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Abstract 

The conjoining of nonlinear dynamics and biology has brought about significant ad

vances in both areas, with biology promoting developments in the theory of dynamical 

systems and nonlinear dynamics providing a tool for understanding biological phe

nomena. Since the 1970's, various differential equations models have been proposed 

to study the evolutionary (long term) behavior of interacting species, the transmis

sion of infectious diseases, biological invasions and disease spread. The purpose of 

this PhD thesis research project is to investigate the global dynamics and traveling 

waves in some spatially heterogeneous population models. 

In chapter 1, we present some elementary concepts and theorems based on the 

theories of uniform persistence and coexistence state, chain transitive sets, monotone 

dynamics, spreading speeds and traveling waves. 

In chapter 2, we study the global dynamics of a non-autonomous predator-prey 

system with dispersion. We establish sufficient conditions for uniform persistence 

and global extinction, the existence, uniqueness, and global stability of the positive 

periodic solutions. After that, we lift these results to asymptotically periodic systems. 

It has been observed that population dispersal affects the spread of many infectious 
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diseases. An epidemic model in a patchy environment with periodic coefficients is 

investigated in chapter 3. Motivated by the works of Wang and Zhao [51], we present 

a disease transmission model with population dispersal among n patches, and we 

assumed that these coefficients are periodic with a common period due to the seasonal 

effects. We focus mainly on establishing a threshold between the extinction and 

the uniform persistence of the disease, and the conditions under which the positive 

periodic solution is globally asymptotically stable. 

In the book [41], L. Rass and J. Radcliffe raised an open problem on the spreading 

speed and traveling waves for an epidemic model on the integer lattice Z. We address 

this problem in chapter 4 by appealing to the theory of spreading speeds and traveling 

waves for monotone semifl.ows [34]. More precisely, we establish the existence of 

asymptotic speeds of spread, and show that this spreading speed coincides with the 

minimal wave speed for monotone traveling waves. 

Chapter 5 is devoted to the investigation of the asymptotic behavior for a reaction

diffusion model with a quiescent stage, which was proposed by Hadeler and Lewis [18]. 

By appealing to the theory of spreading speeds and traveling waves for monotone 

semifl.ows, we establish the existence of asymptotic speed of spread and show that it 

coincides with the minimal wave speed for monotone traveling waves. By the theory 

of monotone dynamical systems and the persistence theory, we prove a threshold type 

result on the global stability of either the zero solution or a unique positive steady 

state in the case where the spatial domain is bounded. 
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To illustrate the obtained mathematical results, we also provide numerical simu

lations in chapters 2-5. 

At last, we summarize the results we have obtained in the thesis, and also point 

out some problems for future research in chapter 6. 
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Chapter 1 

Preliminaries 

In this chapter, we present some terminologies and known results which will be used 

in this thesis. They are involved in global attractors, uniform persistence, chain 

transitive sets, monotone dynamical systems, and the newly developed theory for 

spreading speeds and traveling waves. 

1.1 Uniform persistence and chain-transitive sets 

Let (X, d) be a complete metric space with metric d. Recall that the Kuratowski 

measure of noncompactness, a, is defined by 

a(B) = inf{r: B has a finite cover of diameter< r}, 

for any bounded set B of X. 

Definition 1.1.1 Let X be a metric space with metric d and f : X --+ X a continuous 

map. A bounded set A is said to attract a bounded set Bin X if lim SUPxes{d(fn(x), A)} 
n-+oo 

= 0. A subset A C X is said to be an attractor for f if A is nonempty, compact and 

invariant (f(A) = A), and A attracts some open neighborhood U of itself. A global 

attractor for f : X --+ X is an attract or that attracts every point in X. 
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Definition 1.1.2 A continuous mapping f : X ~ X is said to be a-condensing if 

f takes bounded sets to bounded sets and a(f (B)) < a( B) for any nonempty closed 

bounded set B C X with a( B) > 0; asymptotically smooth if for any nonempty closed 

bounded set B C X for which f(B) C B, there is a compact set J C B such that J 

attracts B. 

Theorem 1.1.1 {63, Theorem 1.1.2} Iff : X ~ X is asymptotically smooth and 

point dissipative, and if orbits of bounded sets are bounded, then there exists a con-

nected global attractor A that attracts each bounded set in X. 

Definition 1.1.3 Let f : X ~ X be a continuous map and A C X be a nonempty 

invariant set for f. We say A is internally chain-transitive if for any a, b E A and 

any € > 0, there is a finite sequence x 1, · · · , Xm in A with XI = a, Xm = b such that 

d(f(xi), xi+I) < t:, 1:::; i:::; m- 1. The sequence {xi,··· ,xm} is called an t:-chain in 

A connecting a and b. 

Let w > 0 be fixed. We consider a periodic system of ordinary differential equa-

tions 

d = F(t,x) 

{ 

dx 

x:O) = xo E IR~, (1.1) 

where X= (xi, ... , Xn) E mn and IR:;_ = {x E mn: Xj 2:: 0,1:::; i:::; n}. We assume that 

F : IR~ x IR:;_ ~ IR:;_ is continuous and w-periodic in t, that all partial derivatives 

¥xl, 1 :::; i,j :::; n, exist and are continuous on IR~ x IR:;_, and that every solution 
] 

¢(t, x) of (1.1) satisfying ¢(0, x) = x E IR:;_ exists globally on (0, oo]. 
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By the proof of [63, Lemma 5.1.1], it is easy to see the following result holds. 

Theorem 1.1.2 Assume that there exists some 1 ~ i ~ n, such that Fi ;:::: xiFoi(t, x), 

'il(t, x) E IR~ x IR~, where Foi : IR~+l ~ IR~ is continuous and w-periodic in t. If 

is a nonnegative w-periodic solution of (1.1} such that J; Foi(t, u*(t))dt > 0, then 

there exists 6 > 0 such that 

limsupd(¢(nw,x),u*(O));:::: 8, 'ilx E Int(IR~_). 
n->oo 

Let f : X ~ X be a continuous map and X 0 C X an open set. Define 8Xo = 

X\ X 0 , and Ma = {x E 8X0 : fn(x) E 8X0 , 'iln;:::: 0}, which may be empty. 

Definition 1.1.4 A function f : X ~ X is said to be uniformly persistent with 

respect to (X0 ,8X0 ) if there exists 7J > 0 such that liminfn_.00 d(fn(x),8Xo);:::: 7J for 

all x E Xo. 

Definition 1.1.5 Let X be a complete metric space with metric d, and let w > 0. A 

family of mappings T(t) : X ~X, t ;:::: 0, is called an w-periodic semiftow on X if it 

possesses the following properties: 

(1) T(O) =I, where I is the identity map on X; 

(2) T(t + w) = T(t) o T(w), 'ilt;:::: 0; 
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{3) T(t)x is continuous in (t,x) E [O,oo) x X. 

In particular, if {2) holds for any w > 0, T(t) is called an autonomous semiflow. 

Let T(t) : X -t X, t 2:: 0, be an w-periodic semifiow with T(t)X0 C X 0 , 'ilt 2:: 0. 

The following three abstract results will be used in our analysis of periodic systems. 

Theorem 1.1.3 {63, Theorem 3.1.1} Let T(t) be an w-periodic semiflow on X with 

T(t)Xo C X 0 , 'ilt 2:: 0. Assume that S := T(w) is point dissipative in X and compact. 

Then the uniform persistence of S with respect to (X0 , 8X0 ) implies that of T(t) : 

X-tX. 

Theorem 1.1.4 (63, Theorem 1.3.1) Assume that 

(1) f(Xo) C Xo and f has a global attractor A; 

{2} There exists a finite sequence M = {M1, • · • , Mk} of disjoint, compact and 

isolated invariant sets in 8X0 such that 

(a) D(Ma) := UxEMaw(x) C Uf=1Mi; 

{b) No subset of M forms a cycle in 8X0 ; 

{c) Mi is isolated in X; 

{d) W 8 (MJ n X 0 = 0 for each 1 ::::; i ::::; k. 

Then there exists 8 > 0 such that for any compact internally chain-transitive set L 

with L C:. Mi for alll ::::; i ::::; k, we have infxEL d(x, 8X0 ) > 8. In particular, f is uni-
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formly persistent in the sense that there exists T7 > 0 such that lim infn-+oo d(Jn(x), 8X0 ) 2:: 

T7 for all x E Xo. 

Theorem 1.1.5 {63, Theorem 1.3.6} Let X be a closed subset of a Banach space 

(E, II · II), X 0 be a convex and relatively open subset in X, and f : X -t X be a 

continuous map with f(Xo) C X 0 . Assume that f : X -t X is point dissipative 

and compact, and that f is uniformly persistent with respect to (X0 , 8X0 ). Then 

there exists a global attractor A 0 for f : X 0 -t X 0 , and f has a coexistence state 

xo = f(xo) E Ao. 

Theorem 1.1.6 {31, Theorem 3. 1} Let f : X -t X be a continuous map with 

f(X0 ) C X 0 . Assume that f : X -t X is asymptotically smooth and uniformly 

persistent, and that f has a global attractor A. Then f : Xo -t Xo has a global 

attractor A 0 . 

Theorem 1.1. 7 {31, Theorem 4. 1} Let X be a closed and convex subset of a Banach 

space (E, 11·11), X 0 C X be open and convex in E, and <P(t) :X -t X be a continuous

time semifiow on X with <P(t)(X0 ) C X 0 , Vt 2:: 0. Assume that <P(t) is a-condensing 

for each t > 0, and that <P(t) : X 0 -t X 0 has a global attractor Ao. Then <P(t) has an 

equilibrium xo E Ao. 

Let f : U x A -t U be continuous, where U c X, X is a Banach space, and 

A is a metric space with metric p. We write f>.. = f(·, >.) and use the notation 

Bx(x,s)(Bt.(A,s)) for the open ball of radius s about the point x EX(>. E A). For 

a linear operator A on X, we write r(A) for its spectral radius. 
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Theorem 1.1.8 {44} Let (xo, Ao) E U x A, Bx(x0 , 8) C U for some 8 > 0 and 

assume that Dxf(x, >.) exists and is continuous in Bx(x0 , 8) x A. Suppose that 

f(xo, Ao) = Xo, r(Dxf(xo, Ao)) < 1, and f):
0
(x) -t Xo for every x E U. In addi

tion, suppose that 

( 1) For each >. E A, there is a set B ,x C U such that for each x E U, there exists an 

integer N = N(x, A) such that Jt' (x) E B,x; 

(2) C = U.xEA h(B.x) is compact in U. 

Then there exist Eo > 0 and a continuous map x : BA(..\0 , Eo) -t U such that x(Ao) = 

Xo, f(x(>.), >.) = x(>.), and f>:x- x(>.), Vx E U,). E BA(Ao, Eo). 

For each A E A, let S,x :X -t X be a continuous map such that S,x(x) is continuous 

in (>.,x). Assume that every positive orbit for S,x has compact closure in X, and that 

the set U.xEA,xEX w,x(x) has compact closure, where w,x(x) denotes the omega limit of 

X for discrete semifl.ow { 8~}. 

Theorem 1.1.9 {63, Theorem 1.4.2} Assume that S,x(Xo) C Xo, V>. EA. Let Ao E A 

be fixed, and assume further that 

( 1) S ,x0 : X - X has a global attractor, and there exists an acyclic covering 

{M1, .. · , Mk} of O(Ma) for f in 8Xo; 

{2) There exists <50 > 0 such that for any A E A with p(A, >.o) <<5o and any x E Xo, 

lim supn_.oo d(S~(x), Mi) 2:: Do, 1 :S i :S k. 
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Then there exists 8 > 0 such that liminfn_.00 d(SA(x),8X0 ) 2::8 for any,.\ E A with 

p(..\, ..\0 ) < 8 and for any x E X 0 . 

To study asymptotically periodic systems, we also need the following three results. 

Theorem 1.1.10 {63, Lemma 1.2.2) Let Tn :X---+ X, n 2:: 0, be an asymptotically 

autonomous discrete process with limit S : X ---+ X. Then the omega limit set of any 

precompact orbit of {Tn} is internally chain transitive for S. 

Theorem 1.1.11 {63, Theorem 1.2.1) Let A be an attractor, and C a compact 

internally chain transitive set for S: X---+ X. If C n ws(A) =/= 0, then C cA. 

Theorem 1.1.12 {63, Theorem 1.2.2} Assume that each fixed point off is an 

isolated invariant set, that there is no cyclic chain of fixed points, and that every 

precompact orbit converges to some fixed point of f. Then any compact internally 

chain-transitive set is a fixed point off. 

1.2 Monotone dynamics 

Let (E, P) be an ordered Banach space with the positive cone P having nonempty 

interior Int(P). For x, y E E, we write x 2:: y if x- yEP, x > y if x- y E P\{0}, 

and x » y if x- y E Int(P). 

Definition 1.2.1 Let U be a subset of E, and f : U ---+ U a continuous map. The 

map f is said to be monotone if x 2:: y implies that f(x) 2:: f(y); strictly monotone if 

x > y implies that f(x) > f(y); strongly monotone ifx > y implies that f(x) » f(y). 
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Theorem 1.2.1 (Dancer-Hess Lemma) (11, Proposition 1] Let u 1 < u 2 be fixed 

points of the strictly monotone continuous mapping f: U- U, let I:= [u1 , u2] C U, 

and assume that f (I) is precompact and f has no fixed point distinct from u 1 and u2 

in I. Then either 

(1) there exists an entire orbit {xn}~ ...... -oo off in I such that Xn+l > Xn,\:fn EN, 

and lim Xn = u1 and lim Xn = u2, or 
n--+-oo n_.oo 

(2) there exists an entire orbit {yn}~-oo off in I such that Yn+l < Yn, \:In E N, and 

lim Yn = u2 and lim Yn = u1. 
n-+-oo n--tooo 

Definition 1.2.2 A continuous map f : X - X is said to be subhomogeneous if 

f(>.x) 2: >.j(x) for any x E X and ).. E [0, 1]; strictly subhomogeneous if j(>.x) > 

)..j(x) for any x EX with x » 0 and).. E (0, 1). 

Theorem 1.2.2 (62, Lemma 1] Let either V = [0, b]E with b » 0, or V = P. 

Assume f : V - V is continuous, strongly monotone and strictly subhomogeneous on 

V. Then f admits at most one positive fixed point in V. 

Theorem 1.2.3 (63, Theorem 2.3.4] Let V = [0, b]E with b » 0 and f: V- V be 

a continuous map. Assume that 

( 1) f : V - V is strongly monotone and strictly subhomogeneous; 

(2) f : V - V is asymptotically smooth, and every positive orbit off in V is 

bounded; 
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(3} f(O) = 0, and the derivative Df(O) is compact and strongly positive. 

Let r(D f(O)) be the spectral radius of D f(O). Then the following statements are valid: 

(a) If r(D f(O)) ::; 1, then every positive orbit in V converges to 0; 

(b) If r(D f(O)) > 1, then there exists a unique fixed point u* » 0 in V such that 

every positive orbit in V \ {0} converges to u*. 

1.3 Spreading speeds and traveling waves 

Let C be the set of all bounded and continuous functions from lHI to JRk, where lHI = lR 

or Z. We regard any vector in JRk as a function in C. 

For c; = (c;1 , ... , c;k), ~ = (6, ... , ~k) E C, we write c; 2: ~(c; » ~) provided c;i(x) 2: 

~i(x)(c;i(x) > ~i(x)), Vl ::; i ::; k, x E IHI, and c; > ~ provided c; 2: ~but c; =J ~· For 

any two vectors a, b in JRk, we can define a ~ ( >, » )b similarly. For any r E JRk with 

r » 0, we define 

JR~ := {u E lRk: r ~ u ~ 0}, Cr := {u E C: r :2:: u ~ 0} 

We always equip JRk with the norm ll(u1 , ... , uk)il = max{iuil : 1 ::; i ::; k} and 

the positive cone IR~, so that JRk is an ordered Banach space. We also equip C with 

the compact open topology, that is, un -+ u in C means that the sequence of un(x) 

converges to u( x) as n -+ oo uniformly for x in any compact subset of IHI. Moreover, 
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we define the metric function d( ·, ·) in C with respect to this topology by 

oo max llu(x)- v(x)ll 
"'!x!~k 

d(u,v) = L 2k ' 
k=O 

so that (C, d) is a metric space. 

Vu,v E C, 

10 

Define the reflection operator R by R[u](x) = u( -x). Given h E !HI, define the 

translation operator Th[u](x) = u(x- h). Let v » 0 in JRk and Q : Cv ~ Cv. We 

impose the following hypotheses on Q: 

(Al) Q[R[u]] = R[Q[u]], Th[Q[u]J = Q[Th[u]], Vh E IHI. 

(A2) Q: Cv ~ Cv is continuous with respect to the compact open topology. 

(A3) {Q(u)(x): u E Cv,x E !HI} is a precompact subset ofJRk. 

(A4) Q : Cv ~ Cv is monotone (order preserving) in the sense that Q[u] ;:::: Q[u] 

whenever u ;:::: u. 

Note that the hypothesis (Al) implies that Q[u] E IR~ whenever u E JR.~. Thus, Q 

is also a map from IR~ to IR~. 

(A5) Q: JR.~~ IR~ admits exactly two fixed points 0 and v, and for any e: > 0, there 

is a: E IR~ with lia:ll < t such that Q[a:J »a:. 

By [34, Theorems 2.11 and 2.15], it then follows that the discrete-time semiflow 

{Qn}~=o (in short, the map Q) on Cv admits an asymptotic speed of spread c*. A 

linear operators approach was also developed in [34] to estimate the spreading speed 

c* of Q. Let M: C ~ C be a linear operator with the following properties: 
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(Bl) M is continuous with respect to the compact open topology. 

(B2) M is a positive operator, that is, M[u] 2:: 0 whenever u > 0. 

(B3) For any uniformly bounded subset A of C, the set {M[u](x) : u E A, x E IHI} is 

bounded in JRk. 

(B4) M[R[u]] = R[M[u]J, Th[M[u]J = M[Th[u]], 'i/u E C, hE IHI. 

(B5) M can be extended to a linear operator on the linear space 

such that if Un, u E C and un(x) -t u(x) uniformly on any bounded set, then 

M[un](x) -t M[u](x) uniformly on any bounded set. 

By property (B4), M is also a linear operator on JRk. Define the linear map 

In particular, Bo = M on JRk. If O"n, O" E JRk and O"n -tO" as n -too, then O"ne-JJ.X -t 

M[O"e-tlx](O) = Btl[O"], and hence Btl is continuous. Moreover, Btl is a positive operator 

on JRk. Assume that 

(B6) For any f-t 2:: 0, Btl is a positive operator, and there is n0 such that B;o -

BtlBtl . .. Btl is a compact and strongly positive linear operator on JRk. 
~ 

no 
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(B7) The principal eigenvalue >.(0) of B0 is larger than 1. 

Let <P(J-l) = ~ ln >.(J-l), J-l :2: 0, where >.(J-l) is the principal eigenvalue of Bw The 

following result is useful for the estimate of the spreading speed. 

Theorem 1.3.1 {34, Theorem 3.10] Let Q be an operator on Cv satisfying (A1)-(A5) 

and c* be the asymptotic speed of spread of Q. Assume that the linear operator M 

satisfies (B1}-(B7}, and that the infimum of <P(J-l) is attained at some finite value J-l* 

and <P( oo) > <P(J-l*). Then the following statements are valid: 

(1} If Q[u] :::; M[u] for all u E Cv, then c* :::; inftt>O <l>(J-l). 

(2) If there is some ry E IRk, with T7 » 0, such that Q[u] :2: M[u] for any u E C,.". 

then c* :2: inf tt>O <P (J-l) . 

Recall that a family of operators { Qth~o is said to be a semiflow on Cv if it 

satisfies 

(i) Qo(u) = u, VuE Cv. 

(ii) Qt,[Qt2 [u]J = Qt1+t2 [u],Vtl,t2 :2: O,u E Cv. 

(iii) Q(t, u) := Qt(u) is continuous in (t, u) on [0, oo) x Cv· 

We have the result on spreading speeds of continuous-time semiflows. 

Theorem 1.3.2 (34, Theorem 2.17] Let {Qth~o be a semifiow on Cv with Qt[O] = 0, 

Qt[v] = v for all t :2: 0. Suppose that for any t > 0, the map Qt satisfies all hypotheses 
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(A 1}-( AS}, and let c* be the asymptotic speed of spread of the map Q1 . Then the 

following statements are valid: 

(1) For any c > c*, if u E Cv with 0::::; u « v, and u(x) = 0 for x outside a bounded 

interval, then lim Qt[u](x) = 0. 
t-->oo,lxl~tc 

(2} For any c < c* and any a E IR~ with a » 0, there is a r a > 0 such that if u E Cv 

with u(x) ~ a for x on an interval of length 2ra, then lim Qt[u](x) = v. 
t-->oo,lxl::;tc 

If, in addition, Q1 is subhomogeneous, then r a can be chosen to be independent 

of a» 0. 

We say that W(x- ct) is a traveling wave of the semifiow {Qth~o if W: lR---+ JRk 

and Qt[W](x) = W(x- ct), and that W(x- ct) connects v to 0 if W( -oo) = v and 

W(oo) = 0. 

Given a function u E Cv and a bounded interval I = [a, b] C lHI. We define a 

function u1 E C(I, JRk) by u1(x) = u(x). Moreover, for any subset V of Cv, we define 

VI= {ui E C(I,JRk): u E V}. In order to obtain the existence of the traveling wave 

with the wave speed c ~ c*, we need the following assumption: 

(A6) For any number<;> 0, there exists L = L(c;) E [0, 1) such that for any V C Cv 

and any interval I= [a, b] ofthe length c;, we have a(Q[V]I)::::; w(V1 ), where a 

is the Kuratowski measure of noncompactness on the Banach space C(I, JRk). 

We remark that if lHI is discrete, then the hypothesis (A3) on Q implies the hy-

pothesis (A6). The subsequent result implies that the spreading speed of {Qth~o, 
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described in Theorem 1.3.2, is also the minimal wave speed for monotone traveling 

waves. 

Theorem 1.3.3 {34, Theorems 4.3 and 4.4Jf33, Remark 2.3] Let {Qth2:o be a semi

flow on Cv with Qt[O] = 0, Qt[v] = v for all t ~ 0. Assume that for any t > 0, 

the map Qt satisfies all hypotheses (A1)-(A5), and let c* be the asymptotic speed of 

spread of the map Q1 . Then the following statements are valid: 

(1) For any 0 < c < c*, {Qth>o has no traveling wave W(x- ct) connecting v to 0. 

(2) Furthermore, if Qt satisfies (A6), then for any c ~ c*, {Qth;:=::o has a travel

ing wave W(x- ct) connecting v to 0 such that vV(s) is continuous and non

increasing in s E R 



Chapter 2 

A Nonautonomous Predator-Prey Model 

In this chapter, we study the global dynamics of a nonautonomous predator-prey 

system with dispersion. By appealing to the theory of nonautonomous semifiows, 

we establish sufficient conditions for uniform persistence and global extinction. The 

global stability of the positive periodic solutions is also obtained via the Liapunov 

function method. 

This chapter is organized as follows. In Section 2.1, we present the model and the 

research background. Section 2.2 is devoted to establishing uniform persistence and 

global stability of positive periodic solution. In Section 2.3, we obtain sufficient condi

tions for global extinction of the predator species, and provide numerical simulations. 

These results are lifted to asymptotically periodic systems in Section 2.4. 

2.1 Introduction 

One of the fundamental problems in population dynamics is to study the evolution

ary (long-term) behavior of the interacting species. In order to take into account the 

dispersal phenomenon of species, Levin [30] presented an autonomous Lotka-Volterra 

type model in a patchy environment. Kishimoto [29] and Takeuchi [46] also studied 
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this kind of model, but all the coefficients in their systems are constants. For more 

autonomous models in patchy environments, we refer to [2], [10], [19] and references 

therein. However, it is much more realistic to assume that all the intraspecific coeffi-

dents and dispersive coefficients depend on time. In addition, it is natural to assume 

that these coefficients are periodic with a common period due to the seasonal effects. 

In 1998, Song and Chen [45] analyzed the following model, 

dx1 
dt = x1(a1(t)- b1(t)x1 - c(t)y) + D1(t)(x2 - xi) 

dx2 
dt = x2(a2(t) - b2(t)x2) + D 2(t)(x1 - x2) (2.1) 

dy 
dt = y( -d(t) + e(t)x1 - q(t)y). 

Here x1 and y, respectively, are population densities of prey species x and predator . 
species y in patch 1, and x2 is the density of prey species x in patch 2. Predator species 

y is confined to patch 1, while the prey species x can disperse between two patches. 

Di(t)(i = 1, 2) are dispersal coefficients of prey species x. Under the assumption that 

ai(t), bi(t), Di(t)(i = 1, 2), c(t), d(t), e(t), q(t) are all continuous, w-periodic and 

strictly positive functions, Song and Chen [12] obtained sufficient conditions for the 

uniform persistence and the global attractivity of positive periodic solution for system 

(2.1). We should point out that those conditions in [45] are in terms of the maximum 

and minimum values of the periodic coefficient functions. It is more desirable to 

establish natural conditions in terms of average integrals of certain functions over the 

interval [0, w]. More recently, Cui, Takeuchi and Lin [9] studied a different class of 

predator-prey systems with dispersion. See, e.g., [6], [17], [25], [60], [61] for other 
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types of nonautonomous models in patchy environments. 

In this chapter, we will study a general periodic predator-prey system with dis-

persian, 

dx1 
dt = x1g1(xl, y, t) + D1(t)(x2 - x1) 

dxz 
dt = xzgz(xz, t) + D2 (t)(x 1 - x2 ) (2.2) 

dy 
dt = yg3(x1, y, t). 

Motivated by the biological interpretations of model (2.1), we assume that 

93(0, 0, t) < 0. 

(H2) There is M1 > 0 such that g1(M1 , 0, t) :::; 0, g2 (M1 , t) :::; 0, Vt ~ 0; and for each 

B > 0, there is N1 = N1(B) > 0 such that g3(B, N1, t) $ 0, Vt ~ 0. 

Biologically, the first two inequalities in (H1) imply that the per-capita growth 

rate of the prey population in patch 1 decreases both with the prey density in the 

same patch and with the predator density. The first one is due to a limited resource 

or crowding effect, and the second one is a consequence of predation. Similarly, the 

third and fifth inequalities hold because of a limited resource, and the fourth inequality 

implies that the per-capita growth rate of the predator population in patch 1 increases 

with the prey density in the same patch, which is a consequence of predation. The 

last inequality in (H1) implies that the population density of the predator decreases 

if only very small amount of predator and no prey are living in patch 1. The first 
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condition in (H2) implies that the prey population starts to decrease when there are 

plenty of them living in one patch, even without absence of the predator. This is due 

to the carrying capacity for the prey population. The second condition in (H2) means 

that with the limited amount of prey population, the predator population starts to 

decrease when there are plenty of them living in one patch. 

It is observed that sometimes the coefficient functions in model (2.1) are not pe-

riodic, but are asymptotic to periodic functions. We also consider the asymptotically 

periodic system 

dx1 -
dt = X1?h(x1, y, t) + D1(t)(x2- x1) 

dx2 -
dt = x2§2(x2, t) + D2(t)(x1 - x2) (2.3) 

dy -
dt = Y93(xl, y, t) 

under the following two assumptions: 

for (xl, x2, y) in bounded subsets of mt. 

each B > 0, there is N2 = N2(B) > 0 such that g3(B, y, t) ~ 0, Vy ~ N2, t ~ 0. 

2.2 Persistence and positive periodic solutions 

In this section, we study the uniform persistence, existence and global stability of 

positive periodic solution of periodic system (2.2). 
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For the two-dimensional subsystem 

{ 

d~1 
= x1g1(x1, 0, t) + D1(t)(x2- x1) 

dx2 
dt = x2g2(x2, t) + D2(t)(x1- x2), 

we have the following result. 

19 

(2.4) 

Lemma 2.2.1 Let p be the principal Floquet multiplier of the linear system resulting 

from the linearization of (2.4) at x(t) = 0. Then the following statements are valid: 

{1) If p > 1, then (2.4) admits a unique positive w-periodic solution (xi(t),x;(t)), 

and it is globally asymptotically stable for (2.4) in IR~ \ {0}; 

(2) If p::::; 1, then {0,0) is a globally asymptotically stable periodic solution of (2.4) 

. JR2 
m +· 

In particular, there holds p > 1 provided that 

(M1) eitherm(gl(O, 0, t)) := ~ fow gl(O, 0, t)dt > m(D1(t)), or m(g2(0, t)) > m(D2(t)). 

Proof. For simplicity, we write system (2.4) as 

dx 1 ( 
dt = F t,x), (2.5) 

with x = ( x1)' pl(t,x) = ( xlgl(x1,0, t) + D1(t)(x2- x1)). 

x2 x2g2(x2, t) + D2(t)(x1 - x2) 

Obviously, (0, 0) is a w-periodic solution of (2.5). The corresponding linear peri-

odic system of (2.5) is 

dz 1 ( 
dt = DxF t, O)z. (2.6) 
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Let I be the 2 x 2 identity matrix and let ¢(t) be the fundamental matrix solution 

of (2.6) with ¢(0) = I. By the continuity and differentiability of solutions with 

respect to initial values, it easily follows that the Poincare map S associated with 

(2.5) is defined in a neighborhood of (0, 0), and the derivative DS(O) = ¢(w). Thus, 

p = r(¢(w)) = r(DS(O)). Moreover, by assumption (H2), there exists M1 > 0 such 

that 91(M1 ,0,t) :S 0,92(M1,t) :S O,Vt ~ 0. It then follows that for any M ~ M1 , 

the set [0, Mj2 is positively invariant set for system (2.4). By Theorem 1.2.3 with 

the order interval V = [0, Mj2, VM ~ M1 , it follows that the conclusions (1) and (2) 

hold. Note that 

9I(O,O,t)- D1(t) D1(t) 

D2(t) 92(0, t) - D2( t) 

> 
9l(O,O,t)- D1(t) 0 

:= B(t). 

0 92(0, t) - D2(t) 

Let ¢8 (t) be the fundamental matrix solution of the system x = B(t)x with ¢B(O) =I. 

By the comparison principle, it follows that ¢(t) ~ ¢8 (t), and hence, ¢(w) ~ ¢B(w). 

Using [43, Theorem A.4], we then obtain 

p = r(¢(w)) ~ r(¢B(w)) = max{efow(gr(O,O,t)-Dr(t))dt, ef;(g2(0,t)-D2(t))dt}. 

In the case where (Ml) holds, we have p > 1. I 

Lemma 2.2.2 Solutions of (2.2} are uniformly bounded, in the sense that for any 

b > 0, there is B(b) > 0, such that (x 1(t),x2(t),y(t)) E [O,Bj3 if(x1(0),x2(0),y(O)) E 
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[0, bj3. The solutions are also ultimately bounded, in the sense that there is N, such 

that (x 1(t),x2(t),y(t)) lies in [O,Nj3 eventually. 

Proof. Given b > 0, let x(t) = (x1(t), x2 (t), y(t)) be the solution of (2.2) satisfying 

x(O) E [0, b]3. Let B = max{b, M1}, then (x1(t), x2(t)) E [0, B]2, Vt ~ 0. By 

assumption (H2), there exists N1 = N1(B) > 0, such that g3 (B, N1, t) ::; 0, Vt E 

[O,oo). Hence, let N = max{N1 ,b}, we have y(t) E [O,fv], Vt ~ 0. Thus, solutions 

of (2.2) are uniformly bounded. To prove the ultimate boundedness, we consider 

two cases. In the case where p > 1, Lemma 2.2.1 implies that there exists a unique 

positive w-periodic solution (xi(t), x2(t)) of (2.5), and it is globally asymptotically 

stable in IR~ \ {0}. Given a solution (x1(t), x2 (t), y(t)) of system (2.2), we have 

the comparison theorem, we have xi(t) ::; xi(t), i = 1, 2. Fix M > M1. Since 

lim xi(t) = xt(t), there exists T > 0 such that xi(t) ::; xi(t) ::; M for all t ~ T. 
t->oo 

Furthermore, there exists N = N(M) such that g3 (M, N, t) ::; 0. Thus, y(t) ::; N 

for all t ~ T. In the case where p ::; 1, Lemma 2.2.1 implies that every positive 

solution of (2.5) in IR2 \ {0} converges to (0,0). By a similar argument, we can 

show that solutions of (2.2) are ultimately bounded. Consequently, each solution 

(x1(t),x2(t),y(t)) satisfying xi(O) > O,i = 1,2,y(O) > 0, lies eventually in the set 

Ko := {(x1, x2, y) : 0 <xi ::; M, i = 1, 2, 0 < y::; N}. I 
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Theorem 2.2.3 Let (Ml) hold1 and let (xi(t), x;(t)) be the unique positive w-periodic 

solution of system (2.4). Assume that 

(M2) m(g3(xi(t), 0, t)) > 0. 

Then system (2.2} is uniformly persistent in Int(IR!)~ and admits at least one positive 

periodic solution. 

Proof. LetS: X:= IR! ~ IR! be the Poincare map associated with (2.2), that is, 

S(xo) = u(w, x0 ), Vx0 E IR~, 

where u(w, x0 ) is the solution of (2.2) with u(O, x0 ) = x0 . Let Xo := Int(IR!) and 

W 8 (M) := {x EX: lim d(Sn(u), M) = 0}. 
n-+oo 

Obviously, M0 = (0, 0, 0) and M1 = (xi(O), x2(0), 0) are two fixed points of S. Define 

I:1 := {(x1,0,y): x1 > O,y > 0} and I:2 := {(O,x2,y): x2 > O,y > 0}. 

We then claim that 

Then x(O) E I:1 U I:2 => x(t) E Xo. Hence, I:1 n Ma = 0, I:2 n Ma = 0. Since 

<jJ(t, (0, 0, y(O))) = (0, 0, y(t)), <jJ(t, (x1(0), x2(0), 0)) = (x1(t), x2(t), 0), Vt ~ 0, 
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we obtain 

¢(t, {0} X {0} X IR+) c {0} X {0} X IR+, ¢(t, IR~ X {0}) c IR~ X {0}, Vt 2:: 0. 

Letting t = nw, we have 

¢(nw, {0} x {0} x IR+) C {0} x {0} x IR+ C 8X0 , ¢(nw, IR~ x {0}) C IR~ x {0} C 8Xo. 

This proves the claim. By our assumptions, we have fow 93(xi(t), 0, t)dt > 0, and 

either f0w(gl(O,O,t)- D1(t))dt > 0, or J
0
w(g2(0,t)dt- D2(t))dt > 0. By Theorem 

1.1.2, there exists bi > 0, i = 0, 1, such that 

limsupd(Sn(u),Mi) 2:: 8i, u E Xo,i = 0,1, 
n--+oo 

which implies that Mi is isolated in X, and W 8 (Mi) n X 0 = ¢, i = 0, 1. Note 

that fow g3(0, 0, t)dt ::; 0. By Theorem 1.2.3 with n = 1, as applied to the Poincare 

map associated with iJ = yg3(0, y, t), it follows that any nonnegative solution y(t) of 

iJ = yg3(0,y,t) satisfies lim y(t) = 0, and hence, sn(O,O,y(O)) = (O,O,y(nw))-+ M0 
t--+00 

as n -+ oo. Thus, we have 

It is easy to see that no subsets of {M0 , M 1} can form a cycle in 8X0 . By Theorem 

1.1.4, it follows that S is uniformly persistent, and hence, solutions of systeni (2.2) 

are uniformly persistent by Theorem 1.1.3. Moreover, Theorem 1.1.5 implies that S 

has a positive fixed point x0 . Clearly, u(t, x0 ) is a positive periodic solution of (2.2). 

I 
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By Theorem 2.2.3, we can choose m, n, M, N > 0, such that every positive solution 

eventually lies in the compact set 

In order to obtain the uniqueness and global attractivity of periodic solution, we write 

system (2.2) as 

(2.8) 

where x = (x1, X2, X3) E Xo = Int(Rt), F1(t, x) = g1(x1, X3, t) + D1(t) (~ - 1), 
F2(t,x) = g2(x2,t) + D2(t) (;; -1), F3(t,x) = g3(x1,x3,t). Then we have the fol-

lowing result. 

Theorem 2.2.4 Let (M1) and (M2) hold. Assume that 

(M3) There exist continuously differentiable functions f3i: (0, oo)-+ (0, oo), 1::::; i::::; 

3, and a non-positive periodic function b: IR+ -+ IR with m(b) < 0 such that 

Then system (2.8) has a unique positive w-periodic solution which is globally asymp-

totically stable in I nt(IRt). 

Proof. By Theorem 2.2.3, (2.8) has a positive w-periodic solution u(t) = (u1 (t), u2(t), u3(t)). 

Let x(t) = (x1(t), x2(t), x3(t)) be any other solution of (2.8) with x(O) E Xo. Thus, 
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x(t) ultimately lies in K 1. Without loss of generality, we assume that x(t) E K 1 , 

Vt ~ 0. Define 

3 11x; f3i(s) I V(x, u) := L --ds , Vx, u E K 1 . 

i=l u; S 

Since f3i( s) / s > 0, V s > 0, there exist c1 and c2 E (0, oo) such that 

3 3 

c1 L lui- xil:::; V(x,u):::; c2 L lui- xil, Vx,u E K1. 
i=l i=l 

Let p = rx + (1- r)u, r E [0, 1]. It then follows that 

d 1xi(t) (J(s) 
-d -' -ds = f3i(xi(t) )Fi(t, x( t)) - f3i( ui(t) )Fi( t, u(t)) 

t u;(t) S 

td 
= Jo dr (f3i(Pi)Fi(t, p )dr 

= 11 

[ B(f3i(P~:(t,p)) (xi- Ui) + f3i(Pi)· 

~ 8Fi(t,p) ( . _ ·)] d 
~ a X 3 u3 r. 

i=l,#i Pi 

Let V(t) = V(x(t), u(t)), and n+V(t) be the upper Dini derivative of V(x(t), u(t)) 

with respect to t. We then have 

By the comparison theorem, we get 

1 

0 :::; V(t) :::; ( ef~ b(s)ds) C1 V(O). 
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Since m(b) < 0, we have lim V(t) = 0, which implies that lim lxi(t)- ui(t)i = 0, i = 
t-+oo t-+oo 

1, 2, 3. Let c3 := ~~~ { ( ef~ b(s)ds) "~'}. Since 

3 1 3 

c1 L lui(t)- xi(t)i ::; V(t) ::; ( ef~b(s)ds) Ci V(O) ::; ca V(O) ::; c2c3 L iui(O)- xi(O)I, 
i=1 i=1 

it follows that u( t) is Liapunov stable. I 

Remark 2.2.5 Letting /3i = 1, i = 1, 2, 3, we have the following sufficient condition 

for {M3): 

a93(x1.x3,t) _ ag1(x1,x3,t) < 0 'it > 0 x = (x x x ) E K . 
ax3 ax3 , - ' 1' 2' 3 1 

Remark 2.2.6 Note that for system {2.1}, {M4) reduces to 

(M5) b > e - D 1 f2 + .!2:;.. b > !2.J.. - D 2i 1 q(t) > c(t). 
1 X l X2 1 2 XI x2 

1 

For a continuous functionj(t), we define fu := SUPt;:::o{f(t)}, JL := inft;:::o{f(t)}. It 

is easy to see that the following condition is sufficient for {M4): 

2.3 Global extinction and numerical simulations 

In this section, we establish sufficient conditions for the global extinction of the preda-

tor species, and provide numerical simulation results. 

Theorem 2.3.1 Let {M1) hold. Assume that 
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(M1) m(g3 (xi(t), 0, t)) < 0. 

Then (xi(t), x;(t), 0) is globally asymptotically stable in ffi! \ {0}. 

Proof. It suffices to prove that (xi(O), x;(O), 0) is a globally asymptotically stable 

fixed point of S. By (M1) and Theorem 1.1.2, there exists o0 > 0 such that 

limsupd(Sn(u),(O,O,O)) ~ 00 , VuE X 0 . 
n-+oo 

Then (0, 0, 0) is an isolated invariant set for S in X, and Xo n W 8 ((0, 0, 0)) = 0. 

By (M7), we can choose 0 < E « 1 such that m(g3 (xi(t) + E, 0, t)) < 0. Let 

(xi (t), x2(t), y(t)) be a given solution of (2.2) with (xi (0), x2(0), y(O)) E Xo. As argued 

in the proof of Lemma 2.2.2, there exists T > 0 such that xi(t)::; xi(t)::; xi(t) +<=as 

t ~ T. Thus we have iJ::; yg3(xi(t) + E, y, t), Vt ~ T. By Theorem 1.2.3 with n = 1, 

as applied to the Poincare map associated with iJ = yg3(xi(t) + E, y, t), it follows 

that any nonnegative solution jj(t) of iJ = yg3 (xi(t) + <=,y,t) satisfies lim jj(t) = 0. 
t-+oo 

By the standard comparison method, we see that lim y(t) = 0. For convenience, 
t-+oo 

we write w(xi(O), x2(0), y(O)) =WI x {0}, where (xi(O), x2(0), y(O)) E Xo. Note that 

w(xi (0), x2(0), y(O)) is a compact internally chain- transitive set for S. It follows that 

WI is a COmpact internally chain-transitive set for SI : ffi~ -+ ffi~, where SI is the 

Poincare map associated with (2.4). Let 

We further claim that WI n W 8 (xi(O), x2(0)) =I= 0. Assume, by contradiction, that 

WIn W 8 (xi(O),x;(o)) = 0. Then WI = (0,0), and hence, w(xi(O),x2(0),y(O)) = 
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(0,0,0). Thus, we have (x1(0),x2(0),y(O)) E W 8 (0,0,0), which contradicts the fact 

that Xo n W 8 ((0, 0, 0)) = 0. Since W! n W 8 (xi(O), x2(0)) =I 0, Theorem 1.1.11 implies 

that w1 = (xi(O), x2(0)). Thus, w(x1(0), x2(0), y(O)) = (xi(O), x2(0), 0), which proves 

that (xi(O), x2(0), 0) is globally attractive in IRt \ {0}. 

It remains to prove the stability of (xi(t), x2(t), 0) for (2.2). For simplicity, we 

write the system (2.2) as 

dx 
dt = G(t, x), 

where x = (x1,x2,y), G(t,x) = (G1(t,x),G2(t,x),G3 (t,x)) with 

G3(t, x) - yg3 (x1, y, t). 

Let x*(t) = (xi(t), x2(t), 0). Note that DxG(t, x*(t)) = 

gl(xl,O,t)+x1~-D1(t) D1(t) X1~iy=O 

D2(t) g2(x2, t) + x2~- D2(t) 0 

0 0 

It then follows that 

x1(0) 
H(t) 

<Pn.,G(t,x•(t))(t) x2 (0) 

y(O) 0 

(2.9) 

"'1 =xi(t) 
"'2=x2(t) 
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with 

where 4?t ( t- s) denotes the ith row and jth column element of the matrix 4? A1 ( t- s). 

It follows that 

( 

q, A 1 (w) fi(w) ) . 
q,D.,G(t,x•(t))(w) = 

0 q,A2 (w) 

Therefore, r(¢D.,G(t,x•(t))(w)) = max{r(¢A1 (w)), r(¢A2 (w))}. Since 
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the comparison principle implies that ¢At ( t) ~ ¢ A3 ( t), and hence ¢At ( w) ~ ¢ A3 ( w). 

By [43, Theorem A.4], we have r(cPAt(w)) < r(¢A3(w)). Since 

( 
xi(O) ) ( xi(t) ) cPA3(t) = , 

x2(0) x2(t) 

It follows that 

( 
xi(O) ) _ ( x;:(w) ) _ ( xi(O) ) cPA3 (w) - - , 
x2(0) x2(w) x2(0) 

and hence, r(¢A3(w)) = 1. Consequently, 

r(¢D:r:G(t,x•(t))(w)) = max{r(cPAt (w)), ef;' 93 (xi(t),O,t)dt} < 1, 

which implies the stability of (xi(t), x2(t), 0). I 

In order to simulate the global coexistence, we consider the following system 

(2.10) 

We then get a compact region 

such that for each solution (x 1(t),x2 (t),y(t)) satisfying xi(O) > O,i = 1,2,y(O) > 0, 

there exists Ti > 0 such that (x 1(t),x2(t),y(t)) E K 1 fort~ Ti. It is easy to verify 
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.... 1(1) 

Figure 2.1: The solution of system 

(2.10): Global coexistence 

that conditions (M1), (M2) and (M4) are satisfied. By Theorem 2.2.4, system (2.10) 

has a unique positive 2n-periodic solution, which is globally asymptotically stable in 

Int(IRt). Our numerical simulations in Figure 2.1 confirm this result. 

Regarding the global extinction, we modify system (2.10) into the following one: 

~1 
= x1(21-7x1 - y) + (8 + sint)(x2- x1) 

d~2 = x2(10- 5x2) + (~ + ~ sint) (x1- x2) 

dy 
dt = y( -11 + 10x1 - 16y). 

Thus, we get a compact region 

(2.11) 

such that for each solution (x 1(t), x2(t), y(t)) with xi(O) > 0, i = 1, 2, y(O) 2:: 0, there 

exists f2 > 0 such that (x 1(t), x2 (t), y(t)) E K 2 fort 2:: 'f2 . It is easy to verify that the 

conditions (M1) and (M7) are satisfied for (2.11). By Theorem 2.3.1, (xi(t), x;(t), 0) is 

globally asymptotically stable. Our numerical simulations in Figure 2.2 are consistent 

with this result. 
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Figure 2.2: The solution of system 

(2.11): Global extinction 

2.4 Asymptotically periodic case 

32 

In this section, we will extend the results in Sections 2.2 and 2.3 to the asymptotically 

periodic system (2.3). 

Let ci> : b.0 x X --> X, b.0 = { ( t, s) : 0 ::;; s ::;; t < oo}, be the nonautonomous 

semiflow associated with system (2.3), and T(t) : X --> X, t ~ 0, the w-periodic 

semiflow associated with system (2.2). The assumption (H3) implies that 

for any three sequences ti --> t, ni ---. oo, Xj --> x with x, Xj E X. Thus, ci> is an 

asymptotically periodic semiflow with limit w-periodic semiflow T(t) :X--> X, t ~ 0. 

Define Tn(x) := ci>(nw,O,x),Vn E N,x EX. Then Tn: X--> X is an asymptotically 

autonomous discrete process with limit autonomous discrete semiflow S : X --> X. 

By Lemma 2.2.2, we see that solutions of (2.3) are uniformly bounded. We further 

have the following three results on the long-term behavior of solutions of (2.3). 
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Theorem 2.4.1 Let (Ml} and (M2} hold. Then system (2.3} is uniformly persistent 

in I nt(IRt). 

Proof. For each i = 0, 1, let 

W8 (Mi) = {x E IRt : lim Tn(x) = Mi}· 
n_.oo 

By [16, Theorem 5.1.2], it then follows that W8 (Mi) n X 0 = 0, i = 0, 1. Let w(x) be 

the omega limit set of any precompact orbit of Tn(x), x E X 0 . By Theorem 1.1.10, 

w(x) is a compact internally chain transitive set for sn. Now we show that w(x) ct. 

Mi, i = 0, 1. Assume, by contradiction, that w(x) C Mi for some i and x E X0 . Then 

Tn(x) ~ Mi as n-+ oo, and hence, X E W8 (Mi) nXo, a contradiction. By Theorem 

1.1.4, it then follows that there exists <5 > 0 such that infyew(x) d(y, 8X0 ) ~ <5. Let A0 

be the global attractor for S : X 0 -+ X 0 . Then w(x) c Xo, and hence w(x) c A0 . 

Therefore, Tn(x) ~ Ao, that is, lim d(Tn(x), A0 ) = 0. Let A= Ut;::oT(t)Ao C Xo. 
n--co 

By [63, Theorem 3.2.1], it follows that lim d(q)(t, 0, x), A) = 0, which implies the 
t--oo 

uniform persistence of the solution q)(t, 0, x), x E X 0 , of system (2.3). I 

Theorem 2.4.2 Assume that (M1},(M2} and (M3} hold, and let (u1(t),u2(t),v(t)) 

be the unique positive w-periodic solution of (2.2). Then every solution of (2.3} in 

Int(IR!) is asymptotic to (u1(t),u2(t),v(t)). 

Proof. By Theorem 2.2.4, (u1(0), u2(0), v(O)) is a global attractor for Sin Xo. Let 

X E Xo be fixed. Then w(x) is internally chain transitive for s. As mentioned in 
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the proof of Theorem 2.4.1, W8 (Mi) n X 0 = 0, i = 0, 1. We now claim that w(x) n 

W 8 (u1(0), u 2 (0), v(O)) =/:- 0. Otherwise, we have 

Applying the convergence Theorem 1.1.12 to Sir: : :E ~ :E, we have either w(x) = M 0 , 

or w(x) = M1 , which contradicts W8 (Mi) n X 0 = 0, i = 0, 1. By Theorem 1.1.11, we 

then have w(x) = (u1(0),u2 (0),v(O)), and hence, [63, Theorem 3.2.1] implies that 

11</>(t,O,x)- (u1(t),u2(t),v(t))ll ~ 0 as t ~ oo. 1 

Theorem 2.4.3 Let (Ml} and (M7) hold. Then every solution of (2.3} in Int(ffi.t) 

is asymptotic to (xi(t), x2(t), 0). 

Proof. By Theorem 2.3.1, (xi(O), x2(0), 0) is a global attractor for S in X 0 . Let 

X E Xo be fixed. Then w(x) is internally chain-transitive for s. Note that 

W 8 (xi(O), x;(o), 0) =X\ {(0, 0, y) : y 2:: 0}. 

We claim that w(x) n W8 (xi(O), x2(0), 0) =/:- 0. Otherwise, w(x) c {(0, 0, y) : y 2:: 0}. 

Hence, w(x) = (0, 0, 0), which contradicts the fact that W 8 (Mo) n X 0 = 0. By 

Theorem 1.1.11, we have w(x) = (xi(O), x2(0), 0), and hence, every solution of (2.3) 

in Xo is asymptotic to (xi(t), x2(t), 0). I 

Finally, we should point out that Cui, Takeuchi and Lin [9] studied the permanence 
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and extinction of the following dispersal population systems, 

(2.12) 

dy 
dt = y( -d(t) + e(t)x1¢(t, x 1)- q(t)y). 

Note that system (2.12) with n = 2 and D 12 = D21 is a special case of our model 

with D1 = D2 • Our sufficient conditions for permanence and global extinction are 

similar to those in [6]. However, the existence, uniqueness and global attractivity of 

positive periodic solution and the asymptotically periodic case were not discussed in 

[9]. Furthermore, our dynamical systems approach may also apply to the analysis of 

system (2.12). 



Chapter 3 

A Periodic Epidemic Model 

An epidemic model in a patchy environment with periodic coefficients is investigated 

in this chapter. By employing the persistence theory, we establish a threshold between 

the extinction and the uniform persistence of the disease. Further, we obtain the 

conditions under which the positive periodic solution is globally asymptotically stable. 

At last, we present two examples and numerical simulations. 

This chapter is organized as follows. In Section 3.1, we present the model and 

introduce some related work. In Section 3.2, a threshold between the extinction and 

persistence of the disease is established. In Section 3.3, we prove the uniqueness and 

the global asymptotic stability of the positive periodic solution when susceptible and 

infectious individuals have the same dispersal rates, and the global attractivity of 

the positive periodic solution when the dispersal rates of susceptible and infectious 

individuals are very close. Finally, we present numerical simulations for the model 

with two patches. 



§ 3.1. Introduction 37 

3.1 Introduction 

The study of the threshold that determines the persistence and extinction of infectious 

diseases is one of the most important subjects in mathematical epidemiology. An 

extensive literature have dealt with the threshold conditions of many different kinds of 

epidemic models. The reproduction numbers for a series of epidemic models have been 

studied by many mathematicians(see, e.g., [13, 14, 26, 48, 8, 15, 16] and references 

therein). 

It has been observed that population dispersal affects the spread of many infec-

tious diseases. In 1976, Hethcote [22] put forth an epidemic model with population 

dispersal between two patches. After him, Brauer and van den Driessche [3] proposed 

a model with immigration of infectives. In [51], Wang and Zhao presented a disease 

transmission model with population dispersal among n patches, 

n 

s~ = B·(N)N·- II·S.- (J.S.J. + "V.f. + "a··S· 1 <_ i <_ n, l l l l t"'l l l l l It l L.., ~J J ' 
j=l 

n 

If = (JiSJi - (P,i + 'Yi)Ii + 2: biiii, 1 ~ i ~ n, 
j=l 

with the properties 

n 

Laii = 0, 
j=l 

n 

2:::: bii = 0, Vl ~ i ~ n, 
j=l 

(3.1.1) 

(3.1.2) 

and established a threshold between the extinction and thJJ uniform persistence of the 

disease for this model. They also considered the global attractivity of the disease-free 

equilibrium under the condition that the dispersal rates of susceptible and infective 
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individuals are the same in each patch. Moreover, the uniqueness and the global 

attractivity of the endemic equilibrium of this model has been studied by Jin and 

Wang [28]. Recently, Wang and Zhao [52] incorporated an age structure into their 

model in order to simulate the phenomenon that some diseases only occur in the 

adult population. They established sufficient conditions for global extinction and 

uniform persistence. However, these authors only considered constant coefficients in 

model (3.1.1). Since periodicity has been observed in the incidence of many infec-

tious diseases, such as measles, chickenpox, mumps, rubella, poliomyelitis, diphtheria, 

pertussis and influenza (see, e.g. ,[23]), it is more realistic to assume that all the coef-

ficients depend on time periodically. As mentioned in [12] and [35], the seasonality is 

an important factor for the spread of infectious diseases, such as the marked change 

of the contact rate caused by the school system or the weather changes( e.g., measles), 

the emergence of the insects caused by the seasonal variation( e.g., temperature, hu-

midity, etc.). We will assume that these coefficients are periodic with a common 

period due to the seasonal effects. 

In this chapter, we consider the periodic system 

I 
Si = B;(t, N;)N; - 14(t)S; - /3;(t)S,~, + ?;(t)I, + ;~ a;;(t)S;, 1 :o; i :o; n, 

II= f3i(t)Si!i- (J..ti(t) + ''li(t))Ii + 2: bij(t)Ij, 1 ~ i ~ n, 
j=l 

(3.1.3) 

with all functions being continuous and w-periodic in t. Here Si, Ii are the numbers 

of susceptible and infectious individuals in patch i, respectively. Ni = Si + Ii is the 
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number of the population in patch i, Bi(t, Ni) is the birth rate of the population in 

the ith patch, J-li(t) is the death rate of the population in the ith patch, and li(t) 

is the recovery rate of infectious individuals in the ith patch. -aii(t), -bii(t) ~ 0 

represent the emigration rates of susceptible and infectious individuals in the ith 

patch, respectively. aij(t), bii(t),j =/= i, represent the immigration rates of susceptible 

and infectious individuals from jth patch to ith patch. Since the death rates and 

birth rates of the individuals during the dispersal process are ignored in this model, 

we have 
n n 

L aji(t) = 0, L bji(t) = 0, V1 :::; i :::; n, 'it E [0, w]. (3.1.4) 
j=l j=l 

We further assume that 

(H1) aij(t) ~ 0, bij(t) ~ 0, aii(t) :::; 0, bii(t) :::; 0, V1 :::; i =/= j :::; n, t E [0, w], and the 

two n x n matrices ( aij ( t)) and ( bii ( t)) are irreducible. 

(H2) Bi(t,Ni) > 0, \f(t,Ni) E IR+ x (O,oo), 1:::; i:::; n. 

(H3) Bi(t, Ni) is continuously differentiable with EJB~~;;) < 0, V(t, Ni) E IR+ x 

(O,oo), 1:::; i:::; n. 

f-l~ := min f-ti(t). 
tE[O,w] 

Biologically, (H1) implies that these n patches cannot be separated into two groups 

such that there is no immigration of susceptible and infective individuals from first 

group to second group (see the definition of irreducibility in Section 3.2); (H2) and 
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(H3) mean that each birth rate function is positive and decreasing; and (H4) repre

sents the case where each birth rate cannot exceed the death rate when the population 

number is sufficiently large. 

3.2 Threshold dynamics 

Let (IR", IR~) be the standard ordered k-dimensional Euclidean space with a norm 11·11· 

For u, v E IR", we write u ~ v provided u- v E IR~, u > v provided u- v E IR~ \{0}, 

and u » v provided u- v E Int(IR~). 

Recall that a k x k matrix ( aij) is said to be cooperative if all of its off-diagonal en

tries are non-negative; irreducible if its index set {1, 2, · · · , k} cannot be split into two 

complementary sets (without common indices) {m1 , m2 , · · · , mJl.} and {n1, n2 , • • • , nv} 

(J-L + v = k) such that ampnq = 0, \>'1 ::; p::; J-L, 1 ::; q::; v. 

Let A(t) be a continuous, cooperative, irreducible, and w-periodic k x k matrix 

function, <I> A(·) ( t) be the fundamental solution matrix of the linear ordinary differential 

system x' = A ( t) x, and r (<I> A(-) ( w)) be the spectral radius of <I> A(-) ( w). It then follows 

from [1, Lemma 2] (see also [24, Theorem 1.1]) that <I> A(-)(t) is a matrix with all entries 

positive for each t > 0. By the Perron-Frobenius theorem, r(<I>A(·)(w)) is the principal 

eigenvalue of <I> A(-) ( w) in the sense that it is simple and admits an eigenvector v* » 0. 

The following result is useful for our subsequent comparison arguments. 

Lemma 3.2.1 Let J-L = ~lnr(<I>Ao(w)). Then there exists a positive, w-periodic 

function v(t) such that eJl.tv(t) is a solution of x' = A(t)x. 
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Proof. Let v* » 0 be an eigenvector associated with the principal eigenvalue 

r( «<> AO ( w)). By the change of variable x( t) = el-ltv( t), we reduce the linear system 

x' = A(t)x to 

v' = A(t)v- pv = (A(t) - pl)v. (3.2.5) 

Thus, v(t) := «<>(A(·)-!-ll)(t)v* is a positive solution of (3.2.5). It is easy to see that 

Thus, v(t) is a positive w-periodic solution of (3.2.5), and hence, x(t) = eJ.Ltv(t) is a 

solution of x' = A(t)x. I 

Let P: JR~n--> JR~n be the Poincare map associated with (3.1.3), that is, 

where u(t, x0
) is the unique solution of (3.1.3) with u(O, x0

) = x0
. In order to find 

the disease-free periodic solutions of (3.1.3), we consider 

n 

s; = Bi(t, Si)Si- /-Li(t)Si + L aij(t)Sj, 
j=l 

1::::; i::::; n. 

Let P1 : IR~ -->JR.~ be the Poincare map associated with (3.2.6), that is, 

where u1(t,S0
) is the solution of (3.2.6) with u1(0,S0 ) =SO. 

(3.2.6) 
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If z is a nonnegative constant, we define an auxiliary matrix 

M(t, z) := 

B1(t,z)- f.LI(t) + au(t) 

a21(t) 

Bn(t, z)- f.Ln(t) + ann(t) 

42 

This matrix will be used to prove the existence and the uniqueness of a positive fixed 

point of P1 and is different from the standard Jacobian matrix. 

Let F: IR~ x IR~ ~ JRn be defined by the right-hand side of (3.2.6). It is easy to 

see that F has the following properties: 

(Ml) Fi(t, S) ?:: 0 for every S?:: 0 with Si = 0, t E IR~,l :S: i :S: n; 

(M2) ~ ?:: 0, i =!= j, V(t, S) E IR~ x IR~, and D8 F(t, 0) is irreducible for each t E 
J 

(M3) For each t ?:: 0, F(t, .) is strictly subhomogeneous on IR~ in the sense that 

F(t, aS) > aF(t, S), 'iS» 0, a E (0, 1); 

(M4) F(t, 0) = 0, and F(t, S) < DsF(t, O)S, 'it?:: 0, S » 0. 

Note that the nonlinear system (3.2.6) is dominated by the linear system S' -

DsF(t, O)S. It then follows that for any S0 E IR~, the unique solution u 1(t, S0 ) 

of (3.2.6) satisfying ul (0, S0
) = S0 exists globally on (0, 00) and ul ( t, S0

) 2: 0, 'it ?:: 0. 

We claim that (3.2.6) admits a bounded positive solution. Indeed, in view of (H4), 

we can choose a sufficient large real number K such that J0w(f.Li(t) - Bi(t, K))dt > 
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0, i = 1, · · · , n. Then by Lemma 3.2.1, there is a positive, w-periodic function v(t) = 

(v1(t), v2(t), · · · , vn(t)) such that V(t) = eP.tv(t) is a solution of V' = M(t, K)V, 

where Jl = tIn r(<I>M(·,K)(w)). Let L:(t) = 2:~=1 Vi(t) = eP.t L:~=l vi(t). By the 

first equation in (3.1.4), it easily follows that L:'(t) :::;: a(t)L:(t), Vt 2': 0, where 

a(t) = max{Bi(t, K)- JJi(t) : 1:::;: i:::;: n}. Thus, lim L:(t) = 0, and hence Jl < 0, i.e., 
t--oo 

r(<I>M(·,K)(w)) < 1. Choose l > 0 large enough such that lvi(t) > K, 1 :S i :S n, Vt E 

[0, w]. Set H(t) = lv(t). If we rewrite (3.2.6) asS'= F(t, S), it is easy to see that 

F(t, H(t)) < M(t, K)H(t), Vt 2:: 0, (3.2.7) 

where (H3) is used. By the standard comparison theorem(see, e.g., [43, Theorem 

B.1]), it follows that 

0 < u1(mw, lv(O)) :S <I>M(·,K)(mw)lv(O) = r(<I>M(·,K)(mw))lv(O) 

= r( <I> M(-,K) (w) rzv(O) < lv(O), Vm 2': 0. 

that is, P["'(lv(O)) < lv(O), Vm 2:: 0. Consequently, PF(lv(O)) is bounded. In order for 

P1 to admit a positive fixed point, we need to assume that 

(H5) r(ci>M(·,O)(w)) > 1. 

By [63, Theorem 2.1.2], it then follows that the Poincare map P1 has a unique positive 

fixed point S* = (Si, S2, · · · , S~) which is globally attractive for S0 E JR~ \ {0}. Thus, 

Eo = (Si, S2, · · · , S~, 0, · · · , 0) is the unique disease-free fixed point of the Poincare 

map P. 
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To investigate the global dynamics of (3.1.3), we first show that (3.1.3) admits a 

family of compact, positively invariant sets. For convenience, we denote the positive 

solution (SI(t), · · · , Sn(t), II(t), · · · , In(t)) of (3.1.3) by (S(t), I(t)). 

Lemma 3.2.2 Let (H1)-(H5) hold. Then there is anN* > 0 such that every forward 

solution in IR~n of (3.1.3} eventually enters into GN· := {(S,I) E IR~n : :L~=1 (Si + 

Ii) ~ N*}, and for each N ~ N*, GN is positively invariant for {3.1.3). 

n 

Proof. Let N = 2:::: Ni, Ni = Si + h By (3.1.3) and (3.1.4), we have 
i=l 

n n 

N' = :2::: (Bi(t, Ni)- J-li(t)) Ni ~ :2::: (B~(Ni)- PD Ni. (3.2.8) 
i=I i=I 

If Bf(O+) := lim Bf(Ni) < p!, i = 1, 2, ... , n, then there exists an a > 0 such that 
N;-0+ 

N'(t) ~ -aN(t), Vt ~ 0, and hence, Lemma 3.2.2 holds for any positive number N*. 

Otherwise, we partition { 1, 2, · · · , n} into two sets PI and P2 such that 

Bi(O+) >I-lL Vi E PI 

Without loss of generality, we suppose that PI = {1, · · · , m} and P2 = {m+1, · · · , n}. 

For i E PI, since Bf(O+) > J-l~ and Bi( oo) < I-lL (H3) implies that there is a unique 

ki > 0 such that Bf(ki) - 1-li = 0. It follows from (H4) that there is an N° > 6 such 

that 
m 

(Bf(N)- PDN < - :2::: kiBj(O+)- 1, 
j=I 
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Let N* = nN°. By the definition of N, it is easy to see that N 2: N* implies Nio 2: N° 

for some 1 :::; i 0 :::; n. It then follows from (3.2.8) that 

m 

N'(t):::; 2:: Bj(O+)kj + (B~(Nio)- JJ-!
0
)Nio < -1, if N ( t) 2: N*, 

j=l 

which implies that G N, N > N* is positively invariant and every forward orbit 

eventually enters into G N*. I 

Let S*(t) be the positive periodic solution of (3.2.6) with S*(O) = S*. Define 

bu(t) bln(t) 

M1(t) := 

bnl(t) bnn(t) 

where bii(t) = f3i(t)S;(t)- JJ-i(t) -'"'!i(t) +bii(t), 1 :::; i :::; n. Clearly, M 1(t) is irreducible 

and has nonnegative off-diagonal elements. 

In the case where the susceptible and infective individuals in each patch have the 

same dispersal rate, we have the following result on the global attractivity of the 

w-periodic solution (S*(t), 0). 

Theorem 3.2.3 Let (H1)-(H5) hold and r(~Mt(·)(w)) < 1. If aij(t) = bij(t) for 

1 :::; i,j :::; n, Vt E [0, w], then lim (S(t)- S*(t)) = 0, lim I(t) = 0 for all (8°, ! 0
) E 

t--+oo t--+oo 

(JR~ \ {0}) X JR~. 

Proof. Let us consider a nonnegative solution (S(t), I(t)) of (3.1.3). We want to 

show that 

lim I(t) = 0. 
t--+oo 

(3.2.9) 
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By (3.1.3), we have 

n 

Nf = Bi(t, Ni)Ni- J.Li(t)Ni + L aij(t)Nj, 
j=l 

46 

1 ~ i ~ n. (3.2.10) 

By the aforementioned conclusion for (3.2.6), the Poincare map associated with 

(3.2.10) has a unique positive fixed point S*(O) which is globally attractive in JR~ \ {0}. 

It then follows that for any E > 0, there holds N(t) = S(t) + I(t) < S*(t) + €, where 

€ = (E, · · · , E) E Int(JR~), when t is sufficiently large. Thus, if t is sufficiently large, 

we have 

n 

1; < /3i(t)(St(t) + E)Ii- (J.Li(t) + ri(t))Ii + L bij(t)Ij, 1 ~ i ~ n. (3.2.11) 
j=l 

It then suffices to show that positive solutions of the auxiliary system 

n 

1; = /3i(t)(St(t) + E)li- (p,i(t) + ri(t))li + L bij(t)lj, 1 ~ i ~ n, (3.2.12) 
j=l 

tend to zero as t goes to infinity. Let M 2 ( t) be the matrix defined by 

an E > 0 small enough such that r(<I>Ml(·)+E.Nh(-)(w)) < 1. By Lemma 3.2.1, there is 

a positive, w-periodic function v(t) = (v1(t), v2 (t), · · · , vn(t)) such that peiltv(t) is a 

solution of (3.2.12) for any constant p, where P, = ~ ln r(<I>M1 (-)+EM2 (-)(w)). V/0 E JR~, 

We can choose a real number p0 > 0 such that ! 0 ~ p0v(O). By the standard 

comparison theorem (see, e.g., [43, Theorem A.4]), we then get (3.2.9). 
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For any (S0 ,!0
) E (IR~\{0}) x JR.~, we have N° = S 0 + 1° E JR.~\ {0}. By 

the global attractivity of S*(O) for P1 , it then follows that lim (S(t) - S*(t)) -
t--->oo 

lim (N(t)- I(t)- S*(t)) = 0. 
t--->00 

I 

If the susceptible and infective individuals in each patch have different dispersal 

rate, and the initial value 1° is small, we still have the result on the attractivity of 

thew-periodic solution (S*(t), 0). 

Theorem 3.2.4 Let (H1}-(H5} hold and r(<I>M!(·)(w)) < 1. Then there exists 6 > 0 

such that for every (S0 , ! 0
) E GN· with S0 =1- 0 and I? < 6, 1 :::; i :::; n, the solution 

(S(t), I(t)) of (3.1.3} satisfies lim (S(t)- S*(t)) = 0, lim I(t) = 0. 
t--->oo t--->oo 

Proof. Let us consider an auxiliary system, 

n 

s; = Bi(t, Si)Si- J-li(t)Si + (Bi(t, 0+) + 'Yi(t))E + L aij(t)Sj, 1:::; i:::; n (3.2.13) 
j=l 

where E > 0 is a small constant to be determined. By (H5) and the previous analysis 

of system (3.2.6), we can restrict E small enough such that (3.2.13) admits a globally 

attractive and positive w-periodic solution S*(t, E). Let S€(t, N*) be the solution of 

(3.2.13) through (N*, · · · , N*) at t = 0. We choose an integer n 1 > 0 such that 

S€(t, N*) < S*(t, E)+ €, 
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Define a matrix M1 ( t, f.) by 

f3I (t)S;(t, c) - /-"! (t) - 11 (t) + bu (t) 

b21 ( t) 

48 

f3n(t)S~(t, c)- Jl>n(t)- !n(t) + bnn(t) 

Since M1(t,O) = M1(t) and r(<PM1 (·,c)+cM2 (t)(w)) is continuous for small c, we can now 

choose f. small enough such that r(<PM1 (A+cM2(-)(w)) < 1. By Lemma 3.2.1, there is 

a positive w-periodic function v(t) = (v1(t), · · · , vn(t)) such that i(t) = eJ.L3tv(t) is a 

solution of i' = (M1(t, c)+ cM2(t))i, where ji,3 = ~ ln r(<PM1 (·,<)+cM2(-)(w)). Choose 

k > 0 small enough such that kv(t) < € for all t E [O,w]. 

Now we define another auxiliary system, 

n 

if = f3i(t)N* ji - (Jl>i( t) + li( t) )ii + L bij(t)ij' 1 ::; i ::; n. (3.2.14) 
j=l 

Let i(t, 6') be the solution of (3.2.14) through (6', · · · , 6') E JRn at t = 0. We choose 

6 > 0 small enough such that 

i(t, 6') < keJ.LJtv(t) ::; kv(t) < €, Vt E [0, n1w]. (3.2.15) 

Let (S(t), I(t)) be a nonnegative solution of (3.1.3) with (8°,!0
) E GN·, 8° # 0 and 

If < o, 1 ::; i ::; n. It then follows that S(t) » 0, Vt > 0. We further claim that 

I(t) ::; keJ.L3tv(t), \::It~ 0. Suppose not. By the comparison principle and (3.2.15), there 
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exists a q, 1 :::; q:::; n, and a T1 > n1w such that 

I(t):::; keJJ.3tv(t), for 0:::; t:::; T1, 

Iq(T1) = k(eJJ.3Tiv(T1))q, (3.2.16) 

lq(t) > k(eJJ.3T1v(T1))q, for 0 < t- T1 « 1. 

Note that for 0 :::; t :::; T1 , we have 

n 

s: < Bi(t, Si)Si- f.Li(t)Si + (Bi(t, 0+) + 'Yi(t))c + L aii(t)Sj, 1:::; i:::; n. (3.2.17) 
j=l 

It follows from the comparison principle that S(T1) < S*(T1 , c)+ €. Then, for 0 :::; 

t- T1 « 1, we have S(t) < S*(t, c)+ €, and hence 

n 

II < f3i(t)(S;(t, c)+ c)Ji- (f.Li(t) + 'Yi(t))Ii + L bij(t)Ij, 
j=l 

Since I(T1) ::; keJ1.3T 1v(T1 ), the comparison principle implies that 

for 0 :::; t - T1 « 1, 

and hence, 

for 0 < t - T1 « 1, 

which contradicts to (3.2.16). This proves the claim. 

1:::; i:::; n. 

By the above claim, (3.2.17) holds for all t ::::: 0. Thus, the comparison principle 

implies that S(t) < S*(t, c)+ €, Yt ::::: n 1w. A similar argument shows that 

Yt > T1. 

Consequently, J(t) --> 0 as t--> oo. 
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Given (S0 , ! 0 ) E G N· with S 0 =/= 0 and IP < 8, 1 S i S n, it easily follows that 

S(t) E Int(JR~), Vt > 0. Let 

be the omega limit set of (S0
, ! 0

) for P. Since lim I(t) = 0, there holds w = w x {0}. 
t-+oo 

We claim that w =I {0}. Assume that, by contradiction, w = {0}. lim pn(S0 ,!0
) = 

n-+oo 

(0, 0), then lim S(t) = 0. By assumption (H5), we can choose a small TJ > 0 such 
t-+oo . 

that r(1.>M(·,0)-1JE(w)) > 1, where E = diag(1, · · · , 1). It follows that there exists a 

[ > 0 such that 

Thus, S(t) = (S1(t), · · · , Sn(t)) satisfies 

n 

s;(t) > (Bi(t, 0+)- ry)Si- J.Li(t)Si + L aij(t)Sj, Vt;:::: t, 1 sis n. 
j=l 

(3.2.18) 

Let p(t) = (p1(t), · · · ,pn(t)) be the positive w-periodic function for which eJ.L4 tp(t) is 

a solution of of the linear system 

n 

s; = (Bi(t, 0+)- ry)Si- J.Li(t)Si + 2:: aij(t)Sj, 1 sis n, (3.2.19) 
j=l 

where J.L4 = ~ 1n(r(4>M(·,0)-1JE(w))) > 0. Since S(f) E Int(JR~), we can choose a small 

number a > 0 such that S(f) ;:::: ap(O). Then the comparison theorem implies that 

S(t) ;:::: aeJ.L4 (t-Dp(t- f) ;:::: aeJ.L4 (t-t) mjn p(t- f), 
t-f~O 

Vt;:::: t, 
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and hence lim Si(t) = oo, 1 :::; i :::; n, a contradiction. Note that for any S0 E JR.~, 
t-oo 

we have u(t, (S0
, 0)) = (u1(t, S0

), 0), 'Vt ~ 0. It thus follows that 

Since w is an internal chain transitive set for P, and hence w is an internal chain-

transitive set for P1 . Let 

Since w =!= {0} and S*(O) is globally attractive for P1 in JR.~ \ {0}, we have w n 

W 8 (S*(O)) =/= 0. By Lemma 1.1.11, we get w = {S*(O)}, and hence w = {(S*(O), 0)}. 

Thus, lim (S(t)- S*(t)) = 0 and lim I(t) = 0. 
t-oo t-oo 

I 

The following result shows that r(<I>M1(·)(w)) is a threshold parameter for the ex-

tinction and the uniform persistence of the disease. When r(<I>M1(·)(w)) > 1, the 

model (3.1.3) admits at least one positive periodic solution, and the disease is uni-

formly persistent. 

Theorem 3.2.5 Let (H1}-(H5) hold and r(<I>M1(-)(w)) > 1. Then system (3.1.3) 

admits at least one positive periodic solution, and there is a positive constant € such 

that for all (8°, ! 0
) E JR.~ x Int(JR.~), the solution (S(t), I(t)) of (3.1.3} satisfies 

lim inf Ii ( t) ~ E, 1 :::; i :::; n. 
t-oo 

Proof. Define 

X := JR.~n, Xo := JR.~ x I nt(JR.~), fJXo := X \ Xo. 
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We first prove that Pis uniformly persistent with respect to (X0 , 8X0 ). By the form 

of (3.1.3), it is easy to see that both X and X 0 are positively invariant. Clearly, 8X0 

is relatively closed in X. Furthermore, system (3.1.3) is point dissipative (see Lemma 

3.2.2). Set 

We now show that 

Ma = {(S,O): S ~ 0}. (3.2.20) 

Obviously, {(S,O): S ~ 0} ~ Ma. 

For any (8°,!0 ) E 8X0 \ {(S, 0) : S ~ 0}, we partition {1, 2, · · · , n} into two sets 

Q1 and Q2 such that 

where Q1 and Q2 are nonempty. For all j E Q1 , i E Q2 , we have 

It follows that (S(t), I(t)) ~ 8X0 for 0 < t « 1. Thus, the positive invariance of 

X 0 implies (3.2.20). It is clear that there are two fixed points of Pin Ma, which are 

M 0 = (0, 0) and M1 = (S*(O), 0). 

Choose 77 > 0 small enough such that r(<I>M1 (·)-1JM2(·)(w)) > 1. Let us consider a 

perturbed system of (3.2.6) 

n 

s~ = Bi(t, si + o)Si- (J-Li(t) + /3i(t)o)Si + L aij(t)Sj, 
j=l 

1 :::; i :::; n. (3.2.21) 
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As in our previous analysis of system (3.2.6), we can choose 6 > 0 small enough such 

that the Poincare map associated with (3.2.21) admits a unique positive fixed point 

S*(O, 6) which is globally attractive in JR:;:_ \ {0}. By the Implicit Function Theorem, 

it follows that S*(O, 6) is continuous in 6. Thus, we can fix a small number 6 > 0 such 

that S*(t, 6) > S*(t)- ij, Vt ~ 0, where ij = (TJ, · · · , TJ). By the continuity of solutions 

with respect to the initial values, there exists 60 > 0 such that for all (S0
, 1°) E Xo 

We now claim that 

lim sup d(Pm(S0
, 1°), Mi) ~ 6~, i = 0, 1. 

m->oo 

Suppose, by contradiction, that lim sup d(Pm(S0 ,1°), Mi) < 60 for some (S0
, 1°) E 

n->oo 

X 0 and i. Without loss of generality, we can assume that d(Pm(S0 , 1°), Mi) < 60, Vm ~ 

0. Then, we have liu(t,Pm(S0 ,1°))-u(t,Mi)ll < 6,Vm ~ O,Vt E [O,w]. Foranyt ~ 0, 

let t = mw + t', where t' E [0, w) and m = [tJ is the greatest integer less than or equal 

to t- Thus, we get 

Let (S(t), I(t)) = u(t, (S0 , 1°)). It then follows that 0::; Ii(t) ::; 6, Vt ~ 0, V1::; i::; n. 

Then for t ~ 0, we have 

n 

s: ~ Bi(t, si + o)Si- (J.ti(t) + /3i(t)o)Si + L aij(t)Sj, 
j=l 

1 ::; i ::; n. (3.2.22) 

Since the fixed point S*(O, 6) of the Poincare map associated with (3.2.21) is globally 

attractive and S*(t, 6) > S*(t) - ij, there is aT > 0 such that S(t) ~ S*(t) - ij for 
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t 2 T. As a consequence, fort 2 T, there holds 

n 

Ii 2 f3i(t)(St(t)- ry)Ii- (J-Li(t) + "ti(t))Ii + L bii(t)Ii, 1 :::; i :::; n. (3.2.23) 
j=l 

Since r(<PM1 (-)-ryM2 (·)(w)) > 1, it is easy to see that lim Ii(t) = oo, i = 1, 2, ... , n, 
t-+oo 

which leads to a contradiction. 

Note that S*(O) is globally attractive in IR~ \ {0} for P1. By the aforementioned 

claim, it follows that M0 and M1 are isolated invariant sets in X, W 8 (M0 ) nX0 = 0, 

and W 8 (M1 ) n X 0 = 0. Clearly, every orbit in Ma converges to either M0 or M1, and 

M 0 and M1 are acyclic in M 8 . By Theorem 1.1.4 for a stronger repeling property of 

8X0 , we conclude that P is uniformly persistent with respect to (Xo, 8X0 ). Thus, 

Theorem 1.1.3 implies the uniform persistence of the solutions of system (3.1.3) with 

respect to (Xo, 8X0 ). By Theorem 1.1.5, P has a fixed point (S(O), l(O)) E X0 . Then 

S(O) E IR~ and l(O) E Int(IR~). We further claim that S(O) E IR~ \ {0}. Suppose 

that S(O) = 0. By the second equation in (3.1.4), we obtain 0 = - 2:7=1 (J-Li(t) + 

"fi(t))li(O), and hence L(O) = 0, i = 1, 2, ... , n, a contradiction. By the first equation 

in (3.1.3) and the irreducibility of the cooperative matrix (aij(t)), it follows that 

u(t, (S(O), l(O))) E Int(IR~), "it> 0. Thus, (S(O), l(O)) is a componentwise positive 

fixed point of P. Thus, (S(t), l(t)) is a positive w-periodic solution of (3.1.3). 1 
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3.3 The positive periodic solutions 

In the case where the dispersal rates of susceptible individuals and infective individ-

uals are equal, we are able to prove the uniqueness and global asymptotic stability of 

the positive w-periodic solution under the condition that r(<I>M1(-)(w)) > 1. 

Theorem 3.3.1 Let (H1)-(H5) hold and r(<I>M
1
(-)(w)) > 1. If aij(t) = bij(t) for 

1 ~ i, j ~ n, Vt E [0, w], then the system {3.1.3} admits a unique positive w-periodic 

solution which is globally asymptotically stable in IR~ x (JR.~\ {0} ). 

Proof. By (3.1.3), when aij(t) = bij(t), we have 

n s: = Bi(t, Ni)Ni -J-Li(t)Si- f3i(t)Siii + "'i(t)Ii + 2::: aij(t)Sj, 1 ~ i ~ n, 
j=l 

n 

I:= f3i(t)SJi- (J-Li(t) + "!i(t))Ii + 2::: aij(t)Ij, 1 ~ i ~ n. 
j=l 

Hence we obtain 

n 

Nf = Bi(t, Ni)Ni- J-li(t)Ni + L aij(t)Nj, 
j=l 

1 ~ i ~ n. 

(3.3.24) 

(3.3.25) 

By the aforementioned conclusion for (3.2.6), the Poincare map associated with 

(3.3.25) has a unique positive fixed point S*(O) which is globally attractive for N E 

IR~ \ {0}. Thus (3.3.24) is equivalent to the following system: 

I 
N; = Bi(t, Ni)Ni- 1-li(t)Ni + t aij(t)Nj, 

j=l 
1 ~ i ~ n, 

n 
II= f3i(t)(Ni- Ii)Ii- (J-Li(t) + "fi(t))Ii + 2::: aij(t)IJ, 

j=l 
1 ~ i ~ n. 

(3.3.26) 
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Since lim (N(t) -S*(t)) = 0, the second equation of (3.3.26) has the following limiting 
t-+oo 

system: 

n 

ii = f3i(t)(S;(t)- ii)ii- (J-li(t) + li(t))ii + L aij(t)ij, 1 ::; i ::; n. (3.3.27) 
j=1 

Let F1 : IR~ x IR~ --.. IRn be defined by the right-hand side of (3.3.27). Clearly, F1 

satisfies (M1) - (M4). Let P2 : IR~ --.. IR~ be the Poincare map associated with 

(3.3.27), that is, 

where u2 (t, ! 0
) is the solution of (3.3.27) with u2 (0, ! 0 ) = ! 0

. We claim that (3.3.27) 

admits a bounded positive solution. 

Define 

anl(t) linn(t) 

where aii(t) = f3i(t)(Si(t) - Z) - J-li(t) - li(t) + aii(t), 1 ::; i ::; n. We can choose a 

sufficiently large real number Z > 0 such that fow (f3i ( t) ( s; ( t) - Z) - J-li ( t) - li ( t) )dt < 

0, 1 ::; i ::; n. By Lemma 3.2.1, there is a positive, w-periodic function v(t) = 

(v1(t), v2(t), · · · , vn(t)) such that V(t) = eJl-stv(t) is a solution of V' = M2(t; Z)V, 

where /-l5 = ~ ln r(<I>M2(·,Z)(w)). Let E(t) = 2:::~= 1 Vi(t) = eJ.i-st 2:::~= 1 vi(t). By the first 

equation in (3.1.4), it easily follows that E'(t) ::; b(t)E(t), Vt ~ 0, where b(t) = 

max{f3i(t)(Si(t)- Z)- /-li(t)- li(t) : 1 ::; i ::; n}. Thus, lim E(t) = 0, and hence 
t-+oo 
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p5 < 0, i.e., r(<I>M2 (-,z)(w)) < 1. Choose l > 0 large enough such that lvi(t) > Z, 'ilt E 

[O,w],i = 1,2, ... ,n. Set H(t) = lv(t). If we rewrite (3.3.27) as i' = F1(t,i), it is 

easy to see that 

F1(t, H(t)) < M2(t, Z)H(t), 'ilt 2:: 0. (3.3.28) 

By the standard comparison theorem (see, e.g., [43, Theorem B.l]), it follows that 

'i/m 2:: 0. 

That is, P~(lv(O)) < lv(O), 'ilm 2:: 0. Consequently, P~(lv(O)) is bounded. Since 

r(<I>M2 (·,o)(w)) = r(<I>M1 (-)(w)) > 1. By [63, Theorem 2.1.2], it follows that the Poincare 

map P2 has a unique positive fixed point l(O) which is globally attractive for ! 0 E 

JR~ \ {0}. Thus, the Poincare map P associated with (3.3.24) admits a unique fixed 

point (S*(O) - l(O),l(O)). It then follows from Theorem 2.3 that the unique fixed 

point is positive. We denote it by (S(O), J(O)). 

Let P3 : X := IR~--+ JR~n be the Poincare map associated with (3.3.26), that is, 

P3(x0
) = u3(w, x0

), 'ilx0 E JR!n, 

where u3(t,x0
) is the solution of (3.3.26) with u3(0,x0 ) = x0

. Thus, we have 

Pf:(N° ,!0
) = u3(mw, (N° ,!0

)), 'ii(N°, JD) E JR~ x JR~. 

Let (N° ,!0
) E (JR~ \ {0}) x {JR~ \ {0}) be fixed. It then follows that 

(N(t), J(t)) = u3(t, (N°, ! 0
)) E Int(JR~) x Int(JR~), 'ilt > 0. 
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Let w= w(N°,1°) be the omega limit set of(N°,I0 ) for P3 . Since lim(N(t)-S*(t)) = 
t ...... oo 

0, there holds w = {S*(O)} x w. We claim that w i= {0}. Assume that, by contra-

diction, w = {0}. Then lim P3(N°, ! 0 ) = (S*(O), 0), that is, lim (N(t)- S*(t)) = 
m-+oo t-+oo 

0, lim I(t) = 0. Since r(<I>M1o(w)) > 1 , we can choose a small 'f/ > 0 such that 
t ...... oo 

r(<I>M1 (-)-7JE(w)) > 1, where E = diag(1, · · · , 1). It follows that there exists at> 0 

such that 

Thus I(t) = (I1(t), · · · Jn(t)) satisfies 

n 

I{ > (f3i(t)S;(t)- 'fl)li- (!-li(t) + !i(t))Ii + L aij(t)Ij, \:It~ t, 1 ~ i ~ n. (3.3.29) 
j=l 

Let q(t) = (q1(t), · · · , qn(t)) be the positive w-periodic function such that el-~6tq(t) is 

a solution of the linear system 

n 

i; = (f3i(t)St(t)- 'fl)ii- (!-li(t) + li(t))ii + L aij(t)ij, 1 ~ i ~ n, (3.3.30) 
j=l 

where /-l6 = t ln(r(<l>M1(-)-7JE(w))) > 0. Since I(t) E Int(IR;t), we can choose a small 

number a> 0 such that I(t) ~ aq(O). Then the comparison theorem implies that 

I(t) ~ aeJJ.6 (t-f)q(t- f)~ aeJJ.6 (t-f) mjn q(t- f), 
t-t2:0 

\:It~ t, 

and hence lim Ii(t) = oo, 1 ::; i ::; n, a contradiction. Note that for any ! 0 E IR~, 
t ...... oo 

we have u3 (t, (S*(O), ! 0
)) = (S*(t), u2 (t, ! 0 )), \:It~ 0. It then follows that 
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Since w is an internal chain-transitive set for P3 , w is an internal chain transitive set 

for P2 . Let 

W 8 (l(O)) := {1°: lim (P:f(I0
)) = l(O)}. 

m-->oo 

Since w =/; {0} and l(O) is globally attractive for P2 in IR~ \ {0}, we have wnWs(J(O)) =/; 

0. By Theorem 1.1.11, we then get w = {l(O)}, and hence w = {(S*(O),l(O))}, which 

implies that the positive fixed point (S(O), l(O)) of Pis globally attractive in IR~ x 

(IR~ \ {0} ). It follows that system (3.1.3) admits a unique positive w-periodic solution 

(S(t),l(t)) such that lim(S(t)- S(t)) = 0 and lim(I(t) -l(t)) = 0, \:1(8°,!0
) E 

t->oo t-->oo 

JR~ x (JR~ \ {0} ). 

It remains to prove the stability of (S(t),l(t)) for (3.1.3), which is equivalent to 

the stability of (N(t), l(t)) := (S(t) + l(t), l(t)) for (3.3.26). The associated Jacobian 

matrix is 

where 

anl ( t) an2 ( t) a~n (t) 

Here aii(t) = as~~;;) IN;=N;Ni + Bi(t, Ni) - J-li(t) + aii(t), 
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and 

anl(t) an2(t) b~n(t) 

with bii(t) = f3i(t)Ni- 2f3i(t)li- f..li(t)- {i(t) + aii(t)o 

Obviously, 

A1(t) < := C1(t), 

anl ( t) an2(t) a~n(t) 

with a;i(t) = Bi(t,Ni)- J.li(t) + aii(t), and 

b;\ (t) a12 ( t) .... _ () 0 0"' aln t 
,1 

A3(t) < 
a21 ( t) b:b(t) b2n( t) 

:= C3(t), 

anl ( t) an2(t) b~n(t) 

with bii(t) = (3i(t)Ni- (3i(t)~- J.li(t) -{i(t) + aii(t)o The comparison principle implies 

that q, A1 o(t) ::; q,c1o(t), q, A3 o(t) ::; q,c3 o(t), and hence q, A 1o(w) ::; q,c1o(w), 

q, A3 o(w) ::; q,c3 (·)(w)o By [43, Theorem A.4], we have f..l(q, A 1o(w)) < f..l(q,c1 (·)(w)) and 



§ 3.3. The positive periodic solutions 61 

f.t(<l>A 3 (-)(w)) < f.t(<l>c3 o(w)). Notice that (N1(t), · · · , Nn(t)) is a positive w-periodic 

solution of the system N' = C1(t)N. Thus, we have 

It follows that 

and hence f.t(<l>c1 (·)(w)) = 1. On the other hand, (l1(t), · · · , 1n(t)) is a positive w

periodic solution of the system I' = C3(t)I. Thus, we obtain 

11(0) ll(t) 

<I>cao ( t) -

ln(O) 1n(t) 

It follows that 

11(0) 11(w) 11 (0) 

<I>cao(w) - -

1n(O) 1n(w) 1n(O) 

and hence f.t(<l>c3 o(w)) = 1. Consequently, we have 
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which implies the stability of (N(t), l(t)). I 

At last, we prove the global attractivity of positive periodic solution in the case 

where {bij(t)} is very close to { aij(t)}. Let A0 be the set of all continuous and w-

periodic nxn matrix functions satisfying aij(t) > 0, i =I j, aii(t) < 0 and '£-7=1 aii(t) = 

0. 

Theorem 3.3.2 Assume (H1)-(H5) hold, Let .A0 = {aij(t), 1 ~ i,j ~ n} E A0 be 

fixed, A = {bij(t), 1 ~ i, j ~ n} E A0 , Mv..(t) be the matrix M1 (t) with parameter 

.A, and M1>,0 (t) be the matrix Mv..(t) with A = .A0. If r(li>M1A0
0(w)) > 1, then there 

exists <:: > 0 such that for any .A with !lA- -Aoll ~ <::, the system (3.1.3) admits a 

unique positive w-periodic solution (S,u (t), S>..2 (t), · · · , B>..n(t), !>..1 (t), · · · , l>..n( t)) such 

that lim(Si(t)- S>..i(t)) = 0 and lim(Ii(t) -l>..i(t)) = 0 for every (8°,1°) E JR~ x 
t-+oo t->oo 

Int(JR~). 

Proof. There exist co> 0, 7J > 0, such that r(il>M1Ao(w)) > 1 and r(ll>Mu-1jM20(w)) 

> 1 whenever JJ.A- .A0 JJ ~ c0 . We fix a sufficiently small 6 > 0 such that the Poincare 

map associated with (3.2.21) admits a unique positive fixed point S*(O, 8), which 

is globally attractive in JR~ \ {0} and S*(t, c5) > S*(t)- fj. Let u(t, (8°, 1°), .A) be 

the solution of (3.1.3) with parameter .A and initial value (8°,1°) E X. By the 

continuity of solutions with respect to initial values and parameter .A, there exist 

positive numbers 60 and c~ such that JJu(t, (8°,1°),-A)- u(t,Mi,-Ao)il < c5, "i/t E [O,w], 

argument similar to that of the claim in the proof of Theorem 3.2.3, it follows that 



§ 3.4. Numerical simulations 63 

for any,\ with II-X- -Xoll:::; c*, and all (8°,1°) E JR+. x Int(JR+.), there holds 

lim sup d(Pf(S0
, 1°), Mi) 2:: 5;, i = 0, 1, 

m-+oo 

where P>. is the Poincare map associated with (3.1.3) with parameter ,\. Moreover, 

Lemma 3.2.2 implies that solutions of (3.1.3) in X are uniformly bounded and ulti-

mately bounded for each A E A0 . It follows that P has a global attractor A>. c X 0 

for each ,\ E A0 . Let A1 = A0 n {A: II-X- -Xoll :::; c*}. Then there exists a bounded 

and closed set G* in JR+. x JR+., such that U>.EArA>. C G*. Hence, by Theorem 1.1.9, 

there exists a 50 > 0 such that for any ,\ E A1 , 

lim inf d(Pf(S0
, 1°), 8Xo) 2:: Do. 

m-+oo 

Since U>.EAr P(A>.) = U>.EAr A>. C G* = G*, the set U>.EAr P(A>.) is compact. By apply-

ing Theorem 1.1.8 on the perturbation of a globally stable fixed point, we complete 

the proof. I 

3.4 Numerical simulations 

In order to simulate the periodic solutions, we consider the case that the patch number 

is 2. For simplicity, we assume that the contact rate f3i(t), i = 1, 2, is w-periodic with 

the expression /31(t) = f32 (t) = msin(pt) + q, and other parameters are independent 

of timet. Then w = 2
;, and the assumption (3.1.4) is equivalent to that a12 = -a22 , 
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a21 =-an, b12 = -b22, b21 = -bn. Thus, (3.1.3) reduces to 

(3.4.31) 

As mentioned in [4], we choose Bi(Ni) = fJ; + ci, where ci < f-Li, i = 1, 2. Suppose that 

r1 = r2 = r, c1 = c2 = c, f-LI = f-L2 = J-L, 11 = 12 = /, an = a22 = bu = b22 = -e < 0. 

Then (3.4.31) reduces to 

Si = r- (J-L + 0- c)S1- (msin(pt) + q)S1ft + (c + 1)/1 + BS2, 

(3.4.32) 

It is easy to verify that conditions (H1 )-(H5) are satisfied. In this case, ( SH t), s; ( t)) 

can be obtained explicitly as 

s;(t) = Si(t) = _r_, Vt;::: 0. 
J-L-C 
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Let A be a 2 x 2 constant matrix, and a(t) be a continuous w-periodic function. 

Note that if x(t) is a solution of x' =(A+ a(t)I)x, then y(t) = ef~ -a(s)dsx(t) satisfies 

y'(t) - ef~ -a(s)ds(x'- a(t)x) 

- ef~ -a(s)ds Ax(t) 

Aef~ -a(s)dsx(t) 

- Ay(t) 

Thus, we have ¢A+a(-)I(t) = ef~ a(s)dseAt. 

By the above observation, it follows that r(<I>M
1
(·)(w)) = e~-<:_c fow .B(t)dte-(J.£+"f)w. Fix 

J-L = 0.2, c = 0.1, fJ = 1,1 = 4, m = 1,p = 211', q = 0.1, r = 1. Since w = 1, we have 

By Theorem 2.1, system (3.1.3) has a positive w-periodic solution such that lim ( S( t)-
t--+oo 

S* ( t)) = 0 and lim I ( t) = 0 for all ( 8°, ! 0 ) E JR~ x JR~. Our numerical simulations in 
t--+oo 

Figure 3.1 confirm this result. 

Fix J-L = 2,c = 1,() = 1,{ = 0.1,m = 1,p = 21l',q = 1,r = 10. We then have 

w = 1 and r(<I>M1o(1)) > 1. By Theorem 3.1, system (3.1.3) has a unique positive 
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w-periodic solution such that lim (S(t)- S(t)) = 0 and lim (I(t) -l(t)) = 0 for all 
t-+oo t-+oo 

(8° ,!0
) E JR.~ x (JR.~ \ {0} ). Our numerical simulations in Figure 3.2 confirm this 

result. 
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Figure 3.1: The solution of system (3.4.32): The extinction of the 

disease. The parameters of the system are as follows:J.L = 

0.2,c = 0.1,8 = 1,"( = 4,m = 1,p = 27r,q = 0.1,r = 1 
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Figure 3.2: The solution of system (3.4.32): The uniform persistence 

of the disease. The parameters of the system are as follows: 

J-l = 2,c = 1,() = 1,1 = 0.1,m = 1,p= 21l',q = 1,r = 10 



Chapter 4 

A Lattice Epidemic Model 

This chapter is devoted to the study of the asymptotic speed of spread and traveling 

waves for a spatially discrete SIS epidemic model. By appealing to the theory of 

spreading speeds and traveling waves for monotone semiflows, we establish the ex

istence of asymptotic speed of spread and show that it coincides with the minimal 

wave speed for monotone traveling waves. This also gives an affirmative answer to 

an open problem presented by Rass and Radcliffe [41] in the case of a discrete spatial 

habitat. 

This chapter is organized as follows. In Section 4.1, we present the model. The 

existence and comparison theorems for the single population system are established 

in Section 4.2. In Section 4.3, we prove the existence of an asymptotic spreading 

speed and show that it coincides with the minimal wave speed for monotone traveling 

waves. At last, we extend these results to the case of multi-populations in Section 

4.4. 
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4.1 Introduction 

The geographic spread of epidemics is an important subject in mathematical epi-

demiology (see, e.g., [12, 40, 41]). In order to consider the spreading speed of a de-

terministic epidemic in multi-type of populations, Rass and Radcliffe [41] presented 

the spatial epidemic model 

dyj,m(t) 
dt 

oo r 

(1- YJ,m(t)) L L (jmAmnYj-k,n(t)pmn(k)- J.lmYj,m(t), 
k=-oo n=l 

j E Z, 1 ::; m ::; r, (4.1.1) 

where YJ,m(t) is the proportion of individuals in the mth population (jm at position 

j who are infectious at time t, J.lm 2: 0 is the combined death/emigration/recovery 

rate for infectious individuals, Amn is the infection rate of a type m susceptible by 

a type n infectious individual, and Pmn is the corresponding contact distribution. It 

00 

is reasonable to assume that I: Pmn(k) = 1, and Pmn(k) = Pmn( -k) 2: 0, Vk E 
k=-oo 

.Z, 1 ::; m, n ::; r. Since an epidemic often starts with a small amount of infection in 

a bounded region amongst the r types of populations at time t = 0, each YJ,m(O) 

is assumed to have compact support. This model describes a closed system with 

no births, deaths, emigration or immigration, or an open system in which the birth 

and immigration rates are balanced by the death and emigration rates. The global 

dynamics of the spatially homogeneous r-dimensional system associated with ( 4.1.1) 

was analyzed completely in [41, Chapter 8]. However, as mentioned in [41, Section 

8.8], there are no exact results for the asymptotic speed of propagation of infection 
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and traveling waves for models such as ( 4.1.1) in JR.n or zn. This problem has been 

addressed recently by Weng and Zhao [56] for a spatially continuous version of model 

( 4.1.1 ). Although there have been many investigations on traveling wave solutions and 

long-term behavior for lattice differential equations (see, e.g., [7, 36, 53, 55, 65] and 

references therein), the analysis of lattice differential systems with global interactions 

seems to be relatively difficult. Our purpose is to study the spreading speed and 

traveling waves for the lattice system ( 4.1.1) in the case where the spatial habitat is 

the integer lattice Z, by appealing to the theory of spreading speeds and traveling 

waves for monotone semiflows, which was developed by Liang and Zhao [34] (see 

Section 1.3). 

4.2 Existence and comparison of solutions 

Let (JR.", IRi) be the standard ordered k-dimensional Euclidean space with the maxi

mum norm II ·II· For c; = (c;-1 , .. · ,c;k),~ = (6, .. · ,~k) E IR", we write c; ~ ~(c; » ~) 

provided (i ~ ~i(c;i > ~i), i = 1, · · · , k, and c; > ~provided c; ~ ~but c; =/=- ~· Let C 

be the set of all bounded two-sided sequences of points in IR". For u = (ui)jez, v = 

(vj)jeZ E C, we write u 2: v(u » v) provided ui 2: vi(ui > vj), Vj E .Z, and u > v 

provided u 2: v but u =I= v. We regard any vector in JR." as a constant sequence of 

points in JR.", and set 

lR~ : = { u E JRk : r 2: u 2: 0}, Cr : = { u E C : r 2: u 2: 0 } , 
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for any r E JR.k. We equip C with the compact open topology, that is, un -+ u in 

C means that the sequence of uj converges to UJ as n -+ oo uniformly for j in any 

bounded subset of Z. Moreover, we define the metric function d(·, ·)inC with respect 

to this topology by 

oo max iiu·- v·ll 
IJI:9 

3 3 

d(u,v) := .2:: 
2

k , Vu,v E <C, 
k=O 

so that (C, d) is a metric space. 

In order to study the asymptotic speed of spread and traveling waves of system 

( 4.1.1), we first consider the following single population case: 

dy·(t) f-. ---Jt- = (1- YJ(t))o), ~ YJ-k(t)p(k) - f..LYJ(t), j E Z, (4.2.2) 
k=-oo 

where YJ(t) is the proportion of infectious individuals at position j in the whole 

00 

population CJ at timet, p(k) is the contact distribution with 2:: p(k) = 1. By the 
k=-oo 

biological background, we assume that p(k) = p( -k) ;::: 0, 'Ilk E Z. In this section, we 

establish the existence and uniqueness of the solutions, and the comparison theorem. 

Theorem 4.2.1 For any y0 E <C 1, (4.2.2} has a unique continuous solution y(t, y0 ) 

Proof. We first choose a sufficiently large number D ;::: CJ A such that 

00 

FJ(Y) = Dyj + (1- YJ)O" A L YJ-kP(k), Vj E Z, 
k=-oo 

is a monotone increasing mapping from C 1 to R Clearly, ( 4.2.2) can be written as 

(4.2.3) 
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The initial value problem of ( 4.2.3) is equivalent to 

For any y0 E C1 , and any T E (0, oo), define 

Sr =: {y = {yj}jEZ: Yi E C([O, T], [0, 1]), y(O) = y0
, Vj E Z}, 

and an operator Hr = { HJ}jEZ on Sr by 

Since 

0 < HJ (y)(t) :::; e-(J-L+D)t + Fj(1) 1t e-(J-L+D)(t-s)ds 

_!!__ + e-(J-L+D)t /1 < 1 Vt E [0 T] 
11+D 11+D-' '' 

we have Hr(Sr) ~Sr. For any f3 > 0, we define 

JJYII/3 := sup 1Yi(t)Je-!3t, Vy E Sr. 
tE[O,r],jEZ 

72 

(4.2.4) 

Then (Sr, 11·11) is a Banach space. For any y, y E Sr, let w = { Wj}jEZ with Wj = Yi-Yi· 

We then have 
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HJ(fJ)(t)- HJ(y)(t) 

= 1t e-(~t+D)(t-s)(Fj(y(s))- Fj(y(s)))ds 

= l e-I"+D)(t-•)[Dw;(s) +(I- iJ;(s))a>. ,f;oo iJ;-k(s)p(k)- (1- Y;(s)) 

00 

a) .. L Yj-k(s)p(k)]ds 
k=-oo rt 00 00 

= Jo e-(~t+D)(t-s)[Dwj(s) +a>.. L Wj-k(s)p(k) +a).. L (yj(s)yj-k(s) 
0 ~-00 ~-00 

-iii ( s )Yi-k( s) )p( k )]ds 

= ],' e-I"+D)(t-•l[Dw;(s) +a>. ,f;oo w;-k(s)p(k) +a>. ,f;oo (Y;-k(s)w;(s) 

-yj( s )wj-k( s) )p(k )]ds, 

which leads to 

JHJ(y)(t)- HJ(y)(t)Je-f3t 

S lt e-f3(t-s)-f3s[DJwj(s)J +a>.. f Jwj-k(s)Jp(k) +a>.. f (Yj-k(s)Jwj(s)J 
0 k=-oo k=-oo 

-yj( s) Jwj-k( s)) Jp(k )]ds 

73 

t 00 00 

S 1 e-f3(t-s)-f3s[DJwj(s)J + 2a).. L Jwj-k(s)Jp(k) +a>.. L Jwj(s)Jp(k)]ds. 
0 ~-00 ~-00 

Thus, we have 
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Since 

l. 3aA + D(1 -f3T) _ O 
1m (3 - e - , 

/3-+00 
(4.2.5) 

it follows that for sufficiently large (3, HT is a contraction map on Sr, and hence, HT 

has a unique fixed point y in Sr. This shows that (4.2.2) has a unique solution on 

[O,T], VT E (O,oo), which implies the existence and uniqueness of a solution y(t) of 

(4.2.2) on [O,oo). I 

In order to establish the comparison theorem for system (4.2.2), we introduce the 

following concept of upper and lower solutions. 

Definition 4.2.1 A function y(t) = (Yi(t))jEZ with Yi E 0 1([0, oo), [0, 1]) is called 

an upper solution of (4.2.2} if it satisfies 

dy·(t) ~ . -Jj- 2:: (1- Yi(t))aA L Yi-k(t)p(k)- J.tYi(t), Vt 2:: O,J E Z. (4.2.6) 
k=-oo 

A function y(t) = (yj(t))iEZ with Yi E C1([0,oo), [0, 1]) is called a lower solution of 

(4.2.2) if we have the reverse inequality 

dy·(t) ~ -Jj- :::; (1- Yi(t))a A L Yi-k(t)p(k)- J.tYi(t), Vt 2:: 0, j E Z. (4.2.7) 
k=-oo 

We also need the following assumption for the strong positivity of solutions. 

(C1) p(1) = p( -1) > 0. 

Theorem 4.2.2 Let y = {yi}iEZ and f) = {YihEz be a pair of lower and upper 

solutions of (4.2.2), respectively, with Yi, Yi E 0 1 ([0, oo), [0, 1]) and y(O) :::; y(O). 
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Then y(t) ::::; y(t), 'itt 2:: 0. If, in addition, condition (CJ) holds, then y0 E C1 \ {0} 

implies that y(t, y0 ) » 0, Vt > 0. 

Proof. It is easy to see that wJ(t) = 'f}j(t)- YJ(t), Vj E Z,t E [O,oo), is continuous 

and bounded, and w(t) := infJEZ wJ(t) is continuous. To prove y(t) ::::; y(t), t 2:: 0, 

it suffices to prove w(t) 2:: 0, 'itt 2:: 0. Suppose the assertion is not true. Then there 

exists t0 > 0 such that w(t0 ) < 0 and 

w(t0 )e-Moto = infw(t)e-Mot < w(r)e-Mor,T E [O,to), 
t~O 

where M0 is chosen to satisfy M0 > a). - fl· 

(4.2.8) 

Let {jn}~=l be a sequence such that WJn (t0 ) < 0 for all n 2:: 1 and lim win (to) = 
n--+oo 

w(to). Let {tn}~=l be a sequence in (0, t0 ] so that 

w. (tn)e-Motn = min W. (t)e-Mot. 
Jn tE[O,to] Jn 

For any E E (0, t0 ), let Le := min w(t)e-Mot. By (4.2.8), we have 
tE[O,to-E] 

lim Wjn (to)e-Moto = w(to)e-Moto < Le· 
n--+oo 

Thus, there is ne such that for all n > n€, 

(4.2.9) 

In view of (4.2.9), we obtain tn E [to-E, t 0 ], Vn 2: ne, which implies that lim tn =to. 
n--+oo 

Since 

W. (t )e-Moto > W. (t )e-Motn > w(t )e-Motn > w(t )e-Moto Jn 0 - Jn n _ n - 0 ' 
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we have 

W. (t )e-Mo(to-tn) > W. (t ) > w(t )e-Mo(to-tn) 
]n 0 - Jn n - 0 > 

which yields to lim win(tn) = w(t0 ). By (4.2.9), it follows that for each n?:: 1, 
n-->oo 

00 

wjJtn) ?:: (1- fhn(tn))a), 2::: fhn-k(tn)p(k)- (1- ihn(tn))<I>. · 
k=-oo 

00 

2::: YJn-k(tn)p(k)- J.lWJn (tn)· 
k=-00 

Then for all sufficiently large n, we have 

00 

0 < wjJtn)- (1- fiJn(tn))<IA 2::: fhn-k(tn)p(k) + (1- YJn(tn))<IA. 
k=-oo 

00 

L YJn-k(tn)p(k) + J.lWJn (tn) 
k=-00 

00 

< (J.L + Mo)w)n(tn)- (1- YJn(tn))<IA 2::: fiJn-k(tn)P(k) + (1- Yin(tn))<IA 
k=-oo 

00 00 

L YJn-k(tn)p(k)- (1- Yin(tn))<IA L YJn-k(tn)p(k) + (1- f}jn(tn))<IA 
k=-00 k=-00 

00 

L YJn-k(tn)p(k) 
k=-00 

00 

- (J.L + Mo)Wjn(tn) + Wjn(tn}<JA L YJn-k(tn)p(k)- (1- Yin(tn))<IA 
k=-oo 

00 

L Wjn-k(tn)p(k) 
k=-00 

00 

< -(1- Yin(tn))<J>.w(tn) + (J.L + Mo + <JA L fiJn-k(tn)p(k))wjJtn) 
k=-00 
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Letting n ~ oo in the above, we see that 

( -(]"), + 11 + M0 )w(to) ~ 0. 

Recalling that 11 + M0 - (]"), > 0, we obtain that w(t0 ) ~ 0, a contradiction. This 

shows that wi(t) = ih(t)- [/j(t) ~ 0 for all j E Z and t E [0, oo). 

Next we prove the strong positivity of y(t, y0 ) under condition (C1). Since y0 E 

(\ \ {0}, there exists an integer i E Z such that yp > 0. Note that (]"), > 0 and 

p(1) = p( -1) > 0. Clearly, we have 

Yi(t) = e-1ttyi(O) +(]"A 1t e-JL(t-s)(l- Yi(s)) f Yk(s)p(i- k)ds > 0, Vt > 0. 
k=-oo 

It then follows that 

00 

+ L Yk(s)p(i + 1- k)]ds > 0, Vt > 0, 
kfi,k=-oo 

and 

Yi-1 (t) 

00 

+ L Yk(s)p(i- 1- k)]ds > 0, Vt > 0. (4.2.10) 
kfi,k=-oo 

Repeating this procedure, we have Yi+n(t) > 0, Yi-n(t) > 0, Vn ~ 0, Vt > 0, and hence, 

y(t, y0
) » 0 for all t > 0. I 
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4.3 Spreading speed and traveling waves 

In this section, we establish the existence of asymptotic spreading speed for system 

( 4.2.2), and show that it coincides with the minimal wave speed for monotone traveling 

waves. 

Note that if v is a solution of the scalar ordinary differential equation 

dv(t) 
--;jt = (CYA- f.l- rYAv(t)) v(t), (4.3.11) 

then Yi = v, Vj E Z, is a solution of system (4.2.2). Throughout this section, we 

assume that 

(C2) O'A > f-l· 

Clearly, rYA- f-l- O'AV = 0 has a unique positive solution v* = u;? E (0, 1]. Let 

{Qt}t>o be the solution semiflow associated with system (4.2.2), that is, 

Proposition 4.3.1 For each t > 0, the map Qt satisfies the hypothesis (A1}-(A5). 

Moreover, {Qth>o is a subhomogeneous semiftow on Cv•· 

Proof. We only prove (A2) and (A5) since all the other conditions are easy to 

verify. We first prove continuity of Qt(u) = Q(t,u) in (t,u). Let y(t),y(t) be two 

solutions of (4.2.2) with 0:::; y1(t), Yi(t) :::; v*, Vj E Z. Then the following statement 

is valid. 
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Claim 1. For any E > 0, t0 > 0, there exist 6 > 0 and an integer N > 0 such that 

IYo(t)- iio(t)i :S E, Vt E [0, to], whenever jy1(0)- y1(0)I < 6 for -N :S j:::; N. 

To prove this claim, we first consider the case that y(O) :::; y(O). Then we have 

y(t)::; y(t), Vt E [0, oo). Let w(t) = y(t)- y(t) and wJ = YJ(O)- YJ(O). Then 

+oo +oo 

= CJA L Wj-k(t)p(k)- (JA L (iij(t)iij-k(t)- Yj(t)Yj-k(t))p(k)- J-lWj(t) 
k=-oo k=-oo 

+oo +oo 

= CJA L Wj-k(t)p(k)- CJA L (iij(t)wj-k(t) + Wj(t)Yj-k(t))p(k)- J-lWj(t) 
k=-oo k=-oo 

+oo 

:::; (JA L Wj-k(t)p(k)- J-LWj(t). 
k=-oo 

Next we consider the system 

+oo 
awi}t) = CJA :L Wj-k(t)p(k)- J-lWj(t) 

k=-oo (4.3.12) 

Using the discrete Fourier transform, 

v(t, T) 
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where i is the imaginary unit, we have 

fJv(t, T) 
at 

k=-oo 

+oo 

= (-p+aA L e-i(kT)p(k))v(t,T). 
k=-oo 

It then follows that 

+oo 

v(t, T) = exp{( -p +a A L e-i(kr)p(k))t}v(O, T), 
k=-oo 

with 

1 +oo . 
v(O, T) = rn= L e-•(mr)w~. 

V 27!' m=-oo 

Thus, we obtain 

11rr ~ . ~ . 
Wj(t) = 

2
7!' exp{i(jT) + ( -p +a A L e-•(kr)p(k))t} L e-•(mr)w~dT 

-rr k=-oo m=-oo 

1 +oo 

1
rr +oo . 

2
7!' L ( _ exp{i(j- m)T + ( -p +a A L e-•(kr)p(k))t}dT)w~, 

m=-oo rr k=-oo 

and hence, 

1 +oo lrr +oo . 
wj(t) :S 

2
7!' L ( _ exp{i(j- m)T + ( -p +a A L e-i(kr)p(k))t}dT)w~. 

m=-oo rr k=-oo 

80 

It is easy to see that for any E > 0 and t0 > 0, there exist J > 0 and an integer 

N > 0 such that w0 (t) :S E, \:It E [0, t0 ], whenever wj(O) < J for -N ::; j ::; N. 
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Regarding the case that y(O) f;. y(O), let z(t), z(t) be two solutions of (4.2.2) with 

zi(O) = max{yj(O), j)j(O)}, zi(O) = min{yi(O), Yi(O)}, Vj E Z. Since z(O) ~ z(O), we 

have 

IYi(t)- Yi(t)l :::; lzi(t)- zi(t)l < t:, Vt E [0, to], 

whenever IYi(O)- Yi(O)I = lzi(O)- zj(O)I < 6, Vj E Z. This proves the claim. 

Claim 2. For any t 0 > 0, Qt(u) is continuous in u uniformly fortE [0, t0]. 

Fix u and t0 > 0. By Claim 1, it follows that for any E > 0, there are 6 and N 

such that 

(4.3.13) 

whenever lui - uil < 6, Vj0 - N :::; j :::; j0 + N for some )o E Z. Choose m > 0 
00 

such that 2:: * < ~' and let 61 = 2-(m+N)6. For any u E Cv with d(u, u) = 
k=m+l 

oo max lui-uil 
'I\' -k<j<k s: h w 2 < u1, we ave 
k=O 

max lui- uil < 2m+N 61 := 6. 
-(m+N)-:5_j-:5_m+N 

By (4.3.13), it follows that 

IYio(t, u)- Yio(t, u)l < ~E, Vjo E [-m, m], 

and hence, 

. m 1 00 2v* 
d(y(t, u), y(t, u)) < max lw(t, u)- Yi(t, u)l"' 

2
k + "' -

2
k 

-m<J<m ~ ~ 
-- k=O k=m+l 

E ~ 1 E 

< 4 ~ 2k + 2 = E, 
k=O 
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whenever d(u,u) <51. 

Consequently, Qt( u) = Q(t, u) is continuous in (t, u) E JR+ x Cv• with respect to 

the compact open topology. 

Note that system (4.3.11) has two equilibria 0 and v*, and v* is a globally asymp-

totically stable equilibrium in (0, v*]. By Theorem 1.2.1, there exists an entire strictly 

increasing orbit such that lim v(t) = 0 and lim v(t) = v*. Thus, (A5) is satisfied. 
t-+-co t--+co 

Finally, we show that Qt is subhomogeneous in the sense that Qt(Ky0
) :2: KQt(y0

) 

for any 0 ::::; K ::::; 1 and y0 E Cv•. Since 

co 

= (1- Yi(t))a). L KYj-k(t)p(k)- J-LKYi(t) 
k=-co 

co 

< (1- KYj(t))a>. L KYj-k(t)p(k)- J-LKYi(t), j E Z, 
k=-co 

KY( t, y0
) is a lower solution of ( 4.2.2) with initial value Ky0

• By the comparison 

theorem, we thus have Ky(t, y0 ) ::::; y(t, Ky0 ) for all t :2: 0. I 

Let c* be the asymptotic speed of spread of the map Q1 on Cv·. In order to 

compute c*, we consider the linearized equation ( 4.2.2) at y = 0, 

(4.3.14) 

Let {Mth~o be the solution semiflow associated with system (4.3.14). Note that 

Qt(y0
) is a lower solution of the linear system ( 4.3.14) for t E [0, oo ). It then follows 

that 
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For each u0 E JR, let ry( t, u0 ) be the unique solution of the linear equation 

d (t) +oo 
~t = O"ATJ(t) L exkp(k)- J-LTJ(t), (4.3.15) 

k=-oo 

is a solution of (4.3.14). Thus we have B~(u0 ) := Mt(e-xJu0 )(0) = ry(t, u0
), which 

implies that B~ is the solution map of (4.3.15). Note that the general solution of 

( 4.3.15) is 
+oo 

ry(t, u0
) = exp{(O"A L eXkp(k)- J-L)t}u0

. 

k=-oo 

+oo +oo 
Then B~(u0 ) = exp{(O"A I: exkp(k)- J-L)t}u0 , and exp{(O"A I: exkp(k)- J-L)t} is 

~-00 ~-00 

the principal eigenvalue of B~ with the positive eigenfunction u0
• When X = 0, we 

have the principal eigenvalue exp{ ( O" >. - f-l )t} > 1. Thus the map Mt satisfies the 

assumptions (B1)-(B7) for each t > 0. 

+oo 
Letting t = 1, we see that >.(x) := exp{O"A I: eXkp(k)- J-L} is the principal 

k=-oo 

eigenvalue of B~. Define the function 

+oo 
O" >. I: exkp( k) - f-l 

<P(x) := ..!_ ln >.(x) = _k_=_-_oo ___ _ 

X X 
(4.3.16) 

Since <P(x) --> oo as x --> 0, and p(ko) > 0 for some k0 > 0, we have <P(x) :;::: 

u-\ex"o~(ko)-JJ. --. oo as x --. oo. <P(x) then assumes its minimum at some finite value 

Consider the linear system 

dyJ(t) = O"A(1- c) ~ YJ-k(t)p(k)- 1-LYJ(t) 
dt ~ 

(4.3.17) 
k=-oo 
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with parameter E. Let { Mt}t;:::o be the solution semiflow associated with system 

(4.3.17). For any 0 < E < 1, there is 6 E (O,t:) such that 0:::; Yi(t):::; v(t,6) < c,Vj E 

Z, Vt E [0, 1], provided 0 :::; yj(O) :::; 6, Vj E Z, where v(t, 6) is the solution of (4.3.11) 

satisfying v(O, 6) = 6. Thus, Qt(y0
) is an upper solution of linear system (4.3.17) for 

t E [0, 1]. It then follows that Qt(y0 ) 2: Mtf(y0 ), Vy0 E Ca, Vt E [0, 1]. In particular, 

Q1 (y0
) 2: Mi(y0

). As we did for { Mt}t;:::o, similar analysis can be carried out for 

{Mt}t:::::o· By Theorem 1.3.1, we have 

inf 1\(x) :::; c* :::; inf 4>(x), Vt: E (0, 1). 
x>o x>O 

Letting E- 0, we obtain 

c* = inf 4>(x) = 4>(x*). 
x>O 

The following result shows that the above-defined c* is the spreading speed for 

solutions of ( 4.2.2) with initial data having compact supports. 

Theorem 4.3.1 Assume that (C2) holds. Let y(t) be a solution of (4.2.2} with y(O) E 

Cv• . Then the following statements are valid: 

(1} For any c > c*, if y(O) « v* and Yi(O) = 0 for j outside a bounded interval, then 

lim Yi(t) = 0. 
t--+oo,jjj;:::ct 

(2} For any c E (0, c*), there is an r > 0 such that if Yi (0) > 0 for j on an interval 

of length 2r, then lim Yi(t) = v*. 
t--+oo,Jjj:=;ct 

(3} If, in addition, (Cl} holds, then y(O) =/= 0 implies that lim Yi(t) = v* for 
t--+oo,Jjj:=;ct 

any c E (0, c*). 
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Proof. Conclusion (1) is a straightforward consequence of the first part of Theorem 

1.3.2. For any given c < c*, since Q1 is subhomogeneous, the positive number r a 

defined in Theorem 1.3.2 can be chosen to be independent of a» 0. Let ra = r. If 

there is an r > 0 such that Yi(O) > 0 for j on an interval of length 2r, then there 

exist a> 0 such that Yi(O) >a for all j in this interval. Thus, conclusion (2) follows 

from the second part of Theorem 1.3.2. If, in addition, (Cl) holds, then Theorem 

4.2.2 implies that Yi(t) > 0, \:fj E Z, \:It> 0. Fix a t0 > 0, we have Yi(to) > 0, \:fj E Z. 

Taking (yj(t0))jEZ as a new initial value, we then obtain conclusion (3) from (2). 1 

The existence and nonexistence of traveling wave solutions are straightforward 

consequences of Theorem 1.3.3. 

Theorem 4.3.2 Assume that (C2) holds. Then the following two statements are 

valid: 

(1) For any c E (0, c*), (4.2.2) has no traveling wave U(j- ct) connecting v* to 0. 

(2) For any c ~ c*, (4.2.2) has a traveling wave U(j - ct) connecting v* to 0 such 

that U ( s) is continuous and non-increasing in s E R 
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4.4 Multi-population case 

In this section, we extend the results in the previous sections to the multi-population 

model 

dyj,m(t) 
dt 

oo r 
- (1- Yj,m(t)) L L CXmnYj-k,n(t)Pmn(k)- J.lmYj,m(t), 

k=-oo n=l 

j E Z, 1 ::; m ::; r, (4.4.18) 

(D1) the matrix A = (amn)rxr is irreducible in the sense that for any given index 

1 ::; i =!= j ::; r, there is a finite sequence with distinct elements i1, · · · , ih, such 

that il = i, ih = j and C¥isis+I > 0, 'v'1 ::; s ::; h - 1. 

4.4.1 Existence and comparison of solutions 

In this subsection, we show the existence and uniqueness of the solutions of (4.4.18). 

Let I be the r-dimensional vector with each element being 1. 

Theorem 4.4.1 For any y0 E Cr, (4.4.18} has a unique continuous solution y(t,y0 ) 

on [0, oo) such that y(O, y0
) = y0 and y(t, y0 ) E Cr, 'v't 2:: 0. 

r 
Proof. We first choose a sufficiently large number Dm 2:: 2::::: C¥mn, 1 ::; m ::; r such 

n=l 

that 

oo r 

Fj,m(Y) = (1- Yj,m) L L CXmnYj-k,nPmn(k) + DmYj,m,j E z, 1::; m::; r, 
k=-oo n=l 
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is a monotone increasing mapping from Cy to JR. Clearly, ( 4.4.18) can be written as 

dyj,m(t) ) 
dt = Fi,m(Y - (J-Lm + Dm)Yj,m(t), j E Z, 1 ::::; m::::; r. (4.4.19) 

The initial problem of (4.4.19) is equivalent to 

Y. (t) = e-(J.Lm+Dm)ty· (0) + rt e-(J.Lm+Dm)(t-s) p. (y)ds Vy" E z 1 < m < r J,m J,m Jo J,m ' ' _ _ , 

For any y 0 E C1, and any T E (0, oo), define 

Sr := {y = {Yi }iEZ : Yi E C([O, T], [0, 1n, y(O) = y0
, 'ij E Z}, 

and an operator Hr = {HJha by {HJ} = {HJmhS:m~r on Sr, with 

Since 

HJ.m(y)(t) = e-(J.Lm+Dm)tYj,m(O) + 1t e-(J.Lm+Dm)(t-s) Fj,m(y)ds, 

'iy E Sr, 'ij E Z, 1::::; m::::; r. 

= Dm + e-(J.Lm+Dm)t /-Lm < 1, 'it E [0, T], 
flm + Dm flm + Dm -

we have Hr(Sr) ~Sr. For any f3 > 0, we define 

IIYII~J := sup 1Yi,m(t)ie-!3t,Vy E Sr. 
tE[O,r],jEZ, lS,mS,r 

(4.4.20) 

(4.4.21) 
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Then (Sr, 11·11) is a Banach space. For any y, y E Sr, let w = { wj}jEZ with Wj = yj-Yj· 

It follows that 

HJ.m(Y)(t) - HJ.m(Y)(t) 

= 1t e-(!1-m+Dm)(t-s)(Fj,m(y(s))- Fj,m(y(s)))ds 

1
t oo r 

= 0 e-(!1-m+Dm)(t-s)[DmWj,m(s) + (1- Yj,m(s)) k~oo ~ O'nAm,nYj-k,n(s)p(k) 

oo r 

-(1- Yj,m(s)) L LO'nAm,nYj-k,n(s)p(k)]ds 
k=-oo n=l 

t oo r 

= 1 e-(!1-m+Dm)(t-s)[Dmwj,m(s) + L L O'nAm,nP(k)(wj-k,n(s)- Yj-k,n(s)wj,m 
0 k=-oo n=l 

-yj,m( s )wj-k,n)]ds, 

which leads to 

~ 1t e-!3(t-s)-!38 [DmiWj,m(s)l + f t O'nAm,nP(k)(lwj-k,n(s)l + Yj-k,n(s) 
0 k=-oo n=l 

lwj,m(s)l + Yj,m(s)jwj-k,n(s)l)]ds 

~ 1t e-!3(t-s)-f3s[DmjWj,m(s)j + f t O'nAm,nP(k)(2lwj-k,n(s)l + jwj,m(s)l)]ds. 
0 k=-oo n=l 
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Thus we have 

t oo r 

:::; sup lwj,m(s)ie-!3s. sup r e-!3(t-s)[Dm + L L:3anAm,nP(k)Jds 
sE[O,Tj,jEZ,l:=;m::;r tE[O,Tj,l:=;m:=;r lo k=-oo n=l 

Since 
r 

3 L anAm,n + Dm 
lim n=l (1 - e-!3T) = 0, 

/3-+00 f3 
(4.4.22) 

it follows that for sufficiently large {3, Hr is a contraction on Sr, and hence, Hr has 

a unique fixed point yin Sr. This shows that system (4.4.18) has a unique solution 

on [O,T], VT E (0, oo), which implies the uniqueness and existence of a solution y(t) 

of (4.4.18) on [0, oo). I 

Similar to Definition 4.2.1, we can define upper and lower solutions of system 

(4.4.18). In order to prove the strong positivity of solutions, we need the following 

assumption. 

- ;~ 
(D2) Pmn(1) = Pmn( -1) > 0 and Pmn(O) > 0 whenever 1 :::; m, n :::; r with amn > 0. 

The~rem 4.4.2 Let y = {Yi }iEZ and y = {Yi }jEZ be a pair of lower and upper 

solution of (4.4.18), respectively, with Yi,Yi E C 1([0,oo), [0, 1r) and y(O) :::; y(O). 
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Then y(t) ::; y(t), Vt 2: 0. If, in addition, condition (D2} holds, then y0 E Cr \ {0} 

implies that y(t, y0 ) » 0, Vt > 0. 

Proof. It is easy to see that Wj(t) = yj(t)- YJ(t), Vj E Z, t E [0, oo), is continuous 

and bounded, and w(t) := min ~nf Wj,m(t) is continuous. To prove y(t) ::; y(t), t 2: 0, 
l:S:m:S:r JEZ 

it suffices to prove w(t) 2: 0, Vt 2: 0. Suppose the assertion is not true. Then there 

exists t0 > 0 such that w(t0 ) < 0 and 

w(to)e-Moto = min w(t)e-Mot < w(r)e-M07 ,T E [O,to), 
tE(O,to] 

where M0 is chosen such that 

oo r 

Mo > max ( -f.lm + ~ ~ O:mn) > 0. 
l<m<r L L 
- - k=-oo n=l 

( 4.4.23) 

(4.4.24) 

Hence, there exist a sequence Js and an index m such that wj.,m(t0 ) < 0 for all s 2: 1 

and lim Wj.,m(t0 ) = w(t0 ). Let {ts}~1 be a sequence in [0, t0] such that 
S--+00 

w · (t )e-Mots = min w · (t)e-Mot. Js,m s tE[O,to] Js,m 

For any E E (0, t0 ), let L€ := min w(t)e-Mot. By (4.4.23), we have 
tE[O,to-€] 

Thus, there is s€ such that for all s > s€, 

(4.4.25) 

In view of (4.4.25), we obtain ts E [to-E, t0 ], Vs 2: s€, which implies that lim t8 = t0 • 
8--+00 

Since 

w. (to)e-Moto > w. (t )e-Mots > w(t )e-Mots > w(t )e-Moto Js,m - J8 ,m s _ s _ 0 ' 
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we have 

W. (t )e-Mo(to-ts) > W. (t ) > w(t )e-Mo(to-ts) 
Js,m 0 - Js,m s - 0 ' 

which yields to lim Wj,,m(ts) = w(to). 
S->00 

By (4.4.25), it follows that for each s;:::: 1 such that 

and hence, w},,m(ts) :S Mowj,,m(t8 ). Note that Wj,,m(ts) satisfies 

00 T 

wj,,m(ts) 2:: (1- fh.,m(ts)) L L amnfhs-k,n(ts)Pmn(k)- (1- YJ.,m(ts)) 
k=-oo n=l 

oo r 

L L amnYj.-k,n(ts)Pmn(k) - f-lmWj.,m(ts)· 
k=-oo n=l 

Then for all sufficiently large s, we have 

oo r 

0 < wj.,m(ts)- L L amnPmn(k)[YJ.-k,n(ts)(1- YJ.,m(ts))- Yis-k,n(ts) 
k=-oo n=l 

00 T 

< (J-lm + Mo)wj.,m(ts) + L L amnPmn(k)[YJ.-k,n(ts)Wj.,m(ts)- Wj.-k,m(ts) 
k=-oo n=l 

oo r oo r 

< [J-lm + Mo + L L amn:i]J.-k,n(ts)Pmn(k)]wj.,m(ts)- L L amn 
k=-oo n=l k=-oo n=l 

oo r 

< - L L amnw(ts) + (J-lm + Mo)wj.,m(ts). 
k=-oo n=l 

Letting s ---. oo in the above inequality, we obtain 

00 T 

(J-Lm + Mo- L L amn)w(to) 2:: 0. 
k=-oo n=l 
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By (4.4.24), it follows that w(t0 ) ;?: 0, a contradiction. This shows that Wj,m(t) = 

fh,m(t)- YJ,m(t) ;?: 0 for all j E Z, 1::; m::; r, and t E [0, oo). 

Next we show the strong positivity of solutions under condition (D2). Since y0 E 

Cy \ {0}, there exist two integers j E Z and 1 ::; l ::; r such that yJ.z > 0. It is easy to 

see that 

YJ,l(t) = lt[e-11-t(t-s)(l- YJ,z(s)) f i>~lnYj-k,n(s)pzn(k)]ds 
0 k=-oo n=l 

> 0. 

By assumptions (D1) and (D2), for any q =J. l, there is a finite sequence with distinct 

elements i 1, · · · , ih, such that i 1 = q, ih = l, ai.,is+l > 0, V1 ::; s ::; h- 1, and hence, 

Yi-k,n( S )Pih_ 1,n (k )ds 

> 1t e-Jl-;h-l (t-s) (1 - Yi,ih-l (s) )aih-l>mYJ,m(s )Pih-l,m(O)ds 

> 0. 

Similarly, we have 

Repeating these procedures, we obtain 

Yi,q(t) > 0, Vt > 0, 
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which implies that Y],m(t) > 0,\:11 ::; m ::; r, t > 0. For any 1 ::; m ::; r, there is at 

least one n =/= m such that LYmn > 0 and Pmn(1) = Pmn( -1) > 0, and hence, we have 

1
t 00 T 

YJ+l,m(t) = e-~mtYj+l,m(O) + 0 [e-~m(t-s)(1- Yj+l,m(s)) k~oo ~ LYmnYj+l-k,n(s) 

Pmn(k)Jds 

> l e-l•m(t-•)(1 - Yi+t,m(S )) t, <>mnY;,n(S)Pmn(l )ds 

> 0. 

Similarly, we find 

Yj-l,m(t) > 0. 

Continuing this procedure, we obtain 

YJ+n,m(t) > 0, \:InEZ, 1::; m::; r, t > 0. 

Thus, y( t, y0
) » 0 for all t > 0. 

4.4.2 Spreading speed and traveling waves 

I 

In this subsection, we establish the existence of the asymptotic spreading speed for 

system (4.4.18), and show that it coincides with the minimal wave speed for monotone 

traveling waves. 

Note that if v = { vm}~=l is a solution of 

dvm(t) ~ 
dt = (1- Vm(t)) L..t O:mnVn(t)- f-tmVm(t), 1 ::; m::; r, ( 4.4.26) 

n=l 
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then Yi = v, Vj E Z, is a solution of system (4.4.18). If p, = (p,I,f.12, · · · ,P,r) » 0, 

then we define r := ( diag(p,)) -I A, and let p(f) be the spectral radius of the matrix 

r. Throughout this section, we assume that 

(D3) Either P,i = 0 for some 1 ~ i ~ r, or p, » 0 and p(f) > 1. 

By [41, Theorem 8.4](see also [64, Corollary 3.2]), system (4.4.26) has a globally 

asymptotically stable equilibrium v* = { v;;,}~=l » 0 in [0, 1jT\ {0}. Let { Qth>o be 

the solution semifiow associated with system (4.4.18), that is, 

Proposition 4.4.1 For each t > 0, the map Qt satisfies the hypothesis {A1}-{A5). 

Moreover, { Qt }t~0 is a subhomogeneous semifiow on Cv•. 

Proof. We only prove the conditions (A2) and (A5) since all the other conditions 

are easy to verify. We first establish the continuity of Qt(u) = Q(t,u) in (t,u). Let 

y(t),fj(t) be two solutions of (4.4.18) with 0 ~ Yi(t),?}j(t) ~ v*,Vj E Z. Then we 

have the following claim. 

Claim 1. For any E > 0, t0 > 0, there exist 6 > 0 and an integer N > 0 such that 

IIYo(t)- flo(t)ll ~ E, 'it E [0, to], whenever liYi(O)- Yi(O)II < 6, V- N ~ j ~ N. 

To prove this claim, we first consider the case that y(O) ~ fi(O). Then we have 

y(t) ~ f)(t), 'Vt E [0, 00 ). Let Wj,m(t) = Yj,m(t)- Yj,m(t) and wJ,m = Yj,m(O)- Yj,m(O). 
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Then 

dwj,m(t) 
dt 

oo r 

- (1- fh,m(t)) L L O:mnYj-k,n(t)Pmn(k)- (1- Yj,m(t)) 
k=-oo n=l 

oo r 

L L O:mnYj-k,n(t)Pmn(k)- f-1-mWj,m(t) 
k=-oo n=l 

oo r oo r 

= L L O:mnWj-k,n(t)Pmn(k) + L L O:mn(Yj,m(t)Yj-k,n(t) 
k=-oo n=l k=-oo n=l 

-Yj,m(t)Yj-k,n(t))Pmn(k)- f-1-mWj,m(t) 
oo r 

< L L O:mnWj-k,n(t)Pmn(k)- f-1-mWj,m(t). 
k=-co n=l 

Next we consider the system 

_ co r 
dwj,m(t) _ " " -. (t) (k) _ -. (t) dt - L.., L.., O:mnWJ-k,n Pmn f-1-mWJ,m 

95 

k=-co n=l ( 4.4.27) 

Wj,m(O) = wJ,m, Vj E Z, 1 :S m :Sr. 

Using the discrete Fourier transform, 

+co 

= _1_ """' e-i(jr)w. (t) ..J27f .~ J,m 
J=-co 

W (t) -- ei(jr)v (t ,.,..)d,.,.. 1 1+7r 
j,m = ..J27f -1r m ' ' '' 

where i is the imaginary unit, we have 

+co +oo r - vk .L e-i(jr) [-f-1-mWj,m(t) + L L O:mnWj-k,n(t)Pmn(k)] 
J=-co k=-co n=l 

r +co 

= -J-lmVm(t, r) + L O:mn L e-i(kr)Pmn(k)vn(t, r). 
n=l k=-co 
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1XT • h' . dv(t r) B h vve can wnte t 1s equat10n as dt' = v, w ere 

- f.-ll + 'I'll 1'12 '/'lr 

B= 

'Yrl 'Yr2 -f.-lr + 'Yrr 

00 

with '/'ij = o:ii '2: e-i(kr)Pii(k). The general solution of this equation can be written 
k=-oo 

as 

v(t, r) = e8 tv(O, r), 

with 

v(O, r) = 

Since e8 tv(O, r) is a r x 1 matrix, we denote by (e 8 tv(O, r))m the mth row of this 

matrix. Thus, we have 

and hence, 

1 1+71" w (t) < - ei(jr)(e8 tv(O r)) dr J,m _ f2= , m ' 
v .:::?T -71" 

1:::; m:::; r. 

It is easy to see that for any E > 0, and t0 > 0, there exist o > 0 and an integer 

N > 0 such that Wo,m(t) :::; E, 'Vt E [0, t0], 1 :::; m :::; r, whenever Wj,m(O) < o for 
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-N :::; j S N, 1 :::; m:::; r. Thus, llwo(t)ll :::; E, Vt E [0, to], whenever llwi(O)il < 6 for 

-N :::; j :::; N. Regarding the case that y(O) ~ y(O), let z(t), z(t) be two solutions of 

(4.4.18) with 

for all j E Z, 1 :::; m:::; r. Since z(O) :::; z(O), we have IIYo(t)-:Yo(t)ll S llzo(t)-zo(t)ll < 

c, Vt E [0, to], whenever IIYJ(O)- YJ(O)II = lzJ(O)- ZJ(O)II < 6, Vj E Z. This proves 

the claim. 

Claim 2. For any t0 > 0, Qt(u) is continuous in u uniformly fortE [0, t0]. 

Fix fl and t0 > 0. Vc > 0. By Claim 1, it follows that for any c > 0, there are 6 

and N such that 

1 
IIYJo(t,u) -Yio(t,u)ll < 4c,Vt E [O,to]. (4.4.28) 

whenever lluJ- uJII < o, , Vjo E Z, Vj0 - N S j:::; Jo + N. 
00 

Choose b > 0 such that I: 11~;11 < ~' and let 61 = 2-(b+N)o. Thus, for any 
k=b+1 

u E Cv· with 
oo max llu·- u·ll 

-k< '<k J J 
d(u, u) = L _J_ 

2
k < 61, 

k=O 

we have 

By (4.4.28), it follows that 

IIYJ0 (t,u) -YJ0 (t,u)ll < ~c,Vt E [O,to],Vjo E [-b,b), 
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and hence, 

_ b 1 oo 2llv*ll 
d(y(t, u), y(t, u)) < _Il!:a~b IIYi(t, u)- Yi(t, u)ll L 2k + L "'"2k 

_J_ k=O k=b+l 

E ~ 1 E 
< 4 D 2k + 2 = E, 

k=O 

whenever d(u, u) < 0'1 . This proves Claim 2. 
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By Claim 2, it easily follows that Qt(u) = Q(t, u) is continuous in (t, u) E JR. x Cv• 

with respect to the compact open topology. 

Note that system ( 4.4.26) has two equilibria 0 and v*, and v* is the unique globally 

asymptotically stable equilibrium in [0, 1t\ {0}. Since (4.4.26) is cooperative and 

irreducible, Theorem 1.2.1 implies that there exists an entire strongly monotone orbit 

such that lim v( t) = 0 and lim v( t) = v*. Thus, (AS) is satisfied. 
t->-oo t->oo 

By an argument similar to that in the proof of Proposition 4.3.1 , we can prove 

that for each t > 0, Qt is sub homogeneous on Cv•. I 

Let c* be the spreading speed of the map Q1. In order to compute c*, we consider 

the linearized equation ( 4.4.18) at y = 0, 

dyj,m(t) 
dt 

oo r 

L L CtmnYj-k,n(t)Pmn(k)- f.LmYj,m(t), 
k=-oo n=l 

j E Z, 1 ~ m ~ r. (4.4.29) 

Let { Mth~o be the solution semifl.ow associated with the system ( 4.4.29). Note that 

Qt(y0
) is a lower solution of linear system (4.4.29) fortE [0, oo). It then follows that 
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For each u0 E IR.r, let TJm ( t, u0 ) be the unique solution of the linear equation 

dTJm(t) _ f--- ~ xk ) 
dt - ~ ~ etmne TJn(t Pmn(k)- /LmTJm(t), 1 ~ m ~ r, 

k=-oo n=l 

(4.4.30) 

with TJ(O, u0
) = u0

. Then we have 

dTJ(t) = C( ) 
dt X TJ, ( 4.4.31) 

where 

C(x) = 

(r2 

00 
with (j = aij 2::: exkPiJ(k). It is easy to see that Yi(t) = {Yj,m(t)h~m~r with 

k=-00 

YJ,m(t) = e-xJTJm(t, u0
) is a solution of (4.4.29). Thus we have 

which implies that B~ is the solution map of (4.4.31). Note that the general solution 

of (4.4.31) is TJ(t, u0 ) = ectu0 . Then B~(u0 ) = ectu0 , and eJ.L(C)t is the principal eigen-

value of B~ with the positive eigenfunction u0 , where f.L( C) is the principle eigenvalue 

of the matrix C. When x = 0, we have the principal eigenvalue eJ.L(C)t > 1. Thus the 

map Mt satisfies the assumptions (Bl)-(B7) for each t > 0. 

Let t = 1. Then .\(x) ·- eJ.L(C) is the principal eigenvalue of B~. Define the 

function 

1 f.L( C) 
4>(x) := -ln .\(x) = -. 

X X 
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Next we prove that lim <I>(x) = oo. First, we denote C := (c;j)rxr· Since C is 
)(-->00 

cooperative and irreducible, J-L( C) is a simple eigenvalue of C with a strongly positive 

eigenvector. Let v = v(x) be the strongly positive eigenvector of C associated with 

the eigenvalue J-L(C) such that llvll = 1. Then Cv = J-L(C)v. Since 

00 00 00 

L exkPii(k) > L exkPii(k) >eX LPii(k) > 0, 
k=-oo k=l k=l 

00 

L: exkPij(k) 

we have lim k=-oo = oo, and hence, lim c;j(x) = oo for all 1 ~ i, j ~ r with 
)(-->00 )( )(-->00 )( 

aij > 0. By [34, Lemma 3.8], L = lim 11(C) exists, and it is either a finite real number 
)(-->00 )( 

or infinite. Assume, by contradiction, that L is finite. By the compactness of the 

sphere { v E IRr : llv II = 1}, there is a sequence of numbers Xh satisfying lim Xh = oo 
h->oo 

and a vector w = (wi)r=I 2:: 0 in JRr with llwll = 1 such that hlim v(xh) = w. By the 
-->00 

irreducibility of the matrix A, for any 1 ~ j ~ r, there is O'.ij > 0 for some i =/:- j. 

Thus, 

Letting h--+ oo in the above equality, we obtain that Wj = 0, VI ~ j ~ r, and hence, 

w = 0, which is a contradiction. Thus, lim <I>(x) = oo. 
)(-->00 

Since lim <I>(x) = oo and lim <I>(x) = oo, <I>(x) assumes its minimum at some 
)(-->0 )(->00 

finite value x*. Since Ql (y0
) ~ Ml (y0

)' Vy0 E Cv•' Theorem 1.3.1 implies that . 

c* ~ inf <I>(x). 
x>O 
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Consider the linear system 

dyj,m ( t) ( ) ~ ~ ( ( ) ( ) dt = 1 - E L..., L..., O'.mnYj-k,n t)Pmn k - /-lmYj,m t , 
k=-oo n=l 

(4.4.32) 

with parameter E. Let { Mt}t~0 be the solution semiflow associated with the system 

(4.4.32). For any 0 < E < 1, there is a 0 < 5 < E such that 0 ~ Yj,m(t) ~ vm(t, J) < 

E, Vj E Z, 1 ~ m :::; r, Vt E [0, 1] provided 0 :::; Yj,m(O) < 5, Vj E Z, 1 :::; m ~ r, 

where v(t,8) = (v1(t,8), · · · ,vr(t))) is the solution of (4.4.26) satisfying v(O,J) = 

J := ( 5, · · · , 5) E IR.r. Thus, Qt(y0
) is an upper solution of linear system ( 4.4.32) for 

t E [0, 1]. It then follows that Qt(y0 ) ~ Mt(y0 ), Vt E [0, 1], Vy0 E Cs. In particular, 

we have Q1(y0) ~ M1(y0
). As we did for {Mt}t~0 , a similar analysis can be made for 

{Mnt~O· By Theorem 1.3.1, we then have that 

inf <I>f(x) ~ c* :::; inf <I>(x), Vt: E (0, 1). 
x>O x>O 

Letting E ----+ 0, we obtain 

c* = inf <I>(x) = <I>(x*). 
x>O 

As the consequences of Theorem 1.3.2 and Theorem 4.4.2, and Theorem 1.3.3, 

respectively, we have the following two results. 

Theorem 4.4.3 Assume that (Dl) and (D3) hold. Let y(t) be a solution of ((4.18} 

with y(O) E Cv•. Then the following statements are valid: 

(1) For any c > c*, if y(O) « v* and yj(O) = 0 for j outside a bounded interval, then 

lim Y](t) = 0. 
t-+oo,ljl~ct 
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(2) For any c E (0, c*), there is an r > 0 such that if Y1(0) > 0 for j on an interval 

of length 2r, then lim y1(t) = v*. 
t--+oo,ljl~ct 

(3) If, in addition, (D2) holds, then y(O) =f 0 implies that liii?- Y1(t) = v* for 
t--+oo,IJ l~ct 

any c E (0, c*). 

Theorem 4.4.4 Assume that (D1) and (D3) hold. The following two statements are 

valid: 

{1) For any c E (0, c*), system (4.4.18) has no traveling wave U(j- ct) connecting 

v* to 0; 

(2) For any c > c*, system (4.4.18) has a traveling wave U(j- ct) connecting v* to 

0 such that U(s) is continuous and non-increasing ins E JR. 

Numerical Simulations. To show our results on the spreading speed and traveling 

wave solutions, we numerically simulate system (4.2.2). Assume that a>. = 0.5, J..L = 

0.2,p(k) = 3 x12k, Vk E Z. Then we have v* = 0.6. By Theorem 4.3.1, it follows 

that for any initial value with compact support, the corresponding solution of (4.2.2) 

satisfies 

lim Y1(t) = 0, Vc > c*, 
t-+oo,IJI:=.::ct 

lim y1(t) = v*, Vc E (O,c*). 
t-+oo,IJI~ct 

Let Yo(O) = 0.3, y1(0) = 0, Vj =f 0. Figure 4.1 illustrates the numerical solution. Here 

the z-axis represents the value of y1(t) corresponding to the jon the x-axis and time 
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Figure 4.1: The solution of system (4.2.2): A solution with compact support. 
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t on the y-axis. The result is consistent with the above two properties. On the other 

hand, Figure 4.2 shows the numerical solution, which converges quickly to a traveling 

wave, with the initial value yj(O) = 0, '1/j E [-N, -1], y0 (0) = 0, Y}(O) = 0.6, '1/j E 

[1,N]. 
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Figure 4.2: The solution of system (4.2.2): A traveling wave solution. 



Chapter 5 

A Reaction-Diffusion Model With a 

Quiescent Stage 

This chapter is devoted to the investigation of the asymptotic behavior for a reaction

diffusion model with a quiescent stage. We first establish the existence of asymptotic 

speed of spread and show that it coincides with the minimal wave speed for monotone 

traveling waves. Then we obtain a threshold result on the global attractivity of either 

zero or positive steady state in the case where the spatial domain is bounded. The 

numerical simulations are also provided to illustrate these analytic results. 

This chapter is organized as follows. In Section 5.1, we present the model. In 

Section 5.2, we study the model (5.1.3) with spatial domain being R By the theory 

of spreading speeds and traveling waves for monotone semifiows (see, (34], [33]), we 

establish the existence of asymptotic spreading speed and show that it coincides with 

the minimal wave speed for monotone traveling waves. In Section 5.3, by appealing 

to the theory of monotone dynamical systems, we investigate the global dynamics of 

the model (5.1.3) in a bounded domain it c JRn. In Section 5.4, we provide some 

numerical simulation results. At last, we discuss the critical domain size in Section 
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5.5. 

5.1 Introduction 

It is well known that the nonlinear reaction diffusion equation 

Otu(t, x) = D6.u(t, x) + f(u) (5.1.1) 

can be used to describe the dispersal dynamics of a population, where D > 0 de

notes the diffusion coefficient, f ( u) is a nonlinear continuous function. To consider 

the individual variability, Lewis and Schemitz [31] studied the following model for a 

population with the individuals switch between mobile and stationary states during 

their lifetime, 

Otul(t, x) = D6.u1(t, x)- J.LU1(t, x) -12u1(t, x) + 11u2(t,x), 

8tu2(t, x) = ru2(t, x)(1- u2(t, x)/ K) -11u2(t, x) + r2u1(t, x), 

(5.1.2) 

where u1 , u 2 are the densities of the dispersal and nondispersal subpopulations, 11 

and 12 are the emigration and immigration rates, respectively, and J.L is the mortality 

rate. The sedentary subpopulation reproduces with the intrinsic growth rate r and is 

subject to a finite carrying capacity K. All of the parameters in this model are positive 

constants. The authors of [31] determined the minimal wave speed for monotone 

traveling waves under the assumption that the emigration rate 1 1 is less than the 

intrinsic growth rate r for the sedentary class. 
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Hadeler and Lewis [18] studied the spreading speed for (5.1.2) by the theory 

presented in [54]. Since the solution map associated with (5.1.2) is not compact 

due to the absence of diffusion in one equation, one can not obtain the existence of 

monotone traveling waves by the results in [32]. Recently, Wang and Zhao [50] studied 

the spreading speed and traveling waves of system (5.1.2) by the theory developed 

in [47] for nonlinear integral equations, and they proved that the spreading speed is 

indeed the minimal wave speed for monotone traveling waves. 

In [18], Hadeler and Lewis also presented and discussed briefly the following model 

8tul(t, x) = D~u1 (t, x) + f(u 1 (t, x)) - ')'2u 1(t, x) + ')'1u2(t, x), 
(5.1.3) 

Ot u2 ( t, x) = ')'2 u 1 ( t, x) - ')'1 u2 ( t, x) , 

which describes the dynamics of the population where the migrants reproduce, dis

perse at a random pace, and have a positive mortality. Such behavior is typical for 

invertebrates living in small ponds in arid climates which dry up and reappear subject 

to rainfall [18]. However, the authors of [18] did not provide further mathematical 

analysis. 

The purpose of this chapter is to study the spatial dynamics of the system (5.1.3). 

5.2 Spreading speed and traveling waves 

Let X be the set of all bounded and continuous functions from IR to IR2
. Clearly, any 

vector in IR2 can be regarded as a. function in X. 
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vi(x)(ui(x) > vi(x)), Vj = 1, 2, x E JR, and u > v provided u ~ v but u =J. v. For 

r » 0 in JR2
, we define 

Xr := { u E X : 0 :s; u :s; r }. 

Let 

Then :X:+ is a positive cone of X. We equip X with the compact open topology, that 

is, um -+ u in X means that the sequence of um(x) converges to u(x) as m -+ oo 

uniformly for x in any compact set. Moreover, we define 

oo max lu(x)l 
""" lxl:5k !lull := L 

2
k , Vu E X, 

k=l 

where I · I denotes the usual norm in JR2 . It then follows that (X, II · II) is a normed 

space, and (Xn d) is a complete metric space with the distance d(·, ·) induced by 

the norm II · II (see the definition on page 10). Let Y be the set of all bounded and 

continuous functions from lR to JR, with the norm defined in a way similar to that for 

X. 

In this section, we consider the model system (5.1.3) with the spatial domain being 

R We assume that function f E C1(1R+, JR) satisfies 

(C1) f(O) = 0, f'(O) > 0, fv(/Jf) < 0 for v > 0. 

(C2) There exists K > 0 such that f(v) :s; 0 for all v ~ K. 
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We first study the reaction system associated with (5.1.3) 

dv 
dt = F(v), (5.2.4) 

where v := ( vv

2

1 
) , and F(v) := ( f(vi)-

12
1/
1 + 11

v
2 

) . By assumption (C1), we 

/21/1 - /11/2 

see that f is strictly subhomogeneous in the sense that f(kv1) > kf(v1), Vv1 > 0, k E 

(0, 1). It then follows that the solution map associated with system (5.2.4) is strictly 

subhomogeneous. It is easy to see that the system is cooperative and irreducible. 

Thus, the solution map is strongly monotone (see, e.g., [43, Theorem 4.1.1]). Note 

that 

( 

f'(O)- 12 
DF(O) = 

/2 

Let r(DF(O)) be the spectral radius of DF(O). We then have 

r(DF(O)) = ~ (f'(O) -11 -12 + )(!'(0) -11 -12)2 + 4/'(0)11) > 0. 

By the assumptions (C1) and (C2), there exists ui > 0 such that f(ui) = 0 and 

f(v1 ):::; O,Vv1 > ui. Define u; := '"~~~i. Then w* := (ui,u2) is an equilibrium of 

(5.2.4). The assumption (C2) also implies that [0, w] with w = (w1 , 1~~1 ) is positively 

invariant for any w1 ~ u;:. By the continuous-time version of [63, Theorem 2.3.4] and 

[63, Lemma 2.2.1], we have the following result. 

Lemma 5.2.1 Assume that (Cl} and (C2} hold. Then w* - (u'i, u;) is globally 

asymptotically stable for (5.2.4} in IR2 \{0}. 
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Let r(t, x) be the Green's function associated with the heat equation Otu1 = 

D6.u1. Then OtUl = D6.u1 - 1'2U1 generates a linear C0-semigroup T1(t), which is 

defined by 

(5.2.5) 

Let b > 0 and t > 0 be given. For any c: > 0 and K > 0, there exists M > 0, 

such that ~YI?.M f(t, y)dy < e'"'~2 tc:/4b. Let 6 = e'"'~2 tc:/2, L = M + K. Then for any 

4h, '1/h E [ -b, b]¥, we have 

1Tl(t)(¢I)(x)- Tl(t)('¢I)(x)l = e-12tl1 r(t, X- y)(<Pl(Y)- '1/'l(y))dyj 

< e-12t 1 r(t, y)l<Pl(x- y)- '1/'l(x- y)jdy 

= e-12t [1 f(t, y)j<,bl(x- y)- '!/'1(x- y)jdy 
yE(-M,M] 

+ 1 r(t, y)i<Pl(x- y)- '¢l(x- y)jdy] 
jyj?.M 

< e-12 t [ max l<P1(x- y)- '!/'1(x- Y)l 
yE(-M,M] 

+2bj r(t, y)dy] 
IYI?.M 

< E 

for all x E [-K, K], whenever j¢1(x) -1,!;1(x)l < 6 for -L ~ x ~ L. Thus, for any 

b > 0, T 1(t): [-b,b]"li'-+ Y is continuous. 

We consider system (5.1.3) with initial conditions 

(5.2.6) 
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Integrating the first equation of the system (5.1.3) together with (5.2.6), we have 

(5.2.7) 

Note that OtU2 = -')'!U2 generates a linear 0°- semigroup T2(t), which is defined by 

and 

oo max l</>2(x)- '!/'2(x)J 
JJT2(t)(</>2)- T2(t)('!/'2))jj - e--nt L lxl9 

2
k 

k=l 

- e-·ntll¢2- '!/'2JJ. 

It is easy to see that the linear operator T2 (t) is continuous with respect to the norm 

in X for each t ~ 0. 

Integrating the second equation of system (5.1.3) together with (5.2.6), we obtain 

(5.2.8) 

( 

T1(t) 0 ) ( B1(¢)(x) ) ( f(¢I)(x) + 11¢2(x) ) 
Let T(t) = , B(¢)(x) = = . 

0 T2(t) B2(¢)(x) 12¢1(x) 

Clearly, T(t) is a linear semigroup on X. 

It follows that system (5.1.3) can be written as the following integral equation: 

u(t) = T(t)¢ + 1t T(t- s)B(u(s))ds. (5.2.9) 

A function u(t, x) is said to be a lower solution of (5.1.3) if 

u(t) ::::; T(t)¢ + J; T(t- s)B(u(s))ds, Vt ~ 0. 
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A function u( t, x) is said to be an upper solution of (5.1.3) if 

u(t)?: T(t)'¢ + J~ T(t- s)B(u(s))ds, \:It?: 0. 

Lemma 5.2.2 Let (C1) and (C2) hold. For any¢= (¢I,¢2) E :Xw•, the system 

(5.1.3) has a unique mild solution u(t, x, ¢) = (u 1(t, x, ¢), u2(t, x, ¢)) with u(O, ·, ¢) = 

¢, andu(t,·,¢) E Xw.,Vt?: 0. Moreover, ifu(t,x) andu(t,x) are apairojlowerand 

upper solutions of (5.1. 3), respectively, with u(O, ·) :s; u(O, ·), then u(t, ·) :s; u(t, ·),\:It ?: 

0. 

Proof. We first show that B is quasi-monotone on Xw• in the sense that 

. 1 
hm -hd('¢- ¢ + h(B('¢)- B(¢)); :X+)= 0 

h-+0+ 

for all ¢, '1/J E :Xw• with cp(x) :s; '1/J(x), x E R Indeed, it is easy to see that there is a 

constant p > 0 such that 

and hence for any h > 0 satisfying hp < 1, 

By [39, Corallary 5], (5.1.3) has a unique mild solution u(t, ·,¢)on [O,oo) for each 

¢ E Xw•, and the comparison principle holds for the lower and upper solutions. 1 
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Define a family of operators { Qt}t;:::o on Xw• by 

Qt(<P)(x) := u(x,t,¢) = (ui(x,t,¢),u 2 (x,t,¢)),Vx E JR,t ~ 0. (5.2.10) 

Note that for any (to, <Po) E JR+ x Xw•, we have 

(5.2.11) 

By [38, Theoreom 8.5.2], it follows that Qt( ¢) is continuous at (to, ¢0 ) with respect 

to the compact open topology. Thus, { Qt}t;:::o is a semiflow on Xw•. 

Lemma 5.2.3 { Qt}t;:::0 is a subhomogeneous and strongly monotone semiflow on Xw•. 

Proof. Since f is strictly subhomogeneous, we see that (u 1(t,x,¢),u2 (t,x,¢)) -

u(t, x, ¢) satisfies 

Ot(/'\,ul) = DM~ul + 1'\,f(ui) -/z/'\,UI + /IK,Uz 

< DM~.ul + f(K,ul) -!zK,Ul + /IK,Uz 

Ot(K,uz) < -!zK,Ul + /1/'\,Uz 

for any 0 :::;; /'\, :::;; 1 and ¢ E Xw•. Thus, K,u(t, ¢) is a lower solution of (5.1.3) with 

initial value/'\,¢. By Lemma 5.2.2, we then have K,U(t, ¢):::;; u(t, K,¢) fort~ 0, that is, 

K,Qt(<P):::;; Qt(K,¢). Thus, Qt is subhomogeneous. 

By Lemma 5.2.2, { Qth;:::o is a monotone semiflow on Xw•. Next, we show that 

for each t > 0, Qt is strongly monotone in the sense that Qt(<P) « Qt('l/J) whenever 

¢ < '1/J in Xw•· Given ¢ < '1/J in Xw•, let U(t, x) = u(t, x, '1/J) - u(t, x, ¢). Then 
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U(t,x) 2:: 0,\ft 2:: 0, and U(O,·) :¢0. Note that the first and second component 

U1(t, x) and U2 (t, x) satisfy 

> D!:::.U1 (t, x)- pU1 (t, x)- 'Y2U1 (t, x) + 'Y1U2(t, x) 

> D!:::.U1(t,x)- (P+'Y2)UI(t,x,¢). 

otU2(t,x) - 'Y2U1(t,x) -"(1U2(t,x). 

(5.2.12) 

(5.2.13) 

(5.2.14) 

In the case where U1 (0, ·) :¢ 0, the strict positivity theorem (see e.g.,[49, Theorem 

5.5.4]) and the inequality (5.2.13) imply that ul ( t, X) > 0, \it > 0, \fx E JR. It follows 

from the equation (5.2.14) that U2 (t, x) > 0, \it> 0, \fx E R 

In the case where U2 (0, ·) :¢ 0, we have, by the equation (5.2.14), 

U2(t, ·) = T2(t)U2(0, ·) + "(21t T2(t- s)U1(s, ·)ds ;¢ 0, \it 2:: 0. 

Thus, (5.2.12) implies that 

U1(t, ·) 2:: T3(t)U1(0, ·) + ~~1 it T3(t- s)U2(s, ·)ds :¢ 0, \it> 0, 

where T3(t) is the linear semigroup generated by OtUl = D!:::.U1- (p + 'Y2)U1, that is, 

(T3(t)cpt)(x) := e-(p+f'2 )t 1 r(t,x- y)cpl(y)dy. 

Hence, by [49, Theorem 1.4.5], we get U1(t,x) > 0,\ft > 0,\fx E JR. It follows from 

the equation (5.2.14) that U2(t, x) > 0, \it> 0, \fx E JR. 

Therefore, u(t,x,'lj;) » u(t,x,¢),\ft > O,x E IR, which implies that Qt: 'Xw• --t 

Xw• is a strongly monotone semifiow. I 
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Lemma 5.2.4 For each t > 0, the map Qt satisfies (AI)- (A6) with r = w*. 

Proof. It is easy to see that assumptions (Al)-(A4) are all hold for Qt. Let Qt be 

the restriction of Qt to [0, w*]. Then Qt : [0, w*] ---+ [0, w*] is the solution semiflow 

generated by the ordinary differential system (5.2.4). By Lemma 5.2.1, w* is globally 

asymptotically stable equilibrium of Qt in IR/ {0}. Note that Qt is a strongly monotone 

semiflow on [0, w*]. By the Dancer-Hess connecting orbit lemma (see, e.g., [63]), 

it follows that for each t > 0, the map Qt admits a strongly monotone full orbit 

connecting 0 and w*, and hence, Qt satisfies (A5). 

Define a linear operator S(t)¢> := (0, T2(t)¢2), V¢ EX, and a nonlinear map 

It is easy to see that Qt(cf>) = S(t)¢> + L(t)¢>, V¢ E Xw•, t 2: 0. Since 

· oo max I(S(t)¢)(x)l oo max 1(0, c/>2(x))l 
IIS(t)¢11 = L lxl~k 2k = e-·nt L lxl~k 2k ::; e-·ntll¢11, 

k=l k=l 

we have IIS(t)ll::; e-·nt,'Vt > 0. By the expression of (5.2.7) and the compactness of 

T1(t) : [-b, bjy---+ Y for each t > 0 and b > 0, it then follows that L(t) : Xw• ---+X+ 

is compact for each t > 0. Thus, for any number r > 0, any interval I = [a, b] of the 

length r, and any D C Xw•, we have 

which implies that (A6) is satisfied. I 
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Let c* be the asymptotic speed of spread of the map Q1 on Xw•· In order to 

compute c*, we consider the linear differential equation 

(5.2.15) 

Let (u1 (t, w), u2(t, w)) be the solution of (5.2.15) satisfying (u1 (0, w), u2 (0, w)) = w E 

It is easy to see that (u1(t, x), u2(t, x)) = e-J.tx(u1(t, w), u 2(t, w)) is the solution of 

the linear differential equation with diffusion 

(5.2.16) 

Let { Mt }t;::o be the solution semi flow associated with the system (5.2.16). Note that 

Qt(¢) is a lower solution of the linear system (5.2.16) fortE [O,oo). It then follows 

that 

Note that the fundamental solution matrix of (5.2.15) is eA(J.t)t with 

Define B1 as 

( 

D112 + f'(O)- 12 
A(11) = 

/2 
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Therefore, Bt is the solution map of the linear differential equations (5.2.15) on JR2 , 

and its principal eigenvalue is e>-(J.L)t, where >..(J.l) is the spectral radius of the matrix 

A(J.l), and 

Since >.(0) > 0, the map Mt satisfies assumptions (B1)-(B7) for each t > 0. 

Letting t = 1, we see that e>-(J.L) is the principal eigenvalue of B! =: Bw Define 

the function 

(5.2.17) 

Since lim <I>(J.l) = oo, and lim <l>(J.l) = oo. <l>(J.l) assumes its minimum at some finite 
11-~o 11-~oo 

value f-L*. It then follows from Theorem 1.3.1 that c*:::; inf <I>(J.l). 
J.L>O 

For any 0 < E < 1, there is 6 > 0 such that f(v) 2: (1- c)f'(O)v, VO :::; v :::; 6. 

By the continuous dependence of solutions on initial conditions, it follows that there 

is a sufficient small TJ > 0 such that the solution of (5.2.4) satisfies v(t, fj) < J, Vx E 

JR, Vt E [0, 1], where J = (6, c5), fj = (TJ, ry). Thus, the comparison theorem (see Lemma 

5.2.2) implies that 

u(t, x, ¢) :::; v(t, TJ):::; c5, Vx E JR, V¢ E X.11 Vt E (0, 1). 

Hence for all t E [0, 1] and x E JR, u(t,x,¢) with¢ E X'T'J satisfies 

[ 

OtUl (t, x) 2: D6.u1(t, x) + (1- c)f'(O)u1(t, x)- ')'zUI(t, x) + ')'IUz(t, x), 
(5.2.18) 

OtUz(t,x) = ')'zu1(t,x)- ')'1u2(t,x). 
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Let { Mnt'?.O be the solution semifl.ow associated with 

(5.2.19) 

Since Qt(<P) is an upper solution of the linear system (5.2.19) fortE [0, 1] and¢ E X7J. 

It then follows that 

In particular, M!(¢) ~ Q1(¢), \:1¢ E X7J. As for {Mt}t;:::o, similar analysis can be 

carried out for {Mnt?.O· By Theorem 1.3.1, we then have 

inf <P€(1-l) ~ c* ~ inf <P(J.l), VE E (0, 1). 
~>0 ~>0 

Letting E --t 0, we obtain c* = inf <P(J.l). Setting <P'(!l) = 0, we then have the following 
~>0 

equation 

D3J.l6 + [3j'(O)D2 - 2D2(f'(O) -11 -!2)]!-l4 - D(f'(O) -11 -12) · 

(f'(O) + 11 + /2)!-l2 - 4rl (!'(0))2 - j'(O)(f'(O) -11 -12? = 0. (5.2.20) 

Thus, c* = <P(J.l*), where 1-l* is the positive root of (5.2.20) at which <P(J.l) takes its 

minimum value. 

The following result shows that the above-defined c* is the spreading speed for 

solutions of (5.1.3) with initial functions having compact supports. 

Theorem 5.2.5 Assume that (01) and (02) hold, and let c* = inf <P(J.l). Then the 
~>0 

following statements are valid: 
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(1) For any c > c*, if¢ E Xw• with 0 :::; ¢ « w*, and ¢(x) = 0 for x outside a 

bounded interval, then lim u(t, x, ¢) = (0, 0); 
t-->oo,jxj<::ct 

(2) For any c E (0, c*), if¢ E Xw• and¢>¢. 0, then lim u(t, x, ¢>) = w*. 
t-->oo,jxj~ct 

Proof. Conclusion (1) is straightforward consequence of the first part of Theorem 

1.3.2. Let c < c* be given. Since Qt is subhomogeneous, r 01 can be chosen to be 

independent of a » 0. Thus, we can write r01 as r. If¢> E Xw• and cf>(x) » 0 for x 

on an interval J of length 2r, then there exists a vector 0' » 0 such that cf>(x) » 0', 

Vx E J, and hence, the second part of Theorem 1.3.2 implies that lim u(t, x, ¢>) = 
t-->oo,lxi~ct 

( ui, u;). For any ¢ E Xw• with ¢(-) ¢. 0, it follows from the strong monotonicity of 

Qt that u(t,x,¢) » 0,\:/x E IR,t > 0. Fix a t0 > 0. Then u(t0 ,x,¢) » 0,\:/x E R By 

taking u(t0 ,x,¢>) as a new initial value, we have the conclusion (2). I 

The existence and nonexistence of traveling wave solutions are straightforward 

consequences of Theorem 1.3.3. 

Theorem 5.2.6 Assume that (C1) and (C2) hold, and let c* = inf <l>(J.L). Then the 
p.>O 

following statements are valid: 

{1) System (5.1.3) admits no traveling wave solution with wave speed c E (0, c*); 

(2) For every c ~ c*, system (5.1.3) has a traveling wave solution U(x- ct) con-

necting w* to (0, 0) such that U(s) is continuous and non-increasing ins E R 
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5.3 Dynamics in a bounded domain 

In this section, we consider the model system (5.1.3) with bounded spatial domain 

(5.3.22) 

Bui = 0 on (O,oo) x 80., i = 1,2, 

where 0. c IRn(n 2:: 1) is a bounded domain with boundary 80. of class C1+0(0 < 

e ::; 1), the boundary condition is either Bu = u (Dirichlet boundary condition) or 

Bu = ~~ + a(x)u (Robin type boundary condition) for some nonnegative function 

a E C1+1J(80., IR), ~~ denotes the differentiation in the direction of outward normal n 

to 80.. 

Let X = LP(0.), \:In < p < oo, and for {3 E (! + ;;,, 1), let X11 be the fractional 

power space of X with respect to -~and the boundary condition Bu = 0 (see, e.g., 

[20]). Then X13 is an ordered Banach space with the order cone Xt consisting of all 

nonnegative functions in X13 , and Xt has nonempty interior int(Xt). Moreover, X13 c 
'"-·, 

Cl+v(n) with continuous inclusion for v EjO, 2{3 -1- !!:). Let E = x/3 X x/3 and p = 
p . 

xt X xt. Then (E, P) is an ordered Banach space. Denote the norm onE by 11·11!3· 

Thus, there exists a constant k13 > 0 such that 11</>lloo := maxxen II(¢I(x),¢2(x))ll :S 
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Let r( t, X) be the Green function associated with the linear equation OtU! = Db..ul 

subject to the boundary condition Bu1 = 0. Then the equation Otu1 = Db..u1 -12u1 

generates a linear semigroup T1(t), which is defined by 

(5.3.23) 

Integrating the first equation of system (5.3.22), we have 

(5.3.24) 

Similarly, Ot u2 = -11 u2 generates a linear semigroup T2 ( t), which is defined by 

Since 

it is easy to see that the linear operator T2 (t) is continuous with respect to the norm 

Integrating the second equation of system (5.3.22), we obtain 

(5.3.25) 

( 

T1(t) 0 ) .. ( B1(¢)(x) ) ( f(¢I)(x) + /1c/J2(x) ) 
Let T(t) = , B(¢)(x) = = . 

0 T2(t) B2(¢)(x) 12¢1(x) 

Clearly, T(t) is a linear semigroup on E. 
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We write (5.3.22) as an integral equation 

u(t) = T(t)¢ + 1t T(t- s)B(u(s))ds. (5.3.26) 

For any L > ui, let PL := {¢ E P : ¢1(x) ::;; L, ¢2 (x) ::;; !iJ.L, Vx E D}. An 

argument similar to that in the last section shows that 

lim _hl d('¢- ¢ + h(B('¢)- B(¢)), P) = 0 
h-->0+ 

for all '1/J, cp E PL with cp(x)::;; '1/J(x), xED. 

By [39, Proposition 3 and Remark 2.4], (5.3.26) has a unique solution u( t, ¢) on 

[0, oo) for each¢ E P£. Moreover, let u(t, x) and u(t, x) be a pair of lower and upper 

solutions of (5.1.3), respectively, with u(O, ·) ::;; u(O, ·). Then u(t, ·) ::;; u(t, ·), Vt 2:: 0. 

In addition, PL is a positively invariant set for (5.3.22). 

Define a family of operators { Qt}t~o on P by 

Qt(cf>)(x) := u(x, t, ¢), '1/¢ E P, x E 0, t 2:: 0. (5.3.27) 

By similar arguments as in the proof of Lemma 5.2.3, it follows that { Qth>o is a 

strongly monotone semifiow on P. 

Theorem 5.3.1 Let (Cl) and (C2) hold. Then the solution semifiow {Qth~o admits 

a connected global attractor on P. 

Proof. Define a linear operator S(t)¢ := (0, T2 (t)¢2 ), V¢ E P, and a nonlinear 

operator L(t)¢ = (u1(t, ·, ¢), 12 J~ T2(t- s)u1(s)ds), '1/¢ E P. It is easy to see that 
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Qt(</>) = S(t)</> + L(t)</>, V</> E P, t 2:: 0. Since 

we have IIS(t)ii~J:::; e-'Ytt,Vt > 0. By the expression of (5.3.24) and the compactness 

of T1(t) for each t > 0, it follows that L(t) : P--+ Pis compact for each t > 0. Let a 

be the Kuratowski measure of noncompactness on E. Thus, for any bounded set D 

in P, there holds 

a(Qt(D)):::; a(S(t)(D)) + a(L(t)(D)):::; e-'nta(D), 

where we have used a(L(t)(D)) = 0 since L(t)(D) is precompact. Consequently, for 

each t > 0, Qt is an a-contraction on P with contracting function e-·nt. 

Next, we prove the solution semifiow Qt is point dissipative, that is, there exists 

a positive number B such that 

lim iiu(t, ·, </>)li.a :::; B, V</> E P. t->oo 

For any given</> E P, let v0 = max<f>(x). Denote the solution of (5.2.4) with initial 
~n • 

value v0 as v(t, v0 ). By Lemma 5.2.1, we have lim v(t, v0 ) < 2w*, Vv0 E IR~. By the 
t--->00 

comparison theorem, we have u(t,x,</>):::; v(t,v0 ),Vt > O,Vx E 0. It follows that 

lim llu(t,·,</>)lloo < 2w*,V¢ E P, and hence, there is to> 0 such that liu(t,·,</>)lloo < t->oo 

2w*, Vt 2:: to. By the definition of II · llo on X0 = X, we have llullo :::; kllulloo for 

some positive number k. It follows that llu(t, ·, </>)llo:::; kiiu(t, ·, c/J)IIoo < 2kw*, Vt 2:: to, 

and hence llu(t+to,·,</>)llo < 2kw*,Vt 2::0. By [21, Lemma 19.3], llu(t+to,·,</>)llf1:::; 
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ct-'~'llu(to, ·, <P)IIo < 2kw*ct-'~' < 2kw*c, Vt ;?:: 1, where f3 < 1 < 1, and c depends on 

/, f3 and kw*. Hence, lim llu(t, ·, ¢>) 11!3 :s; B := 2kw*c. 
t->00 

Since PL is positively invariant for all L > ui, the orbits of bounded sets are 

bounded. By the continuous-time version of [63, Theorem 1.1.2], { Qth~o admits a 

connected global attractor on P, which attracts each bounded set in P. I 

Note that (0, 0) is an equilibrium of the system (5.3.22). Linearizing system 

(5.3.22) at (0, 0), we have 

(5.3.28) 

Bvi = 0, on an X (O,oo), i = 1,2. 

Substituting ui(t, x) = e>-t¢>i(x), i = 1, 2, we obtain the associated eigenvalue problem 

A<P!(x) = D!:::.¢>1(x) + (f'(O) -12)¢1(x) -11¢2(x), 

(5.3.29) 

B¢>i = o, x E an, i = 1, 2. 

By the proof of [43, Theorem 7.6.1] and a generalized Krein-Rutman Theorem 

(see, e.g., (27, Lemma 2.2]), (5.3.29) has a principal eigenvalue, denoted by)..*, with 

an associated eigenvector ¢>* = (<Pi,¢>~) » 0. 

According to [43, Theorem 7.6.1], the eigenvalue problem 

{ 

>.¢>1(x) = D!:::.¢>1(x) + (f'(O) -12)¢1(x), 

B¢>1 = o, x E an, 
(5.3.30) 
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has a principal eigenvalue 5.* with an eigenfunction ¢! > 0. Moreover, we have the 

following observation. 

Lemma 5.3.2 The following statements are valid: 

(1) ).* = f'(O)- 12 in the case where Bu = ~~; and).* =- Ti~f + f'(O)- 12 in the 

case where Bu = u and n = (0, L). 

Proof. In the case where Bu = ~' it is easy to verify that A = f'(O) - 12 is an 

eigenvalue of (5.3.30) with the eigenfunction ¢i _ 1 » 0. Since only the principal 

eigenvalue admits a strongly positive eigenfunction, we have ).* = f'(O)- 12. In the 

case where Bu = u and n = (0, L), we see that A=- Ti~p + f'(O) -12 is an eigenvalue 

of (5.3.30) with the eigenfunction ¢>!(x) = sin(yx). Since ¢! » 0 in X13 , it follows 

that ).* =- Ti~p + f'(O)- 12· 

Let A* be the principal eigenvalue of (5.3.29) with eigenfunction¢>*= (¢>;', ¢>2) » 0. 

Then (A*+ ll)¢>2(x) = 12¢>;'(x), Vx ED, and hence A*+ 11 > 0. It follows that 

(A*+ 77~~. )¢>i(x) = D~¢>;:(x) + (!'(0)- l2)¢>i(x), 
(5.3.31) 

B¢>';_ = 0, x E 80. 

Since ¢>i » 0 in X/J, we must have ). * = A*+ 77~~·, and hence A* is a real zero of the 

quadratic equation 

(5.3.32) 
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It remains to prove that ).* is the maximum zero of (5.3.32). Let ). be a given zero 

of (5.3.32). Since P( -')'1) = 'Yl'Y2 > 0, we have ). =J. -')'1, i.e., ). + ')'1 =J. 0. It is easy 

to see that ).(). + 'YI) + 1'11'2 = :\*(). + ')'1). Since).+ ')'1 =J. 0, we have:\* =). + }~~. 

Note that :\* satisfies (5.3.30) with <Pr = ¢;:. Set </>2 = >.J~1 <Pi· It then follows that 

). is an eigenvalue of (5.3.29) with eigenfunction (<Pi, </>2). Thus, any zero of (5.3.32) 

is an eigenvalue of (5.3.29). Since).* is the principal eigenvalue of (5.3.29), it follows 

that ).* is the maximum zero of (5.3.32). I 

Now we are ready to prove the following threshold result on the global dynamics 

of (5.3.22). 

Theorem 5.3.3 Let (Cl) and (C2) hold. For any</> E P, let u(t, ·, </>) be the solution 

of (5.3.22). 

(1) If).*< 0, lim llu(t, ·,</>)II~= 0 for every</> E P. 
t-+oo 

(2) If).* > 0, then (5.3.22) admits a unique positive steady state</>*, and lim liu(t, ·, </>)-
t-+oo 

</>* 11!3 = 0 for every </> E P\ {0}. 

Proof. (1) In the case of).*< 0, [43, Theorem 7.6.2] implies that lim llv(t,·,¢)11 13 = 
t-+oo 

0, V<P E P, where v(t, ·, <P) is the unique solution of (5.3.28). Note that the solution 
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u(t, ·, ¢) of (5.3.22) satisfies 

{ 

Otul(t, x) ~ Dt::..u1(t, x) + j'(O)u1- /'2u1(t, x) + !'1u2(t, x), \it~ 0, 
(5.3.33) 

8tu2(t, x) = /'2U1 ( t, x) - 1'1 u2( t, x ). 

By the comparison theorem, we have u(t,x,¢) ~ v(t,x,¢>),\ft ~ O,x En, and hence, 

lim llu(t,·,¢)lloo = 0. Next we show that lim llu(t,·,¢)11.B = 0. Let w(¢) be the 
t-+oo t-+oo 

omega limit set of the orbit {u(t, ·, ¢) : t ~ 0} with respect to the norm II· II.B· It 

suffices to show that w ( ¢) = { 0}. For any 'ljJ E w ( ¢), there exists a sequence tn -t oo 

such that lim llu(tn, ·, ¢)- '1/JII.B = 0, and hence, lim llu(tn, ·, ¢>)- 1/JIIoo = 0. Thus, 
n~oo n~oo 

lim llu(t, ·, ¢>)lloo = 0 implies that 'ljJ = 0. It follows that lim llu(t, ·, ¢)11.B = 0, \f¢ E P. 
t-+oo t-+oo 

(2) In the case of..\* > 0, let P0 = {¢ E P : ¢>(·) ¢. 0}, 8P0 := P\P0 = {0}. 

Clearly, Qt(O) = 0, \ft ~ 0. We further have the following claim. 

Claim. Zero is a uniform weak repeller for P0 in the sense that there exists 60 > 0 

such that limsupiiQt(rP)II.B ~ 6o,V¢ E Po. 
t-+oo 

Indeed, let Ae be the principal eigenvalue of 

(5.3.34) 

Bui = 0, X E an, i = 1, 2 

with a positive eigenfunction rPe· Since lim..\e = ..\* > 0, we can fix a sufficiently small 
e-+0 

number E > 0 such that Ae > 0. Choose 6e > 0 such that f(u 1 ) > (f'(O)- E)ul for 

all u E (0, 6e)· Let 60 = f:;. Suppose, by contradiction, there exists <Po E Po such 
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that lim sup 11Qt(<Po)lli3 < Do, and hence, there exists to > 0 such that IIQt(<Po)lloo $ 
t-+oo 

ki311Qt(<Po)lli3 <De, Vt >to. It is easy to see that u(t, x, ¢0 ) satisfies 

Since ue(t,x) = <Pe(x)e>.,t is a solution of 

8tu1 (t, x) = D6u1 (t, x) + (!'(0) - "(2 - t:)u1 (t, x) + 'Y1u2(t, x), 

(5.3.36) 

BiUi = 0, on an X (0, oo), 

and u(t0 , ·, ¢0 ) » 0 in E, that is, u(t0 , ·, ¢0 ) E Int(P), it follows that there exists 

a sufficiently small a > 0 such that u(t0 , x, ¢0 ) ~ a<f>e(x) = aue(O, x), Vx E n. By 

the comparison theorem, we have u(t,x,<f>o) ~ a<f>e(x)e>..(t-to), Vt ~ to,X En. Since 

A€ > 0, it follows that u(t, x, ¢0 ) is unbounded, a contradiction. 

By the continuous-time version of [63, Theorem 1.3.3], Qt is uniformly persistent 

with respect to Po in the sense that there exists c51 > 0 such that 

By the continuous-time version of [37, Theorem 3. 7], the semiflow Qt : P0 -+ P0 , t ~ 0, 

admits a global attractor A0 . Thus, [37, Theorem 4. 7] implies that { Qth2:o has an 

equilibrium¢* E Po. Since {Qt}t2:o is a strongly monotone semiflow on P, we have 

¢* = Qt(<P*) » 0, Vt > 0. 

It is easy to see that for each t > 0, Qt is strictly subhomogeneous. Thus, [62, 

Lemma I] implies that for each t > 0, the map Qt has at most one fixed point, and 
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hence the semiflow { Qth2o has at most one eqilibrium. Thus, A0 only contains one 

equilibrium ¢*. By the Hirsch attractivity theorem (see, e.g., [63, Theorem 2.2.6]), 

¢* is globally attractive in P0 . I 

5.4 Numerical simulations 

In this section, we numerically simulate system (5.1.3) with both unbounded and 

bounded spatial domains. 

Assume that D = 1, ')'1 = 1, ')'2 = 1.5, and let f(u) = u(1-u). It is easy to see that 

(C1) and (C2) hold for system (5.1.3), and the positive equilibrium of the associated 

reaction system is w* = (1, ~). By equation (5.2.20), it follows that <l>(fL) takes its 

minimum value 1.1510 at fl* = 0.8074, and hence, c* = <I>(fl*) = 1.1510. Thus, 

Theorem 5.2.5 implies that for any nonzero initial function ¢ E Xw• with compact 

support, the corresponding solution of (5.1.3) satisfies 

We choose 

lim u(t,x,¢) = 0, Vc > c*, 
t--+oo,lxl2tc 

lim u(t, x, ¢) = w*, Vc E (0, c*). 
t--+oo,lxl:s;tc 

1 "f [ 1r 1r l 2 cosx, 1 x E -2,2, 

0, if X~ ~· 

Figure 1 illustrates the numerical solution u(t, x) = (u 1(t, x), u2(t, x)). Here were-

place the spatial domain ( -oo, oo) with the large interval [-60, 60] subject to the 
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Figure 5.1: A solution with compact support 

Neumann boundary condition. The result is consistent with the above two proper

ties. To show a traveling wave, we choose the initial conditions as 

<h(x) = 

and 

0, if x:'S:-1, 

~(x + 1), if X E (-1, 1], 

1, if X~ 1, 

0, if X :'S: -1, 

~(x + 1), if X E (-1, 1], 

~' if X~ 1. 

Figure 2 shows that the numerical solutions converge quickly to a traveling wave in 

profile. 

Next we consider system (5.1.3) with boundary domain n = [0, 1r] in the case 

of Dirichlet boundary condition. In the case where D = 1, 11 = 1, /2 = 1.5, and 

f(u) = u(1- u), Lemma 5.3.2 implies that the eigenvalue .A*< 0. By Theorem 5.3.3, 
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0 ... 

Figure 5.2: A traveling wave solution 

Figure 5.3: Global attractivity of the zero solution 

it follows that lim llu(t, x, ¢)11~ = 0 for every¢ E P. Let 
t-+00 

¢1(x) = ¢2(x) = sinx,'v'x E 0. 

Figure 3 illustrats the numerical solution (u1(t,x),u2(t,x)), and confirms our result. 

In the case where D = 0.2, 1 1 = 1, and 1 2 = 0.2, Lemma 5.3.2 implies that 

the eigenvalue ).* > 0. By the second conclusion of Theorem 5.3.3, it follows that 

there exists a unique positive steady state¢*, and lim llu(t, ·, ¢)- ¢* 11~ = 0 for every 
t-+oo 

¢ E P\{0}. Our numerical simulations in Figure 4 are consistent with this result. 
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'• '• 

Figure 5.4: Global attractivity of the positive steady state 

5.5 Discussion 

In this chapter, we consider a reaction-diffusion model with mobile and stationary 

compartments. We obtain the existence and the computing formula of the spread

ing speed, and prove that it coincides with the minimal wave speed for monotone 

traveling waves. This result also shows that the invasion rate of the population can 

be determined by the linearization of the model system at the trivial solution. We 

further study the global dynamics of the model in the bounded domain, and give the 

threshold condition on the global attractivity of either zero or positive steady state. 

Biologically, this result shows that the population dies out when the zero solution is 

linearly stable; while the population stablizes at a unique positive steady state when 

the zero solution is linearly unstable. 

Note that in the case where Bu = u and n = (0, L ), we can discuss the the critical 

domain size for the persistence of the population. It has been shown in Theorem 5.3.3 
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that the stability of the positive equilibrium solution is determined by the sign of ..\ *, 

which is the principal eigenvalue of (5.3.29). In this case, we see from Lemma 5.3.2 

that );* = _1r~f + f'(O)- "(2, and 

* 1 [ 1r

2 

D J'( ) ..\ = 2 - v + 0 - "/2 - 'Yl + 

A straightforward computation shows that if 

!' (0) - "/2 - min{ 'Y1, "/2} < 0, (5.5.37) 

then 

..\ * < 0 for any L > 0. 

If 

!' ( 0) - 'Y2 - min { 'Y1, "/2} > 0, (5.5.38) 

then 

..\* > 0 provided L > L* := 1r 
D 

f'(O)- "/2- min{'Yl,/2} 

..\* < 0 provided L < L* . 

Our results suggest that if the population growth rate at a low density, f'(O), is 

less than 12 +min{/1 ,"(2}, then the population will always die out, no matter what 

the domain size is. Otherwise, there exists a critical domain size L * such that the 

population stablizes at a positive steady state when the domain size is larger than 

L *; and the population goes extinct when the domain size is smaller than L *. 
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We also notice that model (5.1.3) reduces to the classical Fisher's equation if /I = 

12 = 0 and f(u) = u(1-u). In this case, (5.2.17) implies that <'P(J.L) = DJ.L+ ~,J.L > 0, 

and hence c* = inf <P(J.L) = 2VD. For Fisher's equation with boundary condition 
!1->0 

Bu = u and n = (0, L), it follows from our discussion that the critical domain size 

L* = rrVD. 



Chapter 6 

Summary 

In this chapter, we summarize the results we have obtained in the thesis, and also 

point out some problems for future research. 

Chapter 2 is focused on the global dynamics of a non-autonomous predator-prey 

model. Extending the earlier work by Song and Chen [45], we consider a more general 

model and obtain sufficient conditions for the coexistence of the predator and prey 

species, and for the extinction of the predator species. Our results show that if 

the zero solution is linearly unstable, which implies that the predator can invade 

prey successfully locally, then predator and prey species can coexist; otherwise the 

predator species will die out. Since our conditions are in terms of average integrals 

of certain functions, they are more natural (and actrually weaker) than those given 

in [45], which are in terms of the maximum and minimum values of the periodic 

coefficient functions. 

In Chapter 3, we study an SIS epidemic model in a patchy environment with 

periodic coefficients. This model is an extension of the autonomous epidemic inodel 

proposed and studied by Wang and Zhao (51]. We give the threshold conditions be

tween the extinction and the uniform persistence of the disease. When the dispersal 

rates for the susceptible and infectious individuals are the same or very close to each 
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other, our results suggest that the disease die out eventually if the disease free periodic 

solution (S*(t), 0) is linearly stable; and that the population densities of susceptible 

and infectious individuals stablize at a positive periodic solution if (S*(t), 0) is lin

early unstable. Moreover, when the dispersal rates for the susceptible and infectious 

individuals are different, the unstability of (S*(t), 0) implies that the disease is uni

formly persistent. In the special case when n = 1, we can find the explicit conditions 

for this threshold type dynamics. It is worthy to materialise the threshold conditions 

for the case n > 1. 

We answer an open problem raised by Rass and Radcliffe (41] in Chapter 4. As 

mentioned in their book, there are no exact results for the asymptotic speed of prop

agation of infection and traveling waves for models such as ( 4.1.1) in JR.n or .zn. Weng 

and Zhao [56] has recently addressed this problem for a spatially continuous version 

of model (4.1.1). Our work is about the spreading speed and traveling waves for the 

lattice system ( 4.1.1) in the case where the spatial habitat is the integer lattice .Z. 

We establish the existence of the spreading speed, and show that this spreading speed 

coincides with the minimal wave speed for monotone traveling waves. 

In chapter 5, we consider a reaction-diffusion model with mobile and stationary 

compartments, which was proposed by Hadeler and Lewis [18]. We study the model 

in both of unbounded and bounded domain cases. In the first case, we obtain the 

existence and the computing formula of the spreading speed, and prove that it co

incides with the minimal wave speed for monotone traveling waves. In the second 
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case, we establish the threshold type dynamics for the model, in terms of the prin

cipal eigenvalue associated with its linearization at zero. Our results suggest that 

the population die out when the zero solution is linearly stable; while the population 

stablizes at a unique positive steady state when the zero solution is linearly unstable. 

We even obtain the critical domain size for the population to survive. In addition, 

we notice that when /'I = 1'2 = 0, our model reduces to Fisher's equation. We discuss 

how the dynamics of the model is similar to that of Fisher's equation. Although 

model (5.1.3) gives us valuable insights into the spatial dynamics of the population, 

it is more realistic to assume that the parameters and the reaction function in this 

model are time dependent in view of the fluctuating environment. As a first step, it is 

worthy to consider the periodic version of model (5.1.3). We leave it as future work. 
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