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let [ := [uy,wz) C U. and assume that f(I) is precompact and that f has no fived point

distinct from uy and uy tn [. Then cither

a) there cxists an entire orbit {u, }°° 0 in I such that x,+, > x,, ¥Yn € N,
. + :

N=--nC

and lim,,_, _ x, = uy and lim,,_ ., 2, = uy, or

(b) there exists an entive orbit {y,}7 of f in I such that y,+1 < y,. Vn € N,

n=-—oc

and 1Ny, ..o 1y = Uy and lim, o = uy.

Recall that a subsct A of E is said to be order convex if [u,v] € [ whencver

u, v € N satisfy v < v.

Definition 1.1.2. Let U C P be a nonempty. closed and order conver set. A contin-
wous map [ : U — U is said to be subhomogencous if f(Ax) > Af(x) for any r € U
and X € [0, 1]: strictly subhomogencows if f(Ar) > Af(x) for any v € U with x> 0
and X € (0,1); strongly subhomogeneous if f(Ax) > Af(x) for any x € U with 2> 0

and X € (0,1).

Let M he a metric space with metric d and f : A/ — A a continuous map. f
is said to be asymptotically smooth if for any nonempty closed bounded set B C A
for which f(B) C B, there is a compact set J C B such that J attracts B, that is,
lim sulij{d(f”(;v), J)} = 0. The omega limit sct of z € M is defined by w(x) = {y €
n—00 1
M : fe”*'(:lr) — y, for some ny — oo}. Denote the Fréchet derivative of f at w = a

by Df(a) if it exists, and let »(Df(a)) be the spectral radius of the lincar operator

Df(a): E— E.

Theorem 1.1.2. [67, THEOREM 2.2.4] Let U be a closed and order convex subset of
an ordered Banach space E with nonempty positive cone, and f : U — U continuous
and monotone. Assume that there exists a monotone homcomorphism h from [0,1]

onto a subset of U such that






Next we briefly review monotone delay differential equations. Let r denote the

maximal delay appearing in the equation, and space C be a sct of all continuous
functions from [—r,0] to R™ with cone Cy = {¢p € C : ¢(8) > 0,-r <8 < 0}. The
notation <, <, <« denote the order relations ou C generated by C'.. Let D be an open
subsct of C and f : D — R" is continuous. Then we say f is quasimonotone if f
satisfies the following condition:

(Q) fi(@) < fi(¥) whenever ¢ < 90 and ¢;(0) = +;(0) holds for somne 7.

For a general nonautononous linear delay differential equation
Z'(t) = L(t)x, (1.1)

where L : R — L(C,R") is continuous and L(C,R") iy the space of bounded linear
maps from ' into R*. Then L(t) satisfies (@) condition if and only if the following
condition holds:

(K) Li(t)¢ > 0 whenever ¢ > 0 and ¢;(0) = 0, where L; ()¢ denotes the ith component

of L(t)é.

Lemma 1.1.1. [52, LEMMA 5.1.2] Condition (K) holds if and only if there exists

a;(t) for 1 < i < n and positive Borel measures 1;;(t) for 1 <i,j <n such that
nooa0
Lt = 0.0 + Y [ 0,06, (12)
=17

and 7;;(t){0} = 0. Moreover, if (K) holds then the representation (1.2) is unique and

a;(t) and 1;;(t) are continuous functions of t.
Lemma 1.1.2. [52, LEMMA 5.3.2] Let (K) and the following two conditions hold:

(R) For each j for which r; > 0. there exists i such that for all t,n;;(t)([—ri, —1; +

€]) > 0 for all small ¢ > 0.




ot

(I) The matriz A(L)(t) defined by A(L)(t) = col(L(t)é,.... L(t)é,) is irreducible.
If ¢ > 0 and ty are given, then the solution of (1.1) x(t,tg, @) > 0 for t > tg+ nr.

Let D be an open subset of C., and f: D — R” be continuously differcntiable.

We say delay differential equation

(1) = flz) (1.3)

is cooperative if D is order convex and df (¢) satisfies (K) for cach ¢ € D. System

(1.3) is cooperative and irreducible if it is cooperative and the following  old:
(1) df (¢) satisfics (I) for cach ¢ € D.
(2) Forcvery j for which r; > 0, there exists  such that for all ¢ € D, n;;(¢)([—rj, —r;+
€)) > 0 for all small € > 0.
Theorem 1.1.4. [52, THEOREM 5.3.4] If (1.3) is cooperative and irreducible in D,
and ¢, € D satisfy ¢ <, then x(t,¢) K x(t, ) for all t > nr.

In order to address the stability of the cquilibria of (1.3), we assume function f is
continuously differentiable and cooperative in D. Suppose ¢ is an equilibrium of (1.3),
that is, v € R", is such that ¥ := (v,...,v) € D and f(0) = 0. Then the variational

systen corresponding to ¢ is
y'(t) = Ly, L =df(0). (1.4)

Let y(t) = eMu be a solution of (1.4), where v € R", then A must be a root of
DetA(A) = 0. where A(A) = A — A(A) and A(\)yj = a6y + [*, edn;(6). Define

the stability modulus of L as

s(L) = max{ReA : DetA(\) = 0}.






by the following distance function:

d(u, w) := ; AR i<k |u2(kl) — u}(I)[, Yu, w € C,
where | - | denotes the usual norm in the space R, then (C,d) is a metric space.
Define the reflection operator R by R[u|(x) = u(—=z). Given any y € H, define the
translation operator Ty, by T [u}(x) == u(x — y). Let 3> 0in R¥ and Q : C3 — C;
be given. In order to present the theory developed in [28, 27, 29}, we introduce the

following assumptions:

(A1) Q[R[u]] = R[Q]]. T, 0 Q[u] = Qo T,[u), Vu € Cy, y € H.

(A2) Q:Cy — Cy is continuous with respect to the compact open topology.
(A3) @Q is order preserving in the seuse that Qu] > Q[v] whenever « > v in Cy.

(Ad) Q: ]Rfj — Rg admits cxactly two fixed points 0 and 3. and lun, ... Q™[] = 8

for any a € R} with 0 < o < 4.

Given a function ¢ € Cg and a bounded interval I = [a,b] C R, we define a function
o; € C(I,R¥) by ¢;(x) = ¢(x). Morcover. for any subsct D of Cy, we define Dy =

{9, € C(I1,R¥) : ¢ € D}. We need the following weak compactiness assumption:

(A5) For any ¢ > 0, there exists [ = [(§) € [0,1) such that for any D C Cg and any
interval I = [a, ] of the length &, we have o(Q[D)];) < la(DD;). where a is the

Kuratowski measure of noncompactness on the Banach space C(I.R¥).

Note that the standing assumptions (Ad) and (A5) arc weaker than those (A5)

and (AG) in [28] and [27], respectively. According to [29], all the results in [28, 27] arc

still valid under the above assumptions (A1)-(A5).



Theorem 1.2.1. [28, THEOREM 2.11, THEOREM 2.15 AND CORALLARY 2.16]

Supposc that Q satisfies (A1)-(A5). Let ug € Cg and wy, = Qtty—1] forn > 1. Then

there is a real number ¢* such that the following statements are valid:

(i) For any ¢ > c*, if 0 < uy < 3 and uo(x) = 0 for & outside a bounded interval,

then liny,_ac 2> ne Un () = 0.

(ii) For any ¢ < ¢* and any ¢ € [0.7] with o > 0. there cxits v, > 0 such that if

up(x) > o for @ on an interval of length 2ry, then iy, oo jsj<ne Un(x) = 3. If, in
addition, Q is subhomogeneous on Cy, then v, can be chosen to be independent

of o >0

We call ¢* in the above theorem the asymptotic speed of spread (in short. spreading

speed) of the map Q on C;z. In order to estimate the spreading speed c*, a lincar

operator approach was developed in [28]. Let AT : € — C be a lincar operator with

the following propertics:

(B1)
(B2)

(B3)

M is continuous with respect to the compact open topology.
M is a positive operator, that is, M[u] > 0 whenever 1 > 0.

M satisfies (A5) with C; replaced by any subset of C consisting of uniformly

bounded functions.
M{R[u]) = R[M[u]], T,[M[u]) = M[T},[u]],Vu € C,y € H.

Al can be extended to a linear operator on the lincar space C of all functions

u € C(H, R*) having the form

wlr) = v (x)e™” +oy(a)e!* o v € Copy iy € Rox € H
/
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Then we can use the following result to estimate the spreading speed of Q.

Theorem 1.2.2. [28, THEOREM 3.10] Let Q be an operator on Cy satisfying (A1)-
(A5) and ¢* be the asymptotic speed of spread of Q. Assume that the lincar operator
M satisfics (B1)-(B7). and either M has compact support or the infimum of ¥(u) is
attained at some finite value p* and V(+o00) > V(u*). Then the following statements

are valid:
(1) If Qlu] < Mu] for all w € Cg, then ¢ <inf o V().

(2) If there is some n € R¥, with n > 0, such that Qu] > M[u] for any u € C,),

then ¢ > inf,0 W)
For the existence and nonexistence traveling waves, we have the following result:

Theorem 1.2.3. [28, THEOREMS 4.1 AND 4.2] Let Q satisfics (A1)-(A5), and let

¢* be the spreading speed of Q. Then
(1) For any ¢ < ¢*, Q has no traveling wave W{x — en) connecting 3 to 0.

(2) For any ¢ > c*, Q has a traveling wave W {x — cn) connecting 3 to 0 such that

W (x) is nondecreasing in .

Recall that a family of mappings {Q;}i>0 is said to be an T-periodic semiflow on

spacce € provided that it has the following properties:
(i) Qol¢] =¢. Vo€ C.
(i) Qro Qo] = Qurle]. Vo € C.

(iii) Q¢[¢] is continuous jointly in (t.¢) on [0,00) x C.

The mapping Qy is called the Poincaré map associated with this periodic semiflow.
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Based on the theory of spreading speeds and traveling waves for periodic semiflows
in the monostable case [27], we have the following result on the existence of spreading

speeds for periodic semiflows.

Theorem 1.2.4. [27, THEOREM 2.1] Let {Q}i>0 be a T-periodic semiflow on C,
with two r-independent T-periodic orbits 0 < u*(t). Suppose that the Poincare map
Q = Qr satisfies all hypotheses (A1)-(A5) with 3 = u*(0), and Q, satisfies (A1)
for any t > 0. Let ¢* be the asymptotic speed of spread for Qrp. Then the following

statements are valid:

(1) For any c > ‘—,—, if veCywith < v <K, and v(x) =0 for x outside a bounded

interval, then limy_ o o>+ [v](x) = 0.

(2) For any ¢ < ’—T— and any o € [0, r] with o > 0, there exists a positive number
re > 0 such that if v € C4 and v(x) > o for  on an interval of length 2r,.
then By g ej<ic(Qelv] () — w* (1)) = 0. If, in addition, Qp is subhomogeneous

on Cg, then r, can be chosen to be independent of o > 0.

We say that W (t,2 — ct) is a periodic traveling wave of the T-periodic semiflow
{Q1}+>0 if the vector-valued function W(t, z) is T-periodic in t and Q,[1(0,-)](x) =
W(t.a — ct), and that W(t.z — ct) councets u*(t) to 0 if W(t,—o0) = u*(t) and
W(t,+o00) = 0 uniformly for ¢+ € [0,7]. As usual, we call ¢ the wave speed, and

W(t, z) the wave profile.

Theorem 1.2.5. [27, THEOREMS 2.2 AND 2.3] Let {Q:}i>0 be a T-periodic semi-
flow on C, with two x-independent T-periodic orbits 0 < u*(t). Suppose that the
Poincaré map Q) = Qr satisfies all hypotheses (Al1)-(A5) with 3 = u*(0). Let c* be

the asymptotic speed of spread for Qp. Then the following statements are valid:

(1) For any 0 < ¢ < (T {Qi}i=0 has no T-periodic traveling wave W (t,z — ct)

connecting w*(t) to 0.
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(2) If. in addition, Q, satisfies (A1) and (A3) for each t > 0. then for any ¢ > 5,
{Qi}is0 has an T-periodic traveling wave W (t, x — ct) connecting u*(t) to 0 such

that W(t, z) is continuous. and nonincreasing in z € R.

1.2.2 Bistable waves

Let X be an ordered Banach space with the norm || - ||.v and cone X* with nonempty
interior, and C be the sct of all bounded and continuous function from H to & cquipped
with the compact open topology, wliere H = R or Z.

Lot 3 € intX* and Q be a map from Cy to Cg with Q(0) = 0 and Q(f) = 5. Let
E be the set of all fixed points of Q restricted on X3, Assume that Q satisfies the

following assumptions:

(C1) (Translation invariance) T, o Ql¢] = Q o T,[¢], V¢ € Cy, y € H. where T}, is
defined by T, [é}(z) = o(r — y).

(C2) (Continuity) Q : C3 — Cp is continuous with respect to the compact open

topology.

(C3) (Monotonicity) Q is order preserving in the sense that Q¢ > Q[v'] whenever

¢ > in Cy.

(C4) (Compactness) Q : Cy — Cy is compact with respeet to the compact open

topology.

(C5) (Bistability) Two fixed points 0 aud 3 are strongly stable from above and below.
respectively. for the map Q : Xy — X3, that is, there exist a number 4 > 0 and

utit. vectors ey and ey € int(X) such that

Qnei] < nev, QB —neg] > 8 —nea, ¥y € (0,8],



and the sct E \ {0, 5} is totally unordered.

(C6) (Counter-propagation) For cach a € E\ {0,5}, ¢* (. 3) + ¢4 (0, ) > 0, where
c* (a, ) and ¢ (0, ) represent the leftward and rightward spreading speeds of

monostable subsystem {Q"},,>q restricted on [, F]¢ and [0, alc, respectively.

Theorem 1.2.6. [13, THEOREM 3.1] Assume that Q) satisfies (C1)-(C6). Then there
exists ¢ € R such that the discrete semiflow {Q" },>1 admits a nondecreasing traveling
wave with speed ¢ and connecting 0 to 3, that is, there exists a nondecreasing function
¢ € C sueh that Q"[¢](v) = ¢(x — en), Vo € H,n > 0 with ¢(—o0) := J.EIPOOL‘O('T) =0
and p(+00) = Ili'llgocp(;r) = /.

Let w € T be a positive number, where 7 = R* or Z*, and {@Q;};e7 be an w-time

periodic semiflow on a metric subspace of C with the Poincaré map @,,. Then for

time-periodic scmiflow, we have the following result.

Theorem 1.2.7. [13, THEOREM 3.3] Let 3(t) be a strongly positive w-time periodic
orbit of {Qq}ier restricted on X. Assume that Q = Q,, satisfies the assumptions
(C1)-(C6) with 3 = B(0). Then {Qi}ier admits a traveling wave U(t,x + ct) with
U(t,—o0) = 0 and U(t,00) = B(t) uniformly for t € T. Furthermore, U(t,x) is
nondecreasing in x € R.

Let 7 > 0 be a fixed real number. Choose X := C([-7,0],R), Y := C(R,R)

and C := C([-7,0],)). Consider the cxistence of the bistable traveling waves of the

following and time-delayed reaction-diffusion cquation:

] - 2 .
WD oD | @) >0, 2 e
- o (1.6)

ug = ¢ €C, 96[—770]’
where f : C — Y is Lipschitz continuous and for cach t > 0, u; € C is defined by

w(f,2) == u(t +6,z), Vo € [-1,0], z € R.
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Remark 1.2.1. Theorems 1.2.6-1.2.8 are still valid provided that the ordered fized
points 0 < 3 are replaced by two ordered fired points 31 < P2 in X, and Xz and Cg

are replaced by (51, o) v and (31, Pa)e, respectively.

1.3 Basic reproduction ratios for periodic systems

The basic reproduction ratio Ry is a very important concept in study the spread of
communicable discase, which is defined as the expected number of sccondary cascs
produced in a completely susceptible population by a typical infective individual. Tn
many cascs, it is expected to be a threshold parameter, that is, one may cxpeet the
disease can invade the susceptible population if By > 1, and the discasc may dic out
if Ry < 1.

In this section, we present the theory of basic reproduction ratios for compart-
mental epidemic models in periodic environments which was developed in {3, 59]. We
consider a heterogeneous population whose individual can be divided into two types:
infected compartments, labcled by ¢ = 1,2,...,m, and uninfected compartments,

labeled by i = m + 1,...,n. Define X, to be the set of all disease-free states
Xy={z>0:2,=0Vi=1,2,...,m}.

Let F;(t, z) be the input rate of newly infected individuals in the i—th compartment,
Vi (t,z) be the input rate of individuals by other means(for example, births, immi-
grations), and V; (¢, z) be the rate of trausfer of individuals out of compartment 7 (for
example, deaths, recovery and cmigrations). Thus, the discase transmission model in
a periodic environment is governed by a periodic ordinary differential system:

dz;

i Fi(t,x) = Vi(t,x) := filt,z),i=1,...,n, (1.7)







where J(t) is an (n —m) x m matrix.

Let Y(¢,s),t > s, be the evolution operator of the lincar T-periodic system

dy _

o= V(y

That is, for cach s € R, the m x m matrix Y (t.s) satisfies

%Y(t, s) = V()Y (t,5),Vt > 5,Y(s,5) = I,

where [ is the m x m identity matrix. Set Cp be the ordered Banach space of all
T-periodic functions from R to R, which is cquipped with the maximum norm and
the positive cone Cf 1= {¢ € Cr : ¢(t) > 0,Vt > 0}. Then we can define a lincar

operator L : Cp — Crp by

L{o)(t) = /00 Y{(t,t —a)F(t —a)o(t —a)da,Vt e R, ¢ € Cr.

0

According to [3, 59], we call L the next infection operator, and define the spectral

radius of L as the basic reproduction ratio
Ry = p(L)

for the periodic epidemic model (1.7).
The following result shows that Ry is a threshold parameter for the local stability

of a discasc-free periodic solution z%(t).

Theorem 1.3.1. [59, THEOREM 2.2] Assume that (E1)-(E7) hold. Then the follow-

ing statements are valid:

(1) Ry =1 if and only if p(®r_v(T)) = 1.




(2) Ry > 1 if and only if p(QPp_yv(T)) > 1.

(3) Ry < 1 if and only of p(Pr_y(T)) < 1.
Thus, x°(t) is asymptotically stable if Ry < 1, and unstable if Ry > 1.

Let U(t, s, M)t > s,s € R, be the evolution operator of the following lincar system

F(t)]u teR.

du V() + -

i

Then the following result will be used in our numerical computation of Ry.

Theorem 1.3.2. [59, THEOREM 2.1] Let (E1)-(E7) hold. Then the following state-

ments are valid:

(1) If p(U(T,0,))) = 1 has a positive solution Ay, then Ay is an eigenvalue of L,

and hence Ry > 1.
(2) If Ry > 1, then A\g = Rq is the unique solution of p(U(T,0,A)) = 1.

(3) Ry =0 if and only if p(U(T,0,A)) <1 for all A > 0.

1.4 Chain transitive sets
Let X be ametric space with metric d, and f: X — X be a continuous map.

Definition 1.4.1. Let A C X be a nonempty, invariant set for f. We say A is
internally chain transitive if for any a,b € A and any € > 0, ty > 0, there is a finite
sequence {x] = a, T2, o, Ty 1, Ty = b} with 2y € A and t; > g, 1 <1 < m — 1, such

that d(f(x;),xi4) <€ foralll <i<m—1.
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Theorem 1.4.1. [20, LEMMA 2.3] Let f: X — X be a continuous-map. Then the
omega (alpha) limit set of any precompact positive (negative) orbit is internally chain

transitive.

Recall that a nonempty invariant subset M (i.e.,f(M) = M) of X is said to be
isolated for f: X — X ifit is the maximal invariant set in some neighborhood of itself.

The stable set of M is defined by W$(M) := {z € X : lim, o d(f™(z), M) = 0}.

Theorem 1.4.2. [20, THEOREM 3.1] Let A be an attractor and C' a compact inter-

nally chain transitive set for f: X — X. [f CONW*(A) # 0, then C C A.

Let A and B are two isolated invariant sets. Then the set A is said to be chained to
B, denoted A — B, if there exists a full orbit through @ ¢ AU B such that w(z) C B
and o(2) C A. A finite sequence {M, ..., My} of invariant sets is called a chain if

My — My — ... — M. The chain is called a cycle if M, = M.

Theorem 1.4.3. [20, THEOREM 3.2| Assume that each fized point of f is an isolated
tnwvartant set, and there is no cycle chain of fived point of f. Then any compact

internally chain transitive set s a fized points of f.



Chapter 2

Bistable Waves in Competitive

Recursion Systems

2.1 Introduction

Population dispersal is a very important topic in spatial ccology. In order to consider
the cffects of a dispersal process on cvolution dynamics, ordinary differential equations
or difference cquations with spatial structure are usually used. In this chapter, we

consider the following discrcte-time two species competition model:

N (14 r)palz—y o () d
er—l(w) /l_}_,l(p“(’[‘—y)‘f‘alqn r — ))Al(/)duy (21)

)
(

N (L4 r2)gn(r —y) - (1) da
01(0) = | Tt S el O

where p,(r) and g,(z) denote the population densitics of two species at time n
and position a, respectively; ki(y) represents the dispersal kernel of two species
and [ ki(y)dy = 1, [ eVki(y)dy < oo, for all & € R, = 1,2. We assumec that

all paramneters are positive constants and tlie kernel k; has the symmetric property

20
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ki(—y) = ki(y), which implics that the dispersal is isotropic and that the growth and
dispersal properties are the same at cach point.
There have been extensive investigations on traveling wave solutions of monotone

discrete-time recursion systeins

Uns1 = Qun],n >0, (2.2)

k

where w,(r) = (ul(2),...,uf(x)) is a vector-valued function on R, and @ is a trans-
lation invariant and order-preserving operator with monostable or bistable structure.
We refer to [7, 21, 34, 35, 62, 63] and references therein. It is well known that the
change of variables |

Up = Pn,y Un = 1- n,
converts system (2.1) into the following cooperative system:

/ _ (14 r)un(z —y) s
Un+1(2) —/R 1+ m(n(r — ) + ar(1 — vn(z — y)))AI(U)dy-,

agrat, (& —y) + valz — y)
n xr) = k d ’
Ung1 () /R L4+ ro((1 — vp(r — y)) + agun(x — ) 2(y)dy

(2.3)

which is order preserving with respect to the standard componentwise ordering in the
relevant range 0 < u,, < 1,0 < v, < 1. Note that system (2.1) has four possible

constant cquilibria: (0,0), (0, 1), (1,0), and (p*, ¢*), where

e 1—(1,1 - 1—(1,2
p = i ([ - ?
1—'(1r1(L2 1 — a1y

and hence, system (2.3) has four cquilibria: E® = (0,1), E' = (0,0), £* = (1,1),
and E?® = (u*,v*), wherc u* = p*,v* = 1 —¢*. Tt is casy to see that the positive
coexistence equilibrium exists if and only if (1 — ay)(1 — ap} > 0, and otherwisc it is

hiologically irrelevant.



For the spatially homogencous system associated with (2.1):

(L+7r)pn

1+ ri(p, + a1qn)’
(1 + 7'2)(117

1+ 7'2((]71, + (ngn)’

Pn+1 =
(2.4)

Gn+1 =

Cushing et al. gave a complete classification of its global dynamics (sce [8, Lemma
3]). Weinberger. Lewis and Li [63] obtained sufficient conditions for the lincar deter-
minacy of sprcading speed of system (2.2) with the monostable structure, and applied
their results to system (2.1) in a companion paper [26]. Recently, Lin, Li and Ruan
[30] established the existence of monostable traveling waves connecting unstable equi-
librium (0,0) and stable equilibrium (p*, ¢*), and the spreading speed for system (2.1)
with ay,a; € (0,1). If a1,a2 € (1, +o0}, we know from [8, Lemma 3] that the equi-
librium (p*,¢*) is a saddle, (0,1) and (1,0) arc stable, and (0,0) is unstable for the
spatially homogeneous system (2.4). Further, there exists a separatrix I' such that
all orbits of system (2.4) below I' converge to (1,0), while all orbits of system (2.4)
above I' converge to (0,1). We are interested in the existence of bistable traveling
waves conuecting (0,1) and (1,0), and their global stability with phase shift. Clearly,
it suffices to study traveling waves connceting E' to E? for system (2.3). In order
to obtain bistable traveling waves, we appeal to the theory of bistable waves recently
developed in [13] for monotone semiflows, which allow the existence of multiple in-
termediate unstable equilibria in between two stable ones. For the global stability of
traveling waves, we usce a dynamical system approach, as illustrated in [67, Theorem
10.2.1] and {65, Theorem 3.1].

The rest of this chapter is organized as follows. In scetion 2.2, we cstablish the
existence of bistable traveling waves by verifying the abstract assumptions in [13]. In

scction 2.3, we use Theorem 1.1.2 and the method of upper and lower solutions to
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prove the global stability of traveling waves and their uniqueness up to translation. In

section 2.4, we present some numierical simulations to illustrate our analytic results.

2.2 Existence of bistable waves

In this scction, we establish the existence of bistable traveling waves for system (2.3).
We start with some notations.

Let C := C(R,R?) be the set of all bounded and continuwous functions from R
to R? equipped with the compact open topology and cone C, = {(¢1,¢2) € C :
¥i(r) > 0,V € R,i = 1,2}. For any a,b,7 € R? with a < b and 7 > 0, we define
Coo={¢eC:r>y>0}and [a,b), :={yp€C:b>v > a}.

Since we arc interested in bistable traveling waves, throughout this chapter we
assume that a; > 1 and ay > 1. It is casy to scc that the existence of traveling waves
connecting two stable equilibria (0,1) and (1,0) in system (2.1) is cquivalent to that of
traveling waves connecting two ordered stable equilibria E1 and E? in system (2.3).
Further, there are two unordered unstable equilibria F° and E® between these two
stable ones.

Define an operator Q = (@), Q2) on C by

o) = (1+r)ulz —y) )
Qluil(w) = [ rre S )

Quluw,v)(x) = / aarou(® —Y) YT ZY) gy,

g 1 +7r2((1 —v(x —y)) + au(z —y))

Then system (2.3) can be expressed as

Unii(x) = QUJ(x), U, = (wn,vy), n 2 0.
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Lemma 2.2.1. The map Q satisfies (C1)-(C6) in Theorem 1.2.6 with 8 = E* and

E={E"E' E? E%.

Proof. Tt is casy to verify @ satisfies (C1)-(C4). It remains to prove (C5) and (C6).

Let Q be the restriction of Q to [0, 5], that is, Q= (@1, @) and

-~ . (1 + Tl)’u‘
Q;[u, v] 1+ (w4 a;(1 - v))
@z[lt, ,U] N ATl + U

ST+ ((1—v) +agu)’
Then @ has four fixed points E', i = 0,1,2,3, and we nced to show that the fixed
point E' = (0,0) is stable from above and E? = (1,1) is stable from below. The

Jacobian matrices of Q at E' and E? arc

1+7 0 1 ajry
1 T+r1  14r
JE'I — +ayr) 7 JE2 _ +r +ry
ggry 1 0 _Atre
1479 1+r2 1+azr:
i ; cthe . gt Sy . _ _l4r . — _1
It is obvious that Jgi has two positive cigenvalues Ay = o <1 and Ay = 7 < L

If A > Ay, then Jii has a unit cigenveetor ey > 0 associated with Ap such that
JEI (PQ) = /\16() < €g;

IfF A < Ay < 1) we take & € (Mg, 1),69 € (O,MM) and unit vector eq =

anT9
T
g0 1 0 such that

JEl((f()) & keyg < eg.

By the continuous differentiability of @, it then follows that there exists § > 0 such
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that

—~

—~ ] o~
Q(neg) =Q(0) +/ DQ(tneq)neqdt

0

1
=n / DQ(tneq)eodt
0

<nkey K neg

for all n € (0,4], and hence, E' is strongly stable from above for the map @ A similar
argument shows that £? is strongly stable from below.
In order to calculate the spreading speed ¢*(E?, E'), we only need to consider the

following one-dimensional mmonotone subsystem of (2.1):

(1+7r2)gn(z —y)
he1(x) = “ko(y)dy, n > 0. 2.5
Gnt1() /R T E— 2(y) dy, n = (2.5)
Let h(q) = (ii:;’()]",\fq € [0,1]. Then A satisfics the following two conditions:

(H1) 2 e C([0,1],[0,1]) ,~(0) = 0,h(0) = 1 +ry > 1,1(1) = 1. and |h(q)) — h(g)| <

(1+72)|q1 — |, Va1, ¢2 € [0, 1].

(H2) q < h{q) < h'(0)q,Vq € (0,1), and h'(¢) = (llTJrr:f]? > 0,Vq € [0,1].

By [21, Theoremn 2.1], (2.5) has a monostable traveling wave connecting 0 to 1 with

the minimal wave spced ¢, where

L IO fy e ha()dy) In((1 4 7e) [y e (y)dy)
n = ;111;0 i o ;ILI;O M

is the spreading speed, and ¢*(EY, E') = ¢}.

For the computation of ¢*(E° E?), we consider the following onc-dimensional
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(1 + 7 YR (y)d (1 + r;)ero fc ki(y)dy

liny inf il ) Js ity dy) > lim ( ) f"“ )4) =y > 0.
H—0 /L H—C [1,

Thercfore,

In((1+7;) [ e ki(y)dy)

(E° E') = inf >0,:=1.2,
>0 i
and hence, ¢*(E®, EY) + ¢*(E°, E?) > 0.
For the computation of ¢*(E®, E?), we let x, = u, —u* and y, = v, — v*, then
system (2.3) becones
(1+r)u* +x,(x—1y))
T = — " -+ : k d y
i /R 1+ r(u +1,,( y)) +ar (1= (0 +y.(r=y)) 1)y
+x(r—1 vt 4y, (v —1
oar(2) = — 0" + / (l>72 u T,( y)) + Y *( ) ().
g 1+ m(l— (v +y, (v —y))) + ara(u* + x,(x —y))

(2.7)

It is casy to verify that system (2.7) is cooperative and positively invariant in Cg, /7 =

(1 —wu*, 1 —v*) > 0. The spatially honogencous systen

(1+1)(u* +1,)
L+ri(us +.x,) +ar (1 — (v + )]
agro(u* + ) + v + 1y,
T+ ry(1— (v + Yn)) + agra(ut + .‘1,‘”)’

Ipyr = — u”
(2.8)

" - *
.Ijn+1 =—v +

has stable equilibrium 0 and unstable one /3 in [0, 8] € R?, and there are no other
cquilibria between these two equilibria.

In order to compute the spreading speed ¢*(0, 3) of systemn (2.7), we consider the



lincarization of (2.7) at zcro solution

1+ (1 — , *
Typar () :/ ( i Y ):17,,(.'1: —y)+ KA Yn (@ — y)> ky(y)dy,
R

1+7'1 ’ 1+7’1

asra(l — v*) 1+ rov*
Ynpr (@) = — (- y) + ———y. (. —y) | k2(y)dy.
Ynt1(T) /R< Tim (x —y) 1+T2J( y) | ko(y)dy

(2.9)

For any u € Ry, let x,(z) = e™#3,, yo(x) = € “v,,n > 0. Then 3, v, satisfy

T+ayr(1—-v") ., aru”
ﬁn+l = ! 1( )]\l(ﬂ‘)/jn + G ](2<lu‘)7n7
Lt T+m (2.10)
asro(l —v*) | 1+ rov® | ‘
w1l =———— I (1) 5 —K .
Tn+1 1+ 14 V1 (1) 0 + 1+ 1 2o( 1) v

Define the matrix

Lranllvt) e () 9 1 ()

147 1+
B/z = +71 +71
agre(l—v*) 7 - 14+rpv* 1.7
o) TR ()

[t is casy to sce B, is positive for any g > 0, that is, cach entry of B, is positive. Let
A(pe) be the principle eigenvalue of B, then A(u) is positive with a strongly positive

ecigenvector (sce [53, Theorem A.4]). In particular,

1+a;~ " -v*) aprju*

_ i [
B() -
azra(l—uv*) 1+rv*
1472 1471y

Simple calculation can show that By is to be the Jacobian matrix of @ evaluated at 0.
From the unstability of 0, we know that A(0) > 1. Since i;(u) > 1,Vu > 0,i = 1,2,
we have B, > By, Vi > 0. From the monotonicity of the principal cigenvalue with

respect to the positive matrix {53, Theorem A.4], we know A(u) > A(0) > 1,Vu > 0.




Let ®(p) == 22 then ®(u) > 0,V > 0 and lim ® () = co. Further, we have

p—0+t

. In A(p
liminf®(p) =lim inf&
Jes) J1—00 i
In e, 4/ (tr B, Y2—4det By,
=lim inf 2
00 7]
n(trB,
>lim inf —(——')
p—o0 1
hl l+f11r1(l—zr‘)[(l .
>liminf L+ )
jE—00 y,
14+air (1—v") oHY
> lim n 4 ) fyo ki(y)dy
T u—oo il
=Yo > 07

where trB), is the trace of B,. It follows that ¢ := 1nf<I>(/L) > 0.
1>0
Let operator @ and M from Cz to Cg be defined by the the right-hand side of
systems (2.7) and (2.9), respectively. Since B, is positive, for any ¢ € (0,1), we can

choose § := (6,6)T > 0 in R? sufficiently small such that
Q) = (1— ) M), Y € Cy5

Let A, = (1 —e)M. Then M, is monotonic and satisfying @Q > M., and A, — M
as € — 0. By [28, Theorem 3.10], we know ¢*(0,3) > & Then we have ¢*(E?, E?) =
c*(0,8)>¢e>0.

In order to computer ¢*(E3, EY), let x,, = —u, + u*, ¥y, = —v, + v*. Then system




(2.3) becomes

/ (1+r)(u* — (2 — y)) b (y)dy,

R 1+ —x(x—y) +ar(l — (v —y(x —y)))
(’I') —* — / (1,27“2(11* - ZE”(.’L‘ - y)) + vt — yn(;li — y)
B r L4721 — (v =yl —y))) + agra(u* — z,(x — 7))

k2 (y)dy.

(2.11)

It is casy to verify that system (2.11) is cooperative and the spatially homoge-
neous systcin has unstable eqﬁilibrium 0 and stable equilibrium n = (u*,v*) > 0
in [0,77] € R®% Using a similar lincarization argument as we did for system (2.7), we
get the spreading speed ¢*(0,7) of (2.11), and ¢*(£3, E') = ¢*(0,7) > 0. Therefore,
(B3 E?) + ¢ (E3 EY) > 0. O

As a conscquence of Lemima 2.2.1 and Theorem 1.2.6, we have the following result.

Theorem 2.2.1. Let all parameters be positive and ai, a; € {1,00). Then there exists
¢ € R such that the cooperative system (2.3), which is obtained by making substitution
Uy, = Dy, Un = 1—q, in model (2.1), has a nondecreasing traveling wave o(x—cn) € Cgz

with speed ¢ and connecting two stable equilibria E* = (0,0) and E* = (1,1).

2.3 Global stability

In this section, we determine the global stability and uniqueness of histable traveling
waves for system (2.3).

Let p(z—cn) = (p1(z—cn), po(x —cn)) be a nondecercasing traveling wave solution
of (2.3) connecting E! to E?. Letting z = ¢ — ¢(n + 1), we transform (2.3) into the
following systent

Unii(z) =T-c0 Q[(j”](z), n 2> 0. (212)
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Thus, (=) is an equilibrium solution of system (2.12), that is, ¢(z) = T_.0Q[¢](2),Vz €
R. In what follows, we denote U,(z,%) to be the solution of (2.12) with initial
data Uy = 1. Clearly, the solution U,(z, ) of (2.3) with initial data ¢ is given by

Un(2,9) = U,(x — en.v). Then we have the following observation.
Lemma 2.3.1. The following statements are valid:

(i) If ¥ € [E*, E?|, is nondecreasing and satisfies
£lim () < BP < £Iim (&), (2.13)

then for any € > 0, there exists = = z(e,vy) > 0 such that p(z — %) — & <

U()(Z, l/l) < (,D(Z + 2) + €.

(ii) If the kernel k;,i = 1,2, has a compact support, then for any e > 0 and ¢ €
[EY, E?), with

limsup¥(§) < E* <« 1ién infy(§), (2.14)

g——c0

there exist z = 3(e,4) > 0 and a large time ng € Nt such that p(z — 2) — & <

Ui (2,0) <z + 2) + <

Proof. (i) It is casy to scc that

limsupy(€) < E' + &= £lim @(§) + €,

f——o0

limsup(€) € E* + &= Elill'l p(&) + €,
gm0 -
1£im inf(&) > E' — &= £lim e(§) — &

——00

—

lién inf(6) > E? - &= flim w(&) — &

Then there exists Zy > 0 such that ¢(z) — & < 9(2) < p(z) + & holds for all |z] > Z,.
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By the monotonicity of 1 and ¢, there exists 2 > 0 such that p(z—2) —& < Uy(z,9)

oz +2)+ €

(ii) Let L > 0 be a sufficiently large number such that suppk; € [—L,L),¢ =
1,2, and limsup ¥ (§) < E? < licnliogf'z/)(g). Without loss of generality, we assume
P(&) < ll,fvziéo R, and (&) < lg,SV§ <0, where B2 < ) < E?, B <, < E®. Let
V= U,(2l; — 13), V7 = U,(l2) be the spatially honlogeneous solutions of (2.12) with

Vit =2l —land Vy =l Letc € (¢c— L,c+ L) and £ : R — [0, 1] be a nondecreasing

functional satisfying £(z) = 1,V2 > 1, and £(z) = 0,Vz < 0. Define
Va(2) = V(= +n0) + V(L = £z +nd)).

Then it is casy to verify Vo(2) > 9(2),Vz € R. We now claim that for any discrete

time n, there exist Z, € R such that
MH—](:) 2 Q[‘/n](z - 5’n+l + C)* VZ € R
We first prove that

Vari(z) 2 QVal(z + ¢)

whenever |z is large enough.
For the sake of convenicnce, we define the nondecreasing operator G = (G, Ga) ¢
R?* — R? as

(1+ r1)ay
1+ ary +riey — apris

279 + ]

Gl(-m,l“z) =

G2 T, Ly} = .
' ( ) ) 1+ 794+ agraay — 1229

Then system (2.12) can be expressed as

Uy (2) = / G(O,(=+ ¢ — y)S()dy, n >0, (2.15)
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Note that lim V,(z) =V,

n
T =00

then follows that for any € > 0, therc exists Ny € N such that

lim V,(2) = V.5, lim V- = E', and lim VF = E2. It

n—00

£
lim Vi(z) =V, < E' + 7 < E'+&= lim o(z) +& Vi > N,

Z2——0C [>e)

lim Vi(z) = Vit < E% + g < E?4+ &= limp(z) +& Vi > N

Z2—00 SO0

Thus, there exists Z; > 0 such that
Vil2) € glz) +& V2| 2 2
By the nionotonicity of V;(+) and ¢(), there exists Zp € R such that
Vi) <glz+ %)+ &8 Yz e R
Hence, we have
Us(z — 51 = Z — . — 50,00) < Vi(2) <oz + %) + & V2 € R,
Let 2 = ¥,z It then follows that

Un(2,0) <plz +2)+E Vz e R

A similar argument on the lower bound of Uz(z, 1) completes the proof. O

In order to use the method of upper and lower solutions, we first introduce the

following concepts.

Definition 2.3.1. A function sequence W (z) € C(R,R*),n > 0, is an upper solution




of (2.12) if W (z) satisfies

Wi, > QWi(z+¢), n>0.

A function sequence W, (z) € C(R,R?),n > 0, is a lower solution of (2.12) if W (z)
salisfies

Wi QW (z+¢), n>0.

Note that the Fréchet derivatives of G at E' and E? are

14+7r ( 1 ary
T+arr b 14r
DG(0,0) = . DG(1,1) = 1 ;
asry 1 0 1472
1472 1479 14azr:

It is obvious that DG(0,0) and DG(1,1) arc nonncgative with cigenvalues between 0

and 1. Choose €, > 0 small enough such that DG(0,0) < A=, DG(1,1) < AT, where

147 € 1 ajr]
— 14ar 1+r 147
A = 11 , A+ — L 1 ,
ggrg _ L1 € Lty
1479 1+r, ! 14+asrs

and the principle cigenvalues of A arc between 0 and 1. Since A* arc positive,
there exist strongly positive cigenvectors pt = (pf, p3) corresponding to the principle
cigenvalues of A* satisfying 0 < p~ < pt < 1. Note that we can choose pE as close
to the origin as we wish due to the fact that the eigenvector space is linearly closed.
Let p(z) : R — R? be a positive nondecreasing map such that p(z) = pt,vz > 2 > 0,
and p(z) = p~,Vz < 25 <0, where z;,i = 1,2, are two fixed real numbers. Motivated

by [65], we have the following result on the upper and lower solutions for (2.3).

Lemma 2.3.2. There exist positive number o and ey € (0,1) such that for any % and




WE=pztite(l—e"")) xep(z£2)e™, V2R, n>0

n

are upper and lower solutions of system (2.12), respectively.

Proof. Without loss of generality, we assume that 2 = 0. Let z,, = (1 —e7™), Vn > 0.
Then {z,}n>0 Is increasing and between 0 and 1, where the positive number o is to
be determined. Denote DF(z) := W (2) — QWZE](z + ¢), and Gi(u) := %Gi(u),
B = sup{|G%(u)| : u € [E' — [, E? + 1)}, where w = (2, 23) € R2 It is obvious that
there exist > 0,k € (0, 1) such that G%(u) < A7 for all [lu—E'|| < 4, Gi(u) < A for
all Jlu — E?|| <6, and A*p < kp for all ||p — p*| < 8, where p .= (p1, p2) € R?. Since
p(—00) = ~Ergnooc,a(z) = E' p(o0) = ~liﬁ[})logo(z) = E? and p(z) C [p~,p*],Vz € R, it

follows that there exist M > max{z; + 1,1 — 23} and ¢; € (0, 1) such that
le(z) +ep(n) — E'| <68 Vee (0,51, n < =M +1, 2 < =M +1,

le(z) +ep(n) — E?| <6, Yee€ (0,e1], n>M—1, 2> M —1.



Then we have

Dl (z) = Wi, (2) = QW )(=

=p(2 + 2041) + ep(z)e7oH)

= [ Gttt 20 0 =)+ 2ple o=yl Slady
=p(2 + 2us1) = 92 + 2,) + ep(2)e” 7Y
— [166ot+ 2 e ) el = )™ = Gl + 20+ = ) ISy
=p(z + zur1) = (2 + 2) + ep(e)e MY
= 166ty + 52) + <)) = Gloty + 2)IS( + = )iy
=0(z + 2up1) — @(2 + 2,) +ep(z)e7FY
- /R (/1 DG(ply + z) + SEP(;I/)e“’”)Eﬂ(y)e‘””ds> S(z+c—y)dy.

(2.16)

Let I be the 2 x 2 identity matrix and I',, = [-M — =, —n, M — z, + 7], where n > 1

is large enougl such that

—n+c
([ [ ) swn<st
7+

Now for any n > 0, we claim D;f(z) > 0. We consider three cases.

Case (i): z > M — z, +n. Itisclear that z > M —land z+c—y > n+cif



y < M — z,. By the monotonicity of ¢, we have

D} (=) > ep(z)e~ 0

- /R </1 DG(e(y + 2a) + sep(y)e™"")eply)e”"ds ) S(z+c—y)dy

0

—A—=z, M-z, de'e]
e ([ [
—00 M-z, A —zp,

( [ DGty + 22+ sept)eentr)e” d) S(z + c—y)dy

—A -z, o0
ng(z)e—n(:ﬁrl) _ (/ _+_/ ) k?/)(y)E(f’—UnS(Z +e— y)dy
J— J A

00 [~z

A —=z, 1
- / (/ DG(o(y + 2n) + SS/J(y)e“”“)5/)(;1;)(3‘”"’(1.9) S(z+ec—y)dy
—ar—z, \Jo

—ag(n+1)

—an

>epte — kpTee™"e — kptee™ ™" — 2Bel||pT|le” " e

e (pT(e™" — k) — kpTe —2B||pT[|se) > 0

provided ¢ € (0, —In k), and € is small enough.
Case(ii): 2 < =M — z, —n. Clearly, 2z < =M + 1, and 2+ c—y < —n+cif

y > —M — z,. Then

—AM—2z, o
D (z) > ep(z)e="(m+D — </ + / ) kp(y)ee™™"S(z + ¢ — y)dy
_ JA

00 {—zn

M-z,
- ( / DG(p(y+2) + cp(y)e‘"")sp(y)e—""ds) S(z + ¢ — y)dy

M-z,

Af—z,
ZEP—C—U(HJH) _/ kp(y)EG_U"S(: +eo— U)dy

20

mL + —on

—kee” e€

—€—0(71+1)

>ep — kpee™ — kee=™ pte — 2Be|p*lle e

=ce " (p (e — k) —kpte — 2B||p*|lcé) > 0,

provided that ¢ € (0, —Ink), and € is small cnough.

Case(iii): z €Ty =[—M — 2z, — 1, M — z, + 1], that is, z + 2, € [-M —n, M +7].
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The uniform continuity of  and [34, Lemma 5] imply that ¢ € CYR,R?), ¢'(2) is

uniformly continuous, and

¢ (2) = /RDG(w(y))w’(y)S(: +c—y)dy > 0.

—

Since ¢ is strictly increasing in compact set [—A — 2n, M + 27|, there exists § =

(0,0) > 0 such that

w(y) —plx) > 0y —x), y >, Yo,y € [-M — 29, M + 2n). (2.17)
It is obvious that

O<d,=0G+z1)—Gt+z)=tan1—n=ce "1 —-e7) <1<,

and hence, z+ zpp 1 < z+ 2, + 1< M 4+np+1< M+ 2y By (2.17), we have

-

99(3 + ZVL+1) - 90(2 + :n) > H(:”+1 - Z"?)'

It follows from (2.16) and (2.18) that

—

D:(Z) Ze(lu+1 — Zn) + 5[)‘(3*‘7(”+1) — 2B[)+€40n€€
20_'&_6—-071(1 — (?_U) =+ 5p~€“0(71+1) _ 2Bp+€—an€6—o

—

—ee= (1 — )+ pme " — 2Bl|p*]€) 2 0,

provided ||pt]] < 6(1 —e77)/2B.
Combining cases (i)-(iii). we see that there exist ¢ > 0, aud sufficiently small
number gy € (0,1) such that D} (z) > 0, n > 0, z € R. Thus, W}(z) is an upper

solution of system (2.12). By a similar argument, we can prove W, (z) is a lower



solution of (2.12).

Lemma 2.3.3. The wave profile ¢ is a Lyapunov stable equilibrium of (2.12).

Proof. Let &y and W*(z) be given in Lemma 2.3.2 with 2 = 0. By the uniform

continuity of ¢ and the boundedness of p(z), it follows that there exists &' > 0,
independent of e, such that [|[W(z,e) — p(2)|| < Ke. V2 € R, € € (0,5). For any
£ € (0,eq), let d = emin{p;, p; } >0, then ep(z) > §. Thus, for any given ¢ satisfying

| — ¢l < &, we have
Wy (z,6) = p(2) —ep(z) <o < o(z) +ep(z) = Wi (2,¢).
Then the comparison principle implics that
W= (z,6) < Un(z,¢) < WH(z,€), Vz € R,

and hence, ||U, (-, ¥) — o()|| < Ke, n >0, which completes the proof. O

Let X = BUC(R,R?) be the Banach space of all bounded and uniformly continu-
ous functions from R to R? with the usual supreme norm. Let Xy = {(1),v¢5) € X :
Pi(x) > 0,Va € R,i = 1,2}. Then X, is a closed cone of X and its induced partial
ordering makes &X' into a Banach lattice.

Now we arc in the position to prove the main result of this section.
Theorem 2.3.1. Let p(x—cn) be a monotone traveling wave solution of system (2.3)
and Uy, (x,) be the solution of (2.3) with Us(-,v) = ¢() € [E', E?],. Then the fol-

lowing statements are valid:

(i) For any nondecreasing v € [E', E?®|, satisfying (2.13), there ezists sy € R

such that Hm ||U,(x,t,¢) — o(z —cn + sp)|| = 0 uniformly for x € R, and

n—00
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any monotone traveling wave solution of system (2.3) connecting E* to E* is a

translation of p.

(i) If kiyi = 1,2, has a compact support, then for any ¢ € [E',E?|, satisfying
(2.14), there exists s, € R such that lim [|U,(z,t,9) — o(x —en + sy)|| = 0
uniformly for © € R, and any traveling wave solution of system (2.3) connecting

E' to E? is a translation of ¢.

Proof. Let € € (0,¢q) be given as in Lemma 2.3.2. From (i) and (ii) in Lemma 2.3.1,
we sce that for ep” > 0 and any ¢ € [E', F?], satisfying (2.13) in case (i), or

satisfying (2.14) in casc (ii), there exist ng and Z such that for any z € R, we have

U (z,0) S oz + %) +ep” <plz+2) +eplz+ 2) =W,

and

Ung(2,9) 2 0(2 = 2) —ep™ 2 p(z — %) —ep(z — 2) = W

Then the comparison principle and the construction of W (z) imply that
W) < Up(2,U, () < WHz),Vz € R, n e NT.
Since Uy (2, Upny(*)) = Uping(2,9),¥2 € R, n € N*| we have
olz—Z—ep)—eplz = 2)e 7" < Ui (5,0) < (4 2+ 29) —ep(z+ 2)e” . (2.19)

Let ®,(¢) := U,(-,4),Yy € X,n € N* be the solution semiflow dctermined by
(2.12). By (2.19), the forward orbit ¥ () := {®,(¢) : n > 0} is bounded in &'. Note
that lim ¢(z) = E', limp(z) = E?. By Ascoli-Arzela theorem, it then follows that

¥+ (¢) is precompact in X', and hence, the omega limit set w() is nonempty, compact




and invariant.

Let 2y = Z + €y, and n — oo in (2.19), we have the omega limit set w(y) C I :=
[o(- — 20),0(+ + 20)]x. Let h(s) = (- + s),Vs € [—zp, z]. Then h is a monotone
homeomorphism from [—z, zo] onto a subset [ € I. Let V = [E',E?,. Then
®, : V — V is a monotone autonomous semiflow. By Lemma 2.3.3, cach Ai(s) is a
stable cquilibrium for ®,. Clearly, cach ¢ € I is increasing and satisfics (2.13) and
(2.14), and hence, v (¢) is precompact. By Theorem 1.1.2, it suffices to verify the
condition (3a) to obtain the convergenee of v ().

Assume that for some sp € [—z0, 20), ¢o € I and o(-+s0) <y ¢(-) for all ¢ € w(ey),
that is, (- + sp) <x w(¢yp). By the strong monotonicity of @, we know @(z + s) <
P,(¢)(z), Vz € R, n € N. By the invariance of w(ey), we get ¢(z + sp) < ¢(2), Vo €
w(pg), z € R.

By the uniform continuity of ¢’ and [56, Corollary A.19], it follows that ~liﬁnol0 o(2) =
0, and hence, we can choosc a large positive number z; € (zg, c0) such that § :=

sup |l¢/(2)|] < ymin{py,p3}. By the compactness of w(¢y), there exists s; €

[z|2z1-20
(S0, 20) such that s; — sy < g, and

oz +81) K P(z), Vz € [—21,21], ¢ € wlg).

For any fixed ¢ € w(gy). there exists a sequence {n;} such that n; — oo as j — oo,

and lim ®, (¢g) = ¢. Fix an n; such that
J—00
||<I)”](¢0) — 9|l < 6(s1 — s0).
Since (= + 51) < @(z), Vz € [—z1, z1], and

oz 4 89) — plz+ 81) K P(z) — plz +51), Vz € R,
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we have

Dy, (d0)(2) — (= + 51) =Pu, (¢0)(2) — &(2) + &(2) — @(z +51)

> — (8 — 50)0 — sup |lo(z + s0) — @(z + s1)|€

21221
> — (s — 50)5— (81— 50)|SIUP o' (2)lle
zl>z
Z — (Sl — SU)(S:’— (Sl — 80)5
= — 2(81 — 50)5‘

> —e1p(z + s1).

where ) = 255 < g;. By the construction of W = (z), we get

D, (do)(2) > @z +51) —e1p(z + 51) = Wy (2).

It follows that

O, (@, (B0)(2)) 2W, (2) = @z + 81—l —e 7)) —eip(z + s1)e”™"
>p(z+ 51 —e1) —aplz+s1)e "

S1— S0 on

=p(z+ 51 — ) —eip(z+ s1)e”

S1+ So
2

=p(z + ) —ep(z+s1)e” 7" Vz € R, n € NY.

— : s1+S0 \ L S1+s
Let n = n; —nj, and n; — 00, we obtain ¢(+) > p(z+ #3%2). Denote s, = 23, then

82 € (50,51) C [80, 20], and (- + 89) <y @(-). By the arbitrariness of ¢ € w(¢y), we

have ¢(- + s2) <y w(o).

By Theorem 1.1.2, there exists s € [—20, 2] such that w(y) = h(sy) = @(- + s4).

Then lim @,(¢0) = (- + sy). Since U, (r,¢) = U,(x — en, ) = ®,.(¥)(x — cn), we

n—0o0

have Hm [|U,(z,¢) — @(z — en + s¢)|| = 0 uniformly for x € R.
n—o0
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Let @(z — ¢n) be a traveling wave solution (or monotone traveling wave solution)
of system (2.3) connecting E! to E? in casc (ii) (or (i)). Clearly, ¢ satisfies (2.14)
(or (2.13)) in Lemma 2.3.1. By what we have proved above, there exists sy € R such

that lim [j@(- — &n) — p(- —en+ §,)|| = 0. By change of variable £ = z — cn, we have
n—od

lim [|@(- + (¢ — é)n) — @(- + §,)|| = 0. Since @(—o0) = E',p(o0) = E* and () is

strictly increasing on R, we then obtain ¢ = ¢, and hence, @(-) = (- + 3y). O

2.4 Numerical simulations

By Theorem 2.3.1, system (2.3) admits a unique monotone bistable traveling wave

up to translation, which is globally stable with phasc shift. In order to simulate this

result, we truncate the infinite domain R to finite domain [~L, L], where L is suffi-

ciently large. Let ay = 6/5, ay = 10, ry = 1/9, ro = 1/10, ki (y) = —\/%exp(—yzﬂ),
1

and kz(y) = —=exp (—y%/4). The cvolution of the solution is shown in Figure 2.1 for

L = 60 with the initial condition

1/800, —60 < @ < —10;
up(x) = ¢ 799/800 + 798(x — 10)/16000, —10 < z < 10;
799/800, 10 < 2 < 60.
1,/1000, —60 <z < -—10;
vo(r) = ¢ 899/1000 + 898(x — 10)/20000, —10 < & < 10;
899/1000, 10 < z < 60.

The numerical wave profile and the initial condition are plotted by solid and dashed
lines in Figure 2.2, respectively. We can sce, under the given parameters and kernel

functions, that the solution rapidly converges to the numerical wave profile, and the
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with distributed delay to describe the evolution of a population in an active phase:

du 0?u Heo

—=D—+p / L(byu(t — b, z)db — pu + f(u). (3.1)

ot Ox? Jo
In this model, u(¢.7) is the density of the population in the active phase at time
t and location x, the dvnamics of u(f, x) satisfics the ordinary differential equation
@ = f(u) in a spatially homogenous environment, and D > 0 is the diffusion cocf-
ficient of the population. We assume that the exit time from the active phase be
cxponentially distributed with paramcter p, and the exit time from the quicscent
phase follows an arbitrary distribution with probability density function L(b) > 0
satisfying [Ox L(bYdh = 1. Under appropriate conditions, they obtained the mini-
mal speed of a traveling wave of (3.1) in the case where the function f(u) admits
a monostable structure. The purpose of this chapter is to cstablish the existence of
the spreading speed and its coincidence with the minimal wave speed when the func-
tion f(u) admits a monostable structure, and the existence and stability of monotone
bistable traveling waves when the function f(u) admits a bistable structure. We will
appeal to the theory of spreading speeds and traveling waves developed in {13, 28] for
monotone semiflows. the finite-delay approximation method introduced in [69], and
the squeezing technique used in [54].

This chapter is organized as follows. In section 3.2, we establish the existence of
spreading speed and its coincidence with the minimal wave speed in the finite delay
case and then generalize the results to infinite delay case. In section 3.3, we obtain the
existence of the monotone bistable traveling wave. At last, in scction 3.4, we prove
the global stability and uniqueness of bistable waves under the assumption that the

density function has zero tail.









C([—7,00) x R, R) is called an upper (a lower) solution of (3.5) if it satisfies

a(t,x) = ()T (a0, ) (x) + /t T(t — s)F(a,)(x)ds, ¥t >0, v € R. (3.6)

0
Using a similar argument as used in [11, Lemma 2.1], we have the following Lemma.

Lemma 3.2.1. For any 7 > 19 and ¢ € Cypr == {9 € C : 0 < ¢ < uj}, system
(3.4) has a unique mild solution u(t,x;¢) on [0,00) and u(t, x; ¢) is a classic solution
of (3.4) for (t,x) € [1,400) x R. For any pair of upper solution (t,z) and lower
solutions u(t,z) with w(0,z) > w(0,x), then u(t,x) > u(t,x) holds for allt > 0 and

T € R,

Let @; be the solution map of (3.5), that is,
Qi(p)(0,x) = u(t +0,2;0), V8 € [-7.0], v € R, ¢ € Cys,

and Q, be the restriction of Q, to (ju;. Then it is casy to verify that @, is the solution
semiflow on C,,; associated with the following spatially homogencrous delay differential
cquation

du

— = F(w), Yt >0, (3.7)
dt

where £ is the restriction of /' to C,.. Under the assumption that f:_( L{b)db > 0 for
all small € > 0, we can verify that (3.7) is cooperative and irreducible. Thus, Theorem
1.1.4 implics that @; is cventually strongly monotone on @u;. Note that £ admits
only two constant equilibria 0 and u? on C,:, and F'(0) > 0 > F'(u}). It follows from
Lemma 1.1.3 that cquilibriun 0 is unstable and w? is globally attractive for (3.7) in
C.: \{0}. By the Dancer-Hess connecting orbit Theorem 1.1.1, the semiflow @, admits
a strongly monotoue full orbit connecting 0 and u*. It then follows that @ satisfics

all assumptions in [28, Theorem 5.1] for all ¢ > 0. Then we have for cach 7 > 7,
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to sce that v(¢) satisfies the following delay differential equation:

% = DpPv(t) + p/OT L(b)u(t — b)db — pu(t) + f(0)v(¢). (3.9)

Define Bl: € — C by
B (00)(8) = Mfe™0)(6,0), ¥0 € [~,0].

It then follows that B, is the solution map of (3.9) with the initial data vy € C. Since
system (3.9) is cooperative and irreducible (see [52, Section 5.3]), its characteristic

cquation

A—Dp*— f{0) +p— p/ L(b)e db = 0 (3.10)
0

admits a rcal principal cigenvalue A, (u), which is greater than the real parts of all

other roots (sce [52, Theorem 5.5.1]). Morcover, by (3.10), it is casy to verify that

A-(p) > 0 provided that 7 > 7 targe enough. Define function &, (p) = ’\’;(l“), Vi > 0.

From the result in {28, Scction 5.1], we have

¢ =inf @ ().

>0

By the propertics of function @, () as in [28, Lemma 3.8) (sce also Lemma 1.2.1),
we can verify that there exists a unique pf € (0,400) such that ¢ = ®.(y;). From
(iii) in Lemma 1.2.1, we sce that ®.(;) changes the sign at most once in (0, +00).
Suppose by contradiction that there is a interval [y, ua] C (0,400) such that ¢f =

O, (1), Vi € [ju1, 2], that is, ¢t = A (1), Y € [, 2] In view of (3.10), we have

ciiw= M) =D + f(0) —p + p/ L(b)ye~A1bqp,
0



and hence

fr(p) :==Dp* + f/(0)—p +p/ L(b)ye™Wdh — ety =0, VY € [py, p1a].
0

On the other hand, we have

T

fr(p) =2Dp — c; — pc;/ L(b)e™**bdb, Yy € [puy, o).

0

It is casy to observe that fr () is strictly increasing in [u, po], which contradicts

J=(11) = 0 for all p € [jt3, pa). Therefore, there is a unique uf > 0 such that (u%,ct)

afig - LA 0D (1) _ N
satisfics ¢ = . (u¥) and o i, = 0. Let

Pi(e,N) = Dp* — e —p+ f'(0) +p/ L(bye™*db.

0
Then (pf,¢}) can be uniquely determined hy

IP;(c, )

=0.
Ot

P,(e, 1) = 0 and
By equation (3.10), it is easy to verify that A,(s) is nondecreasing with respect to
T > 19 for any o > 0. Suppose by contradiction that there exist some pg > 0 and

T2 > 71 > 0 such that A, (1o) < A7, (110). Then we see from (3.10) that

T2 1
Ary(110) = Ar (j10) =p / L(b)e Arolbdh — p / L(b)e™ Wb
9 0 (3.11)

m
21)/ L(())(e_’\’2(””)h — e (uo)b)db > 0,
0

which is a contradiction. Note that ¢} = inf -, ’lf’” is also a nondecreasing function



for all 7 > 7. By (3.10), we further have

A () < Dp* + f'(0).

Then A(p) 1= lim, o0 A (1) < 400 exists.

Consider the following equation:
A= D+ f(0) —p —I—p/ L(b)e=db. (3.12)
0

We claim that A(j) is a unique real root of (3.12) for cach > 0 and the real parts
of all other roots of (3.12) are not greater than A(u). Suppose there is some pg > 0
and a # A1) such that a is another root of (3.12). Without loss of generality, we

assume that a > A(pn)(a < Mug)). Then we have
a— Ajg) = p/ L{b)(e=® — e~ dh < 0(> 0),
0

which is a contradiction. Thus, A(x) is a unique rcal root of (3.12). Define function
O(p) = %‘) for all 1 > 0. It is casy to verify that ®(4+0) = ®(+o0) = +00. Then

c* = inf ;5o (1) must be obtained at some finite p*. By the properties of @, (u), it

follows that (c¢*, *) is unique such that ¢* = &{u*) and d(szt)lu-zu* = 0. Let

P(e,p) = Dp® —cpu—p+ f(0) + p/ L(b)e  edb.
0

Then we can show that the following result holds true.
Lemma 3.2.2. The following statements are valid

(1) For any ¢ > ¢*, there is jp > 0 such that P(c, 1) <0,

(2) (c¢*,1*) is uniquely determined by P{c,pp) =0 and w =0,




(3) Ty oo (5, 22) = (", 17).

Now we cousider systemn (3.1) with infinite time delay. By the argument similar to
that in [11, Lemma 2.8.], we have the following result on the existence and uniquencess

of solutions of (3.1).

Lemma 3.2.3. For any ¢ € C(—R x R,[0,1]), (3.1) has a unique mild solution

u(t,z; ) € C(R_ x R, [0,1]) with initial data ¢.

Consider the following lincar cquation of (3.1):
’ +o
—=D—+p / LWu(t —b,x)db — pu + f'(0)u. (3.13)
z Jo

In a similar way to (3.6), we define the upper and lower solutions for (3.13). Then we
have the following comparison principle. We omit the proof here since it is cssentially

the same as in [11, Lemma 2.9.].

Lemma 3.2.4. Assume u(t,2) and u(t,z) be the upper and lower solutions of (3.13).

If g > uy, then u(t,r) > u(t,z), vt >0, r € R.

We arc now in the position to prove the existence of spreading speed for model

(3.1).

Theorem 3.2.2. Let ¢ € C(R_ x R, [0,1]) and u(t,x; ¢) be the solution of (3.1) with

ug = ¢. Then the following statements are valid:

(1) For any ¢ > c*, if ¢(-,x) =0 for x outside a bounded interval, then

Hm  wu(t,2;0) =0.

t—ool|x|>ct



(2) For any 0 < ¢ < c* and o € C; with o > 0, there is a positive number r, such

that if ¢ € Cy and ¢(-.x) > o for x on an interval of length 2r,, then

lim  w(t,v;¢) = 1.

t—ro0,|x|<ct ( ¢)

Proof. We usc the argunients similar to those in [57, Proposition 2.2] and [69, Theorem
2.1]. In the case where ¢ > ¢*, let ¢(6,x) be given as in statement (1). For fixed
¢ € (¢*,¢) and X > 0 such that P(2,A) < 0, there exists a large positive number

M > 0 such that

o(t,z) < M@= y(t o) € (00, 0] xR,z =1 or z=—1.

For z = 1 or —1, define a(t,.r) = MeN®=2  then a(t, ) satisfics

E)ﬁ(t,:r)_ i e alt — b — 7 a(t,x
5~ Dis pil L(b)a(t — b, x)db + (p — f'(0))u(t, x) (3.14)

MM P(E N) > 0.

That is. (¢, ) is an upper solution of (3.13). Since f(u) < f'(0)u, u(t.z; ¢) is a lower

solution of (3.13). Letting » = &, & # 0. By the comparison principle in Lemma

[

3.2.4, we obtain

w(t, w5 ¢) < a(t,x) = MM Y(t, 2) € [0, +o0) x R,

which implies that

lim  u(t,z;9) = 0.

t—oo,|z|>ct

In the case where ¢ € (0, ¢*), since lim, 4o ¢ = ¢*, there exists 7 > 7 such that







and U, (+o0) = 0. Thus, we have

Jo(UY(E) =DU"(€) + cU'(€) — pU(€) + fU(E) +p / " LU — chyab

=DU" (&) + cU'(§) — aU(€) + aU(§) = pU (&) + f(U(£)) (3.15)

+p /OT" LU (€ — cb)db = 0,

where o > 0. Define the operator

Ho(UY(E) = al(€) - pU(E) + fU(E) +p / " LB (€ = ch)db. (3.16)

0

Clearly, {H,(U)(€)}22, is uniformly bounded when U(€) is bounded. It then follows

n=1

that

U(&) =kyeM¢ + ko2

1 ¢ e
([ e m@imans [ mwymn).

+ —_—
D(Az — Ap) ¢
(3.17)
where ky, ky arc arbitrary constants and
—c— V2 +4D¢ —c+ V2 +4D
A\ = Covetdba o et veriPa ), (3.18)

2D 2D
Since U, (€) satisfies (3.15) and is bounded, it follows that Uy (&) satisfics (3.17) with

ki, = ks = 0, that is,

1 ¢ oo
Un(§) = m ([m C/\I(E—W)HH(UHM"])dU +/; C/\2(E—77)Hn(Un)(77)d77) .

Thus, U’ (€),U/(€), U (&) arc uniformly bounded for n > 7 from the uniform bound-

edness of U,(€) and H,(U,)(€). By the spatial translation invariance of the original
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equation, we can assume U, (0) = % By the Arizela-Ascoli theorem and a diagonal
procedure, it follows that {U,(£), UL(£), U}/(€)} has a convergent subsequence, which
is convergent uniformly on cach compact sct in R. Without loss of generality, denote

U, (&) — U*(&). Then we have

(U(€).Un(), Un(€)) — (U(€).U(€), U"(€))-

Dcfine
+o0
J(U)(&) = DU"(&) + CU'(€) — pU(E) + f(U(E)) +P/O L(b)U (& — cb)db.

Then liny, o0 Jo(Un)(€) = J(U*)(€) pointwise, which implies that U*(&) is a solution
of J(U)(€) = 0. Since U,(€) is nonincreasing and U, (—oc) = uk, Uy(oo) = 0, U*(§)
is nonincreasing and bounded. Therefore U*(+00) exists and satisfies the following

cquation

—pr+ f(x)+p /090 L(b)ydb = f(a) = 0. (3.19)

Then we have

U (—o0) = 1> % _ U*(0) > U*(+00) = 0.

Therefore, U*(€) is a traveling wave solution of (3.1).

For ¢ = ¢*, by the same limiting argument as those in [69, Theorem 3.1}, we can
obtain the existence of monotone traveling wave U(x — ¢*t) connecting 1 to 0. The
nonexistence of traveling wave can be proven by the contradiction argnment as used

in [69, Theorem 3.1]. O
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3.3 Existence of bistable waves

In this section, we consider the case where function f has three zero points 0 < z* < 1
on [0, 1] satisfying
f(0) <0, f(z*)>0 and f'(1) <0

We cstablish the existence of the wavefronts connecting two stable equilibria 0 and 1.

Let 7 > 7y large cnough such that the delay equation

ou_ ot /TL(I)' (t — b, 2)db — pu+ f(u) (3.20)
o = Pae po b)u L) pu+ f(u .

admits only three constant equilibria 0 < o, < 3, on [0, 1] satisfying lim, o oy = 2*
and linl, .. 3. = 1, and F, as defined in (3.3), satisfies F'(0) < 0, F'(a,) > 0, and
F'(3;) < 0. We first establish the existence of the nondecreasing bistable traveling
waves for (3.20) connecting 0 and 3.

Define function F on C by F(¢) = p [ L(b)d(=b)db — pd(0) + f(¢(0)). Then we

have
DF(8)h =(/(6(0) = p0) +p [ h(=b)L0)d)
=(f"(¢(0)) — p)h(0) —{—p/_OT h(b)L(—b)db (3.21)
~(7'0(0) - hO) 41 [ h)n(s).
where 7(6) is a positive Borel measure on [—7.0] defined as 9(¢)Q2 = [, L(=b)db for

any measurable subset Q C [—7,0]. Since L(b) > 0 and [;° L(b)db > 0, without loss of
generality, we assume that 7 is chosen such that n(¢)[—7, —7+¢] f_TJr( b)db > 0

for all small € > 0. Thus, assumption (D4) holds in Theorem 1.2.8.
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For any € > 0, define a lincar operator L. : C3, — C(R,R) by

Lep =p /T L(b)p(=b, 2)db — pg(0, z) + (1 — €) f (o) 6(0, 7).

JO

Then Lep — DF(a,)¢ as € — 0, where the operator DF(ar,) defined by

T

DF(a;)¢p = p/ L(b)p(=b,z)db — pp(0,2) + f'(a)o(0, x).

0

[t is casy to verify that there exists § € (0, 8-) such that
Flay + ¢) > L) and F(a, — ¢) < —L(¢),Y € Cs,

that is, assumption (D5) holds. Further, assumptions (D1)-(D3) are also satisficd.

Thus, by Theorem 1.2.8, we have the following result.

Theorem 3.3.1. Let 7 > 79 be given such that fTT_E L(bydb > 0 for all small ¢ > 0.
Then system (3.20) admits a nondecreasing traveling wave V. (x — c,t) with Vy(—o00) =

0 and V,(+o00) = ;.

To prove the boundedness of {¢;}r54,. we use the similar ideas to thosc in [12] to
construct upper and lower solutions. Choose increasing function p € C*(R, R) such
that

p(§) =0, V€< 0; p'(€) €(0,1), V¢ € (0, 4);

p(§) =1, VE=4; |p"(&)] <1, VE € (0.4).
Then we have the following result.

Lemma 3.3.1. Define

v(t,z) = v_(v —ct;6,0) = plo(x —ct)) — 4,
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(t, ) = vy(z +ct; 8,0) == plo(x +ct)) + 9.

Then there exist 6 > 0, & > 0 and ¢ > 0 such that for any § € [6/2,6), ¢ € [5/2,5]
and ¢ > ¢, v(t,x) and B(t,x) are a lower solution and an upper solution of (3.20)

with 7 > 1y, respectively.

Proof. Define F, : R — R by

Foolx) = pa /00 L(b)ydb — px + f(x).

JO

Then F'_(0) = f'(0) < 0, Fl.(z*) = f'(x*) > 0 and F (1) = f'(1) < 0. By the
continuous differentiability of F,., there exists 0 < 5 < 1 such that for all § € [0, 5]

the following inequalitics hold:
! 1 ! 1 44
Foo(=0) 2 —F(0)8 + 5f(0)0 = —5/'(0)d > 0,

1 1
Fo(l=48)> =F._(1)0 + 5/”(1)5 = —éf'(O)(S > (.
Thus, we can find 8y > 0, @ > 0 such that for any 6 € [0,6y], 0 € [0,5] and 6 € [g,g],
the following two incqualities hold:

Fo(—68)> Do’ +p / L(b)db.

YT

Fuo((1=0) = 6) > Do +p /Oo L(b)db,

[}

where we may ask 7y large cnough if it is necessary.



Letting & = x — ct, we then have

=Duv" (x — ct) + cvl (o — ct) + F(v,)(x)

=DV (&) + cv(§) — pr-(&) + f(v-(£)) +p /OT L(b)(p(a (& + cb)) — 6)db

. (3.22)
> D0(06) + o 08) = pu-() + Jlo-(€) +p [ LIplo(€)) = 2}
0

=D0?"(0€) + cof(08) + Px(v-(©)) — p—(€) | LD

>D0(08) +cof(06) + Fulo-(€) ~p [ L)
Denote m = minyeepgoi-6,) £ (§) > 0 and Fupy 0= min <.« Fo(r). Let & > 0
sufficiently large such that

com > — Fuin + Do + p/ L(b)db, Ve > ¢
If p(c€) € [0,6] U [1 — 6, 1], then
0211 ay ) ) oo o)
D-a—ﬁ ~ % + F(v,)(x) > —Do*+ Do +p L(b)db—p L{b)db = 0;
i . T0 0

If p(o€) € [0y, 1 — By], then

py 8Q+F( )(x) > —Do? + com + F, /mL(b>db>0
= _ = il —1J)o cam in — - Y
w2 ot wyn\r) = am mir p .

Consequently, u(t, ) is a lower solution of (3.20). Similarly, we can prove U(t, ) is

an upper solution of (3.20). d
Lemma 3.3.2. {¢;};>r, s bounded.

Proof. By Lemma 3.3.1, we sce that there exist ¢, § and & independent of 7 > 7 such
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that v_(z — ¢t;6,5) and vy (x + t; §,5) arc a lower and an upper solution of system

(3.20), respectively. Note that when 7y large enough, the following incqualities hold:

Since v— and V5 are all nondecreasing functions, there exists & € R such that

VA(E+&) >0 (£0,0), VEER,

By the comparison principle, we then have

Vit — et +&-) > v_(x — ét:6,6), ¥t >0, z € R.

Thus, we obtain

Vil 4+ (F—c)t+ &) >v_(26,6), Vt >0,

which implics that ¢, < &, V7 > 79. Suppose, by contradiction, that ¢, > & Then we
have 0 = V,(—o0) > 0, which is a contradiction. Similarly, we can prove ¢; > —¢.

Therefore, we have |e,| < ¢ for all 7 > 7. O
Lemma 3.3.3. The following statements are valid:

(1) If Uz + ct) is a nondecreasing traveling wave of (3.1) with U(—oco) = a* and

U(4o00) =1, then ¢ > 0.

(2) If U(z + ct) is a nondecreasing traveling wave of (3.1) with U(—o0) = 0 and

U(+o0) =%, then ¢ < 0.

Proof. Let U(z+ct) be a nondecreasing traveling waves in (1), by the spatial symmetry
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of (3.1). Then W(x — ct) := U(—xz + ct) = U(—(x — ct)) is a nonincreasing traveling
wave of (3.1) with W(—oo) = 1 and W(+oc0) = x*. By a similar analysis as we did
in Scetion 2, we have the similar results as Theorem 3.2.3 for system (3.1) restricted
on [z*,1], that is, there is a positive number ¢; such that ¢ > ¢; > 0.

If U(z+ct) is a nondecreasing traveling waves in (2), then W (x+ct) = x*—U(z+ct)

is a nonincreasing traveling wave of the following system:
’ +o00
— =D+ p/ L(b)u(t — b, x)db — pu — f(x" —u), (3.23)
0
with W (—oc) = =* and W (+00) = 0. Similarly, for system (3.23) restricted on [0, *],
there is a positive number ¢y > 0 such that —¢ > ¢y > 0, which implics that ¢ < 0. U

Now we arc in a position to show the main result of this scction.

Theorem 3.3.2. System (3.1) admits a nondecreasing bistable traveling wave U(x —

ct) with U(—o0) = 0 and U(+o0) = 1.

Proof. From Lemma 3.3.2, we sce that {¢; };~r, is bounded. Then there is a sequence
ng > 19, k € N such that ¢,, converges to some rcal number ¢ as ng — +00. Let
(Un,, €, ) be the corresponding wavefront of (3.20) with 7 = ng. Then {U,,, }i>1 is a

sequence of monotone functions with U, (—oo) = 0 and U,,(4+00) = 1. Thus, there

exist &, mr € R such that U, (&) = —TQ— and Uy, () = 1+2“’*. Let

‘/A() = U‘ru.(' + £l\) and le() = Unk(. + 771«)

Then Vi (0) = ’7 and W (0) = % for all £ > 1. Note that {Vi}es1 and {Wilis
are monotone function sequences with Vi(—o0) = Wi(—o0) = 0 and Vi(+oo) =

We(+oo = 1. By Helly’s theorem, it follows that there exist subsequences, still denote

as {Vi }a>1 and {Wy }rs1, and monotone functions V' and W such that limy—.oc Vi = V
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and lim,_ Wy, = W pointwise on R as k — 400 with V(0) = & and W(0) = Last
Denote Vi(+) = V(- £ 0) and Wi(-) = W(-£). Then V_ and W_ are left-continuous,
while V, and W, arc right-continuous. Note that Vi(€) = V(§) and W4 (§) = W(E)
almost everywhere on R.

Now we claim that both (V,¢) and (W, ¢) arc traveling wavefronts of (3.1). Note

that V} satisfics the following system:

DV(E) + ¢, Vi) — pVa(&) +p /k LOWVi(E+ebydb + f(Vi(€)) =0,  (3.24)

JA)

which is cquivalent to the following integral equation

(b)Vi(n + cb)db + f(Vi(n))dn

1 £ K
Vilf) = A=) / I
1 (6) /———C%k +4Dp{.[m£ (P‘ )

oo e (3.25)
w [T [T L+ ehdb+ SV,
Je Jo
where A\jp = L A S it ;,;"HDP < 0 and Ay = Ton T R Vz,;kHDp > (). Further,
—e — /2 + 4Dy
A= lim Ay, = ‘ 2(D p’
—c 2+ 4D
)\2 = lim )\2;‘. = et 2(D p.
By the Lebesgue dominated convergence theorem, it then follows that
1 S oo
VIO = [ M [ L0V )b 1V ()i
VEE+4Dp J Jo 396
o0 (3.26)

n / e / LW+ )b+ F(V ()l
Je Jo
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verify that function U(€) satisfics

T

DU"(&)+cU (&) +p / LWU(E+ cb)db—pU(€&) + f(U(E)) =0, V§ e R.

Jo
Denote £(1) = r — ¢t + 0pd(1 — e=%1). Then for any + > 0 and § € (0,4), we have

duwt(x,t) Fwt(x,t)
o -D i F(w* (¢, 2))

=U" (€)= + 008 3e™™") = 63pe™*" — DU"(€) + pU(&) + pde !

- p/ L®)[U(x — et + cb+oyd(1 — (’_ﬁ”(t_b))) + (59_5"(""‘)](11) - fUE) + 56_""')
0

:p/ LNU(E + eb) — U(€ + b+ apde ™™ (1 - NN db — pde ! / L(D)e™"db
0 0

+ m,(S;ch“"“'U’(g) — 0Fge™™" 4 ])(5(:_”"" + fU&) - fUE) + (5(7”‘")

>de~ M —p / L(bYe™bdb + a3 U (€) — Jo +p — f(U(E) + =M1

0

=6~ a0 B U"(£) — o — p(/ Lb)e™bdb — 1) — f/(U(E) + 05e™™Y)], 6 € (0, 1)
Jo
In the case where {€(2)| > M. by the choice of 8, 4 and 6 € (0, 1), we have
U(E) + 05e™! € [0,6*] or U(E) + 85 € [1.1+ 687,

which implies that f/(U(€) + 65e™™")) < —L;. It then follows that

Dw™(z,t D*wt(x,t i ! :
Ou 0(;’ )_p? “’0 (,f’ ) Fut(t2)) > 6e M o —p / LB bdh—1)+ Ly > 0;
K 0

In the case where |£(t)] < A, we have

du* (e, t) D(‘)gzu*(.:r, t)

af 01.2 - F(U’+(1.;I.‘)) Z (50"”‘“[00/3ng - Ll — L;;] = Ll + L:; > 0.

Similarly, we can verify w™ is a lower solution of system (3.28). (]
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Let 8 = min{%, 1—_25,(5*}, and p(-) € C*(R,R) be the function defined in Scction

3. Then we have the following result.

Lemma 3.4.2. For any § € (0, 5], there exist two positive number € and C such that
for any £ € R, the functions v* and v~ defined by
vh(toz) =(146) = [1 — (aF = 20)e " |p(—e(x — £ + Ct)).

(3.30)
v () =—0+[1—(1—2" = 20)eple(z — & = Ct)),

are an upper solution and a lower solutions of system (3.28) on [0,00), respectively.

Proof. Without loss of generality, we take £ = 0. We first verify that v~ is a lower
solution. For any & € (0,4], we choosc ¢ = &(§) > 0 small enough such that the

following three inequalitics hold:
(1—2M)e " <1,

—De* — ¢ —pre+ min  f(u) >0,
ue{—ﬁ,—%]

and

—De? —c—pre + min ~ f(u) > 0.
u€frs+4,1-4]

It is casy to verify that v=(x.t) € [-8,1 = §] for all x € R and t > —7. Choose

C = C(§) > 0 large cnough such that

—De? —e+eC1—(L—2")e"]- min p(s)—pre+ min _ f(u) > 0.
p(s)€[%,1—% u€[—48.1-4]
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t > —7. Then we have

v~ (t,z) Ov (t,x)
P = T

>_—Det—c+p /T L(byv~ (z,t — b)db — pv~ (. t) + f(v~ (2, 1))

0

+ F(v™(t,x)

> - De* —e+p min v (x,s) —pv (x,t) + min _ f(u)
seft—T.t] 1/6[—6,—%]

— De* —e+plv” (x, ") —v (2, t)) + min  f(u), t*€[t—rT1

Il

ue[-ﬁ,—%]
ov™(x,s .
> — De? —e + p(t* — t) max O (. s) + min  f(u)
selewt]  Os uel-6,-8)

Vv

D ctpt — et min f(n)
'11.6[—5,—%1

>—De* —e—pre + min ‘ flu) > 0.
u€[-6,—5]
Case (ii) If p(¢) > 1 — g, it is casy to verify that v~ (x,t) € [@* + g, 1-46]. Bya
similar analysis, we get
(L, x v (t,x
p (.’ v)  Ov ‘(t T)
Ji? ot

> De* —c—pre+  min f(u) >0.
1L€[3:*+%,1~5]

+ F(o™(t, 1)

Case (iii) If p(¢) € [§,1 — 2], we have
Ov=(t,x) v (t,x)
b Ox? ot

> —Det+Ce[1 — (1 —a") )P (¢) —e —pre + [Illdilll . fu)
ue|—o0,1—

+ F(v=(t,z))

> - De*+Ce[l = (1—2%)e"] min p({)—e—pre+ min _f(u)
p(Qel$1-1) ue[—6,1-4]

>0.

Therefore, v~ is a lower solution of (3.28). Similarly, we can verify that vt is an upper
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all s € [—7,0], then there exists a function 6(.J,t) € C([0,00) x (0,00),R) such that

the following inequalities hold:

41
u(t,w) —u(t,v) > 0(J,t — to)/ (T@(to, y) — w(to,y))dy

for allt >0 and x € R.

Proof. Let 4(t, ) = (t,z) — u(t, ). Then Lemma 3.2.1 implics that (¢, z) > 0 for
all t € [~7,00) and & € R. For any given ¢, > 0, by (3.5) and definition of upper and

lower solutions, we have

it x) STt — to)ito, -)(x) + / Tt = r)(Plu,)(x) — F@)(x)dr

J iy

2T(t = to)u((to, -))(x) + /‘T(f = r){=pi(r.a) + f(Ur, ) = fulr, ))ldr

to

>T(t — to)u((to,-))(x) — L* / T(t —r)a(r, x)dr,

to

where L* = p + maxX,e[-¢+,146+] f (1) > 0. Let
z(t,z) = e E O — 1ty ), t > to.

Then z(¢,:x) is the solution of the following reaction-diffusion equation:

Ou(t,z) Da%,(t, )

T _E—?_ - L*U(t,ﬁli).

Thus,
L
2(t,x) =Tt —ty)z(ty,x) — L* / T(t—7r)z(r,x))dr, t > 1.
t

<o

By [41, Proposition 3], it follows that a(t, 2) > z(t,z) for all t >ty and z € R. Define
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mental data about the cffect of the scasonal succession to predict the competition of
phytoplankton species. Recently, Gourley, Liu and Wu [14] presented a patch model
to describe scasonal evolution of migratory birds and obtained a threshold type result
on its global dynamics. For more rescarch works on the scasonal succession, we refer
to [10, 24, 22, 46] and references therein.

More recently, Hsu and Zhao [22] studied the global dynamics of the following

Lotka-Volterra competition model with scasonal succession:

lu;

(;; =— M, mw<t<mw+(l—-¢w, i =1,2,

d

i _ rug 1 — 1—“—] — auity, mw+ (1 - d)w <t < (m+ 1w,

dt K, "
d , :
% = ryuy(l — %] — Bugug, mw+ (1 —djw <t < (m+ lLw,

(u1(0),u2(0)) = uo € RE,

where m € Zy, M, 7. I, 0 and 3 are all positive constants, and ¢ € (0, 1]. The
authors gave a complete classification for the global dynamics of (4.1) in terms of
paranicters via the stability analysis of equilibria and theory of monotone dynamical
systems. According to [22, Theorem 2.4], systen (4.1) admits a saddle-point structure

provided the paramcters satisfy the following conditions:
((‘1) 7‘7j¢) - /\,(1 — d)) > 0, 1= 1,2

(€2) 71— M (1= ) < L2(ry0 — Aa2(1 — ¢)).

(€3) 720 — No(1 = ) < ZEL(r19p — Mi(1 = ¢)).

Note that the existence, uniqueness, and stability of w-periodic solutions of a periodic
evolution system are equivalent to thosc of fixed points of its Poincaré (period) map.
Thus, [22, Theorem 2.4] implics that the Poincaré map associated with (4.1) has a

trivial unstable fixed point (0,0) and a unique positive fixed point u = (@, tg) (saddle
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termediate unstable fixed points in between two stable ones. We further employ the
global convergence result Theoremn 1.1.2 to establish the global stability of such a
periodic traveling wave.

The rest of this chapter is organized as follows. In scction 4.2, we establish the
existence of w-periodic bistable traveling waves by verifying abstract assumptions in
[13]. In scction 4.3, we usc the above mentioned convergence theorem and the method
of upper and lower solutions to prove the global stability of traveling waves and their
uniquenecss up to translation. In section 4.4, we present some numerical simulations

to illustrate our analytic results.

4.2 Periodic traveling waves

In this section, we establish the existence of periodic bistable traveling waves for
system (4.2).

Recall that U(t,z — ct) is said to be an w-time periodic traveling wave of the
semiflow {Q}i>0 if Q:[U(0,)|(x) = Ult,x — ct) and U(t,x) = U(t + w,x) for all
t>0,r € R. As usual, we call ¢ the wave speed, and U(t, z) the wave profile.

Let C, Cy, C,, and [a, )], be defined as in Section 2.2. For the convenience of

mathematical analysis, we make a change of variables

Uy = Uy, Up = —Vg,




which converts system (4.2) into the following cooperative system:

o,
ot
dup
ot
Oy

or
(v1(0,-),12(0,-)) = vo(+) € C(R,Ry x R_).

=—M\v;, mw<t<mw+(l—¢w, i=12

It is casy to scc that the Poincaré map of system (4.3) has four fixed points: EY =
(0,0), E' = (0,v3), E* = (v,0), and E® = (41,7,), where vj = —uj, v] = uj,

and (Dy,72) = (@1, —12). Note that (4.3) is order preserving in the relevant range

[E', E?],. Then the existence of the time-periodic traveling waves connecting two

stable periodic solutions (0,u3(t)) and (uj(¢),0) for system (4.2) is equivalent to that
of traveling waves connecting two stable periodic solutions V= (t) := (0,v3(t)) and
VH(t) := (vi(t),0) for system (4.3). Thus, it suffices to analyze system (4.3) to get
the corresponding dynamical behaviors of model (4.2). In what follows, we focus on
the global dynamics of the monotone system (4.3).

Let {@;}s>0 be the solution semiflow associated with (4.3), that is, ®4(vy), as a
function of ¢, is the unique global solution of systemn (4.3) on [0, +00). For convenience,

we use S to denote the Poincaré map ®,,.

Lemma 4.2.1. Let E = {E°, E', E? E3}. Then the map S satisfies (C1)-(C6) in

section 1.2.2 with 0, 3 and Cs replaced by E', E? and [E', E?],, respectively.

Proof. Tt is easy to scc that S satisfies (C1)-(C4). In what follows, we only verify
(C5) and (CG).

Let S be the restriction of S to [E!, E?] € R% Then S has four fixed points
Fi i =0,1,2,3, and we need to show that the fixed point E' is stable from above

and E? is stable from below. From the proof of [22, Lemuma 2.3], it is easy to sec that













holds for any U € [0,7)]¢, where &= (¢,€)7. Since

N\UN < Uy 4+ Uy <o Y (D FV(INU + pU)iyi =1,2,YU >0,

it follows that

FU+ V) — F(V(t)) > D.F(V({t)U = e(D,F(V(1)) + pI)U. (4.7)

Let {Mf )50 be the solution semiflow associated with the following lincar periodic

systent:

T == M. S <+ (1= gl
%_lf]’ = DU, + D“F(V(t))U - E(DMF(V(I‘)) + pIU,

mw + (1 — P)w <t < (m+ lw.

Let. U(t. o) be the solution of spatially homogencous system of (4.5) with U(0, o) =
0. By the continuity of solutions with initial data, it follows that for > 0, there

exists ¢ = p(¢) > 0 in R? such that

Ut, o) < n,Vt € [0,w].

By the comparison principle, we have

U (1) < U (0) = Ult,0) <.V € [0, 0c.t € [0,w].

Combining (4.7), we further get

W, (y) > M; (1), Y € [0, gJe. € [0,w]. (4.9)
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Let U(t,x) = e #*(t) be the solution of (4.8), where I'(t) = (i (1), v2(t))". Then

['(t) satisfies the following cquations

1

% =— AT, nw <t <mw+ (1 - d)w,

ar

dr - -

= = D + DuF(VO)L = (DuF(V (1)) + pI)T, (4.10)

mw+ (1 —¢w <t < (m+ Nw.

Let p. (1) be the principle Floquet multiplier of (4.10). Then p(0) > 1 duc to the
fact that V(t) is unstable. Since cl_i{(l]i/k(()) = pp(0), we can fix an € € (0,1) such
that p.(0) > 1. It is casy to Sec;that if I'(t,Tg) is a solution of (4.10) satisfying
I'(0,Ty) =Ty € R%, then U(t,z) = e # (¢, ) is a solution of lincar periodic system

(4.8). Define ¥, (p) := 1—’%(“) By Theorem 1.2.2 and inequality (4.9), we have
(E* E*) =cy(0,E* — E?) > igg\llg(/z,).
it

Now we need to verify W (+00) = +oo. Let A (pn) = ,%“—). By the Floquet theory,
there cxists a positive w-periodic function £(t) 1= (£(t),&(t))T such that T'(t) =

X< (WE(t) is a solution of (4.10). Then we have

E(t) =[-A = A\.()I)ER), mw <t <mw+ (1~ dw,
(1) = [Dp® = M) T — epl)€(t) + (1 — ) DLF(V(1)]E(1), (4.11)

mw + (1 = d)w <t < (m+ Nw.
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Theorem 4.2.1. Let all parameters satisfy (c1)-(c3). Then there exists ¢ € R such
that the cooperative system (4.3), which is obtained by making substitution w, =
V1, Uy = —vy in model (4.2), has a time-periodic traveling wave V(t,x — ct) with
V(t,—o0) = (0,v3(t)) and V(t,+00) = (vi(t),0) uniformly for t € R. Furthermore,

V(t,z) is nondecreasing in z € R.

To finish this section, we remark that when ¢ = 1, system (4.2) bccomes an
autonomous two specics Lotka-Volterra conipetition model. Thus. the existence of
bistable traveling waves is implied by Theorem 1.1 in [58, Chapter 3, as applied to

the cooperative system (4.3) with ¢ = 1.

4.3 Global stability

In this scction, we investigate the global stability and uniquencss of periodic traveling
waves for system (4.3).

Let X = BUC(R,R?) be the Banach space of all bounded and uniforinly continu-
ous functions from R to R? with the usual supreme norm. Let X, = {{(¢,4¢5) € X'
Pi(x) > 0,Vz € R, = 1,2}. Then X, is a closed cone of & and its induced partial

ordering makes X’ into a Banach lattice. In what follows, we denote
S = {(, ) € X y(a) > 0,9(x) <0,Vx € R}.

Lot V(Hx —ct) = (v1(t, 2 — ct), va(t, 2 — ct)) be a traveling wave solution of (4.3)

connecting (0, v3()) to (vi(t),0). By using coordinate = = z — ct, we transform (4.3)
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v™(t) = v(t,lz) be the spatially homogencous solution of (4.14) with the v*(0) = |

21, —ly, v=(0) = l,. Define n(s) = L (1+tanh(s/2)). Thenn' =n(1—n),n" =n'(1-2n).

Let
1 )2 T
d=c td byt psp{ U m gy 4 LT ) oger - )

|ER2(0)],t € [mw + (1 — @)w, (m+ L], 0 € (v (t),v7 (1)), 1< j#1i <2},

and ¢ > ¢ be a fixed number. Define

Vit,z)=vt(Onz +et) + v () (1 — n(z +¢ét)).

It is casy to sce that V(0,2) > (2). In order to show that V (¢, z) is an upper solution
of (4.14), we distinguish between two cascs:

In the case where t € [mw, mw + (1 — @)w|, m € Z*, we have

=(u)n+ ey + () (1 =n) = ey —clef oy — o) + Ni(vln = cvn)
= - uin ety = Xom ()L —n) — vy n’ — e (vf —o7) + N(vtn + o7 (1 =1))

=@ —c)wf —v7)n(1—7) >0
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In the case where ¢ € [mw + (1 — ¢)w, (m + Lw], m € Z*, we obtain

8\2_(@_‘71 d82‘
ot "0z
=(vYn+avtn + (v

E(Vlv VZ)

Y (=) = ey = e (v =) —di"(vf = u) = Fi(V)
SaF(0*) + (L= )F(e) + (e = ' (of = e) = dud — o7 (1= 20) = (V)
=nF(0) 4 (1= ) F(7) + (1 = (e = &) = di(1 = 2m))(uf = ;) = F()
a0l = )i —or PENO) + o1~ m)of — g EEO) + (1 )

(v — o7 ) (vf — v )F2(0) +n(1 — n)[(e — ¢) — d;(1 = 20)] (v} —v7) > 0.

Thus, V(t, z) is an upper solution of (4.14).
By the comparison principle, we have v(t, z,%) < V(t,2), ¥Vt > 0, 2 € R. Since
lim v~ (kw +¢t) = (0,v3(t)) and lim ot (kw + 1‘) (vi(t),0), it follows that for any
k—+toc k—+4+
e > (), there exist positive number 2 = Z(e, 1) and = k(e, 1) such that v(kw, z, ) <

V(0,24 2) 4+ &, Vz € R. A similar argument for the lower solution completes the

proof. O
Lemma 4.3.2. For any ¢ € S, there exist positive constants €q, Ko, po such that if
for some g € (0,¢9] and 2 € R,

()< VO, + 35 +¢€
or

() 2 V(0, = 2) =€

then for allt > 0,

vty - ) < V(t + 2 + Koe) + Kode ™!



'L’(t, " LZJ) Z V(f, C '2 - ]\’OE) — [\'Oé'c_/’“’,

Proof. Without loss of generality, we assumne that 2 = 0. Let p* = u—ljln r¥, where r*

are the spectral radius of DS(E') and DS(E?), respectively. From the stability of
E' and E?, we know that u < 0. For the convenience of analysis, we rewrite system

(4.14) into the following system

% = Dg—g + c—g% + G(vy, 1) (4.16)
where D = 0, G(vy,12) = (—Ao1, —haw2)T in bad scason (t € [mw, mw + (1 — ¥)w}),
while D = diag(dy, dy), G(vy,va) = F(vy,v3) in good scason (t € [mw+ (1 —v)w, (m+
1w,]). From [66, Lemma 2.1] and the proof of [22, Lemma 2.3], we see that there
exist positive, w-periodic function s*(t) such that v*(t) = G"i"si(t) arc the solution
of the w-periodic system

V' (t) = DG(VE())u(t)

with the initial data v*(0) > 1. Let v* = —’% > 0, a*(t) = (aE(t), a5 ()T =

e, IE = [VE() — 7, VE(t) + 7], and define

1/

+
8 = sup{n > 0: | DG(v) — DG(V*(t)|| < % te 0w, vell),

8
2o =inf{z > 1:||V(t,+2) = VER)| < g, Vz € [2,4+00), t € [0,uw]}.

It is casy to see that 8y and 2o are well defined due to the fact that V (¢, £oo) = V(%)

uniformly for ¢t € [0,w].
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Let ¢(-) € C*(R,R) be a function satisfying

((z) =11in [1,+00), {(z) = 0 in (—o0,0],

and

0<(2) <1, [("(z)] <1, VzeR.
Dcfine

Alz.t) = C(2)a* (1) + (1= ¢(=))a (1)
and

B(t) = /O.t max{al (1), a5 (1),a7 (1), a3 (7)}dr.

Choose positive constants A, B, C, I{ such that
A= max{max |DGI(V*(t +
i,j:l)ﬁz{orgr,(gﬁ DGV WO) + v

— max . Ve -
B= ’1}1:a]>\2{011§1ta§)§) |IDGH(V~ ()] + v},
_ , J . - T vt T
C = max {max {IDG}(v)], v € V(1) = LV7(0) + 1]},

K >2(A+ B+|e|+ (dy +d2) + C)/( min {(Vi.(t, 2), Vas(t, 2) }).

Le[0w).2z€[—z0,2n)

Define

Notce that

+ e
at(t) = ot (1) = T sE(t) < Cre'T

where C* = sup s*(t). It casily follows that |Ja®(¢)| and [|A(t,-)]] tend to zcro
te[0,w)
exponentially as ¢ — +oo, and B(t) is uniformly bounded. Next we show that



w(t,- ) < V(t,-) in [0, +oc) x R provided that £ is small cnough.

Since V(0,2) = V(0.2) + e(¢(2)a*(0) + (1 — ¢(2))a=(0)) = V(0,2) + ¢, and

v(0,z,¢) = ¥(z) < V(0,z) + ¢, it follows that v(0,-,¢) < V(0,:). Letting the
spatial argument of V' be 2 + KeB(t), then we have
AN

V=5 " P e TGN

=V, + eKB'(1)V. + €A, — ¢V, — ecA, — DVi, — eDA., — G(}, V)

<t

L(

=eKB'(1)V, + e(A, — cA, — DA,.) + G(Vi, V) — G(V, V)

1
=eKB'()V. + (A, — cA, — DA,.) — ¢ / DG(Vi + A, Vi + =0A;) Ad6.

S0

In order to prove that V (¢, 2) is an upper solution of system (4.16), we consider three
cases: (i) = € [z0,00), (ii) 2 € (—o0, —20], and (iii) z € [—z0, 20].

In the first case, ((5) = 1, A(t,2) = a*(t) = e’ w7 (t), and A, = A,, = 0. Then
we have

1
L(V) 2 (A~ / DG(V] + 0 Ay, Vy + e0A2) AdO

JO

1
=c(vte” vt + ¢ T DGV ()0t — / DG (Vi + €0A;, Vy + e0Ay) AdO)
0

—e(vt + /I(DG(V+(t)) — DG(V; + £0A,, Vi + 2045))d0)a* (t) > 0
0

in [0,00) x [z9,00) provided € is small enough. Similarly, we can prove L(V)>0in
the second case.
In the third case, denote a(t) = (max{ay(t),af(t)}. max{a; (t),af ()T > 0.
Then we have
KB'(1)V, >K max{af (t),af (t), a7 (t), a5 (1)} o ]IIliI[l ]{Vlz(t,z),ng(t, 2)}
tel0w],z€]—z20,20

>Na(t) min {Via(t.2), Vau(t. 2) ).

te{0w],2€[~2u.20]



and

A, —cA, — DA, - /01 DGV} + €04, Vy + £0.A4,) Adf
=((2)(a*(t)) + (1 = ¢(2))(a™ (1)) = eC'(2)(a™(t) —a (1))
— DC'(2)(at(t) — a™ (1)) — /01 DG(V; + €04, Vy + e0.A3) Add
=((2)(v" + DGV (t))a™t(t) + (1 = ((2))(v” + DGV (t))a™ (t)
= (cC'(2) + D))t (1) — a™ (1)) — ‘/01 DG(Vi + e0A,. Vs + 0.A,) Adf

>(—-2A—2B — 2|c| — 2(d; + d3) — 2C)a(t).

By the definition of constants A, B, C, K, it then follows that L(V) > 0 in [0, 00) x
[—20. z0]. Consequently, V(#,z) is an upper solution of system (4.16).
By the comparison principle and v(0, -, ) < V(0,-), we sec that v(t, -, ) < Vit,).

It then follows from the propertics of functions A(f, z) and B(tf) that there exist

positive constants gy, Ky, and py, such that the lemma holds. O

Lemma 4.3.3. For any ¢ € S, there exists a positive constant K, such that if

l(-) = V(0,)]| < e for some ¢ € (0,&¢], then
Jo(t, -, ) = V()| < Kie, ¥Vt > 0.

Proof. Letting 2 = 0 in Lemma 4.3.2, we see that there exist positive constants Ky, po

such that

V(t, — Kye) = Kofe ™ < u(t, ) < V(L + Koe) + Kofe ™
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oo € (89, a) such that
V(0,2 4+ 09) < é(z2), ¥z € [=b,b]. ¢ € w(gp).

For any fixed ¢ € w(gy), there exists a sequence n; — oo such that P™ (¢o) — ¢

as j — oo. Fix a n; such that
[P (¢0) — ¢l < d(a0 = so)-
Since V (0, z + 09) K ¢(z), Vz € [-b,b], and
V(0,2 + s0) — V(0,2 4+ g9) < ¢(2) = V(0,24 0y), V2 € R,

we have

P (gg)(2) = V(0. = + aq) =P (do)(2) — &(2) + &(z) — V(0,2 + a9)
> — (0g — $0)6 — sup||V(0, z + s0) — V(0,2 + ap)||€

B |sI>b

—

> — (a9 — 50)0 — (00 — $0)d

= - 2(0’() - .90)5.
By Lemma 4.3.2, it follows that
Ht(Pﬂj(qb())) Z V(t, T+ oy — QK()((TO - 50)(5) - 2[\'0(0'0 - Sg)gﬁipot,vt > 0.

Letting ¢ = (n; — ny)w and j — oo, we get

(f)() Z ‘/(0, -+ og — 2[\’0(0'0 — 50)5) Z V(O, -+ (0'() + So)/2).
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Let sy = 2% then s € (s9,00) C [s0,00], and V(0,4 s1) <x ¢(:). By the
arbitrariness of ¢ € w(gy), we have V(0,- + s1) <x w(¢o)-
By Theorem 1.1.2, there exists s, € [—a. a}, such that w(y) = h(sy) = V(0, +sy).

Thus, lim P*(¢p) = V(0,- + s4), and henee lim |[IL(¢) — V (¢, - 4 sy )|| = 0. Since

n—oc

o(t,x,0) = vt o — ct, ) = IL(Y)(x — ct),

we have lim ||o(t,z,¢) — V (¢, — ¢t + sy)|| = 0 uniformly for x € R.
TL— 00
Let V(t, x—¢ct) be a time-periodic traveling wave solution of system (4.3) connecting

V=(t) to V*(t). Clearly, V(0,-) satisfies (4.15) in Lemma 4.3.1. By what we have

proved above, there exists §, € R such that

fli_}1010||\~/(t, c— ) =V (t,—ct+5,)|| = 0.
By change of variable ¥ = @ — ¢f, we then have

tllnolon{/(f, le—) = V(t,-+ 5] =0.

Letting ¢ = nw, we get Lim V(0,- + (¢ — &nw) = V(0,- + ). Since V(0, —o0) =

n—ooc
E'. V(0,00) = E?, and V(0, ) is strictly increasing on R, we obtain ¢ = ¢, and henee,

Vi(t,) =IL,(V(0.-)) = T(V(0.- +5,4)) = V(t,- + §p) for all t > 0. 0

4.4 Numerical simulations

In this scetion, we present some numerical simulations to illustrate our analytic results.
By Theorem 4.3.1, we know that the original compctition system (4.2) admits a

unique bistable traveling wave up to translation, which is globally stable with phase
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shift. In order to simulate this result, we truncate the infinite domain R to finite
domain [—L.L], where L is sufficiently large. We solve the lincar cquations and
discretize the solutions for bad scasons, while we apply the difference method to
discretize the system for good scasons with the Neumann boundary condition. Let
A o=1/10, Ay = 1/12, dy, = 1, dy = 1/2, 7y = 1/4, ry = 1/5, @ = 1/5, 3 = 9/10.
K, = 80. Ky = 40, w = 20. ¢ = 1/2. The cvolution of two populations and the
numerical periodic bistable traveling wave are observed in Figure 4.1 for L = 200

with the initial conditions:

1/10, 200 < & < —150;
wr() = ¢ 1/10 4 (ulf — 1/5)(x + 150)/300, —150 < & < 150;

ut — 1/10, 150 < r < 200.

uy —1/10, —200 < & < —150
us() = ¢ 1/10 — (1) — 1/5)(x ~ 150)/300, —150 < z < 150;

1/10, 150 < » < 200.

Here u} = 67.7073 and w3 = 31.8550 arc calculated by the the following formulas

which are given in the proof of [22, Lemma 2.1]:

I\'i( 1 — c/\'(l —¢)w—ﬁ¢w)

ul =
a 1= e o

It is well known that the sign of the wave speed of the bistable traveling wave
V(t,& — ct) is very important since it tells us which species wins the competition.
Mathematically, if ¢ > 0 (< 0), then the wave profile move to the right (left) in the
z-axis. In order to observe the direction of the traveling wave, that is, the sign of

the wave speed ¢ under the given parameters, we plot w, and wu, components with












Chapter 5

A Reaction-Diffusion Lyme Disease

Model with Seasonality

5.1 Introduction

Lyme discasc is a commonly reported tick-borne illness, which was named after Lyme,
Connecticut, where the first outbreak in humans in North Amecrica was recognized in
1975. The discasc is caused by the bacterium, Borrelia burgdorferi, which is trans-
mitted to humans through the bite of infectecd ticks. The ticks live for about two
years with three feeding stages: larva, nymph and adult. Larval and nymphal ticks
primarily fced on mice and adult ticks feed on deer. Larvac that obtain a blood meal
drop off their host (mmice) and then grow up to the nymphs. These nymphs quest their
host (mice) for their blood meal. If they succeed, the nymphs pass the spirochete to
susceptible mice and mature to adults. Adults feed almost exclusively on deer and
mate there. Female adults eventually drop off the deer and lay their eggs ncarby, and
dic. Larvac hatch and acquire the spirochete when they attack an infected mice for

their blood meal. Another tick to mouse to tick infection cycle happens again. For

104
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more information about the infection of Lyme discase, we refer to [4, 5, 38, 42, 43, 44]
and references therein.

In order to study the effect of vector’s stage structure on the transmission dynam-
ies and discase spreading velocity, Caraco et al. [5] proposed a reaction and diffusion
model for the Lyme discase in the northeast United States. The model treats pop-
ulation deusities at locations @ := (@, 22) in a continuous two-dimensional space €2,
and paramecters for birth, death, infection, and developimental advance are all positive
constants. Recently, Zhao [68] studied the global dynamics of this spatial model for
Lyme discase. Note that this model ignores the scasonal pattern in abundances and
activities of different stages. As mentioned in [2], seasonal variations in temperature,
rainfall and resource availability are ubiquitous and can excert strong pressures on pop-
ulation dynamics. For Lyme disease. the ticks develop slowly or becomne less active
in colder temperatures (sce [44]), and the rainfall is also critically important for the
development, survival and activities of ticks (sce {48]). According to the report from
Public Health Ageney of Canada on Lyine discase cases in Ontario between 1999-2004
[70], most cases occurred in late spring and suminer, when the young ticks arc most
active and people are outdoors more often. To take scasonal influences into account,
we modify Caraco et al’s model to a reaction and diffusion mmodel in periodic environ-
ment. Since the tick development and activitics are strongly affected by temperatures
[42, 43, 44], we assume that the development rates of ticks and their activity rates (bit-
ing rates) are time-dependent. Another assumption is the sclf-regulation mechanism
for the tick population, as discussed in [5]. We assume that the self-regulation pro-
cess is mainly due to the carrving capacity of hosts and soue density-dependent death
terms. Let A (¢, 2) and m(t, ) be the densities of susceptible and pathogen-infected
mice; L{t,2) be the density of questing larvac; V(t,z) and v(f,r) be the msitics

of larvac infesting susceptible and pathogen-infeeted mice; N (¢, ) aud n(t, x) be the
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densitics of susceptible and infectious questing nymphs; A(t,z) and a(t, ) be the
densitics of uninfected and pathogen-infected adult ticks, at time ¢ and location x.
From the aforementioned assumptions and the flow digram Figure 5.1. we obtain the

following model:

OM AN 4 rag (M +m) (1= 25 A — a3,
ot ]\M

%7? = Dydm —|~l an(t)FMn — puprm,

oL

5 r(t)(A+a) = L —ar(t) L(M +m),

1%

(29_1‘ = DyAV +ay()ML — V(o (t) + ptv) — v (V +0)V,

% = DpAv+ a(t)mL — v(o(t) + py) — dv(V + v)v, (5.1)
ON

= a(®)[V + (1 = Br)v] — N[y + ca(t)(M + m) + pn).

% = Bro(t)v — nly + ag(t)(M + m) + pnl,

OA

i DyAA+ ay(t)N{M + (1 = Br)m] — paA = d4(A+a)A,

da .

5:— = DyAa+ ar(O)[(M +m)n + SrmN] — ptaa — d4(A + a)a,

2 92 . .
where A = —(%; + %5 is the Laplacian operator on R?. All constant parameters are
2 2

positive, and 7(¢), a;1(t), a(t), and as(¢) are nonnegative w-periodic functions. The
biological interpretations for the parameters are listed in the Table 5.1, We further
assume that ra; > . 8 € (0,1), and gp € (0,1).

Our main purposc in this chapter is to study the global dynamics of system (5.1) in
both bounded and unbounded spatial domain. In scction 5.2, we obtain a threshold
result on the global dynamics of (5.1) in a bounded domain €2. In scction 5.3, we
establish the existence of the spreading speed of the diseasc and its coincidence with
the minimal wave speed for periodic traveling waves of system (5.1) when Q is un-

bounded. In section 5.4, we present a case study on the transiission of Lyme disease
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M+4+mV=V+u, N=N+n A=A+ a for system (5.1). It then follows that

system (5.1) is equivalent to the following one:

oM M
7 = D/\/AM + 7‘MM (1 — T[\[) - /IVA/M,
L
%;— =r(t)A~ puL — o (t) LM,
% 9
v Dy AV + o (ML = V(o (t) + puy) — & Ve,
ON
O — o)V — Nl + aaf)M + i),
0A o
o DyAA+ ag(OONM — paAd — 64.A°, (5.2)
% = Dy Am + ag(t) (M — m)n — ppm,
% = DyAv + aq(t)mL — v(o(t) + py) — Vv,
0 ,
0—7: = Bro(t)o — n[y + a()M + pyl,
0 .
5—(; = DyAa + ay(t)[Mn + Brm(N —n)] — paa — daAa,

Note that the first five equations in (5.2) do not depend on the others. In addition,
by the condition r3; > pa; and a standard convergence result on the logistic type

reaction-diffusion equation (see, c.g., Theorem 3.1.5 and the proof of Theorem 3.1.6

in [67]), it follows that for any M(0,") € C(£2, R2)\{0}, we have

tlim M(t,z) = Ky (1 — M) =@

M

uniformly for z = (x,,15) € Q. Thus, we first analyze the global dynamics of the







¢ € X7, system (5.4) admits a unique nonnegative and non-continuable solution

u(t,x, @) = (

on [0,04) with u(0, -, ¢) = ¢.

L{t,x, ¢),V(t, 2, 0) Nt z,0), Alt, v, ¢))

Morcover, it follows from [41, Proposition 1 and Remark

1.4] that system (5.4) admits the comparison principle.

Note that the spatially homogencous system of (5.3) is the following periodic sys-

tem of ordinary differential equations:

dL

dt
dV

dt
dN

dt
dA

dt

=r(t)A — L{ug, + o (1)Q),
= ()QL — V(o (t) + py) — vV,
=o(t)V — Ny + ao()Q + pn], (5.5)

= w(ONQ — paA — 04A4%,

and every nounegative solution (L(t), V(£). N (1), A(t)) of (5.5) satisfies

d
dt

— (LAY AN +AR)) = (r(t) —pa—64A) A—pL L— i V=60 V=N (y+pun) <0

provided A > (maxo<i<, 7(t) — f14)/64. It then follows that solutions of (5.5) are

ultimately bounded in R and exist for all ¢ € {0, c0).

Lincariug system (5.5) at (0,0,0,0), we get the following linear cooperative systen:

aL _
dt

=r(t)A— Lipr + i (£)Q),

dv

— = (HQL — V(o(t) + pv),

dt

W _
dt

=o(t)V — N[y + (t)Q + pu), (5.6)

dA

dr

= ()N Q — paA.
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Let 71 be the spectral radius of the Poincaé map associated with system (5.6). Then
it is casy to sce 7 is the principal Floquet multiplier of system (5.6). Further we have

the following result.
Lemma 5.2.1. The following statements are valid:
(i) If ry < 1, then (0,0,0,0) is globally asymptotically stable for (5.5) in RY.

(ii) If 1y > 1, then (5.5) admits a unique positive w-periodic solution u*(t) =
(L*(t), V*(t), N*(t), A*(1)), which is globally asymptotically stable for (5.5) in

RL\{0}.

Proof. Define f = (fy, f2, f3, f1) : R* — R* by

Jilay, we, 3, 24) = r(t)ry —ayfpr + o (H)Q),
folar, 2o, 23, 24) = aq (D)Quy — x2(o(t) + pv) — Sy a2,
fa(xy, @, w3, 24) = o(t)xy — 23]y + 2(t)Q + pn],

Fa(@r,2e, 23, 24) = ao(t)x3Q) — ptary — Saxs.

It is casy to verify that fi > 0 for any x = (2),20,23,24) € RL with z; = 0,
and the Jacobian matrix of f(xy,xy,23,1x4) is cooperative for any « € R‘_‘I_. Thus,
the solution semiflow {II;},>¢ determined by (5.5) is monotone in the sensc that
I,(x) > T,(y) provided z > y in R}. Next, we show that Il is strongly mono-
tone for all ¢+ > 3w, that is, I;(z) > II;(y) whenever t > 3w and x > y. Let
w(t) = (21 (1), wa(t), wa(t), xa(t)) = We(wo), y(t) = (wr(L), y2(t), ys(t), ya(t)) = Li(yo).

and z(t) := (21(t). 22(t), z3(t), z4(t)) = x(¢t) — y(t). Then z(t) satisfics the following
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cquations:

% = 1~(t)24 — 2 [}“‘L + Ql(t)Q]’

dz

d: = a1 (1)Qz1 — 22(0(t) + py + Sy (wa(t) + y2(1))),

% = o)z — zlby + (Q + ). (5.7)
%31‘_1 = QQ(t)QZ:; - 24(;1,\ + (sA(-'Iq(t) + y.;(t))),

Now it suffices to prove z(¢#) > 0, Vt > 3w, whenever 2(0) = @y — yo > 0. Deuote
L = A(t)z, where A(t) := (a;;(t)), 1 < i.j <4, is the coefficient matrix of the right
hand side of (5.7). Since a;;(t) > 0.4 # j, we have % > a;(t)z,1 < i < 4. Using
this fact, we can sce that z;(t) remains positive for all £ > #* if it becomes so at
t = t*. Then it suffices to show that at least one of the component becomes strictly
positive, and that once this happens, all other components will eventually becomes
strictly positive. Note that z(0) > 0 implics that at least one of the component of
2(0) is strictly positive. Without loss of generality, we suppose z;(0) > 0. From above
analvsis, we know that z1(t) > 0 forall £ > 0. Now we claim that there exists ¢ € [0, w]
such that z(t;) > 0. Otherwise, we have z,(t) = 0.Vt € [0,w]. From z; equation
in (5.7). we further derive that o, (#)Qz; = 0,Vt € [0.w]. Since «(t) is periodic and
not identically zcro, there must be some ¢ € [0,w] such that z(f) = 0, which is a
contradiction. Similarly, by z3 equation in (5.7) and the fact that o(¢) is periodic and
not. identically zero, we can prove there exists £y € [t. 6 + w] such that z3(t2) > 0.
Furtherniore. by the z3 equation in (5.7) and the properties of ax(t), we sce that there
exists 3 € [ta. 4o + w] such that z(¢t3) > 0. Since t3 € [0,3w], we have proved that
I1, is strongly monotonce when ¢ > 3w. Clearly, other cases can be proved in a similar
way. Thercfore, Iy, is strongly monotone. It is casy to sec that f(xy, 2z 23, 24) is

strictly subhomogencous in the sense that f(sxy, saq, sx3, s1:4) > sf (21, 19, 13, 24) for
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Theorem 5.2.1. For any given ¢ € X+, let u(t,-, @) be the solution of (5.3) with

u(0, -, ¢) = ¢. Then the following two stateinent are valid:
(i) If ry <1, then (0,0,0.0) is globally asymptotically stable for (5.3) in X7.
(ii) If ry > 1, then u*(t) is globally asymptotically stable for (5.3) in XT\{0}.

Next we consider the global dynamies of the following limiting system:

% = DayAm + ax(8)B3(Q — )i — pparm,

% = DasAv + oy (H)mL* (1) — v(o(t) + pv) — 00 V* (1o,

D Brott)o — nly + () + sl (5.8)
O~ Dua+ aIQn+ BN (1) = )] = paa = B A (D)

Let Y = C(Q,00.Q) x R2) x C(CLR,). Tt then follows that any ¢ € Y, system
(5.8) admits a unique solution w(t,z,¢) := (m(t,x,d), v(t.x, @), n(t,z. @), a(t,z,¢))
on [0,00) with w(0.-,¢) = ¢, and w(t,r.¢) € Y.Vt > 0. Morcover, by the ultimate
boundness of V. N, A, we sce that w(t,.r. ¢) is also ultimately bounded.

Note that the spatially homogencous systein associated with (5.8) is the following

systeni:

dm = ay(1)3(Q — m)n — pamn,

dt

% = o (t)mL*(t) — v(o(t) + pv) — V" (1o,

dn

—ag = Jro(t)v — nly + ax(t)Q + pen). (5.9)
(:l_(; = az(t)[Qn + Brm(N*(t) — n)] — paa — d.A%(t)a,

and (0,0,0,0) is an w-periodic solution of (5.9). Lincarizing systcn (5.9) at (0,0,0,0),



we get the following linear system

dm

- = as(t)BQn — pagm,

dv ¢

d_lt = ay()mL*(t) — v(o(t) + py) — oy YV (t)v,

an

771‘1 = Bro(t)v — nly + ax(H)Q + pnl, (5.10)
% = ap(t)Qn + Brao(t)N™ (t)m — paa — 54.A™(t)a.

In order to introduce the basic reproduction ratio for system (5.9), we follow the

procedure in [59]. We rewrite system (5.10) as 9 = (F'(t) — V/(t))u, where

0 0 ap(t)pQ 0
vy (B) L5 (t 0 0 0

F(t) = ar(t)L*(t) |
0 0 0 0

F23.¥4 0 0 0
0  o(t)+py + oV (2 0 0
Vi (0)+ py + V(1)
0 —pro(t) v+ a(H)Q + pn 0
0 0 —a(t)Q fta + 04A(t)
Let Y(t,s).t > s, be the evolution operator of the lincar system ‘(’TZ = —V(tu.

That is, for cach s € R, the matrix Y(¢, s) satisfies

d
-(EY(t,s) =-V@)Y(ts), YVt >s, Y(s,s)=1,

where [ is the 4 x 4 identity matrix.

Let C, be the Banach space of all w-periodic functions from R to R?, cquipped with
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the maximum norm. Suppose ¢(s) € C,, is the initial distribution of infectious individ-
uals in this periodic environment, then F(s)¢(s) is the rate of new infections produced
by the infected individuals who were introduced at time s, and Y'(¢,5)F(s)¢(s) rep-
resents the distribution of those infected individuals who were newly infected at time

s and remain in the infected compartments at time ¢ for ¢ > 5. Henee,

/_' Y (1, 5)F(s)b(s)ds = /wY(t,t — PPt —T)(t — 7)dr

[es) 0

gives the distribution of accumulative new infection at time ¢ produced by all those
infected individuals ¢(s) introduced at previous time. Define a linear operator L :

C,— C, by

(Lo)(t) = /w Y(t.t — 1)F(t —7)b(t — T)dr,Vt E R, $ € C,.

0

According to [3, 59], we define the basic reproduction ratio to be Ry := r(L), where
r(L) is the spectral radius of L.

Let 7, be the principle Floquet multiplicr of the lincar system (5.10). Then The-
orcm 1.3.1 implies that Ry — 1 has the same sign as 7 — 1. Thus, (0,0,0,0) is
asymptotically stable if Ry < 1, and unstable if Ry > 1.

Since the first three equations in system (5.9) do not depend on the fourth one,

we consider the following subsystem of system (5.9):

Im
(_dr_;_) = () 3(Q — m)n — parm,

l

‘d—‘; — ar()mL* (1) — v(o(t) + o) — Sy V (D), (5.11)
dn

i Bro(t)v —nly + aa(t)Q + un].
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xi(t) = a; (e (), Y > 0,1 < i.j < 3. It then follows that wx;(t) > 0 for all
t > t* provided ay;(t*) > 0 for some t* > 0. Since x;(0) = 1, we have x;(t) > 0
for all t > 0,1 < i < 3. We further prove that a;;(t) > 0 for all £ > 2w. Note that

£5(t). 1 # J, satisfy the following cquations:

2a(1) = — (a0 () + pa)rialt) + aa()HQ = m(D)asa(h),
2hat) = — (a0 () + par)ens(t) + aa(D)HQ — m()wss(t),
2, (8) = ay (DL (D () = (o(t) + v + V' (08 e (1),
) = (DL (Ora(t) = (o(t) + v + V(D)0 )em (1),

;l'fgl(f) = ,’3T(T(t),’1721(f.) + ("7 + (l’g(f)Q + /l}\r):l);“(t).

Since xy;(f) > 0,V > 0,1 < i < 3, and o (t), az(t), o(t) arc periodic but not identi-
cally zero, it follows from a contradiction arguinent that there exists ¢, € [0, w] such
that @y3(t), v21(t), 232(t) > 0 for all t > ¢;. Then we can prove that there cxists
ty € [ty b +w] such that xya(t), wa(t), @51 () > 0 for all t > t5. Since t5 € [0, 2w], we
have X (t) > 0,Vt > 2w. Then for any .y € R satisfying w, > . we have

' ow

’IT’(t, lT/-_g) — zP(t. 'll~71) = (,,)—_(t w, + 7'(’ID2 - 17’1))(“—)2 — 'll_)])(l'l‘ >0
Jo Wy

provided ¢ > 2w. This implies that w,(129) > @, () for all t > 2w. In particular. we
have 1wy, () is strongly monotone. By the same argument as in the proof of Lemma
5.2.1, we sce that statements (a) and (b) hold.

By the theory of chain transitive sets (sce [20] or [67, Section 1.2]) and the similar
arguments as those in the proof of Theorem 5.2.3, it follows that liny_. a(t) = 0 in

the case where 73 < 1, and liny_(a(t) — a*(t)) = 0 in the case where 73 > 1, where



a*(t) is the unique positive w-periodic solution of the following limiting cquation

da . .
I~ an(n @ (1) + Brm (NN (8) = ()} = (1 + BaA" (D)o
Since 73 — 1 has the same sign as By — 1, we then complete the proof. O

The following result shows that Ry is also the threshold value for the global dy-

namics of system (5.8).

Theorem 5.2.2. For any given ¢ € Y, let w(t,-, ¢) be the solution of (5.8) with

w(0,-.¢) = ¢. Then the following two statement are valid:
(i) If Ry < 1, then (0,0,0,0) is globally asymptotically stable for (5.8) inY.

(i) If Ry > 1, then w*(t) is globally asymptotically stable for (5.8) in (C(2,]0,Q) x
RU\{(0}) x C(Q,Ry).

Proof. Since the first three equations in (5.8} do not depend on the forth one, it

suffices to prove that the threshold result is valid for the following subsysten:

% = DaAm 4+ ao(8)3(Q — m)n — parm,

% = DpAv + o (O)mL* () — v(o(t) + py) — vV (t)v, (5.13)
on

—8—7; = Fro(tyv —nly + a2(t)Q + 1yl

Let @(t, -, ¢) be the unique solution of (5.13) with the initial data ¢ € C(Q,[0,Q) x
Ri)\{()} By the positivity result for reaction-diffusion equations, it follows that
W(t,-,¢) > 0,¥t > 2w. Note that solutions of system (5.11) arc also solutions of
the reaction-diffusion system (5.13) subject to Neumann boundary conditions. Thus,
Lemma 5.2.2, together with the standard comparison argument, implics that the

threshold result is valid for system (5.13). O
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In the rest of this section, we use the theory of chain transitive sets (see [20] or
[67, Scction 1.2]) to cstablish the following threshold result on the global dynamics

for system (5.2).
Theorem 5.2.3. Let ry > 1. Then the following statement are valid:

(i) If Ry < 1, then the disease-free periodic solution
(Q,L*(t),V*(t), N*(t), A"(t),0,0,0,0)
is globally attractive for system (5.2) in (C(Q,R)\{0}) x (XT\{0}) xC(,R}).
(it) If Ry > 1, then system (5.2) has a unique positive w-periodic solution
(Q.L(8), V™ (1), N™(1), A™(t), m™ (£), v (2), " (1), a" (1)),

which is globally attractive for systemn (5.2) in (C(,Ry)\ {0}) x (XT\ {0}) x
(C(QRYN{0}) x C(Q,R,).

Proof. Let {U;};50 be the periodic scmiflow associated with system (5.2). That is,

U, () () := (M(t,2), L(t,2), V(t, ), N(t, @), Alt,x), m(t, x), v(t, x),n(t, x),a(t, x))

is the unique sotution of (5.2) with initial data ¢ € C(Q,R}). For any given ¢ €
(C(QLRON{0}) x (X T\ {0}) x C(,RY), let £ be the omega limit set of the discrete-
time orbit {W!(¢)},>1. Since cvery solution is ultimately bounded, we know from
Theorem 1.4.1 that £ is an internally chain transitive set for ¥,. Since rp > 1,
Theorem 5.2.1 implies that

B (7501 (R 0) )20 (W) ), (2 (8)) (W2())s5) = (@, L7(0), V" (0), A" (0), A*(0)).

n—oG






exists T, > 0 such that

[(M(t,z), L(t,x), V(t,x) . N(t,z), A(t,2)) — (Q, L*(t), V* (), N (1), A*(t))] < e

for all t > T, and z € €. Hence, for any ¢t > T,, we have

D> Dy s(3(Q — ¢ = m)n — g,

% > DaAv + oy ()m{L*(t) — €) — v(o(t) + pv) — oy (V*(t) + €)v, (5.14)
on

0—7: > Bro(tyv —nly + ao(t)(Q + €) + pwl.

By the assumption on ¥ in statement (ii), we further have (m(0,-),v(0,-),n(0,-)) €
C(Q,R3)\ {0}. Let r, be the principle Floquet multiplier of the following periodic

lincar system

% - QQ(t)B(Q —€)n — pam,
E{% = oy () (L*(t) — €) — v(o(t) + jiv) — - (V' () + €)v, (5.15)
Z_,: = Bro(t)v —n[y + c(t)(Q + €) + .

Since r3 > 1, we can fix 0 < ¢ < min (@), ming<i<, L*(t)) small enough such that

re > 1. By a result similar to Theorem (5.2.2) (ii), we sce that the Poincaré map of

% = DyAm + ag(1)3(Q — € — m)n — juppin,

% = Dy Av 4 a ()m(L*(t) — €) — v(o(t) + pov) — Sy (V' () + ¢)v, (5.16)
an

a_: = Bro(tyv = n[y + a()(Q + €) + pn],

admits a globally attractive fixed point (m(0),7.(0),n.(0)) > 0. In view of (5.14)
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to R? cquipped with the compact open topology. For any ¢! = (i, ¢l 9l), ¢* =
(2, ¢3.402) € C, we denote 92 > P2 > @Y it ¢ > ¢} (PF>¢)) VI<i<3 o€
R, and ¢ > b if ¢? > ¢ but * # ' For any vectors a,b in R?, we can define
a > (>>.>)b similarly. For any 8> 0 in R?, we define [0, 3] := {¢ € R*: 3 > ¢ > 0}
and Cy:={wel:3>vy >0}

Let {Q}is0 be the solution semiflow associated with system (5.13) on Cy- (g, that
s,

Qi) () = w(t,x,d), Y € Cye(o), v € R, E > 0.

It then follows that {Q:}:>0 s a monotone periodic semiflow and cach map Q; Is
subhomogencous in the sense that Q(s¢) > sQ, () for all ¢ € Cy(oy and s € [0, 1].

Morcover, we have the following observation.

Lemma 5.3.1. The Poincaré map Q,, satisfics conditions (A1)-(A5) in Section 1.2.1

with 3 = w*(0).

Proof. Tt is casy to verify that @, admits conditions (A1)-(A3). By statcment (b) in
the proof of Lemma 5.2.2. we see that condition (Ad) holds for @,. Furthennore, by

a similar decomposition argument as in the proof of [68, Lemma 3.1], it follows that

(A5) holds for Q. (]

By Theorem 1.2.4, it then follows that the map Q. : Cyvo) — Cipro) admits a

spreading speed ¢, T order to estimate ¢, we consider the following lincar cquation:
w w

%711 = DyjAm + ao(t)3Qn — paym,

v

0_; = DyAv + ar()mL*(t) — v(a(t) + v + Sy V(). (5.17)
0

Td,t—l = Bro(t)v — nly + @ (1)Q + pn).

Lot (u,(¢,.), ug(t, ), us(t, ) = e (g (t), wx(¢), u3(¢)) be a solution of (5.17). Then
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(10 (), ua(t), i3(t)) satisfies the following ODE system with the initial data @(0) € R?:

dﬂ;tt) = 12Dyt (t) + co()BQuUs(t) — partia(t),
L) — 12 Digtiolt) + on ()L (Wia (1) — (o(6) + v + 8V (O)(), (5.19)
dﬁ;t(t) = Bro(t)ua(t) — [v + aa(£)Q + punis(t).

Let {M;}i>0 be the solution map associated with (5.17). Define B : R? — R? as
BY(z) = My(ze7)(0) = (@ (t, =), Gat, 2). (1, 2)).

Thus, B!() is the solution map of the lincar system (5.18) on R?. Let r(u) be the
spectral radius of the Poincaré map By. Tt is casy to verify that Bﬁ“’ = (B;‘j)2 is a
compact and strongly positive operator (actually, B/’t is strongly positive for all ¢ >
2w). By {28, Lemma 3.1], it follows that r(;:) > 0, and it is a simple eigenvalue of B
with a strongly positive cigenvector w* >> 0. Using a similar argument as in the proof
of [66, Lemma 2.1], we sce that there exists a positive w-periodic function w(t) such
that v(t) = eXMhw(t) is a solution of (5.18), where A(p) = L Inr(p) and w(0) = w*.
That is, B, (w(0)) = X" w(t). Letting t = w, we have B2(w(0)) = e W«(0), which
implics that e*¢)« is the principle cigenvalue of By with strongly positive cigenvector

w(0). Following [28], we define

1 Vo o Inrlu
D(p) = = lll((f’\(”)“’) _ Ap)w _ nr(pu)
s H It

Vi > 0.
When g = 0, system (5.18) reduces to the lincar system (5.12). Since Ry > 1, we
have r(0) = 73 > 1. Thus, ®(0) = oo. Since v(t) = *Ww(t) is a solution of (5.18),

we have
duy(t)
dt

> (12 Dy = (o(t) + py + 6V (1))Jv2(2).






comparison principle implics that

w(t,z,¢) <w(t,n) <€ VreR, ¢ €Cy, t€[0w]

Thus, for any x € R, ¢ € [0,w], and ¢ € C;;, W (t,x, ¢) satisfics

0—;} > Dy Ay — pprg + ao(8)5(Q — €),

N .

—5‘?— — Dy Ay + cq (DL (£ — (0(8) + py + Sy V*(E)by,  (5.19)
o, . .

—0_1‘é = fro(t)ie — [y + aa(t)Q + pen il

Let {M[}i>0 be the solution semiflow associated with the following lincar systen

o . R X

(9_1f1 = D&y = pariin + a2 (1) 5(Q — e)idy,

i

% = Dy Dby + o (B) L ()10 — (o(t) + pyv + Sy V7 (t))g, (5.20)
iy R .

S = Bro(tis = [y + aa()Q + jnlin

By the comparison priuciple, we then have

M) < Qu(¢), Yo € Cy £ € [0,w].

Letting ¢ = w and 0 < ¢ < @ small cnough, then we can do a similar analysis on

{M¢ >0 as we did for {M,;}i>o. It follows from Theorem 1.2.2 that

inf ¢, (1) < ¢ < inf ®(p)

u>0 n>0

for all sufficiently small e. Letting € — 0, we obtain ¢}, = inf 50 (). O

Let ¢ = ¢, /w. Then the following result shows that ¢* is the spreading speed for
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system (5.13).

Theorem 5.3.1. Assume Ry > 1. Let w(t,z,¢) be the solution of system (5.13) with

w(0,,¢) = ¢ € Cyr(o). Then the following statements hold:

i) For any ¢ > ¢, if ¢ € Cyr(0y with 0 < ¢ < *(0). and ¢ = 0 outside a bounded
(0}

interval, then lim_q o> (¢, 2, @) = (0,0,0).

ii) For any ¢ € (0.¢%), if ¢ € Cyroy with ¢ # 0, then limy_ jo<ct (W(E, 2, 9) —
(0) o] <

w*(t)) = 0.

Proof. In view of Lemma 5.3.1, statcment (i) is a straightforward consequence of
Theorem 1.2.4 and [29, Theorem 3.4(i)]. For the statement (ii), since Q; is subho-
mogencous, 7, in Theorem 1.2.4 can be chosen to be independent of o > 0. Denote
r, =T. For any ¢ € Cy~ () with ¢ > 0, from the strong positivity of Q; for ¢ > 2w, we
know that Qs (¢) > 0. Then there exists a o > 0 in R? such that Qa,(¢) > o for
x on a interval 7 of length 2r. Taking (2w, z, ¢) as a new initial data, we sce from

Theorem 1.2.4 that statement (ii) is valid. O

The existenee and nonexistence of traveling waves arc straightforward consequences

of Lemmia 5.3.1, Theorem 1.2.5, and [29, Theorems 4.1 and 4.2].
Theorem 5.3.2. Assume that Ry > 1. Then the following statement are valid:

(i) For any c € (0,c*), system (5.13) has no w-periodic traveling wave U (t,x — ct)

connecting w*(t) to 0.

(ii) For any ¢ > ¢*, system (5.13) has an w-periodic traveling wave U(t,x — ct)

connecting w*(t) to 0, and U(L, z) is continuous and non-increasing in z € R.
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Note that we can regard the forth equation in system (5.8) as the following non-

homogeneous reaction-diffusion equation:

= DufSa — (ua + 544 (1)alt, ) + aa()[Qnit, ) + Brm(t, 2N (1) = (1, 2)].

By a similar argument as in the proof of [11, Theorems 3.1 and 3.2], it follows that
similar results in Theorem 5.3.1 and 5.3.2 are also valid for a(t,2). Thus, ¢ is the
spreading speed and the minimal wave speed for monotone periodic traveling waves

of system (5.8).

5.4 A case study

In this scction, we do a case study for the Lyme discase in Port Dover, Ontario, and
present some nuicerical simulations.

According to [42], the duration of development and the questing activity of ticks
can be explained largely by tempcrature cffects alone. Thus, we focus on the discussion
of the temperature cffects on the transmission of Lyme discase. Using the published
data in [38, 42, 43, 44] and mcan monthly temperature normals at Point Dover from
Canadian metcorological website {71], we can cvaluate the temperature-dependent
coefficients 7(t), (), o(t) and ay(t), and other constant coefficients in our model.
In this study, we let the period w = 12 months.

First, we estimate the constant cocflicients in our model. Note that in (38, 42,
43, 44], the authors determined some realistically feasible constant cocflicients in
Lyme disease models based on the valuable data from the laboratory study and ficld
obscrvation. We refer to their works and list values of constants cocfficients for the
Lyme disease models (5.1) in Table 5.2. According to Table 2 in [38], we know that

the maximum number of ticks of a given life stage that a mice and deer can feed in
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Table 5.2: Values for constant parameters for the Lyme disease model (5.1).

Paramecter Value Dimension Refercnce
M 2x304 /Month [4]
K 3000 Dimcnsionless (38]
1Y, 0.012 x 304 /Month [44]
Dy 8.84 x 1074 x 30.4 /km? [38]
Dy 0.227 x 30.4 Jkm? 3]

UL 0.006 x 30.4 /Month [44]
Ine 0.003 x 30.4 /Month [44]
N 0.006 x 30.4 /Month [44]
1A 0.003 x 30.4 /Month [44]
oy 1/(595.35/12) x @ /Month Estimated
oA 1/(521.12/12) x 42 /Month Estimated
3 1 Dimensionless [44]
Br 0.9 Dimensionless (5]
v 0.005 x 30.4 /Month (5]

one year arc 595.35 and 521.12, respectively. We suppose that the number of mice

and deer are @ and 42, respectively, in the region. Then we estimate

Q 42

Sy = —t— Gy= .
YT 595.35/12° 1 521.12/12

Next, we use the monthly mean temperatures at Port Dover, the relationship be-
tween the temperature and the development rate, and temperature-dependent quest-
ing activity rate for immature ticks to estimate the periodic coefficients r(t), a1(t),
o(t), and ay(t). In this case stucy, we take January to be the starting point and
assume that the ticks development is zero for all stages when the air temperature is
0°C or below [43].

According to the temperature statistics in [71], we list the ionthly mean temper-
ature for Port Dover in Table 5.3.

It follows from Figurc 1 in [42] that the preoviposition period of adult female,

preeclosion period for egg masses, and premolt period of larvac arc given in days,
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Table 5.3: Monthly mean temperature for Port Dover (in °C).

Month Jan  Feb Mar Apr May Jun
Temperature —4.5 —-14 19 7.5 154 194
Month Jul  Aug  Sep Oct Nov Dec
Temperature 21.2  19.6 16.7 104 3.9 =21

respectively, by

Y = 1300C~"*, Y = 34234C~*77, Y = 101181C >,

where € > 0 is the temperature in °C. We assume that there are five percent of
adult ticks are pregnant females, and per-capital cgg production by pregnant females
is 3000 [44]. Then the temperaturc-dependent developmental rates for larvac and

nymphs per month can be expressed as

1 3000
30.4 x — x and 304X ———
* 50 " 1300012 1 3d234C 22 * 101181025

Using the temperature data in Table 5.3 and the curve fitting tool (CFTOOL) in

Matlab, we can fit the tamperature-dependent developmental rate (t) and o(t) as
r(t) = 31.87 — 37.77 cos(mt/6) — 25.75sin(7t/6) + 5.815 cos(mt/3) + 12.38 sin(7t/3)
and

a(t) = 0.2325 — 0.2896 cos(mt/6) — 0.1951 sin(mt/6) + 0.05472 cos(wt/3)
4 0.1181sin(t/3) — 0.00855 cos(rt/6) — 0.00345 sin(t/2)

+ 0.01085 cos(27t/3) — 0.00433 sin(27t/3))
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According to [43, 44], the biting rate of larvac and nymphs to mice are dependent on
the mice-finding probability (see Table 1 in [44]) and the activity proportion, where
the activity proportion is temperature-dependent (see Figure 3 in [43]). In [44], the

daily mice-finding probability of questing larvae and nymphs are expressed as
A = 0.0013m"% and Ay, = 0.002m” %,

where m is the total number of mice. The relationship between the temperaturc and
the activity proportion of immature ticks are given by Figure 3 in [43]. Combining the
temperature data in Table 5.3, we fit the temperature-dependent activity proportion

of immature ticks as

O(t) = 0.08292 — 0.1158 cos(mt/6) — 0.07253 sin(7t/6) + 0.02833 cos(nt/3)

+0.06495sin(rt/3) + 0.008333 cos(3wt/6) — 0.0125 sin(37t/6)).

Thus, in this casc study, the monthly biting rate of larvac and nymphs to one mice

can be given by

0.0013Q%°" 0.002Q"°"

a)(t) = 30.4 x 0 x 0(t), «o(t) =304 x — 0 x 0(t).

With above temperature-dependent cocfficients and constants parameters in Table
5.2, we nuinerically calculate the principle Floquet multiplier 7 = 3870.6 > 1. Then
we use solver ODE45 and CFTOOL package in Matlab to find the periodic solution
(L*(t), V*(t),N*(t), A*(1)) for system (5.5). Thanks to Theorem 1.3.2, we can further
numerically compnte the basic reproduction ratio Ry for system (5.8). Since all coct-
ficients in our model arc spatially homogencous, without loss of generality, we assume

the spatial domain © = [—1,1] C R when © is bounded, and truncate the infinite
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domain R to be [—1,1].

In order to simulate the global dynamies of system (5.2) in bounded domain, we
apply the difference method to the system with the Neumann boundary condition

and 7 = 10, and choose the initial data as

M(0, ) = L(0,x) = 100 x Cos(%), V(0,2) = % x L(0, ),
N(0,x) = g x L(0,), A(0,z) = % x L(0. ),

m(0,z) = % x L(0,2), v(0, ) = 1% x L(0. ),

n(0,x) = % x L(0,x), a(0,z) = % x L(0,z)

Using paramecter values in Table 5.2 and the periodic cocfficients, we numcrically
calculate Ry = 3.625 > 1. Figurc 5.2 shows the evolution of v(t) and n(t) in systemn
(5.2). If the susceptibility to infection in mice and ticks arc respectively reduced
to 4 = 0.2 and By = 0.22 duc to some preventive measures, we numerically get
Ry = 0.825 < 1. In this situation, Figure 5.3 shows that v(¢) and n(t) will eventually
approach to zero. The simulation results for m(¢) and a(t) arc also consistent with
owr analytic result in Theorem 5.2.3.

In the case of unbounded domain, using the given paramcters such that Ry =
3.625 > 1, we numerically estimate the spreading speed ¢, /w = 0.2644. To simulate
the spatial spread of the disease, we choose I = 40. Figure 5.4 shows the numerical

plots of the solution of system (5.8) with the initial data given by

0 2] > 20;

b

m(0,x) = ¢ 10 x (20 - |z

). 10 < Ja] < 20;

100, 7| < 10;
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For our model, we picked some feasible cocfficients and estimated the time-periodic
cocfficients using some published data. We nuinerically calculated the basic repro-
duction ratio Ry. Since Ry = 3.625 > 1, we can sce from Figure 5.2 that the discase
stabilizes at a positive periodic state. If the infection susceptibilities 8 and (r de-
crease such that the basic reproduction ratio Ry = 0.825 < 1, then Figure 5.3 shows
that the discasc will dic out cventually. In order to consider the spatial propagation of
the discase in an unbounded domain, we calculated the spreading speed numerically.
Figurc 5.4 shows that the diseasc spread at a certain speed. To control the disease, we
may take some strategics to reduce the spreading speed. For example, we may take
some chemical methods to reduce the infection susceptibilities or the total number of
hosts. Our analytic results and the numerical values of the basic reproduction ratio
and the spreading speed may provide some helpful suggestions for the discasc control.

When the spatial domain €2 is bounded, we can also study the global dynamics of

model (5.1) under the Robin type or Dirichlet boundary conditions. In such a case,

we can show that solution maps of reaction-diffusion systems (5.3) and (5.13) and

their linearizations at zero are a-contractions by a similar decomposition argument to
that in [68, Lemma 3.1]. Thus, the abstract threshold type result for monotone and
subhomogencous systems (scc Theorem 1.1.3), together with the gencralized Krein-
Rutman thcorem, can be applied directly to (5.3) and (5.13), respectively. It then
follows that the analogs of Theorems 5.2.1-5.2.3 still hold true. In these results,
however, two numbers 7, and Ry should be replaced by the spectral radii of the
Poincaré (period) maps of the lincarized systems of (5.3) and (5.13) at zero solution,

respeetively.



Chapter 6

Summary and Future Works

In this chapter, we bricfly summarize the rescarch results in this thesis, and present
sonie possible future works.

In this thesis, we investigated the global dynamics of four population models with
spatial dispersal and temporal heterogeneity. We did some mathematical modelings,
mathematical analysis and numerical simulations to understand the dynamical be-
haviors of some populations. We mainly focused on the spreading speed, monostable
and bistable traveling waves, and threshold type dynamics, which arc important char-
acteristics to describe and predict the evolution of populations.

In order to obscrve the effect of the dispersal process on the spatial evolution of two
competitive populations, we investigated a integral-difference competitive population
model (2.1) in Chapter 2. We first established the existence of bistable traveling waves
for such a model, and proved the global stability of the waves. We also showi some
simulation results, which were well consistent with our analytic results. This project
cnable us to predict the long-time behavior of this kind of competition models with
different dispersal kernels.

In Chapter 3, we studied the spatial dynamics of a reaction-diffusion model (3.1)
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with distributed delay, which was imposed in [19]. Such a model describes the re-
action and diffusion in a population with quiescent stages. We first established the
existence of the spreading speed and monostable traveling waves when the system ad-
mits a monostable structure, then we further determined the existence of the bistable
traveling waves when the system admits a bistable structure. We also established the
global stability of the bistable waves when the distributed kernel function has zero
tail, which actually reduced (3.1) to a finite delay differential cquation. We would like
to point out that the global stability of the traveling waves for the infinite delay casc
is still an open problem.

To study the spatial dynamics of two competitive populations in good and bad
scason cnvironment, in Chapter 4, we investigated the model (4.1), in which we as-
sumed that the populations cxponentially decay in bad scasons, and could disperse
and compete cach other in good scasons. Thus, we used the reaction-diffusion equa-
tions to describe the evolution of populations in good seasons. For such a model, we
established the existence and global stability of periodic bistable traveling waves. We
also shown some simulations results to illustratc our analytic results and give some
ohscrvation on the sign of the wave speed.

In Chapter 5, in order to study and predict the dynamics of the Lyme diseasc in a
scasonal cnvironment, we investigated a rcaction-diffusion Lyme discase model (5.1)
with scasonality in both bounded and unbounded domain. In a bounded domain, we
defined the basic reproduction ratio for this discase and obtained a threshold result
on the global dynamics of model (5.1). In an unbounded domain, we established the
existence of the spreading speed and its coincidence with the minimal wave speed.
In the last of this chapter, we presented a case study on transmission of the Lyme
discasc in Port Dove, Ontario. This project may be applied to predict the spread of

the discase and help to design some diseasc control strategies. We should point out
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that our model (5.1) ignores the time delays between the ticks stages. It should be
more interesting to incorporate time delays into the model.

Related to the projects in this thesis, there are several interesting and challenging
problems for futurc investigation. In the first three projects, I investigated the cx-
istence and global stability of bistable traveling waves. However, I did not consider
the sign of the wave speed. As mentioned in Chapter 4, the sign of the bistable wave
speed is very important since it determines whicli species will win the competition.
In Chapter 4, T used two different cquations with constant. cocflicients to describe the
dynamics of two species in bad and good scasons, respectively. Sinee a n-species com-
petition model with n > 3 cannot generate a monotone system, it is more challenging
to study multi-specics competition models in a periodic environment. Morcover, in
Chapter 5, T considered the model (5.1) with time-periodic coeflicients. However, 1
did not consider the spatial effect on the coefficients. It is worthy to investigate the
spreading specds and traveling waves for the model (5.1) with spatially and temporally
dependent cocfficients. Recently, Peng and Zhao [47] introduced the basic reproduc-
tion number Ry for a time-periodic SIS reaction-diffusion model. Further, Wang and
Zhao [60] developed the theory of the basic reproduction number Ry for reaction-
diffusion cpidemic models with compartmental structure. I propose to use the ideas
and results in these two papers to study some population models with temporal and
spatial heterogencitics. In this thesis, I mainly used the monotone dynamical systems
approach to investigate the spatial dynamics of the model systems. 1 also plan to
study some non-monotonc evolution systems such as the predator-prey type models

from ccology and cpidemiology.
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