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• 

Abstract 

In this thesis, we discuss three properties of the k-Hessian operators. Firstly, t hrough 

a new powerful potential-theoretic analysis, this paper is devoted to discovering t he 

Mazya's type isocapacity forms of Chou-Wang's Sobolev type inequality and Tian­

Wang's Moser-Trudinger type inequality for the fully nonlinear 1 ::::; k ::::; ~ Hessian 

operators. Secondly, a k-Hessian capacitary analogue of the limiting weak type es­

timate of P. Janakiraman for the Hardy-Litt lewood maximal function of an L 1 (!Rn)­

function (cf. [18, 19]) is discovered. Finally, an LiL~(JR~+n) extension induced from 

the k-Hessian operators is established. 

11 



Acknowledgements 

I would like to express my deepest appreciation to my supervisor, Prof. Jie Xiao, 

for his enthusiastic encouragement, pat ient guidance and useful critiques during my 

studies . Fortunately, his original t hought, creative insight, and rich knowledge have 

inspired me throughout this t hesis. I particularly express my gratitude to him for 

bringing me to t he subjects of partial differential equation and harmonic analysis, 

in particular , int roducing t o me the potential theory in the fully nonlinear Hessian 

equations and promoting the process of my thesis. 

lll 



Table of Contents 

Abstract 

Acknowledgments 

Table of Contents 

1 Introduction 

1.1 Motivation . 

1. 2 Topics covered . 

2 Four alternatives to capk( ·, D) 

3 Isocapacitary inequalit ies 

3.1 Statement of Theorem 3.1.1 

3.2 Proof of Theorem 3.1.1 (i) 

3.3 Proof of theorem 3.1.1 (ii ) 

4 Capacitary weak and strong type estimates for <'P~(D) 

5 Analytic vs geometric trace inequalities 

5.1 Statement of Theorem 5.1. 1 

5.2 Proof of Theorem 5. 1.1 (i) . 

IV 

ii 

iii 

v 

1 

1 

5 

7 

13 

13 

14 

17 

19 

23 

23 

24 



5.3 Proof of Theorem 5.1.1 (ii) . . . . . . . . . . . . . . . . . . . . . . . . 29 

6 Limiting weak type estimate for k-Hessian capacitary maximal func-

tion 33 

6.1 Statement of Theorem 6.1.1 33 

6.2 Four Lemmas . .. .. 

6.3 Proof of Theorem 6.1.1 

37 

42 

7 LjL~(JR~+n) extended to L(p V q,p 1\ q)(J.L)(JR~+n) 46 

7.1 Relationship between k-Hessian operators and fractional Laplace oper-

ators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

7.2 A capacitary strong type estimate for LiL~ (JR~+n) and its induced ex-

tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

Bibliography 54 

v 



Chapter 1 

Introduction 

1.1 Motivation 

The Hessian matrix or Hessian, firstly developed in the 19th century by the German 

mathematician Ludwig Otto Hesse and later named after him, is a square matrix 

of second-order part ial derivatives of a function [6] . This matrix describes the local 

curvature of a function of many variables with t race being the Laplace operator and 

determinant being the Monge-Ampere operator. Between these two operators are the 

k-trace or t he kt h elementary symmetric polynomial of eigenvalues of t he Hessian 

matrix, namely, the k-Hessian operators [33]. 

Unless a special remark is made, from now on, 0 is a. bounded smooth domain in t he 

n-dimensiona.l Euclidean space JRn with n 2:: 2. Let n be a C 2 real-valued function on 

0. For each integer k E [1 , n], the k-Hessia.n operator Fk is defined a.s 

(1.1) 

where A = (A1 , ... , An) is the vector of the eigenvalues of t he real symmetric Hessian 
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matrix [D2u]. In part icular, one has: 

~ u = the Laplace operator, for k = 1; 

Fk [u] = a fully nonlinear operator , for 1 < k < n; 

det(D 2v.) =the Monge-Ampere operator , for k = n . 

Hereafter, the following facts should be kept in mind: for 1 < k < n, each Fk[u] is 

degenerate elliptic for any k-convex or k-admissible function u, denoted by u E <t>k(n), 

namely, any C 2 (n) function u having nonnegative Fj[u], 

Fj [u] ~ 0 on n, Vj = 1, 2, .. . , k . 

Moreover , if <I>~ (n) stands for the class of all functions 'I.L E <I>k(n) with zero value on 

the boundary an of n , t hen <I>~ (n) =I 0 amounts to that an is (k - 1)-convex, i.e., 

the j-th mean curvature 

Vj = 1, .. . , k- 1 

of the boundary an at X is nonnegative, where ti:l(x), .. . ,l'i:n-1(x) are t he principal 

curvatures of an at the point x; see for example [7, 16, 17, 23, 27, 29, 31, 33]. 

As a natural generalization of the well-known case k = 1, t he following Sobolev type 

inequalit ies indicate that <I>~ can be embeded into some integrable function spaces; 

see Wang [32] , Chou [12, 13], and T ian-Wang [27] for details. 

Theorem 1.1.1. Let 1 ::::; k ::::; n; u E <I>~(n); [ [ u [ [<I>~ (n) = (J11 ( -u)Fk[u] dx) 1
/ (k+ l); 



{

( . .fn lulq dx) 11
q, for 1 ~ q < oo; 

and llullu,(n) = 
supxErl lu(x)l, for q = oo. 

3 

(i) If 1 <_ k < !': and 1 < q < k* = n(k+ l ) then there is a positive constant 
2 - - n-2k ' 

c(n, k, q, IDI) depending only on n, k, q, and the volume IDI of D such that the 

Sobolev type inequality 

(1.2) 

holds, where for q = k* the best constant in the above estimate is obtained via 

letting u : n -t !Rn be 

(1.3) 

(ii) If k = ~' n is even and 0 < q < oo, there is a positive constant c(n,q, diam(D) ) 

depending only on n, q and the diameter diam(D) of D such that the Sobolev type 

inequality 

(1.4) 

holds. 

Moreover, fork = ~ and n is even, then there is a positive constant c(n, diam(D)) 

depending only on n, k and diam(O) such that the Moser-Trudinger type inequal-

ity 

2 

holds, where 0 < o: ~ o:0 = n ( wk' ( : =; ) ) " ; 1 < f3 < (30 1 + ~ . w 
n ' n 

the surface area of the unit sphere in JRn+ l. 

(iii) If ~ < k ~ n , then ther·e is a positive constant c(n, k , diam(D)) depending only 
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on n, k and diam(D) such that the Morrey-Sobolev type inequality 

lluiiL=(n) ~ c(n, k, diam(D) ) I Iu ii ,I>~(n) (1.6) 

holds. 

Since the Morrey-Sobolev type inequality in Theorem 1.1.1 (iii) is relatively indepen­

dent ( cf. [26]), a natural question comes up: what is the geometrically equivalent form 

of Theorem 1.1.1 (i} -(ii}? To answer this question, we need the so-called k-Hessian 

capacity that was introduced by Trudinger-Wang [30] in a way similar to the capac­

ity defined by Bedford-Taylor in [4] for the purisubharmonic functions. To be more 

precise, if]{ is a compact subset of D, then the [1, n] 3 k Hessian capacity of]{ with 

respect to D is determined by 

capk(K, D) =sup {JK Fk [u] dx: u E <I>k(D) , - 1 < u < 0} ; (1.7) 

and hence for an open set 0 c D, we define 

capk(O, D) = sup { capk (K, D) : compact ]{ C 0 } ; (1.8) 

whence giving the definition of capk(E, D) for an arbitrary set E C D: 

capk(E, D) = inf { cap~,;(O , D) : open 0 withE c 0 c D } · (1.9) 

According to Labutin's computation in [23 , (4.16)-(4.17)], we see that if B p c !Rn 

is used to represent an open ball centered at the origin with radius p > 0 and if 
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0 < r < R < oo, then there is a constant c(n , k) > 0 depending only on n, k such that 

{ 

)

-k 

_ c(n, k) (r2 -];! - R 2- f:. , for 1 ~ k < ~; 
capk( B,., B R) - 11 

c(n, k)( log~) 2 , for k = ~ . 
(1.10) 

Moreover , capk(· , D) has the following metric properties (cf. [23, Lemma 4. 1]): 

(a) if E = 0, then capk(E, D) = 0; 

(e) ifK1 ::J K 2 ::J · · · isasequenceof compactsubsetsofO = BR, thencapk(nj Kj, O) = 

limj-+<x' capk(Kj, D). 

1.2 Topics covered 

The rest of t his thesis is organized as follows: 

• Chapter 2 starts with four different k-Hessian capacities based on the Sobolev 

p-capacity and the k-Hessian norm; then, we show they are equivalent to the 

above-mentioned capacity given by Dr. Trudinger and Dr. Wang. This argu-

ment is a bridge connecting the k-Hessian capacity and t he k-Hessian norm. 

• Chapter 3 induces a geometric form of Theorem 1.1.1 (i)-(ii) . It expands the 

Moser-Tridinger inequality in <I>~(D) given by Dr. Wang with a better constant, 

and estimates an isocapacitary inequalities for the k-Hessian operators - see 

also Mazya [25, (8.8)-(8.9)] for the case k = 1. 



6 

• In Chapter 4, a distinct way from the proof of the capacitary weak and strong 

type estimates for the Wienner capacity 2-cap(-, S1) is established for the k-

Hessian capacitary weak and strong type inequalities. 

• Chapter 5 considers the inverse process in Chapter 3. Theorem 5.1.1 (i)-(ii) 

with J-L being the n-dimensional Lebesgue measure shows that Theorem 3.1.1 

(i)- (ii) implies Theorem 1.1.1 (i)-(ii) under S1 being an origin-centered ball and 

k + 1 < < n(k+I ) - q- 'll.-2k 0 

• Chapter 6 discovers a k-Hessian capacitary analogue of the limiting weak type 

estimate of P . Janakiraman for the Hardy-Littlewood maximal function of an 

L1 (1Rn)-function (cf. [18, 19]). 

• In Chapter 7, we study the Li ~ (JR~+n ) extension from the fractional dissipative 

equation. Such an investigation is based on the relation between the k-Hessian 

operators and the fractional Laplace operators (cf. F . Ferrari's work [16]), but 

also the extension of the fractional Laplace operators to the upper half space 

JR~+n := [0, oo) x IRn (see [8]). 



Chapter 2 

Four alternatives to capk(· , Q) 

The aim of this chapter is to define four new types of the k-Hessian capacity with 

1 :::; k :::; ~, and then to establish their relations with cap"(-, D). 

D efinition 2.0.1. S·uppose 1 :::; k:::; ~and 1E stands for· the characteristic function ofE C 

D. First, for a compact I< c D, let 

capk,l(I<,D) = sup{ff(Fk [u]dx: 1l E <I>~(D) nC2 (D) , - 1 < u < o} ; 

WPk,2(I(, D) = inf {In Fk[u] dx : u E <I>~(D) n C2(0) , u:::; - 1[(}; 

capk,3 (I<, D) = inf {- In uFk [u] clx: v. E <I>~(D) n C2 (D), u:::; - 11<}; 

capk,4(I<, D) = sup {- j~ uFk[u] clx: u E <I>~(D) n C2 (D), -1 < u < 0} . 

Second, for an open set 0 c D and j = 1, 2, 3, 4 set 

capk,1(0 , D)= sup {capk,1(I<, D): compact I< c 0} . 

Third, for a general set E c D and j = 1, 2, 3, 4 put 

(2.1) 

(2.2) 

capk,1(E , D) = inf { capk,1(K, D) : open 0 withE c 0 c D}. (2 .3) 

7 
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Lemm a 2.0.1. Suppose 1 :::; k :::; ~· Let 0 be the Euclidean ball B r of radius r 

centered at the origin. If J{ is a compact subset of 0 , then 

where 

{

J[< Fk[Rk(K, 0 )] dx , for j = 1; 
CCLPk,j(K, 0) = 

fg( -Rk(K, O) )Fk[Rk(K, 0 )] dx, for j = 4, 

(2 .4) 

Rk(K, O)(x) = limsup ( sup{u(y): u E <I>~(O) , u:::; -1g}) (2.5) 
y-tx 

is the Tegularised -relative extr-emal function associated with K C 0 . 

Proof. As showed in [23], t he function x f---1 Rk(K , O) (x) is upper semicont inuous, is 

of C2 (D) , and is the viscosity solution of the following Dirichlet problem: 

Fk[u] = 0, in 0\K; 

u = - 1, on 8K; (2.6) 

u = 0, on 80. 

Moreover , 

(2.7) 

Note that Rk(K, 0) is in <I>~(O) n C 2 (0) c <J>k(O). So, from Definition 2.0.1 it follows 

that 

(2.8) 

To see the desired formula for j = 4, let u E <I>~ (O) n C 2 (0) . T hen , for any t: t here 

exists a function v E <I>~(O) n C 2 (D) satisfying v = (1 + t: )u, such that 



= (1 + E) k+ l sup {1< ( -n)Fk[u] dx: 7l E <P~(D) n C 2 (0 ), -1 < 7l < 0} 

=sup {1<( - v) Fk[v] dx : v E <P~ (D) n C 2 (0), -1- E < v < 0} . 

By the definition of Rk(K, D) , Rk(K, D)> -1- E inK; then, we have 

Letting E -+ 0, we obtain 

9 

To reach the reversed one of the last inequality, let { Oi} be a decreasing open set with 

smooth boundary in D and provide 

Then, using the regularity of 80 i, we define 

According to [28, Lemma 2.1], we have the following monotonicity: if n, v E <Pk(D) n 

C 2 (D); n 2:: v in D; n = v on 80. , then 

(2.9) 

whence by K C { 1Li < n} C D getting 
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Since Rk(K, D) ~ -1 < u in K , letting i -7 oo in the last inequality yields that 

(2.10) 

holds for any u E <I>~(D) n C 2 (0) with -1 < u < 0. As a consequence, we get 

thereby completing the argument. D 

The orem 2 .0.1. Suppose 1 ~ k ~ ~- Let D be the Euclidean ball B r of radius r 

centered at the o·rigin. If E c D, then 

capk(E, D) = capk,j (E, D) , Vj = 1, 2, 3, 4. (2.11) 

Proof. By Definit ion 2.0.1, it is enough to prove that if E = K is a compact subset 

of D then 

To do so, note first that the inequalities 

{

capk,4(K , D) ~ capk,l (K , D ), 

capk,2(K, D) ~ capk,3(K , D), 

just follow from Definition 2.0.1. Next , an application of Lemma 2.0.1 yields 
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Thus, from the defini t ion of Rk(K, D) and t he monotonicity described in the proof 

of Lemma 2.0.1 , it follows that , for any u E <P~(D) n C 2 (D) satisfying u iF< :::; - 1 and 

u < 0, one has 

Minimizing the right-hand side of the last inequality we get 

Finally, by t he definit ions of Rk(K , D) and capk,3(K , D) , we achieve 

T herefore, 

capk,3(K , D) < k (-Rk( K , D))Fk[Rk(K , D)] dx 

{ ( - Rk(K , D))Fk[Rk( K , D)] dx . .J f( 

0 

Corollary 2 .0.2. Let D be the Euclidean ball B ,. of radius T center-ed at the or-igin. 

If E c D, then 

capl (E, D) = inf {L IDul2 d:x;: u E W 1
'
2 (D), u 2:: 1e } =: 2-cap(E, D), (2.12) 

wher-e Du is the gradien t of u and W 1,
2(D) stands for the Sobolev space of all functions 

whose distributional den:vatives are in L2 (D). 

Pmof. T hanks to t he well-known metric propert ies of t he W iener capacity 2-cap(- , D) 
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( cf. [24, Chapter 2]), we only need to check that 

cap1(E , 0) = 2-cap(E , 0) , \t'compact E c 0. 

Since F1 [u] = D.u, for any u E <1>~(0) n C2(0) with u ::; -1E, integration-by-part 

implies 

r ( -u)Fdu] dx = r ( - u) D.u dx = / IDul2 dx = / ID ( -uW dx . ./n ./n ./n .In 

Considering the unique solut ion R(E, 0) of the Dirichlet problem: 

F1 [u] = D.u = 0, in 0\E; 

-u = 1, on BE; 

u = 0, on 80, 

we get 

cap1,3 (E, 0) = k ( -R(E, O))Fk[R(E, 0)] dx = kID( -R(E, O)W clx = 2-cap(E , 0), 

whence reaching the conclusion via Theorem 2.0.1. 0 



Chapter 3 

Isocapacitary inequalities 

The isocapacitary inequalit ies for t he k-Hessian operators, T heorem 3.1.1 (i)-(ii), will 

be verified in §3.2 and §3.3 by using Theorem 1.1. 1 (i)-(ii), Lemma 2.0.1, and Theorem 

2.0.1. T his process indicates that T heorem 1.1.1 (i)-(ii) implies Theorem 3.1.1 (i)- (ii). 

3.1 Statem ent of Theorem 3.1.1 

Theorem 3 .1.1. Let E c D and 1 :::; k:::; ~. 

(i) If 1 :::; k < ~ and 1 :::; q :::; '~,~~~!), then ther·e exists a constant c(n, k , q, IDI) > 0 

depending only on n, k, q, and IDI, such that 

k+l lEI-,, :S: c(n, k, q, IDI)capk(E, D), (3 .1) 

wheTe lEI is the volume of E . 

In paTticulaT, when q = ~~~~!), theTe exists a constant c(n, k) > 0 depending 

only on n, k, such that 

n - 2k lEI-.,-, :S: c(n, k)capk(E, D). (3.2) 

13 
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(ii) If k = %, n is even , and 1 < q < oo, ther-e is a positive constant c(n, q , diam(O)) 

depending only on n , q, and diam(O) such that 

k+ 1 . 

IEI - q ~ c(n, k, q, diam(O))capk(E, 0) . (3.3) 

M or-eoveT, for k = %, ther-e is a constant c( n ) > 0 depending on ly on n such that 

(3.4) 

2 

holds for- a constant c( n) only depending on n , wher-e 0 < a ~ ao = n ( T ( : = : ) ) ;;: ; 

1 ~ (3 ~ f3o = 1 + ~ ; Wn = the sur-face ar-ea of the unit spher-e in JRn+l . 

3.2 Proof of Theorem 3.1.1 (i) 

Step (i)l . Vve start with proving that if E C BT and 1 ~ k < %, then there is a 

constant c(n , k , q, IOI) > 0 depending only on n, k , q, and 101, such t hat 

(3.5) 

Without lose of generality, we may assume that E is a compact set in B r. Now, by 

Theorem 1.1.1 ( i), we have that if 1 ~ q ~ k* then 

where c(n, k , q, r) > 0 is a constant depending only on n , k , q, T. 
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Since Rk(E, B,.) E <P~ (B,. ) , from the definition of II · ll<t>~(Br) it follows that 

I 

II Rk(E, B,.)IIL'~( B,. ) :S c(n, k, q, r) (!a,. (- Rk(E, B,. ) )Fk[Rk(E, B,.)] dx) k+ t. 

In other words, Theorem 2.0.1 is employed to get 

( ) 

k~i 
IIRk(E, B,.)I!L"(Br) :S c(n, k , q, r) capk(E, B,.) . 

Thus, by the definition of Rk(E , B,.), we achieve 

Step (i)2. Next, we verify that if E c n and 1 :S k < ~' then there is a constant 

c(n, k, q, 1n1) > 0 depending only on n , k, q, and 1n1 , such that 

k + i IEI-q :::; c(n, k, q, ln l)capk(E, n). (3.6) 

Without lose of generality, we may assume that E isa compact subset of n containing 

the origin . Then t here exists a ball B,. centered at the origin with radius diam(n) 

such that n c B ,. . 

Since 1 :S k < ~' by Step (i )1 and [23, Lemma 4.1 (ii)], we obtain 

k + l 

IEI -'1 :::; c(n , k, q, r)capk(E, B,.) :::; c(n, k, q, ln l)capk (E , n), 
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as desired. 

Step (i)3 . Particularly, for q = ·~~~~), we make the following analysis. Suppose E is 

a compact set contained in B ,. - a ball centered at the origin with radius r > 0. We 

claim that if 1 :::; k < ~, then t here is a constant c( n, k) > 0 depending only on n and 

k , such that 

(3 .7) 

In fact, according to Dai-Bao's paper [15], there exists a unique viscosity solution to 

the Dirichlet problem stated in the proof of Lemma 2.0.1. Such a solution guarantees 

that there exists a unique Rk (E, JRn) satisfying 

Now, by the previous Step (i)I, we have that if q = k* then 

n - 2k 
IEI _n_:::; c(n,k,r )capk(E, Br), 

hence, applying the best constant in Theorem 1.1.1 ( i), we can reach the above claim 

through letting r --+ oo in t he above estimate. 

Now, using t he same argument for Step (i)2 , we get 

n - 2 k 

lE I-,-, :::; c(n , k)cap~c(E , JRn) :::; c(n, k)capk(E, D) . 

Step (i)4. Following the above argument and applying [23, Lemma 4. 1(ii)], T heorem 

1.1.1 (ii) and Theorem 2.0.1 we can get that 

k + l 

lEI-'~ :::; c(n, k , q, diam(D))capk (E, D) 
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holds for k = ~ and 1 < q < oo. 

3.3 Proof of theorem 3.1.1 (ii) 

Step (ii)1. Part ially motivated by [1 , 14, 36], we begin with a slight improvement of 

the Moser-Trudinger inequality stated in Theorem 1.1.1 (ii): if k = ~ t hen there is a 

constant c(n) > 0 depending only on n, such that 

where a, (3 are the constants determined in Theorem 1.1.1 (ii ). 

Without loss of generality, we may assume that f2 contains the origin. Then there 

exists a ball Br centered at t he origin with radius diam (f2 ), such t hat f2 C Br. 

Following the argument for [27, Theorem 1.2], we have that for any radial function 

u = u(s ) in 1>~ (Br) there exists a ball B-r C ffi_ ¥+1 wit h radius f = r-r?;2 and a radial 

function v(s) = u(s'~~•
2

) in <I>~(Br ) , such that 

(n+2)(Wn-I) / (a ( lvl ) ) dx 
~ w¥ l s,. exp cg IIDviiL'J+l (B;) 

< c(n)IBr l ::; c(n)f:¥+1 
::; c(n)rn, 

where 

13 _ (w (n-1) 2n !!.) k~t 
co - k:~/~2 k- 1 (n + 2r 

Thus, by [27, Lemma 3.2], we achieve 



• 
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~sup { l exp (a( II 
1
1
1
ul_ )f3 ) dx : u E <I>~ (S1 ) is radial} 

. n u <1>~(1!) 

~ c(n ) (diam(st)f, 

as desired . 

Step (ii)2. We usc the above step to check the remaining pa rt of T heorem 3.1.1 (ii). 

Since k = ~' by Lemma 2.0.1 and Theorem 2.0.1 , we have 

IE I exp ( a -L ) 

( capk,3( E , Br)) k+l 

< sup{ ~', exp (a(ll liul ){3 ) dx : u E <I>~(Br) } 
j E 'U <I>~(Br) 

< c(n) ( diam(Br) f, 

Le., 

-------;{3;- < 
( capk(E, S1)) k+l 

Now, a simple calculation gives the desired inequality. 
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Chapter 4 

Capacitary weak and strong type 

estimates for CI>ff(Q) 

In a way different from proving t he capacitary weak and strong type estimates for the 

W ienner capacity 2-cap(-, D) , we establish t he following k-Hessian capacit ary weak 

and strong type inequalities. 

Theorem 4 .0.1. Suppose that D 1:s an origin-centered Euclidean ball. If u E <I>~ (D) n 

C2 (D) and 1 :::; k :::; ~ , then one has: 

(i) the capacitary weak type inequality 

(ii) the capacitary strong type inequality 

where c(n , k) > 0 is a constant depending only on n , k. 

19 
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Proof. (i) Fort > 0, let v = r 1u. By Theorem 2.0.1 , we obtain 

capk( {x E f2: lv(x)l 2: 1}) 

= sup { j ( -.f)Fk[J] dx : f E <P~(O) n C2 (0), - 1 < f < o} 
{ lvl2': 1} 

= ( (-R({Ivl2: 1}, f2))Fk[R({ Ivl2: 1}, f2)]d.r 
./{lvl2': 1} 

~ / (-R({ Iv l 2: 1} , f2))Fk[R({Iv l 2: 1}, f2) ] dx ./n 
~.In ( -v)Fk[R( { lvl 2: 1}, D)] dx 

~ k ( -v)Fk [v] dx, 

thereby getting 

20 

(ii) For t > 0, let !Vft = {x E f2 : lu(x)l 2: t} . Without loss of generality, we may 

assume llul l <t>~(n) < oo, and then define a normed set function (cf. [9]) 

Note that, for any two sets E1 , E2, s.t . E1 n E2 = 0, then ¢(E1 UE2) = ¢(EI) +¢(E2)· 

Applying [21, Theorem 2.2 & Corollary 2.3], we can find a non-negative measure 1/J 

defined on f2 and a positive constant Cn depending only on n such that ¢ (E) < 

'!j;(E) , V E c f2 and '!j; (O) ~ en. 

Consequently, for a given constant a > 1, one has 

r )Q ¢(M \M ) dt < ( oo 1/J(Mt\Mat) dt = / oo f at d·if;(Ms) dt 
.!o f. ai t .!o t .!o i t 

/

00 / ~ dt d'!j; (Ms) = -(ln a) /
00 

d'!j; (Ms) 
.fo .fs t Jo 
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1/' (Mo) ln a ::::; 1/'(Sl) ln a ::::; Cn ln a, 

hence, 

looo II llk+l dt k+l u 1Mt\ M t k - :S: cn(ln a) ll ull<t>k(n)· 
. 0 a ' <I> a (!1) t 0 

Now, if 

{ 
t - u } u = max (a _ 1 )t, -1 , 

then fi, E <I?~ (N/1. ) , u1Mat :S: -1 , and hence 

where 

Using the definition of capk,3(-, S1) , we obtain 

/ oo k+l ( ~1 M) dt Jo t · capk,3 11/JaL, t. t < 

< (1 )( 1)- (k+l )l l llk+l Cn n a a - l L <P~ (n)' 

In particular, if A = at, t hen a combination of Mt C Sl, Theorem 2.0.1 and Theorem 
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4.0.1 (ii) implies 

0 



Chapter 5 

Analytic vs geometric trace 

inequalities 

Theorem 5.1.1 below focuses on the k-Hessian trace estimates for a nonnegative Ran-

don measure fl, on n. This can induce an opposite process of Chapter 3. 

5.1 Statement of Theorem 5.1.1 

Theorem 5.1.1. Given an origin-centered Euclidean ball n c JR.n, 1 ~ k ~ ~' and a 

nonnegative Randon m easure J.1, on n, let 

T(fl, , n, t ) = inf { capk(I<, n) : compact I< c n with J.1,(I<) 2: t } , Vt > 0. 

be the k -Hess'ian capacitary minimizing function with respect to 1-L· 

( i) If 1 ~ k ~ ~, then 

23 
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holds if and only if 

{ 

k+ l 
SUPt>O rL.~.t) < oo, fo r 

( 
k+ I ) ____<I_ 

J
•CX) t-q k+l-q cit 
-- - <oo 0 T ( /l ,O,t) t ) 

k + 1 ::::; q < oo; 

for 1 < q < k + 1. 

(ii) If k = ~, then 

{ 
/,; 2 - } sup l lui i L~(n ,J-L) : u E IP0(D) n C (D), 0 < l lu ii <I>~ (n) < oo < oo 

holds if and only if 

( 
(Y ) sup t exp {3 

t >O (T(J-L , D,t))k+t 
< oo, 

where lluiiL~ (n,1,) = f0 <p(v,)dp,; <p(u) = exp (a(llul ll:~(n) Y') ; 0 <a< ao = 
2 

n ( y ( : = ~ ) ) :;;: ; 1 ::::; (3 ::::; f3o = 1 +~ ; Wn = the surface area of the unit spheTe in JRn+l . 

5.2 Proof of Theorem 5 .1.1 (i) 

In what follows , we always let 1 ::::; k ::::; ~; u E IP~(D) n C 2 (0); Mt = {x E D : 

lu(x) l ;:::: t} V t > 0. 

Step (i)I. For k + 1 ::::; q < oo, let 

ll.! t q 

cl = sup ( ) < 00 . 
t >O T f..L, f2 , t 

T hen 
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An application of Theorem 4.0.1 (ii) yields that for any u E <P~(D) n C2(0) , 

k 11/,lq df-L l XJ J-L(M>.) d)..q 

< C~ fooo ( capk(NI>., D)) m d)..q 

< q(k + 1)-1 C1m 111/, 1 1 ~~~~/ ~a= capk(M>. , D) d>.k+1 

_!}_ 

< q(k + 1)-1C[+ 1 c(n, k) l l1/,ll~,~(n ) · 

This gives 

Conversely, assume C2 < oo. An application of t he Holder inequality with q' = ~ 

implies 

and thus 

Now, taking t = 1; 11, E <P~(D) n C2 (0); lui ~ 1g for any compact K C D, we obtain 

1 1 

(1-L(K))-q ~ C2II1/, I I <I>~(n) ~ C2(capk(K,D) ) k+ 1
, 

whence reaching cl ~ c~+ l. 
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Step (i)2 . For 1 < q < k + 1, let 

Suppose h,q(J.L) < oo, then the elementary inequality 

implies 

j=-oo 

j=-oo 
ln

oo __!I__ k + 1 

< c(n,k, q) (T(J.L,D,s)) - k+l-q dsk+l-q 
. o 

< c(n, k, q)h,q(J.L ). 

Therefore, by t he Holder inequality and Theorem 4.0.1, we have 

ll u ll~q(ll,JI) .k !u!qdp, = .laoo tqdp,(Mt(u)) 
00 

< L (1-L(M21(u ))- J.L (M2J+l(u)) ) 2jq 
-oo 

< (S,,,(!', u)) 'ti;' (~ 2;(k+IIcap,(M2"'HJ (u))) ,+. 

__!]_ 

< (Sk ,q(P, , u)) kt!~'~ (fooo capk(M>. (u) , D) d)..k+I) k+l 

k+l-q 
< c(n, k, q)(Sk,q(J.L, u)) k+ l l l ul l ~~(ll) 
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hence getting 

Conversely, suppose C2 < oo. Then 

1 

sup t(f.L(Mt));; ~ llull u'(n ,,,) ~ C2llu- II <I>~(n) 
t>O 

holds for any 'U E <P~(D) n C 2(sl) . According to the definition of T(f.l, n, t) , for each 

integer j, there exist a compact set Ki c D and a function Uj E <P~ (D) n C 2(sl), 

such that capk(Kj, D) ~ 2T(f.L, D, 2i) , f.L(I(j) > 2i, U j ~ -1K1 , and 2-1 lluil l ~,!tn) ~ 

capk(Kj, D). 

Now, for integers i , m with i < m let U i ,m = supi~j~m "(jUj and "fi = ( ~< (~~2J )) k+; _,, . 

Then ui,m is a function in <P~(D) n C 2 (sl) - this follows from an induction and the 

easily-checked fact below 

Consequently, 

m m 

II ll k+l ( k )"'"' k+l ll llk+l ( k)"'"' k+ l ( (} 2j) U -i,m <J>k (rJ) ~ c n , ' ~ "ij Uj <J>k( rJ) ~ c n , ~ ~ "ij T f.L, ~ ~ , . 
0 ' . 0 . . 

J=• J=• 

Observe that fori ~ j ~ m , one has 
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Therefore, 

This in turn implies 

llui,m ll ~,~(n) > c;;qc(n, k, q) .In luj,mlq df-l 

> c;;q loco ( inf { t : !-l( ]1/ft ( 7.L;,m)) ::; s} r ds 

> C;;q t ( inf{t: ~-L(Mt(u;,m)) ::; 2j}) q 2j 
J=t 
m 

j=i 

Consequently, 
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5.3 Proof of Theorem 5.1.1 (ii) 

In the sequel, let k = ~' u E <P~(S1)nC2 (D), and Mt('u) = {x E S1: lu(x)l 2: t} Vt > 0. 

For convenience, rewrite the previous quantity C1 as 

If 

then for ij 2: k + 1, 

k+l t - ,, 
C1(n,k,q,J-L,Sl) :=sup ( ,. ). 

t>O T f-£ 1 H 1 t 

C, (n, k, ij, ~'• rJ) ~~~ 7(:~. t) ~ ~~~ ( ( ~; ) (HI'· ~:t)) &r )) ' i ' 

< ( "~) 't' ~~~ (~~ exp (HI'· ~:t)) &, ) ) 'i' 

( "~) 't' ~~~ (t exp ( H~<, ; t )) !,J) •:• 
k+l 

~ C~ij/3 ) (j ( C3 (n, k, f-L, S1)) k!l. 

Also, applying the Holder inequality for ij 2: k + 1, we get 
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where 

Next, we control 5 1 and 5 2 from above. As in the previous section, we have that for 

any t t E <P~(D) n C 2 (0) and integer m 2: k + 1, 

This, along with the previously-verified inequality 

ill 

cl (n, k, q, J.L , D) ::; C~q.e ) fJ ( C3(n, k, J.L, D)) kt!' Vq 2: k + 1, 

gives 

Meanwhile, Theorem 4.0. 1 is used to get 



< __!!_f__ r)O ( (M) ( a )) ( capk(Mt,O)) dtk+l 
k+ 1.fo f-L t exp (capk(I\tft ,O)),&r llull;! ln) 

< af3(k + l) - 1C3(n, k, a, /3, p,, O)l l u i i;~~~)I ) fooo ( capk(!Vft, 0 )) dtk+l 

< af3(k + 1)- 1c(n, k)C3 (n, k, a, /3, f-L , 0). 

Now, putting the estimates for S1 and S2 together , we obtain 

31 

Conversely, if C4 < oo, then for any u E <I>~(O) n C 2 (D) with llu l l<~>~(n) > 0, one always 

has 

Note that for any compact set K C 0, there exists a function R(K, 0) , such that 

R(K, 0) E <I>~(O) n C 2 (D) and IR(K, 0)1 2:' 1!(. 

So, we get 

p.(K) exp ( a f3 ) < 
( capk(K, 0)) k + I 
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Remark 5.3.1. . 

(i) Upon adapting the relatively natural capacity of a compact K c D fork-Hessian 

operators below ( cf. §2) 

{ 
kl k 2- } capk,3(K, D)= inf l lull~!(n) : u E <P~(D) n C (D), u iF< ~ -1 , u ~ 0 , 

we can see that Theorem 5.1.1 without assuming that D is an origin-centerd 

Euclidean ball, still hold with capk(- , D) being replaced by capk,3(-, D). 

(ii) Here, it is worth pointing out that the case k = 1 of Theorem 5. 1.1 can be read 

off from the case p = 2 of Mazya's [25 , Theorem 8.5 & Remark 8.7] (related to 

the Nirenberg-Sobolev inequality [10, Lemma VI.3.1]) , and the case q = k + 1 of 

Theorem 5. 1.1 leads to a kind of Cheeger's inequality - for k = 1 see also [11], 

[10 , Theorem VI.1.2], and [34] . 



Chapter 6 

Limiting weak type estimate for 

k-Hessian capacitary maximal 

function 

This chapter studies the limiting weak type estimate for t he k-Hessian capacitary 

maximal function from a regular case. 

6.1 Stat em ent of Theorem 6.1.1 

For an Lfoc-integrable function f on JR" , n ;::: 1, let M f (x) denote the Hardy-

Lit tlewood maximal function off at x E lR": 

1 / 
M f (x ) = ~~~ L (B) .fs IJ(y)l dy , 

where the supremum is taken over all Euclidean balls B containing x and £ (B ) stands 

for t he ·n-dimensional Lebesgue measure of B . Among several results of [18, 19], P. 

33 
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Janakiraman obtained the following fundamental limit: 

lim )..£({x E !Rn : M f (.rc ) > )..}) = llf lh = ( .IJ(y) l dy , Vf E L 1(1Rn) . 
~~o }Rn 

To study the limiting weak type estimat e for a k-Hessian capacity, recall that a set 

function cap( ·) on !Rn is said to be a capacity ( cf. [2, 3]) provided 

cap(0) = 0; 

0 :::; cap(A) :::; oo , 

cap(A) :::; cap(B) , VA c B c !Rn. 
- - ' 

For a given capacity cap(-) , let 

Mc f( x ) = sup ~B) ( lf( y)ldy 
xE B cap Js 

be the capacitary maximal function of an Lfoc-integrable function f at x for which 

the supremum ranges over all Euclidean balls B containing x; see also [22]. 

In order to establish a capacitary analogue of the previous limit formula for f E 

£1 (!Rn), we need the following natura l assumptions: 

• Assumption 1: the capacity cap(B(x,r )) of the ba ll B(.rc ,r) centered at x with 

radius r is a function depending on r only, and the capacity cap( { x}) of the set 

{ x } of a single point x E !Rn equals 0. 
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• Assumption 2: there are two nonnegative functions cp and 'lj.; on (0, oo) such that 

{

¢(t)cap(E) :0 cap(tE) :0 ,P(t)cap(E), 'It> 0 & tE = {tx E IR"' x E E ~ IR"}; 

hmt-toc/J(t) = 0 = hmt-to'l/.J(t) & hmt--to'l/J(t )jcp(t) = T E (O,oo). 

Here, it is worth m ntioning that the so-called p-capacity satisfies a ll the assumpt ions; 

see also [35] . 

Theorem 6.1.1. Under Assumption (1) and (2) , one has 

Hereafter, X ~ Y means Y ;S X .:S Y , where the second form means there exists a 

positive constant c, independent of main parameters, such that X :::; cY. 

For a special case, when the capacity takes the k-Hessian capacity, we can obtain the 

following Corolla ry 6.1.2. 

Corollary 6.1.2. Let f be a Lfoc-integmble function on IRn, n ~ 2. Then, for 1 :::; 

k <!!: 
2' 

lim >..capk({x E !Rn: Mc f (.r) > >..} , !Rn) ;::::; [[ f[h , 
>.-tO 

where 

Mc.f(x ) =sup (~ JRn) r lf(y)[dy. 
xEB capk , } B 

Proof. Applying the computation in [23, (4.16)-(4.17)], when 1 :::; k < ~' k-Hessian 

capacity satisfies Assumption 1. It is necessary to show the case of Assumption 2 for 

k-Hessian capacity. 
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Claim: Let E be any bounded set in IRn. Then , 

( E TTJ) n) n - 2k (E TTJ) n) capk t , m. = t capk , m. , 'lit > 0, 

where tE = {tx: x E E} . 

Proof of the claim: Without loss generality, let E be a compact set in IRn. Consider 

now the viscosity solut ion R(E, JRn)(x ) for the Dirichlet problem , 

Fk[u] = 0, in IRn\ E ; 

u = - 1, on 8E; 

u = 0, on x ----1 oo. 

then by the uniqueness of t he viscosity solut ion, for any t > 0, R(E, JRn) (tx) satisfies 

Fk[R(E , JRn) (tx)] = 0, in IRn\(tE); 

R(E, JRn) (tx ) = - 1, 

R (E , JRn)(tx ) = 0, 

on 8(tE) ; 

on x ----1 oo. 

Therefore, by the definition of k-Hessian capacity and Labutin's work [23]. 

f Fk[R(E , JRn)(tx)] 
}JRn 

~ f (DR(E, JRn)(tx ))k d1-lk- 1(8(tE)) 
k l a(tE) Dv 

~ f ~ (DR(E ,JRn)(y)) k tn- kd1-lk-1 (8(E)) 
k l a(E) tk Dv 

tn- 2kcapk(E , JRn) . 

0 
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6.2 Four Lemmas 

To prove Theorem 6.1.1, we will always suppose that cap(·) is a capacity obeying 

Assumptions 1-2 above, and we need four lemmas based on the following capacitary 

maximal function Nfc v of a finite nonnegative Borel measure v on ~n : 

v(B) 
Mc v(x ) =sup (B ), Vx E ~n , 

B 3 x cap 

where the supremum is taken over all balls B ~ ~n containing x . 

Lemma 6.2.1. If 60 is the delta m easure at the origin, then 

1 
cap( {x E ~n : Mc b"o(x) > >-}) = )_" · 

Proof. According to the defintion of the delta measure and Assumpt ions 1-2 , we have 

1 
Afc b"o (x ) = cap(B(x , lxl )) , Vlxl -::/= 0. 

Now, if x obeys Mc 60 (x) > A, t hen cap(B(x , lxl)) < ±· 

Note that if cap( B(O, T)) equals ±, then one has the following property: 

T herefore, 

cap(B(x, lxl)) < ±, Vlxl < T; 

cap(B(x, lxl)) = ±, Vlxl = T; 

cap(B(x, lxl)) > ±, Vlxl > r. 

{x E ~n: Mcb"o(x ) > >-} = B (O, r ), 



and consequent ly, 

1 
cap({.x E JRn : Mc8o(x ) > >.}) = cap(B(O,r)) = ~· 
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Lemma 6.2.2. If v is a finte nonnegative Borel m easure on JRn with v(JRn) = 1, then 

lim cap({x E JRn : Mc vt(x) > >.}) = _!_ , 
t~O ). 

where t > 0, 1-'t(E) = v(iE), f E = {T : x E E} , and E ~ JRn. 

Proof. For two posit ive numbers E and r;, choose E1 small relative to both E and r; , but 

also let t be small and the induced Et be such t hat 

Now, if 

Ef.>- = {.x E lRn \ B (O, E1) : ). < Mc vt(x ) ~ 1 
} ; 

cap ( B(x, lxi-Et) ) 

Eb = {X E JRn \ B (O, E1) : max { >., ( 1 
) } < Mc vt(x) } , 

cap B(x,lxi- Et ) 

then 

Ei ,>- U Eb U B (O, EI) = {x E !Rn : Mc vt(x ) > >.}. 

On the one hand , for such x E E~,>- and Vr > 0, t hat 

1-'t (B (x,r) ) 1 
------,--'------'c.__-,- < < Jv! c v t ( x) . 
cap( B(x , Jxl - Et)) - cap( B(x, Jxl - Et)) 



39 

Additionally, since for any r 1 , r 2 satisfying 0 ::; r 1 ::; r ·2 , 

(i.e. cap( B(x, r)) is an increasing function with respect tor), there exists r < lxl- Et, 

such that 
1/t (B(x, r )) v1(B (x, r )) 

- --.,------'-----':..__--,- ::; ::; M c Vt (X) ) 
cap( B(x, lxl - E1)) cap( B(x, r)) 

and hence by the Assumption 1, for any Xi E Et>. there exists ri > 0, such that 

vt(B(xi ,ri)) 
r·i < lxil - Et & A < ( ) . 

- cap B(x, r ) 

By the Wiener covering lemma, there exists a disjoint collection of such balls Bi = 

B(xi , Ti ) and a constant a > 0, such that 

Therefore, we get a constant "( > 0, which only depends on a , such that 

t """' """' """' Vt( Bi ) "(E cap(E2,>.) ::; L..- cap(a Bi) ::; "( L..- cap(Bi) < "( L..--- ::; - , 
·i i i A A 

thanks to 

Bi n B(O, Et) = 0 & 1 - v1 ( B (o, Et)) < E. 

On the other hand, if x E Ei,>. , then 

1 - E < vt (B(x, lx i+ Et)) 

cap ( B(x, lxl + Et)) 

< Mc vt(x ) 



Since 

1 
< 

cap( B (x, lxl - Et )) . 

l . ( 1 1 ) 0 In1t-t0 - = ' cap ( B(x, ixl+<t) ) cap( B (x,lxl-<t) ) 

l. ( 1 1 ) 0 lffit-tO - = , 
cap( B(x,ixl+<t )) cap( B(x,ixll) 

for 17 > 0, there exists T > 0 such that 

E 
IMc vt(t ) - Mc8ol < 1] + --,----...,... 

cap( B(O, lxl)) 
E 

< 1] + --,----,-
cap( B(O, E1)) 

< 27], Vt E (0, T) . 

Note that 

Thus 

{x E IR71
: Mc 8o(x) > A+ 2'17} ~ Ei,>. ~ {x E IR71

: Mc8o(x) > A + 27]} . 

This in turn implies 

cap( {x E IR71
: Mc80 (:r) > A+ 27]}) ::; cap(Ei,>.) 

::; cap( {x E !Rn: Mc8o(x ) > A+ 27]}). 

Now, an application of Lemma 6.2.1 yields 

A 
1 

::; cap ({ x E !Rn : Mc vt(x) > A} n (IRn \ B(O, E1))) ::; 
1 + "fE . + 27] A - 27] A 

40 



Letting t -t 0 and using Assumption 1, we get 

1 
lim cap({.T E lRn : M c vt(x) > A})=\· 
/,-)0 /\ 
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Lemma 6.2.3. If I/ is a nonnegative Borel m easure on JRn , then !Vfc v(x ) is upper 

semi-continuous. 

Pmof. According to the definition of Mc v(x ), there exists a radius r corresponding 

to M c v(.T ) > A > 0, such that 

v(B(x, r )) A 
cap(B(x, r )) > · 

For a slightly larger number s with A+ 6 > s > T , we have 

v(B(x, r )) A 
cap(B(x , s)) > · 

Then applying Assumption 1, for any z satisfying lz- xi < 6, 

M ( ) 
v (B (z, s) ) v (B (x , T)) \ 

c v z > > > /\. 
- cap(B(z , s)) - cap(B( x , s)) 

Thereby, t he set {x E JRn : M c v (x) > A.} is open, as desired. D 

Lemma 6.2.4. If v is a finit e nonn egative Borel m easure on JRn, then there exists a 

constan t "' > 0, such that 

PToof. Following the argument for [5, Page 39, Theorem 5.6], we set E>. = { x E JRn : 
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Mcv(x) > .A} , and then select a v-measurable set E ~ E>. with v(E ) < oo. Lemma 

6.2.3 proves that E>. is open. Therefore, for each x E E, there exists an x-related ball 

Ex, such that 

v(Bx) A 
cap(Bx) > · 

A slight modification of the proof of [5, Page 39, Lemma 5.7] applied to the collection 

of balls { Bx}xEE, and Assumption (2) show that we can find a sub-collection of disjoint 

balls { Bi} and a constant 1 > 0, such that 

cap( E) :::; 1 L cap(Bi) :::; L ~v(Bi) :::; ~v(JR"). 
• • 

ote that E is an arbitrary subset of E>. . Thereby, we can take the supremum over 

all such E and then get 

0 

6.3 Proof of Theorem 6.1.1 

First of all , suppose that vis a finite nonnegative Borel measure on IR" with v(IR") = 1. 

According to the definition of the capacitary maximal function, we have 

~" ( ) 1/t(B(x, r-)) v(B( f, f)) 
l l'lCVt x = sup = sup x ,. . 

r > O cap(B(x, r-)) r>O cap(tB( t' T )) 

11'1 v(i!O) M v(i!O) 
From Assumpt ion 2, it follows that ~(t)' :::; Mcl/t(x):::; ~(t) ' , and such that 

{xEIRn: Mc u( T) > .A'Ij; (t)} C { x EIRn: !Vfcvt(x)> >-} 

C { x E IR": !Vfcu(T) > .A¢ (t) }· 



The above inclusions give that 

~~~~ A7jJ (t )cap( {x E IRn : Mcv(x) > A7jJ(t)}) 

::; Acap( { tx E IRn : Mc v (x) > A7jJ (t)}) 

::; Acap( {x E IRn: Mc vt(x) > A}) 

::; Acap({x E IRn: Nfcv(x j t) > Acj>(t)}) 

= Acap( { tx E IRn : Mcv (x) > Acj>(t)}) 

::; ~~~? Acj>(t)cap({x E IRn : Mcv(x) > Acj>(t)}). 
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These estimates and Lemma 6.2.2, plus applying Assumption 2 and letting t---+ 0, in 

turns imply 

Next, let 

T-
1 < lim inf Acap({x E IRn: Mc l/(x) > A}) 

-' --+0 

< lim sup Acap({x E IRn : Mc v (x) > A}) ::; T. 
-'--+0 

h(A ) = Acap({x E IRn : Mev> A}) . 

(6. 1) 

(6.2) 

By Lemma 6.2.4 and the above estimate (6.1) for both the limit inferior and the limit 

superior, there exists two constants A > 0 and Ao > 0, such that 

A ::; h(A) ::; /, VA E (0, A0 ). 

Moreover , for any given E > 0, choose a sequence {Yi = [~ (1 - c)Nr}r:', where N is a 

natural number sat isfying ~ (1 - c )N < 1. Then, there exists an integer N0 :2: 1, such 
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that YNo < ..\0 . Hence, for any n > m > No we have 

lh(ym) - h(yn) I 

< IYmCap( {x E !Rn: Mc v(x) > Ym}) - YnCap( {x E !Rn: Mcv(x) > Yn}) I 

< IYm- Ynl cap( {x E !Rn: Mcv(x ) > Ym}) 

+ Ynl cap({x E !Rn: Nfc v(x) > Ym})- cap({x E !Rn : Nfc v(x) > Yn} ) l 

< IYm. - Ynl2_ + Ynl_l - ~~ 
Ym Yn Ym 

< !'(1- [~ (1 - c)Nr-m.) + b - A [ ~ (1 - c)Nr-m) 

< !'(1 - (1 - c)N(n-m.)) + (1- !'(1 - c)N(n-m)) 

< 2!'N(n- m)c. 

Consequently, {h(yi)} is a Cauchy sequence, D = limi-+oo h(yi) exists. Note that for 

any small >. , there exists a large i, such that 

Therefore, from the triangle inequality, it follows that , if i is large enough , then 

lh(>.) - D l < lh(..\)- h(yi)l + lh(yi)- Dl 

< IYi- >.1 2 + >.12- AI + lh(yi)- Dl 
Yi >. Yi 

>. >. 
< !'(1 - - ) + (1- A-)+ lh(y.i) - Dl 

Yi Yi 
< !'(1 - Yi+l ) + (1 - A Yi+l ) + lh(yi) - Dl 

Yi Yi 

< (2/'N + 1)c. 

T his in turn implies t hat lim>.-+O >.cap( {x E IR"' : Mcl/(x) > >.}) exists, and conse-



quently, 

holds. 

T -
1 

::; lim >.cap({x E ffi.n: Mc v(x ) > >.}) ::; T 
.>..-tO 
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Finally, employing the given L1 (1Rn ) function f with llf lh > 0 to produce a fini te 

nonnegative measure v with 1/(ffi.n) = 1 via 

we obtain 

lim >.cap({x E ffi.n : Nicf(x) > >.l lflld) ~ 1, 
.>..-tO 

thereby getting 

lim >.IIJII1cap({x E ffi.n: Mc f (x) > >. ll fl ld) ~ IIJII1· (6.3) 
.>..-tO 

By setting ~= >.11! 11 ' in the above estimate (6.3) , we reach the desired result . 



Chapter 7 

L[L~ (JR.~+n ) extended to 

L(p V q,p 1\ q)(tL)(JR~+n) 

In this chapter , we firstly introduce a relation between the k-Hessian operators and 

the fractional Laplace operators, explaining why we concentrate on the fractional 

dissipative equation [20] . Secondly, an LiL~ (JR~+n ) extension is discovered from the 

capacitary strong weak type estimate for Li~(JR~+n ). 

7.1 Relationship between k-Hessian operators and 

fractional Laplace operators 

The fractional Laplacian ( -6)0 is a kind of classical operators gives the Laplace 

operator when a. = 1. These operators can be defined as the pseudo-diflerential 

operators with symbol 1 ~ 1 20 ( cf. [20]) , 
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where 0 < a :::; 1, ~denotes the Fourier transform, and ~- l its inverse: 

{ ~(g)(.r) := (2wtn/2 .fiR, e-ix·yg(y) rly ; 

~- 1 (g) (x ) := (2w)-n/2 f JW.n e'x·yg(y ) rly. 

It can also defined by the formula: ( cf. [8]) 

Q r u(x) - u(~) 
( -~) u(x) := c(n, a) }JW.n lx - ~ ~n+2n rl~, 

where c(n, a) is a normalization constant only depending on nand a. 
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More precisely, let JR~+n := IR+ x !Rn be the upper half space of the 1 + n dimensional 

Euclidean space IR l+n . When consider the extension g : JR~+n ---+ IR satisfying the 

equation: 

the following equality 

{ div(t"D~g(t, ,x)) ~ 0; 

g(O , .'L)- u(~t ) , 

(7.1) 

holds (see [8]), where a= 12a and c(n, a) is a constant only depending on nand a. 

Thus, a parabolic case for t he fractional Laplacian should be considered, namely, t he 

inhomogeneous fractional dissipative equation [20], 

{ D,u(t, x~+ (-~):u(t,x) ~ F(t, x ), 

u(O, x) - 0, m IR , 

in JRl+n . 
+ ' (7.2) 

The existence of the weak solution u( t, x) for the above inhomogeneous fractional 
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dissipative equation (7.2), guaranteed by Duhamel's principle, has the following form , 

where 

for which 

u(t , x ) = SaF (t , x), 

i
·t 

SaF(t, x ) := e- (t-s)(-~)" F(s, x ) ds , 
. o 

{ e-t(-~)" v(-, x) := K }o:)(x) * v(· , x ), 

}'/(a:) ( ·) ·= (2 ) - n / 2 j' ·ix·y- tiyi2" d 
·• t x . 1r JRn e y, 

and * represents the convolut ion operator. (see [20] for more details) 

(7.3) 

On the other hand , in 2011 , F . Ferrari found an integrable equivalent between the 

fractional Laplace operators and the k-Hessian operators [16], for any function u E 

<I>~ (ffi.n), there exists u such that 

where 1 < k < !!: and a = _!,;_ - 2 k+l' 

Therefore, analyzing t he fractional dissipative operators is one way to reach the k-

Hessian operators. 

Now, we consider the k-Hessian capacity, applying T heorem 2.0.1 and Ferrari 's work. 

For 1 ~ k < ~ , and a compact set K C ffi.n, we have 

capk(K, ffi.n) sup {1< Fk[u] : u E <I>k(ffi.n), - 1 < u < 0}; 

inf { - k., uFk[u] : u E <I>~(IRn) , u ~ - 1J< }; 

~ inf { .kn I( - l::.) o:u lk+l dx, : u E <I>~(IRn), u ~ - 1K } · 
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Hence, the capacity for the fract ional dissipative operators Ot + ( - 6.)a should be 

considered , namely, (a, p, g)-capacity C~~l (K) (cf. [20]) . For 1 ::::::; p, q < oo and a 

compact subset !{ of JR~+n, 

1 

wherep/\q := min{p , q} , for 1 ::::::; p, q < oo, and I IF II Li L~(IR~+") := (J~+ [J~n IF(t , x)IP dx]~ dt) 4 . 

Moreover , the definit ion of C~~) extends to any arbitrary set in a similar way to the 

k-Hessian capacity, the equation (1.8) and (1.9). T hen we have the following (a ,p, q)­

capacitary strong type estimate for L{Lfc(IR~+n ) , which is a mixed Lebesgue space of 

all functions F on JR~+n wit h I IF II Li L~ (IR~+n) < oo. 

7.2 A capacitary strong type estimate for LiL~ (JR.~+n) 

and its induced extension 

First of all , we have the following capacitary strong type estimate for the mixed 

Lebesgue space. 

Theorem 7.2.1. For any F E L{Lfc(IR~+n) , we have 

l oo >,PI\qc(a ) (E ) d>. < IIF IIp/\q 
p q .X \ rv Lq LP(JRl+n) · 

0 ' 1\ t X + 
(7.5) 

wheTe E.x = {(t ,x) E JR~+n : SaF(t ,x) > >.} . 

Pmof. W ithout loss of generality, we may assume I IF II Li L~(IR~+") < oo. 

We define a normed set function ¢ with respect t o a function F E L7 L{ (IR~+n), such 
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that for any set K = Kt x K x C JR~+n, 

l 

where II F I K I IL7 L~(IR!~+n) := (IKt [JKx IF(t, x)IPdx] ~ dt) <i. 

Note that, for any disjoint set A and B , cpp(A U B) ;:::;; cpp (A) + cpp(B). It is only 

necessary to check that cpp(A U B) ~ cpp(A) + cpp(B ) in two cases, because of t he 

property of t he norm II· IIL7 L~(IR!~+n) . 

Case 1: p < q, Using, ~ ~ 1, we get 

(1 [ f IF(t, x)IPdx] ~ dt) ~ 
(AUB)t .f(AUB)x 

1!. 

(1 [ r IF(t ,x) IPdx + r IF(t,x)IPdx] ~ dt) q 
(AUB)t .fA x .f B x 

~ (1 [ f IF(t, x)IPdx] ~ + [ f IF(t, x)IPdx] ~ dt) ~ 
(AUB)t .fA x .f B x 

i': (l, [l_ IF(t, x) l'dx]' +fa, [fa.IFU, x) l'dxJ' dt ) ~ 
i': (l, [L.IF(t, x)l'dx] l)' + (!a, [h. IF(t, x) l'dx] l dt)' 

= I IFIAII ~'?~~(IR!~+" ) + IIFi s ll ~z~~(IR!~+"r 

Case 2: p > q. Simila rly, we have 

'1. 

II F I AuB W~~~I' (IR! l+n ) 1 [ r IF(t,x)IPdx] p dt 
t x + (A uB)t .f(AuB)x 

'1. '1. 

~ r [! IF(t, x)IPdx] p + r [ r IF (t ,x)IPdx] p clt 
.fAt A x .f B t .f Bx 



r----------------------------------------------------
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Applying [9 , Page 187, Corollary 2.3], there exists a measure 'lj; on JR~+n, such that 

where c(n) is a constant only depending on n. 

For EA. \Ea>.., we obtain 

:S '!jJ (JR~+n) log a :S c(n) log a . 

Therefore, 

Consider now t he fractional dissipative equation: 

{ B,u(t, x~+ (-ll)"u(:,x) = F(t,x), \l(t,x) E Jll.~+n; 
u(O,x) - 0, Vx E lR. 

It has a weak solution u(t, :r:) = SaP(t, ::r:). If 

'ii(t ,x)= 

1, in E a>.. , 

u(t,x) - A. 
(a- l )A. ' 



then u( t, .7:) is a weak solution to the fractional dissipative equation: 

where 

{

D,U(t, x~ + ( -l'>)"ii(:, x) = f(t, x), 

u(O, x) - 0, Vx E IR . 

0, a.e. in Ea>.; 

F(t, x) = F a.e. in E>, \ Ea>. ; (a-1)1, ' 

0, a . e. , IRl+n\E 
ll1 + >.· 

Now, based on the definition of the (a,p, q)-capacity, we obtain 

Note that the following weak type estimate 

automatically holds, for all ,\ > 0 and any p , q > 1. 
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0 

(7.6) 

Next, using Theorem 7.2.1, we obtain the embedding from Lil{ (IR~+n), a mixed­

Lebesgue space of all functions F on JR~+n with IIF I I L7 L~ (IR~+" ) < oo, to L(r,s) (JR~+n, 11), 
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the Lorentz space of a ll functions 'U satisfying 

where r, s E (0, oo) and p, is a nonnegative Borel measure on JR~+n. 

Theorem 7.2.2. Let {t be a non negative Borel measure on JR.~+n. Then 

(7.7) 

holds for all F E Li L~ (JR.~+n) if and only if 

(7.8) 

holds for all compact sets ]{ C JR.~+n. 

Proof. The sufficient condit ion is a straightforward consequent of Theorem 7.2.1. For 

the necessity, suppose IISaFIIL(pvq,pAq)(,,) ,S IIFI I LiL~(IR~+") for all FE LjL~(JR.~+n ) . Fix 

a compact set ]{ c JR.~+n. By the definition of C~c;} , for any E > 0, there exists a 

function F E Li L~ (JR.~+n), such that 

Therefore, 

D 
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