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Abstract 

Limit analysis is very useful in the assessment and design of mechanical 

components and structures. Among the various methods for limit load estimation, 

approximate methods based on linear elastic finite element analyses are appealing to 

analysts and designers due to the conceptual insight, economy of computational effort and 

wide applicability. 

In this thesis, an approximate method for determining the limit loads of 

foundations on homogeneous and layered cohesive soils and cohesive-frictional soil is 

presented in detail. The results obtained for layered soils are presented as charts to be 

used for foundation design. This method makes use of the results of two or more linear 

elastic analyses. From these linear elastic analyses, load controlled locations called 

r-nodes are identified and limit loads are determined. The concept of r-nodes 

(redistribution nodes), which are akin to plastic hinge locations in a structure, forms the 

basis of this method. Several possible alternative ways of applying the r-node method to 

pressure-sensitive materials are also presented. 

The results obtained are compared with analytical results and elastic-plastic 

nonlinear finite element analysis results. 
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Area 

Bulk modulus, or width of foundation 

New bulk modulus of each element for the second elastic analysis 
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Creep parameters for second stage creep 
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Elastic stiffness tensor 
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Elastic-plastic stiffness tensor 

Depth of the foundation 
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Tangential modulus in uniaxial stress condition 
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G Shear modulus 
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Slope of effective stress-effective plastic strain curve 

First invariant of stress tensor 

First invariant of strain tensor 

Second invariant of deviatoric stress tensor 

Second invariant of deviatoric strain tensor 

Third invariant of deviatoric stress tensor 

k Pure shear yield stress (kPa ), Strength parameter in Drucker-Prager 

criterion 

L Length of the foundation (m) 

M Applied external load 

Lower bound multiplier corresponding to an applied load 
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v 
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Dimensionless bearing capacity coefficients 

Principal components of deviatoric stress tensor 

Deviatoric stress tensor 

Applied pressure 

Limit pressure 

Applied external load 

Plastic collapse load or limit load 

Limit pressure of strip foundation 

Radius 

Surface tractions 

Displacements 

Poisson's ratio 

New Poisson's ratio of each element for the second elastic analysis 

Original Poisson's ratio of each element for the first elastic analysis 

Volume, or velocity 

Strain energy function 

Complementary energy function 

Proportionality constant, strength parameter in Drucker-Prager criterion 

Shape factors of the bearing capacity of the foundation 
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r Geometric scaling factor, engineering shear strain, or unit weight 

Displacement in a component or structure 

Displacement rate 

Displacement rate at the reference stress 

Principal components of strain tensor 

Creep strain 

Creep strain at the mean radius 

Creep strain rate 

Creep strain rate at the reference stress 

Strain tensor 

Elastic strain tensor 

Plastic strain tensor 

Volumetric strain 

Friction angle 

Initial yield stress in uniaxial tension ( kPa) 

Principal components of stress tensor 

Uniaxial compressive yield stress ( kPa) 
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Effective or von Mises stress ( kPa) 

Pseudo elastic effective stress in an element ( kPa) 

R-node effective stress (kPa) 

Stress tensor 

Combined r-node effective stress (kPa) 

R-node effective stress at the plastic hinge location j ( kPa) 

Reference stress ( kPa ) 

Uniaxial tensile yield stress ( kPa ) 

Yield stress ( kPa ) 

Initial yield stress in pure shear ( kPa ) 

Hardening parameter or plastic internal variable 

Unit outward normal at a point 
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ASME 

CSME 

GLOSS 

FEM 

R-node 

RSM 

Subscripts 
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American Society of Mechanical Engineers 
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Finite Element Method 

Redistribution Node 

Reference Stress Method 

External 

Internal, tensorial index 

Tensorial indices 

Limit 

Polar coordinate 

Reference 
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Chapter One 

Introduction 

1.1 General Background 

The primary objective of this thesis is to investigate the applicability of a robust 

approximate method, namely the r-node method, to estimate the limit load of foundations 

on various types of soil materials. The numerical examples are limited to strip 

foundations placed at ground level. At present, limit loads of strip foundation under 

conditions of plane strain are obtained either by analytical methods such as limit 

equilibrium method (Terzaghi (1943) [1] and Meyerhof (1951) [2]), slip-line method 

(Sokolovskii (1965) [3] and Brinch Hansen (1961) [4]) and limit analysis method (Shield 

(1954) [5], Chen and Davidson (1973) [6]), or numerical techniques, such as the 

nonlinear finite element technique. 

Analytical methods for limit analysis of foundations have evolved over a long 

period of time as compared to computer-aided numerical techniques, such as the finite 

element analysis, which are comparatively recent. An examination of the literature on 

plastic analysis reveals that analytical solutions are available only for simple cases of 

loading and geometric configurations. Inelastic finite element analysis, on the other hand, 

has its own limitations mainly related to computational effort. The above factors thus 
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create the need for the development of approximate methods, which are simple, efficient 

and yet sufficiently accurate for analyzing limit loads of structures. 

The r-node method, explained in detail in the next chapter, is an approximate 

method for performing limit analysis. The method, in essence, is a technique for 

performing limit analysis by combining the accuracy and rationale of the finite element 

technique, the speed and the ease of linear elastic analysis and the concept of the 

reference stress method. This method makes use of the statically determinate locations in 

a structure, called the r-nodes, for the limit analysis. The stresses at the r-node locations, 

called the r-node stresses, can be directly related to the load-controlled mode of failure of 

a structure. The r-node method can, therefore, be used to performed limit analysis of a 

structure in a robust manner. 

1.2 Objectives of the Thesis 

The objectives of this thesis are: 

1. To present a robust method for the limit analyses of purely cohesive soils and 

provide design charts for strip foundation on layered soils. 

2. To provide limits of applicability for layered cohesive soils. 

3. To investigate the possibility of applying the r-node method for 

pressure-sensitive materials. 

1.3 Organization of the Thesis 

Chapter 1 briefly addresses the usefulness of limit analysis in structural design and 

the existing limit analysis techniques. The r-node method and its value in limit analysis 
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are briefly discussed in this chapter. The objectives of this thesis and its original 

contributions are also clearly identified in this chapter. 

The fundamental concepts relating to limit analysis and r-node method are 

covered in chapter 2. A literature survey covering plasticity and limit analyses, the 

reference stress method and the r-node method is presented; the concept of robustness, 

which involves the development of simplified methods to predict inelastic response with 

reasonable accuracy, is discussed. This chapter also examines the r-node concept and the 

method, and brings out the relationship between the r-node stress and the reference stress. 

Chapter 3 discusses constitutive equations of materials. The elastic and plastic 

stress-strain relations of materials are covered in this chapter. Yield criteria for the 

hydrostatic-pressure-independent materials, such as some metals, and 

hydrostatic-pressure-dependent materials, such as the brittle or granular materials, are 

analyzed in this chapter. 

The plasticity theories applied to soil materials are briefly reviewed in Chapter 4. 

Finite element method and analytical methods for the determination of limit loads of soil 

structures are explained in this chapter. Also, the general methods for calculating the 

bearing capacity of shallow foundations are presented. 

In Chapter 5, the r-node method is used in determining the bearing capacity of 

strip foundations on cohesive soils. Several numerical examples are used to validate the 

r-node method. The problems consist of determining the limit loads of strip foundations 

on homogeneous soil and layered soils. The finite element modeling methodology is 

explained, and the limit loads are calculated using the analytical methods, non-linear 

finite element method and r-node method. R-node method results are compared with 
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those of theoretical or other analytical methods, and nonlinear finite element results are 

also discussed in this chapter. 

Chapter 6 presents several alternative strategies in the use of the r-node for 

estimating limit loads of foundations on pressure-sensitive materials (i.e. 

cohesive-frictional soils). While those attempts have not been entirely successful, the 

approaches and the results are analyzed and explained in detail to serve as a basis for 

future research. 

Chapter 7 summarizes the present study and briefly discusses the advantages of 

the r-node method. Suggestions are also given for related future research. 
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Chapter Two 

Basic Concepts and Literature Review 

In view of the facts that a complete analysis including the range of plastic flow is, 

in general, expensive computationally, and failure by plastic collapse is the governing 

condition in so many problems in soil mechanics (Chen, (1975) [7]), the development of 

efficient methods for computing the collapse load in a more direct manner is of practical 

interest to engineers. Limit analysis is concerned with the development and applications 

of such methods. 

In the field of limit analysis in soil mechanics, Chen (1975) [7] has contributed 

much to summarize and develop the work of previous researchers. Many significant 

results in theories and applications of limit analysis have been reviewed or obtained by 

Chen (1975) [7], such as reviewing the theorems of limit analysis, applying the slip-line 

and limit equilibrium methods to solve the bearing capacity of shallow foundations, 

analyzing the problems of stability of slopes and so on. In this thesis, many relative 

theories, such as concepts of limit analysis, and computer implementations, such as the 

principles of building the FE models are based on theorems or principles summarized by 

Chen (1975) [7]. In the present research, a robust approximate method, namely r-node 

method, would be utilized in analyzing and solving a limit analysis problem, namely 

bearing capacity of strip foundations. 
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2.1 Concept of Limit Analysis 

Limit analysis is the method which enables definite statements to be made about 

the collapse load without carrying out the elastic-plastic analysis (Chen, (1975) [7]). 

Limit analysis is concerned with the calculation of the load at which plastic flow occurs 

in mechanical components or structures. From a design standpoint, to carry limit analysis 

is useful for assessing load-controlled effects in structures. The classical theorems of limit 

analysis are the lower and upper bound theorems. 

2.1.1 Lower-bound Theorem 

The load, determined from a distribution of stress alone, that satisfies the 

equilibrium equations, stress boundary conditions and nowhere violates the yield 

criterion, is not greater than the actual collapse load (Chen, (1975) [7]). The distribution 

of stress satisfying the above three conditions has been termed as statically admissible 

stress for the problem under consideration. Hence the lower-bound theorem may be 

restated as bellow: 

If a statically admissible stress distribution can be found, uncontained plastic flow 

will not occur at a lower load. 

2.1.2 Upper-bound Theorem 

The load, determined by equating the external rate of work to the internal rate of 

dissipation in an assumed deformation mode (or velocity field), that satisfies velocity 

boundary conditions and strain and velocity compatibility conditions, is not less than the 
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actual collapse load (Chen, (1975) [7]). The dissipation of energy in plastic flow 

associated with such a field can be computed from the idealized stress-strain rate relation 

(or the so-called flow rule). A velocity field that satisfies the above conditions has been 

termed a kinematically admissible velocity field. Hence, the upper-bound theorem may be 

restated as bellow: 

If a kinematically admissible velocity field can be found, uncontained plastic flow 

must impend or have taken place previously. 

The upper-bound technique considers only velocity or failure modes and energy 

dissipation. The stress distribution need not be in equilibrium, and is only defined in the 

deforming regions of the mode. 

By suitable choice of stress and velocity fields, the above two theorems thus 

enable the required collapse load to be bracketed as closely as seems necessary for the 

problem under consideration. 

2.2 Concept of Approximate Method 

The limitations of the existing analytical techniques and the nonlinear finite 

element analysis provide an incentive to develop inexpensive approximate methods that 

are simple to use, and yet can predict inelastic response with reasonable accuracy 

(Mangalaramanan, (1993) [8]). Such methods are termed as robust approximate methods. 

Approximate methods are often used to estimate the limit load of structures, which means 

a series of elastic analyses will be used to replace one elastic-plastic analysis in 

calculating the limit loads of structures. 
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Compared with analytical techniques and the non-linear finite element analysis 

methods, approximate methods are simple, inexpensive, and less time-consuming. 

2.3 Classification of Approximate Methods 

The approximate method being used in this thesis has roots that were first 

developed in creep mechanics. Carrying the general creep and relaxation analysis is 

normally difficult and complicated; as a result of such difficulty, several approximate 

techniques have been proposed and presented. These techniques are generally arranged 

into two broad categories. First, the reference stress method, which has been applied to 

problems of creep deformation under steady and variable loads, creep buckling, and creep 

rupture. Second, bounding techniques that emanate from the principle of virtual work 

have been devised for problems of creep deformation under steady and variable loads. 

The reference stress method is a simplified method that attempts to minimize the 

effect of scatter in the creep parameters by using uniaxial test data (Kraus, (1980) [9]). 

This method attempts to correlate creep deformation in a structure with the creep strain 

that results during a simple creep test. 

The bounding technique method is a simplified method that attempts to drive 

kinematically admissible velocity fields and statically admissible fields in the limit 

analysis of perfectly plastic structures by using variational principles (Kraus, ( 1980) [9]). 

The methods based on virtual work were extended to situations such as variable loads, 

and to interaction with plasticity by Ponter (1970) [17] and others. 
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2.3.1 The Reference Stress Method 

One of the first approximate methods relevant to the present study is the reference 

stress method (RSM). In the United States, Soderberg (1941) [10] calculated the first 

reference stress of tubes; and then the method has been under development since the mid 

1960's in the United Kingdom. Basically, the idea of the method is that a given structure 

can be analyzed with data obtained from a single creep test at its reference stress 

(Marriott, (1970) [11]). 

Earlier developments of the RSM were aimed at estimating the creep deformation 

of a complex structure under mechanical loading by carrying out a single uniaxial test. 

That means there exists a transformation for a component or structure, given by 

(2.1) 

where, (.) is some relevant displacement within a structure; (}ref is the reference stress; 

y is a geometric parameter that would depend on the overall configuration of the 

component or structure and the boundary conditions, and £c is the uniaxial creep 

deformation at the reference stress. 

A number of the earlier investigators (e.g. Anderson, et al., (1963) [12]) also 

found that the reference stress is relatively insensitive to changes in the magnitude of the 

creep parameters, and there exists a linear proportionality between the reference stress 

and applied external load. The linear proportionality between the reference stress and 

applied external load can be expressed as 
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(}ref = aP (2.2) 

where, a is a function of geometry; J5 is the applied external load. 

The linear proportionality between the reference stress and the applied external 

load approximately leads to the notion of "insensitivity to the creep parameters". It also 

proved that the validity of RSM is not dependent on a specific form of constitutive 

relationship. Making use of the aspect of insensitivity to the creep parameters, several 

analytical methods of reference stress determination by different researchers (e.g. 

Anderson, et al., (1963) [12]) have been developed. The values of the reference stress and 

the scaling factor y obtained by the different approaches described above are quite close. 

Applying the notion that the reference stress is relatively insensitive to changes in 

the magnitude of the creep parameters, Sim ( 1971) [ 14] reasoned that as creep exponent 

approaches infinity, the stress distribution would correspond to the limit solution of 

perfect plasticity; therefore, the reference stress can be obtained by 

p 
(}ref = -;:::;- (} y 

PL 
(2.3) 

where, PL is the rigid-plastic collapse load for a yield stress. Ponter and Leckie (1970) 

[17] have shown that this approximation constitutes an upper bound on the value of 

stress, and is therefore on the safe side for design purposes. 
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2.3.2 Bounding Techniques 

Bounding techniques are developed based on virtual work principle. In an elastic 

solid, by means of the formulas aij = ~:. , cij = :~. , stresses aij and strains cij can be 
ij ij 

solved from the strain energy function W and the complementary energy function Q , 

Further, by Ducker's postulate of materials stability (Drucker, (1952) [18]), a 

restriction is placed on them. That is, given a pair of strain states cij and c;~ with 

corresponding stress states aij and a;, it is required that 

eu 

J ( aij- a;) dcij 2:: 0 (2.4) 

eij 

where, a; remains constant during the integration from c~ to c;j over any path. 

According to the virtual work principle (Drucker, (1952) [18]) 

(2.5) 

The foregoing inequality may be written in another form, 

(2.6) 

Considering a continuum of stable elastic material, with the body forces F; acting 

on the continuum, and all displacements are assumed to be small so that geometry 
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changes can be ignored, and that a stress field a~ and a strain field £ .. are known for the 
u u 

continuum. The stress field must be in internal equilibrium with the body forces, that is, 

aa~ . 
__ •J +F. =0 
axj I 

(2.7) 

The surface tractions ~· are defined by the requirements of external equilibrium. 

Thus at any surface of the continuum, 

(2.8) 

where, v j is the unit outward normal at a point. The strains £ij must be compatible with 

the displacements u; , thus, 

(2.9) 

Because a~, £ij are completely independent of each other, ~·, F;* and a~ are in 

equilibrium and u;c and £;~ are compatible, we may write by the principle of virtual work 

(2.10) 

where, A and V are the area and volume of the continuum. 

Then considering the inequality (2.6), a;~ and < is an admissible pair of states at 

all points of the body, thus we may integrate over the volume retaining the inequality. 

Substituting the result into equation (2.10), 
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(2.11) 

Martin (1966) [19] derived the above inequality. He applied it to steady creep 

problems on the basis of the elastic analogy. As an illustration, Martin (1966) [19] applied 

this bounding technique to the creep of a cantilever beam subjected to a distributed load 

and obtained upper bound on the solution. The bound is very good for that simple 

example. With similar reasoning, a lower bound on the solution was developed and 

extended to other situations such as variable loads, and to interaction with plasticity by 

Ponter (1970) [17], Palmer (1967) [20], Leckie (1974) [21] and others. An excellent 

review of this effort had been given by Leckie (1974) [21]. 

In the above, two approximate analytical techniques have been presented for 

solving creep problems: the reference stress method and bounding techniques based on 

the principle of virtual work. These methods have been used mostly in the United 

Kingdom. It can be said that both avenues, the approximate analytical one presented here 

and the numerical one, are now available to those contemplating work in this field. 

Approximate analytical methods are presumably simpler, but digital computer solutions 

are more accurate. On the surface it would seem that the latter would be the preferred 

method. However, digital computer solutions are becoming more and more expensive so 

that the simpler approximate methods are becoming more appealing on the basis of cost. 

It is likely that eventually preliminary design will be carried out with the approximate 

methods while final design analysis will continue to be carried out with the digital 

computer. 
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2.4 Literature Review 

Limit analysis is concerned with the calculation of the load at which uncontained 

plastic flow occurs in mechanical components or structures. The availability of closed 

form analytical expressions for limit loads is restricted to components and structures with 

simple geometric and loading configurations. An alternative, or a simpler recourse, is to 

invoke the lower and upper bound theorems and then establish bounds within which the 

exact solution would exist. Even this procedure can be mathematically intractable and is, 

therefore, limited to the analysis of simple geometric configurations. 

In view of the above stated limitations of the aforementioned methods, research 

has more recently been directed towards estimating limit loads that are based on linear 

elastic PEA, which are called as robust approximate methods. Such procedures are quite 

straightforward and less time-and-resource consuming than inelastic PEA. 

Robust approximate methods are based on the idea of creating a sequence of 

linear problems that closely match the conditions of the non-linear problem, which means 

a series of elastic analyses will be used to replace the elastic-plastic analysis in calculating 

the limit loads of structures. A lot of research have been done in this field; some 

well-known methods include R-node method by Seshadri and his co-workers 

(1991&1995) [22&23], Partial elastic modulus modification method by Marriott (1988) 

[24], rna- multiplier method by Seshadri and Mangalaramanan (1995&1997) [25&26], 

elastic compensation method by Mackenzie and Boyle (1993, 1993a&l993b) [27, 28&29] 

and so on. Also, Ponter and co-workers (2000, 2001&2002) [30, 31&32] have developed 

a family of methods called 'Linear matching methods'. All these methods are robust 
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approximate methods, which are used to replace elastic-plastic analysis methods by using 

the elastic modulus adjustment procedure to simulate the inelastic flow at the plastic 

collapse; these methods can obtain satisfactory results in linear elastic finite element 

analyses. 

The earliest use of elastic modulus adjustment procedures dates back to research 

work on classification of clamp induced stresses in a thin walled pipe wherein the secant 

modulus was adjusted iteratively to obtain inelastic solutions (Jones and Dhalla, (1981) 

[33]). In this paper, highly stressed regions of the component or structure were 

systematically softened by a reduction of their modulus of elasticity in an attempt to 

simulate local inelastic action. Rather than carry out inelastic analysis, solutions were 

obtained by employing several elastic analyses iteratively. 

Marriott (1988) [24] developed an iterative procedure for estimating lower-bound 

limit loads on the basis of linear elastic finite element analysis (PEA) by generating 

statically admissible stress fields and used them in conjunction with established theorems 

oflimit analysis. Marriott (1988) [24]) adopted the elastic modulus adjustment procedure 

to categorize stresses in pressure components where it was deemed difficult to determine 

the stress category by inspection alone, yet where inelastic analysis was considered to be 

expensive and elaborate. 

Seshadri and his co-workers (1991&1995) [22&23] made use of the elastic 

modulus adjustment procedure to determine lower-bound limit loads by adopting 

reference stress concepts in creep design, they extended the concept of skeletal point to 

the more general inelastic component behavior by defining and locating the redistribution 

node (r-node) in components or structures. The method, designated as the GLOSS 
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(generalized local stress-strain) R-node (redistribution node) technique, had been applied 

to arches, frames, plates and shells. Symmetric as well as nonsymmetrical structures had 

been considered, and the criteria for ensuring lower bound limit loads had been provided. 

Seshadri and Prasad (1996) [34] also applied r-node method for determining limit 

loads of foundations and slopes in saturated cohesive soils under undrained conditions. In 

that paper, the r-node method was applied to some problems in geotechnical engineering. 

Problems involving bearing capacity of footings and stability of slopes under strip loading 

in cohesive soils had been analyzed; both uniform and layered soils were considered. The 

bearing capacity or limit loads obtained for these problems were compared with results of 

inelastic FEA. The limit load estimates were found to be reasonably accurate and this 

method had been demonstrated to consume less time and resources than classical elastic­

plastic analyses. 

Mackenzie, et al., (1993, 1993a&l993b) [27, 28&29] applied a similar algorithm, 

beyond the two linear elastic iterations, to determine the lower bound limit loads of 

pressure vessels on the basis of Melan's theorem (Melan, (1938) [35]). 

Mura, et al., (1965) [36] discussed a lower bound method for limit load 

determination that is based on variational concepts. On the basis of a variational 

formulation, traditional methods had been replaced by introducing the concept of 'integral 

mean of yield' by Mura and his coworkers. A variational formulation that is equivalent to 

the classical lower bound method, except that the use of space variables is circumvented, 

had been presented; improved lower bound limit loads have been obtained for symmetric 

and nonsymmetrical components by extending Mura's variational formulation to include 

local plastic collapse mechanisms. 
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Based on the extended variational principle, using a modulus-adjustment scheme 

similar to the GLOSS R-Node technique, a robust limit load estimation method, called the 

rna- method, was developed by Seshadri and Mangalaramanan (1997) [26]. The 

rna - method had been applied to a range of pressure component configurations, such as 

cylinders, torispherical heads, nozzle-sphere intersections and nonsyrnrnetric plate 

structures. 

The rna- method was further extended to layered structures, cracked components 

and components made of anisotropic materials by Pan and Seshadri (2002) [37]. For all 

these applications, the multipliers and the proposed procedure were compared with those 

obtained by the lower bound estimation based on the elastic compensation method (ECM) 

and inelastic FEA. The numerical results showed that the robust method could be applied 

to various components and structures leading to good limit load estimates. 

Ponter and coworkers (2000, 2001&2002) [30, 31&32] had provided a formal 

development of these methods and viewed these procedures as "linear matching method". 

This method was based upon principles similar to the elastic compensation method, 

which had been used for design calculations for some years but re-interpreted as a 

non-linear programming method. By matching the non-linear material behaviour to a 

linear material, a powerful upper bound programming method had been applied to a 

significant class of problems; a sufficient condition for convergence, which relates 

properties of the yield surface to those of the linear solutions solved at each iteration, had 

been derived. This method had been applied to a Drucker-Prager yield condition in terms 

of the von-Mises effective stress and the hydrostatic pressure by Ponter and co-workers. 
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Implementation was shown to be possible using the user routines in a commercial finite 

element code, ABAQUS. In an accompanying paper (Mangalaramanan and Seshadri, 

(1995) [19]) the method was extended to shakedown and related problems. 

A method similar to the above robust methods has been developed without the use 

of r-node or ma concepts (Adluri, 2000 [77] and Bolar & Adluri [78]). This Secant 

Rigidity Method realizes that r-node is essentially a cross section stress variation 

phenomenon. Also, the secant modification of r-node and lila can be carried out to the 

stiffness directly or the rigidity as opposed to the material modulus. This allows the 

secant modification to be based on any relevant computed quantity that captures a scaled 

yield criterion. Examples can be yield criteria in terms of bending moments in plate 

bending. When this is done, the mesh is significantly reduced allowing for improved 

solutions. In this method, there is no need to identify either special nodes or special 

volumes. 

2.5 R-Node Method 

As mentioned above, Seshadri, et al., (1991&1995) [16&17]) developed a method 

referred to as the 'r-node method', based on two linear elastic analyses, for obtaining 

approximate estimates of limit loads. The r-nodes are postulated as load-controlled 

locations in a component or a structure. When widespread inelastic action (plasticity or 

creep) occurs, such as, in an entire cross-section, a redistribution of stresses occurs except 

at the r-nodes, which are statically determinate locations. Therefore, the effective stresses 

at the r-nodes are linearly proportional to externally applied loads or load-combinations as 

a consequence of equilibrium. 
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The r-node method, based upon several principles of creep mechanics, is one of 

the reference stress methods; it has roots that were first developed in creep mechanics. 

Schuste ( 1960) [32] observed that in a solution of creep of beams, there were 

points ( A and B ) in the cross-section at which the stress did not change as the solution 

progressed from the initial elastic solution to the final stationary solution at a constant 

moment, shown in Figure 2.1. 

Marriot and Leckie (1963-1964 and 1970) [33&34] observed that there are some 

points in components undergoing transient creep where the stress does not change with 

time. Such points are called skeletal points. 

n=l 

c 
n=l n=co 

Figure 2.1 R-nodes in a Beam structure Subjected to Bending 

(after Kraus, (1980) [9] 

Sim (1971 and 1968) [8&10] reasoned that as the creep exponent approaches 

infinity the stress distribution would continue to pass through the point that defines it. 

Since the solution for an infinite creep exponent is analogous to the limit solution 

corresponding to perfect plasticity. Sim (1971 and 1968) [8&10] proposed that the 

reference stress can de obtained from a, ~ ( ~ ) a, . 
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Based on the above principles, Seshadri and Fernando (1991)[16] explained the 

r-node method for limit load determination in detail. In the r-node method, limit type 

distribution is simulated by suitably modifying the elastic moduli of all elements in the 

structure. The equivalent stress at r-nodes does not change in the process of analysis. So 

the invariant behavior of the r-node stress and the reference stress relate the two methods. 

The concept of r-nodes plays a key role in the understanding of the relationship 

between the concepts of reference stress, limit load and primary stress (Mangalaramanan, 

(1993)[8]). There is explicit recognition ofload and deformation-controlled effects in the 

ASME codes. Load-controlled stresses are statically determinate in that they are induced 

in order to preserve equilibrium with externally applied forces and moments. 

Deformation-controlled stresses on the other hand are induced as a result of statically 

indeterminate actions. When widespread inelastic action (plastic or creep) occurs, the 

statically indeterminate stresses undergo redistribution throughout the component except 

at the r-nodes, which are almost statically determinate locations. On the GLOSS diagram, 

the follow-up angle (e) will be equal to 90° at the r-nodes. 

Since the r-nodes are almost load-controlled locations within a component or 

structure, the induced effective stresses are linearly proportional to the externally applied 

loads as a consequence of equilibrium requirements; i.e., 

(a) r-node = y, p 

(a)r-node = Y2(P,M) 
(2.12) 

where, y, and y2 are scaling parameters that would depend on the loading, geometric 

configuration and material behavior. For an elastic-perfectly plastic material, when 
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(ae)r-nade approaches yield stress corresponding to the von Mises criterion, the externally 

applied load will correspond to the limit load. Equation (2.12) can therefore be expressed 

as 

(a)y = y1PL 

(a)Y = y2(PL,M Ll 

combining equations (2.12) and (2.13) 

p = =P 
[ 
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Figure 2.2 Follow-up Angle (B) on the Gloss Diagram (after Seshadri and 

Fernando, (1991) [22]) 
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1. A linear elastic finite element analysis of the given structure is carried out for 

the prescribed generalized loading P. The resulting equivalent stress distribution, which 

is pseudo elastic, is determined. 

2. A location j is arbitrarily chosen within the component, the elastic modulus of 

all other elements are modified according to the effective stress of element j . Although 

the choice of this location is somewhat arbitrary, the r-nodes can be located with a 

reasonable degree of accuracy. The only stipulation for choosing point j is that the 

effective stress of element j should be nonzero. 

3. A second linear analysis is then carried out which attempts to produce a limit 

type stress distribution, at least approximately. 

4. On the basis of the two linear elastic analyses, the follow-up angle is 

determined for each element. The elements for which (} = 90° are identified as the r-node 

elements. A practical method to determine the r-nodes is to obtain the intersections of the 

elastic stress distributions from the two finite element analysis. The stresses at the r-nodes 

are called as the r-node stresses. 

5. Since the r-node stresses are load-controlled quantities, the limit load is reached 

when the combined r-node stress equals the yield stresses. Hence the limit load may be 

a 
obtained by simply scaling the external load as PL = _! P . 

ae 

The above is the basic procedure for applying r-node method in determining the 

limit loads of structures. 
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Chapter Three 

Constitutive Equations 

3.1 General Discussion 

The solution of a mechanics problem at each instant of time must satisfy three 

conditions, namely, equations of equilibrium or of motion; conditions of geometry or the 

compatibility of strains and displacements; material constitutive laws or stress-strain 

relations (Chen and Saleeb, 1982 [41]). 

The first set of equations relates the stress inside a body to the body forces and 

external forces acting on the surface of a body. The second set of equation relates the 

strains inside a body to the displacements of a body. Clearly, both the equations of 

equilibrium and the equations of kinematics are independent of the particular material of 

which the body is made. The influence of this material is expressed by a third set of 

equations, the constitutive equations. They describe the relations between stresses and 

strains. In the simplest case, there are six equations expressing the strain components in 

terms of stress components, or vice versa. If they are linear, they are known as Hooke's 

law (Crawford and Armstrong, 1996 [42]). 

For some materials, their behavior may be idealized as time independent, where 

the effects of time can be neglected. This time-independent behavior of materials can be 

further idealized as elastic behavior and plastic behavior. 
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3.2 Elastic Stress-Strain Relations 

For an elastic material there exists a one-to-one coordination between stress and 

strain. Thus a body that consists of this material returns to its original shape whenever all 

stresses are reduced to zero. This reversibility is not the case for a plastic material. 

3.2.1 Hooke's Law 

Hooke first proposed a linear relation between stress and strain for a load applied 

in one direction. The generalization of Hooke's law to three dimensions is given as 

(3.1) 

Using the tensor subscript notation, for isotropic material this becomes 

(3.2) 

where, E is the elastic modulus; v is Passion's ratio; G is the shear modulus related to 

E and v by the well-known relation 

G= E 
2(1 + v) 

Equation (3.2) can be solved for the stresses to give 

. vE 
where, / 1 = Ei' = £ 11 + £ 22 + £ 33 , /L = -----

' (l+v)(l-2v) 

In engineering notation equation (3.2) becomes 

24 

(3.3) 

(3.4) 

(3.5) 



(3.6) 

It readily follows from equation (3.6) that 

I
, _1-2v

1 ,- I 
E 

(3.7) 

or 

(3.8) 

where, em and am are the mean strain and mean stress, respectively. Finally, combining 

equation (3.8) and (3.2) results in 

1 
e .. =-S .. 

'
1 2G '1 

(3.9) 

where, eij and Sij are the strain deviator and stress deviator tensors, respectively. Thus 

the deviators of the stress and strain tensors are related to each other, in the elastic case, 

by the simple equation (3.9), whereas the spherical stress components are related to the 

spherical strain components by equation (3.8). 

It should be noted that nothing in the foregoing discussion requires that E , G , v 

be constant throughout the body. They may, for example, be functions of temperature, so 

that if the body is not at a uniform temperature, these constants may have different values 

at different points in the body. 

3.2.2 Solution of Elastic Problems 

The six stress components, six strain components, and three displacement 

components are connected by the three equilibrium equations, six compatibility equations, 
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and six constitutive equations. To solve an elastic problem, these 15 unknown quantities 

of stresses, strains and displacements must satisfy all the 15 equations (Sokolinikoff, 

(1956) [ 43]). 

The stresses must satisfy the three equilibrium equations 

(3.10) 

as well as the boundary conditions S j = lp-ij • Where, aij = a ji • The strains must satisfy 

the six compatibility equations 

1 
E .. = -(p .. + f.l·.) 

I} 2 1,] ],1 
(3.11) 

Finally, the stresses must be related to the strains through the stress-strain relation 

equation (3.2) or their equivalent. The problem of finding a set of stresses and strains 

satisfying the above relations is known as the first boundary-value problem of elasticity. 

3.3 Plastic Stress-Strain Relations 

In the previous sections the relation between stress and strain in the elastic range 

were discussed and also the stress states at which plastic flow or yielding will begin. 

These relations are the plastic stress-strain relations. 

In the elastic range, the strains are linearly related to the stresses by Hooke's law, 

whereas the relations will generally be nonlinear in the plastic range. A more clear fact is 

that in the elastic range the strains are uniquely determined by the stresses. Whereas in the 

plastic range the strains are in general not uniquely determined by the stresses but depend 

on the whole history of loading or how the stress state was reached. Because the plastic 

strains are dependent on the loading path, it becomes necessary to compute the 
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differentials or increments of plastic strain throughout the loading history and then obtain 

the total strains by integration or summation. 

The first approach to plastic stress-strain relations was suggested by Saint-Venant 

(1870) [44], he proposed that the principal axes of strain increments coincided with the 

principal stress axes. Levy (1871) [45] and von Mises (1913) [40] independently gave he 

general three-dimensional equations relating the increments of total strains to the stress 

deviations. These are known as the Levy-Mises equations. These equations are 

(3.12) 

or 

In these equations the total strain increments are assumed to be equal to the plastic 

strain increments, the elastic strains being ignored. Thus these equations can only be 

applied to problems of large plastic flow and cannot be used in the elastic-plastic range. 

The generalization of equation (3.12) to include both elastic and plastic components of 

strain is due to Prandtl (1925) [46] and Reuss (1930) [47], which are known as the 

Prandtl-Reuss equations. 

Reuss (1930) [47] assumed that at any instant the plastic strain increment is 

proportional to the instantaneous stress deviator; i.e., 

(3.13) 

or 
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Equations (3.13) can be then be considered as a special case of equation (3.12) 

where the elastic strain components are neglected. 

Equation (3 .13) states that the increments of plastic strain depend on the current 

values of the deviatoric stress state, not on the stress increment. They also imply that the 

principal axes of stress and of plastic strain increment tensors coincide. The equations 

themselves merely give a relationship between the ratios of plastic strain increments in 

different directions. To determine the actual magnitudes of the increments a yield 

criterion is required. 

3.3.1 General Derivation of Plastic Stress-Strain Relations 

The Saint-Levy-Mises and Prandtl-Reuss relations were described as originating 

basically from an assumption that 'the maximum shear and maximum slide velocity are 

co-directional', as Saint-Venant expressed it. It was also shown that these relations imply 

the von Mises yield function. The general equations for determining the plastic 

stress-strain relations for any yield criterion was derived based on a unified approach due 

to Ducker (1950&1952) [48&18]. 

The general stress-strain relation is given as 

(3.14) 

where, G is a scalar which may depend on stress, strain, and history. The scalar G, which 

depends in general on the stress, strain, and history, must be determined from experiment, 
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f (au) is a loading function. At each stage of the plastic deformation, a loading function 

f (au) exists so that further plastic deformation takes place only for f(aij) = 0. 

3.3.2 Perfectly Plastic Material 

For this case the work done by an external agency which slowly applies and 

removes a set of stresses is zero over the cycle, or 

(3.15) 

It should be remarked that this equation is not the same as the second of equation 

(3.12) with the equality sign. In equation (3.12) the equality sign is used only when 

For ideal plasticity it is also assumed that f (au) exists and is a function of stress 

only, and that plastic flow takes place without limit when f ( aij) = k and the material 

behaves elastically when f (au)< k. For plastic flow, therefore, 

df 
d'{=-da .. =0 . a '1 au 

comparing equation (3.15) and (3.16) It is seen that 

where, d.A is a scalar. 
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3.3.3 Effective Stress and Effective Strain 

If we want to make equation (3 .14) into any practical use, it must be related 

somehow to the experimental uniaxial stress-strain curve. What we are looking for is 

some function of the stresses, which might be called effective stress, so that results 

obtained by different loading programs can all be correlated by means of a single curve of 

effective stress versus effective strain. This curve should preferably be the uniaxial tensile 

stress curve. Since effective stress should reduce to the stress in the uniaxial tension test, 

it is a quantity which will determine whether plastic flow takes place or not, and it must 

be a positively increasing function of the stresses during plastic flow. Now the loading 

function f ( aij) also, by definition, determines whether additional plastic flow takes 

place. It should be a positively increasing function as long as plastic flow takes place and, 

if unloading takes place, plastic flow is not resumed until the highest previous value of f 

is exceeded. The loading function f ( aij) must therefore be some constant times the 

effective stress to some power; i.e., 

(3.18) 

for example, if we assume again 

f -J - 2 

then 

or 

30 



and for the uniaxial tensile testae = a1 • Therefore, 

There are two methods to define effective plastic strain, EP. One defines the 

effective strain increment in terms of the plastic work per unit volume; i.e., 

dWP =ad£ e p (3.19) 

(3.20) 

for example, iff= 12 , it can readily be shown that 

(3.21) 

and, if f = a1 - a3 with a1 > a2 > a3 as for the Tresca criterion, then 

(3.22) 

Equation (3.21) expanded becomes 

and, in terms of principal strain increment, 
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where, the incompressibility condition de{ +de{ + def = 0 has been used. 

The second method is sought to find a definition of effective plastic strain 

increment which when integrated is a function of ere only. The simplest combination of 

plastic strain increment that is positive increasing and has the correct 'dimension' is 

deP = C de~ de~ 
lj lj 

to make this definition agree for simple tension we must have 

therefore, 

and, for f = 12 

so that the integrated effective strain is a function of effective stress only; i.e., 

It should be noted here that the definition equation (3.21) for deP has been derived for 

f = 12 only. Drucker (1950&1952) [48&18] has shown that it is reasonably correct for 
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almost any f ( J 2 , J 3 ) • The second approach for defining dE P is not based on any specific 

loading function. 

Now we determine the function G . It should first be realized that for the previous 

formulation to agree with the uniaxial tensile curve, d ae IdE P must be the slope of that 

curve (in the plastic range). Substituting the basic equation 

into equation (3.21) gives 

(3.24) 

or 

(3.25) 

and the general plastic stress-strain relation becomes 

(3.26) 

or 

(3.27) 

where a~ = d ae IdE P is the slope of the uniaxial stress-strain strain curve at the current 

value of ae. As an example, for f = 12 , equation (3.27) gives 
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3 s .. = _ _!!_dE 
2 (j p 

e 

(3.28) 

Equation (3.28) constitutes the flow rule (or plastic stress-strain relations) 

associated with the von Mises yield criterion (von Mises, (1913) [40]). They are the 

well-known Prandtl-Reuss relations we obtained previously. If we replace the plastic 

strain increments in the above equations by total strain increments, the Levy-Mises 

relations are obtained which are valid only if the plastic strains are so large that the elastic 

strains can be neglected. 

As a final note, a general flow law such as (3.14) can also be obtained on the basis 

of a hypothesis that three exists a plastic potential (similar to the strain energy density 

function) which is a scalar function of stress, g(aij), from which the plastic strain 

increments can be obtained by partial differentiation with respect to the stresses. Thus 

dd = dg d{J 
'1 a (Jij 

(3.29) 

where, d fJ is a nonnegative constant. The plastic potential g ( CJij) was first introduced 

by Melan (1938) [35]. By comparison with (3.14), it would appear that the plastic 

potential should play the same role as the yield function, and indeed Drucker (1952) [18] 

has proved that they must be the same function, so that g in (3.29) can be replaced by f; 

(3.29) and (3.14) are then the same. 
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3.3.4 Incremental and Deformation Theories 

Equations such as (3.29) are called incremental stress-strain relations because they 

relate the increments of plastic strain to the stress. To obtain the total plastic components, 

we must integrate these equations over the whole history of loading. Hencky ( 1924) [ 49] 

proposed total stress-strain relations whereby the total strain components are related to the 

current stress. Thus, instead of equation (3.29), we would have 

3 s. 
eP.=-__..!!._e 

u 2 a r 
e 

The plastic strains then are functions of the current state of stress and are 

(3.30) 

independent of the history of loading. Such theories are called total or deformation 

theories in contrast to the incremental or flow theories previously described. This type of 

assumption greatly simplifies the problem; however, as was previously shown, the plastic 

strains cannot in general be independent of the loading path and deformation theories 

cannot generally be correct. There has often been a tendency therefore to ignore all 

deformation theory as of little value. 

It can easily be shown, however, that for the case of proportional or radial loading, 

i.e., if all the stresses are increasing in ratio, the incremental theory reduces to the 

deformation theory. For if aiJ = Ka~, where, aiJ is an arbitrary reference state of stress 

(nonzero) and K is a monotonically increasing function of time, then Sij = KSi~ and 

ae = Ka~ and equation (3.29) becomes 
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which can be immediately integrated to give 

(3.31) 

so the plastic strain is a function only of the current state of stress and is independent of 

the loading path. 

Furthermore, it has been proposed by Budiansky (1959) [50] that there are ranges 

of loading paths other than proportional loading for which the basic postulates of 

plasticity theory are satisfied by deformation theories. Budiansky's theory (Budiansky, 

(1959) [50]) postulates the occurrence of corners or singular points has as yet not been 

established experimentally, one cannot rule out the possibility of loading paths other than 

proportional loading for which total plasticity theories may give satisfactory answers. 

From a practical viewpoint, there are a great many engineering problems where 

the loading path is not far from proportional loading for which total plasticity theories 

may give satisfactory answers. 

3.4 Yield Criteria 

3.4.1 Representation of Yield Criteria 

A well-defined yield stress point a0 on an actual stress-strain curve in uniaxial 

stress states can obtain the elastic limit of the material. In combined stress states, the 

elastic limit is defined mathematically by a certain yield criterion or yield condition 

(Chen and Zhang, (1991) [51]). The initial yield criterion is a function of stress state aij 

and can be generally expressed as 
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(3.32) 

For isotropic materials, the stress state at a point can be uniquely represented by 

three principal stresses. Thus, the yield criterion for isotropic materials can be expressed 

as 

(3.33) 

Moreover, since principal stresses can be expressed in terms of either stress 

invariants, I1 , J 2 , J 3 , or the Haigh-Westergaard coordinates, f, p , 8, where, f = ~ I 1 ; 

p = j2.f;; e is the angle measured from the positive direction of the o-, -axis to the 

vector f. Equation (3.33) can be written as 

(3.34) 

and 

f(f,p,B)=O (3.35) 

Equations (3.33) to (3.35) represent a surface in the principal stress space. Such a 

surface is referred to as the yield surface. The material behaves elastically within the yield 

surface; the material begins to yield on the yield surface. 

To be fitted with available experimental results, the initial yield criterion generally 

contains several material constants. The material constants may be determined by curve 

fitting with simple tests, such as the uniaxial tension test and uniaxial compression test. 
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3.4.2 Hydrostatic-Pressure-Independent Materials 

The elastic-plastic behavior of most metallic materials is essentially hydrostatic 

pressure insensitive. This implies that yield criteria for this type of materials do not 

depend on / 1 • For a hydrostatic pressure insensitive material, the yield criterion can 

generally be expressed as 

(3.36) 

or 

J(p,B)=O 

The well-known yield criteria for Hydrostatic-Pressure-Independent materials include 

Tresca criterion and von Mises criterion. 

3.4.2.1 Tresca Criterion 

The Tresca criterion (Tresca, (1868) [52]) states that yielding of a material would 

occur when the maximum shearing stress at a point of the material reaches a critical value 

k . In terms of principal stresses, we have 

(3.37) 

From a uniaxial tension test, we determine k = a 0 j2, and from a pure shear test, 

k = r0 • Thus, if the Tresca criterion is used, the tensile strength and the shear strength of a 

material are related by a 0 = 2r0 • 
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Trese a yield su rlace 

Figure 3.1 Tresca's Yield Surface (after Tresca, (1868) [52]) 

The Tresca' s yield surface plots in principle stress space as a regular hexagonal 

cylinder whose axis is the space diagonal as shown in Figure 3.1. 

The Tresca criterion can also be generally expressed as 

2[i; sin ( e + ~)- (jo = 0, (0 :s; e :s; ~) (3.38) 

where a0 = 2k . 

Since the Tresca criterion has a linear expression in the principal stress space, it is 

often employed for analytical solutions of elastic-plastic problems. However, the criterion 

does not take into account the effect of intermediate principal stress and contains singular 

comers causing possible troubles in numerical analysis. 

3.4.2.2 Von Mises Criterion 

The von Mises criterion (von Mises, (1913) [40]), states that yielding of a material 

would occur when the maximum shearing strain energy at a point of the material reaches 
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a critical value. Since the shear strain energy is proportional to the second invariant of the 

deviatoric stress tensor, 12 , the criterion can be expressed as 

(3.39) 

From the uniaxial tension test, the constant k is determined as k = a0 / .J3, and 

from a pure shear test, k = T0 • Thus, if the von Mises criterion is used, the tensile strength 

and the shear strength of a material are related by a0 = J3T0 • Thus, equation (3.39) can 

also be written as 

(3.40) 

0 1 Von Mises yield surface 

Figure 3.2 Von Mises Yield Surface (after von Mises, (1913) [ 40]) 

The von Mises's yield surface plots in principle stress space as a circular cylinder 

whose axis is the space diagonal as shown in Figure 3.2. 

Since the von Mises criterion is of nonlinear form in terms of stress components, 

this criterion is somewhat harder to use for solving elastic-plastic problems. 
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3.4.3 Hydrostatic-Pressure-Dependent Materials 

For hydrostatic-pressure-independent yield surfaces, their meridians are straight 

lines parallel to the hydrostatic axis. This implies that shearing stress must be the cause of 

yielding of this type of materials. Since the magnitude of shearing stress is important, not 

its direction, in governing yielding, it follows that the elastic-plastic behavior in tension 

and in compression should be equivalent for hydrostatic-pressure-independent materials 

(Chen and Saleeb, 1982, [ 41 ]). Thus, the cross-sectional shapes for his type of yield 

surfaces have six-fold symmetry. This will be discussed further in the following section. 

3.4.3.1 Mohr-Coulomb Criterion 

The Mohr-Coulomb criterion (Coulomb, (1776) [53]) can be considered as a 

generalization of the Tresca Criterion. Both criteria assume that the maximum shearing 

stress determines the yielding of a material. However, the Tresca criterion assumes that 

the critical value of shearing stress is a constant, while the Mohr-Coulomb criterion 

considers the critical value of shearing stress on a plane to be a function of the normal 

stress acting on the same plane 

\r\ = c-atan¢ (3.41) 

where, c is the cohesion and ¢ is the angle of internal frication; a is the normal stress; 

and r is the shear stress on this plane. Both c and ¢ are material constants to be 

determined by experiments. Figure 3.3 shows the Mohr-Coulomb yield surface in the 

principal stress space. 
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The two parameters c and ¢ can be calibrated from two simple tests, e.g., a 

uniaxial tension test and a uniaxial compression test. Let a 1 be the tensile yield stress in 

the uniaxial tension, and ac the compression yield stress in the uniaxial compression test, 

we have 

2ccos¢ 2ccos¢ 
at= ,ac = 

1 + sin ¢ 1 - sin ¢ 
(3.42) 

The ratio of ac and at is defined as 

ac 1 +sin¢ 
m---- -

a
1 

1-sin¢ 
(3.43) 

In terms of m and ac , we have 

. m-1 2J;, 1l 
sm ¢=--,cos¢=--, 0 ~ ¢ ~-

m+1 m+l 2 
(3.44) 

and 

a 
c=--c-zrm (3.45) 

The general expression of the criterion has the form 

!_1
1 
sin¢+ Jj; sin(B + 1l) + {J; cos(e + 1l)sin f/J-ccosf/J = 0,0 ~ B ~ 1l (3.46) 

3 3 f3 3 3 
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0
1 Mohr Coulomb yield surface 

Figure 3.3 Mohr-Coulomb's Yield Surface (after Coulomb, (1776) [53]) 

The Mohr Coulomb's yield surface plots in principle stress space as an irregular 

hexagonal pyramid whose axis is the space diagonal as shown in Figure 3.3. 

3.4.3.2 Drucker-Prager Criterion 

The Drucker-Prager criterion (Drcuker, (1953) [54]) is a simple extension of the 

von Mises criterion to include the effect of hydrostatic pressure on the yielding of 

materials. Introducing an additional term that is proportional to / 1 to makes the extension. 

(3.47) 

where, a and k are material constants. From the uniaxial tension and uniaxial 

compression tests, we obtain 

J3k J3k 
at= l+J3a'a-c = 1-J3a (3.48) 

use the ratio m = ac / a
1 

, we can also express the parameter a and k as 
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a = m - 1 k = 2o-c 
.fi(m + 1)' .fi(m + 1) 

(3.49) 

0 
Drucker-Prager yield surface 

Figure 3.4 Drucker-Prager Yield Surface (after Drucker, (1953) [54]) 

The Drucker-Prager's yield surface plots in principle stress space as a circular 

cone with the space diagonal (hydrostatic stress axis, o-1 = o-2 = o-3 ) as its axis, shown in 

Figure 3.4. 

The Drucker-Prager yield surface can also be expressed generally as 

p=Jik-J6a~ (3.50) 

For brittle or granular materials, yield criterion is often referred to as failure 

criterion because for such materials yielding means failure. The term failure criterion is 

often utilized for materials such as soils, concrete and rocks. 
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Chapter Four 

Bearing Capacity of Strip Foundations 

The soil bearing capacity can be calculated by means of the finite element (FE) 

method or by analytical methods. 

4.1 Finite Element Method 

The finite element (FE) method has been widely used in engineering analysis in 

the last few decades. FE is a numerical method for solving engineering and mathematical 

problems, such as stress-strain analysis, heat transfer and fluid flow and electromagnetic 

potential (William, (1990&1994) [55]). Continuum finite element method is widely used 

in geotechnical engineering as a general tool for all kinds of analyses. The finite element 

method is particularly suited to analyze foundations with unusual shapes and/or unusual 

loading conditions as well as in situations where the soil is highly variable. For example, 

the potential failure modes for the layered soils, which will require consideration of the 

interactions between the soft and rigid soil layers as well as between the soil layer and the 

foundation. 

4.2 Analytical Methods 

The soil ultimate bearing capacity may be estimated from a number of analytical 

methods, which include the methods based on the theory of elasticity, the classic earth 
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pressure theory, the theory of plastic equilibrium, or from experimental results. Of theses 

methods, the method based on the concept of plastic equilibrium extends the theory of 

elasticity when applied to the design of foundations and retaining structures and provides 

more realistic estimates of load-carrying capacities against failure and better estimates of 

settlements or displacements when subjected to its working load (Chen, (1975) [7]). 

Therefore, this method is widely used in the solutions of soil bearing capacity. 

4.2.1 Soil Bearing Capacity Calculation by Means of Plastic Equilibrium 

Plastic equilibrium deals with the stresses in soil masses at failure. The basic 

equations in plastic equilibrium consist of the equations of equilibrium and the conditions 

of yield or failure. The solution of these equations gives the stresses at every point in a 

soil mass. Such solutions are called limit equilibrium solutions. 

4.2.1.1 Prandtl Mechanism 

Prandtl (1921) [56] and Hencky (1923) [57] solved the problem of a rigid punch 

indenting metal, and this can be seen to be the 'foundation problem' for the special case 

of a ¢ = 0, y = 0 material. The solution of Prandtl is stated as below: 

For soils, the Coulomb criterion is widely used for this yield condition. 

Combining the Coulomb criterion with the equations of equilibrium gives a set of 

differential equations of plastic equilibrium in this region. Together with the stress 

boundary conditions, this set of differential equations can be used to investigate the 

stresses in the soil beneath a footing or behind a retaining wall at the instant of impending 

plastic flow. In order to solve specific problems, it is convenient to transform this set of 
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equations to curvilinear coordinates whose directions at every point in this yielded region 

coincide with the directions of failure or slip plane. These slip directions are known as 

slip lines and the network is called the slip-line field. The Prandtl mechanism in fact is a 

slip-line mechanism. 

4.2.1.1.1 Upper Bound 

The Prandtl mechanism shown in Figure 4.1(a) consists of a triangular wedge, 

ABC, with base angles .!.n+.!.¢ moving downwards as a rigid body with the velocity of 
4 2 

the footing, VP, a logspiral shear zone, ACD, of central angle .!_ 1Z", and a rigid wedge, 
2 

ADE, with base angles .!.n-.!.¢. 
4 2 

The upper-bound solution for this mechanism can be obtained in an analogous 

manner. In this case, the lines AC and BC in addition to the lines CDE and CFG are 

lines of velocity discontinuity. Referring to the left-hand side of Figure 4.1(a), the soil 

below the failure line CDE remains at rest so that the velocity along this line must be 

everywhere inclined at an angle rp to the line. The velocity of the soil, V0 , just to the left 

of the discontinuity line AC is perpendicular to AC and its magnitude must be such that 

the change in velocity, Vop, across AC is inclined at an angle ¢ to AC. By drawing the 

compatibility velocity diagram shown in Figure 4.1(b), this velocity, V0 , must have the 

magnitude 

1 1 1 
V0 = -VP sec(-n+-¢) 

2 4 2 
(4.1) 
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In the logsiral shear zone ACD, the velocity increase exponentially to the value: 

(4.2) 

On the line AD, this triangular wedge ADE moves as a rigid body in the 

direction perpendicular to AD with the velocity ~ . Figure 4.1 (c) shows the displaced 

position of the Prandtl mechanism that would result if the footing moved with the 

downward velocity VP for a short period of time. 

Equating internal and external rates of energy for half the Prandtl mechanism and 

expressing all the velocities in terms of V0 gives: 

1 1 1 b 
-
2
-P2V0 cos(-.1Z'+2'¢)=c(V0 cos¢)[ 

1 1 
] 

4 2cos(-.1Z'+-¢) 
4 2 

1 (4.3) 
1 (-Jr)tan¢ 

(-7r)tan¢ be 2 c(V
0
bcot¢) 

+c[Voe 2 cos¢][ 1 1 ] + 1 1 (eman¢ -1) 
2 cos(- .1Z' + - ¢) 2 cos(- .1Z' + - ¢) 

4 2 4 2 

collecting terms gives 

p• 1 1 
- = ccot¢[eman¢ tan2 (-.1Z'+-¢) -1] 
b 4 2 

(4.4) 

where, c is the cohesion of the soil; k is a constant to be determined experimentally, 

which represents the failure (yield) stress in pure shear; ¢ is the friction angle of the soil. 

For the particular case of Tresca material for which c = k and ¢ = 0, from equation ( 4.4 ), 

we can get 
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{a ) Pro ndtt M ec na:n 151'1'1 

0 

(b) Velo~;it)l Diafrom 

Figure 4.1 Bearing Capacity Calculation Based on Prandtl Mechanism 

(Upper Bound) (after Prandtl, (1921) [56]) 
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1 1 
P" 1 1 [e~rtan(Vtanz(-.1r+-~)-1] 
- = ccot~[eman(V tan 2 (-.1r+-~)-1] = kcos~ 4 2 
b 4 2 sin~ 

when ~ = 0, because 

1 1 
eman(V tan 2 (-.1r+-~) -1 = 1-1 = 0 

4 2 

and 

sin~= 0 

Therefore, use the limit method to solve the maximum value of this equation, 

1 1 1 1 
eman(V.1Z"tan2(-.1r+-~) eman(V tan(-.1r+-~) 
-----=-4_,__________,2"----- + 4 2 

cosz ~ cosz(_!_.1r+_!_~) 
= lim------------4,__--=2,___ 

¢-tO 

2+.1Z" 
=--=2+.1Z" 

1 

cos~ 

cosO 

The maximum bearing capacity, pu, as given by equation (4.4) reduces to the value 

(2 + .1r)kb. This value agrees with the well-known "exact" slip-line field solution. 
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In the Prandtl mechanism, there is no slip between the soil and the footing, which 

can be considered rough, and therefore the upper-bound solution so obtained is applicable 

to either a smooth or a rough footing. 

4.2.1.1.2 Lower Bound 

A strip foundation with a smooth base is located on the ground surface as shown 

in Figure 4.2(a). As the load P is increased, the penetration of the strip increases as 

shown in Figure 4.2(b ). When the load P1 is reached the penetration increases 

indefinitely. At this point a bearing capacity failure is said to occur. 

Here the direction of the principal stresses varies from point to point, and the slip 

surfaces are curves as shown in Figure 4.2(a). Since the plate is frictionless, immediately 

beneath the loaded plate, the major principal stress is in the vertical direction and the 

failure surface in ABC makes an angle 45° + ( ~) with the horizontal. Also, away from 

the loaded plate, in zone ADE, the movement is predominantly horizontal. Along the 

free surface AE and BG, the major and minor principal stresses are in the horizontal and 

vertical directions, respectively. Therefore, the failure surfaces in AED intersect the free 

surface AE at an angle of 45° - ( ~) with the horizontal. The slip surfaces in A CD 

connect those in ABC with those in AED . Thus, a series of straight lines are postulated 

that radiate from A (or B) and a set of curves. Noting that the two sets of slip surfaces 

must intersect each other at an angle of 90° + ¢J, shown in Figure 4.2(c). From the 

geometric relationship between two slip surface shown in Figure 4.2(c), it can be deduced 
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that the normal to the curve makes an angle fjJ with the radius. This requirement is met if 

the curve has the shape given by 

r _ r, eBtan\)l 
- 0 (4.5) 

where, r0 is the reference radius, and B is the angle between r0 and the radius r . Such a 

curve is called a logarithmic spiral. 

To solve this problem we make use of the failure condition: 

T = c +a tan fjJ (4.6) 

and the equilibrium condition, which must now be written in differential form, in two 

dimensions the differential equations of equilibrium are 

aa aTxy __ x+--=X 
ax ay (4.7a) 

or 

(4.7b) 

Equation (4.6) defines the failure condition. In order to combine it with the equilibrium 

equation (4.7b), we transform equation (4.6) by the following operations. The stresses at 

failure are described by the Mohr circle shown in Figure 4.3(a). 

52 



(aJ 

Penetratlo n 

(b) 

Figure 4.2 Bearing Capacity Calculation Based on Prandtl Mechanism 

(Lower Bound) (after Prandtl, (1921) [56]) 
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y 3 

\ 

c cot rjJ 

L-~-------------------------X 

(a) (b) 

Figure 4.3 (a) Mohr's Circle of Stress at Failure. 

(b) Slip Planes and Principal Axes in the XY Plane (Tien-Hsing, (1976) [58]) 

The distance ac is _!_ ( a1 + a3 ) + c cot ¢J and_!_ ( a1 - a3 ) • From the geometric relationship, 
2 2 

we may write 

1 1 
-(a1 + a 3 ) = [-(a1 + a 3 ) + ccotf/J] -ccotf/J 
2 2 

_!_(a1 - a 3 ) = [_!_(a1 + a 3 ) + ccot f/J] sin ¢J 
2 2 

(4.8) 

If the principal axis is inclined at an angle If/ from the x axis ( 8 = If/), we also 

have 

1 1 
ax = - ( al + a3) + - (a] - a3) cos 2/f/ 

2 2 
1 1 

a =- (a +a ) -- (a -a ) cos 2/f/ 
y21 3 213 

(4.9a) 

and 

(4.9b) 
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Substituting equation (4.8) in equation (4.9) we obtain the expression for a-x, a-Y, 

and Txy at failure, 

ax = [_!_(a1 + a 3 ) + ccot¢](1 +sin ¢cos 2lf/)- ccot ¢ 
2 

ax = [_!_(a1 + a 3 ) + ccot¢](1-sin ¢cos 2lf/)- ccot ¢ 
2 

(4.10a) 

(4.10b) 

Equation ( 4.1 0) is the failure condition expresses in terms of a-x, aY , rxy , a1 and 

a-3 instead of a- and r . The directions of the slip lines and the principal axes are shown 

in Figure 4.3(b ). 

p 

B 

~------- f1:t; ___ .,... 

(a) (b) 

Figure 4.4 Failure of a Frictionless, Weightless Soil under a Strip Load 

(after Prandtl, (1921) [56]) 

For the case of ¢ = 0 that is weightless (X = 0, Y = 0 ), the logarithmic spiral 

reduces to a circular arc, and the failure surfaces are as shown in Figure 4.4(a). The shear 

strength of the material is given by Figure 4.4(b) 
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1 
-(a-a)=c 
2 I 3 

Equation (4.9) then becomes 

r xy = c sin 2/f/ 

Since the directions of the slip lines have been established, we can calculate the 

stress changes along the slip lines. We let 8 denote the angle between the x axis and the 

first slip line, shown in Figure 4.4(b ), then 28 = 2/f/ + (') , and the above equations 
2 

become 

ax= _!_(0'1 + 0'3) + csin 28 
2 

aY = _!_ ( a 1 + a 3) - c sin 28 
2 

rxy = ccos28 

Substituting this into equation ( 4. 7), we have 

a ( 0'1 + 0'3) 2 ( 28 ax . 28 a 8) 0 ----''--------"---- + C COS --SID - = 
ax 2 a8 ay 

a (al+a3) 2 ( 28a8 . 28a8)-() ----''--------"---- - C COS - + SID - -
ax 2 ay ax 

If we let the x and y axes coincide with the slip lines, then 8 = 0, and 
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in which sa and sh are the lengths along the a and b slip lines, respectively. The above 

equations then become 

(4.11a) 

(4.llb) 

Equations (4.11a) and (4.11b) describe the stress changes along the failure surface 

and are often called Kotter's equations (Tien-Hsing, 1976 [58]). The equations are 

independent of our choice of the x and y axes and therefore are not restricted to the 

special case of e = 0 assumed in the proof. 

If the slip lines are straight lines, then 

ae _
0 

ae _
0 --,--

asa ash 

Equation ( 4.11) then leads to 

(4.12) 

Thus the average normal stress ( a1 + a 2 
) remains constant. If the slip lines 

2 

consist of sets of concurrent straight lines and concentric circles as in zone abc (Figure 

4.4(a)), then along the straight slip lines 

(4.13) 

Along the circular slip lines, 
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ae 1 
sb = rB, ---

osb r 

in which r is the radius of the circular slip line. Substituting in equation ( 4.11 b) 

or 

Upon integration, this yields 

(4.14) 

in which A is the constant of integration. It is given by 

stating at ad (Figure 4.4(a)), we have o-1 = 2c, o-3 = 0. Thus, 

This holds for the zone ACE by virtue of equation (4.12). In zone ACD Equation 

(4.13) applies along the circular are CD. On ac, B = 7r and on AC, B = 
3
7r, thus, 

4 4 

in zone ACB, the term (0"1 + O"z) is again constant and 
2 

a+a a-a a+a 
a=( 1 3 )+( 1 3 )=( 1 3 )+c=c(l+7r)+c=5.14c 

I 2 2 2 
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Since AB is the major principal plane, o-1 is the bearing capacity. 

4.2.1.2 Trezaghi Bearing Capacity Theory 

In 1921, Prandtl published results of his study regarding the penetration of hard 

bodies, such metal punches into a softer material. Because the strength of metal is very 

great compared to their weight, assumption of weightlessness is approximately valid in 

the case of such materials. Terzaghi (1943) [1] realized, however, that such was not the 

case for soils. He superimposed upon the bearing capacity of a weightless material an 

additional component due only to the weight of the soil and its frictional resistance. 

Terzaghi's solution assumes that ab makes an angle ¢ with the horizontal. Then 

the spiral portion of the failure surface be must be vertical at point b , because ab is also 

a failure surfaces intersect each other at angle of 90° + ¢ . The load at failure may be 

calculated by considering the forces acting on the soil mass abed (Figure 4.5) (Jumikis, 

1965 [59]). 

Figure 4.5 Trezaghi Bearing-capacity Theory (after Terzaghi, (1943) [1]) 
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At failure the shear stress along the failure surface bee equals the shear strength 

of the soil as given by equation (4.6). We consider separately the resistances developed 

by the two components of the shear strength, e and a tan rjJ • The forces that act on the 

mass abed for these two cases are shown in Figure 4.6. 

l 
h 

p~ 1 

F 

(a) (b) 

Figure 4.6 Forces on Soil Mass abed in the Trezaghi Bearing-capacity Theory 

(after Terzaghi, (1943) [1]) 

Figure 4.6(a) shows the forces that act on the mass if the shear strength is equal to 

a tan rjJ only (or c = 0 ). Since the failure surfaces are planes in acd , Rankine's passive 

state of stress exists in this zone. The passive earth pressure P; on ed is, therefore, 

(4.15) 
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P; acts at a distance of ~ h from the surface. The weight of the mass abed is 
3 

equal to W and it acts through the centroid of abed . On the failure surface be there exist 

a normal stress a and a shear stress equal to the shear strength of the soil, a tan ¢J • 

Therefore, the resultant of a and a tan¢ makes an angle ¢ with the normal to the 

failure surface at every point. The resultant force F on the spiral part of the failure 

surface also makes an angle ¢ with the slip surface. F , therefore, passes through the 

center of spiral, o . The force that acts on the failure plane ab is designated by p', and it 

also acts at the lower third point. This system of forces may be solved by summation of 

moments about point o . The force F passes through point o and produces no moment. 

Hence, 

or 

(4.16) 

We next consider the resistance to failure developed by c, and the forces are 

shown in Figure 4.5(b). The passive pressure P; is 

P; = 2ch tan(45° + ¢) 
2 

(4.17) 

and acts at the midpoint of cd . The shear strength is e everywhere along curve bd , and 

its moment about o may be found by integrating the unit stress e along the spiral, 

rde 2 
dM = edscos¢r = re-- = er dB 

c cosf/J 
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rl c 2 2 
Me= dMe= (lj -r0 ) 

2tan¢ 
(4.18) 

the force c" on plane ab is equal to the unit stress c times the distance ab . p" acts at 

the midpoint of b * and summation of moment about o brings 

or 

" 1 " " " " 
P =((P)Pp +Me -C ZJ 

p 

(4.19) 

If p' and p" are known, the load P may be determined by considering the triangular 

mass aba (Figure 4.5) as the free body. The forces are p', p", c", P, and the weight of 

the mass aba' . Taking the summation of forces in the vertical direction, one finds that 

(4.20) 

The preceding discussion assumes that the failure surface bee is known. Actually, 

the failure surface is not accurately established because of the approximations mentioned 

at the beginning of this section. Therefore, the critical surface must be determined by trial. 

Computations of P should be made for a number of trial surfaces, using different 

locations of the center of spiral. The trial surface that results in the minimum value of P 

is the critical one. 

4.2.2 Bearing Capacity of Shallow Foundations 

The analysis presented in section 4.2.1.2 is used to determine the bearing capacity 

of shallow foundations. Figure 4.7 shows a section beneath a continuous footing located 
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at a depth D 1 beneath the ground surface. In a general sense, shallow foundations are 

those foundations that have a depth-of-embedment-to-width ration approximately less 

than four (Braja, 1985 [60]). To simplify the calculations, the part of the soil mass above 

ad is treated as a surcharge exerting a pressure q on the surface ad . The surface of 

failure is assumed to terminate at d . This ignores the shearing resistance of the soil 

located above ad , and therefore tends to underestimate the bearing capacity. 

Figure 4.7 Bearing Capacity of Shallow Foundations (after Braja, 1985 [60]) 

It can be seen from the solution described in section 4.2.1.1.2. That the value of 

bearing pressure at failure q1 = Q1 j B represents the sum of the following three 

components. 

The weight of the soil mass abed and the passive earth pressure on plane de 

constitute the first part of the bearing capacity. This is p' in section 4.2.1.2 (Equation 

4.16). The weight W increases with the square of B/2. Equation (4.15) shows that the 

passive pressure P; is proportional to h2 and hence proportional to (B/2)2
• Thus the 
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contribution to Q1 by W and P; increases with (B/2)2 and their contribution to q1 

increases with (B/2) . Furthermore, both W and P; are proportional to the unit weight y. 

If this portion of the bearing capacity is denoted as qr, we can write for simplicity 

in which NY is the proportionality factor, called a bearing-capacity factor. Its value can 

be computed, after p' is calculated, as outlined in section 4.2.1.1.2. 

By similar examination we see that p" and c'' are proportional to B/2 and c. 

Therefore the contribution of the cohesion qc to the bearing capacity is independent of B 

and we have 

in which Nc is the bearing-capacity factor for cohesion. The effect of the surcharge is 

also independent of B and is proportional to D 1 and y . Thus 

in which Nq is the bearing-capacity factor for surcharge. 

Finally, the total bearing capacity can be expressed as 

(4.21) 

where Nr, Nc and Nq are dimensionless coefficients that are governed only by the value 

of l/J. This is because the shape of the failure surface depends on l/J . It is, therefore, 
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possible to compute these coefficients for a set of values of ¢J, and these values may be 

used for all bearing-capacity calculations. 

Footings with circular and rectangular shapes present very difficult mathematical 

problems. Various individuals have proposed semiempirical equations. The 

bearing-capacity equation may be written as 

where, A.r and A.c are shape factors. Values of shape factors proposed include 

and 

for circular footings (Terzaghi, (1943) [1]) 

B 
Ar =1-0.2-

L 

B 
Ac =1+0.2-

L 

(4.22) 

for rectangular foundations (Skempton, (1951) [61]), where B and L are the width and 

length of the foundation. 
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Chapter Five 

Application of the R-node Method 

to Purely Cohesive Soils 

5.1 The Problem under Consideration 

The design of foundations involves two limit states: a serviceability limit state, 

which generally translates into a maximum settlement or differential settlement, and an 

ultimate limit state. The latter is concerned with the maximum load that can be placed on 

the footing just prior to a bearing-capacity failure (Chen, 1975 [7]). 

The critical load or the total ultimate bearing capacity is the load required to 

produce the plastic flow or failure of the soil support. The average critical load per unit 

area qu is called the bearing capacity of the soil. The value of the bearing capacity of a 

soil depends not only on the mechanical properties of the soil but also on the size of the 

loaded area, its shape, and its location with reference to the surface of the soil. 

The problem under consideration in this chapter is the determination of ultimate 

bearing capacity of a single, strip footing bearing on a plane surface of a semi-infinite 

mass of soil that is assumed to be elastic-perfectly plastic material (Potts and Lidija, 

(1999-2001) [75]). It is further assumed that the force acting on the footing is normally 

and centrally loaded and increased until penetration occurs as a result of plastic flow in 

the soil. Also, in this chapter, the investigation is limited to the bearing capacity of the 

strip footings on horizontal bearing areas for purely cohesive soil (i.e., clays under 
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undrained conditions); in the next chapter, the investigation will be directed towards the 

bearing capacity of the strip footings on horizontal bearing areas for a soil with both 

cohesive and frictional resistance. 

In the following investigation, the footing is assumed to be rigid while the 

interface between the soil and the footing is rough. In most parts of this chapter, the soil is 

assumed to be an isotropic, homogeneous and elastic-perfectly plastic material which 

obeys the Coulomb yield condition and the associated flow rule. The footing is assumed 

to be infinitely long, giving a plane strain condition is assumed in this chapter. 

5.2 Limit Load Calculated by Analytical Method 

Limit load of strip foundations can be solved either by general bearing capacity 

equation used in engineering or by nonlinear finite element analysis. Both of these two 

methods can give good results for bearing capacity for strip foundations. 

5.2.1 Bearing Capacity Calculation by General Bearing Capacity 

Equation 

The details about the development of bearing capacity of shallow foundations 

have been discussed in section 4.2. The equation is expressed as: 

(5.1) 

In this equation, B is the width of foundation, y is the unit weight of soil, c is 

the cohesion of soil, D1 is the depth of the footing; Nr, Nc and Nq are dimensionless 

coefficients that are governed only by the friction angle fjJ of soil; qu is the value of 
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bearing pressure at failure. This equation has been extensively used in soil mechanics to 

calculate the bearing capacity of strip foundations. The value obtained by this equation 

will be used as the theoretical solution of bearing capacity of strip foundations. 

5.2.2 Bearing Capacity Calculation for Layered Soils 

So far in this chapter the load-bearing capacity of homogeneous soils that support 

shallow foundations has been considered. However, if a footing is placed on a stratified 

soil deposit, soil profiles beneath footings would not be homogeneous. Studies regarding 

the ultimate bearing capacity of foundations on layered soils are very limited at this time; 

analytical solutions to the problem of footings resting on layered soils do not appear to 

exist (Merifieldetal, (1999) [62]). To calculate the ultimate bearing capacity for surface 

strip footings resting on horizontally layered soils, practitioners commonly use the 

approximate solutions of Button (1953) [63], Reddy and Srinivasan (1967) [64], Chen 

(1975) [7], Brown and Meyerhof (1969) [65] and Meyerhof and Hanna (1978) [66]. 

Button (1953) [63] and Chen (1975) [7] calculated upper bound solutions 

assuming a simple cylindrical failure surface, while Reddy and Srinivasan (1967) [64], 

assuming the same cylindrical mechanism, obtained results using the method of limit 

equilibrium. The solutions of Brown and Meyerhof (1969) [65] and Meyerhof and Hanna 

(1978) [66] were based upon a series of model footing tests from which empirical and 

semi-empirical solutions for the bearing capacity factor were derived. 

Based on the assumption that the basic failure mechanism of two layered soils 

strata for a strip footing is a simple cylindrical failure surface for isotropic soils, the 
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ultimate bearing capacity of two layered purely cohesive soils may be given by (Braja, 

1999 [67]) 

(5.2) 

where, Nc is the bearing capacity factor and is a function of (cu(z))/(cu0 )) and HI B; 

cu(I) and cu<2) are the undrained cohesions of the top layer and the bottom layer; H is the 

depth from the interface between two layered soils to the bottom of the footing, B is the 

width of the footing, shown in Figure 5.1. 

Upper layer 

Lower layer cu 2 ,rjJ=O,y=O 
00 

Figure 5.1 A Footing on Two-layered Cohesive Soils 

5.2.3 Bearing Capacity Calculation by Finite Element Analysis 

The finite element method is one of the most powerful approximate solution 

methods that can be applied to solve a wide range of problems represented by ordinary or 

partial differential equations (Fethi, 1999 [67]). It allows for different boundary 

conditions to be applied in such a way that an acceptable global approximate solution to 
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the physical problem can be achieved. Considering that closed form solutions cannot be 

elaborated for a large number of complex physical problems, due to the impossibility of 

satisfying the boundary conditions related to corresponding equilibrium equations, the 

finite element method therefore provides an ideal alternative (approximate) solution 

method. 

Finite element modelling of soil-structure problems needs to be planned and 

undertaken carefully, so that any anomalies in the results can be spotted and remedied. 

5.2.3.1 Finite Element Code, ABAQUS /Standard 

The finite element code, ABAQUS/Standard v5.8, 6.1 and 6.2 (Hibbitt, et al., 

1998a [69]), is used in the study. ABAQUS is a general purpose program for the static 

and transient responses of two and three-dimensional system; it offers standard options, 

or can be customized to address many of the challenges involved in a study of 

geotechnical structures (Nobahar, 2003 [70]), such as (1) 3-D soil-structure analysis, 

using complex finite strain constitutive models and accounting for large deformation 

effects; (2) coupled field equation capacities for two phase media; (3) contact analysis 

capacities for simulating the soil-structure interface; and (4) large deformation 

formulation capacity of capturing collapse mechanisms and strain localization. 

ABAQUS is widely available, and well documented. This program has been 

widely used for 2D and 3D finite element analyses of soil-structure interaction involving 

large relative deformations, and it has been validated based on results of full-scale tests 

(Nobahar, (2003) [70]). 
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5.2.3.2 Element Type and Finite Element Model 

In ABAQUS finite element code, a variety of element types are available for 

modeling different types of problems. For the structure under consideration, a 

two-dimensional solid element (CPE4R) (Hibbitt, et al., 1998a [69]) is selected for 

modeling. CPE4R is a quadrilateral isoparametric reduced integration element; this 

element type is defined by four nodal points, each having two degrees of freedom, i.e., 

displacements in x and y directions. Use of a reduced integration element has two 

reasons: firstly, fully integrated elements may suffer from "volumetric locking" behavior 

when the material behavior is (almost) incompressible. The cause of this problem is that 

the volume at each integration point must remain fixed, which puts severe constraints on 

the kinematically admissible displacement fields; the integration point numbers per full 

integration element is larger than the number of degrees of freedom, so it has more 

constraints than degrees of freedom, which results in overconstrained mesh (Nobahar, 

(2003) [70]). Because of this, the finite element solution of a structure with a perfectly 

plastic material cannot exhibit a limit load; instead, it shows a steadily rising 

load-displacement curve attaining load values far in excess of the true limit load. The use 

of reduced integration elements can avoid the occurrence of this problem. Secondly, 

reduced integration reduces the running time, especially in complicated finite element 

analyses (Hibbitt, et al., 1998a [76]). 

For pure cohesive soil under the undrained conditions, the shear strength of the 

material is not affected by the effective hydrostatic stress p' = .!_ 11 • Such material is 
3 
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called pressure-independent. Therefore, von Mises plasticity criterion is justified for such 

conditions to model the undrained behavior of purely cohesive soil. This has been verified 

using full nonlinear analysis in comparison with the bearing capacity formula. Because 

the structure is symmetric, only half of structure is analyzed. Along the horizontal 

direction of the structure, the model is divided in 40 columns; along the vertical direction 

of structure, the model is divided in 40 rows. This model will be used both for obtaining 

limit load of structure in nonlinear finite Element analysis by using ABAQUS finite 

element program and for obtaining r-node elements in two linear elastic finite element 

analyses. When this model is used in r-node method, each column is called a segment, 

this model can be considered as consisting of 40 segments (columns) along the horizontal 

direction, with each segment consisting of 40 elements. For each segment, the stresses of 

all elements will be compared between two linear elastic analyses; r-node elements are 

represented by elements where the stresses do not change in successive analyses. 

The input listing for the development of this model and subsequent analysis is 

given in Appendices. 

5.2.4 Limit Load Calculated by R-Node method 

5.2.4.1 The Failure Theory for Soil Materials 

In purely cohesive soils, stability problems can be analyzed under undrained 

conditions. The yield of the material is assumed to be unaffected by the hydrostatic 

stresses p = _!_ / 1 ( / 1 = o-1 + o-2 + o-3 ); the material is pressure-independent material; von 
3 
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Mises yield criterion is used here to model this condition. Again, the material is assumed 

pressure insensitive, and isotropic. 

Von Mises yield criterion is expressed as below (von Mises, (1913) [81]): 

(5.3) 

For pure shear, 

(5.4) 

Thus, kj .J3 is the shear stress at yield in pure shear experiments. From equation (5.4), 

we can derive .j3.i; = .J3r, because r = cu, the limit load for uniform soil on the basis of 

the von Mises stresses according tor-node method is (Seshadri and Prasad, (1996) [34]) 

P*c *.J3 P. = u 
L -

an 
(5.5) 

where, lf" is the combined r-node equivalent stress. For uniform cohesive soil, the yield 

stress of all elements in finite element model have the same yield stress aY. If there are 

more than one r-node peak values, the average value of these r-node equivalent stresses, 

N 

L(jnj 

lf = _El__ (Seshadri and Fernando, (1991) [82]), will be used in equation (5.5). Where, 
n N 

an} is the peak r-node equivalent stress, 

(5.6) 
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For the layered soils, based on the basic principle of r-node method that are 

explained in section 2.5, equilibrium conditions for solving the limit load after obtaining 

the r-node equivalent stresses can be invoked in order to give the following expression 

(Seshadri and Prasad, (1996) [34]): 

(5.7) 

where, O'nM is the r-node equivalent stress; cuM is the corresponding cohesion of soil 

layer where this r-node element is located. For example, if r-node with stress O'nM is 

located in the upper layer, the corresponding cuM will be equal to the cohesion of the 

upper layer soil; if r-node with stress O'nM is located in the lower layer, the corresponding 

cuM will be equal to the cohesion of lower layer soil. von Mises yield criterion is used 

here. 

5.2.4.2 The Procedure for Applying the R-oode Method 

The following steps are employed for limit analysis of strip foundation in purely 

cohesive soil under undrained conditions. 

1. Choose the model parameters and mesh the model using ABAQUS/Standard. 

2. Carry out the first elastic analysis using an arbitrary value of load P . The 

resulting equivalent stress distribution is determined. 

3. Modify the Young's modulus for each element using the equation, 

E . = [ ( ae) j l E 
m ( ). o 

(J'e 1 

(5.8) 
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where, (o-e) j is any arbitrary stress, (o-e\ is the equivalent von Mises stress of element i, 

Eo is the original Young's modulus for the element, Eni is the new Young's modulus for 

element i, which will be used in the second elastic analysis. 

4. Carry out the second analysis for the same load (except for a different Young's 

modulus for each element) and obtain the equivalent stress in each element. 

5. Compare the stress of each element between the first linear elastic analysis and 

the second linear elastic analysis. R-nodes are represented by locations where the 

equivalent stress did not change. Use equation (5.9) to find limit load. 

0" p =-y p 
L -

(5.9) 
O"n 

where an is the combined r-node equivalent stress, the calculation of an has been 

explained in section 5.2.4.1. 

Seshadri and Fernando (1991) [82] have discussed in detail the underlying 

concept and motivation behind equations (5.8) and (5.9). Several numerical examples 

involving thick-wall cylinder, rectangular beam, torispherical head, framed structures and 

arch have been analyzed using the r-node method with success (Seshadri and Fernando, 

1991 [82], Seshadri, 1996 [83], Mangalaramanan and Seshadri, 1995 [84]). 

5.2.4.2.1 Numerical Example 

5.2.4.2.1.1 Bearing Capacity of Strip Foundations on Uniform Purely Cohesive Soils 

For the present study, the soil is assumed to be weightless. Because the structure is 

symmetric, half of the foundation was analyzed. The geometry of the problem and the 

75 



finite element mesh are shown in Figure 5.2. The parameters used in numerical examples 

are shown in Table 5.1. Width of the footing is taken asB. The domain under analysis 

extends to lOB laterally and 5B vertically, an area within which most of the stress 

variations are expected to occur, a smaller domain might not fully exclude the influence 

of boundary restraints. This extension of the analysis domain is considerably larger than 

that used in typical plastic analyses of boundary condition (about 5 to 6B). This is due to 

the fact that in this study elastic analysis are performed and therefore a larger area is 

influenced. Chen (1975) [7] and Potts and Lidija (1999-2001) [75]) used similar or bigger 

domains to analyze this type of structures. The left edge of the model has the symmetry 

condition. The right edge of the model has vertical rollers. The bottom of the model is 

pinned. The behaviour of material is assumed approximately incompressible ( v = 0.499) 

to simulate undrained loading condition; the Young's modulus of soil is set according to 

its undrained shear strength, such as E = 2000cu or E = 5000cu (Chen, (1975) [7]). 

The results obtained with r-node method and comparisons with nonlinear FEA 

solution and theoretical solution methods are shown in Table 5.2. The theoretical solution 

is calculated according to the equation (5.1) and tables given by Das (Das, (1999) [68]), 

and the nonlinear FEA solution is calculated by using ABAQUS/Standard. Von Mises 

yield criterion has been used for nonlinear analysis. Large deformation analysis is used to 

calculate the limit load of structure; the input listing for the development of this model 

and subsequent analysis is given in Appendices 1.3. 
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Figure 5.2 Geometry and Finite Element Model for Uniform Purely Cohesive Soil 

Table 5.1 The Parameters Used in Numerical Examples 

Width of Young's 
Undrained 

Applied Poisson's shear 
Case# oundation, modulus ratio strength, pressure 

B (m) (MPa) 
Cu (kPa) 

(kPa) 

1 3 20 0.499 10 100 
2 4 20 0.499 10 100 
3 3 50 0.499 10 100 
4 4 50 0.499 10 100 
5 3 20 0.499 10 50 
6 4 20 0.499 10 50 
7 3 20 0.499 20 100 
8 4 20 0.499 20 100 

The r-node locations and corresponding von Mises stresses for case one are shown 

in Figure 5.3 and 5.4 as an example to explain how to calculate the limit load based on 

r-node peak stresses. From Figure 5.3, we can find two distinct r-node peaks; the average 

value of von Mises stresses of them are used to calculate the limit load of structure 

according to the method explained in section 5.2.4.1, hence the limit load 
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PL = P*cu *.J3 = 100*10*.J3 =53.38KN/mz 
(jn (46.3+18.6)/2 

Figure 5.4 shows the r-node element locations in FE model. 
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Figure 5.3 R-node Locations and Corresponding von Mises Stresses (case one) 
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SegMent nuMber froM 1 to 40 

Figure 5.4 R-node Locations in FE Model (case one) 

Similarly, the results of other cases are obtained and shown in Table 5.2. 

Table 5.2 Results and Comparisons (in kPa) 

Nonlinear solution (von Bearing Capacity 

Case# 
R-node Mises criterion) (formula equation 5.1) 
method 

C ·ty Error bound Capacity Error bound apac1 (percent) (percent) 

1 53.38 54.9 2.77 51.4 3.85 

2 53.38 54.9 2.77 51.4 3.85 

3 53.38 54.9 2.77 51.4 3.85 

4 53.38 54.9 2.77 51.4 3.85 

5 53.38 54.9 2.77 51.4 3.85 

6 53.38 54.9 2.77 51.4 3.85 

7 106.76 109.7 2.68 102.8 3.85 

8 106.76 109.7 2.68 102.8 3.85 

I 
-I 

From the Table 5.2, we can see accurate limit load estimates have been obtained 

for the uniform purely cohesive soil by using the r-node method. 
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5.2.4.2.1.2 Bearing Capacity of Strip Foundations on Layered Purely Cohesive Soils 

The bearing capacity of footings on layered purely cohesive soils by using r-node 

method is examined in this section. Several different cases are considered. The finite 

element model and the soil properties under consideration are presented in Figure 5.5 and 

Table.5.3. Layer 1 has a depth of H while layer 2lies below layer 1. The cohesion values 

for the layers are cu1 and cu 2 , respectively. The corresponding modulus are E1 and E2 . 

lOB 
/ 

/Layer 1 (Cul) /Layer 2 (Cu2) 
JL 

'lJf 
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Figure 5.5 Geometry and Finite Element Model 

for Layered Purely Cohesive Soils 

The results obtained with r-node method and comparison with several kinds of 

analytical methods and nonlinear solution are shown in Table 5.6. The solutions of 

analytical methods are calculated according to the equations and tables provided in 

Merifield's paper (Merifield, (1999) [62]), and the nonlinear FEA solution is calculated 

by using ABAQUS/Standard. Large deformation analysis is used to calculate the limit 
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load of structure; the input listing for the development of this model and subsequent 

analysis is given in Appendices 1.2. 

Table 5.3 The Parameters Used in the Examples 

Case# Cu1/Cu2 Cm (kPa) Cu2 (kPa) El (MPa) E2 (MPa) VI V2 

1 4 40 10 80 20 0.499 0.499 

2 2 20 10 40 20 0.499 0.499 

3 1.5 15 10 30 20 0.499 0.499 

4 1 10 10 20 20 0.499 0.499 

5 0.66 10 15 20 30 0.499 0.499 

6 0.5 10 20 20 40 0.499 0.499 

7 0.25 10 40 20 80 0.499 0.499 

The r-node locations and corresponding von Mises stresses for case one 

(HI B = 2,cu1 / cu 2 = 4) are shown in Figure 5.6 and 5.7 as an example to explain how to 

calculate the limit load based on r-node peak stresses. From Figure 5.6, we can find two 

distinct r-node peaks; both of them are located at the upper layer soil, hence the 

corresponding cohesions of them all are 40kPa. According to the equation (5.7) given in 

section 5.2.4.2, the limit load of structure is calculated as follow: 

PL = P(cu! +cu2 + ... +cuM)J3 = 40*2*J3 =197.1kPa 
(O"u! +O"u2 + ... +O'uM) (51.3+19) 

Figure 5.7 shows the r-node element locations in FE model. 

Similarly, the results of other cases are obtained and shown in Table 5.4.The value 

of bearing capacity ( N~) obtained for different H / B with r-node method and comparison 

with several kinds of analytical methods and nonlinear solution are given in Table 5.5. 
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Figure 5.6 R-node Locations and Corresponding von Mises Stresses (case one) 
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Table 5.4 Resulting Ultimate Bearing Capacity (in kPa) 

Average 
Upper Bound Meyerhof&Hanner R-node Nonlinear 

H/B Cu1/Cu2 (Merifield et al., 
1999) 

(Chen, 1975) (1978) method solution 

4 202.4 221.2 184 197.1 220.5 
2 100.8 110.6 102.8 90.21 110.65 

1.5 75.6 82.95 77.1 74.23 82.85 
2 1 51.3 55.3 51.4 53.38 54.9 

0.66 51.2 55.3 51.4 52.97 55.05 
0.5 51.2 55.3 51.4 54.55 54.85 

0.25 51.2 55.3 \ 43.09 55.15 
4 181.6 218.4 150.8 189.55 190.65 
2 101.8 110.6 92 98.04 110 

1.5 76.35 82.95 77.1 83.81 82.65 
1.5 1 51.3 55.3 51.4 53.38 54.9 

0.66 51.2 55.3 51.4 39.64 55.15 
0.5 51.2 55.3 51.4 54.38 55.3 

0.25 51.2 55.3 \ 47.98 54.65 
4 146 165.9 117.6 160.99 151.8 
2 92.6 102.2 89.2 99.97 99.25 

1.5 74.55 82.95 77.1 81.34 82.35 
1 1 51.3 55.3 51.4 53.38 54.9 

0.66 51.2 55.3 51.4 46.1 55.15 
0.5 51.2 55.3 51.4 53.39 55.05 

0.25 51.2 55.3 \ 59.1 55.05 
4 124.8 141.2 101.2 160.93 132.35 
2 83.6 88.6 79.8 99.83 90.05 

1.5 70.35 73.05 73.5 83.01 75.25 
0.75 1 51.3 55.3 51.4 53.38 54.9 

0.66 51.7 55.3 51.4 46.07 54.6 
0.5 51.7 55.3 51.4 53.38 54.9 

0.25 51.7 55.3 \ 59.11 56.88 
4 103.6 113.2 84.4 56.05 109.5 
2 74 78.8 70.2 89.74 80.05 

1.5 64.2 67.8 66.15 68.19 69.55 
0.50 1 51.3 55.3 51.4 53.38 54.9 

0.66 52.4 57.8 53.3 48.11 57 
0.5 52.4 57.8 54.3 51.86 57.1 

0.25 52.4 57.8 \ 55.93 57.2 
4 79.6 84.8 68 46.07 86.1 
2 63.4 68 68.4 60.46 69.05 

1.5 58.05 62.1 69.15 51.86 69.45 
0.25 1 51.3 55.3 51.4 53.38 54.9 

0.66 59.8 76.1 58.1 40.75 69.45 
0.5 62.6 76.1 60 79.94 71.2 

0.25 62.6 76.1 \ 129.26 72.15 
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Table 5.5 Values of Bearing Capacity Factor (N'c) and Comparisons 

Value of Bearing C8£_ac!!Y_ of N'c 

H/B Cul/Cu2 Average 
Upper bound Meyerhof&H R-node Nonlinear (Merifield et Error bound 

al., 1999) 
(Chen, 1975) anner (1978) method solution 

4 5.06 5.53 4.6 5.9 5.51 7.08 
2 5.04 5.53 5.14 4.51 5.53 18.44 

1.5 5.04 5.53 5.14 4.95 5.52 10.33 
2 1 5.13 5.53 5.14 5.08 5.49 7.47 

0.66 5.12 5.53 5.14 5.3 5.51 3.81 
0.5 5.12 5.53 5.14 5.53 5.49 0.73 

0.25 5.12 5.53 \ 4.31 5.52 21.92 
4 4.54 5.46 3.77 4.74 4.77 0.63 
2 5.09 5.53 5.14 4.97 5.5 9.64 

1.5 5.09 5.53 5.14 5.59 5.51 1.451 
1.5 1 5.13 5.53 5.14 5.08 5.49 7.47 

0.66 5.12 5.53 5.14 5.45 5.52 1.27 
0.5 5.12 5.53 5.14 5.44 5.53 1.63 

0.25 5.12 5.53 \ 4.8 5.47 12.25 
4 3.65 4.14 2.94 4.02 3.8 5.79 
2 4.63 5.11 4.46 5 4.96 0.81 

1.5 4.97 5.53 5.14 5.42 5.49 1.28 
1 1 5.13 5.53 5.14 5.08 5.49 7.47 

0.66 5.12 5.53 5.14 4.61 5.52 16.49 
0.5 5.12 5.53 5.14 5.34 5.51 3.09 

0.25 5.12 5.53 \ 5.91 5.51 7.26 
4 3.12 3.53 2.53 4.12 3.31 24.47 
2 4.18 4.43 3.99 4.61 4.5 2.44 

1.5 4.69 4.87 4.9 4.73 5.02 5.78 
0.75 1 5.13 5.53 5.14 5.08 5.49 7.47 

0.66 5.17 5.53 5.14 4.69 5.46 14.1 
0.5 5.17 5.53 5.14 5.08 5.49 7.47 

0.25 5.17 5.53 \ 5.89 5.49 7.29 
4 2.59 2.83 2.11 1.4 2.74 48.91 
2 3.7 3.94 3.51 4.49 4 12.25 

1.5 4.28 4.52 4.41 4.55 4.64 1.94 
0.5 1 5.13 5.53 5.14 5.08 5.49 7.47 

0.66 5.24 5.78 5.33 4.82 5.7 15.44 
0.5 5.24 5.78 5.43 5.37 5.71 5.95 

0.25 5.24 5.78 \ 5.53 5.72 3.32 
4 1.99 2.12 1.7 1.05 2.15 51.16 
2 3.17 3.4 3.42 3.02 3.45 12.46 

1.5 3.87 4.14 4.61 3.45 4.63 25.49 
0.25 1 5.13 5.53 5.14 5.08 5.49 7.47 

0.66 5.98 7.61 5.81 7.72 6.95 11.08 
0.5 6.26 7.61 6 7.98 7.12 12.08 

0.25 6.26 7.61 \ 17.68 7.22 144.88 
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Based on the results in table 5.4 and 5.5, the error bound for variation bearing 

capacity factor N'c is shown in Figure 5.8, contour of N'c for nonlinear analysis, contour 

of N'c for r-node method and contour of error bound between nonlinear analysis and 

r-node method are shown in Figure 5.9, 5.10 and 5.11. 
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Contour of N'c for Nonlinear Analysis 
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Contour of Error Bound between Nonlinear Analysis and A-node Method 
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From the results, it can be seen that as compared to the results of full nonlinear 

solution, the method works well for uniform purely cohesive soils (homogeneous 
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materials); for layered soils it seems to provide less accurate results if the main resistant 

layer is on top (i.e. the failure surface is more likely to pass through both layers) and as 

the degree of inhomogeneity increase (e.g. cu1 I cu 2 = 4 vs cu1 I cu 2 = 2) and the division 

between soil layers is close to the foundation (e.g. HI B = 0.25 vs HI B = 1.5 ). 

The reason for such tendencies is locating of r-nodes becomes difficult because 

there exists a sudden change of soil properties across the division between soil layers; the 

increasing of the degree of inhomogeneity aggravates this influence. Specially, when the 

main resistant layer is on top and thin, the locations of r-node elements having the peak 

stresses are normally close to the interface of two soil layers. Under such condition, not 

all r-node peak values can be found or located accurately, which leads to the poor or 

wrong results. By using more iterations to find r-nodes, one can somehow improve this 

problem, but for the condition that top soil layer is thin, the improvement is smaller than 

when the top soil layer is thick. Several cases are show below: 

R-node R-node Nonlinear 
H/B Cu1/Cu2 Iteration 2 Iteration 3 solution 

(kPa) (kPa) (kPa) 

2 4 197.31 224.21 220.25 
0.75 4 164.58 147.41 132.35 
0.25 4 46.07 59.7 86.1 
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Chapter Six 

Application of R-Node Method 

to Cohesive-Frictional Soils 

6.1 Failure Theory 

Mohr (1900) [72]) presented a shear strength theory for pressure-sensitive 

materials called Mohr-Coulomb theory, which has been found to be very successful in 

defining shear failure in soils. The theory states that failure in a material occurs if the 

shear stress on any plane equals the shear strength of the material. Furthermore, the shear 

strength r1 , along a plane is a function of the normal effective stress a' on that plane, or 

(6.1) 

This function plots as a curve in a normal versus shear stress plane. Coulomb 

(1776 [53]) defined the function f as a linear function of the normal effective stress 

called as failure line or failure envelope. Equation (6.1) then becomes 

(6.2) 

If the major and minor principal effective stresses in an element of material are 

equal to a; and a;, these stresses can be calculated graphically by means of Mohr's 

circle of stress. A Mohr's circle with principal effective stresses a; and a; is plotted in 
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Figure 6.1. If the Mohr circle is tangent to the failure envelope, there is a plane defined 

by angle rjJ where the shear stress rA is equal to the shear strength r1 , and failure occurs. 

(6.3) 

Failure envelope 

\ 

Figure 6.1 Mohr-Coulomb Failure Envelope (after Mohr, 1900 (72)) 

For purely cohesive soils under undrained condition, the failure envelope is a horizontal 

line. The failure theory becomes 

(6.4) 

where, cu is the undrained shear strength and equal to the radius of the Mohr's circle at 

failure. 
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6.2 Yield Criterion for Cohesive-Frictional Soils 

For cohesive-frictional soils, the shear strength of the material is affected by the 

effective hydrostatic stresses p' =.!. /1 • The material is called pressure-dependent. 
3 

Mohr-Coulomb and Drucker-Prager yield criteria are normally used to include the effect 

of hydrostatic pressure on the yielding of materials. 

The Mohr-Coulomb Criterion (Coulomb, (1776) [53]) is expressed as 

(6.5) 

The general expression of the criterion in three dimensions has the form 

(6.6) 

The function in equation (6.6) is called yield (or failure) surface and plots as an 

irregular hexagonal pyramid in the (3D ) principal effective stress space. The apex of the 

pyramid is located on the hydrostatic line (a; = a; = a;). Drucker ( 1953) introduced a 

simpler failure surface, which plots as a circular cone in the principal effective shear 

space and is tailored to be tangent (internally or externally) to the more realistic Mohr-

Coulomb failure surface. Drucker-Prager criterion is expressed as: 

(6.7) 
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Figure 6.2 Drucker-Prager and Mohr-Coulomb Failure Criteria with 

Different Matching Conditions 

(after Chen and Saleeb, (1982) [41]) 

where, a and k are positive material parameters; / 1 = aii is the first invariant of stress 

tensor; J 2 = _.!._ s;js ji is the second invariant of deviatoric stress tensor; 8 can be measured 
2 

from Figure 6.2, and e is the polar angle measured from the positive direction of the 

projection of the a, axis. By matching the predictions of both yield criteria in given test 

condition, the values of a and k can be expressed in terms of the cohesion c and friction 
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angle ¢ (Chen and Saleeb, (1982) [41]). For instance, in axial compression ( CY2 = CY3 and 

B = 0) (Prevost, (1989) [73]): 

a = 2 sin ¢ k = 6c cos ¢ 
.J3(3- sin¢)' .J3(3- sin¢) 

Similarly, in axial extension ( CYz = (Y3 and e = + 1r ): 
3 

a = 2 sin ¢ k = 6c cos¢ 
.J3(3 +sin¢)' .J3(3 +sin¢) 

(6.8) 

(6.9) 

If the Drucker-Prager and Mohr-Coulomb criteria are expected to give an identical 

limit load (or plastic collapse load) for the case of plane strain, the following two 

conditions must be satisfied to determine the constants a and k (Chen and Saleeb, (1982) 

[41]): 

1. The condition of plane strain deformation. 

2. The condition of the same rate of dissipation of mechanical energy per unit 

volume. Based on these two conditions, 

a= 3tan¢ k = 3c 
~(9+12tan2 ¢)' ~(9+12tan 2 ¢) 

(6.10) 

Under this condition, the Drucker-Prager cone is internally tangential to the 

Mohr-Coulomb yield surface (Chen and Saleeb, (1982) [41]), the angle B in equation 

(6.6) is defined by tan B = sy: (Prevost, (1989) [73]). 
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6.3 Application ofR-Node Method to Cohesive-Frictional Soils 

The r-node method has been developed for the limit analysis of structures made of 

elastic- perfectly plastic material corresponding with the one-parameter failure criteria, 

such as metals. The elastic-plastic behavior of most metallic materials is essentially 

hydrostatic pressure insensitive. The one-parameter failure criteria, such as Tresca 

criterion or von Mises criterion, have generally been used for this type of materials. 

Purely cohesive soils loaded under undrained conditions match this type of material. 

In this chapter, the r-node method is applied to cohesive-frictional soils, which are 

pressure-sensitive materials. This implies that the effect of hydrostatic pressure on the 

yielding of materials must be considered. Two-parameters failure criteria are normally 

used, such as Mohr-Coulomb criterion or Drucker-Prager criterion, as the yielding 

condition for this type of materials. Hence, before applying the r-node method to it, there 

are some particular discussions below: 

Firstly, the failure shear stress of the cohesive-frictional soils depends on the 

confining stress as opposed to the purely cohesive soil that is independent of the 

confining stress. 

The purely cohesive soils match the type of pressure-insensitive material; the 

shear strength of this material is independent of the confining stress and is a constant, 

which is expressed as r1 = cu . When the r-node method is applied, a unique reference 

stress is used to modify the Young's moduli of all elements in the modulus-modified 

procedure. But for cohesive-frictional soils, when Mohr-Coulomb criterion is, the shear 

strength of material depends on the normal effective stress. Therefore, dependence of 
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shear strength on confining stress should be considered in analysis. Instead of working 

with a unique reference stress, for the cohesive-frictional soils the Young's modulus of 

each element is modified according to the corresponding shear strength, which is 

expressed below: 

(6.11) 

where, (r1 ); is shear strength of element i; (re); is the shear stress of element i; Eo is 

the original Young's modulus; En; is the new Young's modulus for element i, which will 

be used in the second elastic analysis. 

Secondly, for cohesive-frictional soils, there are two parameters ( c and f/J) 

characterizing shear strength of materials as opposed to one parameter (e.g., cu) for 

undrained clays or for metals (yield stress fJY ). 

When equation (6.11) is used, the shear strength of each element is solved 

according to (r1 ); = c + (tJ~); tan f/J, which is based on the normal effective stress obtained 

from the first elastic analysis. 

The problem here is how to calculate the shear stress ( Te ); of that element 

knowing only the normal effective stress of it. One can somehow address this problem 

using mobilized cohesion cd and mobilized friction angle f/Jd as scaling factors. 

For getting the mobilized cohesion and mobilized friction angle of that element, it 

is necessary to establish some functional relation between mobilized cohesion and 
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mobilized friction angle. It is assumed that the failure surface and the mobilized stress 

surface have the same apex, shown in Figure 6.3 and explained below: 

For the material with cohesion c and friction angle tjJ, the Mohr-Coulomb yield 

criterion is used and shown as a straight line in the r-a stress space, see Figure 6.3. The 

principal effective stresses in each element are obtained from the first analysis; the 

mobilized stress Mohr-Coulomb circle and line are shown in Figure 6.3. The mobilized 

shear strength is calculated as rd = c d +a~ tan t/Jd , where, f/Jd (mobilized friction angle) is 

the slope of the mobilized stress line; cd is the mobilized cohesion, cd =a tan t/Jd; the 

quantity a = _c_, shown in Figure 6.3, is called attraction. 
tan tjJ 

Failure envelope 

Figure 6.3 Failure and Mobilized Stress Mohr's Circle (after Prevost, (1989) [89]) 

The Mohr-Coulomb yield criterion, r1 = c +a~ tan¢, is expressed as 

c = r1 -a~ tan tjJ , therefore, the modulus of each element will be modified by using 

95 



En = _c_ Eo, where, c is the cohesion of soil; (cd ); is the mobilized cohesion of each 
(cd ); 

element. 

Thirdly, stresses caused by the self-weight of soil affect the shear strength. 

Normally metals and purely cohesive soils are taken as weightless materials when 

calculating the load-carrying capacities against failure. But for cohesive-frictional soils, 

the self-weight of them cannot be ignored in limit load calculation. When applying r-node 

method, the procedures given below are employed to consider the effect of self-weight of 

soil for different trials. 

Soil is still considered weightless in the two elastic analyses, but the self-weight 

stresses are added when calculating shear strength and estimating the Young's modulus. 

But in some trials, stresses induced by self-weight are deleted when calculating limit 

loads. That's because for the condition in practice, before the foundation is submitted to 

load, the stresses caused by self-weight have existed in the soil as the initial stresses. The 

limit load of structure in fact is the limit-applied load. Thus, Limit load solved in last step 

should only depend on the additional stresses produced by applied load. 

Fourthly, for the failure of soil in shear, deformability is characterized by shear 

modulus rather than by Young's modulus. 

For metallic materials, the stress-strain behavior is normally exhibited by normal 

stress versus normal strain; for soils, the failure of soil is determined by shear strength, 

the shear stress-strain curve is presented to exhibit this behavior. Hence instead of 

working with Young's modulus, E, the shear modulus, G = E , is used as the 
2(1 + v) 
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quantity to be modified from the first to the second elastic analysis. The values of 

Young's modulus and Passion's ratio for the second analysis are estimated from the new 

shear modulus and the condition that bulk modulus, B = E , is constant. It is 
3(1-2v) 

mentioned here that in soil nonlinear behaviour, bulk modulus is approximately constant 

during plastic flow if the confining stress does not change significantly. Hence, for the 

second elastic analysis, each element in the structure has the new Young's modulus and 

Passion's ratio in order to simulate the inelastic flow at the plastic collapse of structure. 

All those modifications to the original method used in chapter 5 for purely 

cohesive soils have been gradually introduced, and their effects have been analyzed in a 

series of trials, as described hereafter. 

6.4 Numerical Example 

For the analysis of this problem, plane strain conditions are assumed. Because the 

structure is symmetric, half of the foundation was analyzed. The Mohr-Coulomb 

plasticity model is selected in this study for modelling cohesive-frictional soils. The 

geometry of the problem and finite element mesh are shown in Figure 6.4. The 

parameters used in numerical examples are shown in Table 6.1. 

6.4.1 Trial one 

The first two elements mentioned in section 6.3, namely, relation between 

cohesion and frictional angle (Figure 6.3) and effect of self-weight of soil, are considered 

in trial one; the self-weight of soil is also considered when calculating limit loads. The 

following steps are employed for trial one: 

97 



/j> 1/B/2 
)~ 

lOB 

·~'""' 

1- 1-- .... _ 1-- .... _ 

~~ 

-
--~·~- .... 

f--· f--

.. -+--i--- ------ -- --1--+ 

-1--1-1--1-- !--

1+-+-+-+-+-+++++++-1·-1-+-.. ++--+--1--1--+-+--.. ··-+-+-+--+- -+-- ..... 

Figure 6.4. Geometry and Finite Element Model for Cohesive-Frictional Soils 

Table 6.1 The Parameters Used in Numerical Examples 

Case 
Width of Young's Poisson's Cohesion 

Friction 

Number 
Foundation Modulus ratio (kPa) Angle 

(m) (MPa) (Degree) 

1 4 20 0.3 10 10 

2 4 20 0.3 10 20 

3 4 100 0.3 50 10 

4 4 100 0.3 50 20 

5 4 100 0.3 50 30 

1. Carry the first elastic analysis, then using 

(6.12) 
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' ' 

to modify Young's modulus of each element, where, f/Jd =sin_, (-q-) , q = o-, - o-3 , 

p+a 2 

p = a, + o-3 , o-; and a; are the maximum and minimum entire effective principle 
2 

stresses, which including the stresses caused by applied load and self-weight, of each 

element. How to calculate the entire stress has been explained in section 6.3. 

2. Carry out the second elastic analysis for the same load, mesh except for a 

different elastic modulus and obtain tan f/Jd in each element. 

3. Compare tan f/Jd of each element between the first linear elastic analysis and the 

second linear elastic analysis. R-node elements are represented by locations where the 

tan f/Jd did not change between two elastic analyses. 

4. Use 

(6.13) 

to find limit load. Where, t (cd )nj / N is the combined r-node equivalent stress. If there 

are more than one r-node peak values, the average value of them will be used in equation 

(6.13). 

The results obtained with r-node method and comparison with nonlinear FEA 

solution and theoretical solution methods are shown in Table 6.2. The theoretical solution 

is calculated according to the equation (5.1) and tables given by Das (Das, (1999) [68]), 
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and the inelastic PEA solution is calculated by using ABAQUS/Standard. Large 

deformation analysis is used to calculate the limit load of structure; the input listing for 

the development of this model and subsequent analysis is given in Appendices 1.3. 

The r-node locations and corresponding von Mises stresses for case one are shown 

in Figure 6.5 and 6.6 as an example to explain how to calculate the limit load based on 

r-node peak stresses. Based on the principle that an r-node peak located away from the 

"critical region" of the component or structure is not a virtual peak, from Figure 6.5, two 

distinct r-node peaks can be found; the average value of mobilized cohesions of them are 

used to calculate the limit load of structure according to the method explained in equation 

(6.13), hence the limit load 

c 10 
PL = N P = 100 = 51.81kPa 

~(cd)nj IN (19.2+19.4)/2 

Figure 6.6 shows the r-node element locations in true FE model. 
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Similarly, the results of other cases are obtained and shown in Table 6.2. 

Table 6.2 Results and Comparisons 

Limit Load (kPa) 

Theoretical 
Nonlinear 

Case# R-node (Mohr-
Solution Coulomb) 

1 51.81 105.46 111.2 

2 54.92 245.32 246.4 

3 167.22 439.46 464.6 

4 192.31 838.52 853 

5 222.22 1910.2 1693.5 

The possible reason of poor results is that for the failure of soil in shear, 

deformability is characterized by shear modulus rather than by Young's modulus. Hence 

in trial two, the shear modulus is used as the quantity to be modified from the first to the 

second elastic analysis instead of Young's modulus. 

6.4.2 Trial two 

The main difference between trial two and trial one is the shear modulus, 

G = E , is used as the quantity to be modified from the first to the second elastic 
2(1 + v) 

analysis instead of working with Young's modulus, E. In order to solve the values of 

Young's modulus and Passion's ratio for the second analysis, another condition is 

introduced here, namely the bulk modulus, B = _!!__, is a constant during the whole 
3(1-2v) 

analysis. The reason has been explained in section 6.3. 

So two new equations are obtained as below: 
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E. E 
B.= m =B = o 

m 3(1-2Vni) 0 3(1-2vo) 

G . = Eni = G tan¢ = E0 tan¢ 
m 2(1 + vn.) 0 

(tan ¢d); 2(1 + vJ (tan ¢d); 
(6.14) 

where, Bo, Go are the original shear modulus and bulk modulus; Bni and Gni are the new 

shear modulus and bulk modulus of elements, which will be used in the second elastic 

analysis. Based the above two equations, the new Young's modulus and Passions' ratio 

will be 

E =(1+v )~tan¢ 
n n 1 + vo tan ¢d 

(6.15a) 

and 

(6.15b) 

For the new analysis, the other steps are the same as trial one except the elastic 

modulus and Passions' ratio will be modified according to (6.15a) and (6.15b). 

1. Carry the first elastic analysis, then use equations (6.15a) and (6.15b) to modify 

Young's modulus and Passion's ratio of each element. Equation (6.15a) and (6.15b) are 

obtained based on the principles explained in point four, namely, the shear modulus, 

G = E , is modified according to shear strength with the condition that bulk 
2(1 + v) 

modulus B = E is constant· .-~. =sin -t (-q-) q = a;- a~ p = a; + cr~ a' and 
' 3(1- 2v)' ' 'Pd p +a ' 2 ' 2 ' 1 

a~ are the maximum and minimum entire effective principal stresses, which include the 
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stresses caused by applied load and self-weight and are obtained from the first elastic 

analysis. 

2. Carry out the second elastic analysis for the same load, mesh except for a 

different Young's modulus and Passion's ratio and obtain tan ¢d in each element. 

3. Compare tan ¢d of each element between the first linear elastic analysis and the 

second linear elastic analysis. R-nodes are represented by locations where the tan ¢d did 

not change. 

4. Use 

(6.16) 

to calculate the limit load of structure. 

The parameters used in numerical examples are shown in table 6.1. The results 

obtained with r-node method and comparison with nonlinear PEA solution and theoretical 

solution methods are shown in Table 6.3. The theoretical solution is calculated according 

to the equation (5.1) and tables given by Das (Das, (1999) [68]), and the inelastic PEA 

solution is calculated by using ABAQUS/Standard. Large deformation analysis is used to 

calculate the limit load of structure; the input listing for the development of this model 

and subsequent analysis is given in Appendices 1.3 

For the above two trials, the possible problem of incorrect results may appear at 

last step, in which the stresses caused by self-weight of soil also are considered in 

calculating the limit load of structure. Since the limit load of structure is actually the 
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limit-applied load, such consideration is obviously incorrect. Hence for new trials, the 

stressed induced by self-weight will be deleted when calculating limit loads. 

Table 6.3 Results and Comparisons 

Limit Load (kPa) 

Theoretical Nonlinear 
Case# R-node 

Solution 
(Mohr-

Coulomb) 

1 79.86 105.46 111.2 

2 117.5 245.32 246.4 

3 163.3 439.46 464.6 

4 269.4 838.52 853 

5 590.62 1910.2 1693.5 

6.4.3 Trial three 

The steps 1 to 3 are same as that used in trial one; the difference is in step 4, in 

step the stresses induced by self-weight are taken out when calculating limit loads. A 

safety factor K is set and calculated in order to consider this effect. Equation 

(6.17) 

is used to solve the limit load at last step. The calculation of K is derived below: 

Considering the self-weight of soil, assuming the mobilized friction angle under 

' ' ' 

the applied load ~ is f/Jd,, from the Figure 6.3, f/Jd =sin_, (-,q-), where, q' = a, - a 3 , 
p +a 2 

p = a, + o-3 
, a; and a; are the maximum and minimum entire effective principal 

2 

stresses, including the stresses caused by applied load and self-weight, of each element. 

The method how to calculate the entire stress has been explained in section 6.3. Hence, 
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I I I I I I 

¢d1 = sin-1
( ,q1 + ~s ) , where, q; = a1- a3 , p; = a1 + a3 , which are the maximum and 

P1 + Ps +a 2 2 

' ' 

minimum effective principle stresses caused by applied load ~ ' q,. = asw - asw 
2 

Ps = asw ; asw , which are the maximum and minimum effective principle stresses caused 

by self-weight, in which a= _c_. 
tan¢ 

Set K = PL , PL is the limit load of structure; K can be looked as the safety factor 
~ 

of the structure. For elastic analysis, p', q' are linear proportional to the applied load, 

PL p~ q~ ' ' . ' 
thus K =- = -, = -, , where, pL, qL are caused by lnmt load PL. When ~ = PL, K 

~ P1 qi 

equals one and the mobilized friction angle will equal the failure friction angle, namely 

(6.18) 

At this time, the failure occurs. 

Substitute p~ = Kp; and q~ = Kq; into equation (6.18), we can get 

. -I ( Kq; + q~ ) _ "' sm . . -'~-'· 
Kp1 +Kps +a 

so 

(6.19) 

Set sin¢= a, from equation (6.19), we can derive 
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K = a(p; +a)-q~ 
qi -aps 

(6.20) 

For the new analysis, the other steps are the same as trial one except in the last 

step equation (6.17) will be used to calculate the limit load of structure. 

The parameters used in numerical examples are shown in table 6.1. The results 

obtained with r-node method and comparison with nonlinear PEA solution and theoretical 

solution methods are shown in Table 6.4. The theoretical solution is calculated according 

to the equation (5.1) and tables given by Das (Das, (1999) [68]), and the inelastic PEA 

solution is calculated by using ABAQUS/Standard. Large deformation analysis is used to 

calculate the limit load of structure; the input listing for the development of this model 

and subsequent analysis is given in Appendices 1.3. 

The r-node locations and corresponding von Mises stresses for case one are shown 

in Figure 6.7 and 6.8 as an example to explain how to calculate the limit load based on 

r-node peak stresses. From Figure 6.5, one distinct r-node peaks is located according to 

the method explained in equation (6.12); the limit load 

PL = KP = 0.321 *100 = 32.1kPa 

Figure 6.8 shows the r-node element locations in true FE model. 
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Similarly, the results of other cases are obtained and shown in Table 6.2. 

Table 6.4.Results and Comparisons 

Limit Load (kPa) 

Theoretical 
Nonlinear 

Case# R-node 
Solution 

(Mohr-
Coulomb) 

1 32.1 105.46 111.2 

2 73.37 245.32 246.4 

3 278.8 439.46 464.6 

4 319.8 838.52 853 

5 390.4 1910.2 1693.5 

6.4.4 Trial Four 

For trial four, the shear modulus is used as the quantity to be modified from the 

first to the second elastic analysis instead of Young's modulus and the stressed induced 

by self-weight will be deleted when calculating limit loads in last step. 

1. Carry the first elastic analysis, then use 

E =(l+v )~tan¢ 
n n 1 + vo tan ¢d 

(6.15a) 

and 

(6.15b) 

to modify Young's modulus and Passion's ratio of each element. 

2. Carry out the second elastic analysis for the same load, mesh (except for a 

different elastic modulus and Possion' s ratio) and obtain tan ¢d in each element. 
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3. Compare tan ¢d of each element between the first linear elastic analysis and the 

second linear elastic analysis. R-nodes are represented by locations where the tan ¢d did 

not change. 

4. Use 

(6.13) 

to find limit load. 

The parameters used in numerical examples are shown in table 6.1. The results 

obtained with r-node method and comparisons with nonlinear FEA solution and 

theoretical solution methods are shown in Table 6.5. The theoretical solution is calculated 

according to the equation (5.1) and tables given by Das (Das, (1999) [68]), and the 

nonlinear FEA solution is calculated by using ABAQUS/Standard. Large deformation 

analysis is used to calculate the limit load of structure; the input listing for the 

development of this model and subsequent analysis is given in Appendices 1.3. 

Table 6.5 Results and Comparisons 

Limit Load (kPa) 

Theoretical 
Nonlinear 

Case# R-node 
Solution 

(Mohr-
Coulomb) 

1 41.8 105.46 111.2 

2 71.33 245.32 246.4 

3 117.84 439.46 464.6 

4 150.88 838.52 853 

5 159.57 1910.2 1693.5 
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For the all trials above, the anticipated results have not been obtained. One 

possible reason is the assumption that the apex of all mobilized stress surfaces coincide 

with the apex of the yield surface 
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Chapter Seven 

Conclusions and Prospects 

Robust approximate methods are often used to estimate limit load of structures 

due to the conceptual insight, economy of computational effort and wide applicability. 

Many of these methods have been readily applicable to conventional structures made of 

homogeneous isotropic materials. The r-node method, which is an approximate method 

for determining the limit loads of structures, has been presented in detail in this thesis. 

This method has been applied to the bearing capacity problem in soil mechanics, and the 

results obtained are found to compare well with analytical results and elastic-plastic finite 

element analysis results for uniform purely cohesive soils. The bounds for errors 

compared with elastic-plastic analysis are shown in Table 5.5 and Figure 5.8; it can be 

seen that for uniform purely cohesive soils, the results of r-node method are in close 

agreement with the nonlinear FEA solutions. 

Relatively close results, but less accurate for some cases, have been obtained for 

layered purely cohesive soils (less accurate results correspond to small HI B and large 

cu11cu2 ratios). In most cases with HI B from 0.5 to 2, the bounds of errors are within 

12%, but for cases of HI B = 0.5 and HI B = 0.75 and large cui I cu 2 (cui I cu2 = 4 ), the 

results are less accurate. For smaller HI B (HI B = 0.25 ), also the results are less 

accurate; bounds of errors are large, especially for large cui I cu 2 (cui I cu2 = 4 ). From the 

comparisons of results, for layered soils, with the decreasing of the ratio H I B and the 
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increasing of the ratio cui I cu 2 , the results are less and less accurate. The reason for such 

tendencies consists in difficulty in locating the r-nodes when the upper layer of soil is 

thin and the degree of inhomogeneity increases. The error bounds of different ratios of 

HI B and cui I cu 2 have been given in Table 5.5 and Figure 5.8. From them, the 

applicable range of r-node method for layered soils can be determined. Within this range, 

the results obtained by using r-node method can be thought as approximatly accurate and 

accepted. 

The method has also been extended to analyze the bearing capacity problems of 

footings on cohesive-frictional soils. Several trials were proved to be unsuccessful. The 

reasons for these trials and various proposed procedures have been detailed in chapter 6. 

The procedure for applying r-node method to cohesive-frictional materials has not been 

solved, more attention should be given to establishing a reasonable relation between 

mobilized cohesion and mobilized friction angle of cohesive-frictional soils, and 

correctly estimate the shear strength of each element in the foundation. Also, as seen 

from the analysis results, the r-nodes of the soil foundation seem to lie along the pressure 

bulb for cohesive soils; and for cohesive-frictional soils, they seem to lie along the 

frustum of a cone. Further research toward this assumption may go along the lines of a 

concept developed by Wolf (Wolf and Deeks (2004) [76]). 
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Appendices 

ABAQUS Finite Element Input Files 

1 Nonlinear Analysis 

1.1 Input Files for Uniform Cohesive Soils 

l.la Input File for Uniform Cohesive Soils (Width of Foundation B=2m) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on uniform cohesive soil 

**Element type: CPE4R; Cohesion=lOkPa; Friction angle=if; Self-weight y=O 

**Elastic modulus=20MPa; Passions' ratio=0.499; Area=40m*20m 

**Von Mises yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

**All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 
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5011,5,20 

5021,12.5,20 

5031 ,22. 5,20 

5041,40,20 

**Define the analysis domain 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001 ,5011 ,1 

5011,5021,1 

5021 ,5031 ,1 

5031,5041' 1 

*NFILL, BIAS=1.025, NSET=NSOIL 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001,5001' 100 

1041,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 
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5002,5005 

**Mesh the model 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN, ELSET=ELSOIL 

1001,40,1' 1 ,40,100,100 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20E3,0.499 

**Young's modulus and Passions' ratio 

*PLASTIC 

17.32 

**Yield stress 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

**Define the area of loading 

******************************************************** 
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*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,1,1 

F2,1 

**Boundary condition 

*STEP, INC=1000, UNSYMM=YES 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

**Analysis control 

*BOUNDARY 

5001,2,2,-1 

**Apply displacement, large deformation analysis 

*EL PRINT, FREQUENCY =0 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL= YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 
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*END STEP 

**Output the results 

*************************************** 

**The input file 1.1 also can be used for nonlinear analyses of bearing capacity of strip 

**foundation on uniform cohesive soil with different elastic modulus, cohesion. 

************************************* 

l.lb Input File for Uniform Cohesive Soils (Width of Foundation B=3m) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on uniform cohesive soil 

**Element type: CPE4R; Cohesion=10kPa; Friction angle=0°; Self-weight y=O 

**Elastic modulus=20MPa; Passions' ratio=0.499; Area=40m*20m 

**Von Mises yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,7.5,0 

1021,18.75,0 

1031,33.75,0 

1041,60,0 
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5001,0,30 

5011,7.5,30 

5021,18.75,30 

5031,33.75,30 

5041,60,30 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041' 1 

*NFILL, BIAS=l.025, NSET=NSOIL 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001 ,5001 ,1 00 

1041,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 
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5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001 ,40, 1 '1 ,40, 100,100 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20E3,0.499 

PLASTIC 

17.32 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 
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*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,1,1 

F2,1 

*STEP, INC=lOOO, UNSYMM=YES 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*EL PRINT, FREQUENCY =0 

*NODE PRINT, NSET=Fl, FREQUENCY=1,SUMMARY=NO, TOTAL=YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 

**The input file l.lb also can be used for nonlinear analyses of bearing capacity of strip 

**foundation on uniform cohesive soil with different elastic modulus, cohesion. 

************************************* 

1.2 Input Files for Layered Cohesive Soils 

1.2a Input File for Layered Cohesive Soils (HIB=l.S) 
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*HEADING 

*************************************** 

**Bearing capacity of strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cu2=2; cu1=20kPa; cu2=10kPa. 

**Friction angle=0°; Self-weight y1= yz= 0 

**Elastic modulus: EJ=40MPa, Ez=20MPa; Passions' ratio=0.499. 

**Area=40m*20m 

**von Mises yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

3201,0,14 

3211,5,14 

3221,12.5,14 

3231,22.5,14 

3241,40,14 
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5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NMID 

3201,3211,1 

3211,3221,1 

3221,3231,1 

3231,3241,1 

*NGEN,NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041' 1 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NBOT, NMID,22,100 

*NFILL, BIAS=1.00, NSET=NSOIL 
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NMID, NTOP,18,100 

*NSET, NSET=NSIDE, GENERATE 

1001,3201,100 

3201,5001,100 

1041,3241,100 

3241,5041,100 

*NSET,NSET=F1 

5001, 

*NSET, NSET=F2, GENERATE 

5002,5005 

************************************* 

** SOIT.., ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIT.., 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIT.., 

1001,40,1,1 ,22, 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIT..,1 

3 201 ,3201 ,3 202,3 302,3301 

*ELGEN, ELSET=ELSOIT..,1 

3201,40,1,1, 18,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 
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*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20.0E3,0.499 

*PLASTIC 

17.32 

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1 

*MATERIAL, NAME=MSOILl 

*ELASTIC 

40.0E3,0.499 

*PLASTIC 

34.641 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 
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*STEP, INC=lOOO, UNSYMM=YES 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*EL PRINT, FREQUENCY=O 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL=YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 

**The input file 1.2a also can be used for nonlinear analyses of bearing capacity of strip 

**foundation on layered cohesive soil with same HIB and different cu1/cuz. 

************************************* 

1.2b Input File for Layered Cohesive Soils (HIB=l) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cuz=2; cu1=20kPa; cuz=lOkPa. 

**Friction angle=Oo; Self-weight y1= rz= 0 
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**Elastic modulus: EJ=40MPa, E2=20MPa; Passions' ratio=0.499. 

**Area=40m*20m 

**von Mises yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

3801,0,16 

3811,5,16 

3821,12.5,16 

3831,22.5,16 

3841,40,16 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 
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*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NMID 

3801,3811,1 

3811,3821,1 

3821,3831,1 

3831,3841' 1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031 ,5041 ,1 

*NFll...L, BIAS=1.00, NSET=NSOIL 

NBOT, NMID,28,100 

*NFILL, BIAS=1.00, NSET=NSOIL 

NMID, NTOP,12,100 

*NSET,NSET=NSIDE,GENERATE 

1001,3801,100 

3801,5001,100 

1041,3841,100 
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3841,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN, ELSET=ELSOIL 

1001,40,1,1 ,28, 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL1 

3801,3801,3802,3902,3901 

*ELGEN, ELSET=ELSOIL1 

3801,40,1,1, 12,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20.0E3,0.499 

*PLASTIC 
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17.32 

*SOLID SECTION, ELSET=ELSOILl, MATERIAL=MSOILl 

*MATERIAL, NAME=MSOILl 

*ELASTIC 

40.0E3,0.499 

*PLASTIC 

34.641 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP, INC=lOOO, UNSYMM=YES 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANALYSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 
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20 

*BOUNDARY 

5001,2,2,-1 

*EL PRINT, FREQUENCY=O 

*NODE PRINT, NSET=F1, FREQUENCY=1,SUMMARY=NO, TOTAL= YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 

**The input file 1.2b also can be used for nonlinear analyses of bearing capacity of strip 

**foundation on layered cohesive soil with same HIB and different cu/cuz. 

************************************* 

1.2c Input File for Layered Cohesive Soils (HIB=0.75) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cu2=2; CUJ=20kPa; cuz=lOkPa. 

**Friction angle=0°; Self-weight Y1= 0, Yz= 0 

**Elastic modulus: EJ=40MPa, Ez=20MPa; Passions' ratio=0.499. 

** Area=40m *20m 

**von Mises yield criterion 

************************************* 

** NODES DEFINING 
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************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

4101,0,17 

4111,5,17 

4121,12.5,17 

4131,22.5,17 

4141,40,17 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 
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*NGEN, NSET=NMID 

4101,4111,1 

4111,4121,1 

4121,4131,1 

4131,4141,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NBOT, NMID,31,100 

*NFILL, BIAS=1.00, NSET=NSOIL 

NMID, NTOP,9,100 

*NSET,NSET=NSIDE,GENERATE 

1001,4101,100 

4101,5001,100 

1041 ,4141' 100 

4141,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 
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************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001 '1 001' 1002,1102, 1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1' 1,31' 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL1 

4101,4101,4102,4202,4201 

*ELGEN, ELSET=ELSOIL1 

4101,40,1,1,9,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20.0E3,0.499 

*PLASTIC 

17.32 

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1 

*MATERIAL, NAME=MSOIL1 

*ELASTIC 

40.0E3,0.499 

143 



*PLASTIC 

34.641 

*ELSET, ELSET=ELOAD,GENERATE 

4901,4904,1 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP, INC=lOOO, UNSYMM=YES 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*ELPRINT, FREQUENCY=O 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL= YES 
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U2,RF2 

*NODE PRINT, FREQUENCY =0 

*END STEP 

*************************************** 

**The input file 1.2c also can be used for nonlinear analyses of bearing capacity of strip 

**foundation on layered cohesive soil with same HIB and different cu1/cu2. 

************************************* 

1.2d Input File for Layered Cohesive Soils (HIB=O.S) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cu2=2; cu1=20kPa; cu2=10kPa. 

**Friction angle=0°; Self-weight Y1= Y2= 0 

**Elastic modulus: E1=40MPa, E2=20MPa; Passions' ratio=0.499. 

**Area=40m*20m 

**von Mises yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 
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1021,12.5,0 

1031,22.5,0 

1041,40,0 

4401,0,18 

4411,5,18 

4421,12.5,18 

4431,22.5,18 

4441,40,18 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NMID 

4401,4411,1 

4411,4421,1 

4421,4431,1 

4431,4441,1 
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*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFILL, BIAS=1.00, NSET=NSOIL 

NBOT, NMID,34,100 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NMID, NTOP,6,100 

*NSET,NSET=NSIDE,GENERATE 

1001,4401,100 

4401,5001 '100 

1041,4441,100 

4441,5041' 100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001' 1001' 1002,1102,1101 
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*ELGEN,ELSET=ELSOIL 

1001,40,1,1,34,100,100 

*ELENfENT,TYPE=CPE4R,ELSET=ELSOIL1 

4401,4401,4402,4502,4501 

*ELGEN, ELSET=ELSOIL1 

4401,40,1' 1 ,6, 100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NANfE=MSOIL 

*ELASTIC 

20.0E3,0.499 

*PLASTIC 

17.32 

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1 

*MATERIAL, NANfE=MSOIL1 

*ELASTIC 

40.0E3,0.499 

*PLASTIC 

34.641 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

******************************************************** 
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*RESTART, WRITE, FREQUENCY=l 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,1,1 

F2,1 

*STEP, INC=lOOO, UNSYMM=YES 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANALYSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*EL PRINT, FREQUENCY=O 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL=YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 
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**The input file 1.2d also can be used for nonlinear analyses of bearing capacity of strip 

**foundation on layered cohesive soil with same HIE and different cu1/cuz. 

************************************* 

1.2e Input File for Layered Cohesive Soils (HIB=0.25) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cuz=2; CUJ=20kPa; cuz=lOkPa. 

**Friction angle=0°; Self-weight Y1= yz= 0 

**Elastic modulus: E1=40MPa, EJ=20MPa; Passions' ratio=0.499. 

**Area=40m*20m 

**von Mises yield criterion 

************************************* 

** NODES DEFINING 

***************************************** 

****All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

4701,0,19 
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4711,5,19 

4721,12.5,19 

4731,22.5,19 

4741,40,19 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NMID 

4701,4711,1 

4711,4721,1 

4721,4731,1 

4731,4741,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 
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5031,5041,1 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NBOT, NMID,37,100 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NMID, NTOP,3,100 

*NSET,NSET=NSIDE,GENERATE 

1001,4701,100 

4701,5001,100 

1041,4741,100 

4741,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1 '1 ,37' 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL1 

4 701,4 701,4 702,4802,4801 
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*ELGEN, ELSET=ELSOILl 

4701,40,1,1 ,3,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20.0E3,0.499 

*PLASTIC 

17.32 

*SOLID SECTION, ELSET=ELSOILl, MATERIAL=MSOILl 

*MATERIAL, NAME=MSOILl 

*ELASTIC 

40.0E3,0.499 

*PLASTIC 

34.641 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 
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*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP, INC=lOOO, UNSYMM=YES 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*EL PRINT, FREQUENCY =0 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL= YES 

U2,RF2 

*NODE PRINT, FREQUENCY =0 

*END STEP 

*************************************** 

**The input file 1.2e also can be used for nonlinear analyses of bearing capacity of strip 

**foundation on layered cohesive soil with same HIB and different cu1/cuz. 

************************************* 

1.3 Input Files for Cohesive-Frictional Soils 

1.3a Input File for Cohesive-Frictional Soil (c=lOkPa, fl=l0°) 
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*HEADING 

*************************************** 

**Bearing capacity of strip foundation on uniform cohesive-frictional soil 

**Element type: CPE4R; Cohesion=lOkPa; Friction angle=l0°; 

**Effective self-weighty'= 9KN!m3 

**Elastic modulus=20MPa; Passions' ratio=0.3, Area=40m*20m 

**Mohr-Coulomb yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 
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1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFILL, BIAS=1.025, NSET=NSOIL 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001,5001,100 

1041,5041,100 

*NSET, NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 
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*ELGEN,ELSET=ELSOIL 

1001,40,1' 1 ,40, 100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20.0E3,0.3 

*MOHR COULOMB 

10.0,0.0 

*MOHR COULOMB HARDENING 

10.0 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*GEOSTATIC 
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*DLOAD 

ELSOrr., BY,-9 

*END STEP 

*STEP, INC=5000, UNSYMM=YES, AMPLITUDE=RAMP 

*STATIC 

0.001,1,0.005 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*EL PRINT, FREQUENCY =0 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL= YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

1.3b Input File for Cohesive-Frictional Soil (c=lOkPa, fj=20°) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on uniform cohesive-frictional soil 

**Element type: CPE4R; Cohesion=lOkPa; Friction angle=20°; 

**Effective self-weighty'= 9KN!m3 

**Elastic modulus=20MPa; Passions' ratio=0.3; Area=40m*20m 
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**Mohr-Coulomb yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 
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5011,5021,1 

5021 ,5031 ,1 

5031,5041,1 

*NFILL, BIAS=l.025, NSET=NSOIL 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001,5001,100 

1041,5041,100 

*NSET, NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1' 1 ,40, 100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 
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*ELASTIC 

20.0E3, 0.3 

*MOHR COULOMB 

20.0, 0.0 

*MOHR COULOMB HARDENING 

10.0 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,1,1 

F2,1 

*STEP 

*GEOSTATIC 

*DLOAD 

EISOIL, BY,-9 

*END STEP 

*STEP, INC=5000,UNSYMM=YES, amplitude=ramp 

*STATIC 

0.0001,1,1e-10,0.005 
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*CONTROLS,ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001 ,2,2, -1 

*EL PRINT, FREQUENCY=O 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL=YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

1.3c Input Files for Cohesive-Frictional Soil (c=50kPa, ~=10°) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on uniform cohesive-frictional soil 

**Element type: CPE4R; Cohesion=50kPa; Friction angle=l0° 

**Effective self-weighty'= 9KN!m3 

**Elastic modulus=lOOMPa; Passions' ratio=0.3; Area=40m*20m 

**Mohr-Coulomb yield criterion 

************************************* 

**NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NAl 

162 



1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN,NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFll...L, BIAS=1.025, NSET=NSOll... 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 
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1001,5001 '1 00 

1041 ,5041 '100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN, ELSET=ELSOIL 

1001,40,1' 1,40,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

100.0E3,0.3 

*MOHR COULOMB 

10.0,0.0 

*MOHR COULOMB HARDENING 

50.0 

164 



******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*GEOSTATIC 

*DLOAD 

ELSOIL, BY,-9 

*END STEP 

*STEP, INC=IOOO, UNSYMM=YES, AMPLITUDE=RAMP 

*STATIC 

le-5,1,1e-12,0.005 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*EL PRINT, FREQUENCY=O 
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*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL=YES 

U2, RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

1.3d Input File for Cohesive-frictional Soil (c=50kPa, ~=20°) 

*HEADING 

*************************************** 

**Bearing capacity of strip foundation on uniform cohesive-frictional soil 

**Element type: CPE4R; Cohesion=50kPa; Friction angle=2rf 

**Effective self-weighty'= 9KN!m3 

**Elastic modulus=20MPa; Passions' ratio=0.3; Area=40m*20m 

**Mohr-Coulomb yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NAl 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 
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5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041' 1 

*NFILL, BIAS=1.025, NSET=NSOIL 

NBOT, NTOP,40,100 

*NSET,NSET=NSTIDE,GENERATE 

1001 ,5001' 100 

1041,5041' 100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 
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************************************* 

** SOll.. ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOll.. 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOll.. 

1001,40,1' 1 ,40, 100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOll.., MATERIAL=MSOll.. 

*MATERIAL, NAME=MSOll.. 

*ELASTIC 

100.0E3, 0.3 

*MOHR COULOMB 

20.0,0.0 

*MOHR COULOMB HARDENING 

50.0 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 
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NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*GEOSTATIC 

*DLOAD 

ELSOIL, BY,-9 

*END STEP 

*STEP, INC=5000, UNSYMM=YES, AMPLITUDE=RAMP 

*STATIC 

le-5,1,1e-12,0.001 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

20 

*BOUNDARY 

5001,2,2,-1 

*ELPRINT, FREQUENCY=O 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL=YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

1.3e Input File for Cohesive-frictional Soil (c=SOkPa, fl=30°) 

*HEADING 
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*************************************** 

**Bearing capacity of strip foundation on unifonn cohesive-frictional soil 

**Element type: CPE4R; Cohesion=50kPa; Friction angle=2rJ' 

**Effective self-weighty'= 9KN!m3 

**Elastic modulus=20MPa; Passions' ratio=0.3; Area=40m*20m 

**Mohr-Coulomb yield criterion 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 
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1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041' 1 

*NFILL, BIAS=1.025, NSET=NSOIL 

NBOT,NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001 ,5001' 100 

1041,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 
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1001,40,1 '1 ,40, 100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

100.0E3, 0.3 

*MOHR COULOMB 

30.0,0.0 

*MOHR COULOMB HARDENING 

50.0 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*GEOSTATIC 

*DLOAD 
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ELSOIL, BY,-9 

*END STEP 

*STEP, INC=lOOOO, UNSYMM=YES, AMPLITUDE=RAMP 

*STATIC 

le-5,1,1e-12,0.001 

*CONTROLS, ANAL YSIS=DISCONTINUOUS 

*CONTROLS, PARAMETERS=LINE SEARCH 

*BOUNDARY 

5001,2,2,-1.5 

*EL PRINT, FREQUENCY =0 

*NODE PRINT, NSET=Fl, FREQUENCY=!, SUMMARY=NO, TOTAL= YES 

U2,RF2 

*NODE PRINT, FREQUENCY=O 

*END STEP 

2 Linear Analysis 

2.1 Input Files for Uniform Cohesive Soils 

2.1a Input File for Uniform Cohesive Soils (Width of Foundation B=2m) 

*HEADING 

*************************************** 

**The first elastic analysis for strip foundation on uniform cohesive soil 

**Element type: CPE4R; Cohesion=lOkPa; Friction angle=if 

**Self-weighty= 0 

**Elastic modulus=20MPa; Passions' ratio=0.499; Area=40m*20m 
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************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 
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5021,5031,1 

5031,5041,1 

*NFILL, BIAS=l.025, NSET=NSOIL 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001,5001,100 

1041,5041' 100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1' 1 ,40, 100,100 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20E3,0.499 

*ELSET,ELSET=ELST,GENERATE 
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4901,4940 

*ELSET,ELSET=ELOAD, GENERATE 

4901,4904,1 

************************************* 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*STATIC 

*DLOAD 

ELOAD, P3,100 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP, MISES 

*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 

**The input file 2.1 a also can be used for linear analyses of strip **foundation on 

uniform **cohesive soil with different elastic modulus, cohesion, and applied pressure. 
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************************************* 

2.lb Input File for Uniform Cohesive Soils (Width of Foundation B=3m) 

*HEADING 

*************************************** 

**The first elastic analysis for strip foundation on uniform cohesive soil 

**Element type: CPE4R; Cohesion=lOkPa; Friction angle=0°; 

**Self-weighty= 0 

**Elastic modulus=20MPa; Passions' ratio=0.499; Area=40m *20m 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,7.5,0 

1021,18.75,0 

1031,33.75,0 

1041,60,0 

5001,0,30 

5011,7.5,30 

5021,18.75,30 

5031,33.75,30 

5041,60,30 
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*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFILL, BIAS=l.025, NSET=NSOIL 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001 ,5001' 100 

1041 ,5041' 100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

178 



1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1,1 ,40,100,100 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20E3,0.499 

*PLASTIC 

17.32 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

************************************* 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 
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*STATIC 

*DLOAD 

ELOAD,p3,100 

*EL PRINT, FREQUENCY==!, SUMMARY=NO, TOTAL=NO 

SP, MISES 

*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 

**The input file 2.1 b also can be used for linear analyses of strip foundation on uniform 

**cohesive soil with different elastic modulus, cohesion, and applied pressure. 

************************************* 

2.2 Input Files for Layered Cohesive Soils 

2.2a Input File for Layered Cohesive Soils (HIB=1.5) 

*HEADING 

*************************************** 

**The first elastic analysis for strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cu2=2; CUJ=20kPa; cuz=lOkPa. 

**Friction angle=0°, Self-weight Y1= yz= 0 

**Elastic modulus: E1=40MPa, E2=20MPa; Passions' ratio=0.499. 

** Area=40m *20m 

************************************* 

** NODES DEFINING 

************************************** 
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*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

3201,0,14 

3211,5,14 

3221,12.5,14 

3231,22.5,14 

3241,40,14 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031 ,22 .5 ,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN,NSET=NMID 
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3201,3211,1 

3211,3221,1 

3221,3231,1 

3231,3241,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011 ,5021 ,1 

5021,5031,1 

5031,5041,1 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NBOT, NMID,22,100 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NMID,NTOP,18,100 

*NSET,NSET=NSIDE,GENERATE 

1001,3201,100 

3201,5001,100 

1041,3241 '100 

3241,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 
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** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN, ELSET=ELSOIL 

1001,40,1,1,22,100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL1 

3201,3201,3202,3302,3301 

*ELGEN, ELSET=ELSOIL1 

3201,40,1' 1 '18,100,100 

*ELSET, ELSET=ELST, GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20.0E3, 0.48 

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1 

*MATERIAL, NAME=MSOIL1 

*ELASTIC 

40.0E3, 0.48 

*ELSET, ELSET=ELOAD, GENERATE 

4901,4904,1 

************************************* 
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*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*STATIC 

*dLOAD 

ELOAD, P3,100 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP,MISES 

*NODE PRINT, FREQUENCY =0 

*END STEP 

*************************************** 

**The input file 2.2a also can be used for linear analyses of strip foundation layered 

**cohesive soil with different elastic modulus, cohesion, and applied pressure. 

************************************* 

2.2b Input File for Layered Cohesive Soils (HIB=l) 

*HEADING 

*************************************** 
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**The first elastic analysis for strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1!cu2=2; cu1=20kPa; cu2=10kPa. 

**Friction angle=0°, Self-weight Y1= Y2= 0 

**Elastic modulus: E1=40MPa, E2=20MPa; Passions' ratio=0.499. 

**Area=40m*20m 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

3801,0,16 

3811,5,16 

3821,12.5,16 

3831,22.5,16 

3841,40,16 

5001,0,20 

5011,5,20 

5021,12.5,20 

185 



5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NMID 

3801,3811,1 

3811,3821,1 

3821,3831,1 

3831,3841,1 

*NGEN,NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFILL, BIAS=1.00, NSET=NSOIL 

NBOT, NMID,28,100 

*NFILL, BIAS=1.00, NSET=NSOIL 

NMID, NTOP,12,100 

*NSET,NSET=NSIDE,GENERATE 

1001,3801,100 
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3801,5001,100 

1041,3841' 100 

3841,5041 '1 00 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1,1 ,28, 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL1 

3801,3801,3802,3902,3901 

*ELGEN, ELSET=ELSOIL1 

3801,40,1,1,12,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 
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20.0E3, 0.48 

*SOLID SECTION, ELSET=ELSOILl, MATERIAL=MSOILl 

*MATERIAL, NAME=MSOILl 

*ELASTIC 

40.0E3, 0.48 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

************************************* 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*STATIC 

*DLOAD 

ELOAD, P3,100 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP, MISES 

*NODE PRINT, FREQUENCY =0 
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*END STEP 

*************************************** 

**The input file 2.2b also can be used for linear analyses of strip foundation layered 

**cohesive soil with different elastic modulus, cohesion, and applied pressure. 

************************************* 

2.2c Input File for Layered Cohesive Soils (HIB=0.75) 

*HEADING 

*************************************** 

**The first elastic analysis for strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cu2=2; cu1=20kPa; cu2=lOkPa. 

**Friction angle=0°,Self-weight YI= Y2= 0 

**Elastic modulus: E1=40MPa, E2=20MPa; Passions' ratio=0.499. 

**Area=40m*20m 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 
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4101,0,17 

4111,5,17 

4121,12.5,17 

4131,22.5,17 

4141,40,17 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021' 1031,1 

1031,1041,1 

*NGEN, NSET=NMID 

4101,4111,1 

4111,4121,1 

4121,4131,1 

4131,4141,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011 ,5021 ,1 
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5021,5031,1 

5031,5041,1 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NBOT, NMID,31,100 

*NFILL, BIAS=1.00, NSET=NSOIL 

NMID, NTOP,9,100 

*NSET,NSET=NSIDE,GENERATE 

1001,4101,100 

4101,5001,100 

1041,4141,100 

4141,5041,100 

*NSET,NSET=F1 

5001, 

*NSET, NSET=F2, GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1' 1,31' 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL1 
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4101,4101,4102,4202,4201 

*ELGEN, ELSET=ELSOll...1 

4101,40,1' 1,9,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOll...,MATERIAL=MSOll... 

*MATERIAL, NAME=MSOll... 

*ELASTIC 

20.0E3,0.499 

*SOLID SECTION, ELSET=ELSOll...1, MATERIAL=MSOll...1 

*MATERIAL, NAME=MSOll...l 

*ELASTIC 

40.0E3,0.499 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

************************************* 

*RESTART, WRITE, FREQUENCY=1 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,1,1 
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F2,1 

*STEP 

*STATIC 

*DLOAD 

ELOAD, P3,100 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP, MISES 

*NODE PRINT, FREQUENCY =0 

*END STEP 

*************************************** 

**The input file 2.2c also can be used for linear analyses of strip foundation layered 

**cohesive soil with different elastic modulus, cohesion, and applied pressure. 

************************************* 

2.2d Input File for Layered Cohesive Soils (HIB=O.S) 

*HEADING 

*************************************** 

**The first elastic analysis for strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cu2=2; CUJ=20kPa; cu2=lOkPa. 

**Friction angle=0°, Self-weight Y1= Y2= 0 

**Elastic modulus: EJ=40MPa, E2=20MPa; Passions' ratio=0.499. 

** Area=40m *20m 

************************************* 

** NODES DEFINING 
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************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

4401,0,18 

4411,5,18 

4421,12.5,18 

4431,22.5,18 

4441,40,18 

5001,0,20 

5011,5,20 

5021' 12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 
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*NGEN, NSET=NMID 

4401,4411' 1 

4411,4421,1 

4421,4431,1 

4431,4441,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NBOT, NMID,34,100 

*NFILL, BIAS=l.OO, NSET=NSOIL 

NMID, NTOP,6,100 

*NSET,NSET=NSIDE,GENERATE 

1001 ,4401 '100 

4401,5001,100 

1041,4441' 100 

4441 ,5041' 100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 
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************************************* 

** SO IT... ELEMENT DEFINING 

************************************** 

*ELEMENT, TYPE=CPE4R, ELSET=ELSOll... 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOll... 

1001,40,1' 1 ,34, 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELS0ll...1 

4401,4401,4402,4502,4501 

*ELGEN, ELSET=ELSOll...1 

4401,40,1,1,6,100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOll..., MATERIAL=MSOll... 

*MATERIAL, NAME=MSOll... 

*ELASTIC 

20.0E3,0.499 

*SOLID SECTION, ELSET=ELSOll...1, MATERIAL=MSOll...1 

*MATERIAL, NAME=MSOll...1 

*ELASTIC 

40.0E3,0.499 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 
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************************************* 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*STATIC 

*DLOAD 

ELOAD, P3,100 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP, MISES 

*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 

**The input file 2.2d also can be used for linear analyses of strip foundation layered 

**cohesive soil with different elastic modulus,cohesion,and applied pressure. 

************************************* 

2.2e Input File for Layered Cohesive Soils (HIB=0.25) 

*HEADING 

197 



*************************************** 

**The first elastic analysis for strip foundation on layered cohesive soil 

**Element type: CPE4R; Cohesion: cu1/cu2=2; CUJ=20kPa; cu2=lOkPa. 

**Friction angle=0°, Self-weight Y1= Y2= 0 

**Elastic modulus: E1=40MPa, E2=20MPa; Passions' ratio=0.499. 

**Area=40m*20m 

************************************* 

** NODES DEFINING 

***************************************** 

****All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

4701,0,19 

4711,5,19 

4721,12.5,19 

4731,22.5,19 

4741,40,19 

5001,0,20 

5011,5,20 
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5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NMID 

4701,4711,1 

4711,4721,1 

4721,4731,1 

4731,4741,1 

*NGEN,NSET=NTOP 

5001,5011' 1 

5011 ,5021 ,1 

5021,5031,1 

5031 ,5041 ,1 

*NFIT...L, BIAS=l.OO, NSET=NSOIT... 

NBOT, NMID,37,100 

*NFIT...L, BIAS=l.OO, NSET=NSOIT... 

NMID, NTOP,3,100 

*NSET,NSET=NSIDE,GENERATE 
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1001,4701,100 

4701,5001,100 

1041 ,4 7 41 ,1 00 

4741,5041,100 

*NSET,NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOll.. ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOll.. 

1001,1001,1002,1102,1101 

*ELGEN, ELSET=ELSOll.. 

1001,40,1' 1,37' 100,100 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOll..1 

4 701,4 701 ,4 702,4802,4801 

*ELGEN, ELSET=ELSOll..1 

4701,40,1' 1 ,3,100, 100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOll.., MATERIAL=MSOll.. 

*MATERIAL, NAME=MSOll.. 
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*ELASTIC 

20.0E3,0.499 

*SOLID SECTION, ELSET=ELSOILl, MATERIAL=MSOILl 

*MATERIAL, NAME=MSOILl 

*ELASTIC 

40.0E3,0.499 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

************************************* 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2, 1.0,5001 ,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*STATIC 

*DLOAD 

ELOAD, P3,100 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP, MISES 
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*NODE PRINT, FREQUENCY=O 

*END STEP 

*************************************** 

**The input file 2.2e also can be used for linear analyses of strip foundation layered 

**cohesive soil with different elastic modulus, cohesion, and applied pressure. 

************************************* 

2.3 Input Files for Cohesive-Frictional Soils 

2.3a Input File for Cohesive-Frictional Soils (structure submitted to applied load) 

*HEADING 

*************************************** 

**The first elastic analysis for strip foundation on cohesive-frictional soil 

**Element type: CPE4R; 

**Elastic modulus=20MPa; Passions' ratio=0.3 

**Area=40m*20m 

************************************* 

** NODES DEFINING 

************************************** 

*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 
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1041,40,0 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041,1 

*NFll..L, BIAS=l.025, NSET=NSOll.. 

NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001,5001,100 

1041,5041' 100 

*NSET,NSET=F1 

5001, 
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*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELEMENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1,1 ,40, 100,100 

*ELSET,ELSET=ELST,GENERATE 

4901,4940 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NAME=MSOIL 

*ELASTIC 

20.0E3, 0.3 

******************************************************** 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 
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F2,1 

*STEP 

*STATIC 

*dLOAD 

ELOAD, P3,100 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP, MISES 

*NODE PRINT, FREQUENCY =0 

*END STEP 

*************************************** 

**The input file 2.3 also can be used for linear analyses of bearing capacity of strip 

**foundation on cohesive-frictional soil with different cohesion and friction angle 

************************************* 

2.3b Input File for Cohesive-Frictional Soils (structure submitted to self-weight) 

*HEADING 

*************************************** 

**The first elastic analysis for strip foundation on cohesive-frictional soil 

**Element type: CPE4R; 

**Elastic modulus=20MPa; Passions' ratio=0.3 

**Area=40m*20m 

************************************* 

** NODES DEFINING 

************************************** 

205 



*******All dimension in meter and stress is kPa 

*NODE, NSET=NA1 

1001,0,0 

1011,5,0 

1021,12.5,0 

1031,22.5,0 

1041,40,0 

5001,0,20 

5011,5,20 

5021,12.5,20 

5031,22.5,20 

5041,40,20 

*NGEN, NSET=NBOT 

1001,1011,1 

1011,1021,1 

1021,1031,1 

1031,1041,1 

*NGEN, NSET=NTOP 

5001,5011,1 

5011,5021,1 

5021,5031,1 

5031,5041' 1 

*NFILL, BIAS=l.025, NSET=NSOIL 
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NBOT, NTOP,40,100 

*NSET,NSET=NSIDE,GENERATE 

1001,5001,100 

1041,5041,100 

*NSET, NSET=F1 

5001, 

*NSET,NSET=F2,GENERATE 

5002,5005 

************************************* 

** SOIL ELEMENT DEFINING 

************************************** 

*ELE11ENT,TYPE=CPE4R,ELSET=ELSOIL 

1001,1001,1002,1102,1101 

*ELGEN,ELSET=ELSOIL 

1001,40,1' 1,40,100,100 

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL 

*MATERIAL, NA11E=MSOIL 

*ELASTIC 

100.0E3, 0.3 

*ELSET, ELSET=ELST, GENERATE 

4901,4940 

*ELSET,ELSET=ELOAD,GENERATE 

4901,4904,1 

207 



************************************* 

*RESTART, WRITE, FREQUENCY=! 

*EQUATION 

2 

F2,2,1.0,5001,2,-1 

*BOUNDARY 

NBOT, ENCASTRE 

NSIDE,l,l 

F2,1 

*STEP 

*STATIC 

*DLOAD 

ELSOIL,BY,-9 

*EL PRINT, FREQUENCY=!, SUMMARY=NO, TOTAL=NO 

SP 

*NODE PRINT, FREQUENCY=O 

*END STEP 

Matlab Modulus Changing and Stress Listing Macros 

1 Script for Extracting Results from ABAQUS * .dat Files 

Function ETS (fl, f2) 

% Extracting stresses of each element from ABAQUS/Standard result file *.dat. 

% fl is the ABAQUS/Standard result file, the data extracted will be put into file j2. 
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fid=fopen(fl,'rt'); %Input the results obtained from ABAQUS 

m=l; 

ce=load(f2); %Creat a file to input the last results in 

ml=l; 

nl=O; 

k=cell(1601,1); 

while m<=1600% Extract stresses of each element from ABAQUS result file 

frewind(fid) 

while feof(fid)==O 

line=fgets(fid); 

ifm1<=1600 

str=num2str(ce(ml,l)); 

else 

fidl=fopen('2a.inp','w') 

for m1=1:1600 

fprintf(fidl,'%s',k{ (ml + 1),:} ); 

end 

fprintf(fidl,'%s',k { :,:} ); 

fclose(fid); 

fclose(fidl); 

return 

end 

matches=findstr(line,str); 
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nm=9-matches; 

num=nm*nm'; 

ifnum >0 

nm(1,1); 

if nm(1,1)> 0 

m1=m1+1; 

m=m+1; 

fid2=fopen('3.inp','w'); 

fprintf(fid2,'%s',line); 

fclose(fid2); 

ce1=load('3.inp','w'); 

strl=num2str(ce1 (1,1)); 

num1=strcmp(str,str1 ); 

ifnum1>0 

fprintf( 1, 'o/od: o/os' ,num,line); 

k(m1,1)={line }; 

end 

end 

end 

end 

end 

fid1=fopen('2a.inp', 'w') 

form1=1:1600 
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fprintf(fidl,'%s',k{ (ml + 1),:} ); 

end 

fclose(fid); 

fclose(fidl ); 

2 Scripts for Moduli Modified 

2.1a Moduli Modified for Uniform Cohesive Soils 

Function read(f2,e) 

%Modifying the modulus of each element. From the file j2, stresses of each element are 

%obtained, then according to theirs stresses modify the modulus of each element. New 

%modulus of elements will be written into file y.inp by calling another Matlab script 

%w.m. c is the cohesion of soil, e is the old Young's modulus of soil. 

hg=load(f2); %Input the results obtained from ABAQUS 

al=hg(:,l); 

bl=-hg(:,3); 

b2=-hg(:,4); 

b3=-hg(:,5); 

for k=1:1600 %Modify the elastic modulus according to stresses 

a2(k,l)=[(bl(k,l)-b2(k,I)Y2+(b2(k,I)-b3(k,I)Y2+(b3(k,I)-bl(k,l))"2Y"0.512"0.5; 

end 

a=cat(2,al,a2); 

sy=min(a2); 

[m,n]=size(a); 

i=l; 
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for i=1:1600 

CE(i,n)=sy*e/a(i,n); 

end 

ce=CE(:,2); 

CE1=cat(2,a1,ce); 

write(CE1); 

2.lb Creating the Second Elastic Analysis Files for Uniform Cohesive Soils 

Function write(CE1) 

%Output the new modulus of each element to file y. inp, which will be used for the second 

%elastic analysis 

str 1 a='*********************************'; 

str1b='**SOIL ELEMENT DEFINING'; 

str1c='*********************************'; 

[m,n]=size(CE1); 

m1=1; 

n1=1; 

fid=fopen('y.inp','w'); 

fprintf(fid,'%s\n',str1a); 

fprintf(fid,'%s\n',strl b); 

fprintf(fid,'%s\n',str1c); 

while m1 <=m; 

str2=strcat('*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL', num2str(CE1(m1,1))); 

nd=CE1(m1,1); 
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ndl=CE1(m1,1); 

nd2=CE1 (m 1,1 )+ 1; 

nd3=CE1 (m1,1 )+ 101; 

nd4=CEl(m1,1)+ 100; 

str3=strcat(num2str(nd),',',num2str(nd1),',',num2str(nd2),',',num2str(nd3),',',num2str(nd4) 

); 

str4=strcat('* SOLID 

SECTION,ELSET=ELSOIL',num2str(CE1(m1,1)),',','MATERIAL=MSOIL',num2str(CE 

1(m1,1))); 

str5=strcat('*MATERIAL,NAME=MSOIL',num2str(CE1(m1,1))); 

str6='*ELASTIC'; 

v=0.499; % Poisson's ratio 

str7=strcat(num2str(CE1(ml,2)),',',num2str(v)); 

m1=m1+1; 

fprintf(fid, '%s\n ',str2); 

fprintf(fid,'%s\n',str3); 

fprintf(fid,'%s\n',str4); 

fprintf(fid,'%s\n',str5); 

fprintf(fid, '%s\n' ,str6); 

fprintf(fid,'%s\n',str7); 

end 

str8=('*ELSET,ELSET=MLST, GENERATE'); 

str9=('1001,4940'); 
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strlO=('*ELSET,ELSET=ELOAD, GENERATE'); 

str11=('4901,4904,1 '); 

fprintf(fid,'%s\n',str8); 

fprintf(fid,'%s\n',str9); 

fprintf(fid,'%s\n',strl0); 

fprintf(fid,'%s\n',strll ); 

fclose(fid); 

2.2a Moduli Modified for Layered Cohesive Soils 

Function read1 (f2,e 1 ,e2) 

%Modifying the modulus of each element. From the file f2, stresses of each element are 

%obtained, then according to theirs stresses modify the modulus of each element. New 

%modulus of elements will be written into file y.inp by calling another Matlab script 

%w.m. c is the cohesion of soil, e 1 is the old Young's modulus of lower soil, e2. is the old 

%Young's modulus of upper soil 

hg=load(f2); 

al=hg(:,l); 

a2=hg(:,7); 

a=cat(2,a1 ,a2); 

sy=min(a2) 

[m,n]=size(a); 

i=l; 

for i=1:1600 

ifi<=640 
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CE(i,n)=sy*el/a(i,n); 

else 

CE(i,n)=sy*e2/a(i,n); 

end 

end 

ce=CE(:,2); 

CE1=cat(2,al,ce); 

write(CEl); 

2.2b Creating the Second Elastic Analysis Files for Layered Cohesive Soils 

Function write(CEl) 

%Output the new modulus of each element to file y. inp, which will be used for the second 

%elastic analysis 

strla='*********************************'; 

strlb='**SOIL ELEMENT DEFINING'; 

strlc='*********************************'; 

[m,n]=size(CEl); 

ml=l; 

nl=l; 

fid=fopen('y.inp','w'); 

fprintf(fid,'%s\n',strla); 

fprintf(fid,'%s\n',strlb); 

fprintf(fid,'%s\n',strlc); 

while ml<=m; 
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str2=strcat('*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL',num2str(CE1(m1,1))); 

nd=CE1(m1,1); 

nd1=CE1(m1,1); 

nd2=CE1(m1, 1 )+ 1; 

nd3=CE1 (m1,1 )+ 101; 

nd4=CE1(m1,1)+ 100; 

str3=strcat(num2str(nd),',',num2str(nd1),',',num2str(nd2),',',num2str(nd3),',',num2str(nd4) 

); 

str4=strcat('*SOLID 

SECTION,ELSET=ELSOIL',num2str(CE1(m1,1)),',','MATERIAL=MSOIL',num2str(CE 

1(m1,1))); 

str5=strcat('*MATERIAL,NAME=MSOIL',num2str(CE1(m1,1))); 

str6='*ELASTIC'; 

v=0.499;% Poisson's ratio 

str7=strcat(num2str(CE1(m1,2)),',',num2str(v)); 

m1=m1+1; 

fprintf(fid,'%s\n' ,str2); 

fprintf(fid,'%s\n' ,str3); 

fprintf(fid,'%s\n' ,str4 ); 

fprintf(fid,'%s\n',str5); 

fprintf(fid, '%s\n' ,str6); 

fprintf(fid, '%s\n' ,str7); 

end 
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str8=('*ELSET,ELSET=MLST, GENERATE'); 

str9=('1001,4940'); 

str10=('*ELSET,ELSET=ELOAD, GENERATE'); 

str11=('490 1,4904,1 '); 

fprintf(fid,'%s\n',str8); 

fprintf(fid,'%s\n',str9); 

fprintf(fid,'%s\n',str10); 

fprintf(fid, '%s\n' ,str11 ); 

fclose(fid); 

2.3a Moduli Modified for Cohesive-Frictional Soils 

Function read1(fl,f2,c,phi,e) 

% This function is used to modify the modulus of each element for trial one, trial two. 

%The result of stresses of each element came from the first analysis, friction angle of soil 

%and old elastic modulus are inputted, then the new elastic modulus for each element is 

%solved for the second elastic analysis. The result will be written into file y. inp, which 

%will be used as part of the second analysis. c is the cohesion of soil, phi is the frictional 

%angle of soil, e is the old Young's modulus of soil. 

ld=load(fl);% stresses of each element caused by applied load 

sw=load(f2); % stresses of each element caused by self-weight 

for k=1:1600 

ql(k,1)=-0.5*(ld(k,3)-ld(k,5)); 

pl(k, 1 )=-0.5*(ld(k,3 )+ld(k,5) ); 

qw(k,1)=-0.5*(sw(k,3)-sw(k,5)); 
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pw(k, 1 )=-0.5*(sw(k,3)+sw(k,5) ); 

b(k,1)=(ql(k,1)+qw(k,1))/(pl(k,1)+pw(k,1)+c/tan(phi*3.14/180)); 

ifb(k,1)>1 

b(k,1)=0.99; 

end 

cd(k, 1 )=tan(asin(b(k, 1)))*c/tan(phi *3.14/180) 

K(k, 1 )=c/cd(k, 1) 

end 

%Modify elastic modulus of each element 

for i=1:1600 

CE(i, 1 )=e*K(i, 1 ); 

end 

a4=ld(:,1); 

CE1=cat(2,a4,CE); 

write1(CE1);% Call the .function write] to output the new modulus 

2.3b Moduli Modified for Cohesive-Frictional Soils (for trial three, trial four) 

Function read1 (fl ,f2,c,phi,e, v) 

% This function is used to modify the modulus of each element for trial three, trial four. 

%The result of stresses of each element came from the first analysis, friction angle of soil 

%and old elastic modulus are inputted, then the new elastic modulus for each element is 

%solved for the second elastic analysis. The result will be written into file y. inp, which 

%will be used as part of the second analysis.c is the cohesion of soil, phi is the frictional 

%angle of soil, e is the old Young's modulus of soil. v is the old Poissons' ratio of soil. 
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ld=load(fl);% stresses of each element caused by applied load 

sw=load(f2); % stresses of each element caused by applied load 

for k=1:1600 

ql(k, 1 )=-0.5*(ld(k,3 )-ld(k,5) ); 

pl(k, 1 )=-0.5*(ld(k,3)+ld(k,5) ); 

qw(k, 1 )=-0.5*(sw(k,3)-sw(k,5) ); 

pw(k,1)=-0.5*(sw(k,3)+sw(k,5)); 

b(k,1)=(ql(k,l)+qw(k,1))/(pl(k,l)+pw(k,l)+c/tan(phi*3.14/180)); 

ifb(k,1)>1 

b(k,1)=0.99; 

end 

cd(k, l)=tan(asin(b(k, 1)))*c/tan(phi *3.141180); 

F(k,l)=c/cd(k,1); 

end 

for i=l: 1600 

VE(i,1)=3/(2+F(i,1)*(1-2*v)/(1 +v))-1; 

if VE(i,1)>=0.5; 

VE(i,1)=0.4999; 

end 

if VE(i,l)<=O.l; 

VE(i,l)=O.l; 

end 

CE(i,1)=(1 + VE(i,1))*e*F(i,1)/(1 +v); 
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end 

% Modify elastic modulus and poison's ratio of each element 

a4=ld(:,l); 

CE1=cat(2,a4,CE,VE); 

writel(CEl); 

% call the function write] to output the new modulus 

2.3c Creating the Second Elastic Analysis Files for Cohesive-Frictional Soils (for 

trial one, trial two) 

Function writel (CEl) 

% Output the data to file y. inp, which will be taken as part of the second analysis.using 

%for trial one and two 

strla='*********************************'; 

strlb='**SOIL ELEMENT DEFINING'; 

strlc='*********************************'; 

[m,n]=size(CEl); 

ml=l; 

nl=l; 

fid=fopen('y .inp' ,'w'); 

fprintf(fid,'%s\n',strla); 

fprintf(fid,'%s\n',strl b); 

fprintf(fid,'%s\n',strlc); 

while ml <=m; 

str2=strcat('*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL',num2str(CEl(ml,l))); 
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nd=CE1 (m1, 1 ); 

nd1=CE1(m1,1); 

nd2=CE1 (m1, 1)+ 1; 

nd3=CE1 (m1, 1)+ 101; 

nd4=CE1(m1,1)+ 100; 

str3=strcat(num2str(nd),',',num2str(nd1),',',num2str(nd2),',',num2str(nd3),',',num2str(nd4) 

); 

str4=strcat('* SOLID 

SECTION,ELSET=ELSOIL',num2str(CE1(m1,1)),',','MATERIAL=MSOIL',num2str(CE 

1(m1,1))); 

str5=strcat('*MATERIAL, NAME=MSOIL',num2str(CE1(m1,1))); 

str6='*ELASTIC'; 

v=0.3;% Poisson's ratio 

str7=strcat(num2str(CE1(m1,2)),',',num2str(v)); 

m1=m1+1; 

fprintf(fid,'%s\n',str2); 

fprintf(fid,'%s\n',str3); 

fprintf(fid,'%s\n',str4); 

fprintf(fid,'%s\n',str5); 

fprintf(fid,'%s\n',str6); 

fprintf(fid,'%s\n',str7); 

end 

str8=('*ELSET, ELSET=ELSOIL, GENERATE'); 
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s tr9=(' I 00 I ,4 940 '); 

strlO=('*ELSET, ELSET=ELOAD, GENERATE'); 

str1I=('490I,4904,I'); 

fprintf(fid,'%s\n',str8); 

fprintf(fid,'%s\n',str9); 

fprintf(fid,'%s\n',striO); 

fprintf(fid,'%s\n' ,strii ); 

fclose(fid); 

2.3d Creating the Second Elastic Analysis Files for Cohesive-Frictional Soils (for 

trial three, trial four) 

Function writei (CEI) 

%Output the data to file y.inp, which will be taken as part of the second analysis. using 

%for trial three and four 

stria='*********************************'; 

strib='**SOIL ELEMENT DEFINING'; 

stric='*********************************'; 

[m,n]=size(CEI); 

mi=I; 

ni=I; 

fid=fopen('y.inp','w'); 

fprintf(fid,'%s\n' ,stria); 

fprintf(fid,'%s\n',str I b); 

fprintf(fid,'%s\n',strlc ); 
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while m1<=m; 

str2=strcat('*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL',num2str(CE1(m1,1))); 

nd=CE1(m1,1); 

nd1=CE1(m1,1); 

nd2=CE1 (m1, 1 )+ 1; 

nd3=CE1 (m1 ,1 )+ 101; 

nd4=CE1 (m1, 1 )+ 100; 

str3=strcat(num2str(nd),',',num2str(nd1),',',num2str(nd2),',',num2str(nd3),',',num2str(nd4) 

); 

str4=strcat('* SOLID 

SECTION,ELSET=ELSOIL',num2str(CE1(m1,1)),',','MATERIAL=MSOIL',num2str(CE 

1(m1,1))); 

str5=strcat('*MATERIAL, NAME=MSOIL',num2str(CE1(m1,1))); 

str6='*ELASTIC'; 

str7=strcat(num2str(CE1(m1,2)),',',num2str(CE1(m1,3))); 

m1=m1+1; 

fprintf(fid, 'o/os\n' ,str2); 

fprintf(fid,'%s\n',str3); 

fprintf(fid,'%s\n',str4); 

fprintf(fid, '%s\n' ,str5); 

fprintf(fid, 'o/os\n' ,str6); 

fprintf(fid,'%s\n',str7); 

end 
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str8=('*ELSET,ELSET=ELSOIL, GENERATE'); 

str9=(' 1001 ,4940'); 

strlO=('*ELSET,ELSET=ELOAD, GENERATE'); 

str11=('4901,4904,1'); 

fprintf(fid,'%s\n',str8); 

fprintf(fid,'%s\n',str9); 

fprintf(fid,'%s\n',str10); 

fprintf(fid,'%s\n',str11); 

fclose(fid); 

3 Scripts for Finding R-node Elements and Plotting 

3.1 Finding R-node Elements and Plotting for Uniform Cohesive Soils 

Function [b ]=try3(file1 ,file2) 

[ d1]=try1 (file1 ); 

[ d2]=try2(file2); 

b=zeros(40,2); 

c=zeros(40,1); 

for i=1:40; 

a1=d1 (: ,: ,i); 

a2=d2(:,:,i); 

a3=a1(:,2)-a2(:,2); 

a3=abs(a3); 

a4=a2(:,2); 

for h=1:40 
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a3(h)/a4(h); 

a5(h,1)=ans; 

end 

[m,n]=min(a5); 

b(i,1)=a1(n,1); 

ifm <=1; 

b(i,3)=m*100; 

b(i,2)=[a1(n,2)+a2(n,2)]/2; 

c(i)=n; 

end 

end 

subplot( 1 ,2, 1); 

plot( c,'o'); 

axis([1 40 1 40]); 

grid on; 

xlabel('Segment number'); 

ylabEL('Row number'); 

TITLE('R-nodes Locations'); 

subplot( 1 ,2,2); 

plot(b(:,2)); 

axis([1 40 0 100]); 

grid on; 

xlabel('Segment number'); 
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ylabEL('R-node von Mises stresses(kPa)'); 

TITLE('R-node von Mises Stresses'); 

fclose('all') 

[m,n]=size(c); 

m1=1; 

n1=1; 

fid=fopen('E.inp', 'w'); 

while m1<=m; 

str7=strcat(num2str(c(m1,1))); 

fprintf(fid,'%s\n',str7); 

m1=m1+1; 

end 

fclose(fid); 

Function [dl]=try1(file1) 

a1=load(file1); 

b 1=a1 (:, 1 ); 

cl=-a1(:,3); 

c2=-a1(:,4); 

c3=-a1(:,5); 

for k=1:1600 

b2(k, 1 )=[ ( c 1 (k, 1 )-c2(k, 1) )A2+( c2(k, 1 )-c3(k, 1) )"2+( c3(k, 1 )-c 1 (k, 1) )A2]"0.5/2"0.5; 

end 
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b3=cat(2,b 1 ,b2); 

m=40; 

n=40; 

ml=l; 

m2=1; 

d=zeros(m,2,n); 

n1=1; 

n2=1; 

for i=l:n; 

for i=1:m; 

d(m2, 1 ,n2)=b3(ml, 1 ); 

d(m2,2,n2)=b3(ml ,2); 

ml=m1+40; 

m2=m2+1; 

end 

n2=n2+1; 

nl=nl+l; 

ml=nl; 

m2=1; 

end 

d1=d; 

Function [d2]=try2(file2) 
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a1=load(file2); 

b1=a1(:,1); 

cl=-a1(:,3); 

c2=-a1(:,4); 

c3=-a1(:,5); 

for k=1:1600 

b2(k, 1)=[( c 1 (k, 1)-c2(k, 1))"2+(c2(k, 1)-c3(k, 1))"2+(c3(k, 1)-c 1 (k, 1 ))"2]"0.5/2"0.5; 

end 

b3=cat(2,b 1 ,b2); 

m=40; 

n=40; 

m1=1; 

m2=1; 

d=zeros(m,2,n); 

n1=1; 

n2=1; 

for i=1:n; 

for i=1:m; 

d(m2,1,n2)=b3(m1,1); 

d(m2,2,n2)=b3(m1 ,2); 

m1=m1+40; 

m2=m2+1; 

end 
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n2=n2+1; 

nl=nl+l; 

ml=nl; 

m2=1; 

end 

d2=d; 

3.2 Finding R-node Elements and Plotting for Layered Cohesive Soils 

Function [b]=try3(filel,file2) 

[ dl]=tryl (file I); 

[ d2]=try2(file2); 

b=zeros(40,2); 

c=zeros(40,1); 

mm=zeros( 40,40); 

for i=1:40; 

al=dl(:,:,i); 

a2=d2(:,:,i); 

a3=a1(:,2)-a2(:,2); 

a4=a1(:,2); 

for h=1:40 

a3(h)/a4(h); 

a5(h, 1 )=ans; 

end 

for h=l:39 
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if and(abs(a5(h,1))<=0.1,abs(a5(h+ 1,1))<=0.1) 

if 

and( or(and(a5(h, 1 )>=0,a5(h+ 1,1 )<0),and(a5(h, 1 )<O,a5(h+ 1,1 )>=0)),abs((a5(h, 1)+a5(h+ 1, 

1))<=0.1)) 

mm(h,i)=a1 (h,2)-(a1 (h,2)-a1 (h+ 1 ,2))*a5(h, 1 )/(a5(h, 1 )-a5(h+ 1,1 )); 

else 

mm(h,i)=O; 

end 

end 

end 

[m1,n1]=min(abs(a5)); 

[m,n]=max(mm(:,i)); 

if m >= a1(n1,2) 

b(i,1)=a1(n,1); 

b(i,3)=m; 

c(i)=n; 

else 

b(i,1)=a1(n1 ,1); 

b(i,3)=a1(n1,2); 

c(i)=n1; 

end 

b(i,4)=m1 *1000; 

b(i,5)=m; 
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b(i,2)=[ a1 (n,2)+a2(n,2) ]/2; 

end 

subplot(1,2,1); 

plot( c,'o'); 

axis([1 40 1 40]); 

grid on; 

xlabel('Segment number'); 

ylabEL('Row number'); 

TITLE('R-node Locations'); 

subplot( 1 ,2,2); 

plot(b(:,3)); 

axis([1 40 0 100]); 

grid on; 

xlabel('Segment number'); 

ylabEL('R-node von Mises Stresses(kPa)'); 

TITLE('R-node von Mises Stresses'); 

fclose('all') 

[m,n]=size(c); 

m1=1; 

n1=1; 

fid=fopen('E.inp','w'); 

while m1 <=m; 

str7=strcat(num2str(c(m1,1))); 
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fprintf(fid,'%s\n',str7); 

ml=ml+l; 

end 

fclose(fid); 

Function [dl] = tryl(filel) 

al=load(filel); 

bl=al(:,l); 

b2=a1(:,7); 

b3=cat(2,b 1 ,b2); 

m=40; 

n=40; 

ml=l; 

m2=1; 

d=zeros(m,2,n); 

nl=l; 

n2=1; 

for i=l:n; 

for i=l:m; 

d(m2,1,n2)=b3(ml,l); 

d(m2,2,n2)=b3(ml ,2); 

ml=m1+40; 

m2=m2+1; 
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end 

n2=n2+1; 

nl=nl+l; 

ml=nl; 

m2=1; 

end 

dl=d; 

Function [d2] = try2(file2) 

al=load(file2); 

b l=al (:, 1 ); 

b2=a1(:,7); 

b3=cat(2,bl,b2); 

m=40; 

n=40; 

ml=l; 

m2=1; 

d=zeros(m,2,n); 

nl=l; 

n2=1; 

for i=l:n; 

for i=l:m; 

d(m2,1,n2)=b3(ml,l); 
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d(m2,2,n2)=b3(ml ,2); 

ml=m1+40; 

m2=m2+1; 

end 

n2=n2+1; 

nl=nl+l; 

ml=nl; 

m2=1; 

end 

d2=d; 

3.3 Finding R-oode Elements and Plotting for Cohesive-frictional Soils 

3.3a For Trial One and Two 

Function [b] =try3 (file 1 ,file2,file3 ,c, phi) 

[ dl]=tryl(filel ,file3,c,phi); 

[d2]=try2(file2,file3,c,phi); 

b=zeros( 40,2); 

c=zeros(40,1); 

mm=ones( 40,40)* 10001; 

for i=1:40; 

al=dl(:,:,i); 

a2=d2(:,:,i); 

a3=a1(:,2)-a2(:,2); 
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a4=a1(:,2); 

forh=1:40 

a3(h)/a4(h); 

a5(h,1)=ans; 

end 

for h=1:39 

if and(abs(a5(h,1))<=0.1,abs(a5(h+ 1,1))<=0.1) 

if 

and( or(and(a5(h,1)>=0,a5(h+ 1, 1)<0),and(a5(h, 1 )<O,a5(h+ 1,1 )>=0)),abs((a5(h, 1 )+a5(h+ 1, 

1))<=0.1)) 

mm(h,i)=a1(h,2)-(a1 (h,2)-a1(h+ 1 ,2))*a5(h,1 )/(a5(h, 1 )-a5(h+ 1,1 )); 

else 

mm(h,i)=10001; 

end 

end 

end 

[m,n]=min(mm(:,i)); 

ifm > 10000 

m=O; 

else 

m=m; 

end 

b(i,1)=a1(n,1); 
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ifm >= 10000 

b(i,3)=0; 

c(i)=n; 

else 

b(i,3)=al (n,2); 

c(i)=n; 

end 

end 

subplot(1,2,1); 

plot(c,'o'); 

axis([l 40 1 40]); 

grid on; 

xlabel('Segment number'); 

ylabEL('Row number'); 

TITLE('R-node Locations'); 

subplot(l ,2,2); 

plot(b(:,3)); 

axis([l 40 0 30]); 

grid on; 

xlabel('Segment number'); 

ylabEL('R-node Moblized Cohension Cd(kPa)'); 

TITLE('R-node Moblized Cohension Cd');fclose('all') 

[m,n]=size( c); 
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m1=1; 

n1=1; 

fid=fopen('E.inp','w'); 

while m1<=m; 

str7=strcat(num2str( c(m1 ,1 ))); 

fprintf(fid,'%s\n',str7); 

m1=m1+1; 

end 

fclose(fid); 

Function [dl] = tryl(file1,file3,c,phi) 

ld=load(file1 ); 

sw=load(file3); 

b1=ld(:,l); 

for k=1:1600 

ql(k, 1 )=-0.5*(ld(k,3)-ld(k,5) ); 

pl(k, 1 )=-0.5 *(ld(k,3)+ld(k,5) ); 

qw(k,1)=-0.5*(sw(k,3)-sw(k,5)); 

pw(k,1)=-0.5*(sw(k,3)+sw(k,5)); 

b(k,1)=(ql(k,l)+qw(k,1))/(pl(k,1)+pw(k,1)+ c/tan(phi*3.14/180)); 

if b(k,l)>l 

b(k,1)=0.99; 

k· 
' 
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b(k,1); 

pause 

end 

cd(k, 1 )=tan(asin(b(k,1 )))*c/tan(phi *3.14/180); 

end 

b2=cd; 

b3=cat(2,b 1 ,b2); 

m=40; 

n=40; 

m1=1; 

m2=1; 

d=zeros(m,2,n); 

n1=1; 

n2=1; 

for i=1:n; 

for i=1:m; 

d(m2,1,n2)=b3(m1,1); 

d(m2,2,n2)=b3(m1 ,2); 

m1=m1+40; 

m2=m2+1; 

end 

n2=n2+1; 

n1=n1+1; 
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m1=n1; 

m2=1; 

end 

d1=d; 

Function [d2] = try2(file2,file3,c,phi) 

ld=load(file2); 

sw=load(file3); 

b1=ld(:,1); 

for k=1:1600 

ql(k, 1 )=-0.5*(ld(k,3 )-ld(k,5) ); 

pl(k, 1 )=-0.5*(ld(k,3 )+ld(k,5) ); 

qw(k,1)=-0.5*(sw(k,3)-sw(k,5)); 

pw(k,1)=-0.5*(sw(k,3)+sw(k,5)); 

b(k,1)=(ql(k,1)+qw(k,1))/(pl(k,1)+pw(k,1)+ c/tan(phi*3.14/180)); 

if b(k,1)> 1 

b(k,1)=0.99; 

k; 

b(k,l); 

end 

cd(k, 1 )=tan( asin(b(k, 1)) )*c/tan(phi *3 .14/180); 

end 

b2=cd; 
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b3=cat(2,b 1 ,b2); 

m=40; 

n=40; 

ml=l; 

m2=1; 

d=zeros( m,2,n); 

nl=l; 

n2=1; 

for i=l:n; 

for i=l:m; 

d(m2,l,n2)=b3(ml,l); 

d(m2,2,n2)=b3(ml ,2); 

ml=m1+40; 

m2=m2+1; 

end 

n2=n2+1; 

nl=nl+l; 

ml=nl; 

m2=1; 

end 

d2=d; 

3.3b For Trial Three and Four 
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Ffunction [b ]=try3(file1 ,file2,file3,c,phi) 

[ d1 ]=try1 (file1 ,file3 ,c,phi); 

[ d2]=try2(file2,file3,c,phi); 

b=zeros( 40,2); 

c=zeros( 40, 1); 

mm=ones( 40,40)*0; 

for i=1:40; 

a1=d1(:,:,i); 

a2=d2(:,:,i); 

a3=a1(:,2)-a2(:,2); 

a4=a1(:,2); 

for h=1:40 

a3(h)/a4(h); 

a5(h,1)=ans; 

end 

for h=1:39 

if and(abs(a5(h,1))<=0.1,abs(a5(h+ 1,1))<=0.1) 

if 

and( or(and(a5(h, 1 )>=0,a5(h+ 1,1 )<O),and(a5(h,1 )<O,a5(h+ 1,1 )>=0)),abs((a5(h,1 )+a5(h+ 1, 

1))<=0.1)) 

mm(h,i)=a1 (h,2)-(a1 (h,2)-a1(h+ 1 ,2))*a5(h, 1)/(a5(h,1)-a5(h+ 1,1 )); 

else 

mm(h,i)=O; 
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end 

end 

end 

mm; 

[m1,n1]=min(abs(a5)); 

[m,n]=min(abs(mm(:,i))); 

ifm == 0 

b(i,l)=a1(nl,l); 

b(i,3)=a1(n1,2)* 1000; 

c(i)=nl; 

else 

b(i,l)=a1(n,1); 

b(i,3)=m* 1000; 

c(i)=n; 

end 

end 

subplot(l ,2,1 ); 

plot( c,'o'); 

axis([1 40 1 40]); 

grid on; 

xlabel('Segment number'); 

ylabEL('Row number'); 

TITLE('R-node Locations'); 
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subplot( I ,2,2); 

plot(b(:,3)); 

axis([l 40 0 2]); 

grid on; 

xlabel('Segment number'); 

ylabEL('R-node Safety Factor K'); 

TITLE('R-node Safety Factor K'); 

fclose('all') 

[m,n]=size(c); 

ml=l; 

nl=l; 

fid=fopen('E.inp','w'); 

while ml <=m; 

str7=strcat(num2str(c(ml,l))); 

fprintf(fid, '%s\n' ,str7); 

ml=ml+l; 

end 

fclose(fid); 

Function [dl] = tryl(filel,file3,c,phi) 

ld=load(filel); 

sw=load(file3); 

bl=ld(:,l); 
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for k=1:1600 

ql(k, 1 )=-0.5*(ld(k,3 )-ld(k,5) ); 

pl(k, 1 )=-0.5 *(ld(k,3 )+ld(k,5) ); 

qw(k,1)=-0.5*(sw(k,3)-sw(k,5)); 

pw(k,1)=-0.5*(sw(k,3)+sw(k,5)); 

b(k,1)=(ql(k,1)+qw(k,1))/(pl(k,1)+pw(k,1)+ c/tan(phi*3.14/180)); 

if b(k,1)>1 

b(k, 1 )=0.99; 

k· 
' 

b(k,1); 

pause 

end 

tan( asin(b(k, 1)) ); 

cl(k,1)=c/tan(phi*3.14/180); 

c2(k,1)=sin(phi*3.14/180)*(pw(k,1)+c1(k,1))-qw(k,1); 

K(k, 1 )=c2(k, 1 )/( ql(k, 1 )-sin(phi *3 .14/lSO)*pl(k, 1) ); 

end 

b2=K; 

b3=cat(2,b 1 ,b2); 

m=40; 

n=40; 

m1=1; 

m2=1; 
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d=zeros(m,2,n); 

n1=1; 

n2=1; 

for i=1:n; 

for i=1:m; 

d(m2, 1 ,n2)=b3(m1, 1 ); 

d(m2,2,n2)=b3(m1 ,2); 

m1=m1+40; 

m2=m2+1; 

end 

n2=n2+1; 

n1=n1+1; 

m1=n1; 

m2=1; 

end 

d1=d; 

Function [d2] = try2(file2,file3,c,phi) 

ld=load(file2); 

sw=load(file3); 

b1=ld(:,1); 

for k=1:1600 

ql(k, 1 )=-0.5 *(ld(k,3)-ld(k,5) ); 
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pl(k, 1 )=-0.5 *(ld(k,3 )+ld(k,5) ); 

qw(k,1)=-0.5*(sw(k,3)-sw(k,5)); 

pw(k,1)=-0.5*(sw(k,3)+sw(k,5)); 

b(k, 1 )=(ql(k,1 )+qw(k, 1 ))/(pl(k, 1 )+pw(k,l)+ c/tan(phi *3.14/180)); 

if b(k,1)>1 

b(k,1)=0.99; 

k; 

b(k,1); 

pause 

end 

tan(asin(b(k, 1 ))); 

cl(k, 1 )=c/tan(phi *3.14/180); 

c2(k,1)=sin(phi*3.14/180)*(pw(k,1)+c1(k,1))-qw(k,1); 

K(k, 1)=c2(k, 1)/(ql(k, 1 )-sin(phi *3.141180)*pl(k,1 )); 

end 

b2=K; 

b3=cat(2,b 1 ,b2); 

m=40; 

n=40; 

m1=1; 

m2=1; 

d=zeros( m,2,n); 

n1=1; 
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n2=1; 

for i=l:n; 

for i=l:rn; 

d(rn2,1,n2)=b3(rnl ,1); 

d(rn2,2,n2)=b3(rnl ,2); 

rnl=rnl +40; 

rn2=rn2+1; 

end 

n2=n2+1; 

nl=nl+l; 

rnl=nl; 

rn2=1; 

end 

d2=d; 
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