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Abstract 

A compact, efficient and highly reliable implementation of the Advanced Encryption 

Standard (AES) is the desirable encryption core for any practical low-end embedded 

application. In this thesis we design and implement a compact hardware AES system with 

concurrent error detection. 

We investigate various architectures for compact AES implementations in 0.18 f!m 

CMOS technology. We first explore a new compact digital hardware implementation of 

the AES s-boxes applying the discovery of linear redundancy in the AES s-boxes. 

Although the new circuit has a small size, the speed of this implementation is also 

reduced. Encryption architectures without key scheduling that employ four s-boxes and 

only one s-box are implemented using the new AES s-boxes, as well as based on other 

compact s-box structures. The comparison of the implementations based on different 

architectures and s-box structures indicates that the implementation using four s-boxes 

based on arithmetic operations in GF(24
) has the best trade-off of area and speed. 

Therefore, using this s-box implementation, a complete encryption-decryption 

architecture with key scheduling employing the four s-box structure is implemented. In 

order to be adaptive to various practical applications, we optimize the implementation 

with the fours-box structure to support five different operation modes. 

In addition, high reliability and resistance to malicious attacks are achieved by 

applying concurrent error detection technology. After the studies of fault models and 

I 



practical fault induction techniques, two concurrent error detection schemes based on 

both parity code and hardware redundancy are proposed and implemented. The proposed 

16-bit and 32-bit parity code based concurrent error detection schemes achieve 100% 

detection for single injected faults and detection of many multiple faults with about 67% 

hardware overhead to the original AES compact hardware implementation. 
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Chapter 1 

Introduction 

We are living in a rapidly developing information age now. From the first modem 

telecommunication invention, namely telegraphy, to current high speed communication 

networks, the information age brought us an explosion in economic growth and 

technological innovation. The societies all over the world have undergone immense 

changes because of the technological development. Telegraphy made it possible to 

exchange text messages over long distances for the first time. Then the telephone made 

long distance real time voice communication possible. Today, we listen to the radio and 

watch the cable or satellite television, which makes our entertainment life more colorful. 

Wireless communications such as cell phones make the exchange of information so 

convenient that the communication can take place whenever and wherever. The emerging 

of the Internet brought people a complete new style of life. People interconnect 

computers throughout the world to transmit voice, video and text message, or provide 

inventory, financial and other planning data to conduct the business. Also it is very fast 

and convenient to access and search for useful information over the networks. People use 

email instead of traditional postal mail to contact each other with much less delay. All the 

information is transformed to electronic data which is easy to be transferred or stored. 

The list of communication services available to us is seemingly endless and growing 

almost daily, and the demand for expanded communication services continues to be high. 

With the incorporation of modem communication services into people's lives, 

information security becomes more and more important. When people use the Internet to 

transmit private personal information, they do not want others obtaining the data. 

Especially for commercial organizations, military and government departments, 

confidential files and sensitive data must be prevented from being discovered by 

opponents. Communication security is a major concern in these situations. 

In the modem communication and electronic world, embedded systems are more and 

more popular in many applications. It is estimated that the demand for embedded CPUs is 
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ten times as large as general purpose CPUs. An embedded system is an application­

oriented special system which is completely encapsulated by the device it controls. With 

rapid development of the Integrated Circuit (IC) design and manufacture, lots of 

consumer communication electronics become embedded applications, such as PDA, cell 

phone or other mobile devices. Most of the embedded applications are area-critical and 

allow low speed to achieve a low cost. Hence reducing area and cost is a major concern 

for low-end embedded applications. Like other communication electronics, the 

communication security for embedded applications is another important issue. Therefore, 

how to design and realize a compact cryptographic hardware implementation, which is 

suitable to provide communication security for consumer embedded applications with 

area and cost constraints, is the main focus of this research work. 

This chapter is the introduction part. Here, we introduce some information security, 

cryptography and hardware implementation background related to our research, as well 

as its motivation and objectives. 

1.1 Information Security 

Information security has a recorded history of approximately four centuries. Ancient 

people applied different methods to hide the information. For example, people used 

invisible ink made of lemon and onion juice to write letters. These liquids are heat 

sensitive, and then the writing could not be read until heated [1]. Another method used by 

people was to use a small pin to puncture on selected letters so that the sensitive 

information was not revealed unless the paper was held up in front of a light. Other ways 

such as using the sequence of first letters of each word or each line of the overall message 

as the hidden message were also recorded. Today we also have contemporary products 

utilizing these old techniques. 

Cryptography has been used for information security for a long time. From the old 

Caesar Cipher to the Playfair Cipher widely used by British and U.S army in World War 

I and the famous Three-Rotor Enigma Machine used by German military in World War II, 

cryptography was mostly applied in the military in the past [1]. Nowadays, for modern 

telecommunication technology, we use cryptography to encrypt data to achieve the 

information security. Different from the old steganography [1] , which tries to conceal the 
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existence of the message, cryptography employs various mathematic algorithms to 

transform the message. Even when the opponents obtain the encrypted text, they can not 

figure out the useful message. Thus we guarantee the security of the transmission. 

Cryptography provides data confidentiality, data integrity, authentication and 

nonrepudiation for communication networks [1]. Confidentiality is to prevent transmitted 

information being eavesdropped or monitored during the transmission. The information 

being protected should include communication traffic characteristics such as the source 

and destination address, or timing information. Integrity assures that the transmitted data 

is exactly the same as that sent without modification, insertion, deletion or replay. 

Authentication is to guarantee the communication entities are the ones that they claim to 

be (entity authentication) and the source of the data is what it is supposed to be (data 

origin authentication). Nonrepudiation prevents either sender or receiver form denying 

any transmitted message. A variety of cryptographic mechanisms and algorithms are 

applied to provide these security services. 

1.1.1 Symmetric-key Encryption System 

Symmetric-key encryption is a cryptographic system that the sender and receiver use 

the same secret key in the transmission. There must be a security channel to exchange the 

secret key or an authorized key distributor to allot the secret key. The sender uses the key 

to encrypt the message and the receiver uses the same key to decrypt it. We also must 

assure that it is impractical to decrypt the message without the knowledge of the key even 

when the opponent knows the encryption algorithm and captures the ciphertext. 

As shown in Figure 1.1, the sender in the symmetric encryption system employs 

encryption algorithm E with the secret key K to encrypt the plaintext P into ciphertext C 

before he sends the message through the information channel. This transformation is C = 
Ek(P). After receiving the ciphertext, the receiver uses the corresponding decryption 

algorithm D with the same secret key K to decrypt the message back into plaintext P. 

This is represented as P = Dk(C). Even if the opponent captures the ciphertext C during 

the transmission and knows the encryption algorithm, for a secure cryptosystem, it is 

infeasible to recover the message if he does not have any information about the key K. 

Therefore, the security of the system depends on the robustness of the encryption scheme. 
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E 

Encryption 
Algorithm 

K 

Cryptanalyst 

c c 

D 

Decryption 
Algorithm 

Figure 1.1 Symmetric-key Encryption System [1] 

p 

Receiver 

Symmetric encryption schemes normally are based on the basic encryption 

techniques of substitution and transposition. The use of substitution and transposition 

provides the confusion and diffusion [2]. In Shannon's original definitions, confusion 

refers to making the relationship between the key and the ciphertext as complex and 

involved as possible. Diffusion refers to the property that redundancy in the statistics of 

the plaintext is distributed in the statistics of the ciphertext. 

1.1.1.1 Block Ciphers 

A block cipher is a symmetric-key encryption system that processes the plaintext by 

one block at a time. The block is treated as a whole and produces an output block of 

ciphertext of the same length. The decryption process is similar but uses the 

corresponding decryption algorithm. The processing of the block ciphers is shown in 

Figure 1.2. 
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Secret Key 

, 
\"' 

N-bit Plaintext/Ciphertext Encryption/ 
----• Decryption 

Algorithm 

\__ / 

""' "' 

N-bit Ciphertext/Plaintext 

Figure 1.2 Block Ciphers 

There are a lot of good block cipher algorithms that are widely used, such as Data 

Encryption Standard (DES) [1] , International Data Encryption Algorithm (IDEA) [3], 

Advanced Encryption Standard (AES) [4], and Camellia [5]. Block ciphers are widely 

used in various practical applications and security protocols. AES was adopted in 2001 

by National Institute of Standards and Technology (NIST) to be the new encryption 

standard for US government use. Nowadays, AES is being used all over the world in 

commercial transaction, communication services and governments. 

1.1.1.2 Stream Ciphers 

Stream ciphers encrypt the plaintext by elements (usually one bit) continuously and 

produce one element at a time. Typically, the stream ciphers need a pseudo-random 

generator to create the key stream to XOR with the plaintext bit by bit. The randomness 

of the key stream completely destroys any statistical properties in the message. The 

decryption process is exactly the same function as encryption. The processing of the 

stream ciphers in shown in Figure 1.3. 
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1-bit PlaintexUCiphertext 1-bit CiphertexUPiaintext 
~· 

""" """ Figure 1.3 Stream Ciphers 

Vemam Cipher [6] and RC4 [1] are two well-known stream ciphers. RC4 is a stream 

cipher that is widely used in SSUTLS (Security Sockets Layer/Transport Layer Security) 

standards that have been defined for communication between web browsers and servers. 

It is also used in the WEP (Wired Equivalent Privacy) protocol that is part of the IEEE 

802.11 wireless LAN standard [1]. 

1.1.2 Public-key Encryption System 

The invention of public-key encryption system was a big breakthrough in cryptography 

since it is quite different from conventional symmetric encryption. In a public-key 

encryption system, each end in the communication networks has a pair of keys. The two 

keys are totally different but related. One is called public key and the other is called 

private key. Each end keeps its own private key secret and sends the public key to all the 

parties it wants to communicate with. That means the private key is only known by the 

owner, but the public key is known by all the other communication parties. These two 

keys have some special characteristics that the message encrypted by one of the keys can 

only be decrypted by the other. So during the communication, the sender and receiver use 

different keys for encryption and decryption. Which key (private or public) is used by 

sender or receiver in the communication system is decided by what security purpose the 

communication wants to achieve. 
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If the communication information is needed to be kept confidential as illustrated in 

Figure 1.4, the sender should use the receiver's public key KUr for encryption before 

sending the message. Since only the receiver knows the private key KRr and only by 

using this private key the message can be decrypted to useful information, the 

cryptographic schemes provide the information confidentiality. If authentication of data 

is the goal as shown in Figure 1.5, the sender should use its own private key KRs for 

encryption. When the receiver uses the sender's public key KUs to decrypt the message 

successfully, the receiver can be sure that the message is really sent by the authorized 

sender, because only the message encrypted by the sender's private key can be decrypted 

by its corresponding public key. In both cases, the opponent who acquires the ciphertext 

with knowledge of the public key and encryption/decryption algorithm can not calculate 

the private key. 

p 

Sender 

E 

Encryption 
A lgorithm 

Cryptanalyst 

c c 

0 

Decryption 
A lgorithm 

KRr 

Figure 1.4 Public-key Encryption [1] 

p 

Receiver 

Public-key encryption has a big advantage over symmetric-key encryption. Public-key 

encryption does not have the problem of key exchanging as in symmetric encryption. 

Since the sender and receiver use a different key, and the public key is already known by 

outsiders while the private key is always kept secret by owner, no key exchanging or key 

distribution is needed. Usually we use public-key encryption schemes for key exchange 

in symmetric encryption system. Therefore, public-key encryption is very important for 
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key exchange, authentication and data confidentiality. However, the strong public-key 

ciphers are computationally much more expensive than symmetric-key ciphers. Usually, 

public-key algorithms run 1000 times slower than comparable symmetric-key algorithms 

[7]. 

E D 
p p 

c c 
Encryption Decryption 

Sender Algorithm A lgorithm Receiver 

KRs 

Figure 1.5 Public-key Authentication [1] 

Unlike symmetric-key encryption algorithms based on substitution and 

transposition, public-key algorithms are based on mathematical characteristics of number 

theory. For example, one of the most important public-key algorithms, RSA [8] is based 

on the infeasibility of factoring a large number n into two large prime factors p and q. 

Another very important public-key algorithm, elliptic curve cryptography (ECC) [9], is 

based on the difficulty of calculating a positive integer k given elliptic point G and the 

multiplication k·G, which is referred to as the elliptic curve logarithm problem. 

1.2 Software V s. Hardware Implementation 

Software implementations of cryptographic algorithms are easier and more flexible 

compared to hardware implementations. Software implementations run the encryption 

routines or modules on a general-purpose microprocessor. Therefore, software programs 

are cost effective and have a relatively shorter implementation time for development. 
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However, the normal general-purpose processor is not suitable to handle many 

cryptographic computations efficiently. Most computer hardware is a general-purpose 

machine such as Personal Computer (PC) or mainframe computer for business 

applications. Software implementations tend to be slow for high-speed applications 

where the data throughput is extremely high. The throughputs of software 

implementations of symmetric-key cryptography are about several hundred Mbps. A 600 

MHz processor is incapable of saturating a T3 communication line with 3DES (triple 

DES) encrypted data [10]. For current wireless bandwidth and embedded processor 

performance, the Palm Ill requires 3.4 minutes to generate a 512-bit RSA key, 7 seconds 

to generate a digital signature, and it can only perform DES encryption at a rate of 13 

kbps [11]. 

Hardware implementations usually need a relatively longer time for development and 

need more professional hardware design and implement skills. Moreover, hardware 

implementations lack the flexibility to adapt for different applications requirements. The 

big advantage of hardware implementations is that each part of a hardware system can 

work concurrently and they can achieve very high performance up to several Gbps, which 

is desirable for modem high-speed networking applications, such as virtual private 

networks (VPN) and secure IP (IPSEC). For example, in [12], a VLSI FPGA 

implementation of triple-DES is presented with the speed of 6.9 Gbps using pipelined 

architecture. Another high performance single-chip FPGA AES algorithm 

implementation [13] has a 128-bit encryptor core of 7 Gbps throughput. In [14] , the 

authors even presented an AES processor using 0.18 Jlm CMOS technology with 

amazing speed of 30-70 Gbps. Besides the speed, encryption hardware chips have 

potential advantages in smaller size and lower power consumption than software 

cryptographic implementations on an expensive high-end processor. Also because the 

encryption hardware is physically isolated from the rest of the system, it is widely 

accepted that hardware implementations are physically more secure than corresponding 

software implementations. 

Generally, hardware implementations include Application-Specific Integrated Circuit 

(ASIC) implementations and Field Programmable Gate Array (FPGA) implementations. 

Each of them offers distinct advantages. The ASIC approach typically offers better 
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performance and density, and yields a faster, smaller, and lower power design than FPGA 

technology [15] . But FPGA provides design flexibility and reconfiguration that the ASIC 

implementations lack. 

Considering the advantages and disadvantages of software and hardware 

implementations, some hybrid cryptographic implementations were proposed as 

combining software and hardware. For example, in [7], the authors demonstrated a 

hardware-software co-design cryptographic processor providing excellent performance 

while maintaining the flexibility to support various algorithms in the field. 

In this thesis, because of the area and cost constraints of low-end applications and the 

limited performance of embedded processors, we choose to study and explore a dedicated 

compact hardware design and implementation of the cryptographic algorithm AES for 

such applications. 

1.3 Hardware Design and Implementation Methodology 

As the size and complexity of digital systems increase, more and more Computer 

Aided Design (CAD) tools have been used in the hardware design and implementation 

process. These CAD tools provide sophisticated hardware design, simulation, synthesis, 

verification and generation functions. Nowadays, the Hardware Description Language 

(HDL) is prevalently used for hardware design and implementation. VHDL and Verilog 

are two currently popular HDL languages that can be used to model a digital system at 

many different levels of abstraction, ranging from the algorithmic level to the gate level. 

VHDL stands for Very High Speed Integrated Circuit (VHSIC) Hardware Description 

Language. We use VHDL language and Synopsys CAD tools provided by Canadian 

Microelectronic Corporation (CMC) for all the digital systems design, modeling, testing, 

and documentation process throughout the research. 

Since a hardware design and implementation is a complex process, it is not feasible to 

implement a large system all at once. Instead, we use a divide-and-conquer strategy 

called top-down methodology for hardware design and bottom-up methodology for 

hardware implementation [16]. The top-down design is to iteratively divide the large 

system into subcomponents until all subcomponents can be mapped into available 

libraries or can be realized by available tools for the targeted technology. The process is 
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illustrated in Figure 1.6 in a tree structure. After top-down design, we start to implement 

each terminal of the tree and wire them according to the hierarchical structure of the 

whole system. Each component should be implemented and tested before they are wired 

into up-level components. 
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In the digital system design process, we follow the Digital IC Design Flow [17] 

supported by CMC, which is shown in Figure 1.7. An initial design idea is taken through 

several steps before it is completely implemented in hardware or chips. At first, the initial 

design idea is written as Register Transfer Level (RTL) codes by VHDL language using 

top-down design and bottom-up implementation methodology, and the functionality of 

the system RTL codes are verified by the simulation. Next, we can use Synopsys Design 

Analyzer to synthesize and optimize the RTL codes to gate-level implementations based 

on the targeted library and technology, as well as constraining the design to meet the 

designer's performance objectives. After that, we use Test Compiler via inserted scan 

vectors and Design for Testability (DFT) techniques to make the design testable. Then we 

verify the functionality of the gate-level netlist. We have to take the timing information 

into account and assure that the gate-level design performs the functions correctly. These 

four steps belong to front-end design and use Synopsys CAD tools. After front-end 

design, we come to the physical design. Floorplanning is to create a floor plan for the 
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system and define placement sites for all cells using Physical Design Planner. After this, 

the forward-annotated timing information is used to perform core cells placement. Clock 

tree generation is to add clock buffer cells and nets to create a balanced clock tree 

according to the parameters specified in synthesis. Routing and timing verification is to 

route and layout the design and verify the routed design with timing constraints. Finally, 

physical verification is to verify the placed and routed version of the design and fix minor 

Design Rule Check (DRC) violations. In the physical design phase, we usually use 

Cadence CAD tools and Verilog language. In this thesis, we focus on the front-end 

design and leave the physical design and implementation to the future work. 

Phys ical 
V e rification 

VHDL 

Design Analyzer 

Design Analyzer 

VHDL 
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Figure 1.7 Digital IC Design Flow [17] 
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1.4 Motivation and Objectives 

Since the National Institute of Standards and Technology (NIST) announced the 

selection of Rijndael as the Advanced Encryption Standard (AES) in November 2001 , 

AES has been accepted as the popular means to encrypt sensitive commercial, 

communication and government data. Various hardware implementation architectures 

and optimizations have been proposed for different applications. Those to achieve high 

speed are usually very expensive in hardware. The large area of such architectures is not 

suitable for practical low-end embedded applications, such as smart cards, PDAs, cell 

phones, and other mobile devices. These small embedded applications do not require high 

speed or throughput, but are area and cost critical. Therefore, reducing hardware 

resources to gain a compact and efficient implementation circuit is an increasing demand. 

The AES algorithm is much more complex than its predecessor DES. Even a single 

transient fault taking place anywhere in the AES computation will likely bring out a large 

number of errors in the system output data [18], [19] . Deliberately inducing malicious 

faults into cryptographic implementations and breaking the secret keys or cipher 

structures from the side-channel information from faulty computations is a practical and 

efficient cryptanalysis technique called Fault Based Cryptanalysis [20]. Therefore 

concurrent error detection is very useful to protect the cryptographic system from fault 

based side-channel attacks. 

The objective of our research is to investigate a compact hardware-implemented AES 

system with concurrent fault detection. It attempts to create a bridge between 

performance and cost requirements of the embedded applications such that the system is 

able to detect the faults with small area overhead, low performance penalty and small 

latency. 

The thesis consists of seven chapters as follows: 

• Chapter 2 is related research background about AES hardware implementations. 

We study the AES algorithm, and then survey different hardware implementation 

approaches for the AES algorithm. For different applications, different speed and 

area tradeoffs are required. 

• Chapter 3 proposes a new s-box implementation using s-box linear redundancy. 

Since the s-boxes are the most costly components in AES algorithm, we explore 

13 



the compacts-box implementations first. After investigating published compacts­

box hardware implementations, we utilize the discovery of AES s-box linear 

redundancy and propose a new compact s-box implementation based on this 

theory. We also compare the new implementation with other known s-box 

implementations. 

• Chapter 4 presents a completed AES encryption-decryption system, based on the 

research of the s-box. We first implement an iterative structured encryption 

datapath without key scheduling, and apply three compacts-box implementations 

in this structure. After the comparison of these six implementations, it is found 

that the implementation using four s-boxes based on arithmetic operations in GF 

(24
) has the best trade-off of area and speed. Therefore we complete a compact 

AES encryption-decryption system with key scheduling based on four GF (24
) s­

box implementations. 

• Chapter 5 describes a five-mode system. In order to be adaptive to vanous 

practical applications, we optimize the implementation with the four s-box 

structure to support five different operation modes: : Electronic Codebook mode 

(ECB), Cipher Block Chaining mode (CBC), Cipher Feedback mode (CFB), 

Output Feedback mode (OFB), and Counter mode (CTR). 

• Chapter 6 is the investigation of the concurrent error detection schemes for our 

system. After examining the current error detection techniques and considering 

the implementation structure characteristics of our hardware system, we choose to 

use hardware redundancy for s-box components error detection and parity 

prediction for the other parts in AES datapath. Two parity-code based error 

detection schemes are proposed for our AES system, as well as the performance 

comparison and analysis. 

• Chapter 7 draws several conclusions for our research work and suggests some 

possible directions for the future work. 
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Chapter 2 

AES Algorithm Hardware Implementation 

In this chapter, we survey various hardware implementation approaches and techniques 

for the AES algorithm. We will discuss possible implementation schemes, design 

methodologies, architecture and algorithmic optimizations for different practical AES 

applications. 

2.1 Advanced Encryption Standard (AES) 

Before AES, DES was the most widely used encryption algorithm. With the continuing 

increase of computer hardware speed and decrease of hardware prices, DES was proved 

to be insecure in July 1998. The National Institute of Standards and Technology (NIST) 

called for a new Advanced Encryption Standard in 1997 to replace DES as the approved 

standard for all kinds of applications. After a thorough three-year evaluation spanning a 

large range of concerns for practical applications of modem symmetric block ciphers, 

such as security, cost and implementation characteristics, Rijndael was finally selected as 

AES in November 2001 [21]. Rijndael was preferred over other candidates in the 

evaluation for its good performance and efficiency in hardware and software 

implementation, high level of security, and flexibility over different computing 

environments and operation modes. Nowadays, AES has been accepted as the popular 

means to encrypt sensitive commercial and government data. 

AES is a symmetric-key block cipher, which supports different key lengths of 128, 192 

or 256 bits. It is based on byte-oriented substitution and linear transforms with the fixed 

block length of 128 bits. According to various key lengths of 128, 192 and 256, the 

numbers of rounds of processing are 10, 12 and 14, respectively. 

AES can be used to both encrypt and decrypt data. There are four main functions in 

each round for the encryption process, namely Byte Substitution, Shift Row, Mix Column 

and Add Round Key (Figure 2.1). Another important function is the key expansion. 
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These functions provide the diffusion, which makes sure two input blocks which differ 

only in a single bit will result in completely different output blocks, and confusion, which 

makes the complex mathematical relationship between key and output. 

( a ) Encryptior (b)Oecryptio n 

Figure 2.1: AES Encryption and Decryption Diagram 

(1) Byte Substitution 

Since the Byte Substitution operation is based on each byte, the input 128-bit data is 

divided into 16 bytes and arranged as a two-dimensional4-by-4 array. Then each byte 

is substituted by the corresponding element in the initialized s-box. For example, for a 

byte au, we look up the s-box, and find the corresponding element is bu. So we put bu 

is this position in array. The s-box is an 8-input, 8-output component, and it contains 

all possible 256 8-bit values. Byte Substitution is the only non-linear operation in the 

algorithm. 

(2) Shift Row 

Shift Row is a simple transposition operation. The first row has no shift, the second 

row has left shift for 1 byte, the third one shift left for 2 bytes, and the last row has a 

shift left for 3 bytes. 

(3) Mix Column 
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In this stage, a fixed array C(x) = { 03} x3 + { 01} x2 + { 01} x + { 02} is used to 

perform multiplication using modulo x4 + 1 with each column over GF(28
). Mix 

Column is performed at each round except the last one. 

(4) Add Round Key 

The Add Round Key operation is a bit-wise exclusive OR operation of the whole 

block and round key. There is one key addition operation before the first round for 

pre-whitening. 

(5) Key Expansion 

The key expansion algorithm can take an initial key of length of 128 bits, 192 bits or 

256 bits. For 128-bit key, the key expander takes 128-bit initial key as 4 words (16 

bytes) input, and it generates 40 words to provide each of the 10 rounds with a 4-

word round key. Each of the round keys depends on the key of the last round. 

Unlike DES, the decryption process for AES has a different structure from the 

encryption. However, with some change in operation order and the key expansion 

function, an equivalent decryption structure can be achieved using inverse functions for 

the byte substitution, shift row and mix column. 

2.2 AES Hardware Implementations 

The AES algorithm has a simple structure and can be implemented efficiently on a 

wide range of general-purpose microprocessors or embedded processors. Good 

performance and efficiency in software implementation are very important features of 

AES algorithm compared to other block ciphers. Although the software realization of the 

AES algorithm scheme can lead to relatively high throughput when compared to other 

block ciphers, hardware implementations such as special purpose cryptographic 

processors are desirable in many practical applications. 

High speed applications require AES hardware implementations to obtain high data 

throughput. The encryption of the physical layer for Internet traffic for a network 

cryptographic coprocessor is a good example. In such applications, the primary concern 

is speed of the implementation. The software implementation of the AES algorithm on a 

general-purpose processor only yields a throughput of around several hundred Mbps, 
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which is too slow for high-end Internet routers. Although recent highly optimized AES 

software implementations on high-end microprocessors can achieve improved throughput 

up to 1.5 Gbps [22], the expensive high-end microprocessors and high space and power 

consumption are not cost effective compared to AES hardware implementations. 

For low-end mobile applications such as cell phones and PDAs, AES software 

implementations on general-purpose processors consume much more power than AES 

hardware implementations. Smart cards are another example that benefits from AES 

hardware modules. In these applications, while speed is important, the main concern is to 

reach minimum area requirement and limit power consumption. 

Therefore, based en the requirements of these different practical applications, various 

approaches have been explored and applied to obtain efficient hardware implementations 

of the AES algorithm. We categorize these efficient AES hardware implementations into 

high speed AES hardware implementations and compact AES hardware implementations. 

2.2.1 High Speed AES Hardware Implementations 

High speed AES hardware implementations are suitable for speed critical applications 

such as Internet servers, Virtual Private Networks (VPN) or Asynchronous Transfer 

Mode (ATM). The high data throughput of this category of AES implementations usually 

results from architectural optimizations for maximum speed such as pipelining, sub­

pipelining and loop unrolling [23] by making use of duplicated hardware round 

operations. 

A lot of related work has been done on the topic of AES hardware implementations for 

both FPGA and ASIC implementations. Accordingly, we will introduce the related work 

from these two perspectives. 

2.2.1.1 High Speed ASIC Implementations 

ASIC implementations are more suitable for achieving high throughput than FPGA 

implementations. Most of the ASIC AES implementations can obtain throughput rates of 

several Gbps. 

During the NIST selection procedure of the AES algorithm, the National Security 

Agency (NSA) provided detailed hardware performance simulations and comparisons 
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based on 0.5 Jlm CMOS hardware technology for the candidate algorithms in the 

evaluation [24]. Rijndael, as one of the candidates, was analyzed for hardware 

performance across a wide range of metrics, such as speed, area and throughput. For the 

high speed implementation version, they used a pipelined design for both key scheduling 

and datapath processing. The pipelined key schedule starts the encryption expansion 

immediately with no key setup required and keys are generated at a rate of four 32-bit 

words per round. A bank of registers is used to store the keys and supplies the keys to the 

algorithm. The pipelined datapath reflects a single round in each stage and uses the same 

pipeline to perform both encryption and decryption. T. Ichikawa et al. [25] also 

investigated hardware evaluation of AES finalists using Mitsubishi Electric's 0.35 Jlm 

CMOS ASIC design library. This paper focused on fast encryption speed in feedback 

modes and used a fully loop unrolling structure without introducing a pipeline structure, 

which blocks the feedback modes. Hence, their design tried to achieve fast speed without 

any effort to reduce hardware size. 

A fully pipelined AES implementation with an ultra high throughput of over 30 Gbps 

was presented in [14]. It is shown that by using loop unrolling of all rounds of functions, 

outer round pipelining between each round and 2-stage sub-pipelining of the composite 

field implementation of the s-box, the AES hardware implementation can achieve a 

throughput rate of 30 Gbps to 70 Gbps using 0.18 Jlm CMOS technology. Since the 

pipelined architecture costs a big amount of hardware resources, this implementation tries 

to use composite field arithmetic implemented s-boxes and offline key scheduling 

schemes to reduce the circuit area. A related work was done in [26] without any effort to 

reduce hardware size. Three different pipelined architectures of the AES algorithm are 

implemented and compared in terms of area and speed trade-off. 

Another group of fast AES hardware implementations uses different hardware design 

techniques to increase performance and reduce circuit size at the same time. These 

implementations attempt to create a bridge between performance and cost requirements. 

Consequently, all of them employ an iterative structure to provide a medium speed 

operation at relatively small area/gate count. The iterative architecture only implements 

one round of operations in hardware, and the block of data must iteratively loop n times 

over the datapath to perform one encryption/decryption. Such an efficient hardware 

19 



implementation of AES algorithm was presented in [27]. Instead of using a table-lookup 

method for the s-box, this implementation employs composite field GF(24
) arithmetic to 

realize the s-box, resulting in reduced circuit area. The chip datapath uses a 4-stage 

pipeline architecture and only has the hardware for one encryption/decryption round. The 

first three stages implement Byte Substitution operation and all the other operations are 

performed in the last stage. Using the TSMC 0.25 J.lm CMOS technology, the 

implementation throughput rate is 2.977 Gbps for 128-bit key AES, with a maximum 

clock frequency of 250 MHz and a size of 63.40K gates. Similar implementations were 

presented in [28], [29], [30]. The implementation in [28] also uses a pipelined structure in 

the datapath to increase the operating frequency as well as hardware utilization efficiency, 

but it applies the 256-bit registers at the end of each operation. It uses the table-lookup 

method to store the s-boxes in ROM and generates the round keys in advance storing the 

keys in SRAM. The throughput of this implementation is 2.3 Gbps using TSMC 0.18 J.lffi 

CMOS technology with the operating frequency 465 MHz and the size of 28.6k gates 

plus 128K ROM and 4K SRAM. Like the above two implementations, the 

implementations in [29] and [30] also employ an iterative architecture and complete one 

round data processing in one clock cycle. These implementations support three different 

key lengths and three different block sizes of data. By using table-lookup s-boxes and on­

the-fly key scheduling, this AES chip has a maximum throughput of 2.29 Gbps with 

173K gates based on a 0.18 11m CMOS technology. 

An AES hardware implementation with a speed of over 10 Gbps using an iterative 

structure with 32-bit data bus was described in [31]. Such an architecture is usually used 

for very compact AES design. However this implementation achieves such a high 

throughput without using any pipelining or loop unrolling techniques. It applies a special 

twisted-binary decision diagram (BDD) for the s-box implementation, which is 1.5 to 2 

times faster than conventional s-box implementations. Also T-box algorithm [23] is used 

combining with the twisted BDD method as twisted BDD T-box architecture to minimize 

the delay for the additional speedup. Actually the T-box algorithm is a speedup approach 

often used in software implementations. It merges the Byte Substitution operation and 

Mix Column operation together into a single function block. The keys in this 

implementation are generated beforehand and stored in an external register file. Moreover, 
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the advanced fabrication technology used for this implementation contributes a lot to 

obtain the high speed. Finally the circuit achieves about 11 Gbps throughput even in 

feedback modes with clock cycle of 880 MHz and size of 167.6K gates using a 0.13 J.!m 

CMOS standard cell library. 

The hardware synthesis results of 128-bit key Rijndael for all these implementations 

are shown in Table 2.1. 

Table 2.1 High Speed ASIC Implementations of 128-bit Key AES Algorithm 

Critical Clock 
Area Throughput kbps/ 

Implementation Process Architecture Technology Path Frequency 
(gates) (Gbps) Gate 

(ns) (MHz) 

T. Ichikawa Enc/ Loop 0.35 !!ill 
612k 65.64 15.23 1.95 3.18 

et al. [25] Dec Unrolling CMOS 

4-stage Sub- 0.18 !!ill 
473k 1.65 606 77.6 164.1 

pipelining CMOS 

A. Hodjat 
Enc Fully 0.18 !!ill 

372k 2.65 377 48.2 129.6 et al. [26] Pipe lining CMOS 

2-round 0.18 !!ill 
225k 2.76 362 23.1 102.7 

Pipe lining CMOS 

C. Su Enc/ Iterative 0.25 !!ID 
63.40k 4.00 250 2.98 47.0 

et al. [27] Dec Looping CMOS 

N. S.Kim Enc/ Iterative 0.18 !!ill 
28.6k 2.19 456 1.64 57.3 

et al. [28] Dec Looping CMOS 

I.Verbauwhede Iterative 0.18 !!ill 
Enc 173k 6.50 154 1.6 9.2 

et al. [30] Looping CMOS 

Quarter of 

Round 0.13 !!ill 
Enc 167.6k 1.10 909 11.6 69.2 

Iterative CMOS 

S. Morioka Looping 

et al. [31] Quarter of 

Round 0.13 !!ill 
Dec 282.5k 1.13 885 11.3 40.0 

Iterative CMOS 

-- Looping 
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2.2.1.2 High Speed FPGA Implementations 

FPGA technology offers better flexibility than ASIC hardware implementations. Since 

embedded small or medium sized memory blocks are special features on modem FPGAs, 

the ROM/RAM based table-lookup method is cost-effective for FPGA implementations. 

Most of the published implementations are targeted at Xilinx Virtex FPGA devices. 

A. Elbirt et al. [32] was the first to focus on high speed AES FPGA implementations. It 

investigated different architectures including 1, 2 and 5 rounds loop unrolling, 2 and 5 

stages pipelining, and 1, 2 and 5 stages sub-pipelining separately for the Rijndael 

algorithm. Targeted on Virtex XCVlOOO, these early implementations only get the 

throughput of about several hundred Mbps. 

Several very high-throughput AES processors based on FPGAs were reported in [33], 

[34] and [35]. These implementations all use high speed design techniques such as loop 

unrolling of all rounds, fully pipelining between rounds and sub-pipelining inner round 

functions together in one implementation. In [33] A. Hodjat et al. presented the 

architecture of a fully pipelined AES encryption processor on a single chip FPGA. 

Actually this implementation uses very similar design techniques and architecture as that 

in [14] . However this implementation employs some features of FPGA and investigates 

4-stage sub-pipelining and 7-stage sub-pipelining structures using or without using blocks 

of RAM separately. This processor has a maximum throughput of 21.54 Gbps using a 

Virtex-II Pro FPGA chip. A similar fully pipelined 128-bit key AES encryption processor 

with throughput of 17.8 Gbps was introduced in [34]. In order to fit into a smaller target 

device like the Xilinx Virtex-E XCV1000E, which has not enough internal memory to 

implement a heavily pipelined design, this processor uses a pure combinational logic to 

implement s-boxes using composite field arithmetic and generates round keys on-the-fly. 

So it refers to as "memoryless". X. Zhang et al. [35] also uses 7-stage sub-pipelining and 

achieves a throughput of 21.56 Gbps on Xilinx XCVlOOOE chip. All the implementations 

mentioned above focus only on 128-bit key AES algorithm and only implement the 

encryption process. 

Several FPGA implementations with several Gbps throughput were also published. M. 

McLoone et al. [36] presented a generic AES implementation for only encryption but 

supporting varying key lengths. When the key is 128-bit, the encryption speed can reach 
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7 Gbps. When the key lengths are longer, the speeds are slower. Also a fully pipelined 

128-bit key implementation supporting both encryption and decryption is realized on 

Virtex-E XCV3200E, which runs at a throughput of 3.2 Gbps. Another implementation 

was presented in [37], which does not use any pipelined architectures. It can support all 

the key and data lengths and works for both encryption and decryption. This 

implementation has a maximum throughput of 1.19 Gbps on Xilinx XC2V8000 device. 

All the hardware performance details of these FPGA implementations are shown in 

Table 2.2 for comparison. 

Table 2.2 High Speed FPGA Implementations of 128-bit Key AES Algorithm 

Clock 
Blocks Throughput Mbps/ 

Implementation Process Architecture Device Slices Frequency 
of RAM (Gbps) Slice 

(MHz) 

Virtex-11 
4-stage Sub-

XC2VP30 12450 168.3 21.54 1.7 -
pipelining 

-7 

Virtex-11 
7-stage Sub-

XC2VP20 9446 169.1 21.64 2.3 -

A. Hodjat et al. 
pipelining 

-7 
Enc 

[33] 
Virtex-11 

4-stage Sub-
XC2VP20 5177 84 168.3 21.54 4.2 

pipelining 
-7 

Virtex-II 
7 -stage Sub-

XC2VP20 6400 84 157.1 20.11 3.1 
pipelining 

-7 

Virtex-E 

XCVlOOO 11719 - 129.2 17.80 1.5 

K. Jarvinen 
Fully 

E-8 
Enc Pipelining 

et al. [34] Virtex-11 

XC2V200 10750 - 139.1 16.54 1.5 

0-5 
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Clock 
Blocks Throughput Mbps/ 

Implementation Process Architecture Device Slices Frequency 
of RAM (Gbps) Slice 

(MHz) 

Virtex-E 

XCV1000 11014 - 125.3 16.03 1.5 

X. Zhang et al. 7 -stage Sub- -6 
Enc 

[35] pipelining Virtex-E 

XCVlOOO 11022 - 168.4 21.56 2.0 

e-8 

Enc Fully Virtex-E 
2222 100 54.35 6.96 3.1 

Pipelining XCV812e 
M. McLoone 

Virtex-E 
et al. [36] Enc/ Fully 

XCV3200 7576 102 25.3 3.24 0.4 
Dec Pipelining 

e-8 

R. Sever et al. Enc/ No Virtex-II 
4189 4 65 1.19 0.3 

[37] Dec Pipelining XC2V800 

2.2.2 Compact AES Hardware Implementations 

Although high speed implementations are preferred to high end applications, for many 

low end customer applications that require much smaller throughput, such as wireless 

communication, smart cards and PDAs, compact AES hardware implementations are 

more attractive. Unlike high speed implementations, compact AES hardware 

implementations usually apply algorithmic optimization, which exploits algorithmic 

optimization inside each round unit. Therefore they are sequentially iterative designs 

based on 1-round or a quarter of round loop architectures, and a lot of design techniques 

for hardware resources sharing, merging encryption and decryption datapath, components 

reuse between datapath and key scheduler or between forward functions and inverse 

functions are used to achieve the objectives of low area complexity and power 

consumption. 

2.2.2.1 Compact ASIC Implementations 

The smallest design of AES ASIC implementation was that reported in [38]. The 

design uses a methodology to optimize the key component s-box into a new composite 
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field GF (((22
)
2

)
2

) and implements the s-boxes by arithmetic operations in this field. The 

architecture proposed in this paper becomes the basis of many other compact AES 

implementations. This architecture use a quarter of a round as a loop to process the data. 

That means the width of the data bus is 32-bit. So a full round of 128-bit data needs four 

clock cycles to be finished. In this compact datapath that supports both encryption and 

decryption, the hardware resources are efficiently shared between the encryption and 

decryption process, including the sharing between s-box and inverse s-box and Mix 

Column and Inverse Mix Column The s-box is reused between datapath and key 

expander as well. Logic optimization and factoring are widely applied to all arithmetic 

components. The key expander generates the round keys on-the-fly, saving the memory 

area to store the keys in advance. Since all the functions integrated into such a compact 

datapath, a lot of multiplexers are used to switch between the functions. Consequently, 

the design produced is an extremely small 128-bit key AES circuit of 5.4k gates based on 

a 0.11 11-m CMOS standard cell library. The circuit needs 54 clock cycles to finish the 

encryption/decryption process of a block of data and runs at a throughput rate of 311 

Mbps with the maximum clock frequency of 131.24 MHz. 

Another AES encryption/decryption integrated design was proposed in [39], which 

tries to achieve a very low complexity circuit. The design uses a 128-bit data bus and one 

round as a loop. The table-lookup ROM method was chosen to implement the s-boxes, 

and the key expander does not share s-boxes with the datapath in this design. However, 

other arithmetic components sharing techniques are also used to save costs. Since it uses 

a wider data bus, ROM s-boxes and no sharing of s-boxes, this design needs more area 

for data registers and s-box components than that in [38]. This implementation takes 21 

clock cycles to complete a block of data encryption or decryption process. Using TSMC 

0.25 11-m CMOS technology, the circuit has a throughput of 609 Mbps with clock 

frequency 100 MHz and gate count of 31.96k gates. 

2.2.2.2 Compact FPGA Implementations 

Very compact FPGA implementations for 128-bit key AES algorithm were presented 

in paper [40] and [41]. The design in [40] was targeted on low-cost Xilinx Spartan-IT 

XC2S30 FPGA, so specific features of this device such as dual-port RAM to implement 
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combinational logic were explored. Using the embedded blocks of RAM, the s-boxes are 

implemented by table-lookup and all round keys are precomputed to save power. A 32-bit 

data bus is adopted and it executes one round in four clock cycles. Since only one block 

of data is processed at one time, it can be used in feedback and non-feedback modes of 

operations. The implementation in [41] uses a similar architecture. But it achieves a 

smaller area and shorter critical data path latency by merging the Byte Substitution 

operation and Mix Column operation together as aT-box as in [31] and changing the way 

to generate inverse round keys. The hardware performance details of these FPGA 

implementations are presented in Table 2.3 for comparison. 

Table 2.3 Compact AES FPGA Implementations 

Clock 
Blocks Throughput Mbps/ 

Implementation Process Architecture Device Slices Frequency 
of RAM (Mbps) Slice 

(MHz) 

Quarter of 
Spartan-11 

222 3 50 139 0.63 
K. Gaj eta! Enc/ XC2S30-5 

Round Loop 
[40] Dec Spartan-II 

Iterative 222 3 60 166 0.75 
XC2S30-6 

Spartan-

m 163 3 71.5 208 1.26 
G. Rouvroy Quarter of 

Enc/ XC3S50-4 
eta! [41] 

Dec 
Round Loop 

Virtex-11 
Iterative 

XC2V40- 146 3 123 358 2.45 

6 

2.3 AES Algorithm Hardware Design Tradeoffs 

From the above survey of hardware implementations of AES algorithm, we can see 

many design choices are encountered during the implementation of AES. From the 

perspective of efficiency, the major decision is the design tradeoff between area and 

speed by using different optimization methods. These tradeoffs between performance and 

complexity are clearly represented by the various design techniques applied between the 

high speed AES implementations and the compact AES implementations. High speed 
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implementations have a high throughput rate that is preferred by more and more fast 

telecommunication and internet networks, but they take more space and have higher gate 

counts. Compact implementations are cheap and small, suitable for embedded 

applications, but they are much slower in that they take a longer time to complete data 

processing. In terms of efficiency, the ratio of throughput to area is normally used as a 

measure. Although for FPGA implementations, the throughput/slices can not represent 

the efficiency accurately when blocks of RAM are employed, for ASIC implementation, 

throughput/area is a good criterion to measure the area and speed tradeoffs. We will 

summarize the design tradeoffs of AES algorithm hardware from several aspects: 

architectures, round functions, datapaths and device technologies. 

2.3.1 Architecture Tradeoff 

The several different architectures usually employed for AES algorithm hardware 

implementations are pipelining, sub-pipelining, loop unrolling and iterative looping. 

The pipelining architecture can offer the advantage of a high throughput rate by 

processing multiple blocks of data simultaneously. It is achieved by inserting rows of 

registers between combinational logic circuits of each round, namely the pipeline stage, 

and replicating the round function hardware. The registers are used to store the 

intermediate data between rounds. During each clock cycle, the partially processed data 

block is fed into the next stage of the pipeline and its place is taken by a subsequent data 

block. If the number of pipeline stages is equal to the total number of rounds a cipher 

needs, we call it a fully pipelined architecture. In this case, the system will output a 128-

bit block of ciphertext at each clock cycle. The disadvantage of the pipelining 

architecture is that it requires significantly more hardware resources than normal 

structures and it can not support the feedback modes of block ciphers. 

The sub-pipelining architecture is similar to the pipelining, but it sub-divides the 

functions in each round into smaller functional blocks by inserting more rows of registers 

inside of the operations in each round. Thus each round is divided into several stages and 

the system can process more blocks of data at the same time. However, the sub-pipelining 

architecture does not always result in increased throughput. If the round function is not 

very complex and sub-dividing the stage does not achieve any decrease of stage delay, 
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the sub-pipelining architecture will not increase system clock frequency but need more 

clock cycles and more hardware resources to process one block of data, which results in 

reduced efficiency. 

The loop unrolling architecture unfolds all n rounds of processing functions and 

implements them as a single combinational logic block. So only one block of data is 

processed in the circuit at a time but all n rounds of functions are performed to this block 

of data in one clock cycle. Although the loop unrolling architecture minimizes the 

number of clock cycles for processing one block of data, it increases the propagation 

delay between registers, which results in slow system clock frequency. Moreover, the 

duplicating of n rounds of functions requires a lot of hardware resources . 

The iterative looping architecture is an effective method to minimize the hardware 

resources for implementations. In an iterative looping architecture, only one round or a 

quarter of round processing function is implemented. So the system needs multiple 

iterations to complete the encryption or decryption of one block of data. When a quarter 

of round operations are taken as a loop, the system requires a large number of clock 

cycles to perform an encryption. Consequently, this approach results in slow throughput 

and small area implementations. 

In terms of speed, pipeline architectures are the fastest. The slowest is the iterative 

looping architecture. In terms of area, the iterative looping architecture leads to the 

smallest, and the pipelining architecture to the largest. The sub-pipelining architecture is 

the most costly of all. However, the sub-pipelining architecture seems to be the best 

choice in terms of optimum speed/area ratio [23]. 

A big disadvantage of pipelining and sub-pipelining architectures is that they can not 

support feedback operation modes such as Cipher Block Chaining (CBC) mode, 

Ciphertext Feedback (CFB) mode and Output Feedback (OFB) mode. The discussion 

about the operation modes will be included in Chapter 5. In feedback modes, the 

ciphertext of one block of data must be available before the next block can be encrypted. 

But in pipelining and sub-pipelining architecture, continuous multiple blocks of data are 

processed at the same time. Practically, most cryptographic applications are operating in 

feedback modes rather than the normal Electronic Codebook (ECB) mode because 

feedback modes are more secure. However, Counter (CTR) mode is not a feedback mode 
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and is supported for pipeline architectures. Therefore, many high speed fully pipelining 

or sub-pipelining implementations such as [14] and [26] work in Counter Mode. 

Some high speed implementations are not practical for many applications not only 

because of the large space, power and area, but also the long delay and complexity in 

placing and routing task is a critical constraint for such a large design [ 42]. 

2.3.2 Round Functions Tradeoff 

Round function optimizations are exploited for both high speed and compact 

implementations. Various methods have been proposed to implement individual round 

operations. 

The s-box is the most often discussed component in the round operations. How the s­

box is implemented is crucial for the whole system because it is the most costly 

component and it is usually replicated multiple times in one implementation. Especially 

in pipelining and loop unrolling architectures, the s-box is duplicated for a large number 

of times. The popular methods to implement the s-box are based on look-up table, 

Boolean functions and composite field arithmetic. The s-box using look-up table or 

Boolean functions has short delay and needs 2 to 3 times more hardware gates than the 

other method. The s-box using composite field arithmetic results in a much smaller 

circuit but has 3 to 4 times longer critical data path delay. Details of the s-box 

implementation will be discussed in Chapter 3. 

A method named T-box is applied in some table-look up implementations [31]. This 

approach was originally proposed for 32-bit processor software implementations. It 

combines the Byte Substitution operation and Mix Column operation into four 8x32-bit 

tables. T-boxes need 4 times more memory space than the normal 8x8-bit s-boxes, but 

the method using T-boxes has shorter delay than the normal way to implement Byte 

Substitution operation and Mix Column operation. A distinct T-box was mentioned in 

[23]. It combines Byte Substitution, Shift Row and Mix Column operations into one 

table-look up operation. This T -box is an 8x24-bit table and it is 3 times bigger than the 

normal 8x8-bit s-box. 

Another important part in the AES algorithm is the key expander. There are two 

typical methods used to implement the AES key expander: compute the round key on-
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the-fly for the data processing on each round or precompute all the round keys before­

hand and store them in memory. The computation of keys on-the-fly has an advantage of 

saving area because it does not need any extra memory to store all keys, and it can 

change keys fast with low or no delay. But the on-the-fly scheme has to compute over 

and over again for each data block if the initial key does not change. The precompute 

scheme takes more area to store all the keys, but it has no extra delay for the decryption 

key setup time and is very easy to implement. 

2.3.3 Datapath Tradeoff 

Since the AES encryption and decryption datapaths have different structures and the 

forward operations and inverse operations are different functions, the techniques to merge 

the encryption and decryption process are proposed for cryptographic coprocessors that 

support both encryption and decryption. For example, the reuse of multiplicative inverse 

in GF (28
) between s-box and inverse s-box, the merging of Mix Column and Inverse Mix 

Column and the exchange of the orders of some operations to get an equivalent structure 

for encryption and decryption datapath have all been used. An efficient architecture for 

key expander to generate round keys for both encryption and decryption is also adopted 

in many implementations. These approaches of merging datapaths eliminate the 

disadvantage that two separate hardware modules are needed for applications that require 

both encryption and decryption, but the performance of the system will be affected by the 

large amout of additional switching logic in the critical path. 

Another optimization of the key expander is to share s-boxes with the datapath. This 

scheme can save area because it does not need more resources to implement exclusive s­

boxes for key scheduling. But the expense is the additional switching logic and one more 

clock cycle of each round for the key expander to occupy the s-boxes for generating 

round keys in the key on-the-fly method. The floorplanning and routing are also slightly 

more complicated since encryption/decryption datapath and key expander are no longer 

separated [ 40]. 

30 



2.3.4 Device Technology Tradeoff 

The hardware designs of AES may be different depending on whether they are targeted 

to FPGA or ASIC technology. Generally, the same design techniques and architectures 

can be applied to both FPGA and ASIC implementations, and a good rule of thumb is 

that, except for memories, logic in an FPGA takes roughly ten times the silicon area of an 

ASIC, while using the similar techniques [43]. ASIC implementations are typically 

faster than FPGA implementations if they use the similar design schemes, and ASIC 

designs are less constrained in terms at the size of the circuit. FPGA is more flexible for 

agility and modification. Some special features of FPGA are exploited for the AES 

algorithm. For example, the advantage of an embedded block of RAM provides enough 

memory for storing and is suitable for table look-up s-box schemes. An approach to 

combine Mix Column and Add Round Key operations by observing that the structure of 

Virtex slice offers the possibility to perform XOR between 5 bits. This combined 

approach takes advantage of this configuration and keeps the critical path inside one 

Virtex slice [42]. However, FPGA devices can be quite constrained in their resources if 

cheap devices are chosen. As well, FPGA implementations usually have slower clock 

frequency than corresponding ASIC designs. 

In terms of floorplanning and routing, for an FPGA target device, routing placement is 

predetermined within the FPGA architecture and this is the cause of larger area in FPGA 

implementations compared to ASIC designs. Nevertheless the area of ASIC designs is 

greatly affected by routing overhead [42]. In order to achieve optimized hardware designs 

of AES, an efficient routing algorithm is mandatory for ASIC implementations. 

2.4 Conclusion 

The tradeoffs between cost and performance is always a concern for all practical 

applications, and various design and optimization techniques should be chosen during the 

hardware implementation of AES algorithm, based on the specific considerations and 

constraints. High-end applications require high data throughput. Accordingly, 

architectural optimizations for maximum speed such as pipelining, sub-pipelining and 
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loop unrolling structures are usually applied for such high speed implementations. Low­

end embedded applications prefer compact implementations that are cheap and small. So 

iterative looping architecture is chosen in this case, and algorithmic optimizations such as 

hardware components sharing and reuse are used to achieve low area complexity. ASIC 

implementations are typically faster than FPGA implementations. However, FPGA 

devices offer better flexibility than ASIC implementations. Because the purpose of our 

research work is to achieve a compact hardware implementation of AES for area-critical 

embedded applications, the iterative looping architecture and algorithmic optimizations 

will be applied in our design. 
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Chapter 3 

Compact Implementation of AES S-box 

In terms of hardware implementation, s-boxes are the most complex components in the 

AES algorithm. How the s-boxes are implemented has important influence on the die-size, 

speed and power consumption of the overall AES system. Therefore, we will explore the 

compact s-box implementations in this chapter before looking into other parts in the 

system. 

3.1 S-box Hardware Implementation 

The s-box is an 8-input, 8-output component, which performs the non-linear Byte 

Substitution operation by using a table containing a permutation of all possible 256 8-bit 

values. Because this operation has to be repeated for every round and the substitution is a 

byte-to-byte function, Byte Substitution is the bottle-neck in the algorithm. 

3.1.1 The Construction of S-box 

The construction of the s-box has two steps: 

(1) The first step is to substitute each byte au by its multiplicative inverse a/ in a 

Galois field GF(28
) with the irreducible polynomial 

m (x) = x8 + x4 + x3 + x + 1. 

The multiplicative inverse a/ has the property that a/ ® au = { 1}, where ® is the 

multiplication over GF(28
), a/, aiJ E GF(28

) and a/, au -:f. {0}. The value {0} is 

assigned as multiplicative inverse to itself. The widely used algorithm for calculating 

the multiplicative inverse is the Extended Euclid Algorithm [1]. However, this 

algorithm is not suitable for hardware implementations. 

(2) The following step is an affine transformation over GF(2) as 

biJ = M a/+ c, 

where M is the binary matrix 

33 



1 0 0 0 1 1 1 1 

1 1 0 0 0 1 1 1 

1 1 1 0 0 0 1 1 

1 1 1 1 0 0 0 1 

1 1 1 1 1 0 0 0 

0 1 1 1 1 1 0 0 

0 0 1 1 1 1 1 0 

0 0 0 1 1 1 1 1 

and c is the binary constant { 63}. 

The s-box construction involves a lot of multiplication and addition over GF(28
). 

Mathematically, the addition a(x) + b(x) in GF (28
) corresponds to bitwise XOR 

operation of a(x) and b(x), and multiplication a(x) ® b(x) in GF(28
) is executed modulo 

m(x), where m(x) is the irreducible polynomial. 

The first transformation is more complex than the second from a computational point 

of view. The cascade of these two transformations and the use of finite field arithmetic 

provide the nonlinearity between the input and output of the s-box. The design of the s­

box is the most important aspect in the cipher design with respect to security since the s­

box is the only non-linear part in the entire algorithm. 

The inverse byte substitution uses s-box-1
, which is constructed by applying the inverse 

of the affine transformation first and then taking the multiplicative inverse in GF(28
). 

Therefore, the s-box table and s-box-1 table are different but related such that 

s-box -I [ s-box (x) ] = x. 

3.1.2 Look-up Table 

Early AES s-box implementations were mostly straightforward schemes employing 

look-up tables or direct implementation of 8-bit Boolean functions. The look-up table can 

be implemented by Read-only Memory (ROM), Random Access Memory (RAM) or 

Programmable Logic Array (PLA) and needs a decoder device to address the table. This 

scheme is commonly employed in most FPGA implementations. The direct 

implementation of 8-bit Boolean functions using logic gates applies the complete truth 

table of the s-box 8-bit output and provides it to Electronic Design Automation (EDA) 

tools. The EDA compiler extracts out the corresponding combinational logic and 
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synthesizes the circuit into logic gates. The direct implementation of Boolean functions is 

an approach often used in ASIC applications. Due to the nonlinearity of the s-box design, 

the numbers in the truth table are somewhat random. So logic gate compression and 

optimization is very hard, and the direct implementations of the s-box result in a large 

amount of hardware resources. 

Some look-up table implementations utilize the combination of Byte Substitution and 

Mix Column operations as aT-box [31]. Each T-box has an input of 8 bits and produces a 

32-bit output. Thus the implementation only needs 4 T-box table lookups per column in 

each round. This method achieves a more efficient software implementation but costs a 

lot of hardware resources. 

3.1.3 Composite Field Arithmetic 

An alternative approach for s-box implementation is using composite field arithmetic. 

This method mainly focuses on applying mathematical properties of finite field 

arithmetic for efficient multiplicative inverse calculation using combinational logic. 

This approach was first proposed by V. Rijmen [44], who was one of the designers of 

Rijndael algorithm. It was suggested in his paper that every element of GF(28
) can be 

represented by a polynomial whose coefficients are elements in GF(24
). 

a= bx + c, (a E GF(28
), b,c E GF(24

)) 

The transformation from GF(28
) to GF(24

) is called an isomorphic mapping. Using a 

irreducible polynomial p(x) = x2 +Ax +B, where A,BE GF(24
), the multiplicative inverse 

can be calculated by [ 44] 

(bx + cr1 = b (b2B + bcA + c2r 1x + (c + bA)(b2B + bcA + c2r 1
. 

In the view of hardware implementation, the calculation flow of multiplicative inverse is 

illustrated in Figure 3.1. Each box in the figure can be taken as a subcomponent. From 

the figure we can see that the problem of calculating multiplicative inverse in GF(28
) is 

reduced to the calculation of multiplicative inverse, squaring, multiplication and addition 

in GF(24
). 
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b c 

p q 

Figure 3.1 Calculation of Multiplicative Inverse 

The method mapping to composite field arithmetic in GF((2°)m) was further developed 

by A. Rudra et al in [45]. Directly aimed to smaller cost and overall low-level complexity 

of various arithmetic operations, this paper described in detail about how to choose the 

optimal irreducible polynomial from all field primitive polynomials, corresponding 

choice of composite field, and the generation of the isomorphic transformation matrix 

from the original field to the chosen composite field. Based on the consideration about 

overall cost, computation and comparison of gate count of resulting implementation 

circuits, as well as other measures such as depth of the critical path, this paper concluded 

that polynomial p(x) = x2 + x + {1110} is best selected as the irreducible polynomial for 

the module. 

3.1.3.1 Composite Field GF (24
) 

A detailed hardware ASIC implementation of the AES s-box was reported by J. 

Wolkerstorfer in [46]. This implementation chose GF(24
) as the composite field and 

strictly followed the calculation structure of multiplicative inverse in Figure 3.1. It also 

adopted the selection of p(x) = x2 + x + { 1110} for modular multiplication for GF(28
) 

and n(x) = x4 + x + 1 for modular multiplication in GF(24
). Using the composite field 
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arithmetic for multiplicative inverse calculation followed by the affine transformation 

over GF(2), the overall structure of the s-box is shown in Figure 3.2 as a 3-stage method. 

S-box Inverse S-box 

Figure 3.2 Structure of S-box using Composite Field GF(24
) 

All details about isomorphic transformations and arithmetic operations are given in 

Appendix A. 

3.1.3.2 Composite Field GF (22
) 

A. Satoh, et al., continued to decompose the arithmetic operations in GF(28
) into 

subfield GF((22
)
2

) and introduced GF(22
) as a new composite field [38] . To reduce the 

cost of the calculation of multiplicative inverse as much as possible, this method applied 

multiple extensions of smaller degrees. It repeated degree-2 extensions under a 

polynomial basis using the irreducible polynomials as below: 

x 2 +x +l 

x2 +x+¢ 

x 2 +x +A. 
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Thus the inverter and multiplier in GF((22
)

2
) can be transferred to the calculation of 

multiplicative inverse, squaring, multiplication and addition in GF(22
) as illustrated in 

Figure 3.3. 

Inversion lr GF(22) 
GF(2) 

Figure 3.3 Structure of Inverter using Composite Field GF(22
) [38] 

A. Satoh, et al., [38] did not provide the details of the hardware implementation 

operations. We provide all details about isomorphic transformations and arithmetic 

operations in Appendix A. 
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The methods using composite field arithmetic for s-box implementation result in 

substantially smaller and more efficient hardware circuit because it is well-known that the 

computational cost of certain Galois Field operations is lower when field elements are 

mapped to an isomorphic composite field, in which these operations are implemented 

using lower-cost subfield arithmetic operations as primitives [17]. 

3.2 Linear Redundancy of AES S-box 

In [47], J. Fuller and W. Millan reported an important discovery of linear redundancy 

in the AES s-boxes. Although the AES s-boxes use finite field arithmetic in order to gain 

high nonlinearity, the inherent characteristics of the finite field multiplicative inverse 

makes the relationship between the s-box output functions linear. Moreover, this linear 

redundancy is not eliminated by using the affine transformation, because the affine 

transformation does not change the component's cryptographic properties, such as 

linearity and algebraic degree. 

By investigating the local structure of the Hamming distance between Boolean 

functions, Fuller and Millan used a new efficient algorithm to determine the equivalence 

between the 8 Boolean functions of the AES s-box 8-bit outputs. In general, an n -input 

Boolean function g(x) can be represented by its equivalent Boolean function f(x) using 

a binary matrix D , two binary vectors p and q , and a binary constant c . That is, 

g(x) = f(Dxe?J p)e?Jqxe?Jc 

For the AES s-box, the relations are simpler. Only binary matrix D and binary constant 

c are needed. Therefore, the output Boolean function b/x) , where 0 $ j $ 7 , can be 

easily represented by the fonnb/x)=b;(D;jx)EBcj, where0$i$7,i-:l=j, based on the 

known b; Boolean function. 

As noted in [47], this property of s-boxes gives a hint for compact hardware 

implementation. We only need to implement one Boolean function for the s-box and then 

utilize the transformations between the output bits to get the 8-bit result of the whole s­

box. The combinational logic implementation of a Boolean function and 7 mapping 

matrices should cost much less hardware resources than a direct implementation of the 8-

bit Boolean functions or look-up tables. 
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Another important influence of this discovery of AES s-box linear redundancy is on 

AES algorithm security. Although it is still hard to assess how much impact this property 

can have on AES security since so far no publications have claimed that the cryptanalysis 

successfully attacked the algorithm by applying s-box linear redundancy, the discovery of 

linear redundancy means potential challenge for AES algorithm security. Therefore, 

paper [47] also proposed an additional randomness criterion for the design of s-boxes that 

all output functions should have distinct equivalence classes. 

3.3 New Implementation of AES S-box 

Instead of implementing the multiplicative inverse in GF(28
) , followed by the affine 

transformation, we use a Boolean function approach to implement the entire s-box. This 

new s-box implementation method is based on the discovery of the linear relationship of 

AES s-box output Boolean functions. Therefore, we call the new implementation the 

linear redundancy or LR implementation. Let us label the output byte of the s-box 

as {b7b6b5b4b3bAb0 }. The implementation of all Boolean functions is derived from the 

execution of least significant bit b0 , and all the other output Boolean functions b1 can be 

represented by bj (x) = b0 (D0 jx) E9 cj using corresponding Do) and c1. 

In our scheme, the s-box consists of three main parts, namely the D matrix block, 

MUX, and b0_logic. The Figure 3.4 shows the structure used to produce each output bit 

of the s-box. 

Input 

]. 

Output bj 

Figure 3.4 New S-box Implementation Structure 
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3.3.1 D Matrix Block 

The D matrix block mainly implements the D matrix multiplication with input data 

array. Totally, we need to execute 7 matrix multiplications. Remember that all the matrix 

and arrays are represented in binary. The input to each D matrix is 8-bit data, and the 

output of the D matrix operation is 8 arrays of 8-bit values, each of which is available to 

the b0_logic function. At first sight, the implementation of 7 matrix multipliers is not 

trivial, but after applying factoring to minimize and reuse hardware resources, we finally 

gain the D matrix multipliers implementation by employing only 63 2-input XOR gates. 

The factoring algorithm [23] that is used to find the substructures that can be shared in 

the matrix multiplications is described as below: 

1. Round= 0. 

2. For i = 0 to (7 + Round) 

{For j = 0 to (7 +Round) 

{Count the number of times Xi ffi Xj appears in all the equations and 

denote the number by N(i, j). Check to see if N(i, j) is the largest 

number. If it is, then save the number as N(m, n). If there is a tie, 

pick one at random. } } 

3. Check N(m, n). If N(m, n) >1, then replace Xm ffi Xn in all those equations 

with X7+Round, otherwise Stop. 

4. Round = Round + 1, go to step 2. 

The resulting hardware implementation details for the D Matrix block are provided in 

Appendix A. 

3.3.2 b0_1ogic Block 

The bo_logic block directly implements the Boolean function of the least significant bit 

of output. The b0 Boolean function is derived from the s-box bo truth table. The input to 

the bo_logic function is 8-bit data, and the output is 1-bit. After minimization and sharing 

by factoring we get the b0_logic implemented by 93 2-input NAND gates. 
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The Espresso algorithm is applied for bo Boolean function minimization. This 

algorithm takes as input a two-level representation Boolean function, and produces a 

minimal equivalent representation. Espresso represents an advance in both speed and 

optimality of solution in heuristic Boolean minimization. The resulting hardware details 

about b0_logic block are also given in Appendix A. 

Between the D matrix block and b0_logic block, we need an 8-to-1 byte multiplexer to 

select which byte in the 8 arrays will be processed by the bO_logic function next. 

Following the b0_logic block, we also need an XOR gate to realize the computation of 

binary constant Cj, which is 0 or 1. The Cj value can be derived by the selection signals of 

multiplexer since the selection signals exactly decide which bit is chosen next. 

After integrating all parts together, we complete the whole s-box implementation. We 

use a 0.18-um CMOS standard cell library for the synthesis, and the synthesis of the new 

AES s-box has been carried out using the design tool Synopsis Design Analyzer, version 

2001.08 provided by Canadian Microelectronic Corporation (CMC). The synthesis 

reports indicate that the circuit needs the equivalent of only 296 2-input NAND gates 

totally. The D matrix block occupies 40.9% of all circuit, with the b0_logic block taking 

31.4% and the multiplexer taking 28.7%. The waveforms of the implementation are also 

attached in Appendix A. 

3.4 Performance Analysis and Comparison 

Since it is very difficult to compare the performance of implementations using different 

technology libraries and synthesis tools, we have applied the same technology (0.18-um 

CMOS standard cell library) and EDA tools (Synopsis Design Analyzer, version 2001.08 

provided by CMC) to the look-up table method and other compacts-boxes implemented 

in composite field arithmetic based on GF (24
) and GF (22

). We will compare and analyze 

these implementations performance in several aspects, such as area complexity, delay and 

power consumption. 

3.4.1 Area Complexity 

The synthesis results presented in Table 3.1 show the area complexity for the s-box 

implementations. To estimate the circuit area complexity, we use the number of 
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equivalent 2-input NAND gates as a metric of circuit size. The area of synthesized 

circuits is originally measured in square microns ( p,m2
) and converted into a gate count 

by dividing by the area of the 2-input NAND gate, which has an area of 12.197 p,m2
• The 

resulting gate count is used as a basis of area complexity for comparison. 

We can see that the LR implementation saves more than 50% gates than normal 

Boolean functions method, and requires 11% fewer gates than the other two compact 

methods using composite field arithmetic. 

Table 3.1 Area Complexity of S-box Implementations 

(1 gate= 2-input NAND) 

Boolean 
OF (22

) OF (24
) 

Implementation Functions 

(gates) 
(gates) (gates) 

Inverter -- 232 241 

Isomorphism -- 27 23 

Inver_isomorphism -- 31 30 

Affine Transformation -- 37 37 

bo_logic -- -- --

D matrix block -- -- --

MUX -- -- --

S-box (totally) 691 327 331 

LR 

Implementation 

(gates) 

--

--

--

--

93 

121 

80 

296 

Since ours-box is processing the data bit by bit, not byte by byte as in the other three 

methods, our implementation is about 8 times slower than other implementations. 
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Moreover, it should be noted that this calculation does not include the additional 8-bit 

shift registers for storing the output of s-boxes required for the LR implementations. 

3.4.2 Delay 

The latency analysis we refer to here is the time delay of the circuit critical data path 

under the worst-case conditions. The critical data path delay decides the maximum clock 

frequency of the system. All these attributes will have big influence on the system 

throughput or speed. 

The delay details of all components in each implementation are shown in Table 3.2. 

The latency is measured based on time unit ns offered by Design Analyzer. From the 

table, we can see that Boolean functions implementation is fastest among all 

implementations. Although LR implementation has a smaller critical data path delay than 

the other two compact implementations, it processes the data bit by bit as we discussed 

above, thus the LR implementation is slowest. The implementation using arithmetic in 

GF (24
) is slightly faster than that using arithmetic in GF (22

). 

Table 3.2 Delay of S-box Implementations 

Boolean 
GF (22

) GF (24
) 

LR 

Implementation Functions Implementation 
(ns) (ns) 

(ns) (ns) 

Inverter -- 7.5 5.30 --

Isomorphism -- 2.04 1.83 --

Inver_isomorphism -- 1.91 1.57 --

Affine Transformation -- 1.63 1.57 --

bo_logic -- -- -- 2.28 
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D matrix block 3.52 

MUX 0.79 

S-box (totally) 3.10 13.08 10.27 6.59 

3.4.3 Power Consumption 

Another important concern in hardware implementations is power consumption. 

Especially for compact applications, such as PDAs, cell phones or embedded applications, 

power consumption is always a big constraint. Although synthesis tools have features for 

power optimization, as well as many techniques mentioned by some technical literature 

for reducing power consumption at the transistor level and at higher levels, a human 

analysis of the hardware design is still very useful to produce low power circuit. 

Moreover, power optimization is often contradicted with other design constrains such as 

small area and high speed. 

A low power consumption design of AES s-box was proposed in [48]. This design 

applies a multi-stage Positive Polarity Reed-Muller (PPRM) architecture and results in a 

low power consumption s-box implementation. 

Generally, smaller circuits result in lower power consumption since fewer gates use 

less power. But the synthesis results form Power Compiler provided in Table 3.3 shows 

that the relation is not so simple. Although the objective of the research did not include 

an analysis of the power consumption, we speculate that the power consumption of the s­

boxes is strongly influenced by the number of hazards [ 48]. If a circuit easily creates and 

propagates hazards, it will consume much more extra power than even larger circuits. 

Two characteristics of the circuits are the main reasons for hazards [ 48]. The first one 

is the differences of signal arrival times at each gate. Signals coming to different gate 

inputs arrive at different times because of traversing different data paths. This causes 

static and dynamic hazards at the outputs of the gate. If a lot of gates are serially 

connected, the dynamic hazards will be propagated through the whole circuit path 

resulting in much waste of power. The other reason for dynamic hazards is the 

propagation probabili ty of signal transitions. Different gates have different propagation 
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probability of the hazards. For example, the hazard propagation probability of XOR gates 

is 1. That means any transient changes or hazards will be propagated by XOR gates to the 

next gates. This will increase the power consumption of the hardware. So more use of 

XOR gates results in more power that the circuit consumes if comparing with the circuits 

of the same gate count. AND and OR gates only propagate 50% of the input transitions, 

so they have better efficiency in power consumption. 

Table 3.3 Power Consumption of S-box Implementations 

S-box Implementation 

Power Consumption 

Boolean 

Functions 

(mw) 

3.1374 10.7560 9.7114 

LR 

Implementation 

(mw) 

8.5611 

Based on the discussion above, let us analyze the power consumption of these different 

s-box implementations. For Boolean functions implementation, since it is purely 

synthesized by the EDA tools to the two-level logic of as Sum of Products (SOP), most 

gates are AND and OR gates and the signal latency to the inputs is balanced. So it uses 

many more gates but consumes much less power than the other implementations. In the 

LR implementation, b0_logic part is totally two-level SOP directly derived from the truth 

table. However the matrix multipliers use a lot of XOR gates. So even though it has a 

small area measured by gate count, the circuit consumes more power than Boolean 

functions implementations. For implementations using composite field arithmetic, the 

circuits have many crossing and branched signal paths, which results in the delays of 

signals to multiple inputs being very different. Also these two circuits use a lot of XOR 

gates. Therefore, the two composite field implementations consume more power than the 

other methods. 

3.5 Conclusion 
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S-boxes are the most costly components in the AES algorithm, and are the only 

nonlinear part in the entire algorithm. The straightforward direct implementation of 8-bit 

Boolean functions of AES s-box uses a large amount of hardware resources, but has the 

advantage of fast speed and low power consumption. The methods using composite field 

arithmetic for s-box implementation result in substantially smaller hardware circuit than 

the simple schemes such as look-up table or direct implementation of Boolean functions. 

However, the composite field arithmetic s-boxes have longer critical data path delay, 

which results in slower throughput. More occurrence and propagation of dynamic hazards 

in s-box circuits using composite field arithmetic determines that these s-boxes consume 

much more power than the other methods. Although the AES s-boxes use finite field 

arithmetic and the cascade of the multiplicative inverse in GF(28
) and the affine 

transformation over GF(2) to gain high nonlinearity between the input and output of s­

box, the inherent characteristics of the finite field multiplicative inverse makes the 

relationship between the s-box output functions linear. By using this property of AES s­

box, a new LR s-box is implemented, which only implements one Boolean function for 

the s-box and then utilizes the transformations between the output bits to get the 8-bit 

result of the whole s-box. The LR s-box saves more than 50% gates than normal Boolean 

functions method, and requires 11% fewer gates than the other two compact methods 

using composite field arithmetic. But because it processes the data bit by bit , not byte by 

byte as in the other three methods, LR s-box has the slowest throughout, which is about 8 

times slower than the other implementations. The power consumption of LR s-box is 

ranked between the Boolean functions implementation and composite field arithmetic 

implementations. All of these s-box implementations can be applied in different 

applications depending on distinct practical requirements and constraints. 
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Chapter 4 

Compact Encryption-Decryption Architecture 

Based on the investigation of s-box implementations in the last chapter, we 

implement a complete Encryption-Decryption Architecture in this chapter. In order to be 

a suitable design for future small low-end embedded applications, we try different 

schemes for resources sharing and employ an iterative loop structure to reduce hardware 

resources to gain a compact and efficient implementation. 

4.1 Encryption Architecture Without Key-scheduling 
We first focus on exploring AES encryption architecture without key-scheduling. We 

study both a four s-box structure and a one s-box structure, and also apply three distinct 

compact s-box implementations discussed earlier to these two structures. Finally we 

compare and analyze the performance of the six implementations to find the most 

efficient structure for the encryption-decryption architecture. 

4.1.1 Encryption Architecture using Four S-boxes 

At first, we explore the method to implement the encryption architecture using fours­

boxes in the datapath. The encryption datapath is shown in Figure 4.1, where the 

unlabelled boxes in the diagram represent registers. In this architecture, we exchange the 

execution order between the Byte Substitution operation and the Shift Row operation in 
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order to make this architecture reusable for the decryption process. A merged architecture 

for encryption-decryption will be discussed in detail later in this chapter. 

I 

L-------
3% 
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3Z 

Figure 4.1 Encryption Datapath for Four S-boxes 

Four 4-byte shift registers are used in this encryption datapath. The shift registers not 

only work as data registers to store the result of each round and provide the data for the 

next round, but also implement the rotation function. When performing the rotation, the 

first of them does not shift at all, but the other three shift 1 byte, 2 bytes and 3 bytes, 

respectively. When the encryption process starts, the plaintext is XORed with the initial 

key and is then fed into the shift register as one row per shift register. Then the structure 

begins the iterative processing. First, the Shift Row function is executed by shift registers. 

Next, four 4-to-1 8-bit multiplexers choose which byte will be processed by four parallel 

s-boxes as the Byte Substitution operation. After that the 4-byte column data is 

transformed as the Mix Column operation (except in the last round). A 32-bit multiplexer 

is needed to skip over the Mix Column for the last round. At last, the 4-byte data is 
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XORed with the round key and fed back into the corresponding places in the registers. 

That is a whole iteration of data processing. Since the architecture implements 4 s-boxes 

per iteration and each s-box processes one byte per iteration, a full round of the 16-byte 

block processing requires 4 iterations. 

This architecture will be changed a little when it applies the LR s-box implementation, 

illustrated as a dashed box in Figure 4.1. Because the LR s-boxes take 8 clock cycles to 

produce the 4 bytes, while the linear Mix Column operation needs the 32-bit data at one 

time, we have to insert four 8-bit shift registers to store the output of s-boxes to prepare 

the input for Mix Column. The adding of the extra 8-bit shift registers increases the count 

of gates in the circuit. 

4.1.2 Encryption Architecture Using Only One S-box 

In order to gain a more compact circuit, we have also explored the method of using 

only one s-box instead of four in the whole encryption architecture. Obviously, the new 

encryption architecture is really minimized a lot since the s-boxes are the most complex 

components in the circuit. However, the reduction of area is at the cost of speed. Because 

the architecture uses only one s-box per iteration and each s-box processes one byte per 

iteration, a full round of the 16-byte block processing requires 16 iterations. The 

encryption architecture of one s-box is approximately 4 times slower than that of fours­

boxes. 

In the one s-box architecture, the additional 8-bit registers are necessary for all 

different kinds of s-box implementations. Because we only use one s-box to execute the 

Byte Substitution operation byte by byte, we have to use additional registers to store the 

data until all the 4-byte data is available for the Mix Column processing. It also needs an 

additional 8-bit 4-to-1 multiplexer before the s-box to choose which byte to be the next 

one processed by the s-box. Therefore, although the introducing of registers and a 

multiplexer compromises a little for the area saving obtained from the reduced number of 

s-boxes, the s-box saving is still much more than the area increase by the registers and 

multiplexer. . 
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Figure 4.2 Encryption Datapath for One S-box 

4.1.3 Performance Analysis and Comparison 

We now employ the three different compact hardware s-box designs investigated in 

Chapter 3 into the four s-box architecture and one s-box architecture. Thus we get six 

distinct implementations totally. For all these implementations, we apply 0.18-um CMOS 

standard cell library for the synthesis, and use Synopsys Design Analyzer as the design 

tool. The hardware design details for each component in the implementations are 

provided in Appendix B. Also the area complexity details of each component in every 

implementation are included in Appendix B. 

After simulation and synthesis, we get the area complexity and delay information from 

the synthesis reports. As we discussed before, the critical data path delay decides the 

system maximum clock frequency M c1k, and the speed of a system can be measured by the 

maximum throughput in bits/second. The AES system maximum throughput is expressed 

as: 
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'T'h h BlockSize 128x Mclk 
.L, roug put = = - - --""'""---

CyclesPerBlock x ClockPeriod CyclesPerBlock 
(bits/sec) . 

The average number of clock cycles for processing one block of data depends on the 

different datapath architectures and different s-box implementations. For example, for the 

implementation based on 4 s-boxes in GF(24
), it needs 1 clock cycle for the Shift Row 

operation and 4 clock cycles for the Byte Substitution and the other operations in each 

round. Thus for one block of data processing of 10 rounds, it needs (1 +4)* 10=50 clock 

cycles totally. But for the implementation based on 1 LR s-box, each round needs 1 clock 

cycle for Shift Row and 4*8*4=128 clock cycles for other operations. So it needs 

(1 + 128)* 10=1290 clock cycles for one block encryption totally. 

Table 4.1 shows the synthesis results from the six implementations in terms of the 

number of clock cycles for one block encryption, delay, maximum clock frequency, area 

complexity and throughput. There is always a trade-off between area and throughput. 

Usually by using more gates it is possible to get better throughput. So we apply the same 

time constraints to all the implementations during synthesis, and take the throughput-to­

area ratio as the criterion to evaluate the performance of the implementations. 

From the synthesis result, we can draw some conclusions after comparing and 

analyzing the performance of the six implementations. 

1) For the three four s-box implementations, although the LR s-box is about 11% less 

area than the other two compact s-box implementations, the extra shift registers 

increase the circuit area. So the final sizes of the three four s-box implementations 

are almost the same. However, the implementation based on the LR s-box is rather 

slow as it is only one third of the speed of the other two implementations because 

LR s-box processes the data bit by bit, not byte by byte as the other two methods. 

2) From a comparison of four s-box structure and one s-box structure, we can see that 

the one s-box implementations are smaller than the corresponding four s-box 

implementations. However the one s-box structure does not minimize as much as 

we expected. The reason is that one s-box structure has an 8-bit datapath bus but 

the Mix Column operation needs 32-bit data at one time. So the one s-box structure 
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needs additional shift registers and multiplexers which comprorruses the area 

saving. Another disadvantage of the one s-box structure is that it needs more clock 

cycles to finish one block of data processing, which results in a slower throughput. 

Evaluating by throughput-to-area ratio shows that making the datapath bus width 

smaller than 32 bits is not a good idea as it results in inefficient implementations. 

Table 4.1 Implementations Performance Comparison 

Maximum 

Delay Throughput 
Throughput 

Encryption Area Cycles Clock 
/Area 

Data path (gates) /Block (ns) Frequency (Mbps) 

(MHz) 
(kbps/ gates) 

Based on 4 

S-boxesin 3569 50 14.24 70.2 179.78 50.37 

GF (24
) 

Based on 4 

S-boxes in 3540 50 16.81 59.5 152.29 43.02 

GF (22
) 

Based on 4 
3581 330 7.63 131.0 50.84 14.20 

LR S-boxes 

Based on 1 

S-box in 2612 170 12.08 82.8 62.33 23.86 

GF (24
) 

Based on 1 

S-box in 2624 170 14.90 67.1 50.53 19.26 

GF (22
) 

Based on 1 
2545 1290 8.12 123.2 12.22 4.80 

LR S-box 

3) The implementation based on 1 LR s-box has a smallest area in all these 

implementations, but it is much much slower than the other methods. So for most 
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applications, this implementation is not a good choice. But for some special 

applications that have a critical limit on size but low requirement for speed, the 1 

LR s-box implementation is a suitable choice because of the advantage of 

extremely small area. 
4) A thorough comparison of the six implementations indicates that the 

implementation using four s-boxes based on arithmetic operations in GF(2
4

) has 

the best trade-off of area and speed based on throughput to area ratio. 

4.2 Key Expander 
The AES key expansion algorithm can take an initial key of length of 128 bits, 192 bits 

or 256 bits. Our implementation only focuses on 128-bit key. So the key expander takes 

128-bit initial key as 4 words (16 bytes) input, and it generates 40 words to provide each 

of the 10 rounds with a 4-word round key. 
Each of the round keys depends on the key of the last round. The initial key is used to 

XOR with the plaintext as pre-whitening before the plaintext is fed into the datapath. 

Then the first round key is generated from the initial key by the key expansion algorithm, 

and the algorithm is applied repeatedly until all the round keys are produced. We express 

the current round key as [w
4

i, w4i+l• W4i+2• W4i+3], where i represents the round number. 

The next round key [W4(i+l)• W4(i+l)+l• W4(i+1)+2• W4(i+1)+3] is generated as illustrated in 

Figure 4.3 [4], where the F represents a complex three-step function on current round key 

last word W4i+3· 

The F function includes a one-byte circular left shift operation, a byte substitution 

operation and a leftmost byte XOR with the round constant Rcon[i]. The Rcon[i] is 

started from {01} for first round, and defined as Rcon[i+1] = {02}xRcon[i] for the next 

round. Note the multiplication is defined in GF(2
8
). The usage of the round-dependent 

constant Rcon[i] eliminates the symmetry or similarity in the round keys [4]. 
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Figure 4.3 AES Key Expansion [ 4] 

There are two typical methods used to implement the AES key expander. The first one 

is to compute the round key on-the-fly, concurrently with the data processing in each 

round. This method is suitable for the applications that are critical on area or circuit size. 

The other method is to compute all the round keys before-hand and store them in memory 

such as register files or RAM. Thus when the keys are need, they are read from the 

storage directly. Since the aim of our implementation is to gain a compact circuit, we 

adopt the method to generate the round key on-the-fly. The key expander design is shown 

in Figure 4.4. 

This key expander can be used for both encryption key scheduling and decryption key 

scheduling. For the AES algorithm, the key scheduling for encryption and for decryption 

is different. The key scheduling for the encryption process is performed in the forward 

direction and the round keys are applied to the datapath in this order. But the key 

scheduling for decryption computes the round keys in the backward direction and starts 

from the last round key for computing. Hence, the decryption key scheduling has to 

compute in the forward direction first to obtain the last round key, and then compute in 

the backward direction to determine the round keys used to decrypt data processing in 

each round. Consequently, the decryption key setup time is longer than that of 

encryption. 
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Figure 4.4 Encryption-Decryption Key Expander 

In order to use the equivalent architecture to merge the encryption and decryption 

datapath, we have to exchange the order of some operations. The order exchange of Add 

Round Key and Inverse Mix Column operations of the decryption process requires that 

the round keys for decryption need to be transformed by Inverse Mix Column operation 

first before XORing with the data. This will be discussed more in detail in the next 

section. Therefore, we add the Inverse Mix Column operation in the key expander 

specifically for decryption key scheduling. 

Four 32-bit registers, which store the current round key from left to right as w4i, W4i+J. 

w4i+2, w 4i+J, are initialized by 128-bit initial key when the key scheduling starts. Before 

the registers, four 32-bit 2-to-lmultiplexers are used to select either the initial key or the 

updated round key to feed into the registers. The four sets of XOR gates take the current 

round key as input and are used to generate the next round key. The four 32-bit 

multiplexers after the XOR gates are used to distinguish between encryption and 

decryption key scheduling. When used for encryption key scheduling, W4i+3 is loaded into 
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the F function processing, which includes the bytewise left shift operation as key_in, 

Byte Substitution operation sharing the s-boxes with datapath as key_out and the XOR 

operation with constant Rcon[i]. After the F function, the transformed w 4i+J is XORed 

with W4i to generate W4(i+l) at the output of the leftmost XOR gate, and w4(i+IJ+I, w 4ri+IJ+2, 

w4ri+IJ+3 are generated one by one as the update data propagates through each multiplexer 

from left to right. When used for decryption key scheduling, since W4(i-J )+3 EB w 4i+2 = w 4i+J 

in the encryption direction, w4(i-IJ+3 = w 4i+3 ffiw4i+2 is loaded into F function and XORed 

with W4i to generate W4(i-l)· Then w 4ri-l)+J, w 4ri-IJ+2, w 4ri-1)+3 are generated sequentially as 

the updated data propagates through each multiplexer. This part is the most complex part 

in the whole key expander design. It should be noted that the control signal of the right 

most multiplexer after the XOR gate to choose between encryption and decryption must 

be exactly reversed to that of other three corresponding multiplexers. After that, there are 

simple multiplexers used to choose Inverse Mix Column for decryption and not choose it 

for encryption. This is the complete process to generate the round keys. 

For round constant Rcon[i], we considered two different schemes to implement it. One 

is to generate Rcon[i] on-the-fly for each round. The other is to compute them in advance 

and store them in memory. After comparing the synthesis results of the two methods, we 

find the method of generating it on-the-fly results in smaller area because the Xtimes 

block used to perform multiplication with {02} over GF(28
) only needs three bit-wise 

XOR gates when implemented in hardware (which will be described in detail in the next 

section). So we choose this method to implement Rcon[i] in the final key expander 

design. 

After applying the same technology library and design tools as before, we obtain the 

final key expander circuit requiring 2,426 gates totally. The hardware design and area 

complexity of each component are provided in Appendix B. 

4.3 Encryption-Decryption Architecture with Key-scheduling 

Based on the study of the AES s-box and the comparison and analysis of six 

encryption datapath implementations, it was determined that the implementation using 

four s-boxes based on arithmetic operations in GF(24
) has the best trade-off of area and 

speed. The reduction in gate count in using other implementations is very minimal. 
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Therefore, we have implemented the complete encryption-decryption architecture with 

key scheduling using four s-boxes in GF(24
). In doing so, we merge the encryption and 

decryption functionality into one equivalent architecture and generate circuitry to provide 

the on-the-fly key scheduling for encryption and decryption. In this implementation, we 

have tried to reuse and share the hardware components as much as possible to reduce the 

circuit size and gain a compact and efficient hardware implementation. The encryption­

decryption architecture is shown in Figure 4.5. 

32 
32 
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Figure 4.5 Encryption-Decryption Datapath 

4.3.1 Exchange of Operation Orders 

As mentioned before, the AES algorithm decryption process has a different structure 

than the encryption process. The operation sequence of the encryption process is Byte 

Substitution, Shift Row, Mix Column and Add Round Key. The decryption process 

sequence is Inverse Shift Row, Inverse Byte Substitution, Add Round Key and Inverse 

58 



Mix Column. Accordingly, we have to exchange the orders of some operations so that we 

can obtain an equivalent architecture for both encryption and decryption [4]. 

The first exchange we make is for Byte Substitution and Shift Row in encryption. 

Since Byte Substitution is only a byte-oriented substitution and Shift Row is only a byte­

oriented transposition, these two transformations are totally independent. So it has the 

same effect if we change the byte sequence first then change the byte content or if we 

change the byte content first then change the byte sequence. It can be expressed as: 

Shift Row (Byte Substitution (au)) = Byte Substitution (Shift Row (au)) 

Thus we interchange the order of Byte Substitution and Shift Row in encryption to be 

consistent with that of decryption. 

The second change we make is to exchange Add Round Key and Inverse Mix Column 

in the decryption process to be consistent with the structure of encryption. Both of the 

two operations do not change the data sequence and both of them are linear 

transformations, and the order interchange of the two operations causes some change in 

the decryption key scheduling as follows [ 4]: 

Inverse Mix Column (au EB wu) = Inverse Mix Column (au) EB Inverse Mix Column (wu) 

Hence, the generated round key becomes Inverse Mix Column (wu) not the original wu. 

This is why we add the Inverse Mix Column operation in the key expander design. Note 

that the Inverse Mix Column operation should not be applied to the last round key. 

Consequently, we obtain a merged encryption-decryption architecture as (Inverse)Shift 

Row, (Inverse)Byte Substitution, (Inverse)Mix Column and Add Round Key. 

4.3.2 Encryption and Decryption Datapath Sharing 

A big advantage of using the equivalent architecture for encryption and decryption is 

that we can share and reuse some hardware components in the implementation of 

datapath for encryption and decryption. 

4.3.2.1 Sharing between S-box and Inverse S-box 

The s-box computing is the calculation of multiplicative inversion x·1 over GF(28
) 

followed by an affine transformation and the inverse s-box computing is the inverse 

affine transformation followed by multiplicative inversion x·1. The common component 
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to be shared is the calculation of x-1, and the calculation of x-1 is based on the composite 

field arithmetic GF(24
) as we discussed before. Therefore, as illustrated in Figure 4.5, we 

use four 8-bit 2-to-1 multiplexers before inversion and four multiplexers after the affine 

transformation to change the datapath between encryption and decryption. The integrated 

encryption/decryption s-box requires 391 gates, which is only an increase of 18% over 

the original encryption s-box. 

4.3.2.2 Sharing between Mix Column and Inverse Mix Column 

The Mix Column operation is a modular multiplication with the fixed array C(x) = {03} 

i + {OJ} x2 + {OJ} x + {02}, which can be represented as the multiplication with the 

constant matrix: 

hoc 02 03 01 01 aOc 

blc 01 02 03 01 al e 
= • 

b2c 01 01 02 03 a2c 

b3c 03 01 01 02 a 3c 

where 0:Sc:S3. In this matrix multiplication, since {01 }X = X, what we really need to 

implement is the multiplication with constant { 02} and { 03} over OF (28
) . Multiplication 

with { 02} can be realized by a one-bit left shift followed by three bit-wise XOR gates, 

which is named as Xtimes operation and illustrated in Figure 4.6. Multiplication with { 03} 

can be computed by ( { 02} X) EB X. 

X X 

X X X 

Figure 4.6 Xtimes Block Diagram 

The Inverse Mix Column operation is also a modular multiplication, but the fixed array 

changes to C 1(x) = {OB} x3 + {OD} x2 + {09} x + {OE} as [38]: 
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~----------------

hoc OE OB OD 09 aOc 

blc 09 OE OB OD ~c 
= • 

b2c OD 09 OE OB a2c 

b3c OB OD 09 OE a3c 

02 03 01 01 aOc 08 08 08 08 aoc 04 00 04 00 aOc 

01 02 03 01 ~c 08 08 08 08 ~c 00 04 00 04 ale 
= • + • + • 

01 01 02 03 a 2c 08 08 08 08 a2c 04 00 04 00 a2c 

03 01 01 02 ~c 08 08 08 08 a3c 00 04 00 04 ~c 

After the transformation, we can see that the Inverse Mix Column operation actually 

comprises the Mix Column operation plus multiplication with { 04} and { 08}. So we can 

reuse the Mix Column component in the Inverse Mix Column operation, and this reuse 

results in 2/3 saving of the hardware resources. Actually, {04 }·X=Xtimes(Xtimes(X)) 

and {08}X=Xtimes(Xtimes(Xtimes(X))). Therefore, the integrated Mix Column/Inverse 

Mix Column block can be implemented by Xtimes blocks and extra XOR gates as shown 

in Figure 4.7. A 2-to-1 32-bit multiplexer is placed after Mix Column/Inverse Mix 

Column block to choose encryption or decryption processing. The next multiplexer is 

used to omit the Mix Column/ Inverse Mix Column for the final round data processing. 

Figure 4.7 Implementation of Mix Column/Inverse Mix Column 
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4.3.3 Datapath and Key Expander Sharing 

The key scheduling needs Byte Substitution operations both in the encryption and 

decryption direction. Since s-boxes are costly components in the circuit, we reuse the s­

boxes in the datapath for the key scheduling process [23]. The 32-bit key_in signal 

coming out from key expander is fed into the s-boxes in the datapath by four 2-to-1 8-bit 

multiplexer switching. After the Byte Substitution operation, the key_out is fed back into 

the key expander to be used for generating round keys. The whole process can be done in 

one clock cycle. At first it was thought that the sharing of s-boxes between datapath and 

key expander would cost an extra clock cycle for the data processing in each round. 

However, the Shift Row operation can be executed while the s-boxes are used for key 

scheduling. Accordingly, the sharing of s-boxes does not increase execution time for data 

processing. Each round still needs five clock cycles to be finished, where s-boxes are 

used for key scheduling in one clock cycle and used for encryption or decryption data 

processing in four clock cycles. The sharing of s-boxes saves 50% of the hardware 

resources for the key expander circuit. 

The decryption process needs longer time for round key setup because the decryption 

key scheduling needs to compute the final round key in the encryption first, and start 

from final round key to generate other keys for each round. This takes 11 more clock 

cycles for key setup. Hence, the entire encryption process needs 52 clock cycles and the 

entire decryption process needs 63 clock cycles. Note that when the s-boxes are selected 

to be used for key scheduling, they are always chosen as encryption data processing 

mode in that clock cycle, regardless of whether they are used for encryption key 

scheduling or decryption key scheduling, as well as for decryption key setup. That is 

because the key expander only needs Byte Substitution operations, never Inverse Byte 

Substitution operations. 

4.4 . System Controller 

The system controller takes outside setup control signals or datapath feedback signals 

as inputs. For example, System_Start (signal that enables the system to work), 

System_Stop (signal that can stop the system at any time because of exceptions or 

failures) , System_Clk (system clock), and Sel_Enc_Dec (signal to choose encryption or 
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decryption) are all inputs to the system controller. The system controller generates 

complex control signals needed for all datapath components, such as Sel_ShiftRow _Reg 

(control signals of data registers for Shift Row operation), Sel_ShiftRow_Mux (control 

signals for multiplexers after data registers), Sel_Key_Data (control signal to choose key 

setup or data processing as input to s-boxes), Sel_Round (control signal to omit Mix 

Column/Inverse Mix Column operation), Sel_Key (control signals to choose which keys 

should feed into datapath for Add Round Key operation), Key_Load (control signal to 

choose between initial keys or updated keys to load into key registers), Key_Reg (control 

signals for key registers), and Done_Data (control signal representing that the encryption 

or decryption of one block data process has finished). The controller block is shown as in 

Figure 4.8. 
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Set_Key_Data 
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Figure 4.8 System Controller Block Diagram 

The system controller can be represented by a state machine involving nine states. The 

state diagram is illustrated in Figure 4.9. When the system is powered on, the controller 

starts from the Idle state, waiting for System_Start signal to start work. After 

System_Start is active, the controller transfers to Initiate state. In this state, key registers 

will be loaded with the initial key and all the other components are cleared. Then 

depending on Sel_Enc_Dec signal by users, the controller comes to KeySetup state or 

DataLoad state. KeySetup state is especially for decryption key scheduling to setup keys. 
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In DataLoad state, the data registers are loaded by the result of plaintext XOR initial keys, 

and several control signals are reset. Next KeyUpdate state is the one clock cycle for 

round key updating and Shift Row operation. After that, the state machine transfers 

sequentially from Aoc. A1c. A2c. and A3c states to update the data in one column. After A3c a 

round of data processing has finished. Depending on the round counting, the state 

machine decides to continue for the next round or finish data processing, output the 

encrypted/decrypted data onto data bus and transfer to Initiate state again to start 

processing the next block of data. Whenever there are exceptions or failures in the system 

or all messages have been finished, the controller comes to Idle state waiting to be 

enabled to work again (which is not shown in the state diagram). 

~ 
II 
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8 

Sel_enc_dec = '1 

Figure 4.9 System Controller State Diagram 
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Besides the state machine, the system controller needs two 4-bit counters and one 2-bit 

counter. One 4-bit counter is used to count the number of data processing rounds. The 

other one is used to count key round in decryption key scheduling for key setup. The 2-

bit counter is applied to count the number of iterations in each round. 

4.5 Performance Analysis 

After implementing the key expander, encryption-decryption datapath and system 

controller, we integrate all these parts together to obtain a complete AES algorithm 

circuit. We apply 0.18 ).liD CMOS standard cell library for the synthesis, and use 

Synopsys Design Analyzer as the design tool. The hardware design details about each 

component in the implementations are provided in Appendix B. Also the area complexity 

details of each component and the waveforms of the implementation are included in 

Appendix B. 

After simulation and synthesis, we get the area complexity and delay information from 

the synthesis reports. The max area optimization is chosen with specified time constraints. 

There is always a trade-off between area and speed of the hardware design. Using more 

gates will result in a faster but more expensive circuit. Therefore, we apply different time 

constraints and area constraints to the implementation for various applications, and the 

relationships between area and latency or throughput are shown as in Figure 4.10 and 

Figure 4.11. 
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Figure 4.10 Area-to-Latency Chart of AES Encryption-Decryption System 
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Figure 4.11 Area-to-Throughput Chart of AES Encryption-Decryption System 

For very compact applications, it is appropriate to choose the circuit of smallest size 

requiring about 7.5K gates with a delay of 19.26 ns. For this circuit the maximum clock 

frequency is about 51.9 MHz, and the throughput of the circuit is 132.92 Mbps. 

4.6 Conclusion 

We have investigated a four s-box structure and a one s-box structure for the AES 

datapath. Although the one s-box structure has smaller size than the four s-box 

implementation, the one s-box structure needs additional shift registers and multiplexers 

which compromises the area saving. Moreover the one s-box structure has a much slower 

throughput than the four s-box structure. So the four s-box structure, which has the 

datapath bus width of 32 bits, is a better choice in terms of throughput-to-area ratio. We 

apply the three different compact s-box implementations, which are the LR s-box, the s­

box based on arithmetic operations in GF(24
) and the s-box based on arithmetic 

operations in GF(22
), to the one s-box structure and four s-box structure. After 

comparison of the six implementations, we can see that the implementation using four s­

boxes based on arithmetic operations in GF (24
) has the best trade-off of area and speed, 

while still being close to smallest circuit in size. The AES datapath and key expander 

support both encryption and decryption data processing, and the encryption and 

decryption functionality are integrated together into one architecture, which results in 
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small circuit size of the whole system. Optimization methods are used for reuse and 

sharing hardware components in the circuit to reduce the area consumption. For example, 

we share the multiplicative inverse in GF (28
) for the s-box and inverse s-box, as well as 

share hardware between the Mix Column and its inverse operation, and between the s­

boxes for the datapath and the key expander. The complete compact encryption­

decryption system has a small size requiring about 7.5K gates and the throughput of the 

circuit is 132.92 Mbps. 
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Chapter 5 

Five-mode AES Encryption System 

In order to be adaptive to various practical applications, we optimize the 

implementation with the four s-box structure to support five different operation modes: 

Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher 

Feedback (CFB) mode, Output Feedback (OFB) mode, and Counter (CTR) mode. The 

five-mode system makes the AES encryption implementation usable under multiple 

protocols and flexible to different requirements. 

5.1 Block Cipher Modes of Operation 

There are five modes of operation defined in Special Publication 800-38A [49], which 

is the extended version of FIPS 81 [50], and these five modes are recommended for use 

with any symmetric block ciphers, including DES, triple DES and AES. Actually these 

five modes of operation cover most of the possible encryption applications of block 

ciphers for confidentiality. In this section, we will describe these operation modes and 

their features in detail. 

5.1.1 Electronic Codebook (ECB) Mode 

ECB is the simplest operation mode since it uses the same key for each block of data, 

and the input to the encryption/decryption system is the original plaintext [1]. The 

plaintext is broken into a sequence of data blocks, and the data is handled in block size, 

such as 128-bit for AES. If the plaintext can not be divided into an integral number of 

blocks, we need to pad the last block by appending some extra bits after the useful 

message. The encryption and decryption process structure of ECB is shown in Figure 5 .1. 
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Figure 5.1 Electronic Codebook (ECB) Mode 

Since ECB uses the same key for each block of data, this mode has a property that the 

same plaintext blocks generate the same ciphertext blocks. This property is not secure 

for long message because if the same block of plaintext appears repetitively for multiple 

times in one message, then useful information becomes available to the cryptanalyst. 

Therefore, the ECB mode is normally used to encrypt a short amount of data, such as an 

encryption key [51]. Another property of ECB is that because the ciphertext block only 

depends on the current encryption key and plaintext block, we can process multiple 

blocks of data in parallel by applying pipelined architectures. 

5.1.2 Cipher Block Chaining (CBC) Mode 

In CBC mode, the input to the encryption/decryption system is the XOR of the current 

plaintext and preceding ciphertext. Thus even using the same key for each block of data, 

the same blocks of plaintext generate different ciphertext blocks, and each block of 

ciphertext has no fixed relation to the corresponding block of plaintext because of the 

chaining. The first input is the XOR of the first block of plaintext and an initialization 

vector (IV). The encryption and decryption process structure of CBC is shown in Figure 

5.2. 
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Figure 5.2 Cipher Block Chaining (CBC) Mode 

CBC mode overcomes the security deficiency of ECB by the chaining mechanism, and 

this mode is an appropriate confidentiality mode to encrypt long messages. Since the IV 

must be known to both sender and receiver, the integrity of IV should be protected as 

well as the encryption key [49]. The encryption of CBC mode can not support parallel 

processing of multiple blocks operation because the current ciphertext depends on 

preceding ciphertext. Thus the processing of the current block can not start until the 

preceding block has finished. It also means that the CBC mode encryption can not 

support pipelined structures, which is popular in most high-speed AES implementations. 

However, the CBC decryption can perform multiple blocks in parallel because in 

decryption the preceding ciphertext is available immediately. 

5.1.3 Cipher Feedback (CFB) Mode 

. CFB mode uses AES as a stream cipher [51]. Rather than process the data block by 

block, CFB divides the plaintext into small segments of s bits. So we use a shift register 

to implement it. The shift register is initialized by IV as the input to the encryption 

system [1], and the ciphertext is the XOR of s bits of plaintext and first s bits from the 

output of the encryption system. After that the input to the encryption system is the 

preceding s-bit ciphertext replacing the s least significant bits of the data in the shift 
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register after it shifts lefts bits, and the ciphertext is always the XOR of s bits of plaintext 

and first s bits from the output of the encryption system. This process continues until the 

entire plaintext message has been encrypted. The encryption and decryption process 

structure of CFB is shown in Figure 5.3. 
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Figure 5.3 Cipher Feedback (CFB) Mode 

One significant characteristic of the CFB mode is that it does not need the block cipher 

(e.g. AES) to operate in decryption mode for the decryption process. Both of the 

encryption and decryption processes only need block cipher encryption. Since CFB 

operation mode only requires an encryption function, the amount of circuitry is small. 

Another advantage of CFB mode is that it eliminates the need to pad a message into an 

integral number of blocks and it can operate in real time. However in terms of the 

average number of blocks of data processed in unit time, CFB mode has lower efficiency 

than CBC mode when thesis less than 128-bit. Like CBC mode, the CFB mode can not 

support parallel encryption processing of multiple blocks, but the decryption process can 

be performed in parallel [49]. 
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5.1.4 Output Feedback (OFB) Mode 

OFB mode is similar to CFB. The only difference is that the rightmost s bits of the 

input shift register are replaced by the s least significant bits from the preceding output of 

the encryption system. The ciphertext is the XOR of the s-bit plaintext and the first s bits 

from the output of the encryption system. The IV used in OFB mode must be unique for 

each execution of the mode under the given key. The encryption and decryption process 

structure of OFB is shown in Figure 5.4. 
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Figure 5.4 Output Feedback (OFB) Mode 

One advantage of the OFB mode over CFB mode is that the bit errors that occur in the 

communication channel in one segment of ciphertext will not propagate to the other 

segments. In CFB mode, since the s-bit segment of ciphertext is a part of the input to the 

encryption system, a one-bit error in the channel results in many bits of errors and the 

downstream data will be corrupted until the shjft register shifts erroneous bits out. The 

disadvantage of OFB is that it is more vulnerable to a message stream modjfication attack 

than the CFB mode [1]. For both encryption and decryption in OFB mode, the current 

output depends on the preceding output of the encryption system and multiple segments 

processing can not be supported unless the IV and encryption key are known beforehand. 
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Just like CFB mode, only the encryption functionality of the block cipher is needed in 

both the encryption and decryption processes. 

5.1.5 Counter (CTR) Mode 

In CTR mode, the input to the block cipher encryption system is a counter. The counter 

can be initialized as any string of 128 bits, and it increases for each block as the input into 

the encryption system to produce a sequence. The ciphertext is the XOR of the plaintext 

and the sequence as output from the encryption system. This sequence of counters must 

be different from every other block for each block of plaintext [51]. There is no chaining 

in counter mode. The encryption and decryption process structure of CTR is shown in 

Figure 5.5. 
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Figure 5.5 Counter (CTR) Mode 

The CTR mode can support parallel performing of multiple blocks of data in both 

encryption and decryption, which can offer high speed throughput by parallelism. 

Therefore, the CTR mode is widely used in high-speed applications with pipelined 

architectures for ATM security and IPSec. CTR mode also only requires the 

implementation of encryption functions for both the encryption and decryption processes. 

Moreover, the CTR mode has similar error propagation characteristics to OFB [49]. 
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5.1.6 Other Modes of Operation 

Also, NIST recommends several combined modes for authentication and 

confidentiality, such as Cipher-based Message Authentication Code (CMAC) mode, 

Counter with Cipher Block Chaining-Message Authentication Code (CCM) mode and 

Galois Counter Mode (GCM). In this thesis, we only focus on the implementation of the 

five basic confidentiality operation modes of the AES system. 

5.2 Five-mode System Architecture 

In order to integrate five modes operation into our AES system, we design a five-mode 

AES encryption/decryption system as illustrated in Figure 5.6. In this five-mode system, 

the encryption/decryption core is our original AES compact hardware implementation. A 

number of selectors are used to choose and differentiate the data flow for each mode in 

encryption or decryption. 

A 5-mode 128-bit multiplexer located before the AES encryption/decryption core is 

used to choose appropriate forms of input into the AES core for each mode. The input in 

ECB mode is the simplest, which directly connects to the original plaintext. The input in 

CFB and OFB modes comes from the shift register, and the input in CTR mode comes 

from the counter. The input in CBC mode is most complex, and uses the original 

ciphertext for decryption and the XOR of plaintext with feedback from AES core output 

in encryption. Accordingly, we use a multiplexer to differentiate encryption and 

decryption, and before it, we have another multiplexer in encryption dataflow to choose 

IV for first block data or the feedback for all other blocks. 

Another 5-mode 128-bit multiplexer is put at the end of the system to choose the 

correct form of data as the system output. The output of ECB mode is also just the direct 

output from the AES core. The output of CFB, OFB and CTR modes are all XORs of the 

original input to the system with the output from the AES core. The output of CBC mode 

also has to differentiate between encryption and decryption by a multiplexer such that in 

encryption, the ciphertext is the direct output from the AES core, and in decryption, the 

output of the system is the XOR of the original input to the system with the output from 

the AES core. 
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Figure 5.6 Five-mode System Architecture 

There are three multiplexers on the right side of Figure 5.6. The middle one only 

chooses IV for the first block of data in CBC mode, and in all the other situations, this 

multiplexer chooses the plain input into the system. The multiplexer on the bottom is 

used to differentiate the feedback into the shift register between encryption and 

decryption for CFB mode. In encryption the feedback to the shift register for CFB mode 

is the XOR of original input to the system with output from the AES core, and in 

decryption the feedback is the original input to the system. The multiplexer on the top is 

used to choose the feedback to the shift register between CFB mode and OFB mode. In 

OFB mode the feedback is always the output from the AES core, for both encryption and 

decryption. The feedback for CFB mode comes from the chosen result of the multiplexer 

on the bottom right. 

Another two important components in this diagram are the shift register for CFB and 

OFB mode and counter for CTR mode. The shift register is initialized as IV, and shifts s 

bits in each clock cycle. The rightmost s bits are replaced by the feedback during the 

shifting. We implemented two different sizes of s, 8-bit and 128-bit. The counter is also 
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initialized as IV and increments by 1 for each subsequent block of data. The maximum 

length of the counter is 128 bits. But to reduce the complexity, we have only 

implemented a 64-bit counter that is able to encrypt 264 blocks of data without changing 

IV, which is big enough for practical applications. So the counter only increases the least 

significant 64 bits in the IV and leaves the most significant 64 bits unchanged. 

The CBC, CFB, OFB, and CTR mode of our system all require an initialization vector 

(IV) as input. CBC and CFB modes require that the IV is unpredictable, and OFB mode 

requires that the same IV can not be used for more than one message. Therefore typically, 

the IV is generated from a random number generator. 

5.3 Five-mode System Testing and Synthesis 

The five-mode system is implemented by using 0.18-um CMOS standard cell library 

technology. The resulting circuit has the size of 11.3k gates (based on a 64-bit counter) 

with maximum clock frequency of 47.2 MHz. The throughput of ECB, CBC, CTR, CFB 

(s=128) and OFB (s=128) is 120.88 Mbps. When sis 8-bit, the throughput of CFB mode 

and OFB mode is 7.56 Mbps, which is one sixteenth of that of s =128-bit. 

We have tested our five-mode system by using the test vectors that were published in 

NIST standards [ 49]. The tests were executed by saving these test vectors in one file for 

each operation mode, and using this file as the input to the five-mode system. The outputs 

from the system were also stored as files and compared with the outputs in [49] to verify 

the correctness of our results. The testing waveforms and files are included in Appendix 

C. 

5.4 Conclusion 

Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher 

Feedback (CFB) mode, Output Feedback (OFB) mode, and Counter (CTR) mode are 

five modes of operation defined for symmetric block ciphers. Although ECB is the 

simplest mode, it is not as secure as other operation modes. CBC is an appropriate 

operation mode to encrypt long messages, but it can not support parallel processing of 

multiple blocks. CFB and OFB are two operation modes that use the block cipher AES as 
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a stream cipher. In both these two modes, only encryption functionality is needed. CTR 

mode is more and more popular in high speed applications with pipelined architecture 

because of the advantage of supporting parallelism. The five-mode AES system 

integrates all these five operation modes together and is adaptive to various practical 

applications. The resulting five-mode circuit has the size of 11.3k gates (based on a 64-bit 

counter) with maximum clock frequency of 47.2 MHz. 
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Chapter 6 

Design of AES Encryption System with 

Concurrent Error Detection 

High reliability and resistance to malicious attacks are desirable properties of any 

hardware implementations, especially for sensitive devices like AES cryptographic chips. 

Concurrent error detection is an effective method to protect the AES system from the 

malicious faults that are deliberately induced into cryptographic implementations by 

attackers [52]. This attack is named fault based cryptanalysis, and tries to break the 

system structure (e.g. reveal the key) from the fault based side-channel information, that 

is, by analyzing the obtained erroneous outputs. In this chapter, we will investigate fault 

propagations in the AES system and try to incorporate space efficient error detection 

techniques into our compact AES implementation. 

6.1 Fault Based Cryptanalysis 

Although today's hardware processor is relatively reliable, it is still possible and 

practical for opponents to intentiona~ly induce faults into the hardware computations, 

especially for simple and small devices such as smartcards. Fault based cryptanalysis [20] 

is a powerful attack technique that deliberately injects faults into the cryptographic 

devices and exploits the fact that the erroneous computations leak secret parameters or 

sensitive information about the implementations. This attack idea was first proposed in 

[53] and applied to public-key cryptographic devices. It succeeded in breaking the RSA 

with Chinese Remaindering Theorem (CRT) using only a correct and a faulty signature 

of the same message. E. Biham, et al., [54] extended this attack to symmetric 

cryptosystems and demonstrated the attack against DES. They called the fault attack 

differential fault analysis. After the adoption of AES, some publications exploited 

differential fault analysis against AES [20] [55]. The results show that AES is sensitive to 
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fault analysis and the recovering of the secret key can be achieved by using a small 

number of faulty ciphertexts under certain hardware fault models. 

6.1.1 Fault Models 

Different fault based attacks are associated with different assumptions for fault models. 

In [53], D. Boneh, et al., use a fault model that a transient fault is induced at a random bit 

location in one of the registers at some random intermediate round in the computation, 

and the fault inverts the bit value either from zero to one or from one to zero. E. Biham, 

et al., [54] use a similar fault model but also discuss transient and permanent faults. In 

[20], Blomer and Seifert use a more restricted model for implementation independent 

attacks that the attacker can set a specific memory bit to a specific value at a precise time. 

Therefore, we generally categorize the fault models from several aspects [56]: 

(1) Permanent or Transient 

A permanent fault damages the device in a permanent way. It fixes the value of a bit 

to a constant 0 or 1 and behaves incorrectly in each computation loop, which results 

in a variable number of injected faults depending on the original bit value. In the 

worst case, it may add up to one fault at each loop. Permanent faults include freezing 

a memory cell to a constant value or cutting a data bus wire to create an open circuit. 

On the contrary, a transient fault is a fault that occurs temporarily in one specific 

computation. In practical digital applications, transient faults form the majority of 

errors occurring inside of devices, and they are caused mainly by outside disturbances 

such as radioactive interference, suddenly changed clock frequency or abnormal 

voltage in the power supply [56]. 

(2) Control of fault location 

Some attacks require that the attackers have complete control of the resulting fault 

location by inducing the fault in a very specific location, while other attacks allow 

more flexibility as loose control or no control of the fault location. 

(3) Precision of timing 

Similar to control of fault location, some attacks need very precise control of fault 

occurrence time to induce the fault at a specific time during the computation. Others 

do not care about occurrence time with loose control or no control. 
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(4) Fault types 

There are usually several typical types of fault considered, such as flip the value of 

one bit or one byte in register, stuck at 0 or stuck at 1 fault, flip one bit in memory but 

only in one direction (e.g. only can be flipped from 1 to 0), and set or reset the value 

of any target bit [20]. 

(5) Number of faulty bits 

The number .of induced faulty bits is important for a fault based attack. A single-bit 

fault is the specified fault in many attacks. A multiple-bit fault is also often 

considered in fault based cryptanaly~is. 

Although some attacks do not care about which kind of faults, usually the fault model 

is very important to the feasibility of a fault based attack. So, doubts are often raised by 

researchers and industry about whether these fault models are possible or demonstrable in 

practice or not. Actually we could say that if any type of fault can be induced, then any 

cryptographic devices can always be easily broken [56]. 

6.1.2 Practical Fault Induction Techniques 

As we have mentioned, smartcards are the devices that are most susceptible to induced 

faults by physical experiments. Several induction methods are practical to apply to 

smartcard ICs [56]. For example, changing the voltage of power supply to very high or 

very low can cause the smartcards to compute erroneously, since the supply voltage range 

for a smartcard to work properly is between 4.5V to 5.5V, as required in ISO standards. 

This technique is called a spike attack. Another technique called a glitch attack is 

implemented by changing the external clock frequency of smartcards, which can induce a 

faulty computation into the devices during the operation. Light attacks, by applying 

intense light sources, are practical to induce transient faults such as changed individual 

bit values in an SRAM. Microwave radiation attacks and temperature attacks are also 

potential ways to induce faults and deviate behaviors of smartcards. Electromagnetic 

attacks by inducing an eddy current in a coil near the processor or memory can set or 

reset any individual bit in a memory cell such as RAM, EPROM or Flash [20]. 
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6.2 Fault Propagation in AES Encryption System 

Because of the cliffusion of the AES algorithm, which is a very important property of a 

good and secure cryptogaphic algorithm, a single transient fault in the computation will 

result in multiple errors in the final output data. Here we define the word "fault" as a flaw 

on the operation of logic circuit caused by malicious attacks, and the word "error" as the 

errorenous bit result of the output after faulty computation. The fault model used in our 

experiments is a single transient fault induced by the malicious attackers. Multiple faults 

are mentioned as well. The faults are likely to be induced at any logic point within the 

cryptographic circuit. In this section, we will disscuss the fault propagation behaviors in 

both the AES encryption datapath and key expander under the normal operation mode. 

This disscusion is important because how a fault in the exectuion of the algorithm affects 

the output of each function and the final output result is basic to the design and 

measurement of error det~ction schemes for the AES system. 

6.2.1 Analysis of Single Fault Propagation 

A single transient fault is the basic and most often considered type of faults for 

hardware implementations. Here we refer to the single transient fault as a 1-bit stuck-at 

fault in gate wiring or a 1-bit memory flip fault. We will study the effect of a single fault 

to the output of each round function and to the final output result in this subsection. 

6.2.1.1 Single Fault Propagation in Each Round Function 

There are four functions in each encryption round: Shift Row, Byte Substitution, Mix 

Column and Add Round Key. Here we will mainly focus on the encryption processing. 

For Shift Row, the operation is simple shifting, so a single fault at beginning of this 

function results in only one error at the output of this operation. Add Round Key is bit­

wise XOR of the input data and round key. If we assume that the round key is faultless, a 

single fault in Add Round Key also only results in one error at the output since each 

output bit only depends on the corresponding bit in the input to the operation. 

For Byte Substitution and Mix Column, the fault propagation is more complex. The s­

box is nonlinear and provides a good diffusion property. We applied single stuck-at-0, 
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single stuck-at-1 and single bit flip to each bit of the input of the s-box with equivalent 

probabilities, and the analysis result of the number of output errors is shown in Figure 6.1. 

From this figure, we can see that the most frequent number of errors is 4, and the number 

of errors seems to be following a binomial distribution. This analysis result is consistent 

with the simulation results i~ [19]. Further analysis shows that the distribution of the 

errors is uniform and the each bit is equally likely to be erroneous [19]. Actually from the 

result data, we can see the effect of single bit flip is the same as the sum of single stuck­

at-0 and stuck-at-1 error-caused situations since the stuck-at fault may not cause errors 

but bit flip fault definitely results in errors in the output bits. 

Now let us look at the Mix Column function. The most important component in Mix 

Column operation is the Xtimes operation. From the diagram of the Xtimes operation in 

Figure 4.6 we can see that if the single fault is injected at most significant bit x7, four bits 

in the output x4, x3 , x1 and x0 will be erroneous. But if the single fault is injected at 

another bit, only one bit in the output will be erroneous. Assuming each bit in the input 

has the same probability of fault induction, the output of Xtimes operation has 12.5% 

chance of 4 errors and 87.5% chance of 1 error. This property of Xtimes makes the error 

distributions in output of Mix Column and Inverse Mix Column as shown in Figure 6.2 

[19]. Mix Column has 12.5% chance of 11 errors and 87.5% chance of 5 errors, and 

Inverse Mix Column has 12.5% of 11, 19, 21 and 23 errors separately and 62.5% of 11 

errors. 
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Figure 6.1 Error Distribution in S-box for Single Fault 
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Figure 6.2 Error Distribution in Mix Column/Inverse Mix Column for Single Fault 

6.2.1.2 Single Fault Propagation to Final Encryption Output 

A single fault could be induced at the beginning of the round, between the internal 

round functions and inside of the round functions. The simulation experiments [19] show 

that the single fault propagation has the similar error distribution trends in the final 

encryption output for these three induction situations. When the fault is induced in the 

rounds 1 to 8, no matter whether it is located at the beginning of the round, between the 

functions or inside the functions, the error number in the final output is around the 

average of 64 [19]. Actually this error number 64 out of 128 bits implies that the output 

result is just a completely random 128 bit block. This also means that a single of fault in 

round 1 to 8 can change the ciphertext into a totally different output. However when the 

fault is induced in round 9 or 10, the resulting errors in the final output is much fewer 

than 64. For example, if the fault is injected at the beginning of the last round or inside of 

the Byte Substitution operation, only 4 errors are in the final output. On average if the 

fault is induced in any location after Byte Substitution in the last round, only 1 error is in 

the final output. The decryption process has the similar error distribution trends of single 

fault propagation to final decryption output. 

6.2.2 Analysis of Multiple Fault Propagation 
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Multiple fault propagation analysis is more complex than the single fault. Actually a 

permanent fault in the circuit of an iterative architecture can be taken as multiple transient 

faults in the same spot at every round. Hence we can take permanent faults as one kind of 

multiple fault. The simulation experiments of multiple fault injection in [19] show that 

the average number of errors in the final output data is 64, no matter whether the faults 

are induced in the same round or in the different rounds. The decryption process also has 

the same multiple fault propagation trends. 

6.2.3 Fault Propagation at Key Expander 

The key expander is an important part in the AES algorithm. For RAM-based 

implementations of the key expander, the 1-bit memory flip fault is applicable. In this 

case, a single fault results in only one bit error at round keys. Since the round key is 

XORed with data in Add Round Key operation, this one bit error can be taken as one 

single fault at the input to Add Round Key function, which has been analyzed above. For 

generating keys on-the-fly implementations, if one single fault is injected into the key 

expander, multiple errors will result in the generated round keys. A single fault in the first 

round of key scheduling results in 360-bit errors out of 11 128-bit round keys [19]. The 

number of errors is continuously decreasing with the single fault induced into the later 

rounds as shown in Figure 6.3 [19]. The single fault in the last round only causes 1 bit 

error in the round keys. 
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Figure 6.3 Single Fault Propagation in Key Expander [19] 
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6.3 Concurrent Error Detection (CED) Techniques 

Concurrent error detection techniques (CED) are widely used to ensure data integrity 

in digital systems. CED checks the system operation on-line during the computation to 

guarantee the system output is correct. If any erroneous output is produced, CED will 

detect the presence of the faulty computation, and the system can discard or suppress the 

erroneous output before transmission. Thus, the encryption system can achieve high 

reliability and resistance to malicious fault based side-channel attacks. Any CED 

technique will introduce some overhead into the system, and a CED scheme generally 

contains another unit that predicts the system output or some characteristic parameter of 

the system output used to check the correctness of the system. For the concurrent error 

detection in block ciphers, hardware or time redundancy and error detection codes are 

useful techniques, and the proposed scheme efficiency is measured from several aspects, 

such as hardware overhead, detection latency, influence on algorithm performance and 

fault detection coverage. 

6.3.1 Techniques based on Hardware or Time Redundancy 

Straightforward duplication of the encryption or decryption hardware for self-checking 

is the simplest form of redundancy technique for concurrent error detection. The output 

of the duplicated circuit is compared with the result of the original hardware, and any 

mismatch means the detection of errors. The method can detect any type or any number 

of fault injections if the duplicated module is fault-free, and is highly likely to detect any 

errors even if faults occur in both the original and duplicated hardware as long as the 

faults do not occur at the same location. Since the original circuit and duplicated module 

are working simultaneously, this technique does not cause any notable time delay or 

degradation of the original hardware performance. However, it requires considerable 

hardware overhead of more than 100%. Therefore, this method is not suitable for area or 

cost critical applications. 

A variation of duplication is the diverse hardware redundancy [57]. For the redundant 

system with identical module duplication, if the identical fault occurs in both modules at 

the same location, the two circuits will have the same results and the system will fail to 

detect this error. So we can use hardware diversity design to implement the duplication 
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circuit in other ways but perform the same function. For example, for AES s-box, we can 

implement it by arithmetic in GF ((24
)
2

) for encryption circuit and implement it by 

arithmetic in GF (((22
)

2
)

2
) for the duplicated circuit. Thus even if the same fault occurs 

inside the s-boxes, the two circuits will have different outputs. Note that there may be 

different delays of the output from diverse redundant circuits. 

The time redundancy technique is to encrypt or decrypt the same data a second time 

using the same datapath and compare the two results. This method has more than 100% 

time overhead, and is only applicable to transient faults. For permanent faults in the 

circuit, since the same faults occur in both computations, the system can not detect them. 

A hardware and time redundancy approach for AES system was proposed in [58] by 

employing the inverse relationship between the encryption and decryption process. This 

method performs a test decryption of the encrypted data and then checks if the decrypted 

data matches the original message or not. In this paper, the authors exploited the inverse 

relationship between the encryption and decryption process at the algorithm level, round 

level and individual function level. Obviously, the method is able to detect any type and 

any number of faults, but it needs a separated datapath for encryption and decryption. For 

encryption/decryption integrated datapath, like our AES compact implementation, this 

method means also more than 100% hardware overhead. The detection latency of the 

algorithm level is equal to the time needed for decrypting a block of data. With finer 

granularity, the detection latency is smaller but requires more hardware overhead for 

comparators since the comparisons should be done at each round or each function. 

6.3.2 Techniques based on Error Detection Code 

Error detection coding techniques have been applied to block ciphers in several papers, 

and the fault detection coverage usually depends on the particular adopted coding 

schemes and hardware implementation details. In [59], the plaintext is encoded before 

being encrypted by adding a selected error detection code. After the transmission through 

the channel and decryption, a checking circuit is used to check if there is any error in the 

message or not. The area overhead of this approach for encoding and checking is 

significantly smaller than the techniques of hardware redundancy. But it has a large fault 

detection latency, which makes the system not resistant to fault attacks because the 
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detection comes after the erroneous ciphertext has been already transmitted and used. 

Moreover, the encoding of the message brings some performance penalty since the added 

error detection code adds bits into the original useful plaintext. Another CED approach 

for the AES algorithm employs systematic nonlinear robust error detection codes [60]. 

This code scheme has better fault detection coverage than a normal linear code, and the 

design introduces a linear predictor to protect the encryption, decryption and key 

expander with about 50% hardware overhead. Both of these two methods only exploit 

the features of the coding and algorithm, and are not specific to different hardware 

implementations. 

Parity checking is another widely used CED technique in digital systems. The parity 

code indicates that the number of 1 's in the binary digital data is even or odd. The CED 

techniques using one dimensional parity checking applied to AES were proposed in two 

papers: [61] and [62]. Since the parity code is the simplest error detection code, the CED 

techniques using parity checking generally have the advantage of low hardware overhead. 

The detection latency and fault detection coverage depend on how many bit parity codes 

the system uses and the locations of the checking points. In [61] a low-cost approach of 

concurrent parity checking for the AES algorithm is proposed. In this method, a parity bit 

for a block of 128-bit data is used, and this parity of the 128-bit input is modified 

according the process steps of the AES algorithm to generate the prediction of the output 

parity. The predicted parity then is compared to the actual output parity of each round to 

detect if there is any error in the system. The checking points are set at the end of every 

round, so the detection latency is the time needed to process data for one round. 

To modify the parity by each step, we need to know the parity change of each round 

function. In [61], for the Byte Substitution step, this method uses the RAM implemented 

s-boxes, and adds one bit for each 8-bit s-box output to show the XOR of the parity of the 

8-bit input and the parity of the corresponding 8-bit output. Actually this bit represents 

the modification of the parity from input to output. If this bit is '0', that means the parity 

is not changed after the Byte Substitution function. Otherwise '1' means the parity is 

changed. Shift Row does not change the parity of 128-bit data at all. The Mix Column 

function also does not change the parity for each column of 32-bit data, as well as total 

128-bit data. So no circuit is needed for predication of parity to these two steps. The final 
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step, Add Round Key, changes the parity according to the parity of each round key. So a 

simple XOR is enough to predict the output of this function . Thus we can see that the 

error detection circuit is very simple and costs low hardware overhead. The prediction 

circuit of parity for each round is illustrated in Figure 6.4. 

J"Q 

P{x) 

Figure 6.4 1-bit Parity Code Based CED Structure [61] 

For the detection coverage, although this paper claimed that all possible single-bit 

faults are detectable by this approach, in fact, some faults are not detected. For multiple 

faults, since the number of errors in the final output is about 64 as we mentioned above, a 

lot of even number of erroneous output can not be detected. Even for single stuck-at or 

bit flip fault, this approach can not detect all of them. Consider the following: 

(1) If the single fault is injected at the input to each function, all of the errors caused by 

the single fault can be detected by parity checking according to the fault coverage 

capability analysis in [ 61]. 

(2) If the single fault is injected inside of Mix Column, Shift Row or Add Round Keys 

operations, all of the errors can be detected. Because all single faults inside of Mix 

Column function result in an odd number of erroneous bits at the output as we discussed 
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before, they can be detected by parity checking. Since Shift Row and Add Round Keys 

operation are only simply implemented by wiring and XOR gates, all single faults results 

in single error as well, which can be detected by parity checking. 

(3) If the single fault is injected inside of the s-box circuit, the situation is a little 

complex. If the s-box is implemented by RAM and the single fault is bit memory flip 

fault, this fault can be detected since there will be only one error in the output of s-box. 

But if the single fault is located in the address decode circuit and results in accessing a 

wrong location which has a correct parity bit, this kind of fault can not be detected by 

parity checking method. Further, if the s-box is implemented by combinational logic (as 

in our compact implementation), the single fault inside of s-box results in 4 errors on 

average, which means a lot of even number of errors can not be detected. Although it is 

claimed in [61] that if all the bits of s-box and the parity bits are separately implemented, 

all of the single faults can be detected since by this implementation only single errors 

result, this method of implementation of s-box is not reasonable for compact 

implementation, because it results in large hardware resources for s-box implementations. 

For compact implementation after optimization for minimal area, many 2-bit or 4-bit 

errors are generated in the s-box output by single stuck-at faults . After simulation, we 

find that only about 48% of the errors due to single fault can be detected. 

Another CED scheme using parity checking for AES was proposed in [62]. This 

general idea of this method is similar to [61], but it associates one redundant parity bit 

with each byte of the 128-bit data matrix. Thus the parity code for this approach is 16 bits. 

This 16-bit parity code uses more hardware overhead for parity code storage and 

prediction, but it has better fault detection coverage than the 1-bit parity code scheme. As 

in 1-bit parity code method, 16-bit parity code scheme is able to detect all single bit 

errors and all odd number of errors in the output. But the 16-bit parity code can also 

detect many even number of errors when the erroneous bits are distributed over the 128-

bit data and at least one byte of the data is affected by an odd number of errors [62]. This 

approach is applied in [62], also assumes RAM implemented s-boxes, but the s-box uses 

a 9-bit input which consists of 8-bit original input plus the parity of this byte, and the 

output is also 9-bit. This 512 x 9-bit memory implementation of s-box can detect input 

Parity errors and some internal memory faults, but it still can not detect the internal faults 
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in the address decode circuit which results in an even number of errors at the output of s­

box. To circumvent this problem, this paper proposed to add another memory to store the 

parity bit or correct output for checking, which actually means the duplication of the s­

box. In fact, the 512 x 9-bit memory plus additional memory for checking uses far more 

hardware resources than simple duplication of the s-box. Therefore, this method to 

improve the fault detection coverage for s-box is not practical. Also since the Jvrix 

Column operation does not preserve the parity of its input at the byte level, this method 

needs a circuit for parity prediction of Mix Column function for each byte. Another 

feature of this method is that it exploits three different levels of check points, such as at 

the algorithm level, round level and individual function level, which is similar to paper 

[58]. Locating checking points at the end of each function yields more cost in comparison 
' 

but has shorter detection latency and higher fault detection coverage. Locating the 

checking points at the round level and algorithm level has smaller hardware overhead 

with higher latency and lower fault detection coverage. 

6.4 Proposed Schemes for Error Detection in AES 

Encryption System 

Based on the review of concurrent error detection techniques and proposed schemes 

for CED of the AES encryption system, we propose two error detection approaches for 

AES implementations combining both parity checking and hardware redundancy 

techniques. After the earlier analysis of fault propagation and fault detection coverage of 

parity codes, we find that the s-box is extremely nonlinear, so the standard linear error 

detection codes are difficult to use. The parity codes for the s-box are useful in checking 

for an odd number of errors but many faults resulting in an even number of errors can not 

be detected. Therefore, hardware redundancy is a good choice in this case, and is 

particularly attractive when the s-boxes are implemented using a compact approach. For 

Mix Column, Shift Row and Add Round Key operations, the parity checking schemes are 

effective with small cost, so we adopt parity checking for these operations. Our proposed 

schemes are implemented and analyzed based on our compact hardware implementation 
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of the AES algorithm, and we have applied the CED schemes to the whole AES system 

including encryption, decryption datapath and key expander. 

6.4.116-bit Parity Code Based CED Scheme 

We adopt a 16-bit parity code instead of a 1-bit parity code even though the 1-bit parity 

code has smaller hardware overhead, because the 16-bit parity code achieves better fault 

detection coverage for multiple faults and internal faults inside of round functions. Each 

bit in the parity code represents the parity of each byte in data. We duplicate the s-boxes 

and use parity prediction and checking for registers and bus lines. For parity prediction of 

Mix Column, we use the same modification algorithm as that in [62]. For the scheduling 

of the check points, we perform a check at the output at each round of operation to 

achieve shorter detection latency and higher fault detection coverage. The objective of 

the design is to yield fault detection coverage close to 100% for the single faulty bit 

model and high coverage for multiple fault scenarios. The single faulty bit model we use 

is single transient fault as 1-bit stuck-at-0 or stuck-at-1 fault in combinational logic and 

gate wiring or 1-bit flip fault in registers. 

Add Round Key 

Figure 6.5 16-bit Parity Code Based CED Structure 
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The 16-bit parity code based CED scheme structure is shown in Figure 6.5. The 

variables s,a, s,J, s,z and sr3 are four bytes of data in the row r, and Pro, Prl,Prz andp,3 are 

their corresponding four parity bits. In this figure, we only demonstrate 4-bit parity for 

four bytes of the error detection architecture, and the same architecture is extended to all 

16 bytes of data in the hardware implementation. Here we will explain the parity 

prediction and checking for each function in more detail: 

(1) Data Register and Shift Row. 

We need a parity generator to generate the parity code of the original and updated 

data and put a 4x4 parity code into four 4-bit shift registers according to the 

corresponding data byte position. These small parity shift registers are shifted and 

loaded with the same pace as the data registers. A parity checker is placed at the 

output of the registers to detect the fault in the data registers and Shift Row 

transformation. 

(2) Byte Substitution. 

Since the simple parity checking is not sufficient for the s-box in terms of fault 

detection coverage after the careful examination of our combinational logic s-box 

based on arithmetic in GF ((24
)
2
), we identically duplicate s-boxes with 100% percent 

of hardware redundancy. Diverse duplication seems not necessary in our scope. An 

equality checker is located at the output of the s-boxes to check any fault in s-box 

computation. Moreover, we need another parity generator to generate the new parity 

bits after the Byte Substitution transformation for the use of parity checking of Mix 

Column. 

(3) Mix Column. 

As we mentioned, we adopt the same Mix Column parity prediction method as in [62]. 

The prediction equations are represented as: 
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where P,rc is the new parity bit, Pre is the old parity bit, srPJ is the most significant 

bit of byte Src, and rand c represent the row rand column c of the data block. 

We also use the parity prediction equations for Inverse Mix Column, and represent 

them as below: 

P. = p EE> p EE> p EE> s<7l EE> s<7l EE> s<6l EE> s<6l EE> s<Sl EE> s<Sl EE> s <Sl EE> s<s) 
Oc Oc I c 2c Oc 3c lc 3c Oc l c 2c 3c 

P. = p EE> p EE> p EE> s<7l EE> s<7l EE> s <6l EE> s <6l EE> s<Sl EE> s<Sl EE> s <Sl EE> s<sl 
lc l c 2c 3c Oc lc Oc 2c Oc lc 2c 3c 

P. = p EE> p EE> p EE> s<7l EE> s<7l EE> s<6l EE> s<6l EE> s<Sl EE> s<s) EE> s <Sl EE> s<Sl 
2c Oc 2c 3c lc 2c lc 3c Oc lc 2c 3c 

P. = p EE> p EE> p EE> s<7l EE> s <7l EE> s<6l EE> s<6l EE> s <Sl EE> s<s) EE> s<s) EE> s<Sl 
3c Oc lc 3c 2c 3c Oc 2c Oc i c 2c 3c 

After the Mix Column transformation, we have a check point to detect the fault in this 

function. 

(4) Add Round Key. 

Since this function is simple XOR gates, the prediction for the new parity is just the 

XOR between the old parity and round key parity for each byte. Also, we have a 

check point after this function. 

A error-found signal will be triggered if any of the check points detect any error in the 

system. The system can detect the errors shortly after the faults are induced because the 

detection latency is only the output delay of each component. Once the error-found signal 

is triggered, it shows an exception in the system and the currently processing data is 

discarded immediately. 

For the key expander, since the key scheduling uses similar functions as the datapath, 

we can easily applied the same scheme to the key expander as illustrated in Figure 6.6. 

Similarly, kr0, krJ, kr2 and kr3 are four bytes key in the row r, and Pro, PrJ, Pr2 and PrJ are 

their corresponding four bits of parity. 
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6.4.2 32-bit Parity Code Based CED Scheme 

If a circuit is designed in such a way that there IS no sharing among the logic 

generating each of the outputs, a single fault only affects one output bit position. But the 

implementation using no logic sharing results in large area overhead. In our compact 

AES implementation, we use a lot of hardware sharing and reuse to minimize the area 

and cost. Thus the 1-bit parity code is not a good choice. We can partition the data into 

different parity bits so that there is no logic sharing among the logic of the outputs 

belonging to different parity bits. In our iterative implementation, fours-boxes separately . 

process 4 bytes soc. SJc. s2c and SJc at the same time. Therefore, we can use 8-bit parity 

code for each column and totally we need a 32-bit parity code for a 128-bit block 

illustrated as: 

Sao Sot So2 So3 

SIO sll s,2 s,J 

s 2o S21 s 22 s 23 

S3o s3, S32 S33 

Po p, P2 PJ 
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Where Src is the byte of data in 4x4 array located at row r and column c and P c is the 

parity code for column c. Actually, each bit in this parity code is the XOR of four 

corresponding bits in the input data. For example, the most significant bit in po is the 

parity of the most significant bits in input bytes s00, s1o, s2o, and SJo. Since there is no 

hardware sharing between the 4 bytes in each column for Shift Row, Byte Substitution 

and Add Round Key operations, the 32-bit parity code can effectively detect all single 

faults inside of these transformations and many multiple faults as long as the errors do 

not occur at the same positions in the bytes. For the Mix Column operation, 4 bytes in 

each column is mixed together to produce the new column, but the 8-bit parity code does 

not change. The 32-bit parity code CED scheme structure is shown in Figure 6.7. 
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Figure 6.7 32-bit Parity Code Based CED Structure 
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Implementation details of each block are described as: 

(1) Data Register and Shift Row. 

We use a 4-byte register to store the 32-bit parity code for the original and updated 

data. This register performs parallel load from the Shift Row parity predictor when 

the data registers perform the shift operation. The Shift Row parity predictor 

generates the parity code after the Shift Row transformation and the prediction 

equations are: 

(2) Byte Substitution. 

p~ = s00 EB s 11 EB s 22 EB s 33 

p; = Soi EB s, z EB s 23 EB s 3o 

p~ = Soz EB s i3 EB Szo EB s 3I 

p; = s03 EB s10 EB s 21 EB s 32 

For the Byte Substitution parity predictor, there is no better way than to just duplicate 

the s-boxes and generate the parity code for the output. Further equality checking or 

parity checking after Byte Substitution transformation can be used. 

(3) Mix Column. 

Since the parity code does not change during Mix Column operation, we do not need 

any prediction circuit for this part. 

(4) Add Round Key. 

The prediction for the new parity is just the XOR of the old parity and round key 

parity. 

Like the 16-bit parity code scheme, we also locate check points at the end of each 

round function to achieve higher fault detection coverage and shorter detection latency. 

For the key expander, the 32-bit parity code prediction is different than that of the 

datapath. For the 16-byte round keys from ko to k1s, each 4-byte block in one key register 

is matched with the corresponding data block. So the parity code for key expander is 

represented as: 

Pko = k0 EB k 1 EB k2 EB k3, p kl = k4 EB k5 EB k6 EB k7 

p k 2 = k8 EB k9 EB k10 EB k11 , Pk3 = k11 EB k13 EB k14 EB k15 
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After the examination of the key algorithm, we calculate the parity prediction equations 

for the key expander as: 

(1) For encryption 

(2) For Decryption 

P~o = Pkey_out ffi Pko ffi Rcon[i] 

P~1 = P~o ffi Pkl 

P~z = P~1 ffi Pkz 

P~3 = P~z ffi Pk3 

P~o = Pkey_out ffi Pko ffi Rcon[i] 

P~1 = Pko ffi Pki 

P~z = Pk! ffi Pkz 

P~3 = Pkz ffi Pk3 

The detailed scheme structure for key parity prediction is shown in Figure 6.8. 

Pkey_out 

Rcon[i] 

Figure 6.8 32-bit Parity Code Based CED for Key Expander 
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6.5 Hardware Performance Analysis and Comparison 

We have implemented the 16-bit parity code and 32-bit parity code based CED 

schemes for our AES compact hardware implementation, including both the 

encryption/decryption datapath and key expander. We apply 0.18-um CMOS standard 

cell library for the synthesis, and use Synopsys Design Analyzer as the design tool. For 

the cost in terms of hardware overhead, the 16-bit parity code based CED implementation 

has an overhead about 64.3% with respect to our original compact AES hardware system 

and the 32-bit parity code based CED implementation has an overhead of 67.0% with 

respect to the same AES hardware implementation. Since our original AES 

implementation is optimized for minimal area, the hardware resources used for 

concurrent error detection are also limited. The detailed hardware cost of these two 

schemes is shown in Table 6.1 . 

Table 6.1 Hardware Overhead of Proposed CED Schemes 

16-bit Parity Code 32-bit Parity Code 

Hardware Hardware Hardware Hardware 
Component 

Cost Overhead Cost Overhead 

(gates) (gates) 

Original Encryption/Decryption 
4228 4228 -- --

Data path 

CED for Datapath 2555 60.4% 2940 69.5% 

Original Key Expander 2428 -- 2428 --

CED for Key Expander 1613 66.4% 1517 62.5% 

Original AES System 6656 -- 6656 --

CED for AES System 4278 64.3% 4457 67.0% 

Both of these two CED schemes have very short detection latency because both of 

them perform a check at the output of each round function and four parity checkers are 

needed in each iteration. However, the parity checking circuits slow down the 

performance of encryption/decryption processing and result in more hardware cost for 

checking. The advantage of multiple parity checkers is higher fault detection coverage 
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and quick detection of the errors. Thus once the system finds any errors, it can stop the 

computation of erroneous data immediately and save the power and time to continue 

useless or harmful computations. 

Both CED schemes are able to detect all single faults occurring at the input of each 

round, between the round transformations or inside of each round operation. The 32-bit 

parity code even can detect any single fault inside of selection circuits such as 

multiplexers. For multiple faults, the situation is more complex. Generally, the faults that 

result in an odd number of errors can be detected by both schemes. For faults resulting in 

even number of errors, the 16-bit parity code can not detect the faults that result in an 

even number of errors in one byte, while the 32-bit parity code can not detect the faults 

that result in even number of errors in the same bit position. For the s-boxes, since the 

two schemes are based on the duplication of s-box computation, the two schemes have 

the same capability to detect multiple faults in the s-box components. For Mix 

Column/Inverse Mix Column function, the 32-bit parity code can not detect any faults 

resulting in an even number of errors, but the 16-bit parity code can detect error scenarios 

that have odd number of errors in any one among the four bytes. So the 16-bit parity code 

has better fault coverage for the Mix Column/Inverse Mix Column transformation. 

6.6 Conclusion 

The AES system is sensitive to fault based side-channel attacks. The studies of fault 

models and practical fault induction techniques indicate that the fault based cryptanalysis 

is physically executable for hardware implementations such as smart cards. Because of 

the diffusion of the AES algorithm, a single transient fault in the computation will result 

in multiple errors in the final output data. The analysis of fault propagation reveals 

several concerns about design and measurement of fault detection schemes for AES. We 

adopt hardware redundancy techniques for the s-box and parity checking for Mix Column, 

Shift Row and Add Round Key operations. Compared with 1-bit parity code based CED 

scheme in [61], our proposed 16-bit and 32-bit parity code based CED schemes have 

much better fault detection coverage for single faults and multiple faults with shorter 

detection delay but also spend more hardware resources for parity prediction and 

checking. Compared with 16-bit parity code based scheme in [62], our proposed schemes 
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can detect more faults in the s-boxes because of using hardware duplication instead of 

parity checking for s-boxes. However, the duplication of the s-boxes costs more hardware 

overhead than simple parity checking. The scheduling of four error checkers in one 

datapath iteration also results in more hardware cost but achieves the shortest detection 

latency. The proposed 16-bit and 32-bit parity code based concurrent error detection 

schemes achieve 100% detection for single induced faults and many multiple faults with 

about 67% hardware overhead to the original AES compact hardware implementation. 
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Chapter 7 

Conclusions and Future Work 

7.1 Summary of Research 

The primary focus of this thesis has been to design and implement a compact 

hardware-implemented AES system with concurrent error detection. The AES algorithm, 

in general, has the characteristics of good performance and efficiency in hardware and 

software implementation, high level of security, and flexibility over different computing 

environments and operation modes. Our AES implementation is aimed to area-critical 

low-end embedded applications, such as smart cards, PDAs, cell phones, and other 

mobile devices. 

The survey of various hardware implementation approaches and techniques for the 

AES algorithm reveals the design tradeoffs between area and speed, or alternatively, cost 

and performance, by using different architecture and algorithrllic optirllization methods. 

Pipelining, sub-pipelining and loop unrolling architectures offer the advantage of high 

throughput, but the inserting of rows of registers and the duplicating of n rounds of 

functions requires significantly more hardware resources than normal structures. 

Moreover, the pipelining and sub-pipelining architectures can not support the feedback 

modes of block ciphers, and the loop unrolling architecture increases the propagation 

delay between registers, which results in slow system clock frequency. The iterative 

looping architecture is effective for compact hardware design with lirllited throughput, 

which is suitable for our targeted area-critical AES hardware implementation. 

By applying the discovery of linear redundancy (LR) to AES s-boxes, we have 

explored a new method to implement AES s-boxes using combinational logic. This 

approach only needs to implement one Boolean function for the s-box and utilizes the 

transformations between the output bits to get the 8-bit result of the entire s-box. The 

synthesis result shows that the LR implementation saves more than 50% of the gates of 
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the normal direct Boolean functions method, and requires 11% fewer gates than the other 

two compact methods using composite field arithmetic in GF(24
) and GF(22

). Moreover, 

the LR s-box implementation consumes less power than the two composite field 

implementations, although more than the simple Boolean functions implementation 

However, LR implementation is about 8 times slower than other implementations 

because it processes the data bit by bit, not byte by byte as in the other three methods .. 

To achieve a suitable design for future small low-end embedded applications, we have 

applied different schemes for hardware sharing and have employed an iterative looping 

structure thus reducing hardware resources to implement a compact and efficient 

encryption-decryption circuit. We considered various data bus widths using a fours-box 

structure and a one s-box structure, and have also applied three distinct compact s-box 

implementations discussed earlier to these two structures. A thorough comparison of the 

six implementations indicates that the implementation using four s-boxes based on 

arithmetic operations in OF (24
) has the best trade-off of area and speed. Integrating the 

key expander and datapath, the complete encryption-decryption system has a small size 

requiring about 7.5K gates with maximum clock frequency 51.9 MHz, and the 

throughput of the circuit is 132.92 Mbps. 

In order to be adaptive to various practical applications, we optimized the compact 

encryption-decryption AES implementation with the four s-box structure to support five 

different operation modes: Electronic Codebook (ECB) mode, Cipher Block Chaining 

(CBC) mode, Cipher Feedback (CFB) mode, Output Feedback (OFB) mode, and Counter 

(CTR) mode. According to the different requirements of each operation mode, selectors, 

shift registers and counters were integrated into the five-mode system to complete the 

functionality for both encryption and decryption. The resulting five-mode circuit has the 

size of 11.3k gates (based on a 64-bit counter) with maximum clock frequency of 47.2 

MHz. 
I 

The AES cryptographic hardware circuit is sensitive to deliberately induced malicious 

faults used in side-channel attacks. In order to gain high reliability and resistance to 

malicious attacks for our AES encryption system, we proposed two concurrent error 

detection schemes based on parity code checking and hardware redundancy to protect the 

system from fault based side-channel attacks. The proposed 16-bit and 32-bit parity code 
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based concurrent error detection schemes achieve 100% detection for single induced 

faults and detection of many multiple fault scenarios with an additional of 67% hardware 

overhead to the original AES compact hardware implementation. 

This thesis covers all the details about AES algorithm hardware design and 

implementation, including implementation scheme, design methodology, architecture and 

algorithmic optimization. Efforts are made to achieve a compact and efficient system, 

which is desirable for practical low-end embedded applications. Five-mode support and 

concurrent error detection provide more flexibility, reliability and increased security to 

the basic AES encryption system. Synopsys simulation and synthesis CAD tools are 

useed for the implementation performance analysis and comparison, such as hardware 

complexity, speed and power consumption. The tradeoffs between cost and performance 

is always a concern to all practical applications, and various design and optimization 

techniques should be chosen based on the specific considerations and constraints. 

7.2 Future Work 

Based on the results obtained in this thesis, several research directions can be 

suggested for future work. 

• The AES encryption-decryption system can be optimized to provide more 

flexibility, such as reconfigurability to three different key lengths, or even support 

the functions for other encryption algorithms. 

• A more comprehensive investigation of AES system power consumption can be 

explored. Power optimization techniques, such as inserting additional delay 

buffers to reduce the effect of hazard, can be applied to save power consumption 

in addition to minimizing the area utilization, and improve the system to be more 

suitable for low-end embedded applications. 

• Further hardware synthesis work can be carried out to physical design, including 

placing, routing and testing the design in a real VLSI device. Since FPGA 

technology provides more design flexibility and hardware reconfigurability than 

an ASIC approach, the AES system design can be adjusted, implemented and 

tested in FPGA chips. 
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• For the proposed two concurrent error detection schemes, extensive software 

simulation experiments can be carried out to evaluate the specific fault detection 

coverage for multiple faults. Accordingly, optimizations can be done for the CED 

schemes to improve the detection of the multiple faults occurring at any place 

inside the hardware circuit. 

• Linear redundancy is a very important property of the AES s-box, and further 

work to apply it for implementation and cryptanalysis of the AES algorithm is 

worthy to be explored. 

• Testability can be another interesting and challenging topic to be explored for the 

AES hardware implementation. 
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Appendix A 

1. Hardware Implementation of S-box Based on Arithmetic Operation in GF(24
) 

Isomorphism: 
bx + c = a, (b,c E GF(24

), a E GF(28
) ) 

a A = ~ EB a7 , a 8 = a5 EB a7 , ac = a4 EB a6 

b0 = ac EB a5 ,b1 = aA EB ac 

b2 = a8 EB a2 EB a3, b3 = a8 

c0 = ac EB a0 EB a5 , c1 = ~ EB a2 

c2 =a A, c3 = a2 EB a 4 

Squaring in GF(24
): 

q = a2 
, (q, a E GF(24

)) 

% = a0 EB a 2 , q1 = a 2 

qz =~ EBa3,q3 =a3 

Multiplicative Inverse in GF(24
): 

q = a- , (q, a E GF(24
)) 

a A=~ EB a2 EB a3 EB ~a2a3 
q0 =a A EB a0 EB a0a2 EB ~a2 EB a0~a2 
q1 = a0~ EB a0a2 EB a1a2 EB a3 EB ~a3 EB a0~~ 

~=~~EB~EB~~EB~EB~~EB~~~ 

q3 =a A EB a0a3 EB a1a3 EB a2a3 

Isomorphism-1
: 

a= bx + c, (a E GF(28
), b,c E GF(24

)) 

aA = c1 EBb3,a8 = b0 EBb1 

a0 = b0 EB c0 , ~ = a 8 EB b3 

a2 =aA EBa8 ,a3 =a8 EBb2 EBc1 

a4 =aA EBa8 EBc3 ,a5 =a8 EBc2 

a6 = aA EBb0 EBc2 EBc3 ,a7 = a8 EBb3 EBc2 

Multiplication in GF(24
): 

4 q =ax b modn, (q, a,b E GF(2 )) 

aA =a0 EBa3,a8 =a2 EBa3 
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q0 = a0b0 EB a3b1 EB a2b2 EB a1b3 
q1 = a1b0 EB aAb1 EB a8 b2 EB (~ EB a2 ) EB b3 
q2 = a2b0 EB ~b1 EB aAb2 EB a8 b3 
q3 = a3b0 EB a 2b1 EB ~b2 EB aAb3 

Multiplication with {1110}: 
q =ax {1110} modn, (q, a E GF(24

)) 

qo =a, EBaa,q, = aA 

qz =aA EBaz,q3 =aA EBaa 



2. Hardware Implementation of S-box Based on Arithmetic Operation in GF(22
) 

Multiplicative Inverse in GF((22
)
2
): 

q = a- , (q, a E GF((22
)

2
)) 

~=~~m~~~m~~~m~~~ 

q2 = a3a2 m a3a0 m a2 a! 

Multiplication with A.: 
q =ax {1100} modn, (q, a E GF((22

)
2
)) 

q3 = a2 mao 

q2 =(a! m ao)a3 m a2 + (a3 m az)al mao 

qt =a3 

qo = az 

Multiplication with 0: 
q =ax {10} modm, (q, a E GF(22

)) 

Affine Transformation: 
q = aff_trans(a), (q, a E GF(28

)) 

aA =a0 m~,a8 =a2ma3 
ac = a4 mas,aD = a6 ma7 

qO = a0 maC maD 

% = as maA maD 

q2=a2maAmaD 

q3 =a7 maA ma8 
q4 =a4 maA ma8 

qs =~ ma8 mac 

q6 = a6 ma8 mac 

q7 = a3 maC maD 
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Squaring in GF((22
)
2
): 

q = a2 
, (q, a E GF((22

)
2
)) 

~ =a3 

qz = a3 maz 

ql =az m~ 

q0 =a3(a1 ma0)+(a3~ ma0) 

Multiplication in GF(22
): 

2 q = a x b mod m, (q, a, b E GF(2 )) 

q1 =((a0ma1)(b0mb1))m(a0b0) 

qo = (aobo)m(aibi) 

Multiplicative Inverse in GF(22
): 

q = a-1
, (q, a E GF(2)) 

Inverse Affine Transformation: 
q = aff_trans-\a), (q, a E GF(28)) 

aA = a0 mas,a8 = a1 ma4 
aC = a2 m a7 , aD = a3 m a6 

qo =as mac 

ql = aO maD 

qz =a? maB 

q3 = az maA 

q4 =a1 maD 

qs = a4 mac 

q6 = a3 maA 

q7 = a6 maB 



3. Hardware Implementation of Linear Redundancy (LR) S-box 

D Matrix Multiplier: 

YJ = Da1 x x, (l~j"SJ) 

x
8 
= x1 EB x4,x9 = x5 EB Xi ,Xio = x6 EB x2,Xi1 = x1 EB x3,x12 = x10 EB x9,Xi3 = x8 EB x0,Xi4 = x4 EB x1 

Xis= x7 EB Xo,Xi6 = x9 EB Xs,Xi7 = x6 EB x3,XIs =Xi I EB Xz,Xi9 = x4 EB ~,Xzo = Xs EB Xo,Xzi = x6 EB Xs 

Xzz = X13 EB Xi' Xz3 = Xzz EB X3' Xz4 = Xiz EB Xi 1' Xzs =XIs EB x6' Xz6 = X10 EB Xo' Xz7 = X9 EB Xz 

(0) _ (I) _ r.:p (2) _ (3) _ 
Y1 -Xzs>Y7 -XzowXIs>Y7 -Xz4,y7 -Xz3 

y~4) = XzL EB x4' y~5) = xl7 EB -Xi4 EB Xo, y~6) = Xzi EB x7, yfl = Xi6 EB Xz 

y~0) = x22 , y~L) = x17 EB Xi, y~2l = x6 EB x4 EB x0, y~3l = x20 EB x3 

y~4l =xL EBxo,Y~s) =xz3,y~6) =Xz6 EBxtPY~7l =x6 

y~0) = x2 EB x0, y~1l = _x;3 EB x5 EB x2, y~2l = X16 EB x3 , y~3l = .x;2 EB x3 

y~4l = x25 , y~5) = _x;0 EB x5 EB x3, y~6) = x7 EB Xi, y~1l = x17 EB x8 

(0) - ffi (I) - r.:p (2) - (3) -Y4 - Xz7 i:b X3, Y4 - Xtz w Xs, Y4 -XIs' Y4 - X1 
(4) - ffi (5) - r.:p (6) - (7) - ffi Y4 -XLsi:DXz,Y4 -x1wXi,y4 -xl9,y4 -Xlgi±7Xz7 

yj0l = x17 , yj1l = x9 EB X17, yj2l = x9 EB .x;1 EB x0, yfl = X12 EB X7 

yj4) = xl3 EB x6' yj5) = XzG' yj6l = x4 EB Xz' yj7) = Xi4 EB x6 

Yi
0
) = x6 EB9' Yi

1
) = Xz4' Yi

2
) = Xi4' Yi

3
) = Xs EB x6 

Yi4) = X13 EB Xg' Yi5) = X4' Yi
6
) = Xw EB Xs' Yi

7
l = Xiz EB Xs 

Yt(O) =-Xis EB Xo, Y{1) = Xs EB x6' Y?) =-Xis ffi Xi' Y?l = X19 EB Xw 
(4) - 17\ (5) - (6) - r.:p (7) -

Yt - Xs i:b X3, Y1 - xL4' Yt - xl4 w Xw, Yt - xl6 

bo_logic Block: 

~=~~~~~~~EB~~~~~~~EB~~~~~~EB~~~~~~EB~~~~~~ 
------ -- ------ -

EB~~~~~~EB~~~~~~EB~~~~~~~EB~~~~~~~EB~~~~~~~ 

EBb5b4b3bzhtb0 EB b5b4b3bzht b0 EB b7b6b5b4b3b1 b0 EB b6b5b4b3b2b0 EB b7b6b4b3b2b0 

EBb7b6b5b4b2b1 b0 EB b7b5b4b3b2b1b0 EB b7b6b5b3b2b1b0 EB b7b6b5b4b3b2b1 EB b6 b4b3b2b1b0 

----
EBb1b5b4b3b2bO EBb6b5b3b2blbO EBb1b5b4b2blb0 EBb1b5b3b2blb0 EBb6b5b4b3b2bl EBb5b4b3blb0 

EBb1b5b3b2blbO EBb1b6b4b3b2 EBb7b6b3blb0 EBb7b6b5b4b2blbO EBb7b6b5b3b2bl ffib7b6b5b4b3b2blb0 

EBb7 b6b4b3b2b
1 
b0 EB b7b

5
b3b2 b1b0 EB b7b6b4 b3b2b1 EB b7b6b5b3b2h1b0 EB b7b6b5b4b1b0 EB b6b5b2b1b0 
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4. The Waveforms and Test of All S-box Implementations 

(1) Waveforms of sbox_gf222, sbox_gf24 and sbox_boolean_function 

file fdtt Marker ,qoTo ~cw Qptions Yiindow Help 

76 59 

1> /SBOX_ TEST/SBOX_ GF222_DAT A_OUT(7:0) 38 CB 

====~==~==~==~~=*====~ 
CB ~ /SBOX_TESTISBOX_ GF24_DAT A_ OUT(7:0) 

~ ISBOX_TEST/SBOX_BF _DATA_OUT(7:0) 38 CB 

(2) Test Files of sbox_linear_redundancy 

lnput_File: 

00000000 00000001 00000010 00000011 00000100 00000 1 01 00000110 00000111 
00001000 00001001 0000 1 01 0 00001011 00001100 0000110 1 00001110 00001111 
00010000 00010001 000100 1 0 00010011 00010100 00010101 00010110 00010111 
00011000 00011001 000110 1 0 000 11011 00011100 00011101 00011110 00011111 
00 1 00000 00100001 00 1 00010 00100011 00100100 00100 1 01 00100110 00100111 
00101000 0010100 1 001010 1 0 00101011 00101100 00101101 00101110 00101111 
00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111 
00111000 00111001 00111010 00111011 0 0 111100 0 01111 01 00111110 00111111 
01000000 01000001 010000 1 0 01000011 01000100 01000 1 01 010 001 1 0 01000111 
01001000 01001001 01 00 1 010 01 001011 01001100 01001101 01001110 01001111 
01010000 01010001 0101 0010 01 01 0011 01010100 0 1 0 1 0 1 01 01010110 01 010111 
01011000 0101100 1 0101101 0 0 1 011011 01011100 0 1 011101 01011110 01011111 
01100000 0110000 1 011000 1 0 011 0 0 011 01100100 01100 1 01 011 0 011 0 01100111 
01101000 01101001 011010 1 0 011 01011 01101100 01101101 01101110 01101111 
01110000 011 1 0001 011100 1 0 011 1 0 011 01110100 01110101 01110110 01110111 
01111000 01111001 01111010 01111011 01111100 01111101 01111110 01111111 
10000000 10000001 10000010 10000011 1 0000100 10000101 1000011 0 10000111 
10001000 10001001 10001010 10001011 1 0001100 10001101 10001110 10001111 
10010000 10010001 1 00100 1 0 1001 0 011 1 0 01010 0 10010101 10010110 10010111 
10011000 10011001 10011010 1 0011011 10011100 10011101 10011110 10011111 
10100000 10100001 10100010 1 01 0 0011 10100100 10100101 1 0100110 10100111 
1 0 1 01000 10101001 1010101 0 10101011 1 0 1 01100 10101101 1 0101110 10101111 
10110000 10110001 10110010 10110 011 1 0110100 101101 01 10110110 10110111 
10111000 10111001 1 0111010 10111011 1 0111100 10111101 1 0111110 10111111 
11000000 1100000 1 11000010 11000 011 11000100 11000101 11000110 11000111 
11001000 1100100 1 1 1 00101 0 11001011 11001100 11001101 11001110 11001111 
11010000 1101000 1 11010010 11010011 110101 00 11010101 11010110 11010111 
11011000 11011001 11011010 11011011 11011100 11011101 11011110 11011111 
11100000 11100001 11100010 11100011 1110 0100 1 1100101 11100110 11100111 
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11101000 11101001 11101010 11101011 11101100 11101101 11101110 11101111 
11110000 11110001 11110010 11110011 11110100 11110101 11110110 11110111 
11111000 11111001 11111010 11111011 11111100 11111101 11111110 11111111 

Output_File: 

01100011 01111100 01110111 01111011 11110010 01101011 01101111 11000101 
00110000 00000001 01100111 00101011 11111110 11010111 10101011 01110110 
11001010 10000010 11001001 01111101 11111010 01011001 01000111 11110000 
10101101 11010100 10100010 10101111 10011100 10100100 01110010 11000000 
10110111 11111101 10010011 00100110 00110110 00111111 11110111 11001100 
00110100 10100101 11100101 11110001 01110001 11011000 00110001 00010101 
00000100 11000111 00100011 11000011 00011000 10010110 00000101 10011010 
00000111 00010010 10000000 11100010 11101011 00100111 10110010 01110101 
00001001 10000011 00101100 00011010 00011011 01101110 01011010 10100000 
01010010 00111011 11010110 10110011 00101001 11100011 00101111 10000100 
01010011 11010001 00000000 11101101 00100000 11111100 10110001 01011011 
01101010 11001011 10111110 00111001 01001010 01001100 01011000 11001111 
11010000 11101111 10101010 11111011 01000011 01001101 00110011 10000101 
01000101 11111001 00000010 01111111 01010000 00111100 10011111 10101000 
01010001 10100011 01000000 10001111 10010010 10011101 00111000 11110101 
10111100 10110110 11011010 00100001 00010000 11111111 11110011 11010010 
11001101 00001100 00010011 11101100 01011111 10010111 01000100 00010111 
11000100 10100111 01111110 00111101 01100100 01011101 00011001 01110011 
01100000 10000001 01001111 11011100 00100010 00101010 10010000 10001000 
01000110 11101110 10111000 00010100 11011110 01011110 00001011 11011011 
11100000 00110010 00111010 00001010 01001001 00000110 00100100 01011100 
11000010 11010011 10101100 01100010 10010001 10010101 11100100 01111001 
11100111 11001000 00110111 01101101 10001101 11010101 01001110 10101001 
01101100 01010110 11110100 11101010 01100101 01111010 10101110 00001000 
10111010 01111000 00100101 00101110 00011100 10100110 10110100 11000110 
11101000 11011101 01110100 00011111 01001011 10111101 10001011 10001010 
01110000 00111110 10110101 01100110 01001000 00000011 11110110 00001110 
01100001 00110101 01010111 10111001 10000110 11000001 00011101 10011110 
11100001 11111000 10011000 00010001 01101001 11011001 10001110 10010100 
10011011 00011110 10000111 11101001 11001110 01010101 00101000 11011111 
10001100 10100001 10001001 00001101 10111111 11100110 01000010 01101000 
01000001 10011001 00101101 00001111 10110000 01010100 10111011 00010110 
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L. 

Appendix B 

1. Hardware Detail of Mix Column/Inverse Mix Column 

Xtimes Function: 
q = Xtimes (a), (q, a E GF(28

)) 

qo =a1 

q1 = a0 EBa7 

q2 =~ 

q3 = a2 EB a7 

q4 = a3 EB a7 

qs =a4 

q6 =as 

q7 =a6 

Mix Column Function: 

XA = aoc EB~c 

Xa = ~c EBa2c 

Xc = a2c EB a3c 

Xo = ~c EBaoc 

hoc = Xtimes(xA)EBxc EBa1c 

h1c = Xtimes(x8 ) EB Xc EB a0c 

h2c = Xtimes(xc ) EB X A EB a3c 

h3c = Xtimes(x0 ) EB XA EB a2c 

Inverse Xtimes Function: 
q = Xtimes-1 (a), (q, a E GF(28

)) 

qo = ao EB~ 

ql =a2 

q2 = ao EB a3 

q3 = ao EBa4 

q4 =as 

qs = a6 

q6 = a7 

q7 =ao 

Inverse Mix Column Function: 

YA = Xtimes(y8 EB Yc) 

y8 = Xtimes(Xtimes(a0c EB a2J) 
Yc = Xtimes(Xtimes(~c EB a3J) 
zA =yAEB Ya 

Za = YA EB Yc 

h~c =hoc EB ZA 

h:c =hie EB Za 

h~c = h2c ffi ZA 

h~c = h3c E8 Za 
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2. Area Complexity Details of Datapath 

Complexity 
Component Quantity ( ates) 

With Time Constraint 
En_De_Sbox 4 1846 

Mix_InvMix_Column 1 528 
2_to_1_8bit_MUX 4 64 

Data_Re ister 4 1700 
2_to_1_32bit_MUX 2 128 

XORs 160 376 
Total 4642 

3. Area Complexity Details of Key Expander 

Component Quantity 

1 
4 
9 

4_to_1_32bit_MUX 1 
lnvMixColumn 1 

XORs 136 
Total 

Complexity 
(gates) 

With Time Constraint 
95 

776 
594 
183 
528 
317 

2559 

No Time Constraint 
1560 
451 
64 

1568 
128 
376 

4147 

No Time Constraint 
93 

776 
594 
151 
455 
317 

2436 

4. Area Complexity Details of Complete Encryption-Decryption System 

Component Quantity 

1 
1 

Key_Out_Reg 1 
Controller 1 

Total 

Complexity 
( ates) 

With Time Constraint 
4642 
2559 
160 
184 

7545 

No Time Constraint 
4147 
2436 
160 
174 

6917 

5. The Waveforms of Complete Encryption-Decryption System 
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/SYSTEM_FOUR_ TEST _NEWICLK 

/SYSTEM_FOUR_ TEST _NEW/START 

/SYSTEM_FOUR_ TEST _NEW/CLEAR 

/SYSTEM_FOUR_ TEST _NEW/SEL_ENC_OEC 

/SYSTEM_FOUR_ TEST _NEW/OONE_ENCRYPTION 

t> /SYSTEM_FOUR_TEST_NEW/OATA_IN(0:127) 

.. /SYSTEM _FOUR_ TEST _NEW/OAT A_ OUT(D 1 27) 

t> /SYSTEM_FOUR_ TEST _NEW/ENCRYPT! ON_KEY(D: 1 27) 

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ I N(D)(7:D) 

t> /SYSTEM_FOUR_TEST_NEW/PARALLEL_IN(1)(7:D) 

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(2)(7:0) 

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ IN(3)(7:D) 

t> ISYSTEM_FOUR_ TEST _NEW/PARALLEL_ IN( 4)(7:0) 

t> /SYSTEM_FOUR_ T EST _NEW/PARALLEL_IN(5)(7:D) 

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(6)(7:D) 

t> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_ I N(7)(7:D) 

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(8)(7:D) 

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ IN(9)(7:D) 

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_ I N( 1 0)(7:0) 

t> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(1 1 )(7:0) 

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(1 2)(7:0) 

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(1 3)(7:0) 

£> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(14)(7:0) 

t> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 5)(7:0) 

£> /SYSTEM_FOUR_ TEST _NEW/I NITIAL_KEY(D)(7:D) 

t> /SYSTEM_FOUR_ TEST _NEW/INIT IAL_KEY(1 )(7:0) 

£> /SYSTEM_FOUR_ TEST _NEW/INITIAL_KEY(2)(7:D) 

+i 
Ready 

0 

0 

0 

0 

DO 

01 

02 

03 
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06 

07 

08 

09 
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DB 

DC 

DO 

DE 

OF 

DO 

01 

02 

• 

DDD10203040506070809DADBDCDODEDF 

DA94DBB5416EFD45F1C39458C653EA5A 

DDD10203040506070809DADBDCDODEDF 

DO 

01 

02 
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07 

DB 

09 

DA 

DB 

DC 

DO 

DE 
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DO 

01 

02 
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><' S~;,o-psys Waveform Viewer - SYST£M_FOUR_ TEST _NEW .jaguar.13196.ow:O · [Untitled] - ['g:J@~ 
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/SYSTEM_FOUR_ TEST _NEW/CLK 

ISYSTEM_FOUR_ TEST _NEW/ST ART 

ISYSTEM_FOUR_ TEST _NEW/CLEAR 

/SYSTEM_FOUR T EST _NEWISEL_ENC_DEC 

/SYSTEM_FOUR_ TEST _NEWIDONE_ENCRYPTI ON 

1> /SYSTEM_FOUR_ TEST _NEWIDATA_I N(O: 1 27) 

.. /SYSTEM_FOUR_ TEST _NEWIDATA_OUT(O. 1 27) 

1> ISYSTEM_FOUR_ TEST _NEWIENCRYPT ION_KEY(0:1 27) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN(0)(7:0) 

1> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 )(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(2)(7:0) 

1> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(3)(7:D) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(4)(7:0) 

1> /SYSTEM_FOUR_ TEST _NEW/PARALLEL_IN(5)(7:D) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(6)(7:0) 

1> /SYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(7)(7:D) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN(8)(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(9)(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 0)(7:0) 

1> /SYST EM_FOUR_ TEST _NEWIPARALLEL_ IN(1 1 )(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN(1 2)(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_ IN( 1 3)(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN( 1 4)(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIPARALLEL_IN(1 5)(7:0) 

1> /SYSTEM_FOUR_ TEST _NEW/INIT IAL_KEY(0)(7:0) 

1> ISYST EM_FOUR_ TEST _NEW/IN ITIAL_KEY( 1 )(7:0) 

1> ISYSTEM_FOUR_ TEST _NEWIINITIAL_KEY(2)(7:0) 

+ 
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000 102030405060708090ADBDCDDDEDF 
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"'Synops)IS Waveform Viewer · FIV£_MODE_SYSTEM_TEST.jaguar.14385.ow:O - [Untilled] . r;:)@J[g] 
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IFIVE_MODE_SYSTEM_ TEST/START 0 

/FIVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC 0 

IFIVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM 0 

IFIVE_MODE_SYSTEM_ TEST/CLK 0 

IF I VE_MODE_ SYSTEM_ TEST/SEL_MODE ECB 

1> /FIVE_MODE_SYSTEM_TEST/SYSTEM_DATA_IN(0:127) 00000( 

1> IFIVE_MODE_SYSTEM_ TESTISYSTEM_DATA_OUT(0:12 ... 7BOC7 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(D:127) 287El 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_IV(0:127) 00010 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT (0)(7:0) DO 

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT( 1 )(7:0) 00 

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(2)(7:0) DO 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) DO 

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT (4)(7:0) DO 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) DO 

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(6)(7:0) DO 

1> /FIVE_MODE_ SYSTEM_ TESTISYSTEM_INPUT(7)(7:D) 00 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(B)(7:D) DO 

1> /FIVE_MODE_SYSTEM_ TESTISYSTEM_I NPUT(9)(7:0) DO 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1 0)(7:0) DO 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(l l )(7:0) 00 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(12)(7:0) DO 

1> /FIVE_MODE_ SYSTEM_ TESTISYSTEM_INPUT(13)(7:0) DO 

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(14)(7:0) DO 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT( 15)(7:0) DO 

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(0)(7:0) 78 

1> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_ OUTPUT(l )(7:0) DC 

~ - ~-' t;r-r:; 
Ready 

I I I I I I I I I 

2000 
I I I I I I 

l 

I I I I 

2500 
I I I I I I I I I I 

.!j 

MJ1I1IU1IlJWUUl1IUU1IUUUliliUU 
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6BC1BEE22E409F96E93D7Ell7393172A AE2DBA571 ED3AC9C9EB76FAC45AFBE51 

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu 3AD77884DD7 A3660AB9ECAF32466EF97 

287E 15162BAED2A6ABF715BB09CF 4F3C 

000102030405060708090AOBOCODOEOF 

68 AE 

Cl 2D 

BE BA 

E2 57 

2E lE 

40 03 

9F AC 

96 9C 

E9 9E 

3D 87 

7E SF 

11 AC 

73 45 

93 AF 

17 BE 

2A 51 
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+! 

~ ... 't ~ 
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1900 2000 2100 2200 2300 2400 2500 2600 -;; 

= 
/F IVE_MODE_ SYSTEM_ TEST/START 0 ~ 
/FIVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC 0 

/FIV E_MODE_SYSTEM_ TEST/DONE_ SYSTEM · 0 l 
/FIVE_MODE_ SYSTEM_ TEST/CLK 1 J1J1 J1 J1J1 J1J1J1 J 1J1 1J 1J1 J1J 1J1J1J 1J1 
I F IVE_MODE_SYSTEM_ TESTISEL_MODE esc ·:::sc 

t> /FIV E_MODE_SYSTEM_ TEST/SYSTEM_DATA_IN(D:127) 00000[ 6BC1BEE22E409F96E93D7E117393172A AE2DBA571 ED3AC9C9EB76FAC45AFBE51 

t> IF IV E_MODE_SYSTEM_ TEST/SYSTEM_DATA_ OUT(D:127) 3FF1C uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu 7649ABACB1198246CEE9BE9812E9197D 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(D:127) 287E1 287E15162BAED2A6ABF7158809CF4F3C 

t> /FIVE_MODE_SYSTEM_ TESTISYSTEM_IV(0:127) 00010 00010203040506070809DADBDCDDDEDF 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT (D)(7:D) DO 68 AE 

t> /FIV E_MODE_SYSTEM_ TEST/SYSTEM_ INPUT( 1 )(7:0) DO C1 2D 

t> I F I VE_MODE_SYSTEM_ TEST/SYSTEM_ I NPUT(2)(7:D) DO BE BA 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) DO E2 57 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(4)(7:0) DO 2E 1E 

t> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) DO 40 03 

t> IF IVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT(6)(7:D) DO SF AC 

t> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT(7)(7:0) DO 96 9C 

t> /F IVE_M ODE_SYSTEM_ TEST/SYST EM_ INPUT(B)(7:0) DO E9 9E 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:D) DO 3D 87 

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT( 1 0)(7:0) DO 7E SF 

1> IFIV E_MODE_SYSTEM_TEST/SYSTEM_INPUT(11 )(7:0) DO 11 AC 

t> /F I VE_MODE_SYSTEM_ T EST/SYSTEM_ INPUT( 12)(7:0) DO 73 45 

t> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(13)(7:0) DO 93 AF 

t> /F I VE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT( 14)(7:0) DO 17 BE 

1> /F IVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(15)(7:0) DO 2A 51 

t> /FI VE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(D)(7:0) 3F uu 76 

1> IFIVE_MODE_SYSTEM_ T EST/SYSTEM_OUTPUT(1 )(7:0) F1 uu 49 
.:tJ 
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oi' Synopsys Waveform Viewer - FIVE_MODE_SYSTEM_T£ST.jaguar.H454-.ow:O - [Untitled] - - - - ~@~ 

/FIVE_MODE_SYSTEM_TEST/START 

IF IVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC 

/F IVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM 

IFIVE_MODE_SYSTEM_ TEST/CLK 

/FIVE_MODE_SYSTEM_ TEST/SEL_MODE 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_DATA_IN(O:l 27) 

t> /FIVE_MODE_SYSTEM_ TESTISYSTEM_DATA_OUT(O:l 27) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(O:l 27) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_IV(O:l 27) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(0)(7:0) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1 )(7:0) 

t> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(2)(7:D) 

., /F IV E_MODE_SYSTEM_ TEST/SYSTEM _INPUT(3)(7:0) 

1> /FIVE_MODE_ SYSTEM_TEST/SYSTEM_INPUT(4)(7:0) 

1> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) 

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(6)(7:0) 

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(7)(7:D) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(B)(7:0) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:0) 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(1 0)(7:0) 

1> /FIVE_MODE_SYSTEM_TEST/SYSTEM_ INPUT(11 )(7:0) 

r> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(12)(7:D) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(13)(7:D) 

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT( 14)(7:0) 

1> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(15)(7:0) 

t> /FIVE_MODE_ SYSTEM_TESTISYSTEM_OUTPUT(0)(7:D) 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(1 )(7:0) 
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oi' Synopsys Wavefo-;m Vi,_.;r -_ FIVE_:MODE_SYSTEM_ T£ST. jaguar . 14487 .ow~O - [Untitled] - - - - !';]@]~ 
File f_dit Marker GoTo View Options Window Help -
DJ~IIiil] • llll!ln l ·• 1111111• 1 z+]z-1• 1 • 1111«:1>>1-r] ~ f"!!IJ 151 'if I 

~ 
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~ 11062 

/FIVE_MODE_SYSTEM_ TEST/START 0 ~ 
/F IVE_MODE_SYSTEM_ TEST/SEL_ENC_DEC 0 

/FIVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM 0 l 
IF IVE_MODE_SYSTEM_ TEST/CLK 1 1J1 J 1J1J1J1 J 1J1J1J1 1J1J1J1J1J 1J1J1 J 
/F IVE_MODE_SYSTEM_ TESTISEL_MODE OFB OF8 

1> IF IVE_MODE_SYSTEM_ TEST/SYSTEM_DATA_IN(D: 127) 00000( AE2DBA571 E03AC9C9E876FAC45AFBE51 30CB1C46A35CE411E5FBC1191AOA52EF 

1> IFIVE_MODE_SYSTEM_ T EST/SYSTEM_DATA_OUT(0:127) 304C6 383FD82E872DAD20333448FBEB3CFB4A 77B95DBD1691BF03F53C52DAC54EDB25 

t> IF IVE_MODE_ SYSTEM_ TEST/SYSTEM_KEY(0:127) 2B7E1 287E15162BAED2A6ABF715BB09CF4F3C 

t> /F IVE_MODE_SYSTEM_ TEST/SYSTEM_IV(0:127) 000102 00010203040506070B080ADBDCDDDEOF 

t> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT (0)(7:0) ' 00 AE 30 

t> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(1 )(7:0) 00 20 CB 

1> /FIVE_MODE_SYSTEM_ T EST/SYSTEM_INPUT(2)(7:D) 00 BA 1C -N 1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) 00 57 46 
Vl. 

t> IF IVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT ( 4)(7:0) 00 1E A3 

t> /F I VE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) 00 03 5C 

t> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(6)(7:0) 00 AC E4 

1> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(7)(7:0) DO 9C 11 

t> IFIVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(B)(7:0) 00 BE E5 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:0) 00 87 FB 

t> IF IVE_MODE_SYSTEM_ TEST/SYST EM_ INPUT( 1 0)(7:0) 00 SF C1 

1> /FIVE_MODE_SYSTEM_ TEST/SYST EM_INPUT(11 )(7:0) 00 AC 19 

1> /FIVE_MODE_ SYSTEM_ TEST/SYSTEM_ INPUT(12)(7:0) 00 45 1A 

1> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_INPUT(13)(7:D) DO AF OA 

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(14)(7:0) DO BE 52 

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(15)(7:0) 00 51 EF 

t> IF IVE_MODE_ SYSTEM_ TEST/SYSTEM_OUTPUT(0)(7:0) 30 38 77 

t> /F IVE_MODE_ SYSTEM_ TEST/SYSTEM_ OUTPUT(1 )(7:0) 4C 3F 88 

~.l .- · ~· • J 
..±! 
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><' Synopsys Waveform Vicwc~ : FIVE_MODE_SYSTEM_TEST. jaguar.14569.ow:O -- [Untitled] - - - - - - - - - -- - - - ~@]~ 

File .E_dit Marker GoTo View Options Window Help - - - - - - -
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4100 <1200 43f0 ~0 4Sf0 46f0 47f0 !::tJ 
/FIVE_MODE_SYSTEM_TEST/START 0 ..tj 
IF IVE_MODE_SYSTEM_ TESTISEL_ENC_DEC 0 

/F IVE_MODE_SYSTEM_ TEST/DONE_ SYSTEM 0 l 
/FIVE_MODE_SYSTEM_ TEST/CLK 1 J1J1J1J1J 1J1J1 J1 J 1J1 1J1J1J1 J1J1J1J1 
/F I VE_MODE_SYSTEM_ TEST/SEL_MODE CTR CTP, 

e>- IF IVE_MODE_SYSTEM_ TEST/SYSTEM_DATA_I N(O: 127) 00000( AE2DBA571 E03AC9C9E876F AC45AFBE51 30C81C46A35CE411 E5FBC1 191AOA52EF 

e>- IFIVE_MODE_SYSTEM_ TESTISYSTEM_DATA_OUT(0:127) 1E031 B74D61918620E3261BEF6864990D86CE 9806F6687970FDFF8617187889FFFDFF 

e>- IF IVE_MODE_SYSTEM_ TEST/SYSTEM_KEY(0:1 27) 287E1 287E 15162BAED2A6ABF715BB09CF4F3C 

e>- IFIVE_MODE_SYSTEM_ TEST/SYSTEM_IV(0:127) FOF1F FOF1F2F3F4F5F6F7FBF9FAFBFCFDFEFF 

e>- IFIVE_MODE_SYSTEM_TEST/SYSTEM_I NPUT(0)(7:0) 00 AE 30 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1 )(7:0) 00 2D CB 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(2)(7:0) 00 BA 1C 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(3)(7:0) 00 57 46 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(4)(7:0) 00 1E A3 

e>- IF IVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(5)(7:0) 00 03 5C 

e>- IFIVE_MODE_SYSTEM_ TESTISYSTEM_INPUT(6)(7:0) 00 AC E4 

e>- /FIVE_MODE_SYSTEM_TEST/SYSTEM_INPUT(7)(7:0) 00 9C 11 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(8)(7:0) 00 9E E5 

t> /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(9)(7:0) 00 87 FB 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(1 0)(7:0) 00 6F C1 

t> /FIVE_MODE_SYSTEM_TEST/SYSTEM_ INPUT(11 )(7:0) 00 AC 19 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(12)(7:0) 00 45 1A 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(13)(7:0) 00 AF OA 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_INPUT(14)(7:0) 00 BE 52 

t> IFIVE_MODE_SYSTEM_ TEST/SYSTEM_ INPUT(15)(7:0) 00 51 EF 

e>- /FIVE_MODE_SYSTEM_ TEST/SYSTEM_OUTPUT(0)(7:0) 1E 87 98 

e>- IF I VE_MODE_SYSTEM_ TEST/SYSTEM_ OUTPUT(1 )(7:0) 03 40 06 

+fT• 
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2. The Verification Files of Five-mode System 

Test Vectors: 6BC1BEE22E409F96E93D7Ell7393172A 
AE2D8A571E03AC9C9EB76FAC45AF8E51 
30C81C46A35CE411ESFBC1191AOA52EF 
F69F2445DF4F9Bl7AD2B417BE66C3710 

Initial Key: 

IV: 

IV_CTR: 

Test Outputs: 

ECB Mode: 

CBC Mode: 

CFB Mode: 

OFB Mode: 

CTR Mode: 

2B7El51628AED2A6ABF7158809CF4F3C 

000102030405060708090AOBOCODOEOF 

FOF1F2F3F4FSF6F7F8F9FAFBFCFDFEFF 

3AD77BB40D7A3660A89ECAF32466EF97 
F5D3D58503B9699DE785895A96FDBAAF 
43BlCD7F598ECE23881BOOE3ED030688 
7BOC785E27E8AD3F8223207104725DD4 

7649ABAC8119B246CEE98E9Bl2E9197D 
5086CB9B507219EE95DB113A917678B2 
73BED6B8E3Cl743B7116E69E22229516 
3FFlCAA1681FAC09120ECA307586ElA7 

3B3FD92EB72DAD20333449F8E83CFB4A 
C8A64537AOB3A93FCDE3CDAD9FlCE58B 
26751F67A3CBB140Bl808CF187A4F4DF 
C04B05357CSD1COEEAC4C66F9FF7F2E6 

3B3FD92EB72DAD20333449F8E83CFB4A 
7789508Dl6918F03F53C52DAC54ED825 
9740051E9CSFECF64344F7A82260EDCC 
304C6528F659C77866A510D9ClD6AESE 

874D6191B620E3261BEF6864990DB6CE 
9806F66B7970FDFF8617187BB9FFFDFF 
5AE4DF3EDBD5D35E5B4F09020DB03EAB 
1E031DDA2FBE03D1792170AOF3009CEE 
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