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Abstract

Communication channels are usually affected by various kinds of noise.
As a result, errors occur in data transmissions. Reed-Solomon (RS) codes,
as other channel codings, are widely used to eliminate the errors due to its
optimal characteristics in both Hamming distance and structure but most of

all its capability of correcting both random and burst errors.

The selection of the best RS code for a specific communication channel
is always a major issue in system design. Hence, this thesis introduces and
implements an RS code simulator to study a wide range of RS codes. The
simulator first encodes the user’s message into a codeword. The user can
choose the symbol length m from 3 bits up to 8 bits or the block length N
from 7 symbols up to 255 symbols, and the error correcting capability 7" of
up to 16 random errored symbols. Then the user enters an error pattern of
arbitrary weight which the simulator adds to the generated codeword. The
resulting received word is then decoded. Either the direct (Peterson’s) or
iterative (Berlekamp’s) method is used to construct the error locator polyno-
mial. Only the Chien search is used as a root search technique for the error

locator polynomial. This simulator does not handle erasures.

Commonly, Chien search is used to find out all the possible roots of the

error locator polynomial. It is found that for the double error correcting case



(T = 2) these roots are not randomly distributed but they follow certain
patterns. Based on these patterns, the periodicity algorithm is introduced

and its validity is verified by p

With fewer than 8 additions, 4 decision operations and only N symbols of
memory space required, the periodicity algorithm outperforms Chien search
and the binary decision fast Chien search techniques in terms of decoding
time. Most of all it also outperforms the Okano’s analytical solutions by
a decision operation. Of course, the look-up table is the fastest in terms
of the decoding time but its memory space required is N2. This will limit
its use when N is large. Therefore, it is concluded that the periodicity
algorithm is the optimal solution for both decoding time and memory space.
This algorithm is found to be very suitable for use in microprocessor based

decoders.
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Chapter 1

Introduction

1.1 Statement of the problem

Most communication channels are affected by various kinds of noise.
Error correcting codes were introduced to get rid of the errors caused by

noise. In the early 1950’s H ing codes [1] were proposed, marking a new

era in the error correcting codes. In 1960, Reed and Solomon [2] introduced
their polynomial codes recently known as the Reed-Solomon (RS) codes. RS
codes are a class of optimal error correcting codes in the sense that the codes

have the maximum distance [3].

RS codes have many applications, such as land mobile communications
[4](5), marine data communications [6] and even image transmission in digital
television systems [7]. When designing an RS code for a certain application,
the designer may want to examine his code to see whether it can meet the

requirements of the application. He may need an RS code simulator to help



him evaluate the performance of various codes and select the best code for

his particular li Such a code simul can also allow us to verify

different properties of the RS codes, or even find some new decoding meth-
ods. For example, it can be used to test time characteristics of Peterson’s
and Berlekamp’s methods. For different fixed error correcting capability T',
when the actual error number v is changing, the simulator can give us time
estimates for the methods. Those results provide a sound basis for the se-
lection among various choices for a certain application. In response to those

needs, an RS code simulator is implemented in this thesis.

For syndrome based RS decoding, Chien search is normally performed
to obtain the error location numbers. This method is the main obstacle to
high speed RS decoding. Though it was believed that the roots of the error
locator polynomials were randomly distributed, it is shown in this thesis
that for the cases of two errors, the roots of the error locator polynomials
are distributed according to certain patterns. This shows a possibility of
developing a new algorithm to obtain the error location numbers. With this
idea, a new algorithm called the periodicity algorithm is proposed for RS
double error correction. The new algorithm requires an order of magnitude

fewer operations than those required by Chien search.



1.2 Literature review

In this section, we first review general development and then syndrome
based decoding. After that, the time domain decoding will be briefly men-

tioned. Several encoding and Chien search schemes will also be discussed.

In 1959-60, the BCH codes were ind dently p d by H; h

Bose and Chaudhuri. In 1959, H hem [8] lized Hamming codes

and suggested his multi-error correcting codes. In 1960, Bose and Chaudhuri
[9][10] published two papers to present their work on such codes. These codes
are now known as the Bose-Chaudhuri-Hocquenghem (BCH) codes. Because
of the properties of these codes, it is said [3] that the BCH codes are perhaps

the most important class of codes known up to date.

At about the same time (manuscript received on January 21, 1959,
published in 1960), and independently of the Bose, Chaudhuri, and Hoc-
quenghem papers, Reed and Solomon [2] introduced a class of codes that
were later established as a subclass of BCH codes. The RS codes are optimal
in the sense that it is impossible for any linear codes with the same length to
have a distance greater than that of the Reed-Solomon codes. Indeed they

form an important and interesting subclass of BCH codes [11].

The encoding scheme introduced in Reed and Solomon’s paper [2] is

now known as systematic encoding. It divides the message by the generator



to get the remainder, then adds message and remainder together to get the

codeword. This scheme is still widely used today .

The BCH and RS decoding methods can be divided into two categories:
syndrome based decoding and time domain decoding. The syndrome based

methods are now reviewed.

In 1960, Peterson [12] suggested his ding and decodi dures for

the BCH codes. The encoder uses shift registers to construct the feedback
circuits for encoding. The registers are wired according to the generator poly-

nomial. The input of the feedback isters is the K-di ional message,

and the output is the N-dimensional codeword. As this encoding scheme
uses the serial operations, its encoding speed is limited by the serial feedback
operations. Peterson’s decoding algorithm was the first efficient decoding
algorithm for BCH codes. Since the RS codes are a subset of the BCH codes,
Peterson’s method can also be used for the RS codes. In his paper, Peterson
not only introduced the encoding and decoding algorithm, but also showed
that the BCH codes are cyclic. An evaluation of Peterson’s contribution is

given in Blake [3].

In 1965, Berlekamp [13] proposed his powerful iterative algorithm for de-
coding the BCH and RS codes. From a initial iteration table, the Berlekamp’s
algorithm calculates the coefficients of the error locator in 27 iterations. The

algorithm makes use of the intermediate iteration information to save many



operations over Galois fields, and thus needs considerably less computation
[3]. It was pointed out by Michelson and Levesque [14] that the Berlekamp’s
algorithm has a computational complexity that grows only linearly with the
number of errors to be corrected while that of the Peterson’s algorithm grows

with approximately the square of the number of errors to be corrected.

Peterson’s and Berlekamp’s methods are known as algebraic methods.
Besides the algebraic methods, the error locator polynomials can also be eval-
uated by transform methods. Since such methods are based on the transfor-
mation domain, they are also called transformation domain, spectral domain,
or, more commonly, frequency domain' methods. Both algebraic and trans-
form methods are considered as the syndrome based methods because their

error locator evaluations are based on the syndromes.

For about ten years after Reed and Solomon suggested the RS codes,

the techni developed for decoding the RS codes primarily dealt with
the raw data directly. In 1971, a frequency domain decoding method was
first proposed by Mandelbaum [15]. He made use of the Chinese remainder
theorem to perform the Galois field transform. After that, many researchers
focused on the frequency domain RS decoding methods.

More precisely, the term “frequency domain” is not very suitable because the transform
used is not the Fourier transform, but the Galois field transform. These two kinds of
transforms are not identical because the Galois field transform domain is not the same
as the Fourier frequency domain. However, since the terms of transform- or spectral- or

frequency-domains have been used for the same concept for many years, the terms are also
used here interchangeably.



As pointed out by Blahut [16], the major difficulty for the frequency
domain methods is that as the code length is not a power of 2, most of the
fast Fourier transform (FFT) algorithms cannot be used directly to yield fast

transforms.

In 1972, based on the theory of rings, Rader [17] suggested a more
efficient method to calculate the Galois field transform, called Rader’s Fermat
number-theoretic transform. Rader solved the problem of the fast Galois field
transform theoretically. It was because of Rader’s work that the frequency

domain RS decoding became feasible.

In 1973, based on Mandelbaum’s work, Gore [18] proposed his frequency
domain method to decode the Reed-Solomon codes. In his paper, he pointed
out that the information can be encoded into the frequency domain and also

that the error spectrum can be obtained by recursive extension.

From 1975 to 1976, Michelson [19](20] di 1 and impl d a fast

algorithm for the Galois field transform and used it to decode the RS codes.

This was the first implemented frequency domain RS decoder.

Afterwards, in 1978, Reed [21] used the Fermat theoretic transform
to implement a frequency domain RS decoder. This implementation was
done entirely in software. In [21], Reed made the comparison between the

transform method and the conventional method, and found that the trans-



formation method is faster.

In 1980, Miller and Truong [22] used Rader’s result and developed a soft-
ware implementation of an RS(255,223) decoder. In their paper, two tables
were given to compare the executing time between the transform method
and syndrome based method. It was shown that their decoder was three to

seven time faster than a syndrome based decoder.

At the same time the RS encoding techniques were also being developed.
In 1982, Berlekamp [23] proposed a bit-serial Reed-Solomon encoder which
used an array of registers instead of the shift registers wired according to
generator polynomial. As more registers are used in Berlekamp’s scheme, it

can use more intermediate information stored in the registers without doing

the feedback calculati In terms of ional lexity, this scheme

requires less processing time at the expense of using more memory space.

In 1984, based on Berlekamp’s scheme, Hsu [24] gave his VLSI imple-
mentation of the RS encoder. Hsu’s implementation has the advantages of
Berlekamp’s scheme. Moreover, by slightly changing the circuit structure,

Hsu’s VLSI implementation can also fit different parameters.

In 1991, Seroussi (25] suggested a systolic RS encoder. He directly used the
generator matrix for encoding, but he divided the hardware implementation

into many identical cells to reduce the design complexity. His work had been



patented previously (US patent 4 835 775 issued in May 1989).

The syndrome calculation is the first step for the syndrome based decod-
ing. Improving the speed of syndrome calculation can obviously increase the

decoding speed.

In 1979, Truong [26] suggested a fast method for calculating the syndromes
which utilizes the Chinese remainder theorem and Winograd’s algorithm. It
was reported that, for the 32 syndrome calculation of the RS(255,223,33),
Truong’s algorithm needs 90% fewer multiplications and 78% fewer additions

than the conventional method of syndrome calculation.

In 1990-91, Cooper [27](28] proposed a method to calculate the error
locator polynomial in one step. This method is based on modern algebra,
especially on ring theory and ideal theory. There is no given comparison for

this method.

Both algebraic and transformation methods need to locate the error

position numbers based on the error locators.

In 1964, Chien [29] proposed his substituting method to obtain the
roots of error locator polynomials. His method, which is called Chien search,
substitutes all possible values of z (from a® to &¥=!) into the error locator
and checks whether the result is equal to zero. Even after 30 years of its

proposition, Chien search is still a practical method available in finding the



roots of the error locator polynomials.

Avoiding the heavy calculation load of Chien search has been the hot
topic in RS decoding research community for a long time. One alternative
to Chien search is the look-up table method. However, as the error locator
polynomial for a T-error correcting RS code will have N possible vectors of
the coefficient values, the memory space of such table will be N7 symbols.
Therefore, even though the look-up table method can provide the fastest
speed for RS error locating, it is not feasible for many practical applications,

especially for large value of N.

In 1987, Shayan [30] suggested the binary decision approach to speed
up Chien search. In his approach, a binary table was designed for double
error correcting RS codes which needs one bit for each address instead of one
symbol (as in a direct look-up table). However, the space factor N? bits is

still large. This issue is a big concern for applications with large N.

In 1987, Okano and Imai [31] proposed a ROM method to decode the BCH
and RS codes which uses ROM tables and the self-defined operating cells to
speed up RS decoding. Besides their hardware implementation, they gave
the derivation to get the solutions of fourth or lower order equations over
GF(2™). Based on this derivation, some of the operations can be avoided in

hardware implementation.



For time domain methods, there are no transformation, no syndrome
calculation and no Chien search. The time domain decoder works on the

received raw data directly.

In 1980, Blahut [32] proposed the time domain method. Subsequently,
he used the method in RS decoding and suggested two structures called
“universal decoder structures” [33]. Although the time domain method can
avoid using syndrome calculation and Chien search, it must always work on
the raw data with vectors of length N rather than length T (for the case
of frequency domain methods). Therefore the time domain method must
works in N-dimensional space. Such operations limit the decoding speed of
the time domain method. Blahut [33] gave a time comparison for the two
methods, in which he concluded that there seems to be no obvious advantages
in decoding speed for time domain methods. However, he also pointed out
that the regular algorithm structure of time domain methods is very suitable

for VLSI impl i With the devel of VLSI techni the

time domain method may show its values in the near future.

There is a new development of the time domain decoding method in
1993. Based on the Berlekamp’s iterative method, Sorger [34] derived the
new algorithm of time domain RS decoding. His main contribution was to
modify the iterative method to merge several steps, then, the decoding time

can be saved.



1.3 Scope of the work

In this thesis, the main effort is put on the implementation of the RS

codes simulator. This simul is impl d in C language under UNIX

operating system. It can simulate an RS code with length of up to N = 255,
and on the error correcting capability up to 7' = 16. Both Peterson’s and

Berlekamp’s methods are used for the RS decoding.

In the implementation, Chien search is used to exhaustively calculate all
possible error location numbers, and solutions are saved in tables. From these
solution tables, for the cases of double error correction, it was discovered that
the roots of the error locator polynomials are not randomly distributed. With
certain patterns, the error location numbers are located on several chains,
and within the solution chains, those roots repeat themselves in the period

of N shifts.

Although Chien search is the widely used method for RS error locating, it
still needs a great deal of time to locate errors, moreover, the exact amount,
of time required is uncertain. This introduces difficulties for hardware im-
plementation, making Chien search the bottleneck of RS decoding. Based
on the periodicity property, a new algorithm called the periodicity algorithm
is proposed. With fewer than eight additions and four decision operations,
the periodicity algorithm can obtain the error location numbers easily. At

present, the periodicity algorithm is available for the case of double error

11



correction.

1.4 Organization of the thesis

This thesis consists of six chapters. Chapter 2, encoder and decoder of RS
codes, discusses the basic knowledge of the RS codes. Chapter 3, imple-
mentation of RS code simulator, presents the implementation of the RS code
simulator. Chapter 4, periodicity algorithm, proposes a new decoding algo-
rithm for the double error correcting RS codes. Chapter 5, comparison with
other methods, based on the comparison, concludes that the periodicity al-
gorithm needs the fewest operations among the available decoding methods,

thereby making it the best algorithm. Chapter 6 presents the conclusions.



Chapter 2
RS Code Simulator

The elementary knowledge of RS codes is discussed in this chapter to

provide the necessary back d. Most of the theor are stated without

proof, the details of which can be found in the proper references. In addition,

many examples are provided to make the discussion easily understandable.
2.1 Primitive polynomials

A polynomial f(z) with single variable = and with coefficients from GF(2)

is of the following form:

f@) = fo+ iz + foz® +--- + fna (2.1)
where f; =0 or 1 for 0 <i < N. The degree of a polynomial is the largest
power of & with a nonzero coefficient. For the polynomial above, if fy =1,

f(z) is a polynomial of degree N. The polynomial f(z) = fo is a zero degree



m_| primitive polynomial
3 [1+z+a°
4 [1+z+a*
el el
6 [1+z+a®
i

8

9

1

1+ +a’
1+a?+2%+a2"+2°
1+2%42°
0 1+1.3+le

Table 2.1: List of primitive polynomials
polynomial.

A polynomial i(z) over GF(2) of degree m is said to be irreducible over
GF(2) if i(z) is not divisible by any polynomial over GF(2) of degree less

than m but greater than zero.

An irreducible polynomial p(z) of degree m is said to be primitive if the
smallest positive integer N for which p(z) divides z¥ +1 is N = 2™ — 1. For
a given m, there may be more than one primitive polynomials of degree m
[35]. The primitive polynomials used in this thesis, which have the smallest
number of terms for each m, are given in Table 2.1. More detailed discussion

is given in [35].



2.2 Construction of Galois field GF(2™)

The method for constructing the Galois field of 2™ elements (m > 3) from
the binary field GF(2) is presented in this section. The process begins with

the two elements 0 and 1, from GF(2) and the an element . If the element

a satisfies a?"~1 = 1, it is called primitive element. Then the multiplication

“n

is introduced to give a sequence of powers of a as follows:

0-0=0,
0:-1=1-0=0,
1:1=1,
0:a=a:0=0,

After a®" =2, the elements will repeat due to the fact that o?™~' = 1 and

%ol

o =a.

Now we have the following set of el on which a multiplication ”




is defined:
P {0 L a0y on, 0], 22)

The element 1 is sometimes denoted as a®.
Example 2.1

Let m = 4. The polynomial p(z) = 1 + z + z* is a primitive polynomial
over GF(2). Set p(a) =1+ a+a* =0. Then o' =1 + a. Using this, we
can construct GF(2'). The elements of GF(2*) are given in Table 2.2. The
term o = 1 + a is used repeatedly to form the polynomial representations
for the elements for the elements of GF(2*). For example,

o’ =a-a'=a(l+a)=a+a?
o®=a-a® =ala+a?)=a+a’,

d=a-a®=ae’+a’)=a’+ta'=c*+1+a=1+a+a? - -

The complete set of the elements in GF(2') are given in Table 2.2.
The elements in Table 2.2 are represented in three forms, that is, power,
polynomial and 4-tuple representations. All those representations will be

used in the discussion of the RS codes.

The multiplications in Galois fields are actually performed by adding the
exponential powers together, that is, a'-a/ = a'+/. From the given GF value
a' to get its corresponding power value i, such operation is sometimes called

GF-log operation. Its inverse is called GF-anti-log operation denoted as GF-

16
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Table 2.2: Three representations for the elements of GF(2*)
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1. Therefore, the GF multiplications and divisions can be considered

log™
as the combination of GF-log, GF-log™ and several addition operations. It
should be noticed that the Galois field addition is carried out by a bitwise

XOR operation.

2.3 RS code definition

Reed-Solomon codes are an important subset of the BCH codes, which are

a large class of powerful cyclic codes. It has been shown by Blahut [11] that

the Reed-Solomon codes have maximum-distance and optimal structure [3].
The RS codes can be defined [35][36] as:

For any given positive integer m > 3 and the correcting capability T,
there exists an RS code such that
(i) code length N =2™ —1
(ii) number of information symbols K = N — 2T

(iif) minimum distance D = 2T + 1.

RS codes can correct T' random errors. The following types of burst

errors can also be corrected [36]:
o 1 burst of total length: b = (T — 1)m + 1 bits,

o or, 2 bursts of total length: b, = (T'— 3)m + 3 bits,



e or, p bursts of total length: b, = (T —2p+ 1)m + (2p — 1) bits.

where, p is an integer number, and (T'— 2p + 1) is positive.

2.4 RS encoding

There are many ways to construct the generator polynomial G(z). It can

be selected as in following form [11],
G(#) = (2 — a)(z — &%) -+ (= — &7T), (2.3)

More generally, one can choose any integer jo for a Reed-Solomon code [11].

The corresponding generator polynomial then has the form
G(z) = (z — a®)(z — a®*1)... (z — o¥+?T-1), (24)
It is clear that Eq. 2.3 is a special case of Eq. 2.4, where jo = 1.

When jo is properly selected, the generator polynomial G(z) will have the
symmetric coefficient format. This format of the G() is called self-reciprocal.
If jo = 2™~ — T, the self-reciprocal is given as [36][37]

2T+i-1
G)= ][ =+ o) =go+ iz + - + gar-12* ! + gara®”, (2:5)
i=l
where [ = 2™~' — T, and the coefficients are such that go = gor, 91 = gar—1,
--. In other words, the i-th and (2T — i)-th coefficients of the G(z) are

identical. Therefore, half of the memory space for storing the coefficients can

be saved.



There are also many ways to encode. In a non-systematic codeword
C(z), the message M(z) is not explicitly present. When the message M(z)
and the generator polynomial G(z) are given, non-systematic encoding can
be represented as [11]

C(z) = M(x)G(z). (26)

In the systematic encoding [35], the codeword is obtained by

2T M(z) _ B(z)
SleE A(z) + G 27
C(z) = 2" M(z) + B(z). (2.8)
where,
B(z) =bo+ b1z + - + byr_12® ! (2.9)

is the parity check polynomial. It is easy to see that the message M(z) is

explicitly present in codeword C(z).

In the implementation of the RS codes simulator, the self-reciprocal

generator polynomial and the systematic encoding method are used.

2.5 Noisy channel

Most channels are affected by various kinds of noise. Due to the noise, the

received word usually contains errors. The error pattern can be expressed as
E(z) = e+ €@+ +erqal L (2.10)
Those non-zero ¢;’s are caused by the noise [35].
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The received word V(z) can be expressed as

V(z) = C(z) + E(2), (2.11)
2.6 Decoding

A major concern of many coding theorists is the practical implementation

of ding and decodi hemes. For most schemes, the ding opera-

tion is simple and inexpensive in terms of its software and digital circuitry.
Unfortunately, the decoding operation is expensive and presents the biggest
obstacle in applications of error correcting codes [3]. Therefore, most effort

is focused towards decoding methods.

In this section, two of the most common algebraic methods, Peterson’s
and Berlekamp’s, are discussed. Both methods are used in the RS decoding

simulator which will be described later in this chapter.
2.6.1 Syndrome calculation

The syndrome calculation is the first step for RS decoding with algebraic

methods.

A self-reciprocal polynomial shown in Eq. 2.5 is chosen as the generator
polynomial G(z). The input to the RS decoder is the received codeword

which can be expressed as :

V(z) = C(a) + E(z) = Y via' (212)



where vy_; is the first received symbol.
The syndromes can be calculated by
Si = V(o) = C(d') + E(a’) = E(a') (2.13)
where N =T —1 <i < N+T. There are two ways to obtain the syndromes.
One is to calculate them directly by
S =V(') (2.14)

The other is to get the remainder r(z) from the received word, via Eq. 2.15

and then, calculate the syndromes [36].

Vi) _ o)
at = A@) + 56y (2.15)
Bi=ir(af):

In Eq 2.10, if only the non-zero e;’s are counted and E(z) has T" errors,

E(x) can be written as [36]
E(z) =YX, + Y2 Xo + -+ + Yr X7, (2.16)

where X; are the error location numbers and Y; are values of the errors.
According to Eq. 2.13 and Eq. 2.16, the partial syndromes S; are given by

S =YX+ Vo X] 4+ + Yp Xk
Si1 = VX L XM 4o Yo
Sz = iX{*? + Yo X3* + - + Yo X7 (2.17)

Siparoy = WX L Y X714 4 Y XPT,

where X; and Y; are unknown.
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2.6.2 Error locator polynomial

Peterson’s method

In 1960, Peterson [12] proposed his decoding method for BCH codes.
Since his method works directly on the received data, it is called Peterson’s
direct method. It can also be used for RS decoding. The detailed proof of

Peterson’s method is given in [12].

The error locator polynomial is

2(z) = (¢ + X1)(x + Xz) -+~ (z + X7)
(2.18)
=aT + oz ' + -+ oraz +or.
where
o1=Xi+Xo+---+Xr
02 = X1 Xa+ Xo X5+ + Xra X7

or = X1 Xy X
Those o; can be calculated from the known partial syndromes shown in

Eq 2.17. By [36] this gives
0rS; + or_1Sj41 + -+ + 015471 = Sis1s (2.19)

where | < j < T. Eq. 2.19 can then be re-written in linear equation form as

Si Styr Sz 00 S or Sty

Sty Siy2 Sz -0 Sur or-1 SiyT41

Siy2 Sus Sua o Sura or—2 | = | Sur+2 (2:20)
Si4r-1 St Sisr41 o Sipar—2 gy Sipar—1
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Now the o;’s can be solved. The solutions to Eq. 2.20, oy, -+, o7, are the

coefficients of the error locator polynomial shown in Eq. 2.18.

To solve Eq. 2.20, Gaussian elimination can be used. With Gaussian
elimination, an upper-right triangular matrix is obtained and the backward

substitutions are performed to get all the o;’s.
Berlekamp’s method

Peterson’s method is easy to understand. However, when implement-
ing a decoder, one has to use a method which is computationally efficient.
Peterson’s method requires a 7' by T' matrix inversion. When T is large,
this involves large numbers of arithmetic operations. By using Berlekamp’s
method, we can get around this problem. Berlekamp’s method uses iterations
to get the error locator. The detailed proof is given in [11]. Michelson and
Levesque [14] pointed out that Berlekamp’s algorithm has a computational
complexity that grows linearly with the number of errors to be corrected
while that of the Peterson’s method grows approximately proportional to

the square of the number of errors to be corrected.

Table 2.3 is the initial table for the iterations of the Berlekamp’s method.

Lin and Costello [35] give the Berlekamp’s iterative procedure as follows

1. According to the given received word V/(z), calculate each syndrome

Si. This step is the same as in Peterson’s method as shown in Eq. 2.14
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1

=

b [oWX) [d [ L [u—1
S e
T [50] 01] 0

Table 2.3: Initial table for Berlekamp’s iterations

or Eq. 2.15. When all the S;’s are calculated, the iteration begins.

In the pth iteration, 0*+)(z) is determined, where o()(z) is the p-th

minimum degree polynomial. It has following form:
oW(z) =1+ 0z + oMzt 4 d,(:)zl“,
where [, is the degree of o(¥)(z).

In each iteration:
If d, = 0, 0¥+)(z) = 0¥ (z), and l,41 = I, then, enter step 4.

If d, # 0, find another row p in the table such that d, # 0 and p — I,
has the maximum value. After selecting the p, the o(*+1)(z) can be

found by
o) (g) = oW(z) - d,, - d;l - z=0) . 5)(z).

Then, 1,41 = max(l,,l, + p — p).
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4. To prepare next loop of the iteration, calculate d,,:

duyr = Suga + Ug"“)swl e ”;:;:l)sy+2—l,+n

where, o) are the coefficients in o®+1)(z).

5. Enter next iteration loop, i.e. go to step 2.

Let v be the actual number of errors which happen in the noisy chan-
nel. If ' > v, Berlekamp’s method needs 27T iterations. If ' > v, it still
takes 27" iterations. But, some of the d, may be zero [35]. Once the d, is
zero, the corresponding iteration will be skipped, and the operations will be
saved. According to this, when the d, is zero twice, that means the T' > v,
the iteration loop can stop. For T' < v, the iterations stop at u = 2T so
that the degree of the o(¥) is at most 7. As T degree polynomial has no
more than T' roots, Berlekamp’s method can do nothing when 7' < ». All
these conclusions are derived in [35]. Fig. 3.8 presents the flow chart of the
Berlekamp’s method. It should be noted that the error locator polynomial
obtained by Berlekamp’s method is slightly different from Eq. 2.18. When
X is a root of Eq. 2.18, the inverse X’ = 1/X is the root of the error locator
obtained by Berlekamp’s method. Therefore, o(z) is also called inverse error

locator polynomial of ¥(z).
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2.6.3 Chien search

After the error locator polynomial is evaluated, the error location numbers

can be found by using Chien search.

The error locator polynomial as in Eq. 2.18 is re-written below. The error
location number can be found by setting the polynomial to zero and solving
it.

S(z)=a" +o’ 4 oz tor=0
For this high order equation, there is no simple way to get its roots. Chien
search substitutes 1, a, a?, - - -, etc., into above equation to see whether the

left hand of it is zero.
2.6.4 Error value calculation and error correction

When the error location numbers X;’s are found, Eq 2.17 becomes a linear
system of equations. It can be re-written as the following equation [36]

Dl (e b dE Y S5

2 3
XL xR X Ll XtTﬂ Y, Sisy
b Al Sl Gt ) Y | = | S (2:21)
X{+T X?—T Xé*‘T XtT+T Yr StaT-1

The error values Y;’s can then be determined by using Gaussian elimination.
The decoded error pattern £(z) can be expressed as
B(z) =YX, + YaXo + - + Yo X7 (2:22)
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If T > v, E(z) should be equal to E(z) as in Eq. 2.10.

Essentially error correction adds the decoded error pattern to the received

word to get the decoded word D(z), i.e.

D(z) = V(z) + E(z). (2.23)
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Chapter 3

Implementation of RS Code
Simulator

3.1 Overview of the Simulator

An RS code simulator has been impl d in C under UNIX operating

system. Using this simulator, the user can simulate RS encoding and decod-
ing procedures with different code lengths and error correcting capability,

allowing the user to select the best code among the various choices available

to fit a given application. The impl tion of the simul is described
in the remainder of the chapter. Its software structure, flow charts and the

time characteristic are also discussed in detail.

An overview of the simulator is given in Fig. 3.1. The details of those
blocks are shown in the following figures. In Fig. 3.1, block 3 is for forming
GF(2™) and G(z). The details of block 3 is shown in Fig. 3.2 and Fig. 3.4.

The block 4 is for forming systematic codeword. Fig. 3.3 presents more
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details. Block 5 is for noisy channel simulation which is shown in Fig. 3.5.
Block 6 is for syndrome calculation. It is also described in Fig. 3.6. Block 7
and 8 are for error locator evaluation. Block 9 is for Chien search which is

shown in details in Fig. 3.9. The input data is read from the input files.

The output of the simul is simul 1 d on the screen as
well as written in the output files. By calling other executable modules in
different blocks from the main program, it is possible to combine Peterson’s
and Berlekamp’s program blocks together to form an easy-to-use interface.

The flow charts for both blocks are shown in Fig. 3.1.

As space is limited, it is not possible to present all the details in one flow
chart. Therefore, the flow charts of the simulator are arranged in several lev-
els such that zooming into a block in a higher level details the corresponding

flow chart at a lower level.

3.2 Forming Galois field

The flow chart of forming the Galois field is given in Fig. 3.2. The
coefficients of the primitive polynomials can be expressed in binary format.
For example, the eighth order primitive polynomial 1 + a? + 2° 4 2% + a®
has coefficients 1,0,0,0,1,1,1,0,1, which can be expressed in binary format as
100011101. This format is convenient because it can make use of the shift

register to perform the Galois field operations. When forming the Galois
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C o D
; : ’

initialization for Peterson’s I rimti-liwiun for Berlekamp's

ey e

form GF(2™) (log,log™" tables) and G(z)

i

Generate systematic codeword C'(Z) J

|
I

| input user assumed error pattern £(2) to simulate noisy channel |
i

| Syndrome (S;) calculation |
i

| get (&) by Peterson’s or Berlekamp's methods I
i

I find X;'s by Chien search |
i

I estimate error pattern E(z) I
i

correct error D(x)=V(x)+ E(x) |

even w not even

Cx Db l l Cw =V ] ko

Figure 3.1: Overview of the simulator

Encoder

Decoder



field, let & be the root of the equation
pla)=1+2"+2°+2'+2° =0, (3.1)
that is,
1+a?+2°+2* =2 (3.2)

In binary, Eq. 3.2 has the format
100000000 = 000011101. (3.3)

Eq. 3.3 will be used as “adjustment” if an overflow is detected when forming

the Galois field.

It should be mentioned here that the GF-log and GF-log™" operations are
based on the GF table in the implementation. The table is stored according
to the GF power so that it can be used as the pointer to the desired values,

and vice versa.

3.3 Forming generator polynomial and en-
coding

As mentioned in Chapter 2, the self-reciprocal is used as the generator.
To form the self-reciprocal, 27" number of the first order polynomials are

multiplied together. Each of those polynomials is of the form (z + o). By

hanging the i, the self-recip I can be formed easily.
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initialize arrays to zeros

!

put primitive polynomial into “adjust”

|

|
i

|

|

set working element “work”

| loop for i = 0 to (N - 1)

shift “work” element 1 bit left

Yes
| “work” — “work” @ “adjust” |
‘ store “work” and ¢ into table |

to next step

Figure 3.2: Construction of the Galois field
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given M(x) and G(x

I
s,

loop fori= N -1 to 2T - 1, step -1

t

loop for j = 0 to 2T, step 1

l M(j) — M()xG(j) ® M(j) |

loop j finished ?
Yes

loop i finished ?
Yes

Figure 3.3: Calculation of remainder B(z)
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Finding the remainder is an important step in encoding. The flow chart
to get the remainder is given in Fig. 3.3. In fact, this is the flow chart to
perform the polynomial division, which can be used for many other cases
of polynomial division. The dividend here is the message polynomial. The
divisor is the generator polynomial. The loop i is for M(z), and the loop j
is for G(z). From the flow chart, it can be clearly seen that the operations
are actually shift-addition operations. Thus, in the Galois field, the shift-
addition is equivalent to shift-subtraction, which is the basic element of the

division.

After obtaining the remainder, the rest of encoding is to add the remainder
to the shifted message polynomial to get the codeword C(z). This step has

been shown in Fig. 3.4.

3.4 Simulating noisy channel

The fifth block in Fig. 3.1 is the noisy channel simulation. It is detailed
in Fig. 3.5. The error pattern E(z) is read from the input data file. The

codeword C(z) is from the encoding simulation.

3.5 Calculating syndromes

Syndrome calculation is shown in Fig. 3.6. Two loops are set for 2T

syndromes and N GF multiplication-accumulations.
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[ enter m, T', message i

I

l form Galois field, generator polynomial G(x) |

I

’7 B(x) = x*"M(x) / G(x) J

{
| C(x) = x*TM(x) + B(x) ‘

I

| store codeword into intermediate array for later use

I

| print out C(x), T I

Figure 3.4: Simulation of the encoder
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' input X;’s and Y;’s ‘

—

’ loop fori=0to N -1 ‘

l store V(x) as received word l

Figure 3.5: Noisy channel simulation




| loop for i = 1 to 14+2T-1 |

| loop fot j =0 to N -1 |

[

| acceacc + V(a') |

loop finished ?
Yes

‘ S(i) « ace l

loop finished ?
Yes

Figure 3.6: Syndrome calculation
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3.6 Implementing Peterson’s method

In the simulator, the error locator polynomial can be obtained by using
Peterson’s The Peterson’s method flow chart is shown in Fig. 3.7. Note that
Gaussian elimination is used to solve the linear equations via loops i and
j. Before the backward substitutions, the determinant of the matrix, A, is
checked to see whether it is zero or not. If A = 0, it means that the equations
are not independent. The equations can not give T' o;’s. For such case, the
actual number of errors is assumed to be fewer than 7. When this happens,
the order of the matrix should be reduced. Afterwards, similar procedures
described above have to be taken again until the determinant is non-zero

then o;’s can be determined.

3.7 Implementing Berlekamp’s method

Berlekamp’s method has been described in in Section 2.6.2. Its flow chart
is shown in Fig. 3.8. The iterative operations are explained in Section 2.6.2.
General speaking, when actual error number v is the same as the error cor-
recting capability T', that is v = T', Berlekamp’s method needs 27" iterations.
After those iterations, the so-called inverse error locator polynomial o(z) is
obtained. When v > T, the decoder cannot know anything before obtaining
E(x). Therefore, the Berlekamp’s method still needs 27 iterations to get the
error locator. However, when v < T, it may happen that the discrepancy d,,

may be zeros for two successive iterations. This could be used as the criteria
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calculate [ and lena
Gaussian elimination starts
loop for i = 1 t0 lena

loop for j = i to lend

Take out highest and
lowest factors of G(x)

Figure 3.7: Peterson’s method to get o;’s
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to stop the iterations. Either of such conditions will give an inverse error

locator which will be used in Chien search.

3.8 Implementing Chien search

Chien search is the most time-consuming procedure in RS decoding.
It is shown in detail in Fig. 3.9. Loop 7 is set to fit the worst case for
Chien search. However, if T' roots have been found in the search, the search
should be broken right away. The decision “all roots found ?” is set for this
purpose. After Chien search gives all the error location numbers, the error
values should be calculated. As mentioned in last chapter, the roots of X(z)
and o(z) are inverse. In the implementation, such GF inverse operation is

performed by following relationship
if B = a' is a root of ¥(z),

then, 8’ = 1/8 = oV~ will be a root of o(z).

3.9 Calculating error values

The calculation of error values employs Gaussian elimination to get
the upper-right matrix and then to calculate the error values by backward
substitution. This algorithm has been discussed in Fig. 3.7, and will not be
repeated here. As the addition of the decoded error pattern to the received

word is similar to the procedure shown in Fig. 3.5, it is also omitted.
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I set initial iteration table I

=

I iteration loop for £ = 1 to 2T |

o+ — 5(w) I l go back to find row p with d, # 0 |

b =1, I

caleulate 0“+1)(z) and [,4, —I
T

&

calculate d,, 4, for use in the next loop l

Figure 3.8: Berlekamp’s algorithm to determine o;’s
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loopfon—'OtoN 1

I

calculate o' !

I

substitute o’ into B(x

‘ store this o' as a root

es
all roots found?
No [

Figure 3.9: Chien search
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All the final and intermediate outputs of the simulator are written into
the output data file. The user can then use this file to compare different

codes and select the optimal code for a given application.

3.10 Examples for the simulator

A simple example (m = 3) is used at first to show how the encoder and
decoder work. This example will also be used to test the simulator. Then
several other examples (m = 4) are used to illustrate different cases when

T=v, T<v,and T > v.

Example 3.1

Givenm=3,T=1. N=2"-1=1.

1. Encoding
1=2"1_T=21-1=32T+1-1=2+43-1=4.
Then,

G(z)=(z+c®)(z+a')=1+a’z +2?

The message “0010” is used as the input.

From M(z)/G(z), B(z) is obtained
B(z) = o’z + o
Hence,
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1

bk

o

C(z) = 2 M(z) + B(z) = z° + o'z + of.

Noisy Channel

Error pattern is given as

E(z) = =z.

Then,

V(z) =C(z)+ E(z) =2®+ a'z+ a® + 2 = 2° + o’z + of.
Syndrome Calculation

V(z) =2°+a’z +af.

Si=V(a') = C(a') + E(a') = E(a’)

where N - T —1<i< N+T,thatis,3<1<4.

Error Locator Evaluation
Ss0y = Sy, ooy = at.

Then, 0y = a.

Sz)=z+a.

Error Location Numbers
Obviously, X(a) = 0, therefore,
Xgi=d.
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5. Error Value Calculation
XY, = S5, a®Y; = o®, hence, ¥} = 1.
E(x)=z
D(z) = V(z) + E(z) = 2* + a’z + 0.
The input and output for the Example 1 is shown in Table 3.1.
Example 3.2
o Given: m=4,T=2,v=2.
o Peterson’s method is selected.
e T' = v so that all the errors can be corrected.

e The input and output are shown in Table 3.2.

Example 3.3
o Given: m=4,T=2v=2
e Berlekamp’s method is selected.
e T'= v so that all the errors can be corrected.

o The input and output are shown in Table 3.3.

Example 3.4

46



Script started on Sep 4 11:25:25 1993
/nfs/pico/grad3/zyoung/simulator

Please select the decoding method.

Select P for Peterson’s or B for Berlekamp’s --- P
Peterson’s method has been selected.
Please select m : 3

Please select T : 1

G(0)=0 G(1)=6 G(2)=0

Input error locations and values (decimal):
1100

The decoded word is a codeword.

The output of the Peterson’s Method

The correcting capability, T = 1
Syndrome[3] = 3 (Hex)

Syndrome[4] = 4 (Hex)

The 1x1 determinant is not zero !

Sigma[1] = 1 (decimal)

error position 1 =1 value = 1 (Hex)

The decoded word is a codeword,

since it is divisible by the G(X).

Index Code Err Rcvd Decoded
Word Ptn  Word Word
0 0 0 0

Lo ws oo
»or oo
»oooo
~owroo

mooroo

0 5 0 5
/nfs/pico/grad3/zyoung
script done on Sep 4 11:26:03 1993

Table 3.1: Input and output for Example 3.1
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Script started on Tue Oct 5 11:30:36 1993

Please select the decoding method.

Select P for Peterson’s or B for Berlekamp’s --- P

Peterson’s method has been selected.

Please select m : 4

Please select T : 2

G(0)=0 G(1)=3 G(2)=1 G(3)=3 G(4)=0

Input error locations and values (decimal):

2310700

The output of the Peterson’s Method

The correcting capability, T = 2

S[6] = 8 (Hex) S[7] = B (Hex) S[8] = A (Hex) S[9] = 6 (Hex)

The 2x2 determinant is not zero !

Sigma[1] = 4 Sigma[2] = C

error position 1 = 2 (decimal), value = 3 (Hex)

error position 2 = 10(decimal), value = 7 (Hex)

The decoded word is a codeword, since it is divisible by the G(X).
Index Code Err Rcvd Decoded

Word Ptn Word Word

14 0 0 0 0

13
12
11
10

©cocococoocoocoooo0co0o0o0
owooocooooo~NoooO
ocococoocoocoocoocooo

HFOWR OO N®©
cowooooocoooNoOOoOo

0 0 0 0
script done on Tue Oct 5 11:31:25 1993

Table 3.2: Example 3.2
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Script started on Tue Oct 5 11:12:09 1993
/nfs/pico/grad3/zyoung), ./simulator
Please select the decoding method.
Select P for Peterson’s or B for Berlekamp’s --- B
Berlekamp’s method has been selected.
Please select m : 4
Please select T : 2
G(0)=0 G(1)=3 G(2)=1 G(3)=3 G(4)=0
Input error pattern (decimal):
2310700
The output of the Berlekamp’s method :
The correcting capability, T = 2
sigma[1]=8  sigma[2]=C
error position 1 = 10 value = 7 (Hex)
error position 2 = 2 value = 3 (Hex)
The decoded word IS a codeword, since it can be evenly divided by the G(X).
Index Code Err Rcvd Decoded
Word Ptn Word Word

14 0 0 0 0
13 0 0 0 0
12 0 0 0 0
11 o [ o 0
10 0 i 7 0
9 0 0 0 0
8 0 0 0 0
7 0 0 0 0
6 0 0 0 0
] 0 0 0 0
4 0 0 0 0
3 0 0 0 0
2 0 3 3 0
1 0 0 0 0
0 0 0 0 0

script done on Tue Oct 5 11:12:36 1993

Table 3.3: Example 3.3
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o Given: m=4,T=3,v=1.
® Peterson’s method is selected.
o T > v so that all the errors can be corrected.

e The input and output are shown in Table 3.4.

Example 3.5
e Given: m=4,T=3,v=1.
e Berlekamp’s method is selected.
e T > v so that all the errors can be corrected.

o The input and output are shown in Table 3.5.

Example 3.6
o Given: m=4,T=2,v=4.
o Peterson’s method is selected.
e T' < v so that all the errors can not be corrected.

o The input and output are shown in Table 3.6. It should be noticed that
the wrong decoded word can be evenly divided by G(z) even though
it is not the original codeword. The error pattern made the received

word be another code word.
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Script started on Tue Oct 5 11:05:15 1993
Select P for Peterson’s or B for Berlekamp’s --- P
Peterson’s method has been selected.
Please select m :4
Please select T : 3
G(0)=0 G(1)=14 G(2)=7 G(3)=1 G(4)=7 G(5)=14 G(6)=0
Input error locations and values (decimal):
5500
The output of the Peterson’s Method: correcting capability, T = 3
s[5] = 3 s[6] = 8 s[7] = D S[8] = 3 S[9] = 8 S[10] = D
The 3x3 determinant is zero !
The 2x2 determinant is zero !
The 1x1 determinant is not zero !
Sigma[1] = &
error position 1 = 5 value =5 (Hex)
The decoded word is a codeword, since it is divisible by the G(X).
Index Code Err Rcvd Decoded
Word Ptn Word Word

14 0 0 0 0
13 0 0 0 0
12 0 0 0 0
11 0 0 0 [
10 0 0 0 0
9 0 0 0 0
8 0 0 0 0
i 0 0 0 0
6 0 0 0 0
5 0 5 5 0
4 0 0 0 0
3 0 0 0 0
2 0 0 0 0
1 [ [ 0 0
0 0 0 0 0

script done on Tue Oct 5 11:06:34 1993

Table 3.4: Example 3.4
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Script started on Tue Oct 5 11:08:09 1993
/nfs/pico/grad3/zyoung % ./simulator
Please select the decoding method.
Select P for Peterson’s or B for Berlekamp’s --- B
Berlekamp’s method has been selected.
Please select m : 4
Please select T : 3
G(0)=0 G(1)=14 G(2)=7 G(3)=1 G(4)=7 G(5)=14 G(6)=0
Input error pattern (decimal):
5500
The output of the Berlekamp’s method :
The correcting capability, T = 3
signa[1]=5
error position 1 = 5 value =5 (Hex)
The decoded word IS a codeword, since it can be evenly divided by the G(X).
Index Code Err Rcvd Decoded
Word Ptn Word Word
14 0 o 0 0

13 o o 0 o
12 0 0 0 0
11 0 0 0 0
10 0 0 0 0
9 0 0 0 0
8 0 0 0 0
7 0 0 0 0
6 0 0 0 0
5 0 5 5 0
4 0 0 0 0
3 0 0 o 0
2 0 0 0 0
1 0 0 0 0
0 0 0 0 0

script done on Tue Oct 5 11:08:56 1993

Table 3.5: Example 3.5
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Script started on Tue Oct 5 11:13:12 1993
/nfs/pico/grad3/zyoung Y% ./simulator
Select P for Peterson’s or B for Berlekamp’s --- P
Peterson’s method has been selected.
Please select m :4
Please select T : 2
G(0)=0 G(1)=3 G(2)=1 G(3)=3 G(4)=0
Input error locations and values (decimal):
3347576700
The output of the Peterson’s Method
The correcting capability, T = 2
s[6] = D (Hex) S[7] = 3(Hex) S[8] = E(Hex) S[9] = 2 (Hex)
The 2x2 determinant is not zero !
Sigma[1] = 4 (Hex) Sigma[2] = 3 (Hex)
error position 1 = 6 value = 4 (Hex)
error position 2 = 12 value = C (Hex)
The decoded word is a codeword, since it is divisible by the G(X).
Index Code Err Rcvd Decoded
Word Ptn Word Word

14 0 0 0 0
13 0 0 0 0
12 0 0 0 c
11 0 0 0 0
10 0 0 0 0
9 0 0 0 0
8 o [ 0 [
i 4 0 0 0 0
6 0 7 7 3
5 0 7 T 7
4 0 i 7 7,
3 0 3 3 3
2 0 0 0 0
1 0 0 [} 0
0 0 ] 0 0

script done on Tue Oct 5 11:14:19 1993

Table 3.6: Example 3.6
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Example 3.7
e Given: m=4,T=2,v=4.
o Berlekamp’s method is selected.
o T < v so that all the errors can not be corrected.

e The input and output are shown in Table 3.7. It should be noticed that
the wrong decoded word can be evenly divided by G(z) even though
it is not the original codeword. The error pattern made the received

word be another code word.

To show the capability of the simulator, the examples of T = 16 are
given. However, the output is quite long so that they are given in the plain

format.
Example 3.8
e Given: m=7,T =16, v = 15.
o Peterson’s method is selected.
e 7' > v so that all the errors can be corrected.

o The input and output are shown as follows.
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Script started on Tue Oct 5 11:27:41 1993
/nfs/pico/grad3/zyoung % ./simulator
Please select the decoding method.
Select P for Peterson’s or B for Berlekamp’s --- B
Berlekamp’s method has been selected.
Please select m : 4
Please select T : 2
G(0)=0 G(1)=3 G(2)=1 G(3)=3 G(4)=0
Input error pattern (decimal):
3347576700
The output of the Berlekamp’s method :
The correcting capability, T = 2
sigma[1]=14  sigma[2]=D
error position 1 = 12 value = C (Hex)
error position 2 = 6 value = 4 (Hex)
The decoded word IS a codeword, since it can be evenly divided by the G(X).
Index Code Err Rcvd Decoded
Word Ptn Word Word
14 0 0 0 0

13 0 0 0 0
12 0 0 0 [
bl 8 0 0 0 0
10 0 0 0 0
9 0 0 0 0
8 0 0 0 0
if 0 0 0 0
6 0 i 7 3
5 0 i i 7
4 0 il i 7
3 0 3 3 3
2 0 0 0 0
1l 0 0 0 0
0 0 0 0 0

script done on Tue Oct 5 11:28:46 1993

Table 3.7: Example 3.7
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Please select the decoding method.

Select P for Peterson’s or B for Berlekamp’s --- P
Peterson’s method has been selected.

Please select m : 7

Please select T : 16

Input error locations and values (decimal):
211322433544555666777788799
60 10 41 11 12 12 83 13 94 14 15 15 0 0

The output of the Peterson’s Method

The correcting capability, T = 16
Syndrome[48] = 95

Syndrome[49] = 13

Syndrome[50] = 124

Syndrome[51] = 49

Syndrome[52] = 15

Syndrome[53] = 22

Syndrome[54] = 4

Syndrome[56] = 35
Syndrome[56] = 104
Syndrome[57] = 39
Syndrome[58] = 56

Syndrome[59] = 47
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Syndrome[60] = 4

Syndrome[61] = 12
Syndrome[62] = 32
Syndrome[63] = 15
Syndrome[64] = 109
Syndrome[65] = 36
Syndrome [66]

18
Syndrome[67] = 50

Syndrome[68] = 51

Syndrome[69]

[
©

Syndrome[70] = 125
Syndrome[71] = 63

Syndrome[72] = 54
Syndrome[73] = 44
Syndrome[74] = 24

Syndrome[75] = 82
Syndrome[76] = 11

Syndrome[77] = 48

Syndrome[78] = 110

Syndrome[79] = 90

The 16x16 determinant is zero !
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Syndrome [49]
Syndrome [50]
Syndrome[51]
Syndrome [52]
Syndrome [53]
Syndrome [54]
Syndrome [55]
Syndrome [56]
Syndrome [57]
Syndrome[58]
Syndrome [59]
Syndrome [60]
Syndrome[61]
Syndrome [62]
Syndrome [63]
Syndrome [64]
Syndrome [65]
Syndrome [66]
Syndrome [67]
Syndrome [68]

Syndrome[69]

124
49

22

35
104
39
56

47

50

51
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Syndrome[70] = 125
Syndrome[71] = 63
Syndrome[72] = 54

Syndrome[73]

S

Syndrome[74] = 24
Syndrome[75] = 82
Syndrome[76] = 11
Syndrome[77] = 48

Syndrome[78] = 110

The 15x15 determinant is not zero !

Sigma[1].index = 105
Sigma[2].index = 112
Sigma[3].index = 94
Sigma[4] .index = 124
Sigma[5] .index = 55
Sigma[6] .index = 39
Sigma[7].index = 51
Sigma[8] .index = 70
Sigma[9] .index = 74

Sigma[10] .index = 32
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Sigma[11] .index

Sigma[12] .index

Sigma[13] .index

Sigma[14] .index

Sigma[15] .index

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

-

position
position 2
position 3
position 4
position §
position 6
position 7
position 8
position 9
position 1
position 1
position 1
position 1
position 1.

position 1

119
26
54

48

21
32
41
43
54
55
60
= 66
=77
=78

=83

=94

value
value
value
value
value
value
value
value
value
value
value
value
value
value

value

"
a

(Hex)

"
=

(Hex)

"
-

(Hex)

"
N}

(Hex)
(Hex)
(Hex)

"
» W w

(Hex)

"
o

(Hex)
= A (Hex)
= 6 (Hex)
=7 (Hex)
= 8 (Hex)
=9 (Hex)
=D (Hex)

= E (Hex)
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The decoded word is a codeword, since it is divisible by the G(X).

Index Code Err Rcvd Decoded Index Code Err Rcvd Decoded
Word Ptn Word Word Word Ptn Word Word
126 [ [ [ [ 63 0 [ [ 0
125 0 0 0 0 62 0 0 0 0
124 0 0 0 0 61 0 [ 0 [
123 0 0 0 0 60 0 A A 0
122 0 [ 0 0 59 0 0 0 0
121 0 0 0 0 58 0 0 0 0
120 0 0 0 0 57 0 0 0 [
119 0 0 0 0 56 0 0 0 0
118 0 0 0 0 55 0 5 5 0
117 0 0 0 0 54 0 4 4 0
116 0 0 0 0 53 0 0 0 0
115 0 0 0 0 52 0 0 0 0
114 0 0 0 0 51 0 0 0 0
113 0 0 0 0 50 0 0 0 0
112 0 0 0 0 49 0 0 0 0
111 0 0 0 0 48 0 0 0 0
110 0 0 0 0 47 0 0 0 0
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46

109

45

108

107

43

106

42

105

41

104

40

103

39

102

38

101

37

100

36

99

35

98

34

97

33

96

32

95

31

94

30

93

29

92

28

91

27

90

26

89

25

88
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24

87

23

86

22

85

21

20

83

19

82

18

81

17

80

16

79

15

78

14

T,

13

76

12

75

74

10

73

72

71

70

69

68

67

66

63



65

64

63

64



Example 3.9

o Given: m=17,T = 16, v = 16.

o Peterson’s method is selected.

o T = v so that all the errors can be corrected.

e The input and output are shown as follows.

Please select the decoding method.

Select P for Peterson’s or B for Berlekamp’s --- P
Peterson’s method has been selected.

Please select m : 7

Please select T : 16

Input error locations and values (decimal):
211322433654455566677 7788799
60 10 41 11 12 12 83 13 94 14 15 15 16 16 0 0
The output of the Peterson’s Method

The correcting capability, T = 16
Syndrome[48] = 48

Syndrome[49] = 104

Syndrome[50] = 47

Syndrome[51] = 93
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Syndrome [52]
Syndrome [63]
Syndrome [54]
Syndrome [55]
Syndrome [56]
Syndrome [57]
Syndrome [58]
Syndrome [59]
Syndrome [60]
Syndrome[61]
Syndrome [62]
Syndrome [63]
Syndrome [64]
Syndrome [65]
Syndrome [66]
Syndrome [67]
Syndrome [68]
Syndrome [69]
Syndrome[70]
Syndrome[71]
Syndrome[72]
Syndrome[73]

96

65

115

55

75
99
76
90
102
108
2
73
87

101
50
38
78!
92
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Syndrome[74] = 64
Syndrome[75] = 101
Syndrome[76] = 52
Syndrome[77] = 98
Syndrome[78] = 13
Syndrome[79] = 81

The 16x16 determinant is not zero !

Sigma[1] .index = 63
Sigma[2] .index = 29
Sigma[3] .index = 105
Sigma[4] .index = 116
Sigma[5] .index = 93
Sigma[6] .index = 15
Sigma[7] .index = 48
Sigma[8] .index = 74
Sigma[9].index = 102
Sigma[10] .index = 107
Sigma[11] .index = 86
Sigma[12] .index = 118

Sigma[13] .index = 96
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Sigma[14] .index = 70
Sigma[15] .index = 116

Sigma[16] .index = 64

error position 1 = 12 value = C (Hex)

error position 2 = 156 value = F (Hex)

w
"

error position 16 value = 10 (Hex)

error position 4 = 21 value = 1 (Hex)

error position 5§ = 32 value = 2 (Hex)
error position 6 = 41 value = B (Hex)
error position 7 = 43 value = 3 (Hex)

error position 8 = 54 value = 4 (Hex)
error position 9 = 55 value =5 (Hex)

error position 10 = 60 value = A (Hex)

o

error position 11 = 66 value = 6 (Hex)
error position 12 = 77 value = 7 (Hex)
error position 13 = 78 value = 8 (Hex)
error position 14 = 79 value = 9 (Hex)

error position 15 = 83 value = D (Hex)

error position 16 = 94 value = E (Hex)

The decoded word is a codeword, since it is divisible by the G(X).
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Index Code Err Rcvd Decoded Index Code Err Rcvd Decoded

Word Ptn Word Word Word Ptn Word Word
126 0 0 0 0 63 0 0 0 0
125 0 0 0 0 62 0 0 0 0
124 0 0 0 0 61 0 0 0 0
123 0 0 0 0 60 0 A A 0
122 0 0 0 0 59 [ 0 [ 0
121 0 0 0 0 58 0 0 0 0
120 0 0 0 0 57 0 0 0 0
119 0 0 0 0 56 0 0 0 0
118 0 0 0 0 55 0 5 5 0
117 0 0 0 0 54 0 4 4 0
116 0 0 0 0 53 0 0 0 0
115 0 0 0 0 52 0 0 0 0
114 0 0 0 0 51 0 0 0 0
113 0 0 0 0 50 0 0 0 0
Fli ) 0 0 0 0 49 0 0 0 0
111 0 0 0 0 48 0 0 0 0
110 0 0 0 0 47 0 0 0 0
109 0 0 0 0 46 0 0 0 0
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45

108

107

43

106

42

105

41

104

40

103

39

102

38

101

37

100

36

99

35

98

34

97

33

96

32

95

31

94

30

93

29

92

28

91

27

90

26

89

25

88

24

87

70



23

86

22

85

21

20

83

19

82

18

81

ir

80

10

10

16

79

16

78

14

7

13

76

12

75

11

74

10

73

72

7d

70

69

68

67

66

65

71



64

63

72



Example 3.10
o Given: m=7,T =16, v = 17.
o Peterson’s method is selected.
o T' < v so that all the errors can not be corrected.

o The input and output are shown as follows.

Please select the decoding method.

Select P for Peterson’s or B for Berlekamp’s --- P
Peterson’s method has been selected.

Please select m : 7

Please select T : 16

Input error locations and values (decimal):

21 1322433544555666777788799

60 10 41 11 12 12 83 13 94 14 15 15 16 16 17 17 0 0
The output of the Peterson’s Method

The correcting capability, T = 16

Syndrome[48] = 55

Syndrome[49] = 117

Syndrome[50] = §

Syndrome([51] = 10
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Syndrome [52]
Syndrome [63]
Syndrome [54]
Syndrome [55]
Syndrome [56]
Syndrome [57]
Syndrome [58]
Syndrome[59]
Syndrome [60]
Syndrome[61]
Syndrome[62]
Syndrome [63]
Syndrome [64]
Syndrome[65]
Syndrome [66]
Syndrome [67]
Syndrome [68]
Syndrome[69]
Syndrome [70]
Syndrome[71]
Syndrome[72]

Syndrome [73]

85

83

86
123
115
124
73
93
61
97
126
101
(7

44

47
58
27
109

99

T4



Syndrome[74] = 49
Syndrome[75] = 113
Syndrome[76] = 103
Syndrome[77] = 38
Syndrome (78] = 34
Syndrome[79] = 104

The 16x16 determinant is not zero !

Sigma[1] .index = 61
Sigma[2] .index = 0
Sigma[3] .index = 110
Sigma[4] .index = 119
Sigma[5] .index = 20
Sigma[6] .index = 1
Sigma[7].index = 64
Sigma[8] .index = 14
Sigma[9] .index = 87
Sigma[10] .index = 79
Sigma[11] .index = 107
Sigma[12].index = 107

Sigma[13] .index = 24
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Sigma[14] .index = 65
Sigma[16].index = 100

Sigma[16] .index = 43

error position 1 = 20 value = 36 (Hex)

error position 2 = 0 value = 1 (Hex)
error position 3 = 0 value = 1 (Hex)
error position 4 = 0 value = 1 (Hex)
error position 5 = 0 value = 1 (Hex)
error position 6 = 0 value = 1 (Hex)
error position 7 = 0 value = 1 (Hex)
error position 8 = 0 value = 1 (Hex)
error position 9 = 0 value = 1 (Hex)
error position 10 = 0 value = 1 (Hex)
error position 11 = 0 value = 1 (Hex)
error position 12 = 0 value = 1 (Hex)
error position 13 = 0 value = 1 (Hex)
error position 14 = 0 value = 1 (Hex)
error position 15 = 0 value = 1 (Hex)
error position 16 = 0 value = 1 (Hex)

The decoded word is NOT a codeword,



because it cannot be evenly divided by the G(X).

Index Code Err Rcvd Decoded Index Code Err Rcvd Decoded
Word Ptn Word Word Word Ptn Word Word
126 0 0 0 0 63 0 0 0 [
125 0 0 0 0 62 0 0 0 0
124 0 0 0 0 61 0 0 0 0
123 0 0 0 0 60 0 A A A
122 0 0 0 0 59 0 0 0 0
121 0 0 0 0 58 0 0 0 0
120 0 0 0 0 57 0 0 [ 0
119 0 0 0 0 56 0 0 0 [
118 0 0 0 0 55 0 5 5 5
117 0 0 0 0 54 [ 4 4 4
116 0 0 0 0 53 0 0 0 [
115 0 0 0 0 52 0 0 0 0
114 0 0 0 0 51 0 0 0 0
113 0 0 0 0 50 0 0 0 0
112 0 0 0 0 49 0 0 0 0
114 0 0 0 0 48 0 0 0 0
110 0 0 0 0 47 0 0 0 0
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109
108
107
106
105
104
103
102
101
100
99
98
a7
96
95
94
93
92
91
90
89

88

8

46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26

25



24

87

23

86

22

85

21

36

20

83

19

82

18

81

L

!

1y

80

10

10

10

16

79

15

78

14

T

13

76

12

75

11

74

10

73

v

71

70

69

68

67

66

9



65

63

80



Example 3.11
e Given: m=7,T =16, v = 16.
o Berlekamp’s method is selected.
o T = v so that all the errors can be corrected.

o The input and output are shown as follows.

Please select the decoding method.

Select P for Peterson’s or B for Berlekamp’s --- B
Berlekamp’s method has been selected.

Please select m : 7

Please select T : 16

Input error locations and values (decimal):
1256809 11 13 15 24 18 36 23 1 25 4 35 9 39 2
41445850757 96076650000

The output of the Berlekamp’s method :

The correcting capability, T = 16

sigma(1)=14 (hex)

sigma(2)=9 (hex)

sigma(3)=6A (hex)

sigma(4)=46 (hex)
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sigma(5)=76 (hex)
sigma(6)=47 (hex)
signa(7)=4F (hex)
sigma(8)=73 (hex)

sigma(9)=4B (hex)

sigma(10)=66
signa(11)=63
sigma(12)=7B
sigma(13)=76
sigma(14)=71
sigma(15)=48

signa(16)=76

(hex)

(hex)

(hex)

(hex)

(hex)

(hex)

(hex)

error position 1

error position 2

error position 3

error position 4

error position §

error position 6

error position 7

error position 8

error position 9

error position

66

60

57

50

45

41

39

35

25

value

value

value

value

value

value

value

value

value

10 = 23 value

= 0x5
= 0x7
= 0x9
= 0x7
= 0x8

= 0x4

= 0x9

= 0x4

= 0x1
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error position 11 = 18 value = 0x24
error position 12 = 15 value = 0x18
error position 13 = 11 value = 0xD
error position 14 = 8 value = 0x9
error position 15 = 5 value = 0x6

error position 16 = 1 value = 0x2

The decoded word IS a codeword, since it can be evenly divided by the G(X).

Index Code Err Rcvd Decoded Index Code Err Rcvd Decoded
Word Ptn Word Word Word Ptn Word Word
126 0 0 0 0 63 0 0 0 0
125 [ [ 0 0 62 0 0 0 0
124 0 0 0 0 61 0 0 0 0
123 0 0 0 0 60 [ 7 4 0
122 0 0 0 0 59 0 0 0 0
121 0 0 0 0 58 0 0 0 0
120 [ 0 0 0 57 0 9 9 0
119 0 0 0 0 56 0 0 0 0
118 0 0 0 0 55 0 0 0 0
117 0 0 0 [ 54 0 0 0 0
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116 0 0 0 0

115 0 0 0 0
114 0 0 0 0
113 0 0 0 0

112 0 0 0 0

111 0 0 0 0
110 0 0 0 0
109 0 0 0 0
108 0 0 0 0
107 0 0 0 0
106 0 0 0 0
105 0 0 0 0
104 0 0 0 0
103 0 0 0 0

102 0 0 0 0

101 0 0 0 0
100 0 0 0 0
99 0 0 0 0
98 0 0 0 0
97 0 0 0 0
96 0 0 0 0
95 0 0 0 0
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52
51
50
49
48
47
46
45

43
42
41
40
39
38
37
36
35
34
33
32



31

94

30

93

29

92

28

91

27

90

26

89

26

88

24

87

23

86

22

85

21

20

83

19

82

24

24

18

81

s I

80

16

79

18

18

15

78

14

il

13

76

12

7%

11

74

10

73

85



72
it
70
69
68
67
66
65
64

63

86



Chapter 4
The Periodicity Algorithm

Chien search is the main obstacle to high speed RS decoding. Based on
the exhaustive Chien search, the error position numbers of the double error
correcting RS codes are carefully examined. It is found that for the case
of double error correcting, the roots of the error locators are not randomly
distributed. This gives us the possibility to develop a new algorithm to
locate the error position numbers without Chien search. In this chapter, a
new algorithm for double error correcting called the Periodicity Algorithm

(PA) is proposed.
4.1 Basic properties

On examining the exhaustive Chien search, it can be shown that the error
positions of a double error correcting RS code are not distributed randomly,
but rather according to certain patterns. To show this important property

clearly, the case of (m = 3) 2-error correcting RS code is used as an example.
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o
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Table 4.1: Periodicity of the error positions (m = 3, T' = 2), (see text for the
description of elements)

From the equation
S(z)=a’+ o012+ 02 =0 (4.1)
by dividing all the coefficients by o, Eq. 4.1 becomes:
1 +0y2 +02% = 0. (4.2)

After performing the exhaustive Chien search to Eq. 4.2, all of the possible

solutions are obtained. The results for m = 3 are given in Table 4.1.

The meaning of the elements in the Table 4.1 is as follows. For example,
the right-bottom element in Table 4.1 is [2,6]. This means that, for the
Eq 4.2, when o} = a® and o}, = o, the two roots are a® and a®. This kind of
elements are called solution elements. The elements marked as [x,x] means

that there are no solutions for the combinations of the o} and 3. These
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IR B xE Ex Ex 0% EHELX] 18 TRX TeX) XX

26l X TSRkl Bk k12,618 ik D0EE XL XX XX ke

elements are called non-solution elements. To explain the basic properties

Table 4.2: Table used to show the periodicity

more clearly, Table 4.1 is re-formulated as Table 4.2.

Table 4.2 essentially consists of many copies of Table 4.1.
when m = 3, this property can be used to form the Table 4.2. A line is drawn
across the table on which there are N (where N = 7) solution elements. Each

such line is called a chain.

Several terms are defined as follows:

1. Solution element — the element with solutions in Table 4.1.

89

As " = o




e i T

[EhGES i a2

>
o

%
w (R

Table 4.3: Leaders of the chains (m = 3)

o

. Non-solution element — the [x,x] element which means no solution.

w

. Solution chain — the chain contains only solution elements.

-

. Non-solution chain — the chain contains only non-solution elements.

o

. Shift on chains — movement from one element to its neighbor element
on the chain. This movement skips one column to the next row on the

solution table.

2

Leaders of the chains — the smaller values of the elements in first

column in Table 4.1.

~

. Leader table — putting the leaders into a table can form the leader
table. Table 4.3 is the leader table for m = 3.

Looking at Table 4.2, let us put an imaginary pointer to the right-bottom

element which is [2,6]. Then let us shift the pointer 2 columns left and 1 row up

which is defined as 1 shift. Now the pointer is moved onto the element which
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is [0,3]. If keeping moving the imaginary pointer according to the rule ex-

plained above, following chain is obtained
[2,6] « [1,5] « [0,4] « [3,6] « [2,5] « [1,4] « [0,3] « [2,6]. (4.3)

It should be noticed that, after N shifts, the pointer goes back onto the
element [2,6], the “starting point”. In other words, the chain repeats itself

with a period of N shifts !

For the chain shown in Eq. 4.3, the last element is [2,6], then [0,3]. Since
a” = a® for m = 3, [0,3] can be written as [7,3] or [3,7]. It is obvious that,
from [2,6] to [3,7], the increment of both error positions is 1. Similarly, for

the cases of that [0,3] to [1,4], [1,4] to [2,5], - -, the increment is still 1.

In Table 4.1, looking at each column, the sum of two solutions and the
power value of oy is 7 or 14. It should be noticed that N = 7 and 2N = 14
when m = 3. It has been explained above that the values of each solution

element [E;,E;] mean o' and oF2. Therefore, this yields

2N N

oFlaFrigy=a?N =a == 1. (4.4)

Eq. 4.4 is called constant product property. Considering that oy = ', the
constant product property can be simplified as

Ei+E;+i;=N. (4.5)
In summary, there are three basic properties:
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-

. The error position numbers display the periodicity. The period is N
shifts.

)

. The increment of the error position numbers is 1 for each shift.

[

. There is the constant product property. It can be simply expressed as

Ey+E;+i,=N.

The case of m = 3 has been used as the example to describe the three
properties of the RS error positions. However, do those three properties hold
for the other cases of m as well? The answer to this question is yes, and the

verification to this conclusion will be given in section 4.3.

Before going on to the description of the algorithm , the following facts

should be noted:
1. The solution chains contain only the solution elements.
2. The non-solution chains contain only the [x,x] non-solution elements.
3. All the elements in the solution table are either on the solution chains
or on the non-solution chains without exception.
4.2 Description for periodicity algorithm
4.2.1 Algorithm description
Definitions for the symbols used in this algorithm are as follows:
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LT:

Umapping*

Preader:
Ticader:
13°

10

E;:
Es,:

leader table which consists of the leaders of the chains
intermediate variable

position of the leader in LT

value of the leader

exponential power of the o} (0] = ™)

exponential power of the o} (03 = o)

position of the first error

position of the second error

The LT is pre-processed off-line. The algorithm for the pre-processing is

given in Fig. 4.1.

The PA error locating consists of following steps:

1. According to the given o7 = @' and 03 = o™, find the leader of the

chain.

Imapping = 12/2, if i even (with direct leader);

imapping = (i2 + N)/2, if i3 odd (without direct leader);

Pleader = (81 — tmapping)mod N-

According t0 Pleader, get the value of the leader Ijcqge, in LT.

2. If leader of the chain is “x”, a non-solution chain is met. It means that

all the elements on this chain are non-solution elements. Otherwise, go
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on to the step 3.

3. With the value of the leader of the chain, calculate the first error posi-

tion, E;.
Ey = (Licader = imapping)mod N-

4. With the property of constant product, calculate the second error po-
sition.

E; =N - (i + Ey).
The flow chart of the algorithm is given in Fig. 4.2.

From the flow chart, it is clear that PA error locating needs fewer than
7 additions, 4 decision operations, 1 shift and 1 memory reading operations.
Because the shift operation normally needs the same time as addition, it can
be simply considered that the periodicity algorithm needs 8 additions and
4 decisions. There are no multiplications and divisions at all. In the flow
chart, the operation i,/2 is actually performed by shift-right operation. The
testing operation decides whether the value is even or odd by testing the
least significant bit (LSB), i.e. if the LSB is 0, the value is even; if it is 1,
the value is odd. All those operations are simple for both the hardware and

software, and can be counted as one addition.
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—-I Loop: for j =0toj < N |

I

0‘;:&"' J

I Loop: fori =0toi < N |-—

I

2(z) = 1 + 0}z + 0p2? |

set I(j) =1 set I(j) = x
set P(7) = o set P(j) = o
T T
e
Yes

Figure 4.1: Leader table creation



Given 0y = @', 0, = a'?

inaping =52f2 | [ imapping = G2t 0)/2_]
Preader =n +1; — lmuy I Pieader = i1 — imapping

Get Jicader by Pleader

ITX =1+ leader — im,+'ny
By =n— (i + By)

E1 = Dcsder = imarming |

Figure 4.2: Periodicity algorithm
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4.2.2 Examples for PA

Several examples are given below which show how the periodicity algo-

rithm works. The flow chart shown in Fig. 4.2 should be used to assist the

understanding.

Example 4.1

e Given 0y = o' = a®, 0, = a®? = a'.

e i, =51, =4.
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1. Obtain #mapping, Which is a value to show that the leader of the chain

is how many “shift” above current row.

iy is even. It means that the leader of current chain is within current

table.

Tmapping = 12/2 = 4/2 = 2 (shifts). The leader is 2 shifts above current

row.

)

. Go up 2 shifts to find the leader of the current chain.
Preader = i1 — imapping =5 —3 = 2.
From the leader table shown in Table 4.3, the value of the leader can

be found, lieqger = 2.

[

. Use increment property (for 2 shifts):

By = lieader = Smapping =2—=2=0.

4. Use constant product property:
E;=N-E -i,=7-0-4=3.

Therefore, [Ey,E,] = (0,3].
Example 4.2
e Given o) = " = o', 0, = a® = a®.

eiy=4,i=5.
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Qn

X xx TSR X i TR x| 1,80 208 e M6 T

R i i I A i T S T M T
el L B e o 0 e 5, s I ) [ i X S 25 <l e TR T |
o) e R T o T, e e 0 3 T T 2 Vs e Sl o i 5.
ot R Haxr I E0 e x| e X L4 USie T xx 02 ek
o [ xx [T xx xx xx 03 45 xx[16 xx xx xx 03 45 xx
a® [ 2,6 |34 x@,x XXX 12034 xx 05 xx xx ax 26
o [[xx[xx 1,5 23 xx &GO xx xx|[xx 1,5 23 xx 46 xX xx
a3 | X xse kx| 0,40 R x,x\® XX Xxr x0TI x| 85
o J[I051F | e n2 % xixl %% 1361 103 x,x\®\x,x XX, .xx 38" 01
ot ik | 25N 06 x| 118 X e[k 016 )m\x,x nx XX
(6]

xx | BTk Id T 56T xRl kx xx ' 1,47 56 'Xx @2 XX

x| HBEIXX xx' XXk BENASTSee PTE xx xx xx 0 45 XX

R IR
o o

26| SN0 Xk EE ex 26,34 £%00.50 xix XX XX N6

Table 4.5: Table for Example 4.2
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1. Obtain Z,mqpping, Which is a value to show that the leader of the chain

is how many “shift” above current row.

iy is odd. It means that the leader of current chain is outside current
table.

mapping = (N +12)/2 = (54 7)/2 = 6 (shifts). The leader is 6 shifts

above current row.

IS

. Go up 6 shifts to find the leader of the current chain.
Preader =1 — tmapping + N=4—-6+7=5.
From the leader table shown in Table 4.3, the value of the leader can
be found, Ijeqzer = 1.
3. Use increment property (for 6 shifts):
Ey = Licader — imapping+ N =1—-6+T7=2.
4. Use constant product property:
E;=N-E —i;=7-2-5=0.

Therefore, [Ey,E;] = [2,0].

From Table 4.1, it is easy to find that the results of Example 4.1 and

Example 4.2 are correct.
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4.3 Algorithm Verification

In this section, the validity of the periodicity algorithm will be verified.
Since the size of the table will increase exponentially as m increases, it is
not possible to quote all the relevant tables here so that only the tables of
up to m = 6 are given. However, as the Galois field fortunately contain
only a finite number of elements, it is possible to use exhaustive computer

simulation to verify the periodicity algorithm.

Verifying the validity is simple. From LT, the exhaustive test can be
performed for all the combinations of o, and o,. When the results are not
“x”, they can be substituted into Eq 4.2 to see whether the result is zero.

“x”, Chien search can be used for that case to see whether

When results are
the “x” is correct for that combination. This procedure can be used to verify
the validity of PA for different m. This verification algorithm is given in

Fig. 4.3.

Another issue to be noted is the limited verification of the periodicity al-
gorithm. That is, the periodicity algorithm is not shown correct analytically,
but by the computer exhaustive verification limited by the array size for m
such that 3 < m < 10. However, this range of m is adequate for most actual
applications, e.g. when m = 10, N = 2™ = 2'° = 1024, which is longer than
the length of a typical data block. The verification outputs for 7 < m < 10

are given in Table 4.9.
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Gl
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Table 4.6: Solution table for m
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GIIE UL BEEUN PUBISRILS (m=0. T =

o(z) =1+ 012+ 032"

2

o o] @ o o7 & o

a¥ 2421648 237 1149 158

A xx  xx 041 1545 2831

Table 4.8: Solution table for m = 6

104



Table of error positions (m=6.T=2)

ole) =1+ oz +o3e?

L P o i T ST i
x xx 1733 5181 xx 443 xx .26 2024
12.40 643 1637 5060 xx 3. xx
55,60 139 xx 542 1531 4950 xx

xx_ 1932 5459 1038 xx 1430

28 745 SA 315358 4961 9. Bl
TIAT_ 24, X 80 xx 17,30 82,57 .36

xx__5461 5550 RS PRN X
xx 1438 xx 5360 A xx .
350 2131 rx 1337 xx 5250 5357
xx_ 1339 249 2030 xx 1236 «x
38 19.29
137

<l [ 5] 22 L]

Bl [

3 645 xx A BB xx
1834 5262 xx 58 xx 2027

Table 4.8: Solution table for m = 6 (continue)
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davpie o1 error pusiLIous (m =6.T = 2)

o(z) = 1+ o1z + 0387

Table 4.8: Solution table for m = 6 (continue)

106



o(z) = 1 4012 + 0227

Ta¥ W B N B % g % P

xx_ xx 823 3756 xx 3160 3852 xx 4048 xx
3858 xx  xx  xx 3855 xx 3050 3751 xx
132 725 3157 xx _xx _xx 621 354 xx 2958
127 xx 031 624 %5 xx xx xx 520 3453
xx _xx 1021 xx 3062 8523 3585 xx _xx _xx
xx X xx 020 xx 2961 422 3454 xx
1320 W18 xx xx xx xx 819 xx 2860 321
86007 xx NIZWLIGIT xx i %X [ oxx %k T8 | %
05 xx T T LI L T O A
3561 824 4252 xx 38 xx 1007 LIS xx
xx 7254151 xx 3357
54230 x xx__ 33590 622 40
34550 4153 129 xx_ 3258
T _xx 922 4449 4052 028  «x.
8 3560 44 xx__ 821 4348
131 1407 3459 4349 xx
RO S UB) 0301316 3358 &
WL X XK Ko A28 029,62 12
FYEy O - (O T IV T
xx TN S T 7 T O
xx 46l xx 3558 xx xx xx
xx_ 4748 _xx & xx_ 45T xx
8B x| mxs A1 AL T8 xx
Xk SRVAETA L Xx 1) R 45.46) XX
[ W O O T T ¥ )
1 N T R 7]
[ i T [ O T T
O L L D )
Xot. Q0N XO XS CAGATE X XK
231923 xx 1119 xx  xx 4446
72 xx 130 82 xx 1008 xx
xx 4055 625 xx 029 721 xx
x Sz BN 5240\ xx L IBRZ
3957 626 xx _xx _xx 3853 423
xx 032 3856 525 xx _xx _xx
xx_ 4253 xx 3162 3755 424 xx
xx__xx _xx 4157 xx 3061 3654
4650 x. N F AR DL R AU DI %X
xx_ 4450 1549 T
xx 428 xx 4350 448 xx  xx
40361121 xx T xx 4249 4347
xx_ 329 3955 1020 xx 2 X
3462 xx B/H__9. xx
419 3361 xx_ L27_3758
xx 1318 0260 xx__xx
[¥:] xx 1217820 3159
033 328 xx_ 3952 1116
xx 32,62 FR AT Y
FEINE - R 3614447126
SRR EX 0 V%) | ax 135,50, 90,60
L O e N
SEDBVRERWATT X Ik _IR% | X
(L P e D T TR Bl )
% FOOUIBING /0 ek 18 %% 22
3759 3936 xx xx 1415 xx 027
xx__xx 3658 3855 xx _xx 1314
WL LSBT K LR L 30T 914U
Rx | xx . Ky A2S] Xy %X 3AS50
OIS BR AN Ak AL X
WAT x5 kA0 Wa0 xE XX %
4155 xx 4351 xx  xx  DI5  xx
x_ 3362 4054 xx 2% xx  xx
24 3857 xx 3260 953 xx 4149

Table 4.8: Solution table for
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Table of error positions m=6T=2)

o) =1+ o1z + o3?

N T T T B T, I P T JEOT S B
a o o

xx

3947

36.50

Table 4.8: Solution table for m = 6 (continue)
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‘Llable Of error positivos m=o, i =)

o(z) =1 +o12 + 038

T T el T W W)
xx  xx 56 xx 1854 xx 1855 xx XX xx [
A9 BAE_ xx _xx 4, xx 1783 xx 4S84 xx xx x
XX __xx 2648 %45 x, xx 34 xx 1652 xx 1353 xx x
xx 3347 xx x_3547 74 _xx_ xx 3 xx 1551 _xx 1252
x. 1450

x. 1

x. x

7143

o

& . X xx 2349 1250 3040 46 61367 xx
403143 1954 xx  xx 248 2939 5 xx 350
1262 _34.39 3042 1853 7 38 xx_ 2041

H

x

58 P

0 xx  TIST _%x  xx xx  xx  xx _xx 344 1848
T xx 1955 xx 1088 xx xx xx %x Xz xx_ B4 lidr]

Table 4.8: Solution table for m = 6 (continue)

109




| Set up the leader table (LT) |
.
LOOP: for 0,075

| Use PA to get error locations I

On non-solution chain (“x") 7

No
[ Use Chien search to confirm the “x" l | Substitute into 140y x+0x I
Confirmation OK ? Satisfiy the equation ? >
Yes

Yes

No No
Print the difference, stop

All the loops finished ?

Yes

Print checking results

Figure 4.3: Verification of the periodicity algorithm
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Last pair of SIGMA’s : 126-126 OK

Last pair of SIGMA’s : 254-254 OK

Last pair of SIGMA’s : 510-510 OK

ee
m = 10
Last pair of SIGMA’s : 1022-1022 0K

Table 4.9: Verification outputs for 7 < m < 10
4.4 Discussion and summary

A new algorithm called periodicity algorithm to locate error positions
is introduced. This algorithm now can only be used for double error cor-
recting. The periodicity algorithm is based on the fact that the roots of
1 4 oya + oyz* = 0 are not randomly distributed. All of the possible roots
are distributed according to certain patterns. The roots are on the solution
chains. The roots have the periodicity of N shifts on the solution chains.
Increment is 1 for each shift on the chain. From the leader table, the er-
ror location numbers can be calculated with fewer than 8 additions. No

multiplication is needed.
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Chapter 5

Comparison with other
methods

5.1 General discussion

In terms of monetary expenses, microprocessor implementation is cheaper
than VLSI, especially for low volume production. Furthermore, the micro-
processor implementation is easily programmable. With the development of
specialized manufacturing techniques for microprocessors!, high-speed im-
plementations are also available using assembly language. As long as the
microprocessor speed meets the requirements of the applications, micropro-

cessor implementation seems to be the better choice.

In this chapter, the discussion is mainly about the microprocessor imple-
mentation of RS error locating. The look-up table, binary decision fast Chien

search and Okano’s methods will be studied in detail, and an implementa-

!For example, 486 CPU can be run at 50 MHz clock [38][39]. TMS320C30 can provide
the speed at 50 n$ single cycle execution [40].
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tion in 486 assembly language of the periodicity algorithm will be described.

Comparisons among those methods are also included.
5.1.1 Look-up table method

As mentioned in chapter 3, Chien search needs lots of multiplications
and additions to locate all of the errors. Avoiding or reducing the heavy
computational load of Chien search has been a hot topic in the RS decoding

research community for a long time.

The look-up table method is the easiest way to avoid the computational
load. This methods performs Chien search in advance and stores the results
in a ROM. Thus the table in the ROM contains the mapping relationship

between all the possible values of the coefficients and the cor ding error

positions, and the coefficients can be mapped onto the error positions directly.
The table forming operations are performed off-line. When locating errors,
the coefficients of the error location polynomial will be used as the address
to the table in the ROM, and the error positions will be given at the data
output of the ROM. The only operation needed is to read the table. This
method is the fastest method for RS error locating. It needs only the table

(ROM) access delay time to give out the error positions.

However, as the error locator polynomial of a T-error correcting RS
code will have N7 possible vectors of the coefficient values, the memory

space of such table will be N7 symbols. While N increases, the memory
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space requirements increases very fast. For example, if m = 8, T' = 2, then
N = 255, the memory space of the table is N7 = 255? = 65025 symbols, or
almost 65 Kbytes. For a 2-error correcting RS decoder, such memory space is
not affordable. Therefore, even though the look-up table method can provide
the fastest speed for RS error locating, it is not feasible for many practical

applications, especially for large value of m.

5.1.2 Binary decision fast Chien search

In 1987, Shayan [30] proposed a binary decision approach to fast Chien
search. In his approach, a binary table was designed for double error correct-
ing RS codes, in which each address of the table has an one bit value that is
either 0 or 1. When the value is 0, Chien search is performed for a specified
half of the Galois field, otherwise, Chien search is performed on the other
half of the field. As soon as the first error position is found, the second error
position can be calculated by the formula o, = z,2,. Clearly, this approach
can save half of Chien search time because Chien search is performed over
only half of the Galois field for the first error position. Moreover, there is
no search for the second error position. Since Chien search takes so much
time and the time is increasing quadratically with N, the time saving can
be significant. This approach needs one bit for each address instead of one
symbol needed by direct look-up table. However, the space factor of N? bits

is still large. This issue is a big concern for applications with large N.
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Shayan [4] introduced the microprocessor implementation of the binary
decision fast Chien search, and implemented the method on Intel 8086/286
as well as TMS320C25 microprocessors. With the binary decision fast Chien
search, the time required to decode N symbols was about 17 ms on In-

tel 8086/286 microprocessor.

5.1.3 Okano’s ROM method

Okano and Imai [31] gave a VLSI implementation of decoder using
a multi-ROM method. In this method, several ROM’s were used for the
parallel processing to achieve high speed. The length of the memory is N
for each ROM so that the total memory space depends on the number of the
ROM’s used. Because it uses multi-ROM’s to get the parallel processing, this
method has relatively high speed. Although Okano and Imai implemented
the RS decoders using VLSI, the method is also suitable for microprocessor
implementations. Here, the Okano’s ROM method is described for the case

of double error correcting codes (T = 2).
For
22t onz+ 0 =0,
let z = 091y
Then
y¥+y+Ci=0 (BiT)
is obtained,
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where C; = 0g2/0%,.

Performing exhaustive calculations on Eq. 5.1 yields all of the possible
roots for ¥; and Y;. Originally Okano and Imai put the roots into two ROM’s
which need 2N symbols. By using the ROM’s, according to a given C;, two
roots Y; and Y; can be obtained directly, and the real roots are then given by
X1 = 0211 and X, = 02,Y,. Above discussion is based on it that both roots
Y; and Y; can be obtained from the ROM table. For comparison purpose, let
us consider Okano’s method in another way, which uses only N memory to
store all of the possible values for one of the roots, Y;, and then calculates the
corresponding X;. One can then apply X; X, = 0, to obtain the other root,
X,. For this alternative, only N symbols of memory space will be needed,

but it will need one more multiplication.

To be compared with the periodicity algorithm, let us consider the opera-
tions required by Okano’s method in another way. The Galois field multipli-
cation can be considered as the addition of the power numbers. Based on this,
the Okano’s method can be expressed as in Fig. 5.1. From the Fig. 5.1, it is
clear that Okano’s ROM method needs 8 additions and 5 decision operations

for the worst case.
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oy = a0 = o

i1 shiftleft to get O3

Figure 5.1: Operations needed by Okano’s ROM method
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5.2 Microprocessor implementation of peri-
odicity algorithm

In this thesis, the periodicity algorithm described in chapter 3, was
implemented in assembly language on a 486 PC, though, the given design

idea is also valid for other microp s. The di ion here will focus

on the implementation of the periodicity algorithm itself. Time estimation
is made based on the count of the 486 microprocessor cycles. Information

about the clock cycles used by the 486 microprocessors is given in [38][39)].

Fig. 5.2 gives the flow chart for the implementation. To make the flow chart

match with bly 1 corresponding source code is given in each
block. Before calling the PA routine shown in Fig. 5.2, some preparations

have to be done. They are

. Off-line leader table (LT) calculation,
. Store LT into the memory starting at the address in [DI],

. Put the value of the code length into CX register,

> w0 N

. Put the value of i, into BX register,

&

Put the value of 7, into AX register.

Those preparations are the tasks of the calling routine. For the PA routine,
most operations except table looking-up are performed within the CPU reg-

isters to increase running speed. The 486 assembly language source codes of
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[N + Tcagernoo oxoy] [ ae Byisunoxoax |

13 + Ey; aop Ax, DX

st By sum cx, ax

Figure 5.2: Microprocessor implementation of periodicity algorithm
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the PA routine are listed in the Table 5.1.

The source codes in Table 5.1 have comments for every line. The basic
idea of the assembly routine is described by those comments. Here, some key

statements are explained as follows:

“PUSH AX” is to save the value of 7, in AX register because the value

will be used to calculate the second error position E,.

“MOV DI, LT.” sets the starting point of the leader table. The calling
routine has arranged the off-line calculation of the LT. All the values

of the leaders are stored sequentially after the starting point.

“MOV DX, 1” and “AND DX, AX” are to test whether 7, is even or not.

e “SHR AX, 17 is to perform dividing by 2. This operation has i, « i,/2.

At this point, AX register contains the value of imapping.

The preparation procedure sets the value of 4, into BX register. “CMP
BX, AX” performs the comparison between i; and imapping. “JG” gives

branching.

The table reading operation is “MOV DL, [BX+DI]”. DI register con-
tains the starting pointer of LT (base pointer). The content of the BX
register is used as the offset of the pointer. Then “[BX+DI]” gives the

combined pointer to the value of the leader in LT.
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PUSH AX ; save AX (i2) for later use
MOV DI, LT. ; set LT starting point
MOV DX, 1 ; prepare to test even or not
AND DX, AX ; if even, last bit is 0
Jz EVEN ; whether even 7
ADD  AX, CX ; (12) +n

EVEN: SHR AX, 1 ; 12 shifted right
CMP  BX, AX ; (i1) > (i mapping) 7
JG GREAT1 5
ADD BX, CX () +in

GREAT1: SUB  BX, AX ; (i1) - (i mapping)
MOV DL, [BX+DI] ; table reading
CMP DX, OFFH 5 Ux\igot ?
JNE 0K ; if not, then jump to "OK"
MOV  AX, O ; if yes, return. "x" is in DX
RET ; return with no solution

OK: CMP DX, AX ; (i leader) > (i mapping) ?
JG GREAT2 H
ADD DX, CX ; n + (i leader)

GREAT2: SUB DX, AX ; (i leader) - (i mapping)
AR AKX ; restore (i2) into AX
ADD  AX, DX ; (i2) + E1
CMP CX, AX ; add n ? or not ?
JG NO_ADD §
SHL CL, 1 jine

NO_ADD: SUB CX, AX 3 o= ( (i2) + E1 ), E2 is in €X
MOV AX, 0 ; ready to return
RET ; return with solutions

Table 5.1: Source codes of the PA implementation
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o The value of the leader is moved into DX register. Some of the lead-
ers represent “no solution”. In the PA routine, such cases are marked
by the value of “OFFH”. If the hexadecimal integer “OFFH” is given, it
means that a non-solution chain is met. Operation “CMP DX, OFFH”
tests whether a non-solution chain is met or not. If yes, the hexadec-
imal value OFFH is in DX register to represent no solution. If not, the

statement labeled “OK” will be executed.

e The “POP AX” operation restores the value of i, into AX register. The

PUSH and POP must be paired.

When the PA routine returns, the values of E; and E, are in DX and

CX registers.

5.3 Time estimation

Table 5.2 shows the clock cycles needed by each operation. The time
parameters are given in [41]. Note that Table. 5.2 is same as Table. 5.1
except the comments are replaced by the timing estimates for each operation.
Considering the worst case during the execution, the time of those statements
marked by (*) should be accumulated. That result will be the worst case
time, that is, 72 clock cycles. This has included the address calculations.
However, if the code fetch is considered, more cycles have to be used. The

total cycles will be less than 100 cycles. The Intel 486 can work at 50 MHz
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EVEN:

GREAT1:

OK:

GREAT2:

NO_ADD:

PUSH
Mov
Mov
AND
Jz
ADD
SHR

JG

ADD
SUB
Mov
CMp
JNE
Mov
RET
CMP
JG

ADD
SUB
POP
ADD
CMP
JG

SHL
SUB
Mov
RET

AX

DL
DX,
DX,

1EI55
1
AX

EVEN

AX,
AX,
BX,

CcX
L
AX

GREAT1

BX,
BX,
1] 4
DX,
0K
AX,

DX,

cx

AX
[BX+DI]
OFFH

0

AX

GREAT2

DX,
DX,
AX

AX,
CX,

CX
AX

DX
AX

NO_ADD

CX,
CX,
AX,

il
AX
0

NONANDWN N WNONNN

MO WORNNBENND®N

clock cycles
clock cycles
clock cycles
clock cycles
for no jump,
clock cycles
clock cycles
clock cycles
for no jump,
clock cycles
clock cycles
clock cycles
clock cycles
for no jump,
clock cycles

clock cycles
for no jump,
clock cycles
clock cycles
clock cycles
clock cycles
clock cycles
for no jump,
clock cycles
clock cycles
clock cycles

(*)
(*)
()
)
7 for jump

)
)
7 for jump

(*)
()
)
7 for jump

; 10 clock cycles

)
7 for jump

(*)
(*)
*)
)
7 for jump

)
)

; 10 clock cycles (%)

lable 5.2: Time estimation of the PA assembly routine
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clock [38]. Hence, if the PA routine is run on Intel 486 CPU, the time
needed will be about 2 us, yielding a throughput of double error locating
of 0.5 million/s. For a general purpose microprocessor, this throughput is

rather fast.

An estimation of the error locating time using PA and Chien search for
Eq 4.2 is shown in Fig. 5.3 and Fig. 5.4 for m = 3,4,5,6,7 and 8. Note that
Fig. 5.4 is in expanded scale. It is noted that the expanded scale shown in
Fig. 5.4 is the segment of 0 to 1ms on Fig. 5.3. On this expanded scale chart,

the relationship between the curves can be seen more clearly.

The above running time test is done on DEC 3100 workstation, with
ULTRIX operating system V4.0 (Rev. 179) and C language. By using timing
profiles provided by the system command “profile”, the factor of time-sharing
can be eliminated, and the exact CPU time used by each function can be
determined. To be more precise, 100,000 loops were arranged for each test.

A sample output of profile (for Chien search, m = 7) is listed in Table 5.3.

It is clear that as m increases, Chien search time increases quadratically
with N while the PA time remains almost constant. From those two figures,
it can be estimated that for m = 8, Chien search might need 800 times more

time than that used by the periodicity algorithm.
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File Name: TC7.time

testing the exact time used by Chien search method for m = 7.
( 100,000 loops set for the test )

Profile listing generated Sat Jul 31 14:29:56 1993 with:
prof tc mon.out

-plrocedures] using pc-sampling;
sorted in descending order by total time spent in each procedure;
unexecuted procedures excluded

Each sample covers 8.00 byte(s) for 0.0012% of 811.9500 seconds

Jtime seconds cum % cum sec procedure (file)

46.2 375.2900 46.2 375.29 chien_p (chien_p.c)
41.0 332.6900 87.2 707.98 gf_multp_1 (add.c)
12.8 103.7900 100.0 811.77 gf_add (add.c)

0.0 0.1700 100.0 811.94 main (tc.c)

0.0 0.0100 100.0 811.96 write (../write.s)

Table 5.3: Output of profile for measuring time
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5.4 Comparisons among discussed methods

Since the periodicity algorithm can only be used for double error correcting
(T = 2), for convenience, the comparisons are made only for the discussed

methods on case of T' = 2.

1. Chien search needs lots of multiplications and additions, but no mem-
ory is needed. The disadvantage is that the operations will quadrati-

cally increase when N increases.

9

. Look-up table method needs N? memory space, but no operation is
needed. This is the fastest method. The time delay is only the ROM
access time. However, when N or T' increases, the memory space will

terribly increase. This is the big concern of the feasibility of the method.

@

. Okano’s ROM method needs N memory space to store intermediate
roots Y; or Yz. To obtain the desired roots X; and X,, it needs eight

additions and five decision operations.

-~

. The periodicity algorithm needs N memory space to store the lead-
ers of the chains. With fewer than eight additions and four decision

operations, two error location numbers can be calculated.

Upon above di ion, it can be luded that for the cases of double

error correcting, the periodicity algorithm needs much fewer operations than
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needed by Chien search (N? : 8), and much less memory space than needed
by look-up table and the binary decision fast Chien search (N2 : N). Com-
pared with Okano’s method, the periodicity algorithm needs same memory
as Okano’s method. However, Okano’s method needs one more decision op-
eration than the periodicity algorithm. Therefore, the periodicity algorithm

is the best one among those methods.

5.5 Summary

Several schemes for error locating are compared in this chapter. The
periodicity algorithm is implemented on a 486 PC. The executing time is
estimated. Based on the time curves for Chien search and the periodicity

algorithm, it is luded that the time required by the periodicity algorithm

is much shorter than the time needed by Chien search. If the case of m = 8
is used as the example, the periodicity algorithm needs 1800 of the time used
by Chien search. According to the comparisons, the periodicity algorithm is

the best one among those methods.
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Chapter 6

Conclusion and Future Work

This thesis presents an RS code si which is impl d in C
language under UNIX operating system. To find an optimal RS code for a

certain application, the user can select:
1. Peterson’s or Berlekamp’s method for decoding,
2. the symbol length (m bits) where 3 < m < 8, and

3. the correcting capability (T symbols), where 1 < T < 16.

The simulator starts encoding the user’s message into a systematic code-
word. An error pattern of arbitrary weight (») randomly chosen by the user
is added to the codeword and the resulted received word is formed. The sim-
ulator decodes the received word by using Peterson’s or Berlekamp’s method
according to the user selection, to construct the error locator polynomial.

The Chien search technique is used to obtain the error location numbers
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which are the roots of the error locator polynomial. The simulator produces

a decoded word which is subject to:

1. if v < T, the decoded word is the codeword when it is divisible by the

generator polynomial G(z), and

2. if v > T, the decoded word may not be the codeword even it is divisible
by G(z).

This can be explained by the fact that when v is exactly equal to 7', the
decoded word is the codeword. However, when v > T the error pattern may
be a codeword, then, the decoded word is divisible by G(z). But it is not
a codeword. Furthermore, when v > T, the decoded word always contains
more errors than the actual error pattern because the decoder makes more
errors. This new error pattern may sometimes be a codeword. Hence, the

decoded word is still divisible by G(z) but it is not the codeword.

By using Chien search to obtain all the possible roots of the error locator
polynomial, it is found that for the double error correcting case (T’ = 2), those
roots are not randomly distributed, but they follow certain rules. Based on
these rules, the periodicity algorithm is introduced and its validity is verified

by exhaustive computer simulations.

The periodicity algorithm states:
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. All the possible roots of the double error locator polynomial always

exists on solution chains.

o

Each solution chain repeats itself in a period of N shifts.

&

On each solution chain, the error position numbers are changed by an

increment or decrement of 1, depending on the row position index is

increased or decreased by 1, respectively.

=

In regard to the second root, the constant product property is used.

With fewer than 8 additions, 4 decision operations and only N symbols of
memory space required, the periodicity algorithm outperforms Chien search
and the binary decision fast Chien search techniques in terms of the decoding
time. Most of all it also outperforms the Okano’s analytical solutions by a
decision operation. Of course, the look-up table is the fastest in terms of
the decoding time but its memory space required is N2. This will limit
its use when N is large. Therefore, it is concluded that the periodicity
algorithm is the optimal solution for both decoding time and memory space.
This algorithm is found to be very suitable for use in microprocessor based

decoders.

The periodicity algorithm is now available for T < 2. For the cases of
T > 2, it may be anticipated that the error location numbers may not be
distributed randomly. This may be the future work one may want to look

into.
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