














Abstract

When a common infectious disease is first detected in a community, it may quickly
spread out through air, water, public facilities and personal contacts. At a given
time point, each infected individual may or may not infect other individuals in the
conmmunity. Meanwhile, it is also possible that some individuals who carry the same
disease travel into the community. In the present work, we discuss estimation and
forecasting of an extension to the lag 1 longitudinal dynamic model for correlated
data used by Oyet & Sutradhar (2011) for modelling the spread of infectious disease.
The lag 1 model only allow individuals with infection at tiime point ¢ — 1 to cause new
infections at time point ¢t. Clearly, if at time point ¢ — 2, there is an in  vidual who
is still infected by the discase, it is also possible for this individual to infect others at
time point ¢. The present model discussed in this work allows for such a possibility.
During the modelling, we cousider stationary and nonstationary covariates. We also
extend the model to situations where unobservable community effect and the latent
community effect is present. The regression parameter 5 and the parameter of latent
community effect 02 are estimated by generalized quasi-likelihood (GQL) approach.
The correlation parameters p; and py arc estimated by using method of moments. In
each of the cases, we examined the accuracy of the estimates and forecasts through

simulation studies.
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Assumption 2. dy ~ Poi(py — pipig—1) for t = 2, ..., T with pu; = exp(al, ), for
/ P14, / PALy

allt=1,....7T.
Assumption 3. dy and y; - arc independent for ¢t = 2, ..., T.

For model (1.1), they found that for all t = 1,2,.... T and k = 1,2,....T-1

E( /it) = [t

_ 2 a2 2 (V. —
Var(Yy) = pa — mp pig—y +ngp var(Yi—1) = oun,

he—i
Cov(Yy,Yier) = (Hﬂrpz) 5Ot i
1=0

k-l
. ] k[ Oit—kt—k
Cori (Ym Yi,t—k) = H’”I~l P A
-0 V. O

Note that when n; = 1, for all t = 1,2,.., T, the binomial random variable B;(n,, p)
will become a binary variable with the probability of infection p. The model (1.1)
will then reduce to an autoregressive, of order 1, (AR(1)) type Poisson process. This
reduced model implies that the infectious individuals at time ¢ — 1 can ouly infect

none or one individual at time point ¢.

1.1 Poisson AR(1) Process

In the previous section, we had noted that when n, = 1, for all t = 1,2,..., T,
model (1.1) becomes an AR(1) type Poisson process. In this case, the assumptions

for model (1.1) becomes y;; ~ Poi(py = exp(as3)) and dy ~ Poi(p; — pitig—1) and
2l )



the process can be written as

Yit—1

Yir = Z B;(p) + du. (1.2)
j=1

Sutradhar (2011) (see also McKenzie (1988)) used (1.2) for ¢t = 1,2,...,T" to model

longitudinal count data over time. The basic properties of the model arc

E(Yy) = pu, Var(Ya) = pa,

- . L
Cov(Yy,Yiik) = pF i and Corr(Yy, Yo x) = o Hit
Hik

Mckenzie (1988) showed that the distribution of the process (1.2) is Poissou with
mean g = exp(x};3) by using alternate probability generating function (a.p.g.fs).
We can consider this model as a model for spread of disease for only some liinited cases
because it only allows cach of the y;,_1 infected individuals at time £ — 1 to infect at
most one individual. When y;,_, is considered to be an offspring variable at time £ —1
and dy is the immigration variable, the model (1.2) represents a branching process
with immigration for K = 1 and large 7. This model was rece: y cousidered by
Sutradhar, Oyct and Gadag (2010) as a special case of a negative binownial branching

process with immigration.

1.2 Generalized Quasi-Likelihood (GQL)

For the longitudinal regression setup, interest may be focused on the regression
parameters for the marginal expectations of the longitudinal responses and the longi-

tudinal corrclation parameters. For the regression paramecters, there exists a “work-
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ing” correlation matrix based gencralized estimating equation (€ E) approach for

the estimation of the regression parameters and generalized quasi-likelihood (GQL)
estimation approach. The GEE approach was proposed by Liang & Zeger (1986).
It has been used extensively in recent years in estimation for lon; udinal count re-
sponse. However, as demonstrated by Crowder (1995), because of the uncertainty
in the definition of the working correlation matrix, the GEE approach may in some
cascs lead to a complete breakdown of the estimation of the regression parameters.
Furthermore, Sutradhar and Das (1999) have demonstrated that even though the
GEE approach in many situations yields consistent estimators for the regression pa-
rameters, the GEE approach may, however, produce less efficient estimates than the
independence assumption based quasi-likelihood (QL) or moment estiniates. Sutrad-
har ((2011) p.4) suggests that based on studies by Crowder (1995), Sutradhar and
Das (1999), Sutradhar (2003), and Sutradhar (2010), the GEE approach cannot be
trusted for regression estimation in discrete models such as long 1dinal binary or
count data. Sutradhar (2003, Section 3) therefore suggested an efficient GQL ap-
proach for time independent covariates which is an extension of the QL approach (or
weighted least squares approach) for the independent data introduced by Wedder-
burn (1974). Sutradhar (2010) introduced nonstationary autocorrelation structures
for the cases when covariates are time dependent, and applied the GQL approach for

consistent and efficient estimation of the regression effects.



1.3 Motivation

From the model (1.1), (1.2) and (1.3), we can see that these lag 1 models only
allow individuals with infection at time point £ — 1 to cause new infections at time
point ¢t. Clearly, if at time point ¢ — 2, there is an individual who is still infected by
the disease, it is possible for this individual to infect others at time ¢ as well. We
develop a model which include infections from time ¢ — 2. For simplicity, we first
extend the Poisson AR(1) process to a lag 2 model. Since the number of infections
in each community may also be affected by unobserved commur ; effects such as
environinental pollution, we also extend the lag 2 model a little furt 1 by introducing
a random variable to represent the latent community effect. However, these AR(1)
type extended models will have similar limitations as a Poisson AR(1) process when
used to model the spread of infectious disease. That is, the infected individuals at
time £ — 1 or t — 2 can only infect at most one individual at time . Consequently, we
also consider an extension to Oyet & Sutradhar’s (2011) lag 1 model for infectious

disease which would be more appropriate to model the number of it :ctions in reality.
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Chapter 2

Lag 2 Dynamic Binary Sum

Infectious Disease Model

2.1 Preliminaries

In this chapter, we begin to construct new models which will clude the infor-
mation from previous two stages. Suppose that we have K communities. First, we
begin with a simple case, which deals with an infectious individual v o can only
infect at most one person at time point £. In section 2, we consider both stationary
and nonstationary covariates assuming that no community effect is present. That is,
all communities are assumed to be independent of each other, but they are time-wise
correlated with themselves. We discuss the structures and assumptions of the model
and derive some basic properties of the model, such as the mean, variance, covari-
ance and corrclation. Finally, we estimate the parameters and forecast the future

number of infections with both stationary and nonstationary covariates based on the



simulated data. In section 3, we asste there is an unobservable connmunity cffect
which can affect our responses. For example, this unobservable community effect.
could be wealth difference or education levels. The mean function depends on the
regression cffect and community effect. We discuss the structures and assumption
for this dynamic mixed model and obtain properties of the mixed model. Finally, we
estimate the parameters involved in this mixed model with nonstationary covariates.

The main goal of this chapter is to estimate the parameters involved in the model
and to forecast the number of infections in community at time point t. We have
found out that the Generalized Quasi-likelihood (GQL) method of Sutradhar (2003)
for estimating the regression parameters of longitudinal response works very well for
estimating the regression effects of this model. In the same ye.  Sutradhar and
Jowalicer (2003) have also used the GQL method to estimate the v lance parameter
of the conumunity randon effect ;. We will use this GQL approach o the estimation
of our model parameters. We estimate the longitudinal correlation parameters by
using the Method of Moments (MM). Once all paranieters are properly estimated,
we thien use the information from ¢ and ¢ — 1 to examine the forecast performance of

this niodel.

2.2 Lag 2 Fixed Binary Sum Infectic s Disease

Model

We begin our modelling by considering the simiple case where the offspring random

variable is binary with correlation index parameters p; and p» for two consecutive gen-




erations. We assume that I independent communities are at the risk of an infectious
disease. Supposc that at initial time point, t = 1, y;; individuals in the ¢th community
developed the disease where y;; is assumed to follow a Poisson dist1  ution with mean
parameter ji;; = exp(x}, ). Because we assume an infected individual can only effect
none or one individual for two time intervals, and also because there may be other
infected individuals arriving from other communities, we shall model the number of
infected people in 2th community at time ¢ as

. ’
Yo ~  Poi(u), where py = etuf

}11
2 = Zblj(/)1)+d1'2
=1

Yie-1 Yit—2
Yio = Y bilpn)+ D bojlps) +d, for t =3,4,..T, (2.1)
J=1

J=1

where by; ~ Bin(p;),by; ~ Bin(p,). This is an extension of the AR(1) model used
by Staudenmayer and Buonaccorsi (2005) and Sutradhar (2003). In model (2.1), we

imake the following asswnptions:
(1) dip ~ Poi(jein — prprir).
(2) dip ~ Poi(jtir — p1jtig—1 — P2M1:,r—2)-
(3) Yis1& dyy are independent fort =2.3,...,T.
(4) Yii—2& dit are independent fort=3,....T.

From the model (2.1), it is clear that E[Y;] = Var(Y;) = pi. Using assumption
(1) and (3), it can be shown that E[Y] = Var(Ya) = 2, Co i, Ya) = pipa

and Corr(Yi1.Yn) = ta - We note that in assumption (1), the Poisson mean
il i2 P1 Hiz
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paramcter must satisty g — prig; > 0, yielding p; < ::—f Similarly, for p; —

< Hit —pP2Hi =2

P1itit—1 — paitir—2 = 0 to be satisfied, we need p, . Therefore, the range

il
of py is
Lt = Poll; , ‘ g
0 < py <min <A 2 /—LM ) , fort > 3 and fired p,.
/111 Hit—1
For stationary case, if we let py) = g2 = -+ = i = 4, then thera je of py simplifies
to

0<p <(1-p2).

2.2.1 Basic Properties of the Lag 2 Fixed Binary Sum Infec-
tious Disease Model

2.2.1.1 The Mean

Based on the previous discussion, we know that E[Y;] = pi and E[Yi] = po.

Then, it follows that for t = 3,4,...7T,

Itl

ElYy) = E Zle ) szj p2) + diy

1!1 1!2

= F Z b1J ,01 +F Z ij /)2 E[di!]

1( 1 1[ 2
sz 1 Z bl_] /)I +E Yit— 7 Z sz [Jz E[dit]
Yit—1 Yit—2
= plE[}/i.t~l} + p2E[Yie—o] + jtit — pritiv—1 — p2itis—2. (2.2)




Next, we consider some specific cases:

For t = 3,
E[Ym] = pE[Y]+ /)2E[Yi1] + iy — Pl — P2l ;
|
|
= Pribg + P2kl T iz — Pk — Pafil |
= Hi3.
For t = 4,

E[Ym] = f)lE[YiS] + P‘zE[er] + fhig — P1ii3 — P2fli2
= ifis + pPoftia F fia — P13 — P2l

= [q-

By mathematical induction, if we have E[Y;, ] = p; -1 and E[Y:, o] = pis-», then:

ElYy] = piptis—1 + poprip—o + i — Pritig—1 — P2flip—2
= [t

= exrp(z},3). (2.3)

So, E[Yi] = pu = exp(ay, ), for all t =1,2, ..., T.

10



2.2.1.2 The Variance

The variance of this model can be derived by finding the conditional and uncon-

ditional variances. By assumptions (2) and (3), we have

Vi Vii—2

e —
}i,t—]*,YVi,f,~2 =0

and

Cov(Yi1,dy) =0, and Couv(Yis—a.diy) = 0.

Then

Va7'(}/itl)/7i,t—17)/i,t~2) = Y;jj_ﬂ/r(l/f'(b]j) + )/j,{,_Qva/]'(b2j) + V(l’l'(di()

= Yiioipi(1 = p1) + Yiop2(1 — p2)

it — Priie—1 — P2fliz—2. (2.4)

Letting o;,_1 ¢ represent the variance of Y;,_;, then

Var(YylYir—2) = By, [Var(YalYi—1.Yio)] + Vary, _ (E[Yu|Yie1, Yiiol)
= By, [Yig—ip(L—=p1) +Yiop2(1 — p2)
+(pti — prtig—1 — Pabti—2)]
+Vary,, ((Yiiipr+ Yii-ap2 + (it — prptiz—1 — pattie—2))
= pigapi (1= p1) + Yig2pa(1 — p2) + pioii—10-1

F Ui — P11 — P2fbit—2- (2.5)

11



Similarly, letting o; -, represent the variance of Yy, we have

Var(Yu) = Ey,, [Var(YulYi—2)] + Vary,, ,(E[Yi|Yii 2])
Eyv,, iig—1p (1 = p1) + Yiapa(1 — p2)
i — Pribig—1 — Patbig—2 T /)%Ui.t—l,tq]
+Vary,,_,(Ey,, \[ElYylYii—1, Yii-2])
pat—101(1 = p1) + pig—2p2(1 — p2)
it — Pritia—1 — P2llid—2 + PiOii—1u-1
+Var(pi—1p1 + Yi—ops + it — Pribiz—1 — Pattii—2)
fig—1m (1 —p1) + p%ai,f—l«t—l + 03(711,1—2,:—2
Htip—ap2(l = p2) + flie = Pritig=1 — P2afip-—-2

2 2 2 2
Jhit — Jit—1P1 — Hii—2P5 F P10 i-11—1 + P20 1-2,t-2

Hit — (Hi,z—l - Ui,tﬁl.t—l)p% - (/1'i,t—2 - Ui.t—z‘uz)/)g' (2~6)

From this formula, we can see that the variance of Yj, has a recursive relationship

with the variance of Y;, | and the variance of Y ,.,. We know that Var(Ya) = i

12




and Var(Yi) = pie from our asswnptions. It turns out that when t = 3,

Var(Yiy) = papi(1— p) + piois + psoim
Fpirp2(L — pa) + iz — privia — p2fin
= Juapi(1 = p1) + piiiz + ppi
i p2(1 = pa) + iy — Priviz — Pabtin

= Mz

When t = 4,

Var(Ya) = pap(1—p1)+ /):120'1'33 + P§0i22
i p2(l = p2) + pria — pritiz — Patiiz

= Hig-

If we coutinue doing the calculation, by mathematical induction if we assume that
Tit 1ig-1 = fig—1 and gy 94— = fli—2, then using the formula of the variance, for

t=23,4,...,T, we have:

13



Var(Yi) = jus—ip(—p1) + /)lfa'i.[v—l,t—l + /)g(fi,t—‘z.t—‘z
+itig—2pa(1 = p2) + pie — prpie-1 — pafii-2
= pig1pr(1—p1)+ p%;“'i,t—l + Pg,th,t,—z
+tip—op2(1 — po) + iy — pritiz—1 = P2itii-2

= Hit (2.7)

So, Var(Yy) = uy = exp(x),B) forall t = 1,2, ..., T.

2.2.1.3 The Covariance

The lag k covariance between Y;; and Y;,_; will also have a recursive relationship
in terms of covariance between Y,y and Y, & Y;,—2 and ¥j,_4. By assumption

(2), we have

Yi,tAI Yz,t—"—’
Cov(Yi,Yiik) = Cou( Z bi(pr), Yie—s) + Couv( Z baj(p2)s Vi)
=1 =1
+Cou(di, Yi—k)
Yiior Vigoe
= Coy( Z bij(p1), Yies) + Cov( Z byj(P2): Yii-t)-
j=1 =1

14







For t =3,

COU(Yi:s, Y;2) = P10 + P02 = PriLia T PPt

Cov(Yis, Yir) = piowy + ;o = Pf/lﬂil + p2afiit-
For t = 4,

Cov(Yia,Yis) = p10isg + padios = pijis + papijte + /)%/)1/141-
Cov(Yiq,Yi2) = pi10ig2 + paoio2 = (/)f + p2) iz + P%Pz/m-

Cov(Yis,Yn) = piom + paoior = (P + 2p1p2)ptar-

By summarizing lots of the specific covariances, We have found a general formula for

covariance of Yy and Y,y forall t =2,..., T and k = 1,2,...,T — 1 to be

—k

Cov(Yi, Yiy—k) = aix Z PLOY i 1k Qi P2tk (2.9)

Jj=1

where a;o = 0, a;; = 1, a; = p1a;p_1 + patti oz, for k =2,3,...,T — 1.

2.2.1.4 The Correlation

Once we found out the covariance between Y and Yi,_j, the lag k correlation

between Y}, and Y;,_, will simply be

1 -k j—1
€58 Z;j:] PLPy  Mig-j1—k T Qi—1 P2 i~k
Voar(Yvar(Yii)
t—k j—1
Ak ijl P1P2  Mit—j+1—k T Qik—1P2 it~k

N Mt i —k

Corr(Ya, Yiiex) =

(2.10)

16



We again consider some specific cases such as lag 1 and lag 2 correlations. These

correlation formulas will be needed i1 the estimation section.

¢ j-1
Zj:] P2 Hid+1—j

Corr(Yy, Yiw) = Vit
atfl

' j-1
. P12 PPy Hitr—j + P2t
Corr(Yu,Yiig) = Z‘I L il t. (2.12)
VHitH 41

Note that when py = 0, the lag k covariance and correlation will reduce to

! - . Lig—k
Cov(Yi, Yiei) = Py and Corr(Yy,Yiex) = p} [t It,\_’
Hit

which is the samne for AR(1) based count data model considered by Sutradhar (2010,
eqns, (15)-(16). p.178). Thus, this model is an extension to the AR(1) based count

data model.

2.2.2 Estimation of Parameters of the Lag 2 Fixed Binary
Sum Infectious Disease Model
2.2.2.1 GQL Estimation of j3

Following Sutradhar (2011, sec.6.4.2), let p1; = (pi1, plins -+ o ftir. -+ tir)’ be the
T x 1 dimensional mean vector of y; = (yi1.yiz, -+ » Yirs -+ yir)' - 1f we assume py,

and py are kuown, a consistent and efficient estimate of 8 can he obtained by solving

17



the so-called generalized quasi-likelihood (GQL) estim:  ng cquation

S

;)Y — ps) =0 (2.13)

>

Q’l

where, 3;(p) = Couv(Y;) = A:/ZC,-(p)A}/?, with A; = diag(o, ..., 04, ...oir) and Ci(p)

as the true correlation structure

L pia2 piaz - par
L piag -+ paor
Ci(p) =
L piiar
1

with p,_x, = Corr(Yiy 4, Yy) for t = 2,...,T and k = 1,...,T — 1. It is clear
that £ {Z!‘:l %E;l(p)(yi - u,i)} = (), hence the GQL estimate will be a consistent

estimate. This GQL estimating equation (2.13) can be solved iteratively by using the

Newton Raphson iterative equation

ol O o
Biesn = By + [Z x )OH !Z alﬁz )i = h)}

where B(,‘) is the value of 4 at rth iteration.

2.2.2.2 MM Estimation of p; and p,

The GQL cstimating equation (2.13) may be solved for 3 when the correlation

structure is known. Thus, we need to estimate the parameters p; and py in order to

18



obtain a good estimate for 5. These two parameters can he consistently estimated

by using the method of mowments. Let Sy, Siy and S;; 19 be the standardized
\ (v it 442

sample variance, the standardized lag 1 sammple autocovariance and the standardized

lag 2 sample autocovariance, respectively. defined as

K T 2
St = ZZ(———-——HH;('IM> /KT

i=1 t=1
N T—1 ’ p ’ I
Yie — i Yiiwl — Higt1 .
Siter = E E < p > ( o 1 ) JE(T - 1)
i=1 1=1 il i,t+1
= y /i
Yie — Hit Yia4+2 — Hit+2 -
Sitisr = E g ( : o ) ( p— )/[\ (T - 2),
i=1 t=1 ! v

where 0 = /Tig, Titr1 = \/Tit+ Li+1 and g0 =\ /Tita42. Then

E[Si”] = 1
K T-1
EfSica] = 325 Corrlym gt /KT — 1)
i=1 t=1
K T-2
E[Sitis2] = ZZCU'“"(UH,yi.t+2)/1\'(T— 2).
i=1 (=1

Using first order approximation of the expectation of the ratio of two sample variance,

we will have moment equations

I

Sif,f+1 [Su r+1} E[Sir,t+1]
— =F . =~ = EIS;
Sie Siut ElSi] [Sit.1]

= E[Su,r+2]-

Sil,t+2 _ g [Su,l,ﬂ - E[Sil,[+2]
Sit Sitg E[S;u]

19



Then, one may obtain the estimmates for py and py by solving the marginal moment

equations

Sit,t+l
Sitt,
Sit.,H—?

Sin

- E[Sit.f-H] =0

— E[Sitt21 =0

Due to the nonlinearity of the estimating equations (2.15) and (2.16), the solutions

can be obtained by using Newton’s iteration method.

A [aE[su,,,H]" - {Sﬂ,m

, ~ E[5,
Py + o, S, [ t,t+1}}

PL=P1(r)P2=P2(r)

(2.17)

OE[Sit 42 ! [Sit,1+‘2

Pro+1y = P+ { - E[Sitﬂﬂ}

dp2 Sitt

PY=P1yP2=P2(r)

(2.18)

where fy(ry and poy are the values of p1 and p, at rth iteration respectively.

2.2.3 Forecasting Performance

Once all parameters of the model (2.1) have been estimated, we can carry out a
one-step forecast for the purpose of planning and control. From model (2.1), it is

clear that the conditional mean of Y, given Y;, ) and Y;,_, will have the formula

EYilyiirYia—o) = pa + (Uit = pig—1) + p2(Yie—2 — [hig—2)- (2.19)
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The conditional variance of e;(1)|yi, yis—1 is given by

Var(ea(Dly i) = Var(i = YaDlyio pa1)
= Var(Yis1lyi, vie-1)

= it — Pritis — Patbis—r + Yapr(1 = p1) + yie—ap (1 = pa).

Then, the variance of e; (1) follows the formula

Var(ex(1)) = EVar(eu(Dlyin, yii-1)) + Var(Elea(D]yi: yic-1))
= E(Var(eq(Dlyie yir-1))
= E(ptiee1 — prjrie — paptig— + yupr (1 — p1) + Yir-1p1(1 — p2))

= e — Pk — Paltis - (2.22)

2.2.4 Simulation Study

In this section, we perform a simulation stndy. We consider the case of IV =
100 commuuities aud 7' = 5 time points. We will use Yz, ¢t = 1,2,3,4 for the
purpose of estimation and try to forecast the number of infections at ¢ = 5 in each
comunity. First, we consider a time independent covariate vector 'ty = (T, Ti2)

for the stationary case, where iy and @9 are generated as follows:

~0.5, t=1,2,345i=12 %
it (2.23)
0.5, t=12345i=%+12,..,K
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factors, such as geographic locatious and policy restrictions, or, they can also be time
dependent factors, such as economic situations and age. From the assumuptions, we
know that 0 < p; < min (b%%'—‘ 1), for t > 3. Since py is the lag 2
correlation, we can naturally assume that p, < p;. So, we clioose a small po, then
compute the upper bond p} = min (ﬂ’—z, L%"l—'i 1> Then, we use this py, and
p1 = p;—0.10r p; = p; —0.2 as the true values of p, and p, for the sinnlation. Using
suitable initial values of 3, p; and py, we solve the marginal estiinating cquation for
3 by using Newton Raplhson algorithin. Then by using the initial values of py & py
and the estimate of /3 obtained from previous step, we obtain estimates for p; & po
by using moment estimating equations. We use estimated p; ,p» to estimate 3 again,
then use this new 4 and repeat the above steps to get the unproved estimates of

m and p,. This iterative step continues until convergence. The table below shows

estimated 3 aud p;. py from 1000 shiimulations.
Table 2.1: Stationary Model Parameters Estimation Results.

A Paramecter Estimation

[)) £1 2 /j) SEﬂ /31 SE",‘,1 /32 SE/;Z

0.40 0.10 | (0.508, 0.994 0.224, 0.123) 0.388 0.060 0.106 0.059
0.40 0.10 | (1.000. 1.000 ).260, 0.136) (.388 0.060 0.102 0.057

0.35 0.20 ] (0.517, 0.992 0.224, 0.128) 0.345 0.055 0.178 0.064

0.60 0.20 | (1.052, 0.974 0.304, 0.162) 0.575 0.059 0.170 0.067

)
)
)
0.35 0.20 | (1.018, 0.990) (0.257, 0.138) 0.350 0.057 0.176 0.064
)
)
)
)

0.75 0.20 | (1.037. 0.982 0.351, 0.187) 0.707 0.066 0.159 0.066

0.287, 0.161) 0.572 0.056 0.248 0.066
0.330, 0.175) 0.571 0.057 0.247 0.067

( ) (

( ) (

( ) (

( ) (

(0.5,1.0) 0.60 0.20 | (0522, 0.987) (0.283,0.155) 0.571 0.057 0.177 0.070
( ) (

( ) (

( ) (

( )

0.60 0.30 | (0.510,0.992)
M0 1m nan 0201 (1028 (0,980

0.268, 0.146) 0.453 0.047 0.328 0.054
0.307, 0.163) 0.430 0.059 0.349 0.064

( )
(¢ )
( )
( )
i
0.75 0.20 | (0.524, 0.991) (0.320, 0.178) 0.705 0.051 0.163 0.040
( )
( )
( )
( )
( )

)
(V.0, 1.U] U0 v.au | .o, 0.990)
(1.0, 1.0) 0.45 0.40 | (1.037, 0.981)




Table 2.2: Nonstationary Model Parameters Estiimation Results.

Parameter Estimation

’L'f 1 2 ,O’ SEB [31 SE/;K /32 SE‘/',2
(0.5, 1.0) 0.40 0.10 | (0.500, 0.997) (0.070, 0.131) 0.393 0.074 0.128 0.080
(1.0,1.0)  0.40 0.10 | (1.003, 0.995) (0.070, 0.123) 0.393 0.084 0.145 0.091
(0.5. 1.0) 0.35 0.20 | (0.502, 0.996) (0.072, 0.135) 0.362 0.073 0.174 0.081
(1.0,1.0) 0.35 0.20 | (1.002, 0.992) (0.073, 0.128) 0.366 0.075 0.175 0.093
(0.5, 1.0) 0.60 0.20 | (0.497. 1.000} (0.069, 0.131) 0.587 0.078 0.197 0.104
(1.0.1.0)  0.60 0.20 | (1.002, 0.995) (0.067, 0.119) 0.586 0.081 0.210 0.119
(0.5. 1.0) 0.75 0.20 | (0.500, 0.994) (0.064, 0.124) 0.725 0.072 0.189 0.102
(1.0,1.0)  0.75 0.20 | (1.002, 0.996) (0.067. () 11:) 0.723 0.078 0.209 0.129
(0.5, 1.0) 0.60 0.30 | (0.495, 1.004) (0.070, 0.140) 0.593 0.075 0.264 0.107
(1.0,1.0)  0.60 0.30 | (1.002, 0.994) (0.071, O 125) 0.596 0.082 0.266 0.120
(0.5.1.0) 045 0.40 | (0.498. 0.998) (0.071, 0.142) 0.473 0.067 0.307 0.001
(1.0. 1.0)  0.45 040 | (0.996, 1.003) (0.072, 0.131) 0.475 0.076 0.288 0.105

From Table 2.1 and Table 2.2, we can see that the estiimates for 7 are very close

to the true value of 3 irrespective of the combinations of parameters. However, for
some combinations of p) and p,. the estimates for p; and p; may not be as accurate
as the others, for instance, under stationary case, when true p, = (.20, according to
the rhoy restriction from our model assumption, rfroy should be less the 1 — py = 0.8,
If the true combination is p; = 0.75 and p; = 0.20 , the estimates are less close to
the true values compare to other combinations. Similar result happens when true

p1 = 045 or 0.5 = 0.40. The upper boundary for p, is 0.5 because we have

assumed that p; > py. These estimates are less close to the true values than others
because p; or p, are close to its boundary.

For the purpose of examining the forecast performance of the model (2.1) in fore-
casting the future infections, we use the parameter estimates obtained by using ouly

the first four observations, Y;;, Yis. Yis aud Y, for 7 = 1,2, ..., 100 and the forecasting



function in Section 2.2.3 to compute a one-step ahead forecast of the fifth observation.
The sun of squares of the forecast error as well as the variance of the forecast error
for these 100 communities were calculated for each simulation run. We denote the
average sum of squares of the forecast errors and the average variance of the forecast
error by ASS and AV respectively. The results.summarized from 1000 simulations,

are reported in Table 2.3 and Table 2.4.

Table 2.3: Stationary Model Forecasting Error.

Jo) o1 py | ASS | AV
( ) 0.40 0.10 | 1.658 | 1.743
( ) 0.40 0.10 | 2,153 | 2.122
( ) 035 0.20 | 1.802 | 1.798
( )y 035 0.20 | 2.159 | 2.134
( .0) 0.60 0.20 | 1.298 | 1.353
(1.0, 1.0) 0.60 0.20 | 1.561 | 1.605
( )
( )
( )
( )
( )
( )

0.75 0.20 | 0.872 | 1.007
0.75 0.20 | 1.036 | 1.189
0.60 0.30 | 1.190 | 1.288
0.60 0.30} 1.431 } 1.543
0.45 0.40 | 1.381 | 1.456
0.45 0.40 | 1.658 | 1.743
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Table 2.4: Nonstationary Model Forecasting Error.

15} o3} po | ASS | AV
(0.5, 1.0) 0.40 0.10 | 2.726 | 2.654
(1.0, 1.0) 0.40 0.10 | 4.539 | 4.360
(0.5, 1.0) 0.35 0.20 | 2.775 | 2.695
(1.0, 1.0) 0.35 0.20 | 4.623 | 4.422
(0.5, 1.0) 0.60 0.20 | 2.103 | 2.047
(1.0, 1.0) 0.60 0.20 | 3.477 | 3.368
(05,1.0) 0.75 0.20] 1.490 | 1.534
(1.0, 1.0) 0.75 0.20 | 2.518 2.513
(0.5, 1.0) 0.60 0.30 | 1.993 | 1.971
(1.0, 1.0) 0.60 0.30 | 3.329 | 3.326
(0.5, 1.0) 0.45 0.40 | 2.329 | 2.298
(1.0, 1.0) 0.45 0.40 | 3.906 | 3.831

From Table (2.3) and Table (2.4), we see that the va e of average sum of squares
and the average variance of the forccast errors arc very close to each other for all
different combinations of parameters. This indicates that the average sum of squares
of the forecast errors can closely estimate the average variance of the forecast errors
and a satisfactory performance of the estimation of the parameters of the model. It
could also be scen that the average variance and sum of squares of forccast crrors for
the nonstationary model are generally larger than the stationary case which means
we have more accurate estimates for the parameters in stationary case. This makes
sense because in stationary case, the covariates does not change with respect to time
t. Hence less variation was introduced into the modelling. Note that for 3 = (0.5, 1),
the average variance of forccasting error is smaller tha that of 3 = (1,1). This is
because the mean function coutains 3 and the forecasting variance is a function of

means. In our particular setup, 8 = (0.5, 1) will lead to a smaller sum of means than
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3 = (1,1). For example, in stationary case, we have @, = aj, = a7, = x; and
fige1 = fir = -1 = py. 1 welet pq, g and represent the means when 3 = (0.5, 1)
and 4 = (1, 1) respectively. Var(e,(1)) and Var(ey) are defined by (2.22) using puq
and ji;, respectively. We also let AV, and AV, be the average variance of forecast

errors when 4 = (0.5,1) and 3 = (1, 1) respectively, Then

R K
1 , 1
AV, = K E Var(ei,(1)) = (1L — p3 — p%)g E Hia,
=1 i=1

K K
1 . 5 1
AVi = 5o D Varlea()) = (== e 3 s

i=1
Counsidering the stationary covariate structure as (2.21) and (2.22), we find out that
27}‘:1 fia < Zfil i By definition of a poisson distribution, we have p; —pyp;—papts >

0, and we know that p? < p; and p3 < pg shnce our pp and pp are numbers within

interval 0 to 1. So 1 — pi — p3 > 0. Therefore,

L”

g 1
AV, — AV, = (1 —pj — PE))’A— D (tia = prip) <0
i=1

Therefore, under stationary case, we expect to see that the average variance of fore-
casting crror is smaller when 3 = (0.5,1) than when 3 = (1.1), regardless the combi-
nation of p; and pp. This situation still holds for nonstationary case in our particular

setup.
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Figure 2.1: A plot of (a) values of stationary mean for t = 1 (solid line), t = 2 (dashed
line), t = 3 (dotted line), ¢t = 4 (dotted dashed line); (b) values of stationary variance for
t = 1 (solid line), t = 2 (dashed line), t = 3 (dotted linc), t = 4 (dotted dashed line); (c)
values of stationary lag 1 correlation for ¢t = 1 (solid line), t = 2 (dashed line), t = 3 (dotted
line); (d) values of stationary lag 2 correlation for t = 1 (solid line), ¢ = 2 (dashed line); (¢)
Average forecast overlaid on average of longitudinal data; and (f) proportion of absolute
values of forecast error that are 0 or 1 (solid line) and > 1 (dotted line); by communities
obtained from 1000 simulations with p; = 0.35, p2=0.20, 8=(1,1), stationary covariates
(2.23)-(2.24)
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Figure 2.2: A plot of (a) values of nonstationary mean for t = 1 (solid line)., t = 2 (dashed
line), t = 3 (dotted line), t = 4 (dotted dashed line); (b) v 1es of nonstationary variance
for t =1 (solid line), + = 2 (dashed linc), t = 3 (dotted line), t = 4 (dotted dashed line);
(¢} values of nounstationary lag 1 correlation for £ = 1 (solid line), ¢ = 2 (dashed line)
t = 3 (dotted line): (d) values of nonstationary lag 2 correlation for t+ = 1 (solid line),
t = 2 (dashed line); (e¢) Average forceast overlaid on average of longitudinal data; and (f)
proportion of absolute values of forecast error that are 0 or 1 (solid line) and > 1 (dotted
line); by communities obtained from 1000 simulations with p; = 0.35, p2=0.20, g=(1,1),
nonstationary covariates (2.25)-(2.26)

Figure 2.1(a),(b),(c) and (d) show the stationary patterns in the mean g, variance
gitt, lag 1 correlation p; 14, and lag 2 correlation p;; »,. In Figure 2.1(c), we have
overlaid a graph of the average of the forecast in 1000 simulations over a scatterplot of

the average of the observations y,;. The plot shows that the average forecast follows
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the general pattern of the infections at the fifth time point. In order to assess the
accuracy of out forecasts, we have also displayed a graph showing the average of the
proportions of the forccast crror e; with absolute deviations 0,1 and greater than
1. Figure 2.1(f) shows that the deviations of magnitude 0 and 1 appear to be over
90% for the first 50 communities and around 60% for tlie remaining 50 communities.
The deviations of magnitude for 0 & 1 is about 60% for the last 50 communities
is caused by the large variation in the munber of infections for these communities
as seen in Figure 2.1 (e). For the purpose of comparing the difference between the
stationary case and nonstationary case, we constructed similar plots in Figure 2.2 for

a nonstationary case obtained from covariates generated by using (2.25) and (2.26).

2.3 Lag 2 Mixed Binary Sum Infectious Disease

Mixed Model

In Section 2.2 we have discussed the model under the assumption that there is
no community effect. In this section, we will discuss the model with an unobservable
community effect. Suppose that for the ith cormnunity, there exists a commuty

iid o o . , :
effect v; and ; ~ N(0,0?). Conditional ou this ith community cffect v;, a dynaniic
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mixed model for the number of infections at thne t can be written as

Yitly, ~ Poi(ui), where pj; = etuft
Yi
Yool = D biy(pi)ly, + dizls,
Jj=1
Yii— Yit—2
y;t'% = Z blj(l{)l)l’Yi + Z b2j(”t7p2)|’h + dil"yia f()’l' t= 3747 "'7T7 <227)
j=1 j=1

where b ~ Bin(p1),by; ~ Bin(pz), with the following assumptions:
(1) dip ~ Poi(pf, — pinoptyy), where pi, = eviftn,
(2) dit ~ Poi(ply — proatty_y — pangpis,_o)-where (i, = el

(3) Yii—1l+.& di)s, are independent for t = 2,3, ... 7.

(4) Yi 2|, & dyly, are independent for ¢ = 3,4,.... T

From the model (2.21), it is clear that E[Yil|,,] = Var(Yal,,) = uh, ElYe ) =

Var(Yily,) = ply, Cov(Yi,Yily,) = pip, and Corr(Y;1, Yi2ly) = m z—l For the
N2

model to be well-defined, we require that ul, — p1uef, > 0, yielding py < Hiz Similarly,
i1

14

it —P2Hit—2

thie condition py — pijtis—1 — Pattis—z = 0 leads to py < & g Therefore, the

range of p; 1s
* * *
Mo Mg T P2l o
0<p <min(—2, —————
Hi M1

1), fort>3.

In the stationary case, puf, = ply = -+ = pip = jif, and the range of p; can be

simplified to

0<p < (1—p)
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2.3.1 Basic Properties of the Proposed Mixed Model
2.3.1.1 Conditional Properties

This model is a generalization of model (2.1). Conditional on v;, the model become
exactly the same as model (2.1) with a different mean parameter ju}, = exp(x; 3+ 7).
Therefore, all the conditional properties are the same as the properties in Section

2.3.1. That is

E[Y;it|7i] = (2.28)
Var(Yal,) = it (2.29)
t—k
Cov(Yie, Yieokly,) = a'ikzplpé_lﬂ'r,t—j+l—k+a’i.k—1/)2/1’r,t~k (2.30)
J=1
Qik Et:; pl/)fg_lll'}i*taj—kl—k + Gig—1P215 0
Corr(Yu,Yii-klr,) = ' — —,  (2.31)

* K
VAT
where a;y =0, a1 = 1, @ = pragp—1 + patip—a, for k=2,3,..., T — 1.

2.3.1.2 Unconditional Properties

In order to proceed to the estimation and the forccasting, we need to find the

S . . . . tid
unconditional properties of the mixed model. By using the assumption that v ~
N(0,0%), we can use moment. generating function or direct integration to ecasily find

out that

Ele?] = 72 Ble¥] = ¢ | Ble¢™] = "% and Ele™"] = ot (2.32)
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Then, we can find out the unconditional properties by taking expectation over «;.

The unconditional mean of Yj; is

ElYy] = By E[Yaly]
= Bl
= Elexp(xiy8 + )]
= exp(xy,3)E()
= eap(a}f)exp(o?/2)
= cxp(elyB +0°/2)

= M- (233)

The variauce of Y;, can be calculated in a similar way by conditioning on v;

Var(Yy)

= E, Var(Yuly,) + Vary, E(Yaly,)

= E[u}] + Varjy]

= eap(a},B+0°/2) + E[(1})*) = (Elpi])®
=y + exp(2x, ) Elexp(2v;)) + 15

= g+ exp(22, 8+ 20%) + 11l

= iy + i3 (exp(o®) — 1). (2.34)
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We note that as opposed to the fixed model (2.1), the unconditional mean and variance

of the responses are not the same. The unconditional covariance will be

C()U(}fit, )/,j‘f_k) = EWi C()'U(Y’N, }/;vt_k!’ﬁ) + CO'U",/,(E(}/I " ). E(}/;,t—klﬁ’, ))

t—k
_ E g1 '
= LE|ay P17 /1‘:,_‘,417;{ + aigo1p2fiisg | + Cov(y1;. /‘:,L-k)
Jj=1
t—k
_ J—1
= Qi Z P1Py T Mig—jr1—k T G k—102 00—k
=1
P * *
+E(/L,:tﬂ'zi,f4k) - E(“it>E(“i,t—k)
t—k
_ J—1
= i PLYy  Hid—jr1—k T Qi k=120 1k
=1
N =
_{_E[(,}ﬂ,“ﬁeli,t—kﬁc})‘z] — Mitfhit—k
t—k
_ J-1 p(o”
= Z Py Mig—g+1—k T Qik—1P2fbi(—k T piptik(erp(o®) — 1)
Jj=1

(2.35)

Finally, the lag k correlation is

(Y Z;;I\l plp’Jz'_lﬂi,t—j+1_k + o1 Potli gk /‘it/”,t;k((?az _ 1)
\/(/inl, + /1,?[(602 _ 1))(““17}{ + /1';{[/_1&.(("02 _ 1))

Corr(Yie,Yiger) =

(2.36)

where ain = O, ayp = ]., Qi = P14 -1 + P20 k-2, for k = 2, 3, cay T-—1.

2.3.2 Estimation of Parameters

The dynamic mixed model (2.23) contains four nnknown paranieters, 3, pi, p2 and

5 . . . . . .
o2, /3 is a regression parameters involved in the mean function of y;, which measures



the offcet of the covariates, so we can use first order responses to estimate 3. However,
p1, p2 and % are involved in the variance and lag k autocovariance, we need to use all
second order response to estimate those parameters. Sutradhar (2003, Section 3) and
Sutradhar (2004) show that for correlated responses, one may use GQL to estunate

3 and o2 and MM to estimate the correlation paramcter.

2.3.2.1 Estimation of

For the present mixed model with the unconditional mean vector j; = (fry. iz«

with pi_py = Corr(Yi_p,Yy) for t = 2,7 and k& = 1,..,T — 1. This GQL

estimating equation (2.37) can be solved iteratively by using the Newton Raphson
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fis. - -+ prip) and covariance matrix ;, respectively. following Sutradhar (2011. sec.6.4.2).
for fixed o2, the marginal GQL estimating cquation for 3, is given by
I
ol
> T ) =) =0 (2.37)
i=1
where ¥;(p) = Cou(Y;) = A,-l/zC,v(p)A:/z. with A; = diag(oi....,04. ...0i) and C;(p)
as the true correlation structure
L opie pas oo Par
L piog oo pier
Cilp) =
L pie-ir
\ 1



algorithm

A

,5(1’+1 =

-1 I
o O A
Ez 5— : ab”] [E 0—/32 I(P)(?/i - /M’)}

where B(,.) is the value of # at rth iteration.

2.3.2.2 Estimation of p; and p;

Similar to that of Section 2.2.2.2, let Si, Sitrs1, and Siqo be the standardized
sample variance, the standardized lag 1 sample autocovariance and the standardized

lag 2 sample autocovariance, respectively, defined as

Sitt =

T 2
Z (Uu Hzt) /KT
— Yiu — Hit Yite1 — Hitsl .
Si = : K(T -1
R ; ( o > ( Tit+1 > a )

<T/u — ;m) <yu+2 - ,lLi,l.+‘2> /K(T B 9)
Oit+2 ’

where o = \/Ou, Cit1 = \/Tirtia+1 and 040 = /0ij212- Then

"”M“

ﬂx
,_,»—n

-*
—_

Sit.t+2 -

||M~|1
HMM

E[Siu]
K T-1
ElSii] = ZZCOW‘(yinl/zi,t+1)/K(T— 1)
=1 1=1
K T-2
E[Si“+2] = ZZGO?""‘(Z/myi,t+2)/K(T_2)-
=1 (=1
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Using first order approximation of the expectation of the ratio of two sample variance,

we will have moment equations

Sitts |:Sit. r+1} E[Si141]
— =F - =~ - =F S,‘
Sit Site E[Siu] [Sie]

Sit 142 |:Sit t+2:| E[Sit1+2]
= F . ~ . = E|S, .
Sitt Sitt E[Siu] [Sie2]

Then, one niay obtain the estimates for p; and p, by solving the marginal moment

cquations

M - E[Sit,!+l] =0 (2-39>
Sitt

Sit s

2R B[Si4) =0 (2.40)
Sitt

Due to the nonlinearity of the estimating equations (2.39) and (2.40), the solutions

can be otained by using Newton iteration method.

) ) [OE[Sine1]]1" [ S, ]
Ao+ = Py T [ S ] éLH - E[Sif,,wrl]
L P1 . L it 4 pi=p 1y p2=h20r)
(2.41)
A . [OE[Siii2)] ™ [ Siis: ]
Pars1y = Par) t [Sivo] ;H — E[S;i142)
L P2 J L Witt 4 lpr=piyp2=p20)
(2.42)

where py(,) and poy are the values of p aud py at rth iteration respectively.
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2.3.2.3 Esitmation of ¢*

Sutradhar(2011), Section 4.2.6.2 has shown how the marginal GQL estimation can

be done for ¢2. For t =1,2,....T and k =1,2,...,T — 1, let

w; = (uly )

be the vector of all second-order responses under the ith community, where

Furthermore, let

where

Also, Let

A = E[Ui] = (/\1'11,'" ,/\m»"'

2 2 2 .
win = (Yits Vi »?liT) P T x 1

T(Tr —1)
Uiy = (?/il'!/i’b C Ykl »yi,t—lyiT)a k<t: z—

Aijj = E[Yfz] = 0Oy + N?t = Mt t+ 6;L‘P((72)ﬂlizt

I3

Aijk = ElYuYi] = cun + ttiepiin.

Cov(Uy) Cov(Uy, Ul
Q, = Cov(U;) = (Ua) b UR)
Cov(Us)
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In a sinilar fashion, the marginal GQL estimation equation for ol is:

K<
a/\IL -1 I
> 5580w = A) =0, (2.45)

i=1

O\, .
where the clements of the vector 5= arc given by:

N, 1 : o

- 1;1 - 5“” + Q/Lftezzrg)( ?)
ON,y, 1 o
__L; = 501% + 2/1,.i,;1,ikezvp( 2).

Clearly, computing the matrix €; will require exact second order, third order and
fourth order joint moments of y;,. However, computing third order and fourth order
joint moments will require further distributional assumptions, which may not be
practical. Now, since ; will not affect the consistent estimation of o?, we shall use
the asswnption of conditional independence (p = 0) to obtain a ‘working’ {%;. To begin
the computation of the components of Q;, we use the assmnption that ; ~ N(0, %),
Ovet & Sutradhar (2011) have shown that by taking expectation over 7; and using
(2.28), we will have

E, 13 = piexp(a?), By, (3] = /1,?}.(3;1:[)(302) and E. [p7}] = ILL?]-(?.?,'[)(GO'Q).

)

By Mckenzie (1988), for a Poisson AR(1) model, if X,_ is Poisson(#), then, by using
alternate probability generating function (a.p.g.f), it is easy to verify that o x X
is Poisson(ad), where “ * ” denote a binomial thinning operation, that is: ax X =

S ooy Bela), where Bi(«) is a sequence of independent identically distributed binary
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random variables with P[B(a) = 1] = a@ = 1 — P[B(a) = 0]. In our case, we

know that Yj|,, ~ Poi(iin). Given this community cffect ;, individuals within
the ith community at time point 1 are independent and will cause a new infection
with probability p;. Therefore, E]};‘l bij(p1)ls ~ Poi(pipy). We also know that
diz]y, ~ Poi(ply — prjedy) and it is independent with Yi|,,. By using the properties of

Poisson distribution,

Y:

il
L= bi(p)ly + dialy, ~ Poilpi iy + piy — prisiy) = Poi(py).
J=1

Yio

Under the ‘working’ conditional independence (p = 0)case, Yirly,. Yiely,s - Yie|,, ave

independent. Since Y|y, ~ Poi(pd)), Yialy, ~ Poi(ply) and digly, ~ Poi(pis — pryei, —

pajify), in addition, all of them are conditional independent, then

] 2 3 il
S T bii(p1)l, ~ Poilpiiny), > bay(p2)ls, ~ Poi(papfy) and Yigls, oo ~ Poipsis)-
Jj=1 j=1

By using the mathematical induction, we can conclude that

Yi

=0 ~ Poi(jiy). (2.46)
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For Yil,, p=0 ~ Poi(pj). th

generating function explu(

E(}/Iil’YM

E(Yi?hh P

E(Y|vi.p

e raw moments can be calculated by using the moment

et — 1)]. We have

p=0) = uj

* * 2
=0) = p+

* * 2 * 3
=0) = pp+ 3"+ 1y

p=0) = p+ Tut 46" gt

After we find out the conditional distribution and its moments, the elements in €2;

can be easily computed. By

Oyet & Sutradhar (2011), eqn. 4.13 (see also Sutradhar

& Bari (2007)), these conditional moments can be calct ted as

E(Yilp=0) =

E(YVEYilp=0) =
E Yzint|P = 0 =

E(YiYiYulp=0) =

U

E(}/zu}/luy;sﬁfzt‘/) = O) =

i + pieap(o?)

o 22
“'in“‘ilelp(o- )
i + TpZeap(a®) + 6pdexp(30°) + plerp(60?)
(1 + {fti + pieyexp(20®) + i ptucap(56™)| pipiczp(o?)
[1 4+ 3ppcap(207) + 12 exp(50H) pinpaerp(c?) (2.47)
1+ Liwerp(302) fiuttivtti erp(30°)

L biv flis i €TP(602).
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The conditional moments have been used for computing the elements of ;. For

instance,

Cov(Y2,YiYulp = 0) = E[YYiYilp=0] - BN EYiYilp = 0
Cov(Y2,YyYilp =0) = EYiYilp=0]— ENZEYYilo = 0]

C(),U(}/ity’iua }/iu}/ish) = O) = E[}/Li}/z!}/m“) = 0] - E[}/I[}/ZU]E[}/IH}/JS{/) = 0]

The solution of the estimating equation takes the form (2.39). Its solution can be

obtained by using Gauss-Newton iterative equation:

K

on

]'r 1[ wﬂi 1(.“1’ - /\i)] . (2.48)
=1 TEE 0

SN g1 O

o3(r+1) =a50r) + | 7Y 552
i=1

2.3.3 Simulation Study

In this section, we consider thie nonstationary covariates (2.25) and (2.26). By
choosing suitable initial values of 3, o2 , p; and py, we numerically solve the marginal
estimating equation for 3 by using Newton Raphson algorithni. Next, using estimates
of 3 from previous step and initial 2, we obtain estimates for p; & p, by using moment
estimating equations. Then, using the estimates of p; & p; and the estimate of 3
obtained from previous steps, we solve the marginal estimating equation for % hy
using the Newton Raphson iterative procedure. We then use the estimates of p1,
po and o? to estimate 8 again, then use this 3 and repeat the above steps until

CONVCrgence.
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Table 2.5: Non-stationary 4 Estimation for fixed py, py and o?

7% =0.25 a? =0.75

p1=0.0,p2 =015, pr =050, p2 =020 py =0.40,p2 = 0.15, p; = 0.50,p2 = 0.20

(0.5,1.0)  SM (0.503,0.987) , (0.501,0.998) (0.499,1.003) , (0.501,0.999)
SSE (0.072,0.143} , (0.069,0.137) (0.063,0.136) . (0.062,0.130)
(LO.1.0Y  SMI (0.998.1.002) . (0.996.1.006) 996,1.004) . (1.001.0.999)
SSE (0.074,0.136) , (0.074.0.128) w.072,0.128) |, (0.071,0.121)

Table 2.6: Nonstationary p; and ps Estimation for fixed 4 and

2 r

a2 =0.25 o =0.75

3= (050, 1.0).8 = (1.0,1.0) A= (0.50,1.0),3 = (1.0,1.0)

pr=0.10,p2 =015 SN (0.411,0.156) , (0.434.0.180)  (0.456.0.173) . (0.507,0.218)
SSE  (0.108.0.101) , (0.125.0.118)  (0.177,0.124) , (0.186,0.152)
p1=050.p2 =020 SN (0-188,0.190) . (0.512,0.217)  (0.509,0.204} , (0.541,0.22.1)
SSE (0.109.0.100) , (0.126,0.129)  (0.180,0.137) . (0.193,0.157)

Table 2.7: Non-stationary a2 Estimation for fixed 3, p; and p,

3 = (0.50,1.0)

p1 =040, 02 = 015, py = 0.50, pp = 0.20

3= (1.0,1.0)

pr =040, ps =015, oy =0.50,p2 = 0.20

a?=0.25 Sh 0.237 . 0.241 0.239 , 0.242
SSE 0.075 , 0.062 0.079 , 0.065
a?=0.75 Sh 0.731 , 0.748 0.739 . 0.730
SSE 0.176 , 0.202 0.204 . 0.197




Table 2.5, Table 2.6 and Table 2.7 are obtained by estimating a single parameter
with other parameters fixed. Table 2.5 and Table 2.7 suggest that the GQL approach
works very well for estimating the covariate effect J and the variance component in
the latent community effect 2. However, Table 2.6 shows that the moment estimates

of the correlation paramcters p, and p, are less accurate especially when o or 3 get

larger.
Table 2.8: Non-stationary Paramcters Estimation

R P2 a? A SE, p1 SE;, P2 SE;, 62 SE(,%
“0Ff..., <.. 015 035 ] (0.500,0095) (0072,0.153) 0427 0.123 0.227 0.107 0.248  0.096
(0.51.0)  0.40 0.5 075 | (0.494,0.995) (0.064,0.133) 0.479 0148 0239 0.111 0.732  0.102
(0.5.1.0)  0.50 0.20 025 | (0.499,0.997) (0.067,0.142) 0.496 ¢ 0 0240 0.105 0.246  0.096
(0.5,1.0) 050 020  0.75 | (0.495,0.990) (0.060,0.128) 0506 ( 0 0.242  0.111 0.728  0.098
(1.0.1.0) 040 0.i6  0.25 | (0.993.0.993) (0.077,0.135) 0.450 0.128° 0.268 0.121 0.261  0.081
(1.0,1.0) 040 0.5 0.75 | (0.982,0.986) (0.071,0.125) 0.456 0.144 0.231  0.122 0.763  0.076
(1.0,1,0) 0.50  0.20  0.25 | (0.995,0.987) (0.075,0.131) 0.501 0.124 0271 0.114 0261  0.082
(1.0,1.0) 050 020 075 | (0.984.0.993) (0.071,0.121} 0481 0.138  0.239  0.126 0762  0.071

In Table 2.8, we report the estimates of all paraneters with their standard errors.
These results follow the general conclusion that we have made from Table 2.5 , 2.6 and
2.7. During the iteration process, p; and py could sometimes fall outside the range
of restrictions especially when p; and py are close to their lower or upper bound. In
this case, new observations are generated. Therefore, the overall mean of p; and p;
estimates from 1000 sinmilations will be affected by using only p; and pa estimates

that satisfy the conditious, especially for p; or py close to the boundary.



Chapter 3

Lag 2 Dynamic Binomial Sum

Infectious Disease Model

3.1 Preliminaries

In Chapter 2, we have assumed that cach infected individual can only infect none
or one individual each time. However, the more common case is that the infected
individual could infect up to more than one individuals at a time. In this chapter, we
extend model (2.1) in order to consider this more practical situation. Instead of using
the binary suin, we use binomial sum in our model. For simplicity, we only discuss
the binomial sum model without considering the community effect. Therefore, our
mean function will depend on the covariate effects only. Shnilar to what we have done
in Chapter 2, we will discuss the structures and assumptions of the model. Then, we
will find some basic properties, such as the mean, variance, covariance and correlation

for this model. Since the properties of a binomial distr ution is different from that
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of a binary distribution, we expect to have some slightly different propertics. Finally,

we will estiniate the parameters and obtain forecasts to check the performance of the
model. The main goal of this chapter again is to estimate the parameters involved
in the model and forecast the munber of infections in each community at time point
t+ 1. We use GQL approach to estimate the regression parameters. We estimate the
longitudinal correlation parameters by using the Method of Moments (MM). Once
all parameters arc properly estimated, we can check the forecast performaice of this

model.

3.2 Lag 2 Binomial Sum Infectious Disease Model

For modelling without connnunity effect, we can assuine that K independent com-
munities are at risk of an infectious disease. At initial time point, ¢ = 1, we assume
that y;, individuals in the ith community have developed the disease where ;) follows
a Poisson distribution with mean parameter ji;, = exp(x}, /). Because we assume an
infected individual can affect up to more than one individual over two time intervals,
and also because there may be other infected individuals arriving from other cominu-
nities, we shall model the number of infected people in the ith community at time ¢

as

, Y
o~ Poi(py), where p = e*n”

Yi
Yio = Z bij(ny, pr) + dia
=1

Yie—1 Yii-2
Y,'f = Z blj(m, pl) + Z l)-zj('lllf, pg) + du, fO'I’ t = 3, 4, caey T, (31)
j=1 Jj=1
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sum. A dynamic mixed model for the number of infections at time t can then be

written as

Yitly, ~  Poi(uj)), where uj) = etuftm
Yy
Yialy, = bij(ne, pu)ls, + dials,
Jj=1
Y,'ylfl ,'i,t—z
Yily, = Z by (e, p1)|y + Z baj (14, p2) |y + ditlysy for t=3.4,..,T,(3.2)
J=1 Jj=1

where by; ~ Bin(n;, p1),bay; ~ Bin(ng, p2), with the following assumptions:
. ol .
(1) dig ~ Poi(ply — pynaply), where ply = ¢+,
e B4

(2) dy ~ Poi(pl, — prnepes _y — panuili,_y), where pf, = e

(3) Yie

& dif|y, arc independent for ¢ =2,3,....T.
(4) Y|y, & dils, are independent for t = 3,4,...,T.

Similar to the relationship between model (2.1) and model (2.25), this mixed model
(3.2) is an extension to model (3.1). All the conditional properties should match
with the properties of model (3.1). The unconditional properties can then be found
by taking expectations over ;. We can use similar approaches as in Section 2.3 to

estimate the parameters once all conditional and unconditional moments arc obtained.
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3.2.1 Moments of Lag 2 Binary Sum Infectious Disease Model

3.2.1.1 The Mean

Based on our previous discussion, we know that EY;] = pa & ElY] = pio.
Then, it follows that for t = 3,4, .7,

[Yi, o1 Yi -2
ElYy] = E Z bij(ne, p1) + Z baj (1. p2) + du
j=1 j=1
(Vi1 Yii—2 |
= £ Z blj(nf, ,01) +FE Z bgj(')lt, /)2) + E[dzf]
j=1 j=1
Yii—1 Yit—2
- E.Uz}t—lE Z blj(”fv /)1) + E.Uvi,zé'zE Z b2.l'<nf"p2) + E[d”]
j=1 Yit-1 j=1 Yit—2
= ”(PlE[K,{—l] + "ltPQE[Yi.t—ﬂ + i — Pi -1 — PNl -2 (3.3)

Next, we consider some specific cases:

For t = 3,

E(Yis] = ngp E[Y] + nsp2 E[Yal + jtis — nsprfria — nsp2ptin
= ngpifiz + N3Pl + iz — NP iz — NP2 i

= [3-



Fort =4,

EYy] = nmupEYis] + napeE[Yi] + fra — maprpris — napaftiz

Il

Ny iz + NaPafhia T pig — TaP1}43 — TaP2f42

= [1![/1 .

By mathematical induction, if we have E[Y; -] = ptie—1 and E[Yi_o] = j1;4 -2, them:

ElYul = mupiptig + mupoplio—o + ti — Wpijtii—1 — Mep2ftig—2
i

= exp(x ). (3.4)

So, E|Yy] = pi = exp(af,B), forallt =1,2,.... T.

3.2.1.2 The Variance

The variance of this model can be derived by finding the conditional and uncon-
ditional variances. By assumption (3), (4) and the property that covariance of two

constants is zero, we have

Yii—1 Yit-2
Cov g by, dis =0, Cov g baj, dit =0
i=1 Yig—1.Yir—2 g=1 Yie-1,Yie—z
and
Yie1 it
Cov g b, bo; =0.
7j=1 Jj=1 Yie-1.Yit-2



Var(Yu|Yii 1, Yii—2) = YiaVar(by) + YiioVar(by) + Var(dy)

= Yiiimupi(1 = p1) + Yi—anpa(l = p2)

Tl — NePrfbig—1 — T P2lbig—2. (3~5)

Letting o;4_1 - represent the variance of Yi,_y, then

V(IT(YL'LIY},J—‘Z)

Ey,, ., [Var(Yi|Yii-1, Yii-2)] + Vary,, (E|Yu|Yiic1,Yie-2])
Ey,, [Yiicinepr (1= p1) + Yie—ongpa(1 — p2)

(it — Neprfhig—1 — Nep2ftii—2)]

+Vary,, (Yi—impr + Yie—onpz + (fae — muprptip—1 — W paftii-2))
fir—inepr(1 = 1)+ Yigonpa(1 — p2) 4+ 1 plois—1e-1

it — NP1 i g—1 — P2 flig—2- (3.6)



Similarly, letting oy s 9;_2 represent the variance of Y, we have

Var(Yy) = Ey,, ,[Var(YulYi o)) + Vary,, ,(E[Yy|Yii—2])
By, , lptig—1nupi(1 = p1) + Yi—anpa (1 — p2)
i — NP flii—t — P2ilia—2 + NP0 1]
+Vary,,_o(Ey,,  E[YylYii 1, Yiia])
fig-11ep1 (L= p1) + pligomupa(l — p2)
e = NP1 i —1 — PaNiflig—2 T+ 71"7)/)%01;1—1.#1

+Var(pi—inpy + Yi—anepa + pie — mpiptio-1 — NeP2flii—2)

pis—1mapr(L = p1) + prig—onep2(l — p2) + ’TL}Z,P%Uz',t—l,z,—l + ’n/?/)gffi,z—z,z—z

i — NP1 -1 — T P2llip—2
9 2, 2.2 209
Pt = Hig—1MeP] — Mig—2Meps + N P10ia—1,0-1 + 1 P30i0-2,0-2

pir — (fig—1 — ’”»tﬂi,t—l.t—l)”t/ff — (fig—2 — Tl,i,Uzi,l—‘.)‘t—Z)an%- (3.7)

From (3.7), we can see that the variance of ¥;; has a recursive relationship with the

variance of Y;,_; and the variance of Y _o. It is diffict  to find a closed expression
for each individual variance. So we list some specific examples. We know from our

assumptions that Var(V;) = pi and Var(Yi) = o + pinay(ng — 1) and, we can
p / / M



find that when ¢t = 3,

Var(Y) naptizpr (1 — p1) + n%pf(nzfg + 72,5/)501-11
Fptanapa(l = pa2) + iz — napriiz — NapP2fii
= pgnsp (L — p1) + 0305 (iar + pina(ne — D) + nipipn
+inape(l — P2) + His — NapLfie — Nap2flin

= s+ ping(ng — Vg + pana(ng — Vpa + pinina(ny — . (3.8)

When ¢ =4,

Var(Yy) = ponapi(1 —p1) + 77.3/)%(7,,;33 + nipgaigg + pimapa(l — p2)
Fhia — NP1z — NapP2iliz
= 4+ /)f71,4('r1,4 — Dy + /)37’1,4 (ng — D)ptin + [)117)3‘”3(7?3 — 1)ptan
+pipanina(ny — D + pipgnins(ns — D

+p?'n,ﬁn§‘rL2(ng — 1)y (3.9)

3.2.1.3 The Covariance

The lag k covariance between Y and Y; . will also have a recursive relationship

in terms of covariance between Y,y and Yi, x & Y;,—2 and Y, ;. By assumption



(3) and (4), we have

Yiig-1 Yit_a
Cov(Yy.Yi—y) = Cov Zbu(”l’uplﬁyigt;k + Cov by;(ne. p2), Yie—
J=1 Jj=1
+Cou(dy, Yiix)
Yir-1 Yit—2
= Cov Zblj(ntapl)yyi,t—k + Cou baj(ny, p2)s Yie &
J=1 j=1

Considering only the first term of the equation,

Yii—i Yii—1
Cov E bij(ne,p1), Yip-e | = E |Cov E bij(ne, p1)s Yie-r
j=1 j=1 Yiie—1.Yig-n

.
i,t—1

)
+Cov | E Zblj(nt,pl)
j=1

CEYickly v

Yiio1:Yii—«

Y‘L,I,—l

= Covy,, \v,. | E Zblj<71'hpl) VE(Yie-rlyi,)
Jj=1

Yii—a
= CO“’Y},fﬁl.Yl.t_k(Yri,t—lnt/’laYi,t—k)
= ’”'f,Ple)’“(Yi.t—th,t—k)
= M1 0 t—1,t—k-
Similarly, we can show that:
Yit—2
Cov E sz(ﬂhﬂ'z), Yiien | = mepati—at—k-
=2
Thercfore, we have:
Cov(Yie, Yig—r) = mup10i— 14—k + MpP20i—2t—k (3.10)

[ahy ]
(&3]



We can use this formula to obtain the covariances for some specific cases:

For t = 2, Oyet & Sutradhar (2011) have shown that

CO‘U(YH, Yiz) = NypP1}in-

Cov(Yis, Yiz) = N3P10i2 + N3pPaTie = PNl + /)Lf’”/;zn'z(nz — 1)jtin + prpanaftin-
Cov(Yis, Yi1) = ngpi10ior + ngpaoin = ,0?77'371‘2/141 + ponisflin.
For t = 4,

Cov(Yiy,Yis) = p10is+ pa0io
= PNz + P:f”vﬂl:s(”s — 1) + /11.05’14773('”3 = D + p‘?v‘m?i (n2 — D
+p1ponang il + p"fpgn,l'n,;mg(ng — 1);1,51 + plp%n»4 nopliy-
Cov(Yi,Yi) = P10 + peoix
= pininsii + pinanang(ng — 1) + P panamiafii
+panajlio + [)fpg'n,4'11,2(72,2 — 1)y
Cov(Yis. Y1) = piom + p20in

3 ,
= pinangNefin + Prpananzilin + Prp20aN2 il



3.2.1.4 The Correlation

Once we have found the covariance between Yy and Y;,_y, the lag k correlation

between Y, and Y;,_, will simply be

Corr(Ya. Yr_p) Cov(Yi,Yii—k)
FOTT\ Xty X p— = .
ook \ﬁar(Yi,,)'uar(Y,-J_k)

(3.11)

Note that when n, = 1,¢t = 1,2,...,T, the lag k covariance and correlation will
reduce to the covariance and correlation formulas (2.9) and (2.10) for the binary sum
infectious discase model considered in Chapter 2. Thus, this model can be considered
a generalization of the binary swm infectious disease model. When py = 0, the lag k

covariance and correlation will reduce to

k-1

- k

C'O'U(Yiuyi,t—k): H”L—[ P0Gtk t—k
=0
and

k-1

A,:

Corr(Yi,Yi—x) = Hnt—l Pl
=0

which are the same expressions for lag 1 infectious disease model considered by Oyet
& Sutradhar (2011, equs, (2.6) (2.7)). Thus, this model is also an extension to the

lag 1 infectious disease model.
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3.2.2 Estimation of the Parameters of the Lag 2 Binary Sum
Infectious Disease Model

Similar to what we have done in Section 2.2.2, we use GQL approach to estinate

the covariate effects and use MM approach to estimate p; and py.

3.2.2.1 GQL Estimation of

Following Sutradhar (2011, sec.6.4.2), let ji; = (pa, fliz, *++ 5 fie, -+ + » pir)’ be the
T x 1 dimensional mean vector of y; = (Yi1, Yz, s Yits -+ -, Yir)' - 1f we assume py,
and py are known, a consistent and efficient estimate of 4 can be obtained by solving
the so-called generalized quasi-likelihood (GQL) estimating equation

ayt —l Y —
Z 25 O =) =0 (3.12)

where X;(p) = Cov(Y:) = Al/zCl(p)Am, with A; = diag(oii, ..., o, ...oer) and Ci(p)

13 I3

as the true correlation structure

I pue pasz - 0T
L paas - Piar
Ci(p) =
L pie—rr
1

with pie gy = Corr(Yi—p, Yy), for t = 2, T and kb = 1,..,7 - 1. This GQL

estimating equation (3.12) can be solved iteratively by using the Newton Raphson



algorithm

15 ) (i — i) f (3.13)

where g, is the value of 3 at rth iteration.

3.2.2.2 MM Estimation of p, and p,

The GQL estimating equation (3.12) can be solved for 4 when the correlation
structure is known. Thus, we need to estimate the parameters py and ps in order to
obtain a good estimate for 3. These two parameters can be consistently estimated by
using the method of moments. Let Sy, Sisr and Siqo be the standardized sample
variance, the standardized lag 1 sample autocovariance and the standardized lag 2

sample autocovariance, respectively, defined as

Su = ZZ(*‘"“”) /KT

i=1 t=1
K T-1
Yit — fLit Yit+1 — Hit+1 .
o = B8 () () s
7=1 t=|I X
3¢ —
Yit — Hit Yig+2 — Hig+2 .
Sitis2 = ZZ ( > ( +0“+91 )/1\ (T —2),
=1 t=1 e



where gy = \/Tur, Titg1 = /Tir+ 1441 yand i = /Cisa 2 Then

E[Su) = 1
N T-1
E[Siii1] = Z ZC”"”'(!/if-!/i.1+1)/1\'(T -1)
i=1 t=1
N T-2
ElSia+2] = ZZC(’”'(!Im'.l/i,z+2)/1\'(T—‘2).
i=1 t=1

Using first order approximation of the expectation of the ratio of two sample variance,

we will have moment equations

Sit.f+l [Sii r,+1] E[Sit,t+l]
= E . ~ - E Si
Sin St E[Si] [Sit1]

S.‘JJL‘) Si{l+2} E[SH f+2]
= = F . i~ . = FE[Si1 12
Ditt l: Sill E[Si”] [ [‘H-Z]

Then, oue may obtain the estimates for p; and ps by solving the marginal moment

cquations

S

2 EB[Siq] =0 (3.14)
itt

Sit s

é—'“ — E[Siti42) = 0. (3.15)
it

Due to the nonlinearity of the estinmating equations (3.14) and (3.15). the solutions

can be obtained by using iteration method. However, the variances contains pp and
ps. The practical derivatives with respect to py and pp would he a little complicated

to find if we want to use Newton’s iteration. Instead, we simply iterate to convergence
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the following cquations:

S [ A ;

itt41 )
Z ZC T \Yits Yi K(T -1

< Sitt > orr (y, Y .l+1)/ ( )

_’[)1(") i=1 t=I1 | PL=P1 () 2=P2(r)

(3.16)

g N[ 1 Ko
(a2} |50 3 Corrtipuans)/ (T -2

Sitl

_pQ(T) i=1 t=1 i PL=PL(ryP2=P2(r)

(3.17)

where p(,) and Py, are the values of py and py at rth iteration respectively.

3.2.3 Forecasting Performance

Once all parameters of the model (3.1) are estimated, we can obtain a one-step
forecast for the purpose of planning and control. From model (3.1), it is clear that

the conditional mean of Yj;, given Y;,_; and Y;,_, has the formula

E(X‘L‘!ji,[—l,yi,uz) = [ty + ntm(’yi,f—l - /Lz‘,t—1) + nL/)‘Z(yi,!72 - ,Uri,t72)- (3-18)

Next, if we define an I-step ahead forecasting function of y; 41 as yi(l) = i =
E(Yiu1] Yitsi—1s Yissi—2), then, from (3.18), the onc step ahecad forccasting function

is given by

yir(1) = EYir1lVie, Vig-1)

= flyt41 T 'm+1/)1(’!/it - /h‘r) + 71’t+1/)‘2(?/i.t—1 - /1~z.t—1)-, (3-19)
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Then, the variance of ¢;(1) is

Va"'(f’*t(l)) = E(Vafr(eit(l)\?/ih ?/i,l—l)) -+ Vafr(E(@u(l)l:Uwih ?Ji,t—l))
= EWVar(eq ()|, yit-1))
= E(ftigp1 — Mes1p1tlit — NesrPapbiz—1 + Yanaprpr (1 — P1)
Fyidturapr(l = p2))

2 2 .
= Mgt T T PrBie = M1 Pofie—1- (3.21)

3.2.4 Simulation Study

Similar to Section 2.2.4, we conduct simulation studies with ' = 100 comnunities
and T = 5 time intervals. We will estimate the model parameters based on the
counts from t = 1,2,3,4 time points and forccast the number of infections at ¢ =
=4 Tl . a1 I e . . : g N L N ool
d. 1 covarlate vector r; = (.I,Z‘(],.Lilg) and nonstationary covariate vector x;; =
(Ta1, Ta2) are the same as in (2.21) & (2.22) and (2.23) & (2.24), respectively. From
the assumptions, we know that 0 < p; < min (};ﬁ’% 1), for t > 3.

2 .=
We again assume that py, < p;. So we choose a small p,, then compute the upper

i’ i -1 !

bound p} = min( ) Then, we use this p, and p; = p] — 0.1 or
;= pt — 0.2 as the true values of p; and p, for the simulation. We selected the
same n; values as in Oyet & Sutradhar (2011), that is, n' = (ny, 12, n3. 14, n5) =
(1,2,2,2,2),(1,2,2,3,2),(1,2,3,4,2),(1,2,2,2,3) . (1,2,2,3,3),(1,2,3,4,3).

Using suitable initial values of 3, p; and ps, we solve the marginal estimating

equation for 3 by using Newton Raphson algorithm. Then, by using the initial values

of p1 & py and the estimate of 3 obtained from previous step, we obtain estimates for
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p1 & po by using moment estimating equations. We use estimated py, p, to estimate
3 again, then use this uew 3 and repeat the above steps until convergence. Table

(3.1) and Table (3.2) below report the estimated 3, py and po from 1000 sinlations.

Table 3.1: Stationary Model Parameters Estimation Results.

Parameter Estimation

Nt 3 m 2 i SE, i SE; g SEg

N2=N3=N.1=NhH=2
N2=N3=N4=N:
N2=N3=N1=NH=2
N N3=N 1= N5=2

0.5, 1.0y 0.20 0.05 | (0.518,0.990)  (0.230,0.126)  0.19%  0.032  0.045  0.032
1.0, 1.0} 0.20  0.05 | (1.031,0.984)  (0.266,0.139)  0.197 0.033 0.048 0.035

5. 1.0y  0.15  0.10 | (0.505,1.000) .2234,0.124)  0.156  0.029  0.084  0.033
0, 1.0y 005 010 | (1.021,0.988) 1.0.135) 0157 0.031  0.085  0.033

Sy 1Oy 0160 003 | (0.526.0.983)  (0.243,0.134 0.147  0.023  0.028  0.020
1.0,1.0) 0.15 0.03 1.028,0.985)  (0.265,0.140 0.016  0.021  0.02%  0.021
0.5, 1.0)  0.10 0.05 0.507.,0.998)  (0.217,0.120 0.102  0.021  0.045 0.020
N2 =2.N3 =N5 =3.N1 =4 1.0, 1.0) 0.10 0.05 1.020,0.990)  (0.2:19,0.133 0.101  0.022  0.041  0.020

N2 =2,N3 =N5 =3,N1 =4
N2 =2.N3 =N5 =3,N4 =4

(
(
(
(
cow —uN3I=N5=3N1=1
( (
( (
( (
N2 =N5 =2N3 =3.N1=1 ( 015 003 [ (0.506,0.995)  (0.236,0.131)  0.118  0.021  0.030  0.021
N2 =N5 =2, N3 =3N4d =4 (1.0, 1.0) 015 003 | (1.008,0.996) (0.266,0.142) 0148  0.021 0029 0.021
(

0.511,0.993)  (0.216,0.118
N2 =N5 =2,N3 =3 N4 =4 (1.0. 1.0 0.10  0.05 | (1.024,0.990) (0.247.0.131 0.101  0.022  0.044 0.020

)
)
N2 =N5 =2,N3 =3,N1 =1 (0.5, 1.0) 0.10 0.05 0.101  0.022 0.015 0.020
)
)

N2=N3=N5=2,N14 =3 (1.0, 1.0)  0.20 0.05 | (1.002,0.998)  (0.278,0.150 0.196  0.029  0.046  0.029
N2=N3=N5=2,N1 =3 (0.5, 1.0 0153 0.027  0.086  0.027
N2=N3=N5=2 N4 =3 (1.0, 1.0 0.153  0.027  0.089  0.027

0.15  0.10 | (0.515,0.983)  (0.231,0.127

0.15  0.10 | (1.024.0.98%8) 0.275,0.146

N2 =N3 =N4 =2N5 =3 0.157  0.029  0.085 0.033
N2 =N3 =Nd4 =2,N5 =3 0.157 0.029 0.082 0.033
N2 =N3 =N4 =2,N5 =3 0.107  0.028  0.039  0.028
N2 =N3 =N4 =2 N5 = 0.10  0.05 1.012.0.9941) 0.223,0.121 0.104  0.029  0.040  0.027

0.15  0.10 | (0.510,0.995) 0.220,0.122

)
)
)
)
)
)
)
)
N2=N3=N5=2NT =3  (05.1.0) 020 0.05 | (0517,0990) (0.247.0.137) 0.196 0029 0045 0.028
)
)
)
)
)
)
)
)

)

) (

) (

) 015 0.0 | (1.035,0.981)  (0.257,0.135
0.5, 1.0)  0.10 005 | (0.491,1.001)  (0.196,0.108

) (

) (

)

)

)

N2 =N3 =2,N1 =N5 =3 0.15 0.10 1.012,0.992)  (0.271,0.143)  0.153  0.026  0.087 0.027
0.10  0.05 | (0.511,0.992)  (0.211,0.117) 0.103  0.026  0.041  0.024
0.10  0.05 | (0.999,1.001)  (0.215.0.131) 0.10¢  0.026  0.044  0.026

N2 =N3 =2,NJ4 =N5 =3
N2 =N3 =2 N4 =N§ =3

(
(
( (
( (
N2 =N3 =2N4 =N5 =3 (05.1.0) 0.5 0.10 | (0.511,0.006) (0.229,0.130) 0.154  0.026° 0.087 0.027
( (
(
(
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Table 3.2: Non-stationary Model Parameters Estiiation Results.

_Parameter Estimation

Nt 3 n P2 Jo] b’f')ﬁ 71 Sﬁm 02 SH/,‘Q
N2=N3=N-{=N5=2 (0.5, 1.0)  0.20  0.05 | (0.494.1.002)  (0.075.0.138) 0.202  0.011  0.051  0.047
N2=N3=N1=NhH=2 (1.0, 1.0)  0.20 0.05 | (1.000,1.004)  (0.072.,0.133) 0.204 0.043  0.056  0.052
N2=N3=NJ=NhH=2 (0.5, 1.0y  0.15  0.10 | (0.502.0.992)  (0.071.0.134)  0.160 0.038  0.076  0.046
N2=N3=Ni4=NH=2 (1.0.1.0) 0.15  0.10 | (0.998.1.003)  (0.073,0.131)  0.163 0.011 0.070 0.051

N2 —..,N% =N5 =34Nd =1 (1.5, 1.0)  0.15 0.03 | (0.500,0.997)  (0.069,0.131)  0.151  0.030  0.032  0.030
N2 =2,N3 =N5 =3 N1 =1 (1.0, 1.0) 0.15 0.03 | (0.997,1.003) (0.071,0.126)  0.150  0.032  0.035 0.031
N2 =2, Ni —N’) =3N4 =1 (0.5 1.0) 0.10 0.05 | (0.495,1.000) (0.072.0.131) 0.105 0.026 0.043  0.028
N2 : (1.0.1.0) 0.10 0.05 | (1.002,0.990) (0.072,0.128) 0.106  0.028 0.040 0.031
N2 (.5, 1.0y 015 0.03 | (0.500,0.995)  (0.074,0.131)  0.150  0.029 0.033 0.030
N2 (1.0, 1.0y 0.15 003 | (0.997.1.006)  (0.071,0.125)  0.151 0.032  0.034 0.034
N2 =N =2,N3 =3,N41 =4 (0.5, 1.0y 0.10 0.05 | (0.495,1.005)  (0.073,0.111)  0.107  0.027 0.043  0.029

N9 —’\“" — N2 =3 NJ =1 (1.0,1.0) 0.10 005 | (0.997,1.005)  (0.072,0.130)  0.107  0.028 0.041 0.032

femmiro—ao—2,N4 =3
N2=N3=N5=2N{ =3

0.5, 1.0) .20 0.05
1.0, 1.0y 0.20  0.05

0.499,1.001)  (0.073.0.135) 0.198  0.038  0.049  0.012
1.001.0.997)  (0.072,0.126) 0.200 0.040 0.053 0.048

N2=N3=N5=2N.1 =3 0.5, 1.0y 015 0.10 0.500,0.993)  (0.073,0.135)  0.160  0.03¢4 0073 0.040
NZ—N%—N":‘Z‘N-I =3 1
N2 = 4 =2N5 =3 0.5, 1.0y 015  0.10 0.500.0.997) 0.071,0.136)  0.162  0.038 0.074 0.045
N2 v =3 1.0, 1.0  0.15 0.10 .996.1.001) 0.071,0.129)  0.161  0.042  0.068  0.050

(
(
5 (
0,10y 015 0 010 1 (0.997,1.005)  (0.072,0.129)  0.161  0.036  0.074  0.046
(
(0
{

0.071,0.134)  0.113  0.036  0.041  0.035
0.118 0.037 0.042 0.038

N2 =N3 =2.N1 =Nj =3 0.077,0.144

)

0.5, 1.0y 005 0.10 | (0.501,0.991) )
N2 =N3 =2N1 =N5 =3 0.072,0.126)  0.161  0.03¢  0.071  0.045

)

)

1.0, 1.0y  0.15  0.10 | (0.995,1.010})
0.5.1.0)  0.10 0.05 | (0.496,1.005)
1.0, 1.0)  0.10  0.05 | (0.998,1.000)

N2 =N3 =2,N1 =N5 =3
N2 =N3 =2N4 =N5 =3

0.073,0.129
0 D.0.124

(

(

(

(

{ (

( (
N2 =N =3 (0.5, 1.0} 0.10 0.05 | (0.504,0.094) (
N2 =N3 =N4 ~z,1\ =3 (10,10} 0.10 005 | (0.997,1.005) (0.076,0.132

{ (

( (

( {

( (

From Table 3.1 and Table 3.2, we cau see that all the estimates for § are close to its
true value. In the nonstationary case, the estimates for p; and py are less accurate than
the stationary case in general. For some combinations of p; and p,, such as p; = 0.15.
pr = 0.03 with ny = 2,n3 = ns = 3,n4 = 4 in stationary case, the estimates of 7 are
slightly less accurate than the others. This is because py is close to the lower bound. It
is clear that for each stage of iterations, p; and p, have to satisty the range restrictions,
which in our caseis 0 < py < py and 0 < p; < min (,—LT “_ITTCLP~1'; 1). Therefore,
when py or gy is close to their boundary, the estimates become less accurate. Those
less accurate estimates for p; and py will affect the estimates for /3.

For the purpose of examining the forecast performance of the model (3.1), we use

the paramneter estimates obtained by using only the first four observations, Yiq, Y, Yis

0.159  0.031  0.082  0.041

0.110  0.033  0.041 0.032
0.111  0.031 0044  0.035




and Yy for ¢ = 1,2,...,100 in the forecasting function in Section 3.2.3 to compute a
one-step alead forecast of fifth observation. Next, we compute the sum of squares of
the forecast error as well as the variance of the forecast error for these 100 conmmuni-
ties. These calculation were repeated 1000 tines as well for a total of 1000 estimates
of the parameters. We denote the average sum of squares of the forecast crrors and
the average variance of the forecast error by ASS and AV respectively. The results

arc reported in Table 3.3 and Table 3.4.

Table 3.3: Stationary Model Forecasting Error.

Nt 3 P po | ASS | AV
N2=N3=Ni=N5=2 05.1.0) 020 0.05 | 1.972 | 1.019
N2=N3=N4=N5=2 (1.0,1.0) 020 0.05 | 2.365 | 2.322
N2=N3=N4=N5=2 (0.5,1.0) 015 0.10 | 2.027 | 2.000

N2=N3=N4=N5H=2
N2 =2,N3 =Nb =3,N4 =4
N2 =2,N3 =N5 =3,Nd =4
N2 =2,N3 =Nb5 =3,N4 =4
N2 =2,N3 =N5 =3,Nd =4
N2 =N5 =2,N3 =3,N4d =4
N2 =NbH =2,N3 =3,N4 =4
N2 =N§ =2,N3 =3,N4 =4
N2 =Nb =2,N3 =3,N4 =4

N2 =N3 =N5 =2,N1 =3

(1.0,1.0) 015 010 | 2413 | 2.372
(
(
(
(
(
(
(
(
(
N2 =N3 =N5 =2N4 =3 (
(
(
(
(
(
(
(
(
(
(

05.10) 015 0.03 | 1.09 | 1.978
1.0,1.0) 0.15 0.03 | 2.378 | 2.365
0.5, 1.0) 0.10 6.05 | 2.077 | 2.055
1.0,1.0) 010 0.05 | 2.481 | 2.446
05,100 0.15 0.03 ] 2.038 | 2.035
1.0,1.0) 0.15 0.03 | 2.486 | 2.427
0.5, 1.0) 0.10 0.05 | 2.109 | 2.078
0,1.0) 010 0.05 | 2.521 | 2.483
5,1.0) 020 0.05 ] 1.983 | 1.955
0,1.0) 020 005 | 2361 | 2.331
5,1.0) 015 0.10 | 2.001 | 1.991
0,1.0) 0.15 0.10 | 2411 | 2.377
5.1.0) 0.15 0.10 | 1.970 | 1.920
0,1.0) 015 0.10 | 2.341 | 2.286
0.5,1.0) 0.10 0.05 | 2,104 | 2.048
1.0,1.0) 0.10 005 | 2.481 | 2.438
05,1.0) 0.15 0.0 | 1.059 | 1.028
1.0,1.0) 015  0.10 | 2.334 | 2.297
05 1.0) 010 005 | 2.001 | 2.047
1.0,1.0)  0.10 0.05 | 2.482 | 2.441

N2 =N3 =N5j =2,N4 =3
N2 =N3 =N5 =2,N4 =3
N2 =N3 =N4 =2,N5 =3
N2 =N3 =N4 =2,N5 =3
N2 =N3 =N4 =2,N5 =3
N2 =N3 =N4 =2,N5 =3
N2 =N3 =2,N4 =N =3
N2 =N3 =2,N4 =Nb =3
N2 =N3 =2,N4 =N5 =3
N2 =N3 =2,N1 =Nj =3
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Table 3.4: Nou-stationary Model Forecasting Ervor.

1\” /‘) 1 P2 153 /\\'
N2=N3=Ni4=NH=2 (0.5, 1.0)  0.20  0.05 | 2.990 | 2.887
N2=N3=N4=N5H=2 (1.0, 1.0)  0.20 005 | 1950 | 1.781
N2=N3=N4=N5=2 (0.5, 1.0)  0.15  0.10 | 3.039 | 2.967
N2=N3=N4=N5=2 (1.0,1.0) 0.15 0.10 | 5.019 | 4.900

N2 =2,N3 =N5=3.N1=4 (0.5, 1.0) 0.15 0.03 | 3.059 | 2.916
N2 =2 N3 =N5 =3.N4 =1 (1.0, 1.0) 0.15 0.03 | 5.020 | -L.859
N2 =2 N3 =N5 =3,Nt =1 (0.5, L.O) 0.10  0.05 | 3.131 | 3.014
N2 =2M> 7 3 NI=4 (1.0,1.0) 010 0.05 | 5178 | 1.999
N2 =N5 —snvo =3 NI =1 (05 1.0) 015 0.03 | 3.087 | 3.01d
N2 =Nd =2,N3 =3 N4 =4 (1.0. 1.0) 0.15  0.03 | 5.081 | 4.982
N2 =N)H =2N3 =3,N1 =4 (0.5, 1.0) 0.10  0.05 | 3.172 | 3.084
N2 =N) =2,N3 =3,N4 =4 (1.0, 1.0) 0.10 0.05 | 5.210 | 5.087
N2 =N3J =N5 =2Nd =3 (0.5, 1.0)  0.20  0.05 | 2.997 | 2.917
N2 =N3 =N5 =2.N1 =3 (1.0.1.0)  0.20  0.05 | £.919 | 1787
N2 =N3 =N5 =2,N.4 =3 (0.5, 1.0)  0.15  0.10 | 3.046 | 2.967
N2 =N3 =N5 =2,N:{ =3 (1.0,1.0)  0.15  0.10 | 5.082 | 1918
N2 =N3 =N4 =2N5 =3 (0.5, 1.0) 0.15  0.10 | 3.036 | 2.875

(

{

N2 =N3 =Nd4 =2,N5 =3 1.0, 1.0)  0.15  0.10 | 5.010 | 1.728
N2 =N3 =N4 =2 N5 =3 0.5.1.0)  0.10 0.05 | 3.136 | 3.021
N2 =N3 =N4 =2,N5 =3 (1.0, 1.0) .10  0.05 | 5.208 | -1.972
N2 =N3 =2,N4 =N5 =3 (0.5, 1.0)  0.15  0.10 | 3.004 | 2.871
N2 =N3 =2,N4 =Nj =3 (1.0, 1.0)  0.15  0.10 | 5.002 | 4.775
N2 =N3 =2,N1 =N§ =3 (0.5, 1.O)  0.10  0.05 | 3.136 | 3.033
( )

N2 =N3 =2,Nd =N5 =3 0.10  0.05 | 5.174 | L1986

Fromn Table 3.3 and Table 3.4, we sce that the value of the average sum of squares
and the average variance of the forecast errors are very close to each other for all
different combinations of parameters. This indicates that the average su of squares
of the forecast errors can closely estimate the average variance of the forecast errors.
Note that the values for average variance and sum of squares of forecast errors are
gencrally smaller under stationary covariates. It could be also seen that the difference
between average variance and sum of squares of forecast errors are also smaller than
the nonstationary case. This means that we have better estimates for the parameters
i the stationary case. This is because the covariates do not change with respect to
time t in stationary case. By similar discussion of results of simulated variance of

forecasting crrors in Section 2.2.4, for our particular setup, the average variance of
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forecasting crror for 3 = (0.5, 1) is smaller than that of 3 = (1,1) as expected.
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Figure 3.1: A plot of (a) values of stationary mean for t = 1 (solid line), f = 2 (dashed
line), t = 3 (dotted line), ¢ = 4 (dotted dashed line); (b) values of stationary variance for
t =1 (solid line), ¢t = 2 (dashed line). ¢ = 3 (dotted line), t = 4 (dotted dashed line): (c)
values of stationary lag 1 correlation for # = 1 (solid line), t = 2 (dashed line), ¢t = 3 (dotted
line); (d) values of stationary lag 2 correlation for ¢ = 1 (solid line), t = 2 (dashed line); (e)
Average forecast overlaid on average of longitudinal data; and (f) proportion of absolute
values of forecast error that are 0 or 1 (solid line) and > 1 (dotted line); by communities
obtained from 1000 siimulations with p; = 0.15, p2=0.10, f=(1,1), stationary covariates
(2.23)-(2.24) and ny = 1,np =, ...,n5 = 2.
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Figure 3.2: A plot of (a) values of nonstationary mean for t = 1 (solid line), ¢t = 2 (dashed
line), ¢ = 3 (dotted line), ¢t = 4 (dotted dashed line); (b) values of nonstationary variance
for t = 1 (solid line), ¢t = 2 (dashed line), t = 3 (dotted line), t = 4 (dotted dashed linc);
(¢) values of nonstationary lag 1 correlation for ¢ = 1 (solid line), t+ = 2 (dashed line)
t = 3 (dotted line); (d) values of nonstationary lag 2 correlation for ¢ = 1 (solid line),
t = 2 (dashed line): (e) Average forecast overlaid on average of longitudinal data; and (f)
proportion of absolute values of forecast error that are 0 or 1 (solid line) and > 1 (dotted
line); by cominunities obtained from 1000 shnulations with p; = 0.15, p2=0.10, g=(1.1),
nonstationary covariates (2.25)-(2.26) and ny = 1,ny =, ....ng5 = 2.

il

In Figure 3.1(a).(b).(¢) and (d), we let the maximum number of individuals that
can be mfected ng, t = 1,2, ..., 5 to be time depeundent. The graph shows the stationary
patterus in the mean i, variance oy, lag 1 correlation p;,_1,. and lag 2 correlation
pit—24. In Figure 3.1(e), we have overlaid a graph of the average of the forecast
in 1000 siinulations over a scatterplot of the average of the observations yis. The

plot shows that the average forecast follows the gener: pattern of the infections at
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the fifth time point. In order to assess the accuracy of out forecasts. We have also
displayed a graph showing the average of the proportions of the forecast error e; with
absolute deviations 0,1 and greater than 1. Figure 3.1(f) shows that the deviations
of magnitude 0 and 1 appear to be over 90% for the first 50 communities and around
55% for the remaining 50 commuities. We constructed similar plots in Figure 3.2 for

a nonstationary case obtained from covariates gencrated by using (2.25) and (2.26).
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ty < --- < t,, therv's X (), X(#;-1), i = 1,2,...,n, arc independent.
Axiom (2) For any t > 0, 0 < Pr[X(t) > 0] < L.

Axiom (3) For any t > 0.

. Pr[X(t+h) - X(t)
lim - =
w0 PriX(t+ h) — X (t) = 1]

Y]
S

Axiom (4) X(#) has stationary increments; that is, for pomnts ¢, > t; > 0
(and h > 0). the random variables X (¢;) — X (¢;) and X (tix) — N(tj4n) ave

cquidistributed.

In our modelling approach, the munber of innnigrations are discrete counts which can
occur at any point along a continuum. There is no immigration at the initial time
point. At any particular point, the probability of the immigration is small. The av-
erage number of immigrations is constant over a unit of measure and dizvo iy iy
arc independent. Thercfore, we assume that dy, ¢ = 2.3, ..., T, follow Poisson dis-
tributions. The Method of Moments and the GQL method was shown to perform
well in estimating the parameters. These estimated models can be used to obtain a
reasonable forecasts of future spread of discase using the forecasting function when
the latent conumunity cffect is not present. When the latent community effect is
present, the GQL approach still works well for estimating regression parameters and
paramecter in the latent commmunity effect. However, the moment cstimates for the
correlation parameters become less accurate.

We remark that by the nature of model (2.1), (2.12) and (3.1), new infections at

time point ¢ are completely determined by the number of infections at time point #—1
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and f—2. Therc may be situations where an individual who was infected at time point
t — k continue to infect others at future time points until the individual is discovered
or recovered. Furthermore, model (2.12) only considers the latent community effect
present in a binary sum infectious disease model. For a binomial sumn infectious
model, the latent conununity effect may also present. These situations are subjects

for future consideration.
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