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Abstract

Cell adhesion is a fundamental mechanism binding a cell to a surface, extracellular
matrix or another cell through cell adhesion molecules. This cell behavior is involved
in various biological processes including embryogenesis, migration and invasion, tis-
sue remodeling and wound healing. This paper investigates the existence of traveling
wavefronts of a non-local reaction-diffusion model for cell behavior proposed first by
Armnstrong et al. (J. Theor. Biol., 243 (2006), 98-113), and by Sherratt et al. (Eu-
ropcan J. Appl. Math., 20 (2009), 123-144). We provide a valid approach by using

perturbation methods and the Banach fixed point theorem to show the existence of

wavefronts for the model with some suitable parameter values. Numerically, the so-
lutions with initial step functions eventually stabilize to a smooth wavefront for a
relatively small adhesion coefficient. We also consider the application of this model to
study tlie cancer invasion process, which results in a system with solutions reflecting
the relation between cell-cell and cell-matrix adhesion in the cancer invasion regu-
lation. Using the same method employed in the cell-adhesion model, the existence
of traveling wavefronts to this system is established. Finally numerical simulations
are presented to verify the effectiveness of our proposed theoretical results and to

demonstrate some new phenomena that deserve further study in the future.
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Chapter 1

Introduction

1.1 Cell adhesion and cancer invasion

Adhesion of cells is an important biological regulator that describes the binding of
one cell to another and to their environment through cell surface proteins known as
ccll-adhesion molecules (CAMs). This process plays a key role in tissue homcostasis,
embryo development and tumor growth; see [4, 24]. Foty and Steinberg [16] proposcd
a differential adhesion hypothesis and correctly predicted the experimental resutts on
cell adhesion and tissuc rearrangements. For more recent research in this arca, see
also Reddig and Juliano [36].

As a gencral phenomenon in biological environments, cell adhesion has a strong influ-
ence on the cellular invasion process in cancer, where cancer cells break out of tissue
compartments and spread into the surrounding extracellular matrix. It plays a key
role in the metastatic cascade, where tumor cells leave the original tumor site and
spread via the bloodstreain or the lymphatic system into a distinct organ or part of
the body; sce [20, 25]. Solid tumor cells create excessive proteolytic enzymes, such

as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases






and discussed the cell adhesion model in both 1-D and 2-D; see also Hillen [26].
Howecver, these approaches did not investigate the cell-matrix adhesion, which has
been demonstrated to play an important role in the invasion process.

Bascd on the work of Armstrong et al. [4}, some continuum models for cancer invasion
have recently been further investigated via an integro-partial differential equation,
incorporating the adhesion effects of both cell-cell and cell-matrix; see Gerisch and
Chaplain (23], Painter et al. [34], Sherratt et al. {37]. On a bounded domain, Sherratt
et al. [37] formulated a non-local reaction-diffusion model for cell adhesion in cell
aggregation and also applied the model to cancer invasion, where the non-local term
reflected the balance between cell-cell and cell-matrix adhesion in regulating cancer
invasion. The authors also derived several conditions which were sufficient for the
boundedness of the solutions and investigated the effect of adhesion on cell aggregation
and cancer invasion by numecrical simulations. Similar numerical results were also
provided by Painter et al. [34]. The above researchers have simulated and observed
the cell aggregation and cancer cell invasion with the patterns of wavefronts. However,
to the best of our knowledge, no rigorous work has previously been done for the

existence of traveling wave solutions in such continuum models.

1.3 Outline

This thesis begins in chapter 2 by presenting the non-local continuum model for
cell adhesion, proposed, for example, by Sherratt et al. [37], where the non-local
term is given by an integro-partial differential cquation. Using the Banach fixed
point theorem, chapter 3 illustrates the existence of traveling wavefronts of the cell
adhesion model with relatively small adhesion coefficient. The whole proof is based

on perturbation methods, where the solution of the model closely relates to the one of



the limiting model with zero adhesion coefficient (no adhesion). For similar methods,
sce [32] and [33]. Chapter 4 considers the cancer invasion model in [37] including
both cell-cell and cell-matrix adhesion, which is in fact an important application and
extension of the simple cell-adhesion model. The existence of traveling wave sotutions
of this cancer invasion model is demonstrated in chapter 5 using the same approach as
considered in chapter 3. Chapter 6 provides numerical simulations to verify the main

results. Conclusions and some suggestions of future work arc discussed in chapter 7.



Chapter 2

Mathematical model for cell

adhesion

This chapter re-visits the non-local reaction-diffusion model for cell adhesion, which
includes three kinds of cell behaviors:  diffusion, adhesion, and cell kinetics. The
model is based on the work of Armstrong et al. [4] and Sherratt et al. [37], which
illustrates the formation of cell aggregation by sufficiently strong ccll-cell adhesion

from an initially randomly distributed population of cells on a bounded domain.

2.1 Introduction of the cell adhesion model

For mathematical simiplicity, this section considers the movement of a single cell pop-
ulation with uniform adhesive propertics in one space dimension and investigates the
mathematical model for cell-cell adhesion. Considering the forces acting on the cells

in a conscrvative system, the continuum mathematical model of cell adhesion is given

by
Diffusion Adhesion
P ( t) 82n(E t) 5 Cell kinetics
e, t AL, T
¥ . i _ T o f 2 2
o D—5 5= — gl )S(@ )]+ fn) (2.1)



where n{r,t) is the cell density at time t and position z, and
ap [R
S(n(x,t)) = F/ Aln(z + zq, t))w(xg)day. (2.2)
. J-R

S(n(z,t)) is the non-local adhesion term which describes the total forces acting on the
cells. For more detail about the model derivation, sce [4]. Therefore, with the substi-
tution of (2.2) into (2.1), the model is established by the integro-partial differential

equation

o = D ga tIm)
—a—g)%[n(.r,f) /-I;A(n(:c-l—:zr(),t))w(:vo)d;vo , (2.3)

where the effect of cell-cell adhesion is reflected through the partial derivative of an
integral over the sensing region of a cell. From the description in [4] and [37], D > 0
is the diffusion cocflicient. a, ¢, R are positive paramecters relating to cell adlicsion,
where « is the adhesion coefficient, ¢ represents the cell-viscosity, and R is the sensing

radius of cells over which cells can sensc their surroundings.

2.2 Description of notation

In (2.3), the integral describes the total attracting force acting on the cells. Specifi-
cally, A(n(z + x,t)) represents the local adhesive forces created by cells at position
x with cells a distance xy away, where the sensing radius R is the maximum of |zg|.
With the dependence on the local cell density, the local adhesion forces of cells will

increasc with the cell density below a threshold density and eventually decrcase. The



logistic type function was used in [4] and [37] for A(n):

n(x + zg,6)(1 — n(z + 20, 1) /Mnaz ) n{z + 20, t) < Nygus
A(n(z + xg, t)) =

0, otherwise,
(2.4)

WICrC Nmar 15 the carrving capacity of the cell population. Equivalently, A(n) =
max{n(1—n/nmaq),0} is the local adhesive force function for mathematical simplicity.
Sce [4] and [37] for more detials.

The function w(zy) represents the variation of the dircetion and magnitude of the
adhesive force over the seusing region of the cell. Due to the “pulling” nature, the
adhesive force is always directed towards cell centers. Following Armstrong et al. [4]
and Sherratt et al. [37], we choose w(z) = (1/R)sign(zo) on xy € [—R, R] such that
w(zg) is an odd function satisfving the condition ‘];)Rw(zro)dzro = 1. Therefore, the
total adhesive force on cells denoted by the integral in (2.3) is the sum of local forces
given by A(n) and w(zy).

As for the cell kinetics, Sherratt et al. [37] use the logistic function: f(n) = pun(l —
n/ng), where p is the growth rate, and ng < npq, is the critical value above which

the new generation of cells by division becomes slower than cell loss.



2.3 Dimensionless model for cell adhesion

From the above description, the non-local reaction-diffusion model (2.3) for cell ad-

hesion is given by

on(x,t) 0*n(w,t) n
= D——r— 4 pun|l—- —
ot adur? K 0
ap O R n(x + o, t)
——— | n{x,t / maxsn{z +x9,t){1 — ————= 1,0
R? 8x[ ( ) -R { ( o )< Nmax
. sign(a’o)dafo] .
(2.5)
To non-dimensionalize cquation (2.5), let
. T, X D D, 2n . OOMpmar 2ng
o= xh = —, =—, n'= , 0= ——— ny = .
R 0 R R? Nomax 4R? 0 Nmax

Dropping the asterisks for simplicity, a dimensionless modecl of cell adhesion on z €

(—o0, +00) is given by

nir, 2nfa, t
5} (at’ t) D% — %['11,(17,1‘)5(11(;1;7 tH] + f(n)

ll

DM — aai [n(m, t) /H A(n(x + g, t))w(xg)dxy

o2 z 1

+pun (1 - 1) (2.6)
n

0
where the total ccll-adhesion forces become

1

S(n(z,t)) = a/ A(n(x + z0, t))w(xo)do, (2.7)

-1



and A(n(x+xq,1)) = max{n(x+z0,t)[2—=n(x+x,t)],0} is the rescaled version of the

local force function and w(ag) = sign(zg). Specifically, a is now a new factor reflecting
tlic adlicsion force between cells. The critical value 7y is assumed to satisfy 0 < ng < 2.
By Propositions 1 and 2 in [37], it is known that the solution satisfics 0 < n(w,t) < 2
for all t > 0 and = € (—o0, +00), if 0 < n(z,0) < 2 for all x € (—o0, +00).

In the spatially homogencous situation, the steady states of (2.6) are N* = 0 and
N* = ny. This property gives a suggestion to investigate the traveling wavefront

solutions of (2.6) comnecting N* = 0 and N* = ny.




Chapter 3

Existence of wave patterns for

small «

This chapter studies the existence of traveling wave patterns of (2.6) and investigates

the critical wave speed by using thie standard linear stability analysis.

3.1 Critical wave speed

Recall that a traveling wave solution with a wave speed ¢ refers to a pair (IV, c¢),
where N(z) = N(x + ct) is a nontrivial and bounded solution. Here ¢ is a positive
constant. If N(4oo) exist and N(—o0) # N(+00), (N,c) is called a wavefront. To
construct the traveling wave solutions of (2.6), we assume n(z,t) = N(z), 2 = x +ct
ang additionally set the following boundary conditions:

N(=eo) =0, (3.1)

N(+00) = ny.

10



11

Substituting the proposed traveling wave-form solution N(z) = N(x + ct) into (2.6),

a sccond order ODE for N(z) is obtained

’

DN"(z) —eN'(z) — a[N(z) /+1 A(N(z +;v0))w(:v0)d;vo} + [LN(Z)(]. - M) =0,

-1

where

A(N(z + ) = max{N (2 + z0)[2 — N(z + 20)], 0},
(3.3)

w(wg) = sign(xo).
We shall find the traveling wave solutions N(z) of cquation (3.2) with boundary
conditions (3.1).
A standard lincar stability analysis of the uniform steady state N* = 0 can give the
critical wave speed ¢. Indecd, letting N' = X, we obtain the following ODE system

of N and X:

N =X,
, (3.4)
X = X+ 5 N(z) J"jll A(N(z+ :nu))w(a:o)dl'o} — %N(z) <1 — %:)),

Hence the steady states of (3.4) are (N, X) = (0,0) and (N, X) = (ng,0). After a

linearization of system (3.4) at (0,0), we obtain the following linear ODE system of

(N, X):
N’ 0 1 N
= : (3.5)
X' —-£ 5 X

To study the stability of (0,0), we need to determine the cigenvalues of the cocfficient

matrix in (3.5). The characteristic equation of this matrix is

A(N) = A2 — %/\ n ‘—5 =0, (3.6)









14

C'=CH{RR)={¢pcC:¢eChC*={peC:¢"e€C} C={pecC:
lim; 400 ¢ = 0}, CL = {¢p € Cy = ¢ € Cy} with the corresponding norms defined,

respectively, by

follco =lolle,  leller = llolley = lIdlle + 1€l

and

I¢llc2 = llelle + 1¢'llc + 16" llc-

3.3.2 Approximation of wavefronts by using perturbation meth-

ods

For the case when « (> 0) is relatively small, we will prove the existence of traveling
wave solutions N(z) for (3.2) and show that such wavefronts can be approximated by

the corresponding traveling wave Ny of (3.9). Now assume

where V(z2) is a real function satisfying the boundary condition V' (£oo) = 0. Substi-

tuting (3.10) into (3.2), a differential cquation for V' is obtained

DV' — ¢V =V + E(V,Ng) =0, (3.11)



where

2‘[1,N()

N

E(V,No) = (14— WW+R-d,

rR=-Lyv?, (3.12)

o

+1

G = (No+ V)S(No + V) = a(Ny + V) [1 A(No + V)w(z0)dzo.

A(Ny + V) and w(zy) are defined in (3.3).
It is necessary to transform the differential cquation (3.11) into an integral cquation.

Since the equation

DV —eV -V =0
has two real characteristic roots:

c— V244D (’+\/(:2+4D>

Al = ——————— <0, A = 0, 3.13
1 5D 2 ) (3.13)
the integral equation for V' (z) from (3.11) is then expressed by
1 'z . 21Ny p
Viz) = —/ M ‘5)[(14- - )VS +R—G}ds
(=) D0 =] J—se . (s)

1 +oo /\2("*') QHNO !
- - Aa(z=s — Vis _ B
+D(/\2—/\1)/; ¢ 14+ pu - (s)+ R—-G |ds

— ; = Ar{z—s) _Q[I,N() ) !
- D(AQ—AI)./_OO‘/ K”“ o V) + R ds

1 O S (zes) 21Ny
. 2z=s)) ] — V(s)+ R|ds
+D(/\; W /Z e {( + i ~ (s)+ 5

+Q(z,V), (3.14)
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where

—1 nz , 00 ,
V)= ———— / MG ds +/ MG g ds} . 3.15
@l ) D(/\Q_/\1)|:-w—oo P ( )

By integrating by parts, from (3.15), it yiclds that

4

— +oo
Qz,V) = —1/\1){/\1 / MEIGds + Ay / e’\z(z_‘“)Gds} (3.16)

DO — Jose

3.3.3 Demonstration of the existence of traveling waves for

small «

In order to prove the existence of traveling wave solutions N(x + ct) of (2.6) with
relatively small o, it is necessary to establish the existence of a solution V(z) € Cj of

(3.14). We define a lincar operator L : Cy — Cy given by

1 A (z—s) Qlll,N(]
VS S el V(s)ds
L(V(Z)) D()\Z—/\l) /;ooe ( H g (S) ’

1 T da(e—s) 2Ny
- - - ) ds. 1
D(/\z*/\l)/z e 14+u e V(s)ds (3.17)

Then we have the following lemma for L.
Lemma 3.1. L(V(2)) € Cy for any V(z) € C,.

Proof. L(V(z)) is well defined for any z € (—o0,400), where Ay < 0 and Ay > 0
arc defined in (3.13). Applying L'Hopital’s rule to (3.17), the limit of L(V(z)) as
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2= +oo s
. : . 1 o 6_’\1‘9(1 +p— %)V(s)ds
511’1}&’0 L(V(Z» - 31{111100 V= ZBTOO D(/\Q - /\1) < e~z
[ e"\‘”(l +pu— 2LN")V(s)ds
+ ~ o
e~ A2z )
o 1 . 24 No(2)
= Y po o B (HM—T

Vi) V)
(5-5)
1

1 1+1_2;LN0(+00) 0 0
D()\z — )\1) H Mo —)\1 '—)\2

— (3.18)

= 0

This result also liolds when z tends to —oo. The proof is complete.

By using the lincar operator L defined above, equation (3.14) can be written as

1 TG 2 alams)
P - o MAETS §es 2B 5 J\2 . 1
LV = 5= [ Rt [ eMeIRds| + Qe V). (320)

This means we need to verify the existence of a solution V(z) € Cy to the integral
equation (3.19) in order to prove the existence of N(z) to (2.6). We will apply the
Banach fixed point theorem to show the existence of V(z) € Cy. For this purpose, we

first present some lemmas to estimate the terms in the right-hand side of (3.19).

3.3.3.1 Approximation of R(V) and Q(z,V)

The following lemma is proved to approximate R(V') defined in (3.12).



18

Lemma 3.2. For each p > 0, there is a constant ¢ > 0 such that

IR(®) = R@)lcy < pllé — ellcy (3.20)
and
[ ARG~ Riglds + [ R() - Rie)lds
< pllo = ¢lle, (3.21)

for all ¢, € B(o), where B(o) is the ball in Cy with radivs o and center at the

origin.

Proof. As we know,
IR = OU8lIE,), as [[6llc, — 0. (3.22)

Hence (3.20) and (3.21) follow from (3.22). The proof is completc.

The following lemma is proved to approximate Q(z, V) defined in (3.16).

Lemma 3.3. For any p > 0, there are constants 6, ¢ > 0 such that
Q(z, V) < O() + O |[VI) + Ola [VIIP) + O [V]]*) (3.23)
for any V € B(o) and o € (0,6), and
Q= ¢) - Qz,9) < pllé = ¢lley (3.24)

for all ¢, € B(c). where B(g) is the ball in Cy with radius o and center at the

origin.



Proof. In (3.16), we have

o
a(Ny + V) '/_1 ANy + V)w(zo)dzo

+1
a(Ny + V) / 1 max{(Ny + V)[2 — (Ny + V)], 0} sign(zg)day.

Then an estimate of G is obtained

IG(V)] < O(a) + O |V + Oa [[V*) + O V).

Thus (3.23) and (3.24) follow from (3.25). The proof is complete.

3.3.3.2 Surjective mapping L

Recall that equation (3.19) is the integral equation transformed from (3.11). We now
focus on the original differential equation (3.11) and definc an operator T : ¥ € C* —

C from the lincar part of (3.11) as follows:

TU(z) = -V (2) + DU (z) + (,J, - 2"’N°>x1:(g>. (3.26)

g

The formal adjoint cquation of T¥ = 0 for any z € (—oo, +00), is given by

T*®(z) = cP'(2) + DO (z) + (;1, - 2MVO)@(::) =0, (3.27)

no

subject to the boundary condition ®(£o0) = 0.

Lemma 3.4. If ® € C is a solution of (3.27) and ® is C*-smooth, then ®(z) = 0.

Moreover, Ry(T) = C, where R (T) is the range space of T.

Proof. Note that Ny(z) — 0 when 2 — —oo. Then we obtain an equation from
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(3.27) given by
e® (2) + DD (2) + ud(2) =0, (3.28)

as = = —oo. The corresponding characteristic equation of (3.28) is

DN+ X+ pu=0, (3.29)

whose roots have negative real parts when ¢ > 2/Dp. Thus any bounded solution
of (3.28) must be the zero solution when z — —oo. Any non-zcro solution of (3.27)
must thercfore grow exponentially for large |z| as z = —oo, which means that the
only bounded solution of (3.27) is the zcro solution. We have ® = 0 in order to satisfy
the boundary condition ®(+o00) = 0. Furthermore, by using the Fredholm theory (see

Lemma 4.2 in [35]), we have that Ry(T") = C. The proof is complete.

Lemma 3.5. For any given © € Cy, if ¥ is a bounded solution of TV = O, then
‘I/(Z) < C().

Proof. As z — +00, the cquation

—c¥'(2) + DY (2) + (M - 2“N°> U(z) =0 (3.30)

Mg

tends asymptotically to
—c¥'(z) + DU (2) — p¥(z) = 0. (3.31)

The w-limit set for (3.31) of cvery bounded solution is ¥ = 0, which implies, by

Theorem 1.8 in [30], that every bounded solution of (3.30) satisfies

lim ¥(z) =0.

z+0o0
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Similarly, any bounded solution of (3.30) also satisfics

lim ¥(z) =0.

Z—>—00

The proof is complete.

Lemma 3.6. R,(L) = Cy, where Rs(L) is the range space of L, and L is the operator

defined in (3.17). That is, for any Z € Cy, there exists a V' € Cy such that

1 'z L 2/LN()
V(z) - ——/ MG 4y — V(s)d
(z> D()\Q - )\1) —00 ¢ + H ngy (S)ds

1 FO Aa(e-s) 2uNy )
—— JAz{z—s o V(s — ) '
D = M) [ e (1 + p ~ (s)ds = Z(z) (3.32)

Proof. Let n(z) = V(z) — Z(z) and substitute this into (3.32), the following equation

for n is then obtained:

1 S _,)< Q[LNQ)
n(z) = ——m—— eVETI ] 4 — n+ Z)ds

1 oo . 211Ny
+————/ 229 (1 + - ) n+ Z)ds. 3.33
Do =) J- . (n+2) (3.33)

Transforming (3.33) to the corresponding differential equation yiclds

: " 2uN, 2uN;
—cn (z)+ Dy (2) + <[L — /711( 0)71(,2) = — <1 +p— l;m 0)Z(z), (3.34)
)
which is exactly the form Tn(z) = —(1 + - 2%)Z (z). Since the righthand side of

(3.34) satisfics
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and R,(T) = C is given by Lemma 3.4, we conclude by Lemma 3.5 that there exists a
solution 7(z) satisfying (3.34) and 1(£o0) = 0. Thercfore, we have V = n+ Z & Cl.
The proof is complete.

By Lemmas 3.4, 3.5 and 3.6, we know that L : Cp — Cp is a surjective (onto) mapping,

3.3.3.3 The main theorem

Now we will establish the cxistence of a solution V' &€ Cj to the integral cquation

(3.19) and prove the main theorem.

Theorem 3.1. For any ¢ > 2v/Dy, there exists a constant 6 = 6(c) > 0 so that
for any a € [0,4], equation (2.6) has a traveling wave solution n(t,x) = N(x + ct)

satisfying the boundary condition (3.1), where c is the wave speed.

Proof. To show the existence of a solution V' € Cy to (3.19), we restrict the operator
L to a quoticut space. Let N(L) be the null space of operator L. Using Lemma 5.1

in [12], there exists a subspace N*+(L) in Cj so that
Co = N*(L)® N(L),

where N+ (L) is obviously a Banach space. We then restrict the operator L to N+(L)
by defining P = L|y(;). Hence the mapping P : N*(L) = Cjy is a bijective bounded
linear operator. By the Banach inverse operator theoreni, there exists a lincar bounded
inverse operator P~!: Cy — N*(L). Then the cquation (3.19) is written in the form

of P

P(V(z))z—————[/l e*1<z-s>Rds+1+meA2<z—S>Rds YO V). (3.35)



Since P is invertible, cquation (3.35) becomes

wlere

"z toc
F(V(z)) = P—1<D(T1—)\1)— {/_OO e)“(:_s)Rd.s—F[ A= Rds

+Q(z, V)). (3.36)
From Lemmas 3.2 and 3.3, we kunow that
IEWV ) < [P~ [0UIVIP) + Ole) + Ol V) + Ola [VII) + Ofar [VI*)] -

Evidently, ||P7!|| is independent of o Thus there exist small constants d, o > 0 and
0 < p < 1such that for V, ¢, ¢ € B(o)NN*(L) and a € (0,d), we have the following

cstimate:

IFEVE < [P [o(VIR) +0ta) + Ota V1) + Ot [VIF) + Ota [VIF)]
= [P 10() + VI (O@) + OV + O IVI}) + Ola iV IIF))]
< %(a+||V||) <o (3.37)
and
1F(z,0) = F(z.0)l < plig = ol

Therefore, F((z, V) is a uniform contractive mapping for V- € B(o)NN*+(L). Applying

the Banach contraction principle, we conclude that for v € (0,4), there exists a unique






Chapter 4

Application to cancer invasion

Having confirmed that traveling wave solutions arc possible in the non-local reaction-
diffusion model for cell adhesion, this chapter investigates the application modeling
cancer invasion within a matrix environment. This cancer invasion model incorporates
the important biological cffects of cell proliferation and proteolysis by the surrounding
extracellular matrix, along with both cell-cell and cell-matrix adhesion. We consider
thie non-local model system for cancer invasion in one space dimension in Sherratt et

al. [37], which was based on the model proposcd by Armstrong et al. [4].

4.1 Introduction of the cancer invasion model

To bhegin with, we assume that tumor cclls adhere both to cach other (cell-cell ad-
hesion) and to the surrounding cxtracellular matrix (ccll-matrix adhesion), and that
the cell movement. is driven entirely by the adhesive binding force.

As in Sherratt et al. [37], the model discussed here has time- and space-dependent
variables, where n(z, t) is the tumor cell (cancer cell) density and m(z, t) is the density

of the cxtracellular matrix. For more dctail about the model cstablishinent, see [34]
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and [37]. The continuum non-local model for cancer invasion is given by

onlrd) _ D% — Lin(z, ) K (n(z,t),m(z, )] + f(n),

at dx
(4.1)
%L”) = —ynm?,
witll positive constants «, 3,7, x, and D, where
+1_
K(n(z,t),m(z,t)) = x/ Aln(x + xo,t), m(x + o, t))w(xg)dzg
-1
+1
= x/ [an(z + 20, t) + Bm(x + x0,t)]
-1
g(n(z + xo,t) + m(z + 20, 1) )w(xg)dry. (4.2)

Biologically, the second equation in (4.1) describes the degradation of extracellular
matrix caused by proteolytic enzymes, such as the urokinase-type plasminogen ac-
tivator (uPA) and matrix metalloproteinases (MMPs). See Zigrino et al. [39] for a
more detailed biological interpretation of the cancer invasion process.

The parameter D is the diffusion coefficient implying the influence of the tumor cell’s
diffusive process. The dimensionless parameters «v and /3 are positive constants reflect-
ing the strength of the cell-cell adhesion and the cell-matrix adhesion, respectively. v
is the matrix degradation rate.

Numerical simulations in [34] and [37] showed that in a bounded domain, the non-
invasive turmnor cell growth occurs with sufficiently strong cell-cell adhesion and/or suf-
ficiently weak cell-inatrix adhesion (a > 3). The population of tumor cells increases
towards its carrying capacity without expansion outside the initial spacc range. How-
cver, when the cell-matrix adhesion is relatively stronger than the cell-cell adhesion
(o < /3), the cell population grows and expands by the force of cell-matrix adlicsion

to the matrix, which is the invasive cell growth. The surrounding extracellular matrix
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is degraded by protcolytic enzymes produced by the tumor cells. Figure 2 in [34]
and Figure 5 in [37] presented the invasion speed as a function of cell-cell adhesion

coeflicient e and cell-matrix adhesion cocfficient 3.

4.2 Description of notation

The integral K(n(z,t),m(x,t)) expressed in (4.2) is the non-local adhesion term,
encompassing both cell-cell adhesion and cell-matrix adhesion. Here we add the
cocfficient x within the expression of K(n(z,t),m(z,t)) to describe the total cf-
feet of adhesion strengths of both cell-cell and cell-matrix. Chapter 5 studies the
significant impact of y on the existence of traveling waves to system (4.1). Here
A(n(z + z¢,t), m{x + z0,t)) within the integral represents the local adliesive force as
in chapter 2 created by both cell-cell and cell-matrix at position & with a distance zg
away.

The function g(&) in (4.2) implies the decreasing cffect in local adhesive force with

cell and matrix densitics. Sherratt et al. [37] assumed a linear decreasing function for

the force and provided a condition for g(€) to satisfy the required boundedness:
g(€) >0 and boundedon 0<&<2, g(§)=0 on &2>2.
Hencee the rescaled forin of g(n(z + xg,t), m(z + o, 1)) in (4.2) is given as follows:
g(n(a + zo,t), m(x + 29, 1)) = max{2 — n(x + xo, t) — m{x + 29, 1), 0}, (4.3)

where the dimmensionless cell density 2 corresponds to the crowding capacity of tumor
cells.

The function w(xy) in (4.2) describes how the direction and magnitude of the adhesive
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force (both cell-cell and cell-matrix adhesion force) generated by the cells vary over
the cell sensing region.  As mentioned in chapter 2, w(xg) is an odd function, since
the adhesive forces arc always directed towards the cell centers; sce [4]. Sherrate et

al. [37] set a condition on w(xg) in their model derivation, which is

1
/ w(rg)dro=1 and w(zy) >0 on x> 0.
Jo

After rescaling, the function w(xy) with uniform adhesive property hecomes w(wg) =

sign(xg).
For the tumor cell kinetics, Sherrate et al. [37] chose the same expression as in chapter

2 using the logistic function: f(n) = un(1 — ), which satisfies the condition:
f(0) = f(ng) =0 for some ny € (0,2),

fin)>0 on 0<n<nyg,
f(n)<0 on n>nyp

The parameters i and ng have the saine meaning as in chapter 2.

4.3 Dimensionless model for cancer invasion

From all above, the non-local system (4.1) of cancer invasion therefore becomes

on(x, H52n [2 g . . n
ét 0 — D% — X2 (n [2 (an + Bm)g(n + m)w(zo)dr) + pn(l — =)

(4.4)

om(xet) )
o = —’77‘[,”L s
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where functions g(n+m) and w(zy) are defined as before. Specifically, the cocflicient
x in (4.4) is a dimensionless adhesion parameter, incorporating both cell-cell and cell-
matrix adhesion. The carrying capacity of tumor cclls in this model is the constant 2
as in chapter 2, and ng also satisfies 0 < ng < 2. The boundedness of the solutions is
thus known from [37].

System (4.4) also has two spatially homogencous solutions (0, H) and (ng, 0), where
H is any given positive constant. We will look for the traveling wavefront solutions

of (4.4) with 0 < n(z,t) < 2 and 0 < m(x,t) < H; sce {37].



Chapter 5

Wave solutions of the system (4.4)

for small y

Since Sherratt et al. [37] and Painter et al. [34] have obtained numerical figures and
analyzed the cvolvement of traveling wavefronts on a bounded domain, this chapter
furthers their study by rigorously proving the existence of wavefronts. Based on
the approach used in chapter 3 for cell adhesion model, we apply the perturbation
methods and the Banach contraction mapping principle to show the cxistence of
traveling wavefronts on the unbounded domain, where cell-cell adhesion occurs in

cancer invasion along with cell-matrix adhesion for small coefficient x.

30
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5.1 Traveling wave solutions for the limiting sys-
tem when y =0

To start, the limiting case when y = 0 is obtained by the following diffusion model:
an{z,t) __ %n n
P = DG+ un(l - &),

om(x,t)

2
ot '

= —ynm

To sce the traveling wave solutions for system (5.1), let n(z,t) = No(z) = No(z + ct)
and m(x,t) = My(z) = My(z + ct), where ¢ > 0 is the wave speed. Then we obtain

the following second order ODE system for No(z) and Mp(z):

DNy = eNj+ Ny (1 - 22) =0,

ng
(5.2)
cM) = —yNoMZ.
Furthermore, we impose the following boundary conditions:
No(—00) =0, No(+00) = no,
and (5.3)
My(—o00) = H, My(+o00) = 0.

Note that the first cquation of (5.1) is decoupled from the sccond one. This first
equation is the well-know Fisher’s equation with the logistic kinetic. As mentioned
before, Murray has cstablished the existence of traveling wave solutions Ny for the
Fisher equation with the wave speed ¢ > 2v/Dp.

We can obtain My from the sccond equation of (5.2) by using Ny. The sccond equation
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of (5.2) is a first order ODE for Mj. Solving this cquation yiclds

1
% + %ffoo NU(S)dS.

A[U(Z) =
Using the fact that Ny(~oc) = 0 and Ny(+00) = ng, it is evident that

lim My=H and lim My =0.
z—+0Q

2 —a

Therefore, both Ny(z) and My(z) satisfy the boundary conditions (5.3), and the wave
speed satisfies ¢ > 24/ Dy
The following theorem is expressed for the existence of traveling wave solutions to

system (5.2).

Theorem 5.1. For any wave speed ¢ > 2v/Dp, there exists a heteroclinic solution of

system (5.2) connecting the fized points (0, H) with (ng.0).

Note that Af) < 0 in the second equation of (5.2). Thus M, is strictly decreasing and

bounded.

5.2 Traveling wave solutions for y sufficiently small

For relatively small xy > 0, we will prove the existence of wave solutions n(z,t) =
N(z) = N(z+ct) and m(z.t) = M(z) = M(x+ct) for system (4.4), when ¢ > 2/ Dy
Substituting the proposed solutions into (4.4), we obtain a sccond order ODE system

for N{z) and M(z) as follows:

DN" = eN' — [N - K(N,M))' + uN (1 - 2£) =0,

nq

cM' = —yNM?,
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with the following boundary conditions:

N(—o0) =0, N(+00) = ny,
and (5.5)

M(—o0) = H, M(+00) =0,

where

+1
K(N,M)=x / 1 [@N(z + xg) + BM(z + o)) - g(N(z + x0) + M (2 + 20))w(wo)dzp.

5.2.1 Approximation of wavefronts by using perturbation meth-

ods

To approximate the traveling wave solutions N(z) and M(z) of system (4.4) by Ny

and My, let
N = NO + "Vl,
(5.0)
M = My + W,
where Wy and W, are two unknown real functions that arc subject to the boundary
conditions:

Wi(4o0) = 0,i=1,2,

In order to construct the traveling wave solutions N(z) and M (z) for system (4.4), it
is necessary to verify the existence of W, and W,. We first consider the first equation
of system (5.4). Substituting (5.6) into the first cquation of (5.4) yiclds a sccond order
ODE for W;:

DWW — W) ~ Wy + E) (W), Wy, Ny, My) = 0, (5.7)



where

21N, —
El(‘/Vl,H/’QvNOaA/[O) = (1 +[1« — H O)I”Vl -+ R] — (G) ,

No
Ry =Ly
g
and
G = (N() -+ I/Vl)]((NO -+ VVl, ]\[(] + IVQ)

1_

= (N4 W) /fl A(No + Wi, Mo -+ Wa ) (20)d-to.
Note that in the above cquations, we have
A(Ny + Wy, My + Wy) = [Ny + W) + B(My + Wa)] - g(No + W + My + ¥s),
where

g(N() + L’Vl + ]\J() + I/VQ) = 1nax{2 — (N() + IVl) - (A[U + I"Vg), 0}



The integral equation for Wy from (5.7) is expressed by

1 = Z—5 QﬂNO .,
Wilz = 7/ JAL(z—s) 1 o W (e R 4
1(2) D — A1) L° T - 1(s) + Ry — (G) |ds
1 oo )/\2(2—8) _ QILINO —
+D()\2 — A1) /z ¢ 1+ p 0 Wi(s)+ R — (G) |ds
— 1 z A (z—8) 2/11N0 o )
DO =) /_oo ‘ [(1 === [Wals) + Fads

1 T re(z—s) 211Ny ‘
+D()\2 — ) / e [(1 + i e Wi(s)+ Ry |ds

+Q1(Z7VVI71V2)7 (58)

where

-1

W) = ——
Ql(z, 1 2) D()\Q—)\l)

{ /_ ) ME (G ds + / o e*z(z--”(@)’ds} (5.9)

and Ay, Ay are defined in (3.13). Integrating by parts yields the following expression
for Q(z, W, Wy):

o0

-1 1 o
Q](Z, I”L’], LVQ) = T ¢ |:/\1 / CA](:_S)GdS + )\2/

e’\Z(Z“S)ads}. 5.10
D(X\y — ) : (5.10)

Therefore, the integral cquation (5.8) of W) is now expressed by using both variables
W, and W,. This is different from the equation of V' in (3.14) which is given only by
V itself. As we know, the second equation in (5.4) is an ordinary differential cquation

for M, from which we obtain

1
5+ 2 [ (No(s) + Wi(s))ds’

M = My+ W, =



Then W, is written in terms of W) by the following cquation:

1

W, = ﬁ
i % + 2 2 (No(s) + Wi(s))ds

— My, (5.12)

where M,. N, arc the given traveling wave solutions of the limiting system (5.1).

Hence after a substitution, we denote Q,(z, Wi, Ws) = Q1(z, W1) in (5.8).

5.2.2 Demonstration of the existence of traveling waves for

small x

In order to establish the existence of a solution W, € Cy for the integral equation

(5.8), we now define a lincar operator Ly : Cy — Cp as follows:

1 . 2Ny
L) = Wy— e [ M (1 - )W )ds
1(W1(2)) 1 D(AQ—Al).foo( +u - 1(8)ds

! 7 Aa(z—s) ( Q'U'NO)
—_— A2 ] — Wi(s)ds. 5.13
D()\Q_)\l)-/ ¢ + 1 . 1(s)ds (5.13)

0

As in the proof of Lemnma 3.1, Ly (Wi(z)) is well defined for any z € (—o0, +00), and
Li(W1(2)) € Cy when Wi (z) € Cp.

By using the linear operator L, defined above, cquation (5.8) can be rewritten as

1 z +0o0
L[("'Vl(Z)) = m |:/_oo 6/\1(:«5)31(18"‘[ (3/\2(2_5)R1d8:| +Q1(Z, ”/1) (514)

Therefore, it is necessary to verify the existence of Wy € Cy for the integral equation
(5.14). Before presenting the result, we need to estimate the nonlinear terms in the

right-hand side of (5.14) by the following lemmas.
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5.2.2.1 Approximation of R;(W)) and Q,(z,W))
The following lemma approximates R (W) as defined above.

Lemma 5.1. For each p > 0, therc is a constant 0 > 0 such that

1R1(¢) — Ri(@)lles < pll¢ = #lla (5.15)

and

[ EIRe) - Rile)lds + [ NI RU(G) — Ra()lds

< pllo = ¢l

(5.16)
for all ¢, € B(o), where B(o) is the ball in Cy with radius o and center at the
origin.

Proof. We have

IR (@)} = O(llE,)s as lilic, — 0, (5:17)

Therefore, (5.15) and (5.16) follow from (5.17). The proof is complcte.
For the estimation of @Q,(z, W) in (5.14), we need an analysis of the sccond cquation

in (5.4).

Lemma 5.2. For any p > 0, there are constants §, ¢ > 0 such that

Qu(z,W1)] £ O(x) + O WD) + O(xIWA 1) + O (X WA 1) (5.18)
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for any W, € B(o) and x € (0,6), and

’Ql(za(b) —Ql(laﬂl’)l SPHd)“‘PHCn (519)

for all ¢, € B(c), where B(o) is the ball in Cy N L*(—o00, +o0) with radius o and

center at the origin.

Proof. From equation (5.11), M is obtained

from which we obtain

1 1
< M :
L+ No(s)ds+ 2 [2 Wils)ds = = g+ 17 Wi(s)ds

As we know, W, € B(o) € L'(—00,+0c). Choosing a ball B(g) in L'(—o0, +00) with

radius ¢ small such that
4 Z
o< —/ |W1\ds§/ Wids < o
-0 — K

and

Then 1t is evident that

0=

1
1 Yy [t+oc ol S S 1 Y [z S v
T 203 No(s)ds + 1o gt I Wils)ds = 5 — 1o






(? — C from the linear part of (5.7) as

TiU(z) = =V (2) + DV"(z) + (,1, - 2‘““) (z). (5.23)

o
The formal adjoint cquation of T3¥ = 0 for any = € (—00, +00) is given by

_ 2uNy

Trd(2) = od'(z) + DP"(2) + (;1 ;
0

) B(2) =0, (5.24)
subject to the boundary condition ®(+o0) = 0.

Using the same methods and proofs as above in Lemmas 3.4, 3.5, 3.6, we have the
following three claims.

Claim 1. If ® € C is a solution of (5.24) and ® is C%smooth, then ®(z) = 0.
Morcover, R, (Ty) = C, where Ry(T}) is the range space of T1.

Claim 2. If ¥ is a bounded solution of 71V = © for auy given © € (Y, then
U(z) € Cy.

Claim 3. R,(L,) = Cy, where R;(Ly) is the range space of Ly, and L is the operator

defined in (5.13). That is, for any Z € Cy, there cxists a W, € Cy such that

1 : . 2uNo
Wi(s) = 5 [ M (14— Wi (s)d:
) B ) S s T s

1 e Aa(z—8) QMNO - o
D(Ay = A1) /: ¢ (1 T u o Wi(s)ds = Z(z).

Henee the linear operator Ly : Cy — Cy is a surjective mapping. Now we restrict our
operator L; to a quotient space. Let N(Lp) be the null space of operator Ly. Then

thiere exists a subspace N1(L,) in Cy such that

Co = NY(L) & N(Ly),






1P [otwl®) + 000 + O IWall) + O 1WA 1)
+O(x [Wi%)]
|2 [00) + 1WA (O(x) + O(IWAll) + O(x [ W)

+O(x [[W1*))]

S+l < o

wlere HP1_1H is independent of x. Therefore, Fy(z, W) is a uniform contractive map-
ping for W, € B(¢) N N+(L,). Applying the Banach contraction mapping principle,
we conclude that for y € (0,8), there exists a unique solution W, € B(o) N N+(L;)
for (5.14). Returning to the original variable, we then determine from (5.6) that
N = Ny + W, is a traveling wave solution of (4.4) connecting 0 to ny with the wave
speed ¢ > 2¢/Dp as discussed above. We then obtain M from (5.11). Thercfore, for
any y € [0, 4], system (4.4) has traveling wave solutions n(t, z) = N(x+ct) = No+W,
and m(t,r) = M(x + ct) = My + Wy satisfying the boundary conditions (5.5), where

the wave speed satisfics ¢ > 2,/ Dp. The proof is complete.




Chapter 6

Simulations

This chapter numerically simulates both the non-local cell adhesion model and its ap-
plication to the cancer invasion model, by using the softwarc MATLAB. We employ
the central difference quotient approximation for all the partial derivatives in space.
The choice of boundary conditions is dependent on the cell types and the problem
requirement. For the sake of travcling wave solutions, all simulations in this chapter
arc performed with the Neumann boundary conditions on the symmetrie spatial do-
main with respect to the origin. We pay particular attention to the terms near the
boundarics by assuming that the cell densitics are equal,

The key point in the simulations is the approximation of the non-local adhesion term.
Armstrong et al. [4] and Gerisch [23] expanded the function within the integral as a
Taylor scries (sce also [26]) so that the nonlocal term become localized. Here we focus
on approximating the integral by using the Composite Trapczoidal rule and rewrite
it as a sum. We apply the central difference scheme to the partial derivatives in space

and the Forward Euler scheme in time.

43
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6.1 Traveling waves of the cell adhesion model for
small «

First we consider the integro-partial differential equation (2.6), which is the dimen-
sionless model for the movement in cell aggregation. Having confirmed analytically
that the traveling wave solutions exist for (2.6) with a sufficiently small cell adhesion
cocflicient «r, we further investigate this through numerical simulation.

According to the results in [37], we may assume that 0 < n < 2 with a proper choice

of initial data, and thus it follows that
A(n(z + o, 1)) = n(z + 2o, t)[2 — nlx + 20, )]

Henee the non-local reaction-diffusion model for cell adhesion (2.6) is written as

on(xz,t)y  _Onfx.t) O | n
5 = D—8x2 - 8—£[n(1,,t)S(n(.z:,t))] +un|l o
O?n{z, t)

= D - aﬂ [n(x, t) /_11 A(n(x + xo, t))w(:z:o)da:o}

Oxr? Oz

n
+un (1 - —)
0

Pnfx,t) (yﬁ [n(;v, 0 /_11 n(zx + zo, t)[2 — n(x + z0, 1)]

= D53 oz

'Sigll<iljg)d.’l,'0:| + un(l - l) (6.1)

o

6.1.1 The finite difference scheme of the cell adhesion model

We now start by discretizing the space interval € [—(,[] (for some { > 0) and the

time interval t € [0, tmar]. Let oy = =1,--+ ,xyq1 = 1 be the (N + 1) discretization



in space and £ = 0.+« ,ta741 = fuae be the (M 4 1) discretization in time, wherce
h = ZN] aud k = fT arc the step sizes for the space and time, respectively. Applying
the central difference scheme in space and the Forward Euler scheme in time. the

difference formula of (6.1) at location .r; and time £; is given by

n(jtivr) —nlept) D OPnlept) 9 L
? = Di(’);l:f OIJ[n(x,J,tl)S(n(.l,J,t,))]

n(jpr, ti) = 2n(a;, t;) + nlxj- t;)

=P h?
_71.(.’17_1-+1,ti)S(‘Il(:lT_j+1.t1)) —nx;_y, t)Sn(r;-1.t))
2h
+/L[71(:1:_}-, ti) (1 - M)}, (6.2)
o

for j =1,2,3,--- N+1l,and i =1,2,3.--- , M +1, where n; = n(x;, t;) is the density

of cells at location x; and time ¢;, and
3
Sn(zj,t;)) = «a / A(n(x; + xo,t;)) sign(ag)durg. (6.3)
Jol

To approximate S(n(x;,t;)), we choose tlie same discretization for g with the step

length i of » and apply the Composic Trapezoidal rule to obtain the sum of this






(Tjq1,t:) — 20z, ti) + nlzj-1. 1)
h?

n
7L(:L'J',ti+1> = n(lptl)—}_Dk

ke )
_% |:’Il(117j+ln ti) (A(n(zfjH_N, t;)) sign(—Nh)

-1
+2 Y A(n{zjq1 + sh,ti)) sign(sh)
s=—N+1

+AM(r514 5, 6) Sign(N/‘L)) —n(xj_y,t) (A(n(:zrj_l_N, ti))

N-1
-sign(—Nh) + 2 Z A(n(xj_1 + sh,t,)) sign(sh)
s=—N+1

+An(z; 1 x-ti) sign(Nh)ﬂ

ik {n(:@,h)(l - M)] (6.5)

No

for i = 1,2,--- ,M+1,and j = 1,2,--- ,N + 1, where A(n(z + zo.t)) = n{z +

Ty, 1)[2 — n(z 4 o, t)]. In (6.5) ncar the boundary points, we have assumed that
n(x;, t;) = n(xy, t;) for y <1, and n(zj,t;) = n(eyy,t) for j > N+ 1.

The solution of this numecrical scheme is given by a (N + 1) x (M + 1) matrix. For
the stability of this explicit numerical scheme, it is required that the step-length ratio
Dk/h? is small (for standard lincar heat cquation, it is well-known that we require

DE/R* < 1/2).
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6.1.2 Numerical results and figures

In order to simulate the traveling wave solutions of (6.1), we first choose the Neumann

Boundary Conditions and the following initial function of cell density:

0, z € (=1,0),
n(x,0) = (6.6)
no, x € (0,1).

Using MATLAB. the results of the nmnerical scheme (6.5) arc shown in Figure 6.1,
Figurc 6.3 and Figure 6.5 by choosing different values of a. The values of other
parameters are given by D =1, ng = 1, and ¢ = 1. When a is small, the increasing
traveling waves exist; sce Figure 6.1. However, with the increasing of «, there exists
a humnp in the wave solution at the beginning of time, which gradually stabilizes to
a monotone wavefront in the long term; see Figure 6.3. As « is large cnough, the
solution still moves with a speed, but there exists an oscillation in the solution shape;
sec Figure 6.5. The results show a good agreement with the solutions and figures of
the nou-local models in [34] and [37].

The biologicial meaning of this situation has a significant relation to the growth of cell
population. Specifically, the existence of traveling wave solutions to the cell adhesion
model (6.1) implies the rapid growth and expansion from its initial range; sce [34] and

[37]. This shows an essential effect on the cancer invasion process.

6.1.3 A second numerical approach

Here we should mention the novel numerical approach for (6.1) proposed in [4] and [23],
where the main idea was the approximation of the nonlocal integral S(n(xz,t)) by a
local term. We expand the function within the integral as a Taylor series and compare

this approximation to a PDE models whose behavior has been previously studied. The
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1.5-

Cell density n(x,t)
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Figure 6.1: Numerical solutions of the model (6.1) with a = 0.1. Traveling wave solutions
of cell density n(z, t) for time period ¢ € [0, 10] with the initial conditions (6.6) and « = 0.1.
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Figure 6.2: Numerical solutions of the model (6.1) with e = 0.1. Traveling wave solutions
of cell density n{x. t) at different time points for o = 0.1.
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Figure 6.3: Numecrical solutions of the model (6.1) with o = 1. Travcling wave solutions of
cell density n(z,t) for time period t € [0, 10} with the initial conditions (6.6) and o = 1.
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Figure 6.4: Numerical solutions of the model (6.1) with = 1. Traveling wave solutions of
cell density n(z,t) at different time points for o = 1.
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Figure 6.5: Numecrical solutions of the model (6.1) with o = 2. Travcling wave solutions of
cell density n(x,t) for time period ¢ € [0, 10] with the initial conditions (6.6) and o = 2.
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Figure 6.6: Numerical solutions of the niodel (6.1) with o = 2. Traveling wave solutions of
cell density n(z,t) at different time points for o = 2.




nunerical scheme follows the method of lines by first using the same discretization of

the non-local models in space and yiclding an initial value problem for a large system
of ordinary differential cquations. Similarly, we use a central differencing scheme for
diffusion and adhesion terms and solve the equation numerically by using ODELSs in
MATLAD. Sce [4] and [26] for dectials.

We start by providing a different difference formula of (6.1) at location ; given by

D02n(x_,-, t) 0

mleg,t) = D= 3= = oz, DS )] + 1 [nuj,t) (1 - J_f)ﬂ
L 0Pn(xyt)  [On(xj,t) N OS(n(x;,t)
= D o2 — [ oz, S(n(z;,t)) + ——Oxj n(x;, 1‘)}

+u [n(rcj, t) (1 - ZL_(H_:,_I‘))}

_ Dn(:cj+1,t) — 2n(x;,t) + nlz;-1,t) {n(axj“,t) - n(xj_l’t)S(n(Ij,t))
h? 2h
oS ) = S(n(wy-1, 1)
+n(xj,t) 5 }
+t [n(fl:j,t) (1 - @)}, (6.7)

where j =1,2,3,--- , N + 1.

6.1.3.1 Approximation of S(n(z,t))

To approximate the integral S(n(z,t)), one expands the local adhesive forces A(n(x +

xg,t)) within this integral at = as a Taylor scrics and obtains

A(n(z + zo,t)) = i%;i;fl(n(q:,t)) + O™, (6.8)

s=0 "




where 7 is an even integer. Multiplying (6.8) by asign(zy), and integrating it over

the interval |1, 1] gives

S(n(x,t)) o /_11 A(n(x + xq, t)) sign(xg)dxg

T S

! :178 O / } | ”
: /_1 (Z —JaarSA(Tl(£7 t))> sign{rg)dxg

5=0

1 1 Aln(z,t
a/ 1 A(n(z,t))sign(ry)drg + a/ 9A(n(z.t)) sign(zg)dry

To
1 ox

1 22 52 A(n(: Vg3 P An(e, t
/ 7y P Alnlz, 1)) sign(:ro)dato+a/ EQM-)—2Si»ﬁ-’;ll(l’o)de'o

T o Ja3T o

(6.9)

Since w(zg) is an odd function, the terms with odd order derivatives in (6.9) disappear,

which implies that

51 92s+1 o

S(n(z,t)) = 2« Z WA(’TI(J:,t)) /01 mdmo

(S]]

1 1 a2s+1
= 2 A | t
ago (25 + 2)! Ox2s+! (n(x, 1))

dA(n(z,t)) N a PA(n(z, 1))

e B 503 +oee (6.10)

= «

Neglecting the higher order terms in (6.10), we have the following approximation:

GBA(TL(;IJ, t))

Ee = 2a(1 — n)n,. (6.11)

S(n(z,t)) =
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Figure 6.7: Numecrical solutions of the model {6.1) with & = 3. Traveling wave solutions of
cell density n(x,t) for time period t € [0,20] with the initial conditions (6.6) and o = 3.
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Figure 6.8: Numerical solutions of the model (6.1) with a = 5. Traveling wave solutions of
cell density n(zx,t) for time period ¢ € [0,20] with the initial conditions (6.6) and o = 5.



know that 0 < n + m < 2, and it follows that

g(n(x + a9, t) + m(x + 2o, 1)) =2 — n(x + z9,t) — m(r + zo,t).

Hence the non-local reaction-diffusion model (4.4) for cancer invasion is given hy

ontrt) — p&uld) 0 [n(w, YK (n(x,t), m(z,1))] + pun(l — 2),

(6.14)

om(z,t) . )
T —ynm-,

where
1
K(n(z,t),m(z,t)) = X_/ A(n{x + xo,t), m(x + 2y, t))w(xg)drg
= X / (an + fm)(2 —n — m) sign(zg)dg. (6.15)

6.2.1 The finite difference scheme of the cancer invasion model

In this simulation, we approximate the tumor cell density n(x, t) and the extracellular

matrix density m(x,t) by using the similar finite difference method as in section 6.1,



that is, the numecrical scheme of system (6.14) at location x; and time ¢; is given by

n(xy.toa) = nlratd On(z;,t;) 0
J . = DT@%—_ has a—% n(;rj.,f,v)[((n(;rj, lLIj),Hl([E'J',t?'))

+1 {n(mj, t:) <1 - M)]
L0

TI,(IJq_l, tL) - 271,(.”13']', t,) + n(;z:j_l, fl)
b h?

1 .
—ﬁ |:’n/(;'17j+1, tl)]X ('TI,(II7]-+1, ti),’fn(fl?j+1, fl))

—"71‘(111'.;‘_1 s ti)K(n(mj_l s ti), 771(LL‘J'_1, ty)):|

+u [n(a:j, ti) (1 — M)}
Ty

. r",ti — qT: t:)
M), tier) = mfa = —yn(z;, t)m*(z;,t;), (6.16)

k

where
1T _
K(n(a;,t;), m{x;,t;) = X/—l An(z; + xo, t;), m{x; + 2o, ;) )w(T0)dTo. (6.17)

To apply the Composite Trapezoidal rule, we discretize the space length @y by using

the same step size h of x and choose 2V intervals symmetrically around x;. Then the



integral K (n(xj,t;),m(z;,t;)) is written as a sum given by

. h|— _
K(n(ej t).m(xj,t) = ’\21 An(z;_g, i), m{x; g, ;) sign(—=Nh)

-1
+2 Y A(n(z;+ sh.ty), m(x; + sh,t;)) sign(sh)
s=—N+1

+A(n(w]‘+,\7,ti),m(;z:H,\-,,t,-))sigu([(]h) : (6.18)

6.2.2 Numerical figures and results

The initial condition of tumor cell density n(x,t) is the samc as in section 6.1:

0, z € (-1,0),
n(x,0) = (6.19)

Ng, T € (O»})a

and the smooth initial matrix distribution m(z,t) is given by
1 1
m(z,0) = 515 tanh(—0.1z), « € (=1,1). (6.20)

The simulation results are shown in Figures 6.9 - 6.20, where we choose the same
parameters D =1, ng =1, v = 1 and p = 1. For the invasion growth of tumor cells,
welet o = 1 and 8 =2 (o < g). When x = 1 that is relatively small, it presents
smooth traveling waves for both tumor cell density and extracellular matrix density,
and the wavefronts appear to be strictly monotone. See Figures 6.9 and 6.10. The
wavefronts of n(x,t) and m(z,t) at different time points during ¢ € [0, 10} are shown
by Figures 6.11 and 6.12, respectively. Increasing the adhesion coefficient to x = 6,
gives Figures 6.13 and 6.14, where the wave speed increases. There exists a small

hump in the wavefronts of n(z,t) at tlhie beginning of time (Figures 6.15 and 6.16).
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Figure 6.20: Numecrical solutions of system (6.14) for x = 25. Wavefronts of the extracel-
lular matrix density mx, t) at different time points for ¢ € [0, 10].

of system (6.14) at location z; given by

TI(.Ej+1, f) — 271(.’1']', f) + TL(.T/'j_l, t)
h?

w(x;,t) = D

- [”‘If“’t);, n(eio, t)I\’(n(;L'j.t).m(.L'j, t))
il

Kn{ajp,t)om(ejen ) — K(n{ep ), mla o, 1))
2h

+n{x;,t)

T I:”(ij t) (1 - @)] ‘

—yn{z;, t)m?(x;.t). (6.21)

Il
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Figure 6.23: Numecrical solutions of system (6.14) for y = 7. Wavefronts of the extraccllular
matrix density m(z,t) at different time points.

By using the scheme in scction 6.2.4, the results arce shown in Figures 6.24 - 6.32.
When x = 1 is small, it presents smooth waves in Figure 6.24 for both cell and matrix
densitics. Sce also Figures 6.25 and 6.26 for an interpretation of the changing process.
Increasing x leads the appearance of a hump at the beginning of time; see figures 6.27
and 6.30. Furthermore, the larger value of x leads to the larger hump. The results
shiow a good agrcement with the ones in the above section. See also Figures 6.28,

6.29, 6.31 and 6.32 for more details.
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Figure 6.28: Numcrical solutions of system (6.14) for x = 4. Wavefronts of the tumor cell
density n(x,t) at different time points.
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Figure 6.29: Numerical solutions of system (6.14) for x = 4. Wavefronts of the extracellular
matrix density m(z,t) at diffcrent time points.
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models. Furthermore, the oscillations that appcarcd in section 6 for both models with

sufficiently large adhesion cocfficients also deserve our further study in the future.
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