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Abstract

Limit analysis is very useful in the assessment and design of mechanical
components and structures. Among the various methods for limit load estimation,
approximate methods based on linear elastic finite element analyses are appealing to
analysts and designers due to the conceptual insight, economy of computational effort and

wide applicability.

In this thesis, an approximate method for determining the limit loads of
foundations on homogeneous and layered cohesive soils and cohesive-frictional soil is
presented in detail. The results obtained for layered soils are presented as charts to be
used for foundation design. This method makes use of the results of two or more linear
elastic analyses. From these linear elastic analyses, load controlled locations called
r-nodes are identified and limit loads are determined. The concept of r-nodes
(redistribution nodes), which are akin to plastic hinge locations in a structure, forms the
basis of this method. Several possible alternative ways of applying the r-node method to

pressure-sensitive materials are also presented.

The results obtained are compared with analytical results and elastic-plastic

nonlinear finite element analysis results.
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Nomenclature

Area

Bulk modulus, or width of foundation

New bulk modulus of each element for the second elastic analysis

Original bulk modulus of each element for the first elastic analysis
Creep parameters for second stage creep
Cohesion and friction angle

Elastic stiffness tensor

Plastic stiffness tensor

Elastic-plastic stiffness tensor

Depth of the foundation

Principal components of deviatoric strain tensor

Deviatoric strain tensor

New elastic modulus of each element for the second elastic analysis

Original elastic modulus of each element for the first elastic analysis

Plastic modulus in uniaxial stress condition
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m

Tangential modulus in uniaxial stress condition

Body forces

Shear modulus

New shear modulus of each element for the second elastic analysis

Original shear modulus of each element for the first elastic analysis

Slope of effective stress-effective plastic strain curve

First invariant of stress tensor

First invariant of strain tensor

Second invariant of deviatoric stress tensor

Second invariant of deviatoric strain tensor

Third invariant of deviatoric stress tensor

Pure shear yield stress (kPa ), Strength parameter in Drucker-Prager
criterion

Length of the foundation (m)

Applied external load

Lower bound multiplier corresponding to an applied load
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N,,N,, N, Dimensionless bearing capacity coefficients

858558, Principal components of deviatoric stress tensor

S Deviatoric stress tensor

P Applied pressure

P, Limit pressure

P Applied external load

P, Plastic collapse load or limit load

g, Limit pressure of strip foundation

r Radius

T, Surface tractions

u,v Displacements

1% Poisson’s ratio

v, New Poisson’s ratio of each element for the second elastic analysis
Vv, Original Poisson’s ratio of each element for the first elastic analysis
| % Volume, or velocity

w Strain energy function

Q Complementary energy function

(o4 Proportionality constant, strength parameter in Drucker-Prager criterion
/17 , A Shape factors of the bearing capacity of the foundation



4 Geometric scaling factor, engineering shear strain, or unit weight

o Displacement in a component or structure
o Displacement rate

Smf Displacement rate at the reference stress
E,E,,& Principal components of strain tensor

£, Creep strain

Eem Creep strain at the mean radius

£, Creep strain rate

E, o Creep strain rate at the reference stress

£, Strain tensor

£ Elastic strain tensor

& Plastic strain tensor

& Volumetric strain

1] Friction angle

0o, Initial yield stress in uniaxial tension (kPa )
0,,0,,0, Principal components of stress tensor

o, Uniaxial compressive yield stress (kPa )
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o Effective or von Mises stress (kPa)

o, Pseudo elastic effective stress in an element ( kPa )
(T ode R-node effective stress (kPa )

o, Stress tensor

g, Combined r-node effective stress (kPa )

o, R-node effective stress at the plastic hinge location j (kPa)
O e Reference stress (kPa )

o, Uniaxial tensile yield stress (kPa)

o, Yield stress (kPa)

T, Initial yield stress in pure shear (kPa )

K Hardening parameter or plastic internal variable

v, Unit outward normal at a point
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Abbreviations

ASME

CSME

GLOSS

FEM

R-node

RSM

Subscripts

American Society of Mechanical Engineers
Canadian Society of Mechanical Engineers
Generalized Local Stress Strain

Finite Element Method

Redistribution Node

Reference Stress Method

External

Internal, tensorial index
Tensorial indices

Limit

Polar coordinate
Reference

Softened

Cartesian coordinate, yield
Cartesian coordinate

Polar coordinate
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Superscripts

c Creep

n Creep exponent
L Lower bound
U Upper bound

* Differential change of force or moment across an element of a structure
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Chapter One

Introduction

1.1 General Background

The primary objective of this thesis is to investigate the applicability of a robust
approximate method, namely the r-node method, to estimate the limit load of foundations
on various types of soil materials. The numerical examples are limited to strip
foundations placed at ground level. At present, limit loads of strip foundation under
conditions of plane strain are obtained either by analytical methods such as limit
equilibrium method (Terzaghi (1943) [1] and Meyerhof (1951) [2]), slip-line method
(Sokolovskii (1965) [3] and Brinch Hansen (1961) [4]) and limit analysis method (Shield
(1954) [5], Chen and Davidson (1973) [6]), or numerical techniques, such as the

nonlinear finite element technique.

Analytical methods for limit analysis of foundations have evolved over a long
period of time as compared to computer-aided numerical techniques, such as the finite
element analysis, which are comparatively recent. An examination of the literature on
plastic analysis reveals that analytical solutions are available only for simple cases of
loading and geometric configurations. Inelastic finite element analysis, on the other hand,

has its own limitations mainly related to computational effort. The above factors thus



create the need for the development of approximate methods, which are simple, efficient

and yet sufficiently accurate for analyzing limit loads of structures.

The r-node method, explained in detail in the next chapter, is an approximate
method for performing limit analysis. The method, in essence, is a technique for
performing limit analysis by combining the accuracy and rationale of the finite element
technique, the speed and the ease of linear elastic analysis and the concept of the
reference stress method. This method makes use of the statically determinate locations in
a structure, called the r-nodes, for the limit analysis. The stresses at the r-node locations,
called the r-node stresses, can be directly related to the load-controlled mode of failure of
a structure. The r-node method can, therefore, be used to performed limit analysis of a

structure in a robust manner.

1.2 Objectives of the Thesis
The objectives of this thesis are:

1. To present a robust method for the limit analyses of purely cohesive soils and

provide design charts for strip foundation on layered soils.
2. To provide limits of applicability for layered cohesive soils.

3. To investigate the possibility of applying the r-node method for

pressure-sensitive materials.

1.3 Organization of the Thesis

Chapter 1 briefly addresses the usefulness of limit analysis in structural design and

the existing limit analysis techniques. The r-node method and its value in limit analysis



are briefly discussed in this chapter. The objectives of this thesis and its original
contributions are also clearly identified in this chapter.

The fundamental concepts relating to limit analysis and r-node method are
covered in chapter 2. A literature survey covering plasticity and limit analyses, the
reference stress method and the r-node method is presented; the concept of robustness,
which involves the development of simplified methods to predict inelastic response with
reasonable accuracy, is discussed. This chapter also examines the r-node concept and the
method, and brings out the relationship between the r-node stress and the reference stress.

Chapter 3 discusses constitutive equations of materials. The elastic and plastic
stress-strain relations of materials are covered in this chapter. Yield criteria for the
hydrostatic-pressure-independent materials, such as some metals, and
hydrostatic-pressure-dependent materials, such as the brittle or granular materials, are
analyzed in this chapter.

The plasticity theories applied to soil materials are briefly reviewed in Chapter 4.
Finite element method and analytical methods for the determination of limit loads of soil
structures are explained in this chapter. Also, the general methods for calculating the
bearing capacity of shallow foundations are presented.

In Chapter 5, the r-node method is used in determining the bearing capacity of
strip foundations on cohesive soils. Several numerical examples are used to validate the

r-node method. The problems consist of determining the limit loads of strip foundations

on homogeneous soil and layered soils. The finite element modeling methodology is
explained, and the limit loads are calculated using the analytical methods, non-linear

finite element method and r-node method. R-node method results are compared with



those of theoretical or other analytical methods, and nonlinear finite element results are
also discussed in this chapter.

Chapter 6 presents several alternative strategies in the use of the r-node for
estimating limit loads of foundations on pressure-sensitive materials (i.e.
cohesive-frictional soils). While those attempts have not been entirely successful, the
approaches and the results are analyzed and explained in detail to serve as a basis for
future research.

Chapter 7 summarizes the present study and briefly discusses the advantages of

the r-node method. Suggestions are also given for related future research.



Chapter Two

Basic Concepts and Literature Review

In view of the facts that a complete analysis including the range of plastic flow is,
in general, expensive computationally, and failure by plastic collapse is the governing
condition in so many problems in soil mechanics (Chen, (1975) [7]), the development of
efficient methods for computing the collapse load in a more direct manner is of practical
interest to engineers. Limit analysis is concerned with the development and applications
of such methods.

In the field of limit analysis in soil mechanics, Chen (1975) [7] has contributed
much to summarize and develop the work of previous researchers. Many significant
results in theories and applications of limit analysis have been reviewed or obtained by
Chen (1975) [7], such as reviewing the theorems of limit analysis, applying the slip-line
and limit equilibrium methods to solve the bearing capacity of shallow foundations,
analyzing the problems of stability of slopes and so on. In this thesis, many relative
theories, such as concepts of limit analysis, and computer implementations, such as the
principles of building the FE models are based on theorems or principles summarized by

Chen (1975) [7]. In the present research, a robust approximate method, namely r-node
method, would be utilized in analyzing and solving a limit analysis problem, namely

bearing capacity of strip foundations.



2.1 Concept of Limit Analysis

Limit analysis is the method which enables definite statements to be made about
the collapse load without carrying out the elastic-plastic analysis (Chen, (1975) [7]).
Limit analysis is concerned with the calculation of the load at which plastic flow occurs
in mechanical components or structures. From a design standpoint, to carry limit analysis
is useful for assessing load-controlled effects in structures. The classical theorems of limit

analysis are the lower and upper bound theorems.

2.1.1 Lower-bound Theorem

The load, determined from a distribution of stress alone, that satisfies the
equilibrium equations, stress boundary conditions and nowhere violates the yield
criterion, is not greater than the actual collapse load (Chen, (1975) [7]). The distribution
of stress satisfying the above three conditions has been termed as statically admissible
stress for the problem under consideration. Hence the lower-bound theorem may be

restated as bellow:

If a statically admissible stress distribution can be found, uncontained plastic flow

will not occur at a lower load.

2.1.2 Upper-bound Theorem

The load, determined by equating the external rate of work to the internal rate of
dissipation in an assumed deformation mode (or velocity field), that satisfies velocity

boundary conditions and strain and velocity compatibility conditions, is not less than the



actual collapse load (Chen, (1975) [7]). The dissipation of energy in plastic flow
associated with such a field can be computed from the idealized stress-strain rate relation
(or the so-called flow rule). A velocity field that satisfies the above conditions has been
termed a kinematically admissible velocity field. Hence, the upper-bound theorem may be

restated as bellow:

If a kinematically admissible velocity field can be found, uncontained plastic flow

must impend or have taken place previously.

The upper-bound technique considers only velocity or failure modes and energy
dissipation. The stress distribution need not be in equilibrium, and is only defined in the

deforming regions of the mode.

By suitable choice of stress and velocity fields, the above two theorems thus
enable the required collapse load to be bracketed as closely as seems necessary for the

problem under consideration.

2.2 Concept of Approximate Method

The limitations of the existing analytical techniques and the nonlinear finite
element analysis provide an incentive to develop inexpensive approximate methods that
are simple to use, and yet can predict inelastic response with reasonable accuracy
(Mangalaramanan, (1993) [8]). Such methods are termed as robust approximate methods.
Approximate methods are often used to estimate the limit load of structures, which means
a series of elastic analyses will be used to replace one elastic-plastic analysis in

calculating the limit loads of structures.



Compared with analytical techniques and the non-linear finite element analysis

methods, approximate methods are simple, inexpensive, and less time-consuming.

2.3 Classification of Approximate Methods

The approximate method being used in this thesis has roots that were first
developed in creep mechanics. Carrying the general creep and relaxation analysis is
normally difficult and complicated; as a result of such difficulty, several approximate
techniques have been proposed and presented. These techniques are generally arranged
into two broad categories. First, the reference stress method, which has been applied to
problems of creep deformation under steady and variable loads, creep buckling, and creep
rupture. Second, bounding techniques that emanate from the principle of virtual work

have been devised for problems of creep deformation under steady and variable loads.

The reference stress method is a simplified method that attempts to minimize the
effect of scatter in the creep parameters by using uniaxial test data (Kraus, (1980) [9]).
This method attempts to correlate creep deformation in a structure with the creep strain

that results during a simple creep test.

The bounding technique method is a simplified method that attempts to drive
kinematically admissible velocity fields and statically admissible fields in the limit
analysis of perfectly plastic structures by using variational principles (Kraus, (1980) [9]).
The methods based on virtual work were extended to situations such as variable loads,

and to interaction with plasticity by Ponter (1970) [17] and others.



2.3.1 The Reference Stress Method

One of the first approximate methods relevant to the present study is the reference
stress method (RSM). In the United States, Soderberg (1941) [10] calculated the first
reference stress of tubes; and then the method has been under development since the mid
1960’s in the United Kingdom. Basically, the idea of the method is that a given structure
can be analyzed with data obtained from a single creep test at its reference stress

(Marriott, (1970) [11]).

Earlier developments of the RSM were aimed at estimating the creep deformation
of a complex structure under mechanical loading by carrying out a single uniaxial test.

That means there exists a transformation for a component or structure, given by
5=7¢,[0,] (2.1)

where, O is some relevant displacement within a structure; O, is the reference stress;

¥ is a geometric parameter that would depend on the overall configuration of the
component or structure and the boundary conditions, and €, is the uniaxial creep

deformation at the reference stress.

A number of the earlier investigators (e.g. Anderson, et al., (1963) [12]) also
found that the reference stress is relatively insensitive to changes in the magnitude of the
creep parameters, and there exists a linear proportionality between the reference stress
and applied external load. The linear proportionality between the reference stress and

applied external load can be expressed as



~

0., =aP (2.2)

where, « is a function of geometry; P is the applied external load.

The linear proportionality between the reference stress and the applied external
load approximately leads to the notion of “insensitivity to the creep parameters”. It also
proved that the validity of RSM is not dependent on a specific form of constitutive
relationship. Making use of the aspect of insensitivity to the creep parameters, several
analytical methods of reference stress determination by different researchers (e.g.
Anderson, et al., (1963) [12]) have been developed. The values of the reference stress and

the scaling factor ¥ obtained by the different approaches described above are quite close.

Applying the notion that the reference stress is relatively insensitive to changes in
the magnitude of the creep parameters, Sim (1971) [14] reasoned that as creep exponent
approaches infinity, the stress distribution would correspond to the limit solution of

perfect plasticity; therefore, the reference stress can be obtained by

= (23)

Q

|
L:Ul! =t

Q

where, 13L is the rigid-plastic collapse load for a yield stress. Ponter and Leckie (1970)

[17] have shown that this approximation constitutes an upper bound on the value of

stress, and is therefore on the safe side for design purposes.
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2.3.2 Bounding Techniques

Bounding techniques are developed based on virtual work principle. In an elastic

. oW Q .
solid, by means of the formulas 0, =—, § =——, stresses O, and strains £; can be

ij
g, do,

solved from the strain energy function W and the complementary energy function €2,

where, W = Iaﬁdg..

i 2

Q= jgijda,.j.

Further, by Ducker’s postulate of materials stability (Drucker, (1952) [18]), a

restriction is placed on them. That is, given a pair of strain states &; and 8; with

1

corresponding stress states o, and 0';. , it is required that
[(0,-0})de,; 20 2.4)

where, 0';. remains constant during the integration from 8;. to & over any path.

According to the virtual work principle (Drucker, (1952) [18])

i

W+Q= J’(o;jdeij +8l.jd0,.j)=a £, (2.5)
The foregoing inequality may be written in another form,

Q(O';)+W(€ij)>0'*€ (2.6)

=%y
Considering a continuum of stable elastic material, with the body forces F; acting

on the continuum, and all displacements are assumed to be small so that geometry

11



changes can be ignored, and that a stress field a;. and a strain field &, are known for the

continuum. The stress field must be in internal equilibrium with the body forces, that is,

do, .
~“+F =0 (2.7)
ox.

J

The surface tractions 7, are defined by the requirements of external equilibrium.

Thus at any surface of the continuum,

*

o, =T (2.8)

vy

where, v, is the unit outward normal at a point. The strains £, must be compatible with

the displacements u, , thus,

¢ 1{ou® ou’
% 2[ ax, o 29

Because 0';. , €, are completely independent of each other, T, F and 0';. are in
equilibrium and u° and eif are compatible, we may write by the principle of virtual work

[Tufda+ [ Fufav = | ojefav (2.10)
where, A and V are the area and volume of the continuum.

Then considering the inequality (2.6), 0';. and 6‘5 is an admissible pair of states at

all points of the body, thus we may integrate over the volume retaining the inequality.

Substituting the result into equation (2.10),

12



[@(oj)av+ [w(ef)av = [ Tufaa+ [ Frufav @2.11)

Martin (1966) [19] derived the above inequality. He applied it to steady creep
problems on the basis of the elastic analogy. As an illustration, Martin (1966) [19] applied
this bounding technique to the creep of a cantilever beam subjected to a distributed load
and obtained upper bound on the solution. The bound is very good for that simple
example. With similar reasoning, a lower bound on the solution was developed and
extended to other situations such as variable loads, and to interaction with plasticity by
Ponter (1970) [17], Palmer (1967) [20], Leckie (1974) [21] and others. An excellent
review of this effort had been given by Leckie (1974) [21].

In the above, two approximate analytical techniques have been presented for
solving creep problems: the reference stress method and bounding techniques based on
the principle of virtual work. These methods have been used mostly in the United
Kingdom. It can be said that both avenues, the approximate analytical one presented here
and the numerical one, are now available to those contemplating work in this field.
Approximate analytical methods are presumably simpler, but digital computer solutions
are more accurate. On the surface it would seem that the latter would be the preferred
method. However, digital computer solutions are becoming more and more expensive so
that the simpler approximate methods are becoming more appealing on the basis of cost.

It is likely that eventually preliminary design will be carried out with the approximate

methods while final design analysis will continue to be carried out with the digital

computer.
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2.4 Literature Review

Limit analysis is concerned with the calculation of the load at which uncontained
plastic flow occurs in mechanical components or structures. The availability of closed
form analytical expressions for limit loads is restricted to components and structures with
simple geometric and loading configurations. An alternative, or a simpler recourse, is to
invoke the lower and upper bound theorems and then establish bounds within which the
exact solution would exist. Even this procedure can be mathematically intractable and is,
therefore, limited to the analysis of simple geometric configurations.

In view of the above stated limitations of the aforementioned methods, research
has more recently been directed towards estimating limit loads that are based on linear
elastic FEA, which are called as robust approximate methods. Such procedures are quite
straightforward and less time-and-resource consuming than inelastic FEA.

Robust approximate methods are based on the idea of creating a sequence of
linear problems that closely match the conditions of the non-linear problem, which means
a series of elastic analyses will be used to replace the elastic-plastic analysis in calculating
the limit loads of structures. A lot of research have been done in this field; some
well-known methods include R-node method by Seshadri and his co-workers
(1991&1995) [22&23], Partial elastic modulus modification method by Marriott (1988)

[24], m,, - multiplier method by Seshadri and Mangalaramanan (1995&1997) [25&26],

elastic compensation method by Mackenzie and Boyle (1993, 1993a&1993b) [27, 28&29]
and so on. Also, Ponter and co-workers (2000, 2001&2002) [30, 31&32] have developed

a family of methods called ‘Linear matching methods’. All these methods are robust
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approximate methods, which are used to replace elastic-plastic analysis methods by using
the elastic modulus adjustment procedure to simulate the inelastic flow at the plastic
collapse; these methods can obtain satisfactory results in linear elastic finite element
analyses.

The earliest use of elastic modulus adjustment procedures dates back to research
work on classification of clamp induced stresses in a thin walled pipe wherein the secant
modulus was adjusted iteratively to obtain inelastic solutions (Jones and Dhalla, (1981)
[33]). In this paper, highly stressed regions of the component or structure were
systematically softened by a reduction of their modulus of elasticity in an attempt to
simulate local inelastic action. Rather than carry out inelastic analysis, solutions were
obtained by employing several elastic analyses iteratively.

Marriott (1988) [24] developed an iterative procedure for estimating lower-bound
limit loads on the basis of linear elastic finite element analysis (FEA) by generating
statically admissible stress fields and used them in conjunction with established theorems
of limit analysis. Marriott (1988) [24]) adopted the elastic modulus adjustment procedure
to categorize stresses in pressure components where it was deemed difficult to determine
the stress category by inspection alone, yet where inelastic analysis was considered to be
expensive and elaborate.

Seshadri and his co-workers (1991&1995) [22&23] made use of the elastic

modulus adjustment procedure to determine lower-bound limit loads by adopting

reference stress concepts in creep design, they extended the concept of skeletal point to
the more general inelastic component behavior by defining and locating the redistribution

node (r-node) in components or structures. The method, designated as the GLOSS
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(generalized local stress-strain) R-node (redistribution node) technique, had been applied
to arches, frames, plates and shells. Symmetric as well as nonsymmetrical structures had
been considered, and the criteria for ensuring lower bound limit loads had been provided.

Seshadri and Prasad (1996) [34] also applied r-node method for determining limit
loads of foundations and slopes in saturated cohesive soils under undrained conditions. In
that paper, the r-node method was applied to some problems in geotechnical engineering.
Problems involving bearing capacity of footings and stability of slopes under strip loading
in cohesive soils had been analyzed; both uniform and layered soils were considered. The
bearing capacity or limit loads obtained for these problems were compared with results of
inelastic FEA. The limit load estimates were found to be reasonably accurate and this
method had been demonstrated to consume less time and resources than classical elastic-
plastic analyses.

Mackenzie, et al., (1993, 1993a&1993b) [27, 28&29] applied a similar algorithm,
beyond the two linear elastic iterations, to determine the lower bound limit loads of
pressure vessels on the basis of Melan’s theorem (Melan, (1938) [35]).

Mura, et al., (1965) [36] discussed a lower bound method for limit load
determination that is based on variational concepts. On the basis of a variational
formulation, traditional methods had been replaced by introducing the concept of ‘integral
mean of yield’ by Mura and his coworkers. A variational formulation that is equivalent to
the classical lower bound method, except that the use of space variables is circumvented,
had been presented; improved lower bound limit loads have been obtained for symmetric
and nonsymmetrical components by extending Mura’s variational formulation to include

local plastic collapse mechanisms.
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Based on the extended variational principle, using a modulus-adjustment scheme

similar to the GLOSS R-Node technique, a robust limit load estimation method, called the

m,, - method, was developed by Seshadri and Mangalaramanan (1997) [26]. The
m,, - method had been applied to a range of pressure component configurations, such as

cylinders, torispherical heads, nozzle-sphere intersections and nonsymmetric plate
structures.

The m, - method was further extended to layered structures, cracked components

and components made of anisotropic materials by Pan and Seshadri (2002) [37]. For all
these applications, the multipliers and the proposed procedure were compared with those
obtained by the lower bound estimation based on the elastic compensation method (ECM)
and inelastic FEA. The numerical results showed that the robust method could be applied
to various components and structures leading to good limit load estimates.

Ponter and coworkers (2000, 2001&2002) [30, 31&32] had provided a formal
development of these methods and viewed these procedures as “linear matching method”.
This method was based upon principles similar to the elastic compensation method,
which had been used for design calculations for some years but re-interpreted as a
non-linear programming method. By matching the non-linear material behaviour to a
linear material, a powerful upper bound programming method had been applied to a
significant class of problems; a sufficient condition for convergence, which relates
properties of the yield surface to those of the linear solutions solved at each iteration, had
been derived. This method had been applied to a Drucker-Prager yield condition in terms

of the von-Mises effective stress and the hydrostatic pressure by Ponter and co-workers.
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Implementation was shown to be possible using the user routines in a commercial finite
element code, ABAQUS. In an accompanying paper (Mangalaramanan and Seshadri,
(1995) [19]) the method was extended to shakedown and related problems.

A method similar to the above robust methods has been developed without the use
of r-node or m,, concepts (Adluri, 2000 [77] and Bolar & Adluri [78]). This Secant
Rigidity Method realizes that r-node is essentially a cross section stress variation
phenomenon. Also, the secant modification of r-node and m,, can be carried out to the
stiffness directly or the rigidity as opposed to the material modulus. This allows the
secant modification to be based on any relevant computed quantity that captures a scaled
yield criterion. Examples can be yield criteria in terms of bending moments in plate
bending. When this is done, the mesh is significantly reduced allowing for improved
solutions. In this method, there is no need to identify either special nodes or special

volumes.

2.5 R-Node Method

As mentioned above, Seshadri, et al., (1991&1995) [16&17]) developed a method
referred to as the ‘r-node method’, based on two linear elastic analyses, for obtaining
approximate estimates of limit loads. The r-nodes are postulated as load-controlled
locations in a component or a structure. When widespread inelastic action (plasticity or

creep) occurs, such as, in an entire cross-section, a redistribution of stresses occurs except

at the r-nodes, which are statically determinate locations. Therefore, the effective stresses
at the r-nodes are linearly proportional to externally applied loads or load-combinations as

a consequence of equilibrium.
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The r-node method, based upon several principles of creep mechanics, is one of
the reference stress methods; it has roots that were first developed in creep mechanics.

Schuste (1960) [32] observed that in a solution of creep of beams, there were
points (A and B) in the cross-section at which the stress did not change as the solution
progressed from the initial elastic solution to the final stationary solution at a constant
moment, shown in Figure 2.1.

Marriot and Leckic (1963-1964 and 1970) [33&34] observed that there are some
points in components undergoing transient creep where the stress does not change with

time. Such points are called skeletal points.

Figure 2.1 R-nodes in a Beam structure Subjected to Bending
(after Kraus, (1980) [9]
Sim (1971 and 1968) [8&10] reasoned that as the creep exponent approaches
infinity the stress distribution would continue to pass through the point that defines it.

Since the solution for an infinite creep exponent is analogous to the limit solution

corresponding to perfect plasticity. Sim (1971 and 1968) [8&10] proposed that the

) P
reference stress can de obtained from o, = (— o,.
L
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Based on the above principles, Seshadri and Fernando (1991)[16] explained the
r-node method for limit load determination in detail. In the r-node method, limit type
distribution is simulated by suitably modifying the elastic moduli of all elements in the
structure. The equivalent stress at r-nodes does not change in the process of analysis. So
the invariant behavior of the r-node stress and the reference stress relate the two methods.

The concept of r-nodes plays a key role in the understanding of the relationship
between the concepts of reference stress, limit load and primary stress (Mangalaramanan,
(1993)[8]). There is explicit recognition of load and deformation-controlled effects in the
ASME codes. Load-controlled stresses are statically determinate in that they are induced
in order to preserve equilibrium with externally applied forces and moments.
Deformation-controlled stresses on the other hand are induced as a result of statically
indeterminate actions. When widespread inelastic action (plastic or creep) occurs, the
statically indeterminate stresses undergo redistribution throughout the component except
at the r-nodes, which are almost statically determinate locations. On the GLOSS diagram,
the follow-up angle (&) will be equal to 90° at the r-nodes.

Since the r-nodes are almost load-controlled locations within a component or
structure, the induced effective stresses are linearly proportional to the externally applied

loads as a consequence of equilibrium requirements; i.e.,

(O-) r—node = 7/1P

(2.12)
(O-) rnode — y2 <P’ M>

where, y, and ¥, are scaling parameters that would depend on the loading, geometric

configuration and material behavior. For an elastic-perfectly plastic material, when
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(0.,),_,... approaches yield stress corresponding to the von Mises criterion, the externally

applied load will correspond to the limit load. Equation (2.12) can therefore be expressed

as
@y =nhL 2.13)
(U)y=y2<PL’ML> .
combining equations (2.12) and (2.13)
o
PL = {(—)—y*—} = P
U —node
¢ oo (2.14)
o
e
(O-e)r—node
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Figure 2.2 Follow-up Angle (&) on the Gloss Diagram (after Seshadri and

Fernando, (1991) [22])
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1. A linear elastic finite element analysis of the given structure is carried out for
the prescribed generalized loading P . The resulting equivalent stress distribution, which
is pseudo elastic, is determined.

2. A location j is arbitrarily chosen within the component, the elastic modulus of

all other elements are modified according to the effective stress of element j. Although

the choice of this location is somewhat arbitrary, the r-nodes can be located with a
reasonable degree of accuracy. The only stipulation for choosing point j is that the
effective stress of element j should be nonzero.

3. A second linear analysis is then carried out which attempts to produce a limit
type stress distribution, at least approximately.

4. On the basis of the two linear elastic analyses, the follow-up angle is
determined for each element. The elements for which & =90° are identified as the r-node
elements. A practical method to determine the r-nodes is to obtain the intersections of the
elastic stress distributions from the two finite element analysis. The stresses at the r-nodes
are called as the r-node stresses.

5. Since the r-node stresses are load-controlled quantities, the limit load is reached

when the combined r-node stress equals the yield stresses. Hence the limit load may be

P.

Ql |!Q

obtained by simply scaling the external load as P, =

The above is the basic procedure for applying r-node method in determining the

limit loads of structures.
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Chapter Three

Constitutive Equations

3.1 General Discussion

The solution of a mechanics problem at each instant of time must satisfy three
conditions, namely, equations of equilibrium or of motion; conditions of geometry or the
compatibility of strains and displacements; material constitutive laws or stress-strain

relations (Chen and Saleeb, 1982 [41]).

The first set of equations relates the stress inside a body to the body forces and
external forces acting on the surface of a body. The second set of equation relates the
strains inside a body to the displacements of a body. Clearly, both the equations of
equilibrium and the equations of kinematics are independent of the particular material of
which the body is made. The influence of this material is expressed by a third set of
equations, the constitutive equations. They describe the relations between stresses and
strains. In the simplest case, there are six equations expressing the strain components in
terms of stress components, or vice versa. If they are linear, they are known as Hooke’s

law (Crawford and Armstrong, 1996 [42]).

For some materials, their behavior may be idealized as time independent, where
the effects of time can be neglected. This time-independent behavior of materials can be

further idealized as elastic behavior and plastic behavior.
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3.2 Elastic Stress-Strain Relations

For an elastic material there exists a one-to-one coordination between stress and
strain. Thus a body that consists of this material returns to its original shape whenever all

stresses are reduced to zero. This reversibility is not the case for a plastic material.

3.2.1 Hooke’s Law

Hooke first proposed a linear relation between stress and strain for a load applied
in one direction. The generalization of Hooke’s law to three dimensions is given as

e =C

i = CiuOu (3.1)
Using the tensor subscript notation, for isotropic material this becomes

1 14
Etj =—2€O-ij_5ij—EII (32)

where, E is the elastic modulus; v is Possion’s ratio; G is the shear modulus related to

E and v by the well-known relation

= 2(111:r V) )

l,=0,=0,+0,+0, 3.4)
Equation (3.2) can be solved for the stresses to give

0, =2Ge; +5,AI, | (3.5)

vE

where, [. =€. =€, +&,, +E,, A=—m—-"—,
1 ii 11 22 33 (1+V)(1—2V)

In engineering notation equation (3.2) becomes
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1+v 1%

gij =—E—O'ij —Edkkdj (3.6)
It readily follows from equation (3.6) that
o 1=-2v
l=——1 (3.7)
or
1-2v
£, = o 3.8
n="p On (3.8)

where, €, and o, are the mean strain and mean stress, respectively. Finally, combining

equation (3.8) and (3.2) results in

¢, = 51551 (3.9)

where, €; and S ; are the strain deviator and stress deviator tensors, respectively. Thus
the deviators of the stress and strain tensors are related to each other, in the elastic case,
by the simple equation (3.9), whereas the spherical stress components are related to the
spherical strain components by equation (3.8).

It should be noted that nothing in the foregoing discussion requires that E, G, v
be constant throughout the body. They may, for example, be functions of temperature, so

that if the body is not at a uniform temperature, these constants may have different values

at different points in the body.

3.2.2 Solution of Elastic Problems

The six stress components, six strain components, and three displacement

components are connected by the three equilibrium equations, six compatibility equations,
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and six constitutive equations. To solve an elastic problem, these 15 unknown quantities
of stresses, strains and displacements must satisfy all the 15 equations (Sokolinikoff,
(1956) [43D).

The stresses must satisfy the three equilibrium equations

o, =-F, (3.10)

g, J

as well as the boundary conditions §; =1,0;;. Where, 0;; = ;. The strains must satisfy

the six compatibility equations
1
‘5,~j—'5'(ﬂi,j+1uj,i) (3'11)

Finally, the stresses must be related to the strains through the stress-strain relation
equation (3.2) or their equivalent. The problem of finding a set of stresses and strains

satisfying the above relations is known as the first boundary-value problem of elasticity.

3.3 Plastic Stress-Strain Relations

In the previous sections the relation between stress and strain in the elastic range
were discussed and also the stress states at which plastic flow or yielding will begin.
These relations are the plastic stress-strain relations.

In the elastic range, the strains are linearly related to the stresses by Hooke’s law,
whereas the relations will generally be nonlinear in the plastic range. A more clear fact is
that in the elastic range the strains are uniquely determined by the stresses. Whereas in the
plastic range the strains are in general not uniquely determined by the stresses but depend
on the whole history of loading or how the stress state was reached. Because the plastic

strains are dependent on the loading path, it becomes necessary to compute the
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differentials or increments of plastic strain throughout the loading history and then obtain
the total strains by integration or summation.

The first approach to plastic stress-strain relations was suggested by Saint-Venant
(1870) [44], he proposed that the principal axes of strain increments coincided with the
principal stress axes. Levy (1871) [45] and von Mises (1913) [40] independently gave he
general three-dimensional equations relating the increments of total strains to the stress
deviations. These are known as the Levy-Mises equations. These equations are

de, = S,dA (3.12)

or

In these equations the total strain increments are assumed to be equal to the plastic
strain increments, the elastic strains being ignored. Thus these equations can only be
applied to problems of large plastic flow and cannot be used in the elastic-plastic range.
The generalization of equation (3.12) to include both elastic and plastic components of
strain is due to Prandtl (1925) [46] and Reuss (1930) [47], which are known as the
Prandtl-Reuss equations.

Reuss (1930) [47] assumed that at any instant the plastic strain increment is
proportional to the instantaneous stress deviator; i.e.,

del =S,dA (3.13)

or
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dg;’:de;’:dg;’:ale,ﬁ;=ale;';=dg;;:d/1
S S S T T T

x y z Xy yz %

Equations (3.13) can be then be considered as a special case of equation (3.12)
where the elastic strain components are neglected.

Equation (3.13) states that the increments of plastic strain depend on the current
values of the deviatoric stress state, not on the stress increment. They also imply that the
principal axes of stress and of plastic strain increment tensors coincide. The equations
themselves merely give a relationship between the ratios of plastic strain increments in
different directions. To determine the actual magnitudes of the increments a yield

criterion is required.

3.3.1 General Derivation of Plastic Stress-Strain Relations

The Saint-Levy-Mises and Prandtl-Reuss relations were described as originating
basically from an assumption that ‘the maximum shear and maximum slide velocity are
co-directional’, as Saint-Venant expressed it. It was also shown that these relations imply
the von Mises yield function. The general equations for determining the plastic
stress-strain relations for any yield criterion was derived based on a unified approach due
to Ducker (1950&1952) [48&18].

The general stress-strain relation is given as

deij’ =G of df (3.14)
Jdo

,
where, G 1is a scalar which may depend on stress, strain, and history. The scalar G, which

depends in general on the stress, strain, and history, must be determined from experiment,
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S/ (O‘ij) is a loading function. At each stage of the plastic deformation, a loading function

f (O’ij) exists so that further plastic deformation takes place only for f(c,)=0.

3.3.2 Perfectly Plastic Material

For this case the work done by an external agency which slowly applies and
removes a set of stresses is zero over the cycle, or

doyde] =0 (3.15)

It should be remarked that this equation is not the same as the second of equation

(3.12) with the equality sign. In equation (3.12) the equality sign is used only when
de; =0.
For ideal plasticity it is also assumed that f (O‘ij) exists and is a function of stress

only, and that plastic flow takes place without limit when f (0',.].) =k and the material

behaves elastically when f (0'1.]. ) < k . For plastic flow, therefore,
df=j—f—do". =0 (3.16)

comparing equation (3.15) and (3.16) It is seen that

de; =dﬂa‘i (3.17)
O

where, dA is a scalar.
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3.3.3 Effective Stress and Effective Strain

If we want to make equation (3.14) into any practical use, it must be related
somehow to the expe;‘imental uniaxial stress-strain curve. What we are looking for is
some function of the stresses, which might be called effective stress, so that results
obtained by different loading programs can all be correlated by means of a single curve of
effective stress versus effective strain. This curve should preferably be the uniaxial tensile
stress curve. Since effective stress should reduce to the stress in the uniaxial tension test,
it is a quantity which will determine whether plastic flow takes place or not, and it must

be a positively increasing function of the stresses during plastic flow. Now the loading
function f (crij) also, by definition, determines whether additional plastic flow takes

place. It should be a positively increasing function as long as plastic flow takes place and,

if unloading takes place, plastic flow is not resumed until the highest previous value of f
is exceeded. The loading function f (O'U) must therefore be some constant times the
effective stress to some power; i.€.,

f(o;)=cCo7 (3.18)

i e
for example, if we assume again
f=J 2

then

or
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J n 1 ],
of[Fz) ={-M(0,-0,) +(0;=03) +(03-0,) ]

and for the uniaxial tensile testo, = o, . Therefore,

n=2 C=1/3 0,=3J,

There are two methods to define effective plastic strain, £,. One defines the

effective strain increment in terms of the plastic work per unit volume; i.e.,
aw? =ode,
and since dW” =S, d&f

1
dé'p = ;—Sudé':

e

for example, if f =J,, it can readily be shown that

de, = ,f%dqj’.’dg;

and, if f =o0,-0, with 0, > 0, > 0, as for the Tresca criterion, then
— P
de, =dg

Equation (3.21) expanded becomes
2 2 2 2 2 2 2
de, = |21(det ) +{deg) + (et +2(des f +2(adef f +2(aes 1"
and, in terms of principal strain increment,

de, = \E[(dg{’)z +(der) +(der) 1"
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(3.20)

(3.21)

(3.22)

(3.23)



2

- _ﬁ[(dgf ) +(der) +derder 1
where, the incompressibility condition d¢f +dé¢; +dée; =0 has been used.

The second method is sought to find a definition of effective plastic strain

increment which when integrated is a function of ¢, only. The simplest combination of

plastic strain increment that is positive increasing and has the correct ‘dimension’ is

de? :C,/dgij.’d6§

to make this definition agree for simple tension we must have

del =de, = C\/(dgf)2 +%(d€f)2 +i-(daf)2 = C\Edgf

therefore,
c=|2
3
de, = /%da‘;.’dg;
and, for f=J,
de,=H(o,)do

so that the integrated effective strain is a function of effective stress only; i.e.,
£, = Idgp = JH(o;)dae
It should be noted here that the definition equation (3.21) for d¢, has been derived for

f =J, only. Drucker (1950&1952) [48&18] has shown that it is reasonably correct for
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almost any f(J,,J;). The second approach for defining dé, is not based on any specific
loading function.
Now we determine the function G . It should first be realized that for the previous

formulation to agree with the uniaxial tensile curve, do, / d £, must be the slope of that

curve (in the plastic range). Substituting the basic equation

de? _¢ Y 4

Oy

into equation (3.21) gives

I
aO',-, 80,,- df (3.24)
or
3 de
Gdf =dA= \/: P (3.25)
2 \/(af/aaﬁ)(af/aa,.j)

and the general plastic stress-strain relation becomes

P arjpoae,
def = 2
J@F 39,3 [00,0

(3.26)

or

_ 3 (df /00,) do,
" N2 J@©f/3o,.)0f [90,,) O,

| -

(3.27)

where o, =do, /dée, is the slope of the uniaxial stress-strain strain curve at the current

value of o,. As an example, for f =J,, equation (3.27) gives
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_38do,

deb = ,
20, O,

4

S,
= %}idsp (3.28)

Equation (3.28) constitutes the flow rule (or plastic stress-strain relations)
associated with the von Mises yield criterion (von Mises, (1913) [40]). They are the
well-known Prandtl-Reuss relations we obtained previously. If we replace the plastic
strain increments in the above equations by total strain increments, the Levy-Mises
relations are obtained which are valid only if the plastic strains are so large that the elastic
strains can be neglected.

As a final note, a general flow law such as (3.14) can also be obtained on the basis
of a hypothesis that three exists a plastic potential (similar to the strain energy density

function) which is a scalar function of stress, g(O'ij) , from which the plastic strain

increments can be obtained by partial differentiation with respect to the stresses. Thus

del ==>-df (3.29)

00

where, d 8 is a nonnegative constant. The plastic potential g (O'l.j) was first introduced

by Melan (1938) [35]. By comparison with (3.14), it would appear that the plastic
potential should play the same role as the yield function, and indeed Drucker (1952) [18]

has proved that they must be the same function, so that g in (3.29) can be replaced by f ;

(3.29) and (3.14) are then the same.
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3.3.4 Incremental and Deformation Theories

Equations such as (3.29) are called incremental stress-strain relations because they
relate the increments of plastic strain to the stress. To obtain the total plastic components,
we must integrate these equations over the whole history of loading. Hencky (1924) [49]
proposed total stress-strain relations whereby the total strain components are related to the

current stress. Thus, instead of equation (3.29), we would have

38,
& =5;i€p (3.30)

The plastic strains then are functions of the current state of stress and are
independent of the history of loading. Such theories are called total or deformation
theories in contrast to the incremental or flow theories previously described. This type of
assumption greatly simplifies the problem; however, as was previously shown, the plastic
strains cannot in general be independent of the loading path and deformation theories
cannot generally be correct. There has often been a tendency therefore to ignore all
deformation theory as of little value.

It can easily be shown, however, that for the case of proportional or radial loading,

i.e., if all the stresses are increasing in ratio, the incremental theory reduces to the

deformation theory. For if o, = Ko,

e where, o is an arbitrary reference state of stress

(nonzero) and K is a monotonically increasing function of time, then S; = KS; and

o, = Ko? and equation (3.29) becomes

e,
dej ==,

4
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which can be immediately integrated to give

A V-
& =36, Lr=—t"t (331)

so the plastic strain is a function only of the current state of stress and is independent of
the loading path.

Furthermore, it has been proposed by Budiansky (1959) [50] that there are ranges
of loading paths other than proportional loading for which the basic postulates of
plasticity theory are satisfied by deformation theories. Budiansky’s theory (Budiansky,
(1959) [50]) postulates the occurrence of corners or singular points has as yet not been
established experimentally, one cannot rule out the possibility of loading paths other than
proportional loading for which total plasticity theories may give satisfactory answers.

From a practical viewpoint, there are a great many engineering problems where
the loading path is not far from proportional loading for which total plasticity theories

may give satisfactory answers.

3.4 Yield Criteria

3.4.1 Representation of Yield Criteria

A well-defined yield stress point o, on an actual stress-strain curve in uniaxial

stress states can obtain the elastic limit of the material. In combined stress states, the
elastic limit is defined mathematically by a certain yield criterion or yield condition

(Chen and Zhang, (1991) [51]). The initial yield criterion is a function of stress state o

and can be generally expressed as
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f(oz) =0 (3.32)

y

For isotropic materials, the stress state at a point can be uniquely represented by
three principal stresses. Thus, the yield criterion for isotropic materials can be expressed

as
f(0,,0,,05)=0 (3.33)
Moreover, since principal stresses can be expressed in terms of either stress
invariants, I, J,, J,, or the Haigh-Westergaard coordinates, &, p, 0, where, & =—\/1?Il;

p=4J2J,; 0 is the angle measured from the positive direction of the o, -axis to the

vector £. Equation (3.33) can be written as

f(1,,J,,J5)=0 (3.34)
and

f(&p.0)=0 (3.35)

Equations (3.33) to (3.35) represent a surface in the principal stress space. Such a
surface is referred to as the yield surface. The material behaves elastically within the yield

surface; the material begins to yield on the yield surface.

To be fitted with available experimental results, the initial yield criterion generally

contains several material constants. The material constants may be determined by curve

fitting with simple tests, such as the uniaxial tension test and uniaxial compression test.
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3.4.2 Hydrostatic-Pressure-Independent Materials

The elastic-plastic behavior of most metallic materials is essentially hydrostatic

pressure insensitive. This implies that yield criteria for this type of materials do not

depend on /. For a hydrostatic pressure insensitive material, the yield criterion can

generally be expressed as

f(J,,05)=0 (3.36)
or

f(p,6)=0
The well-known yield criteria for Hydrostatic-Pressure-Independent materials include

Tresca criterion and von Mises criterion.

3.4.2.1 Tresca Criterion

The Tresca criterion (Tresca, (1868) [52]) states that yielding of a material would
occur when the maximum shearing stress at a point of the material reaches a critical value

k . In terms of principal stresses, we have

Max(—;-lal—az 1|0'2—0'3|,—;—|0'3—o'1|j:k (3.37)

2
From a uniaxial tension test, we determine k = 0, / 2, and from a pure shear test,

k = 7,. Thus, if the Tresca criterion is used, the tensile strength and the shear strength of a

material are related by o, = 27,.
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Tresca yield surface

Figure 3.1 Tresca’s Yield Surface (after Tresca, (1868) [52])

The Tresca’s yield surface plots in principle stress space as a regular hexagonal

cylinder whose axis is the space diagonal as shown in Figure 3.1.

The Tresca criterion can also be generally expressed as
2\/Zsin(t9+z3[—j—0'0 :o,(osesg) (3.38)

where o, =2k .

Since the Tresca criterion has a linear expression in the principal stress space, it is
often employed for analytical solutions of elastic-plastic problems. However, the criterion
does not take into account the effect of intermediate principal stress and contains singular

corners causing possible troubles in numerical analysis.

3.4.2.2 Von Mises Criterion

The von Mises criterion (von Mises, (1913) [40]), states that yielding of a material

would occur when the maximum shearing strain energy at a point of the material reaches
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a critical value. Since the shear strain energy is proportional to the second invariant of the

deviatoric stress tensor, J,, the criterion can be expressed as
f(Jz)=J2—k2=0 (3.39)
From the uniaxial tension test, the constant & is determined as k = o, / \/5, and
from a pure shear test, k = 7. Thus, if the von Mises criterion is used, the tensile strength
and the shear strength of a material are related by o, = \/570 . Thus, equation (3.39) can

also be written as

g,
=3 =0 (3.40)

O Von Mises yield surface

Figure 3.2 Von Mises Yield Surface (after von Mises, (1913) [40])

The von Mises’s yield surface plots in principle stress space as a circular cylinder

whose axis is the space diagonal as shown in Figure 3.2.

Since the von Mises criterion is of nonlinear form in terms of stress components,

this criterion is somewhat harder to use for solving elastic-plastic problems.
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3.4.3 Hydrostatic-Pressure-Dependent Materials

For hydrostatic-pressure-independent yield surfaces, their meridians are straight
lines parallel to the hydrostatic axis. This implies that shearing stress must be the cause of
yielding of this type of materials. Since the magnitude of shearing stress is important, not
its direction, in governing yielding, it follows that the elastic-plastic behavior in tension
and in compression should be equivalent for hydrostatic-pressure-independent materials
(Chen and Saleeb, 1982, [41]). Thus, the cross-sectional shapes for his type of yield

surfaces have six-fold symmetry. This will be discussed further in the following section.

3.4.3.1 Mohr-Coulomb Criterion

The Mohr-Coulomb criterion (Coulomb, (1776) [53]) can be considered as a
generalization of the Tresca Criterion. Both criteria assume that the maximum shearing
stress determines the yielding of a material. However, the Tresca criterion assumes that
the critical value of shearing stress is a constant, while the Mohr-Coulomb criterion
considers the critical value of shearing stress on a plane to be a function of the normal

stress acting on the same plane
le|=c~otang (3.41)
where, ¢ is the cohesion and ¢ is the angle of internal frication; o is the normal stress;

and 7 is the shear stress on this plane. Both ¢ and ¢ are material constants to be

determined by experiments. Figure 3.3 shows the Mohr-Coulomb yield surface in the

principal stress space.
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The two parameters ¢ and ¢ can be calibrated from two simple tests, e.g., a
uniaxial tension test and a uniaxial compression test. Let o, be the tensile yield stress in
the uniaxial tension, and o, the compression yield stress in the uniaxial compression test,

we have

_ 2ccos (b _2ccos¢

. : (3.42)
" 1+sin (D " 1-sin 1)
The ratio of o, and o, is defined as
m=e_1¥s0P (3.43)
o, l-sing
In terms of m and o, , we have
sin¢=—m—_1,cos¢=d——— 0<p<t (3.44)
m+1 m+ 2
and
o,
c=—F (3.45)
2\/m

The general expression of the criterion has the form

%Ism¢+\/_sm(9+—)+\/-cos(9+3)sin¢—ccos¢z0,0£0$% (3.46)
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Figure 3.3 Mohr-Coulomb’s Yield Surface (after Coulomb, (1776) [53])

The Mohr Coulomb’s yield surface plots in principle stress space as an irregular
hexagonal pyramid whose axis is the space diagonal as shown in Figure 3.3.
3.4.3.2 Drucker-Prager Criterion

The Drucker-Prager criterion (Drcuker, (1953) [54]) is a simple extension of the
von Mises criterion to include the effect of hydrostatic pressure on the yielding of

materials. Introducing an additional term that is proportional to I, to makes the extension.

f(I+0)=al +], k=0 (3.47)

where, ¢ and k are material constants. From the uniaxial tension and uniaxial

compression tests, we obtain

“ 143’ ¢ 1-Ba

(3.48)

use the ratio m =0, /0, , we can also express the parameter « and k as

43



m-—1 20

—_ ’k: c
¢ B+ B+l

(3.49)

Drucker-Prager yield surface

Figure 3.4 Drucker-Prager Yield Surface (after Drucker, (1953) [54])

The Drucker-Prager’s yield surface plots in principle stress space as a circular

cone with the space diagonal (hydrostatic stress axis, o, = 0, = ;) as its axis, shown in

Figure 3.4.

The Drucker-Prager yield surface can also be expressed generally as

0 =2k 6ot (3.50)

For brittle or granular materials, yield criterion is often referred to as failure
criterion because for such materials yielding means failure. The term failure criterion is

often utilized for materials such as soils, concrete and rocks.
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Chapter Four

Bearing Capacity of Strip Foundations

The soil bearing capacity can be calculated by means of the finite element (FE)

method or by analytical methods.

4.1 Finite Element Method

The finite element (FE) method has been widely used in engineering analysis in
the last few decades. FE is a numerical method for solving engineering and mathematical
problems, such as stress-strain analysis, heat transfer and fluid flow and electromagnetic
potential (William, (1990&1994) [55]). Continuum finite element method is widely used
in geotechnical engineering as a general tool for all kinds of analyses. The finite element
method is particularly suited to analyze foundations with unusual shapes and/or unusual
loading conditions as well as in situations where the soil is highly variable. For example,
the potential failure modes for the layered soils, which will require consideration of the
interactions between the soft and rigid soil layers as well as between the soil layer and the

foundation.

4.2 Analytical Methods

The soil ultimate bearing capacity may be estimated from a number of analytical

methods, which include the methods based on the theory of elasticity, the classic earth
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pressure theory, the theory of plastic equilibrium, or from experimental results. Of theses
methods, the method based on the concept of plastic equilibrium extends the theory of
elasticity when applied to the design of foundations and retaining structures and provides
more realistic estimates of load-carrying capacities against failure and better estimates of
settlements or displacements when subjected to its working load (Chen, (1975) [7]).

Therefore, this method is widely used in the solutions of soil bearing capacity.

4.2.1 Soil Bearing Capacity Calculation by Means of Plastic Equilibrium

Plastic equilibrium deals with the stresses in soil masses at failure. The basic
equations in plastic equilibrium consist of the equations of equilibrium and the conditions
of yield or failure. The solution of these equations gives the stresses at every point in a

soil mass. Such solutions are called limit equilibrium solutions.

4.2.1.1 Prandtl Mechanism

Prandtl (1921) [56] and Hencky (1923) [57] solved the problem of a rigid punch
indenting metal, and this can be seen to be the ‘foundation problem’ for the special case
of a ¢ =0, y =0 material. The solution of Prandtl is stated as below:

For soils, the Coulomb criterion is widely used for this yield condition.
Combining the Coulomb criterion with the equations of equilibrium gives a set of
differential equations of plastic equilibrium in this region. Together with the stress
boundary conditions, this set of differential equations can be used to investigate the
stresses in the soil beneath a footing or behind a retaining wall at the instant of impending

plastic flow. In order to solve specific problems, it is convenient to transform this set of
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equations to curvilinear coordinates whose directions at every point in this yielded region
coincide with the directions of failure or slip plane. These slip directions are known as
slip lines and the network is called the slip-line field. The Prandtl mechanism in fact is a

slip-line mechanism.

4.2.1.1.1 Upper Bound

The Prandtl mechanism shown in Figure 4.1(a) consists of a triangular wedge,

ABC, with base angles le_ﬂ +—;—¢ moving downwards as a rigid body with the velocity of
the footing, Vp , a logspiral shear zone, ACD, of central angle %7[ , and a rigid wedge,

ADE , with base angles 211—7[ —%¢.

The upper-bound solution for this mechanism can be obtained in an analogous
manner. In this case, the lines AC and BC in addition to the lines CDE and CFG are
lines of velocity discontinuity. Referring to the left-hand side of Figure 4.1(a), the soil
below the failure line CDE remains at rest so that the velocity along this line must be

everywhere inclined at an angle ¢ to the line. The velocity of the soil, V,, just to the left

of the discontinuity line AC is perpendicular to AC and its magnitude must be such that

the change in velocity, V,, , across AC is inclined at an angle ¢ to AC . By drawing the

compatibility velocity diagram shown in Figure 4.1(b), this velocity, V,, must have the

magnitude

1 1 1
v, =—2—Vp sec(zﬂ+5¢) “4.1)
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In the logsiral shear zone ACD, the velocity increase exponentially to the value:

(%ﬂ)tan¢ 1 (lﬂ)tan;ﬁ

1 1
Vi=Vee =§Vp sec(zﬂ+5¢)e 2 4.2)
On the line AD, this triangular wedge ADE moves as a rigid body in the

direction perpendicular to AD with the velocity V| . Figure 4.1(c) shows the displaced

position of the Prandtl mechanism that would result if the footing moved with the
downward velocity V, for a short period of time.
Equating internal and external rates of energy for half the Prandtl mechanism and

expressing all the velocities in terms of V, gives:

—12-P2V0 cos(%ﬂ+%¢) = c(V, cos 9)[ 1b 7 ]
2cos(—7m+—
0s( 27> ()
i 4.3)
Eoyang e c(V.bcot ¢)
+c[V,e ? cos @[ 1+ 01 (™™ -1)
2 A 2 —T+—
cos(4 5 ®) COS(4 7 ?)
collecting terms gives
Pu mtang 2 1 1
=ccot tan“(—7+—¢)—1 4.4
P Ple ( 273 ¢)-1] 4.4)

where, ¢ is the cohesion of the soil; &k is a constant to be determined experimentally,

which represents the failure (yield) stress in pure shear; ¢ is the friction angle of the soil.

For the particular case of Tresca material for which ¢ =k and ¢ =0, from equation (4.4),

we can get
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{c] Resulting Deformation Pottarn

Figure 4.1 Bearing Capacity Calculation Based on Prandtl Mechanism

(Upper Bound) (after Prandtl, (1921) [56])
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1 1
7a? tan® (— 7+~ ) —1
[¢"™ tan (4 2¢) ]

U

1 1
=ccotg[e"™? tan* (=7 +—@)—1]=kcos
i (4 2¢) ] o sing

when ¢ =0, because
e tanz(lmlq)) -1=1-1=0
4 2
and
sing =0
Therefore, use the limit method to solve the maximum value of this equation,

1 1
o™ tan* (=7 +— @) —1]
1 1
[¢" ¢tan2(z7z+5¢)—l]_ 4 2 %

lim =

90 sin ¢ dsing/d¢

o tan? 4 L g) ™ tan(+ 7+ 9)
4 2 4 2

2
cos” ¢ cosz(lﬂ+l¢)
= lim 4 2
90 cos @
1 1 eﬂtanO tan(lﬂ' + lO)
e”'““"manz(ZmEO) cos® 0+ 4 2

cosz(lleO)
_ )

cosO

=gi£=2+ﬂ

The maximum bearing capacity, P“, as given by equation (4.4) reduces to the value

(24 m)kb . This value agrees with the well-known “exact” slip-line field solution.
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In the Prandtl mechanism, there is no slip between the soil and the footing, which
can be considered rough, and therefore the upper-bound solution so obtained is applicable

to either a smooth or a rough footing.

4.2.1.1.2 Lower Bound

A strip foundation with a smooth base is located on the ground surface as shown
in Figure 4.2(a). As the load P is increased, the penetration of the strip increases as
shown in Figure 4.2(b). When the load P' is reached the penetration increases
indefinitely. At this point a bearing capacity failure is said to occur.

Here the direction of the principal stresses varies from point to point, and the slip
surfaces are curves as shown in Figure 4.2(a). Since the plate is frictionless, immediately

beneath the loaded plate, the major principal stress is in the vertical direction and the

failure surface in ABC makes an angle 45° + (gj with the horizontal. Also, away from

the loaded plate, in zone ADE , the movement is predominantly horizontal. Along the
free surface AE and BG , the major and minor principal stresses are in the horizontal and

vertical directions, respectively. Therefore, the failure surfaces in AED intersect the free

surface AE at an angle of 45° —(%) with the horizontal. The slip surfaces in ACD

connect those in ABC with those in AED . Thus, a series of straight lines are postulated

that radiate from A (or B) and a set of curves. Noting that the two sets of slip surfaces
must intersect each other at an angle of 90° + ¢, shown in Figure 4.2(c). From the

geometric relationship between two slip surface shown in Figure 4.2(c), it can be deduced
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that the normal to the curve makes an angle ¢ with the radius. This requirement is met if
the curve has the shape given by

r=r,e™? 4.5)
where, 7, is the reference radius, and @ is the angle between 7, and the radius . Such a

curve is called a logarithmic spiral.
To solve this problem we make use of the failure condition:

T=c+otan¢ (4.6)

and the equilibrium condition, which must now be written in differential form, in two

dimensions the differential equations of equilibrium are

90, 9% _y (4.72)
ox dy
or
%) 0
99 Ty (4.7b)
dy  Ox

Equation (4.6) defines the failure condition. In order to combine it with the equilibrium
equation (4.7b), we transform equation (4.6) by the following operations. The stresses at

failure are described by the Mohr circle shown in Figure 4.3(a).
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Penetration
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Figure 4.2 Bearing Capacity Calculation Based on Prandtl Mechanism

(Lower Bound) (after Prandtl, (1921) [56])
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Figure 4.3 (a) Mohr’s Circle of Stress at Failure.

(b) Slip Planes and Principal Axes in the XY Plane (Tien-Hsing, (1976) [58])
The distance ac is %(0'1 +0,)+ccotg and—;-(O'1 - 0,) . From the geometric relationship,
we may write

';“(0'1 +0,)= [%(0'1 +0,)tccot@]—ccotg

| : (4.8)
"2‘(0'1 -0,)= [5(0'1 +0,)+ccot@]sin @

If the principal axis is inclined at an angle { from the x axis (8 =y ), we also

have
1 1
o, = 5(01 +0;) +5(0'1 —0,)cos 2y
(4.9a)
1 1
o, = 5(0'1 +0;) —5(0'1 —0,)Ccos 2y

and

7, :%(01 —0,)sin 2y (4.9b)
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Substituting equation (4.8) in equation (4.9) we obtain the expression for o, o,,

and 7, at failure,

o, = [1(0'1 +0,)+ccot@](1+sin@cos2y)—ccot @

2

) (4.10a)
o, = [5(0'1 +0,)tccot@](l-singpcos2y)—ccot ¢

(" =[%(0'1 +0,) t+ ccot@]sin ¢gsin 2y (4.10b)

Equation (4.10) is the failure condition expresses in terms of o, o,,7,, 0, and

xy?

o, instead of ¢ and 7. The directions of the slip lines and the principal axes are shown

in Figure 4.3(b).
F

$=0
., 1 [
2 ’i

L1y ¢
0 Y24
/
- Ox ™
@ @

Figure 4.4 Failure of a Frictionless, Weightless Soil under a Strip Load
(after Prandtl, (1921) [56])
For the case of ¢ =0 that is weightless (X =0, Y =0), the logarithmic spiral
reduces to a circular arc, and the failure surfaces are as shown in Figure 4.4(a). The shear

strength of the material is given by Figure 4.4(b)
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1

5(0'1 ~-0;)=c

Equation (4.9) then becomes
1

o, =5(0'1 +0;)+ccos2y
1

o,= 5(0’1 +0,)—ccosy

7, =csin2y

Since the directions of the slip lines have been established, we can calculate the

stress changes along the slip lines. We let 8 denote the angle between the x axis and the
first slip line, shown in Figure 4.4(b), then 260 =2 + (%) , and the above equations
become

o, =%(0'1 +0,) +csin 20

o, =%(0'1 +0,)—csin26

7, =CCos 20

Substituting this into equation (4.7), we have

0 (6,+0;) +2¢(cos ZHa—x— sin 208—9) =0
. 06 dy
d(o+aoy) 2¢(cos 298—9 +sin 26 3_6') =0
ax 7 ay ax

If we let the x and y axes coincide with the slip lines, then & =0, and

ds, =dx, ds, =dy
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in which s, and s, are the lengths along the a and & slip lines, respectively. The above

equations then become

d (0,+0,) 06

G 01705)  5.99 _ .
AL 452 -0 (“.112)
0 (oto) ,.00 _, @4.11b)
ds, 2 ds,

Equations (4.11a) and (4.11b) describe the stress changes along the failure surface
and are often called Kotter’s equations (Tien-Hsing, 1976 [58]). The equations are
independent of our choice of the xand y axes and therefore are not restricted to the
special case of @ =0 assumed in the proof.

If the slip lines are straight lines, then

L)
ds, ds,

Equation (4.11) then leads to

8 (0' +0'2)_ __8_(0' -;O'Z) 0 4.12)

o, +0 . -
Thus the average normal stress (_13_2—) remains constant. If the slip lines

consist of sets of concurrent straight lines and concentric circles as in zone abc (Figure
4.4(a)), then along the straight slip lines

0  Jd 0,+0,
— 0 4.13
ds,  0s, FA 2 )= @13

Along the circular slip lines,
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=g, 221
ds, r

in which r is the radius of the circular slip line. Substituting in equation (4.11b)

10 0'1+0'3)_£
ro6° 2

or

d ,0,+0,
—(=L13y -9
9 2 T

Upon integration, this yields

9%% _ pr2c (4.14)

in which A is the constant of integration. It is given by

o, + 0.
A=( 12 3)9:()

stating at ad (Figure 4.4(a)), we have 0, =2c¢, 0, =0. Thus,

0,+0; _
2

This holds for the zone ACE by virtue of equation (4.12). In zone ACD Equation

(4.13) applies along the circular are CD . On ac, 8 :% and on AC, 8= 377[, thus,

0'l +0'3)
37[

q+q)
2

R/ 1
( = (———— 4+2C(T_Z)_C(1+ﬂ)

. o,+0,. . .
in zone ACB, the term (f) is again constant and

0'1+0'3)+(0'

— 0. o, +0
o = L =) +c=cl+m)+c=5.14c
1 =( 2 7 )=( > ) ( )
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Since AB is the major principal plane, o, is the bearing capacity.

4.2.1.2 Trezaghi Bearing Capacity Theory

In 1921, Prandtl] published results of his study regarding the penetration of hard
bodies, such metal punches into a softer material. Because the strength of metal is very
great compared to their weight, assumption of weightlessness is approximately valid in
the case of such materials. Terzaghi (1943) [1] realized, however, that such was not the
case for soils. He superimposed upon the bearing capacity of a weightless material an
additional component due only to the weight of the soil and its frictional resistance.

Terzaghi’s solution assumes that ab makes an angle ¢ with the horizontal. Then
the spiral portion of the failure surface bc must be vertical at point b, because ab is also

a failure surfaces intersect each other at angle of 90° + ¢ . The load at failure may be

calculated by considering the forces acting on the soil mass abcd (Figure 4.5) (Jumikis,

1965 [59]).

45° —

r2S-

Figure 4.5 Trezaghi Bearing-capacity Theory (after Terzaghi, (1943) [1])
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At failure the shear stress along the failure surface bce equals the shear strength
of the soil as given by equation (4.6). We consider separately the resistances developed

by the two components of the shear strength, ¢ and o tan ¢. The forces that act on the

mass abcd for these two cases are shown in Figure 4.6.

— 3/2’—-

Pl
- !Pv‘ 1 W_.
a d
b gy [}"
L]

®)

Figure 4.6 Forces on Soil Mass abcd in the Trezaghi Bearing-capacity Theory
(after Terzaghi, (1943) [1])
Figure 4.6(a) shows the forces that act on the mass if the shear strength is equal to

otan @ only (or ¢ =0). Since the failure surfaces are planes in acd , Rankine’s passive

state of stress exists in this zone. The passive earth pressure PI; on cd is, therefore,

P = %th tan?(45° + %) (4.15)
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. ) 2 . .
P, acts at a distance of §h from the surface. The weight of the mass abcd is

equal to W and it acts through the centroid of abcd . On the failure surface bc there exist

a normal stress ¢ and a shear stress equal to the shear strength of the soil, otang.
Therefore, the resultant of o and o tan ¢ makes an angle ¢ with the normal to the

failure surface at every point. The resultant force F on the spiral part of the failure

surface also makes an angle ¢ with the slip surface. F , therefore, passes through the

center of spiral, o . The force that acts on the failure plane ab is designated by P, and it
also acts at the lower third point. This system of forces may be solved by summation of
moments about point o . The force F passes through point o and produces no moment.
Hence,

M,=P]l, +WI,-Pl, =0

or

S S
P'=— (B, +WL,) (4.16)

p

We next consider the resistance to failure developed by ¢, and the forces are

shown in Figure 4.5(b). The passive pressure P; is

P =2chtan(45° +g) (4.17)
and acts at the midpoint of ¢d . The shear strength is ¢ everywhere along curve bd , and

its moment about 0 may be found by integrating the unit stress ¢ along the spiral,

dM _ =cdscos@gr =rc rdo _ cr’do

cos ¢
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M, = J: dM, = =) (4.18)

2tan ¢
the force C* on plane ab is equal to the unit stress ¢ times the distance ab. P’ acts at
the midpoint of »* and summation of moment about o brings
dM, =P, +M ~CIl.~P1l,=0
or

P = (P, + M, ~C) (4.19)

p
If P and P’ are known, the load P may be determined by considering the triangular
mass aba (Figure 4.5) as the free body. The forces are P, P, C', P, and the weight of

the mass aba . Taking the summation of forces in the vertical direction, one finds that

Q, =2P +P')+2C sing- (’/f ) tan @ (4.20)

The preceding discussion assumes that the failure surface bce is known. Actually,
 the failure surface is not accurately established because of the approximations mentioned
at the beginning of this section. Therefore, the critical surface must be determined by trial.
Computations of P should be made for a number of trial surfaces, using different
locations of the center of spiral. The trial surface that results in the minimum value of P

1s the critical one.

4.2.2 Bearing Capacity of Shallow Foundations

The analysis presented in section 4.2.1.2 is used to determine the bearing capacity

of shallow foundations. Figure 4.7 shows a section beneath a continuous footing located
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at a depth D, beneath the ground surface. In a general sense, shallow foundations are

those foundations that have a depth-of-embedment-to-width ration approximately less
than four (Braja, 1985 [60]). To simplify the calculations, the part of the soil mass above
ad 1is treated as a surcharge exerting a pressure g on the surface ad . The surface of

failure is assumed to terminate at d . This ignores the shearing resistance of the soil

located above ad , and therefore tends to underestimate the bearing capacity.

O

'

g =vDy 5
NN 2 K N I 7 I T 2 O

d

Figure 4.7 Bearing Capacity of Shallow Foundations (after Braja, 1985 [60])

It can be seen from the solution described in section 4.2.1.1.2, That the value of

bearing pressure at failure g, = Q, / B represents the sum of the following three

components.

The weight of the soil mass abcd and the passive earth pressure on plane dc

constitute the first part of the bearing capacity. This is P in section 4.2.1.2 (Equation

4.16). The weight W increases with the square of B/2. Equation (4.15) shows that the

passive pressure P, is proportional to A* and hence proportional to (B/2). Thus the
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contribution to O, by W and P‘; increases with (B/ 2)? and their contribution to q;
increases with (B/2) . Furthermore, both W and P;; are proportional to the unit weight ¥ .

If this portion of the bearing capacity is denoted as g, , we can write for simplicity

1
q, =573Ny

in which N is the proportionality factor, called a bearing-capacity factor. Its value can
be computed, after P’ is calculated, as outlined in section 4.2.1.1.2.

By similar examination we see that P* and C are proportional to B/2 and c.
Therefore the contribution of the cohesion g, to the bearing capacity is independent of B
and we have

q.=cN,
in which N, is the bearing-capacity factor for cohesion. The effect of the surcharge is
also independent of B and is proportional to D, and y . Thus

4y = }/D f N q
in which N, is the bearing-capacity factor for surcharge.

Finally, the total bearing capacity can be expressed as
1
q, =—2-B}/Ny+ch+J/Dqu 4.21)

where N,, N, and N, are dimensionless coefficients that are governed only by the value

of ¢. This is because the shape of the failure surface depends on ¢. It is, therefore,
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possible to compute these coefficients for a set of values of ¢, and these values may be

used for all bearing-capacity calculations.
Footings with circular and rectangular shapes present very difficult mathematical
problems. Various individuals have proposed semiempirical equations. The

bearing-capacity equation may be written as
g, = %/IyBNy + AN, +yD,N, (4.22)

where, 4, and A, are shape factors. Values of shape factors proposed include

A,=0.6

4

and

A.=13

c

for circular footings (Terzaghi, (1943) [1])

A =1-022
L
/1c=1+0.2E
L

for rectangular foundations (Skempton, (1951) [61]), where B and L are the width and

length of the foundation.
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Chapter Five

Application of the R-node Method

to Purely Cohesive Soils

5.1 The Problem under Consideration

The design of foundations involves two limit states: a serviceability limit state,
which generally translates into a maximum settlement or differential settlement, and an
ultimate limit state. The latter is concerned with the maximum load that can be placed on
the footing just prior to a bearing-capacity failure (Chen, 1975 [7]).

The critical load or the total ultimate bearing capacity is the load required to
produce the plastic flow or failure of the soil support. The average critical load per unit

area ¢, is called the bearing capacity of the soil. The value of the bearing capacity of a

soil depends not only on the mechanical properties of the soil but also on the size of the
loaded area, its shape, and its location with reference to the surface of the soil.

The problem under consideration in this chapter is the determination of ultimate
bearing capacity of a single, strip footing bearing on a plane surface of a semi-infinite
mass of soil that is assumed to be elastic-perfectly plastic material (Potts and Lidija,

(1999-2001) [75]). It is further assumed that the force acting on the footing is normally

and centrally loaded and increased until penetration occurs as a result of plastic flow in
the soil. Also, in this chapter, the investigation is limited to the bearing capacity of the

strip footings on horizontal bearing areas for purely cohesive soil (i.e., clays under
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undrained conditions); in the next chapter, the investigation will be directed towards the
bearing capacity of the strip footings on horizontal bearing areas for a soil with both
cohesive and frictional resistance.

In the following investigation, the footing is assumed to be rigid while the
interface between the soil and the footing is rough. In most parts of this chapter, the soil is
assumed to be an isotropic, homogeneous and elastic-perfectly plastic material which
obeys the Coulomb yield condition and the associated flow rule. The footing is assumed

to be infinitely long, giving a plane strain condition is assumed in this chapter.

5.2 Limit Load Calculated by Analytical Method

Limit load of strip foundations can be solved either by general bearing capacity
equation used in engineering or by nonlinear finite element analysis. Both of these two

methods can give good results for bearing capacity for strip foundations.

5.2.1 Bearing Capacity Calculation by General Bearing Capacity

Equation
The details about the development of bearing capacity of shallow foundations

have been discussed in section 4.2. The equation is expressed as:
_1 5.1
q, ——-2—B}/Ny+ch+}/Dqu 5.1

In this equation, B is the width of foundation, ¥ is the unit weight of soil, c is
the cohesion of soil, D ¢ is the depth of the footing; Ny , N, and N , are dimensionless

coefficients that are governed only by the friction angle ¢ of soil; g, is the value of
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bearing pressure at failure. This equation has been extensively used in soil mechanics to
calculate the bearing capacity of strip foundations. The value obtained by this equation

will be used as the theoretical solution of bearing capacity of strip foundations.

5.2.2 Bearing Capacity Calculation for Layered Soils

So far in this chapter the load-bearing capacity of homogeneous soils that support
shallow foundations has been considered. However, if a footing is placed on a stratified
soil deposit, soil profiles beneath footings would not be homogeneous. Studies regarding
the ultimate bearing capacity of foundations on layered soils are very limited at this time;
analytical solutions to the problem of footings resting on layered soils do not appear to
exist (Merifieldetal, (1999) [62]). To calculate the ultimate bearing capacity for surface
strip footings resting on horizontally layered soils, practitioners commonly use the
approximate solutions of Button (1953) [63], Reddy and Srinivasan (1967) [64], Chen

(1975) [7], Brown and Meyerhof (1969) [65] and Meyerhof and Hanna (1978) [66].

Button (1953) [63] and Chen (1975) [7] calculated upper bound solutions
assuming a simple cylindrical failure surface, while Reddy and Srinivasan (1967) [64],
assuming the same cylindrical mechanism, obtained results using the method of limit
equilibrium. The solutions of Brown and Meyerhof (1969) [65] and Meyerhof and Hanna
(1978) [66] were based upon a series of model footing tests from which empirical and

semi-empirical solutions for the bearing capacity factor were derived.
Based on the assumption that the basic failure mechanism of two layered soils

strata for a strip footing is a simple cylindrical failure surface for isotropic soils, the
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ultimate bearing capacity of two layered purely cohesive soils may be given by (Braja,

1999 [67])

qu = cu(l)Nc (5'2)

where, N, is the bearing capacity factor and is a function of (cu)(c,y)) and H/ B

¢, and c,.,, are the undrained cohesions of the top layer and the bottom layer; H is the

)

depth from the interface between two layered soils to the bottom of the footing, B is the

width of the footing, shown in Figure 5.1.

By
A
Upper layer ¢, ¢#=0,7y=0 H
Y
I
Lower layer C,#=0,y=0 =

Figure 5.1 A Footing on Two-layered Cohesive Soils

5.2.3 Bearing Capacity Calculation by Finite Element Analysis

The finite element method is one of the most powerful approximate solution
methods that can be applied to solve a wide range of problems represented by ordinary or
partial differential equations (Fethi, 1999 [67]). It allows for different boundary

conditions to be applied in such a way that an acceptable global approximate solution to
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the physical problem can be achieved. Considering that closed form solutions cannot be
elaborated for a large number of complex physical problems, due to the impossibility of
satisfying the boundary conditions related to corresponding equilibrium equations, the
finite element method therefore provides an ideal alternative (approximate) solution

method.

Finite element modelling of soil-structure problems needs to be planned and

undertaken carefully, so that any anomalies in the results can be spotted and remedied.

5.2.3.1 Finite Element Code, ABAQUS /Standard

The finite element code, ABAQUS/Standard v5.8, 6.1 and 6.2 (Hibbitt, et al.,
1998a [69]), is used in the study. ABAQUS is a general purpose program for the static
and transient responses of two and three-dimensional system,; it offers standard options,
or can be customized to address many of the challenges involved in a study of
geotechnical structures (Nobahar, 2003 [70]), such as (1) 3-D soil-structure analysis,
using complex finite strain constitutive models and accounting for large deformation
effects; (2) coupled field equation capacities for two phase media; (3) contact analysis
capacities for simulating the soil-structure interface; and (4) large deformation

formulation capacity of capturing collapse mechanisms and strain localization.

ABAQUS is widely available, and well documented. This program has been
widely used for 2D and 3D finite element analyses of soil-structure interaction involving

large relative deformations, and it has been validated based on results of full-scale tests

(Nobahar, (2003) [70]).
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5.2.3.2 Element Type and Finite Element Model

In ABAQUS finite element code, a variety of element types are available for
modeling different types of problems. For the structure under consideration, a
two-dimensional solid element (CPE4R) (Hibbitt, et al., 1998a [69]) is selected for
modeling. CPE4R is a quadrilateral isoparametric reduced integration element; this
element type is defined by four nodal points, each having two degrees of freedom, i.e.,
displacements in x and y directions. Use of a reduced integration element has two
reasons: firstly, fully integrated elements may suffer from “volumetric locking” behavior
when the material behavior is (almost) incompressible. The cause of this problem is that
the volume at each integration point must remain fixed, which puts severe constraints on
the kinematically admissible displacement fields; the integration point numbers per full
integration element is larger than the number of degrees of freedom, so it has more
constraints than degrees of freedom, which results in overconstrained mesh (Nobahar,
(2003) [70]). Because of this, the finite element solution of a structure with a perfectly
plastic material cannot exhibit a limit load; instead, it shows a steadily rising
load-displacement curve attaining load values far in excess of the true limit load. The use
of reduced integration elements can avoid the occurrence of this problem. Secondly,
reduced integration reduces the running time, especially in complicated finite element

analyses (Hibbitt, et al., 1998a [76]).

For pure cohesive soil under the undrained conditions, the shear strength of the

1
material is not affected by the effective hydrostatic stress p'= 51 | - Such material is
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called pressure-independent. Therefore, von Mises plasticity criterion is justified for such
conditions to mode] the undrained behavior of purely cohesive soil. This has been verified
using full nonlinear analysis in comparison with the bearing capacity formula. Because
the structure is symmetric, only half of structure is analyzed. Along the horizontal
direction of the structure, the model is divided in 40 columns; along the vertical direction
of structure, the model is divided in 40 rows. This model will be used both for obtaining
limit load of structure in nonlinear finite Element analysis by using ABAQUS finite
element program and for obtaining r-node elements in two linear elastic finite element
analyses. When this model is used in r-node method, each column is called a segment,
this model can be considered as consisting of 40 segments (columns) along the horizontal
direction, with each segment consisting of 40 elements. For each segment, the stresses of
all elements will be compared between two linear elastic analyses; r-node elements are

represented by elements where the stresses do not change in successive analyses.

The input listing for the development of this model and subsequent analysis is

given in Appendices.

5.2.4 Limit Load Calculated by R-Node method

5.2.4.1 The Failure Theory for Soil Materials

In purely cohesive soils, stability problems can be analyzed under undrained

conditions. The yield of the material is assumed to be unaffected by the hydrostatic

1 . ) )
stresses p =—1, (I, = 0, + 0, + 0,); the material is pressure-independent material; von
3 1 1 1 2 3
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Mises yield criterion is used here to model this condition. Again, the material is assumed

pressure insensitive, and isotropic.

Von Mises yield criterion is expressed as below (von Mises, (1913) [81]):
fW,,k)=43J,-k=0 (5.3)

For pure shear,
J3I, —Br=0 (5.4)

Thus, k/ \J3 is the shear stress at yield in pure shear experiments. From equation (5.4),
we can derive 1/3] , = \/51, because 7 =c,_, the limit load for uniform soil on the basis of

the von Mises stresses according to r-node method is (Seshadri and Prasad, (1996) [34])

_P*,*\B

F,
O.n

(5.5)

where, &, is the combined r-node equivalent stress. For uniform cohesive soil, the yield
stress of all elements in finite element model have the same yield stress o, . If there are

more than one r-node peak values, the average value of these r-node equivalent stresses,

N
2,

o, = —’—Z—II—V— (Seshadri and Fernando, (1991) [82]), will be used in equation (5.5). Where,

n

o, is the peak r-node equivalent stress,

o, =(J3J,), = %[(01 -0,) +(0,-0,)" +(0, - 0,)°1]* (5.6)
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For the layered soils, based on the basic principle of r-node method that are
explained in section 2.5, equilibrium conditions for solving the limit load after obtaining
the r-node equivalent stresses can be invoked in order to give the following expression

(Seshadri and Prasad, (1996) [34]):

_P(c, +c,+...tc,y N3

B,
(o to,t..t0,)

(5.7)

where, o, is the r-node equivalent stress; c,,, is the corresponding cohesion of soil

1

layer where this r-node element is located. For example, if r-node with stress ¢, is
located in the upper layer, the corresponding c,,, will be equal to the cohesion of the
upper layer soil; if r-node with stress 0, is located in the lower layer, the corresponding
¢, Will be equal to the cohesion of lower layer soil. von Mises yield criterion is used
here.

5.2.4.2 The Procedure for Applying the R-node Method

The following steps are employed for limit analysis of strip foundation in purely
cohesive soil under undrained conditions.

1. Choose the model parameters and mesh the model using ABAQUS/Standard.

2. Carry out the first elastic analysis using an arbitrary value of load P . The
resulting equivalent stress distribution is determined.

3. Modify the Young’s modulus for each element using the equation,

(0,);
E =|—LIE 5.8
ni l:(o_e)i] o ( )
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where, (o,); is any arbitrary stress, (o,); is the equivalent von Mises stress of element i,

E, is the original Young’s modulus for the element, E,; is the new Young’s modulus for

element i, which will be used in the second elastic analysis.

4. Carry out the second analysis for the same load (except for a different Young’s

modulus for each element) and obtain the equivalent stress in each element.

5. Compare the stress of each element between the first linear elastic analysis and
the second linear elastic analysis. R-nodes are represented by locations where the
equivalent stress did not change. Use equation (5.9) to find limit load.

O.)’
P==1P (5.9)

where &, is the combined r-node equivalent stress, the calculation of &, has been

explained in section 5.2.4.1.

Seshadri and Fernando (1991) [82] have discussed in detail the underlying
concept and motivation behind equations (5.8) and (5.9). Several numerical examples
involving thick-wall cylinder, rectangular beam, torispherical head, framed structures and
arch have been analyzed using the r-node method with success (Seshadri and Fernando,
1991 [82], Seshadri, 1996 [83], Mangalaramanan and Seshadri, 1995 [84]).

5.2.4.2.1 Numerical Example

5.2.4.2.1.1 Bearing Capacity of Strip Foundations on Uniform Purely Cohesive Soils
For the present study, the soil is assumed to be weightless. Because the structure is

symmetric, half of the foundation was analyzed. The geometry of the problem and the
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finite element mesh are shown in Figure 5.2. The parameters used in numerical examples
are shown in Table 5.1. Width of the footing is taken as B . The domain under analysis
extends to 10B laterally and 5B vertically, an area within which most of the stress
variations are expected to occur, a smaller domain might not fully exclude the influence
of boundary restraints. This extension of the analysis domain is considerably larger than
that used in typical plastic analyses of boundary condition (about 5 to 6B). This is due to
the fact that in this study elastic analysis are performed and therefore a larger area is
influenced. Chen (1975) [7] and Potts and Lidija (1999-2001) [75]) used similar or bigger
domains to analyze this type of structures. The left edge of the model has the symmetry
condition. The right edge of the model has vertical rollers. The bottom of the model is
pinned. The behaviour of material is assumed approximately incompressible (v =0.499)
to simulate undrained loading condition; the Young’s modulus of soil is set according to

its undrained shear strength, such as E =2000c, or E =5000c, (Chen, (1975) [7]).

The results obtained with r-node method and comparisons with nonlinear FEA
solution and theoretical solution methods are shown in Table 5.2. The theoretical solution
is calculated according to the equation (5.1) and tables given by Das (Das, (1999) [68]),
and the nonlinear FEA solution is calculated by using ABAQUS/Standard. Von Mises
yield criterion has been used for nonlinear analysis. Large deformation analysis is used to
calculate the limit load of structure; the input listing for the development of this model

and subsequent analysis is given in Appendices 1.3.
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Figure 5.2 Geometry and Finite Element Model for Uniform Purely Cohesive Soil

Table 5.1 The Parameters Used in Numerical Examples

Width of | Young’'s . . Und}f ained Applied
Case # [foundation,| modulus Pmsspn S| Steal pressure
B(m) | (Mpa) | Mt |stremethTup)
cu (kPa)
1 3 20 0.499 10 100
2 4 20 0.499 10 100
3 3 50 0.499 10 100
4 4 50 0.499 10 100
5 3 20 0.499 10 50
6 4 20 0.499 10 50
7 3 20 0.499 20 100
8 4 20 0.499 20 100

The r-node locations and corresponding von Mises stresses for case one are shown
in Figure 5.3 and 5.4 as an example to explain how to calculate the limit load based on
r-node peak stresses. From Figure 5.3, we can find two distinct r-node peaks; the average
value of von Mises stresses of them are used to calculate the limit load of structure

according to the method explained in section 5.2.4.1, hence the limit load
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Similarly, the results of other cases are obtained and shown in Table 5.2.

Table 5.2 Results and Comparisons (in kPa)

Nonlinear solution (von Bearing Capacity
Case # R-node Mises criterion) (formula equation 5.1)
method
Capacty Pt boutd Capacity Pt bound
1 53.38 54.9 2.77 51.4 3.85
2 53.38 54.9 2.77 51.4 3.85
3 53.38 54.9 2.77 51.4 3.85
4 53.38 54.9 2.77 51.4 3.85
5 53.38 54.9 2.77 51.4 3.85
6 53.38 54.9 2.77 51.4 3.85
7 106.76 109.7 2.68 102.8 3.85
8 106.76 109.7 2.68 102.8 3.85

[ 1 LTI T R T 2T 78 7

From the Table 5.2, we can see accurate limit load estimates have been obtained

for the uniform purely cohesive soil by using the r-node method.
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5.2.4.2.1.2 Bearing Capacity of Strip Foundations on Layered Purely Cohesive Soils
The bearing capacity of footings on layered purely cohesive soils by using r-node
method is examined in this section. Several different cases are considered. The finite
element model and the soil properties under consideration are presented in Figure 5.5 and
Table.5.3. Layer 1 has a depth of H while layer 2 lies below layer 1. The cohesion values

for the layers are c,, and c, , respectively. The corresponding modulus are E, and E,.
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d /

& , 1

AaXhd

%

k] LY
29T IS ON TS NS 2007

1

il p1gQPERTe et Qv asy fzplacpmenrtte2tedIkpy
e BaoB TS BRQITSE S) THGTIIT ISy
e A i e o Do e et Bl £ 208 o
E

5B

]
ridgrepried g i ot b b b ok b b b b e e e

&
nCY eman

wx

Figure 5.5 Geometry and Finite Element Model
for Layered Purely Cohesive Soils
The results obtained with r-node method and comparison with several kinds of
analytical methods and nonlinear solution are shown in Table 5.6. The solutions of
analytical methods are calculated according to the equations and tables provided in
Merifield’s paper (Merifield, (1999) [62]), and the nonlinear FEA solution is calculated

by using ABAQUS/Standard. Large deformation analysis is used to calculate the limit
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load of structure; the input listing for the development of this model and subsequent

analysis is given in Appendices 1.2.

Table 5.3 The Parameters Used in the Examples

Case # | Cu1/Cu2 | Cui (kPa) | Cuz (kPa) | E1 (MPa) | E2 (MPa) v1 v2
1 4 40 10 80 20 0.499 0.499
2 2 20 10 40 20 0.499 0.499
3 1.5 15 10 30 20 0.499 0.499
4 1 10 10 20 20 0.499 0.499
5 0.66 10 15 20 30 0.499 0.499
6 0.5 10 20 20 40 0.499 0.499
7 0.25 10 40 20 80 0.499 0.499

The r-node locations and corresponding von Mises stresses for case one

(H/B=2,c,/c,, =4) are shown in Figure 5.6 and 5.7 as an example to explain how to
calculate the limit load based on r-node peak stresses. From Figure 5.6, we can find two
distinct r-node peaks; both of them are located at the upper layer soil, hence the
corresponding cohesions of them all are 40kPa . According to the equation (5.7) given in
section 5.2.4.2, the limit load of structure is calculated as follow:

_P(c, +Cptote W3 407253

= 197.1kPa
(6,+0,+..40,) (51.3+19)

P,

Figure 5.7 shows the r-node element locations in FE model.

Similarly, the results of other cases are obtained and shown in Table 5.4.The value

of bearing capacity ( N, ) obtained for different H/B with r-node method and comparison

with several kinds of analytical methods and nonlinear solution are given in Table 5.5.
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R-node Von Mises Stresses

R-node Locations
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Figure 5.6 R-node Locations and Corresponding von Mises Stresses (case one)
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Table 5.4 Resulting Ultimate Bearing Capacity (in kPa)

Average

. Upper Bound| Meyerhof&Hanner R-node Nonlinear
H/B Cul/Cu2 (Merlil‘lgglgft al., (é)lll)en, 1975) Y (1978) method solution
4 202.4 221.2 184 197.1 220.5
2 100.8 110.6 102.8 90.21 110.65
1.5 75.6 82.95 77.1 74.23 82.85
2 1 51.3 55.3 51.4 53.38 54.9
0.66 51.2 55.3 51.4 52.97 55.05
0.5 51.2 55.3 51.4 54.55 54.85
0.25 51.2 55.3 \ 43.09 55.15
4 181.6 218.4 150.8 189.55 190.65
2 101.8 110.6 92 98.04 110
1.5 76.35 82.95 77.1 83.81 82.65
1.5 1 51.3 55.3 51.4 53.38 54.9
0.66 51.2 55.3 51.4 39.64 55.15
0.5 51.2 55.3 51.4 54.38 55.3
0.25 51.2 55.3 \ 47.98 54.65
4 146 165.9 117.6 160.99 151.8
2 92.6 102.2 89.2 99.97 99.25
1.5 74.55 82.95 77.1 81.34 82.35
1 1 51.3 55.3 51.4 53.38 54.9
0.66 51.2 55.3 51.4 46.1 55.15
0.5 51.2 55.3 51.4 53.39 55.05
0.25 51.2 55.3 \ 59.1 55.05
4 124.8 141.2 101.2 160.93 132.35
2 83.6 88.6 79.8 99.83 90.05
1.5 70.35 73.05 73.5 83.01 75.25
0.75 1 51.3 55.3 51.4 53.38 54.9
0.66 51.7 55.3 51.4 46.07 54.6
0.5 51.7 55.3 51.4 53.38 54.9
0.25 51.7 55.3 \ 59.11 56.88
4 103.6 113.2 84.4 56.05 109.5
2 74 78.8 70.2 89.74 80.05
1.5 64.2 67.8 66.15 68.19 69.55
0.50 1 51.3 55.3 51.4 53.38 54.9
0.66 52.4 57.8 53.3 48.11 57
0.5 52.4 57.8 54.3 51.86 57.1
0.25 52.4 57.8 \ 55.93 57.2
4 79.6 84.8 68 46.07 86.1
2 63.4 68 68.4 60.46 69.05
1.5 58.05 62.1 69.15 51.86 69.45
0.25 1 51.3 55.3 51.4 53.38 54.9
0.66 59.8 76.1 58.1 40.75 69.45
0.5 62.6 76.1 60 79.94 71.2
0.25 62.6 76.1 \ 129,26 72.15
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Table 5.5 Values of Bearing Capacity Factor (N'c) and Comparisons

Value of Bearing Capacity of N'c
H/B |Cul/Cu2| Average Upper bound |Meyerhof&H| R-node |Nonlinear
(Merifield et . Error bound
al., 1999) (Chen, 1975) |anner (1978)] method | solution
4 5.06 5.53 4.6 5.9 5.51 7.08
2 5.04 5.53 5.14 4.51 5.53 18.44
1.5 5.04 5.53 5.14 4.95 5.52 10.33
2 1 5.13 5.53 5.14 5.08 5.49 7.47
0.66 5.12 5.53 5.14 5.3 5.51 3.81
0.5 5.12 5.53 5.14 5.563 5.49 0.73
0.25 5.12 5,563 \ 4.31 5.52 21.92
4 4,54 5.46 3.77 4,74 4.77 0.63
2 5.09 5.53 5.14 4.97 5.5 9.64
1.5 5.09 5.53 5.14 5.59 5.51 1.451
1.5 1 5.13 5.53 5.14 5.08 5.49 7.47
0.66 5.12 5.53 5.14 5.45 5.52 1.27
0.5 5.12 5.53 5.14 5.44 5.53 1.63
0.25 5.12 5.53 \ 4.8 5.47 12.25
4 3.65 4.14 2.94 4.02 3.8 5.79
2 4.63 5.11 4.46 5 4.96 0.81
1.5 4.97 5.53 5.14 5.42 5.49 1.28
1 1 5.13 5.53 5.14 5.08 5.49 7.47
0.66 5.12 5.53 5.14 4.61 5.52 16.49
0.5 5.12 5.53 5.14 5.34 5.51 3.09
0.25 5.12 5.53 \ 5.91 5.51 7.26
4 3.12 3.53 2.53 4.12 3.31 24.47
2 4.18 4.43 3.99 4.61 4.5 2.44
1.5 4.69 ' 4.87 4.9 4.73 5.02 5.78
0.75 1 5.13 5.53 5.14 5.08 5.49 7.47
0.66 5.17 5.53 5.14 4.69 5.46 14.1
0.5 5.17 5.53 5.14 5.08 5.49 7.47
0.25 5.17 5.53 \ 5.89 5.49 7.29
4 2.59 2.83 2.11 1.4 2.74 48.91
2 3.7 3.94 3.51 4.49 4 12.25
1.5 4.28 4.52 4.41 4.55 4.64 1.94
0.5 1 5.13 5.53 5.14 5.08 5.49 7.47
0.66 5.24 5.78 5.33 4.82 5.7 15.44
0.5 5.24 5.78 5.43 5.37 5.71 5.95
0.25 5.24 5.78 \ 5.53 5.72 3.32
4 1.99 2.12 1.7 1.05 2.15 51.16
2 3.17 3.4 3.42 3.02 3.45 12.46
1.5 3.87 4.14 4.61 3.45 4.63 25.49
0.25 1 5.13 5.53 5.14 5.08 5.49 7.47
0.66 5.98 7.61 5.81 7.72 6.95 11.08
0.5 6.26 7.61 6 7.98 7.12 12.08
0.25 6.26 7.61 \ 17.68 7.22 144.88
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Based on the results in table 5.4 and 5.5, the error bound for variation bearing
capacity factor N'c is shown in Figure 5.8, contour of N'c for nonlinear analysis, contour
of N'c for r-node method and contour of error bound between nonlinear analysis and

r-node method are shown in Figure 5.9, 5.10 and 5.11.

Variation Bearing Capacity Factor N'c

= Percent of error

; + T e—H/B=2
| | | ~u-~H/B=1.5
3 : : : H/B=1
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; \\\ ! P ! //;/4k\\ —e— H/B=0.25
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4 2 1.5 1

Cul/Cu2

Figure 5.8 Error Bound for Variation in Bearing Capacity Factor N'c

Contour of N'c for R-node Method
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Contour of N'c for Nonlinear Analysis
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Figure 5.11 Contour of Error Bound

0.5

between Nonlinear Analysis and R-node Method
From the results, it can be seen that as compared to the results of full nonlinear

solution, the method works well for uniform purely cohesive soils (homogeneous



materials); for layered soils it seems to provide less accurate results if the main resistant
layer is on top (i.e. the failure surface is more likely to pass through both layers) and as

the degree of inhomogeneity increase (e.g. ¢,,/c,, =4 vs c,,/¢,, =2) and the division

between soil layers is close to the foundation (e.g. H/B=0.25 vs H/B=1.5).

The reason for such tendencies is locating of r-nodes becomes difficult because
there exists a sudden change of soil properties across the division between soil layers; the
increasing of the degree of inhomogeneity aggravates this influence. Specially, when the
main resistant layer is on top and thin, the locations of r-node elements having the peak
stresses are normally close to the interface of two soil layers. Under such condition, not
all r-node peak values can be found or located accurately, which leads to the poor or
wrong results. By using more iterations to find r-nodes, one can somehow improve this
problem, but for the condition that top soil layer is thin, the improvement is smaller than

when the top soil layer is thick. Several cases are show below:

R-node R-node |Nonlinear
H/B Cul/Cu2 |Iteration 2| Iteration 3 | solution
(kPa) (kPa) (kPa)
2 4 197.31 224.21 220.25
0.75 4 164.58 147.41 132.35
0.25 4 46.07 59.7 86.1
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Chapter Six

Application of R-Node Method

to Cohesive-Frictional Soils

6.1 Failure Theory

Mohr (1900) [72]) presented a shear strength theory for pressure-sensitive
materials called Mohr-Coulomb theory, which has been found to be very successful in
defining shear failure in soils. The theory states that failure in a material occurs if the

shear stress on any plane equals the shear strength of the material. Furthermore, the shear

strength 7, along a plane is a function of the normal effective stress o on that plane, or

7, = f(0) (6.1)

This function plots as a curve in a normal versus shear stress plane. Coulomb

(1776 [53]) defined the function f as a linear function of the normal effective stress

called as failure line or failure envelope. Equation (6.1) then becomes
T, =c+0,tang (6.2)

If the major and minor principal effective stresses in an element of material are

equal to 0, and o,, these stresses can be calculated graphically by means of Mohr’s

circle of stress. A Mohr’s circle with principal effective stresses o, and o, is plotted in
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Figure 6.1. If the Mohr circle is tangent to the failure envelope, there is a plane defined

by angle ¢ where the shear stress 7, is equal to the shear strength 7, , and failure occurs.
| R
T, =5(0'1 —0,)Cos @

o, =%(0'1'+0';)—%(0'1'—0';)sin¢ (6.3)

Failure envelope

Ly

C
1y o o4 0 5, o

Figure 6.1 Mohr-Coulomb Failure Envelope (after Mohr, 1900 (72))

For purely cohesive soils under undrained condition, the failure envelope is a horizontal

line. The failure theory becomes

7, =c, 6.4)

where, ¢, is the undrained shear strength and equal to the radius of the Mohr’s circle at

failure.
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6.2 Yield Criterion for Cohesive-Frictional Soils

For cohesive-frictional soils, the shear strength of the material is affected by the
effective hydrostatic stresses p'= %I , - The material is called pressure-dependent.

Mohr-Coulomb and Drucker-Prager yield criteria are normally used to include the effect

of hydrostatic pressure on the yielding of materials.

The Mohr-Coulomb Criterion (Coulomb, (1776) [53]) is expressed as
|7|=c+0 tang (6.5)

The general expression of the criterion in three dimensions has the form

f(ll,]z,(zﬁ,é’)=%l1 sin¢+ﬁ;sin(9+§—)+,’%cos(9+%)sin¢—ccos¢=0,

oses% (6.6)

The function in equation (6.6) is called yield (or failure) surface and plots as an

irregular hexagonal pyramid in the (3D ) principal effective stress space. The apex of the
pyramid is located on the hydrostatic line (&, = &, = ;). Drucker (1953) introduced a

simpler failure surface, which plots as a circular cone in the principal effective shear
space and is tailored to be tangent (internally or externally) to the more realistic Mohr-

Coulomb failure surface. Drucker-Prager criterion is expressed as:

f(ll,JZ,a,k)z—a%+\/J_2—k=O (6.7)

90



i,

o Mohr-Coulomb
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Figure 6.2 Drucker-Prager and Mohr-Coulomb Failure Criteria with
Different Matching Conditions

(after Chen and Saleeb, (1982) [41])

where, o and k are positive material parameters; /, = ¢, is the first invariant of stress

1 . . . . .
tensor; J, = Esijs i 18 the second invariant of deviatoric stress tensor; € can be measured

from Figure 6.2, and @ is the polar angle measured from the positive direction of the

projection of the o, axis. By matching the predictions of both yield criteria in given test

condition, the values of & and k can be expressed in terms of the cohesion ¢ and friction
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angle ¢ (Chen and Saleeb, (1982) [41]). For instance, in axial compression (o, = 0, and

6 =0) (Prevost, (1989) [73]):

2sin ¢ p 6ccos ¢

o= , k= (6.8)
J3(3=sing) V3(3-sin¢)
Similarly, in axial extension (0, =0, and 6 = +Z§—):
2sin ¢ i = 6ccos ¢ ©.9)

O BGrsing) BG+sing)

If the Drucker-Prager and Mohr-Coulomb criteria are expected to give an identical
limit load (or plastic collapse load) for the case of plane strain, the following two

conditions must be satisfied to determine the constants ¢ and k (Chen and Saleeb, (1982)
[41D:

1. The condition of plane strain deformation.

2. The condition of the same rate of dissipation of mechanical energy per unit

volume. Based on these two conditions,

3tan ¢ i = 3c (6.10)

“7 Jo+12tan’g) \JO+12tan’9)

Under this condition, the Drucker-Prager cone is internally tangential to the

Mohr-Coulomb yield surface (Chen and Saleeb, (1982) [41]), the angle € in equation

(6.6) is defined by tan & = "2 (Prevost, (1989) [73]).

B
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6.3 Application of R-Node Method to Cohesive-Frictional Soils

The r-node method has been developed for the limit analysis of structures made of
elastic- perfectly plastic material corresponding with the one-parameter failure criteria,
such as metals. The elastic-plastic behavior of most metallic materials is essentially
hydrostatic pressure insensitive. The one-parameter failure criteria, such as Tresca
criterion or von Mises criterion, have generally been used for this type of materials.

Purely cohesive soils loaded under undrained conditions match this type of material.

In this chapter, the r-node method is applied to cohesive-frictional soils, which are
pressure-sensitive materials. This implies that the effect of hydrostatic pressure on the
yielding of materials must be considered. Two-parameters failure criteria are normally
used, such as Mohr-Coulomb criterion or Drucker-Prager criterion, as the yielding
condition for this type of materials. Hence, before applying the r-node method to it, there
are some particular discussions below:

Firstly, the failure shear stress of the cohesive-frictional soils depends on the
confining stress as opposed to the purely cohesive soil that is independent of the
confining stress.

The purely cohesive soils match the type of pressure-insensitive material; the
shear strength of this material is independent of the confining stress and is a constant,

which is expressed as 7, =c, . When the r-node method is applied, a unique reference

stress is used to modify the Young’s moduli of all elements in the modulus-modified
procedure. But for cohesive-frictional soils, when Mohr-Coulomb criterion is, the shear

strength of material depends on the normal effective stress. Therefore, dependence of
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shear strength on confining stress should be considered in analysis. Instead of working
with a unique reference stress, for the cohesive-frictional soils the Young’s modulus of
each element is modified according to the corresponding shear strength, which is

expressed below:

E, =%E (6.11)

where, (7,), is shear strength of element i; (7,), is the shear stress of element i; E, is
the original Young’s modulus; E ; is the new Young’s modulus for element i, which will
be used in the second elastic analysis.

Secondly, for cohesive-frictional soils, there are two parameters (cand ¢)
characterizing shear strength of materials as opposed to one parameter (e.g., ¢, ) for
undrained clays or for metals (yield stress o).

When equation (6.11) is used, the shear strength of each element is solved
according to (z,), =c+ (0,), tan @ , which is based on the normal effective stress obtained
from the first elastic analysis.

The problem here is how to calculate the shear stress (7,), of that element

knowing only the normal effective stress of it. One can somehow address this problem

d

using mobilized cohesion ¢, and mobilized friction angle @, as scaling factors.

For getting the mobilized cohesion and mobilized friction angle of that element, it

is necessary to establish some functional relation between mobilized cohesion and
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mobilized friction angle. It is assumed that the failure surface and the mobilized stress

surface have the same apex, shown in Figure 6.3 and explained below:

For the material with cohesion ¢ and friction angle ¢, the Mohr-Coulomb yield

criterion is used and shown as a straight line in the z— o stress space, see Figure 6.3. The
principal effective stresses in each element are obtained from the first analysis; the

mobilized stress Mohr-Coulomb circle and line are shown in Figure 6.3. The mobilized

shear strength is calculated as 7, =c, + 0, tan @, , where, ¢ (mobilized friction angle) is

the slope of the mobilized stress line; ¢, is the mobilized cohesion, ¢, =atan g, ; the

quantity a = , shown in Figure 6.3, is called attraction.

tan ¢

Failure envelope

¢

Mobilized stress line

Figure 6.3 Failure and Mobilized Stress Mohr’s Circle (after Prevost, (1989) [89])

The Mohr-Coulomb yield criterion, T, =c+ 0';, tan @, is expressed as

c=17,— 0';, tan ¢, therefore, the modulus of each element will be modified by using
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c

(¢y);

E =

n

E, , where, c is the cohesion of soil; (c,), is the mobilized cohesion of each

element.

Thirdly, stresses caused by the self-weight of soil affect the shear strength.

Normally metals and purely cohesive soils are taken as weightless materials when
calculating the load-carrying capacities against failure. But for cohesive-frictional soils,
the self-weight of them cannot be ignored in limit load calculation. When applying r-node
method, the procedures given below are employed to consider the effect of self-weight of
soil for different trials.

Soil is still considered weightless in the two elastic analyses, but the self-weight
stresses are added when calculating shear strength and estimating the Young’s modulus.
But in some trials, stresses induced by self-weight are deleted when calculating limit
loads. That’s because for the condition in practice, before the foundation is submitted to
load, the stresses caused by self-weight have existed in the soil as the initial stresses. The
limit load of structure in fact is the limit-applied load. Thus, Limit load solved in last step
should only depend on the additional stresses produced by applied load.

Fourthly, for the failure of soil in shear, deformability is characterized by shear
modulus rather than by Young’s modulus.

For metallic materials, the stress-strain behavior is normally exhibited by normal
stress versus normal strain; for soils, the failure of soil is determined by shear strength,

the shear stress-strain curve is presented to exhibit this behavior. Hence instead of

, 1s used as the

working with Young’s modulus, E, the shear modulus, G =
2(1+v)
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quantity to be modified from the first to the second elastic analysis. The values of

Young’s modulus and Possion’s ratio for the second analysis are estimated from the new

shear modulus and the condition that bulk modulus, B = ﬁ, is constant. It is
-2v

mentioned here that in soil nonlinear behaviour, bulk modulus is approximately constant
during plastic flow if the confining stress does not change significantly. Hence, for the
second elastic analysis, each element in the structure has the new Young’s modulus and
Possion’s ratio in order to simulate the inelastic flow at the plastic collapse of structure.
All those modifications to the original method used in chapter 5 for purely
cohesive soils have been gradually introduced, and their effects have been analyzed in a

series of trials, as described hereafter.

6.4 Numerical Example

For the analysis of this problem, plane strain conditions are assumed. Because the
structure is symmetric, half of the foundation was analyzed. The Mohr-Coulomb
plasticity model is selected in this study for modelling cohesive-frictional soils. The
geometry of the problem and finite element mesh are shown in Figure 6.4. The

parameters used in numerical examples are shown in Table 6.1.

6.4.1 Trial one

The first two elements mentioned in section 6.3, namely, relation between
cohesion and frictional angle (Figure 6.3) and effect of self-weight of soil, are considered

in trial one; the self-weight of soil is also considered when calculating limit loads. The

following steps are employed for trial one:
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Figure 6.4. Geometry and Finite Element Model for Cohesive-Frictional Soils

Table 6.1 The Parameters Used in Numerical Examples

Case Width of | Young's Poisson’s | Cohesion Friction
Number Foundation| Modulus ratio (kPa) Angle
() (MPa) (Degree)
1 4 20 0.3 10 10
2 4 20 0.3 10 20
3 4 100 0.3 50 10
4 4 100 0.3 50 20
5 4 100 0.3 50 30
1. Carry the first elastic analysis, then using
c c c tan ¢
E, = E = E = E =———E, (6.12)
(cy); atan(g,), c tan(g,), tan(g, ),
tan ¢
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to modify Young’s modulus of each element, where, ¢, = sin“l(L) , q= 9 ;og ,
pta

_0,+0;

, 0, and o, are the maximum and minimum entire effective principle

stresses, which including the stresses caused by applied load and self-weight, of each

element. How to calculate the entire stress has been explained in section 6.3.

2. Carry out the second elastic analysis for the same load, mesh except for a

different elastic modulus and obtain tan ¢, in each element.

3. Compare tan @, of each element between the first linear elastic analysis and the

second linear elastic analysis. R-node elements are represented by locations where the

tan @, did not change between two elastic analyses.

4. Use

tan ¢ c

P=—
D (), /N
j=1

P =

=— P (6.13)
Z(tan 2, /N

N
to find limit load. Where, Z(cd ),; /N is the combined r-node equivalent stress. If there
j=1

are more than one r-node peak values, the average value of them will be used in equation
(6.13).

The results obtained with r-node method and comparison with nonlinear FEA
solution and theoretical solution methods are shown in Table 6.2. The theoretical solution

is calculated according to the equation (5.1) and tables given by Das (Das, (1999) [68]),
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and the inelastic FEA solution is calculated by using ABAQUS/Standard. Large
deformation analysis is used to calculate the limit load of structure; the input listing for

the development of this model and subsequent analysis is given in Appendices 1.3.

The r-node locations and corresponding von Mises stresses for case one are shown
in Figure 6.5 and 6.6 as an example to explain how to calculate the limit load based on
r-node peak stresses. Based on the principle that an r-node peak located away from the
“critical region” of the component or structure is not a virtual peak, from Figure 6.5, two
distinct r-node peaks can be found; the average value of mobilized cohesions of them are
used to calculate the limit load of structure according to the method explained in equation

(6.13), hence the limit load

c 10

= P=ozriomy 0= 51 81Pa
Z(cd)nj N . .
J=1

PL

Figure 6.6 shows the r-node element locations in true FE model.
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Similarly, the results of other cases are obtained and shown in Table 6.2.

Table 6.2 Results and Comparisons

Limit Load (kPa)

. Nonlinear
Case # R-node Theoretical (Mohr-

Solution Coulomb)

51.81 105.46 111.2
54.92 245.32 246.4
167.22 439.46 464.6
192.31 838.52 853

222.22 1910.2 1693.5

Ol ]WIN | =

The possible reason of poor results is that for the failure of soil in shear,
deformability is characterized by shear modulus rather than by Young’s modulus. Hence

in trial two, the shear modulus is used as the quantity to be modified from the first to the

second elastic analysis instead of Young’s modulus.

6.4.2 Trial two

The main difference between trial two and trial one is the shear modulus,

G= m , is used as the quantity to be modified from the first to the second elastic
+v

analysis instead of working with Young’s modulus, E . In order to solve the values of

Young’s modulus and Possion’s ratio for the second analysis, another condition is

introduced here, namely the bulk modulus, B=— , 1s a constant during the whole

30-2v)
analysis. The reason has been explained in section 6.3.

So two new equations are obtained as below:
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3A-2v,) 31-2v,)

E_ tang  E tan ¢

n [

G = 20+v,) " (ang,), 20+V,) (ang,),

(6.14)

where, B, G, are the original shear modulus and bulk modulus; B, and G, are the new

shear modulus and bulk modulus of elements, which will be used in the second elastic

analysis. Based the above two equations, the new Young’s modulus and Possions’ ratio

will be
E, =(1+v, )—to_ tan0 (6.152)
1+v, tang,
and
v, = > -1 (6.15b)
2+ tan ¢ 1—21/0)
tang, 1+v,

For the new analysis, the other steps are the same as trial one except the elastic
modulus and Possions’ ratio will be modified according to (6.15a) and (6.15b).

1. Carry the first elastic analysis, then use equations (6.15a) and (6.15b) to modify
Young’s modulus and Possion’s ratio of each element. Equation (6.15a) and (6.15b) are

obtained based on the principles explained in point four, namely, the shear modulus,

G= m , 1s modified according to shear strength with the condition that bulk
+V
E : . 0,0, o, +0,
modulus, B=———, is constant; @, =sin 1(—q—) ,g=——""=2, p=——"2, 0, and
3(1-2v) p+a 2 2

o, are the maximum and minimum entire effective principal stresses, which include the
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stresses caused by applied load and self-weight and are obtained from the first elastic

analysis.

2. Carry out the second elastic analysis for the same load, mesh except for a

different Young’s modulus and Possion’s ratio and obtain tan ¢, in each element.

3. Compare tan ¢, of each element between the first linear elastic analysis and the
second linear elastic analysis. R-nodes are represented by locations where the tan ¢, did
not change.

4. Use

tan ¢ c

=N P=—=
> ang,), /N D.(c,), /N
Jj=1 =1

P, P (6.16)
to calculate the limit load of structure.

The parameters used in numerical examples are shown in table 6.1. The results
obtained with r-node method and comparison with nonlinear FEA solution and theoretical
solution methods are shown in Table 6.3. The theoretical solution is calculated according
to the equation (5.1) and tables given by Das (Das, (1999) [68]), and the inelastic FEA
solution is calculated by using ABAQUS/Standard. Large deformation analysis is used to
calculate the limit load of structure; the input listing for the development of this model

and subsequent analysis is given in Appendices 1.3

For the above two trials, the possible problem of incorrect results may appear at
last step, in which the stresses caused by self-weight of soil also are considered in

calculating the limit load of structure. Since the limit load of structure is actually the
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limit-applied load, such consideration is obviously incorrect. Hence for new trials, the

stressed induced by self-weight will be deleted when calculating limit loads.

Table 6.3 Results and Comparisons

Limit Load (kPa)

Theoretical Nonlinear
Case # | R-node . (Mohr-
Solution
Coulomb)

79.86 105.46 111.2
117.5 245.32 246.4
163.3 439.46 464.6
269.4 838.52 853

590.62 1910.2 1693.5

Ol TN -

6.4.3 Trial three

The steps 1 to 3 are same as that used in trial one; the difference is in step 4, in
step the stresses induced by self-weight are taken out when calculating limit loads. A

safety factor K is set and calculated in order to consider this effect. Equation

P, =KP (6.17)

L

is used to solve the limit load at last step. The calculation of K is derived below:
Considering the self-weight of soil, assuming the mobilized friction angle under
o, -0,

the applied load P, is ¢,,, from the Figure 6.3, ¢, =sin™' (—,%_———) , where, ¢ = —
p +a

. _0,+0,

, 0, and 0, are the maximum and minimum entire effective principal

stresses, including the stresses caused by applied load and self-weight, of each element.

The method how to calculate the entire stress has been explained in section 6.3. Hence,
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- L o oo | .
@, =sin (=BT ) where, g, =— 5 Lop = #é—i, which are the maximum and
pl + ps ta

minimum effective principle stresses caused by applied load P, g, = T~ ; =

2

o, +0

p, = ——2——1‘”—, which are the maximum and minimum effective principle stresses caused

S

by self-weight, in which a =

tang

)

Set K =—=
R

, P, is the limit load of structure; K can be looked as the safety factor
of the structure. For elastic analysis, p, g are linear proportional to the applied load,

P ' ' C
thus K =7)L— :_p_%___q_%’ where, p,, g, are caused by limit load P,. When P, =P,, K
R S )

equals one and the mobilized friction angle will equal the failure friction angle, namely

(@), =sin” (L
pL+ps +a

=9 (6.18)

At this time, the failure occurs.

Substitute p, = Kp, and g, = Kgq, into equation (6.18), we can get

... Kaq+gq
sin 1(,q‘—c|1s)=¢,
Kp, +Kp, +a

SO

Kq +q,

sin @ = — .
Kp +Kp, +a

(6.19)

Set sin ¢ = &, from equation (6.19), we can derive
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K = M& (6.20)
ql —aps

For the new analysis, the other steps are the same as trial one except in the last

step equation (6.17) will be used to calculate the limit load of structure.

The parameters used in numerical examples are shown in table 6.1. The results
obtained with r-node method and comparison with nonlinear FEA solution and theoretical
solution methods are shown in Table 6.4. The theoretical solution is calculated according
to the equation (5.1) and tables given by Das (Das, (1999) [68]), and the inelastic FEA
solution is calculated by using ABAQUS/Standard. Large deformation analysis is used to
calculate the limit load of structure; the input listing for the development of this model

and subsequent analysis is given in Appendices 1.3.

The r-node locations and corresponding von Mises stresses for case one are shown
in Figure 6.7 and 6.8 as an example to explain how to calculate the limit load based on
r-node peak stresses. From Figure 6.5, one distinct r-node peaks is located according to

the method explained in equation (6.12); the limit load

P, = KP =0.321*100 = 32.1kPa

Figure 6.8 shows the r-node element locations in true FE model.
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Similarly, the results of other cases are obtained and shown in Table 6.2.

Table 6.4.Results and Comparisons

Limit Load (kPa)

Theoretical Nonlinear
Case # | R-node . (Mohr-
Solution
Coulomb)
32.1 105.46 111.2

73.37 245.32 246.4
278.8 439.46 464.6
319.8 838.52 853

390.4 1910.2 1693.5

Ol [N -

6.4.4 Trial Four

For trial four, the shear modulus is used as the quantity to be modified from the
first to the second elastic analysis instead of Young’s modulus and the stressed induced
by self-weight will be deleted when calculating limit loads in last step.

1. Carry the first elastic analysis, then use

E, =(+v,)—to_ B0¢ (6.15a)
1+v, tang,
and
vV = > -1 (6.15b)
(24 0 1220
tang, 1+v,

to modify Young’s modulus and Possion’s ratio of each element.

2. Carry out the second elastic analysis for the same load, mesh (except for a

different elastic modulus and Possion’s ratio) and obtain tan ¢, in each element.
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3. Compare tan¢@, of each element between the first linear elastic analysis and the
second linear elastic analysis. R-nodes are represented by locations where the tan ¢, did
not change.

4. Use

IJL _ tan¢ P C P (613)

=N =N
D ang), /N e, /N
j=l Jj=l

to find limit load.

The parameters used in numerical examples are shown in table 6.1. The results
obtained with r-node method and comparisons with nonlinear FEA solution and
theoretical solution methods are shown in Table 6.5. The theoretical solution is calculated
according to the equation (5.1) and tables given by Das (Das, (1999) [68]), and the
nonlinear FEA solution is calculated by using ABAQUS/Standard. Large deformation
analysis 1s used to calculate the limit load of structure; the input listing for the
development of this model and subsequent analysis is given in Appendices 1.3.

Table 6.5 Results and Comparisons

Limit Load (kPa)

Theoretical Nonlinear
Case # R-node : Mohe.
Solution
Coulomb)

41.8 105.46 111.2
71.33 245.32 246.4
117.84 439.46 464.6
150.88 838.52 853
159.57 1910.2 1693.5

i | WIN =
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For the all trials above, the anticipated results have not been obtained. One
possible reason is the assumption that the apex of all mobilized stress surfaces coincide

with the apex of the yield surface
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Chapter Seven

Conclusions and Prospects

Robust approximate methods are often used to estimate limit load of structures
due to the conceptual insight, economy of computational effort and wide applicability.
Many of these methods have been readily applicable to conventional structures made of
homogeneous isotropic materials. The r-node method, which is an approximate method
for determining the limit loads of structures, has been presented in detail in this thesis.
This method has been applied to the bearing capacity problem in soil mechanics, and the
results obtained are found to compare well with analytical results and elastic-plastic finite
element analysis results for uniform purely cohesive soils. The bounds for errors
compared with elastic-plastic analysis are shown in Table 5.5 and Figure 5.8; it can be
seen that for uniform purely cohesive soils, the results of r-node method are in close
agreement with the nonlinear FEA solutions.

Relatively close results, but less accurate for some cases, have been obtained for
layered purely cohesive soils (less accurate results correspond to small H /B and large
Cui/Cuz ratios). In most cases with H /B from 0.5 to 2, the bounds of errors are within

12%, but for cases of H/B=0.5 and H/B=0.75 and large ¢, /c,, (¢, /c,, =4), the

results are less accurate. For smaller H/ B (H /B =0.25), also the results are less

accurate; bounds of errors are large, especially for large ¢, /c,, (¢, /c,, =4). From the

comparisons of results, for layered soils, with the decreasing of the ratio H /B and the
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increasing of the ratio ¢, /c,,, the results are less and less accurate. The reason for such

tendencies consists in difficulty in locating the r-nodes when the upper layer of soil is
thin and the degree of inhomogeneity increases. The error bounds of different ratios of

H/B and c, /c,, have been given in Table 5.5 and Figure 5.8. From them, the

applicable range of r-node method for layered soils can be determined. Within this range,
the results obtained by using r-node method can be thought as approximatly accurate and
accepted.

The method has also been extended to analyze the bearing capacity problems of
footings on cohesive-frictional soils. Several trials were proved to be unsuccessful. The
reasons for these trials and various proposed procedures have been detailed in chapter 6.
The procedure for applying r-node method to cohesive-frictional materials has not been
solved, more attention should be given to establishing a reasonable relation between
mobilized cohesion and mobilized friction angle of cohesive-frictional soils, and
correctly estimate the shear strength of each element in the foundation. Also, as seen
from the analysis results, the r-nodes of the soil foundation seem to lie along the pressure
bulb for cohesive soils; and for cohesive-frictional soils, they seem to lie along the
frustum of a cone. Further research toward this assumption may go along the lines of a

concept developed by Wolf (Wolf and Deeks (2004) [76]).
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Appendices

ABAQUS Finite Element Input Files

1 Nonlinear Analysis

1.1 Input Files for Uniform Cohesive Soils

1.1a Input File for Uniform Cohesive Soils (Width of Foundation B=2m)
*HEADING

stttk o R sk R skl R sk R sk sk sl sk R sk sk R sk s R sk ok

**Bearing capacity of strip foundation on uniform cohesive soil

**Flement type: CPE4R; Cohesion=10kPa; Friction angle=0°; Self-weight y=0
**Flastic modulus=20MPa; Possions’ ratio=0.499; Area=40m*20m

**Von Mises yield criterion

sfe sfe sfe sfe sfe s s e ol sfe s ke sk sk sk s sfe sk e ke sk ok sl seskeosk skeoskeoskokokskokskeok

** NODES DEFINING

>k ok ok ok e sk 2 2 o ofe ofe o ofe ok ofe ok sk sl sk sk s sk sk s sk sk sk st s sk s o sk sk ke sk ok

**All dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

5001,0,20

123



5011,5,20

5021,12.5,20

5031,22.5,20

5041,40,20

**Define the analysis domain
*NGEN, NSET=NBOT
1001,1011,1

1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NTOP
5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100
*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
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5002,5005
**Mesh the model

= s sfe sfe e e s s sk sfe ofe sfe sk ofe sl sfe sl sfe sk she she sk ol e sk sfe sk sk skeske sk ke sk e skosk

** SOIL ELEMENT DEFINING

stk sttt ol ok sk stk R Rk R sk sk ok sk sk sk ok ok sk ok ok
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,40,100,100

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20E3,0.499

**Young’s modulus and Possions’ ratio
*PLASTIC

17.32

**Yield stress

*ELSET, ELSET=ELST, GENERATE
4901,4940

*ELSET, ELSET=ELOAD, GENERATE
4901,4904,1

**Define the area of loading

sk sk sfe sfe ol sk sk sfe sk she sheske sk sfe sfe ok sk sl sfe sk sk sk skeosfesie st st sk sk s sk sk sk sie sk sk sk sk s sk s sleosie sk kst sk sk sk sioke sk ok ko ok
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*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE,1,1

F2,1

**Boundary condition

*STEP, INC=1000, UNSYMM=YES

*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETERS=LINE SEARCH
20

**Analysis control

*BOUNDARY

5001,2,2,-1

**Apply displacement, large deformation analysis
*EL PRINT, FREQUENCY =0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2,RF2

*NODE PRINT, FREQUENCY=0
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*END STEP

**Qutput the results

S ok e 3R s ok sk sfe s ok ok she s sfe sl i ofe ok s s sl e sk st sk sk sl e ste sk skosko sk sk sk sk sk sk sk

**The input file 1.1 also can be used for nonlinear analyses of bearing capacity of strip

**foundation on uniform cohesive soil with different elastic modulus, cohesion.

2§ o sk she e s ofe e sfe e e sfe sfe ofe s sfe sfe e sfe e sfe she e sfe sfe e sfe s e kst sfe seske sk sk

1.1b Input File for Uniform Cohesive Soils (Width of Foundation B=3m)
*HEADING

stttk ek s oksk o s sk ks s ksl s kol sk sk stk koo

**Bearing capacity of strip foundation on uniform cohesive soil

**FElement type: CPE4R; Cohesion=10kPa; Friction angle=0°; Self-weight y=0
**Elastic modulus=20MPa; Possions’ ratio=0.499; Area=40m*20m

**Von Mises yield criterion

#f ok ok ok ok ok s sk ok ofe sfe sk sfe sfe ofe e sfe o s s sk sfe ofe ofe sie s ofe s v o skl sie sk sk ok

** NODES DEFINING

2 #fe ok ok ol e sk sk sfe ok ok sfe s sfe ofe ol e e sk s s sfe skeofe ol sl sfe sk s s s skske sk sk sk sk ok

*aEFEE* A dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,7.5,0

1021,18.75,0

1031,33.75,0

1041,60,0
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5001,0,30

5011,7.5,30
5021,18.75,30
5031,33.75,30
5041,60,30

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NTOP
5001,5011,1
5011,5021,1
5021,5031,1
5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100
*NSET, NSET=NSIDE, GENERATE
1001,5001,100
1041,5041,100

*NSET, NSET=F1
5001,

*NSET, NSET=F2, GENERATE
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5002,5005

sk sk sk ok e s sk s s sk e sk o ok sfe s s sk sk sk sk sk s sk sk s skoskoskosk skok sk sksksk

*# SOIL ELEMENT DEFINING
> 2 o ok e ke sk s o ok ok sk sk ook sk s s sk ook sk sk ok ke sk sk sk skosfoseskoksk sk sk sk ok

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL

1001,40,1,1,40,100,100

#*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20E3,0.499

PLASTIC

17.32

*ELSET, ELSET=ELST, GENERATE

4901,4940

*ELSET, ELSET=ELOAD, GENERATE

4901,4904,1

sk 3k sk s ok sk sk sk sk sfe sfesie sfe she sk sk sk sfe st sk sie she sk she sk sfeste st s e she she she sk sfe sfe e s sfesfe sfe sfe sk sfeskeske sieste s e ook sk sk
*RESTART, WRITE, FREQUENCY=1

*EQUATION

2

F2,2,1.0,5001,2,-1
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*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP, INC=1000, UNSYMM=YES

*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETERS=LINE SEARCH
20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1,SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

sk sfe e s she ofe s she sl sfe s sk sfe sfe e sfe sfe sk s sfe e sfe she sie sk sfe sfe sfe sfesfe e sfese sk skesfe s sie ok

**The input file 1.1b also can be used for nonlinear analyses of bearing capacity of strip

**foundation on uniform cohesive soil with different elastic modulus, cohesion.

sk sfe s sk she she sk afe sl sfe she ske she ke e sk sfe sk sfe ohe ohe ske she sfe sk sk e ske sfe sfe sk ske sk skl ke sk

1.2 Input Files for Layered Cohesive Soils

1.2a Input File for Layered Cohesive Soils (H/B=1.5)
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*HEADING

stttk ok ok ok ek ol ok ok st ek ok ke s sk e ek ok

**Bearing capacity of strip foundation on layered cohesive soil
**Element type: CPE4R; Cohesion: cuj/cuy=2; cu;=20kPa; cu;=10kPa.
**Friction angle=0°; Self-weight y;= y,= 0

**Elastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

**yon Mises yield criterion

sk 3t sk st sk e she she she she sfeofe sfe she sk sk sk sk sk ste sk sfeoshoske s sk sk stk sk sk skosk ok

** NODES DEFINING

sk 3k sk sk sk sfe ok ok sfe sk sk she e sk sk o sk ok sk ok s sk ofe she ok sfe sk s shesie s sk sk skeske skoskesk
wxkxA**All dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

3201,0,14

3211,5,14

3221,12.5,14

3231,22.5,14

3241,40,14
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5001,0,20

5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NMID
3201,3211,1
3211,3221,1
3221,3231,1
3231,3241,1

*NGEN, NSET=NTOP
5001,5011,1
5011,5021,1
5021,5031,1
5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,22,100

*NFILL, BIAS=1.00, NSET=NSOIL
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NMID, NTOP,18,100

*NSET, NSET=NSIDE, GENERATE
1001,3201,100

3201,5001,100

1041,3241,100

3241,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

5 3k o ok e ok ok s o ok ok o ok ok sk sl sk o sk s s ok sleosle ok sk sk sk s sk sk kol sk sk ik

** SOIL ELEMENT DEFINING

sk skttt ke sl ettt ekl ek ek sk stk ek sk ook
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,22,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
3201,3201,3202,3302,3301

*ELGEN, ELSET=ELSOIL1
3201,40,1,1,18,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940
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*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3,0.499

*PLASTIC

17.32

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL]
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3,0.499

*PLASTIC

34.641

+*ELSET, ELSET=ELOAD, GENERATE

4901,4904,1
S A o
*RESTART, WRITE, FREQUENCY=1

*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1
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*STEP, INC=1000, UNSYMM=YES

*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS

*CONTROLS, PARAMETERS=LINE SEARCH

20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

okl ks ok sk R R sk R sk kR R sk kR

**The input file 1.2a also can be used for nonlinear analyses of bearing capacity of strip

**foundation on layered cohesive soil with same H/B and different cu,/cu,.

=i e s sfe sle sfe sfe 3 sfe sl sk sk she sl sk sfe ok sfe sk ske sk ske st sfe sfe sfe sfe s e sk sk sk ke skeske sk

1.2b Input File for Layered Cohesive Soils (H/B=1)

*HEADING

sk sfe sfe sfe oke ok sfe sfe sk sk she sk ske sfe sk s sk sfe sk sk sk ok sk sk st e sk sk ke sk skosk s sk ke skoskosk

**Bearing capacity of strip foundation on layered cohesive soil
**Element type: CPE4R; Cohesion: cuj/cu,=2; cu;=20kPa; cu,=10kPa.

**Friction angle=0" Self-weight y;= y,= 0
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**Flastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m
**von Mises yield criterion

e o ok o o s ok sk sk sk o sk ok ok e e sfe sk sk sfe ok ok sk ke sk ke skeoske s sk sk sk skok ok

** NODES DEFINING

skt st sk sk kot sk ol s R e Rk sk ks sk R sk ok ok
wkARFF* ALl dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

3801,0,16

3811,5,16

3821,12.5,16

3831,22.5,16

3841,40,16

5001,0,20

5011,5,20

5021,12.5,20

5031,22.5,20

5041,40,20

136



*NGEN, NSET=NBOT

1001,1011,1

1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NMID

3801,3811,1

3811,3821,1

3821,3831,1

3831,3841,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,28,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,12,100

*NSET, NSET=NSIDE, GENERATE
1001,3801,100

3801,5001,100

1041,3841,100
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3841,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

e ok s sfe e s ok sfe sfe sk sfe she ofe e sfe sfe o sfe sk she st sk ofe sk sfe ke sfe sk sk sk ok skeske sk skeoke ok

** SOIL ELEMENT DEFINING
R ——
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL

1001,40,1,1,28,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
3801,3801,3802,3902,3901

*ELGEN, ELSET=ELSOIL1

3801,40,1,1,12,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3,0.499

*PLASTIC
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17.32

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1
*MATERIAL, NAME=MSOILI1

*ELASTIC

40.0E3,0.499

*PLASTIC

34.641

*ELSET, ELSET=ELOAD, GENERATE
4901,4904,1

sk sk s s ok sl et ek ke st etk sttt skl etk ks ok s ks sk etk
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP, INC=1000, UNSYMM=YES

*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS

*CONTROLS, PARAMETERS=LINE SEARCH
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20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1,SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

sk Rk Rk ok sk sk sk kR s sk stk R sk R sk sk Rk Rk

**The input file 1.2b also can be used for nonlinear analyses of bearing capacity of strip
**foundation on layered cohesive soil with same H/B and different cu,/cu;.
sttt sk sk sk R sk sk R SRk Rk R sk Rk o

1.2¢ Input File for Layered Cohesive Soils (H/B=0.75)

*HEADING

s sl sk sfe o sk she s ok sk ok s o sfosk o s sk sk skeoske sk sk sk sk s skl sk sk sk sksk

**Bearing capacity of strip foundation on layered cohesive soil

**Element type: CPE4R; Cohesion: cu/cu,=2; cu;=20kPa; cu,=10kPa.
**Friction angle=0°; Self-weight y;= 0, y,= 0

**FElastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

**yon Mises yield criterion

3 o e 3 ok e o 2fe ol sfe o v ke sk s ok ok ok e s o ok s ke sl sk sk sk sk ke sk sk ok ok

** NODES DEFINING
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she sfe s 3 s sk sk e s e sk she sk sfe st s she e e she she she sk sk sk sk skesiosieskosfe sk sk sk sk

*xx*%%*All dimension in meter and stress is kPa
*NODE, NSET=NA1
1001,0,0

1011,5,0

1021,12.5,0
1031,22.5,0
1041,40,0

4101,0,17

4111,5,17
4121,12.5,17
4131,22.5,17
4141,40,17
5001,0,20

5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1

1031,1041,1

141



*NGEN, NSET=NMID

4101,4111,1

4111,4121,1

4121,4131,1

4131,4141,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,31,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,9,100

*NSET, NSET=NSIDE, GENERATE
1001,4101,100

4101,5001,100

1041,4141,100

4141,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE

5002,5005
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sk o sfe sk ofe e sk s s sfe o sfe sk ske sl sk sfe sk sk sk sfe she e sfe sk sfe sk sk sk sk sk sk sk sk ke sk sk

** SOIL ELEMENT DEFINING

stttk ek kot t skt Rt sk stk ok kot e sk ok sk ook
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,31,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
4101,4101,4102,4202,4201

*ELGEN, ELSET=ELSOIL1
4101,40,1,1,9,100,100

*ELSET, ELSET=ELST, GENERATE
4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3,0.499

*PLASTIC

17.32

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1
*MATERIAL, NAME=MSOILI

*ELASTIC

40.0E3,0.499
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*PLASTIC
34.641

*ELSET, ELSET=ELOAD,GENERATE
4901,4904,1

sk sk sk ok ok sk ok sk > sk ok sk ok s sk sk s ok s ok s sk sl sk ok s sk o sfe e sfe sk ok sk ok sk s sk sk o sk sk sk sk sk sk ks skok ok
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP, INC=1000, UNSYMM=YES

*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETERS=LINE SEARCH
20

*BOUNDARY

5001,2,2,-1

+EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
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U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

> 2k e s s o sfe ofe s sfe ofe ok e sfe e 2 sfe e sfe ofe e sfe ofe e sfe sfe sfe e sk ok s sk sfeoshe sk skesk sk

**The input file 1.2¢c also can be used for nonlinear analyses of bearing capacity of strip
**foundation on layered cohesive soil with same H/B and different cu;/cu,.
stk ok sk stk ke sk otk sk R ok ok kR sk R skt sk ok Rk ok

1.2d Input File for Layered Cohesive Soils (H/B=0.5)

*HEADING

e o e s ofe ofe s sfe e 2 s sfe e s ofe sfe sfe sfe s ofe ol e s sl sfe s sfesfe sesfesfe sfesfesfe e sfe sfe sk

**Bearing capacity of strip foundation on layered cohesive soil

**FElement type: CPE4R; Cohesion: cuj/cux=2; cu;j=20kPa; cu;=10kPa.
**Friction angle=0°; Self-weight y;= y,= 0

**Elastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

**von Mises yield criterion

s ofe o s sk e ofe o s koo sl sk kol sk ol st sk ke sfe st sk ok ko e skok sk sk etk

** NODES DEFINING

o o ok ok ok ok sk sk ok s sk ok o ok o ol o ok sk s sk ok o ok ok ok ok ok ke ke ke s s sk kol ok

wFAHFE* ALl dimension in meter and stress is kPa
*NODE, NSET=NA1
1001,0,0

1011,5,0
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1021,12.5,0
1031,22.5,0
1041,40,0
4401,0,18
4411,5,18
4421,12.5,18
4431,22.5,18
4441,40,18
5001,0,20
5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20
*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1
*NGEN, NSET=NMID
4401,4411,1
4411,4421,1
4421,4431,1

4431,4441,1
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*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,34,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,6,100

*NSET, NSET=NSIDE, GENERATE
1001,4401,100

4401,5001,100

1041,4441,100

4441,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

sk ofe sk s sle s sfe e sfe sfe sfe s sfe sfe e sfe e s sfe sfe o sfe sfe e sfe she ke she sk sk sleoskeske s skeske sk

** SOIL ELEMENT DEFINING

sfesfe sfe sk s sie sfe ofe sl sfe she st sie s sl sle she she sk st sfe sk sfesfeosk sk seosteosteoteokoskeskoskosk sk ok

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL

1001,1001,1002,1102,1101
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*ELGEN, ELSET=ELSOIL

1001,40,1,1,34,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
4401,4401,4402,4502,4501

*ELGEN, ELSET=ELSOIL1

4401,40,1,1,6,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3,0.499

*PLASTIC

17.32

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOILI1
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3,0.499

*PLASTIC

34.641

*ELSET, ELSET=ELOAD, GENERATE

4901,4904,1

sk sfe sfe sfe sfe sfe ol e sk sk she sfe sk sfe ske sfe s sfe sk she she ske sie e sfe e e s sfe s sfe sk sk she s sfe sk sfe sk sk sk sle sl sie sie e ske sfe sk sk sk sk skoskosk sk
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*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP, INC=1000, UNSYMM=YES

*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETERS=LINE SEARCH
20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

#f 3 of ofe sl ok se e e s s sk ok sk sk ok ok ok ol sl sk o o o ofe ok sk sk e sk s s sk sk ko sk ko
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**The input file 1.2d also can be used for nonlinear analyses of bearing capacity of strip
**foundation on layered cohesive soil with same H/B and different cu;/cu,.
steofsk gk Rk sk R kR sk sk sk Rk Rk R kR

1.2e Input File for Layered Cohesive Soils (H/B=0.25)

*HEADING

sk sfe sk sk sk sk sk sk sk sk e sk sk s ok e sk sk sk sk sk ook sk sk sk sosfosi sk sk sk skoskoskokoksk

**Bearing capacity of strip foundation on layered cohesive soil

**FElement type: CPE4R; Cohesion: cu;/cuy=2; cu;=20kPa; cu;=10kPa.
**Friction angle=0°; Self-weight y;= y;= 0

**Flastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

**von Mises yield criterion

sk ok st sk e ok sk sl sk sk ok sk ok ok ot sk o sk o sk o sk stk ok ks sk sk ok sk sk sk sk

** NODES DEFINING

sk ok s sk s ok ok sk oke ke sk sk ske ok sk sk ok sk sk sk ok s ok ok sk ok sk skeosk sk sk skl skoke sk skok ok
**x%All dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

4701,0,19
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4711,5,19
4721,12.5,19
4731,22.5,19
4741,40,19

5001,0,20

5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NMID
4701,4711,1
4711,4721,1
4721,4731,1
4731,4741,1

*NGEN, NSET=NTOP

5001,5011,1
5011,5021,1

5021,5031,1
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5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,37,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,3,100

*NSET, NSET=NSIDE, GENERATE
1001,4701,100

4701,5001,100

1041,4741,100

4741,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

s sfe s sfe s e sfe she sk sk sfeoke sfe sk sie sfe sfesfe el e skoskosk sk sl sk skesieske sk sk sk sk

** SOIL ELEMENT DEFINING

ke 2 o o ok ofe sie ok sk sk el ok s sl s s sk sk ol ste sk s sfe sk sk siosledk ket sk sk sk sk sk sksk

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,37,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL!

4701,4701,4702,4802,4801

152



*ELGEN, ELSET=ELSOIL1

4701,40,1,1,3,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3,0.499

*PLASTIC

17.32

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3,0.499

*PLASTIC

34.641

*ELSET, ELSET=ELOAD, GENERATE

4901,4904,1

stk sk sl sk R s R sk R s kst ot sofe e il Rttt sk et of sk ko ek ek ok
*RESTART, WRITE, FREQUENCY=1

*EQUATION

2

F2,2,1.0,5001,2,-1
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*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP, INC=1000, UNSYMM=YES

*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS

*CONTROLS, PARAMETERS=LINE SEARCH

20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

sk ke ke ok ok sk ofe ok sfe sl ofeste st sk sfe sfe sfe s sfe sfesfesfe s sfe s s sk sk sk kR kokok ok R koRoK

**The input file 1.2e also can be used for nonlinear analyses of bearing capacity of strip

**foundation on layered cohesive soil with same H/B and different cu;/cu,.

e sfesfesfe s se e sfe s s s sfe sfe st s s sk e e s s s ke sfesfe sk s sfe st sk sk e e sfesfese

1.3 Input Files for Cohesive-Frictional Soils

1.3a Input File for Cohesive-Frictional Soil (c=10kPa, g=10")
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*HEADING

sfotskofsk kRt sk ook st ko stk ok ok ok ok ok sk ok ok

**Bearing capacity of strip foundation on uniform cohesive-frictional soil
**Element type: CPE4R; Cohesion=10kPa; Friction angle=10°;
“*Effective self-weight y’= 9KN/m’

**FElastic modulus=20MPa; Possions’ ratio=0.3, Area=40m*20m
**Mohr-Coulomb yield criterion

> sfe e 3 ok e s o s o ofe ofe e 3 sfe e e ofe e s ofe e 2fe ok e ofe e e ofe st e ofe sl e skeske ok

** NODES DEFINING

sk whe s sk ke sfe sk sfe sk ok skoske sl sk skoske sk s sk sk sk ok sk skook skeok sk sk sk sk ok sk sk skosk

*AFAx**All dimension in meter and stress is kPa
*NODE, NSET=NA1
1001,0,0

1011,5,0

1021,12.5,0
1031,22.5,0
1041,40,0

5001,0,20

5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
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1001,1011,1

1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

sfe s e s o ofe e sfe e sfe s e st e s ke s ke s de s e s sk o sk s sk sk sk sk sk kol o

** SOIL ELEMENT DEFINING

i ok 3k sk ofe o she e sk sfe s ke ok sk sk sk sk ok ok s s ke sfe s sk sfe sk skoskosi sieskosk ks skosk

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL

1001,1001,1002,1102,1101
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*ELGEN, ELSET=ELSOIL
1001,40,1,1,40,100,100

*ELSET, ELSET=ELST, GENERATE
4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL
*ELASTIC

20.0E3,0.3

*MOHR COULOMB

10.0,0.0

*MOHR COULOMB HARDENING
10.0

stk s s fe sk fe sl o st ekttt ek ke ke el ke ek ks ke s sk ket ket ek ok
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*GEOSTATIC
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*DLOAD

ELSOILL, BY,-9

*END STEP

*STEP, INC=5000, UNSYMM=YES, AMPLITUDE=RAMP
*STATIC

0.001,1,,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS

*CONTROLS, PARAMETERS=LINE SEARCH

20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

1.3b Input File for Cohesive-Frictional Soil (c=10kPa, g=20°)
*HEADING

she sie sfe sk e sfe sfe sl ke s sfesfe ok s sfe sk s s st sk s s ke skeoso sk sk skeoske ok skosfese sk skeske sk sk

**Bearing capacity of strip foundation on uniform cohesive-frictional soil
**Element type: CPE4R; Cohesion=10kPa; Friction angle=20°;
**FEffective self-weight y’= 9KN/m’

**Elastic modulus=20MPa; Possions’ ratio=0.3; Area=40m*20m
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**Mohr-Coulomb yield criterion

> s ofe 2k ol sfe sk s sk e sk ok sfe sk sie s ok s sk sfe sk sk sk ofe sfe sk sfe kool sk sk sk skose sk

** NODES DEFINING

stttk stk etk sk ot ks okt ok R ok kR ok R ok ok o
wx***** Al dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

5001,0,20

5011,5,20

5021,12.5,20

5031,22.5,20

5041,40,20

*NGEN, NSET=NBOT

1001,1011,1

1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NTOP

5001,5011,1
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5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

sfe sfe s 3k e ofe sfe s sfe sk sfeske she she sfe sfe sfe sfe sfe sfe e sjesfesfe sfe she sfe sfe s s sfe sfe she sfe sfesfe sk

** SOIL ELEMENT DEFINING
T —
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL

1001,40,1,1,40,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL

*MATERIAL, NAME=MSOIL
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+*ELASTIC
20.0E3, 0.3

*MOHR COULOMB

20.0, 0.0

*MOHR COULOMB HARDENING

10.0

sk sk sk e sk i sfe sk ok sk sk sk sk sk e sk ke sk sfe sk sk sk s sk ke sk sk s sk sk sk sk sfeoske sk i sk sl sk sk sk sk sk sk sk sk sk sk sk skosk skl sk sk
*RESTART, WRITE, FREQUENCY=1

*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*GEOSTATIC

*DLOAD

EISOLL, BY,-9

*END STEP

*STEP, INC=5000,UNSYMM=YES, amplitude=ramp
*STATIC

0.0001,1,1e-10,0.005
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*CONTROLS,ANALYSIS=DISCONTINUOUS

*CONTROLS, PARAMETERS=LINE SEARCH

20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

1.3c Input Files for Cohesive—Frictional Soil (¢c=50kPa, 9=10°)

*HEADING

3§ 2 2 s 2le e ofe e 3 o e s e sfe ok sk o o sk 2 ofe s sfe e sk sfe e ook sk s sk e s sk sk

**Bearing capacity of strip foundation on uniform cohesive-frictional soil
**Element type: CPE4R; Cohesion=50kPa; Friction angle=10"

** Effective self-weight y’= 9KN/m’

**FElastic modulus=100MPa; Possions’ ratio=0.3; Area=40m*20m
**Mohr-Coulomb yield criterion

sk 3fe s sfe sfe ofe s e e ofe sfe sfe ok o ok ofe sfe sfe sk sfe e e ofe ofe ofe s s sk sksk sk ke ook s ok ok

** NODES DEFINING

ok sfe sk st st o sk o ok s ek s st sk ook st st s ok ok ok sk ok sk ok skok o ok sk stk sk sk ook

FRrkkdkAll dimension in meter and stress is kPa

*NODE, NSET=NA1
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1001,0,0

1011,5,0

1021,12.5,0
1031,22.5,0

1041,40,0

5001,0,20

5011,5,20

5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NTOP
5001,5011,1
5011,5021,1
5021,5031,1
5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
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1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

3 ofe o e sk s s o s s ofe ok sk sfe ok ik e e sk o ofe sfe s sfe sk s s s ofe o sk sk sk sk kel sk

** SOIL ELEMENT DEFINING
e sfe sk sk s e o ofe ok o s sk sfe ok ok sk sfe sk sk ste sk stesfeseske sfe s sk siesiesie sk sk sk ke ek
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL

1001,40,1,1,40,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

100.0E3,0.3

*MOHR COULOMB

10.0,0.0

*MOHR COULOMB HARDENING

50.0
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e e s sk sk e e o e sfe sfe sfe s sfe e s sfeofe ske she sfe sfe sfe e e s s sk sfe she sfe sk sk sk skeskoskosk sl sk sk s stesteokoskosk skeskoskoskesleskoteok sk

*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*GEOSTATIC

*DLOAD

ELSOIL, BY -9

*END STEP

*STEP, INC=1000, UNSYMM=YES, AMPLITUDE=RAMP
*STATIC

le-5,1,1e-12,0.005

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETERS=LINE SEARCH
20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0
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*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

1.3d Input File for Cohesive-frictional Soil (c=50kPa, $=20°)
*HEADING

sk Rk R R sk R R sk R R R R R Rk s sk s R o

**Bearing capacity of strip foundation on uniform cohesive-frictional soil
**Element type: CPE4R; Cohesion=50kPa; Friction angle=20°
**FEffective self-weight y’= 9KN/m’

**Flastic modulus=20MPa; Possions’ ratio=0.3; Area=40m*20m
**Mohr-Coulomb yield criterion

s s s ofe ofe ok sk o e 3k s sk s s ok ok ok sk sk sk sk sk sk sk sk sie st sl sk s sk sk ke

** NODES DEFINING
**************************************
*EkxE***AIl dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

5001,0,20
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5011,5,20

5021,12.5,20

5031,22.5,20

5041,40,20

*NGEN, NSET=NBOT
1001,1011,1

1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NTOP
5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE

5002,5005
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sk s sk sfe sk sk s s s o ok sk s sfeoofe e sfe st sfe sk sk sk skl sk skoskoskoskolesk sk sk

*#* SOIL ELEMENT DEFINING

ke o s oo e e sk ok o o sk e sk sk ool sheske sk sk sk sk skesieske ook sk seske sk skl ke dkeok
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,40,100,100

*ELSET, ELSET=ELST, GENERATE
4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

100.0E3, 0.3

*MOHR COULOMB

20.0,0.0

*MOHR COULOMB HARDENING

50.0

st sk sk sfe e e sfe sk sk st sk she s sk she sk sk sheske st sfesk st sk sk sk sfe skl sk sfeote sk sfe ok sk sfeskok st sk sk skoskok sk skokokoskok
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY
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NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*GEOSTATIC

*DLOAD

ELSOIL, BY,-9

*END STEP

*STEP, INC=5000, UNSYMM=YES, AMPLITUDE=RAMP
*STATIC

le-5,1,1e-12,0.001

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETERS=LINE SEARCH

20

*BOUNDARY

5001,2,2,-1

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP

1.3¢ Input File for Cohesive-frictional Soil (¢c=50kPa, g=30°)

*HEADING
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SR sfe e 3 s e sfe sfe s sk sk sk s sk sk ske sk sk sk sfe sk skeoskeoskokoskoskosk s ko stk skskesk

**Bearing capacity of strip foundation on uniform cohesive-frictional soil
**Element type: CPE4R; Cohesion=50kPa; Friction angle=20"
**Effective self-weight y’= 9KN/m’

**Flastic modulus=20MPa; Possions’ ratio=0.3; Area=40m*20m
**Mohr-Coulomb yield criterion

sk she sk sie e sfe sk sfe sfe sk sk sfe she she she sk e ske sk sk ske sk e st sk sk ke skeoskoskoskoskeskeskoskeskesk

** NODES DEFINING

sk skot sk Rk sk sk Rk Rk Rk sk R Rk Rk R R R
ks All dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

5001,0,20

5011,5,20

5021,12.5,20

5031,22.5,20

5041,40,20

*NGEN, NSET=NBOT

1001,1011,1
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1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT,NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET,NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

stk stk e sk sk st sk sk ok ok ok ok sk sk sk e sk sk ok sk kb sk ok

** SOIL ELEMENT DEFINING

s sfe sk sk ole sk sfe ofe she sie sfeste sk sfe st sfe sfe e s sk ok skoskeosfe sfe sk ke skosfeooke kst sk skesie sie sk
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
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1001,40,1,1,40,100,100

*ELSET, ELSET=ELST, GENERATE
4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL
*ELASTIC

100.0E3, 0.3

*MOHR COULOMB

30.0,0.0

*MOHR COULOMB HARDENING
50.0

stk et e o et etttk sk kel s ettt ke ks etk
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE,1,1

F2,1

*STEP

*GEOSTATIC

*DLOAD
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ELSOIL, BY,-9

*END STEP

*STEP, INC=10000, UNSYMM=YES, AMPLITUDE=RAMP
*STATIC

le-5,1,1e-12,0.001

*CONTROLS, ANALYSIS=DISCONTINUOUS
*CONTROLS, PARAMETERS=LINE SEARCH
*BOUNDARY

5001,2,2,-1.5

*EL PRINT, FREQUENCY=0

*NODE PRINT, NSET=F1, FREQUENCY=1, SUMMARY=NO, TOTAL=YES
U2, RF2

*NODE PRINT, FREQUENCY=0

*END STEP
2 Linear Analysis

2.1 Input Files for Uniform Cohesive Soils

2.1a Input File for Uniform Cohesive Soils (Width of Foundation B=2m)
*HEADING

ofe e e sfe s s e e s s sfesfe s s e e s s e sk e sfesfe st s s sk sesfe sk s sk sk e sk sksk sk ok

**The first elastic analysis for strip foundation on uniform cohesive soil
**Element type: CPE4R; Cohesion=10kPa; Friction angle=0"
**Self-weight y= 0

**Flastic modulus=20MPa; Possions’ ratio=0.499; Area=40m*20m
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e o ok ot sl ok ok ok ok sk ok o ok ok ok sk sk sk sk ok s sk sl sk ook sk sk ke sk sl e sk ook ok

** NODES DEFINING
e sl st sfe e 2fe sfe e sfe vfe e e sfe sfe e s sfe e sie sfe e s sfe sfe sfe e s sfe sfe sfesfeosfe sfe sesfe sfe sk
whsHs*k Al dimension in meter and stress is kPa
*NODE, NSET=NA1
1001,0,0

1011,5,0

1021,12.5,0
1031,22.5,0

1041.,40,0

5001,0,20

5011,5,20

5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NTOP
5001,5011,1

5011,5021,1
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5021,5031,1

5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

sk sfe sk ok sl ok o sfe s s seske sk sk ske sk e sfe s s s sk ol ofe ke sfe sfe s s s sk sk sfe sk skesiesk

** SOIL ELEMENT DEFINING
R —
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL

1001,40,1,1,40,100,100

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20E3,0.499

*ELSET, ELSET=ELST, GENERATE
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4901,4940

*ELSET,ELSET=ELOAD, GENERATE
4901,4904,1

sk ktofstok totoRsk otk sk ek sk sk ol stk stk ok sk skl otk
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE,1,1

F2,1

*STEP

*STATIC

*DLOAD

ELOAD, P3,100

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO
SP, MISES

*NODE PRINT, FREQUENCY=0

*END STEP

she sfe sie s sfe sk sk o e ofe s o she ofe sfe she sfe sfe s sfesfe sfe skeofe o sfe s sfe sk ks sfe s s skeok

**The input file 2.1a also can be used for linear analyses of strip **foundation on

uniform **cohesive soil with different elastic modulus, cohesion, and applied pressure.
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e o ok ok e o s ofe ofe ofe st sk st sk sk ok sk sk stk sk sk sk s skososk skl sk skeRookok

2.1b Input File for Uniform Cohesive Soils (Width of Foundation B=3m)
*HEADING

o e ofe ol s ofe s ofe e o ook s sk o sfe s ol sfe ofe ofe e e ofe e s o sk sk st st s ok ke sk ok ok

**The first elastic analysis for strip foundation on uniform cohesive soil
**FElement type: CPE4R; Cohesion=10kPa; Friction angle=0°;
**Self-weight y= 0

** Flastic modulus=20MPa; Possions’ ratio=0.499; Area=40m*20m

sk 2 sfe sfe e e 3 sfe o 2 e she s sfe e o o sfe ofe sfe sfe s s e sie sfe ofe o sfe s sk sk sk skeokok

** NODES DEFINING

sk st of sk o ofe > 2k sfe s ok sk ol sk ok s ok s sk sk ok s sk ok sk ok ok ok ok sk ok sk ol ok sk Rk
wFFHAE*R Al dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,7.5,0

1021,18.75,0

1031,33.75,0

1041,60,0

5001,0,30

5011,7.5,30

5021,18.75,30

5031,33.75,30

5041,60,30
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*NGEN, NSET=NBOT

1001,1011,1

1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE

5002,5005

sk e sk she e sk sfe e sfe sfe sfe st sk ske sl sk she sk she she sfe ske ske sfe skeske e she s oo sfe sfe s sfesfe sk sk

** SOIL ELEMENT DEFINING

sfe st sfe st s sk sk she sk sk sk sk sfe sk sk s skeske she sk sfe st sk sk skeosk sk sk ek skeskoskeskesk

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
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1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,40,100,100

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL
*ELASTIC

20E3,0.499

*PLASTIC

17.32

*ELSET, ELSET=ELST, GENERATE
4901,4940

*ELSET, ELSET=ELOAD, GENERATE
4901,4904,1

sk otttk R s ol sk kR sk R kRl R Rk ok R sk Rk
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP
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*STATIC

*DLOAD

ELOAD,p3,100

*EL PRINT, FREQUENCY==1, SUMMARY=NO, TOTAL=NO

SP, MISES

*NODE PRINT, FREQUENCY=0

*END STEP

ek stk ks ok sk kR sk ok sk ok ks sk sk Rk Rk Rk ok ok o

**The input file 2.1b also can be used for linear analyses of strip foundation on uniform
**cohesive soil with different elastic modulus, cohesion,and applied pressure.
3k sfe sk sk sl sk st she sk sfe sk sk ske sk sk sk kool ste st sk sk sk ske skt sfe sk sk skoskoskeoke sk sk sk

2.2 Input Files for Layered Cohesive Soils

2.2a Input File for Layered Cohesive Soils (H/B=1.5)

*HEADING

sfe sfe sfe sfe e sfe sfe sk sfe sk s sfe she sfe e s sfe e sk sfe s sie sfe o sfe sl ste sfe ke soskesie ook sk sk

**The first elastic analysis for strip foundation on layered cohesive soil
**FElement type: CPE4R; Cohesion: cu;/cu;=2; cu;=20kPa; cu;=10kPa.
**Friction angle=0°, Self-weight y;= y,= 0

** Elastic modulus: Ej=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

skt she sfe sfe e sk sfe sfesfe she ke sfe s sk sfe st sk sfe sfeofe sk skeske sk sfe sfe sk skkeskskskok sk

** NODES DEFINING

Sk sfe sfe ke s sk ok sfe sk ske ok sk sk ofe ofe sfe sk e sie sfe sfe sk sk sk sfe sk sfe sk sk sk sk sk skosk sk sk sk
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*xkkxx*All dimension in meter and stress is kPa
*NODE, NSET=NA1
1001,0,0

1011,5,0

1021,12.5,0
1031,22.5,0
1041,40,0

3201,0,14

3211,5,14
3221,12.5,14
3231,22.5,14
3241,40,14
5001,0,20

5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NMID
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3201,3211,1

3211,3221,1

3221,3231,1

3231,3241,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,22,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID,NTOP,18,100

*NSET, NSET=NSIDE, GENERATE
1001,3201,100

3201,5001,100

1041,3241,100

3241,5041,100

*NSET,NSET=F1

5001,

*NSET, NSET=F2, GENERATE

5002,5005

st sk sfe s s o sk sk s o sk sfe s sk ok sk s sk ook sk sfe st sk sk ks kol sk kestokok
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** SOIL ELEMENT DEFINING

seste stk fe s s st st sl ke o s R e e s ofe sk ko sk ok o
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,22,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
3201,3201,3202,3302,3301

*ELGEN, ELSET=ELSOIL1
3201,40,1,1,18,100,100

*ELSET, ELSET=ELST, GENERATE
4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3, 0.48

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3, 0.48

*ELSET, ELSET=ELOAD, GENERATE

4901,4904,1

e sfe sfe s s ok sk e sfe e s ok e sfe s sk sfesfe st sk s sfe s s sk sk ok sfe s sk sk se s sl e
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*RESTART, WRITE, FREQUENCY=1

*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*STATIC

*dLOAD

ELOAD, P3,100

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO
SP, MISES

*NODE PRINT, FREQUENCY=0

*END STEP

ok ok ok sk ks kKR Rk ok Rk Rk sk kR R kR K

**The input file 2.2a also can be used for linear analyses of strip foundation layered

**cohesive soil with different elastic modulus,cohesion,and applied pressure.

3§ ofe 3¢ 3¢ o s 3¢ ok sk o ofe ske sk sfe oke e sfe ohe s sk e e s ok sfe sfe ok ke s se ke sesle sfe ks sk

2.2b Input File for Layered Cohesive Soils (H/B=1)

*HEADING

K 3 2 ok ok ok ok e o 2k o sk s sk ok sk ol ke sk s sk sk sk ok sk i ke sk sk sk s sk sk ke sle sl sk
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**The first elastic analysis for strip foundation on layered cohesive soil
**Element type: CPE4R; Cohesion: cuj/cu,=2; cuj=20kPa; cu;=10kPa.
**Friction angle=0°, Self-weight y;= y,= 0

**Flastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

s sk sk ok sk sk sk sk sk sk sk sk sk sk skeoslesie sk sk s s kol sk sk sfe sk skook sk ko sk sk sk

** NODES DEFINING

stk s e ke sk ok s R RS R R s R SR R s R ok ok sk Rk Rk o
wdAxA*All dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

3801,0,16

3811,5,16

3821,12.5,16

3831,22.5,16

3841,40,16

5001,0,20

5011,5,20

5021,12.5,20
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5031,22.5,20

5041,40,20

*NGEN, NSET=NBOT

1001,1011,1

1011,1021,1

1021,1031,1

1031,1041,1

*NGEN, NSET=NMID

3801,3811,1

3811,3821,1

3821,3831,1

3831,3841,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,28,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,12,100

*NSET, NSET=NSIDE, GENERATE

1001,3801,100
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3801,5001,100

1041,3841,100

3841,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

s sfe e 2 sk e sfe sfe e sfe ofe sl e sfe e sfe sfe e sfe ke sl sfe sk sk sheske e soskeose sk skesie sl skl sk

** SOIL ELEMENT DEFINING
sk 3f sk ok sk ofe sk e sk sk sk sk sk sk ske sk e sk sk sk sk sk sk sfesie st sfe sk sk skesk sk skesk skesk ke sk
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,28,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
3801,3801,3802,3902,3901

*ELGEN, ELSET=ELSOIL1
3801,40,1,1,12,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC
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20.0E3, 0.48

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3, 0.48

*ELSET, ELSET=ELOAD, GENERATE
4901,4904,1

stk ot sk ofe sk sl s s R R e ke sk R e R s R st e ook
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*STATIC

*DLOAD

ELOAD, P3,100

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO
SP, MISES

*NODE PRINT, FREQUENCY=0
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*END STEP
ok 2 sfe sl sl s s sk ol ofe s e sl sfe sie s s ok sk sk sfe sl sl sk sk s sfe sk sl sk s sk sk s sk slek sk
**The input file 2.2b also can be used for linear analyses of strip foundation layered

**cohesive soil with different elastic modulus,cohesion,and applied pressure.

=i sfe 3k sfe 36 3fe sfe e sfe e sk sfe s e e sfe e sfe sfe st s sfe e e sfe sie sfe sesfe sesfe s sfe e sfe s

2.2¢ Input File for Layered Cohesive Soils (H/B=0.75)

*HEADING

skt sk e stk stk otk sk ok st sk ok okt ok sk ook ek ok

**The first elastic analysis for strip foundation on layered cohesive soil
**FElement type: CPE4R; Cohesion: cuj/cuy=2; cuy=20kPa; cu,=10kPa.
**Friction angle=0°,Self-weight y;= y,= 0

**FElastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

2 2k sfe ok o st sk ok ol sk skt sk sk sfe s o ok sk sk sk sk sl sk sk sfe seoseofe siesk sl sk sk skok

** NODES DEFINING

s of sk sie ofe st sk ok ofe ol sl s sfe sfe e s sfe sk sk sfe sfe sl ke sk e sk s sl sk e sie sk skoskok

*wxxxr* All dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0
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4101,0,17
4111,5,17
4121,12.5,17
4131,22.5,17
4141,40,17
5001,0,20
5011,5,20
5021,12.5,20
5031,22.5,20

5041,40,20

*NGEN, NSET=NBOT

1001,1011,1
1011,1021,1
1021,1031,1

1031,1041,1

*NGEN, NSET=NMID

4101,4111,1
4111,4121,1
4121,4131,1

4131,4141,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1
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5021,5031,1

5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,31,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,9,100

*NSET, NSET=NSIDE, GENERATE
1001,4101,100

4101,5001,100

1041,4141,100

4141,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

¢ sk ok o st o ok sk ok ot ook sk st sk s sfe st st o sk ok sk ok sk sl st skeok sk sk ke sk sk sk ook

** SOIL ELEMENT DEFINING

3§ 2 sk ok ol e 2 sfe sfe sfe s s s s vk ok ofe ok ok e s sk sfe sfe ok ke e sk s s sk sk sososkoskeok
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,31,100,100

*ELEMENT, TYPE=CPEA4R, ELSET=ELSOILL1
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4101,4101,4102,4202,4201
*ELGEN, ELSET=ELSOIL1
4101,40,1,1,9,100,100

*ELSET, ELSET=ELST, GENERATE
4901,4940

*SOLID SECTION, ELSET=ELSOIL,MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3,0.499

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOILL1
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3,0.499

*ELSET, ELSET=ELOAD, GENERATE
4901,4904,1

s 2fe o sfe sfe s s e ofe ofe s sfe s ofe ofe ofe ok s sk sk sfe sk sfe e ok s sfe s sk s sk siofe ke sk ok ok
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1
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F2,1

*STEP

*STATIC

*DLOAD

ELOAD, P3,100

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO
SP, MISES

*NODE PRINT, FREQUENCY=0

*END STEP

e o ok s ok ok sk sfe s o ok ok ok sfe ok sfesfe o s sk sk sk sk sk skl e sk sk skook skookoske sk ok

**The input file 2.2c also can be used for linear analyses of strip foundation layered
**cohesive soil with different elastic modulus, cohesion,and applied pressure.

sk sk sk sk ok sk s ol sk sk sk 2k ok ke sfe ok e seoske ok sk ook sk ofe e sfe s sk skeskeosie sk sk

2.2d Input File for Layered Cohesive Soils (H/B=0.5)

*HEADING

sk ok s sk sfe sk st e sk sk ook sk sk sk skt sk sk s sk sk skook ok ok sk sk sk sk sk sk ok ok sk skosk ok

**The first elastic analysis for strip foundation on layered cohesive soil
**Element type: CPE4R; Cohesion: cu/cu;=2; cu;=20kPa; cu,=10kPa.
**Friction angle=0°, Self-weight y;= y,= 0

**Flastic modulus: E;=40MPa, E,=20MPa; Possions’ ratio=0.499.

**Area=40m*20m

sk sk sfe ok ofe ol sk s sfe sk sfe sk sk sfe sl sie sfe sk sk s sk s sk sfe sk sk sk ste sk sk sk sk ok skl ok

** NODES DEFINING
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skeske sk sfe sfeofe she sk skl sk sk skesiesk sk st sk skostok skokokok skokok skokokskerskskok

*xskk*x* ATl dimension in meter and stress is kPa
*NODE, NSET=NA1
1001,0,0

1011,5,0

1021,12.5,0
1031,22.5,0
1041,40,0

4401,0,18

4411,5,18
4421,12.5,18
4431,22.5,18
4441.40,18
5001,0,20

5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1

1031,1041,1
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*NGEN, NSET=NMID

4401,4411,1

4411,4421,1

4421,4431,1

4431,4441,1

*NGEN, NSET=NTOP

5001,5011,1

5011,5021,1

5021,5031,1

5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,34,100

*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,6,100

*NSET, NSET=NSIDE, GENERATE
1001,4401,100

4401,5001,100

1041,4441,100

4441,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE

5002,5005
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e ok ok sk sk ok ok sk ok seske sk stk sk ok skeskoteskosk sokoskoskokokoskoskokskesk kol sk

** SOIL ELEMENT DEFINING
sk sk s s s ok ok sfe ofe sk s st sk sk ok ok ok sfe s sk st st st st s sfe sfe sfe sk s s sk sl sl ke siesiesk
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL

1001,40,1,1,34,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
4401,4401,4402,4502,4501

*ELGEN, ELSET=ELSOIL1

4401,40,1,1,6,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3,0.499

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3,0.499

*ELSET, ELSET=ELOAD, GENERATE

4901,4904,1
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2k ok sfe sfe e sk sk sfe sfe sk sk sk sk sk sie sk ste sk sk sk ske sk st sfe sk she sfe ske sk e sfe sl sfe ke ke sl sk

*RESTART, WRITE, FREQUENCY=1

*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*STATIC

*DLOAD

ELOAD, P3,100

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO
SP, MISES

*NODE PRINT, FREQUENCY=0

*END STEP

*k 3 sfe > ol 3 o 2k ol ok o sk of s ok s ok sfe sk ofe sfe s o s ok sfe skeosie sk ok s sk ke sk sk sk sk

**The input file 2.2d also can be used for linear analyses of strip foundation layered
**cohesive soil with different elastic modulus,cohesion,and applied pressure.
skttt fsots Rtk sk Rk R sk sk Rk ek sk sk sk ok

2.2¢ Input File for Layered Cohesive Soils (H/B=0.25)

*HEADING
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sk sfe st sk s sk sie sie sk she s sk st s sfe sfe ok sk sk sk st sk stesfesieskeske s sk skoskeoskoieieskeskeok

**The first elastic analysis for strip foundation on layered cohesive soil
**Element type: CPE4R; Cohesion: cuj/cuy=2; cu;=20kPa; cu;=10kPa.
**Friction angle=0°, Self-weight y;= y,=0

**Flastic modulus: E;=40MPa, E;=20MPa; Possions’ ratio=0.499.
**Area=40m*20m

sf¢ o st she sfe sk sk sfe s sfe sk sk s sfe e s sl sfe sfe sl sl sfe e s sfe e s sesie sk sl seosfesie sk

** NODES DEFINING

ook stk sk ok ook R R R RSk R Sk R s R s Rk ok R o
****All dimension in meter and stress is kPa
*NODE, NSET=NA1

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0

1041,40,0

4701,0,19

4711,5,19

4721,12.5,19

4731,22.5,19

4741,40,19

5001,0,20

5011,5,20
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5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NMID
4701,4711,1
4711,4721,1
4721,4731,1
4731,4741,1

*NGEN, NSET=NTOP
5001,5011,1
5011,5021,1
5021,5031,1
5031,5041,1

*NFILL, BIAS=1.00, NSET=NSOIL
NBOT, NMID,37,100
*NFILL, BIAS=1.00, NSET=NSOIL
NMID, NTOP,3,100

*NSET, NSET=NSIDE, GENERATE
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1001,4701,100

4701,5001,100

1041,4741,100

4741,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

sk o o o sk sk sk ok ok st o s sfe s sk ok sfe s sfe s sl sfe st s s sk sk sfe s st sk sk et

** SOIL ELEMENT DEFINING

stesfesfese ek sl sk stttk stk st ok sk R R ok o ok
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,37,100,100

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL1
4701,4701,4702,4802,4801

*ELGEN, ELSET=ELSOIL1
4701,40,1,1,3,100,100

*ELSET, ELSET=ELST, GENERATE
4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL

*MATERIAL, NAME=MSOIL
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*ELASTIC

20.0E3,0.499

*SOLID SECTION, ELSET=ELSOIL1, MATERIAL=MSOIL1
*MATERIAL, NAME=MSOIL1

*ELASTIC

40.0E3,0.499

*ELSET, ELSET=ELOAD, GENERATE
4901,4904,1

st ket sk sk st R s kR e ks Rl e R sk R R s R sk R ok
*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*STATIC

*DLOAD

ELOAD, P3,100

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO

SP, MISES
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*NODE PRINT, FREQUENCY=0

*END STEP

3§ ofe s sfe e sfe sfe e s sfe e sfe sfe sk s sfe sk s she ol sfe s e sk sk ote she s ke sfe sk sl shesfe e shesie e sk

**The input file 2.2e also can be used for linear analyses of strip foundation layered
**cohesive soil with different elastic modulus, cohesion,and applied pressure.

sfoksoR sk R sk ok sk ok ok sk sk R sk Rk R Rk sk ok sk R kR R ok

2.3 Input Files for Cohesive-Frictional Soils

2.3a Input File for Cohesive-Frictional Soils (structure submitted to applied load)
*HEADING

s o 3k sk sfe sk sfe s st sk ok sk sk sfe sk si sk skeosfe sk skosie st soste sk sk sk sk skok skoskosk sk koo

**The first elastic analysis for strip foundation on cohesive-frictional soil
**Element type: CPE4R;

**Flastic modulus=20MPa; Possions’ ratio=0.3

**Area=40m*20m

sk st sfe s ok ok o ofe ok ok sfeofe e e sk sfe s sfe sk sfesfe st she ok sk sfe s s stk sk sk okok

** NODES DEFINING

ke 2k ok o ok ok ok s sk s sesk sk sk ok sk sk ke sk s sfe sk sk ofe o ok ke sk sk sk sk skook ok skskskok

kkxxxAll dimension in meter and stress is kPa
*NODE, NSET=NAl

1001,0,0

1011,5,0

1021,12.5,0

1031,22.5,0
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1041,40,0

5001,0,20

5011,5,20

5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NTOP
5001,5011,1
5011,5021,1
5021,5031,1
5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
NBOT, NTOP,40,100
*NSET, NSET=NSIDE, GENERATE
1001,5001,100
1041,5041,100
*NSET, NSET=F1

5001,
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*NSET, NSET=F2, GENERATE
5002,5005

sk 2k 3o sfe sfe e sk e ok s sk sk sk she sk sk skt she she she sk sk skt sfe sk st sfe skt sfe sk sk skokok

** SOIL ELEMENT DEFINING
Stk o

*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL

1001,40,1,1,40,100,100

*ELSET, ELSET=ELST, GENERATE

4901,4940

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

20.0E3, 0.3

S b o
*RESTART, WRITE, FREQUENCY=1

*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1
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F2,1

*STEP

*STATIC

*dLOAD

ELOAD, P3,100

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO

SP, MISES

*NODE PRINT, FREQUENCY=0

*END STEP

sfesfe st se e s s e o o ok sfe sk sfe s s sk s s sfe s sesfe s sl sfe st sk sfe sk sk sk sfe sk e skeosk o

**The input file 2.3 also can be used for linear analyses of bearing capacity of strip
**foundation on cohesive-frictional soil with different cohesion and friction angle

e e sk sk s e e sfe e sfe s s e e s s s e sfe s e se e sfe s sk e e sfesfesfe st sk sk e sfe

2.3b Input File for Cohesive-Frictional Soils (structure submitted to self-weight)
*HEADING

e st 3¢ sfe o sfe sk o sfe sl s sk sfe e 3o sfe sfe >fe sfe s sfe sfe sfe e sfe sfe o sfe s sfe sfe e sfe sfesfe sfesie s sk

**The first elastic analysis for strip foundation on cohesive-frictional soil
**FElement type: CPE4R;

**Flastic modulus=20MPa; Possions’ ratio=0.3

**Area=40m*20m

3k 3 sk sk ke sie sfe sk sfe sk sheske sk she sk sk sfe s sk sfe sk sfe sk sk sk sk s sk ofeske sk sk sk skeok ok

** NODES DEFINING

sk sfe she sfe sie sk sk sfe she she she she sk ske sfe sfe sfe sfe ske sk sfe ske sk sk sk sk siesiesfe sl sk skoskese sk sk sk sk
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wHFER*ER*AIl dimension in meter and stress is kPa
*NODE, NSET=NA1
1001,0,0

1011,5,0

1021,12.5,0
1031,22.5,0

1041,40,0

5001,0,20

5011,5,20
5021,12.5,20
5031,22.5,20
5041,40,20

*NGEN, NSET=NBOT
1001,1011,1
1011,1021,1
1021,1031,1
1031,1041,1

*NGEN, NSET=NTOP
5001,5011,1
5011,5021,1
5021,5031,1
5031,5041,1

*NFILL, BIAS=1.025, NSET=NSOIL
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NBOT, NTOP,40,100

*NSET, NSET=NSIDE, GENERATE
1001,5001,100

1041,5041,100

*NSET, NSET=F1

5001,

*NSET, NSET=F2, GENERATE
5002,5005

sk sfe sl st sk sk sk ok e sk sk sk sk ofe sk sfe sk sk she she sk ofe ofe skeske sk skt sfe sk sk skskeskesk

** SOIL ELEMENT DEFINING

ststeskke ol sk skt sofek ok ook gk stk okt ok kR sk gk ok
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL
1001,1001,1002,1102,1101

*ELGEN, ELSET=ELSOIL
1001,40,1,1,40,100,100

*SOLID SECTION, ELSET=ELSOIL, MATERIAL=MSOIL
*MATERIAL, NAME=MSOIL

*ELASTIC

100.0E3, 0.3

*ELSET, ELSET=ELST, GENERATE
4901,4940

*ELSET, ELSET=ELLOAD, GENERATE

4901,4904,1
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sk st s s s s e s ske she she sfe e e sie stk sl sk skeosleoste sk ke skeoteskosiosk skeoskeskeosk sk sk

*RESTART, WRITE, FREQUENCY=1
*EQUATION

2

F2,2,1.0,5001,2,-1

*BOUNDARY

NBOT, ENCASTRE

NSIDE, 1,1

F2,1

*STEP

*STATIC

*DLOAD

ELSOIL,BY,-9

*EL PRINT, FREQUENCY=1, SUMMARY=NO, TOTAL=NO
SP

*NODE PRINT, FREQUENCY=0

*END STEP

Matlab Modulus Changing and Stress Listing Macros

1 Script for Extracting Results from ABAQUS *.dat Files

Function ETS (f1, £2)
% Extracting stresses of each element from ABAQUS/Standard result file *.dat.

% f1 is the ABAQUS/Standard result file, the data extracted will be put into file f2.
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fid=fopen(f1,'rt"); %Input the results obtained from ABAQUS
m=1;

ce=load(f2); %Creat a file to input the last results in
ml=1;

nl=0;

k=cell(1601,1);

while m<=1600 % Extract stresses of each element from ABAQUS result file
frewind(fid)

while feof(fid)==

line=fgets(fid);

if m1<=1600

str=num2str(ce(m1,1));

else

fidl=fopen('2a.inp','w")

for m1=1:1600

fprintf(fidl,'%s" k{(m1+1),:});

end

fprintf(fidl,'%s",k{:,: });

fclose(fid);

fclose(fidl);

return

end

matches=findstr(line,str);
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nm=9-matches;
num=nm*nm’;

if num >0

nm(1,1);

if nm(1,1)>0
ml=ml+I;

m=m+1;
fid2=fopen('3.inp’,'w");
fprintf(fid2, %s',line);
fclose(fid2);
cel=load('3.inp','W');
strl=num2str(cel(1,1));
num1=strcmp(str,strl);
if num1>0
fprintf(1,'%d:%s',num,line);
k(m1,1)={line};

end

end

end

end

end
fid1=fopen('2a.inp’,'w’)

for m1=1:1600
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fprintf(fidl,'%s" k{(m1+1),:});

end

fclose(fid);

fclose(fidl);

2 Scripts for Moduli Modified

2.1a Moduli Modified for Uniform Cohesive Soils

Function read(f2,,e)

YoModifying the modulus of each element. From the file f2, stresses of each element are
Yoobtained, then according to theirs stresses modify the modulus of each element. New
Y%omodulus of elements will be written into file y.inp by calling another Matlab script
Jow.m. c is the cohesion of soil, e is the old Young’s modulus of soil.

hg=load(f2); %Input the results obtained from ABAQUS

al=hg(:,1);

bl=-hg(:,3);

b2=-hg(:,4);

b3=-hg(:,5);

for k=1:1600 %Modify the elastic modulus according to stresses
a2(k,1)=[(b1(k,1)-b2(k,1))*2+(b2(k,1)-b3(k,1))*2+(b3(k,1)-b1(k,1))*2]*0.5/2"0.5;
end

a=cat(2,al,a2);

sy=min(a2);

[m,n]=size(a);

i=1;
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for i=1:1600

CE(1,n)=sy*e/a(i,n);

end

ce=CEC(:,2);

CEl=cat(2,al,ce);

write(CE1);

2.1b Creating the Second Elastic Analysis Files for Uniform Cohesive Soils

Function write(CE1)

%QOutput the new modulus of each element to file y.inp, which will be used for the second

%elastic analysis

Str1a='*********************************'-
’

str1b="**SOIL ELEMENT DEFINING,
strlca"riksikk skt ok ko R R AR
[m,n]=size(CEl);

ml=1;

nl=1;

fid=fopen('y.inp','w');

fprintf(fid,'%s\n',strla);

fprintf(fid,'%s\n’,strlb);

fprintf(fid,'%s\n',strlc);

while ml<=m;

str2=strcat("**ELEMENT, TYPE=CPE4R, ELSET=ELSOIL', num2str(CE1(m1,1)));

nd=CEl(ml,1);
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nd1=CE1(ml,1);
nd2=CE1(m1,1)+1;
nd3=CE1(m1,1)+101;
nd4=CE1(m1,1)+100;

str3=strcat(num2str(nd),",,num2str(nd1),',’,num2str(nd2),",,num2str(nd3),’, ,num2str(nd4)
);

str4=strcat("*SOLID

SECTION,ELSET=ELSOIL' num2str(CE1(m1,1)),",,;  MATERIAL=MSOIL',num2str(CE
1(m1,1)));

strS=strcat("**MATERIAL NAME=MSOIL' ,num2str(CE1(m1,1)));

str6="*ELASTIC',

v=0.499; % Poisson's ratio

str7=strcat(num2str(CE1(m1,2)),",' , num2str(v));

ml=ml+I;

fprintf(fid, %s\n’,str2);

fprintf(fid, %s\n',str3);

fprintf(fid, %s\n',str4);

fprintf(fid,'%s\n’,str5);

fprintf(fid, %s\n',str6);

fprintf(fid,'%s\n’,str7);

end

str8=C*ELSET,ELSET=MLST, GENERATE);

str9=('1001,4940");
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str10=(*ELSET,ELSET=ELOAD, GENERATE ");

str11=('4901,4904,1");

fprintf(fid,'%s\n’,str8);

fprintf(fid, %s\n’,str9);

tprintf(fid, %s\n',str10);

fprintf(fid,' %s\n’,str11);

fclose(fid);

2.2a Moduli Modified for Layered Cohesive Soils

Function read1(f2,el,e2)

YoModifying the modulus of each element. From the file f2, stresses of each element are
Yoobtained, then according to theirs stresses modify the modulus of each element. New
Yomodulus of elements will be written into file y.inp by calling another Matlab script
Y%ow.m. c is the cohesion of soil, e; is the old Young’s modulus of lower soil, e;. is the old
%Young’s modulus of upper soil

hg=load(f2);

al=hg(:,1);

a2=hg(:,7);

a=cat(2,al,a2);

sy=min(a2)

[m,n]=size(a);

i=1;

for i=1:1600

if i<=640
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CE(i,n)=sy*el/a(i,n);

else

CE(i,n)=sy*e2/a(i,n);

end

end

ce=CEC(:,2);

CEl=cat(2,al ce);

write(CE1);

2.2b Creating the Second Elastic Analysis Files for Layered Cohesive Soils
Function write(CE1)

%Output the new modulus of each element to file y.inp, which will be used for the second

Yelastic analysis

Strla:-'*********************************'-
b

str1b="**SOIL ELEMENT DEFINING';
Strlcz'*********************************';
[m,n]=size(CE1);

ml=1;

nl=1;

fid=fopen('y.inp’,'w");

fprintf(fid,'%s\n',strla);

fprintf(fid, %s\n',strlb);

fprintf(fid, %s\n’,strlc);

while m1<=m;
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str2=strcat(*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL' num2str(CE1(ml,1)));
nd=CEl(ml,1);

nd1=CEl(ml,1);

nd2=CE1(m1,1)+1;

nd3=CE1(m1,1)+101;

nd4=CE1(m1,1)+100;

L

str3=strcat(num2str(nd),,’,num2str(ndl),’,’,num2str(nd2),,' ,num2str(nd3),",', num2str(nd4)
);

str4=strcat("*SOLID

SECTION,ELSET=ELSOIL',num2str(CE1(m1,1)),",, MATERIAL=MSOIL',num2str(CE
1(m1,1)));

strd=strcat("**MATERIAL,NAME=MSOIL' num2str(CE1(m1,1)));

str6="*ELASTIC";

v=0.499; % Poisson's ratio

str7=strcat(num2str(CE1(m1,2)),",",;num2str(v));

ml=ml+1;

fprintf(fid, %s\n',str2);

fprintf(fid, %s\n’,str3);

fprintf(fid, %s\n’,str4);

fprintf(fid, %s\n',str5);

fprintf(fid, %s\n',str6);

fprintf(fid,'%s\n’,str7);

end
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str8=("**ELSET,ELSET=MLST, GENERATE);

str9=('1001,4940";

str10=("*ELSET,ELSET=ELOAD, GENERATE);

str11=('4901,4904,1";

fprintf(fid,'%s\n',str8);

fprintf(fid,'%s\n’,str9);

fprintf(fid,'%s\n’,str10);

fprintf(fid,'%s\n',str11);

fclose(fid);

2.3a Moduli Modified for Cohesive-Frictional Soils

Function read1(f1,f2,c,phi,e)

90 This function is used to modify the modulus of each element for trial one, trial two.
Y0The result of stresses of each element came from the first analysis, friction angle of soil
%and old elastic modulus are inputted, then the new elastic modulus for each element is
%solved for the second elastic analysis. The result will be written into file y.inp,which
%will be used as part of the second analysis.c is the cohesion of soil, phi is the frictional
Yoangle of soil, e is the old Young’s modulus of soil.

ld=load(f1); % stresses of each element caused by applied load

sw=load(f2); % stresses of each element caused by self-weight

for k=1:1600

ql(k,1)=-0.5*(1d(k,3)-1d(k,5));

pl(k,1)=-0.5*(1d(k,3)+1d(k,5));

qw(k,1)=-0.5*(sw(k,3)-sw(k,5));
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pw(k,1)=-0.5*(sw(k,3)+sw(k,5));
b(k,1)=(ql(k,1)+qw(k,1))/(pl(k,1)+pw(k,1)+c/tan(phi*3.14/180));

if b(k,1)>1

b(k,1)=0.99;

end

cd(k,1)=tan(asin(b(k,1)))*c/tan(phi*3.14/180)

K(k,1)=c/cd(k,1)

end

% Modify elastic modulus of each element

for i=1:1600

CE(i,1)=e*K(,1);

end

ad=1d(:,1);

CEl=cat(2,a4,CE);

write1(CE1); % Call the function writel to output the new modulus

2.3b Moduli Modified for Cohesive-Frictional Soils (for trial three, trial four)
Function read1(f1,f2,c,phi,e,v)

% This function is used to modify the modulus of each element for trial three, trial four.
%The result of stresses of each element came from the first analysis, friction angle of soil

%and old elastic modulus are inputted, then the new elastic modulus for each element is

%solved for the second elastic analysis. The result will be written into file y.inp,which
%will be used as part of the second analysis.c is the cohesion of soil, phi is the frictional

%angle of soil, e is the old Young’s modulus of soil. v is the old Poissons’ ratio of soil.
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ld=load(f1); % stresses of each element caused by applied load
sw=load(f2); % stresses of each element caused by applied load
for k=1:1600

ql(k,1)=-0.5*(1d(k,3)-1d(k,5));

pl(k,1)=-0.5*(1d(k,3)+1d(k,5));
qw(k,1)=-0.5*(sw(k,3)-sw(k,5));
pw(k,1)=-0.5*(sw(k,3)+sw(k,5));
b(k,1)=(ql(k,1)+qw(k,1))/(pl(k,1)+pw(k,1)+c/tan(phi*3.14/180));
if b(k,1)>1

b(k,1)=0.99;

end

cd(k,1)=tan(asin(b(k,1)))*c/tan(phi*3.14/180);
F(k,1)=c/cd(k,1);

end

for i=1:1600

VE(G,1)=3/2+F(31,1)*(1-2*v)/(1+v))-1;

if VE(1,1)>=0.5;

VE(,1)=0.4999;

end

if VE(i,1)<=0.1;

VE(,1)=0.1;

end

CE@,1)=(1+VE(,1))*e*F(1,1)/(1+v);
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end

% Modify elastic modulus and poison’s ratio of each element

ad=1d(:,1);

CEl=cat(2,a4,CE,VE);

write1(CE1l);

% call the function writel to output the new modulus

2.3c¢ Creating the Second Elastic Analysis Files for Cohesive-Frictional Soils (for
trial one, trial two)

Function writel (CE1)

% Output the data to file y.inp, which will be taken as part of the second analysis.using

Yofor trial one and two

Strla:'*********************************';

str1b="**SOIL ELEMENT DEFINING';
Strlo="kk skt stk ki pisk ko ioh bk k!,
[m,n]=size(CEl);

ml=1;

nl=1;

fid=fopen('y.inp','w");

fprintf(fid, %s\n',strla);

fprintf(fid,'%s\n',strlb);

fprintf(fid,'%s\n',strlc);

while m1<=m;

str2=strcat("**\ELEMENT, TYPE=CPE4R, ELSET=ELSOIL',;num2str(CE1(ml,1)));
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nd=CE1(ml,1);
nd1=CEl(ml,1);
nd2=CE1(m1,1)+1;
nd3=CE1(ml,1)+101;
nd4=CE1(m1,1)+100;

str3=strcat(num2str(nd),’,’,num2str(nd1),,’,num2str(nd2),’,’,num2str(nd3),’,’,num2str(nd4)
);

str4=strcat("*SOLID

SECTION,ELSET=ELSOIL' ,num2str(CE1(m1,1)),",, MATERIAL=MSOIL',num2str(CE
1(m1,1)));

str5=strcat("**"MATERIAL, NAME=MSOIL',num2str(CE1(m1,1)));

stro="*ELASTIC";

v=0.3;% Poisson's ratio

str7=strcat(num2str(CE1(m1,2)),", ,num2str(v));

ml=ml+l;

fprintf(fid,'%s\n’,str2);

fprintf(fid, %s\n',str3);

fprintf(fid,'%s\n',str4);

fprintf(fid,'%s\n',str5);

fprintf(fid,' %s\n’,str6);

fprintf(fid,' %s\n',str7);

end

str8=("*ELSET, ELSET=ELSOIL, GENERATE);
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str9=('1001,4940";

str10=("*ELSET, ELSET=ELOAD, GENERATE');

str11=('4901,4904,1");

fprintf(fid,'%s\n',str8);

fprintf(fid,'%s\n’,str9);

fprintf(fid,' %s\n',str10);

fprintf(fid, %s\n',str11);

fclose(fid);

2.3d Creating the Second Elastic Analysis Files for Cohesive-Frictional Soils (for
trial three, trial four)

Function writel (CE1)

% Output the data to file y.inp, which will be taken as part of the second analysis.using
%for trial three and four

strla='*********************************'-
k4

strlb="**SOIL ELEMENT DEFINING',

Strl =" otk b kR AR
[m,n]=size(CE1);

ml=l;

nl=1;

fid=fopen('y.inp','w");

fprintf(fid,' %s\n',strla);

fprintf(fid,'%s\n',str1b);

fprintf(fid,' %s\n’,stric);
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while ml<=m;

str2=strcat(*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL',num2str(CE1(m1,1)));
nd=CE1(ml,1);

nd1=CE1(ml,1);

nd2=CEl(m]l,1)+1;

nd3=CE1(m1,1)+101;

nd4=CE1(m1,1)+100;
str3=strcat(num2str(nd),’, ,num2str(ndl),’," num2str(nd2),",,num2str(nd3),’," ,num2str(nd4)
);

str4=strcat("*SOLID
SECTION,ELSET=ELSOIL',num2str(CE1(m1,1)),",,MATERIAL=MSOIL',num2str(CE
1(m1,1)));

str5=strcat("*MATERIJAL, NAME=MSOIL' num2str(CE1(ml,1)));
str6="*ELASTIC",

str7=strcat(num2str(CE1(ml,2)),", ,num2str(CE1(m1,3)));

ml=ml+1;

fprintf(fid,'%s\n’,str2);

fprintf(fid, %s\n',str3);

fprintf(fid, %s\n',str4);

fprintf(fid, %s\n’,str5);

fprintf(fid,'%s\n’',str6);

fprintf(fid, %s\n’,str7);

end
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str8=("*ELSET,ELSET=ELSOIL, GENERATE";
str9=('1001,4940";
str10=("**ELSET,ELSET=ELOAD, GENERATE);
str11=('4901,4904,1";

fprintf(fid,'%s\n',str8);

fprintf(fid,'%s\n’,str9);

fprintf(fid, %s\n',str10);

fprintf(fid, %s\n’,str11);

fclose(fid);

3 Scripts for Finding R-node Elements and Plotting
3.1 Finding R-node Elements and Plotting for Uniform Cohesive Soils
Function [b]=try3(filel,file2)

[d1]=tryl(filel);

[d2]=try2(file2);

b=zeros(40,2);

c=zeros(40,1);

for i=1:40;

al=dl1(:,:1);

a2=d2(:,:,1);

a3=al(:,2)-a2(:,2);

a3=abs(a3);

ad4=a2(:,2);

for h=1:40
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a3(h)/a4(h);

a5(h,1)=ans;

end

[m,n]=min(a5);
b(i,1)=al(n,1);

if m <=1;

b(i,3)=m*100;
b(i,2)=[al(n,2)+a2(n,2)]/2;
c(i)=n;

end

end

subplot(1,2,1);

plot(c,'0");

axis([1 40 1 40]);

grid on;

xlabel('Segment number');
ylabEL('Row number');
TITLE('R-nodes Locations');
subplot(1,2,2);
plot(b(:,2));

axis([1 40 0 100]);

grid on;

xlabel('Segment number');
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ylabEL('R-node von Mises stresses(kPa)');
TITLE('R-node von Mises Stresses');
fclose('all’)

[m,n]=size(c);

ml=1;

nl=1;

fid=fopen('E.inp','w");

while ml<=m;
str7=strcat(num2str(c(ml,1)));
fprintf(fid, %s\n’,str7);

ml=ml+1;

end

fclose(fid);

Function [d1]=tryl(filel)

al=load(filel);

bl=al(:1);

cl=-al(:,3);

c2=-al(:,4);

c3=-al(:,5);

for k=1:1600
b2(k,1)=[(c1(k,1)-c2(k,1))*2+(c2(k,1)-c3(k,1))"2+(c3(k,1)-c1(k,1))"2]"0.5/2"0.5;

end
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b3=cat(2,bl,b2);
m=40;

n=40;

ml=1;

m2=1;
d=zeros(m,2,n);

nl=1;

n2=1;

for i=1:n;

for i=1:m;
d(m2,1,n2)=b3(ml,1);
d(m2,2,n2)=b3(ml,2);
ml=m1+40;
m2=m2+1;

end

n2=n2+1;

nl=nl+1;

ml=nl;

m2=1;

end

di=d;

Function [d2]=try2(file2)
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al=load(file2);
bl=al(:,1);
cl=-al(:,3);
c2=-al(:,4);
c3=-al(.,5);

for k=1:1600

b2(k, 1)=[(c1(k,1)-c2(k, 1))*2+(c2(k,1)-c3(k,1))*2+(c3(k,1)-c1(k,1))"2]"0.5/2"0.5;
end

b3=cat(2,b1,b2);
m=40;

n=40;

ml=1;

m2=1;
d=zeros(m,2,n);

nl=1;

n2=1;

fori=1:n;

fori=1:m;
d(m2,1,n2)=b3(m1,1);
d(m2,2,n2)=b3(ml,2);
ml=m1+40;
m2=m2+1;

end
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n2=n2+1;
nl=nl+1;

ml=nl;

m2=1;

end

d2=d;

3.2 Finding R-node Elements and Plotting for Layered Cohesive Soils
Function [b]=try3(filel,file2)
[d1]=tryl(filel);
[d2]=try2(file2);
b=zeros(40,2);
c=zeros(40,1);
mm=zeros(40,40);
for i=1:40;
al=dl1(,:,i);
a2=d2(:,:,i);
a3=al(:,2)-a2(:,2);
ad4=al(:,2),

for h=1:40
a3(h)/a4(h);
aS(h,1)=ans;

end

for h=1:39
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if and(abs(a5(h,1))<=0.1,abs(a5(h+1,1))<=0.1)
if
and(or(and(a5(h,1)>=0,a5(h+1,1)<0),and(a5(h,1)<0,a5(h+1,1)>=0)),abs((a5(h, 1 }+a5(h+1,
1))<=0.1))
mm(h,i)=al(h,2)-(al(h,2)-al(h+1,2))*a5(h,1)/(a5(h,1)-a5(h+1,1));
else

mm(h,i)=0;

end

end

end

[m1,n1]=min(abs(a5));

[m,n]=max(mm(:,i));

if m >=al(nl,2)

b(i,1)=al(n,1);

b(i,3)=m;

c(i)=n;

else

b(i,1)=al(n1,1);

b(i,3)=al(n1,2);

c()=nl;

end

b(i,4)=m1*1000;

b(i,5)=m;
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b(i,2)=[al(n,2)+a2(n,2)]/2;
end

subplot(1,2,1);

plot(c,'0");

axis([1 40 1 40]);

grid on;

xlabel('Segment number');
ylabEL('Row number’);
TITLE('R-node Locations');
subplot(1,2,2);

plot(b(:,3));

axis([1 40 0 100]);

grid on;

xlabel('Segment number’);
ylabEL('R-node von Mises Stresses(kPa)’);
TITLE('R-node von Mises Stresses');
fclose('all)

[m,n]=size(c);

ml=1;

nl=1;
fid=fopen('E.inp','W");
while m1<=m;

str7=strcat(num2str(c(ml,1)));
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fprintf(fid,' %s\n’,str7);
ml=ml+1;
end

fclose(fid);

Function [d1] = tryl(filel)

al=load(filel);
bl=al(,1);
b2=al(:,7);
b3=cat(2,b1,b2);
m=40;

n=40;

ml=1;

m2=1;
d=zeros(m,2,n);

nl=];

n2=1;

for i=1:n;

for i=1:m;
d(m2,1,n2)=b3(ml,1);
d(m2,2,n2)=b3(m1,2);
ml=m1+40;

m2=m2+1;
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end
n2=n2+1;
nl=nl+1;
ml=nl;
m2=1;
end

dl=d;

Function [d2] = try2(file2)
al=load(file2);
bl=al(,1);
b2=al(:,7);
b3=cat(2,bl,b2);
m=40;

n=40;

ml=1;

m2=1;
d=zeros(m,2,n);
nl=1;

n2=1;

for i=1:n;

for i=1:m;

d(m2,1,n2)=b3(ml,1);

233



d(m2,2,n2)=b3(m1,2);
ml=m1+40;
m2=m2+1;

end

n2=n2+1;

nl=nl+1;

ml=nl;

m2=1;

end

d2=d,

3.3 Finding R-node Elements and Plotting for Cohesive-frictional Soils
3.3a For Trial One and Two

Function [b]=try3(filel file2,file3,c,phi)
[d1]=tryl(filel,file3,c,phi);
[d2]=try2(file2,file3,c,phi);
b=zeros(40,2);

c=zeros(40,1);
mm=ones(40,40)*10001;

for i=1:40;

al=dl(:,.1);

a2=d2(:,:,1);

a3=al(:,2)-a2(:,2);
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ad=al(:,2);

for h=1:40

a3(h)/a4(h);

aS(h,1)=ans;

end

for h=1:39

if and(abs(a5(h,1))<=0.1,abs(a5(h+1,1))<=0.1)
if
and(or(and(a5(h,1)>=0,a5(h+1,1)<0),and(a5(h,1)<0,a5(h+1,1)>=0)),abs((a5(h,1)+aS(h+1,
1))<=0.1))
mm(h,i)=al(h,2)-(al(h,2)-al(h+1,2))*aS(h,1)/(a5(h,1)-a5(h+1,1));
else

mm(h,i)=10001;

end

end

end

[m,n]=min(mm(:,1));

if m > 10000

m=0;

else

m=m;

end

b(i,1)=al(n,1);
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if m >= 10000

b(i,3)=0;

c(i)=n;

else

b(i,3)=al(n,2);

c(i)=n;

end

end

subplot(1,2,1);

plot(c,'0");

axis([1 40 1 40]);

grid on;

xlabel('Segment number’);
ylabEL('Row number');
TITLE('R-node Locations');
subplot(1,2,2);

plot(b(:,3));

axis([1 40 0 30]);

grid on;

xlabel('Segment number’);
ylabEL('R-node Moblized Cohension Cd(kPa)');
TITLE('R-node Moblized Cohension Cd');fclose('all’)

[m,n]=size(c);
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ml=I;

nl=1;

fid=fopen('E.inp','w");

while m1<=m;
str7=strcat(num2str(c(ml,1)));
fprintf(fid,' %s\n',str7);
ml=ml+I;

end

fclose(fid);

Function [d1] = tryl(filel,file3,c,phi)
ld=load(file1);

sw=load(file3);

bl=1d(:,1);

for k=1:1600
ql(k,1)=-0.5*(1d(k,3)-1d(k,5));
pl(k,1)=-0.5*(1d(k,3)+ld(k,5));
qw(k,1)=-0.5*(sw(k,3)-sw(k,5));
pw(k,1)=-0.5*%(sw(k,3)+sw(k,5));
b(k,1)=(ql(k,1)+qw(k,1))/(pl(k,1)+pw(k,1)+ c/tan(phi*3.14/180));
if b(k,1)>1

b(k,1)=0.99;

k;
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b(k,1);

pause

end
cd(k,1)=tan(asin(b(k,1)))*c/tan(phi*3.14/180);
end

b2=cd;
b3=cat(2,b1,b2);
m=40;

n=40;

ml=1;

m2=1;
d=zeros(m,2,n);

nl=Il;

n2=1;

fori=1:n;

for i=1:m;
d(m2,1,n2)=b3(ml,1);
d(m2,2,n2)=b3(m1,2);
ml=m1+40;
m2=m2+1;

end

n2=n2+1;

nl=nl+1;
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ml=nl;
m2=1;
end

dl=d;

Function [d2] = try2(file2,file3,c,phi)
1d=load(file2);

sw=load(file3);

bl=Id(:,1);

for k=1:1600

ql(k,1)=-0.5*(1d(k,3)-1d(k,5));
pl(k,1)=-0.5*(1d(k,3)+1d(k,5));
gw(k,1)=-0.5*(sw(k,3)-sw(k,5));
pw(k,1)=-0.5*(sw(k,3)+sw(k,5));
b(k,1)=(ql(k,)+qw(k,1))/(pl(k,1)+pw(k,1)+ c/tan(phi*3.14/180));
if b(k,1)>1

b(k,1)=0.99;

k;

b(k,1);

end
cd(k,1)=tan(asin(b(k,1)))*c/tan(phi*3.14/180);
end

b2=cd;
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b3=cat(2,b1,b2);
m=40;

n=40;

ml=1;

m2=1;
d=zeros(m,2,n);

nl=1;

n2=1;

for i=1:n;

for i=1:m;
d(m2,1,n2)=b3(m1,1);
d(m2,2,n2)=b3(ml,2);
ml=m1+40;
m2=m2+1;

end

n2=n2+1;

nl=nl+l;

ml=nl;

m2=1;

end

d2=d;

3.3b For Trial Three and Four
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Ffunction [b]=try3(filel,file2,file3,c,phi)
[d1]=tryl(filel,file3,c,phi);
[d2]=try2(file2,file3,c,phi);

b=zeros(40,2);

c=zeros(40,1);

mm=ones(40,40)*0;

for i=1:40;

al=dl1(,:,i);

a2=d2(:,:,1);

a3=al(:,2)-a2(:,2);

ad=al(:,2);

for h=1:40

a3(h)/ad(h);

aS(h,1)=ans;

end

for h=1:39

if and(abs(a5(h,1))<=0.1,abs(a5(h+1,1))<=0.1)
if
and(or(and(aS(h,1)>=0,a5(h+1,1)<0),and(a5(h,1)<0,a5(h+1,1)>=0)),abs((a5(h,1)+a5Ch+1,
1))<=0.1))
mmi(h,i)=al(h,2)-(al(h,2)-al(h+1,2))*a5(h,1)/(a5(h,1)-a5(h+1,1));
else

mm(h,i)=0;
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end

end

end

mm;
[m1,n1]=min(abs(a5));
[m,n]=min(abs(mm(:,1)));
ifm==0
b(i,1)=al(nl,1);
b(i,3)=al(nl1,2)*1000;
c(i)=nl;

else

b(i,1)=al(n,1);
b(i,3)=m*1000;

c(i)=n;

end

end

subplot(1,2,1);
plot(c,'0);

axis([1 40 1 40]);

grid on;
xlabel('Segment number’);
ylabEL('Row number');

TITLE('R-node Locations');
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subplot(1,2,2);

plot(b(:,3));

axis([1 40 0 2]);

grid on;

xlabel('Segment number');
ylabEL('R-node Safety Factor K');
TITLE('R-node Safety Factor K');
fclose('all)

[m,n]=size(c);

ml=1;

nl=l;

fid=fopen('E.inp','w");

while ml<=m;
str7=strcat(num2str(c(ml,1)));
fprintf(fid, %s\n',str7);
ml=ml+1;

end

fclose(fid);

Function [d1] = tryl(filel file3,c,phi)
1d=load(filel);
sw=load(file3);

b1=1d(;,1);
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for k=1:1600

ql(k,1)=-0.5*(1d(k,3)-1d(k,5));
pl(k,1)=-0.5*(1d(k,3)+1d(k,5));
qw(k,1)=-0.5*(sw(k,3)-sw(k,5));
pwi(k,1)=-0.5*(sw(k,3)+sw(k,5));

b(k,1)=(ql(k, 1)+qw(k,1))/(pl(k,1)+pw(k,1)+ c/tan(phi*3.14/180));
if b(k,1)>1

b(k,1)=0.99;

k;

b(k,1);

pause

end

tan(asin(b(k,1)));

cl(k,1)=c/tan(phi*3.14/180);
c2(k,1)=sin(phi*3.14/180)*(pw(k,1)+cl(k,1))-qw(k,1);
K(k,1)=c2(k,1)/(ql(k,1)-sin(phi*3.14/180)*pl(k,1));
end

b2=K;

b3=cat(2,b1,b2);

m=40;

n=40;

mi=1;

m2=1;
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d=zeros(m,2,n);

nl=1;

n2=1;

fori=1:n;

for i=1:m;
d(m2,1,n2)=b3(ml,1);
d(m2,2,n2)=b3(m1,2);
ml=m1+40;
m2=m2+1;

end

n2=n2+1;

nl=nl+l;

ml=nl;

m2=1;

end

dl=d;

Function [d2] = try2(file2,file3,c,phi)

ld=load(file2);
sw=load(file3);
bl=1d(;,1);

for k=1:1600

ql(k,1)=-0.5*(1d(k,3)-1d(k,5));
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pl(k,1)=-0.5*(1d(k,3)+1d(k,5));
qw(k,1)=-0.5*(sw(k,3)-sw(k,5));
pwik,1)=-0.5*(sw(k,3)+sw(k,5));
b(k,1)=(ql(k,1)+qw(k,1))/(pl(k,1)+pw(k,1)+ c/tan(phi*3.14/180));
if b(k,1)>1

b(k,1)=0.99;

k;

b(k,1);

pause

end

tan(asin(b(k,1)));

cl(k,1)=c/tan(phi*3.14/180);
c2(k,1)=sin(phi*3.14/180)*(pw(k,1)+cl(k,1))-qw(k,1);
K(k,1)=c2(k,1)/(ql(k,1)-sin(phi*3.14/180)*pl(k,1));
end

b2=K,;

b3=cat(2,b1,b2);

m=40;

n=40;

ml=1;

m2=1;

d=zeros(m,2,n);

nl=1;
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n2=1;

fori=1:n;

for i=1:m;
d(m2,1,n2)=b3(ml,1);
d(m2,2,n2)=b3(m1,2);
ml=m1+40;
m2=m2+1;

end

n2=n2+1;

nl=nl+1;

ml=nl;

m2=1;

end

d2=d;
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