Y,TRUE STRESS (PSI.)

TBPL,KINH,1

K,I,RN

K,2,RO

K,3,RO,0.4

K,4,RN,0.4

A,I,2,3,4

ESIZE,O.4

AMESH,ALL

ISOLU

D,ALL,UY,O

TIME,IE-6

LSWRIT
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P_INT=25000

TIME,P_INT

KBC,O

DELTIM,5,1,20

P_T=P_INT*(RN**2)/(RO**2-RN**2)

AUTOTS,ON

PRED,ON

NSEL,S,LOC,X,RN

SFL,4,PRES,P_INT

SFL,3,PRES,-P_T

NSEL,ALL

LSWRIT

OUTRES,ALL,ALL

SOLVE

P_INT=O !UNLOAD TO ZERO PRESSURE

P_T=P_INT*(RN**2)/(RO**2-RN**2)

SFL,4,PRES,P_INT

SFL,3,PRES,-P_T

LSWRIT

OUTRES,ALL,ALL

SOLVE

FIN!

/POSTl

SET,LAST

ETABLE,STRS_R,S,X

ETABLE,STRS_T,S,Y

ETABLE,STRS_Z,S,Z

ETABLE,STRN_R,EPTO,X

ETABLE,STRN_T,EPTO,Y

ETABLE,STRN_Z,EPTO,Z
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ETABLE,EQV_S,S,EQV

ETABLE,EQV_NE,EPEL,EQV

ETABLE,EQV_NP ,EPPL,EQV

ETABLE,ENER,SENE

ETABLE,VOL,VOLU

*GET,MAXI,ELEM,O,COUNT

*CFOPEN,NONLIN20

TENER=O

*DO,KK, 1,MAXI

*GET,SS,ELEM,KK,ETAB,EQV_S

*GET,SNE,ELEM,KK,ETAB,EQV_NE

*GET,SNP,ELEM,KK,ETAB,EQV_NP

*GET ,SX,ELEM,KK,ETAB,STRS_R

*GET,SY,ELEM,KK,ETAB,STRS_T

*GET,SZ,ELEM,KK,ETAB,STRS_Z

*GET,SNX,ELEM,KK,ETAB,STRN_R

*GET,SNY,ELEM,KK,ETAB,STRN_T

*GET,SNZ,ELEM,KK,ETAB,STRN_Z

*GET,ENERD,ELEM,KK,ETAB,ENER

*GET,VOLUME,ELEM,KK,ETAB,VOL

TENER=TENER+ENERD

FTENER=TENER

SN=SNE/l.3+SNP/l.5

*VWRITE,KK,SS,SN,SX,SZ,SY,SNX,SNZ,SNY,FTENER

(X,F6.1 ,E 15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X,E15.8,3X

,EI5.8,3X)

*ENDDO

*CFCLOS

FINISH
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B.5 ANSYS Commands for Plastic Collapse Load Estimations of Thick Walled

Cylinders in Large Deformation

/BATCH ,LIST

ITITLE, ELASTIC PLASTIC ANAYSIS OF THICK WALLED CYLINDER

SUBJECTED TO INTERNAL PRESS URE

IFILNAM,CYLINDER

ICONFIG,NRES,10000

/PREP7

RO=8

RN=4

ET,I,42",1

MP,EX,1 ,30E6

MP,NUXY ,l ,O.3

!DEFINE A BILINEAR HARDENING PLASTICITY CURVE USING KINH

TB,KINH ,1,1,2

TBPT"O.OO1,30000

TBPT,,0.004,30090

!SET THE AXLES LABELS FOR THE STRESS-STAIN CURVE PLOT

IAXLAB ,X,STRAIN

IAXLAB,Y,TRUE STRESS (PSI.)

TBPL,KINH,l

!MODELLING

K,l,RN

K,2,RO

K,3,RO,.4

K,4,RN,.4

A,1,2,3,4

ESIZE,.4
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AMESH,ALL

ISOLU

D,ALL,UY,O

NLGEOM,ON

!NULL LOAD TO GIVE GRAPH STARTING AT ZERO

TIME,1E-6

LSWRlT

P_INT=60000

TIME,P_INT

KBC,O

DELTIM,S, 1,20

AUTOTS,ON

PRED,ON

NSEL,S,LOC,X,RN

SFL,4,PRES,P_INT

SFL,3,PRES,-(P_INT*RN**2)/(RO**2-RN**2)

NSEL,ALL

LSWRIT

OUTRES,ALL,LAST

SOLVE

FINl
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8.6 ANSYS Commands for Plastic Collapse Load Estimations of Thick Walled

Cylinders in Small Deformation

/BATCH,LIST

ITITLE, ELASTIC PLASTIC ANAYSIS OF THICK WALLED CYLINDER

SUBJECTED TO INTERNAL PRESSURE

IFILNAM,CYLINDER

ICONFIG,NRES, IOOOO

/PREP7

RO=8

RN=4

ET,I,42",1

MP,EX,I,30E6

MP,NUXY,I,0.3

!DEFINE A BILINEAR HARDENING PLASTICITY CURVE USING KINH

TB,KINH, 1,1,2

TBPT,,0.001,30000

TBPT,,0.004,30090

!SET THE AXLES LABELS FOR THE STRESS-STAIN CURVE PLOT

IAXLAB,X,STRAIN

IAXLAB,Y,TRUE STRESS (PSI.)

TBPL,KINH,1

!MODELLING

K,I,RN

K,2,RO

K,3,RO,.4

K,4,RN,.4

A,I,2,3,4

ESIZE,.4
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AMESH ,ALL

/SOLU

D,ALL,UY ,O

!NULL LOAD TO GIVE GRAPH STARTING AT ZERO

TIME,lE-6

LSWRIT

P_INT=60000

TIME,P _INT

KBC ,O

DELTIM ,5,1,20

AUTOTS,ON

PRED ,ON

NSEL,S ,LOC ,X,RN

SFL,4,PRES,P_!NT

SFL,3,PRES,-(P_INT*RN **2)/(RO **2-RN **2)

NSEL,ALL

LSWRIT

OUTRES,ALL,LAST

SOLVE

FINI
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B.7 ANSYS Macros for J-Integral Calculation of Thick Walled Cylinders with

Circumferential Flaw (Large Deformation)

!BATCH,LIST

ITITLE,2D AXISYMMETRIC CIRCUMFERENTIAL CRACKED SPECIMEN

!LARGE DEFORMATON NONLINEAR ANAL YS

IFILNAM, CYLINDER

ICONFIG,NRE S, IOOOO

/PREP7

*SET,YM,30E6

*SET,NU,0.3

*SET ,WT ,4

*SET ,RN,4

*SET,CK,2

*SET,HT,4

*SET ,RO,(RN+WT)

ET,1,82,0,0, 1

MP,EX,I ,YM

MP,NUXY ,I ,NU

TB,KINH ,1,1,2

TBPT,,0.001,30000

TBPT ,,0.1,35940

IAXLAB ,X,STRAIN

IAX LAB, Y ,TRUE STRESS (PSI.)

TBPL,KINH,1

!MODELING

K,I,(RN+CK) ,O

K,2,RO ,0

K,3,RO ,HT

K,4,RN ,HT
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K,S,RN,O

L,1,2

L,2,3

LESIZE,2",8

L,3,4

LESIZE,3",6

L,4,S

LESIZE,4",10,0.2

L,S,l

ESIZE,,6

KSCON,1,0.IS*CK,I,8

AL, 1,2,3,4,S

AMESH,l

OUTPR,ALL

FINI

/SOLU

ANTYPE,O

NLGEOM,ON

NROPT,FULL"OFF

OUTRES,ALL,ALL

NCNV,1,20

NSEL,S,LOC,X,O

NSEL,R,LOC,Y,O

D,ALL,UX,O

NSEL,ALL

DL,l,l,SYMM

NSEL,S,LOC,Y,HT

D,ALL,ROTX,O

D,ALL,ROTY,O

NSEL,ALL
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*DO,I,O,20000,200

PI=lOO+l*I

SFL,3,PRES,-(PI*RN**2)/(RO**2-RN**2)

SFL,4,PRES,PI

SAVE

SOLVE

*ENDDO

FINI

/POSTl

! J-INTE MACRO FILE TO CALCULATE THE J-INTEGRAL

ETABLE,ENER,SENE

ETABLE,VOL,VOLU

SEXP,W,ENER,VOL,l,-l

PATH,TEST,4

PPATH,l,7l

PPATH,2,l5l

PPATH,3,l27

PPATH,4,l4

PDEF,W,ETAB,W

PCALC,INTG,J,W,YG

*GET,JA,PATH,O,LAST,J

PDEF,CLEAR

PVECT,NORM,NX,NY,NZ

PDEF,SX,S,X

PDEF,SY,S,Y

PDEF,SXY,S,XY

PCALC,MULT,TXl,SX,NX

PCALC,MULT,TX2,SXY,NY

PCALC,ADD,TX,TXl,TX2

PCALC,MULT,TYl,SXY,NX
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PCALC,MULT,TY2,SY,NY

PCALC,ADD,TY,TYI,TY2

*GET,DX,PATH,O,LAST,S

DX=DX/IOO

PCALC,ADD,XG,XG,,,,-DX/2

PDEF,UXI,U,X

PDEF,UYI,U,Y

PCALC,ADD,XG,XG""DX

PDEF,UX2,U,X

PDEF,UY2,U,Y

PCALC,ADD,XG,XG",,-DX/2

C=(IIDX)

PCALC,ADD,CI,UX2,UXI,C,-C

PCALC,ADD,C2,UY2,UYI,C,-C

PCALC,MULT,CI,TX,CI

PCALC,MULT,C2,TY,C2

PCALC,ADD,CI,CI,C2

PCALC,INTG,J,CI,S

*GET,JB,PATH,O,LAST,J

JINT=(2*(JA-JB))

PDEF,CLEAR

FINI
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B.8 ANSYS Macros for J-Integral Calculation of Thick Walled Cylinders with

Circumferential Flaw (Small Deformation)

/BATCH ,LIST

ITITLE,2D AXISYMMETRIC CIRCUMFERENTIAL CRACKED SPECIMEN

!CIRCUMFERENTIAL FLAW NONLINEAR ANAL YS - SMALL DEFORMAnON

IFILNAM,CYLINDER

ICONFIG,NRES,10000

IPREP7

*SET,YM,30E6

*SET ,NU,0.3

*SET ,WT,4

*SET ,RN,4

*SET ,CK,2

*SET,HT,4

*SET ,RO,(RN +WT)

ET,l ,82,0,0,1

MP,EX,l ,YM

MP,NUXY,l,NU

TB,KINH, 1,1,2

TBPT,,0 .001,30000

TBPT ,,0.1,35940

IAXLAB ,X,STRAIN

IAXLAB,Y,TRUE STRESS (PSI.)

TBPL ,KINH ,l

!MODELING

K,1,(RN+ CK),O

K,2,RO,0

K,3,RO,HT

K,4,RN,HT
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K,5,RN,0

L,I,2

L,2,3

LESIZE,2",8

L,3,4

LESIZE,3",6

L,4,5

LESIZE,4", 10,0.2

L,5,1

ESIZE,,6

KSCON,1 ,0.15*CK,1,8

AL,I,2,3,4,5

AMESH,1

OUTPR,ALL

FINI

/SOLU

ANTYPE,O

NROPT,FULL"OFF

OUTRES,ALL,ALL

NCNV,I,20

NSEL,S,LOC,X,O

NSEL,R,LOC,Y,O

D,ALL,UX,O

NSEL,ALL

DL,I,I,SYMM

NSEL,S,LOC,Y,HT

D,ALL,ROTX,O

D,ALL,ROTY,O

NSEL,ALL

*DO,I,0,20000,200
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PI=100+1 *1

SFL,3,PRES,-(PI*RN**2)/(RO**2-RN**2)

SFL,4,PRES,PI

SAVE

SOLVE

*ENDDO

FINI

/POSTl

! J-INTE MACRO FILE TO CALCULATE THE J-INTEGRAL

ETABLE,ENER,SENE

ETABLE, VOL,VOLU

SEXP,W,ENER,VOL,I,-1

PATH,TEST,4

PPATH,1,71

PPATH,2,151

PPATH,3,127

PPATH,4,14

PDEF,W,ETAB,W

PCALC,INTG,J,W,YG

*GET,JA,PATH,O,LAST,J

PDEF,CLEAR

PVECT,NORM,NX,NY,NZ

PDEF,SX,S,X

PDEF,SY,S,Y

PDEF,SXY,S,XY

PCALC,MULT,TX1,SX,NX

PCALC,MULT,TX2,SXY,NY

PCALC,ADD,TX,TX1,TX2

PCALC,MULT,TY1,SXY,NX

PCALC,MULT,TY2,SY,NY
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PCALC,ADD,TY,TY1,TY2

*GET,DX,PATH,O,LAST,S

DX=DXllOO

PCALC,ADD,XG,XG",,-DXl2

PDEF,UX1,U,X

PDEF,UY1 ,U,Y

PCALC,ADD,XG,XG""DX

PDEF,UX2,U,X

PDEF,UY2,U,Y

PCALC,ADD,XG,XG",,-DXl2

C=(l/DX)

PCALC,ADD,C1,UX2,UX1,C,-C

PCALC,ADD,C2,UY2,UY1,C,-C

PCALC,MULT,C1,TX,Cl

PCALC,MULT,C2,TY,C2

PCALC,ADD,C1,C1,C2

PCALC,INTG,J,C1,S

*GET,JB,PATH,O,LAST,J

JINT=(2*(JA-JB»

PDEF,CLEAR

FINI
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