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ABSTRACT 

 With the use of indirect stimulation techniques, it is possible to examine the basic, 

underlying mechanisms involved with the neuronal control of voluntary motor outputs in 

humans. By developing a better understanding of how the central nervous system 

functions during these outputs, we allow for the possibility of improving current 

rehabilitative and therapeutic strategies for people with neurological injuries and/or 

diseases. Recently, this type of work has demonstrated that corticospinal excitability is 

not task-dependent prior to the initiation of a motor output. However, substantial 

evidence has shown that corticospinal excitability is task-dependent during motor 

outputs. Considering these two findings, it is highly plausible that a transition occurs in 

corticospinal excitability from task-independent to task-dependent as movement 

progresses from rest to steady-state. The timeline of this transition is poorly understood. 

Therefore, the purpose of this study was examine the possible task-dependent transition in 

corticospinal excitability from rest to steady-state arm cycling.  
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Chapter 2 Review of Literature 

2.0 Introduction 

 For most healthy people, walking is viewed as a simple motor task that can be 

performed with minimal conscious effort. It is, after all, a movement that is mastered as a 

child. But in reality, walking, like all rhythmic motor outputs, is quite complex. It 

requires contributions from multiple muscles of the lower body, timely, coordinated 

movement of both legs, and constant balance as the body sways from step to step. The 

neural control for all of these parameters is commonly thought to arise solely from the 

brain, with the spinal cord acting as nothing more than a two-way messenger system that 

connects the brain to target muscles. We have known this to be untrue as far back as the 

late 19th century.   

 Sir Charles Sherrington, who won the Nobel Prize in Physiology or Medicine in 

1932 for his work on “…discoveries regarding the function of neurones,” was one of the 

very first pioneers to demonstrate the intricate activity of spinal neurones. His research 

was fundamental to our understanding of many spinal processes and his work led to 

several ground-breaking discoveries. One of these discoveries was that muscles with 

opposing functions (referred to as ‘antagonists’; meaning that when they contract, they 

move a joint in opposite directions) communicate with each other through spinal 

pathways. This communication is known today as reciprocal inhibition, and functions as 

such: when a muscle contracts, its antagonists are inhibited and become less likely to 

produce meaningful force. Future research would demonstrate that reciprocal inhibition is 

just one of many spinally generated reflexes that play an influential role in movement. 
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But spinal contributions to movement, specifically rhythmic movement, do not begin and 

end with reflexes alone.  

 Work in animal models has demonstrated that, when void of both cortical and 

sensory input, it is still possible for rhythmic motor outputs to be generated. This finding 

has led to the conclusion that specific spinal circuits with the ability to produce the basic 

characteristics of rhythmic movement must therefore exist (Grillner 1981; Jordan 1998). 

These circuits are now referred to as central pattern generators (CPGs) and have been 

discovered in multiple animal species. CPGs function via the phasic activation of 

antagonist muscles through spinally mediated reciprocal inhibition, thus producing an 

alternating motor output. An example of this can be seen in the hip flexors/extensors 

during walking (Dimitrijevic et al. 1998). While the spinal motoneurones to the hip 

flexors are active in the swing phase of walking, the CPG reciprocally inhibits the spinal 

motoneurones to the hip extensors. As the foot makes contact with the ground and the leg 

transitions to the stance phase, inhibition is removed from the hip extensor motoneurones 

and applied to the hip flexors. This simple, yet essential mechanism creates a rhythm of 

activation between opposing muscles about a joint, allowing for rhythmic movements to 

be produced.  

 There is evidence that rhythmic movements in humans are also produced in part 

by spinal CPGs (Capaday et al. 1999; Zehr and Stein, 1999; Pyndt and Nielsen, 2003; 

Carroll et al. 2006; Zehr et al. 2009). A great deal of this research comes from indirect 

measures of corticospinal tract excitability, which is one of the major descending 

pathways of the central nervous system (CNS) responsible for voluntary control of 

movement. Included in this body of work are two of our previous studies, which have 
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assessed the excitability of the corticospinal tract between two different motor tasks; arm 

cycling and a tonic contraction of the elbow flexors. Comparing responses during 

rhythmic tasks to responses elicited during non-rhythmic tasks is a common method used 

in this field. As a tonic contraction is not a CPG-mediated output, any discrepancies 

observed between the two tasks are likely due to the unique control patterns used to 

modulate rhythmic movements. Using this strategy, we have shown that corticospinal 

excitability prior to movement is not different between arm cycling and a tonic 

contraction (Copithorne et al. 2014). During movement, however, corticospinal 

excitability is elevated while arm cycling (Forman et al. 2014). These two findings 

suggest that the neural control prior to movement is not influenced by the forthcoming 

output, but becomes task-dependent during movement. It can thus be inferred that a 

transition in the modulation of corticospinal excitability from being task-independent to 

task-dependent must occur once the movement begins.  

The time-course of this transition is currently unknown as studies in this line of 

work typically take measurements once rhythmic movement has reached a constant 

cadence (i.e. long after the movement began). Such a gap in knowledge is vitally 

important as this field of study has the potential to benefit therapeutic research involved 

with CNS disorders. The aim of this review is to discuss the current literature in regards 

to the modulation of the CNS during voluntary movement.  

 

2.01 The Corticospinal Tract 

  One of the most influential descending pathways involved in the control of 

voluntary movement is the corticospinal tract. As its name suggests, this pathway 
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originates in the motor cortex and synapses onto spinal neurones throughout the length of 

the spinal cord. Specifically, the tract originates via pyramidal cells located in the 5th 

layer of the motor cortex. The name ‘pyramidal’ arises from the pyramid-like, white 

matter structures of the medulla; the site at which the axons of the corticospinal tract pass 

through before they decussate, or cross over (Nathan and Smith 1955). These cells have 

several names, but are usually referred to as upper motoneurones in a more general sense. 

The reason being is that they are located within the brain and are thus anatomically higher 

than their spinal motoneurone counterparts. In this review, pyramidal cells will be written 

as upper motoneurones. The location of upper motoneurones within the cortex varies 

among individuals, but more than 60% of these cells are usually found within the 

supplementary, premotor and primary motor areas of the frontal lobe (Dum and Strick 

2009; Jane et al. 1967). Additional cells have been observed in the primary sensory area 

and the parietal cortex (Lemon 2008). The axons of the corticospinal tract take a 

relatively linear path to the brainstem, passing through several structures of the cerebral 

cortex and the midbrain on the way. Here, they form the pyramids of the medulla, which 

occurs just rostral to the point where the tract decussates (Nathan and Smith 1955). The 

exact percentage of the tract that decussates varies between reports, but a common 

estimate is that 80-90% of the corticospinal tract axons cross over to the contralateral side 

at the medulla (Kaneko et al. 1997). At this point, the corticospinal tract branches into 

two separate pathways with 80-90% of axons that crossed over forming the lateral 

corticospinal tract and the remaining axons forming the anterior corticospinal tract. Axons 

of both tracts then descend down the spinal cord to synapse onto specific spinal neurones. 

The axons of the lateral corticospinal tract synapse directly onto spinal neurones located 
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on the ipsilateral side in which they travelled (contralateral to their origin within the 

motor cortex). The axons of the anterior corticospinal tract, once they have reached their 

appropriate spinal level, must first decussate to the contralateral side before they synapse 

onto spinal neurones (Nathan et al. 1990; Eyre 2003). This means that while the two 

tracts do not travel along the same pathway, they both innervate the contralateral side of 

the body from which they originated. Upper motoneurones travelling along both tracts 

will synapse onto either a spinal interneurone or directly onto a spinal motoneurone. The 

exact percentage that make monosynaptic connections with spinal motoneurones varies 

between muscles. For the biceps brachii, it is believed that they possess a large 

monosynaptic component (Petersen et al. 2002; Ugawa Y et al. 1991). The spinal 

motoneurones, which are located in the anterior horn of the grey matter at their respective 

spinal level, then exit the spinal cord through a ventral root. For the biceps brachii and 

most of the muscles of the upper limb, these axons exiting the spinal cord eventually form 

part of the brachial plexus. Specifically, the brachial plexus is formed from the ventral 

roots exiting the spinal cord at C5-C8 and T1 (Johnson et al. 2006). The brachial plexus 

then branches off into many individual nerves that innervate the muscles of the shoulder, 

the arm and the hand. One of these nerves is the musculocutaneous nerve, which 

innervates the muscle fibers of the long and short heads of the biceps brachii.  

 

2.02 Assessing Corticospinal Excitability 

 The electrical properties of the corticospinal tract are in a constant state of change. 

At all times, the corticospinal tract receives synaptic input from a wide range of sources, 

including other regions of the brain, the brain stem, and sensory feedback from the 
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peripheral nervous system. The sum of this input, as well as any changes in intrinsic 

electrical properties of the cells that compose this pathway, modulates the responsiveness 

of the corticospinal tract making it more or less likely to produce a motor output. In 

neurophysiology, this responsiveness is referred to as excitability. For example, if an 

individual is at rest, their body is completely relaxed and they are not consciously 

thinking about movement, corticospinal excitability is likely low. If, however, they were 

to move their limbs, contract a muscle, or even just think about moving, corticospinal 

excitability would increase, meaning that the pathway has become more responsive. In 

humans, the excitability of the corticospinal tract is typically measured indirectly using 

either electrical or magnetic stimulation techniques. These methods apply stimulation 

over a specific region of the pathway, such as the motor cortex, brainstem or spine, and 

measure the evoked response in a target muscle (McNeil et al. 2013). The size of the 

response, or how quickly the response occurred, can indicate the excitability of the 

corticospinal tract at the time the stimulation was delivered. Using the example 

mentioned above, if a stimulation of ‘X’ intensity was delivered to the motor cortex while 

a participant was at rest, it is possible that no response would be observed due to the low 

excitability of the corticospinal tract. Under different conditions, such as a mild muscle 

contraction, that same stimulation intensity (i.e. ‘X’) could result in a very large response 

as the excitability of the pathway would be much higher; neurones along the corticospinal 

tract made to fire action potentials more easily.  

 While many different techniques exist to measure corticospinal excitability in 

humans, each with their own strengths and limitations, this review will be focused on 
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two. Specifically, transcranial magnetic stimulation (TMS) and transmastoid electrical 

stimulation (TMES) are discussed in greater detail below.  

 

2.03 Transcranial Magnetic Stimulation 

TMS is a technique that activates the motor cortex by inducing a rapid change in 

the magnetic field, or magnetic pulse, over the skull (Barker et al. 1985). Typically, this 

technique does not directly activate the upper motoneurones of the corticospinal tract as 

they are located deep within the motor cortex. Instead, TMS activates interneurones in the 

upper layers of the motor cortex, which then synapse onto the corticospinal tract 

neurones. This is referred to as trans-synaptic activation. The number of synapses that 

occur before the signal reaches the corticospinal tract depends on which of the individual 

cells in the upper layers of the motor cortex are being activated. Therefore, the sum of the 

synaptic input delivered to the upper motoneurones does not necessarily arrive at the 

same time (i.e. temporal summation occurs). Consequently, TMS results in the production 

of multiple descending volleys rather than just one, synchronized, evoked response. This 

has previously been demonstrated in practice as it is possible to observe these volleys at 

the spinal cord via epidural electrodes (Burke et al. 1993). These are known in literature 

as indirect waves (I-waves) and are the result of the trans-synaptic nature of TMS (Di 

Lazzaro et al. 1998). It is possible for certain individuals, and at high enough stimulation 

intensities, to directly stimulate the corticospinal tract. These are referred to as direct 

waves (D-waves) and can be distinguished from I-waves in electromyography recordings 

(EMG) by their shortened latency of approximately 1-1.4 ms (Burke et al. 1993; Di 

Lazzaro et al. 1998). Responses elicited from TMS are usually recorded from a target 
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muscle as a compound muscle action potential; termed a motor evoked potential (MEP) 

(Taylor et al. 2002). The size of the peak-to-peak amplitude, the onset latency of the 

evoked response, and the corticospinal silent period (CSP) (the duration of time from the 

onset of the stimulus artifact to when voluntary EMG returns following the evoked 

response) of the MEP are used to assess changes in corticospinal excitability under 

different experimental conditions. However, an important point to remember is that the 

corticospinal tract is composed of cortical and spinal components. It is therefore possible 

that differences in excitability (i.e. changes in the MEPs) between experimental 

conditions can be due to changes at the supraspinal level, the spinal level, or both. But 

determining the source(s) of that change is difficult with TMS alone as MEPs are an 

indicator of overall corticospinal excitability. Due to this limitation, TMS is often used 

alongside an independent measure of spinal excitability in order to interpret MEPs to a 

greater degree. One such technique is transmastoid electrical stimulation (TMES) 

 

2.04 Transmastoid Electrical Stimulation 

While not as common as some other methods, TMES is a technique that involves 

an electric current being passed through surface electrodes placed on the mastoid 

processes. Stimulation at this location activates the axons of the corticospinal tract (axons 

of the upper motoneurones) near the cervicomedullary junction (Taylor 2006). This site 

has been determined as an optimal location as the corticospinal tract decussates at this 

level and the bending of the axons provides a larger, and more easily activated surface 

area (Amassian et al. 1992; Maccabee et al. 1993). The resulting effect is a single 

descending volley in the muscles of the upper limb, and in some individuals, the lower 
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limb (Ugawa et al. 1991; Ugawa et al. 1995). For the upper limb, the single volley 

produced by TMES proceeds down the axons of the upper motoneurones, synapses with 

spinal motoneurones, and is then recorded at a target muscle. This evoked response is 

known as a cervicomedullary evoked potential (CMEP) and is used as a means to 

distinguish changes in spinal excitability under different experimental conditions (Taylor 

2006). It is therefore an appropriate choice to be used alongside TMS in order to 

differentiate changes in corticospinal excitability as being derived from either supraspinal 

or spinal sources.  

An issue worth noting with TMES is that stimulation between the mastoids has a 

tendency to activate the ventral roots emerging from the spinal cord, along with the 

desired corticospinal tract (Ugawa et al. 1991). Ventral roots have been observed to bend 

upon their exit from the spinal cord, which provides a second, easily activated site 

following electrical stimulation (Rossini et al. 1985; Mills and Murray, 1986). If the 

ventral roots are indeed activated, this will likely appear in an EMG trace as a sudden 

decrease in the CMEP onset latency by approximately 2 ms (Ugawa et al. 1991). This can 

be a potential problem, as activation of the axons of the spinal motoneurones no longer 

represents the excitability of the motoneurone itself. CMEP onset latency must therefore 

be carefully monitored when using TMES as an experimental technique.   

One assumption that must be met when using different techniques to assess 

corticospinal and spinal excitability is that both techniques activate similar axons within 

the corticospinal tract. Paired TMS and TMES stimulation paradigms have demonstrated 

that these two techniques do indeed activate similar motor pools, as the antidromic action 

potentials produced by TMES appear to collide with and cancel the descending volleys 
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induced by TMS (Taylor et al. 2002). This finding suggests that both techniques travel 

along the same pathways, thus validating the use of TMS and TMES to examine 

corticospinal excitability.  

 

2.05 Examining the Neural Control of Rhythmic Motor Outputs 

 In both animal models and human research, an effective method of establishing 

the task-specific mechanisms involved in the production of rhythmic movement is by 

comparing a rhythmic motor output to a non-rhythmic motor output. For the type of 

indirect research that is common in human work, this is most often conducted by 

contrasting a rhythmic motor output (such as walking or cycling) with a tonic, or 

isometric contraction. This type of methodology has been previously used in both leg 

(Pyndt et al. 2003) and arm cycling (Carroll et al. 2006; Forman et al. 2014). The reason 

for this strategy’s effectiveness is that the basic, alternating characteristics of rhythmic 

motor outputs, such as leg and arm cycling, are generated in part by spinal pathways 

(Zehr et al. 2004), which are absent during tonic contractions. Tonic contractions can 

therefore be used as a control of sorts, so long as the overall output between tasks is the 

same. If that assumption is met, and the intensity of the two motor outputs is equal (the 

level of muscle activity, or EMG, is matched between tasks), any differences in 

corticospinal excitability may be due to differences in the central control of the two tasks. 

In that scenario, the influence of CPGs on the rhythmic motor output becomes a possible 

explanation for the observations.  
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2.06 Pre-Movement Modulation of Corticospinal Excitability for CPG Mediated 

Motor Outputs 

The modulation of corticospinal excitability during rhythmic motor outputs is 

complex, but this pattern of excitability begins before movement actually starts. Power 

and colleagues (Power and Copithorne, 2013) demonstrated that corticospinal excitability 

to the biceps brachii was enhanced 50 ms prior to the onset of voluntary EMG from the 

initiation of an arm cycling task. Corticospinal and spinal excitability were assessed 

through the use of single pulse TMS and TMES, respectively. Both of these stimulations 

were delivered approximately 50 ms before the expected onset of biceps brachii EMG. 

This point of delivery varied between individuals and was found by measuring the 

reaction time of each participant. Once reaction time was determined, the stimulations 

were programmed to arrive automatically 50 ms beforehand. Measurements were then 

taken during two separate experimental conditions; arm cycling and rest. For arm cycling, 

participants were given an auditory warning signal that instructed them when to begin 

cycling. For the rest condition, which acted as a control, participants were instructed not 

to move or think of moving upon hearing the auditory cue. An increase in the peak-to-

peak amplitude of the MEP, as well as a decrease in the MEP onset latency, was observed 

prior to arm cycling when compared to rest. Both CMEP amplitude and the CMEP onset 

latency were not different between experimental conditions. These results suggest that the 

enhancement in corticospinal excitability prior to arm cycling is likely supraspinally 

mediated as there was no change in spinal excitability. It has been suggested that the 

increase in supraspinal excitability may result from increases in intracortical facilitation 

(Nikolova et al. 2006), or from a progressive decrease in interhemispheric inhibition 
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(Duque et al. 2007). It is also likely that, based on the reduced onset latency of the MEP 

prior to arm cycling, fewer successive I-waves may have been needed to produce said 

MEP. If cortical motoneurones were excited prior to movement, and firing thresholds 

were hyperpolarized, then it is possible that the development of MEPs would not have 

been dependent on the temporal summation of excitatory post-synaptic potentials 

(EPSPs).  

It was proposed that a possible reason for the lack of modulation in spinal 

excitability in the aforementioned study (Power and Copithorne, 2013) was that the 

measurements were not taken close enough to the onset of muscle activity. The case may 

have been that spinal changes were indeed occurring before movement, but simply not 50 

ms beforehand. Reasoning for this line of thought arose from findings in the soleus, 

whereby CMEPs have been shown to increase 25 ms prior to dorsiflexion (Geertsen et al. 

2010). However, in a follow-up study on the biceps brachii, Copithorne et al. (2014) 

discovered that this is likely not the case, as similar results were found at 25 ms prior to 

arm cycling. As with their earlier research, TMS and TMES were used to assess 

corticospinal and spinal excitability, respectively, of the biceps brachii. Both stimulation 

techniques were elicited approximately 25 ms before the onset of EMG induced from the 

initiation of arm cycling. The peak-to-peak amplitude of the MEP was found to increase 

and the onset latency was shown to decrease prior to arm cycling when compared with 

rest. Both CMEP amplitude and onset latency were unchanged. A methodological 

difference with their previous work is that Copithorne et al. (2014) also compared pre-

cycling measures with pre-tonic measures. Following cycling trials, participants were 

required to produce a position and intensity matched (same EMG between motor tasks) 
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tonic contraction following an auditory cue. As with cycling, TMS and TMES were 

placed approximately 25 ms prior to the onset of EMG produced by the tonic contraction. 

An increase in MEP amplitude was found to coincide with a decrease in the onset latency 

when compared with rest. Neither CMEP amplitudes nor onset latencies were shown to 

change. The most interesting finding, however, was that neither the MEP amplitude nor 

the MEP onset latency were significantly different between the two motor tasks.  

According to these findings, it appears that corticospinal excitability to the biceps 

brachii increases prior to arm cycling. Evidence suggests that this is due to changes in 

supraspinal excitability, with variations in intracortical facilitation and interhemispheric 

inhibition as possible mechanisms. It also appears that spinal excitability remains 

unchanged, at both 50 and 25 ms prior to movement. But perhaps the most important 

point from this research is that this pattern of corticospinal modulation prior to arm 

cycling does not appear to be different than that prior to an intensity matched tonic 

contraction. This finding suggests that pre-movement modulation of supraspinal 

mechanisms may be uniform across motor outputs (i.e. not task-dependent).  

 

2.07 Corticospinal Modulation During CPG Mediated Motor Outputs 

The production of a rhythmic motor output like arm cycling is accomplished 

through a complex combination of descending drive from supraspinal factors, 

reorganization of intrinsic spinal excitability, and reflexive adjustments via peripheral 

pathways. However, while their modulation is notably intricate, these components 

function together in a cooperative manner. During leg cycling, Sidhu et al. (2012) 

demonstrated that corticospinal and spinal excitability to lower limb muscles are 
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modulated throughout the phase of a full cycle. They used TMS and TMES to 

preferentially activate the corticospinal tracts to the vastus lateralis (VL), and elicited 

these techniques throughout a full revolution of leg cycling. Responses were then grouped 

into 12 ‘bins’ according to the time in which they were delivered. Each of the 12 ‘bins’ 

corresponded to one of the 12 pedal positions relative to the face of a clock. It was 

discovered that, when normalized to background EMG, MEP amplitudes of the VL were 

largest just prior to the most active phase of the muscle, and were significantly smaller 

from that point on. CMEP amplitudes were found to follow a similar pattern of 

modulation. This led to the conclusion that the contribution of the motor cortex is 

enhanced prior to maximum muscle activation, but spinal-factors are largely responsible 

for phase-dependent modulation of corticospinal excitability. Similar conclusions have 

been drawn in the flexor carpi radialis (FCR) during arm cycling. Carroll et al. (2006) 

used TMS to assess corticospinal excitability and electrically induced H-reflexes to assess 

spinal excitability to the FCR at four different positions throughout a cycling revolution 

(3, 6, 9 and 12 o’clock relative to a clock face). These techniques were also delivered 

during position and intensity matched (equal EMG) tonic contractions. Both MEP 

amplitude and the H-reflex during a tonic contraction were significantly larger at the 6 

o’clock position when compared to arm cycling. H-reflexes were also larger during tonic 

trials at the 3 o’clock position. Additionally, Zehr and colleagues (Carroll et al. 2006) 

discovered that sub-threshold TMS significantly facilitated the H-reflex during tonic 

contractions, but had no influence while cycling. This data suggests that the 

responsiveness of the motor cortex is depressed during an arm cycling task, and that 

spinal contributions likely make up a larger portion of the central control. The findings of 
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a more recent paper suggest that not only is corticospinal excitability phase- and task-

dependent, but likely muscle-dependent as well. Forman et al. (2014) examined 

corticospinal excitability to the biceps brachii during arm cycling through the use of both 

TMS and TMES. Stimulations were elicited automatically at pedal positions 3, 6 and 12 

relative to a clock face. As with Zehr and colleagues (Carroll et al. 2006), evoked 

responses during cycling trials were then compared with position and intensity matched 

tonic contractions. Similar to previous research, both MEPs and CMEPs were found to be 

modulated throughout a full cycle. But unlike in the FCR (Carroll et al. 2006), MEPs 

elicited in the biceps brachii at the 3 and 6 o’clock position were significantly larger 

during arm cycling when compared with a tonic contraction. CMEPs were also larger at 3 

o’clock during arm cycling, which may be fully or partially responsible for the increase in 

the MEP at the same position. One explanation for this observed discrepancy is that the 

roles of the FCR and biceps brachii during arm cycling are remarkably different. FCR 

activity is produced mainly to stabilize the wrist, which means it is continuously active 

during this motor output. It demonstrates very little phasic activation, which is a striking 

contrast to the biceps brachii. As one of the prime movers during arm cycling, the biceps 

brachii produce large bursts of EMG during elbow flexion (3 to 9 o’clock) and very little 

EMG activity during elbow extension (9 to 3 o'clock). It can be surmised that the role of a 

muscle during a cycling motor output heavily influences the manner in which 

corticospinal excitability is modulated. However, regardless of the inter-muscle 

differences that appear to be present, it is clear that corticospinal excitability during arm 

cycling for both the FCR and the biceps brachii is generated differently than during a 
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tonic contraction. This may be partially due to the contributions of CPGs during arm 

cycling, which would be absent for a tonic contraction.  

 

2.08 Rhythmic Motor Outputs in Animal Models 

 While human research into the neural mechanisms of rhythmic motor outputs has 

added fundamental knowledge to the field, there is a great deal of information that must 

still be derived from animal models. This is largely due to the limitations of indirect 

neurophysiological assessment techniques associated with human research. Of course, 

that is not to say that animal models are not without their own limitations, but using this 

form of research, it is possible to examine the CNS at the cellular level. This work has 

demonstrated that while descending input is required to initiate locomotor outputs (Jordan 

et al. 2008), the activity itself is modulated by the alternating activity of spinal CPGs 

(Grillner 1981; Jordan 1998). Additionally, spinal motoneurones, which are not directly 

assessed in human research, have been found to undergo substantial intrinsic changes to 

their electrical properties prior to and throughout locomotor outputs. Intracellular 

recordings have previously been made in the decerebrate cat during rest, as well as fictive 

locomotion. It was found that the voltage threshold (Vth) (the voltage that must be 

obtained in order for an action potential to fire) is hyperpolarized by an average of -8 mV 

during fictive locomotion (Krawitz et al. 2001), meaning that the spinal motoneurone 

requires substantially less synaptic input to reach Vth. It has also been shown in the 

decerebrate cat that the amplitude of the afterhyperpolarization (AHP) (period following 

an action potential where the membrane potential falls below resting levels) is reduced 

during locomotor outputs (Brownstone et al. 1992), meaning that subsequent action 
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potentials can occur at a higher firing frequency. Similar findings have been observed 

during fictive locomotion in rat models (Schmidt, 1994). Lastly, the excitatory component 

of the locomotor drive potential (the alternation of excitation/inhibition by spinal CPGs) 

appears to respond in a voltage-dependent manner (Brownstone et al. 1994). As the 

membrane potential of the motoneurone depolarizes, motoneurone excitability is 

amplified. These mechanisms appear to function in a cooperative manner in order to 

increase the excitability of spinal motoneurones during locomotion. However, as was 

stated in an earlier section, a limitation with this kind of research is that, while it sheds 

light on the modulation of spinal pathways during rhythmic motor outputs, it does not 

demonstrate whether or not this modulation is task-dependent. Are the changes in spinal 

motoneurone properties that occur during locomotor outputs similar for all motor 

outputs? This question was examined in the adult decerebrate cat by Power and 

colleagues (Power et al. 2010). In this study, Vth was measured using intracellular 

recordings from semimembranosous motoneurones during fictive scratch and fictive 

weight support. Vth was measured from spikes under two different experimental 

conditions: 1) following intracellular current injection which elicited action potentials, 

and 2) action potentials occurring spontaneously during the depolarizing phase of fictive 

scratch or weight support. Vth was defined as the point at which the membrane potential 

rapidly depolarized at a rate of ≥ 10 V/s. Fictive scratch of the ipsilateral hind limb was 

achieved by manual stimulation of the ipsilateral ear. For fictive scratch, measurements of 

Vth were taken before, during and after a short bout (~7 seconds). On average, the Vth 

during fictive scratch was hyperpolarized by 1.8 mV compared to rest. This value 

recovered to resting levels within 6 seconds following the cessation of fictive scratch. 
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These findings support earlier research during fictive locomotion, suggesting that similar 

motoneurone excitability modulation occurs between rhythmic motor outputs. In order to 

establish that this modulation was unique to rhythmic motor outputs, Vth was the assessed 

during fictive weight support. To rule out variability of Vth between motoneurones, the 

same motoneurones assessed during fictive scratch were also assessed during fictive 

weight support. This was achieved by manually stimulating the contralateral ear, thus 

producing fictive scratch in the contralateral hind limb. Fictive scratch of the contralateral 

limb results in the activation of ipsilateral extensor motoneurones of the hind limb to 

produce a tonic contraction of the ipsilateral limb, referred to as fictive weight support 

(Perreault et al. 1999). Measurements were again taken before, during and after a short 

bout of fictive weight support. On average, the Vth during fictive weight support was 

depolarized by 3.7 mV when compared with rest, which contrasts the findings during 

fictive scratch. From these findings, intrinsic excitability of spinal motoneurones appears 

to increase during fictive scratch, but decrease during fictive weight support. This 

suggests that changes in motoneurone excitability are task-dependent. It also highlights 

the importance of comparing measures of the CNS between tasks, both in animal models 

and human research.  

 

2.09 The Mesencephalic Locomotor Region and Movement Initiation 

 While it is widely accepted that spinal mechanisms provide the largest 

contribution to the characteristic, alternating activation of antagonist motoneurones 

during locomotor outputs, these pathways require supraspinal input in order to become 

active. This discovery was made in 1966 when researchers working with decerebrate cats 
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elicited locomotion by applying stimulation to a specific site in the midbrain (Shik et al. 

1966). According to these authors, “The cat which before stimulation was immobile 

suddenly “came to life,” stood up on its legs and began to move setting in motion or 

accelerating the treadmill belt… It is assumed that the control of walking and running in 

the intact animal is brought about through change in the excitability of a definite region of 

the mid-brain,” (Shik et al. 1966). Subsequent research would eventually lead to this 

region being termed the mesencephalic locomotor region (MLR). Specifically, the MLR 

is located in the mesopontine reticular formation of the brainstem (Skinner et al. 1990), 

and possesses cells that directly synapse onto cells of the reticulospinal tract (Grillner, 

1981; Jordan, 1991; Rossignol, 1996; Grillner et al. 1997; Jordan, 1998; Whelan, 1996). 

As with the corticospinal tract, the reticulospinal tract is one of the major, descending 

pathways in the CNS that contributes to voluntary movement. However, while a large 

portion of the upper motoneurones in the corticospinal tract terminate via synaptic 

connections with spinal motoneurones, reticulospinal neurones project onto spinal 

interneurones that form CPGs (Grillner et al. 1997; Jordan, 1998). Thus, excitation of the 

MLR indirectly produces locomotor outputs via activation of the reticulospinal pathway. 

However, while the MLR is considered to be the region with the largest concentration of 

neurones devoted to the initiation of locomotion, it is not the only structure with 

projections to the reticulospinal pathway. The lateral hypothalamus and the cerebellum 

provide direct, excitatory input to the reticulospinal tract, while the medial hypothalamus 

delivers indirect, excitatory input through the MLR (Grillner et al. 1997). Additionally, 

several structures that form the basal ganglia have been shown to control the MLR 

through inhibitory input, in which excitation of these pathways would cease the activity 
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of the MLR (See Fig. 1 in Jordan, 1998 for summary of main structures). This multitude 

of descending pathways involved in locomotor initiation form a redundancy that may 

appear unnecessary, but consequently provides the possibility of locomotor recovery 

following an injury or neurodegenerative disease.   

 

2.10 Initiation of Rhythmic Motor Outputs in Humans 

At present, no study has characterized how corticospinal excitability is modulated 

at the immediate initiation of a cycling task. There have, however, been studies to 

examine this pathway during gait initiation. Considering gait is a rhythmic motor output, 

and likely shares many mechanical and neural control properties with cycling, the 

findings of this research may have relevance to arm cycling. Hiraoka and Abe (2007) 

examined the influence of gait initiation in healthy individuals on corticospinal 

excitability to the ankle flexors and extensors. TMS was used to assess changes in 

corticospinal excitability and H-reflex was used as a measure of spinal excitability. The 

“initiation of gait” was defined as the onset of ankle dorsiflexion (DF) that occurred as 

the participant moved from postural phase (standing still) to swing phase (dominant leg 

stepping forward). This was assessed by an electrogoniometer. Stimulations were elicited 

at 180 ms prior to DF and 150 ms after DF in 30 ms intervals (11 total time points). It was 

found that the soleus H-reflex was depressed prior to movement when compared to rest 

and up to 30 ms after the ankle began to DF, which has been confirmed in previous 

studies (Edamura et al. 1991; Hiraoka et al. 2006). MEPs elicited in the soleus were also 

depressed prior to DF, but increased significantly once gait was initiated. H-reflexes were 

not elicited in the tibialis anterior (TA), but MEPs were and these values were larger both 
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prior to and after DF when compared to control. The decrease in the soleus MEPs seen 

prior to movement may be explained by the depression of the soleus H-reflex at the same 

time point. However, that does not explain the soleus MEPs following DF, which 

increased despite the soleus H-reflex remaining depressed. This may be a ‘spill over’ 

effect from the increase of activity in the lower limb as a whole when gait is initiated. 

One possible site of this ‘spill over’ may be from the TA, which demonstrated greater 

MEPs at the same time points. However, the most noteworthy point from this study was 

the lack of change in both the soleus H-reflex and the TA MEPs from pre-gait to gait 

initiation. This finding suggests that patterns of pre-movement corticospinal excitability 

may persist once movement starts. Whether or not this modulation changes in the later 

stages of walking once an individual has attained their optimal stride frequency (steady-

state) has not been assessed.  

 A second study conducted by the same research group has characterized 

corticospinal excitability between the start of a rhythmic and non-rhythmic motor task. 

Goto et al. (2014) used TMS to assess corticospinal excitability in the soleus and the TA, 

and the H-reflex to assess spinal excitability in the soleus between a discrete and rhythmic 

motor task. The discrete (and therefore, non-rhythmic) motor output used in this study 

was a single, dynamic movement of ankle dorsiflexion followed by ankle plantar flexion. 

The pace of the entire movement was 1Hz and was preceded and followed by a moment 

of rest (i.e. the movement was not repeated). The rhythmic motor output was simply a 

repetition of ankle dorsiflexion and plantar flexion with no rest occurring between cycles 

(10 cycles were completed in total for each trial). This was also kept to a constant pace of 

1Hz (one round of dorsiflexion and plantar flexion/second) in order to match the speed of 
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the two movements. While this type of movement is not a commonly used task within the 

field, repetitive and periodic flexion and extension of the ankle shares many 

characteristics with other, well studied rhythmic motor outputs, such walking and cycling. 

Nevertheless, the ‘rhythmicity’ of the movement has been brought into question, thus the 

findings of this work should be interpreted with caution. The stimulations (TMS and H-

reflex) were automatically delivered while the ankle was plantar flexing. At this point, the 

soleus showed signs of muscle activity while the TA was relatively relaxed. For the 

rhythmic motor output, this position received stimulations during the first cycle of 

dorsi/plantar flexion as well as the 10th cycle. Due to its nature, the discrete motor task 

received stimulations in the first and only cycle. It was found that there were no 

differences in any of the measures taken between discrete ankle movement and the first 

cycle of rhythmic ankle movement. However, TA MEPs in the 10th cycle of rhythmic 

ankle movement were significantly larger than MEPs elicited during the 1st cycle, and by 

extension, discrete ankle movement.  

There are a number of important conclusions that can be drawn from these 

findings. The first is that there appears to be no difference in corticospinal or spinal 

modulation between the beginning of a rhythmic motor task (or, at the very least, the type 

of rhythmic movement chosen in this study) and a discrete motor task. Second, and 

perhaps more importantly, the results of the 10th cycle would indicate that supraspinal 

excitability is elevated as a rhythmic motor output progresses. It may therefore be 

possible that the beginning of a rhythmic motor task is under different central control 

parameters than the later stages of the movement.  
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Indirect evidence from Parkinson’s disease (PD) research may provide additional 

support for this conclusion. A common, clinical feature of PD is bradykinesia, which is 

the slowing of movement. This symptom is characterized by the impairment of an 

individual’s capacity to plan, initiate and execute motor outputs (Berardelli et al. 2001). 

This often manifests as a difficulty to initiate gait (Gantchev et al. 1996; Rosin et al. 

1997). Abnormalities of gait initiation in people with PD has been previously described. 

Okada et al. (2011) examined several parameters in the first three steps of gait following 

gait initiation in people with and without PD. Measurements included step length, step 

width, step time and step velocity. For step length, width and velocity, any differences 

between people with PD and the healthy controls were consistent throughout steps 1 to 3. 

For example, the first step of gait in people with PD was significantly shorter than healthy 

controls, as was step 2 and step 3. However, it was demonstrated that the duration of the 

initial step in patients with PD was significantly longer (0.16s) compared to healthy 

controls. Interestingly, no differences in duration were observed in steps 2 or 3. This 

suggests that certain motor pathways affected by PD may be specific to the initial 

moments of the movement, but not the later stages of the rhythmic motor output that 

follows. Perhaps the most well studied component of these pathways is the basal ganglia, 

which has been shown to play an important role in the initiation of movement, but is 

impaired in PD (Flowers 1976; Evarts et al. 1981). These findings suggest that some of 

the supraspinal pathways affected in people with PD may be modulated differently in the 

healthy population depending on the phase of the forthcoming movement (initiation vs 

steady-state).  
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2.11 Conclusion 

 Animal research has demonstrated that locomotor outputs are initiated primarily 

by the MLR, which provides excitatory, synaptic input to the reticulospinal tract and 

activates spinally located CPGs. During locomotion, the CPG functions to alternatively 

activate/inhibit motoneurones that innervate opposing muscle groups in a 

flexion/extension rhythm. While this process requires descending input in order to 

become active, its function is not dependent on either descending or afferent pathways. 

Additionally, rhythmic motor outputs result in a reconfiguration of intrinsic electrical 

properties in spinal motoneurones; increasing their excitability and making them more 

responsive to synaptic input. It has been demonstrated that this modulation is unique to 

rhythmic motor tasks as similar results have not been observed during tonic or isometric 

outputs.  

In humans, the central control of voluntary movement is typically measured 

through the corticospinal tract via indirect stimulation techniques. These methods have 

revealed that corticospinal excitability is phase, muscle and task specific during rhythmic 

motor outputs such as leg and arm cycling. However, research regarding pre-movement 

corticospinal excitability using TMS and TMES has revealed similar modulation patterns 

prior to arm cycling and prior to intensity-matched, tonic contractions. According to this 

work, it can be surmised that a progression in the task-specific nature of corticospinal 

excitability from pre-movement to movement likely occurs at some point once movement 

begins. The limited research that currently exists indicates that this transition may not be 

immediate, leaving the possibility that the initial portions of a rhythmic motor output and 

the later, steady-state phases may be under different neural control mechanisms. 
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However, evidence for this statement is presently lacking, and the progression of 

corticospinal excitability between a cycling task and a non-rhythmic motor output has not 

been assessed. This is an important gap in our knowledge that requires considerable 

research in order to gain a better understanding of how humans initiate rhythmic 

movements. Research of this nature has the potential to provide insight and improve 

current therapies/treatments for people with neural diseases and/or injuries.  
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3.0 ABSTRACT 

 This is the first study to examine changes in corticospinal excitability to the biceps 

brachii during the onset of arm cycling from a resting position and at points when steady-

state arm cycling had been reached. We hypothesized that corticospinal excitability 

during the initiation of arm cycling would not be different from a tonic contraction, but 

that supraspinal excitability would be elevated once arm cycling reached steady-state. 

Corticospinal and spinal excitability were assessed using motor evoked potentials (MEPs) 

elicited via transcranial magnetic stimulation (TMS) and cervicomedullary-evoked 

potentials (CMEPs) elicited via transmastoid electrical stimulation (TMES), respectively. 

Evoked responses were recorded from the biceps brachii during elbow flexion (6 o’clock 

relative to a clock face) for both arm cycling and an intensity-matched tonic contraction at 

three separate periods: 1) immediately at the onset of movement and after the completion 

of the 2) 4th revolution and 3) 9th revolution. As hypothesized, there was no difference 

during initiation between tasks for MEP (P = 0.79) or CMEP amplitudes (P = 0.57). 

However, MEP amplitudes were significantly larger during arm cycling than an intensity-

matched tonic contraction after the completion of the 4th (Cycling: 76.48 ± 17.35% of 

Mmax, Tonic: 63.45 ± 18.45% of Mmax, P < 0.05) and 9th revolution (Cycling: 72.37 ± 

15.96% of Mmax, Tonic: 58.1 ± 24.23% of Mmax, P < 0.05). There were no differences 

between conditions in CMEP amplitudes (4th: P = 0.31, 9th: P = 0.29). These results 

demonstrate that corticospinal excitability is not different between the initiation of arm 

cycling and a tonic contraction, but supraspinal excitability is enhanced during steady-

state arm cycling. This suggests that the initial movement of a rhythmic motor output may 

be under different control than the subsequent, steady-state output.   
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3.1 INTRODUCTION 

Animal research has demonstrated that although afferent and descending input 

contribute to the production of natural, smooth movement, the basic characteristics for 

rhythmic motor outputs can be generated solely by spinal circuitry. The essential pattern 

of alternating activation of functional antagonists has been shown to originate in spinally 

mediated networks of cells known as central pattern generators (CPGs) (Grillner, 1981; 

Jordan, 1998). Indirect evidence suggests that rhythmic motor outputs in humans, such as 

walking, running, and swimming, are also driven by spinally mediated CPGs (Capaday et 

al. 1999; Zehr & Stein, 1999; Pyndt and Nielsen, 2003; Carroll et al. 2006; Zehr et al. 

2009). However, unlike our quadruped counterparts, supraspinal input is required during 

CPG-mediated motor outputs (Petersen et al. 2001; Sidhu et al. 2012; Forman et al. 

2014).  

A common method of deducing the underlying mechanisms that are responsible 

for generating rhythmic movements in humans has been to compare measures during 

rhythmic tasks with those taken during a tonic contraction. These two motor outputs are 

compared because the generation of the basic rhythmic and alternating pattern of muscle 

activity during arm cycling is generated, in part, by spinal interneuronal networks (Zehr et 

al., 2004). A tonic contraction of similar muscle groups is chosen to represent a similar 

level of motoneurone pool activation, but with reduced or absent activation of spinal 

interneuronal groups contributing to the generation of rhythmic activation during arm 

cycling. For example, we recently assessed corticospinal and spinal excitability of the 

biceps brachii during arm cycling and an intensity-matched tonic contraction (Forman et 

al. 2014). In this study, measurements were taken after participants had reached, and were 
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maintaining, a constant cycling cadence of 60 RPM. However, it is unlikely that the 

corticospinal modulation observed during steady-state cycling can be generalised to other 

components of the movement, such as initiation, cessation or acceleration of arm cycling. 

Some of our previous work supports this statement. We have previously demonstrated 

that supraspinal, not spinal excitability to the biceps brachii is enhanced prior to arm 

cycling, but this enhanced excitability is not different from an intensity-matched tonic 

contraction (Copithorne et al. 2014). This differs from our findings during arm cycling, 

which demonstrated that corticospinal and spinal excitability are both higher during arm 

cycling than a tonic contraction (Forman et al. 2014). These findings indicate that a 

transition in corticospinal excitability from pre-movement to movement must occur at 

some point once the movement begins.   

Research suggests that this transition may not happen immediately at movement 

onset. Hiraoka and Abe (2007) demonstrated that the corticospinal modulation of the 

soleus and the tibialis anterior (TA) observed prior to the initiation of gait persists once 

gait is initiated. Additionally, differences observed in corticospinal excitability to the 

muscles of the ankle between discrete and rhythmic ankle movement present in the later 

stages of rhythmic ankle movement, but not in the beginning (Goto et al. 2014). 

Providing indirect support for this idea are results from Parkinson’s disease studies that 

have found abnormalities in the first step of gait initiation but not in subsequent steps 

(Okada et al. 2011). These findings indicate that the initiation and steady-state phases of 

rhythmic motor outputs may be under different neural control. To the best of our 

knowledge, human studies have not characterized the progression of corticospinal 

excitability from the initiation of arm cycling to steady-state.  
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The purpose of the present study was to examine corticospinal excitability of the 

biceps brachii from the onset of arm cycling to a point where a constant cadence was 

reached in comparison to an intensity-matched tonic contraction. Corticospinal and spinal 

excitability were assessed in the biceps brachii using TMS-evoked MEPs and TMES-

evoked CMEPs, respectively. Measures were taken at three points throughout the 

movement: 1) during the initiation of arm cycling, 2) after the completion of the 4th 

revolution, and 3) after the completion of the 9th revolution (at which time, participants 

had reached a constant cycling cadence; steady-state).  We hypothesized that there would 

be no differences in either corticospinal or spinal excitability during the initiation of arm 

cycling, but that supraspinal excitability would be enhanced during the 4th and 9th 

revolutions.  
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3.2 METHODS 

3.2.0 Ethical Approval 

 Procedures were verbally explained to the volunteers and written consent was 

obtained prior to participation in the study. This study was conducted in accordance with 

the Helsinki declaration and approved by the Interdisciplinary Committee on Ethics in 

Human Research at Memorial University of Newfoundland (ICEHR# 20150990-HK). 

Procedures were in accordance with the Tri-Council guideline in Canada and potential 

risks were fully disclosed to participants.  

 

3.2.1 Participants 

 Ten, male volunteers (22.8 ± 1.8 years of age, 85.3 ± 7.3 kg, 9 right handed and 1 

left handed)  were recruited for this study. Participants were excluded from participation 

if they had any known neurological impairments or were unfit for vigorous physical 

activity. Prior to the experiment, all volunteers were required to complete a magnetic 

stimulation safety-checklist in order to screen for contraindications to magnetic 

stimulation (Rossi et al. 2009). Additionally, participants were asked to complete a 

Physical Activity Readiness Questionnaire for Everyone (PAR-Q+; Canadian Society for 

Exercise Physiology (CSEP)) to screen for any contraindications to exercise or physical 

activity.  

 

3.2.2 Experimental Set-up 

 This study was carried out with the use of an arm cycle ergometer (Monark Rehab 

Trainer, model 881E). Participants were seated upright and placed at a specific, but 
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comfortable distance from the hand pedals so that the elbows did not fully extend during 

cycling. This ensured that there was no variation in trunk posture during movement 

(leaning forward or back). Seat height was adjusted so that the shoulders of each 

individual were approximately the same height as the crank shaft of the ergometer. The 

hand pedals of the ergometer were fixed 180 degrees out of phase for the entire duration 

of the protocol. Prior to all cycling trials, participants were given braces for their wrists in 

order to limit wrist flexion/extension during cycling. This was done to better isolate the 

biceps brachii as heteronymous reflex connections exist between the wrist flexors and 

biceps brachii (Manning and Bawa, 2011). 

 For this study, measurements were taken at a single crank position; 6 o’clock 

relative to a clock face, whereby 6 o’clock was defined as the “bottom dead centre” of a 

full revolution. This position was made relative to the hand dominance for each 

individual. For example, 6 o’clock for a right handed participant occurred when their 

right hand was positioned at “bottom dead centre” of the arm crank. For a left handed 

individual, 6 o’clock occurred when their left hand was positioned at “bottom dead 

centre.” This position represents the most active phase of the biceps brachii during arm 

cycling as it occurs during the portion of arm cycling where the elbow is flexing. 

 Measurements were taken during two separate motor tasks; arm cycling and an 

intensity-matched tonic contraction. In this context, ‘intensity-matched’ refers to the fact 

that the EMG of the biceps brachii was the same for each motor task. For arm cycling, 

participants started at rest with their dominant hand at the 5 o’clock position (the position 

that immediately precedes peak biceps brachii activity). Following the initiation of arm 

cycling, measurements were then taken from three separate periods at the 6 o’clock 
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position; 1) immediately after the initiation of pedal movement, as the pedal travelled 

from 5 o’clock to 6 o’clock (defined as movement initiation), 2) after 4 complete 

revolutions had occurred (at which point the participants were accelerating), and 3) after 9 

complete revolutions had occurred. Upon completing 9 revolutions, participants had 

reached a consistent cycling cadence of 60 RPM, and this measurement was defined as 

‘steady state.’ For the sake of simplicity, these points throughout the movement will 

henceforth be referred to as the following: measurements taken during initiation (as the 

pedal first travels from 5 to 6 o’clock) will be labeled as ‘condition 1’; measurements 

taken during the completion of the 4th revolution will be labeled as ‘condition 2’; and 

measurements taken during the completion of the 9th revolution will labeled as ‘condition 

3’. The order of these conditions was randomized and responses were elicited 

automatically as the hand pedal passed the 6 o’clock position. Following arm cycling, the 

ergometer pedals were locked in place and measurements were taken while participants 

produced a tonic contraction that was matched to the EMG of each of the three respective 

cycling conditions.   

 

3.2.3 Electromyography Recording 

 EMG activity of the biceps brachii, triceps brachii, extensor carpi radialis (ECR) 

and the flexor carpi radialis (FCR) of the dominant arm was recorded using pairs of 

surface electrodes (MeditraceTM 130 ECG conductive adhesive electrodes). Electrodes 

were positioned over the midline of the biceps brachii, on the lateral head of the triceps 

brachii, and over the midline of the FCR and ECR. A ground electrode was placed on the 

lateral epicondyle of the tested limb. Prior to electrode placement over recording sites, the 
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skin was thoroughly prepared by removal of dead epithelial cells (using abrasive paper) 

followed by sanitization with an isopropyl alcohol swab. EMG was collected on-line at 5 

KHz using CED 1401 interface and Signal 4 (Cambridge Electronic Design Ltd., 

Cambridge, UK) software program. Signals were amplified (gain of 300) and filtered 

using a 3-pole Butterworth with cut-off frequencies of 10-1000 Hz.  

 

3.2.4 Stimulation Conditions 

 Motor responses were recorded from the biceps brachii using three separate 

stimulation techniques: brachial plexus electrical stimulation at Erb’s point; TMES; and 

TMS. All volunteers had prior experience with all three stimulation procedures. The 

intensities of the stimulations were determined while participants had their hands placed 

on the hand pedals of the ergometer. Their dominant hand was placed at the 6 o’clock 

position and their non-dominant hand at the 12 o’clock position. In this posture, 

participants were then instructed to produce 5% of their biceps brachii maximal voluntary 

EMG (MVE; described below) by pulling against the locked handles. It was chosen to 

establish stimulation intensities during an active contraction instead of at rest as the 

experimental conditions were active motor outputs. Matched potentials determined at rest 

may become unmatched once they are evoked in a voluntary task.  

 In order to determine each participant’s MVE, the activation level of all four 

muscles were assessed during a maximal, 10 second, arm cycling sprint. Participants were 

seated behind a table-mounted, Monark Wingate Testing Ergometer (model 849E) that 

had been fitted with hand pedals. After a 2 minute warm-up of arm cycling at a self-

selected pace, participants were instructed to begin cycling as fast and as hard as they 
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could. Once they reached a cadence of 100 RPM, a load of 5% of the individual’s 

bodyweight was automatically applied to the pedals. Participants then continued cycling 

at maximal effort for 10 seconds. From this trial, peak power (PP) and MVE of the four 

muscles were determined. MVE was calculated by taking a root mean square (RMS) of 

the raw EMG using a 25ms moving average. Unlike isometric maximal voluntary 

contractions (MVCs) where EMG is relatively consistent, maximal cycling results in 

phases of high muscle activity and low muscle activity, with a peak occurring once every 

revolution. The maximum value of each of these peaks from the RMS signal was summed 

and averaged from the middle 4 seconds of the 10 second trial (3-7 seconds; 

approximately 8-10 peaks depending on the individual). The middle 4 seconds were 

chosen to avoid measurements during the initial phase involved in overcoming the added 

resistance and to avoid potential fatigue effects towards the end of the 10 second sprint. 

Following 10 minutes of rest, participants were then moved over to the Monark Rehab 

Trainer to determine the stimulation intensities that were used for the rest of the 

experiment. For all stimulations, participants were instructed to produce 5% of their 

biceps brachii MVE by pulling against the locked pedals (i.e. tonic elbow flexion). 

Participants were shown a horizontal line on a computer monitor equal to the 5% biceps 

brachii MVE and were asked to reach and maintain that line. Stimulations were elicited 

during this activity (see below).  

 

3.2.5 Brachial Plexus Stimulation 

 The Mmax of the biceps brachii was first determined by eliciting M-waves through 

electrical stimulation of the brachial plexus at Erb’s point (DS7AH, Digitimer Ltd., 
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Welwyn Garden City, Hertfordshire, UK). A pulse duration of 200µs was used and 

intensities ranged from 80-250mA. The cathode was placed in the supraclavicular fossa 

and the anode on the acromion process. The initial stimulation intensity was set at 25mA 

and gradually increased until the elicited M-waves of the biceps brachii reached a plateau. 

The plateau stimulation was then increased by 10% to ensure maximal M-waves were 

elicited throughout the study.  

 

3.2.6 TMES 

TMES was delivered using Ag-AgCl surface electrodes applied just inferior to the 

mastoid processes. The pulse duration was set at 100µs and stimulation intensities ranged 

between 150-275mA (DS7AH, Digitimer Ltd., Welwyn Garden City, Hertfordshire, UK). 

Stimulation intensity started at 25mA and was gradually increased until the average of 8 

CMEP amplitudes fell within the target limit. For this study, the acceptable target range 

was 15-20% of the individual’s Mmax (determined above). This stimulation intensity was 

then used throughout the remainder of the experiment.  

 

3.2.7 TMS 

 MEPs were elicited via TMS using a Magstim 200 (Magstim, Dyfed, UK). 

Stimulations were delivered over the vertex with a circular coil (13.5cm outside 

diameter). Vertex was determined by measuring the mid-point between the participant’s 

nasion and inion, and the mid-point between the participant’s tragi. The intersection of 

these two points was measured, marked and defined as vertex (Power and Copithorne, 

2013). The coil was held tangentially to the participant’s skull, or approximately parallel 
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to the floor, with the direction of the current flow preferentially activating either the left 

or right motor cortex (depending on hand dominance; left for right handed individual’s 

and right for left handed individual’s). The coil was held firmly against the participant’s 

head by one of the investigators to ensure careful and consistent alignment over vertex for 

each trial. Stimulation intensity started at approximately 25% of maximum stimulator 

output (%MSO) and was gradually increased until the average of 8 MEP amplitudes 

matched the average CMEP amplitude previously determined (i.e. approximately 15-20% 

of the individual’s Mmax). This %MSO was then used throughout the remainder of the 

experiment.  

  

3.2.8 Experimental Protocol 

 After the stimulation intensities were determined, the hand pedals were unlocked 

and a resistance of 5% of the individual’s PP (determined from the 10-second sprint) was 

set on the ergometer. Participants were positioned with their dominant hand at the 5 

o’clock position (immediately before 6 o’clock where they would be receiving 

stimulation) and their non-dominant hand at 11 o’clock. They were then instructed to 

begin cycling based on external cues from an automated audio program (Audacity 2.0.5). 

A preparation tone was first given (frequency of 200Hz; duration, 100ms), followed one 

second later by a ‘go’ tone (frequency of 100Hz; duration, 100ms). Upon hearing the ‘go 

tone,’ participants were told to begin cycling at a comfortable pace and were asked to 

reach and maintain a target cadence of 60 RPM. A final tone (frequency of 300Hz; 

duration, 100ms) was then given 15 seconds after the ‘go’ tone, which was a signal to the 
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participant to cease cycling. This time period was considered a single trial with one 

stimulation elicited per trial.  

Two M-waves were first elicited during arm cycling for each of the three 

conditions (condition 1, condition 2, and condition 3; 6 stimulations total). The conditions 

were randomized and participants were not told when they would be receiving the 

stimulation. Following this, 6 MEPs and 6 CMEPs were then delivered during arm 

cycling for each condition, with an additional 10 trials void of stimulation (46 trials total). 

Their order was randomized and participants were not informed which stimulation (if 

any) they would be receiving. Finally, 2 additional M-waves were delivered randomly 

during arm cycling at each condition.  

Pre-stimulus EMG of the biceps brachii (defined as a 50 ms, rectified average of 

the EMG activity immediately prior to the point of stimulation) was measured following 

all arm cycling trials (Forman et al. 2014). These values were then grouped and averaged 

according to the condition in which they occurred (1-3). The purpose of this step was to 

match the EMG between motor tasks as muscle activity can influence evoked responses. 

Once found, the hand pedals were once again locked with the dominant hand placed at the 

6 o’clock position. Participants were shown a horizontal line in an RMS channel on a 

computer monitor that reflected the pre-stimulus EMG value for a given condition. 

Participants were instructed to match that line as closely as possible by pulling against the 

locked handles. A total of 10 MEPs and 10 CMEPs were delivered randomly within the 

same configuration, followed by a separate configuration of 3 M-waves. Together, this 

represented a single tonic condition, which coincided with one cycling condition (3 in 

total). The order of the tonic conditions was randomized.  
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3.2.9 Measurements 

 Data was analyzed off-line using Signal 4 software (CED, UK). The peak-to-peak 

amplitudes of MEPs, CMEPs and M-waves of the biceps brachii were measured. The 

peak-to-peak amplitudes for all evoked potentials were measured from the initial 

deflection of the voltage trace from the background EMG to the return of the trace to 

background levels. Because changes in MEP and CMEP amplitudes can be the result of 

changes to the M-wave, both MEPs and CMEPs were normalized to the M-wave evoked 

during the same experimental condition. Corticospinal silent periods (CSPs) were also 

assessed, and were measured from the start of the stimulation artifact to the return of 

voluntary muscle activity following the evoked MEP (visually determined). 

Measurements were taken from individual files and averaged afterwards.  

 

3.2.10 Statistics 

 Statistics were performed using IBM’s SPSS Statistics Version 19. A paired t-test 

was used to examine differences in the initial, matched MEP and CMEP amplitudes 

(normalized to M-wave). One-way (condition) repeated-measures ANOVAs assessed 

whether statistically significant differences in MEP and CMEP amplitudes (normalized to 

M-wave), CSPs and pre-stimulation values occurred during arm cycling or tonic 

contractions across conditions. Separate, paired t-tests were then used to examine 

differences in measures between arm cycling and intensity matched tonic contractions. 

All statistics were run on group data and a significance level of P < .05 was used. All data 

is reported as means ± SD and illustrated in figures as SE.  
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3.3 RESULTS 

3.3.0 EMG Patterns During Arm Cycling 

 The rectified EMG of a single participant for the biceps brachii and triceps brachii 

during arm cycling can be seen in Fig. 1A. In this example, eight frames without 

stimulation were rectified and averaged over a 1 second window, with the participant 

cycling at a constant cadence of 60 RPM. At this cadence, 1 second represents one full 

revolution of arm cycling. The black arrow in the figure demonstrates the point where 

stimulations were delivered; when the elbow is flexing and the biceps brachii is most 

active. 

 

3.3.1 Matched Stimulations 

Fig. 1B shows group MEP and CMEP amplitudes taken during the initial setup 

where participants produced a tonic contraction of 5% of their maximum biceps brachii 

EMG; determined from the 10-second, maximal cycling sprint (see Methods). The target 

range for each participant was 15-20% of the individual’s Mmax. There was not a 

significant difference between MEP and CMEP amplitudes (P = 0.579).  

 

3.3.2 Corticospinal Excitability 

Fig. 2 shows a representative example of the MEP amplitude differences between 

arm cycling and an intensity-matched tonic contraction for the three different conditions. 

For this participant, the average MEP amplitude elicited during condition 1 for arm 

cycling was 70.44% of Mmax compared to 70.57% of Mmax during an intensity-matched 

tonic contraction. MEP amplitude during condition 2 for arm cycling was 71.38% of 
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Mmax, compared to 64.36% of Mmax for the intensity-matched tonic contraction, and 

finally, MEP amplitude during condition 3 for arm cycling was 76.95% of Mmax and 

35.41% for the intensity-matched tonic contraction. Group data (Fig. 3A) revealed that 

there were no differences in MEP amplitudes between arm cycling and an intensity-

matched tonic contraction for condition 1 (P = 0.79). MEP amplitudes elicited during 

condition 2 for arm cycling were significantly larger compared to an intensity-matched 

tonic contraction (Cycling: 76.48 ± 17.35% of Mmax, Tonic: 63.45 ± 18.45% of Mmax, P < 

0.05). MEP amplitudes were also significantly larger during condition 3 for arm cycling 

compared to an intensity-matched tonic contraction (Cycling: 72.37 ± 15.96% of Mmax, 

Tonic: 58.1 ± 24.23% of Mmax, P < 0.05). A one-way, repeated measures ANOVA 

showed that there was no main effect of condition within arm cycling (P = 0.67). There 

was also no main effect of condition within the intensity-matched tonic contraction (P = 

0.067).  

Contraction intensity has a large influence on the evoked responses from both 

TMS and TMES. It is therefore vitally important that the pre-stimulus EMG between 

cycling and tonic tasks are not different. Figures 3B and C show the results of pre-

stimulus EMG produced prior to TMS for the biceps and triceps brachii, respectively. 

There were no differences in the biceps brachii pre-stimulus EMG between the cycling 

and tonic tasks for any condition (condition 1: P = 0.676; condition 2: P = 0.862; 

condition 3: P = 0.738). However, there was a main effect of condition, with the biceps 

brachii pre-stimulus EMG decreasing throughout the movement during arm cycling 

(condition 1: 16.36 ± 5.02% of maximum, condition 2: 13.0 ± 3.03% of maximum, 

condition 3: 11.18 ± 3.89% of maximum, P < 0.05) and for the intensity matched tonic 
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contractions (condition 1: 15.98 ± 4.31% of maximum, condition 2: 13.09 ± 3.25% of 

maximum, condition 3: 11.0 ± 3.44% of maximum, P < 0.05). There was no difference in 

pre-stimulus EMG of the triceps brachii between tasks for condition 1 or condition 3 

(condition 1: P = 0.142; condition 3: P = 0.163). There was, however, a significant 

difference in triceps brachii pre-stimulus EMG for condition 2, with EMG during the 

intensity-matched tonic contraction larger than arm cycling (Cycling: 4.99 ± 1.2% of 

maximum, Tonic: 6.68 ± 2.55% of maximum, P < 0.05). There was no main effect of 

condition for triceps brachii pre-stimulus EMG for arm cycling (P = 0.071) or for the 

intensity-matched tonic contractions (P = 0.072). However, while the differences across 

conditions for triceps brachii pre-stimulus EMG were not significant, the EMG followed 

a similar pattern as the biceps brachii pre-stimulus EMG (decreasing across conditions; 

Figures 3B and C).   

 

3.3.3 Spinal Excitability 

In order to differentiate supraspinal and spinal influences on changes to MEP 

amplitudes between tasks, we examined CMEPs as a measure of spinal excitability. Fig. 

4A shows the group data for CMEPs elicited during both tasks for the three conditions. 

There were no differences between arm cycling and the intensity-matched tonic 

contraction at for condition 1 (P = 0.57), condition 2 (P = 0.311), or condition 3 (P = 

0.291). There was also no main effect of condition for arm cycling (P = 0.926) or 

intensity-matched tonic contraction (P = 0.09).  

Figures 4B and C show the results of pre-stimulus EMG produced during TMES 

trials for the biceps and triceps brachii, respectively. As with MEPs, contraction intensity 



 
 

3-18 

can influence the evoked CMEP amplitude following TMES. Thus, in order to compare 

CMEPs between tasks, the pre-stimulus EMG must be matched. There were no 

differences in pre-stimulus EMG in the biceps brachii between arm cycling and the 

intensity-matched tonic contraction during condition 1 (P = 0.979), condition 2 (P = 

0.539) or condition 3 (P = 0.615). There were also no main effects of condition for arm 

cycling (P = 0.223) or intensity-matched tonic contractions (P = 0.066). There were no 

differences in triceps brachii pre-stimulus EMG between tasks for condition 1 (P = 

0.304), condition 2 (P = 0.415), or condition 3 (P = 0.154). There was also no main effect 

of condition for either arm cycling (P = 0.232) or the intensity-matched tonic contractions 

(P = 0.185).  

  

3.3.4 CSPs  

CSPs were measured as the duration of time between the stimulation artifact, 

produced via TMS, to the reappearance of voluntary EMG in the biceps brachii. Fig. 5 

depicts the results of group data for CSPs measured for both tasks during the three 

conditions. There was no difference in CSP duration between tasks for condition 1 (P = 

0.891). The CSP duration was significantly longer during arm cycling than the intensity-

matched tonic contraction for condition 2 (Cycling: 83.91 ± 12.76ms, Tonic: 74.34 ± 

11.69ms, P < 0.05) and condition 3 (Cycling: 84.46 ± 12.84ms, Tonic: 73.08 ± 14.24m, P 

< 0.05). There was also a main effect of condition for arm cycling, with CSP duration 

increasing throughout the movement (condition 1: 71.04 ± 12.03ms, condition 2: 83.91 ± 

12.76ms, condition 3: 84.46 ± 12.84ms, P < 0.05). There was no effect of condition on 

the intensity-matched tonic contractions (P = 0.322).   
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3.4 DISCUSSION 

 This study is the first to demonstrate that corticospinal excitability of the biceps 

brachii is similarly modulated at the onset of arm cycling and an intensity-matched tonic 

contraction. This was established by a lack of change between tasks in MEP amplitude 

(Fig. 3A), CMEP amplitude (Fig. 4A) and CSP duration (Fig. 5A). However, these 

similarities between motor outputs did not persist indefinitely as we found that 

corticospinal excitability was modulated differently between arm cycling and an 

intensity-matched tonic contraction during conditions 2 and 3. This was demonstrated via 

larger MEP amplitudes (Fig. 3A) and longer CSP durations (Fig. 5A) during arm cycling 

trials. Spinal excitability did not follow the same trend, as CMEP amplitudes (Fig. 4A) 

were not significantly different during condition 2 and 3 between tasks, indicating that the 

changes in corticospinal excitability were supraspinally mediated. These results suggest 

that similar to premovement changes in corticospinal excitability, there appears to be a 

common neural drive used to initiate both arm cycling and tonic contraction. Conversely, 

once arm cycling has begun (i.e. inertia overcome and accelerating to a predetermined 

cadence) supraspinal excitability increases to a larger degree than during an intensity-

matched tonic contraction, suggesting differences in the neural control of both motor 

outputs.  

 

3.4.0 Cycling Initiation  

 Supraspinal and spinal excitability of the biceps brachii during the initiation of 

arm cycling does not appear to be different compared to an intensity-matched tonic 

contraction (Fig. 3A). The findings of the current study are similar to previous work we 
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have done regarding pre-movement changes in corticospinal excitability (Copithorne et 

al. 2014). In that study, we assessed corticospinal and spinal excitability in the biceps 

brachii 25ms prior to the initiation of both arm cycling and an intensity-matched tonic 

contraction. We demonstrated that MEP onset latency prior to arm cycling was shorter 

and MEP amplitude larger relative to resting control. No changes were observed in either 

CMEP latency or CMEP amplitude, indicating that the enhancement in corticospinal 

excitability prior to arm cycling was supraspinally mediated. However, there were no 

differences found between arm cycling and an intensity-matched tonic contraction. These 

findings suggest that the central processes involved in motor output preparation were 

similar for the two motor outputs, regardless of how different they may be once they have 

begun (Forman et al. 2014). This led to our current objective and the purpose of the 

present study, which was to determine when these differences in supraspinal and spinal 

excitability arise when transitioning from movement initiation to steady-state motor 

output.  

 Our findings indicate that this transition of corticospinal excitability from pre-

movement to during movement does not occur immediately at movement onset as the 

evoked responses recorded during arm cycling were similar to an intensity-matched tonic 

contraction at condition 1. This suggests that the patterns of corticospinal modulation 

observed prior to movement (Copithorne et al. 2014) continue once the motor outputs are 

initiated. Research on corticospinal contributions to the initiation of gait support this 

statement. Hiraoka and Abe (2007) assessed supraspinal and spinal excitability to the 

muscles of the ankle before and during gait initiation. They found that spinal excitability 

to the soleus was depressed prior to movement, but supraspinal excitability to both the 
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soleus and the tibialis anterior (TA) was enhanced. These pre-movement changes in 

corticospinal excitability were then maintained once gait was initiated. More recently, 

Hiraoka and colleagues (Goto et al. 2014) examined corticospinal and spinal excitability 

of the soleus and the TA between two different motor tasks; rhythmic and discrete ankle 

movement. They demonstrated that there was no difference in corticospinal or spinal 

excitability between discrete movement and the first cycle of rhythmic movement, 

indicating that neither supraspinal nor spinal excitability were mediated differently 

between tasks. However, TA MEPs elicited during the 10th cycle of rhythmic ankle 

movement were significantly larger than MEPS elicited during discrete ankle movement. 

The authors surmised that the initial cycle and the forthcoming steady-state cycles must 

therefore be under different control.  

 Clinical research of Parkinson’s disease (PD) may provide support for this 

conclusion. A common, clinical feature of PD is bradykinesia, which often manifests as a 

difficulty for people afflicted with the disease to initiate gait (Gantchev et al. 1996; Rosin 

et al. 1997). Abnormalities of gait initiation in people with PD have been previously 

described. Okada et al. (2011) demonstrated that the duration of the initial step in patients 

with PD is significantly longer compared to healthy controls. Interestingly, no differences 

in duration were observed in the subsequent steps, indicating that certain motor pathways 

affected by PD are specific to the initiation of movement but not the rhythmic motor 

output that follows. These findings suggest that some of the supraspinal pathways 

affected in people with PD are modulated differently in the healthy population depending 

on the phase of the forthcoming movement (initiation vs. steady-state). Thus, it could be 

possible that the initiation of a rhythmic motor output is under the same, supraspinal 
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control as a tonic motor output. This may help explain the similarities in corticospinal 

excitability observed in the present study.  

 While we propose that the modulation of supraspinal excitability during the 

initiation of arm cycling is similar to an intensity-matched tonic contraction, it is also 

worth noting the similarities of the two motor outputs from a spinal perspective. During 

movement initiation, arm cycling is not truly a rhythmic movement. It does not display 

the characteristic, alternating activation of functional antagonists, and thus whether or not 

the spinal CPG is truly engaged at this point of the motor output is questionable (Grillner, 

1981; Jordan, 1998). Afferent input may also be similar between the two tasks. Activation 

of group Ia afferents takes place during arm cycling, which involves the rapid stretching 

and shortening of the biceps and triceps brachii as the motor output alternates between 

elbow flexion and extension. While their influence during cycling is mitigated by 

reciprocal inhibition, they still provide afferent feedback throughout the movement 

(Tanaka 1974; Crone et al. 1987; Nielsen et al. 1992). However, both the amplitude and 

the rate of stretch that would have occurred when measurements were taken during the 

condition 1 for arm cycling would have been diminished in comparison to steady-state 

arm cycling. In fact, the subtle movement of the upper limbs during the initiation of arm 

cycling may have been comparable to the minor movement seen during a tonic 

contraction. If this was the case, then the influence of group Ia afferents between the two 

tasks may have been similar. The modulation of pre-synaptic inhibition may also follow a 

comparable pattern between the two motor outputs. Suppressed H-reflex amplitudes have 

previously been documented during rhythmic arm cycling compared to intensity-matched 

tonic contractions (Carroll et al. 2006). This is thought to be the result of an increase in 
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pre-synaptic inhibition to afferent input due to the activation of spinal CPGs. Considering 

the non-rhythmic nature of the initiation of arm cycling, pre-synaptic inhibition may 

follow a pattern of modulation that is similar during a tonic motor output. Additionally, 

the relative contributions that the muscles of the arm provide to each of the two motor 

tasks, which are different during steady-state arm cycling compared to a tonic contraction 

(see Fig. 3C; Fig. 3C and 4C in Forman et al. 2014) are more closely matched between 

the two tasks at initiation. Indeed, the activity of triceps brachii in the present study, 

which was not controlled for during collection, was not significantly different between 

the two outputs for condition 1. This suggests that reciprocal inhibition, which has been 

shown to be task-dependent in the lower limb (Pyndt et al. 2003) is not likely different 

between the tasks used in the present study.  

 

3.4.1 Steady-State Cycling 

 In the present study, supraspinal, but not spinal excitability was significantly 

higher during arm cycling at condition 3 (steady-state) compared to an intensity-matched 

tonic contraction. This was demonstrated by an increase in the size of the MEP 

amplitudes (Fig. 3A) but no difference in CMEPs (Fig. 4A). The current results replicate 

our previous findings (Forman et al. 2014). In that study, TMS and TMES were delivered 

at three different crank positions (12, 3 and 6 o’clock relative to the face of a clock) while 

participants arm cycled at a constant cadence of 60 RPM and while participant’s 

produced intensity-matched tonic contractions. As was the case in the present study, MEP 

amplitudes were significantly larger during arm cycling at the 6 o’clock position than 

during an intensity-matched tonic contraction. No differences in CMEP amplitudes were 
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observed between the two motor outputs. However, this was not the first time that 

corticospinal excitability during steady-state arm cycling had been investigated. Carroll et 

al. (2006) demonstrated a reduction in corticospinal excitability to the flexor carpi radialis 

(FCR) during the flexion phase of arm cycling compared to an intensity-matched tonic 

contraction. This was accompanied by a decrease in the H-reflex. The apparent 

differences in modulation between the biceps brachii and the FCR may result from the 

dissimilar function of each muscle. During arm cycling, the purpose of the FCR is mainly 

to stabilize the wrist, while the biceps brachii is a prime mover that exhibits a strong 

phase-dependency (see Fig. 1A). It is thus strongly suggested that corticospinal 

excitability during arm cycling is muscle, or function, dependent. Previous literature 

involving TMS-induced MEPs in the lower limb supports this statement (Capaday et al. 

1999; Sidhu et al. 2012). Further evidence can be found in the comparison of the biceps 

brachii during arm cycling and the soleus during leg cycling, both of which are 

considered prime movers in their respective cycling tasks. Pyndt and Nielsen (2003) 

determined that MEP amplitudes of the soleus were larger during the propulsion phase 

(downstroke) of leg cycling, which is consistent with our own findings in the biceps 

brachii. We, along with Pyndt and Nielsen (2003) suggested that this increase in MEP 

amplitude is due to enhanced excitability of cortical neurones, thus facilitating their 

activation via TMS. From a motor control standpoint, this may be a mechanism for the 

motor cortex to ensure adequate muscle activation to the prime mover during the 

propulsive phase of cycling.  

 One measure that was not conducted in our earlier work, but was included in the 

present study is CSPs following TMS. According to Fig. 5, CSP duration was not 
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different between tasks for condition 1, but was significantly longer during arm cycling 

for conditions 2 and 3. This suggests the possibility that the mediation of GABAA 

inhibition, which is a contributing factor to CSP duration, may be task-dependent (Paulus 

et al. 2008). However, a more plausible theory comes from the work of Orth and 

Rothwell (2004) who have previously demonstrated a positive association between the 

size of MEP amplitudes and the length of CSP duration. Considering the similar patterns 

of MEP amplitude (Fig. 3A) and CSP duration (Fig. 5) between tasks and across 

conditions in the present study, whereby larger MEPs appear to be associated with longer 

CSP durations, this may be the most reasonable explanation. While we do not rule out the 

possibility that the changes in CSPs may have been due to differences in modulation 

between tasks, it would be pre-mature to draw such a conclusion based on available 

evidence. This emphasizes the need for additional work and future research should 

include independent measures of surpaspinal pathways.  

 

3.4.2 Acceleration 

Alongside steady-state arm cycling, we also assessed corticospinal excitability 

during acceleration in the present study. This was done via measurements taken during 

condition 2. Although participants were instructed to cycle comfortably up to a target 

cadence of 60 RPM, we were able to visually confirm that they had not yet reached that 

target by the 4th revolution. Thus, participants were accelerating from a resting position 

during condition 2. Our reasoning for taking this measurement was that it was mid-way 

between initiation (condition 1) and steady-state arm cycling (condition 3). We reasoned 

that it could therefore provide potential insight into how the modulation of corticospinal 
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excitability progresses once arm cycling is initiated. Our findings revealed that 

corticospinal excitability during condition 2 was similar to steady-state cycling (condition 

3) with MEP amplitudes larger than an intensity-matched tonic contraction (Fig. 3A) with 

no difference in CMEP amplitudes (Fig. 4A). As with our findings during condition 3, 

this indicates that an increase in supraspinal, not spinal excitability likely occurred. Two 

important conclusions can be drawn from these results. The first is that by the time an 

individual completes four revolutions, the movement has likely become rhythmic as 

corticospinal excitability is modulated similarly to steady-state cycling. This indicates 

that the transition of corticospinal modulation from the initial moments of arm cycling to 

the modulation of steady-state arm cycling must occur within the first four revolutions. 

Further research is required to establish a more detailed time-course of this progression. 

Second, it seems that once arm cycling has become rhythmic, the stability of the motor 

output from a cadence perspective (either constant or accelerating) does not appear to 

influence corticospinal excitability when compared to a tonic contraction. This can be 

seen in the similarities of the evoked responses at condition 2 (acceleration) and condition 

3 (steady-state). The case may be that cadence does not influence corticospinal 

excitability, or that the difference in cadence between the 4th and 9th revolution was too 

small to significantly modulate the MEP amplitudes.  

 

3.5 CONCLUSION 

 Neither supraspinal nor spinal excitability were different between the initiation of 

arm cycling and an intensity-matched tonic contraction, whereas an increase in 

supraspinal excitability was observed in the later phases of the movement (4th and 9th 
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revolution). This indicates that there is a commonality in how the CNS initiates motor 

outputs in humans, regardless of how different those outputs may be. Consequently, it can 

be suggested that the initial moments of arm cycling are likely under different central 

control than arm cycling once it has reached steady-state. This change in modulation 

appears to originate at the supraspinal level and occurs prior to the completion of the 4th 

revolution. Further research is required to establish a more robust understanding of how 

this modulation progresses throughout rhythmic motor tasks.  
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3.6 FIGURE LEGEND 

Figure 1. A: Rectified EMG values of a single participant throughout a single revolution 

of arm cycling. The black arrow signifies the 6 o’clock position. B: Group data (mean ± 

SE, n = 7) for matched MEP amplitudes (black bar) and CMEP amplitudes (white bar) 

during initial setup of the experiment. Amplitudes are expressed as a % of the Mmax. 

 

Figure 2. Average traces of 6 MEPs during arm cycling (solid black lines) and intensity-

matched tonic contractions (solid grey lines) taken during the three conditions of a single 

participant.  

 

Figure 3. Group data (mean ± SE, n = 10) for A) MEP amplitude, B) pre-stimulus EMG 

of the biceps brachii, and C) pre-stimulus EMG of the triceps brachii. Values from arm 

cycling (black bars) and intensity-matched tonic contractions (white bars) are shown for 

the three conditions. MEP amplitudes are expressed relative to the Mmax taken during the 

same condition and EMG is expressed relative to the maximum EMG found during the 10 

second, maximal arm cycling sprint. Asterisks denote a significant difference (P < 0.05) 

between arm cycling and the intensity-matched tonic contraction.  

 

Figure 4. Group data (mean ± SE, n = 7) for A) CMEP amplitude, B) pre-stimulus EMG 

of the biceps brachii, and C) pre-stimulus EMG of the triceps brachii. Values from arm 

cycling (black bars) and tonic contractions (white bars) are shown for the three 

conditions. CMEP amplitudes are expressed relative to the Mmax taken during the same 

condition, and EMG is expressed relative to the maximum EMG found during the 10 

second, maximal arm cycling sprint. Asterisks denote a significant difference (P < 0.05) 

between arm cycling and tonic contraction. 

 

Figure 5. Group data (mean ± SE) for CSPs (n = 10), recorded from the biceps brachii 

following TMS. Values from arm cycling (black bars) and tonic contractions (white bars) 

are shown for the three conditions. Results are expressed as absolute values 

(milliseconds). Asterisks denote a significant difference (P < 0.05) between arm cycling 

and tonic contraction. 
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