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Abstract

In this thesis, we discuss three properties of the k-Hessian operators. Firstly, through
a new powerful potential-theoretic analysis, this paper is devoted to discovering the
Mazya’s type isocapacity forms of Chou-Wang’s Sobolev type inequality and Tian-
Wang’s Moser-Trudinger type inequality for the fully nonlinear 1 < k& < 7 Hessian
operators. Secondly, a k-Hessian capacitary analogue of the limiting weak type es-
timate of P. Janakiraman for the Hardy-Littlewood maximal function of an L, (R™)-
function (cf. [18, 19]) is discovered. Finally, an L{LP(RY"™) extension induced from

the k-Hessian operators is established.
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Chapter 1

Introduction

1.1 Motivation

The Hessian matrix or Hessian, firstly developed in the 19th century by the German
mathematician Ludwig Otto Hesse and later named after him, is a square matrix
of second-order partial derivatives of a function [6]. This matrix describes the local
curvature of a function of many variables with trace being the Laplace operator and
determinant being the Monge-Ampére operator. Between these two operators are the
k-trace or the kth elementary symmetrie polynomial of eigenvalues of the Hessian
matrix, namely, the k-Hessian operators [33].

Unless a special remark is inade, from now on, €2 is a bounded smooth domain in the
n-dimensional Euclidean space R™ with n > 2. Let u be a C? real-valued function on

Q2. For each integer k € [1,n], the k-Hessian operator Fj, is defined as

Fk[u] = Sk(A(DQU)) = Z /\il N /\im (11)

1<4) << €n

where A = (A;,..., A,) is the vector of the cigenvalues of the real symmetric Hessian



matrix [D?u]. In particular, one has:

Au = the Laplace operator, for k = 1;
Fyul = {a fully nonlinear operator, for 1<k <mn;

det(D*u) = the Monge-Ampére operator, for k =n.

Hereafter, the following facts should be kept in mind: for 1 < k < n, each Filu] is
degenerate elliptic for any k-convex or k-admissible function u, denoted by u € ®*(),

namely, any C*(£2) function w having nonnegative Fj[u],
Filul >0 on Q, Vj=1,2,.. k.

Moreover, if ®F(€)) stands for the class of all functions u € ®*(Q) with zero value on
the boundary 9 of €, then ®%(Q2) # @ amounts to that 9 is (k — 1)-convex, i.e.,

the j-th mean curvature

- Zl§i1<...<i15n—1 K"il("‘U) T ’frij(l')

H;(09,2) = , Vi=1,...k—-1

)

J

of the boundary 02 at z is nonnegative, where k;(x), ..., k,_1(x) are the principal
curvatures of 9Q at the point z; see for example [7, 16, 17, 23, 27, 29, 31, 33].

As a natural geueralization of the well-known case k = 1, the following Sobolev type
inequalities indicate that ®f can be embeded into some integrable function spaces;

see Wang [32], Chou [12, 13], and Tian-Wang [27] for details.

Theorem 1.1.1. Let 1 < k < n; u € X(Q); lwllgry = (Jol—u)Filu] da)V/ R+



(fa ]u|’7d1')1/”, for 1 < g < o

and |full ey =

(i)

(ii)

(iii)

SUD,eq [W(T)], for g = o0.

Ifl<k<Zandl <qg <k = "fi;}c), then there is a positive constant

c(n, k, q,|Q) depending only on n, k, q, and the volume |Q| of Q such that the

Sobolev type inequality

el Loy < e(nyk, g, 1) ulles o (1.2)

holds, where for ¢ = k* the best constant in the above estimate is obtained via

letting w: 2 — R™ be ,
2k—n

u(z) = (14 [2?) ™. (1.3)

If k=%, nis even and 0 < q < oo, there is a positive constant c(n, g, diam(Q2))

depending only on n, q and the diameter diam(§2) of 2 such that the Sobolev type

inequality

ull Loy < cln, g, diam(Q))]|ullo (o) (1.4)

holds.

Moreover, for k = § andn is even, then there is a positive constant c(n, diam(§2))

depending only on n, k and diam(S2) such that the Moser-Trudinger type inequal-
ity

8
sup / exp a(¢> < ¢(n, diam(§2)) (1.5)
<o /0 HU”@g(Q)

fts

]

holds, where 0 < a < ag = n(ﬂ( nel )) 1< B < By = l—i—%; Wy =

k k-1

the surface area of the unit sphere in R"1,

If 5 < k < n, then there is a positive constant c(n, k,diam(§2)) depending only



onn,k and diam(Q) such that the Morrey-Sobolev type inequality
l[ul| () < e(n, &, diam(2))||ullgx o) (1.6)

holds.

Since the Morrey-Sobolev type inequality in Theorem 1.1.1 (iii) is relatively indepen-
dent (cf. [26]), a natural question comes up: what is the geometrically equivalent form
of Theorem 1.1.1 (i)-(ii)? To answer this question, we need the so-called k-Hessian
capacity that was introduced by Trudinger-Wang [30] in a way similar to the capac-
ity defined by Bedford-Taylor in [4] for the purisubharmonic functions. To be more
precise, if K is a compact subset of Q, then the [1,n] 3 k& Hessian capacity of K with

respect to 2 is determined by
capy(I<, Q) = sup {/K Filuldz: ue®¥Q), -1<u< 0} ; (1.7)
and hence for an open set O C €, we define
capr (O, ) = sup {capk(K,Q) : compact K C O}; (1.8)
whience giving the definition of cap,(E, ) for an arbitrary set £ C €
capp(E, Q) = inf {ca'pk(O,Q) : open O with £ C O C Q} (1.9)

According to Labutin’s computation in [23, (4.16)-(4.17)], we see that if B, C R"

is used to represent an open ball centered at the origin with radius p > 0 and if



0 < r < R < oo, then there is a constant ¢(n, k) > 0 depending only on n, k such that

—k
cln ) (r7E = RE) o 1k <

capi(B,, Br) = (1.10)

c(n, /ﬂ)(log ?)%, for k = 7.

Moreover, capi (-, Q) has the following metric properties (cf. [23, Lemma 4.1]):
(a) if E =0, then capy(E, Q) = 0;

(b) if By C Ey C Q, then capip(Ey, Q) < capp(Es, Q);

(c) if EC € CQy, then capy(E, Q) > capi(E, Q);

(d) if By, By, -+ C Q, then capp(U;E;, Q) < 32, capi(Ej, Q);

(¢) if K} D K, D - is asequence of compact subsets of Q@ = Bp, then cap, (N, K;,Q) =

lin; o0 capr (K, §2).

1.2 Topics covered
The rest of this thesis is organized as follows:

e Chapter 2 starts with four different k-Hessian capacities based on the Sobolev
p-capacity and the k-Hessian norm; then, we show they are equivalent to the
above-mentioned capacity given by Dr. Trudinger and Dr. Wang. This argu-

ment is a bridge connecting the k-Hessian capacity and the k-Hessian norm.

e Chapter 3 induces a geometric form of Theorem 1.1.1 (i)-(ii). It expands the
Moser-Tridinger inequality in ®§(Q2) given by Dr. Wang with a better constant,
and estiinates an isocapacitary inequalities for the k-Hessian operators — see

also Mazya [25, (8.8)-(8.9)] for the case k = 1.




In Chapter 4, a distinct way from the proof of the capacitary weak and strong .
type estimates for the Wienner capacity 2-cap(-, ) is established for the k-

Hessian capacitary weak and strong type inequalities.

Chapter 5 considers the inverse process in Chapter 3. Theorem 5.1.1 (i)-(i)
with p being the n-dimensional Lebesgue measure shows that Theorem 3.1.1
(i)-(ii) implies Theorem 1.1.1 (i)-(ii) under 2 being an origin-centered ball and

n(k+1
k+1_<_q$—§;ﬁl.

Chapter 6 discovers a k-Hessian capacitary analogue of the limiting weak type
estimate of P. Janakiraman for the Hardy-Littlewood maximal function of an

LY(R™)-function (cf. [18, 19]).

In Chapter 7, we study the L7 L2(R.*") extension from the fractional dissipative
equation. Such an investigation is based on the relation between the k-Hessian
operators and the fractional Laplace operators (cf. F. Ferrari’s work [16]), but
also the extension of the fractional Laplace operators to the upper half space

RI™ = [0,00) x R" (see [8]).



Chapter 2

Four alternatives to cap;(-,?)

The aim of this chapter is to define four new types of the k-Hessian capacity with

1 <k < %, and then to establish their relations with capy(-, ).

Definition 2.0.1. Suppose 1 < k < 7 and 1g stands for the characteristic function of E C

Q. First, for a compact K C Q, let

capy1 (I, ) = sup {fK F[u]dr: ve ®EQ)NC*HQ), -1 <u< O} ;

capy s (I, Q) = inf { fo Filu) da : u € DEQ)NCHQ), u < 1k}

capis(K,Q) = inf {— fouFluldz : u € BEQ) NC(Q), u < —1x}; .
capy4 (K, Q) = sup {—— S uFuldr: uwe Q) NC*Q), -1 <u< O} .
Second, for an open set O C Q and j =1,2,3,4 set
capy (0, Q) = sup {capy ;(K,Q) : compact K C O}. (2.2)
Third, for o general set E C Q and j =1,2,3,4 put
capr;(E,Q) = inf {capy ;(K,Q) : open O with E C O C Q}. (2.3)

7



2. Let Q be the Euclidean ball B, of radius r

2

Lemma 2.0.1. Suppose 1 < k <

centered at the origin. If K is a compact subset of 2, then

Jre Fu[Ri(K, Q)| dz, for j=1;
capy;(K,§2) = (2.4)

S (—Ri(K, Q) Fy[Re (K, Q)| dz, for j =4,

where

Ri(K,Q)(z) = limsup (sup {u(y) cu e ®FQ), u< —IK}> (2.5)

y—

is the reqularised relative extremal function associated with K C ().

|
Proof. As showed in [23], the function z — Ry (K, Q)(x) is upper semicontinuous, is |
\

of C?*(Q), and is the viscosity solution of the following Dirichlet problem:

Filu] =0, in Q\K; |

u=—1, on 0K (2.6)

u =0, on ON.

Morcover,

cap(K, Q) = /[ F{R () de. 2.7)

Note that Ry(K,€) is in ®5(Q) N C%(Q) c ®*(Q). So, from Definition 2.0.1 it follows
that

capen (K, Q) = /K FuRe(K, Q)] da. (2.8)

To see the desired formula for j = 4, let u € ®§(22) N C*(Q). Then, for any ¢ there

exists a function v € ®(Q) N C%(Q) satisfying v = (1 + €)u, such that

(14 e)kﬂcapkA(K, Q)



= (1 + ¢)F+! sup{/}}(—u)Fk[u] dr: ued)NCHQ), —-1<u< O}

= sup {./K(—v)Fk[v] dr: vedEQ)NCHQ), —1-e<v< 0} .
By the definition of Ri(K, ), Re(K,Q) > —1 — € in K; then, we have
(1 4 €)=t /K(—Rk(K,Q))Fk[Rk(K, Q)] dz < capra(K, Q).
Letting € — 0, we obtain

./K(—Rk(K, ) F[Ru( K, )] dz < capealK, Q).

To reach the reversed one of the last inequality, let {O;} be a decreasing open set with

smooth boundary in €2 and provide
0;nCOEQ & UX O,=K.
Then, using the regularity of 30;, we define

u; = Ri(0;,92) € C(Q).

According to [28, Lemma 2.1], we have the following monotonicity: if u,v € ®*(Q) N

C2(§_2); w>v in Q, u=v on O, then
F[ 1~</F.f d 2.9
/Q L[u] do < A w[v] d, (2.9)
whence by K C {u; < u} C Q getting

Ju| de < . . r < . ' L] AT,
./1(Fk[u] der < Fk[u]dr_./QFk[u} dIS/QFA[Uzl da

{u; <u}



10
Since Ri(K,Q) < —1 < u in K, letting ¢ — oo in the last inequality yields that
/ (—w)Filu] < / (= Ry (K, Q) Fu[Ri(K, Q)] da (2.10)
¢ K

holds for any u € ®&(Q) N C?(Q2) with —1 <u < 0. As a consequence, we get
/ (= Re(K, ) F[Ry(K, Q)] du > capya(K, ),

thereby completing the argument. |

Theorem 2.0.1. Suppose 1 < k < 2. Let Q be the Euclidean ball B, of radius r

centered at the origin. If E C (1, then
capp(E,Q) = capy ;(E, ), Vj=1,234. (2.11)

Proof. By Definition 2.0.1, it is enough to prove that if ' = K is a compact subset

of Q then
cape (K, Q) < capy2 (I, Q) < capr3(K,Q) < capea(K, Q) < capy.,1 (I, Q).
To do so, note first that the inequalities

cap (K, Q) < capi (K, €),

capr2 (K, ) < capy 3(K, ),

just follow from Definition 2.0.1. Next, an application of Lemma 2.0.1 yields

capyr (K, Q) = capu(K, Q) :/K Fu[Ru(K, Q)] da :/QF,C[R,C(K, Q)] da.
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Thus, from the definition of Ri(K,Q) and the monotonicity described in the proof
of Lemma 2.0.1, it follows that, for any u € ®5(€) N C?(Q) satisfying u|r < —1 and
u < 0, one has

/Q Fu[Ru(K, )] dz < /S2 Fulu] do.

Minimizing the right-hand side of the last inequality we get
capr1 (K, Q) = /Q Fi[Ri(K, Q)| dr < capy2(I, Q).
Finally, by the definitions of Ry (K, Q) and capy (K, §2), we achieve

caprs(K,9) < /ﬂ (= Ru(K, Q) Fu[Ru(K, Q)] dz

= [ (~Ru(K, Q) FulRu(K, Q)] do.
Therefore,
caprs(K,Q) < capra(K, Q).
O

Corollary 2.0.2. Let Q2 be the Fuclidean ball B, of radius r centered at the origin.
If E C R, then

capy (E, Q) = inf {/ﬂ |Dul®dz : we WH(Q), u> 15} =: 2-cap(E,Q?), (2.12)

where Du is the gradient of u and W12(Q) stands for the Sobolev space of all functions

whose distributional derivatives are in L*(Q).

Proof. Thanks to the well-known metric properties of the Wiener capacity 2-cap(-, 2)
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(cf. [24, Chapter 2]), we only need to check that
capi(E, Q) = 2-cap(FE, ), Vcompact FE C L.

Since Fi[u] = Auw, for any u € ®5(Q) N C*(Q) with u < —1p, integration-by-part

implies
— Tr = — = 2 = l —_ 2 xT.
/(-2( w) Fy[u] dz /Q( u)Audz /Q | Dul* dz: /Q |D(—u)|® dx
Considering the unique solution R(FE, ) of the Dirichlet problem:

Filu]l = Au=0, inQ\FE,

—u =1, on OF;

u =0, on 05},

we get
cap1 5(E, ) = /Q(—R(E, Q) Fu[R(E, Q)] de = /Q \D(—R(E, Q)2 de = 2-cap(E, Q),

whence reaching the conclusion via Theorem 2.0.1. O



Chapter 3

Isocapacitary inequalities

The isocapacitary inequalities for the k-Hessian operators, Theorem 3.1.1 (i)-(ii), will
be verified in §3.2 and §3.3 by using Theorem 1.1.1 (i)-(ii), Lemma 2.0.1, and Theorem

2.0.1. This process indicates that Theorem 1.1.1 (i)-(ii) implies Theorem 3.1.1 (i)-(ii).

3.1 Statement of Theorem 3.1.1

Theorem 3.1.1. Let ECQ and 1 <k < 3.

i) If1<k<fandl <g< ",E]:;i) then there exists a constant c(n, k,q,|2]) > 0

depending only on n, k,q, and |Q|, such that
B < cln.k,q. 12 capu(B, ), (3.1)

where |E| is the volume of F.

In particular, when q¢ = %, there exists a constant c(n, k) > 0 depending
only on n,k, such that
\E n < e(n,k)capy(E, Q). (3.2)

13
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ii) Ifk =2, nis even, and 1 < g < 0o, there is a positive constant c(n, ¢, diam (2
2

depending only on n, q, and diam(§2) such that
]E|kqLl < ¢(n, k;q, diam(92))capi(E, ). (3.3)
Moreover, for k = %, there is a constant c(n) > 0 depending only on n such that

2l <c¢(n)exp | — “ 5 (3.4)

it (capk(E, Q))m

holds for a constant c(n) only depending onn, where) < a < ag =n <“’—k’k( not )) "

k-1

1<B<B=1+ %, wy, = the surface area of the unit sphere in R

3.2 Proof of Theorem 3.1.1 (i)

Step (i);. We start with proving that if £ C B, and 1 < k < 3, then there is a

constant ¢(n, k, q,|Q|) > 0 depending only on n, k, ¢, and ||, such that
k1
B < c(n. k,q,|00) (capi(E, By)). (3.5)

Without lose of generality, we may assume that E is a compact set in B,. Now, by

Theorem 1.1.1 (i), we have that if 1 < ¢ < k* then
Jliagsy < ctnk, g, llullaggs,y, Vi € BE(B,),

where ¢(n, k,q,7) > 0 is a constant depending only on n, k,q,r.



Since Ry (E, B,) € ®§(B,), from the definition of | - 445, it follows that

1

1R (B, Bl os,y < c(n, K, q,7) (/ ( - Ry(E, BT))Fk[Rk(E, B.)] d;r) 1

7‘

In other words, Theorem 2.0.1 is employed to get
o
| BB, B sty < e, a,0) (cape( B, ) )7
Thus, by the definition of Ry(F, B,), we achieve

k41
k41 1

B < ([ IR(E, Bl do)

-+

A+1

(/ |Rk(E,B,,)]‘1d.7:> "
JB,
| Ri(E, Bl s,

VAN

IA

g (C(nak7(b T)>k+lcapk(Ea Br)

Step (i)2. Next, we verify that if E C € and 1 < k < 3, then there is a constant

c(n, k,q,|9|) > 0 depending only on n, k, ¢, and ||, such that
|E|F < e(n, k, g, [92])cape(E, Q). (3.6)

Without lose of generality, we may assume that F is a compact subset of {2 containing
the origin. Then there exists a ball B, centered at the origin with radius diam(2)
such that Q C B,.

Since 1 < k < %, by Step (i), and [23, Lemma 4.1(ii)], we obtain

BT < o(n, k, q,7)cap(E, B,) < c(n, k, ¢, |9)capi(E, ),
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as desired.

n(k+1)
n—2k °*

Step (i)3. Particularly, for ¢ = we make the following analysis. Suppose E is
a compact set contained in B, - a ball centered at the origin with radius r > 0. We
claim that if 1 < & < §, then there is a constant c(n, k) > 0 depending only on n and
k, such that

n—

|E|TM < ¢(n, k)cap,(E,R"™). (3.7)

In fact, according to Dai-Bao’s paper [15], there exists a unique viscosity solution to
the Dirichlet problem stated in the proof of Lemma 2.0.1. Such a solution guarantees

that there exists a unique Ry(E,R") satisfying
Ry (E,R™) = Tlil& R.(E, B,).
Now, by the previous Step (i);, we have that if ¢ = &* then

n—2k

B

< c(n, k,r)cape(E, B;),

hence, applying the best constant in Theorem 1.1.1 (i), we can reach the above claim
thirough letting » — oo in the above estimate.

Now, using the sanie argument for Step ()2, we get

n—2k

IE| n

< C(Tl, k)capk(Ea Rn) S C(TL, k')C(ka(E, Q)

Step (i);. Following the above argument and applying [23, Lemma 4.1(ii)], Theorem

1.1.1 (ii) and Theorem 2.0.1 we can get that

|E|% < ¢(n, k, ¢, diam(Q))cap(E, 2)
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holds for k = 5 and 1 < ¢ < oo.

3.3 Proof of theorem 3.1.1 (ii)

Step (it),. Partially motivated by [1, 14, 36], we begin with a slight improvement of
the Moser-Trudinger inequality stated in Theorem 1.1.1 (ii): if £ = 7 then there is a

constant ¢(n) > 0 depending only on n, such that

sup o /Q exp (a<.——|y|—>ﬁ) dz < ¢(n) (diam(Q))n, (3.8)

O<lelr (g ||U||<1>g(n)

where «, § are the constants determined in Theorem 1.1.1 (ii).

Without loss of generality, we may assume that €2 contains the origin. Then there
exists a ball B, centered at the origin with radius diamn(§2), such that Q C B,.
Following the argument for [27, Theorem 1.2|, we have that for any radial function

uw = u(s) in ®F(B,) there exists a ball B, ¢ R2*+! with radius # = r 72 and a radial

function v(s) = u(s= ) in ®k(B;), such that

/exp a(-ﬂ—)ﬁ dr <
Ja ||“‘”<I>5(B,-)

TN
=2
i+
[ \]
N
TN
e | &
=L
N
Y
(@]
>
o)
TN
Sl 2

vl )
dz
( I Dvll 4135,

A
20
3
o
>
A
o
3
N
~3
w2
+
IA
)
~~
3
S’
-~
3

where

Thus, by [27, Lemma 3.2], we achieve

, o
sup {/ﬂ exp (a(_L)‘ ) du: u € BE(Q) & 0 < JJullgrqy < oo}

||’U'||<1>{;'(Q)
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< sup {/Q exp (a(—]L)B) dr: ue ®fQ)is radial}

||U”q>g(9)
£ e(m) (diam(ﬂ))n,

as desired.
Step (ii);. We use the above step to check the remaining part of Theorem 3.1.1 (ii).

Since k = %, by Lemma 2.0.1 and Theorem 2.0.1, we have

(0

|E| exp ((capk(E, B'r)) ;;%)

(87
|E| exp ((Capk,.'i(Ea Br)) +1)

sup{ /Eexp (a(ﬁ)ﬁ) dr: u € <I>’(§(Br)}

||u||q>g(3,)
< ¢(n) (diam(BT))

IA

n
o)

ie.,
a a

< < In (c(n)| B~ (diam(£2))").
(capk(E, Q)) wh (capk(E, Br)) wh ( ( )

Now, a simple calculation gives the desired inequality.



Chapter 4

Capacitary weak and strong type

estimates for ®f(Q)

In a way different from proving the capacitary weak and strong type estimates for the
Wienner capacity 2-cap(-, 1), we establish the following k-Hessian capacitary weak

and strong type inequalities.

Theorem 4.0.1. Suppose that §) is an origin-centered Euclidean ball. If u € ®(2)N

C*(Q) and 1 < k < %, then one has:

(i) the capacitary weak type inequality

capk({a: €Q: |u(z)| > t},Q) < t—(k+1)”u||§j&‘(1m, vt > 0; (4.1)

(ii) the capacitary strong type inequality

k1
(I)S(Q)’ (42)

/Oo t""capk({a: €Q: |u(x)] > t},Q) dt < e(n,k)|lu
Jo

where ¢(n, k) > 0 is a constant depending only on n, k.

19
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Proof. (i) For t > 0, let v = ¢t~'u. By Theorem 2.0.1, we obtain

capk({:c € Q:lu(x)] > 1})
:&W{A@”pnnuum femgnmﬁxm-4<f<@

= Sz (=R({[v] 2 1}, Q) F[R({|v] = 1}, 2)] dz

< [ (=Rl = 1}, )EIR({o] 2 1}, D) de
< [(~0RR({0] 2 1}, 9) da
< /Q(—U)Fk[’l)] dx,

thereby getting
capy, ({:L € Q: |u(z)] > t}, Q) < ¢~ (kHD) /Q(—U)Fk[u] dx.

(ii) For t > 0, let M, = {x € Q : |u(z)| > t}. Without loss of generality, we may

assume [[uflgr(q) < 0o, and then define a normed set function (cf. [9])

Je(— u) Fyfu] do
lullgrgy,

HE) = ¢(E,Q) = VE C Q.

Note that, for any two sets £y, Es, s.t. E1NEy = (), then ¢(EyUEy) = ¢(Ey) +¢(E2).
Applying [21, Theorem 2.2 & Corollary 2.3], we can find a non-negative measure
defined on € and a positive constant ¢, depending only on n such that ¢(F) <
Y(E), VE CQand ¢(Q) < ¢,.

Consequently, for a given constant a > 1, one has

/0°° (b(j\’]{\]\’jat)(_f: < /oo Y(MN\M,:) —_/ / d(M,)
‘ / _/ _dé/f M) (ln(L)/O dy (M)
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= ¢Y(My)lna <¢¥(Q)Ina <c¢,Ina,

hence,

k+1 dt ktl
ory 7 < Conalulihig

o0
/0 HUlML\MM

Now, if

then @ € ®F (M), @tlyy,, < —1, and hence

@ MJIM = / (—ﬂ)Fk[ﬁ]dx:k“l/ i, FP [D*) dx
0 Jat

=0 /M,\Mm ((a— 1)t ) ((a—— 1)t ) F {D (a — l)t} de
: U u
= /Mt\MM <— (a— l)t) i [(a — 1)4 de

— _ 1 *k*lt—k—l _ Fﬂ ,
(a—1) / poan, (L]

where

F/[A] = 32 FilAl;

Ba;;

D2f = A = {ai]-}.
Using the definition of capy 3(-, 2), we obtain

© dt dt
[Tt cama(Ma MY T < [T e g,

/Ooo (a — 1)_(“1)</M\Ma.(_u)Fk[u] d:L') %

< cp(lna)(a — 1)~+D ||UH§,ILIQ)

IA

In particular, if A = at, then a combination of M; C £, Theorem 2.0.1 and Theoren



4.0.1 (ii) implies

/ /\kcapk<{'1: € Q:|ul > /\},Q) dA
Jo

/ (at)kcapk,B(A/jat: M) d(at)
0

" (I a) (@ = )7l

22



Chapter 5

Analytic vs geometric trace

inequalities

Theorem 5.1.1 below focuses on the k-Hessian trace estimates for a nonnegative Ran-

don measure p on 2. This can induce an opposite process of Chapter 3.

5.1 Statement of Theorem 5.1.1

Theorem 5.1.1. Given an origin-centered Euclidean ball Q CR", 1 < k< %, and a

nonnegative Randon measure p on Q, let
7(1, 2, t) = inf {capk(K,Q) : compact K C Q) with p(K) > t}, Vi 0.

be the k-Hessian capacitary minimizing function with respect to p.

(i) If1 <k <2, then

sup Nullze@ € BE NCHY), 0< [[ullgsy <o0p <00  (5.1)
llulleg @ ‘

23
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holds if and only if

ht1
supbo;gﬂ‘—qﬂﬂ<oo, for k+1<q < oo

. 9
e o\ for 1<g<k+1
0 (1, Q,t) t 0, q )

(i) If k=14, then
sup {[ullg 0,0+ u € BEDNCHQ), 0 < [lulaggey < 00} < 0
holds if and only if

o
sup texp

— | <%,
>0 (T(,U/, Q, t)>k_+1

8
where [[ulLyu = Jop(u)dp; p(u) = exp (a(—JL) ); 0 <a<a=

”u”q)g(n)

k ko1

2
n <w_v( not )) TL1<B< By = 1+%; wy, = the surface area of the unit sphere in R,

5.2 Proof of Theorem 5.1.1 (i)

In what follows, we always let 1 < k < %; u € ®§(Q) NC*HQ); M, = {z € Q:
lu(z)| >t} V t>0.
Step (7);. For k+1 < g < oo, let

k1
t 4

Ci=sup——— < 00,
! t>10) T(:U'a Qat)

Then
< COfft (Capk(f\’, Q)>m, Yeompact K C €.

=

()
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An application of Theorem 4.0.1 (i) yields that for any u € ®§(Q) N C*(Q),
/ ' dy = / L(My) dNY
0 0 BN

CFT / - <capk(]\/[)‘, Q)> SRPIY
J0

4 ! oo
< gk + V7O ulsty) [ capu(Ma @) ax

IA

IN

~1 T q
qlk +1)7°C) c(n, k)““‘”cp(‘)f(g)'
This gives

Cy = sup {Wﬂ € PEOQ) N CHQ) with 0 < [wllory < oo} < 0.
]|k (52

Conversely, assume Cy < co. An application of the Holder inequality with ¢" = q—‘j—l

implies

1
q

tu(M;) < /Ql'uldu(f\/ff.) < el 2y (M) 7 < Collull ey (1(M2)) 7,

and thus

1
sup t(M(Mt)) T < Collullggqy-

Now, taking t = 1; u € ®E(Q) N C?*(Q); |u| > 1 for any compact K C ), we obtain
i oy
(1(K))* < Collullggey < Ca(capi(K, Q)57

whence reaching C; < C5+,



Step (i)g. For 1 < g <k +1, let

oo [, EtL ~1\ R,
[k,q(,lb) Efo <t q (T(,U,,Q,t)) ) t— dt;
Bl
o
(M5 (u)) = p(Myy 1 (u))
S = 5 L)
(capk(ll’lzj(u)))

Suppose g 4(1) < oo, then the elementary inequality

a’+b°<(a+b)° Va,b>0&c>1

implies
—_ o T g . kith , ) _k_-l»(li—_q
Skg(mw) = 3 ((Mys(u)) — p(Mr () 5777 (capi(Mas (u), )
j=—00
S R4 ~E ¥
<> (M (u)) = (Mo (1)) ¥ (7 (1, 0, (M) 57
j=—o0
e k41 C4+1 _q
< n(May ()T — (Mases () 555 (7, Q, (M)
j=—c0
< C(n,k,q)/ (0.0, )~ ds
J

< c(n, k@)l g().

Therefore, by the Hélder incquality and Theorem 4.0.1, we have

lellfaa,y = [ luldn= [~ tdu(Mi(w))
<3 (Mo (w)) = o Mo (1)) 277
= ) .
< (Sk.q(ﬂwu))%q (Z Qj(kH)CfLPk(A’[zﬂuu(U)))
k+l—q o k+1 k—i—l
< (Skqp,u)) *1 </0 capy(My(u), Q) dA )
kt1—
< eln by @) (Seqlp w) 5 ullgy g
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k+1—q

< el by 0) (g (0) F5° Jull .

hence getting
k+1-g

C8 < c(n k,q)(Tng(w) * -

Conversely, suppose Cy < co. Then

sup (M) <

L) = C‘ZH'U'H@G(Q)
t>0

holds for any u € ®F(Q2) N C?(Q2). According to the definition of 7(u,Q,t), for each
integer j, there exist a compact set K; C € and a function u; € ®E(Q) N C2(Q),
such that capp(I€;, Q) < 27(u, 2, 27), p(K;) > 27, u; < —1k,, and 2”1Huj||';,g(lﬂ) <
capi (K, Q). 1
Now, for integers ¢, m with 7 < m let u;;m, = sup;<;<,, vu; and v; = <Tjj2_1)) m.

Then u;,, is a function in @'g(ﬂ) N C%(Q) — this follows from an induction and the

easily-checked fact below

U + up + |U1 - U2|
2

max{u, us} = € Q)N C*Q).

Cousequently,

m m
155y < el k) 2 s 5y < e, K) D2 48 (. 9,27),

j=i j=i

Observe that for i < 7 < m, one has

1LL"LCE) < Yis V& € }(5.



Thercfore,

2 < u(K;) < p (Myj (11,71,,”)) :

This in turn implies

[[224,m ”Zpg ()

Consequently,

Z CQ_qc(na k: q) /Q Iuj,nllq dli

v

. Z (mf{t

m

> G Y
j=i

v

> Cylcn,k,q)
> Cyc(n, k. q)
> Cy%(n, k,q)
Lig(p) < lim

i—— OO‘!TL—)OO

Cy /O = ( nf{t: p(Myuim)) < s})qu

.\ .
A/[t uL m)) S 21}) 2]

Y2
=t Y g ”ui‘mllig(gz)

k+1 . k+1
( i (’Y]) T(/LaQ72])>
s 26 (r(, 0,2))
o T .
(Zm 2k+1 3( (;L,Q,Qj))m‘—_q> k41

m o\
ZQHI q( I, 0 2])) ktl—gq ||Ui,m”3,(’§(ﬂ).

U+D(k+1)

ZQ Fa (7, €, 29)) T < oo

||“'i,m ||1‘6(Q)

28



5.3 Proof of Theorem 5.1.1 (ii

29

In the sequel, let k& = 2, u € ®E(Q)NCAH(Q), and M,(u) = {z € Q: |u(z)] >t} Vt > 0.

2

For convenience, rewrite the previous quantity C, as

e
Cr(n, k, gy 1, Q) 1= sup ——————.
00 ) = 0 )
If
Cs(n, k,a, 8, 1, Q) := suptexp —LI < 00,
>0 ( (1,9 t)) pi
then for § > k + 1,
kt1
k+1 B ]
t T Gts ol
Cl(n,k‘,(j,/_l,,ﬂ) = Sup —/—~—_~5 = Ssup < )<4_(‘1‘—5—)
>0 T(, ,8) >0 af (T(M,Q,t))m
k,_<§1
q * 8 af:
< op sup | t7 exp <——_ﬁ_>
t>0 (T(/L, Q, t)) E+1
k+1
k41 G
g\’ a
- () e ()
(7,2, 1))
q kfg—l k+1
< (a_qg> (Colm b, ) 7

Also, applying the Holder inequality for ¢ > k + 1, we get

frow () ) = S5 )

||““<I>§(n) ||U||<1>k Q)

SN A (e W A o

||'“'||<pg(9)

<Bf1 ”UHq)k iz% a i

S Sl_'_SQa

)ﬂi du
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where

Next, we control S; and S, from above. As in the previous section, we have that for

any u € ®(Q) N C*N) and integer m > k + 1,

m

/S'l|u|m dp < (Crln, kym, ) eln, B) |l

This, along with the previously-verified inequality

A1

i\ T k1
ik < (L) (k) T viz i
gives
1-£ L &
Sp< Y = ( ) ((Cl(rz k. q, ,u,Q)) "“c(n,k‘)) < 00.
1<L:r—1 ¢
Mecanwhile, Theorem 4.0.1 is used to get
Sy = Z || ull by /Q lul? d
iz%,‘
o ;

= Slullil [ n) et

i

Bi

= Yy o /00 (capi (M, ) p(My) At
=T )| e

i>ktl 5(0) ((‘apk(f\[g,Q))

o' 1o capy (M, Q ||“||ﬁz (M) :

S Z —|/ tﬁi_k 1 B (ltBl

> i Jo ”““@“(Q (C(ka(]\[t,Q))Hl

a/’ 0o 2 qf (M

< / Z“T wA) = | cape(M, )llullzig, At

(C(ka(l\'[,,, Q)) M



IA

IA

aB [ o capy(My, )
=i u(M,) exp ( 7;‘3—1) (WI’_ dik+1
(capk(Mt, Q)) * ()

aﬁ(k+1)—103(n,k,a,ﬁ,u,9)||u||;§’g;;> i (capi(M,, Q)) dt*+!

aB(k + 1) Yc(n, k)Ca(n, k, o, B, 11, ).

Now, putting the estimates for S; and S; together, we obtain

Ch = sup{||u||1,‘1p(n‘,‘) . u e OE(Q) N CHQ) with lulleno) > O} < 00.

Conversely, if C4 < 0o, then for any u € ®§(2) NC?(Q) with llull sy > 0, one always

has

/Qexp (a(—ﬂ)ﬂ) % O

||U||q>g(9)

Note that for any compact set K C €, there exists a function R(K, ), such that

R(K,Q) € ®5() NC*(Q) and |R(K,Q)| > 1k.

So, we get
e! «
e (capk(K Q))r% < /Kexp (capk(K Q))Fi"—l %
|[R(K, Q)| *
< exp a( ) du
/Q ( | R(K, ) |l2x(c)
S C4,

hence Cs3(n, k, o, 5, 1, ) < Cj.
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Remark 5.3.1. .

()

Upon adapting the relatively natural capacity of a compact I C {2 for k-Hessian

operators below (cf. §2)
capra(, Q) = inf {||u||g§gm Cwe BEQ) N CHQ), ulx < —1, u < o},

we can see that Theorem 5.1.1 without assuming that 2 is an origin-centerd

Euclidean ball, still hold with capi(+, €2) being replaced by capg 3(+, ).

Here, it is worth pointing out that the case k = 1 of Theorem 5.1.1 can be read
off from the case p = 2 of Mazya’s [25, Theorem 8.5 & Remark 8.7] (related to
the Nirenberg-Sobolev inequality [10, Lemma VI1.3.1]), and the case ¢ = k+ 1 of
Theorem 5.1.1 leads to a kind of Cheeger’s inequality - for k = 1 see also [11],

[10, Theorem VI.1.2], and [34].



Chapter 6

Limiting weak type estimate for
k-Hessian capacitary maximal

function

This chapter studies the limiting weak type estimate for the k-Hessian capacitary

maximal function from a regular case.

6.1 Statement of Theorem 6.1.1

For an L] -integrable function f on R™, n > 1, let M f(z) denote the Hardy-

Littlewood maximal function of f at x € R™:

M f(z) = sup £<IB) /B |f ()l dy,

where the supremum is taken over all Euclidean balls B containing x and £(B) stands

for the n-dimensional Lebesgue measure of B. Among several results of [18, 19], P.

33
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Janakiraman obtained the following fundamental limit:

lim AL ({r € R Mf() > A} = Il = [ |f@ldy, VfeL'RY.

R7

To study the limiting weak type estimate for a k-Hessian capacity, recall that a set

function cap(-) on R™ is said to be a capacity (cf. [2, 3]) provided

cap(B) = 0;
0 <cap(A) < o0, VACRY

cap(A) < cap(B), VA C B CR%

cap(U2 A) < 32 cap(A;), VA, CR™

For a given capacity cap(-), let

1
Mcf(z) = sup

zeB cap(B3) /B |f (y)|dy

be the capacitary maximal function of an L} -integrable function f at x for which
the supremum ranges over all Euclidean balls B containing x; see also [22].
In order to establish a capacitary analogue of the previous limit formula for f €

L*(R™), we need the following natural assumptions:

e Assumption 1: the capacity cap(B(ac, T)) of the ball B(z,r) centered at x with
radius 7 is a function depending on r only, and the capacity cap({m}) of the set

{x} of a single point = € R" equals 0.
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e Assumption 2: there are two nonnegative functions ¢ and % on (0, co) such that

#(t)cap(E) < cap(tE) < ¢(t)cap(E), Vt>0 & tE={tzc€R": z € E CR"};
lim;_, #(t) = 0 = lim,09(t) & limu_o ¢(t)/P(t) = 7 € (0, 00).
Here, it is worth mentioning that the so-called p-capacity satisfies all the assumptions;
see also [35].

Theorem 6.1.1. Under Assumption (1) and (2), one has
lim Meap({z € R" : Mof(z) > A}) = [Iflh, Vf € L'(R™).
Hereafter, X =Y means Y < X SY, where the second form means there exists a

positive constant ¢, independent of main parameters, such that X <cY .

For a special case, when the capacity takes the k-Hessian capacity, we can obtain the

following Corollary 6.1.2.

Corollary 6.1.2. Let f be a L}, -integrable function on R™, n > 2. Then, for 1 <

=B,
}\% /\capk({x € R": Mcf(z) > /\},Rn) ~ || fll,
where
Mof(a) = sup ————— [ |f(s)ld
) =sup —————— |
" ceb capy(B, R7) Jg Y

Proof. Applying the computation in [23, (4.16)-(4.17)], when 1 < k < %, k-Hessian
capacity satisfies Assumption 1. It is necessary to show the case of Assumption 2 for

k-Hessian capacity.
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Claim: Let E be any bounded set in R™. Then,

capp(tE,R™) = " **cap,.(E,R™), Vit >0,

where tE = {tx : x € E}.
Proof of the claim: Without loss generality, let £ be a compact set in R". Consider

now the viscosity solution R(E,R")(z) for the Dirichlet problem,

Filu] =0, in R™\E;
u=—1, on OF;

u =0, on r — oo.

then by the uniqueness of the viscosity solution, for any ¢ > 0, R(E, R™)(tx) satisfies

FR(E,R")(tx)] =0, in R"\(tE);

R(E,R")(tz) = -1, on J(tE);

R(E,R™)(tz) = 0, on T — co.

Therefore, by the definition of k-Hessian capacity and Labutin’s work [23].

cap(1E,R") = /7, (R(ERY)(t)]

1
4k

_ A/E) (DRER")( ))ktnfkd%k—l(a(E»

Duv

= ZkC(lpk<E, Rn).
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6.2 Four Lemmas

To prove Theorem 6.1.1, we will always suppose that cap(-) is a capacity obeying
Assumptions 1-2 above, and we need four lemmas based on the following capacitary

maximal function Mcv of a finite nonnegative Borel measure v on R™:

v(B)
Moy(z) =sup ————, Vzx € R",
cv(z) 395) cap(B)

where the supremum is taken over all balls B C R™ containing .

Lemma 6.2.1. If &y is the delta measure at the origin, then
1
cap({ac € R": Mgdp(z) > /\}) =5

Proof. According to the defintion of the delta measure and Assumptions 1-2, we have

1

Medol@) = B )

V|z| # 0.
Now, if & obeys Mcdg(x) > A, then cap(B(z, |2])) < 1.

Note that if cap(B (0, 1)) equals i then one has the following property:

cap(B(z,|z|)) < 3, Vx| <

cap(B(z,|zl)) = 5, V£ =r1;

cap(B(z, |z])) > 3, V|z| >

Therefore,

{z e R": Mcdo(z) > A} = B(0,7r),



and conscquently,

cap({x e R": Mgbg(x) > /\}> = cap(B(O,r)) = -/1{

Lemma 6.2.2. If v is a finte nonnegative Borel measure on R™ with v(R™) =1,

. . 1
}1—% cap({:c eR": Mow(z) > /\}) =3

where t > 0, v (E) = v

o~

E), tE={%*: z€ E}, and E CR"

Proof. For two positive numbers € and 7, choose €; small relative to both € and 7, but

also let ¢ be small and the induced €, be such that

V,(B(O,q)) >1—¢ ¢ =3 e, }1_{% e =0, and € < 77cap<B(0,61)).

Now, if
B, = {:L‘E]R"\B(O,q) A< Meoy(x) < L };
cap( Bl lzi—c)
E.E,A = {J; € R*"\ B(0,¢): max {/\, 1 } < ]Wcut(m)},
cap B(z,[mf—el))
then

E{ UES\UB(0,6) = {z € R": Mcu(x) > A}

On the one hand, for such z € Eé‘)\ and V7 > 0, that

Vt<B($,‘f)> - 1

Moy ().
C(Lp(B(:L‘, || — et)) B cap(B(LC, 2] — ft)) < Mot




Additionally, since for any ry, ry satisfying 0 < r; <ry,
cap(B(x,m1)) < cap(B(x,73)),

(i.e. ca,p(B(w, 7)) is an increasing function with respect to 7), there exists 1 < |z| — €,

such that

UL(B(.’E,T)) Py (B(.’L‘,’I’))
cap(B(;r, || — q)) B ca,p(B(z,r))

and hence by the Assumption 1, for any x; € E§ ) there exists r; > 0, such that

S A’{C'l/t(w)’

A (B(zl-, ri))
cap(B(a:, r))

i <|zil —er & A<

By the Wiener covering lemma, there exists a disjoint collection of such balls B; =

B(x;,r;) and a constant o > 0, such that
U;B; C ES , C UsaB;,
Therefore, we get a constant ¥ > 0, which only depends on «, such that

v Bi €
cap(BLy) € 3 caploB) < v X cap(B) <4 3 WP < 7€

thanks to

BiNB(0,&) =0 & 1—u(B(0,e)) <e

On the other hand, if # € £ ,, then

1—¢ - u,(B(ﬂ:, lz| + et))
ca,p(B(:L‘, |z| 4+ Et)) B C(IP(B(% || + ft))
< Mci(z)
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1
cap(B(:Ir, x| — q))'

Since

) _ 1 =
lim; ¢ (Cap (B(zl,|z|+ft)) cap<B(z,lz|—ct)> > 0,
. 1 N 1 =
e (mp(B(EJIH“)) Cap(B(I"II)>) "

for n > 0, there exists 7" > 0 such that

€
|]\’ch((?§) — Mc(sol < n+
cap(B(0, |z]))
€
< n+
cap(B(O, 61))
< 2n, Vte (0,7).
Note that
Mcbo(x) — 2n < Meov, < Mcdo(x) + 2y, V€ Ef’/\.
Thus

{e € R": Mcbo(z) > A+2n} C E7, C {z € R": Mcdo(x) > A+ 2n}.
This in turn implies

(;ap({:v e R": Mgdo(z) > A+ 277}) < cap(EY )
< cap({x eR": Mcgbo(x) > A + 27]}).
Now, an application of Lemma 6.2.1 yields

1
A+ 2n

1
< cap({:c eR": Mcy(z) > AN (]R” \ B(O,el))) < + %



Letting £ — 0 and using Assumption 1, we get

. . 1
}gl& cap({m eR": Mow(z) > /\}) =1

g

Lemma 6.2.3. If v is a nonnegative Borel measure on R™, then Mgv(z) is upper

semzi-continuous.

Proof. According to the definition of Mgv(z), there exists a radius r corresponding

to Mcv(x) > A > 0, such that

v(Bl,r) _ |
cap(B(z,r))
For a slightly larger number s with A+ > s > r, we have

v(B(z,7))

cap(B(x, s)) > A

Then applying Asswmption 1, for any z satisfying |z — x| < 6,

Mev(z) > YBE3) o vB@r)

~ cap(B(z,8)) ~ cap(B(z, s)) > A

Thereby, the set {x € R™ : Mev(x) > A} is open, as desired. O

Lemma 6.2.4. If v is a finite nonnegative Borel measure on R", then there exists a

constant v > 0, such that
/\cap({a: eR": Mcu(xz) > A}) < yv(R™).

Proof. Following the argument for [5, Page 39, Theorem 5.6, we set E\ = {z € R":
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Mcv(z) > A}, and then select a v-measurable set E C F) with v(E) < co. Lemma
6.2.3 proves that E) is open. Therefore, for each z € E, there exists an z-related ball
B, such that

v(B:)

A
can(By)

A slight modification of the proof of [5, Page 39, Lemma 5.7] applied to the collection
of balls { B; } ze g, and Assumption (2) show that we can find a sub-collection of disjoint

balls {B;} and a constant v > 0, such that

cap(E) < fchap(B) < Z v(B;) < —V(R")

Note that F is an arbitrary subset of Fy. Thereby, we can take the supremum over
all such E and then get
cap(Ey) < }V(R").

6.3 Proof of Theorem 6.1.1

First of all, suppose that v is a finite nonnegative Borel measure on R™ with »(R") = 1.

According to the definition of the capacitary maximal function, we have

_ . w(B(z,r)) v(B(%: 1)
Mai)= Sruo ca.tp(B(:z: 7)) ?‘EIO) cap(tB(tt )

From Assumption 2, it follows that Mca() M) < Mgy(z) < M—‘;;’fTﬂ, and such that

{z eR": Mov(3) > A¢(t)} c {z ER": Mow(z) > ,\}

& {z cR™: Mcl/(§) > /\¢(t)}-



The above inclusions give that

g—%/\w(t)cap({x eR": Mov(z) > M(t)})
< Acap({ta: eR": Mcv(z) > W(t)})
< Acap({z € R": Mcw(x) > A})
< Acap({z € R": Mcv(z/t) > Ag(t)})
= Aeap({te € R": Mev(z) > A(1)})

p(t n
< %/\Mt)cap({x eR": Mcgv(z) > /\d)(t)}).

These estimates and Lemma 6.2.2, plus applying Assumption 2 and letting £ — 0, in

turns imply

! < hl}l i(I)lf)\CCLp({.’E eR": Mcv(x) > /\}) (6.1)
< limsup /\ca,p({a; € R": Meov(x) > /\}) <. (6.2)
A—=0

Next, let

h()) = /\ca,p({:n €R": Mcv > /\})

By Lemima 6.2.4 and the above estimate (6.1) for both the limit inferior and the limit

superior, there exists two constants A > 0 and Ay > 0, such that
A<hA) <y, VA€ (0, M)

. Z .
Moreover, for any given € > 0, choose a sequence {y; = [-}(1 —g)N } °, where N is a

natural number satisfying (1 —e)V < 1. Then, there exists an integer Ny > 1, such
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that yn, < Ag. Hence, for any n > m > Ny we have

V"(ym) - h(yn)|

|ymcap({$ eR": Mgv(r)> ym}) - yncap({:c e R*: Mcgv(z) > y,,,})l

IN

< Ay — yn|cap({1‘ eR": Mev(z) > ym})

+ ynlcap({;r eR": Mcgv(x) > zm}) — cap({x eR": Mcv(z) > yn})|

8 v A
< |ym - yﬂ|T +yn|r - y—_l
< A= [ZO=aMT + (- AL =M
= A A

< (1= (1= )N (= (1 = g)NO)

< 29N(n —m)e.

Counsequently, {h(y;)} is a Cauchy sequence, D = lim;_,, h(y;) exists. Note that for

any small A, there exists a large 7, such that

Yir1 S A <y

Therefore, from the triangle inequality, it follows that, if 7 is large enough, then

[h(A) = DI < |h(A) = h(y)| + |h(y:) — DI

g v A
<y = AL+ AL — S+ |h(y) = D
<y |y1:+ 5y inH (yi) — D]

A A
< 7(1_;)+(7_Af)+|h’(yi)_DI

Yi i
< (1= 24 (y = AT () = D)
< (29N +1)e.

This in turn implies that limy_ /\cap({::: e R* : Mcv(z) > /\}> exists, and conse-



quently,

—1 . N , n ., .
7 < ll_rf(l))\cap({x e R": Mcv(x) > /\}) <7

holds.
Finally, employing the given L'(R") function f with ||f||; > 0 to produce a finite

nonuegative measure v with ¥(R*) = 1 via

UE) = = [ W)y, YE R,

we obtain

lim )\cap({r e R": Mcf(z) > )\||f||1}) ~ 1,
A—=0

thereby getting
iim )\||f||1cap({x eR": Mcf(z) > )\]|f||1}) ~ || flh- (6.3)
—0

By setting A = AJ|f||; in the above estimate (6.3), we reach the desired result.



Chapter 7

L{LE(RIF™) extended to

L(pV q,p A q)(p)(REF)

In this chapter, we firstly introduce a relation between the k-Hessian operators and
the fractional Laplace operators, explaining why we concentrate on the fractional
dissipative equation [20]. Secondly, an L{LP(R}"™) extension is discovered from the

capacitary strong weak type estimate for L7 LP(R1™™).

7.1 Relationship between k-Hessian operators and
fractional Laplace operators

The fractional Laplacian (—A)* is a kind of classical operators gives the Laplace
operator when o = 1. These operators can be defined as the pseudo-differential

operators with symbol |£]** (cf. [20]),

(=A)"u(w) == FHIE* T () (€))(@), Vo € R™,

46



where 0 < o < 1, F denotes the Fourier transform, and ! its inverse:

Flg)(x) = (2m) ™"/ fpu =g (y) dy;

F N g)(x) == (2m) 7" fgn €7 Vg(y) dy.
It can also defined by the formula: (cf. [8])

where ¢(n, @) is a normalization constant only depending on n and a.
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More precisely, let R1" := R, x R™ be the upper half space of the 1 + n dimensional
P y + + p

Euclidean space R When consider the extension g : RY™™ — R satisfying the

equation:

div(t*D,g(t, x)) = 0;
g(0,2) = u(x),

the following equality

“A)u = —c(n,a) lim (%9,g(t, z
(—A)*u c(n,a)t_l)nokt Org(t, )

(7.1)

holds (see [8]), where a = 152 and c¢(n, &) is a constanut only depending on n and .

Thus, a parabolic case for the fractional Laplacian should be considered, namely, the

inhomogencous fractional dissipative equation [20],

Opu(t.z) + (—A)*u(t,z) = F(t,z), inRF™;

u(0,z) =0, in R™

(7.2)

The existence of the weak solution u(t,z) for the above inhomogeneous fractional
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dissipative equation (7.2), guaranteed by Duhamel’s principle, has the following form,
u(t, x) = So F(t, x), (7.3)

wlere
S, F(t,x) = /Ot e~ =R B (s x) ds,
for which
e =21y z) = I(fa)(a:) * v, ),
K9(x) = (2m) 72 [, erxv=thi™ gy,
and # represents the convolution operator. (see [20] for more details)
On the other hand, in 2011, F. Ferrari found an integrable equivalent between the

fractional Laplace operators and the k-Hessian operators [16], for any function u €

dF(R™), there exists @ such that

u ~ @ and HUHEZ(]R) . |(=A)alf+ de,
where 1 < kb < z and o = ﬁ

Therefore, analyzing the fractional dissipative operators is one way to reach the k-
Hessian operators.
Now, we consider the k-Hessian capacity, applying Theorem 2.0.1 and Ferrari’s work.

For 1<k« %, and a compact set K C R*, we have

capp(K,R") = sup {/ Filu] : u € d*RY), ~1<u< 0} ;
i

Y

= inf{—/ uFplu] - we @g(R"‘), u < —11\’}3

~ inf{/ (—A)*a[* dz,: @€ OERY), @ < —1,(}.
Rn
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Hence, the capacity for the fractional dissipative operators 9, + (—A)® should be
considered, namely, («, p, g)-capacity C;f:l)(K) (cf. {20]). For 1 < p,q < oo and a

compact subset & of Ry,

GO = inf (P 208 SP0R) 210}, (74
1
wherepAg := min{p, ¢}, for 1 < p, ¢ < oo, and ”F”L;'Lg(ueij" = (jR+ [fgn |F(t,x)|P dx] d#)q

Moreover, the definition of C;’C;) extends to any arbitrary set in a similar way to the
k-Hessian capacity, the equation (1.8) and (1.9). Then we have the following (o, p, ¢)-
capacitary strong type estimate for L{L?(RY™™), which is a mixed Lebesgue space of

all functions F on R with 1 E N g o miny < o0
gty

7.2 A capacitary strong type estimate for L{L2(R™)
and its induced extension

First of all, we have the following capacitary strong type estimate for the mixed

Lebesgue space.

Theorem 7.2.1. For any F € LILP(RA™), we have

> . [¢3 dA =
/0 NMCE) () S S IF 2 oy (7.5)

where Ey = {(t,r) € RI" : S, F(t,z) > A}

Proof. Without loss of generality, we may assume || F|

L;ng(Riﬁ-n) < 0.

We define a normed set function ¢ with respect to a function F € L{L2(RY™), such
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that for any set K = K, x K, C R,

) Ik gin
F —
||F| LGLI'(R1+71 ’

1
PN
where ”F|K||L?L?$(Rir+”) = (fm [fhl \F(t,m)|1’d.’1:] P dt) .
Note that, for any disjoint set A and B, ¢r(AU B) = ¢r(A) + ¢p(B). It is only
necessary to check that ¢p(A U B) 2 ¢r(A) + ¢r(B) in two cases, because of the
property of the norm || - ]|L$L§(R1++n).
Case 1: p < q, Using, % > 1, we get

P

1 q
b4
F gy = / / F(t,x)|Pdx| dt
|| |AUB” LYk R1+ ) ( (AUB), .(AuB)Il ( )l
2

= (/(AuB)t [/AI |F(t,z)|Pdz + /BI |F(t,:v)|”da:] ’ dt) '

=

3 1\ %
R (/ [/ |[F(t,z)|Pdx | + [/ |F(t, x)[Pdx ’ dt)
(AUB); L/ A, JB,
2 (/ / IF(t1 x)|”dl’] + / |F(t’ x)lpdl‘] » dt)
At - By Br
ay & . 2
< (LU reora’ ) o ([, reore]a)
’ z B B
= ||F|Al Z/‘;?AE(R}:—N) + ||F|B| ]Z/;{;J:I:(Rr—n).

Case 2: p > ¢. Similarly, we have

q

v
i PAq w = / / F(t,z)fPde| dt
| F|aub| LILE(RYT™) (AUB): [ (AUB)z it

/A, /AI |F(t,m)|”dm}% + /Bt /B, |F(t,$)|"d$]% dt

= [IFlall 751, aiim T 1E 117 i

LV




Applying [9, Page 187, Corollary 2.3}, there exists a measure ¢ on RY™, such that

o<y & d)(Rf’") < c¢(n),

where ¢(n) is a constaut only depending on n.

For E)\\E,), we obtain

d o dX al d\
/ qb(E/\\Ea)\)T S/O 'l/)(E,\\Ea/\)T :/ //\ dw(E.s)T
= Ooo [: %\édw(&) = —loga/ooo dy(E) = ¢ (Ey)loga

Therefore,

oo dX
LN ms Iy gy < ) log all FIZA L vy

Consider now the fractional dissipative equation:

8tu(t>l‘) + (—A)('Yu(t,fl:) = F(t, .‘L‘), V(f’ ’L) c R_l:-n;

u(0,z) =0, Vo € R™.

It has a weak solution u(t, z) = S, F(t,x). If

1, in Ea,\,

[L(fa l) = u((:fi)t\/\, in E,\\Ea,\,

0, in R\ E,,




then u(t, r) is a weak solution to the fractional dissipative equation

ot x) + (-A)*u(t,z) = F(t, z), V(t, z) € RY™;
’IL(O,:IZ) =0, Vz € R™

where

0, a.e. in E,y;

(a_vl)t, a.e. in Ex\Egy;

0, a.e. in R\ E).

Now, based on the definition of the («, p, ¢)-capacity, we obtain

/ /\P/\([C(a) / /\p/\qHF“i/‘;%ﬁ(EA)
1

-l muma\%llmm
loga PAq

< )i i F gz

Note that the following weak type estimate

PAq |
flLP R++")

NG (B S IIF]

automatically holds, for all A > 0 and any p,q > 1.

Next, using Theorem 7.2.1, we obtain the embedding from LILP(RY™™), a mixed-

Lebesgue space of all functions £ on RY™ with || F| g 1p gieny < 00, to LOI (R, 1),
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the Lorentz space of all functions u satisfying

oo n s/r R 1/s
ol iy = (/0 p({(t2) € R ¢ u(t,2)] > Al}) d/\> < o0,

where r, s € (0,00) and 4 is a nonnegative Borel measure on R}

Theorem 7.2.2. Let i be a non negative Borel measure on RY™. Then

||SaF”L(qu,p/\q)(u)(Rij") S HF“Lng(Rif") (7~7)
holds for all F € L{LE(RY™) if and only if
(LK) < (CE (KPP (7.8)

holds for all compact sets K C R,

Proof. The sufficient condition is a straightforward consequent of Theorem 7.2.1. For
the necessity, suppose || So £l Livapna S I1F 1l Lopz @i+ forall F e LILP (RY). Fix
a compact set K € RY™. By the definition of C{*, for any € > 0, there exists a

function F € L{L2(R*™), such that

pAq -
”F| LlLng(R‘l:fn) + € < Céf?([&)

Therefore,

(/*’-(K))p/\q S ”SaF”L(r‘s)(,L)(le") S ”FHIZg\ig(mw) S C,()ff,)(K)-
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