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Abstract

In this thesis an algorithm is developed for the inverse problem of bistatic scattering
from the ocean surface. Narrow beam bistatic high frequency (HF) radar data from the
ocean surface are simulated and the non-directional ocean wave spectrum is recovered.
The water depth is set to be arbitrary. Zero-mean Gaussian noise from external sources
is taken into account.

The bistatic HF radar cross sections are applied to the general-depth water case. The
second-order cross section of patch scattering is a two-dimensional Fredholm-type integral
equation of first kind. It contains a non-linear product of ocean wave directional spectrum
factors in its integrand. The energy inside the first-order cross section is derived to
normalize this integrand. The unknown ocean wave spectrum is represented by truncated
Fourier series. The integral equation is then converted to a matrix equation and a singular
value decomposition (SVD) method is invoked to pseudo-invert the kernel matrix. The
non-directional ocean wave spectrum is obtained from the Fourier coefficient aq.

The zero-mean Gaussian noise from external sources is added to simulate pulsed HF
radar clutter from the ocean surface. The power spectral densities of the clutter and noise
are obtained by means of a periodogram. The combination of power spectral densities of
clutter and noise makes the simulated bistatic radar data correspond more closely with
actual observations. The inverse algorithm is carried out with respect to radar data for
varying water depths, wind velocities, and radar operating frequencies. The results are

compared with the original ocean wave spectrum.
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Chapter 1

Introduction

1.1 General Introduction

The increasing interest and importance in offshore development, search and rescue, de-
fense, and scientific research require efficient and accurate measurements of the ocean
surface conditions. Some parameters, such as directional wave spectra and wind fields,
are critical for ocean investigation but not easily extracted using conventional oceano-
graphic instruments. However, radio techniques for remote sensing provide a good means
of meeting this challenge.

There are three main radio oceanographic techniques for the measurements of the
ocean surface. They are microwave radiometry, microwave radar, and high frequency
(HF) radar. Shearman(1] gives a good introduction to the remote sensing of the ocean
surface by radio techniques. Among them, HF ground wave radar is of interest to the
Ppresent thesis.

Operating in the HF electromagnetic wave band (3 MHz to 30 MHz), HF ground wave
radar has the potential for sensing ocean surface parameters to ranges exceeding 200 km
from the coastline. The transmitted radar signals, which are guided by a good conducting

medium like ocean water, travel along the earth’s curvature, reach far beyond the line-of-



sight horizon, and couple strongly with the ocean surface. The returning signals contain
a large amount of information on ocean currents, waves, and winds.

HF radar waves interact strongly with ocean waves because their wavelengths are of
the same order. The ocean waves in this wavelength range carry a large amount of wave
spectral energy. The velocity of the ocean waves generally cause Doppler shifts on the
incident radar carrier frequency. Typically, the resulting Doppler radar spectra are char-
acterized by two significant “first-order” peaks surrounded by a higher order continuum.
The procedure of extracting ocean wave information from the Doppler spectrum is re-
ferred to here as the inverse analysis, while the calculation of radar Doppler spectra from
a corresponding model of the directional ocean wave spectrum is denoted as the forward
analysis.

HF radar may be operated in monostatic or bistatic modes. A monostatic configura-
tion means the radar transmitter and receiver are in the same location, while in a bistatic
configuration the radar transmitter and receiver are located separately. Compared with
a monostatic configuration, a bistatic configuration possesses some advantages in prac-
tical utilization. For instance, it is possible to use one full monostatic radar system in
combination with a single separated receiver, rather than two separated monostatic radar
systems, to obtain the wave directional information.

In this thesis, an algorithm is developed to implement the inverse analysis. The non-
directional spectrum is obtained from ocean scatter received by an HF narrow beam radar
operating bistatically. The HF second-order radar cross section of the ocean surface is
described by a two-dimensional integral equation of the first kind. The integrand of the
equation is normalized, linearized, discretized, and Fourier-represented to form a matrix
equation. A singular value decomposition (SVD) method is invoked to invert the kernel
matrix in the equation and the ocean wave information is recovered from the solution of

the equation.



1.2 Literature Review

Ocean wave measurement by means of HF radar finds its roots in the explanation of
the physical mechanism of Bragg scatter. Crombie [2] found that the discrete frequency
shifts above and below the carrier frequency observed in the radar spectrum corresponded
uniquely with ocean waves that have the wavelengths exactly one-half the radar operating
wavelength if grazing incidence is assumed, and moving toward or away from the radar.
The relative movement of water waves and the radar waves are mapped to the Doppler
shift of the radar waves and may be expressed as the Doppler spectrum.

Since the signal scattered from the ocean surface is influenced by radar frequency,
beam width, polarization, and configuration (monostatic or bistatic), the scattering cross
section should be developed to explain the mechanism of the “radar wave-ocean wave”
interaction. The radar cross section is defined as “that area which, when multiplied by the
power flux density of the incident wave, would yield sufficient power that could produce
by isotropic radiation, the same radiation intensity as that in a given direction from the
scattering surface” [3].

Figure 1.1 depicts the first- and second-order cross sections when the wind direction
is perpendicular to the radar beam. In this case, the first-order peaks, Bragg peaks,
are equal in magnitude. In the figure, underlying currents are assumed to be absent.
The second-order continuum is separated into two symmetric parts having positive and
negative Doppler shifts surrounding the first-order peaks.

The derivation of the HF radar cross section for the ocean began initially with Bar-
rick [4]. He extended Rice’s [5] perturbation theory to develop a first-order scattering
cross section which was seen to support Crombie’s conjecture of Bragg scattering. In the
same year, Barrick [6] derived a theoretical formulation for the second-order backscat-
ter cross section which explained the continuum surrounding the first-order peaks. Thivs

formulation is a nonlinear, two-dimensional, Fredholm-type integral equation, in which
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Figure 1.1: The simulated bistatic first- and second-order cross sections of the patch
scatter. Wind speed is 15m/s, wind direction is 0°, bistatic angle is 30°.

the integrand contains the second-order electromagnetic and hydrodynamic coupling co-
efficients corresponding to the different mechanisms of interaction between radar signal
and water waves. The nonlinear factor in the integrand arises from the product of two
ocean wave directional spectra. A delta function in the integrand constrains the man-
ner in which wave vectors from each of the two spectra must be related to produce the
continuum referred to above.

Barrick and Lipa [7] further derived a set of expressions to account for shallow wa-

ter. All of these models are for backscatter returns. Assumptions are made of grazing



incidence and vertical polarization of the radar wave.

Based upon Walsh’s generalized-function approach [8], Srivastava [9] developed the
first- and second-order monostatic cross sections in an alternative way. Srivastava’s
second-order cross section contains three parts. The first part is equivalent to Barrick’s
model and is denoted as the patch scatter term. The second-order on-patch scatter means
the first and second scatters occur at a region that is far from the radar station. The other
parts can be viewed as the interaction of the transmitting source with the surrounding
ocean surface. The on-patch term is dominant among the three parts.

Walsh et al. [10] derived the third-order cross section. They found that the third-
order cross section might be neglected in the region near the first-order peaks. However,
the third-order cross section is important for the spectrum far from the first-order peaks
and may not be overlooked if the analysis is in this region.

As the most recent progress in the development of HF radar cross section of the ocean
surface, Gill and Walsh [11] presented bistatic first- and second-order radar cross sections
using the generalized-function approach [8].

In [12], the first-order bistatic cross section, oy, contains a squared sampling function
to model the first-order peaks. The locations of the first-order (or Bragg) peaks are at
Doppler radian frequencies of wg = i\/ZgTos(qbo) if deep water is assumed. Here g is
the acceleration due to gravity, ko is the radiation wavenumber, and ¢y is the bistatic
angle defined as one-half of the angle between radar transmitter and receiver as viewed
from the scattering point. The second-order bistatic cross section contains three parts.
They are (1) the patch scattering, in which two scatters occur at the ocean surface far
from the transmitter and receiver, (2) scattering in which one of two scatters occurs
at the ocean surface near the radar transmitter, and (3) scattering in which one of the
scatters is near the receiver. These three parts are signified in [12] as o9p, oor, and oag,

respectively. In each of the latter two cases, a second scatter occurs far from the radar



site. The total radar cross section, oo, of the ocean surface without considering the
third- and higher-order cases, contain four components: one first-order portion and the

three second-order components.

OTotal = 01 + O2p + Oor + O2R - {81

Among the three components of the second-order, the patch scattering o9p is dominant
and will be treated in the inverse analysis.

Another significant achievement of Gill's work [12] is the consideration of external
noise in the radar returns. Based upon the assumption of a pulsed radar system and
characteristics of the external noise, a model for the ocean clutter signal to noise ratio
is presented. The power spectral densities of clutter and noise are each converted to
the time domain. The time series are combined and the resulting time-domain signal is
Fourier transformed in order to obtain an estimation of the total power spectral density.

The development of the radar cross section leads to applications for the detection of
the ocean wave parameters from the radar data. As previously mentioned, the required
procedure is denoted as the inverse analysis.

The first inverse analysis model was developed by Barrick [13]. Only one sideband
is used in the analysis and the water is assumed to be deep. Both sides of the equation
are divided by the energy inside the first-order spectrum to remove the path losses and
gains, assuming that they are the same for the first- and second-order radar returns.

Lipa [14] reduced Barrick’s second-order cross section to a linear equation by means
of a stabilization technique using a Phillips spectrum [15]. This technique significantly
Improves the results obtained from Barrick’s model. She also derived a method for ob-
taining the directional features of the ocean spectrum. This is essentially the method
used here for the bistatic case.

A detailed theoretical analysis was presented by Lipa and Barrick [16]. For pulsed



narrow beam Doppler radar systems the stabilization technique referred above was applied
to the inverse analysis. A frequency band approximation and Fourier representation of
ocean wave directional spectrum were invoked to convert the integral equation to a matrix
equation. Several mathematical results and techniques were presented for the first time
and accompanied by FORTRAN computer programs. Simulated radar data were used to
examine the algorithm.

Lipa and Barrick’s work [16] was extended by Wyatt [17] and Wyatt et al. [18] to
derive ocean wave information from a greater range of Doppler frequencies. Subsequently,
Lipa and Barrick [19] presented another extension to include an ocean region of arbitrary
depth.

Howell [20] produced an algorithm for the inverse analysis by means of the singular
value decomposition (SVD). Similar to Lipa and Barrick [16], the narrow beam monostatic
second-order cross section was normalized by the energy inside the first-order peak to
remove the path gains and losses. The resulting integral expression was linearized using a
Phillip’s equilibrium spectrum [15] and discretized using frequency bands. The directional
ocean wave spectrum was represented by a truncated Fourier series. The matrix equation
was then formed and the kernel matrix was pseudo-inverted by the SVD method.

In Howell’s work [20], the algorithms for single radar and dual radar were developed.
Three cross section models of Walsh et al. [10], Barrick and Lipa (7], and Srivastava [9]
were checked and the results were compared with in situ measurements obtained from
a WAVEC directional wave buoy. According to his analysis, the cross section model in
[10] for dual-radar gives better agreement than either Barrick and Lipa’s or Srivastava’s.
Howell demonstrated that for the narrow beam radar, the agreement between the mag-
nitude of the recovered ocean wave non-directional spectrum from HF radar data and
that of the buoy data was dependent, in some cases, on wind direction. The best agree-

ment in magnitude occurred when the wind direction was parallel to the radar beam.



The worst result was obtained when the wind direction and radar beam direction are
mutually perpendicular.

Howell [20] discussed the condition of stability for the inversion of kernel matrix. He
found that the choice of the number r of singular values retained for the inversion is
independent of sea state or wave direction. This r, an integer, is equal to or less than the
rank of the kernel matrix.

Contemporary with Howell, Gill [21] achieved an algorithm to invert the wide beam
HF radar monostatic cross section. A four-element square radar array, known as CODAR
(Coastal Oceans Dynamics Applications Radar), was used to measure the wind-driven
waves in a region where water depth was set to be arbitrary. The first- and second-order
wide beam radar cross sections obtained by Barrick and Lipa [22] were applied to the four-
element CODAR. The radar beam pattern and ocean wave spectrum were represented
by Fourier coefficients. The wide beam second-order cross section was converted to a
matrix equation after linearization and discretization procedures. The SVD method was
invoked to pseudo-invert the kernel matrix and ocean wave directional wave spectra ware
obtained.

Gill [21] indicated that the number of singular values retained for inversion should
be chosen from the region where the plot of the logarithm of the singular values against
singular value position shows a steep change in slope. He also found, numerically, that
the arrangement of kernel matrix would significantly affect the stability of the SVD. The
better way to form the kernel matrix was letting rows associated with the increasingly
large values of ||n| — 1| be adjacent to each other, where 7 is the Doppler frequency
normalized by the wavenumber of the first-order peak. Gill’s simulated results showed
excellent agreement with original ocean wave non-directional models. Gill and Walsh
[23] also presented results ground truthed by Wave Rider buoy data in which significant

Waveheight, compared very favourably.



With the bistatic first- and second-order cross sections and a model of the noisy
Doppler power spectral density now available, the inverse problem of extracting ocean

surface parameters from simulated and real bistatic data may be considered.

1.3 Scope of the Thesis

An algorithm for the inverse problem for the bistatic scattering of HF radiation from the
ocean surface is presented in this thesis. The radar is assumed to be operating in the
upper level of the HF band (20 to 30 MHz). The transmit signal is vertically polarized
and grazing incidence to the slightly rough ocean surface is assumed. The wind-driven
ocean waves scatter the radar waves and a narrow beam radar receiver distant from the
transmitter receives the echo. The water depth is set to be arbitrary. The limiting noise
is assumed to be external to the system and to be zero-mean stationary Gaussian in
nature.

Of the three components of the second-order bistatic cross section developed by Gill
and Walsh [11], only the patch scatter is used because it is dominant when comparing
with the other two parts. The first-order cross section is calculated in order to derive a
normalizing factor for the entire spectrum. Normalization removes path gains and losses.
The Newton-Raphson method is invoked to solve a delta function constraint appearing
in the normalized cross section. This delta function enables the double integral in the
second-order cross section to be reduced to a single integral.

The directional ocean wave spectrum is presented as the product of a non-directional
wave spectrum and a directional distribution factor. The non-directional ocean wave
spectrum is, according to Gill [12], one-half of the Pierson-Moskowitz spectrum [24].
The integral equation is linearized by means of the assumption that one of the two
Scattering waves responsible for second-order phenomena is in the saturated region of

the ocean wave spectrum along with the Bragg wave. A truncated Fourier series is used



to represent the unknown ocean wave spectrum. Using a frequency band approximation
and a discretization scheme, the integral equation is converted to a matrix equation. The
SVD method is used to pseudo-invert the kernel matrix and the matrix equation is solved
to obtain the non-directional ocean wave spectrum. The results of the inverse analysis
are shown for different wind directions, wind speeds and water depths.

Chapter two contains the calculation of the bistatic first- and second-order cross sec-
tions. Chapter three describes the inverse problem analysis in detail and presents sim-
ulated results. Chapter four is concerned with the inverse problem when noise is added
to the radar spectrum. Chapter five contains conclusions and suggestions for future
work. Appendix A contains the Matlab computer programs associated with the inverse

algorithm.
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Chapter 2

Calculation of the Bistatic Cross

Sections

2.1 General

HF Doppler radar spectra almost invariably consist of two well-defined peaks surrounded
by a higher order continuum. As noted in Chapter 1, the underlying physical mechanism
which accounts for this phenomenon was first conjectured by Crombie [2] to be Bragg
scattering. The Doppler positions of the two peaks, denoted as the first-order or Bragg
peaks, are symmetrical about the radar carrier frequency if surface currents are absent
and are proportional to the square root of the radar operating wavenumber k.

The ocean surface layer is a dispersive medium for wind-driven gravity waves, and
the phase speeds of these waves are proportional to their wavelengths. The relationship
between the radian frequency, w, of an ocean wave, and the corresponding wavenumber

K is ( see, for example, Kinsmen [25])

w = /gK tanh (dK) , (2415

11



where g is the acceleration due to gravity and d is water depth. Equation (2.1) is denoted
as the linear dispersion relationship for water waves.

The position of the Bragg peaks in the Doppler spectrum (see Figure 1.1) matches
the velocities of ocean waves whose wavelengths are equal to one-half the radar operating
wavelength if grazing incidence and monostatic operation are assumed. Thus, for water
waves traveling toward and away from the radar, the Doppler frequencies of the first-order

peaks will occur at +wp, respectively, where

wp = \/2gko tanh (2dko) . (2.2)

For deep water, in which the water depth is greater than approximately one-half of the
ocean wavelength, the hyperbolic tangent approaches unity, and the dispersion relation-

ship in equation (2.1) simplifies to

w= /9K, (2.3)

while the Doppler frequencies of the first-order peaks become from (2.2)

wp = +41/2gko . (2.4)

To give background to the ensuing analysis, much of the remainder of this section
summary is extracted from the relevant portions of the bistatic analyses developed by
Gill and Walsh [11].

The geometry of the bistatic configuration is depicted in Figure 2.1. The path directed
from the transmitter (T) to the receiver (R) is the reference line. T and R are foci of

an elliptical scattering patch. P is a position on this ellipse where the unit normal is

12



Figure 2.1: The geometrical relationship of the bistatic configuration.

N. The angle 6y from TR to the unit normal is precisely the direction of the scattering
wavevector in the first-order cross section. The angle /T'PR is bisected by the ellipse
normal. Half of /ZT'PR is defined as the bistatic angle ¢.

For bistatic scattering, the Doppler frequencies of the first-order peaks are a function

of ¢y as given by

wp = :l:\/ngg cos ¢ tanh (2dkg cos ¢o) . (2.5)

For deep water

wp = £4/2gkq cos ¢o . (2.6)

The bistatic first-order and second-order cross sections developed by Gill and Walsh [11]
are reproduced here and calculated in the following sections. Only the first- and second*

order cross sections of patch scattering are considered for the inverse analysis.
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The first-order cross section oy (w) is given as [11]

_ K% cos o Ap, K
_ o4, 12 9 s i
oy (w) = 2°7k; ,,.:EﬂSl(mK) - ApsSa B 2ko )| - 2.7)

Here w is the radian Doppler frequency and Sl(mR ) is the directional wave spectrum
with the scattering wave vector 174 Aps is the scattering patch width illuminated by a
radar pulse. It is the smallest radial distance that can be unambiguously distinguished

by the radar and is given by

cTo
Aps = — 3
Ps 5 (28)

where c is the light speed and 79 is the pulse width of the transmitted signal; m = +1
indicates the various positive and negative portions of the of Doppler shift corresponding
to the ocean waves moving toward and backward to the direction of ellipse normal (see

Figure 2.2). i.e.
m=1whenw <0 (2.9)
and
m=—-1whenw>0. (2.10)

The Doppler frequency is related to the scattering wave number K by the dispersion

relationship as

w=—m/gK . (2.11)

It may be noted that instead of the delta function appearing in Barrick’s first-order cross
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Figure 2.2: The two sections of the bistatic first-order cross section.

section expression [4], a squared sampling function generates the first-order peaks here.

The second-order cross section for patch scattering is given by

oop (W) = 287K} cos? ¢ > Z /_1;/00051 (mllzl) Sy (mgkg)

my=+1mo==%1

|sTp|26 (w L R gKQ) KdKydog, , (2.12)

where §(-) is a delta function and the remaining parameters are defined in the following
paragraphs. K, and 132 are the wave vectors of the ocean waves responsible for first
and second scatters, respectively, upon the surface. In order for the second-order bistatic

scattering to occur, K; and K, must obey the condition,

Ki+K,=K (2.13)

as shown in Figure 2.3. Here K has the direction 6y of the ellipse normal (see Figure 2.1)
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x4

Figure 2.3: An enlarged view of the second-order scattering wave vectors for the bistatic
patch scatter.

and a magnitude of 2kg cos ¢o. Using the law of cosines (see Figure 2.3), the magnitude

of K5 may be obtained from

K = K}+K2-2KiK cos(0z, — Ov)

K3 + 4k} cos® go — 4K ko cos gy cos (0, — Oy - (2.14)

where 0, is the angle of K, from the z-axis.

The four possible combinations of m; and mgy represent four different Doppler fre-

quency regions, corresponding to four sidebands of second-order cross section (see Figure

2.4). These four parts are denoted as Py, Py, Ps, and P, from left to right, respectively.
If my = may,

w < —wp, when m;y =my =1

(2.15)
w>wp, when m;=my=-1
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Figure 2.4: The four sections of the bistatic second-order cross section. Only K; < K,

case is denoted here.

If my # my, —wp < w < wp, and

my = -1,
—wp <w <0,

m; = +1,
and

my = —1,
0<w<wpg,

my = +1,

mo = —

mg = —

me =+1 if K; <K, or

—

if K4 > Ky
(2.16)

me =+1 if K3 > Ky or

—

if K1 <K,

It is observed that the second-order cross section possesses a symmetry around the Bragg

frequencies +wp. This property will help to reduce the complexity of the ensuing calcu-

lation. In the inverse analysis, only the K; < K, case need to be considered.

In equation (2.12), the symmetric coupling coefficient sT'p is defined as

sTp =3 [T (B, Br) +Tp (o, )] @.17)
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here

Pp=pgTp+plp. (218)

The hydrodynamic coupling coefficient, zI'p is given by Walsh et al. [10]. For water of

arbitrary depth,

3 :
55U, il (“)1 it WZ) w1,w2 w1 ,w2
= DUz 4 g L 2.19
B {_q [gK tanh (Kd) — (wy + u)2)2] Kk LR e
where
Dg“r = j(wi +ws) [KiKs tanh (Kd) tanh (Kad) — K - K]
i w1 K? wyK?
S 2.20
2 [coshQ(sz) cosh?(Kd) it
and
w1 ,w: i 22 -
EK],KZZ = % {(K1 . Kg) — g 2wy (wf +w§ +w1w2)} ¢ (2.21)

Here w; and w, are the radian frequencies of the ocean waves involved in the scattering

process. For deep water, the hydrodynamic coupling coefficient is simplified as

(2.22)

1 = K 4 (w1 + ws)?
HFP=§{K1+KZ+L(K1K2_K1'K2) [u]} y
wiws

9K — (w1 + W2)2

where K = 2kg cos ¢o, wi = —myy/gK7, and wp = —ma/gKs.

The electromagnetic coupling coefficient, I, is given as [12]

Jy/ K- (Rl = Qkaﬁz) + ko
K+ Ky (Ko - 2k0;i2)

elp (I?IYRZ) =
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(B ) [ - (B — hota)]
\/1?1 - (1 - 2kof)

, (2.23)

where j = v/—1 and g, is the normalized vector along the receiving path (PR on Figure
2.1). The other part, pI'p (13'2, K’l) may be obtained by interchanging the K, and K,.

The hydrodynamic and electromagnetic coupling coefficients correspond to two mech-
anisms for the second-order interactions between the radar signal and water waves. From
Hasselmann’s theory [26], the so-called hydrodynamic term arises due to the signal in-
teracting with a second-order ocean wave formed from two interacting waves whose
wavenumbers are satisfied by K, + K, = K. On the other hand, the electromagnetic
term involves two first-order scatterings. This means that the incident radar wave is
scattered by a first-order ocean wave of wavenumber K, and this scattered signal is scat-
tered again by another first-order ocean wave of wavenumber K5. These two first-order
scatters occur on the scattering patch. If the scattering wave vectors satisfy equation
(2.13), the scattered energy will appear in the radar spectrum. Since there are many
combinations of K 1 and 1?2 that satisfy the second-order scattering condition, the inver-
sion of the second-order cross section may lead to the extraction of ocean wave information
for a significant range of wavenumbers.

In the following sections, the first- and second-order cross sections are calculated. The
calculation of the first-order cross section involves an expression for the angular frequency
of the Bragg peaks, which will be used as the normalizing factor for the second-order
cross section. The energy inside the first-order peaks is derived so that it may be used
to normalize the overall spectrum and calculate the wind direction, approximately. Once
the second-order cross section is normalized, the dual-integral of equation (2.12) will be

reduced to a single integral via the numerical solution of the delta function.
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2.2 Calculation of the First-order Cross Section

For the purpose of determining the Bragg wave scattering vector the squared sampling
function in the first-order cross section can be approximated under the assumption that

the scattering patch width, Ap;, is large. Since
Nl[im MSa® [Mz)] = 76 (z) , (2.24)

we have

lim sﬁ[ 2 (K—Zkgcosgbo)}

Teory =00 2 cos o
2cosdo .. Aps SAL
1 K — 2k
Aps ﬁ;l%n—.m 2 cos ¢ 2cos do ( 0 coS @)
~~ %Z—(:id)“é (K — 2k cos ¢p) - )

This means that equation (2.7) can be approximated as

8..21.2 2
L\;’w" Y S (mR) K35 (K — 2o cos o) - (2.26)
m=%1

o1(w) =

Imposing the delta function constraint, we can see that the first-order maximum will

occur when
K = Kp = 2kgcos ¢p . (2.27)

This is the wavenumber Kp associated with the Bragg peaks for bistatic scattering. It

is clearly a function of bistatic angle ¢o. When ¢y = 0, we have the wavenumber Kp,_
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associated with the Bragg peaks for monostatic scattering, namely

KBrono = 2ko - (2.28)

In order that the analysis may be readily used for any operating frequency of interest,
it is convenient to normalize the wavenumbers and Doppler frequencies by their Bragg
counterparts (see, for example [23] or [27]). In the case of wavenumbers, the normalizing

factor is thus Kp = 2kq cos ¢p. Then, the normalized wave vector is

i K
K,= ——— ¥
™ 2kg cos ¢o (2829)
and the normalized wavenumber is
K
K,=———. 2
2kq cos ¢o 5

For consistency, the other dimensionless quantities of normalization are obtained as fol-

lows: Normalized water depth D:
D =d-2kgcosdyp . (2.31)

Normalized Doppler frequency 7:

w /9K tanh(Kd)

wp V/2ko cos o tanh (2dko cos o)

b \/ K, tanh(K,, D) g
o Vtanh D X (%)
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Normalized ocean wave spectrum Z(-):
Zy (mk,,) = (2kocos go)* i (mEK) . (2.33)
Then, the first-order cross section in normalized form is given as

o1n(n) = wpor (W) = Pmke ¥ Zy(mB.)KiAp,Sa® [Apiko (K — 1) . (2:34)

m=%1

As noted, the energy inside the first-order cross section, E,,;, can be used to linearize
the second-order cross section in the inverse problem. The purpose of doing this is to
remove the signal path gains and losses affecting the radar spectrum. The assumption is
that the gains and losses associated with the first-order case are the same as those in the
second-order case. The normalized first-order cross section may be integrated over the

radian frequency to give
Epy = / () . (2.35)

The differential of the normalized radian frequency may be converted to the differential

of the normalized wavenumber. That is, from equation (2.32)

_ tanh (K, D) + K, Dsech® (K, D)

dn dK;, = TodK,, . (2.36)
2v/tanh D /K, tanh(K,D)
Then equation (2.35) becomes
Emi = [ ko 3 Zi(mBa)KiAp,Sa? [Apcko (Ko = DI TadKn . (237)

m=%1

When the scattering patch is large, the squared sampling function can be approximated
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as a delta function. According to equation (2.24), equation (2.37) becomes

B — /_oo Br S Zy(mR,) K6 (K, — 1) TudK,

m=%x1
Dsech®(D
2°n? [1+%§))] B Al (2.38)
m=%1

where Z;(m - 1) is normalized ocean wave directional spectrum with the normalized
wavenumber K, =1 (i.e. the normalized Bragg wavenumber).

Practically, the total energy inside the first-order cross section cannot be obtained
precisely because of the infinite integral limits. However, this energy can be approximated
in a finite range, £k, around the first-order peaks, since most of the energy is concentrated

in this range. (See Matlab subroutine FirstOrder.m in Appendix A)

2.3 Calculation of the Second-order

Cross Section

2.3.1 Normalized Version of Second-order Cross Section

As was done for the first-order cross section, the normalized form of the second-order
cross section of patch scattering is calculated from equation (2.12). The first step is to
define dimensionless variables for the second-order cross section. In addition to those

appearing in equations (2.29) to (2.33), we define the normalized coupling coefficients as

Iy

"= ko cos do s
and normalized second-order cross section as
oo () = wpo (w) . (2.40)

23



Then, for water of arbitrary depth, the normalized version of the second-order cross

section is

r oo N &
on(m) =227 >0 Y /_"/0 Zy(m1 K1n) Z1(ma Kon) | sTpnl?

my=+1mo==1
5 ln ml\/Kln tanh (K3, D) o mz\/Kgn tanh (K2, D)
\/tanh(D) \/tanh(D)

} KindK1ndfg, .

(2.41)

The normalized version of the hydrodynamic coupling coefficient for shallow water,

#Lpn, derived from equation (2.19) to (2.21), is

1 (m + m2)
Tpn = D™, | _ gum : 2.42
it mne tanh D { [1 B Wz)Q] Rin,Ran Rin,Ron (242)
where
Dp™e = (m +m) [KinKantanh (K, D) tanh (Ko D) — Kip - Ko
1 mk3, K3,
= 2.4
2 [cosh2 (K9nD) ' cosh? (K1,D) &)
and
Tt &
B, =5 (R Kau) = mm (v} + 3 + mny) tanh’ D] . (2.44)

The normalized version of the electromagnetic coupling coefficient is

W el (172 s o T o 1
EI‘Pn(i(‘lnyI?Zn) = . 5 ( ) COWO)-F?COWD

i = = =
Ty + R (R - 525)

cos ¢o
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(Bin - 2) [Ron - (Bin — 7225)]

= = = (2.45)
VB (Ruin — 2225)

The constraint on the normalized scattering wavenumbers so that the second-order

scattering will occur is
Rin+ Ko =K, (2.46)

where K, has the direction of the scattering ellipse normal and a magnitude of unity.

From the law of cosines, K», is expressed in terms of K, as
K3, = K%, + 1= 2K, cos (6, —On) - (2.47)
In readying equation (2.41) for the calculation of oop,(7), consider defining
Y, =K. (2.48)
Then,
KindKy, = 2Y3dY,, . (2.49)
The delta function constraint may now be rewritten as
§()=0[n—Dp (Ym%)] § (2.50)

where

—myy/K1n tanh (K1, D) — ma /Koy tanh (Kp, D)
\/tanh (D)

Dp (Yn,ekl) =
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—my Ypy/tanh (Y;2D) M

\/tanh (D) i \/tanh (D)
[Y: +1—2Y?2cos (01?;,, - BN)]

P

\/tanh [(Yn‘} +1—2Y2cos (9131“ - GN))7 D] : (2.51)
Since
oY,
Y, = 1 5, | 4D» = JndDy (2.52)

where Ji, = ‘g—g’; is denoted as the normalized Jacobian of the transformation,

Kadis, — 2% Tdby), (2.53)
Now equation (2.41) may be rewritten as

Uzpn(ﬂ) — Z Z /_:/OcoZl(mlkln)Z1(m2Iz2n)|stn’2

my=%1mo=%1

8 [n = Dp (Ya,0z,)] Jin¥,2dDyddg, - (2.54)

The expression for Jy, is

4 tanh (D) (2.55)
i 7P| i
Here
2 2 2 (y2 Y3 —Y,cos(0z -6,
Jp = mtmh(YED) + YiDseh® (v2D) Y (3 1 — ON)
\/tanh (¥2D) KZ,
tanh (K,D) + Ko, Dsech? (Ka,D) ’ (2.56)
\/tanh (ky, D)
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where Ka, is expressed as equation (2.47) with K7, replaced by ¥;2. When the water is

deep, we have tanh(D) ~ 1 and sech(K2,D) =~ 0. In this case, J;, reduces to

iy = g : (2.57)

Y2 — Y, cos (9,?1" - GN)
[Vi#+1 - 2%, cos (0z,, — Ow)]

my +ma

i)

2.3.2 The Solution of the Delta Function Constraint

The dual-integral equation in the second-order cross section is reduced to a single integral

equation by means of the solution of delta function constraint. This means solving
0~ Dp (Y, 6z,) =0. (2.58)

Suppose that the value Y’ is solution of the delta function constraint. We can use Y, to

replace Y}, in the previous equation. Equation (2.54) is simplified as

Oom(T)i= 28 ST 5T /”Zl(mlﬁln)zl(mZR:Zn)|Sr\pnl2JtnYnz‘Y,_:Y;d0km 4

mi=£lma==£1""

(2.59)

The Newton-Raphson method is invoked here to derive the wavenumber K, for each
wave frequency 7 and scattering angle 0z . The spirit of the method is to numerically

solve a function
G (Ya) =n— Dp (Ya,0z,) - (2.60)
Of course,
G(¥)=0. (2.61)
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Next, G (Y,) is expanded about Y,* by means of the Taylor series.

o) = o +t-vo (H5E)

5 e [OG(R)
~ (Y m( - )y: ,
e,
408 G(Y)
T
n ) Yo=Yy

(2.62)

(2.63)

From the relationship between K7, and Ko, (equation(2.47)), G (Y,) can be written as

G (Ya) =n— Dp (Ya,0z,)
h: miy/ K, tanh (K, D) + may/ Ky tanh (K, D)
n
\/tanh (D)

& m1 Y, /tanh (Y,2D) L™ (VA +1—2Y2cos (0z,, — 9N))%

\/tanh (D) \/tanh (D)

\/ta,nh [ + 1 - 232005 (64,, - ox))} D].

Then, the derivative of equation (2.64) gives

3G (Y,) 1 {m tanh (Y2D) + Y2 Dsech? (Y;2D)
= 1

. /tanh (D)
Y2 — Y, cos (6z,, — )

\/tanh (¥2D)

+ my B
[Yn“ +1—2Y2cos (913‘" - GN)} g

[\/tanh (YA +1—2Y2cos (07, — 9N))% 9

o+ (Y,:1 +1—2Y2cos (9,31" - HN))%
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1
2

Dsech? (Y: +1—2Y2cos (gkm o 0”))

i

D
\/tanh (Yn“ +1—2Y2 cos (9,?!" - 0N)) D
(2.65)

We now need an initial guess of Y,¥, say Y%

, in equation (2.63) to find the next Y,

denoted as Y,5;,,). The calculation of Y%, ;) — Y75 =

continues until ‘Yn‘(i b

where € is a specified tolerance. In our calculation, ¢ = 0.001 is used. The last value of
Y;* so calculated is chosen as the solution of the delta function.

The determination of a suitable initial guess, as discussed by Lipa and Barrick [16], is
from equation (2.61). Close to the Bragg peaks, Y3, < 1. With the assumption of deep

water, which means tanh(D) =~ 1, equation (2.61) gives
Yy~ my(n—ms) . (2.66)

It has been shown numerically (see programs in Appendix A) that the initial guess of

(2.66) is suitable for the calculation in all parts of the Doppler spectrum.

2.3.3 The Choice of a Directional Ocean Wave Spectrum

The choice of an ocean spectral model has been discussed by Gill [12]. Generally, ocean
spectral models may be considered as a product of a non-directional spectrum, S;(K),

and a normalized directional distribution, g (fz), i.e.
51 (K) = 51(K)g (0g) (2.67)
where g (6) satisfies the relation as explained in (28]
o
[ st dog=1. (2.68)
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Obviously,
/02" 5 (R) = /02" S1(K)g (6g) dfg = Sy(K) . (2.69)

Gill [12] defines S3(K) by means of the Pierson-Moskowitz spectrum as

1l
Si(K) = §SPM (K, (2.70)
where
apy  =9.7492
Spm (K) = SKi¢ KTA (2.71)

Here apys is a constant with a value 0.0081 while u is the wind speed measured at 19.5 m
above the ocean surface. As a result of (2.70), Gill’s [12] cross section is 3 dB lower
in the first-order and 6 dB lower in the second-order power spectral density than other
investigators [6], [9], and[10].

In equation (2.67), the directional distribution g (6), which is a function of frequency,

can be expressed as

9(6g, K) = F (s (K)) cos**() [%—7;(’0] : @)

where s(K) is the so-called spread function and § (K) is the dominant direction of the
waves [28]. In simulating the HF radar cross section,  (K) is usually replaced by 8, which
is the wind direction with respect to the radar beam direction. We can further remove
the dependence of frequency from the spread function for practical purposes [28]. Then,

the simplified directional distribution is
g(0z) = F (s) cos™ [#] ) (2:73)
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In order to satisfy the equation (2.68), F(s) is defined as

2(s-IT2(5 4 1)

Flo) =@+

(2.74)

where T is the gamma function. When s is an integer value F(s) can be expressed as

F(s) = F(s— 1) (2.75)

s
s—0.5

1 3 :
with F(1) = =. In our calculation of simulated radar cross sections, a value of s = 2 is
™

used for consistency with a previous investigation [12]. That is,
Bl Tt (2.76)
g2l :

Then the directional ocean wave spectrum is obtained as

(=m)r _
2\ _ [apm —ong?) | 4, (Og + bu
S1 (mK) = [_4K48 KZu } |:37r cos < ) ¢ (2.77)

where 6, is the wind direction with respect to the reference direction. Throughout the
thesis, the directional ocean wave model given by equation(2.77) is used.

There are singularities in the integrand of equation (2.59) which must be considered in
the calculation of the bistatic cross section. The sources of the singularities are the Jaco-
bian of the transformation of equation (2.56) and the electromagnetic coupling coefficient
of equation (2.45).

As in Gill's analysis, for deep water [12], when 6z =0y,Y, = %, and mymg = 1,
the denominator of the normalized Jacobian of the transformation vanishes. The positions
of the singularities are at 7 = +v/2. Figure 2.5 depicts the combination of first- and
second-order cross sections. Two Fps denote the first-order peaks. The J's are the

singularities from the Jacobian of the transformation.
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is 0°, and bistatic angle is 30°.
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Another source of singularities is the electromagnetic coupling coefficient. Gill [12]

shows that the electromagnetic coupling coefficient has singularities when
R, | Kok — 2kopa| =0 (2.78)

or

Ron + [Kan — 2kopa] =0, (2.79)
and that the greatest effect of the singularities will occur at
Kin = Kon (2.80)

and

=221, %ﬁi"ﬁ : (2.81)

It should be noted that the + inside the radicand is independent of that outside; i.e.,
there are a total of four singularities corresponding to the four possible combinations of
+ (see Gill [11]).

There is no singularity in the hydrodynamic coupling coefficient.

Since the second-order cross section of patch scatter o, is dominated by the second-
order hydrodynamic interactions of the scattering waves, and when the water becomes
shallower, the importance of the hydrodynamic coupling coefficient is increased signifi-
cantly compared with electromagnetic coupling coefficient [21], only the hydrodynamic
coupling coefficient is used in our analysis.

When the delta function constraint is solved for Ky, < Ka,, the angle of 9131" is in
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the range given by (see Gill [11])

On—m <6z <On-—P (2.82)
and

Ov+B <Oz <Oyv+m, (2.83)

where [ is

cos™! [2 (1)2] i Il >v2

Bi= 4 . (2.84)
0; Inl < v2
Then the angle 0, is obtained as
Oy +cos™!By; Oy —m<0s <Oy—
bl N B2; On 2 = 0N~ 01 (2.85)
Oy — cos™! By; otherwise
with
2 _ 2
s e (286)

2K,

After trivial calculation, simulated bistatic Doppler radar spectra are obtained and plot-
ted in the following figures. Figure 2.6 depicts the geometry of bistatic patch scatter.

Figure 2.7 depicts the first- and second-order bistatic cross sections of patch scatter for
different water depths. The depths of water, d = 100 m (deep water), 10 m, and 5 m are
chosen to illustrate the behavior of radar Doppler spectra. The radar operating frequency
is 25 MHz. The wind velocity is 15 m/s, 0° to the z-axis.

Figure 2.8 depicts the bistatic cross sections with wind directions 6, =
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Figure 2.6: The geometry of bistatic patch scatter. The ellipse normal is 90°. Wind
direction is indicated against the z-axis, Bistatic angle is 30°.

0°, 45°, 90°, and 135°. 25 MHz is used as the radar operating frequency. The wind
directions of 45° and 135° are symmetrical with respect to the ellipse normal and pro-
duce identical results.

Figure 2.9 gives the bistatic cross sections for wind speeds of u = 10 m/s. The radar
operating frequency is 25 MHz. It is observed that the magnitude of the second-order
cross section will increase significantly with increasing seastate.

Figure 2.10 depicts the bistatic first- and second-order cross sections for different radar
operating frequencies. The same wind speed, wind direction, water depth and bistatic
angle are used. Obviously, the Doppler shifts of the first-order peaks are different. In the
second-order region, when the radar frequency is 25 MHz, the continuum adjacent to the
Bragg peaks is clear and quite distinct. This means that much of the ocean spectral energy
is mapped to these regions. When the radar frequency is 5.75 MHz, the second-order
curve is not as distinct in the near Bragg regions because there is little spectral energy
being mapped to the corresponding regions. The different behaviors of the second-order
Cross section in the near Bragg regions for higher and lower radar operating frequencies

will significantly affect the inversion results as we will see in the next chapter.
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Figure 2.7: Bistatic second-order cross sections for water in different depths. The bistatic

angle is ¢y = 30°. The wind velocity is 15 m/s, 0° to the z-axis. The radar operating
frequency is 25 MHz.
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Figure 2.8: Bistatic second-order cross sections for a wind speed of 15 m/s and wind

directions of §,, = 0°, 45°, 90°, and 135°. The radar operating frequency is 25 MHz.,
Deep water is assumed.
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Figure 2.9: Bistatic second-order cross sections for wind speed in 10 m/s. The other
Parameters are kept consistent with Figure 2.8. Comparison of these two figures indicates .
the difference of the magnitude of the second-order cross sections.
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Figure 2.10: Bistatic second-order cross sections for radar operating frequencies are
25 MHz, 10 MHz, and 5.75 MHz. Wind speed is 15 m/s, deep water, the wind direction
1s parallel the reference direction. '
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Bistatic angle: 0 degree
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Figure 2.11: The cross sections for bistatic angles 0° (monostatic) and 30°. Wind speed
is 15 m/s, the radar operating frequency is 25 MHz, deep water, the wind direction is 0°
to the z-axis.

Figure 2.11 shows the comparison of the monostatic and bistatic cross section with
bistatic angle ¢y = 30°. All the other parameters are fixed. Comparing to the monostatic
(¢o = 0°) case, the entire cross section will be gradually reduced as the bistatic angle ¢o

approaches 90°. An explicit discussion involving this may be found in [12].
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Chapter 3

Inversion of the Integral Equation

3.1 General

In this chapter, the integral equation of the second-order cross section is inverted to
derive the non-directional ocean wave spectrum. The Doppler radar spectra are simulated
according to the description of the last chapter. The influence from ocean currents
is assumed to be zero. As a first step, the non-linear factor inside the integrand is
linearized under the assumption that the selected Doppler frequency ranges are close to
the first-order peaks. The corresponding ocean wave frequency ranges will contain the
predominant portion of the ocean wave spectrum when the radar is operated in the upper
half of the HF band.

The inversion of the integral equation is carried out numerically. A frequency band
approximation is invoked to discretize the integral equation and the matrix equation
is formed. The directional ocean wave spectrum is represented by a truncated Fourier
series. Non-directional ocean wave spectra for different ocean conditions are derived and

discussed.
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3.2 Selection of the Ocean Wavenumber Range

The non-linearity of the integrand of the second-order cross section (see equation (2.59))
comes from the product of two unknown, but related factors, Z; (mll?ln) and Z; (777/2}?2”).
Lipa and Barrick [16] used the assumption that for Ky, < Koy, the wave of Koy is in the
saturated region of the ocean wave spectrum along with the Bragg wave. In this region,
the magnitude of I?% will be approximately equal to the magnitude of Bragg wave I?ﬂ.
To specify the region, it is useful to define a dimensionless parameter, p, which is the
magnitude of the normalized Doppler frequency shift from the first-order peaks and is

given by
p=—my(n+ms) . (3.1)

Within the range p < 0.4, the linear assumption is satisfied [16]. Howell [20] checked the
difference between the directions of Ko, and the Bragg peaks. This difference is denoted
as 3. He found that within the range of 0.15 < p < 0.36, the maximum value of § would
not exceed 10°. Thus, it is reasonable to replace the direction of Ron by the direction of
Bragg wave, i.e., we may use y to represents 0z,.-

The range of u is used to determine the range of frequency that will be selected for

1
the inverse analysis. From equation (3.1) and since m; = = for my = £1, we have
1
n=—mp—ms. (3.2)

If the range of p is known, so is the range of 7 for various combinations of m; and m,. In
the algorithm that is described in this thesis, the range of 4 is selected as 0.05 < p < 0.36,
for region P,, my = my = 1. The range of frequency is —1.36 < np, < —1.05. For part,
Py, my = —1, my = 1. The range of frequency is —0.95 < np, < —0.64. The ranges of

the other two parts for my = my = —1 and m; = 1, my = —1, are 0.64 < np, < 0.95 and
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1.05 < np, < 1.36, respectively.

Lipa and Barrick [16] provide a method to derive the boundaries of the correspond-

ing wavenumber bands. Substituting the 7 of equation (2.58) into equation (3.1) and

assuming deep water gives

=
Il

—my (—ml\/ Kin — may/Kon + mz)
K+ L (VK —1) |

where L = myma. Since
K3, = K}, +1— 2K, cos (0, —Ov) ,
the maximum and minimum values of Ky, occur when

(Kin + 1)2, when 9,31" =7n+0N

Kj, =
(Kin—1)*, when 0z =0y

Substituting K, from equation (3.5) into equation (3.3) gives the range of  as

vVKin++V1+ Ky, —1, when GRM =740y
vVKin++v1—Kj,—1, when GR,,, N

Solving equation (3.6) gives the range of Ky, associated with the values of p.
Ky~ p? —

and
Ky~ p? +
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(3-4)

(3.5)

(3.6)

3.7)
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where K11, and Ky are denoted as the lower and upper limitations of the wavenumber

band, respectively.

3.3 The Linearization Method

The linearization scheme requires that the wave vector I-(‘zn lie in the saturated region
of ocean wave spectrum. Within this range, Howell [20] invoked a Phillips equilibrium
spectrum F), [15] to linearize the directional ocean wave spectrum Z; (mzkgn), ie.,
0.005
2 Kz K= gy

F,=¢ K3 (3.9)
0, Ko <K

and

5 Z(me K, n
Zy(moRon) = % 3 (3.10)
2n
Here Kp, is the normalized Bragg wavenumber. Obviously, Kg, =1. For K; < K, the
value of my is always equal to the value of m in the first-order cross section.
Gill [23] suggested an alternate linearization scheme and obtained more precise re-

sults. In this scheme, the non-directional wave spectra, Zl(mlgln) and Zl(mzl?zn) are

represented by the Fourier coefficients; i.e.

5 = .
71 (mEin) = 5= 3 [an, (Kin) €08 (n1610) + by (K1) sin (maf1a)] (3.11)
n1=0
and
—~ b "
71 (maKan) = 5= 3 [any (Kan) €08 (nafzn) + by (Kzn)sin (mafha)] . (3.12)
nz=0
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Since the non-directional wave spectra are even functions of wind direction only the cosine
terms of Fourier coefficients are needed in the expansions. Then, equations (3.11) and

(3.12) are simplified as
2 1=
Zy (lem) = ;g[an (K1) cos (nf1,)] (3.13)
and

Z (mﬂ?z") = 2L

||M8

[an (Kan) cos (nfa,)] (3.14)

respectively. Using the linearization scheme, a, (K3,) in equation (3.14) is converted to
the corresponding Fourier coefficients

an (Kpn)

ap (Kon) = KL (3.15)

where K, = 1.
A linearized second-order bistatic cross section may be written from equation (2.59)

and equation (3.15) as

ol = TS / Z Z [ (Kln)cos(m K‘n)]

my=+1me=+1""" n;=0ny=0

[ans (1) cos (nafig, )] \sr,mwm de,«(h i (3.16)

K4

Here, 0y,,r,(n) denotes the linearized version of the second-order cross section of patch
scatter. However, the upper limits of n; and ny cannot be calculated numerically, so a

truncation value of 2 is used following the suggestion of previous investigators (see for
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example, [20]). Equation (3.16) is rewritten as

ahar (= 2D D / Z z ny (K1) cos(nlé’g )]
mi=+1ma=£1" 7 n;=07nz=0
[ans (1) cos (nafiz,, )] |sl",m|2Jm dGRM (3.17)
with the Fourier coefficients being

Oy, (Kin) = /021r Z (mlf?ln) cos (nlekh) dog,. (3.18)

For ny = 2 we have

27 b
a0 (Kin) = [ 2 (mRin) db,, , (3.19)
27 iy
= /0 7 (maRon) cos(6z, )dog, | (3.20)
and
21 g
a3 () /0 Z (my Ry ) cos(20g, )dg, . - (3.21)

The Fourier coefficient ag (K1,) is of particular importance for the inverse problem. Com-

paring equation (3.19) with equation (2.69), we can see that
ap (Kln) =5 (K) . (3~22)

Thus the non-directional ocean wave spectrum will be recovered by finding the ag coeffi-

cients,

The linearized Fourier coefficients, ag(1), a1(1), and ag(1) will be calculated by using
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the first-order cross section. Barrick and Lipa [22] provided a set of expressions that may

be used to calculate the Fourier coefficients from the directional wave spectrum.

ao(k) = S(k) ,
an(k) = S(k)—= - cos(a’)
and
2s(s —1)

az(k) = S(k)m

When s = 2 and k = 1, equations (3.23) - (3.25) become,

ao(1) = 5(1),

ay(1) = 45:,iﬂcos(o/‘) :

and

S(1)

as(1) = Tcos(2a*) ;

cos(2a*) .

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

where o* denotes the dominant direction of the wave field [21]. In our analysis, this

direction is assumed to be equal to the wind direction. The wind direction may be

ambiguously derived from the ratio of energy (obtained from equation (2.38)) in the left

and right peaks of the first-order cross section.
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3.4 Discretization of the Integral Equation

‘The discretization of the integral equation results in a summation. As we can see from
the expression for the cross section in equation (3.17), for each value of 7, K1, changes
with the angle 0z . To discretize the integral, the continuous wavenumber values are
-;epamted into bands of equal size. The wavenumbers are assumed constant within a
given band, with the central value being used as the representative wavenumber. This
is the wavenumber band approximation suggested by Lipa and Barrick [16]. For each
‘vmvenumber band, the ocean wave spectrum can be represented by its corresponding
‘Fourier series component. The integral is obtained by calculating the summation of
values inside each wavenumber band.

Let J be the number of total wavenumber bands from K, K, ..., Kj, ..., K.
The boundaries of the wavenumber bands are obtained from equation (3.7) and equation
(3.8). The wavenumbers for each band are equally spaced.

For a specific wave frequency point n = 7, 0, changes from 6y, to y. The related
of scattering wavenumbers is calculated. Each wavenumber belongs to a certain
wavenumber band. There are ) wavenumber bands, where @ < J, associated with each

7s. For the ag coefficient of the Fourier series, we have

02an(7h)|ao = Z [ao (ma, Kin1) Fag1 + ao (my, K1n2) Fona
my=%1
Fit st i (ml, Klnq) Faoq

+- -+ ag (M1, K1nQ) Faoq) » (3:29)

there F,,, is defined as
3

S i
B —2 E > /o q: [a,.ﬂ (m2, 1) cos (ngamn)] ISPP"l?J’"K_;indBRM 3 (3.30)
L n

ma=%1ny=0
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The second-order cross section contains four parts, Py, P», Ps, and P, corresponding
to the four combinations determined by m; and my (see Figure 2.4). As noted in Section
3.3, it is convenient to denote the groups of the selected normalized Doppler frequencies
by p where each 1 determines four Doppler frequencies from the four portions of the cross
section. Letting the total number of y be I means that 4 values of n are being used.
Consequently, the integral equation of the linearized second-order cross section may be

represented by a matrix equation

I

S (3.31)

where X is a column array with its elements as the Fourier coefficients corresponding for

each wave frequency band; i.e.

2T

P
[

(3.32)

iT

JT

with the element ;2 being

a0 (Kin)
=1 ja1 (Km) | - (3.33)
302 (Kin)

Bis a column array with its elements being the simulated radar data selected for inversion ;
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and may be represented as

B (1)
B (u2)

I
I

(3.34)
B (i)

| Bw) |

where the term B (u;) contains the 7 set of four cross section components as indicated

by

io (np1)
"Bl = vl i B (3.35)
¢0(7}P3)

i0 (11p4)

Matrix C is denoted as the kernel matrix equation. Its 4/ number of rows corresponds
to the number of selected frequencies. The number of columns is equal to the number of
frequency bands J times the number of the Fourier coefficients. Then, the kernel matrix
of C has a dimension of 47 x 3J.

The arrangement of elements in the kernel matrix C is critical to the stability of the
subsequent, inversion. Gill [21] suggested that the rows of matrix C should be arranged
according to increasingly large values of ||n| — 1|; i.e. the values of the cross section that
are nearer the first-order peaks will be appear in the upper rows. Gill [21] also suggested

that the zero-elements in the matrix C should be grouped to avoid the energy spreading
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throughout the matrix.

Jovs Foos2,) (fmngy Foidfz,) (s FousBp,.)
Jrpis Faoiidfz, ) (f,,m. Fuijdfy, ) (fpm Fazt,dé’km)
Jris Foos@z,) (Jmgs Furidfz,,) (Jrg Ferid9z,,)
Jeis FooisdOg,,) ( Jpois Fors@0g,) (Vpus Furtilfz,,)

n

(

1] (
.
(

(3.36)

where Fiyij, Fa,ij, and Fg,; are of the form of the expressions in equation (3.30). The
numerical simulation has validated this construction of C. A subroutine function of
Matlab [29], FregBand.m, is carried out for the arrangement. This is an effective but
not unique way to arrange the elements of C. The number of frequency bands, J, is
chosen as 60 and the Fourier series representation is truncated as n = 0, 1, and 2. Thus,
the number of columns of C is 3J = 180. The number of selected frequency groups are

approximately p = 120, giving the matrix C to have a dimension of 480 x 180.

3.5 SVD Solution of the Matrix Equation

Ideally, the problem of solving a matrix equation such as (3.31) means determining
X=C"B, (3:37)

where g‘l is the inverse of C. In this solution, X can be extracted precisely and uniquely
providing Q’l exists. However, in the most general situation, the inverse matrix Q‘l may
not exist. In that case, there will be no unique solution for X. The matrix equation is
then denoted to be singular. However, this kind of matrix equation may still be solved
approximately. Instead of finding the inverse matrix C, the singular value decomposi-‘

tion (SVD) method (e.g. see Stewart [30]) is invoked to find a pseudo-inverse matrix C*
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for kernel matrix C. Then,

PGy B (3.38)
The solution of X is denoted as a linear least squares solution.

For any real (n x m) matrix C, there exists orthogonal matrices U and V, with

dimensions m x m and n X n, respectively, which satisfy,

BN )]
GGV i (3.39)

where U” is the transpose of U and ¥ is a diagonal matrix with non-zero, positive

elements, p1, pa, . . ., n satisfying
Ll > R = 0 (3.40)
These elements, 111, 2, . . ., fin, are referred to as the singular values of C. The columns

of matrix U are the so-called right singular vectors of C' and the columns of V. are the
so-called left singular vectors of C. Specifically, if the matrix C' were not singular, the
pseudo-inverse of C would be equal to g'l. The elements inside the diagonal matrix £

are the eigenvalues of C. From equation (3.39), C* is

(o7 s e [ (341)

A Matlab [29] function, svd, is invoked to calculate the singular values of C in order to

obtain g*. The rank of C is also derived to show the number o