

A Reed-Solomon Code Simulator

and Periodicity Algorithm

By

Zhenpen Young

A thesis subm itted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfound land

St. John 's Newfoundland Canada

The Three pages of release forms
should precede this title page .

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and Direction des acquisitionset
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa. Ontario Ottawa (Ontario)
K1A ON4 K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
dis tribute or sell copies of
his/ her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/ her permission.

L'auteur a accorde une licence
irrevocable et non exclusive
permettant it la Blbllotheque
nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de sa these
de quelque manlere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these it la disposition des
personnes interessees.

L'auteur conserve la proprlete du
droit d'auteur qui protege sa
these . Ni la these ni des extra its
substantiels de celle-ci ne
doivent etre lmprlmes ou
autrement reproduits sans son
autorisation.

ISBN 0- 315- 91581 - 1

Canada

To my dear parents

Acknowledgment

I would like to take this opportunity to express my sincere thanks to

my thesis supervisor, Dr. Son Le-Ngoc. Without his assistance, I could not

even have had a chance to come to Canada. Furthermore, his stimulating my

interest in this exciting field and his constant encouragement and guidance

during the course of my study led to the completion of this thesis.

The financial support from NSERC and the Faculty of Engineering and

Applied Science is gratefully acknowledged.

Last but not the least, I would like to give my special thanks to my

wife, Wenmao, for her love and quiet help throughout the composition of

this thesis.

Abstract

Communication channels are usually affected by various kinds of noise.

As a result, errors occur in data transmissions. Reed-Solomon (RS) codes,

as other channel codings, are widely used to eliminate the errors due to its

optimal characteristics in both Hamming distance and structure but most of

all its capability of correcting both random and burst errors.

The selection of the best RS code for a specific communication channel

is always a major issue in system design . Hence, this thesis introduces and

implements an RS code simulator to study a wide range of RS codes . The

simulator first encodes the user 's message into a codeword. The user can

choose the symbol length m from 3 bits up to 8 bits or the block length N

from 7 symbols up to 255 symbols, and the error correcting capability T of

up to 16 random errored symbols . Then the user enters an error pattern of

arbitrary weight which the simulator adds to the generated codeword. The

resulting received word is then decoded. Either the direct (Peterson's) or

iterative (Berlekamp's) method is used to construct the error locator polyno­

mial. Only the Chien search is used as a root search technique for the error

locator polynomial. This simulator does not handle erasures.

Commonly, Chien search is used to find out all the possible roots of the

error locator polynomial. It is found that for the double error correcting case

(T = 2) these roots are not randomly distributed but they follow certain

patterns. Based on these patterns, the periodicity algorithm is introduced

and its validity is verified by exhaustive computer simulations.

With fewer than 8 additions, 4 decision operations and only N symbols of

memory space required, the periodicity algorithm outperforms Chien search

and the binary decision fast Chien search techniques in terms of decoding

tim e. Most of all it also outperforms the Okano's analytical solutions by

a decision operation. Of course , the look-up table is the fastest in terms

of the decoding time but its memory space required is N2. This will limit

its use when N is large. Therefore, it is concluded that the periodicity

algorithm is the optimal solution for both decoding time and memory space.

This algorithm is found to be very suitable for use in microprocessor based

decoders.

iii

Contents

Acknowledgment

Abstract

List of Figures

List of Tables

List of Symbols

1 Introduction

1.1 Statement of the probl em

1.2 Literature review .

vii

ix

xi

1.3 Scope of th e work .. 11

1.4 Organization of th e thesi s 12

2 RS Code Simulator 13

2.1 Primitive polynomials 13

2.2 Construction of Galois field GF(2m) 15

iv

2.3 RS code definition 18

2.4 RS encoding. .. 19

2.5 Noisy channel .. 20

2.6 Decoding. 21

Syndrome calculation 21

Error locator polynomial 23

Chien search. .. 27

2.6.1

2.6.2

2.6.3

2.6.4 Error value calculation and error correction 27

3 Implementation of RS Code Simulator 29

3.1 Overview of the Simulator . 29

3.2 Forming Galois field 30

3.3 Forming generator polynomial and encoding 32

3.4 Simulating noisy channel .. 35

3.5 Calculating syndromes .. 35

3.6 Implementing Peterson 's method 39

3.7 Implementing Berlekamp's method 39

3.8 Implementing Chien search. 41

3.9 Calculating error values 41

3.10 Examples for the simulator. 44

4 The Periodicity Algorithm 87

4.1 Basic properties .. 87

4.2 Descrip tion for periodicity algori th m 92

4.2.1 Algorithm descr iption 92

4.2.2 Examples for PA .. 97

4.3 Algorit hm Verification 101

4.4 Discussion and summary . 111

5 Comparison with other methods 112

5.1 Gene ral discussion 112

5.1.1 Look-up tab le method 113

5.1.2 Binary decision fast Chien search 114

5.1.3 Okano's ROM method 115

5.2 Microprocessor implementation of period icity algorithm 118

5.3 Time estimation 122

5.4 Comparisons among discussed methods 128

5.5 Summary 129

6 Conclusion and Future Work

Bibliography

vi

130

133

List of Figures

3.1 Overview of the simulator 31

3.2 Construction of the Galois field 33

3.3 Calcu lation of remainder B(x) 34

3.4 Simulation of the encoder 36

3.5 Noisy channel simulation . 37

3.6 Syndrome calculation . 38

3.7 Peterson's method to get ai's 40

3.8 Berlekamp's algorithm to determine ai's 42

3.9 Chien search . 43

4.1 Leader tab le creation . 95

4.2 Periodicity algorithm... 96

4.3 Verification of the periodicity algorithm 110

5.1 Operations needed by Okano's ROM method 117

5.2 Microprocessor implementation of periodicity algorithm 119

5.3 Time comparison between Chien search and PA 125

vii

5.4 Time comparison between Chien search and PA (expanded scale) 126

viii

3.2 Example 3.2

3.3 Example 3.3

3.4 Example 3.4

3.5 Example 3.5

3.6 Example 3.6

3.7 Example 3.7

List of Tables

2.1 List of primi ti ve polynom ials. 14

2.2 T hree represe ntations for the elements of GF(2 4
) ••• • ••• 17

2.3 Init ial tab le for Berlekamp's iterations 25

3.1 Input and output for Examp le 3.1 47

· 48

· 49

· 51

· 52

· 53

· 55

4.1 Periodicity of the error positions (m = 3, T = 2), (see text for

the description of elements) 88

4.2 Tab le used to show the periodicity 89

4.3 Leaders of the chains (m = 3) 90

4.4 Table for Example 4.1 97

ix

4.5 Table for Example 4.2 99

4.6 Solution table for m = 4 102

4.7 Solution table for m = 5 103

4.8 Solution table for m = 6 104

4.9 Verification outputs for 7 :s: m :s: 10 111

5.1 Source codes of the PA implementation 121

5.2 Time estimation of the PA assembly routine 123

5.3 Output of profile for measuring time 127

List of Symbols

primitive element in GF(2 rn
)

~(x) error locator polynomial obtained by Peterson's method

a(x) error locator polynomial obtained by Berlekamp's method

6. determinant of the matrix

index in Berlekamp's iterations

actual error number

B(x) remainder polynomial

C(x) codeword polynomial

dJL discrepancy in Berlekamp's iterations

D minimum distance

D(x) decoded word polynomial

E1 position of the first error

E2 position of the second error

E(x) error pattern polynomial

E(x) estimated codeword polynomial

f(x) polynomial over Galois fields

g(x) generator polynomial

GF Galois field

i(x) irreducible polynomial

h eader value of the leader

xi

LT leader table for periodicity algorithm

symbol length of a Galois field element (in bits)

M(x) message polynomial

N code length of an RS code

Pleader position of the leader in the leader table

PA periodicity algorithm

p(x) primitive polynomial

ROM read-only memory

RS Reed-Solomon code

R(x) remainder polynomial

S, syndrome

T error correcting capability of an RS code

VLSI very large scale integration

V(x) received word polynomial

xii

Chapter 1

Introduction

1.1 Statement of the problem

Most communication channels are affected by various kinds of noise.

Error correcting codes were introduced to get rid of the errors caused by

noise. In the early 1950's Hamming codes [1] were proposed, marking a new

era in the error correcting codes. In 1960, Reed and Solomon [2] introduced

their polynomial codes recently known as the Reed-Solomon (RS) codes . RS

codes are a class of optimal error correcting codes in the sense that the codes

have the maximum distance [3].

RS codes have many applications, such as land mobi le communications

[4][5],mar ine data communications [6] and even image transmission in digital

television systems [7]. When designing an RS code for a certain app lication,

the designer may want to examine his code to see whet her it can meet the

requirements of the application . He may need an RS code simulator to help

him evaluate the performance of various codes and select the best code for

his particular application. Such a code simulator can also allow us to verify

different properties of the RS codes, or even find some new decoding meth­

ods. For example, it can be used to test time characteristics of Peterson's

and Berlekamp's methods. For different fixed error correcting capability T,

when the actual error number v is changing, the simulator can give us time

estimates for the methods. Those results provide a sound basis for the se­

lection among various choices for a certain application. In response to those

needs, an RS code simulator is implemented in this thesis.

For syndrome based RS decoding, Chien search is normally performed

to obtain the error location numbers. This method is the main obstacle to

high speed RS decoding. Though it was believed that the roots of the error

locator polynomials were randomly distributed, it is shown in this thesis

that for the cases of two errors, the roots of the error locator polynomials

are distributed according to certain patterns. This shows a possibility of

developing a new algorithm to obtain the error location numbers. With this

idea, a new algorithm called the periodicity algorithm is proposed for RS

double error correction. The new algorithm requires an order of magnitude

fewer operations than those required by Chien search.

1. 2 Literature review

In this section, we first review general development and then syndrome

based decoding. After that, the time domain decoding will be briefly men­

tioned. Several encoding and Chien search schemes will also be discussed.

In 1959-60, the BCH codes were independently proposed by Hocquenghem,

Bose and Chaudhuri. In 1959, Hocquenghem [8] generalized Hamming codes

and suggested his multi-error correcting codes . In 1960, Bose and Chaudhuri

[9][10]published two papers to present their work on such codes . These codes

are now known as the Bose-Chaudhuri-Hocquenghem (BCH) codes. Because

of the properties of these codes, it is said [3] that the BCH codes are perhaps

the most important class of codes known up to date.

At about the same time (manuscript received on January 21, 1959,

published in 1960), and independently of the Bose, Chaudhuri, and Hoc­

quenghem papers, Reed and Solomon [2] introduced a class of codes that

were later established as a subclass of BCH codes . The RS codes are optimal

in the sense that it is impossible for any linear codes with the same length to

have a distance greater than that of the Reed-Solomon codes. Indeed they

form an important and interesting subclass of BCH codes [11].

The encoding scheme introduced in Reed and Solomon's paper [2] is

now known as systematic encoding. It divides the message by the generator

to get the remainder, then adds message and remainder together to get the

codeword. This scheme is still widely used today .

The BCH and RS decoding methods can be divided into two categories:

syndrome based decoding and time domain decoding. The syndrome based

methods are now reviewed.

In 1960, Peterson [12]suggested his encoding and decoding procedures for

the BCH codes. The encoder uses shift registers to construct the feedback

circuits for encoding. The registers are wired according to the generator poly­

nomial. The input of the feedback registers is the J(-dimensional message,

and the output is the N-dimensional codeword. As this encoding scheme

uses the serial operations, its encoding speed is limited by the serial feedback

operations. Peterson's decoding algorithm was the first efficient decoding

algorithm for BCH codes. Since the RS codes are a subset of the BCH codes,

Peterson's method can also be used for the RS codes . In his paper, Peterson

not only introduced the encoding and decoding algorithm, but also showed

that the BCH codes are cyclic. An evaluation of Peterson's contribution is

given in Blake [3].

In 1965, Berlekamp [13] proposed his powerful iterative algorithm for de­

coding the BCH and RS codes. From a initial iteration table, the Berlekamp's

algorithm calculates the coefficients of the error locator in 2T iterations. The

algorithm makes use of the intermediate iteration information to save many

operations over Galois fields, and thus needs considerably less computation

[3]. It was pointed out by Michelson and Levesque [14] that the Berlekamp's

algorithm has a computational complexity that grows only linearly with the

number of errors to be corrected while that of the Peterson's algorithm grows

with approximately the square of the number of errors to be corrected.

Peterson's and Berlekamp's methods are known as algebraic methods.

Besides the algebraic methods, the error locator polynomials can also be eval­

uated by transform methods. Since such methods are based on the transfer-

mation domain, they are also called transformation domain, spectral doma in,

or, more commonly, frequency domain! methods. Both algebraic and trans-

form methods are considered as the syndrome based methods because their

error locator evaluations are based on the syndromes.

For about ten years after Reed and Solomon suggested the RS codes,

the techniques developed for decoding the RS codes primarily dealt with

the raw data directly. In 1971, a frequency domain decoding method was

first proposed by Mandelbaum [15]. He made use of the Chinese remainder

theorem to perform the Galois field transform. After that, many researchers

focused on the frequency domain RS decoding methods.

1More precisely, the term "frequency domain" is not very suitable because the transform
used is not the Fourier transform, but the Galois field transform. These two kinds of
transforms are not identical because the Galois field transform domain is not the same
as the Fourier frequency domain. However, since the terms of transform- or spectral- or
frequency-domains have been used for the same concept for many years, the terms are also
used here interchangeably.

As pointed out by Blahut [16], the major difficulty for the frequency

domain methods is that as the code length is not a power of 2, most of the

fast Fourier transform (FFT) algorithms cannot be used directly to yield fast

transforms.

In 1972, based on the theory of rings, Rader [17] suggested a more

efficient method to calculate the Galois field transform, called Rader's Fermat

number-theoretic transform. Rader solved the problem of the fast Galois field

transform theoretically. It was because of Rader's work that the frequency

domain RS decoding became feasible .

In 1973, based on Mandelbaum's work, Gore [181proposed his frequency

domain method to decode the Reed-Solomon codes. In his paper, he pointed

out that the information can be encoded into the frequency domain and also

that the error spectrum can be obtained by recursive extension.

From 1975 to 1976, Michelson [19][20]discussed and implemented a fast

algorithm for the Galois field transform and used it to decode the RS codes .

This was the first implemented frequency domain RS decoder.

Afterwards, in 1978, Reed [21] used the Fermat theoretic transform

to implement a frequency domain RS decoder. This implementation was

done entirely in software. In [21]' Reed made the comparison between the

transform method and the conventional method, and found that the trans-

formation method is faster.

In 1980, Miller and Truong [22J used Rader's result and developed a soft­

ware implementation of an RS(255,223) decoder. In their paper, two tables

were given to compare the executing time between the transform method

and syndrome based method. It was shown that their decoder was three to

seven time faster than a syndrome based decoder.

At the same time the RS encoding techniques were also being developed.

In 1982, Berlekamp [23J proposed a bit-serial Reed-Solomon encoder which

used an array of registers instead of the shift registers wired according to

generator polynomial. As more registers are used in Berlekamp's scheme, it

can use more intermediate information stored in the registers without doing

the feedback calculations. In terms of computational complexity, this scheme

requires less processing time at the expense of using more memory space.

In 1984, based on Berlekamp's scheme, Hsu [24J gave his VLSI imple­

mentation of the RS encoder. Hsu's implementation has the advantages of

Berlekamp's scheme . Moreover, by slightly changing the circuit structure,

Hsu's VLSI implementation can also fit different parameters.

In 1991, Seroussi [25Jsuggested a systolic RS encoder. He directly used the

generator matrix for encoding, but he divided the hardware implementation

into many identical cells to reduce the design complexity. His work had been

patented previously (US patent 4 835 775 issued in May 1989).

The syndrome calculation is the first step for the syndrome based decod­

ing. Improving the speed of syndrome calculation can obviously increase the

decoding speed.

In 1979, Truong [26]suggested a fast method for calculating the syndromes

which utilizes the Chinese remainder theorem and Winograd's algorithm. It

was reported that, for the 32 syndrome calculation of the RS(255,223,33),

Truong's algorithm needs 90% fewer multiplications and 78% fewer additions

than the conventional method of syndrome calculation.

In 1990-91, Cooper [27][28] proposed a method to calculate the error

locator polynomial in one step. This method is based on modern algebra,

especially on ring theory and ideal theory. There is no given comparison for

this method.

Both algebraic and transformation methods need to locate the error

position numbers based on the error locators.

In 1964, Chien [29] proposed his substituting method to obtain the

roots of error locator polynomials. His method, which is called Chien search,

substitutes all possible values of x (from aD to aN-I) into the error locator

and checks whether the result is equal to zero. Even after 30 years of its

proposition, Chien search is still a practical method available in finding the

roots of the error locator polynomials.

Avoiding the heavy calculation load of Chien search has been the hot

topic in RS decoding research community for a long time. One alternative

to Chien search is the look-up table method. However, as the error locator

polynomial for a T-error correcting RS code will have NT possible vectors of

the coefficient values, the memory space of such table will be NT symbols.

Therefore, even though the look-up table method can provide the fastest

speed for RS error locating, it is not feasible for many practical applications,

especially for large value of N.

In 1987, Shayan [30] suggested the binary decision approach to speed

up Chien search. In his approach, a binary table was designed for double

error correcting RS codes which needs one bit for each address instead of one

symbol (as in a direct look-up table). However, the space factor N 2 bits is

still large. This issue is a big concern for applications with large N.

In 1987, Okano and Imai [31]proposed a ROM method to decode the BCH

and RS codes which uses ROM tables and the self-defined operating cells to

speed up RS decoding. Besides their hardware implementation, they gave

the derivation to get the solutions of fourth or lower order equations over

GF(2 m
) . Based on this derivation, some of the operations can be avoided in

hardware implementation.

For time domain methods, there are no transformation, no syndrome

calculation and no Chien search. The time domain decoder works on the

received raw data directly.

In 1980, Blahut [32) proposed the time domain method. Subsequently,

he used the method in RS decoding and suggested two structures called

"universal decoder structures" [33). Although the time domain method can

avoid using syndrome calculation and Chien search, it must always work on

the raw data with vectors of length N rather than length T (for the case

of frequency domain methods). Therefore the time domain method must

works in N-dimensional space. Such operations limit the decoding speed of

the time domain method. Blahut [33) gave a time comparison for the two

methods, in which he concluded that there seems to be no obvious advantages

in decoding speed for time domain methods. However, he also pointed out

that the regular algorithm structure of time domain methods is very suitable

for VLSI implementation. With the development of VLSI techniques, the

time domain method may show its values in the near future.

There is a new development of the time domain decoding method in

1993. Based on the Berlekamp's iterative method, Sorger [34) derived the

new algorithm of time domain RS decoding. His main contribution was to

modify the iterative method to merge several steps, then, the decoding time

can be saved.

10

1.3 Scope of t he work

In this thesis, the main effort is put on the implementation of the RS

codes simulator. This simulator is implemented in C language under UNIX

operating system. It can simulate an RS code with length of up to N = 255,

and on the error correcting capability up to T = 16. Both Peterson's and

Berlekamp's methods are used for the RS decoding .

In the implementation, Chien search is used to exhaustively calculate all

possible error location numbers, and solutions are saved in tables . From these

solution tables, for the cases of double error correction, it was discovered that

the roots of the error locator polynomials are not randomly distributed. With

certain patterns, the error location numbers are located on several chains,

and within the solution chains, those roots repeat themselves in the period

of N shifts.

Although Chien search is the widely used method for RS error locating, it

still needs a great deal of time to locate errors, moreover, the exact amount

of time required is uncertain. This introduces difficulties for hardware im­

plementation, making Chien search the bottleneck of RS decoding. Based

on the periodicity property, a new algorithm called the periodicity algorithm

is proposed . With fewer than eight additions and four decision operations ,

the periodicity algorithm can obtain the error location numbers easily. At

present , the periodicity algorithm is available for the case of double error

11

correction .

1.4 Organization of the thesis

Th is thesis consists of six chapters. Chapt er 2, encoder and decoder of RS

codes, discusses the basic knowledge of the RS codes . Cha pt er 3 , imple­

mentation of RS code simulator, presents the implementation of the RS code

simulator . Ch apt er 4, periodicity algorithm, proposes a new decoding algo­

rithm for th e doubl e error correcting RS codes. Chapter 5 , comparison with

ot her methods, based on the comparison, concludes that the periodicity al­

gorithm needs the fewest operations among th e available decoding methods,

th ereby making it the best algorithm. Cha pter 6 presents the conclusions.

12

Chapter 2

RS Code Simulator

The elementary knowledge of RS codes is discussed in this chapter to

provide the necessary background. Most of the theorems are stated without

proof, the details of which can be found in the proper references. In addition,

many examples are provided to make the discussion easily understandable.

2. 1 Primitive polynomials

A polynomial f(x) with single variable x and with coefficients from GF(2)

is of the following form:

(2.1)

where f i = 0 or 1 for 0 ::; i ::; N . The degree of a polynomial is the largest

power of x with a nonzero coefficient. For the polynomial above, if fN = 1,

f(x) is a polynomial of degree N . The polynomial f(x) = fo is a zero degree

13

I m I primitive polynomial I
3 1 +x+x3

4 1 +x+x4

5 1 +X2+X5

6 1 +x+x6

7 1 +x3+x7

8 1 + x 2+ x3 + x4 + x8

9 1+x4+x9

10 1 +x3+xlO

Table 2.1: List of primitive polynomials

polynomial.

A polynomial i(x) over GF(2) of degree m is said to be irreducible over

GF(2) if i(x) is not divisible by any polynomial over GF(2) of degree less

than m but greater than zero.

An irreducible polynomial p(x) of degree m is said to be primitive if the

smallest positive integer N for which p(x) divides xN +1 is N = 2m -1. For

a given m, there may be more than one primitive polynomials of degree m

[35]. The primitive polynomials used in this thesis, which have the smallest

number of terms for each m, are given in Table 2.1. More detailed discussion

is given in [35].

14

2.2 Construction of Galois field GF(2 m)

The method for constructing the Galois field of 2m elements (m 2:: 3) from

the binary field GF(2) is presented in th is sect ion. The process begins wit h

the two elements 0 and 1, from GF(2) and the an element a . If t he element

a satisfies a 2m
-

1 = 1, it is called primitive element. Th en the multiplication

"." is introduced to give a sequence of powers of a as follows:

0 ·0 = 0,

0·1= 1·0 = 0,

1·1 = 1,

O· a = a· 0 = 0,

1· a = o v l = a,

a 2 = o > o ,

a 3 = a · a· a,

a J = a . a . .. a (j times) ,

After a 2m
-

2
, the elements will repeat due to the fact that a 2m

- 1 = 1 and

Now we have the following set of elements on which a multip lication "."

15

is defined:

(2.2)

The element 1 is sometimes denoted as 0:°.

Example 2.1

Let m = 4. The polynomial p(x) = 1 + x + x 4 is a primitive polynomial

over GF(2) . Set p(o:)= 1 + 0: + 0:4 = O. Then 0:4 = 1 + 0:. Using this, we

can construct GF(2 4
) . The elements of GF(2 4

) are given in Table 2.2. The

term 0:4 = 1 + 0: is used repeatedly to form the polynomial representations

for the elements for the elements of GF(2 4
) . For example,

0:5 = 0:' 0:4 = 0:(1 + 0:) = 0:+ 0:2 ,

0:6 = 0: . 0:5 = 0:(0:+ 0:2) = 0:2 + 0:3 ,

0:7 = 0: ' 0:6 = 0:(0:2 + 0:3) = 0:3 + 0:4 = 0:3 + 1 + 0: = 1 + 0:+ 0:3 , ••• •• •

The complete set of the elements in GF(2 4) are given in Table 2.2.

The elements in Table 2.2 are represented in three forms, that is, power,

polynomial and 4-tuple representations. All those representations will be

used in the discussion of the RS codes.

The multiplications in Galois fields are actually performed by adding the

exponential powers together, that is, o:i . o:i = o:i+i. From the given GF value

o:i to get its corresponding power value i, such operation is sometimes called

GF-log operation . Its inverse is called GF-anti-log operation denoted as GF-

16

Power Polynomial 4-Tuple
repr esent ation repr esentation repr esentation

0 0 (0000)
1 1 (1 000)
a a (0 1 00)
a 2 a 2 (0 0 1 0)
a 3 a 3 (0 0 0 1)
a 4 1 + a (1 100)
a 5 a + a 2 (0 1 1 0)
a 6 + a 2 + a 3 (0 0 1 1)
a 7 1 + a + a 3 (1 1 0 1)
a 8 1 + a 2 (1 0 1 0)
a 9 a + a 3 (0 1 0 1)
a lO 1 + a + a 2 (1 1 1 0)
all a + a 2 + a 3 (0 1 1 1)
a 12 1 + a + a 2 + a 3 (11 1 1)
a 13 1 + a 2 + a 3 (1 0 1 1)
a 14 1 + a 3 (1001)

Ta ble 2.2: Three repr esen tation s for t he element s of GF (24
)

17

log-I. Therefore, the GF multiplications and divisions can be considered

as the combination of GF-log, GF-log- I and several addition operations. It

should be noticed that the Galois field addition is carried out by a bitwise

XOR operation.

2.3 RS code definition

Reed-Solomon codes are an important subset of the BCH codes, which are

a large class of powerful cyclic codes. It has been shown by Blahut [11] that

the Reed-Solomon codes have maximum-distance and optimal structure [3].

The RS codes can be defined [35][36]as:

For any given positive integer m ~ 3 and the correcting capability T,

there exists an RS code such that

(i) code length N = 2m
- 1

(ii) number of information symbols 1< = N - 2T

(iii) minimum distance D = 2T + 1.

RS codes can correct T random errors. The following types of burst

errors can also be corrected [36]:

• 1 burst of total length: bI = (T - l)m + 1 bits,

• or, 2 bursts of total length: ~ = (T - 3)m + 3 bits,

18

• or, p bursts of total length: bp = (T - 2p + 1)m + (2p - 1) bits.

where, p is an integer number, and (T - 2p + 1) is positive.

2 .4 RS encoding

There are many ways to construct the generator polynomial G(x). It can

be selected as in following form [11],

(2.3)

More generally, one can choose any integer jo for a Reed-Solomon code [11).

The corresponding generator polynomial then has the form

It is clear that Eq. 2.3 is a special case of Eq . 2.4, where jo = 1.

When jo is properly selected, the generator polynomial G(x) will have the

symmetric coefficient format. This format of the G(x) is called self-reciprocal.

If jo = 2m - 1 - T, the self-reciprocal is given as [36)[37)

2T+I-1

G(x) = D(x + oi) = 90 + 91X +...+ 92T_t X 2T- 1 + 92TX
2T, (2.5)

where I = 2m
-

1 - T, and the coefficients are such that 90 = 92T, 91 = 92T-1'

.... In other words, the i-th and (2T - i)-th coefficients of the G(x) are

identical. Therefore, half of the memory space for storing the coefficients can

be saved.

19

There are also many ways to encode. In a non-systematic codeword

C(x), the message M(x) is not explicitly present. When the message M(x)

and the generator polynomial G(x) are given, non-systematic encoding can

be represented as [11]

C(x) = M(x)G(x).

In the systematic encoding [35], the codeword is obtained by

X
2T

M(x) = A() B(x)
G(x) x + G(x)'

C(x) = x2T M(x) + B(x) .

where,

B(x) = bo+ b1x +...+ b2T_IX2T-l

(2.6)

(2.7)

(2.8)

(2.9)

is the parity check polynomial. It is easy to see that the message M(x) is

explicitly present in codeword C(x).

In the implementation of the RS codes simulator, the self-reciprocal

generator polynomial and the systematic encoding method are used.

2.5 Noisy channel

Most channels are affected by various kinds of noise. Due to the noise, the

received word usually contains errors. The error pattern can be expressed as

(2.10)

Those non-zero ei's are caused by the noise [35].

20

The received word V(x) can be expressed as

V(x) = C(x) +E(x),

2 .6 Decoding

(2.11)

A major concern of many coding t heor ists is the practical implementat ion

of encoding and decoding schemes . For most schemes, the encoding opera-

tion is simple and inexpensive in terms of its software and digital circuitry.

Unfortunately, th e decoding operation is expensive and presents the biggest

obstacle in applications of error correcting codes [3]. Therefore, most effort

is focused towards decoding methods.

In this section, two of the most common algebraic met hods, Peterson 's

and Berlekamp's, are discussed. Both methods are used in the RS decoding

simulator which will be described later in this chapter.

2.6.1 Syndrome calculation

The syndrome calcu lation is the first step for RS decoding with algebraic

methods.

A self-reciprocal polynomial shown in Eq. 2.5 is chosen as the generator

polynomial G(x) . The input to the RS decoder is the rece ived codeword

which can be expressed as :

N-l

V(x) = C(x) + E(x) = L Vixi
i= O

21

(2.12)

where VN-l is the first received symbol.

The syndromes can be calculated by

(2.13)

where N - T - 1 ~ i ~ N +T. There are two ways to obtain the syndromes.

One is to calculate them directly by

(2.14)

Th e other is to get the remainder r(x) from the received word, via Eq . 2.15

and then, calculate the syndromes [36].

*t=A(x)+~
S, = r(a i

) .
(2.15)

In Eq 2.10, if only the non-zero e;'s are counted and E(x) has Terrors,

E(x) can be writt en as [36]

(2.16)

(2.17)

wher e X i are the error location numbers and Y; are values of the errors.

According to Eq. 2.13 and Eq . 2.16, th e partial syndromes S, are given by

I
51= Y;X~ + Y2X~ + ... + YTX}
51+1 = YIX~+1 + Y2X~+1 + + YTX}+1
51+2= YIX~+2 + Y2X~+2 + + YTX~+2

5 : - v X I+2T- 1 + v · X I+2T- 1+ + x.> X I+2T- 11+2T-l - II 1 I2 2 . • . IT T ,

where X i and Y; are unknown.

22

2.6.2 Error locator polynomial

Peterson's method

In 1960, Peterson [12J propo sed his decoding method for BCH codes.

Since his method works directly on th e received data, it is called Peterson's

direct method. It can also be used for RS decoding. Th e detailed proof of

Pete rson' s method is given in [12J.

T he error locator polynomial is

where
0"1 = Xl + X 2 +...+ X T

0"2 = X 1X2 + X 2X 3 +...+ X T - 1XT

(2.18)

O"T = X 1X2·· · X T .

Those a, ca n be calculate d from the known partial syndromes shown in

Eq 2.17. By [36J t his gives

where l ~ j ~ T. Eq. 2.19 can th en be re-written in linear equat ion form as

51 51+ 1 51+2 51+T - 1 O"T 5
'
+T

51+ 1 51+2 51+3 51+T O"T-1 5
'
+T + 1

51+2 51+3 51+4 51+T + 1 O"T-2 51+T +2 (2.20)

SI+T-1 S'+T S I+T+ 1 SI +2T -2 0"1 S I+2T - 1

23

Now the a;'s can be solved. The solutions to Eq. 2.20, at, "', aT, are the

coefficients of the error locator polynomial shown in Eq. 2.18.

To solve Eq. 2.20, Gaussian elimination can be used. With Gaussian

elimination, an upper-right triangular matrix is obtained and the backward

substitutions are performed to get all the ai's.

Berlekamp's method

Peterson's method is easy to understand. However, when implement­

ing a decoder, one has to use a method which is computationally efficient.

Peterson's method requires a T by T matrix inversion. When T is large,

this involves large numbers of arithmetic operations. By using Berlekamp's

method, we can get around this problem. Berlekamp's method uses iterations

to get the error locator. The detailed proof is given in [11]. Michelson and

Levesque [14] pointed out that Berlekamp's algorithm has a computational

complexity that grows linearly with the number of errors to be corrected

while that of the Peterson's method grows approximately proportional to

the square of the number of errors to be corrected.

Table 2.3 is the initial table for the iterations of the Berlekamp's method.

Lin and Costello [35] give the Berlekamp's iterative procedure as follows

1. According to the given received word V(x), calculate each syndrome

Si' This step is the same as in Peterson's method as shown in Eq. 2.14

24

Table 2.3: Initial table for Berlekamp's iterations

or Eq. 2.15. When all the S;'s are calculated, the iteration begins.

2. In the Jlth iteration, a(JL+l)(x) is determined, where a(JL)(x) is the Jl-th

minimum degree polynomial. It has following form :

where II' is the degre e of a(JL)(x).

3. In each iteration:

If dJL f: 0, find another row p in the table such that dp f: 0 and p - Ip

has the maximum value. After selecting the p, the a(JL+l)(x) can be

found by

25

4. To prepare next loop of the iteration, calculate dp.+l:

where, O"Jp.+ll are the coefficients in O"(p.+ll(x).

5. Enter next iteration loop, i.e. go to step 2.

Let v be the actual number of errors which happen in the noisy chan­

nel. If T 2: t/, Berlekamp's method needs 2T iterations. If T > v, it still

takes 2T iterations. But, some of the dp. may be zero [35]. Once the dp. is

zero, the corresponding iteration will be skipped, and the operations will be

saved. According to this, when the dp. is zero twice, that means the T > v,

the iteration loop can stop. For T < v, the iterations stop at I-l = 2T so

that the degree of the 0"(1') is at most T. As T degree polynomial has no

more than T roots, Berlekamp's method can do nothing when T < u . All

these conclusions are derived in [35]. Fig. 3.8 presents the flow chart of the

Berlekamp's method. It should be noted that the error locator polynomial

obtained by Berlekamp's method is slightly different from Eq. 2.18. When

X is a root of Eq. 2.18, the inverse X' = 1/ X is the root of the error locator

obtained by Berlekamp's method. Therefore, O"(x) is also called inverse error

locator polynomial of L:(x).

26

2. 6. 3 Chien search

After the error locator polynomial is evaluated, the error location numbers

can be found by using Chien search.

The error locator polynomial as in Eq . 2.18 is re-written below. The error

location number can be found by setting the polynomial to zero and solving

it.

For this high order equation, there is no simple way to get its roots. Chien

search substitutes 1, a, a 2
, • • " etc., into above equation to see whether the

left hand of it is zero.

2 .6.4 Error value calculation and error correction

When the error location numbers X;'s are found, Eq 2.17 becomes a linear

system of equations. It can be re-written as the following equation [36J

xi X~ X~ xt Yl 51T
xi+1 X~+1 X~+l X I+ 1 Y2 51+1T
xi+2 X~+2 X~+2 X~+2 13 51+2 (2.21)

xi+T X~+T X~+T X~+T YT 51+T-l

The error values Yi's can then be determined by using Gauss ian eliminat ion .

The decoded error pattern E(x) can be expressed as

(2.22)

27

If T 2 1/, E(x) should be equal to E(x) as in Eq. 2.10.

Essentially error correction adds the decoded error pattern to the received

word to get the decoded word D(x), i.e.

D(x) = V(x) + E(x).

28

(2.23)

Chapter 3

Implementation of RS Code
Simulator

3. 1 Overview of the Simulator

An RS code simulator has been implemented in C under UNIX operating

system. Using this simulator, the user can simulate RS encoding and decod-

ing procedures with different code lengths and error correcting capability,

allowing the user to select the best code among the various choices available

to fit a given application. The implementation of the simulator is described

in the remainder of the chapter. Its software structure, flow charts and the

time characteristic are also discussed in detail.

An overview of the simulator is given in Fig. 3.1. The details of those

blocks are shown in the following figures. In Fig. 3.1, block 3 is for forming

GF(2 m
) and G(x). The details of block 3 is shown in Fig. 3.2 and Fig. 3.4.

The block 4 is for forming systematic codeword. Fig. 3.3 presents more

29

detai ls. Block 5 is for noisy channel simulat ion which is shown in Fig. 3.5.

Block 6 is for syndrome calculation. It is also descri bed in Fig. 3.6. Block 7

and 8 are for error locator evaluation. Block 9 is for Chien search which is

shown in detai ls in Fig. 3.9. The input data is read from the input files.

The output of the simulator is simultaneously presented on the screen as

well as written in the output files. By calling other executable modules in

different blocks from the main program, it is possible to combine Peterson's

and Berlekamp's program blocks together to form an easy-to-use interface.

The flow charts for both blocks are shown in Fig. 3.1.

As space is limited, it is not possible to present all the details in one flow

chart. Therefore, the flow charts of the simulator are arranged in severallev­

els such that zooming into a block in a higher level details the corresponding

flow chart at a lower level.

3 .2 Forming Galois field

The flow chart of forming the Galois field is given in Fig. 3.2. The

coefficients of the primitive polynomials can be expressed in binary format.

For example, the eighth order primitive polynomial 1 + x 2 + x 3 + x 4 + x8

has coefficients 1,0,0,0,1,1,1,0,1, which can be expressed in binary format as

100011101. This format is convenient because it can make use of the shift

register to perform the Galois field operations. When forming the Galois

30

7,8

Generate systematic code word C(X)

input user assumed error pattern E (X) to simulate noisy channel

Syndrome (S i) cal cu la t ion

get E(X) by Pet erson 's or Berlekamp's methods

find X i's by Chien search

est im a te eITOr pat tern E (x)

corr ec t err or D(x)=V(x)+E(x)

Figure 3.1: Overview of the simulator

31

field, let 0 be the root of the equation

(3.1)

that is,

In binary, Eq. 3.2 has the format

100000000 = 000011101.

(3.2)

(3.3)

Eq. 3.3 will be used as "adjustment" if an overflow is detected when forming

the Galois field.

It should be mentioned here that the GF-log and GF-log- 1 operations are

based on the GF table in the implementation. The table is stored according

to the GF power so that it can be used as the pointer to the desired values,

and vice versa.

3.3 Forming generator polynomial and en­
coding

As mentioned in Chapter 2, the self-reciprocal is used as the generator.

To form the self-reciprocal, 2T number of the first order polynomials are

multiplied together. Each of those polynomials is of the form (x + oj). By

changing the i, the self-reciprocal can be formed easily.

32

Figure 3.2: Construction of the Galois field

33

from 3

given M(x) and G(x)

loop for i = N - 1 to 2T - 1, step -1

to next step

Figure 3.3: Calculation of remainder B(x)

34

Finding the remainder is an important step in encoding. The flow chart

to get the remainder is given in Fig. 3.3. In fact, this is the flow chart to

perform the polynomial division, which can be used for many other cases

of polynomial divis ion. The dividend here is the message polynomial. The

divisor is the generator polynomial. The loop i is for M(x), and the loop j

is for G(x) . From the flow chart, it can be clearly seen that the operations

are actually shift-addition operations. Thus , in the Ga lois field, the shift­

addit ion is equivalent to shift-subtraction, which is the basic element of the

division.

After obtaining the remainder , the rest of encod ing is to add the remainder

to the shifted message polynomial to get the codeword C(x). This step has

been shown in Fig. 3.4.

3.4 Simulating noisy channel

The fifth block in Fig . 3.1 is the noisy channel simulation. It is detai led

in Fig. 3.5. The error pattern E(x) is read from the input data file. The

codeword C(x) is from th e encoding simulation.

3.5 Calculating syndromes

Syndrome calculation is shown in Fig . 3.6. Two loops are set for 2T

syndromes and N GF multiplication-accumulations.

35

from start

enter m, T, message

form Galois field, generator polynomial G(x)

B(x) = x2™(x) / G(x)

C(x) = x2™(x) + B(x)

store codeword into intermediate array for later use

print out C(x) , T

to 5

Figure 3.4: Simulation of the encoder

36

Figure 3.5: Noisy channel simulation

37

Figur e 3.6: Syndrome calculation

38

3.6 Implementing Peterson's method

In the simulator, the error locator polynomial can be obtained by using

Peterson's The Peterson's method flow chart is shown in Fig. 3.7. Note that

Gaussian elimination is used to solve the linear equations via loops i and

j. Before the backward substitutions, the determinant of the matrix, ~, is

checked to see whether it is zero or not. If ~ = 0, it means that the equations

are not independent. The equations can not give T a/so For such case, the

actual number of errors is assumed to be fewer than T. When this happens,

the order of the matrix should be reduced. Afterwards, similar procedures

described above have to be taken again until the determinant is non-zero

then ai's can be determined.

3 .7 Implementing Berlekamp's method

Berlekamp's method has been described in in Section 2.6.2. Its flow chart

is shown in Fig. 3.8. The iterative operations are explained in Section 2.6.2.

General speaking, when actual error number v is the same as the error cor­

recting capability T, that is v = T, Berlekamp's method needs 2T iterations.

After those iterations, the so-called inverse error locator polynomial a(x) is

obtained. When v > T, the decoder cannot know anything before obtaining

E(x). Therefore, the Berlekamp's method still needs 2T iterations to get the

error locator. However, when v < T, it may happen that the discrepancy dlJ.

may be zeros for two successive iterations. This could be used as the criteria

39

Figure 3.7: Peterson's method to get ai's

40

to stop the iterat ions. Either of such conditions will give an inverse error

locator which will be used in Chien searc h.

3.8 Implementing Chien search

Chien search is the most time-consuming procedure in RS decoding.

It is shown in detail in Fig. 3.9. Loop i is set to fit the worst case for

Chien search. However, if T roots have been found in the search, the search

should be broken right away. The decision "all roots found ?" is set for this

purpose. After Chien search gives all the error location numbers, the error

values should be calculated. As mentioned in last chapter, the roots of E(x)

and a(x) are inverse. In the implementation, such GF inverse operation is

performed by following relationship

if (3= ai is a root of E(x),

then, (3' = 1/(3 = aN
-

i will be a root of a(x) .

3.9 Calculating error values

The calculation of error values employs Gaussian elimination to get

the upper-right matrix and then to calculate the error values by backward

substitution. This algorithm has been discussed in Fig. 3.7, and will not be

repeated here. As the addition of the decoded error pattern to the received

word is similar to the procedure shown in Fig. 3.5, it is also omitted.

41

Figure 3.8: Berlekamp's algorithm to determine u;'s

42

No I.E-------'

No

Figure 3.9: Chien search

43

All the final and intermediate outputs of the simu lator are written into

the output data file. The user can then use th is file to compare different

codes and select the optimal code for a given application.

3.10 Examples for the simulator

A simp le example (m = 3) is used at first to show how the encoder and

decoder work . This example will also be used to test the simulator. Then

several other examples (m = 4) are used to illustrate different cases when

T = II, T < II, and T > II.

Example 3.1

Given m = 3, T = 1. N = 2m
- 1 = 7.

1. Encoding

I = 2m
-

1
- T = 23

-
1

- 1 = 3, 2T + I - 1 = 2 +3 - 1 = 4.

Then,

The message "0010" is used as the input.

M(x) =x

From M(x)/G(x), B(x) is obtained

B(x) = 0:4 X + 0:
6

.

Hence,

44

2. Noisy Channel

Error pattern is given as

E(x) = x.

T hen ,

V(x) = C(x) + E(x) = x3 + 0'4 X + 0'6 + X = x3 + 0' 5 X + 0'6 .

3. Syndrome Calculation

V(x) = x3 + 0' 5 X + 0' 6 .

S, = V(O'i) = C(O'i) + E(O'i) = E(O'i)

where N - T - 1 ~ i ~ N +T , that is, 3 ~ i ~ 4.

5 3 = 0'3

54 =0'4

Error Locator Evaluation

53a l = 54, 0' 3 a l = 0'4 .

Then, al = 0' .

~(x)=x+O'.

4. Error Location Numbers

Obviously , ~(O') = 0, th erefore,

Xl = 0'.

45

5. Error Value Calculation

E(x) =x

D(x) = V(x) +E(x) = X
3 +O'4 X +0'6.

The input and output for the Examp le 1 is shown in Tab le 3.1.

Example 3.2

• Given: m = 4, T = 2, v = 2.

• Peterson's method is selected.

• T = v so that all the errors can be corrected .

• The inp ut and output are shown in Ta ble 3.2.

Example 3.3

• Given : m = 4, T = 2, v = 2.

• Berlekamp's method is selected .

• T = v so that all the errors can be corrected.

• The input and output are shown in Table 3.3.

Example 3.4

46

Decoded
Word
o
o
o
1

o
6

5

Script started on Sep 4 11: 25: 25 1993

/nfs/pico/grad3/zyoung/simulator

Please select the decoding method.
Select P for Peterson's or B for Berlekamp' s --- P
Peterson's method has been selected.
Please select m : 3
Please select T : 1
G(O)=O G(1)=6 G(2)=0

Input error locations and values (decimal):
1 1 0 0
The decoded word is a codeword.
The output of the Peterson's Method
The correcting capability, T = 1
Syndrome [3J = 3 (Hex)
Syndrome [4J = 4 (Hex)

The 1x1 determinant is not zero !

Sigma[lJ = 1 (decimal)
error position 1 = 1 value = 1 (Hex)
The decoded word is a codeword,
since it is divisible by the G(X).

Index Code Err Rcvd
Word Ptn Word
o 0

o 0

o 0

1 0

o 0
6 1

o 5 0 5
/nfs/pico/grad3/zyoung
script done on Sep 4 11: 26: 03 1993

Table 3.1: Input and output for Example 3.1

47

Script started on Tue Oct 5 11:30:36 1993
Please select the decoding method.
Select P for Peterson I s or B for Berlekamp 's --- P
Peterson I s method has been selected.
Please select m : 4
Please select T : 2
G(O)=O G(1)=3 G(2)=1 G(3)=3 G(4)=0
Input error locations and values (decimal):
2 3 10 7 0 0
The output of the Peterson I s Method
The correcting capability I T = 2
S [6J = 8 (Hex) S [7J = B (Hex) S [8J = A (Hex) S [9J = 6 (Hex)
The 2x2 determinant is not zero !

Sigma[lJ = 4 Sigma[2J = C
error position 1 = 2 (decimal) I value = 3 (Hex)
error position 2 = 10(decimal) I value = 7 (Hex)
The decoded word is a codeword, since it is divisible by the G(X).
Index Code Err Rcvd Decoded

Word Ptn Word Word
14 0 0 0
13 0 0 0
12 0 0 0
11 0 0 0
10 7 7 0

9 0 0 0
8 0 0 0
7 0 0 0

6 0 0 0
5 0 0 0

4 0 0 0
3 0 0 0

2 3 3 0

1 0 0 0
o 0 0 0

script done on Tue Oct 5 11:31:25 1993

Table 3.2: Example 3.2
48

Script started on Tue act 5 11: 12: 09 1993
/nfs/pico/grad3/zyoung'l. . /simulator
Please select the decoding method.
Select P for Peterson I s or B for Berlekamp 's --- B
Berlekamp I s method has been selected .
Please select m : 4
Please select T : 2
G(O)=O G(1)=3 G(2)=1 G(3)=3 G(4)=0
Input error pattern (decimal):
2 3 10 7 0 0
The output of the Berlekamp I s method
The correcting capability, T = 2
sigma [1] =8 sigma [2] =C
error position 1 = 10 value = 7 (Hex)
error position 2 = 2 value = 3 (Hex)
The decoded word IS a codeword, since it can be evenly divided by the G(X) .
Index Code Err Rcvd Decoded

Word Ptn Word Word
14 0 0 0 0
13 0 0 0 0
12 0 0 0 0
11 0 0 0 0
10 0 7 7 0

9 0 0 0 0
8 0 0 0 0
7 0 0 0 0
6 0 0 0 0
5 0 0 0 0
4 0 0 0 0
3 0 0 0 0
2 0 3 3 0

1 0 0 0 0
o 0 0 0 0

script done on Tue Oct 5 11 :12 :36 1993

Table 3.3: Exampl e 3.3

49

• Given: m = 4, T = 3, v = 1.

• Peterson's method is selected .

• T > v so that all the errors can be corrected.

• The input and output are shown in Tab le 3.4.

E xample 3.5

• Given: m = 4, T = 3, v = 1.

• Berlekamp's met hod is selected.

• T > v so that all the errors can be corrected.

• The input and output are shown in Table 3.5.

Example 3.6

• Given : m = 4, T = 2, v = 4.

• Peterson's method is selected .

• T < v so that all the errors can not be corrected.

• The input and output are shown in Table 3.6. It shou ld be not iced that

the wrong decoded word can be evenly divided by G(x) even thoug h

it is not the orig inal codeword . The error pattern made the received

word be another code word.

50

Script started on Tue Oct 5 11 :05: 15 1993
Select P for Peterson's or B for Berlekamp' s --- P
Peterson's method has been selected.
Please select m : 4
Please select T : 3
G(O)=O G(1)=14 G(2)=7 G(3)=1 G(4)=7 G(5)=14 G(6)=0
Input error locations and values (decimal):
5 5 0 0
The output of the Peterson's Method: correcting capability, T = 3
S [5J = 3 S [6J = 8 S [7J = D S [8J = 3 S [9J = 8 S [10J = D
The 3x3 determinant is zero !

The 2x2 determinant is zero !

The 1x1 determinant is not zero !

Sigma[1J = 5
error position 1 = 5 value = 5 (Hex)
The decoded word is a codeword, since it is divisible by the G(X).
Index Code Err Rcvd Decoded

Word Ptn Word Word
14 0 0 0 0
13 0 0 0 0
12 0 0 0 0
11 0 0 0 0
10 0 0 0 0

9 0 0 0 0
8 0 0 0 0
7 0 0 0 0
6 0 0 0 0
5 0 5 5 0
4 0 0 0 0
3 0 0 0 0
2 0 0 0 0
1 0 0 0 0

o 0 0 0 0
script done on Tue Oct 5 11:06:34 1993

Tab le 3.4: Example 3.4

51

Script started on Tue Oct 5 11: 08: 09 1993
/nfs/pico/grad3/zyoung % ./simulator
Please select the decoding method.
Select P for Peterson's or B for Berlekamp's --- B
Berlekamp's method has been selected .
Please select m : 4
Please select T : 3
G(O)=O G(1)=14 G(2)=7 G(3)=1 G(4)=7 G(5)=14 G(6)=0
Input error pattern (decimal):
5 5 0 0
The output of the Berlekamp' s method :
The correcting capability, T = 3
sigmaC1] =5
error position 1 = 5 value = 5 (Hex)
The decoded word IS a codeword, since it can be evenly divided by the G(X) .
Index Code Err Rcvd Decoded

Word Ptn Word Word
14 0 0 0 0
13 0 0 0 0
12 0 0 0 0
11 0 0 0 0
10 0 0 0 0

9 0 0 0 0
8 0 0 0 0
7 0 0 0 0
6 0 0 0 0

5 0 5 5 0
4 0 0 0 0
3 0 0 0 0

2 0 0 0 0
1 0 0 0 0
o 0 0 0 0

script done on Tue Oct 5 11: 08: 56 1993

Table 3.5: Example 3.5

52

Script started on Tue Oct 5 11: 13: 12 1993
/nfs/pico/grad3/zyoung % ./simulator
Select P for Peterson's or B for Berlekamp's --- P
Peterson's method has been selected.
Please select m : 4
Please select T : 2
G(O)=O G(1)=3 G(2)=1 G(3)=3 G(4)=0
Input error locations and values (decimal) :
3347576700
The output of the Peterson's Method
The correcting capability, T = 2
S [6J = D (Hex) S [7J = 3 (Hex) S [8J = E (Hex) S [9J = 2 (Hex)
The 2x2 determinant is not zero !

Sigma[lJ = 4 (Hex) Sigma[2J = 3 (Hex)
error position 1 = 6 value = 4 (Hex)
error position 2 = 12 value = C (Hex)
The decoded word is a codeword, since it is divisible by the G(X).
Index Code Err Rcvd Decoded

Word Pt,n Word Word
14 0 0 0 0
13 0 0 0 0
12 0 0 0 C
11 0 0 0 0
10 0 0 0 0

9 0 0 0 0
8 0 0 0 0
7 0 0 0 0

6 0 7 7 3

5 0 7 7 7
4 0 7 7 7
3 0 3 3 3
2 0 0 0 0
1 0 0 0 0
o 0 0 0 0

script done on Tue Oct 5 11: 14: 19 1993

Table 3.6: Example 3.6
53

Example 3.7

• Given: m = 4, T = 2, II = 4.

• Berlekamp's method is selected.

• T < II so that all the errors can not be corrected.

• The input and output are shown in Table 3.7. It should be noticed that

the wrong decoded word can be evenly divided by G(x) even though

it is not the original codeword. The error pattern made the received

word be another code word.

To show the capability of the simulator, the examples of T = 16 are

given. However, the output is quite long so that they are given in the plain

format.

Example 3. 8

• Given: m = 7, T = 16, II = 15.

• Peterson's method is selected .

• T > II so that all the errors can be corrected.

• The input and output are shown as follows.

54

Script started on Tue Oct 5 11:27:41 1993
/nfs/pico/grad3/zyoung % ./simulator
Please select the decoding method.
Select P for Peterson's or B for Berlekamp's --- B
Berlekamp's method has been selected.
Please select m : 4
Please select T : 2
G(O)=O G(1)=3 G(2)=1 G(3)=3 G(4)=0
Input error pattern (decimal):
3347576700
The output of the Berlekamp' s method
The correcting capability, T = 2
sigma[1]=14 sigma[2]=D
error position 1 = 12 value = C (Hex)
error position 2 = 6 value = 4 (Hex)
The decoded word IS a codeword, since it can be evenly divided by the G(X) .
Index Code Err Rcvd Decoded

Word Ptn Word Word
14 0 0 0 0
13 0 0 0 0
12 0 0 0 C
11 0 0 0 0
10 0 0 0 0

9 0 0 0 0
8 0 0 0 0
7 0 0 0 0
6 0 7 7 3
5 0 7 7 7
4 0 7 7 7

3 0 3 3 3
2 0 0 0 0
1 0 0 0 0
o 0 0 0 0

script done on Tue Oct 5 11: 28 :46 1993

Tab le 3.7: Exampl e 3.7

55

Please select the decoding method.

Select P for Peterson's or B for Berlekamp' s --- P

Peterson's method has been selected.

Please select m : 7

Please select T : 16

Input error locations and values (decimal):

21 1 32 2 43 3 54 4 55 5 66 6 77 7 78 8 79 9

60 10 41 11 12 12 83 13 94 14 15 15 0 0

The output of the Peterson's Method

The correcting capability, T = 16

Syndrome [48] = 95

Syndrome [49] = 13

Syndrome [50] = 124

Syndrome [51] = 49

Syndrome [52] = 15

Syndrome [53] = 22

Syndrome [54] = 4

Syndrome [55] = 35

Syndrome [56] = 104

Syndrome [57] = 39

Syndrome [58] = 56

Syndrome [59] = 47

56

Syndrome [60J = 4

Syndrome [61J = 12

Syndrome [62J = 32

Syndrome [63J = 15

Syndrome [64J = 109

Syndrome [65J = 36

Syndrome [66J = 18

Syndrome [67J = 50

Syndrome [68J = 51

Syndrome [69J = 9

Syndrome [70J = 125

Syndrome [71J = 63

Syndrome [72J = 54

Syndrome [73J = 44

Syndrome [74J = 24

Syndrome [75J = 82

Syndrome [76J = 11

Syndrome [77J = 48

Syndrome [78J = 110

Syndrome [79J = 90

The 16x16 determinant is zero !

57

Syndrome [49] = 13

Syndrome [50] = 124

Syndrome [51] = 49

Syndrome [52] = 15

Syndrome [53] = 22

Syndrome [54] = 4

Syndrome [55] = 35

Syndrome [56] = 104

Syndrome [57] = 39

Syndrome [58] = 56

Syndrome [59] = 47

Syndrome [60] = 4

Syndrome [61] = 12

Syndrome [62] = 32

Syndrome [63] = 15

Syndrome [64] = 109

Syndrome [65] = 36

Syndrome [66] = 18

Syndrome [67] = 50

Syndrome [68] = 51

Syndrome [69] = 9

58

Syndrome [70] = 125

Syndrome [71] = 63

Syndrome [72] = 54

Syndrome [73] = 44

Syndrome [74] = 24

Syndrome [75] = 82

Syndrome [76] = 11

Syndrome [77] = 48

Syndrome [78] = 110

The 15x15 determinant is not zero !

Sigma[1] . index = 105

Sigma[2] . index = 112

Sigma[3] . index = 94

Sigma[4] . index = 124

Sigma[5] . index = 55

Sigma[6] . index = 39

Sigma[7] . index = 51

Sigma[8] . index = 70

Sigma[9] . index = 74

Sigma[10] . index = 32

59

Sigma[11] . index = 6

Sigma[12] . index = 119

Sigma[13] . index = 26

Sigma[14] . index = 54

Sigma[15] . index = 48

error position 1 = 12 value = C (Hex)

error position 2 = 15 value = F (Hex)

error position 3 = 21 value = 1 (Hex)

error position 4 = 32 value = 2 (Hex)

error position 5 = 41 value = B (Hex)

error position 6 = 43 value = 3 (Hex)

error position 7 = 54 value = 4 (Hex)

error position 8 = 55 value = 5 (Hex)

error position 9 = 60 value = A (Hex)

error position 10 = 66 value = 6 (Hex)

error position 11 = 77 value = 7 (Hex)

error position 12 = 78 value = 8 (Hex)

error position 13 = 79 value = 9 (Hex)

error position 14 = 83 value = D (Hex)

error position 15 = 94 value = E (Hex)

60

The decoded word is a codeword, since it is divisible by the G(X).

Index Code Err Rcvd Decoded

Word Ptn Word Word

Index Code Err Rcvd Decoded

Word Ptn Word Word

126 63

125 62

124 61

123 60

122 59

121 58

120 57

119 56

118 55

117 54

116 53

115 52

114 51

113 50

112 49

111 48

110 47

61

109 46

108 45

107 44

106 43

105 42

104 41

103 40

102 39

101 38

100 37

99 36

98 35

97 34

96 33

95 32

94 31

93 30

92 29

91 28

90 27

89 26

88 25

62

87 24

86 23

85 22

84 21

83 20

82 19

81 18

80 17

79 16

78 15

77 14

76 13

75 12

74 11

73 10

72

71

70

69

68

67

66

63

65

64

63

64

Example 3.9

• Given: m = 7, T = 16, 1/ = 16.

• Peterson 's met hod is selecte d .

• T = 1/ so t hat all the errors can be corrected .

• T he inp ut and out put are shown as follows.

Please select the decoding method.

Select P for Peterson I s or B for Berlekamp 's --- P

Peterson I s method has been selected .

Please select m : 7

Please select T : 16

Input error locations and values (decimal) :

21 1 32 2 43 3 54 4 55 5 66 6 77 7 78 8 79 9

60 10 41 11 12 12 83 13 94 14 15 15 16 16 0 0

The output of the Peterson I s Method

The correcting capability , T = 16

Syndrome [48] = 48

Syndrome[49] = 104

Syndrome[50] = 47

Syndrome [51] = 93

65

Syndrome [52] = 96

Syndrome [53] = 44

Syndrome [54] = 65

Syndrome [55] = 16

Syndrome [56] = 115

Syndrome [57] = 55

Syndrome [58] = 7

Syndrome [59] = 75

Syndrome [60] = 99

Syndrome [61] = 76

Syndrome [62] = 90

Syndrome [63] = 102

Syndrome [64] = 108

Syndrome [65] = 22

Syndrome [66] = 73

Syndrome [67] = 87

Syndrome [68] = 10

Syndrome [69] = 101

Syndrome [70] = 50

Syndrome [71] = 38

Syndrome [72] = 79

Syndrome [73] = 92

66

Syndrome [74] = 64

Syndrome [75] = 101

Syndrome [76] = 52

Syndrome [77] = 98

Syndrome [78] = 13

Syndrome [79] = 81

The 16x16 determinant is not zero !

Sigma[l] . index = 63

Sigma[2] . index = 29

Sigma[3] . index = 105

Sigma[4] . index = 116

Sigma[5] . index = 93

Sigma[6] . index = 15

Sigma[7] . index = 48

Sigma[8] . index = 74

Sigma[9] . index = 102

Sigma[10] . index = 107

Sigma[11] . index = 86

Sigma[12] . index = 118

Sigma[13] . index = 96

67

Sigma[14] . index = 70

Sigma[15] . index = 116

Sigma[16] . index = 64

error position 1 = 12 value = C (Hex)

error position 2 = 15 value = F (Hex)

error position 3 = 16 value = 10 (Hex)

error position 4 = 21 value = 1 (Hex)

error position 5 = 32 value = 2 (Hex)

error position 6 = 41 value = B (Hex)

error position 7 = 43 value = 3 (Hex)

error position 8 = 54 value = 4 (Hex)

error position 9 = 55 value = 5 (Hex)

error position 10 = 60 value = A (Hex)

error position 11 = 66 value = 6 (Hex)

error position 12 = 77 value = 7 (Hex)

error position 13 = 78 value = 8 (Hex)

error position 14 = 79 value = 9 (Hex)

error position 15 = 83 value = D (Hex)

error position 16 = 94 value = E (Hex)

The decoded word is a codeword, since it is divisible by the G(X).

68

Index Code Err Rcvd Decoded Index Code Err Rcvd Decoded

Word Ptn Word Word Word Ptn Word Word

126 63

125 62

124 61

123 60

122 59

121 58

120 57

119 56

118 55

117 54

116 53

115 52

114 51

113 50

112 49

111 48

110 47

109 46

69

108 45

107 44

106 43

105 42

104 41

103 40

102 39

101 38

100 37

99 36

98 35

97 34

96 33

95 32

94 31

93 30

92 29

91 28

90 27

89 26

88 25

87 24

70

86 23

85 22

84 21

83 20

82 19

81 18

80 17

79 16 10 10

78 15

77 14

76 13

75 12

74 11

73 10

72

71

70

69

68

67

66

65

71

64

63

72

Example 3 .10

• Given: m = 7, T = 16, v = 17.

• Peterson 's met hod is selected .

• T < v so t hat all t he erro rs can not be corrected.

• T he inpu t an d outp ut are shown as follows.

Please select the decoding method .

Select P for Peterson's or B for Berlekamp's --- P

Peterson 's method has been selected .

Please select m : 7

Please select T 16

Input error locations and values (decimal) :

21 1 32 2 43 3 54 4 55 5 66 6 77 7 78 8 79 9

60 10 41 11 12 12 83 13 94 14 15 15 16 16 17 17 0 0

The output of the Peterson 's Method

The correct ing capability, T = 16

Syndrome [48] = 55

Syndrome[49] = 117

Syndrome [50] = 5

Syndrome [51] = 10

73

Syndrome [52] = 85

Syndrome [53] = 0

Syndrome [54] = 83

Syndrome [55] = 6

Syndrome [56] = 86

Syndrome [57] = 123

Syndrome [58] = 115

Syndrome [59] = 124

Syndrome [60] = 73

Syndrome [61] = 93

Syndrome [62] = 61

Syndrome [63] = 97

Syndrome [64] = 126

Syndrome [65] = 101

Syndrome [66] = 72

Syndrome [67] = 44

Syndrome [68] = -1

Syndrome [69] = 47

Syndrome [70] = 58

Syndrome [71] = 27

Syndrome [72] = 109

Syndrome [73] = 99

74

Syndrome [74J = 49

Syndrome [75J = 113

Syndrome [76J = 103

Syndrome [77] = 38

Syndrome [78J = 34

Syndrome [79J = 104

The 16x16 determinant is not zero !

Sigma[1J . index = 61

Sigma[2J . index = 0

Sigma[3J . index = 110

Sigma[4J . index = 119

Sigma [5J . index = 20

Sigma[6J . index = 1

Sigma[7J . index = 64

Sigma[8J . index = 14

Sigma [9J . index = 87

Sigma[10J . index = 79

Sigma[11J . index = 107

Sigma[12J . index = 107

Sigma[13J . index = 24

75

Sigma[14] . index = 65

Sigma[15] . index = 100

Sigma[16] . index = 43

error position 1 = 20 value = 36 (Hex)

error position 2 = 0 value = 1 (Hex)

error position 3 = 0 value = 1 (Hex)

error position 4 = 0 value = 1 (Hex)

error position 5 = 0 value = 1 (Hex)

error position 6 = 0 value = 1 (Hex)

error position 7 = 0 value = 1 (Hex)

error position 8 = 0 value = 1 (Hex)

error position 9 = 0 value = 1 (Hex)

error position 10 = 0 value = 1 (Hex)

error position 11 = 0 value = 1 (Hex)

error position 12 = 0 value = 1 (Hex)

error position 13 = 0 value = 1 (Hex)

error position 14 = 0 value = 1 (Hex)

error position 15 = 0 value = 1 (Hex)

error position 16 = 0 value = 1 (Hex)

The decoded word is NOT a codeword,

76

because it cannot be evenly divided by the GeX) .

Index Code Err Rcvd Decoded

Word Ptn Word Word

Index Code Err Rcvd Decoded

Word Ptn Word Word

126 63

125 62

124 61

123 60

122 59

121 58

120 57

119 56

118 55

117 54

116 53

115 52

114 51

113 50

112 49

111 48

110 47

77

109 ~

W8 45

W7 "
106 ~

105 ~

W4 41

W3 40

102 39

101 ~

100 ~

99 36

98 35

97 M

96 33

95 32

M 31

93 30

92 29

91 28

90 27

89 26

~ 25

~

87 24

86 23

85 22

84 21

83 20 36

82 19

81 18

80 17 11 11 11

79 16 10 10 10

78 15

77 14

76 13

75 12

74 11

73 10

72

71

70

69

68

67

66

79

65

64

63

80

Example 3.11

• Given: m = 7, T = 16, v = 16.

• Berlekamp's method is selected.

• T = v so that all the errors can be corrected.

• The input and output are shown as follows.

Please select the decoding method.

Select P for Peterson's or B for Berlekarnp' s --- B

BerLekamp ' s method has been selected.

Please select m : 7

Please select T 16

Input error locations and values (decimal):

1 2 5 6 8 9 11 13 15 24 18 36 23 1 25 4 35 9 39 2

41 4 45 8 50 7 57 9 60 7 66 5 0 0 0 0

The output of the Berlekarnp' s method

The correcting capability. T = 16

sigma(1)=14 (hex)

sigma(2) =9 (hex)

sigma(3)=6A (hex)

sigma(4)=46 (hex)

81

sigma(5)=76 (hex)

sigma(6)=47 (hex)

sigma(7) =4F (hex)

sigma(8)=73 (hex)

sigma(9)=4B (hex)

sigma(10)=66 (hex)

sigma(11)=63 (hex)

sigma(12)=7B (hex)

sigma(13)=76 (hex)

sigma(14) =71 (hex)

sigma(15) =48 (hex)

sigma(16) =76 (hex)

error position 1 = 66 value = Ox5

error position 2 = 60 value = Ox7

error position 3 = 57 value = Ox9

error position 4 = 50 value = Ox7

error position 5 = 45 value = Ox8

error pos ition 6 = 41 value = Ox4

error position 7 = 39 value = Ox2

error position 8 = 35 value = Ox9

error position 9 = 25 value = Ox4

error position 10 = 23 value = Ox1

82

error position 11 = 18 value = Ox24

error position 12 = 15 value = Ox18

error position 13 = 11 value = OxD

error position 14 = 8 value = Ox9

error position 15 = 5 value = Ox6

error position 16 = 1 value = Ox2

The decoded word IS a codeword, since it can be evenly divided by the GeX) .

Index Code Err Rcvd Decoded

Word Ptn Word Word

Index Code Err Rcvd Decoded

Word Ptn Word Word

126 63

125 62

124 61

123 60

122 59

121 58

120 57

119 56

118 55

117 54

83

116 53

115 52

114 51

113 50

112 49

111 48

110 47

109 46

108 45

107 44

106 43

105 42

104 41

103 40

102 39

101 38

100 37

99 36

98 35

97 34

96 33

95 32

84

94 31

93 30

92 29

91 28

90 27

89 26

88 25

87 24

86 23

85 22

84 21

83 20

82 19

81 18 24 24

80 17

79 16

78 15 18 18

77 14

76 13

75 12

74 11

73 10

85

72

71

70

69

68

67

66

65

64

63

86

Chapter 4

The Periodicity Algorithm

Chien search is the main obstacle to high speed RS decoding. Based on

the exhaustive Chien search, the error pos it ion numbers of the doub le error

correcting RS codes are carefully examined. It is found that for the case

of double error correcting, the roots of the error locators are not randomly

distributed. This gives us the possibility to develop a new algorithm to

locate the error position numbers without Chien search. In th is chapter, a

new algorithm for double error correcting called the Periodicity Algorithm

(PA) is proposed.

4.1 Basic properties

On examining the exhaustive Chien search, it can be shown that the error

positions of a double error correcting RS code are not distributed randomly,

but rather according to certain patterns. To show this important property

clearly, the case of (m = 3) 2-error correcting RS code is used as an example.

87

0'0 x,x (l,~2,3 x,x 4,6 x,x X,X

0'1 X,X X,X x,x~1,2 x,x 3,5
0'2 x,x 2,4 x,x x,x x,x~6) 0,1
0'3 1(2~0,6 x,x 1,3 x,x x,x X,X

0'4 X,X x,x~5,6 x,x 0,2 X,X

0'5 1,6 X,X x,x x,x~4,5 X,X

0'6 3,4 x,x 0,5 x,x x,x x,x~6)

Table 4.1: Periodicity of the error positions (m = 3, T = 2), (see text for the
description of elements)

From the equation

(4.1)

by dividing all the coefficients by 0'2, Eq. 4.1 becomes:

(4.2)

After performing the exhaustive Chien search to Eq. 4.2, all of the possible

solutions are obtained. The results for m = 3 are given in Table 4.1.

The meaning of the elements in the Table 4.1 is as follows. For example,

the right-bottom element in Table 4.1 is [2,6]. This means that, for the

Eq 4.2, when O'~ = 0'6 and a; = 0'6, the two roots are 0'2 and 0'6. This kind of

elements are called solution elements. The elements marked as [x,x] means

that there are no solutions for the combinations of the o'~ and a;. These

88

aD x,x x,x 1,5 2,3 x,x 4,6 x,x x,x x,x 1,5 2,3 x,x 4,6 x,x x,x
a t 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5
a 2 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1
a 3 x,x 2,5 0,6 x,x 1,3 x,x x,x x,x 2,5 0,6 x,x 1,3 x,x x,x x,x
a 4 x,x x,x x,x 1,4 5,6 x,x 0,2 x,x x,x x,x 1,4 5,6 x,x 0,2 x,x
a s x,x 1,6 x,x x,x x,x 0,3 4,5 x,x 1,6 x,x x,x x,x 0,3 4,5 x,x
a 6 @ 3,4 x,x 0,5 x,x x,x x,x 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6
aD x,x x,x~2,3 x,x 4,6 x,x x,x x,x 1,5 2,3 x,x 4,6 x,x X,X

at 3,5 x,x x,x x,x~1,2 x,x 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5
a 2 0,1 x,x 2,4 x,x x,x x,x~O,l x,x 2,4 x,x x,x x,x 3,6 0,1
a 3 x,x 2,5 0,6 x,x 1,3 x,x x,x x,x ~0,6 x,x 1,3 x,x x,x x,x
a 4 x,x x,x x,x 1,4 5,6 x,x 0,2 x,x x,x x,x~5,6 x,x 0,2 x,x
as x,x 1,6 x,x x,x x,x 0,3 4,5 x,x 1,6 x,x x,x x,x~4,5 x,x
a 6 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6 3,4 x,x 0,5 x,x x ,x x,x~§)

Tabl e 4.2 : Tabl e used to show th e periodicity

elements are called non- solution elements. To explain t he basi c prop erti es

mor e clearl y, Tabl e 4.1 is re-formulat ed as Table 4.2.

Ta ble 4.2 essent ia lly cons ists of many copies of Tabl e 4.1. As a 7 = aD

when m = 3, thi s prop ert y can be used to form th e Tabl e 4.2. A line is drawn

acros s th e table on whi ch th ere are N (where N = 7) solution elements. Ea ch

such line is called a chain.

Several te rms are defined as follows:

1. Solution element - the elemen t with solut ions in Tabl e 4.1.

89

Table 4.3: Leaders of the chains (m = 3)

2. Non-solution element - the [x,x] element which means no solution.

3. Solut ion chain - the chain contains only solution elements.

4. N on -s olution cha in - the chain contains only non-solution elements.

5. Shift on chains - movement from one element to its neighbor element

on the chain. This movement skips one column to the next row on the

solution table.

6. Leaders of t he chains - the smaller values of the elements in first

column in Table 4.1.

7. Leader table - putting the leaders into a table can form the leader

table. Table 4.3 is the leader table for m = 3.

Looking at Table 4.2, let us put an imaginary pointer to the right-bottom

element which is [2,6]. Then let us shift the pointer 2 columns left and 1 row up

which is defined as 1 shift. Now the pointer is moved onto the element which

90

is [0,3]. If keeping moving the imaginary pointer according to the rule ex­

plained above, following chain is obtained

[2,6] ~ [1,5] ~ [0,4] ~ [3,6] ~ [2,5] ~ [1,4] ~ [0,3] ~ [2,6]. (4.3)

It should be noticed that, after N shifts, the pointer goes back onto the

element [2,6], the "starting point". In other words, the chain repeats itself

with a period of N shifts!

For the chain shown in Eq. 4.3, the last element is [2,6], then [0,3]. Since

0:
7 = 0:0 for m = 3, [0,3] can be written as [7,3] or [3,7]. It is obvious that,

from [2,6] to [3,7], the increment of both error positions is 1. Similarly, for

the cases of that [0,3] to [1,4], [1,4] to [2,5], ... , the increment is still 1.

In Table 4.1, looking at each column, the sum of two solutions and the

power value of a; is 7 or 14. It should be noticed that N = 7 and 2N = 14

when m = 3. It has been explained above that the values of each solution

element [EI ,E2] mean o:El and o:E2. Therefore, this yields

(4.4)

Eq. 4.4 is called constant product property. Considering that a; = o:i 2, the

constant product property can be simplified as

(4.5)

In summary, there are three basic properties:

91

1. The error posit ion numbers disp lay the periodicity. The period is N

shifts .

2. The increment of the error position numbers is 1 for each shift.

3. There is the constant product property. It can be simply expressed as

E1 + E2 + i 2 = N .

The case of m = 3 has been used as the examp le to describe the three

properties of the RS error positions. However, do those three properties hold

for the other cases of m as well? The answer to this question is yes, and the

verification to this conclusion will be given in section 4.3.

Before going on to the description of the algorithm, the following facts

shou ld be noted:

1. The solution chains contain only the solution elements .

2. The non-solution chains contain only the [x,x] non-solution elements.

3. All the elements in the solution table are either on the solut ion chains

or on the non-so lution chains without exception.

4.2 Description for periodicity algorithm

4.2.1 Algorithm description

Definitions for the symbols used in this algorithm are as follows:

92

LT: leader table which consists of the leaders of the chains

imawing: intermediate variable

Pleader: position of the leader in LT

header: value of the leader

i 1 : exponential power of the a~ (a~ = ail)

i 2 : exponential power of the a; (a; = ai2)

£1: position of the first error

£2: position of th e second error

The LT is pre-processed off-line. The algorithm for the pre-processing is

given in Fig. 4.1.

The PA error locating consists of following steps:

1. According to the given a1 = ail and a2 = a i2, find the leader of the

chain.

i m apping = i 2 /2, if i 2 even (with direct leader);

imapping = (i 2 + N)/2 , if i 2 odd (without direct leader);

Pl eader = (i1 - imapping)m od N·

According to Pl eader, get the value of the leader h ead er in LT.

2. If leader of the chain is "x", a non-solution chain is met. It means that

all the elements on this chain are non-solution elements. Otherwise, go

93

on to the step 3.

3. With the value of the leader of the chain, calculate the first error posi­

tion, e..

E, = (Ileader - imapping)mod N·

4. With the property of constant product, calculate the secorid error po­

sition.

The flow chart of the algorithm is given in Fig. 4.2.

From the flow chart, it is clear that PA error locating needs fewer than

7 additions, 4 decision operations, 1 shift and 1 memory reading operations.

Because the shift operation normally needs the same time as addition, it can

be simply considered that the periodicity algorithm needs 8 additions and

4 decisions. There are no multiplications and divisions at all. In the flow

chart, the operation i 2/2 is actually performed by shift-right operation. The

testing operation decides whether the value is even or odd by testing the

least significant bit (L8B), i.e. if the L8B is 0, the value is even; if it is 1,

the value is odd. All those operations are simple for both the hardware and

software, and can be counted as one addition.

94

No
i=N-1?

Yes

No Yes

j =N-1 ?

Figur e 4.1: Leader table creation

95

Finish

Figure 4.2: Periodicity algorithm

96

aO x,x x,x 1,5 2,3 x,x 4,6 x,x x,x x,x 1,5 2,3 x,x 4,6 x,x x,x
a 1 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5
a 2 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1
a 3 x,x @.....0 ,6 x,x 1,3 x,x x,x x,x 2,5 0,6 x,x 1,3 x,x x,x x,x
a 4 x,x x,x x,x~5,6 x,x 0,2 x,x x,x x,x 1,4 5,6 x,x 0,2 x,x

1(cY~ x,x 1,6 x,x x,x x,x l!F.ID 4,5 x,x 1,6 x,x x,x x,x 0,3 4,5 x,x
a 6 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6
aO x,x x,x 1,5 2,3 x,x 4,6 x,x x,x x,x 1,5 2,3 x,x 4,6 x,x x,x
a 1 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5
a 2 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1
a 3 x,x 2,5 0,6 x,x 1,3 x,x x,x x,x 2,5 0,6 x,x 1,3 x,x x,x x,x
a 4 x,x x,x x,x 1,4 5,6 x,x 0,2 x,x x,x x,x 1,4 5,6 x,x 0,2 x,x
a 5 x,x 1,6 x,x x,x x,x 0,3 4,5 x,x 1,6 x,x x,x x,x 0,3 4,5 x,x
a 6 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6

Tabl e 4.4: Tabl e for Example 4.1

4.2.2 Examples for PA

Several examples are given below which show how th e periodi city algo­

rithm works. Th e flow chart shown in Fig. 4.2 should be used to assist the

und erst anding.

Example 4.1

97

1. Obtain i m apping , which is a value to show that th e leader of th e chain

is how many "shift" above current row.

i 2 is even. It means that the leader of current chain is within current

tabl e.

imapping = id2 = 4/2 = 2 (shifts). The leader is 2 shifts above current

2. Go up 2 shifts to find the leader of the current chain.

Pl eader = i} - imapping = 5 - 3 = 2.

From the leader tabl e shown in Table 4.3, th e value of th e leader can

be found , h eader = 2.

3. Use increment prop ert y (for 2 shifts):

E, = [l eader - imapping = 2 - 2 = O.

4. Use constant product prop ert y:

£2 = N - E, - i 2 = 7 - 0 - 4 = 3.

T herefore, [£} '£2] = [0,3].

Example 4.2

98

oP x,x x,x 1,5 2,3 x,x 4,6 x,x x,x x,x 1,5 2,3 x,x 4,6 x,x X,X

0' 1 3,5 X,X x,x x,x 0,4 1,2 x,x 3,5 x,x x,x x,x 0,4 1,2 x,x 3,5
0' 2 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1 x,x 2,4 x,x x,x x.x 3,6 0,1
0'3 x,x 2,5 0,6 x,x 1,3 x,x x,x x,x 2,5 0,6 x,x 1,3 x,x x,x X,X

0'4 X,X X,X x,x 1,4 5,6 x,x 0,2 x,x x,x x,x 1,4 5,6 x,x 0,2 X,X

0'5 X,X (lRx,x X,X x,x 0,3 4,5 x,x 1,6 x,x x,x x,x 0,3 4,5 X,X

0'6 2,6 3,4 x,~x,x x,x x,x 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6
0' 0 x,x x,x 1,5 2,3 x,x~x,x x,x x,x 1,5 2,3 x,x 4,6 x,x X,X

0' 1 3,5 X, X x,x x,x 0,4 1,2 x,x~ x,x x,x x,x 0,4 1,2 x,x 3,5
0'2 0,1 x,x 2,4 x,x x,x x,x 3,6 0,1 x,x~x,x x,x x,x 3,6 0,1
0'3 x,x 2,5 0,6 x,x 1,3 x,x x,x x,x 2,5 0,6 x,x~x,x x,x x,x

I (a~ x,x x,x x,x 1,4 5,6 x,x 0,2 x,x x,x x,x 1,4 5,6 x,x~ X,X

0'5 x,x 1,6 x,x x,x x,x 0,3 4,5 x,x 1,6 x,x x,x x,x 0,3 4,5 X,X

0'6 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6 3,4 x,x 0,5 x,x x,x x,x 2,6

Table 4.5: Table for Exampl e 4.2

99

1. Obtain imapping, which is a value to show that the leader of the chain

is how many "shift" above current row.

i 2 is odd. It means that the leader of current chain is outside current

table.

imapping = (N + i 2)/ 2 = (5 + 7)/2 = 6 (shifts). The leader is 6 shifts

above current row.

2. Go up 6 shifts to find the leader of the current chain.

Pleader = i} - imapping + N = 4 - 6 + 7 = 5.

From the leader table shown in Table 4.3, the value of the leader can

be found, header = 1.

3. Use increment property (for 6 shifts):

E} = header - imapping + N = 1 - 6 + 7 = 2.

4. Use constant product property:

E2 = N - E} - i 2 = 7 - 2 - 5 = O.

Therefore, [E I,E2] = [2,0].

From Table 4.1, it is easy to find that the results of Example 4.1 and

Example 4.2 are correct.

100

4.3 Algorithm Verification

In this section, the validity of the periodicity algorithm will be verified.

Since the size of the table will increase exponentially as m increases, it is

not possible to quote all the relevant tables here so that only the tables of

up to m = 6 are given. However, as the Galois field fortunately contain

only a finite number of elements, it is possible to use exhaustive computer

simulation to verify the periodicity algor ithm.

Verifying the validity is simp le. From LT, the exhaustive test can be

performed for all the combinations of O"t and 0"2' When the results are not

"x", they can be substituted into Eq 4.2 to see whether the resu lt is zero.

When results are "x", Chien search can be used for that case to see whether

the "x" is correct for that combination. This procedure can be used to verify

the validity of PA for different m . This verification algorithm is given in

Fig . 4.3.

Another issue to be noted is the limited verification of the periodicity al­

gorithm. That is, the periodicity algorithm is not shown correct analytically,

but by the computer exhaustive verificat ion limited by the array size for m

such that 3 s: m s: 10. However, this range of m is adequate for most actual

applications, e.g. when m = 10, N = 2m = 210 = 1024, which is longer than

the length of a typical data block. The verificat ion outputs for 7 s: m s: 10

are given in Table 4.9.

101

N
II

Eo-<

~-

II

-5,
ClI J,jI::

o~
t:>

+
0;j J,j

;
0 +0.
104 II
0

J,j104
104 b
Q)

c...
0
Q,)

:0
~

~; ~
><<:'<

~ ~-<:I ,,(~ ~ <0 M ,,(,,(,,(><- .:

>< >< 0 ><
~ 3~ ~~<:I ,,(,,(,,(x;:- ,,(ci ,,(M <:J

<:I ~~~ ~3 1-- ~
,,(,,(,,(,,(ci ,,(00 ,,(

<:I ,,(,,(~:- ,,(- ,,(~~ ol ,,(~ ~ ,.: ..<

~~
><-

<:I ,.: N 00 ci ,,(,,(,,(,,(- ,,(~ >< ><

:-~ N
><<<<1"

~~<:I ,,(,,(,,(,,(ci ~ ><";:. >< ><-

>< r-MOO >< ><..:::
<:I M ..< ci~-- ><- >< ><- ,,(N ><-

~ ,,(>< 00

<:I >< ~ >< M ,,(,,(- - ,,(0 N 0>- ,,(>< ><

<:I
>< 00

N
>< >< >< >< M- >< >< ><

ci ~>< ~ >< >< >< >< >< - >< ><

<:I
><

~-
>< ><

N :i ><- .: ~~ ><- >< ><- ><=- >< >< ><

<:I ~~~
>< >< >< ><

~-
>< >< ><..~~ ><

>< >< >< >< >< :i >< ><-:LC ><-

<:I >< .n >< ><
M ~

><..~ :: S >< >< >< :- ~>< >< ><N

~ 0)... >< >< >< >< ><M ><
~~-~

><0
e ..;~ >< >< ><- >< .r.>- ><~ >< ><-~

e <0
>< ><..=: ~~

C)_~ ><
><- ><

><..~ ><
>< ><~ ci .r.>N >< ><..; ><

>< >< >< >< 0> ><..:!: >< ><<:'< 00
~3<:I .r.>- >< >< >< ><- <0 >< - - >< ><~,.: N

t:>

T
e e e e e e e <:I e <:I e e <:I <:I <':l

b-

Table 4.6: Solution table for m = 4

102

103

...aun:: Ul t:IIUI' VUSILlUUll (rn =C. T =2)

a a a
21 ,42 18,48 2lI,32 l1 ,4g 1.S8 X,x 22 ,35 S7,82 2,S3 13,41
X,x x,x '20,41 1S,4S 28,31 10,48 O,S7 21.34 ~.81

X,x x,x X,x X,x Ig .40 14,44 27 ,30 g ,47 SU2 x,x
X,x x,x X,x X,x x,x X,x 18,3g 13,43 26 ,29 8 ,48
X,x l1 ,SI X,x X,x x,x X,x x,x x,x 17.38 12,42
X,x 13,49 X,x 10,SO X,.l x,x x,x x,x x,x x,x
x,x 0,82 X,x 12,48 x.. g ,4g x,x x,x x.x

23 ,40 et.82 X,.l 11,47 x,x 8 ,48 x.x
x,X 20 ,42 22 .39 60 ,81 x,x 10,48 x.x 7 ,47

27 .36 x,x x.x IHI 21.38 x.x S9.60 x.x 9.4S
0 1• X,X X,.l 26 .35 x.x 18 ,40 20 ,37 58 .59

1.62 x.x x.x x.x 25 .34 x.x 17.39 19.36 x.x
X,x 0.6 1 x.x x.x 24 .33 x.x x.x 16.38

0 1• x.x 27 .35 x.x x.x 60 .62 x.x x.x x.. 23 .32 x.x
17.46 24,38 x.x 26.34 x.. x.x 59 .61 x.x x.x x.x
22.41 16.45 23.37 25 .33 x.x x.x 58 .60 x.x

0 16 x,x 7.55 21.40 x.x 15.« 22 .36 24 .32 x.x x..
x,x x.x 6.~ 20 .39 x.x 14.43 21.35 x.x 23 .31

0 1• 9.~ 21.41 x.x x.x x.. 5 .53 19.38 13.42 20 .34
x.x 15.47 8 .53 20.40 x.x x.x 4.52 18 .37

a lV x.x 5.57 x.x 14.46 7,52 19.39 x.x 3.51
aU x,x x.x x,x 4.56 x.x 13,45 6 .51 18.38 x,x
a" 2 .61 x.x x.x x.x x.x 3 ,55 x.x 12,44 5 ,50 17.37
a"' x.x 3,59 1.60 x.x x.x 2.54 x.x 11.43
0" x.x 19,43 x,x 2,58 0.59 x.x x,x x.x 1.53
a" 8,55 26 .36 x.x 18.42 x,x 1.57 58 .62 x.x x.x
a'" x.x 18.44 7.54 25.35 17.41 x.x 0 .56 57 .61
0" 14,49 x.x 17.43 6.53 24 .34 16,40 x.x 55 .62
a'" 29 .34 25 .37 13.48 16.42 5.52 23 .33 15,39
a"" x.x 6,56 28 .33 24,36 12.47 x.x 15,41 4.51 22 .32
a"" 19,44 28 .34 x.x 5.55 27.32 23.35 11.46 14.40
0.1 15,48 1.61 \8 .43 27.33 4,54 26 ,31 22 ,34 10.45
a" x,x 10.52 14,47 0.60 17.42 26 ,32 3.53 25 .30 21.33
a" x,x x.x x.x 9.51 13.46 59 .62 16,41 25 .31 x.x 2 ,52

a'" x,x x.x X.X x.x x.x 8 .50 12,45 58.61 15.40 24 .30
a" 20 ,43 x.x x.x x.x x.. x.x x.x 7.49 11.44 57 .60

a" 18,45 x.x 19.42 X.X x,x x.x x.x x.x 6.48
a·' 31 ,32 x.x 17.« x.x 18.41 x,x x.x x.x x.x x.x
a" X,X x.x 30 .31 x.x 16.43 x.x 17.40 x.x x.x x..
OR 11.52 8.54 x.x x.x 29 .30 x.x 15.42 x.x 16.39 x.x

x.x x.. 10.51 7.53 x.x 28 ,29 x.x 14.41 x.x
X,x 4.58 x.x x.x 9.50 6 .52 x.x 27 .28 x.x

a" X,X x.x x.x 3.57 l.x x.x 8.49 5 .51 x.x x..
a'" x.x 30 .32 I .X X.X x.. 2 .56 x.x x.x 1.48 4.50

4,59 x.x I .X 29.31 x.x x.x 1.55 x.x x.x
7,56 3.58 x.x 28 ,30 l.x x.x x.x 0 .54
X,X 14.48 6.55 x.x 2.57 x.x 27 .29 x.x x..

24 ,39 9.53 X.x 13.47. 5.54 x.x 1.56 x.x I .X 26 28

a" X.l x.x 23.38 8 .52 12. 46 4.53 x.x 0 .55 I .X
a" 10,53 X.X 22.37 7.51 "" 11.45 3.52
0>0 16,47 22 ,40 9.52 x.x x.x 21.36 6.50 I .X 10.44
0>1 26 .37 x.x 15.46 21.39 8.51 x,x X.X '20.35 5 .49
aU I ,X x.x 25 .36 I .X IUS '20.38 7.50 I .X X.X
a" I .X I .X I .X 24.35 x.x 13.44 19.37 6 .49 x.x

a '" 28 .35 29 .33 I .X I .X x.. x.x 23 .34 X.X 12.43 18 .3f

a " 12.5 1 x.. 27 34 28.32 x.. X.X x.x x.x 22 .33 x...
0 - 5 ,58 11.50 X.X 26 .33 27 ,31 x.x x.x x.x x.x
0" 13.50 23 .39 4.57 10.49 x.x 25 .32 26 .30 x.x x.x
a'" x.x 12.49 22.38 3.56 X,X 9,48 x.x 24 .31 25 .29
aU 6 ,57 17.45 x.x X.X \1.48 21.37 2,55 8,47 x.x
a" 25 ,38 2,60 5 .56 16.44 x.x 10.47 20 .36 1.54 x.x
a" 3.60 24.37 1,59 4,55 15,43 x.x x.x 9 ,46 19.35
an 30 ,33 12.50 2,59 x.x 23 .36 0 ,58 3,~ 14,42 x.x x.x

I I ' ,,-1 a O a l a' OJ a'

Table 4.8: Solution table for m = 6

104

Table of error positions (m ,. 5. T =1)

<F(z) =I +<F,z+<F,Z'

o ib oll QiJ a iS orlll Qli a i i (Ill (Ii i a i i

X"" 51.81 4.43 19.18
1.51 12.40 .1•.1 &.43 18.32 5O.1lO 3.42 X""

20.33 55.1lO 0.61 11.39 .1•.1 5.42 15.31 49.59
55.81 X"" 19.31 54.59 50.82 10.38 x,x x,x 4.41 14.30
25.18 7.45 54.1lO x,x 18.31 63.58 4ll,l51 9.37 X""
18.37 11.41 14.17 8,44 63.59 .1•.1 17.30 52.57 48.1lO 8.38
x,x x,x 16.38 10.40 23.26 5.43 51.58 x,x 18.29 51.~

x,x x,x .1•.1 .1,.1 14.35 9.39 22.25 4.42 51.57
x,x x,x X.X x,x x.x 13.34 8.38 21.14 3.41
.1,.1 M6 x,x x,x x.x X.X x,x 12.33 7.3.
x,x 8.44 5.45 x .x .1,.1

57.58 7.43 4.44 X,.l

18.35 ~.57 6.42 X"" 3.43 X.X

15.37 55.56 5.41 :?A"l
22.31 106 54.55 4.40

X,.l ; 3.54
57.59 x,x

X"" ~.58 x,x 19.28
x.x 22.30 x.x 56.57

12.41 19.33 11.29 5-4 .~ x.x

17.36 11.40 18.32 x.x 20,28 x.x x .x
X,.l 18.35 x,x 10.39 17.31 x,x 19.27
x ,x x .x 1.49 15.34 9.38 16.30 18.26

4.49 16.36 X.X 14.33 8.37 15.29
10.42 15.35 13.32
0.52 9.41 2.4. 14.34

51.62 8.40 13.33
56.60 X,.l x.x x,x 50.61 7.39 0.45 12.32

x,x 54.61 55.59 49.60 6.38
14.38 x.x 53.60 48.59

3.50 21.31 x.x 13.37 x.x 52.59 53.57
13.39 2.49 20.30 x .x 12.38 x.x 51.58

9.« 12.38 19.29 11.35 50.57
24.29 20.32 8.43 11.37 0.47 18.28 10.34

X.1 1.51 23.28 19.31 7.42 10.36
14.39 23.29 0.50 22.27 18.30 6.41
10.43 ~.59 13.38 22.28 49.62 21.26 17.29 5.40

5.47 9.42 55.58 12.3. 21.27 48.61 20.25 16 ~8

X.1 4.46 8.41 5-4.57 11.36 20.26 4t 60
3.45 7.40 ~3.~ 10.35 19.25

15.38 x.x 2.44 6.39
13.40 X.1 107 x.x

26.27 x.x 12.39 13.38 x.x

25.26 11.38 12,35
6.47 3.49 24.25 10.37 11.34

23.24 9.36
53.62 I.H 22.23

3.44
25.27 x.x 2.43

54,e2 X.X

2.51 53.61
9.43 1.50 52.60

19.34 4.48 8.42 0.49 51.59
X,.I 3,47 1.41 48.62 50.58

5.48 x.1 (7.32 2.46 6.40 41.61
11.42 4.47 1.45 '>39
21.32 10.41 16.34 3.46 O.H

.1.1 20.31 9.40 2.45
x,x 19.30 8.39 1.+1

23.30 18.29 7.38
7.46 X,.l 22.29 x.x 1t ,28
0.63 6.45 21.28
8.45 18.34 52.62 5.44 20.27

Table 4.8: Solution table for m = 6 (continue)

105

.LIlUle 01 errur VUIHUUWt (m =8. T =2)

.,(~) =1 + "I~ + "2~1

ON ali 0 5 0 5 oA o· 0" a" o U 0"

I,.I X,.I I,.I X,.I 14,25 X,I 3,34 311 ,511
18,26 111,23 I,.I I ,I 13,24 2,33 8,~

2,41 I,.I 17.24 18,22 X,I I,.t X,.I 12.23 X,.t

48,S8 I,.I 1,40 I,.I 18,23 17,21 I,.I I,I X,ll X..l

3,40 13,29 47,57 X,.I O,311 I ,I 16,22 18,20
I,.I X,.I Ull 12,28 4ll,58 X,I 3M2 I,I 14,21 15.19

47.511 7,35 X,.I 1,38 11,27 45,55 37.61
15,28 SO,55 4M8 8,34 I .I X,X 0,37 10,28 « .54
SO.56 X,.I 14,27 411 ,5-I 45,57 5,33 X,ll 36,62 9.25
20,23 2,40 49,55 13,26 48,53 « ,56 4.32
11,32 8,38 111,22 1,311 48,5-1 X.I 12,25 47,52 43,55 3,31

X..l 10,31 5,35 18,21 0,38 47,53 11.24 46,51
I..l X..l X,ll 9.30 4,34 17.20 37.62 46,52
I,ll X,ll 8.29 3,33 16,19

1,41 X,ll

X,ll 3,39 0,40 X,X X..l

52,53 X,X 2.38 X,I 311.62 X..l

13,30 51,52 1,37 X..l 38,61 XoX

10.32 12.29 SO.51 X,ll 0.36 XoX 37,60
17,26 X,ll I ,I 9,31 49.SO 35.62

X,ll X,ll 18,25 I ,ll I ,X 8,30 10,27 X,I 48.49
52,5-1 X,ll I oX 15,24 X.I 7,29 9.26

XoX 51,53 X,I X,I 14,23
XoX 17.25 I.X X,ll 13.22

7,36 14.28 16.24 411 ,51 X.I

12.31 6.35 13.27 15.23 X.X 48,50
X,I 11,30 5.34 12.26 14,22

« ,59 10.29 4,33 11.25 13.21
44,82 lUI 9.28 3.32 1 0 .~ 4

X,I 5.37 10,30 42.57 8,27
I,I 41.58 4,36 9.29

4M 7 3.J:i 41,59 8,28
51,55 I,I 45.56 2.34 7.27

49,56 X,ll +1.55 1.33
9.33 48.55 43,54

45,61 18.26 8.32 47.54 48,52
8.34 « ,50 15,25 7,31 46.53

4.39 7.33 43,59 14,24 6.30
19.24 15,27 3.38 6.32 13.23 .; ::!9

46,59 18.23 14.26 2.37 5.31 l ~ . :: ~

9.34 18,24 45.58 17,22 13.25 1,36
5.38 51.54 8.33 17.23 « .57 16,21 12,24 0.J:i
X,I 0.42 4,37 SO.53 7.32 16.22 43.56 15.20 11.23
X,ll X,ll 41.62 3,36 49,52 6,31 15,21 42,5.;
X,ll X,ll 40.61 2.J:i 48.51 5.30 14.20

10.33 X,I X,I 39.60 1,34 47,50
8,J:i 9,32 XoX x... 38,59
21.22 XoX 7.34 8,31

20.21 6.33 7.30
«,61 19.20 5.32 6,29

X,I 43,60 18.19 4,31

x... 48,57 x.x 17,18 :C :Jl:

' .I 47.56 39,61

49,57 X.X

46.60 x ... 48.56 18.20 <,x 44.; 3

4.38 45.59 47.55
14.29 43.62 3.37 +l .SS 46.5-1

x... 42.61 2.36 43,57 45.53
0.43 X,I x... 12,27 41,60 I,ll 1.35 42.56
8.37 12.30 42.62 x... X,I 11,26 4O.511 0,34
16,27 ' ,I 5.3Cl 11.29 41.61 X,ll ' ,I 39,58

x... 15.26 4.35 10,28 40.60 x.x

Table 4.8: Solution table for m = 6 (continue)

106

<r(z) =1 +<r,z + <r,z'

a SU ali a 32 ail a S4 a- a OU oJi a OU 03\1

x,lt x,x 8.23 X.X 31.60 38.52 40.48
38 .58 X,lt X.X x,x 7.22 36.55 X,lt 30.59 37 .51
1.32 7.25 37.57 x,x x.x X.X 6.21 35.54 29 .58

11.22 x,x 0 .31 6.24 36.56 x.x 5.20 34 .53
x,x X,lt 10.21 X,lt 30.62 5.23 35 .55

x,x 9.20 x.x 29.61 4.22 34,54
13.20 14.18 x,x x.x 8.19 28 .60
36 .60 12.19 X.X x.x x.x 7.18
43.53 35 .59 x,x 11.18 12.16
35.61 42.52 34.58 10.17

X,lt 34.60 7.23 41.51 33.57 9.16
42.54 2.30 33 .59 40.50 32 .56 x.x
10.23 ~5 .50 41.53 1.29 32 .';8 J9 .~9

45.51 9.22 H .49 40.52 0.28 31 .57
15.18 3.'i.60 H .50 8.21 43,48 39 .51 27.62
6 .27 1.31 14.17 34.59 43.49 7.20 ~2 .~7 3~ .50 26 .61

5.26 0.30 13.16 33.58 42.48 6.19 ~U6

4.25 29.62 12.15 32.5, 4U,
3.24 28 .61 11.1 ~ 31.56

59 2.23 2' .60
x .x .4.6 1 35 .58 x .x x.x x.x

47.48 33 .60 x.x 34.57 x,x

8 .25 46.47 32.59 x,x 33.56
5.27 45.46 31.58 32 .55

44.45 30 .57
3.25 ~3A~

47.49

12.20
2.31 9.23 11.19 x.x H.46
7.26 1.30 8.22 10.18

~0 .55 6.25 0.29 7.21 9.17
5.24 28.62 6.20 8.16

6.26 4.23 27 .61 5.19

x .x 0.32 5.25 3.22
x .x 42.53 31 .62 4.24

41.52 30.61 323
46 .50 40.51 29.60

H .51 39.50 28 .59
4,28 43.50 :l8 .W
11.21 3.27 42.49
3.29 10.20 2.26 4l.48

34 .62 2.28 9.19 1.25 40,47

14.19 10.22 33.61 l.27 8.18 0 .24
41.54 13.18 9.21 32 .60 0.26 36 .52

4.29 13.19 40.53 12.17 8.20 31.59

0 .33 46.49 3.28 12.18 39 .52 11.16 7.19 30 .58
37 .58 32.62 45.48 2.27 11.17 3ll.51 10 .15 6 .18

36 .57 31.61 44 .~7 1.26 10.16 37 .50

35.56 30 .60 43.46 0 .25 9.15

5.28 :W.55 29 .59 ~2 .~ .'i

3.30 4.27 33.54

16.1. 2.29 3.26
15.16 1.28 2.25

14.15 0.2;
38.55

15.17 x .x

44.52 lU6 x.x

41.55 43.5\ 13.15

33.62 40.54 42.50

9.24 38 .57 32 .61 39.53 4l,49

Table 4.8: Solution table for m = 6 (continue)

107

Table of error positions (m = 0 , T = 2)

.,(z) = 1 +."z+."z'

Q4a oU o d a U a " a U aU a ii oil od

10,12 "," "," ''.It
3~,47 X.lt X," ~,II " ,X ''.It 35 ,44
3tl ,50 38 ,4tl X,Jl " ,X 8.10 X.lt " .X X.lt

28 ,57 35,4~ 37 ,45 x,x 7 ,~ X.lt

4.1~ 33 ,52 X.X 27 .56 3·4.48 X,X 3(\,44 x.x
X.lt 3.18 32 .51 " ,X 2M5 33 ,47 35,43 ''.It

33 .53 ".X 2.17 3 1.50 25 .:>4 32,46
27 .59 2,20 32,52 ",Jl " ,X i .ie 30 ,4~ 24 .53
e.i: X.lt 26 ,58 I,I~ 31.51 0 ,15 2~A8

.. .It s.ie 25 .57 0.18 30 .50 X.lt

X,Jl X,Jl 4 ,15 24 .56 29 .49
8 .15 9.13 3.14 23 .55 16.61

31.55 7.14 8,12 2.13
38 .48 30 ,:>4 6 .13
30 .56 37 .47 29 .53 5.12

29.55 36 .46 28 .52 -.u
37 A~ 25 .60 28 .:>4 35 .45 27.5 1
5 .18 40 .45 36 .48 24 .5~ 27 .53 0 .16 34 .44

40 .46 4.17 39A4 35 .47 23 .58 26 .52
10.13 30 .55 39 .45 3.16 38.43 34A 6 22,57
1.22 26 .59 9 ,12 29.54 38 ,44 X.X 2,15 37 .42 33.45 21.56
.. .It 0.21 25 .58 8 ,11 28 .53 37 ,43 1.14 36 .41
x.x 2O.tl2 24.57 7.10 27 .52 36 .42

X,X 19.61 23.56 6 .9 26 .51
3 1.:>4 \ 8 .60
29 .56 30.53
42,43 28 .55 29 .52

41.42 27 ,54 28 .51
40.4 1 X.Jl 26 .53 27 .50

21.62 39 .40 25 .52
X.Jl 0 . \ 7 38 .39
X,Jl

41 .43 U3
7.15

26 .60 4.18 6.14 39 .41
2.21 25.59 3.17 5 .13

35 .50 1.20 24 .58 2,16 U2
34.49 0 .19 23 .57 1.15 1.11

1.2 1 18 .62 0 .14
27.58 0.20 32.47
37,48 26.57 19.62

36 .47 25 .56 18.61
35.46 24 .55 17.6U

39 ,46 34 .45 23.5 4
23 .62 38 .45 33 44
6.16 22 .61 37 .H

24 .6 1 5 .15 2 1.60 36 .43
29 .57 23 .60 4.14 20 .59 35 H
9 .14 5 .17 28.56 22 .59 3.13 19 .5~

36 .49 8.13 4.16 27 .55 21.58 2.12
24.62 8 .14 35 .48 7.12 3.15 26.54 20 .57
28 .58 41.44 23.61 7.13 34 .47 6 .11 2.14 25 .53

32 .53 27.57 40.43 22.60 6 .12 33 .46 5. 10 1.13
x,x 3 1.52 '16.56 39 .42 2 1.59 5 .11 32A5
x,x 30 .51 25 .55 38.H 20 .58 4.10

0.23 29 .50 '14. 54 37A O
25 .61 22.62 28 .49

11.12 24.60 21.61
X,Jl 10.11 23 ,59 20 .60

32 .54 34 .51 9.10 22.58 19 .59
33 .50 s.s 2 1.57

X.Jl X.X 7.8

X.Jl x.x 37 .46

Table 4.8 : Solution table for m = 6 (continue)

108

Table 01 error POIUUUWS (m =0, I ,. l)

..(z) = 1 +6 ,Z+6,Z'

oW o il oil aU oR a il aU ail aN oli 0 80 oil Q82 I
X,X x ,x 5,& X.X 18,504 x,x 15.55 x,x x .x X.X I27. 49 29. 4& x,x x.x U x,x 17.53 14,504 X,X X.I 1 .1

X,X x,x 2&.48 28,~ x ,x x,x 3,4 x,x 1&.52 x,x 13,53 X.X
x.x 33,42 x,x x .x 25 ,47 27.44 2.3 x ,x 15.51 x .x 12.52
x ,x x,x 32,4\ 24.4& 26.43 1.2 x .x 14.50
I .X 5,7 x,x X,X 3\ .40 23 .45 X,Jl 0.1 !

34.42 x,X I,X 4,6 l ,x 30.39 22,44 ' ,,I; I
31.45 X.X 33 .4\ X,Jl x,x 3,5 x,x ~1.4 3 :

23 ,52 30 ,44 X.X 32 .40 x,x 2.4 x,x

14.62 28.47 n .51 29.43 31.39 1.3
X,X x,x 13.&\ 27.46 21.50 28.42 30 .38

28.48 X.X 12.60 26.45 20.49 27 .41 29 .37 X.X

22.54 27 .47 25.44 19.48 26 .40 '2 ~Jti

1.12 2\.53 2&.46 24.43 18.4. ·25.J9
0.11 20.52 13.58 25,45 ~3 .42

x.x 10.62 19.51 12.57 24 .44
3.10 l,x 9.61 1..1 18.50 23 .43

26.50 2.9 8 .60 17,49
33.43 25.49 1.8 7.59
25.51 32.42 24.48 0.7 i.s

24,50 31 .41 23.47 6.62
32,44 20.55 X.X 23.49 12.59 30.40 22.46 5.61
0.13 35.40 31 .43 19,54 X,X n .48 11.58 29 .39 2l.45 H O
35.41 12.62 34.39 30,42 18.53 2l.47 28 .38 ~Oi4 I

5.8 25.50 34.40 11.61 33.38 29,41 17.52 20,46 1; .37 ,
1t .59 2l.54 4.7 24.49 33 .39 10.60 32.3. 28 .40 16.51 1·.l 45

16.58 20.53 3.6 23.48 32.38 9 .59 31.36 2r .39 15.50
15.5. i 9.52 2.5 22.4. 3 1.37 8.58 30 .35 '.?ti . J ~ I

x,x x,x 14.56 18.51 l.4 21.4 6 30 .36
26.49 x .x X..l 13.55 17.50 0 .3 20.45
24.51 25.48 12 .54 16 .49
3t ,38 23.50 24.47

36.3. 22.49 2346
35.36 21.48 22.45

16.57 305 20.4. ~1.H \ ..'\
1.10 33 .34 19.46

1\.5. 32.33
36 .38

2.10 35.37
21.55 13.62 1.9 I
16.60 20 .54 12.61 0.8 i -):J

15 59 . 9.53 11.60 • .62
x,x 14.58 18.52 10.59 6.61 J 1.3:l ·

16.59 13.57 17.51 9 .58 5.60 '(..'(
22.53 28.46 15..,8 12.56 16 .50 8.5.

32.43 2\.52 14.5. 11.55

31.42 20.51 13.56
30 .41 1.X 19.50 12.55

34 .4\ 35 .39 2940 18.49 :?4...(~ 11.54 "
18.57 33.40 28.39 1• .48

30.46 1.1\ 1t ,56 32 .39 33.37 2r .38 x x

19.56 0.10 16.55 31.38
24.52 18.55 9.62 15.54 J O.3'

4.9 0 .\2 23 .5 1 1• .54 8.61 14.53 ~9J6

31.44 3.8 11.62 22.50 16.53 • .60 13.52 "
19.5. 3.9 30.43 2.7 10.61 21.49 15.52 6 .59 "
23.53 36 .39 18.56 2.8 29.42 1.6 9.60 2048 14.5 1

27.48 22.52 35.38 1t .55 1.7 28.4\ 0 .5 8.59 19 .4.
26.47 21.51 34.37 16.54 0.6 27.40 4.62 • .58 18.46 :

x ,x X,x 25.46 20.50 33.36 15,53 5.62 26.39 3.6 1 !

18.58 1.X x,x x,x 24.45 19,49 32,35 14.52 4.61 :(, X

20.56 17.57 1,Jl 23.44 18.48 31.34 IJ 11

6.1 19.55 16.56 x,x 22,43 1' .i ' !

Table 4.8: Solution table for m = 6 (contin ue)

10 9

All the loops finished ?

Figure 4.3: Verification of the periodicity algorithm

110

m = 7
Last pair of SIGMA's 126-126 OK

m = 8
Last pair of SIGMA's 254-254 OK

m = 9

Last pair of SIGMA's 510-510 OK

m = 10
Last pair of SIGMA's : 1022-1022 OK

Table 4.9: Verification outputs for 7 ~ m ~ 10

4.4 Discussion and summary

A new algorithm called periodicity algorithm to locate error positions

is introduced. This algorithm now can only be used for double error cor-

recting. The periodicity algorithm is based on the fact that the roots of

1 + o-~ x + o-;x2 = 0 are not randomly distributed. All of the possible roots

are distributed according to certain patterns. The roots are on the solution

chains. The roots have the periodicity of N shifts on the solution chains.

Increment is 1 for each shift on the chain. From the leader table, the er-

ror location numbers can be calculated with fewer than 8 additions. No

multiplication is needed.

111

Chapter 5

Comparison with other
methods

5.1 General discussion

In terms of monetary expenses, microprocessor implementation is cheaper

than VLSI, especially for low volume production. Furthermore, the micro-

processor implementation is easily programmable. With the development of

specialized manufacturing techniques for microprocessora' , high-speed im­

plementations are also available using assembly language. As long as the

microprocessor speed meets the requirements of the applications, micropro-

cessor implementation seems to be the better choice.

In this chapter, the discussion is mainly about the microprocessor imple-

mentation of RS error locating. The look-up table, binary decision fast Chien

search and Okano's methods will be studied in detail, and an implementa­

1 For example, 486 CPU can be run at 50 MHz clock [38][39]. TMS320C30 can provide
the speed at 50 nS single cycle execution [40].

112

t ion in 486 assemb ly language of the periodicity algorithm will be described.

Comparisons among those methods are also included.

5.1.1 Look-up table method

As mentioned in chapter 3, Chien search needs lots of multiplications

and additions to locate all of the errors . Avoiding or reducing the heavy

computational load of Chien search has been a hot topic in the RS decoding

research community for a long time.

The look-up table method is the easiest way to avoid the computational

load . This methods performs Chien search in advance and stores the results

in a ROM. Thus the table in the ROM contains the mapping relationship

between all the possib le values of the coefficients and the corresponding error

positions, and the coefficients can be mapped onto the error posit ions direct ly.

The table forming operations are performed off-line. When locating errors,

the coefficients of the error location polynomial will be used as the address

to the table in the ROM, and the error positions will be given at the data

output of the ROM. The only operation needed is to read the table. This

method is the fastest method for RS error locat ing. It needs only the tab le

(ROM) access delay time to give out the error positions.

However, as the error locator polynomial of a T-error correcting RS

code will have NT possible vectors of the coefficient values, the memory

space of such table will be NT symbols . While N increases, the memory

113

space requirements increases very fast. For example, if m = 8, T = 2, then

N = 255, the memory space of the table is NT = 2552 = 65025 symbols, or

almost 65 Kbytes. For a 2-error correcting RS decoder, such memory space is

not affordable. Therefore, even though the look-up table method can provide

the fastest speed for RS error locating, it is not feasible for many practical

applications, especially for large value of m.

5.1.2 B inary de cis ion fast Chien search

In 1987, Shayan [30] proposed a binary decision approach to fast Chien

search. In his approach, a binary table was designed for double error correct­

ing RS codes, in which each address of the table has an one bit value that is

either 0 or 1. When the value is 0, Chien search is performed for a specified

half of the Galois field, otherwise, Chien search is performed on the other

half of the field. As soon as the first error position is found, the second error

position can be calculated by the formula a2 = XIX2. Clearly, this approach

can save half of Chien search time because Chien search is performed over

only half of the Galois field for the first error position. Moreover, there is

no search for the second error position. Since Chien search takes so much

time and the time is increasing quadratically with N, the time saving can

be significant. This approach needs one bit for each address instead of one

symbol needed by direct look-up table. However, the space factor of N 2 bits

is still large. This issue is a big concern for applications with large N.

114

Shayan [4] introduced the microprocessor implementation of the binary

decision fast Chien search, and implemented the method on Intel 8086/286

as well as TMS320C25 microprocessors. With the binary decision fast Chien

search, the time required to decode N symbols was about 17 ms on In­

tel 8086/286 microprocessor.

5.1.3 Okano's ROM method

Okano and Imai [31] gave a VLSI implementation of decoder using

a multi -ROM method. In this method, several ROM 's were used for the

parallel processing to achieve high speed. The length of the memory is N

for each ROM so that the total memory space depends on the number of the

ROM's used. Because it uses multi-Rfrlvl's to get the parallel processing, this

method has relatively high speed. Although Okano and Imai implemented

the RS decoders using VLSI, the method is also suitable for microprocessor

implementations. Here, the Okano's ROM method is described for the case

of double error correcting codes (T = 2).

For

let x = (I21Y.

Then

is obtained,

y2 + y + C; = 0

115

(5.1)

Performing exhaustive calculations on Eq, 5.1 yields all of the possible

roots for YJ. and Y;. Originally Okano and Imai put the roots into two ROM's

which need 2N symbols. By using the ROM's, according to a given Gi , two

roots YJ. and Y; can be obtained directly, and the real roots are then given by

Xl = 0"21 YJ. and X 2 = 0"2lY2 . Above discussion is based on it that both roots

Yl and Y2 can be obtained from the ROM table. For comparison purpose, let

us consider Okano's method in another way, which uses only N memory to

store all of the possible values for one of the roots, Yl , and then calculates the

corresponding Xl. One can then apply X lX2 = 0"2 to obtain the other root,

X 2 • For this alternative, only N symbols of memory space will be needed,

but it will need one more multiplication.

To be compared with the periodicity algorithm, let us consider the opera­

tions required by Okano 's method in another way. The Galois field multipli­

cat ion can be consid ered as the addition of the power numbers. Based on this,

th e Okano 's method can be expressed as in Fig. 5.1. From the Fig . 5.1, it is

clear that Okano's ROM method needs 8 additions and 5 decision operations

for the worst case.

116

Figure 5.1: Operations needed by Okano's ROMmethod

117

5.2 Microprocessor implementation of peri­
odicity algorithm

In this thesis, the periodicity algorithm described in chapter 3, was

implemented in assembly language on a 486 PC, though, the given design

idea is also valid for other microprocessors. The discussion here will focus

on the implementation of the periodicity algorithm itself. Time estimation

is made based on the count of the 486 microprocessor cycles. Information

about the clock cycles used by the 486 microprocessors is given in [38][39].

Fig. 5.2 gives the flow chart for the implementation. To make the flow chart

match with assembly language, corresponding source code is given in each

block . Before calling the PA routine shown in Fig . 5.2, some preparations

have to be done . They are

1. Off-line leader table (LT) calculation,

2. Store LT into the memory starting at the address in [DI],

3. Put the value of the code lengt h into CX register,

4. Put the value of it into BX register,

5. Put the value of it into AX register.

Those preparations are the tasks of the calling routine. For the PA routine,

most operations except table looking-up are performed within the CPU reg-

isters to increase running speed . The 486 assembly language source codes of

118

Figur e 5.2: Micropro cessor implementation of periodicity algorithm

119

the PA routine are listed in the Table 5.1.

The source codes in Table 5.1 have comments for every line. The basic

idea of the assembly routine is described by those comments. Here, some key

statements are explained as follows:

• "PUSH AX" is to save the value of i 2 in AX register because the value

will be used to calculate the second error position E2 •

• "MOV or, LL" sets the starting point of the leader table. The calling

routine has arranged the off-line calculation of the LT. All the values

of the leaders are stored sequentially after the starting point.

• "MOV OX, 1" and "AND OX, AX" are to test whether i 2 is even or not.

• "SHR AX, 1" is to perform dividing by 2. This operation has i 2 ~ i 2 /2.

At this point, AX register contains the value of imapping.

• The preparation procedure sets the value of it into BX register. "CMP

BX, AX" performs the comparison between it and imapping. "JG" gives

branching.

• The table reading operation is "MOV OL, [BX+oI]". DI register con­

tains the starting pointer of LT (base pointer). The content of the BX

register is used as the offset of the pointer. Then "[BX+oI]" gives the

combined pointer to the value of the leader in LT.

120

PUSH AX
MoV 01, LT_
MoV OX, 1
AND OX, AX
JZ EVEN
ADD AX, CX

EVEN: SHR AX, 1
CMP BX, AX
JG GREAT1
ADD BX, CX

GREAT!: SUB BX, AX
MoV DL, [BX+DI]
CMP OX, OFFH
JNE OK
MoV AX, 0

RET
OK: CMP OX, AX

JG GREAT2
ADD DX, CX

GREAT2 : SUB DX, AX
POP AX
ADD AX, OX
CMP CX, AX
JG NO_ADD
SHL CL, 1

NO_ADD : SUB CX, AX
MOV AX, 0
RET

save AX (i2) for later use
set LT starting point
prepare to test even or not
if even, last bit is 0

whether even ?
(i2) + n

i2 shifted right
(it) > (i mapping) ?

(d I) + n
(d t) - Ci mapping)
table reading
"x " got?
if not, then jump to " OK"
if yes, return. "x" is in OX
return with no solution
(i leader) > (i mapping) ?

n + (i leader)
(i leader) - Ci mapping)
restore (i2) into AX
(i2) + E1

add n ? or not ?

n + n

n - ((i2) + E1), E2 is in CX

ready to return
return with solutions

Ta ble 5.1: Source codes of th e PA implementation

121

• The value of the leader is moved into DX register. Some of the lead­

ers represent "no solution". In the PA routine, such cases are marked

by the value of "OFFH". If the hexadecimal integer "OFFH" is given, it

means that a non-solution chain is met. Operation "CMP DX, OFFH"

tests whether a non-solution chain is met or not. If yes, the hexadec­

imal value OFFH is in DX register to represent no solution. If not, the

statement labeled "OK" will be executed .

• The "POP AX" operation restores the value of i 2 into AX register. The

PUSH and POP must be paired.

When the PA routine returns, the values of E1 and E2 are in DX and

CX registers .

5.3 Time estimation

Table 5.2 shows the clock cycles needed by each operation. The time

parameters are given in [41]. Note that Table. 5.2 is same as Table. 5.1

except the comments are replaced by the timing estimates for each operation.

Considering the worst case during the execution, the time of those statements

marked by (*) should be accumulated. That result will be the worst case

time, that is, 72 clock cycles. This has included the address calculations.

However , if the code fetch is considered, more cycles have to be used . The

total cycles will be less than 100 cycles. The Intel 486 can work at 50 MHz

122

EVEN:

GREAT1 :

OK:

GREAT2:

PUSH
MOV

MOV
AND
JZ
ADD
SHR

CMP
JG

ADD
SUB
MQV

CMP
JNE

MOV
RET

CMP
JG

ADD
SUB

POP
ADD

CMP
JG

SHL
SUB
MQV

RET

AX
Dr, LI_

DX, 1
DX, AX
EVEN
AX, CX
AX, 1

BX, AX
GREAT1

BX, ex
BX, AX
DL, [BX+DI]

DX, OFFH
OK

AX, 0

DX, AX
GREAT2

DX, ex
DX, AX

AX
AX, DX
ex, AX

NO_ADD
ex, 1

ex, AX
AX, 0

2 clock cycles (*)

2 clock cycles (*)

2 clock cycles (*)
2 clock cycles (*)
3 for no jump, 7 for jump (*)

2 clock cycles
3 clock cycles (*)

2 clock cycles (*)
3 for no jump, 7 for jump (*)

2 clock cycles
2 clock cycles (*)
4 clock cycles (*)

2 clock cycles (*)
3 for no jump, 7 for jump (*)
2 clock cycles
10 clock cycles
2 clock cycles (*)
3 for no jump, 7 for jump (*)

2 clock cycles
2 clock cycles (*)

4 clock cycles (*)
2 clock cycles (*)

2 clock cycles (*)
3 for no jump, 7 for jump (*)

3 clock cycles
2 clock cycles (*)

2 clock cycles (*)
10 clock cycles (*)

Ta ble 5.2: T ime est imat ion of the PA assembly rou tin e

123

clock [38]. Hence, if the PA routine is run on Intel 486 CPU, the time

needed will be about 2 /lS, yielding a throughput of double error locating

of 0.5 million/so For a general purpose microprocessor, this throughput is

rather fast.

An estimation of the error locating time using PA and Chien search for

Eq 4.2 is shown in Fig. 5.3 and Fig. 5.4 for m = 3,4,5,6,7 and 8. Note that

Fig. 5.4 is in expanded scale. It is noted that the expanded scale shown in

Fig. 5.4 is the segment of 0 to 1ms on Fig. 5.3. On this expanded scale chart,

the relationship between the curves can be seen more clearly.

The above running time test is done on DEC 3100 workstation, with

ULTRIX operating system V4.0 (Rev. 179) and C language. By using timing

profiles provided by the system command "profile", the factor of time-sharing

can be eliminated, and the exact CPU time used by each function can be

determined. To be more precise, 100,000 loops were arranged for each test.

A sample output of profile (for Chien search, m = 7) is listed in Table 5.3.

It is clear that as m increases, Chien search time increases quadratically

with N while the PA time remains almost constant. From those two figures,

it can be estimated that for m = 8, Chien search might need 800 times more

time than that used by the periodicity algorithm.

124

0.018

0.016

O.014 r

0.012

"0
c

i 0.01

"0

~

.~ 0.008

~
~

0.006

0.004

0.002

0
3

I
/

Chien search -+

~ periodicity algorithm

Figure 5.3: Time comparison between Chien search and PA

125

X10-3

1

l0.9

0.8

+-- Chi ou se arc h

0.7

"0 0.6c::

1
"0

~ 0.5

.~
§

0.4
~

0.3

0.2

0.1

1 periodicity algorithm

Figure 5.4: Time comparison betwe en Chien search and PA (expanded scale)

126

File Name: TC7. time

testing the exact time used by Chien search method for m = 7.
(100,000 loops set for the test)

Profile listing generated Sat Jul 31 14:29:56 1993 with:
prof tc mon.out

-p [rocedures] using pc-sampling;
sorted in descending order by total time spent in each procedure;
unexecuted procedures excluded

Each sample covers 8.00 byte Cs) for 0.0012% of 811.9500 seconds

%time seconds cum % cum sec procedure (file)

46.2 375.2900 46.2 375.29 chien_p (chien_p. c)

41.0 332.6900 87.2 707.98 gLmultp_l (add . c)

12.8 103.7900 100 .0 811.77 gf_add (add . c)
0.0 0.1700 100.0 811.94 main (tc . c)

0.0 0.0100 100.0 811.95 write (. ./write.s)

Table 5.3: Output of profile for measuring time

127

5 .4 Comparisons among discussed methods

Since the periodicity algorithm can only be used for double error correcting

(T = 2), for convenience, the comparisons are made only for the discussed

methods on case of T = 2.

1. Chien search needs lots of multiplications and additions, but no mem­

ory is needed . The disadvantage is that the operations will quadrati­

cally increase when N increases.

2. Look-up table method needs N 2 memory space, but no operation is

needed. This is the fastest method . The time delay is only the ROM

access time. However, when Nor T increases, the memory space will

terribly increase. This is the big concern of the feasib ility of the met hod.

3. Okano's ROM method needs N memory space to store intermediate

roots Yi or Y2 . To obtain the desired roots Xl and X 2 , it needs eight

additions and five decision operations.

4. The periodicity algorithm needs N memory space to store the lead­

ers of the chains. With fewer than eight additions and four decis ion

operations, two error location numbers can be calcu lated.

Upon above discussion, it can be concluded that for the cases of double

error correcting, the periodicity algorithm needs much fewer operations than

128

needed by Chien search (N2 : 8), and much less memory space than needed

by look-up table and the binary decision fast Chien search (N 2
: N). Com­

pared with Okano's method, the periodicity algorithm needs same memory

as Okano's method. However, Okano's method needs one more decision op­

eration than the periodicity algorithm. Therefore, the periodicity algorithm

is the best one among those methods.

5.5 Summary

Several schemes for error locating are compared in this chapter. The

periodicity algorithm is implemented on a 486 PC. The executing time is

estimated. Based on the time curves for Chien search and the periodicity

algorithm, it is concluded that the time required by the periodicity algorithm

is much shorter than the time needed by Chien search. If the case of m = 8

is used as the example, the periodicity algorithm needs 1800 of the time used

by Chien search. According to the comparisons, the periodicity algorithm is

the best one among those methods.

129

Chapter 6

Conclusion and Future Work

This thesis presents an RS code simulator which is implemented in C

language under UNIX operating system. To find an optimal RS code for a

certain application, the user can select:

1. Peterson's or Berlekamp's method for decoding,

2. the symbol length (m bits) where 3 ::; m ::; 8, and

3. the correcting capability (T symbols), where 1 ::; T ::; 16.

The simulator starts encoding the user's message into a systematic code­

word . An error pattern of arbitrary weight (v) randomly chosen by the user

is added to the codeword and the resulted received word is formed. The sim­

ulator decodes the received word by using Peterson's or Berlekamp's method

according to the user selection, to construct the error locator polynomial.

The Chien search technique is used to obtain the error location numbers

130

which are the roots of the error locator polynomial. The simulator produces

a decoded word which is subject to:

1. if v ~ T, the decoded word is the codeword when it is divisible by the

generator polynomial G(x), and

2. if v > T, the decoded word may not be the codeword even it is divisible

by G(x).

This can be explained by the fact that when v is exactly equal to T, the

decoded word is the codeword. However, when v > T the error pattern may

be a codeword, then, the decoded word is divisible by G(x). But it is not

a codeword. Furthermore, when v > T, the decoded word always contains

more errors than the actual error pattern because the decoder makes more

errors. This new error pattern may sometimes be a codeword. Hence, the

decoded word is still divisible by G(x) but it is not the codeword.

By using Chien search to obtain all the possible roots of the error locator

polynomial, it is found that for the double error correcting case (T = 2), those

roots are not randomly distributed, but they follow certain rules. Based on

these rules, the periodicity algorithm is introduced and its validity is verified

by exhaustive computer simulations.

The periodicity algorithm states:

131

1. All the possible roots of the double error locator polynomial always

exists on solution chains .

2. Each solution chain repeats itself in a period of N shifts.

3. On each solution chain, the error position numbers are changed by an

increment or decrement of 1, depending on the row position index is

increased or decreased by 1, respectively.

4. In regard to the second root , the constant product property is used.

With fewer than 8 additions, 4 decision operations and only N symbols of

memory space required, the periodicity algorithm outperforms Chien search

and the binary decision fast Chien search techniques in terms of the decoding

t ime. Most of all it also outperforms the Okano's analytical solutions by a

decision operation. Of course, the look-up table is the fastest in terms of

the decoding time but its memory space required is N 2
• This will limit

its use when N is large . Therefore, it is concluded that the periodicity

algorithm is the optimal solution for both decoding time and memory space.

This algorithm is found to be very suitable for use in microprocessor based

decoders.

The periodicity algorithm is now available for T ::; 2. For the cases of

T > 2, it may be anticipated that the error location numbers may not be

distributed randomly. This may be th e future work on e may want to look

into.

132

Bibliography

[1] Hamming, R.W., "Error detecting and error correcting codes", Bell Sys­

tem Tech. J., 29, pp.147-160 (1950).

[2] Reed, LS., and Solomon, G., "Polynomial codes over certain finite

fields", J. Soc. Ind. Appl. Math., 8, pp.300-304 (1960). Reprinted in

[3].

[3] Blake, LF., "Algebraic coding theory: history and development", Dow­

den, Hutchingon & Ross Inc., (1973).

[4] Shayan, Y.R., Le-Ngoc, T., "Design of Reed-Solomon (16,12) CODEC

for North American advanced train control system", IEEE Trans. Ve­

hicular Tech., vol.39, no.d, ppAOO-409, Nov. 1990.

[5] Le-Ngoc, S., Le-Ngoc, T. and Bhargawa, V.K., "Design aspects and per­

formance evaluation of acts mobile data link", IEEE Trans. Consumer

Electronics, vo1.38, pp.842-849, Nov. 1992.

[6] Le-Ngoc, S., "Design of an adaptive coding and retransmission strategy

for a multipath fading channel" , presented at 40th Anniversary of Vehic-

133

ular Technology Conference, May 6-9, 1990, Florida, USA. The revised

version will appear on IEEE Journal of Ocean Engineering.

[7] Whitaker, S.R., Canaris, J.A., "Reed Solomon VLSI Codec for advanced

television", IEEE Trans. Circuits and Systems for Video Tech., voLl,

no.2, pp.230-236, June 1991.

[8] Hocquenghem, A., "Code correcteurs d'erreurs", Chiffres, 2, pp.147-156

(1959). Reprinted in [3].

[9] Bose, R.C., and Ray-Chaudhuri, D.K. "On a class of error correcting

binary group codes", Inform. Contr., 3, pp.68-79 (1960). Reprinted in

[3].

[10] Bose, R.C., and Ray-Chaudhuri, D.K. "Further results on error cor­

recting binary group codes", Inform. Contr., 3, pp.279-290 (1960).

Reprinted in [3].

[11] Blahut, R.E., "Theory and practice of error control codes", Addison­

Wesley publishing comp., 1st Ed., p.210, 1983.

[12] Peterson, W.W., "Encoding and error correction procedures for the

Bose-Chaudhuri codes", IRE Trans. Inf. Theory, vol.IT-6, pp.459-470,

Sept. 1960. Reprinted in [3].

[13] Berlekamp, E.R., "On decoding binary Bose-Chaudhuri-Hocquenghem

codes", IEEE Trans. Inf. Theory, IT-11, pp.577-580, Oct. 1965.

134

[14] Michelson, A.M. and Levesque, A.H., "Error-control techniques for dig­

ital communication", John Wiley & Sons Inc., 1985.

[15] Mandelbaum, D., "On decoding of Reed-Solomon codes", IEEE Trans.

Inform. Theory, IT-17, pp.707-712, 1971.

[16] Blahut, R.E., "Transform techniques for error-control codes", IBM J.

Res. Develop. , vo1.23, pp.299-315, 1979.

[17] Rader, C.M., "Discrete convolution via mersenne transforms", IEEE

Trans. Comput., voI.C-21, pp.1269-1273, Dec. 1972.

[18] Gore, W.C., "Transmit t ing binary symbols with Reed-Solomon code",

Johns-Hopkins, EE report, No.72-5, April 1973.

[19] Michelson, A.A., "A new decoder for the Reed-Solomon codes using

a fast transform technique", Systems Engineering Technical Memoran­

dum No.52, Electronic Systems Group, Eastern Division GTE Sylvania,

Waltham, MA, Aug. 1975.

[20] Michelson, A.A., "A fast transform in some Galois fields and an ap­

plication to decoding Reed-Solomon codes", IEEE Abstr. of Papers:

IEEE International Symposium on Information Theory, Ronneby, Swe­

den , 1976.

135

[21] Reed, I.S., et ai, "The fast decoding of Reed-Solomon codes using Fer­

mat theoretic transforms and continued fractions", IEEE Trans. Inform.

Theory, vol.IT-24, no.1, pp.100-106, Jan. 1978.

[22] Miller, R.L., Truong, T.K., et ai, "Efficient program for decoding the

(255,233) Reed-Solomon code over GF(28
) with both errors and era­

sures, using transform decoding", lEE Proc., vo1.127,Pt.E, no.4, pp.136-

142, July 1980.

[23] Berlekamp, E.R. "Bit-serial Reed-Solomon encoders" IEEE Trans. In­

form. Theory, vo1.28, no.6, pp.869-874, Nov. 1982.

[24] Hsu, I.S., "The VLSI implementation of a Reed-Solomon encoder us­

ing Berlekamp's bit-serial multiplier algorithm" IEEE Trans. Compt.,

vo1.33, no.10, Oct. 1984.

[25] Seroussi, G., "A systolic Reed-Solomon encoder", IEEE Trans. Inform.

Theory, vo1.37, no.4, p.1217-1220, July 1991.

[26] Truong, T.K., "Fast technique for computing syndromes of BCH and

Reed-Solomon codes", Electronics Letters, vol.15, no.22, pp. 720-721,

Oct. 1979.

[27] Cooper, A.B., "Direct solution of BCH decoding equations", in

Arikan,E. (ed.):"Communication, control and signal processing", pp.281­

286, (Elsevier, Amsterdam, 1990).

136

[28J Cooper, A.B., "Finding BCH error locator polynomials in one step",

Electronics Letters, vo1.27, no.22, pp.2090-2091, Oct. 1991.

[29J Chien, R.T., "Cyclic decoding procedure for the Bose-Chaudhuri­

Hocqwenghem codes", IEEE Trans. Inf. Theory, vol.IT-10, pp.357­

363,October 1964.

[30J Shayan, Y.R. and Le-Ngoc, T., "Binary decision approach to fast Chien

search for software decoding of BCH codes", lEE Proc., vo1.134, no.6,

Oct. 1987.

[31J Okano, H., Imai. H., "A construction method of high-speed decoders

using ROM's for Bose-Chaudhuri-Hocquenghem and Reed-Solomon

codes", IEEE Trans. Comput., Vo1.36,No.10, pp.1165-1l71, (Oct. 1987).

[32J Blahut, R.E., "Transform decoding without transforms", presented at

the Tenth IEEE Communication Theory Workshop. Cypress Gardens,

FL,1980.

[33J Blahut, R.E., "A universal Reed-Solomon decoder", IBM J. Res. De­

velop., vo1.28, no.2, pp.150-158, March 1984.

[34J Sorger, U.K., " A new Reed-Solomon code decoding algorithm based on

Newton's interpolation", IEEE Trans. Inform. Theory, vol.IT-39, no.2,

pp.358-365, (Mar. 1993).

137

[35] Lin, S. and Costello, D.J., "Error control coding: fundamentals and

applications", Prentice Hall, New Jersey, USA (1983).

[36] Le-Ngoc, S., "Information theory and coding", Lecture notes, Faculty

of Engineering, MUN, 1992.

[37] Peterson, W.W., Weldon, E.J., "Error-correcting codes", 2nd Ed., MIT

Press, Cambridge, Mass., USA, 1970.

[38] Intel Corporation, "Intel Microprocessors", Volumn 1, 1992.

[39] Intel Corporation, "Intel Microprocessors", Volumn 2, 1992.

[40] Texas Instruments Incorporation, "TMS320C3x User's Guide", 1992.

[41] Microsoft Corperation, "Microsoft Macro Assembler 5.1 Reference",

1989.

138

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Title Page
	0005_Copyright Information
	0006_Dedication
	0007_Acknowledgements
	0008_Abstract
	0009_Abstract iii
	0010_Table of Contents
	0011_Table of Contents v
	0012_Table of Contents vi
	0013_List of Figures
	0014_List of Figures viii
	0015_List of Tables
	0016_List of Tables x
	0017_List of Symbols
	0018_List of Symbols xii
	0019_Chapter 1 - Page 1
	0020_Page 2
	0021_Page 3
	0022_Page 4
	0023_Page 5
	0024_Page 6
	0025_Page 7
	0026_Page 8
	0027_Page 9
	0028_Page 10
	0029_Page 11
	0030_Page 12
	0031_Chapter 2 - Page 13
	0032_Page 14
	0033_Page 15
	0034_Page 16
	0035_Page 17
	0036_Page 18
	0037_Page 19
	0038_Page 20
	0039_Page 21
	0040_Page 22
	0041_Page 23
	0042_Page 24
	0043_Page 25
	0044_Page 26
	0045_Page 27
	0046_Page 28
	0047_Chapter 3 - Page 29
	0048_Page 30
	0049_Page 31
	0050_Page 32
	0051_Page 33
	0052_Page 34
	0053_Page 35
	0054_Page 36
	0055_Page 37
	0056_Page 38
	0057_Page 39
	0058_Page 40
	0059_Page 41
	0060_Page 42
	0061_Page 43
	0062_Page 44
	0063_Page 45
	0064_Page 46
	0065_Page 47
	0066_Page 48
	0067_Page 49
	0068_Page 50
	0069_Page 51
	0070_Page 52
	0071_Page 53
	0072_Page 54
	0073_Page 55
	0074_Page 56
	0075_Page 57
	0076_Page 58
	0077_Page 59
	0078_Page 60
	0079_Page 61
	0080_Page 62
	0081_Page 63
	0082_Page 64
	0083_Page 65
	0084_Page 66
	0085_Page 67
	0086_Page 68
	0087_Page 69
	0088_Page 70
	0089_Page 71
	0090_Page 72
	0091_Page 73
	0092_Page 74
	0093_Page 75
	0094_Page 76
	0095_Page 77
	0096_Page 78
	0097_Page 79
	0098_Page 80
	0099_Page 81
	0100_Page 82
	0101_Page 83
	0102_Page 84
	0103_Page 85
	0104_Page 86
	0105_Chapter 4 - Page 87
	0106_Page 88
	0107_Page 89
	0108_Page 90
	0109_Page 91
	0110_Page 92
	0111_Page 93
	0112_Page 94
	0113_Page 95
	0114_Page 96
	0115_Page 97
	0116_Page 98
	0117_Page 99
	0118_Page 100
	0119_Page 101
	0120_Page 102
	0121_Page 103
	0122_Page 104
	0123_Page 105
	0124_Page 106
	0125_Page 107
	0126_Page 108
	0127_Page 109
	0128_Page 110
	0129_Page 111
	0130_Chapter 5 - Page 112
	0131_Page 113
	0132_Page 114
	0133_Page 115
	0134_Page 116
	0135_Page 117
	0136_Page 118
	0137_Page 119
	0138_Page 120
	0139_Page 121
	0140_Page 122
	0141_Page 123
	0142_Page 124
	0143_Page 125
	0144_Page 126
	0145_Page 127
	0146_Page 128
	0147_Page 129
	0148_Chapter 6 - Page 130
	0149_Page 131
	0150_Page 132
	0151_Bibliography
	0152_Bibliography ii
	0153_Bibliography iii
	0154_Bibliography iv
	0155_Bibliography v
	0156_Bibliography vi
	0157_Blank Page
	0158_Inside Back Cover
	0159_Back Cover

