
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

COMPACT HARDWARE IMPLEMENTATION
OF ADVANCED ENCRYPTION STANDARD

WITH CONCURRENT ERROR DETECTION

St. John's

by

Namin Yu

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

August 2005

Newfoundland Canada

Abstract

A compact, efficient and highly reliable implementation of the Advanced Encryption

Standard (AES) is the desirable encryption core for any practical low-end embedded

application. In this thesis we design and implement a compact hardware AES system with

concurrent error detection.

We investigate various architectures for compact AES implementations in 0.18 f!m

CMOS technology. We first explore a new compact digital hardware implementation of

the AES s-boxes applying the discovery of linear redundancy in the AES s-boxes.

Although the new circuit has a small size, the speed of this implementation is also

reduced. Encryption architectures without key scheduling that employ four s-boxes and

only one s-box are implemented using the new AES s-boxes, as well as based on other

compact s-box structures. The comparison of the implementations based on different

architectures and s-box structures indicates that the implementation using four s-boxes

based on arithmetic operations in GF(24
) has the best trade-off of area and speed.

Therefore, using this s-box implementation, a complete encryption-decryption

architecture with key scheduling employing the four s-box structure is implemented. In

order to be adaptive to various practical applications, we optimize the implementation

with the fours-box structure to support five different operation modes.

In addition, high reliability and resistance to malicious attacks are achieved by

applying concurrent error detection technology. After the studies of fault models and

I

practical fault induction techniques, two concurrent error detection schemes based on

both parity code and hardware redundancy are proposed and implemented. The proposed

16-bit and 32-bit parity code based concurrent error detection schemes achieve 100%

detection for single injected faults and detection of many multiple faults with about 67%

hardware overhead to the original AES compact hardware implementation.

n

Acknowledgments

First of all, I would like to thank my supervisor Dr. Howard M. Heys for his guidance,

support and encouragement throughout my study and research. During the past two years,

he has supported me with a lot of help and patience, giving me many suggestions and

discussions about the research challenges and the chance to attend various conferences.

The financial suppmt he provided along with the School of Graduate Studies is also

highly appreciated.

I am very grateful to Dr. Cheng Li for his advice with the digital design and utilization

of the CAD tools provided by CMC, as well as teaching me courses. I would also like to

thank Dr. Ramachandran Venkatesan and Dr. Theodore S. Norvell for their instruction in

the graduate courses during my Master program.

I am also very grateful to my fellow graduate student colleagues in the Computer

Engineering Research Laboratories for their support and friendship that makes the lab a

big and warm family. Especially thanks to Reza Shahidi who helps me a lot with the

computer problems and arranges all the activities in the lab, and Padmini Vellore for her

invaluable advice and help in the school and life.

Lastly, I would like to thank my dear family and friends in China for their love, trust

and encouragement throughout my studies and life, and sincerely thank my friends in St.

John' s, Fang Zhang, Yaying Tu, Weirnin Hua, Yue Ma and Doug Hart for their care and

support that make my life so colorful and enjoyable.

ill

Contents

Abstract .. I

Acknowledgments ... III

Contents ... IV

List of Figures ... IX

List of Tables ... XI

List of Abbreviations and Symbols .. XII

1 Introduction .. !

1.1 Information Security 2

1.1.1 Symmetric-key Encryption System 3

1.1.1 .1 Block Ciphers 4

1.1.1.2 Stream Ciphers 5

1.1.2 Public-key Encryption System 6

1.2 Software Vs. Hardware Implementation ... 8

1.3 Hardware Design and Implementation Methodology 10

1.4 Motivation and Objectives 13

2 AES Algorithm Hardware Implementation .. 15

2.1 Advanced Encryption Standard (AES) 15

2.2 AES Hardware Implementations 17

2.2.1 High Speed AES Hardware Implementations .. 18

2.2.1.1 High Speed ASIC Implementations 18

IV

2.2.1.2 High Speed FPGA Implementations ... 22

2.2.2 Compact AES Hardware Implementations .. 24

2.2.2.1 Compact ASIC Implementations .. 24

2.2.2.2 Compact FPGA Implementations ... 25

2.3 AES Algorithm Hardware Design Tradeoffs .. 26

2.3.1 Architecture Tradeoff 27

2.3.2 Round Functions Tradeoff ... 29

2.3.3 Datapath Tradeoff 30

2.3.4 Device Technology Tradeoff ... 31

2.4 Conclusion 31

3 Compact Implementation of AES S-box .. 33

3.1 S-box Hardware Implementation .. 33

3.1.1 The Construction of S-box ... 33

3 .1.2 Look -up Table 34

3.1.3 Composite Filed Arithmetic ... 35

3.1.3.1 Composite Field GF (24
) ... 36

3.1.3.2 Composite Field GF (22
) ... 37

3.2 Linear Redundancy of AES S-box .. 39

3.3 New Implementation of AES S-box .. 40

3.3.1 D Matrix Block 41

3.3.2 b0_logic Block .. 41

3.4 Performance Analysis and Comparison .. 42

3 .4.1 Area Complexity .. 43

v

3.4.2 Delay 44

3.4.3 Power Consumption ... 45

3.5 Conclusion 47

4 Compact Encryption-Decryption Architecture48

4.1 Encryption Architecture Without Key-scheduling .. 48

4.1.1 Encryption Architecture using Four S-boxes48

4.1.2 Encryption Architecture Using Only OneS-box ... 50

4.1.3 Performance Analysis and Comparison ... 51

4.2 Key Expander 54

4.3 Encryption-Decryption Architecture with Key-scheduling 57

4.3.1 Exchange of Operation Orders 58

4.3.2 Encryption and Decryption Datapath Sharing 59

4.3.2.1 Sharing between S-box and InverseS-box ... 59

4.3.2.2 Sharing between Mix Column and Inverse Mix Column 60

4.3.3 Datapath and Key Expander Sharing 62

4.4 System Controller .. 62

4.5 Performance Analysis ... 65

4.6 Conclusion 66

5 Five-mode AES Encryption System .. 68

5.1 Block Cipher Modes of Operation .. 68

5 .1.1 Electronic Code book (ECB) Mode 68

5.1.2 Cipher Block Chaining (CBC) Mode ... 69

5.1.3 Cipher Feedback (CFB) Mode 70

VI

5.1.4 Output Feedback (OFB) Mode 72

5.1.5 Counter (CTR) Mode 73

5.1.6 Other Modes of Operation 74

5.2 Five-mode System Architecture 74

5.3 Five-mode System Testing and Synthesis 76

5.4 Conclusion 76

6 Design of AES Encryption System with Concurrent Fault Detection. 78

6.1 Fault Based Cryptanalysis 78

6.1.1 Fault Models 79

6.1.2 Practical Fault Induction Techniques 80

6.2 Fault Propagation in AES Encryption System 81

6.2.1 Analysis of Single Fault Propagation 81

6.2.1.1 Single Fault Propagation in Each Round Function 81

6.2.1.2 Single Fault Propagation to Final Encryption Output.. 83

6.2.2 Analysis of Multiple Fault Propagation 83

6.2.3 Fault Propagation at Key Expander 84

6.3 Concurrent Error Detection (CED) Techniques 85

6.3.1 Techniques based on Hardware or Time Redundancy 86

6.3.2 Techniques based on Error Detection Code 87

6.4 Proposed Schemes for Fault Detection in AES Encryption System 90

6.4.1 16-bit Parity Code Based CED Scheme 91

6.4.2 32-bit Parity Code Based CED Scheme 94

6.5 Hardware Performance Analysis and Comparison 98

VII

6.6 Conclusion · 99

7 Conclusions and Future Work .. 101

7.1 Summary of Research 101

7.2 Future Work 103

References ... lOS

Appendix A ... 113

Appendix B ... 118

Appendix C ... 122

vm

List of Figures

Figure 1.1 Symmetric-key Encryption System4

Figure 1.2 Block Ciphers 5

Figure 1.3 Stream Ciphers 6

Figure 1.4 Public-key Encryption 7

Figure 1.5 Public-key Authentication 8

Figure 1.6 Top-down Design and Bottom-up Implementation 11

Figure 1.7 Digital IC Design Flow 12

Figure 2.1 AES Encryption and Decryption Diagram 16

Figure 3.1 Calculation of Multiplicative Inverse 36

Figure 3.2 Structure of S-box using Composite Field GF(24
) 37

Figure 3.3 Structure of Inverter using Composite Field GF(22
) 38

Figure 3.4 NewS-box Implementation Structure40

Figure 4.1 Encryption Datapath for Four S-boxes .. 49

Figure 4.2 Encryption Datapath for OneS-box 51

Figure 4.3 AES Key Expansion 55

Figure 4.4 Encryption-Decryption Key Expander 56

Figure 4.5 Encryption-Decryption Datapath 58

Figure 4.6 X times Block Diagram 60

Figure 4.7 Implementation of Mix Column/Inverse Mix Column 61

IX

Figure 4.8 System Controller Block Diagram 63

Figure 4.9 System Controller State Diagram 64

Figure 4.10 Area-to-Latency Chart of AES Encryption-Decryption System 65

Figure 4.11 Area-to-Throughput Chart of AES Encryption-Decryption System 66

Figure 5.1 Electronic Code book Mode (ECB) 69

Figure 5.2 Cipher Block Chaining Mode (CBC) 70

Figure 5.3 Cipher Feedback Mode (CFB) 71

Figure 5.4 Output Feedback Mode (OFB) 72

Figure 5.5 Counter Mode (CTR) 73

Figure 5.6 Five-mode System Architecture 75

Figure 6.1 Error Distribution in S-box for Single Fault.. 82

Figure 6.2 Error Distribution in Mix Column/Inverse Mix Column for Single Fault 83

Figure 6.3 Single Fault Propagation in Key Expander 84

Figure 6.4 1-bit Parity Code Based CED Structure 88

Figure 6.5 16-bit Parity Code Based CED Structure 91

Figure 6.6 16-bit Parity Code Based CED for Key Expander 94

Figure 6.7 32-bit Parity Code Based CED Structure 95

Figure 6.8 32-bit Parity Code Based CED for Key Expander 97

X

List of Tables

Table 2.1 High Speed ASIC Implementations of 128-bit Key AES Algorithm 21

Table 2.2 High Speed FPGA Implementations of 128-bit Key AES Algorithm 23

Table 2.3 Compact AES FPGA Implementations 26

Table 3.1 Area Complexity of S-box Implementations43

Table 3.2 Delay of S-box Implementations 44

Table 3.3 Power Consumption of S-box Implementations 46

Table 4.1 Implementations Performance Comparison 53

Table 6.1 Hardware Overhead of Proposed CED Schemes 98

XI

List of Abbreviations and Symbols

AES

CMOS

GF

CAD

CMC

DES

IDEA

NIST

SSUTSL

WEP

ECC

VPN

VLSI

ASIC

FPGA

HDL

VHSIC

VHDL

RTL

: Advanced Encryption Standard

: Complementary Metal-Oxide-Semiconductor

: Galois Field

: Computer Aided Design

: Canadian Microelectronics Corporation

: Data Encryption Standard

: International Data Encryption Algorithm

: National Institute of Standards and Technology

: Security Sockets Layer/Transport Layer Security

:Wired Equivalent Privacy

: Elliptic Curve Cryptography

: Virtual Private Networks

: Very Large Scale Integration

: Application-Specific Integrated Circuit

: Field Programmable Gate Arrays

: Hardware Description Language

: Very High Speed Integrated Circuit

: VHSIC Hardware Description Language

: Register Transfer Level

xn

ECB

CBC

CFB

OFB

CTR

ATM

NSA

BDD

ROM

RAM

PLA

PPRM

SOP

LR

IV

CMAC

CCM

GCM

CED

CRT

PDA

MUX

: Electronic Code Book

: Cipher Block Chaining

:Cipher Feedback

: Output Feedback

:Counter

: Asynchronous Transfer Mode

: National Security Agency

: Twisted-binary Decision Diagram

:Read-Only Memory

: Random Access Memory

: Programmable Logic Array

: Positive Polarity Reed-Muller

:Sum of Products

:Linear Redundancy

: Initialization Vector

: Cipher-based Message Authentication Code

: Cipher Block Chaining-Message

: Galois Counter Mode

: Concurrent Error Detection

:Chinese Remaindering Theorem

: Personal Digital Assistant

: Multiplexer

XIII

Chapter 1

Introduction

We are living in a rapidly developing information age now. From the first modem

telecommunication invention, namely telegraphy, to current high speed communication

networks, the information age brought us an explosion in economic growth and

technological innovation. The societies all over the world have undergone immense

changes because of the technological development. Telegraphy made it possible to

exchange text messages over long distances for the first time. Then the telephone made

long distance real time voice communication possible. Today, we listen to the radio and

watch the cable or satellite television, which makes our entertainment life more colorful.

Wireless communications such as cell phones make the exchange of information so

convenient that the communication can take place whenever and wherever. The emerging

of the Internet brought people a complete new style of life. People interconnect

computers throughout the world to transmit voice, video and text message, or provide

inventory, financial and other planning data to conduct the business. Also it is very fast

and convenient to access and search for useful information over the networks. People use

email instead of traditional postal mail to contact each other with much less delay. All the

information is transformed to electronic data which is easy to be transferred or stored.

The list of communication services available to us is seemingly endless and growing

almost daily, and the demand for expanded communication services continues to be high.

With the incorporation of modem communication services into people's lives,

information security becomes more and more important. When people use the Internet to

transmit private personal information, they do not want others obtaining the data.

Especially for commercial organizations, military and government departments,

confidential files and sensitive data must be prevented from being discovered by

opponents. Communication security is a major concern in these situations.

In the modem communication and electronic world, embedded systems are more and

more popular in many applications. It is estimated that the demand for embedded CPUs is

1

~-----------------

ten times as large as general purpose CPUs. An embedded system is an application

oriented special system which is completely encapsulated by the device it controls. With

rapid development of the Integrated Circuit (IC) design and manufacture, lots of

consumer communication electronics become embedded applications, such as PDA, cell

phone or other mobile devices. Most of the embedded applications are area-critical and

allow low speed to achieve a low cost. Hence reducing area and cost is a major concern

for low-end embedded applications. Like other communication electronics, the

communication security for embedded applications is another important issue. Therefore,

how to design and realize a compact cryptographic hardware implementation, which is

suitable to provide communication security for consumer embedded applications with

area and cost constraints, is the main focus of this research work.

This chapter is the introduction part. Here, we introduce some information security,

cryptography and hardware implementation background related to our research, as well

as its motivation and objectives.

1.1 Information Security

Information security has a recorded history of approximately four centuries. Ancient

people applied different methods to hide the information. For example, people used

invisible ink made of lemon and onion juice to write letters. These liquids are heat

sensitive, and then the writing could not be read until heated [1]. Another method used by

people was to use a small pin to puncture on selected letters so that the sensitive

information was not revealed unless the paper was held up in front of a light. Other ways

such as using the sequence of first letters of each word or each line of the overall message

as the hidden message were also recorded. Today we also have contemporary products

utilizing these old techniques.

Cryptography has been used for information security for a long time. From the old

Caesar Cipher to the Playfair Cipher widely used by British and U.S army in World War

I and the famous Three-Rotor Enigma Machine used by German military in World War II,

cryptography was mostly applied in the military in the past [1]. Nowadays, for modern

telecommunication technology, we use cryptography to encrypt data to achieve the

information security. Different from the old steganography [1] , which tries to conceal the

2

existence of the message, cryptography employs various mathematic algorithms to

transform the message. Even when the opponents obtain the encrypted text, they can not

figure out the useful message. Thus we guarantee the security of the transmission.

Cryptography provides data confidentiality, data integrity, authentication and

nonrepudiation for communication networks [1]. Confidentiality is to prevent transmitted

information being eavesdropped or monitored during the transmission. The information

being protected should include communication traffic characteristics such as the source

and destination address, or timing information. Integrity assures that the transmitted data

is exactly the same as that sent without modification, insertion, deletion or replay.

Authentication is to guarantee the communication entities are the ones that they claim to

be (entity authentication) and the source of the data is what it is supposed to be (data

origin authentication). Nonrepudiation prevents either sender or receiver form denying

any transmitted message. A variety of cryptographic mechanisms and algorithms are

applied to provide these security services.

1.1.1 Symmetric-key Encryption System

Symmetric-key encryption is a cryptographic system that the sender and receiver use

the same secret key in the transmission. There must be a security channel to exchange the

secret key or an authorized key distributor to allot the secret key. The sender uses the key

to encrypt the message and the receiver uses the same key to decrypt it. We also must

assure that it is impractical to decrypt the message without the knowledge of the key even

when the opponent knows the encryption algorithm and captures the ciphertext.

As shown in Figure 1.1, the sender in the symmetric encryption system employs

encryption algorithm E with the secret key K to encrypt the plaintext P into ciphertext C

before he sends the message through the information channel. This transformation is C =
Ek(P). After receiving the ciphertext, the receiver uses the corresponding decryption

algorithm D with the same secret key K to decrypt the message back into plaintext P.

This is represented as P = Dk(C). Even if the opponent captures the ciphertext C during

the transmission and knows the encryption algorithm, for a secure cryptosystem, it is

infeasible to recover the message if he does not have any information about the key K.

Therefore, the security of the system depends on the robustness of the encryption scheme.

3

p

Sender

E

Encryption
Algorithm

K

Cryptanalyst

c c

D

Decryption
Algorithm

Figure 1.1 Symmetric-key Encryption System [1]

p

Receiver

Symmetric encryption schemes normally are based on the basic encryption

techniques of substitution and transposition. The use of substitution and transposition

provides the confusion and diffusion [2]. In Shannon's original definitions, confusion

refers to making the relationship between the key and the ciphertext as complex and

involved as possible. Diffusion refers to the property that redundancy in the statistics of

the plaintext is distributed in the statistics of the ciphertext.

1.1.1.1 Block Ciphers

A block cipher is a symmetric-key encryption system that processes the plaintext by

one block at a time. The block is treated as a whole and produces an output block of

ciphertext of the same length. The decryption process is similar but uses the

corresponding decryption algorithm. The processing of the block ciphers is shown in

Figure 1.2.

4

Secret Key

,
\"'

N-bit Plaintext/Ciphertext Encryption/
----• Decryption

Algorithm

__ /

""' "'

N-bit Ciphertext/Plaintext

Figure 1.2 Block Ciphers

There are a lot of good block cipher algorithms that are widely used, such as Data

Encryption Standard (DES) [1] , International Data Encryption Algorithm (IDEA) [3],

Advanced Encryption Standard (AES) [4], and Camellia [5]. Block ciphers are widely

used in various practical applications and security protocols. AES was adopted in 2001

by National Institute of Standards and Technology (NIST) to be the new encryption

standard for US government use. Nowadays, AES is being used all over the world in

commercial transaction, communication services and governments.

1.1.1.2 Stream Ciphers

Stream ciphers encrypt the plaintext by elements (usually one bit) continuously and

produce one element at a time. Typically, the stream ciphers need a pseudo-random

generator to create the key stream to XOR with the plaintext bit by bit. The randomness

of the key stream completely destroys any statistical properties in the message. The

decryption process is exactly the same function as encryption. The processing of the

stream ciphers in shown in Figure 1.3.

5

1-bit PlaintexUCiphertext 1-bit CiphertexUPiaintext
~·

""" """ Figure 1.3 Stream Ciphers

Vemam Cipher [6] and RC4 [1] are two well-known stream ciphers. RC4 is a stream

cipher that is widely used in SSUTLS (Security Sockets Layer/Transport Layer Security)

standards that have been defined for communication between web browsers and servers.

It is also used in the WEP (Wired Equivalent Privacy) protocol that is part of the IEEE

802.11 wireless LAN standard [1].

1.1.2 Public-key Encryption System

The invention of public-key encryption system was a big breakthrough in cryptography

since it is quite different from conventional symmetric encryption. In a public-key

encryption system, each end in the communication networks has a pair of keys. The two

keys are totally different but related. One is called public key and the other is called

private key. Each end keeps its own private key secret and sends the public key to all the

parties it wants to communicate with. That means the private key is only known by the

owner, but the public key is known by all the other communication parties. These two

keys have some special characteristics that the message encrypted by one of the keys can

only be decrypted by the other. So during the communication, the sender and receiver use

different keys for encryption and decryption. Which key (private or public) is used by

sender or receiver in the communication system is decided by what security purpose the

communication wants to achieve.

6

If the communication information is needed to be kept confidential as illustrated in

Figure 1.4, the sender should use the receiver's public key KUr for encryption before

sending the message. Since only the receiver knows the private key KRr and only by

using this private key the message can be decrypted to useful information, the

cryptographic schemes provide the information confidentiality. If authentication of data

is the goal as shown in Figure 1.5, the sender should use its own private key KRs for

encryption. When the receiver uses the sender's public key KUs to decrypt the message

successfully, the receiver can be sure that the message is really sent by the authorized

sender, because only the message encrypted by the sender's private key can be decrypted

by its corresponding public key. In both cases, the opponent who acquires the ciphertext

with knowledge of the public key and encryption/decryption algorithm can not calculate

the private key.

p

Sender

E

Encryption
A lgorithm

Cryptanalyst

c c

0

Decryption
A lgorithm

KRr

Figure 1.4 Public-key Encryption [1]

p

Receiver

Public-key encryption has a big advantage over symmetric-key encryption. Public-key

encryption does not have the problem of key exchanging as in symmetric encryption.

Since the sender and receiver use a different key, and the public key is already known by

outsiders while the private key is always kept secret by owner, no key exchanging or key

distribution is needed. Usually we use public-key encryption schemes for key exchange

in symmetric encryption system. Therefore, public-key encryption is very important for

7

key exchange, authentication and data confidentiality. However, the strong public-key

ciphers are computationally much more expensive than symmetric-key ciphers. Usually,

public-key algorithms run 1000 times slower than comparable symmetric-key algorithms

[7].

E D
p p

c c
Encryption Decryption

Sender Algorithm A lgorithm Receiver

KRs

Figure 1.5 Public-key Authentication [1]

Unlike symmetric-key encryption algorithms based on substitution and

transposition, public-key algorithms are based on mathematical characteristics of number

theory. For example, one of the most important public-key algorithms, RSA [8] is based

on the infeasibility of factoring a large number n into two large prime factors p and q.

Another very important public-key algorithm, elliptic curve cryptography (ECC) [9], is

based on the difficulty of calculating a positive integer k given elliptic point G and the

multiplication k·G, which is referred to as the elliptic curve logarithm problem.

1.2 Software V s. Hardware Implementation

Software implementations of cryptographic algorithms are easier and more flexible

compared to hardware implementations. Software implementations run the encryption

routines or modules on a general-purpose microprocessor. Therefore, software programs

are cost effective and have a relatively shorter implementation time for development.

8

However, the normal general-purpose processor is not suitable to handle many

cryptographic computations efficiently. Most computer hardware is a general-purpose

machine such as Personal Computer (PC) or mainframe computer for business

applications. Software implementations tend to be slow for high-speed applications

where the data throughput is extremely high. The throughputs of software

implementations of symmetric-key cryptography are about several hundred Mbps. A 600

MHz processor is incapable of saturating a T3 communication line with 3DES (triple

DES) encrypted data [10]. For current wireless bandwidth and embedded processor

performance, the Palm Ill requires 3.4 minutes to generate a 512-bit RSA key, 7 seconds

to generate a digital signature, and it can only perform DES encryption at a rate of 13

kbps [11].

Hardware implementations usually need a relatively longer time for development and

need more professional hardware design and implement skills. Moreover, hardware

implementations lack the flexibility to adapt for different applications requirements. The

big advantage of hardware implementations is that each part of a hardware system can

work concurrently and they can achieve very high performance up to several Gbps, which

is desirable for modem high-speed networking applications, such as virtual private

networks (VPN) and secure IP (IPSEC). For example, in [12], a VLSI FPGA

implementation of triple-DES is presented with the speed of 6.9 Gbps using pipelined

architecture. Another high performance single-chip FPGA AES algorithm

implementation [13] has a 128-bit encryptor core of 7 Gbps throughput. In [14] , the

authors even presented an AES processor using 0.18 Jlm CMOS technology with

amazing speed of 30-70 Gbps. Besides the speed, encryption hardware chips have

potential advantages in smaller size and lower power consumption than software

cryptographic implementations on an expensive high-end processor. Also because the

encryption hardware is physically isolated from the rest of the system, it is widely

accepted that hardware implementations are physically more secure than corresponding

software implementations.

Generally, hardware implementations include Application-Specific Integrated Circuit

(ASIC) implementations and Field Programmable Gate Array (FPGA) implementations.

Each of them offers distinct advantages. The ASIC approach typically offers better

9

performance and density, and yields a faster, smaller, and lower power design than FPGA

technology [15] . But FPGA provides design flexibility and reconfiguration that the ASIC

implementations lack.

Considering the advantages and disadvantages of software and hardware

implementations, some hybrid cryptographic implementations were proposed as

combining software and hardware. For example, in [7], the authors demonstrated a

hardware-software co-design cryptographic processor providing excellent performance

while maintaining the flexibility to support various algorithms in the field.

In this thesis, because of the area and cost constraints of low-end applications and the

limited performance of embedded processors, we choose to study and explore a dedicated

compact hardware design and implementation of the cryptographic algorithm AES for

such applications.

1.3 Hardware Design and Implementation Methodology

As the size and complexity of digital systems increase, more and more Computer

Aided Design (CAD) tools have been used in the hardware design and implementation

process. These CAD tools provide sophisticated hardware design, simulation, synthesis,

verification and generation functions. Nowadays, the Hardware Description Language

(HDL) is prevalently used for hardware design and implementation. VHDL and Verilog

are two currently popular HDL languages that can be used to model a digital system at

many different levels of abstraction, ranging from the algorithmic level to the gate level.

VHDL stands for Very High Speed Integrated Circuit (VHSIC) Hardware Description

Language. We use VHDL language and Synopsys CAD tools provided by Canadian

Microelectronic Corporation (CMC) for all the digital systems design, modeling, testing,

and documentation process throughout the research.

Since a hardware design and implementation is a complex process, it is not feasible to

implement a large system all at once. Instead, we use a divide-and-conquer strategy

called top-down methodology for hardware design and bottom-up methodology for

hardware implementation [16]. The top-down design is to iteratively divide the large

system into subcomponents until all subcomponents can be mapped into available

libraries or can be realized by available tools for the targeted technology. The process is

10

illustrated in Figure 1.6 in a tree structure. After top-down design, we start to implement

each terminal of the tree and wire them according to the hierarchical structure of the

whole system. Each component should be implemented and tested before they are wired

into up-level components.

d
X
~
:J

0

"' en us·
:J

; l
; Sub 2.1.1 :
: ·

System Desig~

Sub- I . Sub- I
j Component ·

1 1 Component ·
2 1 . 2.2. I_

I
. . . l

1 Sub-· - · , i- " sub- ·-! 1 Sub:- · ~

j Compoennt 1 j Component 1 j Component j
i.. . _ . ::_1_ _ _! i _ . _a ~ . _ .i [_ . _ 3.~ . _ . _;

· - - - -, - --~ - · - ·c · - - ~
'[-.. -. - .-.. -..... [.. -.. - .-.. -. ... l

; Sub 2.2.1 : ; Sub 2.2.2 : ; Sub 2.2.3 ;
- ·· ········ · :. :

Shaded Components Designate Manageable Parts with Hardware lmplementatiom

Figure 1.6 Top-down Design and Bottom-up Implementation [16]

c:
0

~
'E
Q)

E
Q)

a.
.s
0.
:J

E:
~
<D

In the digital system design process, we follow the Digital IC Design Flow [17]

supported by CMC, which is shown in Figure 1.7. An initial design idea is taken through

several steps before it is completely implemented in hardware or chips. At first, the initial

design idea is written as Register Transfer Level (RTL) codes by VHDL language using

top-down design and bottom-up implementation methodology, and the functionality of

the system RTL codes are verified by the simulation. Next, we can use Synopsys Design

Analyzer to synthesize and optimize the RTL codes to gate-level implementations based

on the targeted library and technology, as well as constraining the design to meet the

designer's performance objectives. After that, we use Test Compiler via inserted scan

vectors and Design for Testability (DFT) techniques to make the design testable. Then we

verify the functionality of the gate-level netlist. We have to take the timing information

into account and assure that the gate-level design performs the functions correctly. These

four steps belong to front-end design and use Synopsys CAD tools. After front-end

design, we come to the physical design. Floorplanning is to create a floor plan for the

11

system and define placement sites for all cells using Physical Design Planner. After this,

the forward-annotated timing information is used to perform core cells placement. Clock

tree generation is to add clock buffer cells and nets to create a balanced clock tree

according to the parameters specified in synthesis. Routing and timing verification is to

route and layout the design and verify the routed design with timing constraints. Finally,

physical verification is to verify the placed and routed version of the design and fix minor

Design Rule Check (DRC) violations. In the physical design phase, we usually use

Cadence CAD tools and Verilog language. In this thesis, we focus on the front-end

design and leave the physical design and implementation to the future work.

Phys ical
V e rification

VHDL

Design Analyzer

Design Analyzer

VHDL

D e sign Analyzer

DP/Qplace

DP/CTGen

Silic on Ensemble

D F I I

Figure 1.7 Digital IC Design Flow [17]

12

1.4 Motivation and Objectives

Since the National Institute of Standards and Technology (NIST) announced the

selection of Rijndael as the Advanced Encryption Standard (AES) in November 2001 ,

AES has been accepted as the popular means to encrypt sensitive commercial,

communication and government data. Various hardware implementation architectures

and optimizations have been proposed for different applications. Those to achieve high

speed are usually very expensive in hardware. The large area of such architectures is not

suitable for practical low-end embedded applications, such as smart cards, PDAs, cell

phones, and other mobile devices. These small embedded applications do not require high

speed or throughput, but are area and cost critical. Therefore, reducing hardware

resources to gain a compact and efficient implementation circuit is an increasing demand.

The AES algorithm is much more complex than its predecessor DES. Even a single

transient fault taking place anywhere in the AES computation will likely bring out a large

number of errors in the system output data [18], [19] . Deliberately inducing malicious

faults into cryptographic implementations and breaking the secret keys or cipher

structures from the side-channel information from faulty computations is a practical and

efficient cryptanalysis technique called Fault Based Cryptanalysis [20]. Therefore

concurrent error detection is very useful to protect the cryptographic system from fault

based side-channel attacks.

The objective of our research is to investigate a compact hardware-implemented AES

system with concurrent fault detection. It attempts to create a bridge between

performance and cost requirements of the embedded applications such that the system is

able to detect the faults with small area overhead, low performance penalty and small

latency.

The thesis consists of seven chapters as follows:

• Chapter 2 is related research background about AES hardware implementations.

We study the AES algorithm, and then survey different hardware implementation

approaches for the AES algorithm. For different applications, different speed and

area tradeoffs are required.

• Chapter 3 proposes a new s-box implementation using s-box linear redundancy.

Since the s-boxes are the most costly components in AES algorithm, we explore

13

the compacts-box implementations first. After investigating published compacts

box hardware implementations, we utilize the discovery of AES s-box linear

redundancy and propose a new compact s-box implementation based on this

theory. We also compare the new implementation with other known s-box

implementations.

• Chapter 4 presents a completed AES encryption-decryption system, based on the

research of the s-box. We first implement an iterative structured encryption

datapath without key scheduling, and apply three compacts-box implementations

in this structure. After the comparison of these six implementations, it is found

that the implementation using four s-boxes based on arithmetic operations in GF

(24
) has the best trade-off of area and speed. Therefore we complete a compact

AES encryption-decryption system with key scheduling based on four GF (24
) s

box implementations.

• Chapter 5 describes a five-mode system. In order to be adaptive to vanous

practical applications, we optimize the implementation with the four s-box

structure to support five different operation modes: : Electronic Codebook mode

(ECB), Cipher Block Chaining mode (CBC), Cipher Feedback mode (CFB),

Output Feedback mode (OFB), and Counter mode (CTR).

• Chapter 6 is the investigation of the concurrent error detection schemes for our

system. After examining the current error detection techniques and considering

the implementation structure characteristics of our hardware system, we choose to

use hardware redundancy for s-box components error detection and parity

prediction for the other parts in AES datapath. Two parity-code based error

detection schemes are proposed for our AES system, as well as the performance

comparison and analysis.

• Chapter 7 draws several conclusions for our research work and suggests some

possible directions for the future work.

14

Chapter 2

AES Algorithm Hardware Implementation

In this chapter, we survey various hardware implementation approaches and techniques

for the AES algorithm. We will discuss possible implementation schemes, design

methodologies, architecture and algorithmic optimizations for different practical AES

applications.

2.1 Advanced Encryption Standard (AES)

Before AES, DES was the most widely used encryption algorithm. With the continuing

increase of computer hardware speed and decrease of hardware prices, DES was proved

to be insecure in July 1998. The National Institute of Standards and Technology (NIST)

called for a new Advanced Encryption Standard in 1997 to replace DES as the approved

standard for all kinds of applications. After a thorough three-year evaluation spanning a

large range of concerns for practical applications of modem symmetric block ciphers,

such as security, cost and implementation characteristics, Rijndael was finally selected as

AES in November 2001 [21]. Rijndael was preferred over other candidates in the

evaluation for its good performance and efficiency in hardware and software

implementation, high level of security, and flexibility over different computing

environments and operation modes. Nowadays, AES has been accepted as the popular

means to encrypt sensitive commercial and government data.

AES is a symmetric-key block cipher, which supports different key lengths of 128, 192

or 256 bits. It is based on byte-oriented substitution and linear transforms with the fixed

block length of 128 bits. According to various key lengths of 128, 192 and 256, the

numbers of rounds of processing are 10, 12 and 14, respectively.

AES can be used to both encrypt and decrypt data. There are four main functions in

each round for the encryption process, namely Byte Substitution, Shift Row, Mix Column

and Add Round Key (Figure 2.1). Another important function is the key expansion.

15

These functions provide the diffusion, which makes sure two input blocks which differ

only in a single bit will result in completely different output blocks, and confusion, which

makes the complex mathematical relationship between key and output.

(a) Encryptior (b)Oecryptio n

Figure 2.1: AES Encryption and Decryption Diagram

(1) Byte Substitution

Since the Byte Substitution operation is based on each byte, the input 128-bit data is

divided into 16 bytes and arranged as a two-dimensional4-by-4 array. Then each byte

is substituted by the corresponding element in the initialized s-box. For example, for a

byte au, we look up the s-box, and find the corresponding element is bu. So we put bu

is this position in array. The s-box is an 8-input, 8-output component, and it contains

all possible 256 8-bit values. Byte Substitution is the only non-linear operation in the

algorithm.

(2) Shift Row

Shift Row is a simple transposition operation. The first row has no shift, the second

row has left shift for 1 byte, the third one shift left for 2 bytes, and the last row has a

shift left for 3 bytes.

(3) Mix Column

16

In this stage, a fixed array C(x) = { 03} x3 + { 01} x2 + { 01} x + { 02} is used to

perform multiplication using modulo x4 + 1 with each column over GF(28
). Mix

Column is performed at each round except the last one.

(4) Add Round Key

The Add Round Key operation is a bit-wise exclusive OR operation of the whole

block and round key. There is one key addition operation before the first round for

pre-whitening.

(5) Key Expansion

The key expansion algorithm can take an initial key of length of 128 bits, 192 bits or

256 bits. For 128-bit key, the key expander takes 128-bit initial key as 4 words (16

bytes) input, and it generates 40 words to provide each of the 10 rounds with a 4-

word round key. Each of the round keys depends on the key of the last round.

Unlike DES, the decryption process for AES has a different structure from the

encryption. However, with some change in operation order and the key expansion

function, an equivalent decryption structure can be achieved using inverse functions for

the byte substitution, shift row and mix column.

2.2 AES Hardware Implementations

The AES algorithm has a simple structure and can be implemented efficiently on a

wide range of general-purpose microprocessors or embedded processors. Good

performance and efficiency in software implementation are very important features of

AES algorithm compared to other block ciphers. Although the software realization of the

AES algorithm scheme can lead to relatively high throughput when compared to other

block ciphers, hardware implementations such as special purpose cryptographic

processors are desirable in many practical applications.

High speed applications require AES hardware implementations to obtain high data

throughput. The encryption of the physical layer for Internet traffic for a network

cryptographic coprocessor is a good example. In such applications, the primary concern

is speed of the implementation. The software implementation of the AES algorithm on a

general-purpose processor only yields a throughput of around several hundred Mbps,

17

which is too slow for high-end Internet routers. Although recent highly optimized AES

software implementations on high-end microprocessors can achieve improved throughput

up to 1.5 Gbps [22], the expensive high-end microprocessors and high space and power

consumption are not cost effective compared to AES hardware implementations.

For low-end mobile applications such as cell phones and PDAs, AES software

implementations on general-purpose processors consume much more power than AES

hardware implementations. Smart cards are another example that benefits from AES

hardware modules. In these applications, while speed is important, the main concern is to

reach minimum area requirement and limit power consumption.

Therefore, based en the requirements of these different practical applications, various

approaches have been explored and applied to obtain efficient hardware implementations

of the AES algorithm. We categorize these efficient AES hardware implementations into

high speed AES hardware implementations and compact AES hardware implementations.

2.2.1 High Speed AES Hardware Implementations

High speed AES hardware implementations are suitable for speed critical applications

such as Internet servers, Virtual Private Networks (VPN) or Asynchronous Transfer

Mode (ATM). The high data throughput of this category of AES implementations usually

results from architectural optimizations for maximum speed such as pipelining, sub

pipelining and loop unrolling [23] by making use of duplicated hardware round

operations.

A lot of related work has been done on the topic of AES hardware implementations for

both FPGA and ASIC implementations. Accordingly, we will introduce the related work

from these two perspectives.

2.2.1.1 High Speed ASIC Implementations

ASIC implementations are more suitable for achieving high throughput than FPGA

implementations. Most of the ASIC AES implementations can obtain throughput rates of

several Gbps.

During the NIST selection procedure of the AES algorithm, the National Security

Agency (NSA) provided detailed hardware performance simulations and comparisons

18

based on 0.5 Jlm CMOS hardware technology for the candidate algorithms in the

evaluation [24]. Rijndael, as one of the candidates, was analyzed for hardware

performance across a wide range of metrics, such as speed, area and throughput. For the

high speed implementation version, they used a pipelined design for both key scheduling

and datapath processing. The pipelined key schedule starts the encryption expansion

immediately with no key setup required and keys are generated at a rate of four 32-bit

words per round. A bank of registers is used to store the keys and supplies the keys to the

algorithm. The pipelined datapath reflects a single round in each stage and uses the same

pipeline to perform both encryption and decryption. T. Ichikawa et al. [25] also

investigated hardware evaluation of AES finalists using Mitsubishi Electric's 0.35 Jlm

CMOS ASIC design library. This paper focused on fast encryption speed in feedback

modes and used a fully loop unrolling structure without introducing a pipeline structure,

which blocks the feedback modes. Hence, their design tried to achieve fast speed without

any effort to reduce hardware size.

A fully pipelined AES implementation with an ultra high throughput of over 30 Gbps

was presented in [14]. It is shown that by using loop unrolling of all rounds of functions,

outer round pipelining between each round and 2-stage sub-pipelining of the composite

field implementation of the s-box, the AES hardware implementation can achieve a

throughput rate of 30 Gbps to 70 Gbps using 0.18 Jlm CMOS technology. Since the

pipelined architecture costs a big amount of hardware resources, this implementation tries

to use composite field arithmetic implemented s-boxes and offline key scheduling

schemes to reduce the circuit area. A related work was done in [26] without any effort to

reduce hardware size. Three different pipelined architectures of the AES algorithm are

implemented and compared in terms of area and speed trade-off.

Another group of fast AES hardware implementations uses different hardware design

techniques to increase performance and reduce circuit size at the same time. These

implementations attempt to create a bridge between performance and cost requirements.

Consequently, all of them employ an iterative structure to provide a medium speed

operation at relatively small area/gate count. The iterative architecture only implements

one round of operations in hardware, and the block of data must iteratively loop n times

over the datapath to perform one encryption/decryption. Such an efficient hardware

19

implementation of AES algorithm was presented in [27]. Instead of using a table-lookup

method for the s-box, this implementation employs composite field GF(24
) arithmetic to

realize the s-box, resulting in reduced circuit area. The chip datapath uses a 4-stage

pipeline architecture and only has the hardware for one encryption/decryption round. The

first three stages implement Byte Substitution operation and all the other operations are

performed in the last stage. Using the TSMC 0.25 J.lm CMOS technology, the

implementation throughput rate is 2.977 Gbps for 128-bit key AES, with a maximum

clock frequency of 250 MHz and a size of 63.40K gates. Similar implementations were

presented in [28], [29], [30]. The implementation in [28] also uses a pipelined structure in

the datapath to increase the operating frequency as well as hardware utilization efficiency,

but it applies the 256-bit registers at the end of each operation. It uses the table-lookup

method to store the s-boxes in ROM and generates the round keys in advance storing the

keys in SRAM. The throughput of this implementation is 2.3 Gbps using TSMC 0.18 J.lffi

CMOS technology with the operating frequency 465 MHz and the size of 28.6k gates

plus 128K ROM and 4K SRAM. Like the above two implementations, the

implementations in [29] and [30] also employ an iterative architecture and complete one

round data processing in one clock cycle. These implementations support three different

key lengths and three different block sizes of data. By using table-lookup s-boxes and on

the-fly key scheduling, this AES chip has a maximum throughput of 2.29 Gbps with

173K gates based on a 0.18 11m CMOS technology.

An AES hardware implementation with a speed of over 10 Gbps using an iterative

structure with 32-bit data bus was described in [31]. Such an architecture is usually used

for very compact AES design. However this implementation achieves such a high

throughput without using any pipelining or loop unrolling techniques. It applies a special

twisted-binary decision diagram (BDD) for the s-box implementation, which is 1.5 to 2

times faster than conventional s-box implementations. Also T-box algorithm [23] is used

combining with the twisted BDD method as twisted BDD T-box architecture to minimize

the delay for the additional speedup. Actually the T-box algorithm is a speedup approach

often used in software implementations. It merges the Byte Substitution operation and

Mix Column operation together into a single function block. The keys in this

implementation are generated beforehand and stored in an external register file. Moreover,

20

the advanced fabrication technology used for this implementation contributes a lot to

obtain the high speed. Finally the circuit achieves about 11 Gbps throughput even in

feedback modes with clock cycle of 880 MHz and size of 167.6K gates using a 0.13 J.!m

CMOS standard cell library.

The hardware synthesis results of 128-bit key Rijndael for all these implementations

are shown in Table 2.1.

Table 2.1 High Speed ASIC Implementations of 128-bit Key AES Algorithm

Critical Clock
Area Throughput kbps/

Implementation Process Architecture Technology Path Frequency
(gates) (Gbps) Gate

(ns) (MHz)

T. Ichikawa Enc/ Loop 0.35 !!ill
612k 65.64 15.23 1.95 3.18

et al. [25] Dec Unrolling CMOS

4-stage Sub- 0.18 !!ill
473k 1.65 606 77.6 164.1

pipelining CMOS

A. Hodjat
Enc Fully 0.18 !!ill

372k 2.65 377 48.2 129.6 et al. [26] Pipe lining CMOS

2-round 0.18 !!ill
225k 2.76 362 23.1 102.7

Pipe lining CMOS

C. Su Enc/ Iterative 0.25 !!ID
63.40k 4.00 250 2.98 47.0

et al. [27] Dec Looping CMOS

N. S.Kim Enc/ Iterative 0.18 !!ill
28.6k 2.19 456 1.64 57.3

et al. [28] Dec Looping CMOS

I.Verbauwhede Iterative 0.18 !!ill
Enc 173k 6.50 154 1.6 9.2

et al. [30] Looping CMOS

Quarter of

Round 0.13 !!ill
Enc 167.6k 1.10 909 11.6 69.2

Iterative CMOS

S. Morioka Looping

et al. [31] Quarter of

Round 0.13 !!ill
Dec 282.5k 1.13 885 11.3 40.0

Iterative CMOS

-- Looping

21

2.2.1.2 High Speed FPGA Implementations

FPGA technology offers better flexibility than ASIC hardware implementations. Since

embedded small or medium sized memory blocks are special features on modem FPGAs,

the ROM/RAM based table-lookup method is cost-effective for FPGA implementations.

Most of the published implementations are targeted at Xilinx Virtex FPGA devices.

A. Elbirt et al. [32] was the first to focus on high speed AES FPGA implementations. It

investigated different architectures including 1, 2 and 5 rounds loop unrolling, 2 and 5

stages pipelining, and 1, 2 and 5 stages sub-pipelining separately for the Rijndael

algorithm. Targeted on Virtex XCVlOOO, these early implementations only get the

throughput of about several hundred Mbps.

Several very high-throughput AES processors based on FPGAs were reported in [33],

[34] and [35]. These implementations all use high speed design techniques such as loop

unrolling of all rounds, fully pipelining between rounds and sub-pipelining inner round

functions together in one implementation. In [33] A. Hodjat et al. presented the

architecture of a fully pipelined AES encryption processor on a single chip FPGA.

Actually this implementation uses very similar design techniques and architecture as that

in [14] . However this implementation employs some features of FPGA and investigates

4-stage sub-pipelining and 7-stage sub-pipelining structures using or without using blocks

of RAM separately. This processor has a maximum throughput of 21.54 Gbps using a

Virtex-II Pro FPGA chip. A similar fully pipelined 128-bit key AES encryption processor

with throughput of 17.8 Gbps was introduced in [34]. In order to fit into a smaller target

device like the Xilinx Virtex-E XCV1000E, which has not enough internal memory to

implement a heavily pipelined design, this processor uses a pure combinational logic to

implement s-boxes using composite field arithmetic and generates round keys on-the-fly.

So it refers to as "memoryless". X. Zhang et al. [35] also uses 7-stage sub-pipelining and

achieves a throughput of 21.56 Gbps on Xilinx XCVlOOOE chip. All the implementations

mentioned above focus only on 128-bit key AES algorithm and only implement the

encryption process.

Several FPGA implementations with several Gbps throughput were also published. M.

McLoone et al. [36] presented a generic AES implementation for only encryption but

supporting varying key lengths. When the key is 128-bit, the encryption speed can reach

22

7 Gbps. When the key lengths are longer, the speeds are slower. Also a fully pipelined

128-bit key implementation supporting both encryption and decryption is realized on

Virtex-E XCV3200E, which runs at a throughput of 3.2 Gbps. Another implementation

was presented in [37], which does not use any pipelined architectures. It can support all

the key and data lengths and works for both encryption and decryption. This

implementation has a maximum throughput of 1.19 Gbps on Xilinx XC2V8000 device.

All the hardware performance details of these FPGA implementations are shown in

Table 2.2 for comparison.

Table 2.2 High Speed FPGA Implementations of 128-bit Key AES Algorithm

Clock
Blocks Throughput Mbps/

Implementation Process Architecture Device Slices Frequency
of RAM (Gbps) Slice

(MHz)

Virtex-11
4-stage Sub-

XC2VP30 12450 168.3 21.54 1.7 -
pipelining

-7

Virtex-11
7-stage Sub-

XC2VP20 9446 169.1 21.64 2.3 -

A. Hodjat et al.
pipelining

-7
Enc

[33]
Virtex-11

4-stage Sub-
XC2VP20 5177 84 168.3 21.54 4.2

pipelining
-7

Virtex-II
7 -stage Sub-

XC2VP20 6400 84 157.1 20.11 3.1
pipelining

-7

Virtex-E

XCVlOOO 11719 - 129.2 17.80 1.5

K. Jarvinen
Fully

E-8
Enc Pipelining

et al. [34] Virtex-11

XC2V200 10750 - 139.1 16.54 1.5

0-5

23

Clock
Blocks Throughput Mbps/

Implementation Process Architecture Device Slices Frequency
of RAM (Gbps) Slice

(MHz)

Virtex-E

XCV1000 11014 - 125.3 16.03 1.5

X. Zhang et al. 7 -stage Sub- -6
Enc

[35] pipelining Virtex-E

XCVlOOO 11022 - 168.4 21.56 2.0

e-8

Enc Fully Virtex-E
2222 100 54.35 6.96 3.1

Pipelining XCV812e
M. McLoone

Virtex-E
et al. [36] Enc/ Fully

XCV3200 7576 102 25.3 3.24 0.4
Dec Pipelining

e-8

R. Sever et al. Enc/ No Virtex-II
4189 4 65 1.19 0.3

[37] Dec Pipelining XC2V800

2.2.2 Compact AES Hardware Implementations

Although high speed implementations are preferred to high end applications, for many

low end customer applications that require much smaller throughput, such as wireless

communication, smart cards and PDAs, compact AES hardware implementations are

more attractive. Unlike high speed implementations, compact AES hardware

implementations usually apply algorithmic optimization, which exploits algorithmic

optimization inside each round unit. Therefore they are sequentially iterative designs

based on 1-round or a quarter of round loop architectures, and a lot of design techniques

for hardware resources sharing, merging encryption and decryption datapath, components

reuse between datapath and key scheduler or between forward functions and inverse

functions are used to achieve the objectives of low area complexity and power

consumption.

2.2.2.1 Compact ASIC Implementations

The smallest design of AES ASIC implementation was that reported in [38]. The

design uses a methodology to optimize the key component s-box into a new composite

24

field GF (((22
)
2

)
2

) and implements the s-boxes by arithmetic operations in this field. The

architecture proposed in this paper becomes the basis of many other compact AES

implementations. This architecture use a quarter of a round as a loop to process the data.

That means the width of the data bus is 32-bit. So a full round of 128-bit data needs four

clock cycles to be finished. In this compact datapath that supports both encryption and

decryption, the hardware resources are efficiently shared between the encryption and

decryption process, including the sharing between s-box and inverse s-box and Mix

Column and Inverse Mix Column The s-box is reused between datapath and key

expander as well. Logic optimization and factoring are widely applied to all arithmetic

components. The key expander generates the round keys on-the-fly, saving the memory

area to store the keys in advance. Since all the functions integrated into such a compact

datapath, a lot of multiplexers are used to switch between the functions. Consequently,

the design produced is an extremely small 128-bit key AES circuit of 5.4k gates based on

a 0.11 11-m CMOS standard cell library. The circuit needs 54 clock cycles to finish the

encryption/decryption process of a block of data and runs at a throughput rate of 311

Mbps with the maximum clock frequency of 131.24 MHz.

Another AES encryption/decryption integrated design was proposed in [39], which

tries to achieve a very low complexity circuit. The design uses a 128-bit data bus and one

round as a loop. The table-lookup ROM method was chosen to implement the s-boxes,

and the key expander does not share s-boxes with the datapath in this design. However,

other arithmetic components sharing techniques are also used to save costs. Since it uses

a wider data bus, ROM s-boxes and no sharing of s-boxes, this design needs more area

for data registers and s-box components than that in [38]. This implementation takes 21

clock cycles to complete a block of data encryption or decryption process. Using TSMC

0.25 11-m CMOS technology, the circuit has a throughput of 609 Mbps with clock

frequency 100 MHz and gate count of 31.96k gates.

2.2.2.2 Compact FPGA Implementations

Very compact FPGA implementations for 128-bit key AES algorithm were presented

in paper [40] and [41]. The design in [40] was targeted on low-cost Xilinx Spartan-IT

XC2S30 FPGA, so specific features of this device such as dual-port RAM to implement

25

combinational logic were explored. Using the embedded blocks of RAM, the s-boxes are

implemented by table-lookup and all round keys are precomputed to save power. A 32-bit

data bus is adopted and it executes one round in four clock cycles. Since only one block

of data is processed at one time, it can be used in feedback and non-feedback modes of

operations. The implementation in [41] uses a similar architecture. But it achieves a

smaller area and shorter critical data path latency by merging the Byte Substitution

operation and Mix Column operation together as aT-box as in [31] and changing the way

to generate inverse round keys. The hardware performance details of these FPGA

implementations are presented in Table 2.3 for comparison.

Table 2.3 Compact AES FPGA Implementations

Clock
Blocks Throughput Mbps/

Implementation Process Architecture Device Slices Frequency
of RAM (Mbps) Slice

(MHz)

Quarter of
Spartan-11

222 3 50 139 0.63
K. Gaj eta! Enc/ XC2S30-5

Round Loop
[40] Dec Spartan-II

Iterative 222 3 60 166 0.75
XC2S30-6

Spartan-

m 163 3 71.5 208 1.26
G. Rouvroy Quarter of

Enc/ XC3S50-4
eta! [41]

Dec
Round Loop

Virtex-11
Iterative

XC2V40- 146 3 123 358 2.45

6

2.3 AES Algorithm Hardware Design Tradeoffs

From the above survey of hardware implementations of AES algorithm, we can see

many design choices are encountered during the implementation of AES. From the

perspective of efficiency, the major decision is the design tradeoff between area and

speed by using different optimization methods. These tradeoffs between performance and

complexity are clearly represented by the various design techniques applied between the

high speed AES implementations and the compact AES implementations. High speed

26

implementations have a high throughput rate that is preferred by more and more fast

telecommunication and internet networks, but they take more space and have higher gate

counts. Compact implementations are cheap and small, suitable for embedded

applications, but they are much slower in that they take a longer time to complete data

processing. In terms of efficiency, the ratio of throughput to area is normally used as a

measure. Although for FPGA implementations, the throughput/slices can not represent

the efficiency accurately when blocks of RAM are employed, for ASIC implementation,

throughput/area is a good criterion to measure the area and speed tradeoffs. We will

summarize the design tradeoffs of AES algorithm hardware from several aspects:

architectures, round functions, datapaths and device technologies.

2.3.1 Architecture Tradeoff

The several different architectures usually employed for AES algorithm hardware

implementations are pipelining, sub-pipelining, loop unrolling and iterative looping.

The pipelining architecture can offer the advantage of a high throughput rate by

processing multiple blocks of data simultaneously. It is achieved by inserting rows of

registers between combinational logic circuits of each round, namely the pipeline stage,

and replicating the round function hardware. The registers are used to store the

intermediate data between rounds. During each clock cycle, the partially processed data

block is fed into the next stage of the pipeline and its place is taken by a subsequent data

block. If the number of pipeline stages is equal to the total number of rounds a cipher

needs, we call it a fully pipelined architecture. In this case, the system will output a 128-

bit block of ciphertext at each clock cycle. The disadvantage of the pipelining

architecture is that it requires significantly more hardware resources than normal

structures and it can not support the feedback modes of block ciphers.

The sub-pipelining architecture is similar to the pipelining, but it sub-divides the

functions in each round into smaller functional blocks by inserting more rows of registers

inside of the operations in each round. Thus each round is divided into several stages and

the system can process more blocks of data at the same time. However, the sub-pipelining

architecture does not always result in increased throughput. If the round function is not

very complex and sub-dividing the stage does not achieve any decrease of stage delay,

27

the sub-pipelining architecture will not increase system clock frequency but need more

clock cycles and more hardware resources to process one block of data, which results in

reduced efficiency.

The loop unrolling architecture unfolds all n rounds of processing functions and

implements them as a single combinational logic block. So only one block of data is

processed in the circuit at a time but all n rounds of functions are performed to this block

of data in one clock cycle. Although the loop unrolling architecture minimizes the

number of clock cycles for processing one block of data, it increases the propagation

delay between registers, which results in slow system clock frequency. Moreover, the

duplicating of n rounds of functions requires a lot of hardware resources .

The iterative looping architecture is an effective method to minimize the hardware

resources for implementations. In an iterative looping architecture, only one round or a

quarter of round processing function is implemented. So the system needs multiple

iterations to complete the encryption or decryption of one block of data. When a quarter

of round operations are taken as a loop, the system requires a large number of clock

cycles to perform an encryption. Consequently, this approach results in slow throughput

and small area implementations.

In terms of speed, pipeline architectures are the fastest. The slowest is the iterative

looping architecture. In terms of area, the iterative looping architecture leads to the

smallest, and the pipelining architecture to the largest. The sub-pipelining architecture is

the most costly of all. However, the sub-pipelining architecture seems to be the best

choice in terms of optimum speed/area ratio [23].

A big disadvantage of pipelining and sub-pipelining architectures is that they can not

support feedback operation modes such as Cipher Block Chaining (CBC) mode,

Ciphertext Feedback (CFB) mode and Output Feedback (OFB) mode. The discussion

about the operation modes will be included in Chapter 5. In feedback modes, the

ciphertext of one block of data must be available before the next block can be encrypted.

But in pipelining and sub-pipelining architecture, continuous multiple blocks of data are

processed at the same time. Practically, most cryptographic applications are operating in

feedback modes rather than the normal Electronic Codebook (ECB) mode because

feedback modes are more secure. However, Counter (CTR) mode is not a feedback mode

28

and is supported for pipeline architectures. Therefore, many high speed fully pipelining

or sub-pipelining implementations such as [14] and [26] work in Counter Mode.

Some high speed implementations are not practical for many applications not only

because of the large space, power and area, but also the long delay and complexity in

placing and routing task is a critical constraint for such a large design [42].

2.3.2 Round Functions Tradeoff

Round function optimizations are exploited for both high speed and compact

implementations. Various methods have been proposed to implement individual round

operations.

The s-box is the most often discussed component in the round operations. How the s

box is implemented is crucial for the whole system because it is the most costly

component and it is usually replicated multiple times in one implementation. Especially

in pipelining and loop unrolling architectures, the s-box is duplicated for a large number

of times. The popular methods to implement the s-box are based on look-up table,

Boolean functions and composite field arithmetic. The s-box using look-up table or

Boolean functions has short delay and needs 2 to 3 times more hardware gates than the

other method. The s-box using composite field arithmetic results in a much smaller

circuit but has 3 to 4 times longer critical data path delay. Details of the s-box

implementation will be discussed in Chapter 3.

A method named T-box is applied in some table-look up implementations [31]. This

approach was originally proposed for 32-bit processor software implementations. It

combines the Byte Substitution operation and Mix Column operation into four 8x32-bit

tables. T-boxes need 4 times more memory space than the normal 8x8-bit s-boxes, but

the method using T-boxes has shorter delay than the normal way to implement Byte

Substitution operation and Mix Column operation. A distinct T-box was mentioned in

[23]. It combines Byte Substitution, Shift Row and Mix Column operations into one

table-look up operation. This T -box is an 8x24-bit table and it is 3 times bigger than the

normal 8x8-bit s-box.

Another important part in the AES algorithm is the key expander. There are two

typical methods used to implement the AES key expander: compute the round key on-

29

the-fly for the data processing on each round or precompute all the round keys before

hand and store them in memory. The computation of keys on-the-fly has an advantage of

saving area because it does not need any extra memory to store all keys, and it can

change keys fast with low or no delay. But the on-the-fly scheme has to compute over

and over again for each data block if the initial key does not change. The precompute

scheme takes more area to store all the keys, but it has no extra delay for the decryption

key setup time and is very easy to implement.

2.3.3 Datapath Tradeoff

Since the AES encryption and decryption datapaths have different structures and the

forward operations and inverse operations are different functions, the techniques to merge

the encryption and decryption process are proposed for cryptographic coprocessors that

support both encryption and decryption. For example, the reuse of multiplicative inverse

in GF (28
) between s-box and inverse s-box, the merging of Mix Column and Inverse Mix

Column and the exchange of the orders of some operations to get an equivalent structure

for encryption and decryption datapath have all been used. An efficient architecture for

key expander to generate round keys for both encryption and decryption is also adopted

in many implementations. These approaches of merging datapaths eliminate the

disadvantage that two separate hardware modules are needed for applications that require

both encryption and decryption, but the performance of the system will be affected by the

large amout of additional switching logic in the critical path.

Another optimization of the key expander is to share s-boxes with the datapath. This

scheme can save area because it does not need more resources to implement exclusive s

boxes for key scheduling. But the expense is the additional switching logic and one more

clock cycle of each round for the key expander to occupy the s-boxes for generating

round keys in the key on-the-fly method. The floorplanning and routing are also slightly

more complicated since encryption/decryption datapath and key expander are no longer

separated [40].

30

2.3.4 Device Technology Tradeoff

The hardware designs of AES may be different depending on whether they are targeted

to FPGA or ASIC technology. Generally, the same design techniques and architectures

can be applied to both FPGA and ASIC implementations, and a good rule of thumb is

that, except for memories, logic in an FPGA takes roughly ten times the silicon area of an

ASIC, while using the similar techniques [43]. ASIC implementations are typically

faster than FPGA implementations if they use the similar design schemes, and ASIC

designs are less constrained in terms at the size of the circuit. FPGA is more flexible for

agility and modification. Some special features of FPGA are exploited for the AES

algorithm. For example, the advantage of an embedded block of RAM provides enough

memory for storing and is suitable for table look-up s-box schemes. An approach to

combine Mix Column and Add Round Key operations by observing that the structure of

Virtex slice offers the possibility to perform XOR between 5 bits. This combined

approach takes advantage of this configuration and keeps the critical path inside one

Virtex slice [42]. However, FPGA devices can be quite constrained in their resources if

cheap devices are chosen. As well, FPGA implementations usually have slower clock

frequency than corresponding ASIC designs.

In terms of floorplanning and routing, for an FPGA target device, routing placement is

predetermined within the FPGA architecture and this is the cause of larger area in FPGA

implementations compared to ASIC designs. Nevertheless the area of ASIC designs is

greatly affected by routing overhead [42]. In order to achieve optimized hardware designs

of AES, an efficient routing algorithm is mandatory for ASIC implementations.

2.4 Conclusion

The tradeoffs between cost and performance is always a concern for all practical

applications, and various design and optimization techniques should be chosen during the

hardware implementation of AES algorithm, based on the specific considerations and

constraints. High-end applications require high data throughput. Accordingly,

architectural optimizations for maximum speed such as pipelining, sub-pipelining and

31

loop unrolling structures are usually applied for such high speed implementations. Low

end embedded applications prefer compact implementations that are cheap and small. So

iterative looping architecture is chosen in this case, and algorithmic optimizations such as

hardware components sharing and reuse are used to achieve low area complexity. ASIC

implementations are typically faster than FPGA implementations. However, FPGA

devices offer better flexibility than ASIC implementations. Because the purpose of our

research work is to achieve a compact hardware implementation of AES for area-critical

embedded applications, the iterative looping architecture and algorithmic optimizations

will be applied in our design.

32

Chapter 3

Compact Implementation of AES S-box

In terms of hardware implementation, s-boxes are the most complex components in the

AES algorithm. How the s-boxes are implemented has important influence on the die-size,

speed and power consumption of the overall AES system. Therefore, we will explore the

compact s-box implementations in this chapter before looking into other parts in the

system.

3.1 S-box Hardware Implementation

The s-box is an 8-input, 8-output component, which performs the non-linear Byte

Substitution operation by using a table containing a permutation of all possible 256 8-bit

values. Because this operation has to be repeated for every round and the substitution is a

byte-to-byte function, Byte Substitution is the bottle-neck in the algorithm.

3.1.1 The Construction of S-box

The construction of the s-box has two steps:

(1) The first step is to substitute each byte au by its multiplicative inverse a/ in a

Galois field GF(28
) with the irreducible polynomial

m (x) = x8 + x4 + x3 + x + 1.

The multiplicative inverse a/ has the property that a/ ® au = { 1}, where ® is the

multiplication over GF(28
), a/, aiJ E GF(28

) and a/, au -:f. {0}. The value {0} is

assigned as multiplicative inverse to itself. The widely used algorithm for calculating

the multiplicative inverse is the Extended Euclid Algorithm [1]. However, this

algorithm is not suitable for hardware implementations.

(2) The following step is an affine transformation over GF(2) as

biJ = M a/+ c,

where M is the binary matrix

33

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

and c is the binary constant { 63}.

The s-box construction involves a lot of multiplication and addition over GF(28
).

Mathematically, the addition a(x) + b(x) in GF (28
) corresponds to bitwise XOR

operation of a(x) and b(x), and multiplication a(x) ® b(x) in GF(28
) is executed modulo

m(x), where m(x) is the irreducible polynomial.

The first transformation is more complex than the second from a computational point

of view. The cascade of these two transformations and the use of finite field arithmetic

provide the nonlinearity between the input and output of the s-box. The design of the s

box is the most important aspect in the cipher design with respect to security since the s

box is the only non-linear part in the entire algorithm.

The inverse byte substitution uses s-box-1
, which is constructed by applying the inverse

of the affine transformation first and then taking the multiplicative inverse in GF(28
).

Therefore, the s-box table and s-box-1 table are different but related such that

s-box -I [s-box (x)] = x.

3.1.2 Look-up Table

Early AES s-box implementations were mostly straightforward schemes employing

look-up tables or direct implementation of 8-bit Boolean functions. The look-up table can

be implemented by Read-only Memory (ROM), Random Access Memory (RAM) or

Programmable Logic Array (PLA) and needs a decoder device to address the table. This

scheme is commonly employed in most FPGA implementations. The direct

implementation of 8-bit Boolean functions using logic gates applies the complete truth

table of the s-box 8-bit output and provides it to Electronic Design Automation (EDA)

tools. The EDA compiler extracts out the corresponding combinational logic and

34

synthesizes the circuit into logic gates. The direct implementation of Boolean functions is

an approach often used in ASIC applications. Due to the nonlinearity of the s-box design,

the numbers in the truth table are somewhat random. So logic gate compression and

optimization is very hard, and the direct implementations of the s-box result in a large

amount of hardware resources.

Some look-up table implementations utilize the combination of Byte Substitution and

Mix Column operations as aT-box [31]. Each T-box has an input of 8 bits and produces a

32-bit output. Thus the implementation only needs 4 T-box table lookups per column in

each round. This method achieves a more efficient software implementation but costs a

lot of hardware resources.

3.1.3 Composite Field Arithmetic

An alternative approach for s-box implementation is using composite field arithmetic.

This method mainly focuses on applying mathematical properties of finite field

arithmetic for efficient multiplicative inverse calculation using combinational logic.

This approach was first proposed by V. Rijmen [44], who was one of the designers of

Rijndael algorithm. It was suggested in his paper that every element of GF(28
) can be

represented by a polynomial whose coefficients are elements in GF(24
).

a= bx + c, (a E GF(28
), b,c E GF(24

))

The transformation from GF(28
) to GF(24

) is called an isomorphic mapping. Using a

irreducible polynomial p(x) = x2 +Ax +B, where A,BE GF(24
), the multiplicative inverse

can be calculated by [44]

(bx + cr1 = b (b2B + bcA + c2r 1x + (c + bA)(b2B + bcA + c2r 1
.

In the view of hardware implementation, the calculation flow of multiplicative inverse is

illustrated in Figure 3.1. Each box in the figure can be taken as a subcomponent. From

the figure we can see that the problem of calculating multiplicative inverse in GF(28
) is

reduced to the calculation of multiplicative inverse, squaring, multiplication and addition

in GF(24
).

35

b c

p q

Figure 3.1 Calculation of Multiplicative Inverse

The method mapping to composite field arithmetic in GF((2°)m) was further developed

by A. Rudra et al in [45]. Directly aimed to smaller cost and overall low-level complexity

of various arithmetic operations, this paper described in detail about how to choose the

optimal irreducible polynomial from all field primitive polynomials, corresponding

choice of composite field, and the generation of the isomorphic transformation matrix

from the original field to the chosen composite field. Based on the consideration about

overall cost, computation and comparison of gate count of resulting implementation

circuits, as well as other measures such as depth of the critical path, this paper concluded

that polynomial p(x) = x2 + x + {1110} is best selected as the irreducible polynomial for

the module.

3.1.3.1 Composite Field GF (24
)

A detailed hardware ASIC implementation of the AES s-box was reported by J.

Wolkerstorfer in [46]. This implementation chose GF(24
) as the composite field and

strictly followed the calculation structure of multiplicative inverse in Figure 3.1. It also

adopted the selection of p(x) = x2 + x + { 1110} for modular multiplication for GF(28
)

and n(x) = x4 + x + 1 for modular multiplication in GF(24
). Using the composite field

36

arithmetic for multiplicative inverse calculation followed by the affine transformation

over GF(2), the overall structure of the s-box is shown in Figure 3.2 as a 3-stage method.

S-box Inverse S-box

Figure 3.2 Structure of S-box using Composite Field GF(24
)

All details about isomorphic transformations and arithmetic operations are given in

Appendix A.

3.1.3.2 Composite Field GF (22
)

A. Satoh, et al., continued to decompose the arithmetic operations in GF(28
) into

subfield GF((22
)
2

) and introduced GF(22
) as a new composite field [38] . To reduce the

cost of the calculation of multiplicative inverse as much as possible, this method applied

multiple extensions of smaller degrees. It repeated degree-2 extensions under a

polynomial basis using the irreducible polynomials as below:

x 2 +x +l

x2 +x+¢

x 2 +x +A.

37

(¢ = {10})

(A. = {1100})

Thus the inverter and multiplier in GF((22
)

2
) can be transferred to the calculation of

multiplicative inverse, squaring, multiplication and addition in GF(22
) as illustrated in

Figure 3.3.

Inversion lr GF(22)
GF(2)

Figure 3.3 Structure of Inverter using Composite Field GF(22
) [38]

A. Satoh, et al., [38] did not provide the details of the hardware implementation

operations. We provide all details about isomorphic transformations and arithmetic

operations in Appendix A.

38

The methods using composite field arithmetic for s-box implementation result in

substantially smaller and more efficient hardware circuit because it is well-known that the

computational cost of certain Galois Field operations is lower when field elements are

mapped to an isomorphic composite field, in which these operations are implemented

using lower-cost subfield arithmetic operations as primitives [17].

3.2 Linear Redundancy of AES S-box

In [47], J. Fuller and W. Millan reported an important discovery of linear redundancy

in the AES s-boxes. Although the AES s-boxes use finite field arithmetic in order to gain

high nonlinearity, the inherent characteristics of the finite field multiplicative inverse

makes the relationship between the s-box output functions linear. Moreover, this linear

redundancy is not eliminated by using the affine transformation, because the affine

transformation does not change the component's cryptographic properties, such as

linearity and algebraic degree.

By investigating the local structure of the Hamming distance between Boolean

functions, Fuller and Millan used a new efficient algorithm to determine the equivalence

between the 8 Boolean functions of the AES s-box 8-bit outputs. In general, an n -input

Boolean function g(x) can be represented by its equivalent Boolean function f(x) using

a binary matrix D , two binary vectors p and q , and a binary constant c . That is,

g(x) = f(Dxe?J p)e?Jqxe?Jc

For the AES s-box, the relations are simpler. Only binary matrix D and binary constant

c are needed. Therefore, the output Boolean function b/x) , where 0 $ j $ 7 , can be

easily represented by the fonnb/x)=b;(D;jx)EBcj, where0i7,i-:l=j, based on the

known b; Boolean function.

As noted in [47], this property of s-boxes gives a hint for compact hardware

implementation. We only need to implement one Boolean function for the s-box and then

utilize the transformations between the output bits to get the 8-bit result of the whole s

box. The combinational logic implementation of a Boolean function and 7 mapping

matrices should cost much less hardware resources than a direct implementation of the 8-

bit Boolean functions or look-up tables.

39

Another important influence of this discovery of AES s-box linear redundancy is on

AES algorithm security. Although it is still hard to assess how much impact this property

can have on AES security since so far no publications have claimed that the cryptanalysis

successfully attacked the algorithm by applying s-box linear redundancy, the discovery of

linear redundancy means potential challenge for AES algorithm security. Therefore,

paper [47] also proposed an additional randomness criterion for the design of s-boxes that

all output functions should have distinct equivalence classes.

3.3 New Implementation of AES S-box

Instead of implementing the multiplicative inverse in GF(28
) , followed by the affine

transformation, we use a Boolean function approach to implement the entire s-box. This

new s-box implementation method is based on the discovery of the linear relationship of

AES s-box output Boolean functions. Therefore, we call the new implementation the

linear redundancy or LR implementation. Let us label the output byte of the s-box

as {b7b6b5b4b3bAb0 }. The implementation of all Boolean functions is derived from the

execution of least significant bit b0 , and all the other output Boolean functions b1 can be

represented by bj (x) = b0 (D0 jx) E9 cj using corresponding Do) and c1.

In our scheme, the s-box consists of three main parts, namely the D matrix block,

MUX, and b0_logic. The Figure 3.4 shows the structure used to produce each output bit

of the s-box.

Input

].

Output bj

Figure 3.4 New S-box Implementation Structure

40

3.3.1 D Matrix Block

The D matrix block mainly implements the D matrix multiplication with input data

array. Totally, we need to execute 7 matrix multiplications. Remember that all the matrix

and arrays are represented in binary. The input to each D matrix is 8-bit data, and the

output of the D matrix operation is 8 arrays of 8-bit values, each of which is available to

the b0_logic function. At first sight, the implementation of 7 matrix multipliers is not

trivial, but after applying factoring to minimize and reuse hardware resources, we finally

gain the D matrix multipliers implementation by employing only 63 2-input XOR gates.

The factoring algorithm [23] that is used to find the substructures that can be shared in

the matrix multiplications is described as below:

1. Round= 0.

2. For i = 0 to (7 + Round)

{For j = 0 to (7 +Round)

{Count the number of times Xi ffi Xj appears in all the equations and

denote the number by N(i, j). Check to see if N(i, j) is the largest

number. If it is, then save the number as N(m, n). If there is a tie,

pick one at random. } }

3. Check N(m, n). If N(m, n) >1, then replace Xm ffi Xn in all those equations

with X7+Round, otherwise Stop.

4. Round = Round + 1, go to step 2.

The resulting hardware implementation details for the D Matrix block are provided in

Appendix A.

3.3.2 b0_1ogic Block

The bo_logic block directly implements the Boolean function of the least significant bit

of output. The b0 Boolean function is derived from the s-box bo truth table. The input to

the bo_logic function is 8-bit data, and the output is 1-bit. After minimization and sharing

by factoring we get the b0_logic implemented by 93 2-input NAND gates.

41

The Espresso algorithm is applied for bo Boolean function minimization. This

algorithm takes as input a two-level representation Boolean function, and produces a

minimal equivalent representation. Espresso represents an advance in both speed and

optimality of solution in heuristic Boolean minimization. The resulting hardware details

about b0_logic block are also given in Appendix A.

Between the D matrix block and b0_logic block, we need an 8-to-1 byte multiplexer to

select which byte in the 8 arrays will be processed by the bO_logic function next.

Following the b0_logic block, we also need an XOR gate to realize the computation of

binary constant Cj, which is 0 or 1. The Cj value can be derived by the selection signals of

multiplexer since the selection signals exactly decide which bit is chosen next.

After integrating all parts together, we complete the whole s-box implementation. We

use a 0.18-um CMOS standard cell library for the synthesis, and the synthesis of the new

AES s-box has been carried out using the design tool Synopsis Design Analyzer, version

2001.08 provided by Canadian Microelectronic Corporation (CMC). The synthesis

reports indicate that the circuit needs the equivalent of only 296 2-input NAND gates

totally. The D matrix block occupies 40.9% of all circuit, with the b0_logic block taking

31.4% and the multiplexer taking 28.7%. The waveforms of the implementation are also

attached in Appendix A.

3.4 Performance Analysis and Comparison

Since it is very difficult to compare the performance of implementations using different

technology libraries and synthesis tools, we have applied the same technology (0.18-um

CMOS standard cell library) and EDA tools (Synopsis Design Analyzer, version 2001.08

provided by CMC) to the look-up table method and other compacts-boxes implemented

in composite field arithmetic based on GF (24
) and GF (22

). We will compare and analyze

these implementations performance in several aspects, such as area complexity, delay and

power consumption.

3.4.1 Area Complexity

The synthesis results presented in Table 3.1 show the area complexity for the s-box

implementations. To estimate the circuit area complexity, we use the number of

42

equivalent 2-input NAND gates as a metric of circuit size. The area of synthesized

circuits is originally measured in square microns (p,m2
) and converted into a gate count

by dividing by the area of the 2-input NAND gate, which has an area of 12.197 p,m2
• The

resulting gate count is used as a basis of area complexity for comparison.

We can see that the LR implementation saves more than 50% gates than normal

Boolean functions method, and requires 11% fewer gates than the other two compact

methods using composite field arithmetic.

Table 3.1 Area Complexity of S-box Implementations

(1 gate= 2-input NAND)

Boolean
OF (22

) OF (24
)

Implementation Functions

(gates)
(gates) (gates)

Inverter -- 232 241

Isomorphism -- 27 23

Inver_isomorphism -- 31 30

Affine Transformation -- 37 37

bo_logic -- -- --

D matrix block -- -- --

MUX -- -- --

S-box (totally) 691 327 331

LR

Implementation

(gates)

--

--

--

--

93

121

80

296

Since ours-box is processing the data bit by bit, not byte by byte as in the other three

methods, our implementation is about 8 times slower than other implementations.

43

Moreover, it should be noted that this calculation does not include the additional 8-bit

shift registers for storing the output of s-boxes required for the LR implementations.

3.4.2 Delay

The latency analysis we refer to here is the time delay of the circuit critical data path

under the worst-case conditions. The critical data path delay decides the maximum clock

frequency of the system. All these attributes will have big influence on the system

throughput or speed.

The delay details of all components in each implementation are shown in Table 3.2.

The latency is measured based on time unit ns offered by Design Analyzer. From the

table, we can see that Boolean functions implementation is fastest among all

implementations. Although LR implementation has a smaller critical data path delay than

the other two compact implementations, it processes the data bit by bit as we discussed

above, thus the LR implementation is slowest. The implementation using arithmetic in

GF (24
) is slightly faster than that using arithmetic in GF (22

).

Table 3.2 Delay of S-box Implementations

Boolean
GF (22

) GF (24
)

LR

Implementation Functions Implementation
(ns) (ns)

(ns) (ns)

Inverter -- 7.5 5.30 --

Isomorphism -- 2.04 1.83 --

Inver_isomorphism -- 1.91 1.57 --

Affine Transformation -- 1.63 1.57 --

bo_logic -- -- -- 2.28

44

D matrix block 3.52

MUX 0.79

S-box (totally) 3.10 13.08 10.27 6.59

3.4.3 Power Consumption

Another important concern in hardware implementations is power consumption.

Especially for compact applications, such as PDAs, cell phones or embedded applications,

power consumption is always a big constraint. Although synthesis tools have features for

power optimization, as well as many techniques mentioned by some technical literature

for reducing power consumption at the transistor level and at higher levels, a human

analysis of the hardware design is still very useful to produce low power circuit.

Moreover, power optimization is often contradicted with other design constrains such as

small area and high speed.

A low power consumption design of AES s-box was proposed in [48]. This design

applies a multi-stage Positive Polarity Reed-Muller (PPRM) architecture and results in a

low power consumption s-box implementation.

Generally, smaller circuits result in lower power consumption since fewer gates use

less power. But the synthesis results form Power Compiler provided in Table 3.3 shows

that the relation is not so simple. Although the objective of the research did not include

an analysis of the power consumption, we speculate that the power consumption of the s

boxes is strongly influenced by the number of hazards [48]. If a circuit easily creates and

propagates hazards, it will consume much more extra power than even larger circuits.

Two characteristics of the circuits are the main reasons for hazards [48]. The first one

is the differences of signal arrival times at each gate. Signals coming to different gate

inputs arrive at different times because of traversing different data paths. This causes

static and dynamic hazards at the outputs of the gate. If a lot of gates are serially

connected, the dynamic hazards will be propagated through the whole circuit path

resulting in much waste of power. The other reason for dynamic hazards is the

propagation probabili ty of signal transitions. Different gates have different propagation

45

probability of the hazards. For example, the hazard propagation probability of XOR gates

is 1. That means any transient changes or hazards will be propagated by XOR gates to the

next gates. This will increase the power consumption of the hardware. So more use of

XOR gates results in more power that the circuit consumes if comparing with the circuits

of the same gate count. AND and OR gates only propagate 50% of the input transitions,

so they have better efficiency in power consumption.

Table 3.3 Power Consumption of S-box Implementations

S-box Implementation

Power Consumption

Boolean

Functions

(mw)

3.1374 10.7560 9.7114

LR

Implementation

(mw)

8.5611

Based on the discussion above, let us analyze the power consumption of these different

s-box implementations. For Boolean functions implementation, since it is purely

synthesized by the EDA tools to the two-level logic of as Sum of Products (SOP), most

gates are AND and OR gates and the signal latency to the inputs is balanced. So it uses

many more gates but consumes much less power than the other implementations. In the

LR implementation, b0_logic part is totally two-level SOP directly derived from the truth

table. However the matrix multipliers use a lot of XOR gates. So even though it has a

small area measured by gate count, the circuit consumes more power than Boolean

functions implementations. For implementations using composite field arithmetic, the

circuits have many crossing and branched signal paths, which results in the delays of

signals to multiple inputs being very different. Also these two circuits use a lot of XOR

gates. Therefore, the two composite field implementations consume more power than the

other methods.

3.5 Conclusion

46

S-boxes are the most costly components in the AES algorithm, and are the only

nonlinear part in the entire algorithm. The straightforward direct implementation of 8-bit

Boolean functions of AES s-box uses a large amount of hardware resources, but has the

advantage of fast speed and low power consumption. The methods using composite field

arithmetic for s-box implementation result in substantially smaller hardware circuit than

the simple schemes such as look-up table or direct implementation of Boolean functions.

However, the composite field arithmetic s-boxes have longer critical data path delay,

which results in slower throughput. More occurrence and propagation of dynamic hazards

in s-box circuits using composite field arithmetic determines that these s-boxes consume

much more power than the other methods. Although the AES s-boxes use finite field

arithmetic and the cascade of the multiplicative inverse in GF(28
) and the affine

transformation over GF(2) to gain high nonlinearity between the input and output of s

box, the inherent characteristics of the finite field multiplicative inverse makes the

relationship between the s-box output functions linear. By using this property of AES s

box, a new LR s-box is implemented, which only implements one Boolean function for

the s-box and then utilizes the transformations between the output bits to get the 8-bit

result of the whole s-box. The LR s-box saves more than 50% gates than normal Boolean

functions method, and requires 11% fewer gates than the other two compact methods

using composite field arithmetic. But because it processes the data bit by bit , not byte by

byte as in the other three methods, LR s-box has the slowest throughout, which is about 8

times slower than the other implementations. The power consumption of LR s-box is

ranked between the Boolean functions implementation and composite field arithmetic

implementations. All of these s-box implementations can be applied in different

applications depending on distinct practical requirements and constraints.

47

Chapter 4

Compact Encryption-Decryption Architecture

Based on the investigation of s-box implementations in the last chapter, we

implement a complete Encryption-Decryption Architecture in this chapter. In order to be

a suitable design for future small low-end embedded applications, we try different

schemes for resources sharing and employ an iterative loop structure to reduce hardware

resources to gain a compact and efficient implementation.

4.1 Encryption Architecture Without Key-scheduling
We first focus on exploring AES encryption architecture without key-scheduling. We

study both a four s-box structure and a one s-box structure, and also apply three distinct

compact s-box implementations discussed earlier to these two structures. Finally we

compare and analyze the performance of the six implementations to find the most

efficient structure for the encryption-decryption architecture.

4.1.1 Encryption Architecture using Four S-boxes

At first, we explore the method to implement the encryption architecture using fours

boxes in the datapath. The encryption datapath is shown in Figure 4.1, where the

unlabelled boxes in the diagram represent registers. In this architecture, we exchange the

execution order between the Byte Substitution operation and the Shift Row operation in

48

order to make this architecture reusable for the decryption process. A merged architecture

for encryption-decryption will be discussed in detail later in this chapter.

I

L-------
3%

IVIi.x C ohunn

Ad<l RourulKe}'
3Z

Figure 4.1 Encryption Datapath for Four S-boxes

Four 4-byte shift registers are used in this encryption datapath. The shift registers not

only work as data registers to store the result of each round and provide the data for the

next round, but also implement the rotation function. When performing the rotation, the

first of them does not shift at all, but the other three shift 1 byte, 2 bytes and 3 bytes,

respectively. When the encryption process starts, the plaintext is XORed with the initial

key and is then fed into the shift register as one row per shift register. Then the structure

begins the iterative processing. First, the Shift Row function is executed by shift registers.

Next, four 4-to-1 8-bit multiplexers choose which byte will be processed by four parallel

s-boxes as the Byte Substitution operation. After that the 4-byte column data is

transformed as the Mix Column operation (except in the last round). A 32-bit multiplexer

is needed to skip over the Mix Column for the last round. At last, the 4-byte data is

49

XORed with the round key and fed back into the corresponding places in the registers.

That is a whole iteration of data processing. Since the architecture implements 4 s-boxes

per iteration and each s-box processes one byte per iteration, a full round of the 16-byte

block processing requires 4 iterations.

This architecture will be changed a little when it applies the LR s-box implementation,

illustrated as a dashed box in Figure 4.1. Because the LR s-boxes take 8 clock cycles to

produce the 4 bytes, while the linear Mix Column operation needs the 32-bit data at one

time, we have to insert four 8-bit shift registers to store the output of s-boxes to prepare

the input for Mix Column. The adding of the extra 8-bit shift registers increases the count

of gates in the circuit.

4.1.2 Encryption Architecture Using Only One S-box

In order to gain a more compact circuit, we have also explored the method of using

only one s-box instead of four in the whole encryption architecture. Obviously, the new

encryption architecture is really minimized a lot since the s-boxes are the most complex

components in the circuit. However, the reduction of area is at the cost of speed. Because

the architecture uses only one s-box per iteration and each s-box processes one byte per

iteration, a full round of the 16-byte block processing requires 16 iterations. The

encryption architecture of one s-box is approximately 4 times slower than that of fours

boxes.

In the one s-box architecture, the additional 8-bit registers are necessary for all

different kinds of s-box implementations. Because we only use one s-box to execute the

Byte Substitution operation byte by byte, we have to use additional registers to store the

data until all the 4-byte data is available for the Mix Column processing. It also needs an

additional 8-bit 4-to-1 multiplexer before the s-box to choose which byte to be the next

one processed by the s-box. Therefore, although the introducing of registers and a

multiplexer compromises a little for the area saving obtained from the reduced number of

s-boxes, the s-box saving is still much more than the area increase by the registers and

multiplexer. .

50

3:1
l'tlix Column

Ad.tl R om.tdk cy

Figure 4.2 Encryption Datapath for One S-box

4.1.3 Performance Analysis and Comparison

We now employ the three different compact hardware s-box designs investigated in

Chapter 3 into the four s-box architecture and one s-box architecture. Thus we get six

distinct implementations totally. For all these implementations, we apply 0.18-um CMOS

standard cell library for the synthesis, and use Synopsys Design Analyzer as the design

tool. The hardware design details for each component in the implementations are

provided in Appendix B. Also the area complexity details of each component in every

implementation are included in Appendix B.

After simulation and synthesis, we get the area complexity and delay information from

the synthesis reports. As we discussed before, the critical data path delay decides the

system maximum clock frequency M c1k, and the speed of a system can be measured by the

maximum throughput in bits/second. The AES system maximum throughput is expressed

as:

51

'T'h h BlockSize 128x Mclk
.L, roug put = = - - --""'""---

CyclesPerBlock x ClockPeriod CyclesPerBlock
(bits/sec) .

The average number of clock cycles for processing one block of data depends on the

different datapath architectures and different s-box implementations. For example, for the

implementation based on 4 s-boxes in GF(24
), it needs 1 clock cycle for the Shift Row

operation and 4 clock cycles for the Byte Substitution and the other operations in each

round. Thus for one block of data processing of 10 rounds, it needs (1 +4)* 10=50 clock

cycles totally. But for the implementation based on 1 LR s-box, each round needs 1 clock

cycle for Shift Row and 4*8*4=128 clock cycles for other operations. So it needs

(1 + 128)* 10=1290 clock cycles for one block encryption totally.

Table 4.1 shows the synthesis results from the six implementations in terms of the

number of clock cycles for one block encryption, delay, maximum clock frequency, area

complexity and throughput. There is always a trade-off between area and throughput.

Usually by using more gates it is possible to get better throughput. So we apply the same

time constraints to all the implementations during synthesis, and take the throughput-to

area ratio as the criterion to evaluate the performance of the implementations.

From the synthesis result, we can draw some conclusions after comparing and

analyzing the performance of the six implementations.

1) For the three four s-box implementations, although the LR s-box is about 11% less

area than the other two compact s-box implementations, the extra shift registers

increase the circuit area. So the final sizes of the three four s-box implementations

are almost the same. However, the implementation based on the LR s-box is rather

slow as it is only one third of the speed of the other two implementations because

LR s-box processes the data bit by bit, not byte by byte as the other two methods.

2) From a comparison of four s-box structure and one s-box structure, we can see that

the one s-box implementations are smaller than the corresponding four s-box

implementations. However the one s-box structure does not minimize as much as

we expected. The reason is that one s-box structure has an 8-bit datapath bus but

the Mix Column operation needs 32-bit data at one time. So the one s-box structure

52

needs additional shift registers and multiplexers which comprorruses the area

saving. Another disadvantage of the one s-box structure is that it needs more clock

cycles to finish one block of data processing, which results in a slower throughput.

Evaluating by throughput-to-area ratio shows that making the datapath bus width

smaller than 32 bits is not a good idea as it results in inefficient implementations.

Table 4.1 Implementations Performance Comparison

Maximum

Delay Throughput
Throughput

Encryption Area Cycles Clock
/Area

Data path (gates) /Block (ns) Frequency (Mbps)

(MHz)
(kbps/ gates)

Based on 4

S-boxesin 3569 50 14.24 70.2 179.78 50.37

GF (24
)

Based on 4

S-boxes in 3540 50 16.81 59.5 152.29 43.02

GF (22
)

Based on 4
3581 330 7.63 131.0 50.84 14.20

LR S-boxes

Based on 1

S-box in 2612 170 12.08 82.8 62.33 23.86

GF (24
)

Based on 1

S-box in 2624 170 14.90 67.1 50.53 19.26

GF (22
)

Based on 1
2545 1290 8.12 123.2 12.22 4.80

LR S-box

3) The implementation based on 1 LR s-box has a smallest area in all these

implementations, but it is much much slower than the other methods. So for most

53

applications, this implementation is not a good choice. But for some special

applications that have a critical limit on size but low requirement for speed, the 1

LR s-box implementation is a suitable choice because of the advantage of

extremely small area.
4) A thorough comparison of the six implementations indicates that the

implementation using four s-boxes based on arithmetic operations in GF(2
4

) has

the best trade-off of area and speed based on throughput to area ratio.

4.2 Key Expander
The AES key expansion algorithm can take an initial key of length of 128 bits, 192 bits

or 256 bits. Our implementation only focuses on 128-bit key. So the key expander takes

128-bit initial key as 4 words (16 bytes) input, and it generates 40 words to provide each

of the 10 rounds with a 4-word round key.
Each of the round keys depends on the key of the last round. The initial key is used to

XOR with the plaintext as pre-whitening before the plaintext is fed into the datapath.

Then the first round key is generated from the initial key by the key expansion algorithm,

and the algorithm is applied repeatedly until all the round keys are produced. We express

the current round key as [w
4

i, w4i+l• W4i+2• W4i+3], where i represents the round number.

The next round key [W4(i+l)• W4(i+l)+l• W4(i+1)+2• W4(i+1)+3] is generated as illustrated in

Figure 4.3 [4], where the F represents a complex three-step function on current round key

last word W4i+3·

The F function includes a one-byte circular left shift operation, a byte substitution

operation and a leftmost byte XOR with the round constant Rcon[i]. The Rcon[i] is

started from {01} for first round, and defined as Rcon[i+1] = {02}xRcon[i] for the next

round. Note the multiplication is defined in GF(2
8
). The usage of the round-dependent

constant Rcon[i] eliminates the symmetry or similarity in the round keys [4].

54

One Byte Circular Left Shift

Byte Substitution

(XO' ""Mooo' Coo.,ool '~o[l]

Figure 4.3 AES Key Expansion [4]

There are two typical methods used to implement the AES key expander. The first one

is to compute the round key on-the-fly, concurrently with the data processing in each

round. This method is suitable for the applications that are critical on area or circuit size.

The other method is to compute all the round keys before-hand and store them in memory

such as register files or RAM. Thus when the keys are need, they are read from the

storage directly. Since the aim of our implementation is to gain a compact circuit, we

adopt the method to generate the round key on-the-fly. The key expander design is shown

in Figure 4.4.

This key expander can be used for both encryption key scheduling and decryption key

scheduling. For the AES algorithm, the key scheduling for encryption and for decryption

is different. The key scheduling for the encryption process is performed in the forward

direction and the round keys are applied to the datapath in this order. But the key

scheduling for decryption computes the round keys in the backward direction and starts

from the last round key for computing. Hence, the decryption key scheduling has to

compute in the forward direction first to obtain the last round key, and then compute in

the backward direction to determine the round keys used to decrypt data processing in

each round. Consequently, the decryption key setup time is longer than that of

encryption.

55

Initial Key

Key Out

32

Figure 4.4 Encryption-Decryption Key Expander

In order to use the equivalent architecture to merge the encryption and decryption

datapath, we have to exchange the order of some operations. The order exchange of Add

Round Key and Inverse Mix Column operations of the decryption process requires that

the round keys for decryption need to be transformed by Inverse Mix Column operation

first before XORing with the data. This will be discussed more in detail in the next

section. Therefore, we add the Inverse Mix Column operation in the key expander

specifically for decryption key scheduling.

Four 32-bit registers, which store the current round key from left to right as w4i, W4i+J.

w4i+2, w 4i+J, are initialized by 128-bit initial key when the key scheduling starts. Before

the registers, four 32-bit 2-to-lmultiplexers are used to select either the initial key or the

updated round key to feed into the registers. The four sets of XOR gates take the current

round key as input and are used to generate the next round key. The four 32-bit

multiplexers after the XOR gates are used to distinguish between encryption and

decryption key scheduling. When used for encryption key scheduling, W4i+3 is loaded into

56

the F function processing, which includes the bytewise left shift operation as key_in,

Byte Substitution operation sharing the s-boxes with datapath as key_out and the XOR

operation with constant Rcon[i]. After the F function, the transformed w 4i+J is XORed

with W4i to generate W4(i+l) at the output of the leftmost XOR gate, and w4(i+IJ+I, w 4ri+IJ+2,

w4ri+IJ+3 are generated one by one as the update data propagates through each multiplexer

from left to right. When used for decryption key scheduling, since W4(i-J)+3 EB w 4i+2 = w 4i+J

in the encryption direction, w4(i-IJ+3 = w 4i+3 ffiw4i+2 is loaded into F function and XORed

with W4i to generate W4(i-l)· Then w 4ri-l)+J, w 4ri-IJ+2, w 4ri-1)+3 are generated sequentially as

the updated data propagates through each multiplexer. This part is the most complex part

in the whole key expander design. It should be noted that the control signal of the right

most multiplexer after the XOR gate to choose between encryption and decryption must

be exactly reversed to that of other three corresponding multiplexers. After that, there are

simple multiplexers used to choose Inverse Mix Column for decryption and not choose it

for encryption. This is the complete process to generate the round keys.

For round constant Rcon[i], we considered two different schemes to implement it. One

is to generate Rcon[i] on-the-fly for each round. The other is to compute them in advance

and store them in memory. After comparing the synthesis results of the two methods, we

find the method of generating it on-the-fly results in smaller area because the Xtimes

block used to perform multiplication with {02} over GF(28
) only needs three bit-wise

XOR gates when implemented in hardware (which will be described in detail in the next

section). So we choose this method to implement Rcon[i] in the final key expander

design.

After applying the same technology library and design tools as before, we obtain the

final key expander circuit requiring 2,426 gates totally. The hardware design and area

complexity of each component are provided in Appendix B.

4.3 Encryption-Decryption Architecture with Key-scheduling

Based on the study of the AES s-box and the comparison and analysis of six

encryption datapath implementations, it was determined that the implementation using

four s-boxes based on arithmetic operations in GF(24
) has the best trade-off of area and

speed. The reduction in gate count in using other implementations is very minimal.

57

Therefore, we have implemented the complete encryption-decryption architecture with

key scheduling using four s-boxes in GF(24
). In doing so, we merge the encryption and

decryption functionality into one equivalent architecture and generate circuitry to provide

the on-the-fly key scheduling for encryption and decryption. In this implementation, we

have tried to reuse and share the hardware components as much as possible to reduce the

circuit size and gain a compact and efficient hardware implementation. The encryption

decryption architecture is shown in Figure 4.5.

32
32

A <l<l RoundKey

Figure 4.5 Encryption-Decryption Datapath

4.3.1 Exchange of Operation Orders

As mentioned before, the AES algorithm decryption process has a different structure

than the encryption process. The operation sequence of the encryption process is Byte

Substitution, Shift Row, Mix Column and Add Round Key. The decryption process

sequence is Inverse Shift Row, Inverse Byte Substitution, Add Round Key and Inverse

58

Mix Column. Accordingly, we have to exchange the orders of some operations so that we

can obtain an equivalent architecture for both encryption and decryption [4].

The first exchange we make is for Byte Substitution and Shift Row in encryption.

Since Byte Substitution is only a byte-oriented substitution and Shift Row is only a byte

oriented transposition, these two transformations are totally independent. So it has the

same effect if we change the byte sequence first then change the byte content or if we

change the byte content first then change the byte sequence. It can be expressed as:

Shift Row (Byte Substitution (au)) = Byte Substitution (Shift Row (au))

Thus we interchange the order of Byte Substitution and Shift Row in encryption to be

consistent with that of decryption.

The second change we make is to exchange Add Round Key and Inverse Mix Column

in the decryption process to be consistent with the structure of encryption. Both of the

two operations do not change the data sequence and both of them are linear

transformations, and the order interchange of the two operations causes some change in

the decryption key scheduling as follows [4]:

Inverse Mix Column (au EB wu) = Inverse Mix Column (au) EB Inverse Mix Column (wu)

Hence, the generated round key becomes Inverse Mix Column (wu) not the original wu.

This is why we add the Inverse Mix Column operation in the key expander design. Note

that the Inverse Mix Column operation should not be applied to the last round key.

Consequently, we obtain a merged encryption-decryption architecture as (Inverse)Shift

Row, (Inverse)Byte Substitution, (Inverse)Mix Column and Add Round Key.

4.3.2 Encryption and Decryption Datapath Sharing

A big advantage of using the equivalent architecture for encryption and decryption is

that we can share and reuse some hardware components in the implementation of

datapath for encryption and decryption.

4.3.2.1 Sharing between S-box and Inverse S-box

The s-box computing is the calculation of multiplicative inversion x·1 over GF(28
)

followed by an affine transformation and the inverse s-box computing is the inverse

affine transformation followed by multiplicative inversion x·1. The common component

59

to be shared is the calculation of x-1, and the calculation of x-1 is based on the composite

field arithmetic GF(24
) as we discussed before. Therefore, as illustrated in Figure 4.5, we

use four 8-bit 2-to-1 multiplexers before inversion and four multiplexers after the affine

transformation to change the datapath between encryption and decryption. The integrated

encryption/decryption s-box requires 391 gates, which is only an increase of 18% over

the original encryption s-box.

4.3.2.2 Sharing between Mix Column and Inverse Mix Column

The Mix Column operation is a modular multiplication with the fixed array C(x) = {03}

i + {OJ} x2 + {OJ} x + {02}, which can be represented as the multiplication with the

constant matrix:

hoc 02 03 01 01 aOc

blc 01 02 03 01 al e
= •

b2c 01 01 02 03 a2c

b3c 03 01 01 02 a 3c

where 0:Sc:S3. In this matrix multiplication, since {01 }X = X, what we really need to

implement is the multiplication with constant { 02} and { 03} over OF (28
) . Multiplication

with { 02} can be realized by a one-bit left shift followed by three bit-wise XOR gates,

which is named as Xtimes operation and illustrated in Figure 4.6. Multiplication with { 03}

can be computed by ({ 02} X) EB X.

X X

X X X

Figure 4.6 Xtimes Block Diagram

The Inverse Mix Column operation is also a modular multiplication, but the fixed array

changes to C 1(x) = {OB} x3 + {OD} x2 + {09} x + {OE} as [38]:

60

~----------------

hoc OE OB OD 09 aOc

blc 09 OE OB OD ~c
= •

b2c OD 09 OE OB a2c

b3c OB OD 09 OE a3c

02 03 01 01 aOc 08 08 08 08 aoc 04 00 04 00 aOc

01 02 03 01 ~c 08 08 08 08 ~c 00 04 00 04 ale
= • + • + •

01 01 02 03 a 2c 08 08 08 08 a2c 04 00 04 00 a2c

03 01 01 02 ~c 08 08 08 08 a3c 00 04 00 04 ~c

After the transformation, we can see that the Inverse Mix Column operation actually

comprises the Mix Column operation plus multiplication with { 04} and { 08}. So we can

reuse the Mix Column component in the Inverse Mix Column operation, and this reuse

results in 2/3 saving of the hardware resources. Actually, {04 }·X=Xtimes(Xtimes(X))

and {08}X=Xtimes(Xtimes(Xtimes(X))). Therefore, the integrated Mix Column/Inverse

Mix Column block can be implemented by Xtimes blocks and extra XOR gates as shown

in Figure 4.7. A 2-to-1 32-bit multiplexer is placed after Mix Column/Inverse Mix

Column block to choose encryption or decryption processing. The next multiplexer is

used to omit the Mix Column/ Inverse Mix Column for the final round data processing.

Figure 4.7 Implementation of Mix Column/Inverse Mix Column

61

4.3.3 Datapath and Key Expander Sharing

The key scheduling needs Byte Substitution operations both in the encryption and

decryption direction. Since s-boxes are costly components in the circuit, we reuse the s

boxes in the datapath for the key scheduling process [23]. The 32-bit key_in signal

coming out from key expander is fed into the s-boxes in the datapath by four 2-to-1 8-bit

multiplexer switching. After the Byte Substitution operation, the key_out is fed back into

the key expander to be used for generating round keys. The whole process can be done in

one clock cycle. At first it was thought that the sharing of s-boxes between datapath and

key expander would cost an extra clock cycle for the data processing in each round.

However, the Shift Row operation can be executed while the s-boxes are used for key

scheduling. Accordingly, the sharing of s-boxes does not increase execution time for data

processing. Each round still needs five clock cycles to be finished, where s-boxes are

used for key scheduling in one clock cycle and used for encryption or decryption data

processing in four clock cycles. The sharing of s-boxes saves 50% of the hardware

resources for the key expander circuit.

The decryption process needs longer time for round key setup because the decryption

key scheduling needs to compute the final round key in the encryption first, and start

from final round key to generate other keys for each round. This takes 11 more clock

cycles for key setup. Hence, the entire encryption process needs 52 clock cycles and the

entire decryption process needs 63 clock cycles. Note that when the s-boxes are selected

to be used for key scheduling, they are always chosen as encryption data processing

mode in that clock cycle, regardless of whether they are used for encryption key

scheduling or decryption key scheduling, as well as for decryption key setup. That is

because the key expander only needs Byte Substitution operations, never Inverse Byte

Substitution operations.

4.4 . System Controller

The system controller takes outside setup control signals or datapath feedback signals

as inputs. For example, System_Start (signal that enables the system to work),

System_Stop (signal that can stop the system at any time because of exceptions or

failures) , System_Clk (system clock), and Sel_Enc_Dec (signal to choose encryption or

62

decryption) are all inputs to the system controller. The system controller generates

complex control signals needed for all datapath components, such as Sel_ShiftRow _Reg

(control signals of data registers for Shift Row operation), Sel_ShiftRow_Mux (control

signals for multiplexers after data registers), Sel_Key_Data (control signal to choose key

setup or data processing as input to s-boxes), Sel_Round (control signal to omit Mix

Column/Inverse Mix Column operation), Sel_Key (control signals to choose which keys

should feed into datapath for Add Round Key operation), Key_Load (control signal to

choose between initial keys or updated keys to load into key registers), Key_Reg (control

signals for key registers), and Done_Data (control signal representing that the encryption

or decryption of one block data process has finished). The controller block is shown as in

Figure 4.8.

I"
Set_ Shift Row_ Reg

System_Start Set_ShiftRow _Mux

Set_Key_Data

System
System_Stop

Set R ound

System_Ctk
Controller Set_Key

Set Enc Dec Key_Load

Key_Reg

Done Data

" "'
Figure 4.8 System Controller Block Diagram

The system controller can be represented by a state machine involving nine states. The

state diagram is illustrated in Figure 4.9. When the system is powered on, the controller

starts from the Idle state, waiting for System_Start signal to start work. After

System_Start is active, the controller transfers to Initiate state. In this state, key registers

will be loaded with the initial key and all the other components are cleared. Then

depending on Sel_Enc_Dec signal by users, the controller comes to KeySetup state or

DataLoad state. KeySetup state is especially for decryption key scheduling to setup keys.

63

In DataLoad state, the data registers are loaded by the result of plaintext XOR initial keys,

and several control signals are reset. Next KeyUpdate state is the one clock cycle for

round key updating and Shift Row operation. After that, the state machine transfers

sequentially from Aoc. A1c. A2c. and A3c states to update the data in one column. After A3c a

round of data processing has finished. Depending on the round counting, the state

machine decides to continue for the next round or finish data processing, output the

encrypted/decrypted data onto data bus and transfer to Initiate state again to start

processing the next block of data. Whenever there are exceptions or failures in the system

or all messages have been finished, the controller comes to Idle state waiting to be

enabled to work again (which is not shown in the state diagram).

~
II

J _,
§
8

Sel_enc_dec = '1

Figure 4.9 System Controller State Diagram

64

Besides the state machine, the system controller needs two 4-bit counters and one 2-bit

counter. One 4-bit counter is used to count the number of data processing rounds. The

other one is used to count key round in decryption key scheduling for key setup. The 2-

bit counter is applied to count the number of iterations in each round.

4.5 Performance Analysis

After implementing the key expander, encryption-decryption datapath and system

controller, we integrate all these parts together to obtain a complete AES algorithm

circuit. We apply 0.18).liD CMOS standard cell library for the synthesis, and use

Synopsys Design Analyzer as the design tool. The hardware design details about each

component in the implementations are provided in Appendix B. Also the area complexity

details of each component and the waveforms of the implementation are included in

Appendix B.

After simulation and synthesis, we get the area complexity and delay information from

the synthesis reports. The max area optimization is chosen with specified time constraints.

There is always a trade-off between area and speed of the hardware design. Using more

gates will result in a faster but more expensive circuit. Therefore, we apply different time

constraints and area constraints to the implementation for various applications, and the

relationships between area and latency or throughput are shown as in Figure 4.10 and

Figure 4.11.

11000

-s 10000
l1l
C) 9000 -~ 8000 ><
(I)

~ 7000

8 6000

m
< 5000

4000
10 12 14 16 18 20 22 24

Latency (ns)

Figure 4.10 Area-to-Latency Chart of AES Encryption-Decryption System

65

11000 -
~ 10000

01 9000 -~
8000 ·~

~ 7000

--
/

~ --..
8 6000

~ 5000

4000
100 120 140 160 180 200 220

Throughput (Mbps)

Figure 4.11 Area-to-Throughput Chart of AES Encryption-Decryption System

For very compact applications, it is appropriate to choose the circuit of smallest size

requiring about 7.5K gates with a delay of 19.26 ns. For this circuit the maximum clock

frequency is about 51.9 MHz, and the throughput of the circuit is 132.92 Mbps.

4.6 Conclusion

We have investigated a four s-box structure and a one s-box structure for the AES

datapath. Although the one s-box structure has smaller size than the four s-box

implementation, the one s-box structure needs additional shift registers and multiplexers

which compromises the area saving. Moreover the one s-box structure has a much slower

throughput than the four s-box structure. So the four s-box structure, which has the

datapath bus width of 32 bits, is a better choice in terms of throughput-to-area ratio. We

apply the three different compact s-box implementations, which are the LR s-box, the s

box based on arithmetic operations in GF(24
) and the s-box based on arithmetic

operations in GF(22
), to the one s-box structure and four s-box structure. After

comparison of the six implementations, we can see that the implementation using four s

boxes based on arithmetic operations in GF (24
) has the best trade-off of area and speed,

while still being close to smallest circuit in size. The AES datapath and key expander

support both encryption and decryption data processing, and the encryption and

decryption functionality are integrated together into one architecture, which results in

66

small circuit size of the whole system. Optimization methods are used for reuse and

sharing hardware components in the circuit to reduce the area consumption. For example,

we share the multiplicative inverse in GF (28
) for the s-box and inverse s-box, as well as

share hardware between the Mix Column and its inverse operation, and between the s

boxes for the datapath and the key expander. The complete compact encryption

decryption system has a small size requiring about 7.5K gates and the throughput of the

circuit is 132.92 Mbps.

67

Chapter 5

Five-mode AES Encryption System

In order to be adaptive to various practical applications, we optimize the

implementation with the four s-box structure to support five different operation modes:

Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher

Feedback (CFB) mode, Output Feedback (OFB) mode, and Counter (CTR) mode. The

five-mode system makes the AES encryption implementation usable under multiple

protocols and flexible to different requirements.

5.1 Block Cipher Modes of Operation

There are five modes of operation defined in Special Publication 800-38A [49], which

is the extended version of FIPS 81 [50], and these five modes are recommended for use

with any symmetric block ciphers, including DES, triple DES and AES. Actually these

five modes of operation cover most of the possible encryption applications of block

ciphers for confidentiality. In this section, we will describe these operation modes and

their features in detail.

5.1.1 Electronic Codebook (ECB) Mode

ECB is the simplest operation mode since it uses the same key for each block of data,

and the input to the encryption/decryption system is the original plaintext [1]. The

plaintext is broken into a sequence of data blocks, and the data is handled in block size,

such as 128-bit for AES. If the plaintext can not be divided into an integral number of

blocks, we need to pad the last block by appending some extra bits after the useful

message. The encryption and decryption process structure of ECB is shown in Figure 5 .1.

68

Plaintext Ciphertext

Key Encryption Decryption 141--- Key

Ciphertext Plaintext

Figure 5.1 Electronic Codebook (ECB) Mode

Since ECB uses the same key for each block of data, this mode has a property that the

same plaintext blocks generate the same ciphertext blocks. This property is not secure

for long message because if the same block of plaintext appears repetitively for multiple

times in one message, then useful information becomes available to the cryptanalyst.

Therefore, the ECB mode is normally used to encrypt a short amount of data, such as an

encryption key [51]. Another property of ECB is that because the ciphertext block only

depends on the current encryption key and plaintext block, we can process multiple

blocks of data in parallel by applying pipelined architectures.

5.1.2 Cipher Block Chaining (CBC) Mode

In CBC mode, the input to the encryption/decryption system is the XOR of the current

plaintext and preceding ciphertext. Thus even using the same key for each block of data,

the same blocks of plaintext generate different ciphertext blocks, and each block of

ciphertext has no fixed relation to the corresponding block of plaintext because of the

chaining. The first input is the XOR of the first block of plaintext and an initialization

vector (IV). The encryption and decryption process structure of CBC is shown in Figure

5.2.

69

Plaintext Ciphertexl

Key Encryption Decryptior 141---- Key
IV

Ciphertexl Plaintext

Figure 5.2 Cipher Block Chaining (CBC) Mode

CBC mode overcomes the security deficiency of ECB by the chaining mechanism, and

this mode is an appropriate confidentiality mode to encrypt long messages. Since the IV

must be known to both sender and receiver, the integrity of IV should be protected as

well as the encryption key [49]. The encryption of CBC mode can not support parallel

processing of multiple blocks operation because the current ciphertext depends on

preceding ciphertext. Thus the processing of the current block can not start until the

preceding block has finished. It also means that the CBC mode encryption can not

support pipelined structures, which is popular in most high-speed AES implementations.

However, the CBC decryption can perform multiple blocks in parallel because in

decryption the preceding ciphertext is available immediately.

5.1.3 Cipher Feedback (CFB) Mode

. CFB mode uses AES as a stream cipher [51]. Rather than process the data block by

block, CFB divides the plaintext into small segments of s bits. So we use a shift register

to implement it. The shift register is initialized by IV as the input to the encryption

system [1], and the ciphertext is the XOR of s bits of plaintext and first s bits from the

output of the encryption system. After that the input to the encryption system is the

preceding s-bit ciphertext replacing the s least significant bits of the data in the shift

70

register after it shifts lefts bits, and the ciphertext is always the XOR of s bits of plaintext

and first s bits from the output of the encryption system. This process continues until the

entire plaintext message has been encrypted. The encryption and decryption process

structure of CFB is shown in Figure 5.3.

128
Key ---:?"--

Plaintext ~f--.~

IV

C ipllerl;ext

IV

Encrypti on

Delay 1
Block

s

s

~-~---"7";....---'-~~ Ciphertext

Pial llexl

Figure 5.3 Cipher Feedback (CFB) Mode

One significant characteristic of the CFB mode is that it does not need the block cipher

(e.g. AES) to operate in decryption mode for the decryption process. Both of the

encryption and decryption processes only need block cipher encryption. Since CFB

operation mode only requires an encryption function, the amount of circuitry is small.

Another advantage of CFB mode is that it eliminates the need to pad a message into an

integral number of blocks and it can operate in real time. However in terms of the

average number of blocks of data processed in unit time, CFB mode has lower efficiency

than CBC mode when thesis less than 128-bit. Like CBC mode, the CFB mode can not

support parallel encryption processing of multiple blocks, but the decryption process can

be performed in parallel [49].

71

5.1.4 Output Feedback (OFB) Mode

OFB mode is similar to CFB. The only difference is that the rightmost s bits of the

input shift register are replaced by the s least significant bits from the preceding output of

the encryption system. The ciphertext is the XOR of the s-bit plaintext and the first s bits

from the output of the encryption system. The IV used in OFB mode must be unique for

each execution of the mode under the given key. The encryption and decryption process

structure of OFB is shown in Figure 5.4.

IV IV

128 128
Key Encryption Encryption .1'11--r- Key

Ciphertext
Plaintext

Figure 5.4 Output Feedback (OFB) Mode

One advantage of the OFB mode over CFB mode is that the bit errors that occur in the

communication channel in one segment of ciphertext will not propagate to the other

segments. In CFB mode, since the s-bit segment of ciphertext is a part of the input to the

encryption system, a one-bit error in the channel results in many bits of errors and the

downstream data will be corrupted until the shjft register shifts erroneous bits out. The

disadvantage of OFB is that it is more vulnerable to a message stream modjfication attack

than the CFB mode [1]. For both encryption and decryption in OFB mode, the current

output depends on the preceding output of the encryption system and multiple segments

processing can not be supported unless the IV and encryption key are known beforehand.

72

Just like CFB mode, only the encryption functionality of the block cipher is needed in

both the encryption and decryption processes.

5.1.5 Counter (CTR) Mode

In CTR mode, the input to the block cipher encryption system is a counter. The counter

can be initialized as any string of 128 bits, and it increases for each block as the input into

the encryption system to produce a sequence. The ciphertext is the XOR of the plaintext

and the sequence as output from the encryption system. This sequence of counters must

be different from every other block for each block of plaintext [51]. There is no chaining

in counter mode. The encryption and decryption process structure of CTR is shown in

Figure 5.5.

Key Encryption Encryption 1'4---- Key

Plaintext Ciphertext

Ciphertext Plaintext

Figure 5.5 Counter (CTR) Mode

The CTR mode can support parallel performing of multiple blocks of data in both

encryption and decryption, which can offer high speed throughput by parallelism.

Therefore, the CTR mode is widely used in high-speed applications with pipelined

architectures for ATM security and IPSec. CTR mode also only requires the

implementation of encryption functions for both the encryption and decryption processes.

Moreover, the CTR mode has similar error propagation characteristics to OFB [49].

73

5.1.6 Other Modes of Operation

Also, NIST recommends several combined modes for authentication and

confidentiality, such as Cipher-based Message Authentication Code (CMAC) mode,

Counter with Cipher Block Chaining-Message Authentication Code (CCM) mode and

Galois Counter Mode (GCM). In this thesis, we only focus on the implementation of the

five basic confidentiality operation modes of the AES system.

5.2 Five-mode System Architecture

In order to integrate five modes operation into our AES system, we design a five-mode

AES encryption/decryption system as illustrated in Figure 5.6. In this five-mode system,

the encryption/decryption core is our original AES compact hardware implementation. A

number of selectors are used to choose and differentiate the data flow for each mode in

encryption or decryption.

A 5-mode 128-bit multiplexer located before the AES encryption/decryption core is

used to choose appropriate forms of input into the AES core for each mode. The input in

ECB mode is the simplest, which directly connects to the original plaintext. The input in

CFB and OFB modes comes from the shift register, and the input in CTR mode comes

from the counter. The input in CBC mode is most complex, and uses the original

ciphertext for decryption and the XOR of plaintext with feedback from AES core output

in encryption. Accordingly, we use a multiplexer to differentiate encryption and

decryption, and before it, we have another multiplexer in encryption dataflow to choose

IV for first block data or the feedback for all other blocks.

Another 5-mode 128-bit multiplexer is put at the end of the system to choose the

correct form of data as the system output. The output of ECB mode is also just the direct

output from the AES core. The output of CFB, OFB and CTR modes are all XORs of the

original input to the system with the output from the AES core. The output of CBC mode

also has to differentiate between encryption and decryption by a multiplexer such that in

encryption, the ciphertext is the direct output from the AES core, and in decryption, the

output of the system is the XOR of the original input to the system with the output from

the AES core.

74

IV IV

.~S Eucryptiou-Decr)'"})tiou Systea:n

Output

Figure 5.6 Five-mode System Architecture

There are three multiplexers on the right side of Figure 5.6. The middle one only

chooses IV for the first block of data in CBC mode, and in all the other situations, this

multiplexer chooses the plain input into the system. The multiplexer on the bottom is

used to differentiate the feedback into the shift register between encryption and

decryption for CFB mode. In encryption the feedback to the shift register for CFB mode

is the XOR of original input to the system with output from the AES core, and in

decryption the feedback is the original input to the system. The multiplexer on the top is

used to choose the feedback to the shift register between CFB mode and OFB mode. In

OFB mode the feedback is always the output from the AES core, for both encryption and

decryption. The feedback for CFB mode comes from the chosen result of the multiplexer

on the bottom right.

Another two important components in this diagram are the shift register for CFB and

OFB mode and counter for CTR mode. The shift register is initialized as IV, and shifts s

bits in each clock cycle. The rightmost s bits are replaced by the feedback during the

shifting. We implemented two different sizes of s, 8-bit and 128-bit. The counter is also

75

initialized as IV and increments by 1 for each subsequent block of data. The maximum

length of the counter is 128 bits. But to reduce the complexity, we have only

implemented a 64-bit counter that is able to encrypt 264 blocks of data without changing

IV, which is big enough for practical applications. So the counter only increases the least

significant 64 bits in the IV and leaves the most significant 64 bits unchanged.

The CBC, CFB, OFB, and CTR mode of our system all require an initialization vector

(IV) as input. CBC and CFB modes require that the IV is unpredictable, and OFB mode

requires that the same IV can not be used for more than one message. Therefore typically,

the IV is generated from a random number generator.

5.3 Five-mode System Testing and Synthesis

The five-mode system is implemented by using 0.18-um CMOS standard cell library

technology. The resulting circuit has the size of 11.3k gates (based on a 64-bit counter)

with maximum clock frequency of 47.2 MHz. The throughput of ECB, CBC, CTR, CFB

(s=128) and OFB (s=128) is 120.88 Mbps. When sis 8-bit, the throughput of CFB mode

and OFB mode is 7.56 Mbps, which is one sixteenth of that of s =128-bit.

We have tested our five-mode system by using the test vectors that were published in

NIST standards [49]. The tests were executed by saving these test vectors in one file for

each operation mode, and using this file as the input to the five-mode system. The outputs

from the system were also stored as files and compared with the outputs in [49] to verify

the correctness of our results. The testing waveforms and files are included in Appendix

C.

5.4 Conclusion

Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher

Feedback (CFB) mode, Output Feedback (OFB) mode, and Counter (CTR) mode are

five modes of operation defined for symmetric block ciphers. Although ECB is the

simplest mode, it is not as secure as other operation modes. CBC is an appropriate

operation mode to encrypt long messages, but it can not support parallel processing of

multiple blocks. CFB and OFB are two operation modes that use the block cipher AES as

76

a stream cipher. In both these two modes, only encryption functionality is needed. CTR

mode is more and more popular in high speed applications with pipelined architecture

because of the advantage of supporting parallelism. The five-mode AES system

integrates all these five operation modes together and is adaptive to various practical

applications. The resulting five-mode circuit has the size of 11.3k gates (based on a 64-bit

counter) with maximum clock frequency of 47.2 MHz.

77

Chapter 6

Design of AES Encryption System with

Concurrent Error Detection

High reliability and resistance to malicious attacks are desirable properties of any

hardware implementations, especially for sensitive devices like AES cryptographic chips.

Concurrent error detection is an effective method to protect the AES system from the

malicious faults that are deliberately induced into cryptographic implementations by

attackers [52]. This attack is named fault based cryptanalysis, and tries to break the

system structure (e.g. reveal the key) from the fault based side-channel information, that

is, by analyzing the obtained erroneous outputs. In this chapter, we will investigate fault

propagations in the AES system and try to incorporate space efficient error detection

techniques into our compact AES implementation.

6.1 Fault Based Cryptanalysis

Although today's hardware processor is relatively reliable, it is still possible and

practical for opponents to intentiona~ly induce faults into the hardware computations,

especially for simple and small devices such as smartcards. Fault based cryptanalysis [20]

is a powerful attack technique that deliberately injects faults into the cryptographic

devices and exploits the fact that the erroneous computations leak secret parameters or

sensitive information about the implementations. This attack idea was first proposed in

[53] and applied to public-key cryptographic devices. It succeeded in breaking the RSA

with Chinese Remaindering Theorem (CRT) using only a correct and a faulty signature

of the same message. E. Biham, et al., [54] extended this attack to symmetric

cryptosystems and demonstrated the attack against DES. They called the fault attack

differential fault analysis. After the adoption of AES, some publications exploited

differential fault analysis against AES [20] [55]. The results show that AES is sensitive to

78

fault analysis and the recovering of the secret key can be achieved by using a small

number of faulty ciphertexts under certain hardware fault models.

6.1.1 Fault Models

Different fault based attacks are associated with different assumptions for fault models.

In [53], D. Boneh, et al., use a fault model that a transient fault is induced at a random bit

location in one of the registers at some random intermediate round in the computation,

and the fault inverts the bit value either from zero to one or from one to zero. E. Biham,

et al., [54] use a similar fault model but also discuss transient and permanent faults. In

[20], Blomer and Seifert use a more restricted model for implementation independent

attacks that the attacker can set a specific memory bit to a specific value at a precise time.

Therefore, we generally categorize the fault models from several aspects [56]:

(1) Permanent or Transient

A permanent fault damages the device in a permanent way. It fixes the value of a bit

to a constant 0 or 1 and behaves incorrectly in each computation loop, which results

in a variable number of injected faults depending on the original bit value. In the

worst case, it may add up to one fault at each loop. Permanent faults include freezing

a memory cell to a constant value or cutting a data bus wire to create an open circuit.

On the contrary, a transient fault is a fault that occurs temporarily in one specific

computation. In practical digital applications, transient faults form the majority of

errors occurring inside of devices, and they are caused mainly by outside disturbances

such as radioactive interference, suddenly changed clock frequency or abnormal

voltage in the power supply [56].

(2) Control of fault location

Some attacks require that the attackers have complete control of the resulting fault

location by inducing the fault in a very specific location, while other attacks allow

more flexibility as loose control or no control of the fault location.

(3) Precision of timing

Similar to control of fault location, some attacks need very precise control of fault

occurrence time to induce the fault at a specific time during the computation. Others

do not care about occurrence time with loose control or no control.

79

(4) Fault types

There are usually several typical types of fault considered, such as flip the value of

one bit or one byte in register, stuck at 0 or stuck at 1 fault, flip one bit in memory but

only in one direction (e.g. only can be flipped from 1 to 0), and set or reset the value

of any target bit [20].

(5) Number of faulty bits

The number .of induced faulty bits is important for a fault based attack. A single-bit

fault is the specified fault in many attacks. A multiple-bit fault is also often

considered in fault based cryptanaly~is.

Although some attacks do not care about which kind of faults, usually the fault model

is very important to the feasibility of a fault based attack. So, doubts are often raised by

researchers and industry about whether these fault models are possible or demonstrable in

practice or not. Actually we could say that if any type of fault can be induced, then any

cryptographic devices can always be easily broken [56].

6.1.2 Practical Fault Induction Techniques

As we have mentioned, smartcards are the devices that are most susceptible to induced

faults by physical experiments. Several induction methods are practical to apply to

smartcard ICs [56]. For example, changing the voltage of power supply to very high or

very low can cause the smartcards to compute erroneously, since the supply voltage range

for a smartcard to work properly is between 4.5V to 5.5V, as required in ISO standards.

This technique is called a spike attack. Another technique called a glitch attack is

implemented by changing the external clock frequency of smartcards, which can induce a

faulty computation into the devices during the operation. Light attacks, by applying

intense light sources, are practical to induce transient faults such as changed individual

bit values in an SRAM. Microwave radiation attacks and temperature attacks are also

potential ways to induce faults and deviate behaviors of smartcards. Electromagnetic

attacks by inducing an eddy current in a coil near the processor or memory can set or

reset any individual bit in a memory cell such as RAM, EPROM or Flash [20].

80

6.2 Fault Propagation in AES Encryption System

Because of the cliffusion of the AES algorithm, which is a very important property of a

good and secure cryptogaphic algorithm, a single transient fault in the computation will

result in multiple errors in the final output data. Here we define the word "fault" as a flaw

on the operation of logic circuit caused by malicious attacks, and the word "error" as the

errorenous bit result of the output after faulty computation. The fault model used in our

experiments is a single transient fault induced by the malicious attackers. Multiple faults

are mentioned as well. The faults are likely to be induced at any logic point within the

cryptographic circuit. In this section, we will disscuss the fault propagation behaviors in

both the AES encryption datapath and key expander under the normal operation mode.

This disscusion is important because how a fault in the exectuion of the algorithm affects

the output of each function and the final output result is basic to the design and

measurement of error det~ction schemes for the AES system.

6.2.1 Analysis of Single Fault Propagation

A single transient fault is the basic and most often considered type of faults for

hardware implementations. Here we refer to the single transient fault as a 1-bit stuck-at

fault in gate wiring or a 1-bit memory flip fault. We will study the effect of a single fault

to the output of each round function and to the final output result in this subsection.

6.2.1.1 Single Fault Propagation in Each Round Function

There are four functions in each encryption round: Shift Row, Byte Substitution, Mix

Column and Add Round Key. Here we will mainly focus on the encryption processing.

For Shift Row, the operation is simple shifting, so a single fault at beginning of this

function results in only one error at the output of this operation. Add Round Key is bit

wise XOR of the input data and round key. If we assume that the round key is faultless, a

single fault in Add Round Key also only results in one error at the output since each

output bit only depends on the corresponding bit in the input to the operation.

For Byte Substitution and Mix Column, the fault propagation is more complex. The s

box is nonlinear and provides a good diffusion property. We applied single stuck-at-0,

81

single stuck-at-1 and single bit flip to each bit of the input of the s-box with equivalent

probabilities, and the analysis result of the number of output errors is shown in Figure 6.1.

From this figure, we can see that the most frequent number of errors is 4, and the number

of errors seems to be following a binomial distribution. This analysis result is consistent

with the simulation results i~ [19]. Further analysis shows that the distribution of the

errors is uniform and the each bit is equally likely to be erroneous [19]. Actually from the

result data, we can see the effect of single bit flip is the same as the sum of single stuck

at-0 and stuck-at-1 error-caused situations since the stuck-at fault may not cause errors

but bit flip fault definitely results in errors in the output bits.

Now let us look at the Mix Column function. The most important component in Mix

Column operation is the Xtimes operation. From the diagram of the Xtimes operation in

Figure 4.6 we can see that if the single fault is injected at most significant bit x7, four bits

in the output x4, x3 , x1 and x0 will be erroneous. But if the single fault is injected at

another bit, only one bit in the output will be erroneous. Assuming each bit in the input

has the same probability of fault induction, the output of Xtimes operation has 12.5%

chance of 4 errors and 87.5% chance of 1 error. This property of Xtimes makes the error

distributions in output of Mix Column and Inverse Mix Column as shown in Figure 6.2

[19]. Mix Column has 12.5% chance of 11 errors and 87.5% chance of 5 errors, and

Inverse Mix Column has 12.5% of 11, 19, 21 and 23 errors separately and 62.5% of 11

errors.

C/1 700 1:
0

:;:::
Ill 600
::I
~ 500 en o bit flip fault
~ 400 -
iij • stuck-at-0 fault
::I 300 - -u. o stuck-at-1 fault -0 200 - 1-- -....
CD -..0 100 ll- 1-- -
E r., I I~ ::I 0 z

1 2 3 4 5 6 7 8

Number of Errors

Figure 6.1 Error Distribution in S-box for Single Fault

82

0.8
Q)

E o.6
c:
Q)

~ 0.4
Q)
c..

0.2

0 ~ ~ ~ ~ ~ 0 ~ ~ ~

Number of Errors

o Mix Column

• lnl.t€rse Mix Column

Figure 6.2 Error Distribution in Mix Column/Inverse Mix Column for Single Fault

6.2.1.2 Single Fault Propagation to Final Encryption Output

A single fault could be induced at the beginning of the round, between the internal

round functions and inside of the round functions. The simulation experiments [19] show

that the single fault propagation has the similar error distribution trends in the final

encryption output for these three induction situations. When the fault is induced in the

rounds 1 to 8, no matter whether it is located at the beginning of the round, between the

functions or inside the functions, the error number in the final output is around the

average of 64 [19]. Actually this error number 64 out of 128 bits implies that the output

result is just a completely random 128 bit block. This also means that a single of fault in

round 1 to 8 can change the ciphertext into a totally different output. However when the

fault is induced in round 9 or 10, the resulting errors in the final output is much fewer

than 64. For example, if the fault is injected at the beginning of the last round or inside of

the Byte Substitution operation, only 4 errors are in the final output. On average if the

fault is induced in any location after Byte Substitution in the last round, only 1 error is in

the final output. The decryption process has the similar error distribution trends of single

fault propagation to final decryption output.

6.2.2 Analysis of Multiple Fault Propagation

83

....

Multiple fault propagation analysis is more complex than the single fault. Actually a

permanent fault in the circuit of an iterative architecture can be taken as multiple transient

faults in the same spot at every round. Hence we can take permanent faults as one kind of

multiple fault. The simulation experiments of multiple fault injection in [19] show that

the average number of errors in the final output data is 64, no matter whether the faults

are induced in the same round or in the different rounds. The decryption process also has

the same multiple fault propagation trends.

6.2.3 Fault Propagation at Key Expander

The key expander is an important part in the AES algorithm. For RAM-based

implementations of the key expander, the 1-bit memory flip fault is applicable. In this

case, a single fault results in only one bit error at round keys. Since the round key is

XORed with data in Add Round Key operation, this one bit error can be taken as one

single fault at the input to Add Round Key function, which has been analyzed above. For

generating keys on-the-fly implementations, if one single fault is injected into the key

expander, multiple errors will result in the generated round keys. A single fault in the first

round of key scheduling results in 360-bit errors out of 11 128-bit round keys [19]. The

number of errors is continuously decreasing with the single fault induced into the later

rounds as shown in Figure 6.3 [19]. The single fault in the last round only causes 1 bit

error in the round keys.

c: 400

!!! 350
E w Cl) 300

0 ~ 250 ... ~
~ -g 200

§ 5 150
za:
Cl) 100
C)

f! 50

~ 0

•
• ..

0 2

•
•

•
• ..

4 6 8

Round of Single Fault

Figure 6.3 Single Fault Propagation in Key Expander [19]

84

10

6.3 Concurrent Error Detection (CED) Techniques

Concurrent error detection techniques (CED) are widely used to ensure data integrity

in digital systems. CED checks the system operation on-line during the computation to

guarantee the system output is correct. If any erroneous output is produced, CED will

detect the presence of the faulty computation, and the system can discard or suppress the

erroneous output before transmission. Thus, the encryption system can achieve high

reliability and resistance to malicious fault based side-channel attacks. Any CED

technique will introduce some overhead into the system, and a CED scheme generally

contains another unit that predicts the system output or some characteristic parameter of

the system output used to check the correctness of the system. For the concurrent error

detection in block ciphers, hardware or time redundancy and error detection codes are

useful techniques, and the proposed scheme efficiency is measured from several aspects,

such as hardware overhead, detection latency, influence on algorithm performance and

fault detection coverage.

6.3.1 Techniques based on Hardware or Time Redundancy

Straightforward duplication of the encryption or decryption hardware for self-checking

is the simplest form of redundancy technique for concurrent error detection. The output

of the duplicated circuit is compared with the result of the original hardware, and any

mismatch means the detection of errors. The method can detect any type or any number

of fault injections if the duplicated module is fault-free, and is highly likely to detect any

errors even if faults occur in both the original and duplicated hardware as long as the

faults do not occur at the same location. Since the original circuit and duplicated module

are working simultaneously, this technique does not cause any notable time delay or

degradation of the original hardware performance. However, it requires considerable

hardware overhead of more than 100%. Therefore, this method is not suitable for area or

cost critical applications.

A variation of duplication is the diverse hardware redundancy [57]. For the redundant

system with identical module duplication, if the identical fault occurs in both modules at

the same location, the two circuits will have the same results and the system will fail to

detect this error. So we can use hardware diversity design to implement the duplication

85 .

circuit in other ways but perform the same function. For example, for AES s-box, we can

implement it by arithmetic in GF ((24
)
2

) for encryption circuit and implement it by

arithmetic in GF (((22
)

2
)

2
) for the duplicated circuit. Thus even if the same fault occurs

inside the s-boxes, the two circuits will have different outputs. Note that there may be

different delays of the output from diverse redundant circuits.

The time redundancy technique is to encrypt or decrypt the same data a second time

using the same datapath and compare the two results. This method has more than 100%

time overhead, and is only applicable to transient faults. For permanent faults in the

circuit, since the same faults occur in both computations, the system can not detect them.

A hardware and time redundancy approach for AES system was proposed in [58] by

employing the inverse relationship between the encryption and decryption process. This

method performs a test decryption of the encrypted data and then checks if the decrypted

data matches the original message or not. In this paper, the authors exploited the inverse

relationship between the encryption and decryption process at the algorithm level, round

level and individual function level. Obviously, the method is able to detect any type and

any number of faults, but it needs a separated datapath for encryption and decryption. For

encryption/decryption integrated datapath, like our AES compact implementation, this

method means also more than 100% hardware overhead. The detection latency of the

algorithm level is equal to the time needed for decrypting a block of data. With finer

granularity, the detection latency is smaller but requires more hardware overhead for

comparators since the comparisons should be done at each round or each function.

6.3.2 Techniques based on Error Detection Code

Error detection coding techniques have been applied to block ciphers in several papers,

and the fault detection coverage usually depends on the particular adopted coding

schemes and hardware implementation details. In [59], the plaintext is encoded before

being encrypted by adding a selected error detection code. After the transmission through

the channel and decryption, a checking circuit is used to check if there is any error in the

message or not. The area overhead of this approach for encoding and checking is

significantly smaller than the techniques of hardware redundancy. But it has a large fault

detection latency, which makes the system not resistant to fault attacks because the

86

detection comes after the erroneous ciphertext has been already transmitted and used.

Moreover, the encoding of the message brings some performance penalty since the added

error detection code adds bits into the original useful plaintext. Another CED approach

for the AES algorithm employs systematic nonlinear robust error detection codes [60].

This code scheme has better fault detection coverage than a normal linear code, and the

design introduces a linear predictor to protect the encryption, decryption and key

expander with about 50% hardware overhead. Both of these two methods only exploit

the features of the coding and algorithm, and are not specific to different hardware

implementations.

Parity checking is another widely used CED technique in digital systems. The parity

code indicates that the number of 1 's in the binary digital data is even or odd. The CED

techniques using one dimensional parity checking applied to AES were proposed in two

papers: [61] and [62]. Since the parity code is the simplest error detection code, the CED

techniques using parity checking generally have the advantage of low hardware overhead.

The detection latency and fault detection coverage depend on how many bit parity codes

the system uses and the locations of the checking points. In [61] a low-cost approach of

concurrent parity checking for the AES algorithm is proposed. In this method, a parity bit

for a block of 128-bit data is used, and this parity of the 128-bit input is modified

according the process steps of the AES algorithm to generate the prediction of the output

parity. The predicted parity then is compared to the actual output parity of each round to

detect if there is any error in the system. The checking points are set at the end of every

round, so the detection latency is the time needed to process data for one round.

To modify the parity by each step, we need to know the parity change of each round

function. In [61], for the Byte Substitution step, this method uses the RAM implemented

s-boxes, and adds one bit for each 8-bit s-box output to show the XOR of the parity of the

8-bit input and the parity of the corresponding 8-bit output. Actually this bit represents

the modification of the parity from input to output. If this bit is '0', that means the parity

is not changed after the Byte Substitution function. Otherwise '1' means the parity is

changed. Shift Row does not change the parity of 128-bit data at all. The Mix Column

function also does not change the parity for each column of 32-bit data, as well as total

128-bit data. So no circuit is needed for predication of parity to these two steps. The final

87

step, Add Round Key, changes the parity according to the parity of each round key. So a

simple XOR is enough to predict the output of this function . Thus we can see that the

error detection circuit is very simple and costs low hardware overhead. The prediction

circuit of parity for each round is illustrated in Figure 6.4.

J"Q

P{x)

Figure 6.4 1-bit Parity Code Based CED Structure [61]

For the detection coverage, although this paper claimed that all possible single-bit

faults are detectable by this approach, in fact, some faults are not detected. For multiple

faults, since the number of errors in the final output is about 64 as we mentioned above, a

lot of even number of erroneous output can not be detected. Even for single stuck-at or

bit flip fault, this approach can not detect all of them. Consider the following:

(1) If the single fault is injected at the input to each function, all of the errors caused by

the single fault can be detected by parity checking according to the fault coverage

capability analysis in [61].

(2) If the single fault is injected inside of Mix Column, Shift Row or Add Round Keys

operations, all of the errors can be detected. Because all single faults inside of Mix

Column function result in an odd number of erroneous bits at the output as we discussed

88

before, they can be detected by parity checking. Since Shift Row and Add Round Keys

operation are only simply implemented by wiring and XOR gates, all single faults results

in single error as well, which can be detected by parity checking.

(3) If the single fault is injected inside of the s-box circuit, the situation is a little

complex. If the s-box is implemented by RAM and the single fault is bit memory flip

fault, this fault can be detected since there will be only one error in the output of s-box.

But if the single fault is located in the address decode circuit and results in accessing a

wrong location which has a correct parity bit, this kind of fault can not be detected by

parity checking method. Further, if the s-box is implemented by combinational logic (as

in our compact implementation), the single fault inside of s-box results in 4 errors on

average, which means a lot of even number of errors can not be detected. Although it is

claimed in [61] that if all the bits of s-box and the parity bits are separately implemented,

all of the single faults can be detected since by this implementation only single errors

result, this method of implementation of s-box is not reasonable for compact

implementation, because it results in large hardware resources for s-box implementations.

For compact implementation after optimization for minimal area, many 2-bit or 4-bit

errors are generated in the s-box output by single stuck-at faults . After simulation, we

find that only about 48% of the errors due to single fault can be detected.

Another CED scheme using parity checking for AES was proposed in [62]. This

general idea of this method is similar to [61], but it associates one redundant parity bit

with each byte of the 128-bit data matrix. Thus the parity code for this approach is 16 bits.

This 16-bit parity code uses more hardware overhead for parity code storage and

prediction, but it has better fault detection coverage than the 1-bit parity code scheme. As

in 1-bit parity code method, 16-bit parity code scheme is able to detect all single bit

errors and all odd number of errors in the output. But the 16-bit parity code can also

detect many even number of errors when the erroneous bits are distributed over the 128-

bit data and at least one byte of the data is affected by an odd number of errors [62]. This

approach is applied in [62], also assumes RAM implemented s-boxes, but the s-box uses

a 9-bit input which consists of 8-bit original input plus the parity of this byte, and the

output is also 9-bit. This 512 x 9-bit memory implementation of s-box can detect input

Parity errors and some internal memory faults, but it still can not detect the internal faults

89

in the address decode circuit which results in an even number of errors at the output of s

box. To circumvent this problem, this paper proposed to add another memory to store the

parity bit or correct output for checking, which actually means the duplication of the s

box. In fact, the 512 x 9-bit memory plus additional memory for checking uses far more

hardware resources than simple duplication of the s-box. Therefore, this method to

improve the fault detection coverage for s-box is not practical. Also since the Jvrix

Column operation does not preserve the parity of its input at the byte level, this method

needs a circuit for parity prediction of Mix Column function for each byte. Another

feature of this method is that it exploits three different levels of check points, such as at

the algorithm level, round level and individual function level, which is similar to paper

[58]. Locating checking points at the end of each function yields more cost in comparison
'

but has shorter detection latency and higher fault detection coverage. Locating the

checking points at the round level and algorithm level has smaller hardware overhead

with higher latency and lower fault detection coverage.

6.4 Proposed Schemes for Error Detection in AES

Encryption System

Based on the review of concurrent error detection techniques and proposed schemes

for CED of the AES encryption system, we propose two error detection approaches for

AES implementations combining both parity checking and hardware redundancy

techniques. After the earlier analysis of fault propagation and fault detection coverage of

parity codes, we find that the s-box is extremely nonlinear, so the standard linear error

detection codes are difficult to use. The parity codes for the s-box are useful in checking

for an odd number of errors but many faults resulting in an even number of errors can not

be detected. Therefore, hardware redundancy is a good choice in this case, and is

particularly attractive when the s-boxes are implemented using a compact approach. For

Mix Column, Shift Row and Add Round Key operations, the parity checking schemes are

effective with small cost, so we adopt parity checking for these operations. Our proposed

schemes are implemented and analyzed based on our compact hardware implementation

90

of the AES algorithm, and we have applied the CED schemes to the whole AES system

including encryption, decryption datapath and key expander.

6.4.116-bit Parity Code Based CED Scheme

We adopt a 16-bit parity code instead of a 1-bit parity code even though the 1-bit parity

code has smaller hardware overhead, because the 16-bit parity code achieves better fault

detection coverage for multiple faults and internal faults inside of round functions. Each

bit in the parity code represents the parity of each byte in data. We duplicate the s-boxes

and use parity prediction and checking for registers and bus lines. For parity prediction of

Mix Column, we use the same modification algorithm as that in [62]. For the scheduling

of the check points, we perform a check at the output at each round of operation to

achieve shorter detection latency and higher fault detection coverage. The objective of

the design is to yield fault detection coverage close to 100% for the single faulty bit

model and high coverage for multiple fault scenarios. The single faulty bit model we use

is single transient fault as 1-bit stuck-at-0 or stuck-at-1 fault in combinational logic and

gate wiring or 1-bit flip fault in registers.

Add Round Key

Figure 6.5 16-bit Parity Code Based CED Structure

91

The 16-bit parity code based CED scheme structure is shown in Figure 6.5. The

variables s,a, s,J, s,z and sr3 are four bytes of data in the row r, and Pro, Prl,Prz andp,3 are

their corresponding four parity bits. In this figure, we only demonstrate 4-bit parity for

four bytes of the error detection architecture, and the same architecture is extended to all

16 bytes of data in the hardware implementation. Here we will explain the parity

prediction and checking for each function in more detail:

(1) Data Register and Shift Row.

We need a parity generator to generate the parity code of the original and updated

data and put a 4x4 parity code into four 4-bit shift registers according to the

corresponding data byte position. These small parity shift registers are shifted and

loaded with the same pace as the data registers. A parity checker is placed at the

output of the registers to detect the fault in the data registers and Shift Row

transformation.

(2) Byte Substitution.

Since the simple parity checking is not sufficient for the s-box in terms of fault

detection coverage after the careful examination of our combinational logic s-box

based on arithmetic in GF ((24
)
2
), we identically duplicate s-boxes with 100% percent

of hardware redundancy. Diverse duplication seems not necessary in our scope. An

equality checker is located at the output of the s-boxes to check any fault in s-box

computation. Moreover, we need another parity generator to generate the new parity

bits after the Byte Substitution transformation for the use of parity checking of Mix

Column.

(3) Mix Column.

As we mentioned, we adopt the same Mix Column parity prediction method as in [62].

The prediction equations are represented as:

92

where P,rc is the new parity bit, Pre is the old parity bit, srPJ is the most significant

bit of byte Src, and rand c represent the row rand column c of the data block.

We also use the parity prediction equations for Inverse Mix Column, and represent

them as below:

P. = p EE> p EE> p EE> s<7l EE> s<7l EE> s<6l EE> s<6l EE> s<Sl EE> s<Sl EE> s <Sl EE> s<s)
Oc Oc I c 2c Oc 3c lc 3c Oc l c 2c 3c

P. = p EE> p EE> p EE> s<7l EE> s<7l EE> s <6l EE> s <6l EE> s<Sl EE> s<Sl EE> s <Sl EE> s<sl
lc l c 2c 3c Oc lc Oc 2c Oc lc 2c 3c

P. = p EE> p EE> p EE> s<7l EE> s<7l EE> s<6l EE> s<6l EE> s<Sl EE> s<s) EE> s <Sl EE> s<Sl
2c Oc 2c 3c lc 2c lc 3c Oc lc 2c 3c

P. = p EE> p EE> p EE> s<7l EE> s <7l EE> s<6l EE> s<6l EE> s <Sl EE> s<s) EE> s<s) EE> s<Sl
3c Oc lc 3c 2c 3c Oc 2c Oc i c 2c 3c

After the Mix Column transformation, we have a check point to detect the fault in this

function.

(4) Add Round Key.

Since this function is simple XOR gates, the prediction for the new parity is just the

XOR between the old parity and round key parity for each byte. Also, we have a

check point after this function.

A error-found signal will be triggered if any of the check points detect any error in the

system. The system can detect the errors shortly after the faults are induced because the

detection latency is only the output delay of each component. Once the error-found signal

is triggered, it shows an exception in the system and the currently processing data is

discarded immediately.

For the key expander, since the key scheduling uses similar functions as the datapath,

we can easily applied the same scheme to the key expander as illustrated in Figure 6.6.

Similarly, kr0, krJ, kr2 and kr3 are four bytes key in the row r, and Pro, PrJ, Pr2 and PrJ are

their corresponding four bits of parity.

93

32 bit~ 4 bit~

I KrC I Kr· Kr:< I Kr~ I Pr< I Pr~ I "" / I Pre I Pr· l Parity I
Ji

Checkin~

"'\ / "' :+: '\... v k l Parity of I
Ron[i: 1

\ MUX I \ MUX I I I
~

Ron[i:

"""
/ l Parity I

Checkin~

I / "'II Parity

I I
Generatior

Inverse Mix Column

K ey_out ~
Inverse Mix

Column Parity

"' / Predictor

I Parity I
Check in~

/ "' Figure 6.6 16-bit Parity Code Based CED for Key Expander

6.4.2 32-bit Parity Code Based CED Scheme

If a circuit is designed in such a way that there IS no sharing among the logic

generating each of the outputs, a single fault only affects one output bit position. But the

implementation using no logic sharing results in large area overhead. In our compact

AES implementation, we use a lot of hardware sharing and reuse to minimize the area

and cost. Thus the 1-bit parity code is not a good choice. We can partition the data into

different parity bits so that there is no logic sharing among the logic of the outputs

belonging to different parity bits. In our iterative implementation, fours-boxes separately .

process 4 bytes soc. SJc. s2c and SJc at the same time. Therefore, we can use 8-bit parity

code for each column and totally we need a 32-bit parity code for a 128-bit block

illustrated as:

Sao Sot So2 So3

SIO sll s,2 s,J

s 2o S21 s 22 s 23

S3o s3, S32 S33

Po p, P2 PJ

94

Where Src is the byte of data in 4x4 array located at row r and column c and P c is the

parity code for column c. Actually, each bit in this parity code is the XOR of four

corresponding bits in the input data. For example, the most significant bit in po is the

parity of the most significant bits in input bytes s00, s1o, s2o, and SJo. Since there is no

hardware sharing between the 4 bytes in each column for Shift Row, Byte Substitution

and Add Round Key operations, the 32-bit parity code can effectively detect all single

faults inside of these transformations and many multiple faults as long as the errors do

not occur at the same positions in the bytes. For the Mix Column operation, 4 bytes in

each column is mixed together to produce the new column, but the 8-bit parity code does

not change. The 32-bit parity code CED scheme structure is shown in Figure 6.7.

~
I Shift Row I Parity

Prediction

I Soc I I S1c I I S2c I I S3c I I PC I p· P2 I p~ I
~ ~ ~ ~

~ /~~~~~~~~ 1'\...
I Parity I

Checkin[

1/ .. '\
~

I S-box ~ I S-box ~ I S-box ~ I S-box ~ Byte Substitution
Parity Predict01

1"- / l Parity I
Checkin[

~ IL '\

I Mix Column I
1"- / l Parity I

Checkint

IL '\...

I Add Round Key I
£ I Round Key I

1 Parity

1"- 7 l Parity ~
Checkin[

IL "
Figure 6.7 32-bit Parity Code Based CED Structure

95

Implementation details of each block are described as:

(1) Data Register and Shift Row.

We use a 4-byte register to store the 32-bit parity code for the original and updated

data. This register performs parallel load from the Shift Row parity predictor when

the data registers perform the shift operation. The Shift Row parity predictor

generates the parity code after the Shift Row transformation and the prediction

equations are:

(2) Byte Substitution.

p~ = s00 EB s 11 EB s 22 EB s 33

p; = Soi EB s, z EB s 23 EB s 3o

p~ = Soz EB s i3 EB Szo EB s 3I

p; = s03 EB s10 EB s 21 EB s 32

For the Byte Substitution parity predictor, there is no better way than to just duplicate

the s-boxes and generate the parity code for the output. Further equality checking or

parity checking after Byte Substitution transformation can be used.

(3) Mix Column.

Since the parity code does not change during Mix Column operation, we do not need

any prediction circuit for this part.

(4) Add Round Key.

The prediction for the new parity is just the XOR of the old parity and round key

parity.

Like the 16-bit parity code scheme, we also locate check points at the end of each

round function to achieve higher fault detection coverage and shorter detection latency.

For the key expander, the 32-bit parity code prediction is different than that of the

datapath. For the 16-byte round keys from ko to k1s, each 4-byte block in one key register

is matched with the corresponding data block. So the parity code for key expander is

represented as:

Pko = k0 EB k 1 EB k2 EB k3, p kl = k4 EB k5 EB k6 EB k7

p k 2 = k8 EB k9 EB k10 EB k11 , Pk3 = k11 EB k13 EB k14 EB k15

96

After the examination of the key algorithm, we calculate the parity prediction equations

for the key expander as:

(1) For encryption

(2) For Decryption

P~o = Pkey_out ffi Pko ffi Rcon[i]

P~1 = P~o ffi Pkl

P~z = P~1 ffi Pkz

P~3 = P~z ffi Pk3

P~o = Pkey_out ffi Pko ffi Rcon[i]

P~1 = Pko ffi Pki

P~z = Pk! ffi Pkz

P~3 = Pkz ffi Pk3

The detailed scheme structure for key parity prediction is shown in Figure 6.8.

Pkey_out

Rcon[i]

Figure 6.8 32-bit Parity Code Based CED for Key Expander

97

6.5 Hardware Performance Analysis and Comparison

We have implemented the 16-bit parity code and 32-bit parity code based CED

schemes for our AES compact hardware implementation, including both the

encryption/decryption datapath and key expander. We apply 0.18-um CMOS standard

cell library for the synthesis, and use Synopsys Design Analyzer as the design tool. For

the cost in terms of hardware overhead, the 16-bit parity code based CED implementation

has an overhead about 64.3% with respect to our original compact AES hardware system

and the 32-bit parity code based CED implementation has an overhead of 67.0% with

respect to the same AES hardware implementation. Since our original AES

implementation is optimized for minimal area, the hardware resources used for

concurrent error detection are also limited. The detailed hardware cost of these two

schemes is shown in Table 6.1 .

Table 6.1 Hardware Overhead of Proposed CED Schemes

16-bit Parity Code 32-bit Parity Code

Hardware Hardware Hardware Hardware
Component

Cost Overhead Cost Overhead

(gates) (gates)

Original Encryption/Decryption
4228 4228 -- --

Data path

CED for Datapath 2555 60.4% 2940 69.5%

Original Key Expander 2428 -- 2428 --

CED for Key Expander 1613 66.4% 1517 62.5%

Original AES System 6656 -- 6656 --

CED for AES System 4278 64.3% 4457 67.0%

Both of these two CED schemes have very short detection latency because both of

them perform a check at the output of each round function and four parity checkers are

needed in each iteration. However, the parity checking circuits slow down the

performance of encryption/decryption processing and result in more hardware cost for

checking. The advantage of multiple parity checkers is higher fault detection coverage

98

and quick detection of the errors. Thus once the system finds any errors, it can stop the

computation of erroneous data immediately and save the power and time to continue

useless or harmful computations.

Both CED schemes are able to detect all single faults occurring at the input of each

round, between the round transformations or inside of each round operation. The 32-bit

parity code even can detect any single fault inside of selection circuits such as

multiplexers. For multiple faults, the situation is more complex. Generally, the faults that

result in an odd number of errors can be detected by both schemes. For faults resulting in

even number of errors, the 16-bit parity code can not detect the faults that result in an

even number of errors in one byte, while the 32-bit parity code can not detect the faults

that result in even number of errors in the same bit position. For the s-boxes, since the

two schemes are based on the duplication of s-box computation, the two schemes have

the same capability to detect multiple faults in the s-box components. For Mix

Column/Inverse Mix Column function, the 32-bit parity code can not detect any faults

resulting in an even number of errors, but the 16-bit parity code can detect error scenarios

that have odd number of errors in any one among the four bytes. So the 16-bit parity code

has better fault coverage for the Mix Column/Inverse Mix Column transformation.

6.6 Conclusion

The AES system is sensitive to fault based side-channel attacks. The studies of fault

models and practical fault induction techniques indicate that the fault based cryptanalysis

is physically executable for hardware implementations such as smart cards. Because of

the diffusion of the AES algorithm, a single transient fault in the computation will result

in multiple errors in the final output data. The analysis of fault propagation reveals

several concerns about design and measurement of fault detection schemes for AES. We

adopt hardware redundancy techniques for the s-box and parity checking for Mix Column,

Shift Row and Add Round Key operations. Compared with 1-bit parity code based CED

scheme in [61], our proposed 16-bit and 32-bit parity code based CED schemes have

much better fault detection coverage for single faults and multiple faults with shorter

detection delay but also spend more hardware resources for parity prediction and

checking. Compared with 16-bit parity code based scheme in [62], our proposed schemes

99

-

can detect more faults in the s-boxes because of using hardware duplication instead of

parity checking for s-boxes. However, the duplication of the s-boxes costs more hardware

overhead than simple parity checking. The scheduling of four error checkers in one

datapath iteration also results in more hardware cost but achieves the shortest detection

latency. The proposed 16-bit and 32-bit parity code based concurrent error detection

schemes achieve 100% detection for single induced faults and many multiple faults with

about 67% hardware overhead to the original AES compact hardware implementation.

100

Chapter 7

Conclusions and Future Work

7.1 Summary of Research

The primary focus of this thesis has been to design and implement a compact

hardware-implemented AES system with concurrent error detection. The AES algorithm,

in general, has the characteristics of good performance and efficiency in hardware and

software implementation, high level of security, and flexibility over different computing

environments and operation modes. Our AES implementation is aimed to area-critical

low-end embedded applications, such as smart cards, PDAs, cell phones, and other

mobile devices.

The survey of various hardware implementation approaches and techniques for the

AES algorithm reveals the design tradeoffs between area and speed, or alternatively, cost

and performance, by using different architecture and algorithrllic optirllization methods.

Pipelining, sub-pipelining and loop unrolling architectures offer the advantage of high

throughput, but the inserting of rows of registers and the duplicating of n rounds of

functions requires significantly more hardware resources than normal structures.

Moreover, the pipelining and sub-pipelining architectures can not support the feedback

modes of block ciphers, and the loop unrolling architecture increases the propagation

delay between registers, which results in slow system clock frequency. The iterative

looping architecture is effective for compact hardware design with lirllited throughput,

which is suitable for our targeted area-critical AES hardware implementation.

By applying the discovery of linear redundancy (LR) to AES s-boxes, we have

explored a new method to implement AES s-boxes using combinational logic. This

approach only needs to implement one Boolean function for the s-box and utilizes the

transformations between the output bits to get the 8-bit result of the entire s-box. The

synthesis result shows that the LR implementation saves more than 50% of the gates of

101

the normal direct Boolean functions method, and requires 11% fewer gates than the other

two compact methods using composite field arithmetic in GF(24
) and GF(22

). Moreover,

the LR s-box implementation consumes less power than the two composite field

implementations, although more than the simple Boolean functions implementation

However, LR implementation is about 8 times slower than other implementations

because it processes the data bit by bit, not byte by byte as in the other three methods ..

To achieve a suitable design for future small low-end embedded applications, we have

applied different schemes for hardware sharing and have employed an iterative looping

structure thus reducing hardware resources to implement a compact and efficient

encryption-decryption circuit. We considered various data bus widths using a fours-box

structure and a one s-box structure, and have also applied three distinct compact s-box

implementations discussed earlier to these two structures. A thorough comparison of the

six implementations indicates that the implementation using four s-boxes based on

arithmetic operations in OF (24
) has the best trade-off of area and speed. Integrating the

key expander and datapath, the complete encryption-decryption system has a small size

requiring about 7.5K gates with maximum clock frequency 51.9 MHz, and the

throughput of the circuit is 132.92 Mbps.

In order to be adaptive to various practical applications, we optimized the compact

encryption-decryption AES implementation with the four s-box structure to support five

different operation modes: Electronic Codebook (ECB) mode, Cipher Block Chaining

(CBC) mode, Cipher Feedback (CFB) mode, Output Feedback (OFB) mode, and Counter

(CTR) mode. According to the different requirements of each operation mode, selectors,

shift registers and counters were integrated into the five-mode system to complete the

functionality for both encryption and decryption. The resulting five-mode circuit has the

size of 11.3k gates (based on a 64-bit counter) with maximum clock frequency of 47.2

MHz.
I

The AES cryptographic hardware circuit is sensitive to deliberately induced malicious

faults used in side-channel attacks. In order to gain high reliability and resistance to

malicious attacks for our AES encryption system, we proposed two concurrent error

detection schemes based on parity code checking and hardware redundancy to protect the

system from fault based side-channel attacks. The proposed 16-bit and 32-bit parity code

102

based concurrent error detection schemes achieve 100% detection for single induced

faults and detection of many multiple fault scenarios with an additional of 67% hardware

overhead to the original AES compact hardware implementation.

This thesis covers all the details about AES algorithm hardware design and

implementation, including implementation scheme, design methodology, architecture and

algorithmic optimization. Efforts are made to achieve a compact and efficient system,

which is desirable for practical low-end embedded applications. Five-mode support and

concurrent error detection provide more flexibility, reliability and increased security to

the basic AES encryption system. Synopsys simulation and synthesis CAD tools are

useed for the implementation performance analysis and comparison, such as hardware

complexity, speed and power consumption. The tradeoffs between cost and performance

is always a concern to all practical applications, and various design and optimization

techniques should be chosen based on the specific considerations and constraints.

7.2 Future Work

Based on the results obtained in this thesis, several research directions can be

suggested for future work.

• The AES encryption-decryption system can be optimized to provide more

flexibility, such as reconfigurability to three different key lengths, or even support

the functions for other encryption algorithms.

• A more comprehensive investigation of AES system power consumption can be

explored. Power optimization techniques, such as inserting additional delay

buffers to reduce the effect of hazard, can be applied to save power consumption

in addition to minimizing the area utilization, and improve the system to be more

suitable for low-end embedded applications.

• Further hardware synthesis work can be carried out to physical design, including

placing, routing and testing the design in a real VLSI device. Since FPGA

technology provides more design flexibility and hardware reconfigurability than

an ASIC approach, the AES system design can be adjusted, implemented and

tested in FPGA chips.

103

• For the proposed two concurrent error detection schemes, extensive software

simulation experiments can be carried out to evaluate the specific fault detection

coverage for multiple faults. Accordingly, optimizations can be done for the CED

schemes to improve the detection of the multiple faults occurring at any place

inside the hardware circuit.

• Linear redundancy is a very important property of the AES s-box, and further

work to apply it for implementation and cryptanalysis of the AES algorithm is

worthy to be explored.

• Testability can be another interesting and challenging topic to be explored for the

AES hardware implementation.

104

References:

[1] W. Stallings, Cryptography and Network Security Principles and Practices,

New York: Prentice Hall Press, third edition, 2003.

[2] CE Shannon, "Communication theory of secrecysystems," Bell System

Technical Journal, vol. 28, pp. 656-715, 1949.

[3] X. Lai, J. Massey, "A Proposal for a New Block Encryption Standard,"

EUROCRYPT 1990, pp.389--404, 1990.

[4] W. Stallings, "The Advanced Encryption Standard," CRYPTOLOGIA, vol.

XXVI, no. 3, July 2002.

[5] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, T.

Tokita. "Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms

- Design and Analysis," Selected Areas in Cryptography 2000, pp. 39-56,

2000.

[6] G. Vernam, "Cipher Printing Telegraph Systems For Secret Wire and Radio

Telegraphic Communications," Journal of the IEEE, vol. 55, pp. 109-115,

1926.

[7] L. Wu, C. Weaver, T. Austin, "CryptoManiac: A Fast Flexible Architecture

for Secure Communication," Proceedings of 28th Annual International

Symposium on Computer Architecture, 2001.

[8] R. Rivest, A. Shamir, L. Adleman, "A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems," Communications of the ACM,

vol. 21 (2), pp. 120-126, 1978.

[9] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of Computation, vol.

48,pp.203-209, 1987.

105

[10] J. Burke, J. McDonald, T. Austin, "Architectural Support for Fast

Symmetric-Key Cryptography," The 9th International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS 2000), ACM Press, pp. 178-189, November 12-15, 2000.

[11] T. Huffmire, "Application of Cryptographic Primitives to Computer

Architecture," Computer Architecture Laboratory, University of California,

Santa Barbara, March 2, 2005. Available at: http:// www.cs.ucsb.edu/

-huffmire/work/cryptarch.pdf

[12] P. Kitsos, S. Goudevenos and 0. Koufopavlou, "VLSI Implementations of

the Triple-DES Block Cipher," ThelOth IEEE International Conference on

Electronics, Circuits and Systems (ICECS'03), United Arab Emirates,

December 14-17, 2003.

[13] Maire McLoone, J.V McCanny, "High Performance Single-Chip FPGA

Rijndael Algorithm Implementations," Workshop on Cryptographic

Hardware and Embedded Systems (CHES 2001), Lecture Notes in Computer

Science, vol. 2162, pp. 65-76, Paris, France, May 13- 16, 2001.

[14] A. Hodjat, I. Verbauwhede, "Minimum Area Cost for a 30 to 70 Gbits/s AES

Processor," Proceedings of IEEE Computer Society Annual Symposium on

VLSI, pp. 83-88, February 2004.

[15] P. Zuchowski, C. Reynolds, R. Grupp, S. Davis, B. Cremen, B. Troxel, "A

Hybrid ASIC and FPGA Architecture," Proceedings of IEEE/ACM

International Conference on Computer Aided Design (ICCAD), pp. 187-194,

November 2002.

[16] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, New York:

McGraw-Hill, second edition, 1998.

[17] Canadian Microelectronic Corporation, Tutorial on CMC's Digital IC Design

Flow, May 7, 2001.

106

-

[18] G. Bertoni, L. Breveglieri, I. Koren, V. Piuri, "Fault Detection in the

Advanced Encryption Standard," Proceedings of The 4th International

Conference on Massively Parallel Computing Systems (MPCS'02), Ischia,

Italy, 2002.

[19] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri, "On the Propagation

of Faults and their Detection in a Hardware Implementation of the Advanced

Encryption Standard," Proceedings of 13th IEEE International Conference

on Application-Specific Systems, Architectures and Processors (ASAP'02),

San Jose, CA, USA, pp. 303-312, 2002.

[20] J. Blomer, J. Seifert, "Fault Based Cryptanalysis of Advanced Encryption

Standard (AES)," Lecture Notes in Computer Science, vol. 2724, pp. 162-181,

2003.

[21] Federal Information Processing Standard Publication 197, "Announcing the

Advanced Encryption Standard (AES)," November 200l.A vailable at:

http:/ /csrc.nist.gov/publications/fips/fips 197/fips-197 .pdf

[22] H. Lipmaa, "AES/Rijndael: Speed," Available at:

http://www .cs. ut.ee/ -helger/aes/rijndael.html

[23] X. Zhang, K. Parhi, "Implementation Approaches for the Advanced

Encryption Standard Algorithm," IEEE Circuits and System Magazine, pp.

24-26, Fourth Quarter 2002.

[24] B. Weeks, M. Bean, T . Rozylowicz, C. Ficke, "Hardware Performance

Simulations of Round 2 Advanced Encryption Standard Algorithms," The

third Advanced Encryption Standard (AES3) Candidate Conference, April

13-14, New York, USA, 2000.

[25] T. Ichikawa, T. Kasuya, M. Matsui, "Hardware Evaluation of the AES

Finalists," The third Advanced Encryption Standard (AES3) Candidate

Conference, Aprill3-14, New York, USA. 2000.

107

[26] A. Hodjat, I. Verbauwhede, "Speed-Area Trade-off for 10 to 100 Gbits/s

Throughput AES Processor," 37th Asilomar Conference on Signals, Systems,

and Computers, November 2003.

[27] C. Su, T. Lin, C. Huang, C. Wu, "A Highly Efficient AES Cipher Chip," Asia

and South Pacific Design Automation Conference (ASP-DAC 2003), pp. 561-

-562, January 2003.

[28] N. S. Kim, T. Mudge, and R. Brown, "A 2.3 Gb/s Fully Integrated and

Synthesizable AES Rijndael Core," IEEE Custom Integrated Circuits

Conference, pp. 193--196, September 2003.

[29] H. Kua, I. Verbauwhede, "Architectural Optimization for a 1.82Gbits/sec

VLSI Implementation of the AES Rijndael Algorithm," Workshop on

Cryptographic Hardware and Embedded Systems (CHES 2001), Lecture

Notes in Computer Science, vol. 2162, pp.51-64, 2001.

[30] I. Verbauwhede, P. Schaumont, H. Kuo, "Design and. Performance testing of

a 2.29 Gb/s Rijndael Processor," IEEE. Journal of Solid-State Circuits

(JSSC), March 2003.

[31] S. Morioka and A. Satoh, "A 10 Gbps Full-AES Crypto Design with a

Twisted-BDD S-Box Architecture," International Conference of Computer

Design, pp. 98-103, 2002.

[32] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, "An FPGA Implementation

and Performance Evaluation of the AES Block Cipher Candidate Algorithm

Finalists," The Third Advanced Encryption Standard Candidate Conference,

pp. 13-27' 2000.

[33] A. Hodjat, I. Verbauwhede, "A 21.54 Gbits/s Fully Pipelined AES Processor

on FPGA," 12th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM'04), 2004.

108

[34] K. Jarvinen, M. Tornmiska, J. Skytta, "A fully pipelined memoryless 17.8

Gbps AES-128 encryptor," International Symposium on Field Programmable

Gate Arrays, pp. 207-215. 2003.

[35] X. Zhang, K. Parhi, "High-Speed VLSI Architectures for the AES

Algorithm," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 12, no. 9, September 2004.

[36] M. McLoone, J. McCanny, "High performance single-chip FPGA Rijndael

algorithm implementations," Workshop on Cryptographic Hardware and

Embedded Systems (CHES 2001), Lecture Notes in Computer Science, vol.

2162,pp.65-76,2001.

[37] R. Sever, N. Ismailoglu, Y. Tekmen, M. Askar, B.Okcan, "A High FPGA

Implementation of the Rijndael Algorithm," EUROMICRO Systems on

Digital System Design (DSD '04), 2004.

[38] A. Satoh, S. Morioka, K. Takano, S. Munetoh, "A Compact Rijndael

Hardware Architecture with S-box Optimization," ASIA CRYPT 2001, Lecture

Notes in Computer Science, vol. 2248, 2001.

[39] C. Lu, S. Tseng, "Integrated Design of AES (Advanced Encryption Standard)

Encrypter and Decrypter," Proceedings of the IEEE International Conference

on Application-Specific Systems, Architectures, and Processors, pp. 277, July

17-19, 2002

[40] K. Gaj and P. Chodowiec, "Very Compact FPGA Implementation of the AES

Algorithm," Proceedings of Workshop on Cryptographic Hardware and

Embedded Systems (CHES 2003), Lecture Notes in Computer Science, vol.

2779, pp. 319--333, 2003.

[41] G. Rouvroy, F. Standaert, J. Quisquater, J. Legat "Compact and Efficient

Encryption/Decryption Module for FPGA Implementation of the AES

Rijndael Very Well Suited for Small Embedded Applications," International

109

Conference on Information Technology: Coding and Computing (ITCC'04),

vol. 2, pp. 583-587, April 5-7, 2004.

[42] F. Standaert, G. Rouvroy, J. Quisquater, J. Legat, "Efficient Implementation

of Rijndael Encryption in Reconfigurable Hardware: Improvements and

Design Tradeoffs," Workshop on Cryptographic Hardware and Embedded

Systems (CHES 2003), Lecture Notes in Computer Science, vol. 2779, pp.

334-350, 2003.

[43] N. Weaver, J. Wawrzynek, "A Comparison of the AES Candidates

Amenability to FPGA Implementation," the Third Advanced Encryption

Standard Candidate Conference, pp. 28-39, March 2000.

[44] V. Rijmen, "Efficient Implementation of the Rijndael SBox," Available at:

http://www.esat.kuleuven.ac.be/-rijmen/ri jndael/sbox.pdf, 2000.

[45] A. Rudra, P. Dubey, C. Jutla, V. Kumar, J. Rao, P. Rohatgi, "Efficient

Rijndael Encryption Implementation with Composite Field Arithmetic,"

Workshop on Cryptographic Hardware and Embedded Systems (CHES 2001),

Lecture Notes in Computer Science, vol. 2162, pp. 171-184, Paris France,

May 2001.

[46] J. Wolkerstorfer, E. Oswald, M. Lamberger, "An ASIC implementation of

the AES SBoxes," The Cryptographer's Track at the RSA Conference (CT

RSA 2002), Lecture Notes in Computer Science, vol. 2271, 2002.

[47] J. Fuller, W. Millan, "Linear Redundancy in S-Boxes", FSE 2003, Lecture

Notes in Computer Science, vol. 2887, 2003.

[48] S. Morioka, A. Satoh, "An Optimized S-box Circuit Architecture for Low

Power AES Design," Workshop on Cryptographic Hardware and Embedded

Systems (CHES 2002), Lecture Notes in Computer Science, vol. 2523, pp.

172-186, 2003.

110

[49] M. Dworkin, "Recommendation for Block Cipher Modes of Operation,"

NIST Special Publication 800-38A, 2001.

[50] Federal Information Processing Standards Publication 81. Available at:

http:/ /csrc.nist. gov/publicati ons/fips/fips81/fips81.htm, 1980.

[51] A. Menezes, P. Oorschot, S. Vanstone, Handbook of Applied Cryptography,

Boca Raton, Florida: CRC Press, 1996.

[52] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, "Error Analysis

and Detection Procedures for a Hardware Implementation of the Advanced

Encryption Standard," IEEE Transaction on Computers, vol 52, no.4, pp.

492-505, April 2003.

[53] D. Boneh, R.A. DeMilio, and R.J. Lipton, "On the importance of checking

cryptographic protocols for faults," Advances in Cryptology - EUROCRYPT

'97, Lecture Notes in Computer Science, vol. 1233, Springer, 1997, pp. 37-51,

Konstanz, Germany.

[54] E. Biham and A. Shamir, "Differential fault analysis of secret key

cryptosystems," Proceeding of Advances in Cryptology - Crypto '97 (Berlin),

Springer-Verlag, 1997, Lecture Notes in Computer Science, vol. 1294, pp.

513-525.

[55] P. Dusart, G. Letoumeux, 0. Vivolo, "Differential Fault Analysis on AES,"

Available at: http://www.unilim.fr/laco/rapports/2003/R2003 Ol.pdf, 2002.

[56] J. Quisquater, "Start-of-the-art Regarding Side Channel Attacks," Available:

http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047 Side Channel

report.pdf, October 2002.

[57] S. Mitra, E. McCluskey, "Diversity Techniques for Concurrent Error

Detection," Proceedings of the International Symposium on Quality

Electronic Design (ISQED 'Ol), 2001.

111

[58] R. Karri, K. Wu, P. Mishra, Y. Kim, "Fault-based side-channel cryptanalysis

tolerant Rijndael symmetric block cipher architecture," IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'Ol), 2001.

[59] S. Fernandez-Gomez, J. Rodriguez-Andina, E. Mandado, "Concurrent Error

Detection in Block Ciphers," IEEE International Test Conference, October

2000.

[60] M. Karpovsky, K. Kulikowski, A. Taubin, "Robust Protection against Fault

Injection Attacks on Smart Cards Implementing the Advanced Encryption

Standard," International Conference on Dependable System and Networks

(DSN'04), 2004.

[61] K. Wu, R.Karri, G. Kouznetzov and M.Goessel, "Low Cost Concurrent Error

Detection for the Advanced Encryption Standard," International Test

Conference 2004 (ITC 2004), pp. 1242-1248, 2004.

[62] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, "A Parity Code

Based Fault Detection for an Implementation of the Advanced Encryption

Standard," 2002 IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems (DFT 2002), pp. 51-59, November 2002.

112

Appendix A

1. Hardware Implementation of S-box Based on Arithmetic Operation in GF(24
)

Isomorphism:
bx + c = a, (b,c E GF(24

), a E GF(28
))

a A = ~ EB a7 , a 8 = a5 EB a7 , ac = a4 EB a6

b0 = ac EB a5 ,b1 = aA EB ac

b2 = a8 EB a2 EB a3, b3 = a8

c0 = ac EB a0 EB a5 , c1 = ~ EB a2

c2 =a A, c3 = a2 EB a 4

Squaring in GF(24
):

q = a2
, (q, a E GF(24

))

% = a0 EB a 2 , q1 = a 2

qz =~ EBa3,q3 =a3

Multiplicative Inverse in GF(24
):

q = a- , (q, a E GF(24
))

a A=~ EB a2 EB a3 EB ~a2a3
q0 =a A EB a0 EB a0a2 EB ~a2 EB a0~a2
q1 = a0~ EB a0a2 EB a1a2 EB a3 EB ~a3 EB a0~~

~=~~EB~EB~~EB~EB~~EB~~~

q3 =a A EB a0a3 EB a1a3 EB a2a3

Isomorphism-1
:

a= bx + c, (a E GF(28
), b,c E GF(24

))

aA = c1 EBb3,a8 = b0 EBb1

a0 = b0 EB c0 , ~ = a 8 EB b3

a2 =aA EBa8 ,a3 =a8 EBb2 EBc1

a4 =aA EBa8 EBc3 ,a5 =a8 EBc2

a6 = aA EBb0 EBc2 EBc3 ,a7 = a8 EBb3 EBc2

Multiplication in GF(24
):

4 q =ax b modn, (q, a,b E GF(2))

aA =a0 EBa3,a8 =a2 EBa3

113

q0 = a0b0 EB a3b1 EB a2b2 EB a1b3
q1 = a1b0 EB aAb1 EB a8 b2 EB (~ EB a2) EB b3
q2 = a2b0 EB ~b1 EB aAb2 EB a8 b3
q3 = a3b0 EB a 2b1 EB ~b2 EB aAb3

Multiplication with {1110}:
q =ax {1110} modn, (q, a E GF(24

))

qo =a, EBaa,q, = aA

qz =aA EBaz,q3 =aA EBaa

2. Hardware Implementation of S-box Based on Arithmetic Operation in GF(22
)

Multiplicative Inverse in GF((22
)
2
):

q = a- , (q, a E GF((22
)

2
))

~=~~m~~~m~~~m~~~

q2 = a3a2 m a3a0 m a2 a!

Multiplication with A.:
q =ax {1100} modn, (q, a E GF((22

)
2
))

q3 = a2 mao

q2 =(a! m ao)a3 m a2 + (a3 m az)al mao

qt =a3

qo = az

Multiplication with 0:
q =ax {10} modm, (q, a E GF(22

))

Affine Transformation:
q = aff_trans(a), (q, a E GF(28

))

aA =a0 m~,a8 =a2ma3
ac = a4 mas,aD = a6 ma7

qO = a0 maC maD

% = as maA maD

q2=a2maAmaD

q3 =a7 maA ma8
q4 =a4 maA ma8

qs =~ ma8 mac

q6 = a6 ma8 mac

q7 = a3 maC maD

114

Squaring in GF((22
)
2
):

q = a2
, (q, a E GF((22

)
2
))

~ =a3

qz = a3 maz

ql =az m~

q0 =a3(a1 ma0)+(a3~ ma0)

Multiplication in GF(22
):

2 q = a x b mod m, (q, a, b E GF(2))

q1 =((a0ma1)(b0mb1))m(a0b0)

qo = (aobo)m(aibi)

Multiplicative Inverse in GF(22
):

q = a-1
, (q, a E GF(2))

Inverse Affine Transformation:
q = aff_trans-\a), (q, a E GF(28))

aA = a0 mas,a8 = a1 ma4
aC = a2 m a7 , aD = a3 m a6

qo =as mac

ql = aO maD

qz =a? maB

q3 = az maA

q4 =a1 maD

qs = a4 mac

q6 = a3 maA

q7 = a6 maB

3. Hardware Implementation of Linear Redundancy (LR) S-box

D Matrix Multiplier:

YJ = Da1 x x, (l~j"SJ)

x
8
= x1 EB x4,x9 = x5 EB Xi ,Xio = x6 EB x2,Xi1 = x1 EB x3,x12 = x10 EB x9,Xi3 = x8 EB x0,Xi4 = x4 EB x1

Xis= x7 EB Xo,Xi6 = x9 EB Xs,Xi7 = x6 EB x3,XIs =Xi I EB Xz,Xi9 = x4 EB ~,Xzo = Xs EB Xo,Xzi = x6 EB Xs

Xzz = X13 EB Xi' Xz3 = Xzz EB X3' Xz4 = Xiz EB Xi 1' Xzs =XIs EB x6' Xz6 = X10 EB Xo' Xz7 = X9 EB Xz

(0) _ (I) _ r.:p (2) _ (3) _
Y1 -Xzs>Y7 -XzowXIs>Y7 -Xz4,y7 -Xz3

y~4) = XzL EB x4' y~5) = xl7 EB -Xi4 EB Xo, y~6) = Xzi EB x7, yfl = Xi6 EB Xz

y~0) = x22 , y~L) = x17 EB Xi, y~2l = x6 EB x4 EB x0, y~3l = x20 EB x3

y~4l =xL EBxo,Y~s) =xz3,y~6) =Xz6 EBxtPY~7l =x6

y~0) = x2 EB x0, y~1l = _x;3 EB x5 EB x2, y~2l = X16 EB x3 , y~3l = .x;2 EB x3

y~4l = x25 , y~5) = _x;0 EB x5 EB x3, y~6) = x7 EB Xi, y~1l = x17 EB x8

(0) - ffi (I) - r.:p (2) - (3) -Y4 - Xz7 i:b X3, Y4 - Xtz w Xs, Y4 -XIs' Y4 - X1
(4) - ffi (5) - r.:p (6) - (7) - ffi Y4 -XLsi:DXz,Y4 -x1wXi,y4 -xl9,y4 -Xlgi±7Xz7

yj0l = x17 , yj1l = x9 EB X17, yj2l = x9 EB .x;1 EB x0, yfl = X12 EB X7

yj4) = xl3 EB x6' yj5) = XzG' yj6l = x4 EB Xz' yj7) = Xi4 EB x6

Yi
0
) = x6 EB9' Yi

1
) = Xz4' Yi

2
) = Xi4' Yi

3
) = Xs EB x6

Yi4) = X13 EB Xg' Yi5) = X4' Yi
6
) = Xw EB Xs' Yi

7
l = Xiz EB Xs

Yt(O) =-Xis EB Xo, Y{1) = Xs EB x6' Y?) =-Xis ffi Xi' Y?l = X19 EB Xw
(4) - 17\ (5) - (6) - r.:p (7) -

Yt - Xs i:b X3, Y1 - xL4' Yt - xl4 w Xw, Yt - xl6

bo_logic Block:

~=~~~~~~~EB~~~~~~~EB~~~~~~EB~~~~~~EB~~~~~~
------ -- ------ -

EB~~~~~~EB~~~~~~EB~~~~~~~EB~~~~~~~EB~~~~~~~

EBb5b4b3bzhtb0 EB b5b4b3bzht b0 EB b7b6b5b4b3b1 b0 EB b6b5b4b3b2b0 EB b7b6b4b3b2b0

EBb7b6b5b4b2b1 b0 EB b7b5b4b3b2b1b0 EB b7b6b5b3b2b1b0 EB b7b6b5b4b3b2b1 EB b6 b4b3b2b1b0

EBb1b5b4b3b2bO EBb6b5b3b2blbO EBb1b5b4b2blb0 EBb1b5b3b2blb0 EBb6b5b4b3b2bl EBb5b4b3blb0

EBb1b5b3b2blbO EBb1b6b4b3b2 EBb7b6b3blb0 EBb7b6b5b4b2blbO EBb7b6b5b3b2bl ffib7b6b5b4b3b2blb0

EBb7 b6b4b3b2b
1
b0 EB b7b

5
b3b2 b1b0 EB b7b6b4 b3b2b1 EB b7b6b5b3b2h1b0 EB b7b6b5b4b1b0 EB b6b5b2b1b0

115

4. The Waveforms and Test of All S-box Implementations

(1) Waveforms of sbox_gf222, sbox_gf24 and sbox_boolean_function

file fdtt Marker ,qoTo ~cw Qptions Yiindow Help

76 59

1> /SBOX_ TEST/SBOX_ GF222_DAT A_OUT(7:0) 38 CB

====~==~==~==~~=*====~
CB ~ /SBOX_TESTISBOX_ GF24_DAT A_ OUT(7:0)

~ ISBOX_TEST/SBOX_BF _DATA_OUT(7:0) 38 CB

(2) Test Files of sbox_linear_redundancy

lnput_File:

00000000 00000001 00000010 00000011 00000100 00000 1 01 00000110 00000111
00001000 00001001 0000 1 01 0 00001011 00001100 0000110 1 00001110 00001111
00010000 00010001 000100 1 0 00010011 00010100 00010101 00010110 00010111
00011000 00011001 000110 1 0 000 11011 00011100 00011101 00011110 00011111
00 1 00000 00100001 00 1 00010 00100011 00100100 00100 1 01 00100110 00100111
00101000 0010100 1 001010 1 0 00101011 00101100 00101101 00101110 00101111
00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111
00111000 00111001 00111010 00111011 0 0 111100 0 01111 01 00111110 00111111
01000000 01000001 010000 1 0 01000011 01000100 01000 1 01 010 001 1 0 01000111
01001000 01001001 01 00 1 010 01 001011 01001100 01001101 01001110 01001111
01010000 01010001 0101 0010 01 01 0011 01010100 0 1 0 1 0 1 01 01010110 01 010111
01011000 0101100 1 0101101 0 0 1 011011 01011100 0 1 011101 01011110 01011111
01100000 0110000 1 011000 1 0 011 0 0 011 01100100 01100 1 01 011 0 011 0 01100111
01101000 01101001 011010 1 0 011 01011 01101100 01101101 01101110 01101111
01110000 011 1 0001 011100 1 0 011 1 0 011 01110100 01110101 01110110 01110111
01111000 01111001 01111010 01111011 01111100 01111101 01111110 01111111
10000000 10000001 10000010 10000011 1 0000100 10000101 1000011 0 10000111
10001000 10001001 10001010 10001011 1 0001100 10001101 10001110 10001111
10010000 10010001 1 00100 1 0 1001 0 011 1 0 01010 0 10010101 10010110 10010111
10011000 10011001 10011010 1 0011011 10011100 10011101 10011110 10011111
10100000 10100001 10100010 1 01 0 0011 10100100 10100101 1 0100110 10100111
1 0 1 01000 10101001 1010101 0 10101011 1 0 1 01100 10101101 1 0101110 10101111
10110000 10110001 10110010 10110 011 1 0110100 101101 01 10110110 10110111
10111000 10111001 1 0111010 10111011 1 0111100 10111101 1 0111110 10111111
11000000 1100000 1 11000010 11000 011 11000100 11000101 11000110 11000111
11001000 1100100 1 1 1 00101 0 11001011 11001100 11001101 11001110 11001111
11010000 1101000 1 11010010 11010011 110101 00 11010101 11010110 11010111
11011000 11011001 11011010 11011011 11011100 11011101 11011110 11011111
11100000 11100001 11100010 11100011 1110 0100 1 1100101 11100110 11100111

116

11101000 11101001 11101010 11101011 11101100 11101101 11101110 11101111
11110000 11110001 11110010 11110011 11110100 11110101 11110110 11110111
11111000 11111001 11111010 11111011 11111100 11111101 11111110 11111111

Output_File:

01100011 01111100 01110111 01111011 11110010 01101011 01101111 11000101
00110000 00000001 01100111 00101011 11111110 11010111 10101011 01110110
11001010 10000010 11001001 01111101 11111010 01011001 01000111 11110000
10101101 11010100 10100010 10101111 10011100 10100100 01110010 11000000
10110111 11111101 10010011 00100110 00110110 00111111 11110111 11001100
00110100 10100101 11100101 11110001 01110001 11011000 00110001 00010101
00000100 11000111 00100011 11000011 00011000 10010110 00000101 10011010
00000111 00010010 10000000 11100010 11101011 00100111 10110010 01110101
00001001 10000011 00101100 00011010 00011011 01101110 01011010 10100000
01010010 00111011 11010110 10110011 00101001 11100011 00101111 10000100
01010011 11010001 00000000 11101101 00100000 11111100 10110001 01011011
01101010 11001011 10111110 00111001 01001010 01001100 01011000 11001111
11010000 11101111 10101010 11111011 01000011 01001101 00110011 10000101
01000101 11111001 00000010 01111111 01010000 00111100 10011111 10101000
01010001 10100011 01000000 10001111 10010010 10011101 00111000 11110101
10111100 10110110 11011010 00100001 00010000 11111111 11110011 11010010
11001101 00001100 00010011 11101100 01011111 10010111 01000100 00010111
11000100 10100111 01111110 00111101 01100100 01011101 00011001 01110011
01100000 10000001 01001111 11011100 00100010 00101010 10010000 10001000
01000110 11101110 10111000 00010100 11011110 01011110 00001011 11011011
11100000 00110010 00111010 00001010 01001001 00000110 00100100 01011100
11000010 11010011 10101100 01100010 10010001 10010101 11100100 01111001
11100111 11001000 00110111 01101101 10001101 11010101 01001110 10101001
01101100 01010110 11110100 11101010 01100101 01111010 10101110 00001000
10111010 01111000 00100101 00101110 00011100 10100110 10110100 11000110
11101000 11011101 01110100 00011111 01001011 10111101 10001011 10001010
01110000 00111110 10110101 01100110 01001000 00000011 11110110 00001110
01100001 00110101 01010111 10111001 10000110 11000001 00011101 10011110
11100001 11111000 10011000 00010001 01101001 11011001 10001110 10010100
10011011 00011110 10000111 11101001 11001110 01010101 00101000 11011111
10001100 10100001 10001001 00001101 10111111 11100110 01000010 01101000
01000001 10011001 00101101 00001111 10110000 01010100 10111011 00010110

117

L.

Appendix B

1. Hardware Detail of Mix Column/Inverse Mix Column

Xtimes Function:
q = Xtimes (a), (q, a E GF(28

))

qo =a1

q1 = a0 EBa7

q2 =~

q3 = a2 EB a7

q4 = a3 EB a7

qs =a4

q6 =as

q7 =a6

Mix Column Function:

XA = aoc EB~c

Xa = ~c EBa2c

Xc = a2c EB a3c

Xo = ~c EBaoc

hoc = Xtimes(xA)EBxc EBa1c

h1c = Xtimes(x8) EB Xc EB a0c

h2c = Xtimes(xc) EB X A EB a3c

h3c = Xtimes(x0) EB XA EB a2c

Inverse Xtimes Function:
q = Xtimes-1 (a), (q, a E GF(28

))

qo = ao EB~

ql =a2

q2 = ao EB a3

q3 = ao EBa4

q4 =as

qs = a6

q6 = a7

q7 =ao

Inverse Mix Column Function:

YA = Xtimes(y8 EB Yc)

y8 = Xtimes(Xtimes(a0c EB a2J)
Yc = Xtimes(Xtimes(~c EB a3J)
zA =yAEB Ya

Za = YA EB Yc

h~c =hoc EB ZA

h:c =hie EB Za

h~c = h2c ffi ZA

h~c = h3c E8 Za

118

2. Area Complexity Details of Datapath

Complexity
Component Quantity (ates)

With Time Constraint
En_De_Sbox 4 1846

Mix_InvMix_Column 1 528
2_to_1_8bit_MUX 4 64

Data_Re ister 4 1700
2_to_1_32bit_MUX 2 128

XORs 160 376
Total 4642

3. Area Complexity Details of Key Expander

Component Quantity

1
4
9

4_to_1_32bit_MUX 1
lnvMixColumn 1

XORs 136
Total

Complexity
(gates)

With Time Constraint
95

776
594
183
528
317

2559

No Time Constraint
1560
451
64

1568
128
376

4147

No Time Constraint
93

776
594
151
455
317

2436

4. Area Complexity Details of Complete Encryption-Decryption System

Component Quantity

1
1

Key_Out_Reg 1
Controller 1

Total

Complexity
(ates)

With Time Constraint
4642
2559
160
184

7545

No Time Constraint
4147
2436
160
174

6917

5. The Waveforms of Complete Encryption-Decryption System

119

1-'
N
0

"' Synopsys Wa~ef~rrn Viewer - SYSTEM_FOUR_ TEST _NEW. jagu.;:r. 1 J1 02.ow:O · [Untitled] r.;:J@~
£lie _Edit .Marker §oTo Y:iew Qptions lll/:indow J:!elp

/SYSTEM_FOUR_ TEST _NEWICLK

/SYSTEM_FOUR_ TEST _NEW/START

/SYSTEM_FOUR_ TEST _NEW/CLEAR

/SYSTEM_FOUR_ TEST _NEW/SEL_ENC_OEC

/SYSTEM_FOUR_ TEST _NEW/OONE_ENCRYPTION

t> /SYSTEM_FOUR_TEST_NEW/OATA_IN(0:127)

.. /SYSTEM _FOUR_ TEST _NEW/OAT A_ OUT(D 1 27)

t> /SYSTEM_FOUR_ TEST _NEW/ENCRYPT! ON_KEY(D: 1 27)

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ I N(D)(7:D)

t> /SYSTEM_FOUR_TEST_NEW/PARALLEL_IN(1)(7:D)

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(2)(7:0)

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ IN(3)(7:D)

t> ISYSTEM_FOUR_ TEST _NEW/PARALLEL_ IN(4)(7:0)

t> /SYSTEM_FOUR_ T EST _NEW/PARALLEL_IN(5)(7:D)

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(6)(7:D)

t> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_ I N(7)(7:D)

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(8)(7:D)

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ IN(9)(7:D)

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ I N(1 0)(7:0)

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(1 1)(7:0)

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(1 2)(7:0)

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(1 3)(7:0)

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(14)(7:0)

t> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 5)(7:0)

£> /SYSTEM_FOUR_ TEST _NEW/I NITIAL_KEY(D)(7:D)

t> /SYSTEM_FOUR_ TEST _NEW/INIT IAL_KEY(1)(7:0)

£> /SYSTEM_FOUR_ TEST _NEW/INITIAL_KEY(2)(7:D)

+i
Ready

0

0

0

0

DO

01

02

03

04

05

06

07

08

09

OA

DB

DC

DO

DE

OF

DO

01

02

•

DDD10203040506070809DADBDCDODEDF

DA94DBB5416EFD45F1C39458C653EA5A

DDD10203040506070809DADBDCDODEDF

DO

01

02

03

04

05

06

07

DB

09

DA

DB

DC

DO

DE

OF

DO

01

02

.. •
fTime - 2900 lwif-56 [Wrc-56

><' S~;,o-psys Waveform Viewer - SYST£M_FOUR_ TEST _NEW .jaguar.13196.ow:O · [Untitled] - ['g:J@~
£lie .Edit Marker Qptions Window .!:!_elp

/SYSTEM_FOUR_ TEST _NEW/CLK

ISYSTEM_FOUR_ TEST _NEW/ST ART

ISYSTEM_FOUR_ TEST _NEW/CLEAR

/SYSTEM_FOUR T EST _NEWISEL_ENC_DEC

/SYSTEM_FOUR_ TEST _NEWIDONE_ENCRYPTI ON

1> /SYSTEM_FOUR_ TEST _NEWIDATA_I N(O: 1 27)

.. /SYSTEM_FOUR_ TEST _NEWIDATA_OUT(O. 1 27)

1> ISYSTEM_FOUR_ TEST _NEWIENCRYPT ION_KEY(0:1 27)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN(0)(7:0)

1> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(2)(7:0)

1> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(3)(7:D)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(4)(7:0)

1> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(5)(7:D)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(6)(7:0)

1> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(7)(7:D)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN(8)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(9)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 0)(7:0)

1> /SYST EM_FOUR_ TEST _NEWIPARALLEL_ IN(1 1)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN(1 2)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN(1 3)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 4)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 5)(7:0)

1> /SYSTEM_FOUR_ TEST _NEW/INIT IAL_KEY(0)(7:0)

1> ISYST EM_FOUR_ TEST _NEW/IN ITIAL_KEY(1)(7:0)

1> ISYSTEM_FOUR_ TEST _NEWIINITIAL_KEY(2)(7:0)

+
Ready

..

0

0

0

3600

000102

DA

94

08

85

41

6E

FO

45

F1

C3

94

58

C6

53

EA

5A

00

01

02

OA940885416EF045F1C39458C653EA5A

000 102030405060708090ADBDCDDDEDF

000102030405060708090ADBOCDDDEDF

DA

94

DB

85

41

6E

FO

45

F 1

C3

94

58

C6

53

EA

5A

DO

01

02

filme - 36oo' [Wii-56 [Wfc-5Ei

........
N
N

"'Synops)IS Waveform Viewer · FIV£_MODE_SYSTEM_TEST.jaguar.14385.ow:O - [Untilled] . r;:)@J[g]
file f.dit Marker §oTo ~lew Qptlons ~ndow !!elp

IFIVE_MODE_SYSTEM_ TEST/START 0

/FIVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC 0

IFIVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM 0

IFIVE_MODE_SYSTEM_ TEST/CLK 0

IF I VE_MODE_ SYSTEM_ TEST/SEL_MODE ECB

1> /FIVE_MODE_SYSTEM_TEST/SYSTEM_DATA_IN(0:127) 00000(

1> IFIVE_MODE_SYSTEM_ TESTISYSTEM_DATA_OUT(0:12 ... 7BOC7

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(D:127) 287El

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_IV(0:127) 00010

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT (0)(7:0) DO

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1)(7:0) 00

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(2)(7:0) DO

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) DO

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT (4)(7:0) DO

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) DO

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(6)(7:0) DO

1> /FIVE_MODE_ SYSTEM_ TESTISYSTEM_INPUT(7)(7:D) 00

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(B)(7:D) DO

1> /FIVE_MODE_SYSTEM_ TESTISYSTEM_I NPUT(9)(7:0) DO

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1 0)(7:0) DO

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(l l)(7:0) 00

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(12)(7:0) DO

1> /FIVE_MODE_ SYSTEM_ TESTISYSTEM_INPUT(13)(7:0) DO

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(14)(7:0) DO

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(15)(7:0) DO

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(0)(7:0) 78

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_ OUTPUT(l)(7:0) DC

~ - ~-' t;r-r:;
Ready

I I I I I I I I I

2000
I I I I I I

l

I I I I

2500
I I I I I I I I I I

.!j

MJ1I1IU1IlJWUUl1IUU1IUUUliliUU
ECB

6BC1BEE22E409F96E93D7Ell7393172A AE2DBA571 ED3AC9C9EB76FAC45AFBE51

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu 3AD77884DD7 A3660AB9ECAF32466EF97

287E 15162BAED2A6ABF715BB09CF 4F3C

000102030405060708090AOBOCODOEOF

68 AE

Cl 2D

BE BA

E2 57

2E lE

40 03

9F AC

96 9C

E9 9E

3D 87

7E SF

11 AC

73 45

93 AF

17 BE

2A 51

uu 3A

uu D7
+!

~ ... 't ~

,Time - 11062 fWif-73 fwfc-73 jSel-o

File f_dit Marker GoTo View Options Window Help - - - - - - -
iioJ~IIiill •I~I•I ~•I•I•f•l •·z+Jz-1•1 •1111 «1»1~1 ~ ffi~ al t>l

JW! ~
1900 2000 2100 2200 2300 2400 2500 2600 -;;

=
/F IVE_MODE_ SYSTEM_ TEST/START 0 ~
/FIVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC 0

/FIV E_MODE_SYSTEM_ TEST/DONE_ SYSTEM · 0 l
/FIVE_MODE_ SYSTEM_ TEST/CLK 1 J1J1 J1 J1J1 J1J1J1 J 1J1 1J 1J1 J1J 1J1J1J 1J1
I F IVE_MODE_SYSTEM_ TESTISEL_MODE esc ·:::sc

t> /FIV E_MODE_SYSTEM_ TEST/SYSTEM_DATA_IN(D:127) 00000[6BC1BEE22E409F96E93D7E117393172A AE2DBA571 ED3AC9C9EB76FAC45AFBE51

t> IF IV E_MODE_SYSTEM_ TEST/SYSTEM_DATA_ OUT(D:127) 3FF1C uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu 7649ABACB1198246CEE9BE9812E9197D

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(D:127) 287E1 287E15162BAED2A6ABF7158809CF4F3C

t> /FIVE_MODE_SYSTEM_ TESTISYSTEM_IV(0:127) 00010 00010203040506070809DADBDCDDDEDF

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT (D)(7:D) DO 68 AE

t> /FIV E_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(1)(7:0) DO C1 2D

t> I F I VE_MODE_SYSTEM_ TEST/SYSTEM_ I NPUT(2)(7:D) DO BE BA

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) DO E2 57

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(4)(7:0) DO 2E 1E

t> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) DO 40 03

t> IF IVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT(6)(7:D) DO SF AC

t> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT(7)(7:0) DO 96 9C

t> /F IVE_M ODE_SYSTEM_ TEST/SYST EM_ INPUT(B)(7:0) DO E9 9E

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:D) DO 3D 87

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT(1 0)(7:0) DO 7E SF

1> IFIV E_MODE_SYSTEM_TEST/SYSTEM_INPUT(11)(7:0) DO 11 AC

t> /F I VE_MODE_SYSTEM_ T EST/SYSTEM_ INPUT(12)(7:0) DO 73 45

t> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(13)(7:0) DO 93 AF

t> /F I VE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(14)(7:0) DO 17 BE

1> /F IVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(15)(7:0) DO 2A 51

t> /FI VE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(D)(7:0) 3F uu 76

1> IFIVE_MODE_SYSTEM_ T EST/SYSTEM_OUTPUT(1)(7:0) F1 uu 49
.:tJ

<1"1 _I • -::;r-r.;
""-' I .

Ready [Time- 1Hisz'[w1r-73 rw rc -73 - l fsel-0 I - - ~ -
• t~ ~ ~ 6 Y.Wtr>J~2 • ~~ ~.'~~ s='~C:.i;::'1: I ra:~~,!t C·i!u:e;. :.::....h. 111 A~ N::':'= 1, ~!:_o~ft .. :-.u C11t ~tc::/f~:t~~·:usf:."JJV/P~:.:S Ill ;f~~-'.'~~'?y us~~l\'~. :~ --· '""" 11<1 ;: f'<l 9:~ !!!_.'

I

oi' Synopsys Waveform Viewer - FIVE_MODE_SYSTEM_T£ST.jaguar.H454-.ow:O - [Untitled] - - - - ~@~

/FIVE_MODE_SYSTEM_TEST/START

IF IVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC

/F IVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM

IFIVE_MODE_SYSTEM_ TEST/CLK

/FIVE_MODE_SYSTEM_ TEST/SEL_MODE

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_DATA_IN(O:l 27)

t> /FIVE_MODE_SYSTEM_ TESTISYSTEM_DATA_OUT(O:l 27)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(O:l 27)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_IV(O:l 27)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(0)(7:0)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1)(7:0)

t> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(2)(7:D)

., /F IV E_MODE_SYSTEM_ TEST/SYSTEM _INPUT(3)(7:0)

1> /FIVE_MODE_ SYSTEM_TEST/SYSTEM_INPUT(4)(7:0)

1> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0)

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(6)(7:0)

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(7)(7:D)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(B)(7:0)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:0)

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(1 0)(7:0)

1> /FIVE_MODE_SYSTEM_TEST/SYSTEM_ INPUT(11)(7:0)

r> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(12)(7:D)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(13)(7:D)

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(14)(7:0)

1> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(15)(7:0)

t> /FIVE_MODE_ SYSTEM_TESTISYSTEM_OUTPUT(0)(7:D)

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(1)(7:0)

Ready

0

0

CFB

00

DO

00

00

DO

DO

DO

DO

DO

DO

DO

DO

DO

00

co
48

6BC1BEE22E409F96E93D7E11 7393172A AE2DBA571 E03ACSCSEB76FAC45AFBE5 1

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu 383FD92EB72DAD20333449FBE83CFB4A

2B7E151 62BAED2A6A8F7 1 58809CF4F3C

00010203040506070809DAD8DCDDDEDF

68 AE

C1 2D

BE BA

E2 57

2E 1E

40 03

SF AC

96 sc
ES SE

3D 87

7E SF

11 AC

73 45

93 AF

17 BE

2A 51

uu 38

uu 3F

•

oi' Synopsys Wavefo-;m Vi,_.;r -_ FIVE_:MODE_SYSTEM_ T£ST. jaguar . 14487 .ow~O - [Untitled] - - - - !';]@]~
File f_dit Marker GoTo View Options Window Help -
DJ~IIiil] • llll!ln l ·• 1111111• 1 z+]z-1• 1 • 1111«:1>>1-r] ~ f"!!IJ 151 'if I

~
41~0 42~0 43~0 ~0 45~0 46~0 47~0 4800

~ 11062

/FIVE_MODE_SYSTEM_ TEST/START 0 ~
/F IVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC 0

/FIVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM 0 l
IF IVE_MODE_SYSTEM_ TEST/CLK 1 1J1 J 1J1J1J1 J 1J1J1J1 1J1J1J1J1J 1J1J1 J
/F IVE_MODE_SYSTEM_ TESTISEL_MODE OFB OF8

1> IF IVE_MODE_SYSTEM_ TEST/SYSTEM_DATA_IN(D: 127) 00000(AE2DBA571 E03AC9C9E876FAC45AFBE51 30CB1C46A35CE411E5FBC1191AOA52EF

1> IFIVE_MODE_SYSTEM_ T EST/SYSTEM_DATA_OUT(0:127) 304C6 383FD82E872DAD20333448FBEB3CFB4A 77B95DBD1691BF03F53C52DAC54EDB25

t> IF IVE_MODE_ SYSTEM_ TEST/SYSTEM_KEY(0:127) 2B7E1 287E15162BAED2A6ABF715BB09CF4F3C

t> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_IV(0:127) 000102 00010203040506070B080ADBDCDDDEOF

t> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT (0)(7:0) ' 00 AE 30

t> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(1)(7:0) 00 20 CB

1> /FIVE_MODE_SYSTEM_ T EST/SYSTEM_INPUT(2)(7:D) 00 BA 1C -N 1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) 00 57 46
Vl.

t> IF IVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT (4)(7:0) 00 1E A3

t> /F I VE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) 00 03 5C

t> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(6)(7:0) 00 AC E4

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(7)(7:0) DO 9C 11

t> IFIVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(B)(7:0) 00 BE E5

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:0) 00 87 FB

t> IF IVE_MODE_SYSTEM_ TEST/SYST EM_ INPUT(1 0)(7:0) 00 SF C1

1> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(11)(7:0) 00 AC 19

1> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT(12)(7:0) 00 45 1A

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(13)(7:D) DO AF OA

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(14)(7:0) DO BE 52

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(15)(7:0) 00 51 EF

t> IF IVE_MODE_ SYSTEM_ TEST/SYSTEM_OUTPUT(0)(7:0) 30 38 77

t> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_ OUTPUT(1)(7:0) 4C 3F 88

~.l .- · ~· • J
..±!

• I - -- -- -- " Ready ffime- 11062 iWif-73 lwrc-73 f;ei-D

><' Synopsys Waveform Vicwc~ : FIVE_MODE_SYSTEM_TEST. jaguar.14569.ow:O -- [Untitled] - - - - - - - - - -- - - - ~@]~

File .E_dit Marker GoTo View Options Window Help - - - - - - -
Dlw;!;l!iil!"lli i~IBI • l• llill• l z+!z-1• 1 • 1• 1«1»1-t-l ~~ f"~ "BI VI I

~
11062

4100 <1200 43f0 ~0 4Sf0 46f0 47f0 !::tJ
/FIVE_MODE_SYSTEM_TEST/START 0 ..tj
IF IVE_MODE_SYSTEM_ TESTISEL_ENC_DEC 0

/F IVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM 0 l
/FIVE_MODE_SYSTEM_ TEST/CLK 1 J1J1J1J1J 1J1J1 J1 J 1J1 1J1J1J1 J1J1J1J1
/F I VE_MODE_SYSTEM_ TEST/SEL_MODE CTR CTP,

e>- IF IVE_MODE_SYSTEM_ TEST/SYSTEM_DATA_I N(O: 127) 00000(AE2DBA571 E03AC9C9E876F AC45AFBE51 30C81C46A35CE411 E5FBC1 191AOA52EF

e>- IFIVE_MODE_SYSTEM_ TESTISYSTEM_DATA_OUT(0:127) 1E031 B74D61918620E3261BEF6864990D86CE 9806F6687970FDFF8617187889FFFDFF

e>- IF IVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(0:1 27) 287E1 287E 15162BAED2A6ABF715BB09CF4F3C

e>- IFIVE_MODE_SYSTEM_ TEST/SYSTEM_IV(0:127) FOF1F FOF1F2F3F4F5F6F7FBF9FAFBFCFDFEFF

e>- IFIVE_MODE_SYSTEM_TEST/SYSTEM_I NPUT(0)(7:0) 00 AE 30

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1)(7:0) 00 2D CB

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(2)(7:0) 00 BA 1C

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) 00 57 46

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(4)(7:0) 00 1E A3

e>- IF IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) 00 03 5C

e>- IFIVE_MODE_SYSTEM_ TESTISYSTEM_INPUT(6)(7:0) 00 AC E4

e>- /FIVE_MODE_SYSTEM_TEST/SYSTEM_INPUT(7)(7:0) 00 9C 11

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(8)(7:0) 00 9E E5

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:0) 00 87 FB

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1 0)(7:0) 00 6F C1

t> /FIVE_MODE_SYSTEM_TEST/SYSTEM_ INPUT(11)(7:0) 00 AC 19

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(12)(7:0) 00 45 1A

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(13)(7:0) 00 AF OA

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(14)(7:0) 00 BE 52

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(15)(7:0) 00 51 EF

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(0)(7:0) 1E 87 98

e>- IF I VE_MODE_SYSTEM_ TEST/SYSTEM_ OUTPUT(1)(7:0) 03 40 06

+fT•
1-±J ,.., .. •I I ..

Ready -· fT1me- 11062 jWif-73 [Wfc-73 - -'sel-o -

2. The Verification Files of Five-mode System

Test Vectors: 6BC1BEE22E409F96E93D7Ell7393172A
AE2D8A571E03AC9C9EB76FAC45AF8E51
30C81C46A35CE411ESFBC1191AOA52EF
F69F2445DF4F9Bl7AD2B417BE66C3710

Initial Key:

IV:

IV_CTR:

Test Outputs:

ECB Mode:

CBC Mode:

CFB Mode:

OFB Mode:

CTR Mode:

2B7El51628AED2A6ABF7158809CF4F3C

000102030405060708090AOBOCODOEOF

FOF1F2F3F4FSF6F7F8F9FAFBFCFDFEFF

3AD77BB40D7A3660A89ECAF32466EF97
F5D3D58503B9699DE785895A96FDBAAF
43BlCD7F598ECE23881BOOE3ED030688
7BOC785E27E8AD3F8223207104725DD4

7649ABAC8119B246CEE98E9Bl2E9197D
5086CB9B507219EE95DB113A917678B2
73BED6B8E3Cl743B7116E69E22229516
3FFlCAA1681FAC09120ECA307586ElA7

3B3FD92EB72DAD20333449F8E83CFB4A
C8A64537AOB3A93FCDE3CDAD9FlCE58B
26751F67A3CBB140Bl808CF187A4F4DF
C04B05357CSD1COEEAC4C66F9FF7F2E6

3B3FD92EB72DAD20333449F8E83CFB4A
7789508Dl6918F03F53C52DAC54ED825
9740051E9CSFECF64344F7A82260EDCC
304C6528F659C77866A510D9ClD6AESE

874D6191B620E3261BEF6864990DB6CE
9806F66B7970FDFF8617187BB9FFFDFF
5AE4DF3EDBD5D35E5B4F09020DB03EAB
1E031DDA2FBE03D1792170AOF3009CEE

127

