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Abstract 

When a common infect ious disease is first detected in a community, it may quickly 

spread out through air, water , public facilit ies and personal contacts. At a given 

time point , each infected individual may or may not infect other individuals in the 

communi ty. Meanwhile, it is also possible that some individuals who carry the same 

disease travel into the community. In the present work, we discuss estimation and 

forecasting of an extension to the lag 1 longitudinal dynamic model for correlated 

data used by Oyet & Sutradhar (2011) for modelling the spread of infectious disease. 

The lag 1 model only allow individuals with infection at t ime point t - 1 to cause new 

infections at t ime point t. Clearly, if at t ime point t - 2, t here is an individual who 

is still infected by the disease, it is also possible for this individual to infect others at 

t ime point t . The present model discussed in this work allows for such a possibility. 

During the modelling, we consider stationary and nonstat ionary covariates. We also 

extend the model to situat ions where unobservable community effect and the latent 

community effect is present. The regression parameter /3 and the parameter of latent 

community effect CJ~ are estimated by generalized quasi-likelihood ( GQL) approach. 

The correlation parameters p1 and p2 are estimated by using method of moments. In 

each of the cases, we examined the accuracy of the estimates and forecasts through 

simula tion studies. 
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Chapter 1 

Introduction 

In recent years, st a tistical models have shown to be of great value in the modelling 

of infectious disease. In particular, Oyet & Sutradhar (2011 ) proposed a branching 

process with immigration type longitudinal count data model for modelling the num-

ber of infections in each community. In their paper , t hey assumed that one infected 

person may possibly infect none, one or more individuals in a small time interval. 

Some immigrants with the same disease may enter the community during the same 

time interval which will increase the number of infected individuals in the commu-

nity. Let Yit. be the number of infected individuals a t t ime t (t = 2, 3, ... , T) in the 

community i (i = 1, 2, ... , K) , Oyet & Sut radhar (2011) model is given by 

with assumptions: 

Yi, t - 1 

Y.it = L BJ(n t> p) + dit 
j = l 

Assumpt ion 1. Y'il rv P oi(p,i1 = exp(x;,d3) ). 

1 

(1. 1) 



Assumption 2. dit rv P oi(P,it - Pl/-Li ,t-d for t= 2, ... , T with /-Lit = exp(x~1 (3 ) , for 

all t = 1, ... , T. 

Assumpt ion 3. dit. and Yi,t.- 1 are independent fort = 2, ... , T. 

For model (1.1) , they found that for all t = 1,2, .. . ,T and k = 1,2, .. . ,T-1 

E(Yil,) 

Cov(Yit, Yi ,t- k) 

/-Lit ' 

(

k- l ) IT nt-l l 
l = O 

ai,t-k,t-k 

a itt 

Note that when n1 = 1, for all t = 1, 2, .. , T , the binomial random variable BJ(n1, p) 

will become a binary variable with the probability of infection p . T he model (1.1) 

will then reduce to an autoregressive, of order 1, (AR(1)) type Poisson process. This 

reduced model implies t hat the infectious individuals at t ime t - 1 can only infect 

none or one individual at t ime point t. 

1.1 Poisson AR(1) Process 

In the previous ection , we had noted that when n 1 = 1, for all t = 1, 2, ... , T, 

model (1.1) becomes an AR(1) type Poisson process. In this case, the assumptions 

for model (1. 1) becomes Yi l rv Poi(~til = exp(x;1f3 )) and dit rv Poi(p,.u - P/-Li,t- 1) and 
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the process can be written as 

Yi .. t-1 

Y iL = L Bj (p) + d i L· 

j=l 

(1.2) 

Sutradhar (2011) (see also McKenzie (1988)) used (1.2) for t = 1, 2, ... , T to model 

longitudinal count data over t ime. The basic properties of the model arc 

k d c ('' '\/" ) kfiit. p P,u an orr I it, I i,L-k = p -. 
/-Lik 

Mckenzie (1988) showed that t he distribution of the process (1.2) is Poisson with 

mean p,;1, = exp(x~ 1 /3) by using alternate probabili ty generating function (a.p.g.f.s) . 

We can consider t his model as a model for spread of disease for only some limited cases 

because it only allows each of the Yi,L- l infected individuals at t ime t- 1 to infect at 

most one individual. When Yi,L- l is considered to be an offspring variable at t imet- 1 

and d ;t is t he immigration variable, the model (1.2) represents a branching process 

with immigration for ]( = 1 and large T . This model -vvas recently considered by 

Sutradhar, Oyct and Gadag (2010) as a special case of a negative binomial branching 

process with immigration. 

1.2 Generalized Quasi-Likelihood (GQL) 

For the longitudinal regression setup, interest may be focused on the regression 

parameters for the marginal expectations of the longitudinal responses and the longi-

tudinal correla tion parameters. For the regression parameters, there exists a "work-
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ing" correlation matrix based generalized estimat ing equat ion (GEE) approach for 

the estimation of t he regression parameters and generalized quasi-likelihood (GQL) 

estimation approach. The GEE approach was proposed by Liang & Zeger (1986). 

It has been used extensively in recent years in estimation for longitudinal count re­

sponse. However, as demonstrated by Crowder (1995), because of the uncertainty 

in the definition of the working correlation matrix, the GEE approach may in some 

cases lead to a complete breakdown of the estimation of the regression parameters. 

Furthermore, Sutradhar and Das (1999) have demonstrated that even though the 

GEE approach in many situa tions yields consistent estimators for t he regression pa­

rameters, the GEE approach may, however , produce less efficient estimates than the 

independence assumption based quasi-likelihood ( QL) or moment estimates. Sutrad­

har ((2011) p.4) suggests that based on studies by Crowder (1995) , Sutradhar and 

Das (1999) , Sutradhar (2003) , and Sutradhar (2010), the GEE approach cannot be 

trusted for regression estimation in discrete models such as longitudinal binary or 

count data. Sutradhar (2003, Section 3) therefore suggested an efficient GQL ap­

proach for t ime independent covariates which is an extension of the QL approach (or 

weighted least squares approach) for the independent data introduced by Wedder­

burn (1974). Sutradhar (2010) introduced nonstationary autocorrelation structures 

for the cases when covariates are t ime dependent, and applied the GQL approach for 

consistent and efficient estimation of the regression effects. 
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1.3 Motivation 

From the model ( 1.1) , ( 1. 2) and ( 1. 3), we can see that these lag 1 models only 

allow individuals with infection at time point t - 1 to cause new infections at time 

point t. Clearly, if at time point t - 2, there is an individual who is still infected by 

the disease, it is possible for this individual to infect others at t ime t as well. We 

develop a model which include infections from time t - 2. For simplicity, we fi rst 

extend the Poisson AR( 1) process to a lag 2 model. Since the number of infections 

in each community may also be affected by unobserved community effects such as 

environmental pollution, we also extend the lag 2 model a little fur ther by introducing 

a random variable to represent the latent community effect. However, these AR(1) 

type extended models will have similar limitations as a Poisson AR( 1) process when 

used to model the spread of infectious disease. That is , the infected individuals at 

time t - 1 or t - 2 can only infect at most one individual at time t . Consequently, we 

also consider an extension to Oyet & Sutradhar 's (2011) lag 1 model for infectious 

disease which would be more appropriate to model the number of infect ions in reality. 

5 



Chapter 2 

Lag 2 Dynamic Binary Sum 

Infectious Disease Model 

2.1 Pre liminaries 

In t his chapter, we begin to construct new models which will include t he info r­

mation from previous two stages. Suppose that we have K communities. First , we 

begin with a simple case, which deals wit h an infectious individual who can only 

infect a t most one person at time point t . In section 2, we consider bot h stationary 

and nonstationary covariates assuming that no community effect is present. That is, 

all communities are assumed to be independent of each other , but they are time-wise 

correlated wi th themselves . 'vVe discuss the structures and assumpt ions of the model 

and derive some basic properties of the model, such as the mean , variance, covari­

ance and correlation. F inally, we estimate the parameters and forecast the future 

number of infections with both stationary and nonstationary covariates based on t he 
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simulated data.. Iu section 3, we assume there is an unobservable community effect 

which can a.ff ct our responses. For example, this unobservable community effect 'Yi 

could be wealth difference or education levels. The mean function depends on the 

regression effect and community effect. We discuss the structures and assumption 

for t his dynamic mixed model and obtain properties of the mixed model. Finally, we 

estimate the parameters involved in this mixed model with nonstationary covariates. 

The !llain goal of this chapter is to estimate the parameter involved in the model 

and to forecast the number of infections in community at t ime point t. We have 

found out that the Generalized Quasi-likelihood (GQL) method of Sutradhar (2003) 

for estimating the regression parameters of longitudinal response works very well for 

estimating the regression effects of this model. In the same year , Sutradhar and 

Jowahccr (2003) have also used the GQL method to estimate the variance parameter 

of the community random effect 'Yi · 'vVc will usc this GQL approach for the estimation 

of our model parameters. We estimate the longitudinal correlation parameters by 

using the Method of Moments (M f) . Once all parameters are properly estimated, 

we then use the information from t and t - 1 to examine the forecast performance of 

this model. 

2.2 Lag 2 Fixed Binary Sum Infectious Disease 

Model 

We begin our modelling by considering the simple case where the offspring random 

variable is binary with correlation index parameters p 1 and P2 for two consecut ive gen-

7 



erations. 'vVe assume that K independent communities are at the risk of an infectious 

disease. Suppose that at initial t ime point, t = 1, y;1 individuals in the ith community 

developed the disease where y; 1 is assumed to follow a Poisson distribution with mean 

parameter f./,;1 = exp(<1f3 ). Because we assume an infected individual can only effect 

none or one individual for two time intervals, and also because there may be other 

infected individuals arriving from other communities, we shall model the number of 

infected people in ith community at time t as 

Yi1 P oi(p . .;1), wheTe f-l·i l = ex;1!3 

Y; t 

Yi2 L blj (Pl ) + d;2 
j = l 
}/i,t- 1 }/i, t - 2 

L blj (PJ) + L b2j(p2) + d;t, fort= 3, 4, ... , T , 
j=l j=l 

(2. 1) 

where b1j rv Bin(p1 ), b21 rv Bin(p2 ) . This is an extension of the AR(l ) model used 

by Staudenmayer and Buonaccorsi (2005) and Sutradhar (2003) . In model (2.1) , we 

make the following assumptions: 

(3) lf.,~,_ 1 & d;t are independent for t = 2, 3, .. . , T . 

(4) Yi ,t- 2& dit are independent fort = 3, ... , T . 

From the model (2.1), it is clear that E[Y;t] = Var(Y;1 ) = fJ.il· Using assumption 

(1) and (3), it can be shown that E[Y;2] = Var(Yi2 ) = 11.;2, Cov(Y;1, Yi2) = PJ/.l.; t 

and Con(Y;1 , li.2 ) = p1 /fE· We note that in assumpt ion (1), the Poisson mean 
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parameter must satisfy /-Li2 - Pli-Lil ~ 0 , yielding Pt ::=:; ~:;~ . Similarly, for /-L it -

> 0 t b t . fi d d < {Lit -PZf'i t -' Tl f th Pti-Li,t-1 - p2J-Li ,t.- 2 _ o e sa 1s e , we nee Pt _ 
11

;
1 

• - . 1ere ore, e range 

of P1 is 

0 < < . ( /-Li2 /-Lit - P2/-Li,t-2 1) j ' > 3 d 1.. d _ p1 _ 1mn - , , , or t _ an zxe P2 · 
/-Lil Jl·i,t- 1 

For stationary case, if we let I-Li l = I-Li2 = · · · = /-LiT = J-Li , t hen the range of P 1 simplifies 

to 

0 ::::; P1 ::::; ( 1 - P2). 

2.2.1 Basic Properties of the Lag 2 Fixe d Binary Sum Infec-

tious Disease Mode l 

2.2.1.1 The Mean 

Based on the previous discussion, we know that E[Y,;1] = 1-Ln and E [Y,;2] = /-L·i2· 

Then, it follows tha t for t = 3, 4, ... T , 

E[Y;t,j E [%' b1;(pi) + %' b,; (p,) + d<rl 

E [yt 1 

b11(P1)] + E [yt.2 

b21(P2)] + E [dit.] 
]= l ]= l 

E,.,,_,E [%' b1;(Pt,,_,] + E,.,,_,E [%' b,;(p,t ,_J + E[d,] 

PtE[Yi,t-d + P2E[Yi,t-2J + Jl·it - Pl /-L·i ,t.-1- P2/-Li,t- 2· (2.2) 

9 
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I 

Next, we consider some specific cases: 

For t= 3, 

Pl/Li2 + P2/Li l + /Li3 - Pl/Li2 - P 2/Li l 

/Li3· 

Fort = 4, 

/Li4. 

By mathemat ical induct ion, if we have E [Yi,t- 1] = f.Li ,t- l and E [Yi,t-2] = f.L i, t - 2 , then: 

E[Y;t] Pl/Li,t - 1 + P 2/Li,t-2 +/Lit - P 1P i,t- l - P 2/Li,t-2 

/L it 

exp( x;tfJ ). (2.3) 

So, E[Y;t] = fLi t = exp (x~tf3 ) , for all t = 1, 2, ... , T . 

10 



2.2.1.2 The Variance 

T he variance of this model can be derived by finding the conditional and uncon-

dit ional variances. By assumptions (2) and (3), we have 

(

yi 1- 1 Y; t - 2 I ) 
Cov L b1 j , L b2.i Yi,t-1 , Yi ,t- 2 = 0 

J=l J= l 

and 

Cov(Yi,t,-I,dit) = 0 , and Cov (Yi ,t-2 , dit) = 0. 

Then 

+!-Lit- P l/-Li ,t- 1 - P 2/-Li,t-2· (2.4) 

Letting O"i ,t.- l ,t - 1 represent the variance of Yi ,t- 1, then 

Eyi,t- l [V ar·(Yi t.I Yi ,t- 1, Yi,t-2)] + V aryi,t-t ( E [Yit IYi,t-I, Yi,t-2]) 

+(!-Lit. - Pl/-Li, t.- 1 - P2/-ti,t - 2) ] 

+ /-Lit - P1 /-Li,t -1 - P2/-Li ,t- 2 · (2 .5) 

11 



Similarly, letting D"i ,t-2,t-2 represent the variance of Yi ,t-2, we have 

2 l + f-lit- P1/1i ,t-1- P2/1i,t - 2 + p 1ai,t-l,t-l 

2 
+f-lit- Ptf-li ,t.- 1 - P2/1i,t- 2 + p l ai ,t- t ,t-1 

+ V aT(JL;,t-1 P 1 + 1'i,t-2P2 + !"it - fh J-li ,t-1 - P2/1i,t-2) 

/1i ,t- 1P I (1- P1) + Piai,t -l ,t-1 + p~ai,t-2,t-2 

+!1·i,t.- 2P2(1- P2) +f-lit - P1f-l·i,t- l - P2/1i,t-2 

f-lit- (J-li,t-1- ai,t- l ,t-dPi - (J-li,t - 2 - ai,t-2 , t-2 )P~- (2.6) 

From this formula, we can see that the variance of }'i1 has a recursive relationship 

with the variance of Yi ,t- J and the variance of Yi,t- 2 . We know that V aT(YiL) = J-lil 

12 



and V aT(Yi2) = P,i2 from our assumptions. It turns out that when t = 3, 

W hen t = 4, 

/-Li4 . 

If we continue doing the calculation, by mathematical induction if we assume that 

O'i,t - l ,i,t- 1 = /-Li, t - 1 and O'i, t - 2,i,t - 2 = /-Li ,l.- 2 , then using the formula of the variance, for 

t = 3, 4, ... , T , we have: 

13 



+ P,i,t- 2P2(1- P2) + J.kit - Pl J.ki,t.- 1 - P2l-"i,t-2 

(2 .7) 

So, V ar(Yit) = J.kit = exp(x~tf3) for all t = 1, 2, ... , T . 

2.2.1.3 The Covariance 

T he lag k covariance between Yit and Yi ,t-k will also have a recursive relat ionship 

in terms of covariance between Yi ,t- l and Yi.t - k & Yi ,t.- 2 and Yi ,t-k· By assumption 

(2) , we have 

j = l 

+Cov(dit , Yi,t - d 

j = l 

Y i , t- l Y:i,t - 2 

Cov( L bt.i (P I ) , Yi,t - k) + Cov ( L b2j(p2) , Yi ,t-d · 
.i= l j = l 

14 



Consider only the first term of the equation, 

PtCov(Yi,t- 1, Yi,t-k) 

P1 CJ; ,t- t ,t- k . 

Similarly, we can show that: 

= P2CJi,t.- 2,t-k · 

Therefore, we have: 

(2.8) 

We can use this formula to calculate the covariances for some specific cases. 

For t = 2, by using the properties of AR( 1) Poisson process, we have 

15 



Fort = 3, 

Fort= 4, 

By summarizing lots of the specific covarianccs, We have found a general formula for 

covariance of Yit and Yi ,t- k for all t = 2, ... , T and k = 1, 2, ... , T- 1 to be 

t-k 

Cov(Yit, Yi,t-k) = a;k L Pt Pr
1 

f.Li ,t-j+l -A: + ai,k- 1P2/.Li, t- k, 
j = l 

where a;0 = 0, a;1 = 1, a;k = p1a; ,k- 1 + p2ai,k- 2, fork = 2, 3, .. . , T - 1. 

2.2 .1.4 The Corre lation 

(2.9) 

Once we found out the covariance between Yit and Yi ,t-k, the lag k correlation 

between Yit and Yi ,t- k will simply be 

Corr (Yit, Yi ,t- k) 

" t- k ,J- 1 
a;~.; L....i = l P1P2 ~ti ,t-]+ 1 -k + a;~.: -1P2 /.Li ,t-k 

J var(Yit )var(Yi,t-k ) 
" t-k j- 1 

a;~.; L...j = l P1P2 f.Li ,t- J+ l -k + aik- 1P2/.Li,t- k 

J /.Lit f.Li,t- 1.: 
(2.10) 
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We again consider some specific cases such as lag 1 and lag 2 correlations. These 

correlation formulas will be needed in the estimation section . 

t ·-1 

C ·('-/' '\/' ) - L j=l Pl~ /-li ,t+ l -j 
on 1 ·it., 1 i,t+ 1 - --'~-;::=====--­J /-lit/-li,t+ 1 

~~ j-1 

C 
. ('-/' ,/' ) _ P1 L-.i= t P1fJ2 /1-i,t+l -:i + P 2/-lit 

01T 1 ii, 1 i,t+2- . .J !-lit/-li ,t+ 1 

ate t hat when p2 = 0, the lag k covariance and correlation will reduce to 

(2.11) 

(2.12) 

which is the same for AR(1) based count data model considered by Sutra.clhar (2010, 

eqns, (15)-(16), p.178) . Thus, this model is an extension to the AR(1) based count 

data model. 

2.2.2 Estimation of Parameters of the Lag 2 Fixed Binary 

Sum Infectious Disease Model 

2.2.2.1 GQL Estimation of (3 

Following Sutradhar (2011, s c.6.4.2), let J-li = (Mi t,P,i2 , · · · , /Jit , · · · , J-l ;T)' be t he 

T x 1 dimensional mean vector of Yi = (Y'il, Yi2, · · · , Yit , · · · , YiT )'. If we assume Pt , 

and p2 are known, a consistent and efficient estimate of (3 can be obtained by solving 

17 



the so-called generalized quasi-likelihood (GQL) estimating equation 

f( 0 I 

"\:""' 1-Li - 1 ~ 8(3 I.:; (p)(:IJi - J.L;) = 0 
i= l 

(2.13) 

as the t rue correlation structure 

1 Pit2 P it:3 PilT 

1 P i23 Pi2T 

Ci(P) = 

1 P·i,t- l ,T 

1 

with Pi,t- k,t = Corr(Yi ,t.- k, Y;t) for t = 2, ... , T and k = 1, ... , T - 1. It is clear 

that E [2:::::: 1 ~I.:i 1 (p) (:y;- J.L;)J = 0, hence the GQL estimate will be a consistent 

estimate. This GQL estimating equation (2.13) can be solved iteratively by using the 

Newton Raphson iterative equation 

where ~(r-) is the value of (3 at rth iteration. 

2.2.2.2 MM Estimation of p1 and P2 

The GQL estimating equation (2.13) may be solved for (3 when the correlation 

structure is known. T hus, we need to estimate the parameters P 1 and P 2 in order to 
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obtain a good stimate for [3. These two parameters can be consistently estimated 

by using the method of moments. Let Sil.t, Sit.,t+l, and Sit,t.+2 be the standardized 

sample variance, the standardized lag 1 sample autocovariance and the standardized 

lag 2 sample autocovariance, respectively, defined as 

Silt. 

Sit,t+2 

E[Sitt] 1 
1\" T - ! 

L L CoTT(Yit , Yi,t.+J)/ K (T- 1) 
; = ] t=l 

/\" T - 2 

E[Sit,t+2] L L CoTr(Yit, Yi,t+2) / K (T - 2). 
i = l t=l 

Using first order approximation of the expectation of t he ratio of two sample variance, 

we will have moment equations 

Sit,t+l = E [ Sit,t.+t] ;:::j E[S;t,t+d = E[S· ] 
S S E[s•"tt] tt,t+! 

;u itt. • 

Sit,t+2 _ E [Sit,t.+2 ] ,....., E [Sit,t.+2] _ E [S ] 
-- - -- ,..._, - -i 'it t+2 . 

Siu Silt E[Sitt] ,. 
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Then, one may obtain the estirnates for p1 and p2 by solving the marginal moment 

equations 

Sit,t,+l E[S ] - 0 --- i tt+ l -
Sitt, ' 

(2. 15) 

Sit ,t+2 [ ] -
5
-- - E S it,t+2 = 0 

i tt 

(2.16) 

Due to the nonlinearity of the estimating equations (2.15) and (2.16), the solutions 

can be obtained by using Newton's iteration method. 

(2.17) 

(2.18) 

where P l (r) and /52(r) are the values of p1 and p2 at rth iterat ion respectively. 

2.2.3 Forecasting Performance 

Once all parameters of the model (2. 1) have been estimated , we can carry out a 

one-step forecast for t he purpose of planning and control. From model (2.1), it is 

clear that the conditional mean of Yi1 given Yi ,t-l and Yi,t-2 will have the formula 

(2.19) 

20 



Next, if we define an l-step ahead forecasting function of Yi ,t+l as Yit(l) = Yi,t+l 

E(Yi ,t+t iYi,t+l- l , Yi,t+L-2), then, from (2.17) , the one step ahead forecasting function is 

given by 

Yit(1) E(Yi ,t+1 1Yit , Yi ,t.- 1) 

fLi ,t.+l + Pl(Yit- fLit ) + P2(Yi,t.- l - f./, i,t-1), (2 .20) 

with Yit(O) = Yit· Once we have a one step ahead forecast , we can calculate the 

forecast error e.iL ( 1) by using 

eit.(1) Yi ,t+l - Y;,.(1) 

(Yi,t+ l- fLi ,t+d- Pl(Yit- fLit)- P2(Yi,t-l - f./,i,t- J). (2.21) 

From the above equation, we noticed that the conditional mean 

and the mean of ei1• ( 1) is 
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The conditional variance of e;1(1) lyil. , Yi,t-1 is given by 

V ar(Yi,t+l iYiL, Yi,t- d 

Then, the variance of C;t (1) follows the formula 

VaT (Cit ( 1)) 

2 2 
/-Li,t+l - P1 /-Lit - P2fJ·i,t- l · (2.22) 

2.2.4 Simulation Study 

In this section, we perform a simulation study. We consider the case of K = 

100 communities and T = 5 t ime points. We will use fit, t = 1, 2, 3, 4 for the 

purpose of estimation and try to forecast the number of infections at t = 5 in each 

comrnuni ty. First, we consider a t irr1e independent covariate vector x:t = (x;n, X; t2 ) 

for the stationary case, where X;n and x;12 are generated as follows: 

Xitl = 
- 0.5 , t = 1, 2, 3, 4, 5; i = 1, 2, ... ,if 

(2.23) 

0.5, t = 1, 2, 3 , 4, 5; i = if+ 1, 2, ... , ]{ 
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and 

0, t = 1, 2, 3, 4,5;i = 1,2, .. . ,if 
(2.24) 

1, t = 1, 2, 3,4,5;i =if+ 1, .. . , K. 

Then we consider a time dependent covariate vector x~L = (xitl, xit2) for studying the 

nonstationary case, where X-in and Xit2 are generated as follows : 

and 

- 1, 

1, 

;:z;iLl = 0, 

0.5, 

1, 

- 1, 

Xit.2 = 0, 

0.5, 

0.5+(L- 1)0.5 
T 

t = 1, 2; i = 1, 2, ... ,if 

t = 3, 4, 5; i = 1, 2, ... ,if 

t = 1; 'i = if+ 1, ... , J( 

t = 2, 3; i = if+ 1, ... , J( 

t = 4, 5; i = if + 1, ... , J( 

t = 1, 2, 3, 4 , 5 ; i = 1, 2, .. . , ~ 

- 1· . - /( 1 31( t - 'z - 4 + ' ... , 4 

. [( 3I< t = 2.3; z = 4 + 1, ... , 4 

4 5. . [( 1 3[( 
t = ' ' z = 4 + ' ... , 4 

. 3 [( t = 1,2,3,4, 5;z = 4 + 1, ... ,K. 

(2.25) 

(2.26) 

Even though we have only two covariates in simulation, however, in practical cases, 

these covariates can represent more factors. These covariates can be t ime independent 
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factors , such as geographic locations and policy restrictions, or, they can also be time 

dependent factors, such as economic situations and age. From the assumptions, we 

know that 0 < p < min ( l:!:i1. J.L;,-pzJ.Li ,t -
2 1) j "or t > 3. Since P· is the lag 2 

- I - J.Lil' J.Li ,t- 1 ' ' - 2 

correlation, we can naturally assume that p2 < p1 . So, we choose a small P2, then 

compute t he upper bond p* = min ( l:!:i1. ,,.;,-p2 1~ i . t-z 1). Then we use this p2 and 
) JLi l ) JLi,l-1 ) ) 

P1 = p;- 0.1 or p1 = p~- 0.2 as the true values of P1 and P2 for the simulation. Using 

suitable initial values of /3, p1 and p2 , we solve the marginal estimating equation for 

/3 by using Newton Raphson algorithm. Then by using the initial valu s of p1 & p2 

and the estimate of /3 obtained from previous step, we obtain estimates for p1 & P2 

by using moment estimating equat ions. We use estimated p1 ,p2 to estimate /3 again , 

then use this new (3 and repeat the above steps to get the improved estimates of 

p1 and p2 . This itera tive step continues until convergence. The table below shows 

estimated /3 and p 1 , p2 from 1000 simulations. 

Table 2.1: Stationary Model Parameters Estimation Results. 

Parameter Estimation 
(3 PI P2 {3 SE8 P1 SEPI P2 SEP2 

(0.5, 1.0) 0.40 0.10 (0.508 , 0.994) (0.224, 0.123) 0.388 0.060 0.106 0.059 
(1.0, 1.0) 0.40 0.10 (1.000 , 1.000) (0. 260, 0.136) 0.388 0.060 0.102 0.057 
(0.5, 1.0) 0.35 0.20 (0.517, 0.992) (0.224, 0.128) 0.345 0.055 0.178 0.064 
(1.0, 1.0) 0.35 0.20 (1.018 , 0.990) (0.257, 0.138) 0.350 0.057 0.176 0.064 
(0.5, 1.0) 0.60 0.20 (0 .522, 0.987) (0.283, 0.155) 0.571 0.057 0.177 0.070 
(1.0, 1.0) 0.60 0.20 (1.052 , 0.974) (0.304, 0.162) 0.575 0.059 0.170 0.067 
(0.5 , 1.0) 0.75 0.20 (0.524 , 0.991) (0.320, 0.178) 0.705 0.051 0. 163 0.040 
(1.0, 1.0) 0.75 0.20 (1.037, 0.982) (0.351, 0.187) 0.707 0.066 0.159 0.066 
(0.5 , 1.0) 0.60 0.30 (0.510,0.992) (0.287, 0.161 ) 0.572 0.056 0.248 0.066 
(1.0, 1.0) 0.60 0.30 (1.038, 0.980) (0.330, 0.175) 0.571 0.057 0.247 0.067 
(0.5, 1.0) 0.45 0.40 (0 .517, 0.990) (0.268, 0.146) 0.453 0.047 0.328 0.054 
(1.0, 1.0) 0.45 0.40 (1.037, 0.981) (0.307, 0.163) 0.430 0.059 0.349 0.064 

24 



Table 2.2: onstationary Model P arameters Estimation Results. 

Parameter Estimation 
/3 PI P2 s SEfi P1 SEPI P2 SEP2 

(0.5, 1.0) 0.40 0. 10 (0.500, 0.997) (0.070, 0.131) 0.393 0.074 0.128 0.080 
(1.0,1.0) 0.40 0.10 (1.003, 0.995) (0.070, 0.123) 0.393 0.084 0.145 0.091 
(0.5, 1.0) 0.35 0.20 (0.502, 0.996) (0.072, 0.135) 0.362 0.073 0.174 0.084 
(1.0,1.0) 0.35 0.20 (1.002, 0.992) (0.073, 0.128) 0.366 0.075 0.175 0.093 
(0.5 , 1.0) 0.60 0.20 (0.497, 1.000) (0.069, 0.131) 0.587 0.078 0.197 0.104 
(1.0,1.0) 0.60 0.20 (1.002, 0.995) (0.067, 0.119) 0.586 0.081 0.210 0.119 
(0.5 , 1.0) 0.75 0.20 (0.500, 0.994) (0.064, 0.124) 0.725 0.072 0.189 0.102 
(1.0,1.0) 0.75 0.20 (1.002, 0.996) (0.067, 0.117) 0.723 0.078 0.209 0.129 
(0.5, 1.0) 0.60 0.30 (0.495, 1.004) (0.070, 0.140) 0.593 0.075 0.264 0.107 
(1.0,1.0) 0.60 0.30 (1.002, 0.994) (0.071, 0.125) 0.596 0.082 0.266 0.120 
(0.5, 1.0) 0.45 0.40 (0.498, 0.998) (0.071, 0.142) 0.473 0.067 0.307 0.091 
(1.0, 1.0) 0.45 0.40 (0 .996, 1.003) (0.072, 0.131) 0.475 0.076 0.288 0.105 

From Table 2. 1 and Table 2.2 , we can see that the estimates for f3 are very close 

to the true value of f3 irrespective of the combinations of parameters. However, for 

some combinations of p1 and p2 , the estimates for p1 and p2 may not be as accurate 

as the others, for instance, under stationary case, when true p2 = 0.20, according to 

the rho1 restriction from our model assumption, rho1 should be less the 1 - p2 = 0.8. 

If the true combination is PI = 0.75 and PI = 0.20 , the estimates are less close to 

the true values compare to other combinations. Similar result happens when true 

p1 = 0.45 or 0.55, p2 = 0.40. The upper boundary fo r p2 is 0.5 because we have 

assumed that p1 2: p2 . These estimates arc less close to the true values than others 

because p1 or p2 are close to its boundary. 

For the purpose of examining the forecast performance of the model (2.1) in fore-

casting the future infections, we use the parameter estimates obtained by using only 

the first four observations, }i1 , }i2 , }i3 and }i4 fori = 1, 2, ... , 100 and the forecasting 
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function in Section 2.2.3 to compute a one-step ahead forecast of the fifth observation. 

The sum of squares of the forecast error as well as t he variance of the forecast error 

for t hese 100 communities were calculated for each simulation run. We denote the 

average sum of squares of t he forecast errors and the average variance of t he forecast 

error by ASS and AV respectively. T he results.summarized from 1000 simulations, 

are reported in Table 2.3 and Table 2.4. 

Table 2.3: Stationary Model Forecasting Error . 

(3 P1 P2 ASS AV 
(0.5, 1.0) 0.40 0.10 1.658 1.743 
(1.0, 1.0) 0.40 0.10 2.153 2.122 

(0.5, 1.0) 0.35 0.20 1.802 1.798 
(1.0, 1.0) 0.35 0.20 2. 159 2.134 

(0.5, 1.0) 0.60 0.20 1.298 1.353 
(1.0, 1.0) 0.60 0.20 1.561 1.605 

(0.5, 1.0) 0.75 0.20 0.872 1.007 
(1.0, 1.0) 0.75 0.20 1.036 1.189 

(0.5, 1.0) 0.60 0.30 1.190 1.288 
(1.0, 1.0) 0.60 0.30 1.431 1.543 

(0.5, 1.0) 0.45 0.40 1.381 1.456 
(1.0, 1.0) 0.45 0.40 1.658 1.743 
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Table 2.4: Nonstationary Model Forecasting Error. 

(3 P1 P2 ASS AV 
(0.5 , 1.0) 0.40 0.10 2.726 2.654 
(1.0, 1.0) 0.40 0.10 4.539 4.360 
(0.5, 1.0) 0.35 0.20 2.775 2.695 
(1.0, 1.0) 0.35 0.20 4.623 4.422 
(0.5, 1.0) 0.60 0.20 2.103 2.047 
(1.0, 1.0) 0.60 0.20 3.477 3.368 

(0.5, 1.0) 0.75 0.20 1.490 1.534 
(1.0, 1.0) 0.75 0.20 2.518 2.513 

(0.5, 1.0) 0.60 0.30 1.993 1.971 
(1.0, 1.0) 0.60 0.30 3.329 3.326 
(0.5 , 1.0) 0.45 0.40 2.329 2.298 
(1.0, 1.0) 0.45 0.40 3.906 3.831 

From Table (2.3) and Table (2.4) , we see that the value of average sum of squares 

and the average variance of t he forecast errors are very close to each other for all 

different combinations of parameters. This indicates that the average sum of squares 

of the forecast errors can closely estimate the average variance of the forecast errors 

and a satisfactory performance of the estimation of the parameters of the model. It 

could also be seen that the average variance and sum of squares of forecast errors for 

the nonstationary model are generally larger than the stationary case which means 

we have more accurate estimates for the parameters in stationary case. This makes 

sense because in stationary case, the covariates does not change with respect to time 

t . Hence less variation was introduced into the modelling. Note that for (3 = (0.5, 1), 

the average variance of forecasting error is smaller than that of (3 = ( 1, 1). This is 

because the mean function contains (3 and the forecasting variance is a function of 

means. In our particular setup, (3 = (0.5, 1) will lead to a smaller sum of means than 
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(3 = (1, 1) . For example, in stationary case, we have x~,t+l = x~t = x; ,~,_ 1 = x~ and 

f.Li,t+l = f.L;t = f.Li ,t- l = ~ti· If we let ~tio, f.L·ib and represent t he means when (3 = (0 .5, 1) 

and (3 = (1, 1) respectively. Var(eia(1) ) and Var(eib) are defined by (2.22) using Jl.ia 

and f.Lib respectively. We also let AVa and AVb be the average variance of forecast 

errors when (3 = (0.5, 1) and (3 = (1, 1) respectively, Then 

Considering the stationary covariate structure as (2 .21) and (2.22), we find out that 

0, and we know that p~ :S p1 and p~ :S p2 since our p1 and p2 are numbers within 

interval 0 to 1. So 1 - PI - p~ 2: 0. Therefore, 

Therefore, under stationary case, we expect to see that the average variance of fore-

casting error is smaller when (3 = (0.5, 1) than when (3 = (1, 1), regardless the combi-

nation of p1 and p2 . This situation still holds for nonstationary case in our particular 

setup. 
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Figure 2.1: A plot of (a) values of stationary mean fort = 1 (solid line), t = 2 (dashed 
line), t = 3 (dotted line), t = 4 (dotted dashed line); (b) values of stationary variance for 
t = 1 (solid line), t = 2 (dashed line), t = 3 (clotted line), t = 4 (dotted dashed line); (c) 
values of stationary lag 1 correlation for t= 1 (solid line), t = 2 (dashed line), t = 3 (clotted 
line); (d) values of stationary lag 2 correlation for t= 1 (solid line), t = 2 (dashed line); (e) 
Average forecast overla id on average of longitudinal data; and (f ) proportion of absolute 
values of forecast error that are 0 or 1 (solid line) and > 1 (clotted line); by communities 
obtained from 1000 simulations with p1 = 0.35, P2=0.20, ;3=(1,1), stationary covariates 
(2.23)-(2.24) 
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Figure 2.2: A plot of (a) values of nonstationary mean fort = 1 (solid line), t = 2 (clashed 
line), t = 3 (clotted line), t = 4 (clotted clashed line); (b) values of nonstationary variance 
fort = 1 (solid line) , t = 2 (clashed line), t = 3 (clotted line), t = 4 (clotted clashed line); 
(c) values of nonstationary lag 1 correlation for t = 1 (solid line), t = 2 (clashed line), 
t = 3 (clotted line); (d ) values of nonstationa.ry lag 2 correlation for t = 1 (solid line), 
t = 2 (clashed line); (e) A vera.ge forecast overlaid on average of longi t uclina.l data.; and (f) 
proportion of absolute values of forecast error that are 0 or 1 (solid line) and > 1 (dotted 
line); by communi t ies obtained from 1000 simulations with p1 = 0.35, P2=0.20, ,8= (1,1), 
nonsta.tiona.ry cova.ri a.tes (2.25)- (2.26) 

Figure 2.1(a) ,(b),(c) and (d) show the stationary patterns in the rnean f..Lit, variance 

O"i u , lag 1 correlation Pi,L- J ,L, and lag 2 correlation P i, t - 2,1. In Figure 2.1 (e), we have 

overlaid a graph of the average of the forecast in 1000 simula tions over a scatterplot of 

the average of the observations Y·i5 . The plot shows that the average forecast follows 
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the general pattern of the infections at the fifth t ime point . In order to assess the 

accuracy of out forecasts , we have also displayed a graph showing the average of the 

proportions of the forecast error e;t with absolute deviations 0 ,1 and greater than 

1. Figure 2.1(f) shows that the deviations of magnitude 0 and 1 appear to be over 

90% for the first 50 communities and around 60% for the remaining 50 communit ies. 

The devia tions of magnitude for 0 & 1 is about 60% for the last 50 communities 

is caused by the large variation in the number of infections for these communities 

as seen in Figure 2. 1 (e) . For the purpose of comparing the difference between the 

stationary case and nonstationary case, we constructed similar plots in Figure 2.2 for 

a nonstationary case obtained from covariates generated by using (2.25) and (2.26). 

2.3 Lag 2 Mixed Binary Sum Infectious Disease 

Mixed Model 

In Section 2.2 we have discussed the model under the assumption that there is 

no community effect . In this section, we will discuss the model with an unobservable 

community effect. Suppose t ha t for the ·ith community, there exists a community 

effect li and li ~ N(O, (J
2). Conditional on this ith community effect / i , a dynamic 
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mixed model for t he number of infections at t ime t can be written as 

Yi1l1i Poi(~t.;1 ) , wheTe /-<l = e'"; li3+r; 
y i l 

Yi2l ,; L blj(PI)I,; + di21ri 
j = l 

Yi ,t.- 1 Y i ,t - 2 

Yitl1; L blj(pi)I, , + L b2j(nt, P2)11 i + ditl1i, foT t = 3, 4, ... , T , (2.27) 
j=l j=l 

where b1j"" Bin(p1 ), b2j"" Bin(p2 ), with the following assumptions: 

(2) d Po,;( u* p n * p n * ) l1er·e * - ex'.J3+r; it rv " l""it - l 1./-Li ,/.- l - 2 t/-Li,t-2 · W f-Lit - ' ' 

(3) Yi,t-II,,& dii lri are independent fort= 2, 3, .. . , T . 

(4) Yi,t- 2l1i& dit.lri are independent fort = 3, 4, ... , T. 

''~1 • For the 
'' i2 

model to be well-defined, we require that J-L;2 - Ptf-Li1 2 0, yielding PI :S !!:fl,,: . Similarly, 
' tl 

the condit ion f-Lit - PI/.l'i ,t- L - P2/-Li,t-2 2 0 leads to p1 :S ''i'-::':'·'-
2

. Therefore, the 

range of P1 is 

0 < . ( f-Li2 f-Lit - P2f-Li,t- 2 1) j ' > 3 :S PI _ m,zn * , * , , OT t _ . 
f-l·il f-Li,t- I 

In the stationary case, J-Li1 
J-Li, and the range of P1 can be 

simplified to 

0 :S P1 :S ( 1 - P2). 
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2.3.1 Basic Properties of the Proposed Mixed Model 

2.3.1.1 Conditional Properties 

This model is a generalization of model (2.1 ) . Conditional on li, the model become 

exactly the same as model (2.1) with a different mean parameter f-i;t = exp(x~1 /3 + !; ). 

Therefore, all the condi tional properties are the same as the properties in Section 

2.3.1. That is 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

where aw = 0, a;1 = 1, a ·ik = p1a .i,k - l + p2ai,k- 2 , for k = 2, 3, ... , T - 1. 

2.3.1.2 Unconditional P roperties 

In order to proceed to the estimation and the forecasting, we need to find the 

unconditional propert ies of t he mixed model. By using t he assumpt ion that /; ~ 

N(O, 0"2 ) , we can use moment generating funct ion or direct integration to easily find 

out that 

(2.32) 
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Then, we can find out the unconditional proper ties by taking expectation over 'Y.i · 

The unconditional mean of 1~t is 

E[Yit.] E,,E[Yitl,i] 

E[fL7tJ 

E[exp(x;t,e + /'i)] 

exp( .'E~t,B) E ( e 'Yi) 

exp(x:t,B)exp(o-2 / 2) 

e:r;p(x~t,B + o-2 / 2) 

J.lil . . 

The variance of Yi1. can be calculated in a similar way by conditioning on /'i 

E,i VaT(Yiti ,J + V aT1;E(Yiti ,J 

E[JJ·7tl + V adfL7tl 

exp(x;,t,e + o-2 / 2) + E[(f.l7t )2
] - (E[J.L7t]) 2 

fLit + exp(2x~t,B)E(exp(2!'i ) ) + f-l ;t 

J.Lit + e.r;p(2x~1.,B + 2o-2
) + ~L;t 

!Lit + f-l;t ( e.r;p( o-2
) - 1). 

34 

(2.33) 

(2.34) 



We note that as opposed to t he fixed model (2. 1), t he uncondit ional mean and variance 

of t he responses are not the same. The unconditional covariance will be 

t- k 
~ j - 1 

aik ~ P1P2 /J>i,t-j+t-k + ai ,k- 1P2/1i,t.- k 
j=l 

+E(p,.~t ~J-7, t-k) - E(Jt.~t )E(~J-7,t-k) 
t-k 

aik L Pl Pr 
1 
P,i,t - j+l - k + ai ,k- 1P2/J>i,i- k 

j = l 

+ E[ e<J3 eX:.t.-kf3 e2"~i ] - J1it /J>i,t-k 

t- k 

aik L P1Pr
1 

/J>i ,t-J+l-k + ai ,k-lP2/J>i,t- k + !1ii /J>i ,t-k (exp(a
2

) - 1) 
j=l 

(2.35) 

Finally, the lag k correlation is 

aik: I:~:~ P1 P~- 1 
V i,t-]+1 - k: + a i,k- JP2/J>·i,i-k + IJ-it.P,i,t- k (ea

2

- 1) 

(JLii + f1·7t ( ea
2 

- 1)) (Jl·i ,t-k + ~J-7,t-k ( ea
2 

- 1)) 

(2.36) 

where aio = 0, a i 1 = 1, aik = p l ai,k:- l + p2ai,k- 2, for k= 2, 3, ... , T- 1. 

2.3.2 Estimation of Parameters 

The dynamic mixed model (2.23) contains four unknown parameters, {3, P1 , P2 and 

a 2 . (3 is a regression parameters involved in the mean function of Yit which measures 

35 



the effect of the covaria tcs, so we can usc first order responses to estimate (3. However , 

p1 , p2 and a 2 arc involved in the variance and lag k autocovariance, we need to use all 

second order response to estimate t hose parameters. Sutradhar (2003, Section 3) and 

Sut radhar (2004) show t hat for correlated responses, one may use GQL to estimate 

(3 and a 2 and 1M to estimate the correlation parameter. 

2.3.2.1 Estimation of (3 

For t he present mixed model wi th the uncondit ional mean vector /J-i = ( tJ-i i , P,;2, · · · . 

/J-it, · · · , {Li7·)' and covariance matrix I:i, respectively, following Sutradhar (2011 , sec.6.4.2) , 

for fixed a 2 , the marginal GQL estimating equation for (3 , is given by 

as the true correlation structure 

Ci(P) = 

1 Pm P il 3 Pi iT 

1 Pi23 Pi2T 

1 Pi.t- l,T 

1 

(2.37) 

with Pi.I.- A:,t = Cor-T(Y.; ,t-k, Y.;t) for t = 2, ... , T and k = 1, ... , T - 1. T his GQL 

estimating equation (2.37) can be solved iteratively by using t he Newton Ra.phson 
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algorithm 

(2 .38) 

where f3('r) is the value of (3 at rth iteration. 

2.3.2.2 Estimation of p1 and P2 

Similar to that of Section 2.2.2.2, let Sitt, Sitt+t , and S i.tt+2 be the standardized 

sample variance, the standardized lag 1 sample autocovariance and the standardized 

lag 2 sample autocovariance, respectively, defined as 

S;t ,t+l 

Su ,t+2 

E[Sill] 1 
K T-1 

L L Con-(yit, Y.i,t+t)/ K(T - 1) 
i = l 1= 1 

K T - 2 

L L Corr(Yit , Yi,t+2)/ K (T - 2) . 
i= l t=l 
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Using first order approximation of the expectation of the ratio of two sample variance, 

we will have moment equations 

S;t,t+l = E [Sit,t+l] ~ E[SitJ+I] _ E[S ] 
S S E[s''

.Lt] - ·tt,t+l 
itt ·it.l. 

Then, one may obtain the estimates for p1 and p2 by solving the marginal moment 

equations 

S it ,t.+l _ E[S· ] _ 0 
S 

•tt,t+l -
i tt 

(2.39) 

S it,t+2 [ ] -
8
-- - E Sit. ,t+2 = 0 

il.t 
(2.40) 

Due to the nonlinearity of the estimating equations (2 .39) and (2 .40), the solut ions 

can be otained by using Newton iteration method. 

(2.41) 

A + [8E[Sit,t+2l] - l [Sit ,t+2 - E [S l] I 
P2(T) s !L,t+ 2 

P2 i tt PI =P t (r) ,pz=rJ2(r) 

(2.42) 

where Pl(T) and P2(T) are the values of p1 and /J2 at rth iteration respectively. 
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2.3.2.3 Esitmation of CJ
2 

Sutradhar(2011) , Section 4.2.6.2 has shown how the marginal GQL estimation can 

be done for CJ2 . Fort = 1, 2, ... , T and k = 1, 2, ... , T- 1, let 

be the vector of all second-order responses under the ith community, where 

T (T- 1) 
'IJ,i2 = (Y'i1Yi2 , . . . ' YikYiL, . .. 'Yi,L-lY.iT ), k < t : 2 X 1. 

Furthermore, let 

where 

(2.43) 

A;_ik (2.44) 

Also , Let 
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In a similar fashion, the marginal GQL estimation equation for e5
2 is: 

(2.45) 

where the elements of the vector ~~~ are given by: 

Clearly, computing the matrix D; will require exact second order, third order an d 

fourth order joint moments of Yi t· However, computing third order and fourth order 

joint moments will require further distributional assumpt ions, which may not be 

practical. Now, since D; will not affect the consistent estimation of e5
2

, we shall use 

the assumpt ion of conditional independence (p = 0) to obtain a 'working' D;. To begin 

the computation of the components of D;, we use the assumption that ri r-v N(O, e5
2

) , 

Oyet & Sutradhar (2011) have shown t hat by taking expectation over r·i and using 

(2.28), we will have 

By Mckenzie (1988), for a Poisson AR(l) model, if Xt-l is Poisson (e), t hen, by using 

alternate probability generating function (a. p.g.f), it is easy to verify that a* X t - 1 

is Poisson( ae), where " * " denote a binomial thinning operation , that is: a * X = 

L~=l Bk(a), where Bk(a ) is a sequence of independent identically distributed binary 
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random variables with P[B(o:) = 1] = a = 1 - P [B(o:) = 0]. In our case, we 

know that Yi1I 'Yi ,......, Poi (J.Lid· Given this community effect /i, individuals within 

the ith community at t ime point 1 are independent and will cause a new infection 

Poisson distribution, 

Y;J 

Yi21 ')'i = L bl j (Pt) ll'i + ddl'i rv Poi(Pi f.L:t + ~L:2 - Ptf.L:l ) = P oi(J.L:2). 
j=l 

Under t he 'working' condit ional independence (p = O)case, Yi1ll'i' Yi2 ll'i' .. . , Yitll'i are 

p2J.L;1), in addit ion, all of them are conditional independent , then 

Y;2 Y;1 

L blj(Pt) I'Yi ,......, Poi(pJ~L;2 ) , L b2j(pz )ll'i,......, Poi(p2J.L;1) and Yi31')';,p=O,......, Poi(f.L.~3 ) . 
j=l .i=l 

By using t he mathematical induction , we can conclude that 

(2.46) 
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For Yiti 'Y; ,p=O "' Poi(!-l;,t ) , the raw moments can be calculated by using the moment 

generating function e.xp[f-1;t ( e" :' - 1) ]. \ li,Te have 

E(Yitb.; , p = 0) 

E(r:zl,i, p = o) 

E(l~~hi, p = 0) 

E(r:i l/i, p = 0) 

* 1-Lit 

* * 2 
/-lit + 1-l.;t 

* 3 .2 .3 
Jl•it + !-lit + !-lit 

After we find out the condit ional distribution and its moments, the elements in Di 

can be easily computed. By Oyet & Sutradhar (2011), eqn . 4.13 (see also Sutradhar 

& Bari (2007) ), these conditional moments can be calculated as 

E(r:z iP = 0) 

E (Y,:."Y,:,,jp = 0) 

E(Y;1 iP = 0) 

2 . ( 2) /-lit + f-1i1e.xp a 
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The conditional moments have been used for computing the elements of Di· For 

instance, 

E[~ZYiuYis iP = 0] - E[~z]E[YiuYisiP = 0] 

E[l';,rYiuiP = 0] - E[1~ZJE[YitYiu iP =OJ 

E[1~~YitYis iP = 0] - E [Yit.Yiu]E[YiuYis iP = 0]. 

The solution of the estimating equation takes the form (2.39) . Its solution can be 

obtained by using Gauss-Newton iterative equat ion : 

(2.48) 

2.3.3 Simulation Study 

In this section, we consider the nonstationary covariates (2.25) and (2.26) . I3y 

choosing suitable initial values of /3 , 0"
2 

, p1 and p2 , we numerically solve t he marginal 

estimating equation for f3 by using Newton Raphson algorithm. Next , using estimates 

of f3 from previous step and ini tial 0"2 , we obtain estimates for p1 & P 2 by using moment 

estimat ing equations. Then, using the estimates of p1 & p2 and the estimate of /3 

obtained from previous steps, we solve the marginal estimating equation for 0"
2 by 

using t he Newton Raphson iterative procedure. Vve then use t he estimates of P1 , 

p2 and 0"2 to estimate f3 again , then use this f3 and repeat the above st eps until 

convergence. 
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Table 2.5: Non-stationary (3 Estimation for fixed PI , P2 and rr2 

a 2 = 0.25 a 2 = 0.75 

PI = 0.40, P2 = 0. 15 , PI = 0.50, P2 = 0.20 PI = 0.40, P2 = 0.15 , PI = 0 .. 50, P2 = 0.20 

(0.0 , 1.0) SM (0.503,0.987) ' (0.501 ,0.998) (0.499, 1.003) ' (0.501 ,0.999) 
SSE (0.072,0.143) ' (0.069,0.137) (O.Oo3,0.136) , (0.062,0.130) 

( 1.0, 1.0) Sf\ I (0.998, 1.002) , (0.906, 1.006) (0.996, 1.004) , ( 1.00 I ,0.090) 
SSE (0.074,0.136) ' (0.074,0.128) (0.072,0.128) , (0.071 ,0.124) 

Table 2.6: Nonstationary PI and P2 Estimation for fixed (3 and rr2 

a 2 = 0.25 a 2 = 0.75 

{3 = (0.50, 1.0) ' {3 = (1.0, 1.0) {3 = (0.50, 1.0) ' {3 = ( 1.0, 1.0) 

PI = 0.40, P2 = 0.15 SM (0.4 11 ,0. 156) ' (0.434,0.180) (0.456,0. 173) , (0.507 ,0.21 ) 
SSE (0.108,0. 101) , (0.125,0.118} (0.177,0.124) , (0.186,0.152) 

PI = 0 .50, (J2 = 0.20 SM (0.488,0.190) ' (0.512,0.217} (0.509,0.204) ' (0.541,0.224) 
SSE (0.109,0. 109), (0.126,0. 129) (0.180,0.137) , (0.193,0.1 57) 

Table 2. 7: Non-stationary rr2 Estimation fo r fixed (3 , P1 and P2 

{3 = (0.50, 1.0) f3 = (1.0, 1.0} 

PI = 0.40, P2 = 0. 15 , PI = 0.50, P2 = 0.20 P I = 0.40, P2 = 0. 15 , P I = 0.50, P2 = 0.20 

a 2 = 0.25 SM 0.237 ' 0.244 0 .239 ' 0.242 
SSE 0.075 ' 0.062 0.079 ' 0.065 

a 2 = 0 .75 Sf\1 0.731 , 0.748 0. 739 ' 0. 730 
SSE 0.176 ' 0.202 0.204 ' 0.197 

44 



Table 2.5, Table 2.6 and Table 2.7 are obtained by estimating a single parameter 

wit h other parameters fixed . Table 2.5 and Table 2.7 suggest that the GQL approach 

works very well for estimating the covariate efl:'ect fJ and the var iance component in 

the latent community efl:'ect cr2 . However, Table 2.6 shows that the moment estimates 

of the correlation parameters p1 and p2 are less accurate especially when cr2 or fJ get 

larger . 

Table 2.8: Non-stationary Parameters Estimation 

fJ P I P2 a2 /3 SE/! fJ1 S£1; 1 ih SEP2 ·2 SEu2 a .., 

(0.5, 1.0) 0.40 0.15 0.25 (0.500,0.995) (0.072,0. 152) 0.427 0.123 0.227 0.107 0.248 0.096 

(0.5,1.0) 0.40 0.15 0.75 {0.494 ,0.995) (0.064,0. I 33) 0.479 0.1LJ8 0.239 0.11 1 0.732 0.102 

(0.5,1.0) 0.50 0.20 0.25 (0.499,0.997) (0.067,0.142) 0.496 0.120 0.240 0.105 0.246 0.096 

(0.5,1.0) 0.50 0.20 0.75 (0.495,0.990) (0.060,0.128) 0.506 0.140 0.242 0.111 0.728 0.098 

(1.0 , 1.0) 0.40 0.15 0.25 (0.993,0.993) (0.077 ,0. 135) 0.450 0.128 0.268 0.121 0.261 0.081 

( 1.0, 1.0) O.LIO 0.15 0.75 (0.982,0.986) (0.071,0. 125) 0.456 0.144 0.231 0.122 0.763 0.076 

(1.0, 1.0) 0.50 0.20 0.25 (0.995,0.!)87) (0.075,0. 131) 0.501 0. 124 0.271 0.114 0.261 0.082 

(1.0, 1.0) 0.50 0.20 0.75 (0.984 ,0.993) (0.07 1,0. 121) 0.484 0.138 0.239 0.126 0.762 0.071 

In Table 2.8, we report the estim(ttes of a ll parameters with their standard errors. 

These results follow the general conclusion that we have made from Table 2.5 , 2.6 and 

2.7. During the iteration process, p 1 and p2 could sometimes fall outside the range 

of restrictions especially when p1 and p2 are close to their lower or upper bound. In 

this case, new observations a re generated. T herefore, t he overall mean of (JJ and P2 

estimates from 1000 simulations will be affected by using only p 1 and P2 estimates 

that satisfy the condit ions, especially for p1 or p2 close to t he boundary. 
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Chapter 3 

Lag 2 Dynamic Binomial Sum 

Infectious Disease Model 

3.1 Preliminaries 

In Chapter 2, we have assumed that each infected individual can only infect none 

or one individual each time. However, the more common case is that the infected 

individual could infect up to more than one individuals at a time. In this chapter , we 

extend model (2.1) in order to consider this more practical ituation. Instead of using 

the binary sum, we use binomial sum in our model. For simplicity, we only discuss 

the binomial sum model without considering the community effect. Therefore, our 

mean function will depend on the covariate effects only. Similar to what we have done 

in Chapter 2, we will discuss the structures and assumptions of the model. Then, we 

will find some basic properties, such as the mean, variance, covariance and correlation 

for this model. Since the properties of a binomial distribution is different from that 

46 



of a binary dist ribut ion, we expect to have some slightly different propert ies. Finally, 

we will estimate the parameters and obtain forecasts to check the performance of the 

model. The main goal of this chapter again is to estimate the parameters involved 

in the model and forecast the number of infections in each community at t ime point 

t + 1. We use GQL approach to estimate the regression parameters. We est imate the 

longitudinal correlation parameters by using t he Method of Moments (MM). Once 

all parameters are properly estimated, we can check the forecast performance of this 

model. 

3.2 Lag 2 Binomial Sum Infectious Disease Model 

For modelling without community effect , we can assume that K independent com-

munities are at risk of an infectious disease. At initial time point , t = 1, we assume 

that Yi i individuals in the ith community have developed the disease where Yi i follows 

a Poisson distribution with mean parameter /-Lil = e.r;p (x~Ji3 ) . Because we assume an 

infected individual can affect up to more than one individual over two time intervals , 

and also because there may be other infected individuals arriving from ot her commu-

nit ies, we shall model the number of infected people in the ith community at time t 

as 

Y;, rv Poi(P,il) , w heTe /-Li l = ex;l f3 

Y ;.t 

Yi2 L b,j (nt , pJ) + d i2 

j = l 

Y; ,1 - 1 Y u - 2 

Yit L bl j (nt , P1) + L b2.i (n , , P2) + dit, j oT t = 3, 4 , ... , T, 
j = l .i= l 
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where b1 j "' B in(nt , p1 ) , b2.i "' B in(nt, P2)· Then, we make the following assumptions 

about model (3.1 ) 

(2) d;.t"' Poi(ILit - ntPl/-Li,t- 1 - ntP2~'· i, t-2 ) · 

(3) Yi,t-1& du are independent joT t = 2, 3, .. . , T. 

(4) Yi,t-2& d.,t ar·e independent joT t = 3, ... ,T. 

mean of the Poisson r .v.s Y;1 and di1• have to be positive, we need to have P1 ::; n't';:,1 

and p < 1'u-p2 n' 1'i,t - 2
• Therefore the range of p is 

I. - nu~i. ,t- 1 ' l 

For stationary case, if we let ~'·il = Vi2 = · · · = /-LiT = ~~,.,, then the range of P1 and P2 

will simplify to 

and 

Note that if we assume there is a community effect 'Yi present and 'Yi ~ N(O, a~) , 

then, conditional on this ith community effect 'Yi, we may construct our model in a 

similar structure as model (2.25). We are using a binomial sum instead of a binary 
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sum. A dynamic mixed model for t he number of infections at t ime t can then be 

wri tten as 

>.r I p . ( * ) } * x'. i iJ+!i 
I i l /i. oz 1-1·-i! , w ~ere f1 i l = e ' 

Y ; 1 

Yiz l, ; L blj (nt , PI) I,.; + di2l,.; 
.i= l 

Y i,t - 1 Y ;, t.- 2 

Yit l1 ; L bl.i(nt , pJ)I1 ; + L b2j(nt, P2)11 ; + cl.il.l1 ;, for t = 3, 4 , ... , T , (3.2) 
j= l j = l 

where b1.i ""' B in(nt, pi) , b2.i ""' Bin(n1, p2 ), with the following assumptions: 

(3) Yi,t- 111 ;& ditl,.; are independent for t = 2, 3, .. . , T . 

(4) Yi,t- 211;& dit l,., are independent for t = 3, 4, .. . , T . 

Similar to t he relationship between model (2. 1) and model (2.25), this mixed model 

(3.2) is an extension to model (3.1). All the condit ional properties should match 

with the propert ies of model (3.1). T he uncondit ional propert ies can then be fo und 

by taking expectat ions over 'Yi· We can use similar approaches as in Section 2.3 to 

est imate the parameters once all conditional and unconditional moments are obtained. 
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3.2.1 Moments of Lag 2 Binary Sum Infectious Disease Model 

3.2.1. 1 T he Mean 

Based on our previous discussion, we know that E [Yi1] = f1il & E[Y;2] = /1i2· 

Then, it follows that for t = 3, 4, .. . T, 

E[Y;,] E [~' bu(n,,pi) + Y~, b,3 (n,,p2 ) + du] 

E [~' b11 (n1, p1) ] + E [~' b,;(n,,p,)l + E[du[ 

EYi. t- IE [Yf' b,3(n,, pJ)I, ] + Ey.;,t_ 2 E [Yf ' b,; (n,,p, )l , ] + E[dit] 
J=l Y t,t - 1 J= l .h .t-2 

ntplE[Y;,~,_ I] + nt.P2E[Yi,t- 2] + /1it - Plnt/1i,t- l - P2ntf1i ,t- 2 (3.3) 

Next, we consider some specific cases: 

Fort = 3, 

/1i3 · 
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Fort = 4, 

~L·i4 · 

By mathematical induction, if we have E[Yi.,t-J ] = V i,t- 1 and E[Yi,t-2] = Mi,t-2, then: 

E[Y;t] 

e.Tp ( x~J3) . (3.4) 

So, E[Y;t.] = Mit = exp(x~J3), for all t = 1, 2, ... , T . 

3.2.1.2 The Variance 

The variance of this model can be derived by finding the condit ional and uncon-

ditional variances. By assumption (3), ( 4) and the property t hat covariance of two 

constants is zero, we have 

(

Yi,t - 1 I ) ( Yi, t- 2 I ) 
Co'u L b1 j, dit = 0 , Co'u L b2j, dil. = 0 

j= 1 Y ; ,t - 1 ,Y;,t - 2 j = l }/i,t - 1 Yu- 2 

and 
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Then 

+ /-Lit - ntPI J-L·i ,t - 1 - ntP2/-Li, t - 2 · (3.5) 

Letting cri,t - 1 ,t- l represent the variance of Yi,t-1, then 

(3.6) 
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Similarly, letting O"i,t- 2,t- 2 represent t he variance of Yi,t-2, we have 

EY;,1_ 2 [VaT(Yiti Yi,t-2)] + V a Tyi,t- z (E [YitiYi,t-2]) 

+ Mit- n t Pl!J-i ,t- 1 - ntP21J-i,t - 2 

From (3.7) , we can see that t he variance of Yit has a recursive relationship with the 

variance of Yi ,t- l and the variance of Yi,t- 2. It is difficult to find a closed expression 

for each individual variance. So we list some specific examples. We know from our 
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find that when t = 3, 

When t = 4, 

(3.9) 

3.2.1.3 The Covariance 

The lag k covariance between Yit and Yi ,t- k will also have a recursive relationship 

in terms of covariance between Yi ,t- l and Yi.t - k & Yi,t- 2 and Yi ,t.-k · By assumption 

54 



(3) and (4) , we have 

Considering only the first term of the equation, 

ntPt Cov(Yi ,t- 1, Yi,t.-k ) 

n tPt CJi ,t- 1 ,I.- A:· 

Similarly, we can show that: 

Therefore, we have: 

Cov(Y;~, , Y:; t- k) = n tPlCJ-i t - 1 t- k + n tp?CJi t - 2 t- k 
1 l ' - ' ' 

(3.10) 
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We can use this formula to obtain the covariances for some specific cases: 

Fort= 2, Oyet & Sutraclhar (2011) have shown that 

Fort = 3, 

Fort = 4, 
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3.2.1.4 The Correlation 

Once we have found the covariance between }'i1 and Yi ,t-1.: , the lag k correlation 

between Yi1• and Yi ,t-k will simply be 

Cov(Yit., Yi ,t-k) 

Jvar(Yi1)vaT(l'i,t- k) 

(3.11) 

Note that when n 1 = 1, t = 1, 2, . , , T , the lag k covariance and correlation will 

reduce to the covariance and correlation formulas (2.9) and (2.10) for t he binary sum 

infectious disease model considered in Chapter 2. Thus, t his model can be considered 

a generalization of t he binary sum infectious disease model. When p2 = 0, the lag k 

covariance and correlation will reduce to 

Cov(}'i, , Yi ,t.- k) = IT n,_L p~'CJi,t- k ,t-k 
(

k-l ) 

l=O 

and 

CJi ,t-k,t-k 
CJw 

which are the same expressions for lag 1 infectious disease model considered by Oyet 

& Sutradhar (2011 , eqns, (2.6) (2.7)) . Thus, this model is also an extension to the 

lag 1 infectious disease model. 
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3.2.2 Estimation of the Parameters of the Lag 2 Binary Sum 

Infectious Disease Model 

Similar to what we have done in Sect ion 2.2.2, we use GQL approach to estimate 

the covariate effects and use MM approach to estimate p1 and p2 . 

3.2.2.1 GQL Estimation of (3 

Following Sutradhar (2011 , sec.6.4.2), let f.L·i = (J.L·il,f.Li2, · · · ,f.L;t , · · · , J.L;r)' be the 

T x 1 dimensional mean vector of y; = (y;1 , Yi2, · · · , Yit , · · · , Y·iT )'. If we assume P1, 

and p2 are known, a consistent and efficient estimate of (3 can be obtained by solvi ng 

the so-called genera lized quasi-likelihood ( GQL) estimating equation 

as the t rue correlation structure 

C;(p) = 

1 Pi12 Pil:~ PilT 

1 Pm Pi2T 

1 Pi,t- l,T 

1 

(3.12) 

with Pi,t- k,t = Corr (Y; ,t- k, Yit) , for t = 2, ... , T and k = 1, ... , T - 1. This GQL 

est imating equation (3. 12) can be solved iteratively by using the Newton Raphson 
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algorithm 

where f3(,·) is th value of f3 at rth iteration. 

3.2.2.2 MM Estimation of p1 and P2 

The GQL estimating equation (3. 12) can be solved for f3 when the correlation 

structure is known. Thus, we need to estimate the parameters p1 and P2 in order to 

obtain a good estimate for {3 . These two parameters can be consistently estimated by 

using the method of moments. Let Sw, Sitt+I and SitH 2 be the standardized sample 

variance, t he standardized lag 1 sample autocovariance and the standardized lag 2 

sample autocovariance, respectively, defined as 

Sil ,t+t 

I< T-1 L L (Y·it: J.Lit ) ( Yi ,l+~ .- J.Li ,t+ l) I K (T- 1) 
·i=l t='l •t/ t,t+ 1 

I< T -2 

L L (Y.it ; J.Lit ) (Yi,t+:.- ~i, t+2 ) / K (T- 2), 
i= l t= I '1 t,t+-

si/.1+ 2 
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E[SiLL] 1 
K T-1 

L L CO'rr(y;t , Yi ,t+dl K(T- 1) 
i= l l= l 
K T-2 

L L Con(ya, Yi.t+2)/ K (T- 2) . 
i = l L= l 

Using firs t order approximation of the expectation of the ratio of two sample variance, 

we will have moment equations 

Sit,t+ l = E [Sit,t+ l] ~ E[Sit ,t+d _ E[S ] 
S S ~ E[S.·t·•] - !.1,1+1 

itt itt • L 

Then, one may obtain the estimates for p1 and p2 by solving the marginal moment 

equations 

S.it,t+l - E[S ] = 0 
S 'l,t,t+l. 

i tt 

(3.14) 

Sit,l+2 [ -- - E Sa,t+2] = 0. sil.t 
(3.15) 

Due to t he nonlineari ty of the estimating equations (3. 14) and (3.15), t he solutions 

can be obtained by using iteration m thod. However, the variances contains p1 and 

p2 . The practical derivatives with respect to p1 and p2 would be a li ttle complicated 

to find if we want to use Newton's iteration. Instead , we simply iterate to convergence 
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the following equations: 

[ 

KT-2 ]-I Sil,t+2 1 ( s.-) -, -.. L L Corr(y;t , Yi,t+2) / K (T - 2) I . . 
!.l.i P2(r) i= l t= 1 P l =Pl (r),P2=P2(r ) 

(3.17) 

where P t (1 ) and /32(,) are the values of p1 and p2 at rth iteration respectively. 

3.2.3 Forecasting Performance 

Once all parameters of the model (3. 1) are estimated , we can obtain a one-step 

forecast for the purpose of planning and controL From model (3.1), it is clear that 

the conditional mean of lit given li,t - l and li,t-2 has the formula 

(3.18) 

Next, if we define an l-step ahead forecasting function of Yi.t+t a..c; Yit(l) = Yi,t+l 

E(li ,t+tl Y.i,t.+l- 1, Yi ,t+t-2 ), then, from (3. 18), the one step ahead forecasting function 

is given by 

Y;t(1) E(li ,t+I IY;t, Yi,t.-1) 

(3.19) 
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with Yit(O) = Yit · Once we have a one-step ahead forecast, we can calculate the 

forecast error e;1• ( 1) by using 

e.it ( 1) Y;,t.+ 1 - Yit ( 1) 

(Yi ,t+1- /-l i,t+!) - nt+lP1(Yit- /-lit) - n t+ IP2(Y·i,t-1- /-li,t-1)· (3.20) 

From the above equation, we have 

and t he mean of eit ( 1) is 

E(e;t(1)) = E (E (eit (1)!Yit. Yi,t-1)) = 0. 

The conditional variance of e;1 ( 1) !Yit. Y·i,t- 1 is given by 

V ar(Yi.t.+11Yit., Yi ,t-d 

/-li, t+l - Pl'nt.+l /-lit - P2nt+t f-l i, t- l + Yitnt+ lPl (1- P1) 

+ Yi,t- tnt+1Pl(1 - P2)· 
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Then, the variance of eu(1) is 

Var( eiL( 1)) E (Var(eit( 1)1Yit, Yi,t- d ) + Var (E(eit(l)lya, Y·i,t-1 )) 

2 2 
f..Li ,t.+ 1 - nt+ 1 P 1 /-Lit - nt.+ 1 P2f..L i,t- 1 . (3.21) 

3.2.4 Simulation Study 

Similar to Section 2.2 .4, we conduct simulation studies with J( = 100 communities 

and T = 5 time intervals. vVe will estimate the model parameters based on the 

counts from t = 1, 2, 3, 4 t ime points and forecast the number of infect ions at t = 

5. T he covariate vector x~t = ( Xm , Xit2) and nonstationary covariate vector x~t = 

(xiil , Tit2) are t he same as in (2.21) & (2.22) and (2 .23) & (2.24), respectively. From 

the assumpt ions we know that 0 < p < min ( l:':.id {<;,, - p2 n,p.; ,, _ 2 1) for t > 3. 
' - 1 - Jl-i l ' n tJ .. Li, t.- 1 ' ' -

Vve again assume that p2 < p1 . So we choose a small p2 , then compute the upper 

bound p* = m.in ( l:':.!d 1-' i.t - p2
n t J.Li . t -

2 1) . Then, we use this P?. and P1 = p*1 - 0.1 or 
I l'i I ' 'llt/-Li.f.- 1 ' -

P1 = Pi - 0.2 as the true values of p1 and P 2 for the simulation. We selected the 

same ·n1. values as in Oyet & Sutradhar (2011) , that is, n' = (n1 , n2 , n3,n4,n5) 

(1 , 2, 2, 2, 2), (1, 2, 2, 3, 2) , (1, 2, 3, 4, 2), (1, 2, 2, 2, 3) ' (1, 2, 2, 3, 3) , (1, 2, 3, 4, 3). 

Using suitable ini t ial values of (J , p1 and p2 , we solve the marginal estimating 

equation for fJ by using Newton Raphson algorithm. Then, by using the initial values 

of p1 & p2 and the estimate of fJ obtained from previous step, we obtain estimates for 
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p1 & p2 by using moment estimating equations. 'vVe usc estimated p1, p2 to estimate 

/3 again, t hen use this new /3 and repeat the above steps until convergence. Table 

(3 .1) and Table (3.2) below report the estimated /3, p 1 and p2 from 1000 simulations. 

Table 3.1: Stationary Model Parameters Est imation Results . 

Parameter Estimation 
NL f3 Pl P2 {3 SEa p' l 8Ep·1 ti2 SEh 

N2- N3-N4-N5-2 (0.5, 1.0) 0.20 0.05 (0.518,0.990) (0.230,0. 126) 0.198 0.032 0.045 0.032 
N2=N3= N4=N5=2 ( 1.0, 1.0) 0.20 0.05 (1.03 1 ,0.984) (0.266,0 .139) 0. 197 0 033 0.048 0.035 
N2= 3=N4=N5=2 (0.5, 1.0) 0.15 0. 10 (0.505, 1.000) (0.223,0.12<1) 0.156 0.029 0.084 0.033 
N2=N3=N4=N5=2 (1.0, 1.0) 0.15 0.10 (1.02-1,0.988) (0.25~ ,0. 135) 0.157 0.031 0.085 0.033 

N2 = 2,N3 =N5 =3,N4 =4 (0.5, 1.0) 0.15 0.03 (0.526,0.983) (0.243,0.134) 0.147 0.023 0.028 0.020 
N2 = 2,N3 =N5 =3,N<l = 4 ( 1.0, 1.0) 0.15 0.03 (1.028,0.985) (0.265,0. 140) 0. 146 0.024 0.029 0.021 
N2 = 2,N3 =N5 = 3 ,N4 =4 (0.5, 1.0) 0. 10 0.05 (0.507 ,0.998) (0.217,0. 120) 0. 102 0.021 0.045 0.020 
N2 = 2,N3 = N5 =3,N<l = 4 ( 1.0, 1.0) 0.10 0.05 (1 020,0.990) (0.249,0. 133) 0.101 0.022 0.04<1 0.020 
N2 =N5 = 2,N3 =3,N4 = 4 (0.5, 1.0) 0.15 0.03 (0.506,0.995) (0.236,0.131) 0.148 0.024 0.030 0.021 
N2 =N5 =2,N3 =3,N4 =4 (1.0, 1.0) 0.15 0.03 ( 1.008,0.996) (0.266,0.142) 0.148 0.024 0.029 0.021 
N2 = N5 = 2,N3 =3,N~ = 4 (0.5, 1.0) 0.10 0.05 (0.511 ,0.993) (0.216,0.118) 0. 101 0.022 0.045 0.020 
N2 = N5 =2,N3 =3,N4 =4 ( 1.0, 1.0) 0.10 0.05 ( 1.024 ,0.990) (0.247,0. 131) 0.10 1 0.022 0.044 0.020 

N2- N3- N5- 2,N4 - 3 (0.-5, 1.0) 0.20 0.05 (0.517,0.990) (0.247,0. 137) 0.196 0.029 0.045 O.D28 
N2=N3=N5=2,N4 =3 ( 1.0, 1.0) 0.20 0.05 ( 1.002,0.998) (0.278,0.150) 0. 196 0.029 0.046 0.029 
N2= N3= N5= 2,N4 =:~ (0.5, 1.0) 0.1 5 0.10 (0.515,0.988) (0.234,0.127) 0.153 0.027 0.086 0.027 
N2= N3= N5= 2,N4 = 3 ( 1.0, 1.0) 0.15 0. 10 (1.024,0.988) (0.275,0.146) 0.153 0.027 0.089 0.027 

N2 =N3 =N4 = 2,N5 =3 (0.5, 1.0) 0. 15 0.10 (0.51 0,0.995) (0.220,0. 122) 0.157 0.029 0.085 0.033 
12 =N3 =N4 =2,N5 =3 (1.0, 1.0) 0.15 0. 10 (1.035,0.9 1) (0.257,0.135) 0.157 0.029 0.082 0.033 

N2 =N3 = N4 = 2,N5 = 3 (0.5, 1.0) 0. 10 0.05 (0.491 '1.001) (0.196,0. 108) 0.107 0.028 0039 0.028 
N2 =N3 = N4 =2,N5 = 3 (1.0, 1.0) 0.10 0.05 (1.012,0.994) (0.223,0.121) 0.104 0.029 0.040 0.027 
N2 = N3 =2.N4 = N5 =3 (0.5, 1.0) 0.15 0.10 (0.511 ,0.996) (0.229,0.130) 0.154 0.026 0.087 0.027 
N2 =N3 = 2,N4 = 5 =3 (1.0, 1.0) 0.15 0. 10 (1.012,0.992) (0.271 ,0. 143) 0.153 0.026 0.087 0.027 
N2 =N3 = 2,N4 =N5 = 3 (0.5, 1.0) 0.10 0.05 (0.511 ,0.992) (0.21 1 ,0. 117) 0.103 0.026 0.04 1 0.024 
N2 = N3 =2,N4 = N5 = 3 (1.0, 1.0) 0.10 0.05 (0.999,1.001) (0.245,0.131) 0. 104 0.026 0.044 0.026 
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Table 3.2: Non-stationary Niodcl P arameters Estimation Results. 

Para meter Estimation 
Nt fJ PI P2 /3 SEa rft SEp·, ri2 SEp, 

N2-N3-N4-N5-2 (0.5, 1.0) 0.20 0 05 (0.494,1.002) (0.075,0.138) 0.202 0.0'11 0.054 0.047 
N2=N3=N4=N5=2 ( 1.0, 1.0) 0.20 0.05 (1.000,1.004) (0.072,0.133) 0.204 0.043 0.056 0.052 
N2= 13=N4= N5= 2 (0.5, 1.0) 0. 15 0.10 (0.502,0.992) (0.071,0.134) 0.160 0.038 0.076 0.046 
N2=N3=N4=N5=2 ( 1.0,1.0) 0.15 0.10 (0.998, 1.003) (0.073,0. 131) 0.163 0.044 0.070 0.051 

N2 - 2,N3 -N5 - 3,N4 -4 (0.5 , 1.0) 0. 15 0.03 (0.500,0.997) (0.069,0. 131) 0.151 0.030 0.032 0.030 
N2 = 2,N3 = N5 = 3 ,N4 = 4 (1.0, 1.0) 0.15 0.03 (0.997 ,1.003) (0.071 ,0. 126) 0.150 0.032 0.035 0.034 
N2 = 2,N3 = N5 =3,N4 = 4 (0.5, 1.0) 0.10 0.05 (0.498,1.000) (0.072,0.134) 0.105 0.026 0.043 0.028 
N2 = 2,N3 = N5 =3,N4 = 4 ( 1.0,10) 0. 10 0.05 ( 1.002,0.990) (0.072,0. 128) 0.106 0.028 0.040 0.031 
N2 -N5 - 2,N3 =3,N4 = 4 (0.5, 1.0) 0.15 0.03 (0.500,0.995) (0 .074 ,0.134) 0.150 0.029 0.033 0.030 

2 =N5 =2,N3 =3,N4 =4 (1.0, 1.0) 0.1S 0.03 (0.997, 1.006) (0.07 1,0.125) 0 .151 0.032 0.034 0.034 
2 = N5 = 2,N3 = 3,N4 = 4 (0.5, 1.0) 0.10 0.05 ( 0.4 95, 1. 005) (0.073,0.141) 0 .107 0.027 0.011:1 0.029 

N2 = N5 =2,N3 =3,N4 = 4 (1.0,1.0) 0. 10 0.05 (0.997, 1.005) (0.072,0.130) 0.107 0.028 0.04 1 0.032 
N2- N3-=N5-2,N4 = 3 (0.5, 1.0) 0.20 0.05 (0.'199,1.001) (0.073,0.135) 0.198 0.038 0.049 0.042 
N2= 3=N5=2, 4 = 3 (1.0, 1.0) 0.20 0.05 (1.001,0.997) (0.072 ,0.126) 0.200 0.040 0.053 0.048 
N2=N3= N5= 2, 4 = 3 (0.5, 10) 0. 15 0. 10 (0.500,0.993) (0.073,0. 135) 0.160 0.034 0.078 0.040 
N2=N:~=N5=2 ,N4 = 3 (1.0, 1.0) 0.15 0.10 (0.997 ,1 .005) (0.072,0.129) 0. 161 0.036 0.074 0.046 

N2 -N3 -N4 -2,N5 -3 (0.5 , 1.0) 0.15 0.10 (0.500,0.997) (0.071 ,0. 136) 0.162 0.038 0.074 0.045 
N2 =N3 =N4 =2,N5 =3 (1.0, 1.0) 0.15 0.10 (0 .996,1.001) (0.071 ,0.129) 0.164 0.042 0.068 0.050 
N2 = I 3 =N4 = 2,N5 = 3 (0.5, 1.0) 0.10 0.05 (0.504,0.994) (0.07 1 ,0. 134) 0.1 13 0.036 0.04 1 0.035 
N2 = N3 = N4 = 2,N5 =3 (1.0 , 1.0) 0.10 0.05 (0.997,1.005) (0.076,0.132) 0.118 0.037 0.042 0.038 
N2 - N3 - 2,N4 - N5 -3 (0.5, 1.0) 0.15 0.10 (0.501,0.991) (0.077,0.144) 0.159 0.034 0.082 0.041 

2 =N3 = 2,N4 =N5 =3 (1 0, 1.0) 0.15 0.10 (0.995, 1.01 0) (0.072,0.126) 0. 161 0.036 0.074 0.045 
2 = N3 = 2,N4 = N5 = 3 (0.5, 1.0) 0.10 0.05 (0.496,1.005) (0.073,0. 129) 0.110 0.033 0.041 0.032 

N2 = N3 = 2,N4 = N5 =3 (1.0, 1.0) 0.10 0.05 (0.998, 1.000) (0.069,0.124) 0 .1 11 0.034 0.044 0.035 

From Table 3.1 and Table 3.2, we can see that all the estimatet~ for j3 are close to its 

true value. In the nonstationary case, the est imates for p1 and p2 are less accurate than 

the stationary case in general. For some combinations of p1 and p2 , such as p1 = 0.15, 

P2 = 0.03 with n 2 = 2, n 3 = n5 = 3, n4 = 4 in stationary case, the estimates of j3 are 

slight ly less accurate than the others. This is because p2 is close to the lower bound . It 

is clear that for each stage of iterations, p1 and p2 have to satisfy the range restrictions, 

which in our case is 0 < p < p and 0 < p <min ( 1~;2 ~·;1 -p2n11·'i , t-2 1). Therefore 
- 2 - I - I - 'nt/1·-i. l ) TLt{~i ,l - 1 ) ) 

when p1 or p2 is close to their boundary, the estimates become less accurate. T hose 

less accurate estimates for p1 and p2 will affect the estimates for /3 . 

For the purpose of examining the forecast performance of the model ( 3.1), we use 

the parameter estimates obtained by using only the first four observat ions, Yi1, Yi2 , Yi3 
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and Yi4 for i = 1, 2, .. . , 100 in the forecasting function in Section 3.2.3 to compute a 

one-step ahead forecast of fifth observation. Next, we compute the sum of squares of 

the forecast error as well as the variance of the forecast error for these 100 communi-

ties . These calculation were repeated 1000 times as well for a total of 1000 estimates 

of the parameters. We denote the average sum of squares of the forecast errors and 

the average variance of the forecast error by ASS and AV respectively. The results 

arc reported in Table 3.3 and Table 3.4. 

Table 3.3: Stationary Model Forecasting Error. 

N t {3 Pi P2 ASS AV 
I N2= N3= N4= N5= 2 (0.5, 1.0) 0.20 0.05 1.972 1.949 

N2= N3=N4= N5=2 (1.0 , 1 0) 0.20 0.05 2.365 2.322 
N2=N3= 14=N5=2 (0.5, 1.0) 0 .15 0.10 2.027 2.000 

I 
N2=N3=N4=N5=2 ( 1.0, 1 0) 0.15 0.10 2.4 13 2.372 

N2 = 2,N3 = N5 = 3,N4 =4 (0.5, 1.0) 0.15 0.03 1.996 1.978 
N2 = 2,N3 = N5 = 3,N4 =4 ( 1.0, L.O) 0 .15 0.03 2.378 2.365 
N2 =2,N3 =N5 = 3,N4 =4 (0.5 , 1.0) 0. 10 0.05 2.077 2.055 

I 
N2 =2,N3 =N5 =3,N4 =4 ( 1.0 , L.O) 0 .10 0.05 2.484 2.4,16 
N2 -N5 -2.N3 -:3,N4 -4 (0.5 , 1.0) 0.15 0.03 2.038 2.035 
N2 = N5 = 2,N3 = 3,N4 = 4 (1.0, 1.0) 0.15 0.03 2.486 2.427 
N2 =N5 =2,N3 =3,N4 =4 (0.5, 1.0) 0.10 0.05 2.109 2.078 
N2 =N5 = 2,N3 = 3,N4 = 4 (1.0, 1.0) 0.10 0.05 2.521 2.483 

I 
N2 -N3 - N5 = 2,N4 = 3 (0.5 , 1.0) 0.20 0.05 1.983 1.955 
N2 = N3 =N5 = 2, 4 = 3 (1.0, 1.0) 0 .20 0 .05 2.364 2.331 
N2 =N3 =N5 =2,N4 = 3 (0.5 , 1.0) 0.15 0 .1 0 2.001 1.991 
N2 =N3 =N5 =2,N4 =3 (1.0, 1.0) 0.1 5 0.10 2.4 11 2.377 
N2 -N3 ~N4 - 2,N5 - 3 (0.5, 1.0) 0.15 0 .10 1.970 1.920 
N2 = N3 = N4 = 2,N5 = 3 (1.0, 1.0) 0 .15 0 .10 2.341 2.286 
N2 = N3 = N4 = 2,N5 =3 (0.5, 1.0) 0.10 0 .05 2.104 2.048 
N2 =N3 =N4 =2,N5 =3 (1.0 , 1.0) 0 .10 0.05 2.484 2.438 
N2 = N3 = 2,N4 = N5 = 3 (0.5, 1.0) 0.15 0.10 1.959 1.928 
N2 = N3 =2,N4 = N5 = 3 (1.0, 1.0) 0 .15 0 .10 2.334 2.297 
N2 = 3 = 2,N4 =N5 =3 (0.5, 1.0) 0 .10 0 .05 2.091 2.04 7 
N2 = 3 = 2,N4 =N5 = 3 (1.0, 1.0) 0 .10 0 .05 2.482 2.441 
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Table 3.4: on-stationary Model Forecast ing Error. 

Nt {3 PI P2 ASS AV 
N2=N3=N4=N5=2 (0.5, 1.0) 0.20 0.05 2.990 2.887 
N2=N3=N4=N5=2 (1.0, 1.0) 0.20 0.05 4.950 4. 781 
N2=N:l=N4=N5=2 (0.5, 1.0) 0. 15 0.10 3.0:39 2.967 
N2=N3=N4=N5=2 (1.0, 1.0) 0.15 0.10 5.049 4.900 

N2 = 2,N3 =N5 = 3,N4 =4 (0.5 , 1.0) 0. 15 0.03 3.059 2.946 
N2 =2,N3 = 5 =3,N4 =4 (1.0, l.O) 0.15 0.03 5.020 4.859 
N2 =2,N3 = 15 =3,N4 = 4 (0.5, 1.0) 0.10 0 .05 3.134 3.044 
N2 =2,N:3 =N5 = 3,N4 = 4 (1.0 , 1.0) 0.10 0.05 5.1 78 4.999 
N2 -N5 - 2.N3 - 3,N4 - 4 (0.5 , 1.0) 0.15 0.03 3 .087 3.014 
N2 =N5 =2,N3 =3, 4 =4 ( 1.0, 1.0) 0.15 0.03 5.081 4.982 
N2 =N5 =2,N3 =3,N4 =4 (0.5, 1.0 ) 0.10 0 .05 3.172 3.084 
N2 =Ni:i =2,N3 = 3,N4 = 4 ( 1.0, 1.0) 0.10 0 .05 5.210 5.087 
N2 - N3 - N5 - 2,N4 -3 (0.5, 1.0) 0.20 0 .05 2.997 2.Dl7 
N2 =N3 =N5 = 2,N4 =3 (1.0, 10) 0.20 0.05 4 .D l9 4.787 
N2 =N3 =N5 =2,N4 =3 (0.5, 1.0) 0. 15 0.10 3 .046 2.967 
N2 = N3 = N5 = 2,N4 = 3 ( 1.0, 1.0) 0. 15 0.10 5.082 4.918 
N2 - N3 - N4 - 2,N5 = 3 (0.5, 1.0) 0. 15 0.10 3.036 2.875 
N2 =N3 =N4 =2,N5 =3 (1.0, 1.0) 0.15 0.10 5.040 4.728 
N2 =N3 = 4 =2,N5 =3 (0.5, 1.0) 0.10 0.05 3.136 3 .0211 
N2 =N3 = N4 = 2,N5 =3 (1.0 , 1.0) 0.10 0.05 5.208 4.972 
N2 = N3 = 2,N4 = N5 = 3 (0.5, 1.0) 0.15 0.10 3 .004 2.874 
N2 = N3 =2,N4 = 5 =3 (I .0, 1.0) 0.15 0.10 5.002 4.775 
N2 = 13 =2, 4 =N5 = 3 (0.5, 1.0) 0.10 0.05 3.136 3.03:l 
N2 = N3 =2, 4 =N5 =3 (l.O, 1.0) 0. 10 0.05 5.174 4.986 

From Table 3.3 and Table 3.4, we sec that the value of the average sum of squares 

and t he average variance of the forecast errors are very close to each other for all 

different combinations of parameters. This indicates that the average sum of squares 

of the forecast errors can closely estimate the average variance of the forecast errors. 

ote that the values for average variance and sum of squares of forecast errors are 

generally smaller under stationary covariates. It could be also seen that the difference 

between average variauce and sum of squares of forecast errors arc also ·maller than 

the nonstationary case. This means that we have better estimates for t he parameters 

in the stationary case. T his is because the covariates do not change with respect to 

t ime t in stationary case. By similar discussion of results of simulated variance of 

forecasting errors in Section 2.2.4, for our particular setup, t he average variance of 
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forecasting error for f3 = (0.5 , 1) is smaller than that of f3 = (1, 1) as expected. 

20 40 60 80 100 20 40 60 80 >00 

(a) (b ) 
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(C) (d ) 

~~--------------------- n -~~~-~- ~ ,,~- 1 
o I L I I I 

20 40 60 80 100 20 40 60 80 100 

(e) (I) 

F igure 3.1: A plot of (a) values of stationa ry mean for t = 1 (solid line), t = 2 (dashed 
line) , t = 3 (clotted line), t = 4 (dotted dashed line); (b) values of stationary variance for 
t = 1 (solid line), t = 2 (dashed line), t = 3 (dotted line) , t = 4 (dotted dashed line); (c) 
va lues of stationary lag 1 correlation for t = 1 (solid line), t = 2 (dashed line), t = 3 (clotted 
line); (d) values of stationary lag 2 correlation for t = 1 (solid line), t = 2 (dashed line) ; (e) 
Average forecast overlaid on average of longitudinal data; and (f) proportion of absolute 
values of forecast error that are 0 or 1 (solid line) and > 1 (dotted line); by communities 
obtained from 1000 simulations with p1 = 0.15, P2=0.10, ,8=(1,1) , stationary covariates 
(2.23)-(2.24) and n , = 1, n2 =, .. . , n5 = 2. 
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Figure 3.2: A plot of (a) values of nonstationary mean fort = 1 (solid line), t = 2 (clashed 
line), t = 3 (dotted line), t = 4 (dotted dashed line) ; (b) values of nonstationary variance 
fort = 1 (solid line) , t = 2 (dashed line), t = 3 (clotted line), t = 4 (clotted dashed line); 
(c) values of nonstationary lag 1 correlation for t = 1 (solid line), t = 2 (dashed line), 
t = 3 (clotted line); (d) values of nonstationary Jag 2 correlation for t = 1 (solid line), 
t = 2 (dashed line); (e) Average forecast overlaid on average of longitudinal data; and (f) 
proportion of absolu te values of forecast error that are 0 or 1 (solid lin ) and > 1 (dotted 
line); by communities obtained from 1000 simulations with Pl = 0.15, p2=0.10, .8=(1 ,1), 
nonstationary covariates (2. 25)-(2.26) and n 1 = 1, n2 = , .. . , n 5 = 2. 

In Figure 3.1(a),(b),(c) and (d), we let th maximum number of individuals that 

can be infect d n1, t = 1, 2, ... , 5 to be t ime dependent. The graph shows the stationary 

patterns in the mean /-lit. , variance CJ;u , lag 1 correlation Pi,t.- l ,t, and lag 2 correlation 

Pi,t-2,t.· In Figur 3.1(e) , we have overlaid a graph of the average of the forecast 

in 1000 simulations over a sca.tterplot of the average of the obs rvations y;5 . The 

plot ·haws that the average forecast follows the general pattern of the infections at 
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the fifth time point. In order to assess the accuracy of out forecasts . We have also 

displayed a graph showing t he average of t he proport ions of the forecast error eit with 

absolute deviations 0,1 and greater than 1. Figure 3.1(f) shows t hat the deviat ions 

of magnitude 0 and 1 appear to be over 90% for the first 50 communities and around 

55% for the remaining 50 communi ties. We constructed similar plots in Figure 3.2 for 

a nonstationary case obtained from covariates generated by using (2.25) and (2.26) . 
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Chapter 4 

Concluding Remarks 

In this thesis we have investigated the lag 2 binary and binomial sum model 

for modelling infectious diseases. We began with a simple case by assuming the 

infected individualti infecting none or only one individual at a t ime. Model (2.1 ) 

wati proposed by assuming there is no latent community effect. ilodel (2.12) was 

proposed by assuming there is a latent community effect which will affect the mean 

of our observed number of infections. These binary sum models have limitations 

because it is more common that the infected individual can infect none, one and 

more than one individuals at a t ime in the real situations. Therefore, we proposed 

model (3.1) by using binomial sum operations instead of binary sum operations. We 

have assumed the immigration part clit for t = 2, 3, .. , T for the ith community follow 

a Poisson distribution. Parzen (1962, p. 118) showed that the Poisson process X(t) 

satisfies the following five axioms: 

Axiom (0) X (O) = 0. 

Axiom ( 1) X ( t) has independent increments ; that is, for all t i such that to < 
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t 1 < · · · < t 11 , the rv 's X(t;) , X (ti_ 1), i = 1, 2, ... , n, arc independent. 

Axiom (2) For any t > 0, 0 < P1·[X (t) > 0] < 1. 

Axiom (3) For R.ny t > 0, 

l
. PT[X(t +h)- X(t ) 2: 2] 
liD = 0 

h--+0 PT[X(t + h) - X(t ) = 1] 

Axiom (4) X (t) has stationary increments; that is, for points ti 2: tj 2: 0 

(and h > 0) , the random variables X(ti) - X (tj) and X (ti+h) - X (tj+h) are 

eq uidistri bu ted. 

In our modelling approach, the number of immigrations are discrete counts which can 

occur at R.ny point R.long a cont inuum. There is no immigrat ion at the initial time 

point. At any particular point, the probability of the immigration is small. The av-

erage number of immigrations is constant over a unit of measure and d;2, ... ,dit , ... ,d;r 

arc indcp udcnt. Therefore, we assume that dit , t = 2, 3, .. . , T , follow Poisson dis-

tribut ions. The Method of Moments and the GQL method was shown to perform 

well in estimating the parameters. These estimated models cR.n be used to obtain a 

reasonable forecasts of future spread of disease using the forecasting function when 

the latent community effect is not present. \"!hen the latent communi ty effect is 

present, the GQL approach still works w ll for estimating regres ion parameters and 

para meter in the latent communi ty effect. However, the moment estimates for the 

correlation parameters become less accurate. 

We rema rk that by the nature of model (2. 1), (2. 12) and (3.1), new infections at 

time point t are completely determined by the number of infections at t ime point t- 1 
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and t - 2. There may be situations where an individual who was infected at time point 

t- k continue to infect others at future time points until the individual is discovered 

or recovered. Furthermore, model (2.12) only considers the latent community effect 

present in a binary sum infectious disease model. For a binomial sum infectious 

model, the latent community effect may also present. These situations are subjects 

for future considerat ion. 
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