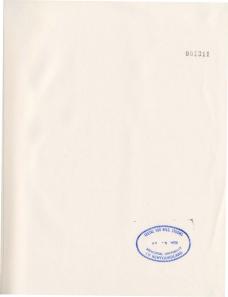
EFFECT OF HYDROXYPROPYLATION ON THE STRUCTURE AND PHYSICOCHEMICAL PROPERTIES OF NATIVE, DEFATTED AND HEAT-MOISTURE TREATED POTATO STARCHES



TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

CHANDANI PERERA

EFFECT OF HYDROXYPROPYLATION ON THE STRUCTURE AND PHYSICOCHEMICAL PROPERTIES OF NATIVE, DEFATTED AND HEAT-MOISTURE TREATED POTATO STARCHES

BY

CHANDANI PERERA

A thesis submitted to the School of Graduate Studies in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Biochemistry

Memorial University of Newfoundland

June 1998

St. John's

Newfoundland

Canada

ABSTRACT

Native potato starch was physically modified by heat-moisture treatment (100°C, 16h, 30% moisture) and defatting (75%, n-propanol water, 7h). The changes in structure and physicochemical properties on heat-moisture treatment and defatting were monitored by scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimetry (DSC), Brabender viscosities, swelling factor (SF) and amylose leaching (AML). SEM showed that neither defatting nor heat-moisture treatment altered the size, share or the surface appearance of the native starch granule. Heat-moisture treatment decreased Xray diffraction intensities and altered the 'B' type X-ray diffraction pattern to 'A+B'. The decrease in X-ray intensities on heat-moisture treatment is indicative of crystallite disruption and/or rearrangement of double helices. The oelatinization enthaloy (AH), Brabender viscosity (at 95°C), SF and AML decreased on heat-moisture treatment whereas celatioization transition temperatures (GTT), and thermal stability increased. Defatting increased the Xray diffraction intensities and altered the X-ray pattern from 'B' to 'A+B'. The increased X-ray intensities on defatting is indicative of interactions between amylose - amylose (AM-AM), amylopectin - amylopectin (AMP-AMP) and anylose - anylopectin (AM-AMP) chains. These interactions in turn, increased GTT, AH and thermal stability, However, SF, AML, and Brabender viscosity (at 95°C) decreased on defatting.

ä

The reagents (NeXOH and Na₂SO₄) used during hydroxypropylation did not alter granule morphology and AML in native, defatted and heat-moisture treated starches. X-ray diffraction patteres of native and defatted starches changed on alkaline treatment, whereas that of heat-moisture treated starch remained unaltered. These changes reflected double helical discuption (within the amorphous regions), and altered crystallite orientation. In all three starches, alkaline conditions decreased AH and Brabender viscosity (at 95°), and increased SF. The extent of the above changes followed the order : native > defatted > heat-moisture treated. Celatinization transition temperatures remained unchanged on staklaine treatment.

Native, definited and heat-moisture treated starches were converted to a range of hydroxytropyl derivatives using propylene oxide, all three starches showed similar molar substitution (MS 0.05). However, at 525%(v/w) propylene oxide, the accessibility of hydroxytropyl groups into the starch granule followed the order: heat-moisture treated > native > defined. This showed that the degree of accessibility of hydroxytropyl groups into the granule interior is dependent upon granule crystallinity. In all three starches, an increase in MS progressively decreased GTT, AH and AML. The influence of MS on SF of hydroxytropylated native, definited and heat-moisture treated starches was due to the interplay that occurs between hydrogen hour disruption (due to hydroxytropyl groups) within the amonhour endors, and the increased interactions that occur between starche

iii

chaine during defitting and heat-moisture beatment. Pasting temperatures of all starches decreased with increased MS. In defatted starch. Brabender viscosity (at 85°C) progressively increased with increase in MS. However, in native and heat-moisture treated starches, Brabender viscosity (at 65°C) began to decrease (due to granule disruption) at MS levels beyond 0.18 and 0.20, respectively.

Enzyme digestihity audies showed that both defatting (bot 75% npropand, 0-7 h) and heat-moisture treatment (100°C, 30% moisture, 0-16 h) increased the susceptibility of potalo startor granules towards hydrolysis by portice parcreated - anymises. These differences were attributed to structural changes that occurred within the amorphous and crystalline regions of the starch granule during defatting and heat-moisture treatment. However, hydrolysis decreased (alue to formation of new crystallites) when heat-moisture treatment and defatting were continued bycod flav and 9 h respectively.

Native, deflated (7 h) and heat-moisture treated (16 h) potato starches were hydroxypropylatel (to different levels of MS) with propylene oxide (2 - 20%). The results howed that the respects (NacH and NacS-Q) used during hydroxypropylation increased the susceptibility of the above starches (native > deflated > heat-moisture treated) towards hydrolysis by o-smylase. Addition of propylene oxide (hydroxypropylation) to akial treated starches, further enhanced the susceptibility boards o-smisses. However, small escontribility towards and the susceptibility boards o-smisses.

iv

o-emplase did not increase exponentially with increase in MS. The extent of hydrohysis began to decrease at MS levels of 0.28 (native), 0.28 (next-moisture treated) and 0.26 (defatted). The decruase in hydrohysis at higher MS levels is indicative of the steric effect imposed by bulky hydrohypropyl groups on the accessibility of o-amylase towards the glycosidic bonds of amylose and amylopedin.

The retrogradation properties of potato starch gels (stored for 24 h at 4°C and then for 34 days at 40°C) before and after physical (defattion and heatmoisture treatment), and chemical (hydroxypropylation) modification were monitored using turbidity measurements, SEM, DSC, X-ray diffraction and enzyme susceptibility. Turbidity development in native, defatted and heatmoisture treated starch pastes during storage (4°C for 24 h and then at 40°C for 34 days) followed the order : native > defatted > heat-moisture treated. In all three starches, the highest rate of turbidity development was observed during the first 24 h of storage (at 4°C). The above results in conjunction with SEM observations showed that turbidity development is influenced by the interaction between leached starch components (AM-AM, AM-AMP, AMP-AMP), and interaction between granule remnants and leached starch components (amylose and amylopectin). In alkali treated gelatinized native, defatted and heat-moisture treated starch pastes, turbidity development (native > defatted > heat-moisture treated) was influenced by aggregation of granule remnants. In native, defatted and heat-moisture treated starch pastes, both the rate and extent of turbidity

development (on storage) decreased after hydroxyprop/lation. This decrease was due to the interplay of : 1) teric effects imposed by hydroxyprop/ groups on chain aggregation, 2) aggregation between small granule remnants, and 3) settling of large granule remnants beneath the path of the spectrophotometer beam.

The internativity (at 5.2), of the 'B' type X-ray pattern of gualatinicat pastes of native, defatted and heat-moisture treated starches increased during storage (native > defatted > heat-moisture treated). The same 'B' pattern was also evident (at the end of the storage period) after alkali treatment and hydroxypropylation of the above starches. However, the peak at 5.2Å was reduced in internativ after alkaline treatment and hydroxypropylation. The extent of the decrease being regreter in the text.

Freeh pastes of gelatinized native, defated and heat-motisture treated potato starches were hydrolyzed by porcine pancreatic or-amylase nearly to the same ether (15-37-25)). Storage (at 4°C tor 24 h of the above gelatinized pastes decreased (native > defatted > heat-motisture treated) heir susceptibility towards - amylase. However, storage times longer than 24 h did not seem to have any further influence on the enzyme susceptibility of the starch gela. Xilailre treatment increased the susceptibility of freshly gelatinized tarch pastes (native > defatted > heat-motisture treated) lowards hydrolysis by oramylase. However, storage (24 h at 4°C) of skall readed starch gels, decreased their susceptibility lowards, biddrols by or-amylase.

vŕ

the accessibility of or-amylase towards the glycosidic linkages of freshly gelatilized pastes of native, deflated and heat-moisture treated starches (deflated > native > heat-moisture treated). However, the extent of this decrease was not altered during storage at 47 for 24 h).

. The retrogradation endotherm (monitored by DSC) of starten gale (naive, defatted and heat-moisture treated) occurred after 2 days of storage (4°C or 1 day and then at 40°C or 1 day). A similar trend was also observed after atkalme treatment. However, hydroxypropylated native, defatted and heat-moisture treated starch gale (at nearly the same MS level (0.10-0.11)), showed a measurable retrogradation endotherm only after 7 days (4°C for 1 day and then a 40°C for 6 day). This showed that hydroxypropy groups are effective in hindering starch chain realignment during gel storage. Both alkaline treatment and hydroxypropylation decreased the netrogradation enthalpies of native, defated and heat-moisture rested starch gels.

vii

ACKNOWLEDGMENTS

I have greatly appreciated the opportunity to work with Dr. R. Hoover (supervisor) and Dr. A.M. Martin (co-supervisor). They have been patient and supplied me with encouragement and motivation to persevere.

I also appreciate Dr. J. Banoub, Dr. A. D. Rahimtula and Dr. S.S. Mookerjea for serving on my supervisory committee and for the time and effort that they expended on my behalf.

I would like to acknowledge the Department of Biochemistry and the school of Graduate studies for providing financial assistance. Financial support from Dr. R. Hoover and Dr. A.M. Martin is also acknowledged.

Thanks are also extended to Dr. K. Keough and Dr. T.R. Patel for providing me access to their laboratory facilities. I also thank my fellow graduate students (Mr. E. Acheampong and Mr. N. Senanayake), with whom I have been privileged to associate these past years. As we learned together, their camanadorie has made life here interesting and most enivable.

viii

TABLE OF CONTENTS

	Page
Abstract	ii
Acknowledgments	viii
Table of contents List of Figures	ix
List of Figures	xiv xvii
List of Abbreviations	XVII
Chapter 1. Introduction	1
Chapter 2. Literature Review	8
2.1 Starch-Introduction	8
2.2 Starch Biosynthesis	11
2.3 Starch Production and uses	13
2.4 Structure of starch	15
2.4.1 Major components	15
2.4.1.1 Amylose	15
2.4.1.1.1 Structure	15
2.4.1.1.2 Conformation	17
2.4.1.2 Amylopectin	23
2.4.2 Minor components of starch	32
2.4.2.1 Proteins	32
2.4.2.2 Lipids	33
2.4.2.2.1 Amylose - lipid inclusion complex	35
2.4.2.2.2 Occurrence of amylose -lipid complex	35
2.4.2.2.3 Stability of amylose -lipid complex	42
2.4.2.2.4 Thermal and rheological properties of	
amylose - lipid complex	42
2.4.3 Super molecular order of starch granule	45
2.4.4 Molecular organization of crystalline regions	51
2.4.5 Crystal structure of 'A' and 'B' starches	55
2.4.6 Amorphous region of the granule	63
2.5 Starch properties	66
2.5.1 Gelatinization	66
2.5.1.1 Factors influencing gelatinization	77
2.5.1.1 Botanical source	77
2.5.1.1.2 Heating rate	79
2.5.1.1.3 Lipids	79
2.5.1.1.6 Lipids	80

2.5.1.1.5 Starch modification	80
2.5.2 Retrogradation	81
2.5.2.1 Amylose gelation	84
2.5.2.2 Amylopectin gelation	87
2.5.2.3 Retrogradation of starch	92
2.5.2.4 Factors influencing retrogradation	95
2.5.2.4.1 Botanical source	95
2.5.2.4.2 Storage temperature	96
2.5.2.4.3 Moisture content of gels	98
2.5.2.4.4 Lipids	99
2.5.2.4.5 Sugars	100
2.5.2.4.6 Salts	102
2.5.2.4.7 Hydrocolloids	103
2.5.2.4.8 Physical modification	103
2.5.2.4.9 Chemical modification	105
2.5.3 Starch digestibility	106
2.6 Starch modification	109
2.6.1 Physical modification	109
2.6.1.1 Heat-moisture treatment	110
2.6.1.2 Defatting	114
2.6.2 Chemical modification	117
2.6.2.1 Hydroxypropylation	121
Chapter 3. Materials and Methods	128
3.1 Materials	128
3.2 Methods	128
3.2.1 Starch isolation and purification	128
3.2.2 Chemical composition of starch	129
3.2.2.1 Moisture content	129
3.2.2.2 Nitrogen content	129
3.2.2.3 Ash content	130
3.2.2.4 Lipid content	130
3.2.2.5 Amylose content	131
3.2.2.5.1 Chrastil's method	131
3.2.2.6 Estimation of starch damage	132
3.2.3 Starch modification	133
3.2.3.1 Preparation of defatted potato starch	133
3.2.3.2 Preparation of heat-moisture treated	
potato starch	133

3.2.3.3 Preparation of hydroxypropyl potato starch	134
3.2.3.3.1 Determination of molar substitution	134
3.2.4 Determination of physicochemical properties	136
3.2.4.1 Scanning electron microscopy	136
3.2.4.2 X- ray diffraction	136
3.2.4.3 Differential scanning calorimetry	137
3.2.4.4 Swelling factor	137
3.2.4.5 Extent of amylose leaching	139
3.2.4.6 Brabender viscosity measurements	139
3.2.5 Starch digestibility	140
3.2.5.1 Preparation of defatted starch	140
3.2.5.2 Preparation of heat-moisture	
treated starch	140
3.2.5.3 Scanning electron microscopy	140
3.2.5.4 Enzyme hydrolysis	141
3.2.6 Starch retrogradation	142
3.2.6.1 Turbidity measurements	142
3.2.6.2 Gel preparation	142
3.2.6.3 Gel powder preparation	143
3.2.6.4 Scanning electron microscopy of gels	143
3.2.6.5 Differential scanning calorimetry	144
3.2.6.6 Enzyme hydrolysis of gels	145
3.2.7 Statistical analysis	145
Chapter 4. Results and Discussion	146
 4.1 Chemical composition of native potato starch 	146
4.2 Effect of defatting and heat-moisture treatment on the structure	
and physicochemical properties of native potato starch	148
4.2.1 Morphological granular characteristics	148
4.2.2 X-ray diffraction	148
4.2.3 Swelling factor and amylose leaching	153
4.2.4 Differential scanning calorimetry	156
4.2.5 Brabender viscosity measurements	159
4.3 Effect of alkali treatment on the structure and properties	
of native, defatted and heat-moisture treated starches	162
4.3.1 Morphological granular characteristics	162
	163
	163
	163
	168
4.4 Effect of defatting and heat-moisture treatment on the	
	173
4.5 The effect of hydroxypropylation on the structure, thermal	
and pasting properties of native, defatted and heat-moisture	
treated potato starches	176

4.5.1 Morphological granular characteristics	176
4.5.2 X-ray diffraction	176
4.5.3 Swelling factor	177
4.5.4 Amylose leaching	180
4.5.5 Differential scanning calorimetry	180
4.5.6 Brabender viscosity measurements	184
4.6 Starch digestibility by porcine pancreatic α-amvlase	186
4.6.1 Enzyme hydrolysis of native, defatted and heat-	
moisture treated potato starches	186
4.6.2 Influence of alkali on enzyme hydrolysis of native,	
defatted and heat-moisture treated potato starches	198
4.6.3 The influence of level of hydroxypropylation on enzyme	
hydrolysis of native, defatted and heat-moisture treated	
potato starches	201
4.7 Retrogradation studies on potato starches	203
4.7.1 Turbidimetric and structural analysis	203
4.7.1.1 Initial turbidity and SEM of fresh pastes of native.	
defatted and heat-moisture treated starches	203
4.7.1.2 Initial turbidity and SEM of alkali treated native,	
defatted and heat-moisture treated starches	208
4.7.1.3 Initial turbidity and SEM of hydroxypropylated	
native, defatted and heat-moisture treated starches	213
4.7.1.4 Turbidity and SEM of fresh pastes of native, defatted	
and heat-moisture treated starch pastes during	
storage	216
4.7.1.5 Turbidity and SEM of alkali treated native, defatted	
and heat-moisture treated starch pastes during	
storage	219
4.7.1.6 Turbidity and SEM of hydroxypropylated native,	
defatted and heat-moisture treated starch pastes	
during storage	220
4.7.2 Enzyme digestibility	224
4.7.2.1 Enzyme digestibility of fresh and stored pastes of	
native, defatted and heat-moisture treated starches	224
4.7.2.2 Enzyme digestibility of fresh and stored pastes of	
alkali treated native, defatted and heat-moisture	
treated starches	226
4.7.2.3 Enzyme digestibility of fresh and stored pastes of	
hydroxypropyl native, defatted and heat-moisture	
treated starches	228
4.7.3 X-ray diffraction	230
4.7.3.1 X-ray diffraction of fresh and stored gels of native,	
defatted and heat-moisture treated starches	230

4.7.3.2 X-ray diffraction of fresh and stored gels of alkali treated native, defatted and heat-moisture treated	
starches	236
4.7.3.3 X-ray diffraction of fresh and stored gels of	
hydroxypropyl native, defatted and heat-moisture	
treated starches	236
4.7.4 Differential scanning calorimetry	237
4.7.4.1 DSC parameters of native, defatted and	
heat-moisture treated gels after storage	237
4.7.4.2 DSC parameters of alkali treated native, defatted	
and heat-moisture treated gels after storage	240
4.7.4.3 DSC parameters of hydroxypropyl native, defatted	
and heat-moisture treated gels after storage	242
Chapter 5. Summary and Conclusion	245
5.1 Directions for future research	250
Bibliography	252
Publications	277

LIST OF FIGURES

Figure 2.1 Metabolic pathway for starch synthesis		Page 12
2.2	13C CP/MAS NMR spectra of 'A' and 'B' type amylose	18
2.3	Models proposed for the amylose in aqueous solution	19
2.4	Schematic illustration of amylose-lipid complex	22
2.5	X- ray diffraction pattern of 'V' amylose	24
2.6	Models proposed for amylopectin	27
2.7	Chain distribution of potato, waxy rice starches and the proposed model for amylopectin	29
2.8	Proposed models for 'A' and 'B' type amylopectin	31
2.9	13C CP/MAS NMR spectra of 'V' amylose	37
2.10	DSC thermal curve of a cereal starch showing different melting transitions and the corresponding structural domains	41
2.11	Structures in binary lipid-water systems	43
2.12	Schematic models of starch granule	47
2.13	Inner structure of starch granule showing crystalline and amorphous regions	48
2.14	Schematic model for the arrangement of amylopectin in potato starch	50
2.15	X-ray diffraction patterns of 'A', 'B' and 'C' starches	52
2.16	Double helix packing arrangement in 'A' and 'B' type unit cells	56
2.17	Structure of 'A' and 'B' unit cells	58
2.18 1	³ C CP/MAS NMR spectra of amorphous and crystalline 'A' type and 'B' type starches	61

2.19 The transition from 'B' starch to 'A' starch 6			
2.20	Schematic presentation of the changes which occur in the starch granule during gelatinization	67	
2.21	DSC thermograms of starches at various volume fractions of water	71	
2.22	Thermal profiles of rice starch showing both glass transition and melting transition	74	
2.23 (DSC thermograms of starches at various water contents	76	
2.24	Mechanisms of starch retrogradation	82	
2.25 (Continuous model for amylose gel	88	
2.26	DSC thermograms of waxy starch and waxy amylopectin gels	90	
2.27	Effect of storage temperature on crystallization of partially crystalline polymers	97	
2.28	Starch hydrolysis by a-amylase : mechanism	107	
2.29	Glucose units substituted with hydroxypropyl groups showing molar substitution	122	
4.1	Scanning electron micrographs of native, defatted and heat- moisture treated potato starch granules	149	
4.2	X-ray diffraction patterns of native, defatted and heat-moisture treated potato starches	150	
4.3	X-ray diffraction patterns of native, defatted and heat-moisture treated potato starches after alkaline treatment	165	
4.4	The level of molar substitution of native, heat-moisture treated and defatted potato starch by hydroxypropyl groups	174	
4.5	Influence of time of defatting and heat-moisture treatment on MS level	175	
4.6	Scanning electron micrographs of native defatted, and heat- moisture treated potato starch granules hydrolyzed by porcine pancreatic α-amylase for 72 h.	189	

4.7	X-ray diffraction patterns of potato starches heat-moisture treated for different time periods	195
4.8	The influence of defatting time on the extent of lipid removal from native potato starch	196
4.9	X-ray diffraction patterns of potato starches defatted for different time periods % \ensuremath{A}	197
4.10	Time course of turbidity development in native potato starch stored at 4°C and 40°C	204
4.11	Time course of turbidity development in defatted potato starch stored at 4°C and 40°C	205
4.12	Time course of turbidity development in heat-moisture treated potato starch stored at 4°C and 40°C	206
4.13	Scanning electron micrographs of freshly gelatinized and stored native, defatted and heat-moisture treated potato starch pastes	207
4.14	Scanning electron micrographs of freshly gelatinized and stored alkali treated native potato starch pastes	210
4.15	Scanning electron micrographs of freshly gelatinized and stored alkali treated defatted potato starch pastes	211
4.16	Scanning electron micrographs of freshly gelatinized and stored alkali treated heat-moisture treated potato starch pastes	212
4.17	Scanning electron micrographs of freshly gelatinized and stored hydroxypropyl potato starch pastes	214
4.18	X-ray diffraction patterns of freshly gelatinized and stored pastes of untreated, alkali treated and hydroxypropylated native potato starches	231
4.19	X-ray diffraction patterns of freshly gelatinized and stored pastes of untreated, alkali treated and hydroxypropylated defatted potato starches	232
4.20	X-ray diffraction patterns of freshly gelatinized and stored pastes of untreated, alkali treated and hydroxypropylated heat-moisture treated potato starches	233

LIST OF TABLES

Table 2.1	Size and shape of starch granules from different botanical sources	Page 9
2.2	Characteristics of amylose and amylopectin	10
2.3	Properties of amylose from different botanical sources	16
2.4	Properties of amylopectin from different botanical sources	25
2.5	Lipid-complexed and lipid-free amylose in barley starches	38
2.6	Percent crystallinity of 'A', 'B' and 'C' type starches	54
2.7	Gelatinization parameters of some starches	78
2.8	Properties and applications of chemically modified starches	118
4.1	Proximate composition of native potato starch	147
4.2	X-ray diffraction intensities of the major peaks of native, defatted and heat-moisture treated potato starches	151
4.3	Swelling factor of native, defatted and heat-moisture treated potato starches	154
4.4	Amylose leaching of native, defatted and heat-moisture treated potato starches	155
4.5	Gelatinization parameters of native, defatted and heat-moisture treated starches	158
4.6	Pasting properties of native, defatted and heat-moisture treated potato starches	161
	X-ray diffraction intensities of the major peaks of native, defatted and heat-moisture treated potato starches before and after alkali treatment	164
	Swelling factor of native, defatted and heat-moisture treated potato starches before and after alkaline treatment	166

4.9	Amylose leaching (at 90°C) of native, defatted and heat-moisture treated potato starches before and after alkaline treatment	167
4.10	Gelatinization parameters of native, defatted and heat-moisture treated starches before and after alkaline treatment	169
4.11	Pasting properties of native, defatted and heat-moisture treated starches before and after alkaline treatment	170
4.12	Swelling factor of hydroxypropyl native, defatted and heat-moisture treated potato starches	178
4.13	Amylose leaching of hydroxypropyl native, defatted and heat-moisture treated potato starches	181
4.14	Gelatinization parameters of hydroxypropyl native, defatted and heat-moisture treated potato starches	182
4.15	Pasting properties of hydroxypropyl native, defatted and heat-moisture treated potato starches	185
4.16	Hydrolysis of native, defatted and heat-moisture treated potato starches by porcine pancreatic α -amylase	187
4.17	Effect of time of heat-moisture treatment on hydrolysis of potato starch by porcine pancreatic α -amylase	190
4.18	Effect of time of defatting on hydrolysis of potato starch by porcine pancreatic α -amylase	191
	X-ray diffraction intensities of the 5.2 Å peak with time course of heat-moisture treatment	194
	Hydrolysis of native, defatted and heat-moisture treated potato starches by porcine pancreatic α-amylase before and after hydroxypropylation	199
	α-amylase hydrolysis of freshly gelatinized and stored pastes of native, defatted and heat-moisture treated starches	225
	α-amylase hydrolysis of freshly gelatinized and stored pastes of alka≣ treated native, defatted and heat-moisture treated starches	227

4.23	$\alpha\text{-amylase}$ hydrolysis of freshly gelatinized and stored pastes of hydroxypropyl native, defatted and heat-moisture treated starches	229
4.24	X-ray diffraction intensities (at 5.2Å) of stored potato starch gels	235
4.25	DSC parameters of native, defatted and heat-moisture treated potato starches after gelatinization and storage	238
4.26	DSC parameters of alkali treated native, defatted and heat-moisture treated potato starches	241
4.27	DSC parameters of hydroxypropyl native, defatted and heat-moisture treated potato starches	243

LIST OF ABBREVIATIONS

v	- Volume fraction
ΔH	- Enthaloy of gelatinization
ΔH _R	- Enthalpy of retrogradation
AM	- Amviose
AML	- Amylose leaching
AMP	- Amylopectin
BU	- Brabender units
C*	 Entanglement concentration
CL	- Chain length
CP MAS NMR	 Cross polarization magic angle spinning nuclear magnetic resonance
CTAB	 Cetyltrimethylammonium bromide
db	- Dry basis
DP	- Degree of polymerization
Dpn	 Degree of polymerization - number (average)
Dpw	 Degree of polymerization - weight (average)
DSC	 Differential scanning calorimetry
F-AM	- Lipid free amylose
FTIR	 Fourier transform infrared spectroscopy
GMP	 Glyceryl monopalmitate
GMS	 Glyceryl monostearate
HPLC	 High performance liquid chromatography
L-AM	- Lipid amylose
MG	- Monoacylglycerol
MS	- Molar substitution
NIR	 Near infrared reflectance spectroscopy
PPA	 Porcine pancreatic α-amylase
PW	- Propanol water
SF	- Swelling factor
SP	- Swelling power
SSL	- Sodium stearoyl-2- lactylate
To	 Onset of gelatinization temperature
Тр	 Peak gelatinization temperature
To-To	 Conclusion of gelatinization temperature Gelatinization transition temperature range
	 Gelatinization transition temperature range Glass transition temperature
Tg w/v	
WIV	- Weight / volume

DEDICATED TO MY LOVING PARENTS

CHAPTER 1

INTRODUCTION

Hydroxypropylated starches have been shown to alter physicochemical properties compared to their native starches (Butler et al., 1986; Hoover et al., 1988; Kim & Eliasson, 1993), primarily depending on the molar substitution (MS), Hood & Mercier (1978) have shown by enzyme hydrolysis and gel were distributed at/or near the reducing end or along the entire amylose molecule. Kim et al. (1992) have shown by light microscopy studies, that in

Presently hydroxypropyl starches for commercial purposes are produced by reaction of a highly concentrated slurry of starch granules with propylene

oxide under alkaline conditions (NaOH and Na₂SO₄). These alkaline conditions increase the reaction efficiency of hydroxyproplation. The changes in physicochemical properties on hydroxyproplation have been attributed solely to the level of MS. No attempt has been made to investigate the possibility that the alabine conditions could also influence starch properties.

The reactivity and the mode of action of α-amylase have been primarily studied on unmodified starches from various botanical sources, and the results have shown that the action of a-amylase is influenced by granule structure. It has been postulated (Marsden & Grav, 1986; Franco et al., 1988) that α-amviase preferentially hydrolyzes amorphous regions of the starch granule. However, studies have not been conducted to examine how the arrangement of starch chains within the amorphous regions of the starch granule influences the degree of accessibility of α-amviase into the granule interior. Previous studies (Hoover & Vasanthan, 1994a b: Hoover & Manuel, 1996a) have shown that starch chain interactions occur within the amorphous region during thermal treatment. Furthermore, chemical modification has been shown (Mohd Azemi & Wootton, 1985: 1995) to reduce the accessibility of a-amylase into the amorphous regions. Thus, a comparative study of *α*-amylolysis of native starches with their physically and chemically modified counterparts may provide a deeper insight into the mechanism of α-amylolysis.

Starch gelatinization is a process that takes place when starch granules are heated in the presence of water, resulting in the disruption of molecular order within the starch granule. The process is manifested by ineversible changes in granular weelling, orystallite melling, loss of briefingence and starch solubilization. Starch retrogradation is a process that occurs when molecules composing geletinized starch begin to reasociate. Retrogradation is accompanied by increases in turbidity, gel fimmess, degree of crystallinity and the appearance of a 'B' type X-ray pattern.

The retrogradation of starches from cereal, tuber and legumes has been subjected to detailed studies. However, there is a dearth of information on the influence of physical modification such as defetting and heat-moisture treatment on the rate and extent of retrogradation of starches from different plant origins. Recently, Vasanthan & Hoover (1992a) and Hoover & Vasanthan (1994a) have shown that defatting and heat-moisture treatment cause structural changes to occur within the anonphous and crystalline domains of tuber and cereal starches. However, no attempt has been made to explain how these changes influence granule swelling, amylose leaching, granule rigidity and starch chain invescrion strine sellion and crystallization.

Hydroxypropylation has been shown to reduce starch retrogradation. However, there is a dearth of information on the influence of alkaline conditions used during hydroxypropylation on starch retrogradation. Furthermore, most of the present information on starch retrogradation has come from differential

з

scanning calorimetry and X-ray diffraction studies. It is important to measure the retrogradation mechanism of a particular starch using a wide variety of techniques (tubit) development, mayme digestibility, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy), since one technique alone annot unravel the different molecular processes occurring during starch gelation and crystallization. Thus, in this study, different physical probes (tubit) development, enzyme digestibility, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy), have been used in an attempt to study how the rate and extent of starch retrogradation is influenced by defating, heat-molisture treatment, alkali treatment and hydroxypropylation (at different levels of MS).

The hypothesis and objectives underlying this research investigation are outlined below :

Hypothesis 1: The thermal energy imparted to starch chains during defatting (1propanol water, 3: twi, 7 h. = 22°C) and heat-moisture treatment (30% moisture, 100°C, 16 h), and the added moisture content (30% moisture) within starch granules during heat-moisture treatment would increase starch chain mobility, resulting in either increased interaction between amylose - amylose (AMA-AMP) amylose - amylopedin (AM-AMP), amylopedin - amylose (AMA-AMP) chains and/or diruption of starch crystallites. These structural changes would, in turn, racicular atter the evolucionation of the total orange.

Objective 1 : To determine (by physical and chemical methods) the influence of defatting and heat-moisture treatment on starch structure and properties.

Hypothesis 2: Hydroxyproplation has been shown to occur within the amorphous regions of the starch grande. Therefore, any changes within the amorphous regions during defaiting and heat-moleture behavior. Could be increase or decrease the accessibility of hydroxypropyl groups into the granule interior. Thus, hydroxypropylation at the same level of propylene oxide should result in different levels of molar substitution (MS) in native, defatted and heatmolarity results during).

Objective 2 : To determine the degree of accessibility of hydroxypropyl groups into the amorphous regions of potato starch before and after defatting and heatmoisture treatment.

Hypothesis 3: Changes in starch properties on hydroxypropylation have been attributed solely to the hydroxypropyl group. However, it is also likely, that the alkaline negateris used during hydroxypropylation could also influence starch properties by altering starch chain arrangements within the amorphous and crustalline domains of the starch charule.

Objective 3 : To study the influence of the reagents (NaOH and Na₂SO₄) used during hydroxypropylation on the structure and properties of native, defatted and heat-moisture treated starches.

Hypothesis 4: The structural arrangement of amylose and amylopectin chains within the amorphous and crystalline regions of native, defatted and heat-

moisture treated starches could influence the extent to which hydroxypropyl groups are able to modify starch properties.

Objective 4 : To determine the influence of hydroxypropylation at various levels of MS on the thermal and rheological properties of native, defatted and heatmoisture treated starches.

Hypothesis 5: Changes within the amorphous and crystalline regions of starch granules on defatting, heat-mointure treatment and alkaline treatment could influence the reactivity of the starch granule towards a-amylase. Furthermore, staric effects imposed by bulky hydroxypropyl groups could hinder the accessibility of a-amylase towards the glocoladic inkages.

Objective 5 : To study the reactivity of α -amylase towards native, defatted and heat-moisture treated potato starches before and after hydroxypropylation.

Hypothesis 6: Starch chains within gelatitized granules and in the continuous medium interact during gel storage. Thus, any change in starch structure on delating, heat-mosture treatment and salarile research could infiniently influence the rate and extent of starch chain interactions during gel storage. Furthermore, bulky hydrosprop/groups could hinder this interaction (any/oseamy/ose (JAAAM), amylose-amylopedin (JAAAP), amylopedin-amylopedin (AP-AP) tetrotaly and/or by doressing the mobile of the interaction chains.

Objective 6 : To study how the rate and extent of potato starch retrogradation is influenced by defatting, heat-moisture treatment, alkaline treatment and hydroxypropylation (at different MS levels).

CHAPTER 2

LITERATURE REVIEW

2. 1 Starch - Introduction

Starch is a major reserve polysaccharide of green plants, which is deposited in granular form in seeds, roots, tubers, stems and leaves of plants, The granules are partially crystalline, insoluble in cold water and their size, the shape (Table 2.1), and the composition are essentially genetical. In general, cereal starch granules are small and polyhedric, whereas, tuber starch granules are large, spherical or ellipsoid. In contrast to most starches which have single size distribution of granules, rye, wheat, triticale and barley starches show a bimodal distribution ; spherical 'B' granules (1-10u) and lenticular 'A' granules (15-35u). The granule size and morphology have received much attention recently, since small granules are important in determining the taste and mouthfeel of some starch based fat mimetics (Alexander, 1992). Pure starch is a mixture of two α-(1-++) glycosidic bonded glucose polymers, namely essentially linear amylose and branched amylopectin (Table 2.2) in which branching occurs through α -(1 \rightarrow 6) linkages. The ratio of amylose and amylopectin differ depending on the botanical source of starch. The amount of amylose present in starches is in the range of 17 (rice) - 38 (lentil) %, while amylopectin ranges from 62 to 83%. Granule composition, morphology and supermolecular organization are to a certain extent under genetic control; i.e. they are influenced

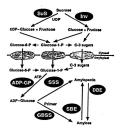
Starch source	Shape	Size (µm)
Cereal		
Wheat	spherical, lenticular	1-45
Maize	spherical, polygonal	2-30
Waxy maize	polyhedric	3-26
Rice	polyhedric	3-8
Sorghum	polyhedric, spherical	4-24
Barley	lenticular	2-5
Root and tuber		
Potato	oval, spherical	5-100
Tapioca	truncated, spherical, oval	4-35
Legumes		
Smooth pea	reniform (simple)	5-10
Wrinkled pea	reniform (compound)	30-40
Chick pea	spherical, oval	8-54
Cow pea	spherical, oval	15-85
Lentil	spherical, oval	15-36
Black beans	oval, spherical	8-34

Table 2.1 Size and shape of starch granules from different botanical sources.

Adapted from Swinkels (1985); Blanshard (1987); Hoover & Sosulski, (1985).

Characteristic	Amylose	Amylopectin
Molecular structure	essentially linear with α-(1-4) linkages, slightly branched	linkages
Molecular weight	700-5000	10 ⁴ -10 ⁵
Average CL	100-550	18-25
Branch linkage (%)	0.2-0.6	4.0-5.5
lodine binding -λ max	640-660 nm	530-570 nm
- color	deep blue	purple
Stability of aqueous solutions	retrogrades	stable
Film properties	strong	brittle
Solubility in water	variable	soluble
Digestibility		
α-amylase	~100	~90-100
β-amylase	70-96	50-60
β-amylase and debranching enzyme	~100	~75
Gel properties	stiff, thermally irreversible below 100°C	soft, thermally reversible below 100°

Table 2.2 Characteristics of amylose and amylopectin


Adapted from Manners (1985); Biliaderis (1991); Hizukuri (1996).

by the biochemistry of the amyloplast (banch synthesizing organelle) as well as by the physiology of the plant (Banks & Greenwood, 1975; French, 1984; Bildarins, 1991). However, the exact mechanism by which plant genetic information is translated into a specific granule composition, morphology and organization is unknown. Even the exact role and in vice regulation of various enzymes involved in starch biosynthesis is still in dispute (Preiss & Lori, 1980; Röxy, 1984). Only when this information is available fungti the possible to manipulate the amount, composition and properties of starch by genetic engineering (Billadies, 1991). The fine structure and the molecular order of amylose and amyloced in determine the physicohemical properties of starchs.

2.2 Starch Biosynthesis

Biosynthesis of starch takes place in a specialized subcellular organelle, the anyloplast, which has a limiting lipoprotein membrane. Figure 2.1 shows the enzymes involved and the metabolic pathways of starch biosynthesis. The enzymes which catalyze the biosynthesis are present within the anyloplast. These enzymes include phosphorylases, starch synthesis and branching and debranching enzymes(Janscon et al., 1995). Sucrose, the starting material of starch synthesis is transported from the photosynthetic susue to the storage organ. The assembly of starch chains occurs on a lipoprotein matrix. At a certain moment, a minute amount of insoluble polyaschnikid deposits and this acts as the nucleus filtimum of the carnus, around which the carnus is develoced. As

Fig. 2.1 Schematic representation of the metabolic pathway for starch synthesis (with permission, Jansson *et al.*, 1995).

 SuS
 = sucrose synthetase

 ADP-GP = ADP-glucose pyrophosphorylase
 GBSS

 GBSS
 = granule-bound starch synthase

 DBE
 = debranching enzyme

Inv = sucrose invertase

SSS = soluble starch synthase

SBE = starch branching enzyme

the dissolved glucose units are linked to the growing polymer, they simultaneously solidify (Swinkek, 1985). As the granule develops within the amyloplast, it occupies an increasing proportion of the volume, until the internal volume of the amyloplast is completely occupied by starch (Gallard & Bowler, 1967).

2.3 Starch production and uses

Although starch occurs throughout the plant world, there are only a limited number of plants utilized extensively for the production of commercial starches. Sources of commercial starches are maize, wheat, rice, potato, tapioca, arrowroot and sago (Swinkels, 1985). Maize is the major commercial starch produced and in the US, maize accounts for more than 95% of commercial starches. In addition to maize the US produces limited amount of potato and wheat starches as well. However, in Europe, use of potato in starch production is much greater than that in the US. Tapioca and sago starches are mainly produced in tropical countries such as East Indies and Brazil. Tapioca is imported into the US for use in industrial and food applications and also to produce modified starches (Wurzburg, 1987). In the US, 70% of the starch is utilized in industrial applications and the remaining 30% is used in food products. In contrast, European countries use 69% of starch in food applications and the remaining 31% is consigned to industrial purposes (Lillford & Morrison, 1997)

Starch, in granular form as well as in the paste form has its function in food and non food applications, in food applications, granular starch is utilized as a dursing agent for candy and carrying agent for baking powder. Small granular starches (< 2 µ in diameter) are proposed for fat mimetes. A mixture of small particles dispersed in a starch get matrix resembles the texture of butter in which fat miceles are dispersed in a situal fat matrix (Jane, 1997a). In non food uses, granular starch is utilized as a dusting agent in pharmacelicals (lables), antipenpripriar, and in facial powder buttites (cat, maize). Granular starch has been used in various products depending on their size and shape. The large granular wheat starch has been shown desirable as "silt material" for coating on carbonless, copy pager. Spenical aggregates of small granular starch are used as flavour carriers.

In the paste form, starch is used in food products as a thicknern in semi solid foods, pie fillings, sauces, oil mimetés and to provide texture (body) to beer and soft drinks (Jane, 1997a). In non food applications, starch paste has its functions as a costing agent in pharmaceuticals, encapsulating agent in agrochemicals (pesticides), toxilies, athesive, paper and board industry. Starch based products are being considered for use in surfactants (detergents), bleaching boosters (bleach under low temperature) and degradable plastics (Envestie et al. 1995).

In these applications, the ability of starch to produce a viscous paste when heated in water is its most important property. In addition, the appropriate paste

quality with respect to clarity, stability towards heat, shear, pH and resistance to syneresis may also be important depending on the application.

2.4 Structure of starch

2.4.1 Major components

2.4.1.1 Amylose

2.4.1.1.1 Structure

Amylose is found with a molecular weight ranging from 1x10⁵ to 2x10⁶ g/mole and the number of glucose residues per molecule, degree of polymerization (DP), ranging from 930-4920 (Table 2.3). Although considered to be essentially linear, amylose is not completely hydrolyzed by β-amylase (Hizukuri et al., 1981). Greenwood & Thompson (1962) reported that 8amylolysis limits of amylose extracted from various starches range from 72-95% and some of the limits are presented in Table 2.3 The incomplete B-amylase hydrolysis indicates, that a certain degree of branching is present in anylose. According to Hizukuri et al. (1981), the branching occurs through $\alpha_{-}(1\rightarrow 6)$ links and the amount of branching depends on the origin of amylose and is in the range of 25,55% on a molar basis. The average number of branch linkages per branch molecule is 4-18, whereas the percentage of branch linkages is 0.27-0.68%. The branch chains are usually moderately long, but a few may be as small as glucosyl to maltotetraosyl (G. -G.). Amylose leached from granules, immersed in water just above their gelatinization temperature has a lower

Wheat	Content (%)	affinity (%)	β- amvlolvsis	Degree of polymerization	Branched molecule (%)	Number of b	Number of branch linkages
Wheat			limit (%)			whole	branched
	26-31	19.9	81	2100	40	4.8	12.0
Maize	28	20.1	82	940	48	2.4	4.4
Amylomaize	52-80	19.4	75-76	1300	44	2.0	4.5
Oats	27	19.5	78	1300			
Rice	14-32	20.5	11	1110	36	2.4	6.5
Barley	22-29	6.1	87	1850		5.4	
Kuzu	20.3	19.5	76	1540	53	3.7	6.8
Sago	19.9	19.3	80	2490	62	10.4	18.3
Tapioca	16-17	20.0	75	2260	42	6.8	16.1
Yam	22	19.9	98	2000	29	2.8	
Sweet potato	20.7	20.2	76	4100	70	7.8	12.6
potato	23	20.4	80-87	3200	ž	6.3	
Smooth pea	33	19.1	82	1300	,		
Wrinkled pea	20	18.8	85	1100			
Navy beans	36	18.5	86.2	1300			
Faba beans	31.3-42.1	19.6	85.6	1400			

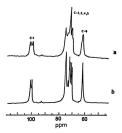
Table 2.3 Properties of amylose from different botanical sources

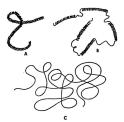
molecular weight and higher β-amylolysis limit (60-100%), than more extensively branched anylose which is lackted at higher temperatures (β-amylolysis limit 70-80%) (Banks & Greenwood, 1975; Takada et al., 1986). Despite the slipht thranching, the branched amylose appears to behave like a linear polymer forming films and helical inclusion complexes with ligands. Amylose of some starches has been shown to contain phosphate groups (maize 0.02-0.03%, potato 0.04-0.13% of dry starch (Galliard & Bowler, 1987)] probably attached to C-6 of ducos residue (Banks & Greenwood, 1975).

2.4.1.1.2 Conformation

It has been postuliated that the conformation of amylose is slightly helical due to the natural twist present in the chair conformation of glucose (kowbianky, 1985). Amylose in solid state shows two pointymbris. '(Fig. 2.2a) and 'B' (Fig. 2.2b) [Mu & Sarko, 1978a], which give aimilar X-ray patterns as the amylopectin crystallities in native starches. Interry of all (1987;1989) have shown that 'A' and 'B' polymorphs are right handed sidfoid double helices. However, conflicting hypothesis at levits concerning the molecular conformation of amylose in aqueous solution (Banks & Greenwood, 1971); Senior & Hamori, 1973; Cheetham & Tao, 1997). Banks & Greenwood, (1971) proposed there model conformations for amylose an aqueous solution (Fig. 2.3 e.e.). In both

Fig. 2.2 ¹³C CP/MAS NMR spectra of highly crystalline (A) 'A' type amylose, (B) 'B' type amylose (adapted from Horii *et al.*, 1987).




Fig. 2.3 Models proposed for the amylose in aqueous solution (with permission,

Banks & Greenwood, 1971).

A) random helical coil (6 glucose units per turn).

B) interrupted helix.

C) random coil with no helical character.

as in solvents such as dimethyl sulphoxide (DMSO), whereas the helical (1973) suggested that amylose conformation shows regions of loose and rather than a random coil. With the addition of water, the intramolecular conformational change from loose helix → random coil ICheetham & Tao.

Anyose in solution presents two features which are important in the functionality of starch based products; namely the ability to form inclusion complexes with desirable ligands and the ability to form interchain associations in polyasechardiae chains teading to gelation or precipitation.

Amylose combines with a variety of compounds like jodine, aliphatic alcohols, aliphatic hydrocarbons, fatty acids and monoacylglycerol (MG) to form so-called inclusion complexes (Fig. 2.4) which are insoluble at room temperature (Teitelbaum et al., 1978; Carlson et al., 1979; Swinkles, 1985), Inclusion complexes are not formed as a result of a chemical reaction, but have been defined as addition compounds (complexes) in which 'quest' entity fits into and is surrounded by the lattice of the 'bost' molecule. The bonds involved in inclusion complex are Van der Waals attractive forces which are quite weak but sufficient to provide the formation of stable complexes (Osman-Ismail, 1972). In the helical form, the interior of the helix is built up by C-H groups and glycosidic oxygen atoms forming a lipophilic core, while the polar hydroxyl groups are positioned on the outer surface of the helix (Banks & Greenwood, 1971). Carlson et al. (1979) have shown that the helical space in V amylose conformation is too narrow to accommodate the bulky polar group of the lipid molecule. Hence, the polar group must exist outside the amylose helix.

lodine, in the form of polyiodide ions (up to Γ_{13} , but mainly as Γ_3 or Γ_3), can bind with amylose (Teitelbaum et al., 1978). The complex produces a deep blue colour which is used to identify amylose containing starches and to measure

Fig. 2.4 Schematic illustration of amylose - lipid complex (adapted from Carlson et al., 1979).

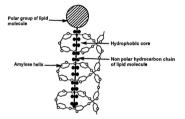
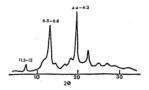



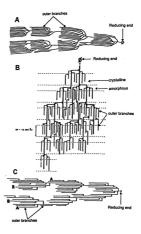
Fig. 2.5 'V' X-ray diffraction pattern of amylose - lipid complex showing characteristic d- spacings (4.4-4.3, 6.5-6.8, 11.3-12).

(adapted from Zobel, 1988a).

Starch source	lodine binding (mg/100mg)	β-amylose limit	Average CL	A-CL	B-CL	A : B chain ratio
Wheat	0.2	57	19-20	17	56	1.5:1
Maize	0.9	59	25-26	17	60	1.2:1
Waxy maize		58	20-22	18	51	1.5:1
Amylomaize	0.1	61	23	19	65	1.7:1
Rice	0.6	69	58-59			1.5 : 1
Waxy rice			23	15	62	1.1-1.5:1
Barley	0.7	60	26			
Barley (skx)	0.82	69	20			
Sago	0.43	69	22			
Tapioca		57	21	17	52	1.2 : 1
Yam	0.07		24	19	55	
potato	0.6	51-56	24	20	62	1.3 : 1
Sweet potato	0.44	56	30	16	99	1.8:1
Lentil			23	16	50	
Faba bean			21			
Smooth pea	1.7	61	26	,		
Wrinkled pea	0.9	57	27	,		
Adapted from 5	Adapted from Swinkels (1985); Blanshard (1987); Colonna et al.(1992); Hizukuri (1996)	shard (1987); C	colonna et al.(1992);	Hizukuri (1996)		

Table 2.4 Properties of amylopectin from different botanical sources

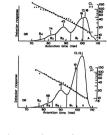
inner and outer chain lengths (Robin *et al.*, 1974; Hizukuri, 1986). Atthough the main structural features of annylopedin have been known for some 50 years, details of the fine structure are still lacking. There is still uncertainty about the detailed arrangements of the constituent linear chains of (1-4) linked o-glucose residues.


Investigation of anylopectin structure is a case in point of where progress is dependent on methodology development (both enzymatic and instrumental methods). Hydrolysis of anylopectin with a debranching enzyme and separation of the digest (containing linear chains) using exclusion gel filtration technique normally gives a bi- or trimodal elution profile, indicating the presence of chains with different chain length or molecular weight (Hicutur, 1986).

A number of models have been proposed for the amylopactin molecule, including comb-like model and laminated structure (Staudinger & Huseranni, 1937). However, currently accepted structural models are those derived from the cluster models of Nilumi (1959) and French (1972) [Fig. 24a]. These models exhibited the presence of chain segments which are designated as 'A', 'B' and 'C'. The 'A chains are joined to the remainder of the molecule with a single 1,6 bond, 'B' chains are joined to the remainder of the molecule with a single 1,6 bond, 'B' chains are joined to they, 'C' chain carries the sole reducing group (2obel (1986b).

A similar model (Fig 2.6b) was proposed by Robin et al. (1974), from data derived from sequential treatment of potato anylopectin with debranching

Fig. 2.6 Models proposed for amylopectin (with permission).

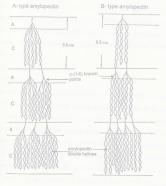

- A) Cluster model of French (1972).
- B) Robin et al. (1974).
- C) Manners & Matheson (1981).

enzymes and β-amylase, its β-limit dectrin and a derived acid-resistant amylodectrin. The significance of this model was the presence of three chain populations with CL of 15-20, 45 and 60. The chains with CL of 15-20 are in highly ordered clusters, which are linked to each other by much longer chains, which would correspond to the longer 'B' chains (CL 45) found in alticino profiles.

Based on the polymodal distribution of chain profile (Fig. 2.7a,b) elucidated from gel permeation HPLC (high performance liquid chromatography) of amylopectin, Hizukuri (1986) proposed a refined cluster model (Fig. 2.7c). 'A' chains are represented by fraction A which eluted last while various B chains are represented by fractions 'B1 - B4'. Moreover, 'A' and 'B1' makes a single cluster. Chains in fraction 'B₂' extend into two clusters, those in fraction 'B₃' extend into three clusters, and the chains in fraction 'B-' extend into more than four clusters (Fig. 2.7a,b), Hizukuri (1986) showed that amylopectins isolated from potato, tapioca, kudzu and waxy rice the average CL of the fraction 'B1', 'B2' and 'B3' were 20-24, 42-48 and 69-75 respectively; the relative lengths being ~ 1:2:3. The CL of 'A' chains are in the range of 12-16 which was in agreement with the exterior CL of amylopertin as reported by Mappers (1985). Similar CL values have been reported by French (1972), Robin et al. (1974) and Hood & Mercler (1978) and the values were 12, 15 and 15, respectively. The sum of 'A' and 'B₁' fractions represents 80-90% of total chains and constitute a sincle cluster and the 10-20% are in inter-cluster connections (Hizurkri, 1986).

Fig. 2.7 Chain distribution of (A) potato, (B) waxy rice and (C) the proposed model for amylopectin (adapted from Hizukuri, 1986).

A


в

The ratio of $^{\prime A}$ to $^{\prime B}$ chains (2-1) was first reported by Marshall & Whelan (1974). However, a critical examination by Manners & Matheson (1981) revealed that the $^{\prime A}$ to $^{\prime B}$ chain ratio was about 1:1. Hizukuri (1986) reported that the A : B ratios are 0.8-0.8:1 for tapioca, kuzu and potato, and 2.2:1 for waxy rice anytopedin.

The cluster model is in accordance with the relatively high viscosity of amylopectin, the crystallinity of the macromolecule as revealed by X-ray analysis and the relative resistance of parts of the molecule to attack by acid and amylolytic enzymes (Manners, 1986). All these structures have the concept that the branch points are arranged in clusters of short chains.

On the basis of the structures of Naegeli dextrins (obtained by high performance anion exchange chromatography) and data obtained from other studies (Jenkins et al., 1993; Jenkins & Donalds, 1995; Jane et al., 1997b), Jane (1997b) proposed two structurally different models of 'A' and 'B' type amylopectin (Fig. 2.8). The structures show that α - (1-+6) branch linkages of 'A' starches are more scattered. Substantial amounts of branch linkages are located within the crystalline regions (which are protected from acid hydrolysis), whereas the branch linkages in the amorphous region are hydrolysed during acid treatment. The branch linkages in the 'B' type amylopectin are clustered in the amorphous region and are susceptible to acid hydrolysis. These models show that the repeating distance of 'A' and 'B' type amylopectin are 9.0 and 9.2 nm (Fig. 2.8), respectively (Jane, 1997b). Fig. 2.8 Proposed models for 'A' (from waxy maize) and 'B' (from potato) type amylopectin branching patterns. A and C represent amorphous and crystalline regions, respectively (adapted from Jane, 1997b).

C - crystalline

2.4.2 Minor components of starch

The minor components of starch exist either as surface materials on the granules or as internal components within the granule matrix. The most important minor components of starch are proteins and lipids (Lineback & Rasper, 1989) which are present at levels of 1% or less depending on the botanical source (Eliasson & Lanson, 1993), in general, these non starch components are considered as contaminants which enter starch during the estration process.

2.4.2.1 Proteins

Generally, nitrogen present in starch is in the form of protein (Lineback & Rasper, 1988). The purity of starch can be expressed in terms of its protein content. Starch purity increases with a decrease in the amount of protein. Swinkles (1985) showed that the average protein content of maize, wheat and potato were 0.35%, 0.4% and 0.00% respectively. Proteins in starch may be present in the form of granule surface proteins, as internal grand". roteins, or as enzymes (Lowry et al., 1981; Eliason & Larsson, 1993). Part of the nitrogen may also be present in association with starch lipids (eg.) typophosphatis/choline in wheat starch). Lowry et al. (1981) have shown that the protein content of well washed pure X's wheat starch was 0.1%, while - 10% of the protein was associated with the grande surface. Proteins which are associated with the surface of the granule can be readly workand with dire

salt under mild conditions that cause no disruption of granules. The internal proteins are not released by dissociating agents (e.g. sodium dodecyl subhate (SDS)) until the granules have been gelatinized by heating. The requirement for disruptive conditions to release these proteins indicates, that they are buried within the matrix of the granules. The sub-units of internal proteins obtained on sodium dodecyl subhate - polyacrylamide gel electrophoresis are of higher molecular weight than the surface proteins (Lowry et al., 1981). It is likely that the internal proteins may represent residual material from lipoprotein membranes of the original armyloplasts or of membrane bound starch synthesizing systems employed during development (Galliard, 1963).

2.4.2.2 Lipids

Lipids associated with isolated cereal starch granules have been found to occur on the surface as well as inside the granule (Morrison, 1981). The surface lipids are mainly triacy(glycard), followed by free fatty acids, glycolipids and phospholipids and they include those that may have been present on the granule surface in situ in the plant tissue as well as the non starch lipids, which are absorbed into the surface layer of starch granule during isolation (Morrison, 1981; Galliard & Bowler, 1987; Vasanthan & Hoover, 1992b). Non-starch lipids occur as spherosomes, concentrated in the sub-aleurone region, and also as components of membranes and organelles associated with storage protein (Morrison, 1981). Since it is not possible to distinguish between these two types

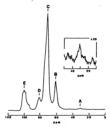
of surface lipids on the basis of solvent extraction techniques, it has been suggested that all linids found on the surface have to be considered as starch lipids (Galliard & Bowler, 1987). The internal lipids of cereal starches are predominantly monoacyl lipids, with the major component being lysophospholipids (of which lysophosphatidylcholine is the major component) and free fatty acids (Hargin & Morrison, 1980; Morrison, 1981). It is likely that both surface and internal lipids may be present in the free state as well as bound to starch components, either in the form of amylose inclusion complexes or linked via ionic or hydrogen bonding to hydroxyl groups of the starch components. Free lipids are easily extractable by solvent systems at ambient temperatures (Morrison, 1981), whereas prolonged extraction with hot aqueous alcoholic solvent systems (Morrison, 1981) or disruption of the granular structure by acid hydrolysis (Goshima et al., 1985) is required for the efficient removal of bound linids. The amount of total starch linids (surface and bound) has been found to be in the range of 0.7-1.2% in cereals (Morrison & Milligan, 1982; Vasanthan & Hoover, 1992b; Takahashi & Seib, (1988), 0.01-0.87% in legumes (Hoover & Sosulski, 1985), and 0.08-0.19% in tubers and roots (Vasanthan & Hoover, 1992b; Emiola & Delarosa, 1981; Goshima et al., 1985).

Zobel (1988a) suggested that lipids in starches may be responsible for effecting an anylose separation within the granule. This would imply that the starch polymers of low lipid containing starches (potato, lentil, cassava) may be more associated with each other in the native granule than those of high lipid

containing starches (wheat, com). Morrison & Laignelet (1963) showed that the presence of lipid decreases the iodine binding capacity of cereal starches by 20-30% which may be interpreted as the proportion of anylose complexed with lipid and hence unavailable to complex with iodine.

2.4.2.2.1 Amylose-lipid inclusion complex

Anyoles - lipid inclusion complexes (Fig. 2.4) have been shown to influence the texture and the structural stability of cereals and starch based products (Lund, 1940). These comparises are effective in decreasing the rate of bread staling (Krog & Jensen, 1970), improving the texture in exhuded starch containing products (Mercier *et al.*, 1980), improving structural integrity in cereal kernels (parbolied rice) during cooking (Billaderti *et al.*, 1993) and preventing stickness in match obtatio granules (Hoover & Haddyver, 1981).


2.4.2.2.2 Occurrence of amylose-lipid complex

The existence of naturally occurring amylose-lipid complexes in starch granules has been the subject of much controventy. For many starch, it has been observed that native starches with 20% amylose do not exhibit the naturally counting $\sqrt{2}$ karey pattern (Gallied & Bowler, 1987) accept for winkled peau, amylomaize and some other maize genotypes (sugary (su), and dull (ds) (Gernat et al., 1983)]. The absence of a $\sqrt{2}$ \times ray pattern desant on teaches the lack of amylose-lipid complexes in native starches; it suggests that the

helices are not organized in a three dimensional array. Recently ¹³C CP/MAS NMR (cross polarization magic angle spinning nuclear magnetic resonance) studies provided the evidence for the presence of amylose-lipid complex in granules of native oat, maize rice, barley and wheat starches (Morrison et al., 1993a, 1993b; Morgan et al., 1995). The spectral features (Fig. 2.9) of cereal starches indicative of the single 'V' amylose helix were : 1) the signal of C-1 at 103-104 ppm representing 'V' form, and 2) the broad peak at 31 ppm (represent the mid-chain methylene carbons of monoacyl lipids) which reflects a near-solid state structure of lipids due to steric constrains in the helical cavity. Morrison et al. (1993a, 1993b) showed that amylose exist partially as lipid-complexed amylose (L-AM) with a lysophospholipid to L-AM ratio of 1: 7 and partially as lipid-free amylose (F-AM). Table 2.5 shows different barley starches with their L-AM and F-AM contents. Waxy barley starches used in the study contained 0.8-4.0% L-AM and 0.9-6.45% F-AM, whereas in normal barley starches corresponding values were 6.1-7.2% and 23.1-25.0%, respectively. Gernat et al. (1993) have also shown the existence of amylose - lipid complexes in native starch granules by X-ray diffraction studies of enzymatically degraded wheat etarch

The ability of lipids to form complexes depends on the type of lipid. Using the iodine binding capacity of starch, it has been shown that saturated MG are more effective in complex formation (Lagendijk & Pennings, 1970; Krog, 1971) than unsaturated MG (Eliasson & Larsson, 1983). The amount of fathy acid

Fig. 2.3 thC CPMAS NMR spectra of V anylose in waxy barley starch (Chaily Glien), with inset of the 10-50 ppm region at x 20 cale expansion. The marked resonance is for middlaim methylene carbos of fatty acids in lysophospholipid with a chemical shift of 31.2 ppm (A). Resonance from physicab-hardie carbos (BE) are B = C-6 (61.3 ppm), C = unresolved C-2, C-3, C-5 (71.4 ppm), D = C-4 (60.9 ppm), E = C-1 (100.5 ppm) with some helical amylose (103 ppm) [VMh permission, Morison et al. 19393).

Variety	L.AM (%)	F.AM(%)
waxy		
Summier Mochi	0.8	0.9
Dango Mugi	1.2	0.9
Masan Naked	1.5	0.9
Tokushima Mochimugi (a)	1.7	1.4
Tokushima Mochimugi (b)	2.1	1.5
Chalbori	1.6	1.8
lyatomi Mochi	2.1	1.8
Waxy Oderbrucker	2.8	2.4
Bozu Mochi	3.2	2.2
Wapana	3.4	3.1
Wanupana	3.5	3.0
Washonupana	4.0	3.4
Normai (non waxy)		
Ckalky Glen	6.1	23.1
Midas	6.2	24.0
Hector	5.4	25.0
Shopana	7.0	23.5
Compana	7.2	23.3
Glen	6.8	25.9

Table 2.5 Lipid complexed amylose (L-AM) and lipid-free amylose (F-AM) in waxy and normal barley starches

Adapted from Morrison et al. (1993b).

bound by amylose increases with an increase in the chain length of the farty acid. Furthermore, the increase in unsaturation decreases the ability of complex formation (Hahm & Hood, 1987), possibly due to the fact that saturated farty acids with straight hydrocarbon chains may fit into the amylose helical acidity more easily than unsaturated fatty acid hydrocarbon chains which may be bent at various angles. Moreover, unsaturated fatty acids have greater solubility in water and may therefore, exist in the free state in higher amounts than saturated faity acids which are soluble (Hahm A Hood, 1987).

The acy chain of amytose-lipid complex is considered as a straight "rodlike" structure. In linoleic add, approximately 50% of fatty add chains are of cis-9, cit-12, 18: 2. Therefore, it might be expected that the kinks introduced by two cid-duble bonds would interfere with complex formation. Galliard (1983) showed that there is evidence to show the complex formation between amytose and linoleic add is slightly less stable than that between amytose and the corresponding fully saturated fatty add, the free energies determining the conformation of the complexes with saturated or unsaturated fatty adds are resumably estables prime from the free energies determining the conformation of the complexes with saturated or unsaturated fatty adds are resumably estables prime from the free energies determining the conformation of the complexes with saturated or unsaturated fatty adds are unsaturated compounds were more effective than frans unsaturated monoelaidate and the saturated monopalmitate in complex formation. However, surprisingly, naturally occurring amytose-lipid complexes in starch consist of typolectivit which is incline icid.

Formation of 'V' amylose has been observed during swelling and gelatinization of starch granules (Morrison & Milligan, 1982; Eliasson & Larsson, 1993) on heat-moisture treatment (Zobel, 1988a), on extrusion cooking of lipid containing cereal starches (Mercier et al., 1980), and after addition of monoacvi lipids to starch under appropriate conditions (Hoover & Hadzivev, 1981: Biliaderis et al. 1986a). The hydrothermal conditions induce the mobility of anylose chains to complex with naturally occurring or added monoacyl lipids, leading to the formation of larger assemblies detectable by X-ray diffraction. Extrusion of cassava starches (Mercier et al., 1980) with 2-4% monoacvl lipids at 22% maisture showed formation of two types of structures depending on the extrusion temperature. When starches were extruded below 170°C, they showed X-ray pattern termed 'hydrated - V' pattern (d spacings (the distance between the planes in the crystal) at 4.4 6.8 and 12.0 Ål whereas when the extrusion temperature was above 185° C and the moleture content was < 13% the 'extruded' type X-ray pattern was observed. Extruded type was characterized by the slight displacement of diffraction peaks to a lower angle (e.g. the peak at 9º54' in hydrated 'V' type appears at 9º03' in 'extruded' type).

X-ray, DSC (differential scanning calorimetry) and structural analysis data (Billaderis & senewirathe, 1990) Billaderis & Califorway, 1999) have shown that the amylose-lipid complex in the solid state shows the existence of two structurally different forms; form i and form ii (Fig. 2.10), based on the crystallization conditions (temperature, type of ligand, etc.), form ii solidaried under conditions

Fig. 2.10 A typical DSC thermal curve (50% solid) of a cereal starch showing the different melting transitions and the corresponding structural domains undergoing a phase change.

M1 & M2 : melting of amylopectin crystallites at intermediate moisture content.

M₃ : melting of Form I amylose - lipid complex

M₄ : melting of Form II amylose - lipid complex (with permission, Biliaderis & Galloway, 1989; Biliaderis & Seneviratne, 1990).

favouring rapid nucleation. This gives an amorphous X-ray pattern showing the lack of property packed ordered systems, whereas form II shows the typical V pattern, reflecting the well developed long range order (Billaderis & Galloway, 1989).

2.4.2.2.3 Stability of amylose-lipid complex

Starch - lipid complex formation takes place when both amylose and lipid are in solution. Therefore, in order to form complexes, lipids must be in a suitable dispersed state. The optimal conditions for amylose - lipid complex formation are directly related to the lipid momente concentration (Larson, 1983). The most effective state of lipid in complex formation is the micellar solution (Fig. 2.11a), since its momener concentration (Larson, 1983). The most Furthermore, lipids in the lamellar phase (Fig. 2.11a,b) are excellent in complex formation (Rison et al., 1984) because of their ability to form fine dispersions (Larson, 1983).

2.4.2.2.4 Thermal and rheological properties of amylose-lipid complex

Amylose-lipid complex has been shown to alter gelatinization parameters, granule swelling, solubility, amylose leaching and viscosity of starches. In general, formation of amylose-lipid complex decreases gelatinization enthalpy, granule swelling, solubility and amviose leaching of starch.

Fig. 2.11 Structures in binary lipid-water systems.

A) Binary lipid-water system characteristic of polar lipids which form miceilar solutions. The horizontal axis defines the compation and the vertical axis the temperature. Lipid molecules are illustrated by the polar head (a circle) and one attached chair tati (adapted from Larson 1983).

B) Structure of a fragment of a particle of the lamellar phase dispersed in water (adapted from Larsson & Dejmek, 1990). BSC studies show that, the melling transition of amylose-bytic complex occurs in the temperature range of 85-130°C. In Figure 2.10, M₃ and M₄ transitons show the melling of form (lwb melling temperature) and form (l (with high melling temperature) complexes respectively. The melling temperature of the complex is influenced by hydrocarbon chain length (Eliasson & Krog, 1985), crystallization temperature (Biliaderis & Gallowey, 1989) and moisture content; (Biliaderis et al., 1985). Eliasson & Krog (1985) have reported that melling temperature of potato amylose-bytic complex increased when the chain length of monocard joich increased from C_{22} to C_{22} . Furthermore, Biliaderis at (1985) have shown that peak melling temperature of amylose-monopalmitin, amylose-byolecithin and amylose-lauic acid complexes increased with increase in complex complexe link and anylose-lauic acid complexes increased with moresse in no complex comparison.

Influence of moisture content on amylose – lipid compixe tromation showed that at moisture contents > 80%, a single endotherm was observed for melting of amylosci-jeid compixe, whereas for the moisture content < 50%, melting was shown by two endotherms which were separated by an exothermic pask. Such nonequilibrium melting is due to partial melting followed by reprovalization and final methory of the complex (Bildeder et al. 1965).

Lonkhuysen & Blaknestijn (1976) reported that the stability of swollen granules was greatly enhanced when MG was added to the starch after gelatinization, but the swelling power was not affected. Hoover & Hadziyev

(1981) reported that, swelling power and solubility of potato starch decreased when the starch was complexed with saturated 1-monoacytylocetols. Solubility decreased by 8% with C₈ and 90% by C₁₆. Swelling power dropped steadily when the MG chain length increased from C₈ to C₄(Hoover & Hadziver, 1981).

Evana (1986) showed that viscosity of heated waxy maize starch increased in the presence of SDS or celytimethylammonium bromide (CTAB). Elisson et al. (1958) eposter that the table addition of lipids (CTAB, subtract MO), into normal maize, cross-inked waxy maize and acetylated high anylose maize increased the dynamic viscosity of starches. The above authors suggested that the additives with two (facthin) or three (uoplean oil) hydrocarbon duras affect the viscositatic proprised on mains startin desegnetor of anylose content.

2.4.3 Super molecular order of the starch granule

The super molecular order of starch granule (the organization of amylose and amylopedin within the granule) which governs most of the physicochemical properties of starch, is an important aspect of starch structure determination. The structure of starch has been subjected to many investigations and much speculation, nevertheless, the detailed arrangement of amylose and amylopedin within the starch granule is still under investigation. Different techniques have been employed to study the structural organization of starch granules. Quantitative structural analysis has been previously relied on a combination of ensymatic and chemical methods.

microscopy as well as small and wide angle X-ray diffraction have highly contributed to the structure determination. Today, high resolution nuclear magnetic resonance in the form of ¹H NMR, ¹⁰C OMR and ¹⁰C OP/MAS NMR have proven to be more effective, non invasive quantitative analytical tool.

The growth of starch granule by concentric deposition of layers has been known for many long years. Nikuri (1978) proposed a model which incorporated the amylose and amylopectin components including the appearance of concentric rings. Includenk, (1948) proposed a model which incorporated noncentric rings. (2, 12) of Nikuri's (1978) model, which incorporated the cluster model of amylopectin. The current models (Fig. 2, 13a) of granule are based on the fact that the crystalline structure of granule consists of radially arranged amylopectin clusters (Jankins et al., 1993). However, the exact arrangement of starch chains within the granule remains unclear.

It is now accepted that the starch granule is composed of both crystalline and amorphous regions. The fact that the crystalline component primarily consists of amylopedin was affirmed by the crystalline, shown by granules after crystalline (Zobel, 1988b). The crystalline nature of native starch granules display a "Mattese cross" when viewed under polarized light. The positive birefringence indicates that there is a high degree of molecular indication in the granule (indicate). & Perez, 1990; Electron or cotical microscop has

Fig. 2.12 Schematic model of starch granule proposed by Lineback (with permission, Lineback, 1984)

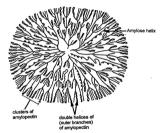


Fig. 2.13 Inner structure of starch granule showing crystalline and amorphous regions.

(A) stacks of semi crystalline lamella are separated by amorphous growth rings.

(B) magnified view of a stack made up of alternating crystalline and amorphous regions.

(C) the crystalline lamellae consist of double helices made up of amylopectin branches (adapted from Donald *et al.*, 1997). confirmed the presence of well defined lamella which are also known as growth rings (Fig. 2.13a), especially in the granules treated with acid or amylolytic encymes (Jankins et al., 1993; Eliasson & Larason, 1993). These rings are alternative semi crystalline and amorphous and are generally 120-400 nm in size. These semi crystalline growth rings are composed of stacks (Fig. 2.13b) of alternating crystalline (double helices of short DP chains of amylopectin (Fig. 2.13c)] and amorphous [amylopectin branch points (Fig. 2.13c)] lamella pressenbeck, 1978]. This represents an average cluster of amylopectin (Fig. 2.13c) which is described and measured as repeat distance or periodicity.

Electron microscopy has shown that there is a periodicity of 6-7 nm along a radially oriented molecular axis (Kassenbeck, 1978; Yamaguchi *et al.*, 1979). This value is smaller than the value deduced (9-10 nm) from small angle neutron scattering (Blanshard *et al.*, 1984) and small-angle X-ray scattering (Oostergetel & Van Bruggen, 1989) studies of various starches. However, X-ray diffraction profile analysis showed that this periodicity is independent of the botanical source and the size is 9 nm for all the studied starches (Jenkins *et al.*, 1993; Jenkins & Donald, 1995). Costergetel & Van Bruggen (1993) proposed a superhelical lamellar structure (Fig. 2.14) for potato amylopectin, using electron collate tomography and cryoelectron diffraction data from non disrupted granule find lamella of 5 nm alternating with amorphous layers (Fig. 2.14a). The heighboring helices interpenetrate each other forming a continuous

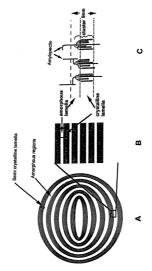
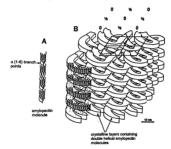
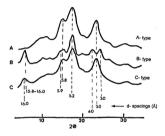



Fig. 2.14 Schematic model for the arrangement of amylopectin (super helical structure) in potato starch (with permission, Oostergetel & van Bruggen, 1993). A) amylopectin molecule showing clustering of the α -(1-4), α -(1-6) branch points and the double helical linear glucan chains.

B) crystalline layers containing linear double helical segments in the amylopectin molecules form a continuous network consisting of left-handed helices packed in a tetragonal array.


super-helical network of crystalline lamella with left handed helices packed in a tetragonal array. The helical arrangement of crystalline lamellae leaves a void of 8 nm in diameter.

2.4.4 Molecular organization of crystalline regions

Based on the characteristic d- spacings (the distance between planes in the crystal) of wide angle X-ray diffraction patterns, common native starches can be classified into 3 main categories, namely 'A', 'B' and 'C' type [Fig. 2.15]. Cereal starches (rice, normal maize, wheat) show 'A' type X-ray pattern (Fig. 2.15a), whereas tuber starches (potato, tulip, canna, lilv) and high amylose maize show 'B' type X-ray pattern (Fig 2.15b). However, some root starches such as tapioca, taro and sweet potato (Takeda et al. 1986) have been found to exhibit 'A' pattern, 'C' pattern (Fig. 2.15c), which is a mixture of 'A' and 'B' type unit cells, has been found in legume (Gernat et al., 1990) and rhizome starches (Zobel, 1988a). In legume starches, 'A' and 'B' type unit cells in starch crystallites have been found in varying proportions. It has been shown that pea starch contains 38.6% 'B' type and 61.4% 'A' type, whereas broad bean starch is composed of 17% and 83% of 'A' and 'B' type crystallites respectively (Gernat et al., 1990). Furthermore, Colonna et al. (1981) have reported that pea starch showed X-ray pattern more towards 'B' whereas in broad bean starch, the X-ray pattern was more towards 'A' type. 'C' type has been subdivided into 'Ca', 'Cb' and 'Cc' based on their resemblance to 'A' and 'B' types or between the two

Fig. 2.15 X-ray diffraction patterns of 'A', B' and 'C' type starches with their characteristic d-spacings (adapted from Zobel, 1988b).

- A) 'A' type
- B) 'B' type
- C) 'C' type

types, respectively (Hisukur *at at*, 1960). Hower & Souulsi (1985) reported that even legume starches belorging to the same biotype show widely varied X-ray intensities for major peaks, possibly due to the differences in crystallite ostimation and/or the amount of X and B' crystallite. The distinguishing features for X; B' and C' X-ray patterns are : X' (three peaks at 5.8, 5.2 and 3.8 A. (Fig. 2.159)); B' (peak at 15.8-160.3, a broad medium intensity line at about 5.04, a storg line at 5.2 A and a medium intensity doublet at 4.0 and 3.7 A. (Fig. 2.159); C' is the same as X', except for the addition of a medium to storg peak 4 - 16.0 A. (Fig. 2.15c); Appearance of this 10.0 A peak depends on the presence of moisture, and may be missing in dry or partally dry spectmens (Zobel, 1988a). The difference in X-ray pattern among starches derives from the way in which the double helices are packed into the unit cells the first for the varialithiny in starch is based on the packing arrangement of double helices.

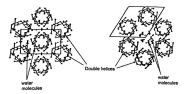
The level of granular crystallinity as measured by X-ray diffraction is in the range of 15-45% (Table 2.6). Maize and waxy maize starches have the same crystallinity regardless of their amylopedin content (maize 33% and waxy maize 100%). Thus, amylose content appears to have little effort on amylopedin crystallinity in the starches that give the 'A' pattern (Zobei, 1888b). B' starches show lower crystallinity at increased amylose contents (Table 2.6). Instead of the 'A' pattern (typical for cereal starches), a 'B' pattern is observed for amylomaize (55-75% amylose) (Table 2.6). Therefore, it is apparent that in 'B' type starches low containity is associated with a hidh amylose content. Zobe

Starch	Crystallinity (%)	Amylose (%)
	'A' starches	
Oat	33	23
Rye	34	26
Wheat	36	23
Waxy rice	37	
Sorghum	37	25
Rice	38	17
Com	40	27
Waxy maize	40	0
Dasheen	45	16
Nageli amylodextrin	48	
	'B' starches	
Amylomaize	15-22	55-75
Edible canna	26	28
Potato	28	22
	'C' starches	
Sweet potato	38	20
Horse chestnut	37	25
Tapioca	38	18

Table 2.6 Crystallinity of 'A', 'B'- and 'C' type granular starches

Adapted from Zobel (1988b).

(1988a) reported that 'B' type is more likely to result from the presence of the anylose extender (ae) gene that causes anylopecins to have longer side chains. A way genetype (aevol, with no anylose has been abovn to give a 'B' pattern rather than the 'A' pattern of normal waxy starch. However, 'C' starches do not show a relationship between crystallinity and anylose content (Table 2.6) [Zobel, 1988b].


2.4.5 Crystal structure of 'A' and 'B' starches

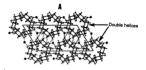
The detailed structure of 'A' and 'B' unit cells was derived through the collective use of electron diffraction of angle crystals, X-ray powder patterns, Xray fibre diffraction data (frem crystaline anytoss) and cleansive molecular modeling (Franch, 1984; Imberty et al., 1989; Imberty & Peraz, 1990); Kainuma & French (1972) were the first to suggest that the crystalline orientation of starch was due to both parallel and anti parallel arrangement of double helices. This suggestion was three studied by Wu & Sarko (1978a); Wo postulized that both 'A' and 'B' polymorphs are right-handed, parallel-stranded double helices packed in anti parallel manner. The unit cells of 'A' and 'B' starches (Fig. 2.16) were orthogonal and hexagonal, respectively. However, A' and 'B' types differ depending on the water contert, which is 8 and 39 molecules per unit cull, respectively. Unit cell of 'A' starch has the dimensions of a = 1.19 nm, b = 1.77 nm and c = 1.05 nm. The main objection to this structure was that such and paralle packing is incompatible with the culture model of mytopeetin.

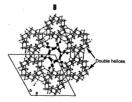
Fig. 2.16 Double helix packing arrangement in 'A' and 'B' type unit cells (adapted from Wu & Sarko, 1978a; 1987b).

В Туре

A new model (Fig. 2.17a) of crystalline 'A' starch was proposed by Imberty and co-workers (1997; 1988). The new 'A' unit cell consists of chains which are crystallated in a monocility symmetry (a = 2.124 nm, b = 1.172 nm, c = 1.069 nm and y=r23.5⁵) (Fig. 2.17a). This unit cell has a mattotriose residue as the asymmetric unit, and within the mattotriose residue, all the glucosyl residues are nearly identical. The density calculated for the crystalline region (af = 1.48) was reasonably does to the observed density of the fibre (d = 1.51), and indicates that there are 12 glucose residues and 4 water molecules per unit cell. The chain structure is left-handed parallel stranded slidold double helices packed parallel in the crystalline latice (imberty & Perez, 1969). Each strand repeats in 2.138 nm, but is related to the other strand by a two-fold rotation axis, yielding the accaret fibre more distance of 1.069 nm.

There are no intrachain hydrogen bonds, but there is an 0-2...0-8 hydrogen bond between the two stands that contributes about 40% of the stability of the double helix. The remaining energy of stabilization comes from van der Waala' forces. The double helix is very compact and there is no room for water or any other molecule in its certification (inder vs. Press, 1969).

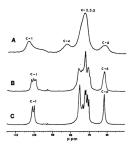

The double helical packing and lattice parameters (Imberly & Perez, 1988) of the currently accepted 15 type unit cell (Fig. 2.17b) are in agreement with Wu & Santo (1978a) (Fig. 2.16b). The double helicines are left handed, parallel stranded and connected through a network of hydrogen bonds that leaves a channel in the certier of the hexagonal arrangement of this double.


Fig. 2.17 Structure of 'A' and 'B' unit cells.

A) structure of 'A' unit cell. For each unit cell 4 water molecules (•) are located between the helices (with permission, Imberty *et al.*, 1988).

B) structure of 'B' unit cell. Thirty six water molecules (•) represent 27% of hydration (with permission, Imberty & Perez, 1988).

Hydrogen bonds are shown as broken lines.

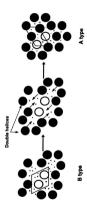


helices. This unit cell (a = b = 1.25 nm and c = 1.04 nm) (Fg. 2.175) has more open packing of double helices, an asymmetric unit with a mattexe residue and 36 water molecules (go arnatices unit) at 27% (why) hydration. The water molecules are hydrogen bonded to the annyisee chains and the other half to other water molecules ((inberty & Perez, 1986), imberty & Perez, 1996). There is no sign of disorder of these water molecules groups with an NMR study which indicates that "freezable" water can be observed only when the hydration is above 33% (Inberty & Perez, 1996). The calculated and experimentially determined densities of the unit cell were 1.14 and 1.65. Secondly

In both 'A' and 'B' polymorphs, there is a pairing of double helices that corresponds to a 1.1 rm distance between axes of two double helices. The dense association of this type, which is strengthened by 02...06 and 04...03 hydrogen bonding, corresponds to the most energetically favoured interactions between two double helices (Percet at al 1980).

Evidence is also provided by solid state ¹⁰C NMR to confirm the asymmetry assignments for 'A' (Fig. 2.18a) and 'B' types (Fig. 2.18b) (Gidley & Boolek, 1989). The C-1 signal in 'A' starch spectra (Fig. 2.18a) gives a triplet (~98.3, 100.4 and 101.5 ppm) representing 3 residues in maltobriosyl unit, whereas in 'B' starch spectra (Fig. 2.18b), C-1 produces a doublet having shifts at ~100 and 100 com representin be 2 residues in maltobria y unit.

Fig. 2.18 ¹³C CP/MAS NMR spectra of (A) amorphous starch, (B) crystalline 'A' type and (C) crystalline 'B' type starches (adapted from Gidley & Bociek, 1988).


As described before, in the 'A' unit cell (Fig. 2/19), the centre is filled with a double helix, and the adjacent double helices in crystallites are mainly bonded through hydrogen bonding. In the B structure (Fig. 2/17); the centre is hydrate water bridges. Thus, the 'B' to 'A' transition (Fig. 2/19) can take piace by shifting of helices following removal of water (Zobel, 1988a; Inberty et al., 1991). Under high temperature and low humidity. If statch may inversely be convented to 'A' starch while remaining in the solid state as fibres or granules. The 'A' to 'B' transition is energetically less favourable, therefore, only after 'A' is mellet to an amorphous state, crystalization to 'B' type is possible (Zobel, 1988a).

The factors affecting the crystallization of starches have been examined. Sair (1987) reported that crystallization of starches into X, B^* and C^* patterns depends mainly on the temperature and water content. Hickkuri (1989) showed that the Y_1 bye paperas in invity warm ($3C^*$ conditions and the B* type in coid (13^*C_1 conditions. Using linear mattooligoaccharides as model compounds. Gidley (1987, 1992) showed that the crystallization of an X^* type polymorph over B' type was favoured, under conditions of the B* polymorph over B' type was favoured, under conditions of the should be added to be

The effect of chain length on the polymorphic form may be rationalized from entropy considerations since with longer chains the entropy changes on

Fig. 2.19 The transition from 'B' starch to 'A' starch.

Model of the polymorphic transition from 'B' to 'A' starch. The water molecules are shown as dots (,) (adapted from imberty *et al.*, 1991).

crystallization will become larger and favour the polymorph of highest entropy; i.e. the 'B' type. Hizukuri et al. (1983) and Hizukuri (1989) have also shown that the average chain length of annylopedin is the major determinant of crystalline polymorphism. Based on a study with a series of short chain annyloses of uniform length. Pfannemuller (1987) showed that the degree of crystallinky and the formation of 'A' and 'B' type annylose is largely dependent on chain length. The most remarkable observation of this study was an abupt change from 'B' to 'A' cattern is only for DP 13 to DP 12.

2.4.6 Amorphous region of the granule

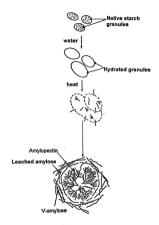
The amorphous region has received scaraf attention, though it accounts for ~ 70% of the granule (Oostergetel & Van Bruggen, 1993). It has been shown that the amorphous regions are less dense, thus more susceptible to chemical and enzyme attack (Billaderis, 1982). Absorption of cold water by amorphous regions allows the limited revensible swelling of starch granules (French, 1984). Diffusion of small water soluble molecules (< 1000 dattor) into the granule occurs through the amorphous region. Gidley & Bocket (1988) reported that ¹⁰C CP/INR spectra of amorphous starch (Fig. 2, 18a, b). Conformational differences compared to crystalline starch (Fig. 2, 18a, b). Conformational differences between amorphous and crystalline regions were shown by chemical displacements, especially at the C-1 and C-4 shows the C and C-4 infect of the discorption is amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region, Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2, 150, was shifted to a jalow field compared to the amorphous region (Fig. 2,

crystalline region (Fig. 2.18a,b), and the amorphous spectrum (Fig. 2.18c) showed a peak at 81-83 ppm, which was absent in crystalline material. The signals at 81-83 ppm (C-1), 94-98 ppm and 102-105 ppm (C-4) were assigned to amorphous site (Fig. 2.18c).

The arrangement of amylose and amylopectin within the amorphous regions has been the subject of much controversy. Blanshard (1987) and Zobel (1988a) reported that in corn and wheat starches amylose is separated from amylopectin, whereas in potato starch, part of the amylose seems to be cocrystallized with amylopectin. Light cross linking and characterization of products by molecular sieve chromatography (Jane et al., 1992; Kasemsuwan & Jane, 1994) showed that in potato and corn starches, amylose was cross linked with amylopectin, but no cross linking occurred between amylose molecules. This observation suggested that anylose molecules in the amorphous regions are interspersed among amylopectin, but do not exist in the form of hundles. Thus, it is likely that some amylose may form double helices with amylopectin and become less prone to complex formation with iodine or leaching in the presence of warm water. Vasanthan & Hoover (1992a) suggested that the extent to which the starch components are associated with each other within the native granule may also depend on their respective average CL. Long amylose chains may facilitate easier association with the short chain (DP 20-25) amylopectin molecule. The above authors postulated that in potato starch, the degree of

association between starch components may be higher than in other starches due to its long amylose CL (Table 2.4).

2.5 Starch properties


2.5.1 Gelatinization

Native starches are generally insoluble in odd water, but granules undergo slight revenible sevelling (10-20%) due to absorption and diffusion of water into the amonghous regions (Bialeris, 1991). On heating, starch granules in an aqueous starch suspension undergo an order-disorder phase transformation termed getatritization (Fig. 220) [Donovan, 1979]. This phase transformation termed getatritization (Fig. 220) [Donovan, 1979]. This phase transformation termed getatritization, (Fig. 220) [Donovan, 1979]. This phase transformation termed getatritization, and increase in viscosity (Donovan, 1979; Hoover & Hadziyev, 1981). An individual granule getatritizes over a narrow temperature range of 0.5-15°C, whereas a population of starch granules getatritizes over an approximatin range of 10°C (Gough & Plox, 1970).

In studying the gelatification phenomenon, many researchers (Billaderis et al., 1986b; Russell, 1997) have applied the Flory-Huggins (Flory, 1853) equation to relate melting of starch crystallises to the amount of water, assuming that starch-water system is homogenous and gelatification occurs under equilibrium conditions. This theory describes the depression of the true melting point of a polymer (T_a^{*}) to the melting point of the polymer diluent mixture (T_a) as a function of the durant.

 $1/T_m - 1/T_m^\circ = (R/\Delta H_u) (V_u / V_1) (v_1 - \chi_1 v_1^2)$ ------ Flory-Huggins equation

Fig. 2.20 Schematic presentation of the changes which occur in the starch granule during gelatinization (adapted from Aguilera & Stanley, 1990; Biliaderis, 1991).

Gelatinized granules

ΔH_u = change in enthalpy of fusion per repeating unit (glucose)

V_u / V₁ = ratio of the molar volume of the repeating unit (glucose) in the chain to that of the diluent (water)

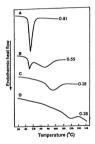
R = gas constant

- T_m = melting point of the diluent-polymer mixture
- Tm° = true melting point of the undiluted polymer
- v₁ = volume fraction of the diluent [volume of water/(volume of water + volume of starch)]
- x1 = polymer solvent interaction parameter

Since the Flory-Huggins theory is applicable only to equiliblum crystals, its application to phase transition of starch water system has only a limited access. However, Lelevine (1976) reported that equilibrum conditions in heads aqueous starch systems can be approached using very low heating rates (~1°C /b). Evans & Haisman (1982) reported that the starch-water system is not homogeneous, due to the fact that it consists of individual granules superide in a variable amount of liquid phase. Once these starch granules which are in scancia equilibrum with external phase are fully wollen, further addition of the liquid phase will not affect granule composition. Therefore, volume fractions for the Flory-tuggins equation should be based on granule composition rather than the composition of the entire system. Whittem et al. (1991) suggested that even with highly crystaline preparations of A or B-type starch crystals (DP ~15), but estimates of T_m° obtained for starch crystallites using Flory-Huggins approach may be somewhat low.

The amorphous regions and the crystallites are not independent of each other, but are interconnected in the starch granule. The amorphous regions are in a classy state and their transition temperature (the class transition temperature: T_a) is higher than the melting temperature of the crystallites in native starch granule. However, the amorphous regions must first undergo a transition from a classy state to a rubber-like state before the crystallites can melt, i.e. the crystallites are kinetically stabilized in the native starch granule by the amorphous region. The amorphous regions are always hydrated first (van den Berg, 1986) and the water acts as a plasticizer and depresses the Ta below the melting temperature of grystallites. These are now less kinetically constrained, and melt at temperature slightly higher than the To. The glass transition always precedes gelatinization and determines the start of the celatinization process (Slade & Levin, 1987; Slade & Levin, 1988), Since water has to penetrate the starch granule from the outside, the amorphous regions are only partially hydrated at the beginning of gelatinization and the 'effective Ta' (which determines the start of gelatinization) of each type of starch is therefore. more or less the same (Biliaderis, 1990).

Several analytical techniques including viscometry, X-ray diffraction, DSC, light and electron microscopy and NMR have been employed to understand the mechanism of starch gelatinization. Because gelatinization is an endothermic


process, DSC has been widely used to study phase transitions of aqueous starch suspensions. DSC can provide the characteristic temperatures and enthalpies of the various transitions as well as allowing measurements over a wide rane of starch concentrations.

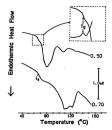
At relatively high moisture levels (volume fraction of water > 0.7), DSC thermograms of starches show a single endotherm at about 60°C (Fig. 2.21a) The position of the peak depends on the starch variety being investigated (Biliaderis et al. 1986b) As the water content is reduced (at intermediate moisture levels, volume fraction ~ 0.6), two endothermic transitions become evident (Fig. 2.21b) (Donovan, 1979; Hosenev et al., 1986; Blanshard, 1987). Donovan (1979) designated the initial peak and the second peak as G and M. respectively. The G endotherm occurs at the same temperature as before. The temperature of the second endotherm (M) increases as the water content decreases. If the volume fraction (v) of water is decreased still further (v < 0.45). the lower temperature endotherm (G) disappears (Fig. 2.21c) while the temperature of the second peak continues to rise (Fig. 2.20d) [Donovan, 1979]. In addition to the above endotherms, transitions due to lipid- amylose complexes are found at about 120°C (Biliaderis et al., 1986ac: Biliaders & Seneviratne, 1990) The exact temperature depends on the moisture content.

Donovan (1979) suggested that the single peak (G endotherm) at excess moisture content (Fig. 2.21a) results from the 'stripping' or unfolding of polymer chains from the surfaces of crystallites due to stress developed by hydration and

Fig. 2.21 DSC melting profiles of potato starch at various volume fractions of water (adapted from Donovan, 1979).

- A) 0.81
- B) 0.55
- C) 0.38
- D) 0.28

swelling of amorphous regions, while the second peak represents melling at low diluent volume fractions. Since Donovan (1979) considered different mechanisms to be responsible for each section of the biphesis endothem, the peaks were designated as G and M, respectively. However, Zobel et al. (1986) have populated that the X- ray data do not indicate that different molecular processes are responsible for each peak.


Evans & Haisman (1982) explained the appearance of the biphasic endotherm based on water migration. Water migrates within the sample from one location to another, and the peaks represent the order-disorder transitions occurring at different diluent levels. Starch granules can take up only a limited amount of water and the additional water added to the system forms a separate phase. The crystallites in granules are of a range of stabilities and the least stable crystallites melt first when heat is applied. When crystallites melt, the deformed polysaccharide chains absorb more water from the separate phase because it is slightly more flexible. Then, the additional water will lower the stability of the remaining crystallites, thereby the crystallites will melt at a higher temperature. This theory was supported by Liu et al. (1991) who reported that water gradient within the sample is responsible for the biphasic transition and the crystallinity is lost when gelatinization proceeds. The theory based on the migration of water is also in agreement with the study conducted by Zobel et al. (1988), which shows the occurrence of X-ray intensity changes corresponding to the development of first and the second peaks, based on the

metting of crystallites with different stabilities. Russell (1987) ascribed the biphasic endotherm to disruption of double helices associated with short-range order involving amytose and amytopedin followed by metting of crystallities. Billaderis (1990) suggested that a process of partial metting followed by recrystallization and final metting is the reason for biphasic thermal profiles. Recently, Svensson & Eliason (1996) attributed the biphasic endotherm to a slow plasticization of the amorphous granular regions under restricted water conditions which forces the miting or varialities to higher temperatures.

Several workers have postulated that the enthalpy of gelatinization isrelated to the disruption or melting of organized structures (Bonovan, 1979; Zobel et al., 1988; Whittam et al., 1990; Gidley, 1992). However, Cooke & Gidley (1992) using ¹³C MAS NMR, showed that double helix melting rather than loss of rystallinity, could be primarily responsible for gelatinization enthalpy.

Some researchers have attempted to explain the development of biphasic endotherm based on the glass transition which defines the temperature region in which the chain motion of a polymer commences. This theory suggests that the initial (ci) paels a result of chain mobilization in the aurophous regions of the starch granule. With the increase in mobility, the polymer chains are transferred from a glassy to a rubbery aqueous gel (Billaderis *et al.*, 1986b; Yost & Hoseney, 1986). Several investigators (Billaderis, 1997; Zaleznak & Hoseney, 1987) suggested that glass transition is located at the leading edge of the first peak (Fig. 2,22) and it is esociated with a change in heat capacity. The completion of

Fig. 2.22 Thermal profiles of rice starch (at volume fractions of water 0.50 and 0.70) showing both glass transition (Tg = glass transition temperature) and metiling transition (with permission, Biliaderis, 1986b).

glas transition allows the cystalline domains to undergo a non equilibrium melling process giving the second endothermic peak (Slade & Levine, 1986). However, some studies have provided data contrary to this theory, showing that heat capacity changes cour throughout the temperature range of both endotherms (Lelievre, 1992). Liu *et al.* (1991) demonstrated, using X-ray diffraction studies, that the heat capacity change is not related to glass transition due to how reasons; firstly, the X-ray data do not show that a significant endothermic transition cocurs without a corresponding change in crystalling, secondly, the X-ray data suggest that the volume expansion measured by other investigators (Billiderii *et al.*, 1986b) using thermomechanical analysis are attributable to the increase in the quantity of anorphous polymer with the temperature rather that to a data transition followed by melling.

A tably (Jang & Pyun, 1986) of wheat starch in the presence of limited water (40, 50% moisture) showed the appearance of four endotherms (Fig. 223a): G (water metalised mething of starch crystallites), M₁ (mething of the remaining crystallites or amylopectin crystallites), M₂ (mething of the amylopectin crystallites) and M₂ (mething of amylose-lipid complex) and M₂ (mething of amylose). These results were in agreement with the study conducted by Donovan & Mapses (1980). For moisture contents less than 30% (Fig. 223b) the G and M₄ endotherms shifted to a higher temperature and at mosture contents below 20%, G and M₂ coalesced into a single band (G*M), and M₄ and M₄ coalesced into a aingle band (M₄+M₃) (Jang & Pyun, 1990). Billanders *et al.* (1986a) and Billander & Gallowy (1989) temblesder the M₄ and

Fig. 2.23 DSC thermograms of wheat starch at various water contents (adapted from Jang & Pyun, 1996).

A) DSC profiles of wheat starch at water contents varying from 30-90%.

B) DSC profiles of wheat starch at water contents varying from 2.8-25%.

G & M1: melting of amylopectin crystallites at intermediate moisture content.

M₂ ; melting of amylose - lipid complex

M₃ : melting amylose

 M_1 to melting of amylose - lipid complexes (differ in the degree of helical chain organization), since waxy or defatted starches do not exhibit the M_2 or M_3 transitions (Donovan *et al.*, 1983).

2.5.1 Factors influencing Gelatinization

It has been shown that meting parameters (transition temperatures and enthalpy) are influenced by factors such as botanical source (granule structure), mosture content, heating rate, starch modification, lipids, sugars, mechanical damage, etc.

2.5.1.1 Botanical source

Crystal size, perfection of ordered chains and the amorphous domains contribute to the thermal stability of granular starch. Granular 'A' starches usually exhibit lower melting temperatures than 'B' starches (Table 2.7) [Whittam et al., 1990]. However, highly crystalline 'A' and 'B' spherultes obtained from polato starch lintners (DP ~ 15) showed similar melting enthalpy (35 J/g) and a difference of 15-20°C in a fixed water content (Whittam et al., 1990). In contrast to native starch crystals, 'A' crystals of lintners showed a higher melting temperature than 'B' type crystals (Whittam et al., 1990). Variations in melting parameters (Table 2.7) have been observed among different genotypes of rice, barley, com and legume starches (Hoover & Sosulaki, 1985; Morrison et al., 1993; Yuan et al., 1993), Yuan et al. (1993) studied the gelatinization M₃ to melting of amylose - lipid complexes (differ in the degree of helical chain organization), since waxy or defatted starches do not exhibit the M₂ or M₃ transitions (Donovan *et al.*, 1983).

2.5.1 Factors influencing Gelatinization

It has been shown that melting parameters (transition temperatures and enthalpy) are influenced by factors such as botanical source (granule structure), moisture content, heating rate, starch modification, lipids, sugars, mechanical damage, etc.

2.5.1.1 Botanical source

Crystal iste, perfection of ordered chains and the amorphous domains contribute to the thermal stability of granular starch. Granular 'A' starches usually exhibit lower methol temperatures than 'B' starches Table 2.71 (Mhittan et al., 1990). However, highly crystalline 'A' and 'B' sphenitites obtained from polato starch linners (DP - 15) showed similar meting entrajey (D5 Juj) and a difference of 15-20⁷C in a fixed water content (Whittam et al., 1990). In contrast to native starch crystals, 'C' crystals of linners showed a higher meting temperature than 'B' type crystals (Whittam et al., 1990). Variations in metting parameters (Table 2.7) have been observed among different genotypes of rice, barley, com and legume starches (Hoover & Soukals), 1985; Morrison et al., 1993; 'Yan et al., 1993). Yan et al. (1993) studiet the existing table

Starch	X-ray diffraction pattern	Gelatinization peak temperature	Enthalpy of gelatinization (J/g)	Source
Oat (Svea)	A	58	10.6	Gudmundsson & Eliasson, 1989
Oat (Chichauaua)	A	62	10.1	Gudmundsson & Eliasson, 1989
Rye	A	58	11.9	Gudmundsson & Eliasson, 1991
Wheat	A	58	9.7	Gidley, 1992
Maize	A	58	14.3	Cooke & Gidley, 1992
Waxy maize	A	72	16.0	Cooke & Gidley, 1992
Waxy rice (RD6)	Α	64	13.4	Tester & Morrison, 1990b
Waxy rice (IR29)	A	66	14.2	Tester & Morrison, 1990b
Amylomaize	в	82	10.0	Gudmundsson & Eliasson, 1989
Edible canna	в	70	-	Zobel 1988b
Potato	в	58	16.2	Cooke & Gidley, 1992
Kidney beans	с	70	15.1	Hoover & Sosulski, 1985
Navy beans	с	68	13.4	Hoover & Sosulski, 1985
Black beans	с	66	12.6	Hoover & Sosulski, 1985
Smooth pea	с	64	14.7	Biliaderis et al., 1980
Smooth pea	с	61	13.4	Colonna et al., 1987
Lentil	с	57	14.2	Biliaderis et al., 1980
Sweet potato	С	70	-	Zobel 1988b
Tapioca	С	66	-	Zobel 1988b

Table 2.7 Gelatinization parameters (at excess water) of some cereal tuber and legume starches

parameters of three genotypes (wx, sewc, duwd) of wavy corn starch and reported that the awx ($T_{i} = 79^{\circ}C$) had the highest melting temperature and AH (4.1 Cal/g) among the three genotypes (for wx, $T_{i} = 66.9^{\circ}C$, AH =3.2 Cal/g; for duwx, $T_{i} = 70^{\circ}C$, AH =3.2 Cal/g). The higher melting temperature of aevx was attributed to aewx having annylopedin with longer chains, which could account for the B^o type could like.

2.5.1.2 Heating rate

Calorimetric studies of Shlotaubo & Takahatek (1984) has shown that the peak temperature of gelatinization endotherm increases with increasing heating rates. The peak temperature remainder constants (or heating rates below 0.5°C) min. Billaderis *et al.* (1986b) reported that the biphasic endotherm observed at 3-20°Cmin marged into a single endotherm at increases heating rates. Since reorganization process is time-limited, the melting probably occurs as a single stage process at bin-heating rates (Sillideris *et al.*, 1990b).

2.5.1.3 Lipids

The effect of lipids on gelatinization has been discussed in section 2.4.2.2.4.

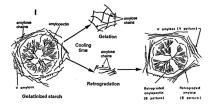
2.5.1.4 Sugars

In general, sugars hindre granule swelling and increase getatitization temperatures (Evans & Haisman, 1982; Eliasson, 1992; Bello-Perez & Paredes-Lopez, 1996). Succese hindrend getatitization and increased melting temperature from 57 to 52[®]C at concentrations of 55-60% (Kim & Walker, 1992; Scanning electron micrographs showed that the granules isolated from baked products with high sucrose contents were less deformed compared to those obtained from baked products with low sucrose contents (Hoseney *et al.*, 1978). However, unaffected and increased getatrization embalpies in the presence of sugars have also been reported by Evans & Haisman (1982) and Eliasson (1992), respectively. Several theories have been presented for the influence of sugars on relarding getatrization, which include the competition between starch and suger on relarding getatrization, which include the teractions (Leileven, 1978).

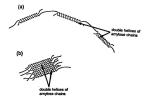
2.5.1.5 Starch modification

Physical or chemical modification of starch by changing the molecular order while maintaining the granular form is applied in production (atomization and heating in aqueous monohydric alcohol solutions) of granular cold-water soluble starch which gelating acetylation, tordsongstropylation, cross linking etc. treatment, annealing, defatting, acetylation, hydroxypropylation, cross linking etc. have been shown to alter oaklarization parameters of starches (Wooton &

Bamunuarachchi, 1979; Hoover & Sosulski, 1985,1986; Hoover & Vasanthan, 1994a; Hoover & Manuel, 1996a,b). Effect of physical and chemical modification on gelatinization parameters will be discussed in section 2.6 in detail.


2.5.2 Retrogradation

Starch granules heated in excess water undergo an order-disorder phase transition called gelatinization over a temperature range characteristic of the starch source. This phase transition is a non equilibrium process associated with the diffusion of water into the granule, hydration and swelling of starch granules. uptake of heat, loss of crystallinity and amylose leaching (Donovan, 1979; Hoover & Hadizevy, 1981: Biliaderis, 1990). On cooling, amylose and amylopectin chains in the gelatinized paste associate, forming a more ordered structure (Fig. 2.24-I). These molecular interactions are termed collectively "retrogradation" and have important textural and dietary implications. In order to understand the process of aging, the starch/water system has been extensively investigated using physical methods such as turbidity (Miles et al., 1985a; Ring et al., 1987; Jacobson et al., 1997), DSC (McIver et al., 1968; Longton & LeGrys, 1981; Russell, 1987), rheology (Miles et al., 1985a,b; l'Anson, et al., 1988), X-ray diffraction (l'Anson, et al., 1988), microscopy (Jacobson et al., 1997), FTIR (Wilson et al., 1991: Van Soest et al., 1995) and NMR spectroscopy (Wu & Eads, 1993) to measure different properties occuring during retrogradation. For example turbidity measures distribution of refractive index (hence density), DSC


Fig. 2.24 Mechanisms of starch retrogradation.

 Schematic illustration of changes during storage of gelatinized starch paste (adapted from Aguilera & Stanley ,1990; Billaderis, 1991).

 (II) double helix formation and association : (a) helix formation and chain elongation; (b) lateral association of helical regions (with permission, Morris, 1990),

п

measures metting transitions, X-ray diffraction monitors long-range order in crystalline starch domains, microscopy is used to understand the spatial distribution of refractive mass and NMR monitors chain segmental motions, conformation dependent chemical shifts (resonance frequencies) and degree of crystallinky.

The molecular structures and transformations that occur during retrogradation of starch and its components have been subjected to several investigations. Despite the numerous investigations that have been carried out to study retrogradation, the exact mechanism of retrogradation, particularly at the molecular level still remains unclear. The rate and extent of retrogradation is influenced by many factors such as botanical source (Orford *et al.*, 1987), accession *et al.*, 1997), chain length of amylose and amylopedin (Gidler & Bulpin, 1989; Clark *et al.*, 1986), water content in get (Longton & LeGrys, 1981; Zeleznak & Hoseney, 1986), ocoking and ocoling conditions (Kine *et al.*, 1993), storage temperature (Jankowski & Rha, 1988; Jang & Pyun, 1997) and the presence of soluties such as sugars, lipids and satis (Russell & Oliver, 1994; Katsuta *et al.*, 1992a,b; Huang & White, 1993; Conde-Pett & Escher, 1994). This revew summarizes the contribution of amylose and amylopedin to starch retrogradation.

2.5.2.1. Amylose Gelation

Amylose gelation is characterized by the formation of a permanent elastic network and the development of opacity (Miles et al., 1985a), Amylose gelation occurs above its critical overlap or entanglement concentration (C* ~ 1.5%): which defines the minimum concentration for gelation (Miles et al., 1985a). Below C*, amylose precipitates forming insoluble crystals which melt at 150-160°C (Miles et al., 1985a: Stute & Konieczny-Janda, 1983), However, amvlose celation was found to proceed even at a concentration below C* (1%) regardless of the molecular weight (Dublier & Choolin, 1989). Amylose gelation is favoured by long CL (DP >1100), high concentrations and fast cooling rates, whereas precipitation of amvlose is favoured by shorter CL (DP < 110), low concentration and slow cooling rates (Gidley & Bulpin, 1989). Both gelation and precipitation occur for CL of 250-660 residues (Gidley & Bulpin, 1989). The above authors postulated that gelation involves extensive cross linking (via hydrogen bonding and/or hydrophobic interactions) between long amylose chains which leads to the formation of a macromolecular network. Thus, if the total chain length is greater than the length of the chain segments which participate in the above interactions, then cross linking would probably involve more than two regions within a single anylose chain. For intermediate chains (DP 250-660), both chain alignment and cross linking can occur. However, if the length of interacting chains are approximately of the same length as the total chain length, then chain alignment would occur in preference to cross linking.

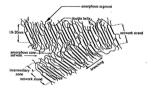
Cross linking is favoured by higher concentrations (greater interchain contact) and napic cooling (increases nucleation). Whereas slow cooling may lead to annealing of the structure favouring chain alignment (Gidley & Bulpin, 1989). Chain alignment followed by lateral association predominates in shorter chains (DP < 10). This taks to proceptation of amylos (Gidley & Bulpin, 1989).

Anylose gets are also characterized by the development of turbicity, which is caused by phase separation which forms polymer rich and polymer deficient regions (Miles *et al.*, 1965s). This process depends on polymer concentration, melateria size and coloity temperature. Caldey (1980) suggested that anylose gelation is due to interchain associations in the form of double helices, followed by aggregation of helices which act as junction zones. Morris (1960) postulated that in anylose gelation, double helic formation can occur between the ends of molecules favoring chain elongation (Fig. 224-lib). Based on the results of stored anylose (21°C for 5 weeks), Muller *et al.* (1965) postulated that anylose gelation zones), crystalities and their sagregates of double helices (junction zones), crystalities and their sagregates.

Amylose gets are poorty crystalline structures, largety composed of amorphous regions (Miles et al., 1968a). The development of crystallinity in polymer rich phase was shown to be a slow process (Miles et al., 1965a) in which the rate was concentration independent. The overall level of crystallinity

was shown to be concentration dependent (Miles *et al.*, 1985a). Miles *et al.* (1985a) reported that the development of orystallinity is accompanied by stiffering of amilyong selfs. Xary differentiation (Jacob *et al.*, 1995) and ¹⁰C NMR (Colguhoun *et al.*, 1995) have shown that retrograded amylose is composed of 'B' type crystals. In the crystalline domains, amylose double helical structures aggregate into compact arrays (Imberly & Percz, 1986). Helical packing becomes more perfect for shorter chain hereiting (Golday, 1989). The crystalline regions of amylose gel are resistant, whereas the amorphous regions are easily degraded by acidic and amylolytic hydrolyse (Leloup *et al.*, 1991). The amount of the crystalline region in retrograded amylose can be as hub as 69:53% of the gel (Lelour *et al.*) (1991; Camsr *et al.*, 1995).

Clark et al. (1989) reported that athrough all gelling amyoise exhibit turbidly development, variations exist with respect to the time scale of modulus (which measure gel stiffnes) and absorbance development as a function of chain length. For short chains (DP 250 & 300) the increase in turbidly precedes modulus development, suggesting that some non cross linking aggregation (precipitation) occurs. However, for longer chains (DP >1100) modulus increases before significant turbidly is agareent This suggests that he processes without lead to gelation and turbidly in aqueous anylose systems are not directly related, although turbidly development was ascribed to helor. Helic aggregation (older), 1989).


Letoup et al. (1992) investigated the structural characteristics of amylose gels (2-84%w/) of smooth pes starch by electron microscopy, mild acid hydroysis, ISC and ass exclusion charandagraphy. The results showed a macroporous structure in gel (mesh size 100-1000 nm) with filaments 20 ± 10 nm wide (Fig. 2.25). The filaments were composed of association of amylose chains with DPs, 26-31 and DPs, 56-73. The double helices in the filaments linked to each other by loops of amorphous amylose segments, unich are angling in the gel pores. The aggregation of these filaments generates a three dimensional network consists of network strands, amorphous zone and intermediary zone (Fig. 2.25).

2.5.2.2. Amylopectin Gelation

Compared to amylose, amylopedin etrograduation is a very slow process. Anylopedin gels are turbid and elastic, and the gels form on cooling of substantially higher polyaaccharide concentrations (> 10% ww) to 2°C (Ring *et al.*, 1697). The development of gel sufficies was attributed to associations involving crystallization process, which gives an X-ray pattern characteristic of the 'B' type (Ring *et al.*, 1997; Eeringen *et al.*, 1994). Crystallization and the increase in attributes in amylopedin gels can be reversed by heating to 100 °C (Miles *et al.*, 1985).

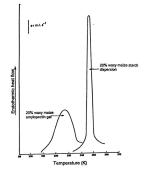

Gelling behaviour of amylopectin is influenced by the fine structure (botanical source) of amylopectin (Kalichevsky et al., 1990). Amylopectins from

Fig. 2.25 Continuous model for amylose gel (with permission, Leloup et al., 1992)

potato, pea and canna were found to exhibit higher rates of retrogradation than those from wheat, barely and maize, presumably due to the shorter CL in cereal starches (Table 2.4) [Kalichevshy et al., 1990]. Ward et al. (1994) demonstrated that corn amylopectin retrogrades faster than wheat amylopectin. This was attributed to the greater proportions of chains with DP 15-20 in corn amylopectin. The above authors postulated that the extent of retrogradation is increased by high molar proportion of unit chains with DP 14-24, and decreased by a low molar proportion of short chains with DP 6-9. This was in agreement with the finding of Ring (1987) and Wursh & Gumy (1994) who recorted that retrogradation is hindered in the presence of short amylopectin chains with DP 11 or less. A study with starches from different rice cultivars showed that amylopectin gels from Japonica and low amylose Indica had higher retrogradation rates compared to anylopectin gels of waxy rice (Lu et al., 1997). This was attributed to greater proportion (63-66%) of short chains (DP 10-15) in japonica and indica. Furthermore, waxy rice amylopectin also contained a greater proportion of very short chains (DP 6-9), which were shown to hinder retrogradation (Lu et al., 1997). In a study with waxy maize amylopectin, Ring et al. (1987) observed a broad retrogradation endotherm for 20% amvlopectin gel stored for 4 weeks at 1°C, and a sharp peak for gelatinization of waxy maize starch dispersion (Fig. 2.26). The mid point transition temperatures for gel and starch were 54 and 75°C, respectively. Both retrogradation (1.5 mJ/mg) and celatinization (1.54 mJ/mg) transitions gave similar enthalpy values. Durani &

Fig. 2.26 DSC thermograms showing gelatinization of waxy starch and melting of 20% waxy-maize amylopectin gel stored for 4 weeks at 1°C (adapted from Ring et al., 1987)

, ¹¹

Donald (1966) reported that any/opectin gels (formed with any/opectins of different molecular weights) stored at 4°C melt over a broad range of temperatures. The melting enthalpies of gels made from higher molecular weight uny/opeciti were higher than those of their lower molecular weight counterparts.

FTIR spectroscopic studies revealed chain ordering at the very early stages of amylopectin gelation (complete within 0.2h for a 20% wavy maize gel) which was not detectable by other methods (Goodfellow & Wilson 1990) The above authors attributed this chain ordering to coil to double helix transitions in short DP chains of amylonectin This transition was followed by a slow aggregation of the helices to produce crystallites. Biliaderis & Zawistowski (1990) studied the storage modulus and melting enthalpy of aging waxy maize (amylopectin) gels (40%w/w). The results showed that the storage modulus reached a limiting value after 36 h at 6°C, but AH continued to increase over a long time scale. Based on the results, the above authors postulated that once the gel network is developed, subsequent ordering and crystallization of anylopectin chains do not contribute significantly to gel rigidity. Similar time dependence was reported for a 20% amylopectin solution stored at 1°C by Ring et al. (1987) who observed that the increase in turbidity values stopped after 4-5 days, whereas DSC and X-ray diffraction data continued changing over a long period of time (30.40 days). The above authors suggested that increase in turbidity reflected the accreation of amylonectin chains prior to celation and the long term gel network development (as measured by DSC and X-ray diffraction)

showed the ordering and crystallization of short (DP 15-20) amylopedin chains. Studies on aging waxy maize (20,40% why) starch gels using ¹H NMR (Wu & East, 1993) showed that the polymer chains in starch give short three types of mobile fractions : 1) a highly mobile chain fraction, 2) highly rigid (the motion of the segments is highly restricted) regions corresponding to crystalline domains, and 3) a fraction with intermodiate mobility (motions are intermediate between those in crystalline and dissolved states). The component with intermediate mobility has been shown to correspond to unassociated or partially associated chains in polymer rich regions. During the aging process the immobile fractions of starch increase and the mobile fractions decrease (Wu & Edas, 1993). Cameron ef al. (1994) demonstrated the establishment of network structures, involving only short range intermolecular associations possibly via double heix formation.

2.5.2.3. Retrogradation of starch

Starch geis are formed when gelatrizzed starch dispersions (> 6.0%ww) are cooled to room temperature (Ring, 1985). On cooling the paste, the exuded anylose forms an interpenetrating network in which the gelatinized granules into in amylopectin are embedded. Such a matrix is regarded as a composite material and its mechanical properties depend on characteristics of amylose matrix, interactions between the dispersed and continuous phase and the rigidity of optiderized contracts (Elason, 1965).

During storage of concentrated gels, stiffness increases due to rearrangement of starch chains. The short term development of gel structure was found to be dominated by the gelation of annylose within the continuous phase (Miles et al., 1985b). In starch gels, increase in crystallinity and gel stiffness over longer time periods was attributed to the reordering of annylopeciti molecules which occurs at a much abuver rate (Ring et al., 1987).

Starch gels develop 18 type crystallinity on storage (Miles *et al.*, 1985); Russell, 1987; Van Soest *et al.*, 1994) regardles of the initial crystalline pattern of the native starch. The intensity of the 19 pattern has been shown to increase within the time of gel storage (Roule *et al.*, 1988; Eeringen *et al.*, 1994). Even though starch gels regain some of the structural order during retrogradation process (Miles *et al.*, 1995); Eeringen *et al.*, 1994. Yan Soest *et al.*, 1994), Keetels *et al.* (1995) showed that this order is different from the super-heical structure (Fig. 2.14) (Oostergete *k* van Bruggen, 1993) in the crystalline domains of native starch granules (since the size of semi crystalline clusters observed in retrograded starch gels was smaller (5 nm) than that in native starch (9 nm)}. Based on these results, the above authors (Ketels *et al.*, 1996) stated that the

Non invasive methods such as FTIR and near infrared reflectance (NIR) spectoscopy have been used to monitor staling of bread (Wilson et al., 1991) and starch retrogradation (Van Soest et al., 1994, 1995). In bread orumbs, the increase in scattering of NIR radiation as the crumb structure changes during starts.

storage indicates the development of crystallinity in the amylopectin fraction (Wilson et al., 1991). FTR messures short-range ordening in the get system (Wilson et al., 1991). In the spectra, C-C and C-O regions (1300-600 cm⁻¹) are sensitive to the retrogradation process (Van Soest et al., 1994, 1985). The spectra of polato starch gels (19%/wW) showed that a broad band at 1022 cm⁻¹ resolved into three bands (~ 1033, 1022 and 1000 cm⁻¹) when the gels were alored for several weeks. The most pronounced changes of the spectrum occurred at 1000 (peak), 1035 (valley) and 1053 (peak) cm⁻¹ (Van Soest et al., 1994). FTR absorbance band at 1042/cm⁻¹ is sensitive to the amount of ordered or crystalline starch, whereas the band at 1022cm⁻¹ is characteristic of amorphous starch (Van Soest et al., 1995). Based on these observations, the above authors proposed a multi-stage process for retrogradation of starch gels.

Stage 1 - conformational ordering : a) formation of double helices between amylose chains and / or between the outer branches of amylopectin chains, b) amylose chain accretion and crystallization.

Stage 2 - onset of amylopectin helix aggregation and crystal growth.

Stage 3 - amylose aggregation and crystallization,

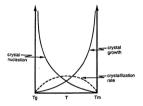
Stage 4 - phase separation of water (syneresis) due to excessive retrogradation.

2.5.2.4. Factors influencing retrogradation

2.5.2.4.1 Botanical source

Russell (1987) studied the retrogradation of 4 starches with different amylose and amylopectic contents. DSC thermograms showed that after a given time, retrogradation endotherm for waxy maize starch was significantly greater than that for amylomaize starch while potato and wheat starches produced intermediate values. This suggests that the amylopectin fraction is responsible for the development of retrogradation endotherm. The initial development of modulus (Orford et al. 1987) observed for 30% starch cels from various botanical sources followed the order : nea > maize > wheat > notato. The dependence of initial rate of increase of the modulus on the botanical source can he accounted for hy the different amounts of amolose that are solubilized during gelatinization. However, long term increase in modulus showed the order : pea > potato > maize > wheat. The above authors suggested that higher long term modulus increase in oea and potato was due to the their low lipid contents. which prevent anylopectin crystallization. Jacobson et al. (1997) reported that retrogradation rates of 2% starch gels stored at 4°C for 56 days followed the order : wheat ~ com > rice ~ tapioca, potato >> waxy maize. Upon storage, networked amylose transformed into a dense appreciated state, whereas amylopectin showed very little changes. Yuan & Thompson (1998) studied the retrogradation of 3 ways maize geoptypes and reported that AHe of duwy was greater than that of wx or wxshi. Storage modulus of duwx increased rapidly

during the first 4 days of storage, whereas in wx and wxsh/ gels, the increase was gradual over 25 days of storage. The greater retrogradation tendency in duwx was attributed to the large proportion of DP 20-30 chains in amylopectin.


2.5.2.4.2 Storage temperature

Crystalization follows the three step mechanism of nucleation propagation (r_0^2 , 227) depend exponentially on temperature, within the temperature range of glass transition (T_0^2) and meting temperature ($T_{\rm m}$). Thus, nucleation rate increases with decrease in temperature down to T_0 while the propagation rate increases with increasing temperature down to T_0 while the propagation rate increases with increasing temperature ($t_{\rm m}$). Thus, 1970). Several studies (Collevel *et al.*, 1960; Fearn, & Russell, 1982; Jankowski, & Rha, 1980) have shown that the rate limiting step for starch retrogradation is nucleation and the rate of retrogradation as well as the properties of retrogrades storing delopend on the storage temperature ($t_{\rm m}$ Res), Res, R, Res),

Differential thermai analysis of wheat start gels stored at temperatures vanjing from -1 to 43°C, (Colveel et al., 1969) demonstrated that instantaneous uncleation followed by rod-like crystal growth occurs throughout the temperature range. However, at elevated temperatures (>10°C) more parfect crystallites are formed and the rate of aging is inversely related to storage temperatures. Similar results were reported for potido starts, weak stored at refraintion to memorative and the rate of partice and the starts of at refraintion to memorative and the rate of partice store start refraintion to memorative and the rate of partice store start refraintion to memorative and the rate of partice store at refraintion to memorative and the rate of partice store store at refraintion to memorative and the rate of partice store at refraintion to memorative and the rate of the rate of the store at refraintion to memorative and the rate of the rate of the store at refraintion to memorative at resolutive store partice store at refraintion to memorative and the rate of the rate of the store at refraintion to memorative at resolutive store partice store at refraintion to memorative at resolutive store partice store at refraintion to memorative at resolutive store at resolutive store at refraintion to memorative at resolutive store partice store at the rate of the store at refraintion to memorative at the store store store store store at refraintion to memorative store at the refraintion to memorative store at refraintion to memorative store at the rate store at refraintion to memorative store at the rate store at refraintion to memorative store at the rate store at refraintion to memorative store at the rate store at refraintion to memorative store at the rate store at refraintion to memorative store at the rate store at the rate store at refraintion to memorative store at the rate sto

Fig. 2.27 Effect of storage temperature on crystallization of partially crystalline polymers (adapted from Wunderlich, 1976).

- Tg Glass transition temperature
- Tm Melting temperature
- T Temperature

which formed less perfect crystallites than those stored at room temperature (Nakazawa et al., 1985).

Jankowski & Rha (1996) observed that retrogradation endotherm of cooked wheat grains shifted to higher temperatures, when the storage temperature was increased from 4 to 20°C. Similar findings were reported by Jang & Pyun (1997) for wheat starch gels (40-40%) stored at 4 and 32°C. A study with nice starch gels (30% w/v) stored at different temperatures showed that, the extent of retrogradation followed the order : refrigerated > room temperature > forcen. Jacobson & BeMiller (1998), showed that wavy maze starch gels (2.5%) subjected to freeze thaw treatment showed a retrogradation rate which was inversely correlated to the rate of freezing. The peak temperature of retrogradation endotherm increased with increase in thawing temperature showing the formation of more certer cavatals.

2.5.2.4.3 Moisture content of gels

Get moisture content was shown to influence crystal formation in starch gels. DSC showed that crystallization is greatest in gels with 50-80% starch (Longton & Led'oys, 1981; Zeizmär, & Hoseney, 1980), whereas it does not (Longton & Led'oys, 1981). Orford *et al.* (1987) reported that, in maize starch gels stored for 7 days at 20°C, development of shear modulus was rajed for gels humon 30% and 40% starch, whereas the increase was are wron for 23% out

2.5.2.4.4 Lipids

Lipids and emulsifiers have been known to affect retrogradation, hence the texture of starch based products (Germani et al., 1983; Eliasson, 1985; Conde-Petit & Escher, 1994). It appears that texture modification of starch is brought about by the formation of inclusion complexes particularly with monoacyl lipids (Eliasson, 1985; Conde-Petit & Escher, 1994), However, it has also been suggested that reduced retrogradation may be due to hindered crystallization caused by the surface adhesion of the lipids on amylopectin chains (Van Lonkhuvsen & Blankestiin, 1974) or on the starch granule surface (Germani et al., 1983). In emulsifiers, the anti-firming effect is mainly caused by amylose complexation, which in turn weakens the cohesion between the amylopectin rich starch granules (Conde-Petit & Escher, 1994). Decrease in granule swelling (Hoover & Hadzivey, 1981), amylose leaching (Eliasson & Krog. 1985), and changes in gel volume (Eliasson, 1985) have been shown to occur in the presence of MG and emulsifiers. The extent of the decrease depends on the nature of lipid (Hoover & Hadzivev, 1981; Eliasson & Ljunger, 1988). Germani et al. (1983) showed that the efficiency of lipid in decreasing retrogradation increased with decrease in chain length and increased degree of unsaturation. This is in agreement with the findings of Huang & White (1993), who reported a greater inhibition of retrogradation in waxy corn gels with shorter MG chain length. Eliasson & Ljunger (1988), demonstrated that MG hinder retrogradation more effectively than di- or triacylolycerols. The inhibition of retrogradation of

rice starting path in the presence of emulatifiem was shown to follow the order : glyceryl monopainitale (GMP) > glyceryl monostearate (GMS), sucrose esters of pathilic add, diacetyl tartinic add, settere of MG > sucrose esters of startic add, sodium stearoyl-2-lactylate (SSL) (Mura *et al.*, 1992), in 40%(why) starch gels of potato, maize and wheat, the effect of added emulatifiers on inhibition of reforgradation (as measured by modulus of elasticity), followed calcium stearoyl-1-edtyl-2-dectylate > GMS > leachtin (Conde-Petit & Ester, 1994). Wand *et al.* (1994) showed (as monitored by DSC) that SSL did not significantly decrease the reforgradation of wheat and com anylopedin gels. The above authors postuliated that SSL affects the nature of crystallites formed but not the cetter of contalization.

2.5.2.4.5 Sugars

Effect of sugars on starkni tetrogradidion is still in dispute. Several workers (Kohyama & Nishinari, 1991; Katsuta et al., 1992a,b) support hei idea that starch retards retrogradistion whilst others (Chang & Liu, 1991; Wang & Jane, 1994) have provided worken to be contravir, Germani et al. (1995) suggested that the mechanism of starch crystalization is instantaneous nucleation followed by a rod-like growth of crystalis, regardless of the type of starch or the type of sugar used. However, Prokopowich & Billiaderia (1995) demonstrated that the effect of sugars on retarding aging was solute specific (fructose accelerated retogradistion theses matchristice and those retarded the process), and more

pronounced in starches with low amylose content compared to starches with high amylose. Slade & Levin (1987) reported that the retrogradation of starch : sugar : water (1:1:1) mixture stored at 25°C followed the order : fructose > mannose > water alone > glucose > galactose > maitose > sucrose > xylose > lactose. The above authors suggested that sugars inhibit aging by decreasing the chain mobility and diffusion in the water / solute plasticized amylopectin matrix which raise the network T_a of the starch gels. Thus, the rate of recrystallization at ambient temperatures (T) diminishes because of the lower temperature difference (T-T_). Using X-ray diffraction. Caims et al. (1991) showed that xviose and ribose decreased crystallization of wheat starch gels with increasing sugar concentration. However, in gels containing fructose two effects were noted : addition of fructose led to both thermally reversible and irreversible crystallization upon storage. Similar findings were reported by Biliaderis & Prokopowich (1994), Kohyama & Nishinari (1991) observed that sucrose was more effective (sucrose > plucose > fructose) in inhibiting retrogradation of sweet potato starch gels. Among malto-oligosaccharides the effectiveness in reducing retrogradation followed the order : maltotriose > maltotetraose > branched oligosaccharides (Katsuta et al., 1992b Miura et al., 1992). It has been shown that hexoses (except galactose) are more effective than pentoses (Katsuta et al., 1992a) in retarding retrogradation while disaccharides are better than monosaccharides in stabilizing gel structures (Katsuta et al., 1992a; Miura et al., 1992). The above authors suggested that the

ability of saccharides to stabilize starch-water systems might be influenced by the conformation of saccharides, whereas sugars with large number of equitorial hydroxyl groups are more effective in retarding crystallization. Moreover, based on the studies with a large number of polyhydroxy compounds, Biladeris & Prokopowich (1994) and Prokopowich & Biladeris (1995) postulated that the compatibility of sugar with the water structure (as governed by the stereochemistry of the main sugar conformars in solution) is important in controlling retorgradiation. Interior. Seever 44 (1996) reported that recrystallization of rice starch gels increased to a maximum with increase in succes, sylose and analones concentration before decreasing with further addition of succese. However, fluctose and maltose increased retorgraduation torut the concentration parke (1905).

2.5.2.4.6 Salts

Claco & Fernandes (1979) showed that retrogradation rate of wheat starch gals increased by anions in the order : $\Gamma < Br' < CT < F$; and cations increased retrogradation in the order : $K' < LT < Na^*$. However, the crystallization mechanism (instantaneous nucleation followed by crystall growth) remained unchanged in the presence of anions or cations. Russell & Oliver (1969) studied the effect of NaCI concentration (0-4.45%) on aging of wheat starch gals by theological and thermal measurements and observed that the increased sait concentration progressively increased the biphasic appearance of the

retrogradiation endotherm. This implies that increased salt concentration reduced re-ordering of the am/opactin fraction. Bello-Perez & Paredes-Lopez (1995) showed that amazinth starch gels with NaC produced an endotherm after storage of 4 weeks. The enthalpy of retrogradation decreased with increase in NaCl concentration from 0.05 to 2%. However, way com starch gels with NaCl did not produce a retrogradation dottom within the 4 west torage period.

2.5.2.4.7 Hydrocolloids

Hydrocolluids have been known to affect the gelling behaviour of stanches which is important in food product development and specifically modification of the texture and stability of formulated food systems (Christianson *et al.*, 1981; Signi & Ras, 1950). In general, hydrocolluids have been shown to accelerate gelling (Christianson *et al.*, 1981; Allonde & Doublier, 1991). However, the mechanism by which hydrocolloids such as guar gum, xanthan gum, carageenan influence the gelation and crystalization mechanism is still in dispublic (Eduar *et al.*, 1995; Blaiderie *et al.*, 1997).

2.5.2.4.8 Physical modification

Ordrod et al. (1993) investigated the retrogradation of extrusion-cooked waxy maize starch gels (15-50%) stored at 1°C using DSC and gel firmness measurements. The results showed that extrusion cooked products formed thermoreversible osls, but caused less apparent changes in petiation krietics.

Retrogradation of defatted and heat-moisture treated pigeon pea starch gels stored at -16°C was studied using freeze thaw stability measurements (Hoover et al., 1993). The results showed that both treatments decreased the syneresis of starch gels compared to the unmodified gels. Hoover et al. (1994) showed that defatting and heat-moisture treatment did not alter the onset time of the retrogradation endotherm (endotherm appeared after 3 days in native and treated starches) of wheat, potato and lentil starches. However, in oat starch the above treatments accelerated the appearance of endotherm (endotherm developed after 3 and 6 days respectively, for defatted and heat-moisture treated starches). Defatting increased the enthaloy of retrogradation (AHe) in all starches, whereas heat-moisture treatment increased AHa in wheat, lentil and out starches but decreased AHe in potato starch. The gel strength of wheat and gat starches increased to a greater extent on defatting than on heat-moisture treatment, whereas in potato and lentil starches the increase was more pronounced on heat-moisture treatment. The above authors (Hoover et al., 1993. 1994) explained the changes based on the structural changes that occur within the granule during defatting and heat-moisture treatment. Durani & Donald (1995) observed that anylopectin gels which were annealed (heating the sample at a temperature below its melting point) at a temperature below their melting point (after storage at 4°C) melted at a higher temperature and over a narrower range than those which were not annealed. Furthermore, the melting

temperature range of these gels were affected by the length of time of annealing are well as the annealed temperature.

2.5.2.4.9 Chemical modification

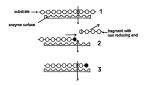
Introduction of phosphate (Bohlin & Eliasson, 1986), acetylated (Hoover & retrogradation during frozen storage compared to the unmodified starch. Takahashi et al. (1989) studied the gel properties of wheat and corn starches a low gel firmness compared to their unmodified gels. Both modification methods reduced the gel firmness of wheat starch to a greater extent compared to modified corn starch. Furthermore, gel firmness decreased with increasing cross (Yook et al., 1993) of rice decreased retrogradation of cooked rice.

2.5.3 Starch digestibility : Action of porcine pancreatic a-amylase

The digestibility of starch by porcine pancreatic g-amylase, has been the subject of numerous investigations (Holm et al., 1983; Seneviratne & Biliaderis, 1991: Cone & Wolters, 1990). The action of porcine pancreatic *a*-amylase, on starch chains is known to occur by a multiple attack mechanism (Robyt & French, 1970) in which once the enzyme forms an enzyme-polymer complex (Fig 2.28a) the enzyme may catalyze the hydrolysis of several bonds before it dissociates. The direction of multiple attack is from reducing to non reducing end of the molecule (Robyt & French, 1970). Being an endo-enzyme. porcine paperestic q-amylase randomly cleaves q-(1-4) alyopsidic linkages of linear amylose producing mainly G₂ and G₃ and finally G₁ and G₂ after prolonged incubation with a large amount of enzyme (Robyt & French, 1970). Porcine pancreatic a-amvlase consists of an active site with 5 D- glucose sub sites (Robyt & French, 1970) and a catalytic site consisting of carboxylate anion (nucleophile) and imidazolium cation [electrophile] (Hoover & Sosulski, 1985). Porcine pancreatic a-amylase shows a wide variation in in vitro digestibility of native, gelatinized and modified starches. This wide variation has been attributed to several factors ; starch crystallinity (Hoover & Sosulski, 1985: Ring et al., 1988), amylose / amylopectin content (Atkins & Kennedy, 1985), granule size (Cone, & Wolters, 1990; Franco et al., 1992), starch-lipid interactions (Seneviratne & Biliaderis, 1991: Holm et al., 1983), starch - protein

Fig. 2.28 Starch hydrolysis by α-amylase : mechanism

A) Enzyme - substrate complex formation and hydrolysis of α (1-4) glycosidic bonds via multiple attack mechanism (adapted from Banks & Greenwood, 1975).


 an internal segment of amylose is bound to the active site of the enzyme;

hydrolytic scission occurs at catalytic site.

 after hydrolytic scission, the fragment with non reducing end diffuses away; the remaining fragment is again bound to the enzyme.

3) the substrate rearranges itself and the second hydrolytic scission occurs.

B) Schematic representation of 'chair' to 'half chair' conformations of the Dglucosyl residues of starch molecules during hydrolysis by α-amylase (Thoma, 1968).

S = catalytic site

reducing end

в

Chair form

Half chair form

Anomeric Carbon

interactions (Wursch et al., 1986), starch modification (Wootton & Chaudhry, 1981; Hoover et al., 1993; & Hoover & Manuel, 1996b), and retrograded starch (Jane & Robyt, 1984; Kim et al., 1997).

The ensyme catalyzed hydrolysis of a-b glucose linkages has been shown to involve in an enzyme induced ring distortion of one of the D-glucosity residues from the ⁴C₁ 'chair' conformation to "half chair' conformation (Fig. 2280) (Thoma, 1869). This ring distortion decreases the enthalpy of activation and the susceptibility of the glucosyl residues to nucleophilic attack by functional groups on c-amylase and water. Laszlo et *al.* (1978) have shown that ring distortion or a "half chair' conformation is involved in transition state of aamylase.

Potato amylose complexed with lysolecitiin and oleic acid showed reduced hydrolysis with prorine pancreatic -a-amylase (Holm *et al.*, 1983). Eliasson & Krog (1985) reported that amylose complexed with saturated MG was more resistant to enzymatic degradation than that of unsaturated MG sea Seneviratine & Billadorisi (1991) demonstrated that the rate and the extent of hydrolysis of helical inclusion complexes of amylose by porcine pancreatic oamylase and o-amylase from *Bacilius subbilis* was higher in form I than form II amylose - lipid complexes. This was due to the fact that form i with less ordered structure (more open) in the solid state exhibits the highest succeptibility to amylase. This suggests that the super molecular structure

of V anylose complex influences the accessibility of α -anylases to the solid substrate and thereby controls the digestion kinetics. Hower & Manuel (1996b) suggested that a conformational change during α -anylese hydrolysis may be difficult for those anylose chains that are complexed by native lipids.

2.6 Starch modification

The physical properties of native standness and their calicial sols produced on heating the suspension, limit the usefulness of starch in many commercial applications. Depending on the application, these drawbocks may include the lack of free flowing properties or water repellence of the starch granules, insubability in cold water, excess or uncontrolled viscosity affer cooking, cohesive or nubbery texture of the cooked starch, sensitivity to shear and pH, the lack of darky and undency of becoming capaue gels where cooled (Winzburg, 1887). Therefore, native starches are modified by physical, chemical or enzymatic processes to overcome one or more of these drawbacks, thus examption the undenses of tarch in mark acadications.

2.6.1 Physical modification of starch

Physical modification of starch generally involves the simultaneous action of factors such as temperature, moisture, pressure, and shear. The effect of

these factors on stanckes causes two types of transformations: 1) modification of the physical structure with either the conversion or the complete disorganization of the granule and 2) modifications at the molecular level involving either degradation of macromolecules or of the monomers (Coloma *et al.*, 1997). Physical modification methods which bring about these transformations include heat-moisture treatment, defatting (with various solvents), ameailler, actuation, conting and pregetitivitation.

2.6.1.1 Heat-moisture treatment

Physicochemical properties (ewelling, amylose leaching, gelatinization, auceptibility to enzyme) of startches have been shown to change dramatcally on heat-moisture treatment (18-27% moisture, 100°C) (Sair, 1967; Kulp & Lorenz, 197; Houre & Korathan, 1994a), The extent of these changes are highly influenced by starch source, moisture content, time and temperature of heatmoisture treatment (Lorenz & Kulp, 1983; Stute, 1992; Hoover & Vasamthan, 1994a); Franco et al., 1995). In general, physicochemical properties of tuber starches have been shown to approach those of untreated cereal starches are heat-moisture treatment (indicating structural changes within the starch granulo.) Physicochemical properties of tuber starches (potato, cassava) have been shown to improve on heat-moisture treatment, whereas in cereal starches (wheet, banger, triticale) thy deteriorate after heat-moisture treatment (Lorenz & Kup, 1981). Kulp, 4 Lorenz (1861) properties the the daugolion of granule (wheet, banger, triticale) they deteriorate after heat-moisture treatment (Lorenz & Kup, 1981). Kulp, Gronz (1861) properties the the daugolion of granule treatment in the properties of tuber starches (potato, cassava) have been shown to improve on heat-moisture treatment, whereas in cereal starches (wheet, banger, triticale) they deteriorate after heat-moisture treatment (Lorenz & Kup, 1981). Kulp, Gronz (1861) properties the the daugolion of granule treatment in the properties of tuber startendes (potato, cassava) have been shown to improve on heat-moisture treatment (Lorenz & Kup, 1981). Kup (Denz (1861) properties the the daugolion of granule treatment of tuber startendes (potato) treatment (Lorenz & Kup, 1981). Kup (2004) properties the the daugolion (1971) properties of tuber startendes (197

structure on heat-moisture treatment is more exident in wheat than in potato starch. Donovan et al. (1983) postulated that the effect of heat-moisture treatment may be either due to new crystal formation or reorystalization and perfection of the crystalline regions of the starch granules. Hoover & Vasanthan (1994a), France et al. (1996) and Hoover & Manuel (1996a) have shown that the extent of starch chain associations within amorphous regions and the degree of crystalline order are changed on heat-moisture treatment of cereal, luber and legume starches. The magnitude of these changes was found to be dependent upon the moisture content (during heat treatment) and the starch source. Several researchers have shown that the X-ray pattern of polato and yean starches (Hoover, & Vasanthan, 1994a) change from a 'B' pattern to X-B' pattern on heat-moisture treatment. (Lorenz & Kulp, 1983; Stute 1982; Hoover & Amuel, 1995a)

Interpr et al. (1997) have shown that in crystallities of both 'X' and 'B' starches double helices are found in pairs and all chains are packed in parallel arrays. The pairing of double helices is the same in both polymorphs and corresponds to the interaction between double helices that have the lowest energy. Starches exhibiting 'A' and 'B' X-ray patterns differ in their watar content and the manner in which the pairs of double helices are packed within their respective crystals. In 'B' starches there are 30 water molecules present in a channel in the centre of a hexaponal arrangement of ski double helices. Niel in

X's starkniss there are only four water molecules between double helics (inherty of al., 1991). Furthermore, the centre of X's starches is occupied by an amylosic helic rather than a column of water. It has been suggested that adjacent double helices within crystallites of X's starches are mainly linked by direct hydrogen bonding (Leach et al., 1985). Inherty et al., 1991). However, in crystallites of B's starches, adjacent double helices are mainly linked by hydrated water bridges attaches, adjacent double helices are mainly linked by hydrated water bridges and to a limited examt by direct hydrogen bonding (Inherty et al., 1991). The transformation of the X-ray pattern from 'B' to 'A-B' is probably initiated by rupture of the hydrated water bridges which enables helices to rearrange themselves into a crystallite array that contains an amylosic helix in the central channel of the unit of Howev & Yasama, 1994o.)

Hover & Vasanthan (1994a) observed that the crystallinity of tuber starches decreased, whereas increased in wheat, tentil and cat starches after heat-moisture treatment. Hoover & Manuel (1996a) observed increased crystallinity in normal, waxy, duil waxy and amyomaize V starches after heatmoisture treatment (at 30% moisture).

Heat-noisture treatment of cereal, toer and legume starches at waying moisture contents for different lengths of time have been shown to alter estimization temporatures (marks, mid point and conclusion) and the enthalpy of gelatinization (Lorenz & Kulp, 1983; Stute, 1992; Hoover & Vaamthan, 1984a; Hoove & Manuel, 1996). The extent of these changes was found to be dependent upon the starth storare and conditions of heat-noistine.

treatment. Reported results of studies on HMT (95-110°C, 100% relative humidity for 16 h) of potato and corn starches have shown that heat-moisture treatment increases transition temperatures (Sair, 1967). These results were confirmed by Kulp & Lorenz (1981), Lorenz & Kulp (1983) [100°C, 18-27% moisture, 16 h], Donovan et al. (1983) [110°C, 20% moisture, 140-240 min], and Hoover & Vasanthan (1994a) [100°C. 30% moisture. 16 h] for wheat barley triticale, red millet, potato, arrowroot, and cassava starches. It was further shown that the gelatinization enthalpy decreases after heat-moisture treatment of potato starch (Donovan et al., 1983; Stute, 1992; Hoover & Vasanthan, 1994a). Only a slight (Donovan et al., 1983) or no decrease (Stute, 1992; Hoover & Vasanthan, 1994a; Hoover & Manuel, 1996a) was observed after heat-moisture treatment of cereal starches. Possible explanations for the effect of heatmoisture treatment on delatinization parameters include : 1) increase in interactions between amylose and amylopectin or lipids (Hoover & Vasanthan, 1994a), resulting in a decrease in the destabilizing effect exerted by the amorphous regions on the melting of starch crystallites during gelatinization; 2) alteration of the interactions between crystallites and amorphous matrix (Stute, 1992); 3) changes in the stability of starch crystallites (Hoover & Vasanthan, 1994a: Eerlingen et al., 1996) and 4) reorientation of double helices (Hoover & Vasanthan, 1994a).

2.6.1.2 Defatting

Defating was shown to after crystallitifty, soukility, swelling, enzyme susceptibility, passing and gelatinization parameters of cereal, tuber and legume starches. The extent of the above changes was influenced by the bolanical source, nature and composition of the solvent, temperature and time defatiting, degree of associations between amylose and amylopedin chains in the native granule and on the jick content (Takhathati & Seb, 1988; Vasanthan & Horover, 1992; Ghoinski *et al.*, 1993).

Takahashi & Seib (1988) reported that defatting with methanol (30°C) and 75% n-propanol (at 100°C) removed 93% and 88% lipid from con starch respectively. However, for wheat starch the corresponding values were 78% and 7%, respectively, lodine binding capacity (BC) has been used to indicate the efficiency of lipid removal. The above authors noted that wheat and corn starches showed the highest IBC after extraction with 75% n-propanol (100°C). Vasamthan & Hoover (1992b) reported that defatting with 1-propand water 3:1 (v/v) (PW) removed almost all the lipids in wheat, corn, potato, lentil and cossave starches.

Defatting with 80% methanol was shown to produce unaltered X-ray patterns and decreased crystallinity in wheat and potato starches (cnerz, & Kulp, 1863). Vasanthan & Hoover (1992a) observed an increase in crystallinity and a change in X-ray pattern from 'B' to 'A+B' on defatting potato starch with PV. Hoever, in wheat, com and casaws starch, etc. Araya pattern and

crystallinity remained unchanged on deffatting. The change in X-ray pattern in potato starth was attributed (Vasanthan & Hoover, 1992a) to clustering of the outer branched of amylopectin chains (resulting in the formation of a closed pack arrangement of double helicios).

Swelling of cereal starches is primarily a property of amylopectin. Amylose and lipids act as diluents (Tester & Morrison, 1990a). Partial removal of lipid in wheat starch (Tester & Morrison, 1990a) with anhydrous methanol at 100°C increased swelling factor (SFI. The above authors suggested that the natural lipids in starch cause a substantial suppression of swelling in cereal starches. Defatting with 80% methanol increased the solubility and swelling power (SP) of wheat starch, whereas in potato starch, solubility decreased, while SP remained unaltered (Lorenz & Kulp, 1983). Goshima and coworkers (1985) noted that in potato starch solubility and SP increased on defatting with 99% methanol. Vasanthan & Hoover (1992a) and Hoover et al (1994) reported that defatting of potato, wheat, oat, corn, lentil and cassava starches with PW decreased SF of all starches. Gibinski et al. (1993) observed that defatting of oat starch varieties (Hainy, Komes and Santor) with cold chloroform-methanol-water (3:2:1, v/v/v) or hot 1-propanol, increased the water binding capacity (cold extraction > hot extraction) and solubility (hot extraction >> cold extraction) of all three varieties. The above authors postulated that the increase in water binding capacity was probably due to the opening of the capillaries (which contained lipid micelles) on the surface of granules for water uptake after defatting. The increase in solubility

was attributed to the damaged amylopectin shell of the granule by the joint action of alcohol and temperature (Gibinski *et al.*, 1993).

Goshima et al. (1985) observed no significant changes in geletitization temperatures when polato starch was defatted with 09% methanol. Similar observations have been reported for defatted wheat starch with 80% methanol (Lorenz & Kulp, 1963) and defatted wheat and corn starches with 75% ethanol (Takahashi & Seib, 1983). In contrast, Vasanthan & Hoover (1992a) noted that defatting with PVV increased the geletitization temperatures of potato and lentil starches, but caused no significant changes in corn, wheat and cassava starches.

Lipide removal from potido starch with 99% methand (18); recluded the pasting temperature, increased paste consistency, but did not alter thermal stability during the holding period at 95°C (Goshima *et al.*, 1965). Reduced pasting temperature, increased paste consistency (PiC) and pasting peak were also observed in wheat and com starches when defatted with water saturated butanoi (6); at 70°C or with 85% methanol (727) (Merkin, 1979). However, Takahashi & Seib (1988) noted that lipid removal from wheat and com starches with 75% ethano ethiminate the pasting peak. decreased pasting temperature, paste consistency and set back. Vasanthan & Hoover (1992a) reported that defatting of cassawa, potato, com, wheat and lentil starches with PW eliminated pasting peaks of coreal starches and increased thermal stability and reduced paste consistency at starches.

2.6.2 Chemical modification

Chemically modified starches have become important functional ingredients in a wide range of food and non food industrial applications, because of their improved functional properties over unmodified starches. Table 23 shows some of the properties and applications of chemically modified starches. The concept of chemical derivatization of starch to improve its functional properties for specific purposes began in late 1930s. An important outcome of this aspect was the discovery of a practical way to chemically modify starch in an aqueous slumy maintaining the integrity of the granule and making it possible to remove by-products by fittration and washing techniques. Alkaline catalyzed reactions of starch with allytere oxide were carried out in solution or pasts form. Keller & Aljemmata (1950) showed that he reaction could be carried out to obtain hydroxyalkyt starches with undamaged granules. This discovery was sepacially important in the food industry for development of new starch products with improved processific Reset A Hermatal, (1950).

Today, chemical derivalization of starch is commonly carried out using methods such as acid conversion, cross linking, esterification and etherification which include calcinotation, cross linking, esterification and etherification which include calcinotation, cross-produced by hydrolyzing (with acids such as hydrochtoric or suffuric) a concentrated starch sturry (~40% starch) after heating at a temperature below its gelatilization temperature. During the process, acid hydrolyzing dynotic histopase, thus theritoming the chain length. The resulting start and the starth st

Modified starch	Treatment	Advantages over unmodified starch	Food applications	Non food applications
Oxidized	hypochlorite	reduced set-back increased paste clarity	thickeners, jellies	paper, textile, adhesives
Hydroxypropyl	propylene oxide	increased stability and clarity	pie fillings, salad dressings	textile and paper industry
Esterified	acetic anhydride	reduced set-back increased clarity	instant foods, frozen foods	textile, paper, packaging, film
Cross linked	phosphorus oxychloride	increased stability to pH, shear, heat and freeze thaw treatment	canned and frozen foods	paper, metal sequestrants
Acid converted	acid	high gel viscosity low hot paste viscosity	jellies, gums	laundry starch, textile
Cationic	reagents containing amino, imino, ammonium, sulfonium groups (e.g. 2- diethylaminoethyl chloride	improved clarity and stability of dispersions cold water swelling	not used	paper, textile, adhesives, detergents
Carboxy- methylation	sodium monochloroacetate	high viscosity	thickening agents	paints, adhesives

Table 2.8 Properties and applications of chemically modified starches

Adapted from Solarek (1986); Galliard & Bowler (1987).

product shows reduced hot paste viscosity, higher fluidity and solubility in hot water (Wurzburg, 1987).

Cross linking leads to a more rigid macromolecular network inside the granule by formation of inter- or intramolecular chemical bridges through hydrog-substituted phosphate groups between starch hanks (Reich, 1983). Cross linking reaction is carried out in an aqueous starch suspension at temperatures varying from room temperature to -50°C in the presence of a cross linking agent (e.g. phosphorous oxychloride, epichichydrin, adipic acid). Cross linking starches show a great resistance to thermonochanical thereing. They can maintain their granule integrity in the presence of water under conditions that would rupture or destroy granules of unmodified starch (Riche, 1985; Wuzburg, 1987).

Starch eaters are formed by reacting attach suspension with acid anhydrides (acetic anhydride, malic anhydride) or carbonyfic acids (acetic acid, formic acid) under appropriate pH and temperature coordings (flexibe, 1985). For example, acid anhydrides give optimum starch eater yield at pH 8.0-4.5 and 15.25°C (Wurzburg, 1987). Currenty, starch acetates with low degree of substitution (> 0.1) are commonly used in many food and industrial applications (Table 2.0) since the low substitution level maintains the granule structure throughout the derivatization process. This gives commercial products with high purity which is necessary in food and pharmaeoutical applications (wo explaintization 1977). Starch eaters with mails addi (achter hastitas) below you gediatrization

temperature and better water retention over unmodified starches (Jarowenko, 1987).

Cationic starches are produced by chemical reaction with reagents containing amino, imino, ammonium, and subponium groups which carry a positive charge (Solarek, 1987). Commercially significant derivatives of cationic starches include tetrainy amino and quaternary ammonium starch ethers. Their affinity for negatively charged substrates make them useful in paper industry to improve sheet strength by fibre bonding through ionic or ionic and hydrogen bonding (Solarek, 1987). Cationic starches also show improved paste darky, stability (resistant to retrogradation) and also high dispersibility and solubility which give odi wate solubility (Reschall, 1967).

Carboynethylation is carried out by reacting sodium monochloroacetate with starch (in an aikailine medium) in a solid phase or in a homogeneous paste. The reaction temperature of the medium is in the range of 40-50°C. Anionic nature of the group -0-CH₂-COO^ONa gives a polyeiectrolyte behaviour and high viscosity to the starch (Flache, 1985). Thus, carboynethyl starches are used as a thickener in many applications (Table 2.8). At a higher degree of substitution (-0.1), carboynethyl starch becomes highly water soluble, resulting in cold water soluble starchs (Horiter): 1997).

2.6.2.1 Hydroxypropylation

Among hydroxyalkyl starches (hydroxyethyl, hydroxypropyl etc.), hydroxypropyl starches are the commonly used hydroxyalkyl derivatives in food and industrial applications (Fleche, 1985). Hydroxypropylation has been shown to retard gelling and retrogradation tendency of starch, increase water holding capacity, improve freeze thaw stability of starch based products and reduce the tensile strength and increase elongation of starch films. Hydroxypropyl starch is produced by treating an aqueous starch suspension with propylene oxide at 38-40°C, in the presence of NaOH as a catalyst. The reactive nature of propylene oxide is due to its highly strained epoxide ring (Tuschhoff 1986) In the formation of hydroxypropyl starch derivatives part of the bydroad arouns of the ducose units are converted into -O-(2-bydroamroad) group. The extent of hydroxypropylation is expressed in terms of molar substitution, which is defined as the number of moles of substituent per anhydroglucose unit (Fig. 2.29). In early stages, MS was determined by colourimetric method (Johnson, 1969). In this method, the development of colour is based on the reaction of ninhydrin, with allyl alcohol and enol form of propanol, which is released during acid digestion. Recently, use of new techniques such as FTIR. ¹H NMR (Forrest, 1992; de Graaf et al., 1995) has been employed for the rapid acquisition of results.

Several researchers postulated that hydroxypropyl substitution reaction occurs primarily in the amorphous regions of the starch granule composed of

Fig. 2.29 Glucose units substituted with hydroxypropyl groups (X) showing different molar substitution (MS)/evels.

amylose and also in the intercrystalline areas of amylopectin (Hood, 1982; Blanshard, 1987), This is in agreement with the findings of Hood & Mercier (1978) who showed that most of the hydroxypropyl groups in modified tapioca starch is located in the amorphous regions (which contain the majority of a-(1-6) branch points) whereas the more compact crystalline regions would be relatively impervious to the modifying agents, thus less affected. However, the loss of birefringence in chemically modified starch granules suggests that an irreversible change takes place within crystalline regions of the starch granule during modification (Hood & Mercier, 1978), Kim et al. (1992) showed fusing iodine affinity and Periodic Acid-Schiff's reagent staining) that hydroxypropylation mainly takes place in the central region of the potato starch granule. Furthermore: substitution at C-2 and/or C-3 on glucose units in hydroxypropylated potato starch has been reported to be > 90%, whereas at C-6 it was ~10% (Ostergard et al., 1988). Wootton & Hariyadi (1992) reported that substitution at C-2 and C-6 was 94% and 6%, respectively, but negligible at C-3. The distribution of substituents between C-2 and C-6 was not affected by the level of MS or whether the parent starch was pre-gelatinized or not. However, the substitution at C-6 was affected by the starch type [wheat starch showed a higher substitution (6%) at C-6, than maize, waxy maize or high amylose maize (3%)], but unaffected by the proportion of amylose in these starches (Wootton & Hariyadi, 1992).

Xu & Seib (1967) studied (using ¹H NMR) the distribution of hydroxypropyl substituents in alpha limit devision of 0 starches. The substitution at C-2, C-3 and C-8 were 67-78%, 15-29% and 3-17%, respectively. The MS of these alpha limit destrins was in the range of 0.05-0.23, and constatate well with the values determined by the colorimetric procedure of Johnson (1969).

Hydroxypropylation was shown to alter physicochemical properties of starches (Wootton & Manatsathit, 1984; Butler et al., 1986; Seow & Thevamalar. 1993; Yeh & Yeh, 1993; Yeh & Jeng-Yune, 1996). Wootton & Manatsathit (1984) showed (using DSC) that increase in MS of hydroxypropylated maize starches (MS 0-0.27) decreased gelatinization enthalpy (AH). onset (T_n) and peak (T_n) temperatures, whereas the gelatinization temperature range (T_n -T_n) remained unaffected. Furthermore, a broadening of the endotherm was observed at MS > 0.1 (Wootton & Manatsathit, 1984). At 1:1 starch : water ratio hydroxypropylated rice starch showed a progressive shift of a biphasic celatinization endotherm to lower temperatures and a decrease in AH with increase in MS (0.0 to 0.1) [Secw & Theyamalar, 1993]. The above authors postulated that hydroxypropyl groups attached to starch molecules are primarily in the and behave as flexible side chains. The motion of these side chains creates a large amount of free volume, which may be considered as increasing internal plasticization and destabilization of amorphous regions of the granule. This destabilization of amorphous region lowers the glass transition and crystallite melting temperatures. At high MS levels, gelatinization temperature

range increases, because derivatization has a granter effect on the anonphous region, and also because of the increased inhomogeneity within both amorphous and cystalline regions of the granule. The decrease in AH was attributed to the increased disruption of local order in the amorphous regions (Seow & Thevamatar, 1993). Decreased transition temperatures and AH (compared to native starch) were also observed for hydroxypropylated rice starch by YeA XF (1993) and YeA (IneorYune (1996).

Buter et al. (1998) reported that swelling power (SP) of buffalo gourd root starch was unaitered on hydroxypropylation (MS 0.003 - 0.05). In hydroxypropylation maize starches (MS 0 - 0.27), SP increased MS > 0.12 (Viotonto & Mantashit, 1983), whereas water binding capacity increased (MS > 0.1) following an initial decrease (MS 0.0 - 0.1). The above authors suggested that the initial decrease in water binding capacity was due to the blocking of water binding alles by substituent groups, whereas further increase in water binding capacity was due the tendency of granule to swell at higher MS (Butler of al., 1986).

Hydroxycopydation (MS 60.12) of field pea starch exhibited reduced PT and increased viscosity at 85°C and 50°C, with increasing MS levels (focure et al. 1986). Increased vecsory at 60°C million extinced susceptibility to retrogradation (Butler et al., 1986). Similar results have been reported for acativitated legume starches (Hoover & Sostiaki, 1986), hydroxyproylated buflas court ond tatter (MS 30.000 and hydroxycovatetien fea starch

(Yeh & Yeh, 1993). However, hydroxypropylation did not improve heat and shear resistance in rise starch (Yeh & Yeh, 1993). Kim *et al.* (1992) observed attered pasting properties in hydroxypropylated potato starch and the changes were attributed to the decrease in associative forces within the starch granule. Increased paste clarity in hydroxypropyl starches with increasing MS has been noted by several researchers (Buller *et al.*, 1986; Hoover *et al.*, 1988; Rege & Pai, 1996) and Rege & Pai (1996) attributed the increased paste clarity to the increased annual of watch modulo to starch molecules.

Several researchers observed the decreased a-amyclopia of may starches with increase in MS (Leegwater & Luten, 1971; Wicoton & Chaudhy, 1981; Mohd Azemi & Wooton, 1984; Hoover et al., 1988), Mohd Azemi & Wooton (1984), reported that susceptibility of raw waxy make starch to aamyiase attack showed a continuous drop with increase in MS, wherease normal make and high amylose make starches showed an initial decrease in hydrobysis followed an increase in hydrobysis at high-astrobust hydrobysis of gelastinized wheat (MS 0 - 0.17) (Wooton & Chaudhy, 1981), normal make (MS 0 - 0.12), waxy make (MS 0-0.13) and high amylose make (MS 0-0.08) (Mohd Azemi & Wooton, 1984) starches decreased continuously with increase in MS. The decrease in hydrobysis in gelasticaet starch and he initial decrease in hydrobysis in raw starch at low substitution levels was attibuted to be presence of bulky hydroxypropy groups on C-2, which starchully hinder the action of tashing carbophics in on the glocostic bond (Mohd).

Azemi & Wootton, 1984; 1995; Hoover et al., 1986), while the subsequent increase in hydrolysis in raw starch at higher MS (MS 0.12) was attributed to an increase in swelling power of the amorphous regions of the starch granules (Wootton & Chaudhy, 1981; Mohd Azemi & Wootton, 1985; Hoover et al., 1988) and also to oranule discuscion (Mohd Azemi & Wootton, 1985; Hoover et al., 1988) and also to oranule discuscion (Mohd Azemi & Wootton, 1986; Hoover et al., 1988) and also to analue discuscion (Mohd Azemi & Wootton, 1984).

CHAPTER 3

MATERIALS AND METHODS

3.1 Materials

Potato tubers (Solenum tuberosum or Russett Burbank) were purchased from the local market. Crystalline porcine pancreatic a-smylase (EC 3211) type 1A was obtained from Sigma Chemical Co (St. Louis, MO, USA). Other chemicals and solvents were analytical grade. Solvents were distilled from glass before use.

3.2 Methods

3.2.1 Starch isolation and purification

Potato tubers were divided into two lots representing the whole sample. Each lot was further subdivided into two parts and the starch was isolated according to the method of Hoover & Hadziyev (1981) as follows :

The tubers were weahed, dioid, dipped in ice-cold water containing 100 ppm NaHSO₃ and homogenized at low speed in a Waring blender. The stury was squeezed through a 100-mesh polyester sive doth and the fittate protein atop the starch layer was removed. Further putification was achieved by repeated suppension in water, centrifugation and removal of contaminating proteins and cell debris. The putified starch was dried overnight at 30°C in a vacuum over to a mostary context of ~ 10%.

3.2.2 Chemical composition of starch

3.2.2.1 Moisture content

Quantitative estimation of moisture was performed according to standard AACC (1964) procedures. Prevengined (3-5g, db) samples of starch were dried in a forced air oven (Isotemp 8140, Flaher Scientific, Fair Lawn, NJ, USA) at 130°C for 1 h. The samples were then removed and cocled in a desiccator. The moisture content was calculated as the percentage weight loss of the sample.

3.2.2.2 Nitrogen content

The nitrogen content was determined according to Micro Kjetiah method. The samples (0.3 g db) were weighed on nitrogen-free papers and pinod in the digestion tubes of a Buch 400 (Buch Laboratomus-Technik A), Flavil / Schweiz) digester. The catalyst [2 Kjetabs M palets (Flaher Scientific, Fair Lawn, NJ, USA)] and 20 ml of concentrated H₂SO₄ acid were added and the samples were digested in the Buchi 430 digester until a clear yellow solution was obtained.

The digested samples were then cooled, diluted with 50 mi of distilled water, 100 mi of 40% (wive) NaCH were added, and the released ammonia was steam distilled into 50 mi of 4% H₃BO₂ containing 12 drops of end point indicator (N-point indicator, Sigma Chemical Co, St. Louis, MO, USA) using a Bucki 321 distillation unit until 150 mi of distillate was collected. The amount of ammonia in the distillet was demined by transing tagants 0.08% H₃SQ, (AACC, 1684).

%N = (<u>volume of acid - blank</u>) x Normality of acid x 14.0067 x 100 sample weight (mg)

3.2.2.3 Ash content

Preweighed samples (3-5 g, db) were transferred into clean, dry porcelain crucbles, charred using a flame and then placed in a pre-heated (550°C) muffle fumace (Lab Heat, Blue Island, IL, USA) and left overnight until a gray ash was obtained. The samples were then cooled in a desiccator and weighed. The ash content was calculated as percentage weight of the remaining material (AACC, 1984).

3.2.2.4 Lipid content

Surface lipids were extracted at ambient temperature (25-2°C) by mixing starch (5 g, db) with 100 mi 2:1(v/v) chloroform / methanol under vigorous agilation in a wrist action shaker for 1 h. Bound lipids were extracted using the residue left from surface lipid extraction. The residue was refluxed with 3:1 (v/u) n-propanol water in a sochlet apparatus at 90-100°C for 7 h. Total starch lipid was determined by hydrolysing starch (2 g, db) with 25 mi of 24% HCI at 70-80°C for 30 min and extracting the hydrolysate 3 times with n-hexane (Vasantha f Houreer. 1992b).

The crude lipid extracts from above extractions were purified by chloroform / methanol / water (1:2:0.8, v/v/v) and forming a biphasic system [chloroform / methanol / water (1:1:0.9 v/v/v)] by addition of chloroform and water

at room temperature (Bligh & Dyer, 1959). The chloroform layer was then diluted with benzene and evaporated to dryness in a rotary evaporator (Rotavapor R 110, Brinkmann Instruments, Westbury, NJ, USA).

3.2.2.5 Amylose content

The apparent anylose content of native starch was determined by the method of Chrastil (1967), Starch samples (20 mg, db) were fully dispersed in 10 ml of 0.5M KOH in comical flasks. The dispersions were transferred into volumeits: flasks and diluded with distilled water up to 100 ml. Allquols (10 m) were neutralized with 5 ml of 0.1 N HCI and diluted to 50 ml with distilled water. The sample preparation for determination of total (trus) anylose content of starch samples was carried out following the same procedure, as above, after detinition gater while 31 (vol) encounds water for 7. h.

3.2.2.5.1 Chrastil's method of determination of amylose content

Aliquots (0.1 m) of the neutralized and diluted solution were transferred into serve cap tubes containing 5 ml of 0.5% trichloroacetic acid and then 0.05 ml of 0.01N L-KI solution was added. The tubes were allowed to stand of 30 into a troom temperature for colour development. The absorbance of the blue colour was measured in a spectrophotometer (Novaspec Model 4049, UKB Biochrom, Cambridge, UK) at 220 nm. The absorbance of the reaction blank with water was zero. The amrices colour was determined using the formal area and the marked and the standard solution the other and the standard solution the formal area for the market was determined using the formal area.

Absorbance x 32.5 = mg amylose / litre in cuvette, and expressed as mg amylose per 100 mg starch.

3.2.2.6 Estimation of starch damage

. The starch damage was estimated following the standard AACC (1984) procedure. Starch samples (1 g, db) were digested with fungal α-amylase from Aspergillus oryzee (12500 Sigma units) having specific activity of 50-100 unitaring, in a water bahr (20¹C) of the fina. At the end of inclubation, the enzyme action was terminated by adding 3.68N H₂SO₄ (3 m) and 12% Na₂WO₄.2 H₂O (2 m), respectively. The mittures were allowed to stand for 2 min and then filtered through Whatman No 4 filter paper. The amount of reducing sugars in the filtrate was determined using the method of Bruner (1664). Aliques (1 m) of the filtrate were mode with 2 mi of childe 3.5- dnitosailcylic acid and dutate to 4 mi with dutalited water. The diluted samples were heated in a boiling water bath for 5 mic. The reaction mixture was childed, diluted with 8 mi distilled water and the absorbance was measured at 540 and 580 nm. A reagent blank was determined by the same procedure, but without tarch.

The percentage starch damage was calculated as follows:

% starch damage = [M x 1.64] / [W x 1.05] x 100

where M = mg maitose equivalants in the digest; W = mg starch (db); 1.05 = molecular weight conversion of starch to maltose and 1.64 = the reciprocal of the mean percentace maltose yield from gelatinized starch. The latter is an empirical

factor which assumes that under the conditions of the experiment, the maximum hydrolysis is 61%.

3.2.3 Starch modification

3.2.3.1 Preparation of defatted potato starch

Defated starch was prepared by soxhiet extraction with 75% aqueous npropanol for 7 h. The solvent was removed by vacuum evaporation and the starch was air dried to a moisture content of ~ 10%.

3.2.3.2 Preparation of heat- moisture treated potato starch

The heat-moisture treatment was essentially that of Sair (1964). Starch (15 g. db) was weighed into glass containers. Starch moisture content was brought to 30%. The sealed samples (in glass jans) were heated in a forced air oven (itsotemp 615G, Finher Scientific, Fair Lawn, NJ, USA) at 100°C for 16 h. After cooling, the jans were opened and the starch samples were air-dired to a moisture content of ~10%.

3.2.3.3 Preparation of hydroxypropylated potato starches

Native, defated and heat-moisture treated potato starch samples were converted into a range of hydroxypropyl derivatives according to the procedure of Leegwater & Luten (1971). Samples (200 g, db) from each of the above starches were weiched into 600 mi screw cap iars. Into each iar, a solution of

NaCH (2.6 g) and Na₂SO₄ (30 g) in distilled water (240 mi) was added at noom temperature. The jams with samples were placed in a water bash at 40^oC and propylene oxide (0, 4, 10, 20, 30 and 50 mi) was added and the suspensions throughly mixed and the jams cloted. The reaction was continued at 40^oC for 24 h with shaking. The starch suspensions were then adjusted to pH 5.5 with dilute H₂SO₄ (1M). The starch suspensions were then adjusted to pH 5.5 with dilute H₂SO₄ (1M). The starch cakes were washed with distilled water until negative to subhate lons when tested with BaCl₂. Al hydroxypropylated suspensions were frees drived until the molature content was reduced to 10-72%. Control points starch was prepared by treatment of native, defatted and heat-molasure treated starches (200g, db) with distilled water containing NaCH (2.6 g) and Na₂SO₄ (30 g) but without addition of propylene oxide, according to the procedure for presention if mixed above.

3.2.3.3.1 Determination of molar substitution

The hydroxyprop/ content was determined by the spectrophotometric method of Johnson (1969). Modified starch samples (0.09-0.1 g db) were weighed into volumetric flasks, 25 ml of 1N H₂SO, were added and heated in a boling water bath until the sample's distol-ed. The samples were then cooled and dluted to 100 ml with distilled water. Aliquots (1 ml) of dluted samples were transformed into 25 ml test tubes which were immersed in cold water, 8 ml of concentrated H₂SO, was added, mixed and heated in a boling water bath for 3 min, After the inclusion, tubes child: O is not invited meant 10% shorts (2 ml of the sample).

(1.2.3 thickbrydnin) in 5% Na₂₅S₂O₄] was added and the tubes were placed in a water bath at 25^oC for 100 min. The solutions were then transferred into 25 mi volumetric flassis, areadue to the mark with concentrated H₅O₂O₄ and allowed to stand for 5 min. The absorbance was measured at 55° for musing the solution without starch as the reference. A calibration zurve was made using standard aqueous solutions containing 0-100 µg prop/eng glycol / mil. The hydrosynopy content was asolutions.

% of hydroxypropyl groups = <u>us propylene glycol x 0.7763 x 100 x 100</u> 10⁶ x weight of starch (g, db)

Molar substitution = <u>% hydroxypropyl groups x 162.14</u> 59.08 x (100 -% hydroxypropyl groups)

A factor of 0.7763 was used to convert µg of propylene glycol to µg of hydroxypropyl groups (Johnson, 1969). 59.08 = molecular weight of hydroxypropyl group. 162,14 = molecular weight of anhydroqucose unit.

3.2.4 Determination of physicochemical properties

3.2.4.1 Scanning electron microscopy (SEM)

Granule morphology of native, deflated and heat-moliture treated starches were studied by SEM. Starch samples were mounted on circular aluminum stubs with double-sided starky tape and then coased with 20 m gold and examined and photographed in a Hitachi (SS70) scanning electron microscope (Nises Sango Inc., Rexdale, ON, Canada) at an acelerating colorential of 20 M.

3.2.4.2 X-ray diffraction

X-ray diffractograms of starches were obtained with a Rigaku RU 200R Xray diffractometer (Rigaku-Denki Co., Tokyo, Japan) with a chart speed of 20 mm/min. The starch powder was scanned through the 29 range of 3-35⁶. Diffractograms were obtained using Cu-Ka radiation detector with a nicket filter and a scintillation counter operating under the following conditions : 40 kV, 50 mÅ, 1⁴/1⁴ divergence sit / scattering sitt, 0.30 mm receiving sitt, 1s time constant and scinning rate of 3⁵ min. The results were analyzed using the software Jade (versino 2.1).

3.2.4.3 Differential scanning calorimetry (DSC)

BSC measurements on native, defatted and heat-moixture treated starches were carried out uaing a Perkin-Eimer DSC-2 (Norwaik, CT, USA) Differential scanning calorimeter with a hermal analysis data station. Water (8.0 µ0) was added with a microsyringe to starch (2.5 mg) in DSC pans which were then sealed, reweighed and kept overnight at room temperature. The scanning temperature range and heating rate, were 20-120°C and 10°Cmin¹, respectively. The thermogram seconded with waters as references.

The transition temperatures reported are the onset (T_{ab}) , peak (T_{ab}) and conclusion (T_{ab}) of the gelatinization endofferm. Indum was used for calibration. The enthalpy of gelatinization (AH) was estimated by integrating the area between the thermogram and the base line under the peak and expressed as joules per unit weight of dry starch (Jug).

3.2.4.4 Swelling factor (SF)

The SF of the starches when heated to 60-90°C in excess water was determined according to the method of Tester and Montson (1990a). Starch samples (50 mg, db) were weighed in to serve cap tubes, 5 ml water were added and heated in a shaking water bath at the appropriate temperature for 30 min. The tubes were then cooled to 20°C, 0.5 ml of blue dextran (Pharmacia, M. 2x10⁶, 5 mg/ml) was added and mixed the contents by inverting the tubes. The tubes were then outflued at 1500m for 5 mm and the absochance of the absochance of the

supernatant was read at 620 nm using a spectrophotometer (Novospec Model 4049, LKB Biochrom, Cambridge, UK). The absorbance of the reference which contained no starch was also measured at 620 nm.

Calculation of SF was based on starch weight corrected to 10% moisture, assuming a density of 1.4 g / ml.

Free or interstitial plus supernatant water (FW) is given by

FW = 5.5 (A, / A,) - 0.5

A, and As represent the absorbance of the reference and sample respectively.

The initial volume of the starch (Vo) of weight W (in mg) is

Vo = W / 1400

and the volume of the absorbed intragranular water (V1) is thus

V1 = 5.0 - FW

Hence, the volume of the swollen starch granules (Vz) is

$$V_z = V_o + V_1$$
 and

This can also be expressed by the single equation

This method measures only intragranular water and hence the true SF at a given temperature. The SF is reported as the ratio of the volume of swollen starch granule to the volume of the dry starch.

3.2.4.5 Extent of amylose leaching

Starch (20 mg, db) was heated in water (10 mg) in volume calbraired sealed tubes (50-90°C) for 30 min. The tubes were then cooled to 25°C and contriluged at 2000g for 10 min. The supermantain liquid (01 mg) was withdrawn and its amytose content determined by the method of Chrastil (1987). Percentage amytose leaching was expressed as mg amytose leached per 100 g storch.

3.2.4.6 Brabender viscosity measurements (Pasting properties)

A Brabender viscoamylograph, Model VA-V (C.W.Brabender Instruments, Hackenaok, NJ, USA) equipped with a 700 cm, carbridge was used to study pasting properties of starch slurines at a concentration of 6% (wiv) and pH 5.2 The starch dispersions were sittred at 75 pm and heated at at ated 1 5⁺Cmin⁻¹ to 85⁺C, kept at this temperature for 30 min, and cooled to 50⁺C. The viscosity was expressed in terms of Brabender units (BU) and the pasting temperature was defined as the temperature at which the viscosity showed an increase in 10 BU in the heating orded.

3.2.5 Starch digestibility

3.2.5.1 Preparation of defatted potato starch for enzyme hydrolysis

Defatted starch was prepared by soxhiet extraction with 75% aquecus npropanol for 1, 2, 4, 7, 9 and 12 h. The solvent was removed by vacuum evaporation and the starch was air dried to a moisture content of ~ 10%.

3.2.5.2 Preparation of heat-moisture treated potato starch for enzyme hydrolysis

The hest-moisture treatment was essentially that of Sair (1964). Starch (15 g dry basis) was weighed into glass containers. Starch moisture content was brought to 30%. The sealed samples (in glass jans) were heated in a forced air oven (isotemp 6140, Faher Scientific, Fair Lawn, NJ, USA) at 100°C ch 1.3, 6, 8, 10, 16 and 30 h. After cooling the jars were opened and the starch samples airclede to a moisture content -10%.

3.2.5.3 Scanning electron microscopy of enzyme hydrolyzed starches

Granule morphology of native, defatted (75% n-propanol for 7 h) and heat-moleture treated (35% moleture, 100°C; 16 h) starches (Before and after aamylase hydrolysis (72 h)) were studied by using a Hitachi (5570) scanning electron microscope (Nissei Sangyo Inc., Readale, ON, Canada) under the operating conditions mentioned before.

3.2.5.4 Enzymatic hydrolysis

The extent of hydrolysis was determined using a crystalline suspension of porcine pencreatic -a-em/see in 2.9 M saturated sodium chloride containing 3 mM calcium chloride in which the concentration of *a*-am/see was 30 mg/ ml and the specific activity was 70 unite year og of poterio. No unit was defined as the *a*-am/see activity which liberates 1 mg mallose in 3 min at 20°C at pH 6.9. The procedure was essentially that of Korutson *et al.* (1982). Starch (100 mg, db) was suspended in distilled water (25 m) and 5 ml aliquots were placed in a constant temperature water bath at 3°C. Then 4.0 mf of 0.1 M phosphate buffer (61.6) containing 0.06M M NaCl were added to the skmy. The mixture was gently stimed before adding *a*-am/see suspension (12 units / mg starch). The resction mixtures were taken by hand in constant time periods to resuspend the depotated granules. Then 1 ml aliquots were removed at specific the invouval, enciented the 2.2 mf 67% ethanic.and centification

(3000g). Aliquots of the supernatant were analyzed for soluble carbohydrate (Bruner, 1964). Percentage hydrolysis was calculated as the amount (mg) of mailcose released per 100 mg of dry starch. Controls without enzyme, but subjected to the solve experimental conditions, were nu concurrently.

3.2.6 Starch retrogradation

3.2.6.1 Sample preparation for Turbidity measurements

A 2% aqueous supportained polatio starch (native, defatide and heatmoisture treated), near natural pH, was heated in a boiling water bath for 1 h under constant stimp. After fits supportained was coded for 1 h at 25°C, the turbidity was determined by measuring absorbance at 640 nm against a water blank with a Shimadou UV-wileibe spectrophotometer (UV-260, Shimudou Corporation, Kyoto, Japan). The development of turbidity was monitored by storing samples for 1 day, at 4°C followed by 2-35 days 40°C. This sequential inclusion at 4°C and 40°C was applied to obtain externive retrogradiation in a short time by favouring nucleation (formation of crystal nuclei) at 4°C and propagation (growth of crystallites from the nuclei formed) of starch crystallites at 47°C (Wunderkin, 1976).

3.2.6.2 Gel preparation for X-ray diffraction

Gets were prepared (with minor modifications) as described by Krusi & Neukom (1984). A 3% (w/v) potato starch get was prepared by heating the suspension under gentle stimping for 15 min in a bolling water bath. After cooling to 30°C, sufficient starch was added to obtain suspension with 40% (w/v) dy matter. These suspensions were then homogenized for 2 min at 8000 pm and then heated in a forced air own tolemen 6146. Fisher Scientific, Fair Lawn, NJ.

USA) at 110°C for 2 h. After cooling, the gels formed were stored at 4°C for 1 day followed by 29 days at 40°C.

3.2.6.2.1 Gel powder preparation for X-ray diffraction

The procedure (with minor modifications) of Routlet *et al.* (1988) was used to convert feasibly gelatinized and stored gels to a powder prior to examination by X-ray diffraction. The gels were rineed with water, out into small pieces and mixed with 100 mi actones. After homogenization using a polytom (T28 5-1, KA works Inc., Cincinnati, OH, USA) the mixture was left to settle (for 5 min) and then decanted. The liquid was discarded and the rest was transferred to screw cap tubest. Actone was again added, the mixture centrifuged (3000g) and the supernature discarded. The procedure was prepated three times and the remaining mass was then freeze dired.

X-ray diffractograms of gel powders were obtained with a Rigaku RU 200R X-ray diffractometer under the same conditions mentioned previously.

3.2.6.3 Scanning electron microscopy of retrograded starch gels

The specimen preparation of freshly gelatinized and stored (1 day at 4°C) potato starch gels for SEM was carried out as follows : The starches (2%, w/v) were gelatinized under the conditions described for turbidity measurements and then stored for 1 day at 4°C. The gels were then freeze dried and the samples examined and obtomated in # Hattan (5870) scening electron microscope

(Nissei Sangyo Inc., Rexdale, ON, Canada). The SEM operating conditions were carried out as outlined before.

3.2.6.4 Differential scanning calorimetry of retrograded starches

Themail transitions of refrograded starches were investigated using a Perkin-Elmer DSC-2 (Norwak, CT, USA) differential scanning calorimeter equipped with a themail analysis data station. Water (3) was added, with a microsystype to starch (3 mg) in DSC pans, which were then seated, reweighed and kept for 1 h at room temperature. The scanning temperature range and the heating rates were 20-120°C and 10°Cmin, respectively. The heated pans were then cooled to room temperature and atored for 1 day at 40°C followed by 2.7 days at 40°C. After this time period, the pans were left to equilibrate for 1 h at room temperature and then scanned under the same previous conditions. In all measurements an empty pan was used as reference and experiments were repeated at least trios.

The transition temperatures reported are the onset (T_a), park (T_a) and conclusion (T_a) of the retrogradion endotherm. The enthalpy of retrogradion (Δ H_a) was estimated by integrating the area between the thermogram and the baseline under the peak and ecorescel as jouldes per unit weight of dy starch.

3.2.6.5 Enzymatic hydrolysis of retrograded starches

The reactivity of porcine panceatic o-annytase towards freshly galatinized and retograded potato starches was determined as follows : starch samples were dispersed in distilled water to make a 2% suspension. The dispersions were shaken while heated at 100°C for 1 hr. The galatinized starches were cooled to 30°C and then stored at 4°C for 1 day, followed by at 40°C for 14 days. At the end of the storage period, the retrograded gals were freeze dried and converted to powers during tom to ensume therdonivia.

The extent of hydrolysis of the freshly gestitized and reforguted starches was determined using a crystalline suspension of porchare pancreatic α anywhere in 2.0 M startest sodium childric containing 3 mM calcium childrich in which the concentration of α -anylase was 30 mg/ml and the specific activity was 780 units/mg of protein. One unit was defined as the α -amylase activity which illemates 1 mg maltices in 3 min at 20°C at pH 6.9. The details of the procedure have been cultimed before.

3.2.7 Statistical analysis

All experiments were done in triplicate. Analysis of variance was performed using Minitab statistical package (Minitab Inc., 1991). Duncan's new multiple range test was utilized for comparison among means.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 CHEMICAL COMPOSITION OF NATIVE POTATO STARCH

Data on the composition of isolated potato starch are presented in Table 4.1. The chemical composition showed that the starch contained 0.37% ash and 0.01% nitrogen. The nitrogen in isolated starch may come from the internal proteins (residual material from lipid-protein membranes of the original amyloplast or of membrane-bound starch synthesizing systems employed during development) (Galliard 1983), phospholipids containing ethanolamine, choline or endosperm storage proteins (Morrison, 1981). The purity of the starch was judged on the basis of composition and microscopic observations. The low values of nitrogen and ash indicated that the isolated potato starch is of high purity. Total lipids (obtained by acid hydrolysis) in potato starch (0.12%) represent free and bound starch linids. The free linids (obtained by extraction with CHCl₃-CH₃OH) amounted to 0.03%, while the corresponding values for bound lipids (obtained by extraction of the CHCl₂-CH₃OH residue with n-propanol water) was 0.09%. These values are in agreement with those reported by Vasanthan & Hoover (1992b) for notato starch obtained from Sigma Co (St. Louis MO LISA) The difference between total and apparent amylose contents indicates the amount of amylose complexed with lipid. According to the results obtained, the total amylose content was 25.6% of which 16.8% was complexed by native lipids (Table 4.1).

Characteristics	Composition ¹ (%)
Moisture	13.4±0.0
	0.37±0.01
Nitrogen	0.01±0.01
Lipid	
Solvent extracted	
chloroform-methanol2	0.03±0.01
n-propanol-water ³	0.09±0.00
Acid hydrolysed	0.12±0.01
Amylose content	
total ⁵	25.6±0.9
apparent	21.3±0.6
Amylose complexed by lipids ⁷	16.8±0.6
Starch damage	0.3±0.0

Table 4.1 Proximate composition of native potato starch

All data reported on dry basis and represent the mean of 3 determinations.

Lipid obtained from native starch by chloroform-methanol 2:1 (v/v) at 25 °C (mainly unbound lipids).

³Lipid extracted by hot n-propanol water (3:1,v/v) from the residue left after chloroform-methanol extraction (mainly bound lipids).

Lipid obtained by acid hydrolysis (24% HCl) of native starch (total lipids).

⁵Total amylose determined by iodine binding after removal of free and bound lipids.

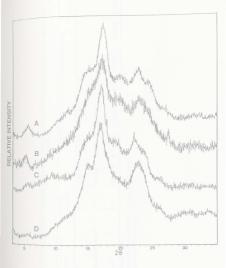
Apparent amylose determined by iodine binding without removal of free and bound lipids.

Total amylose - apparent amylose x 100 Total amylose

4.2 EFFECT OF DEFATTING AND HEAT-MOISTURE TREATMENT ON THE STRUCTURE AND PHYSICOCHEMICAL PREOPERTIES OF NATIVE POTATO STARCH

4.2.1 Morphological granular characteristics

Native potato starch granules were mainly oval to elliptical in shape. The surfaces appeared to be smooth (devoid of cracks or other damages) when viewed under the scanning electron microscope (Fig. 4.1a). Neither defatting (Fig. 4.1b) nor heat-moisture treatment (Fig. 4.1c) altered the shapes or the surface characteristics of the starch parkels.


4.2.2 X-ray diffraction

The X-ray patterns and X-ray internatises of native, deflated and heatmoisture treated potato starches are presented in Fig. 4.2, and Table 4.2. Native potato starch (Fig. 4.2a) exhibited the characteristic 16 type X-ray pattern of tuber tarches with peaks centered at 15.8, 5.2, 4.5, 3.0 and 3.8 Å. Deflating (Fig. 4.2b) resulted in an increase in intensity of the peak centred at 3.9 Å, a decrease in intensity of the peaks at 15.8 and 5.2 Å, elimination of the peak at 4.5 Å and in the appearance of four additional peaks at 2.9, 3.3, 3.8 and 4.6 Å (Table 4.2). Furthermore, defitting changed the X-ray pattern from 16 to X-RF (the X- pattern is characteristic of cereal starches) with intensities at d-spacings of 5.8, 5.2 and 3.8 Å (Fig. 4.2). Neterthinter treatment at 100⁶C, 30% mointer

Fig. 4.1 Scanning electron micrographs of native (A), defatted (B) and heatmoisture treated (C) potato starch granules.

Fig. 4.2 X-ray diffraction patterns of native, defatted and heat-moisture treated (HMT) potato starches. (A) native [moisture content (MCC) 9.5%], (B) defatted (MC 9.3%), (C) HMT [100° C, 30% moisture, 16 h] (MC 9.3%), and (D) HMT [110° , 30% moisture, 16 h] (MC 9.3%).

Starch source and treatment	Moisture content (%)		Interpla	ınar spacing	Interplanar spacing (d) in $\tilde{\mathbb{A}}$ with intensities (cps)^a	intensities	(cps) ^a	
Native	9.5	15.8(581)	15.8(581) 5.2(2362) 4.5(327)	4.5(327)	3.9(867)			
Heat-moisture treated ^b	9.3	16.0(201)	16.0(201) 5.2(2020) 4.0(850)	4.0(850)				
Defatted ^c	9.3	15.0(570)	5.2(1979)	4.6(525)	15.0(570) 5.2(1979) 4.6(525) 3.9(1022) 3.8(935) 3.3(590) 2.9(491)	3.8(935)	3.3(590)	2.9(491)

for 16 h (Fig. 4.2c) decreased the intensity (Table 4.2) of the peaks at 15.8 (the extent of this decrease was higher than that on defatting) and 5.2 Å (similar to that observed on defatting) and increased the intensity (Table 4.2) of the peak at 4.5 Å A change in X-ray pattern 'B' \rightarrow 'A+B' was also observed on heat-moisture treatment. However, the resemblance to the 'A' X-ray pattern was more marked in heat-moisture treatment at 110°C at 30% moisture for 16 h, (Fig. 4.2c) resulted in the elimination of the peak at 15.8 Å (this peak is characteristic of 'B' type starches), an increase in intensity of the peak at 5.2 Å, and in the appearance of two new peaks centered at 5.9 and 3.8 Å. The X-ray pattern (Fig. 4.2d) after heat-moisture treatment (at 110°C) resembled those of cereal starches (Hoover & Vasanthan, 1994a).

The decrease in X-ray intensity on heat-moisture treatment (Table 4.2) can be attributed to crystallite disruption and/or to reorientation of the double helices forming the crystallite array. Imberly *et al.* (1988) and imberly & Perez (1988) have shown that double helices of 'A' and 'B' type starches are packed in a pseudohexagonal array. The lattices of 'B' starch have a large void in which 36 water molecules can be accommodated. This void is not present in 'A' starch. In both 'A' and 'B' arrangements there is a pairing of double helices that "corresponds to 1.1 mm distance between the axes of the two double helices. A transformation from 'B' to A' starch occurs by rearrangement of a pair of double heliose (indexty of 4., 1988). The extert of formation of X' type unit cellels would therefore depend on the kinetic energy of the double helicos involves in this arrangement. This seems plausible, none more 'X' type unit cells are formed when the temperature of heal-moisture treatment is increased from 100 to 110°C (Figs. 4.2c, d). Le Bail ef al. (1993) also demonstrated the development of 'A-B' pattern from 'B' type short drain anylose (35% moisture) when heated to 12°C, whereas center X' how was obtained at 15°C.

The increase in X-ray internatives on detiting (Table 4.2) suggests that a clustering of the outer X chains of am/opactin may have occurred resulting in the formation of ener crystallites (that are perfectly arrayeds to diffract X-ray). It is highly unlikely that the increase in X-ray intensity is due to reorientation of existing crystallites since the moisture and thermal energy (B27C) during detations is too low inpart the nourised listed server for increating of the content of the content of the content intervent interventation.

4.2.3 Swelling factor (SF) and Amylose leaching (AML)

The SF and AML at different temperatures (50-60°C) are presented in Tables 4.3 and 4.4. The SF and AML of native, defaited and heat-moisture treated starches increased with rise in temperature (native > defatted > heatmoisture treated). Both defatting and heat-moisture treatment decreased SF and AML (Tables 4.3 & 4.4), which is in greement with the resulted by State (1902), itowerk 4.5 and hand hand hower & Manuel (1998a).

Table 4.3 Swelling factor of native, defatted and heat-moisture treated potato starches

Starch source and treatment		Swelling factor Temperature (°C	(C)	
	60	70	80	06
Native	21.5±1.2 ^a	34.8±1.0 ^a	56.7±0.9ª	77.8±1.4ª
Heat-moisture treated ¹	5.6±0.3°	10.0±0.5°	12.6±0.4°	20.1±1.1°
Defatted ²	6.7±0.5 ^b	12.6±0.8 ^b	15.8±0.9 ^b	27.4±1.0 ^b

¹Heat-moisture treated (30% moisture, 100°C, 16 h).

Starch source and		Am	Amylose leaching (%)		
treatment	8	8	Temperature [°] C 70	8	6
Native	4.1±0.3 ^a	7.3±0.4	13.6±0.4 ^ª	16.1±0.6 [*]	22.7±1.4"
Heat-moisture treated ¹	0.7±0.2 ^b	1.4±0.6°	3.5±0.4°	6.1±0.5 ^c	8.3±0.6°
Defatted ²	1.5±0.7 ^b	3.2±0.4°	6.6±0.3 ^b	8.4±0.4 ^b	13.4±0.7 ^b
Heat-moisture treated (30% moisture, 100°C, 16 h).	6 moisture, 100°C, 16	h).			

Table 4.4 Amylose leaching of native, defatted and heat-moisture treated potato starches.

^0 Defatted with 75% n-propanol, 7 h. ** **Means within a column with different superscripts are significantly different (p ≤ 0.05).

The decrease in AML, suggests interaction between amylose-amylose (AM-AM) and/or amylose-amylopectin (AM-AMP) chains. These interactions decrease the number of hydroxyl groups that can potentially bind to water molecules. This would then partially explain the decrease in SF on defatting and heat-moisture treatment. Tester & Morrison (1990a,b) have shown, by treatment implies that some of the double helices (free and/or present in plausible, since X-ray diffraction intensities decrease on heat-moisture treatment (Fig. 4.2). Thus, both starch chain interactions and loss of double helical order is less pronounced on defatting due to the interplay of two factors : 1) AM-AM in crystallinity (Fig. 4.2) (which suggests an increase in double helical order)

4.2.4 Differential Scanning Calorimetry

The influence of defatting and heat-moisture treatment on gelatinization temperatures [onset (T_0), mid point (T_c) and conclusion (T_c)] and gelatinization embaley (AI) are presented in Table 4.5. T_{in}, T_i and T_i increased on defating and heat-moisture treatment (heat-moisture treatment > defating). Gelatinization embaley decreased by 5.3 Jug on heat-moisture treatment, and slightly increased on defatting. The gelatinization temperature range (T_i-T_i) increased by 2.5 and 6.0°C, respectively, on defatting and heat-moisture treatment and defatting observations have also been reported on heat-moisture treatment and defatting of cereal, legume and tuber starches (Lorenz & Kulp 1982; Donovan et al., 1983; Subs. 1982; Hoover Vauanthan, 1994; Hoover & Manuel, 1996; b.).

The epidatrization of starch is considered to be a solvent and heat induced melling of crystallites. When starch is heated in excess water, the water penetrates into the more accessible anophous region of the starch granule, resulting in hydration and limited welling. The swelling of the anorphous region inparts a stress on the crystalline region and thereby disrupts the polymer chains in the starch crystalline (Conovan, 1979). Therefore, any starch attributes that suppressed swelling would delay gelatrization and thus lead to a high lead or der an lost concomitantly during gelatinization. Hoover & Manuel (1996a) have shown that the increase in T_a. T_a and T_c on heat-moisture treatment of maize starches follows the order : amylomatize V(65.5 % amylosa) > normal maize (28.9% amylose) > waxy maize (1.2 % amylosa). Furthermore, T_a, remains unchanged in waxy maize, but horeases respectively, by G and

Starch source and		Transition ter	mperatures (°C)		Enthalpy
treatment	To ¹	T _P ¹	Tc ¹	Tc-To ²	$\Delta H (J/g)^3$
Native	54.0±0.9°	61.0±0.6 ^c	65.5±0.8 ^c	11.5±0.3°	16.2±0.4 ^b
Heat-moisture treated ⁵	63.5±0.4ª	73.5±0.5ª	81.0±0.3ª	17.5±0.1ª	10.9±0.8°
Defatted ⁶	59.0±0.5 ^b	65.5±0.4 ^b	73.0±0.3 ^b	14.0±0.2 ^b	17.1±0.2ª

¹To, Tp, & Tc indicate respectively, the temperature of onset, mid point, and end of gelatinization.

³Enthalpy of gelatinization.

^{a-c} Means within a column with different superscripts are significantly different (p≤ 0.05).

8°C, on heat-moisture treatment of normal maize and amylomaize V starches. This indicates that the increase in To, Tp and Tc (Table 4.5) reflect melting of coustallites that were formed solely due to interaction between AM-AM and AMbetween AM-AM and/or AM-AMP chains are stronger on heat-moisture treatment. Therefore, suppression of granule swelling would be greater on heatmoisture treatment than on defatting (Table 4.3). Consequently, the less pronounced in heat-moisture treated than in defatted granules. This would then explain the higher increases in To, To and To on heat-moisture treatment crystalline arrays may have disrupted under the conditions prevailing during

4.2.5 Brabender viscosities (Pasting characteristics)

The pasting characteristics of the starches at a concentration of 6% (w/v) and pH 5.5 were investigated with the Brabender viscoamylograph and the results are presented in Table 4.8. Heat-moisture treatment and detating increased the pasting temperature, by 27.7 and 24.7°C, respectively. The viscolity at 95°C decreased by 1416 BU (Bashendr Units) and 560 BU, respectively, on heat-moisture treatment and defatting. The viscosity during the holding cycle (at 95°C) decreased by 470 BU in native potato starch, whereas it increased by 170 BU and 440 BU, respectively, in heat-moisture treated and defated potato starches. All three starches showed an increase in viscosity during the cooling cycle (defatted > heat-moisture treated > native) [Table 4.8]. Similar observation have been reported for heat-moisture treated and defatted legume (Hoover et al., 1993; Hoover & Vasanthan, 1994a) and tabler (Stute, 1992; Howr & Vasanthan, 19944) starches.

The increased pasting temperature and the decreased viscosity at 95°C on heat-moisture treatment (Table 4.6) reflects, to a large extent, the decrease in granular crystallinity (which decreases both granular right) and the volume fraction occupied by the serollen granulars) and the interaction between AM-AM and/or AM-AMP chains (which decreases granular eveiling). The pasting curve of defated potato starch reflects the interplay between the increase in granular crystallinity (which increases both granular and the volume fraction occupied by the serollen granules) and the interaction between starch chains (which decreases granular swelling). This would then explain the more pronounced changes in the pasting properties on heat-moisture treatment. In native potos starch, the breakdown in viscosity during the holding (Table 4.6)

Starch source and treatment	Pasting temperature (°C)	Viscosity at 95°C (BU ¹)	Viscosity after 30 min at 95°C (BU ¹)	Viscosity at 50°C (BU ¹)
Native	62.3±0.5°	1190±10 ^a	520±10 ^b	715±10 ^b
Heat-moisture treated ²	90.0±0.5ª	50±5°	220±5°	350±5°
Defatted ³	87.0±1.0 ^b	630±5 ^b	1070±15 ^a	1500±15 ^a

²Heat-moisture treated (30% moisture, 100°C, 16 h). ³Defatted with 75% n-propanol, 7 h.

^{a-c}Means within a column with different superscripts are significantly different ($p \le 0.05$).

cycle (at 85°C) can be attributed to weak associative bonding forces within the granule literior. However, the additional interactions that occur between AM-AM and AM-AMP chains on defatting and heat-moisture treatment inpart shear and themai stability during the holding cycle.

4.3 THE EFFECT OF ALKALINE TREATMENT ON THE STRUCTURE AND PROPERTIES OF NATIVE, DEFATTED AND HEAT-MOISTURE TREATED STARCHES

Sodium hydroxide and sodium sulphate are used in the preparation of hydroxypropylated starches to ensure good reaction efficiency and to depress granular swelling and gelanitization. Therefore, it was deemed necessary to investigate the influence of above reagents (under the conditions prevailing during hydroxypropylation, but in the absence of propylene oxide) on the structure and properties of rative, defated and heat-moisture treated starches.

4.3.1 Morphological granular characteristics

The scanning electron micrographs showed that alkali treatment did not alter the shape (oval to elliptical) and appearence of native, defatted and heatmoisture treated starch granules.

4.3.2 X-ray diffraction of alkali treated starches

The X-ray intensities and X-ray patterns of the control starches are presented respectively in Table 4.7 and Fig. 4.3. The X-ray intensities and X-ray patterns of native and defatted starches were drastically altered after alkaline reatment. The altered X-ray patterns (neither 'A', 'B' or 'C') were identical in both starches (Figs. 4.3 a.c). However, for heat-moisture treated starch, X-ray intensities decreased only marginally (Table 4.7) and the X-ray pattern remained unchanned after alkaline treatment (Fig. 4.3b).

4.3.3 Swelling factor (SF) and amylose leaching (AML) of alkali treated starches

In native, defatted and heat-moisture treated starches the SF at all temperatures (60 - 90°C) increased after alkaline treatment (Table 4.8). The increase in SF followed the order : native > defatted > heat-moisture treated. However, AML (at 90°C) in all three starches remained unaffected (Table 4.9) after alkaline treatment.

4.3.4 Differential Scanning Calorimetry of alkali treated starches

In all three starches (native, defatted and heat-moisture treated starches with no added propylene oxide), the gelatinization transition temperatures and the gelatinization transition temperature range (T_{e},T_{e}) remained unaltered after

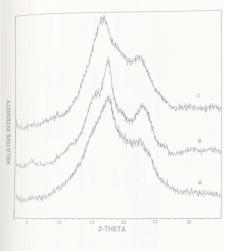

Starch source and treatment	Moisture content (%)		Interpla	inar spacing	(d) in Å with i	ntensities (d	cps)1	
Native								
before treatment	9.5	15.8(581)	5.2(2362)	4.5(327)	3.9(867)			
after treatment ²	9.3		5.3(1212)	4.0(576)				
Heat-moisture treated ³								
before treatment	9.3	16.0(201)	5.2(2020)	4.0(850)				
after treatment ²	9.4	15.8(369)	5.2(1949)	3.8(1069)				
Defatted ⁴								
before treatment	9.3	15.0(570)	5.2(1979)	4.6(525)	3.9(1022)	3.8(935)	3.3(590)	2.9(491)
after treatment ²	9.5		5.4(1426)		3.9(698)			

Table 4.7 X-ray diffraction intensities of the major peaks of native, defatted and heat-moisture treated potato starches before and after alkaline treatment

Counts per second.

²Parent starch treated with NaOH and Na₂SO₄ at 40°C.
 ³Heat-moisture treated (30% moisture, 100°C, 16 h).
 ⁴Defatted with 75% n-propanol, 7 h.

Fig. 4.3 X-ray diffraction patterns of native, heat-moisture treated (HMT) [30% moisture, 100°C, 16 h) and defated (75% - norposition.7 h) potato tachrose after alkaline treatment (NaOH and Na₂SO₄) at 40°C. (A) native after alkaline treatment (MC% 9.3), (B) HMT after alkaline treatment (MC 9.4%), (C) defated after alkaline trathment (MC 9.5%).

lable 4.5. Swelling factor of native, defause and near-noisture treated potato starches before and after allocation to an externation of the startment attention of	r nauve, deraued an alkai	a and neat-moisture tree alkaline treatment	tted potato starches	before and after
Starch source and		Swelling factor		
treatment		Temperature (°C)	_	
	60	70	80	06
Native	21.5±1.2 ^b	34.8±1.0 ^b	56.7±0.9 ^b	77.8±1.4 ^b
Alkali treated ¹	25.9±0.8"	38.9±0.9"	62.2±0.3*	82.1±1.3"
Heat-moisture treated ²	5.6±0.3 ^d	10.0±0.5 ^d	12.6±0.4 ^d	20.1±1.1 ^d
Alkali treated ¹	7.6±0.5°	11.9±1.0 ^c	14.8±1.2 ^c	22.1±0.4°
Defatted ³	6.7±0.5 ^r	12.6±0.8 ^f	15.8±0.9 [′]	27.4±1.0
Alkali treated ¹	9.5±0.4°	14.5±0.5°	19.0±1.0°	30.7±1.0°
¹ Parent starch treated with NaCH and Na ₂ SO, at 40 ^{°C} . Heat-mosture treated (30% statue, 100 ^{°C} , 16 h). ² Destated with 75% n-morganol, 7 h. *Means within a coulum with different superscripts are significantly different (p. 5 0.05).	H and Na ₂ SO ₄ at 40 ⁶ histure, 100°C, 16 h). 7 h. fferent superscripts a	 significantly differe 	nt (p ≤ 0.05).	

Table 4.9 Amylose leaching (at 90°C) of native, defatted and heat-moisture treated potato starches before and after alkaline treatment

Starch source and treatment	Amylose leaching (%)
Native	22.7±1.4ª
Alkali treated ¹	21.9±1.0 ^a
Heat-moisture treated ²	8.3±0.6°
Alkali treated ¹	8.5±0.9°
Defatted ³	13.4±0.7 ⁶
Alkali treated ¹	13.8±0.5 ^b

¹Parent starch treated with NaOH and Na₂SO₄ at 40°C. ²Heat-moisture treated (30% moisture, 100°C, 16 h). ³Defatted with 75% n-propanol, 7 h.

^a^oMeans within a column with different superscripts are significantly different (p ≤ 0.05)

treatment. However, ΔH decreased by 5.3, 1.3 and 1.2 J/ g, respectively, in native, heat-moisture treated and defatted potato starches after alkali treatment (Table 4.10).

4.3.5 Brabender viscosities (pasting characteristics) of alkali treated starches

In all three (native, defatted and heat-moisture treated) starches, the pasting temperature changed only marginally on alkaline treatment (Table 4.11). However, the viscosity at 85°C decreased by 440, 20 and 300 BU, respectively, in native, heat-moisture treated and defatted starches (Table 4.11). Alkaline treatment improved the thermal stability (during the holding period at 95°C) of all three starches.

The principal sequence of events during getatilization is postulitated to be disordering of crystalline dusters, then dissociation of double helices to give locasely ordered (semi random) chains (Fester & Morrison, 1990a). The getalizization endotherm is given by dusters of double helices (formed from the comparatively short free ends of A and B chains in amylopedin) rather than by separated double helices (Tester & Morrison, 1990a). The Alf values mainly reflect the loss of double helical order rather than loss of crystalline register (Cock & Gidley 1992; Withtum *et al.* 1990; 1997). This means that the forces

Starch source and		Transition tem	peratures (°C)		Enthalpy
treatment	To ¹	Tp1	To	Te-To ²	ΔH (J/g) ³
Native	54.0±0.9"	61.0±0.6*	65.5±0.8*	11.5±0.3"	16.2±0.4*
Alkali treated ⁴	54.5±0.2*	61.4±0.1*	66.4±0.6ª	11.9±0.2*	10.9±0.2 ^b
Heat-moisture treated ⁵	63.5±0.4 ⁶	73.5±0.5°	81.0±0.3 ^c	17.5±0.1°	10.9±0.8°
Alkali treated ⁴	63.0±0.0°	73.0±0.2°	80.0±0.1 ^d	17.0±0.4°	9.6±0.1 ^d
Defatted ⁶	59.0±0.5*	65.5±0.4*	73.0±0.3"	14.0±0.2"	17.1±0.2*
Alkali treated ⁴	58.0±0.4°	65.0±0.1°	72.5±0.3	14.5±0.2*	15.9±0.3

Table 4.10 Gelatinization parameters of native, defatted and heat-moisture treated starches before and after alkaline treatment

To, Tp. & Tc indicate respectively, the temperature of onset, mid point, and end of gelatinization.

²Gelatinization temperature range.

³Enthalpy of gelatinization.

⁴Parent starch treated with NaOH and Na₂SO₄ at 40°C, but without addition of propylene oxide.

⁶Heat-moisture treated (30% moisture, 100°C, 16 h).

⁶Defatted with 75% n-propanol, 7 h.

^a Means within a column with different superscripts are significantly different (p≤ 0.05).

Starch source & treatment	Pasting temperature (°C)	Viscosity at 95°C (BU ¹)	Viscosity after 30 min at 95°C (BU ¹)	Viscosity at 50°C (BU ¹)
Native	62.3±0.5 ^b	1190±10 ^a	520±10 ^b	
Alkali treated ²	64.5±0.5ª	750±10 ^b	870±10 ^a	1140±20 ^a
Heat-moisture treated ³	90.0±0.5 ^d	50±5°	220±5 ^d	350±5°
Alkali treated ²	91.5±0.5°	30±5 ^d	130±10°	230±5 ^d
Defatted ⁴	87.0±1.0 ^e	630±5°	1070±15°	1500±15 ^e
Alkali treated ²	87.5±1.0°	330±5 ^f	940±5 ^f	1460±10 ^f

Table 4.11 Brabender viscosities (Pasting properties) of native, defatted and heat-moisture treated potato starches before and after alkaline treatment

¹Brabender units.

²Parent starch treated with NaOH and Na₂SO₄ at 40°C.

³Heat-moisture treated (30% moisture, 100°C, 16 h).

⁴Defatted with 75% n-propanol, 7 h.

^a'Means within a column with different superscripts are significantly different (p ≤ 0.05).

responsible for structural stability of starch granules are largely at the double balical level, and that chain packing energy contributions are insignificant.

disruption of double helices within the amorphous domains of the granule.

The extent of increase in SF (Table 4.8) on alkaline treatment (native > defatted > heat-moisture treated) also suggests that double helices within amorphous regions disrupt (exposes more hydroxyl groups for water interaction) on alkaline treatment.

The decrease in X-ray intensities and the change in the X-ray patterns (Fig. 4.3) of alkali treated native and defatted starches are more likely due to a change in crystallite orientation rather than crystallite disruption (crystallite disruption would have altered the gelatinization transition temperatures).

It is necessary at this stage to give a brief description of the 'A' and 'B' type X-ray patterns of starches, which will allow a subsequent discussion of the changes in X-ray patterns on alkaline treatment. The 'A' X-ray pattern which is typical of cereal starches, consists of chains which are crystallized in a monoclinic lattice unit having the maltotriose as a repeating unit and 4 water molecules per unit cell. The hexagonal sub cell of the 'B' pattern of tuber starches has a more 'open' packing of double helices, and a maltose moiety as an asymmetric unit, and 36 water molecules (at ~27% w/w hydration) per unit cell. Fifty percent of the water is tightly bound to the chains and the other half is only connected to the other water (Imberty & Perez, 1988; Imberty et al., 1988). This indicates that the number of water molecules within the unit cell of the starches used in this study follow the order : native ('B' type unit cell) > defatted ('A'+'B' type unit cell) > heat-moisture treated (mainly 'A' type unit cells). Crystallite reorientation on alkaline treatment (native > defatted) can be attributed to a decrease (native > defatted) in the number of water molecules (due to the dehydrating action of Na-SO₄) within the unit cells of native and defatted starches. Crystallite reorientation does not occur to any significant extent in heat-moisture treated potato starch, since the sulphate ions are unable to access the water molecules within the compactly packed 'A' type unit cells.

The decrease in viscosity 95°C (native > defatted > heat-moisture treated), and the increase in granular resistance towards shear during the holding cycle at 19°C (native > defatted > heat-moisture treated) on alkaline treatment (Table 4.11) suggest an increase in granular rigidity. Amylose leaching (Table 4.9) and DSC (Table 4.10) studies have shown that interactions do not occur between starch chains on sikaline treatment. Therefore, the increase in granular fidity monitors have been solved be to orstalline noteritation.

4.5 EFFECT OF DEFATTING AND HEAT-MOISTURE TREATMENT ON THE HYDROXYPROPYLATION OF NATIVE POTATO STARCH

The extent of hydroxypropyletion was quartified and expressed in terms of Molar substitution (MS). The MS of native, defatted and heat-moisture treated potate starches by hydroxypropy drogs at different level of proyvene oxide (2-25% v/w) are presented in Fig. 4.4. There were no significant difference (a) > 0.05) in MS between the starches up to a level of 5% propylene oxide. Thirerefitte, the extent of MS followed the order : heat-moisture treated > native > detailed.

The extent of MS (at 10% propylene oxide) increased with the time course of heat-moisture treatment, but decreased during the time course of defatting (Fig. 4.5). As described earlier, the amount of amorphous regions within the starch granule increases on heat-moisture treatment, but decrease on defatting. Thus, the differences in MS among the three starches at the same level of

Fig. 4.4 The level of molar substitution (MS) of native, heat-moisture treated and defatted potato starch by hydroxypropyl groups.

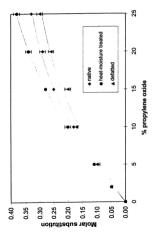
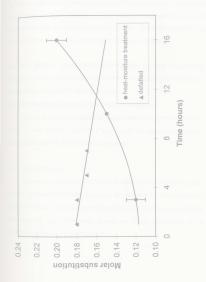



Fig. 4.5 Influence of time of defatting (75% n-propanol) and heat-moisture treatment (30% moisture, 100°C) on MS level.

propylene oxide and the changes in the level of MS with increase in time of heatmoisture treatment and deflating (Fig. 4.5), reflect to a large extent the amount of amophous regions available within the granule interior for substitution by hydroxyprovid routos (heat-motisture treated > native > deflated).

4.5 THE EFFECT OF HYDROXYPROPYLATION ON THE STRUCTURE, THERMAL AND PASTING PROPERTIES OF NATIVE, DEFATTED AND HEAT-MOISTURE TREATED POTATO STARCHES

4.5.1 Morphological granular characteristics of the starch

Scanning electron micrographs showed that hydroxypropylation (MS ≤ 0.28) did not alter the shape (oval to elliptical) and appearence of native, defatted and heat-moisture treated starch granules.

4.5.2 X-ray diffraction

The results showed that substitution of native, defatted and heat-moisture treated starches by hydroxypropy (groups did not affect the X-ray pattern and intensity of the diffracted beam at all levels (MS < 0.28) of molar substitution. This suggests that hydroxypropyl groups are mainly concentrated in the amorbour section of the starch arrune.

4.5.3 Swelling factor (SF)

the SF of hydroxypropylated native starch increased (with reference to control starch), by 28.6, 15.4, 14.3 and 9.6%, respectively as the MS increased from 0 to increase in MS (0.05 \rightarrow 0.25). However, at 70 and 80°C, the SF began to 90°C increased respectively, by 5.3, 18.5, 40.5 and 45% as the MS increased with increase in MS (0.05 \rightarrow 0.28) (Table 4.12). However, at 90°C, the SF began to decrease at MS 0.28. In hydroxypropylated defatted starches, the increase in in MS (0 \rightarrow 0.05), was much higher than that observed for native and heatmoisture treated starches at the same level of MS (0.05). Furthermore, in defatted starches the SF continued to increase with increase in MS (0.05 →

The introduction of bulky hydroxypropyl groups into the starch molecule may be considered as a reaction which disrupts associative hydrogen bonds within the amorphous regions of the starch granule. Thus, the increase in SF

Starch source &	Molar		Swelling fa	actor	
treatment	substitution		Temperatur	e (°C)	
		60	70	80	90
Native	0.00	25.9±0.8 ^d	38.9±0.9°	62.2±0.3 ^b	82.1±1.3 ^b
	0.05	33.3±0.8°	44.9±0.6b	71.1±0.8*	90.0±0.9 ⁸
	0.11	36.0±0.6 ^b	49.8±0.6*	71.1±0.2"	82.6±0.4 ^b
	0.18	37.6±0.6*	50.2±1.3*	71.9±0.4*	81.5±0.8 ^b
	0.25	38.0±0.4*	39.6±1.4°	58.5±1.0°	71.9±0.6 ^d
Heat-moisture treated ²	0.001	7.6±0.5 ^h	11.9±1.0"	14.8±1.2 ^h	22.1±0.4 ^g
	0.05	8.0±1.2 ^h	14.1±1.3 ^h	20.8±0.6 ⁹	32.1±0.4
	0.11	11.1±0.8 ⁹	17.2±0.39	22.5±0.7	33.0±1.1
	0.20	12.6±0.4	18.7±0.7	24.6±0.5*	35.2±1.0°
	0.28	19.5±0.6°	21.9±0.7*	25.7±0.7*	32.0±1.2
Defatted ³	0.001	9.5±0.4 ^m	14.5±0.5 ^m	19.0±1.0 ^m	30.7±1.0 ^m
Donaniou	0.05	15.4±0.4	17.9±0.3	31.1±0.4	51.1±0.8
	0.10	16.6±0.2 ^k	20.5±0.4 ^k	38.1±0.8*	56.4±0.7*
	0.17	20.4±0.5	26.9±1.0	43.1±0.5	60.2±0.6
	0.20	28.0±0.6	38.0±1.1	55.8±1.0	70.6±0.6

Table 4.12 Swelling factor of hydroxypropyl native, defatted and heat-moisture treated potato starches

¹Parent starch treated with NaOH and Na₂SO₄ at 40°C. ²Heat-moisture treated (30% moisture, 100°C, 16 h).

³Defatted with 75% n-propanol, 7 h.

^{em}Means within a column with different superscripts are significantly different (p ≤ 0.05).

with increase in MS could be attributed to interaction of water molecules with the released hydroxyl groups of the starch chains (which were previously hydrogen bonded), and with the hydroxyl group of the hydroxypropyl chain. Polysubstitution on hydroxypropyl substituents already present will not increase the amount of hydroxyl groups. Thus, the marginal increase in SF with increase in MS could only be attributed to increased disruption of the associative hydrogen bonds by the hydroxypropyl groups. The decrease in SF observed at 70 and 80°C for native hydroxypropylated potato starch at MS 0.25 could be attributed to disruption (due to increased flexibility of the hydroxypropyl chains at these temperatures) of the associative bonding forces within the amorphous regions of the granule. This disruption of local order would reduce the rigidity of the granule, thereby decreasing its ability to swell. This seems plausible since at 80°C the docrease in SF begins at a much lower MS (0.11).

As discussed earlier, heat-moisture treatment causes additional interactions to occur between starch chains in the amorphous region. This, would then explain why the observed decrease in SF only occurs at higher temperatures (50°C) and at higher levels of MS (0.28) in hydroxypropylated heatmoisture treated starch.

The increase in granular crystallimity that occurs on defatting (Fig. 4.2), increases granular rigidity. Thus, in defatted starch, even though associative bonding forces (within the amorphous regions) are disrupted (by heat and by the motion of the flexible hydroxypropyl groups), the granules do not collapse to the

same extent as in native and heat-moisture treated starches. The increase in SF with increase in MS (for defatted starch) within the temperature range of 60-90°C thus stands explained (Table 4.12).

4.5.4 Amylose leaching (AML)

The extent of amyose leaching at 80°C docreased with increase in MS (Table 4.13). The extent of AML at this temperature was 4.9, 2.1 and 4.0, respectively for naive (MS 0.25), heat-moisture freated (MS 0.22) and definite (MS 0.20) starches. The interaction of the bulky hydroxypropyl groups with amylose chains probably prevents their diffusion out of the granule during thermal treatment.

4.5.5 Differential scanning calorimetry (DSC)

The entibulises (aH) of gelatrikization and the gelatrikization transition temperatures (T_n , T_p and T_n) of native, defated and heat-moisture treated hydroxypropylated starches, are presented in Table 4.14. In all starches, increase in the level of MS resulted in a decrease in AH, T_n , T_n and T_p and a broadering of the gelatrikization temperature range (T_cT_0). DSC results, similar to this study, have been reported for hydroxypropilated pea starch (Hoover *et al.*, 1988), hydroxypropylated ince starch (Seev & Thevanalar, 1963), hydroxypropylated potato starch (Kino & Elisson, 1980) and hydroxypropylated mails:

Starch source and treatment	Molar substitution	Amylose leaching (%)
Native	0.001	21.9±0.7 ⁸
	0.05	17.1±1.0 ^b
	0.11	14.3±0.3°
	0.18	7.9±1.0 ^d
	0.25	4.9±0.2°
Heat-moisture treated ²	0.00 ¹	8.5±0.9 ^f
	0.05	7.6±0.6 ^f
	0.11	6.1±0.4 ⁹
	0.20	4.5±0.6 ^h
	0.28	2.1±0.7 ⁴
Defatted ³	0.00 ¹	13.8±0.5 ¹
	0.05	11.9±0.4 ^k
	0.10	9.8±0.6 ¹
	0.17	6.7±0.8 ^m
	0.20	4.6±0.5 ⁿ

Table 4.13 Amylose leaching of hydroxypropyl native, defatted and heat-

Heat-moisturetreated (16 h, 100°C/ 30% moisture).

^{asymeans} within a column with different superscripts are significantly different ($p \le 0.05$).

Starch source and	Molar		Transition	temperatures (%	C)	Enthalpy
treatment	substitution	To1	Tp'	Te ¹	Te-To2	$\Delta H (J/g)^3$
Native	0.004	54.5±0.2	61.4±0.1	66.4±0.6*	11.9±0.2	10.9±0.2 ^b
	0.11	47.1±0.1 ^b	56.2±0.4 ^b	64.0±0.2 ^b	16.9±0.3°	9.6±0.2°
	0.18	44.0±0.2°	53.1±0.2°	63.0±0.1 ^b	19.0±0.2 ^b	8.0±0.1 ^d
	0.25	41.0±0.3 ^d	52.0±0.2 ^d	61.0±0.2°	20.0±0.3	7.4±0.2*
Heat-moisture treated ⁵	0.004	63.0±0.0*	73.0±0.2*	80.0±0.1°	17.0±0.4 ⁹	9.6±0.1*
	0.11	54.0±0.3	61.0±0.1	73.5±0.4	19.5±0.2	4.7±0.1
	0.20	52.0±0.3 ⁸	60.1±0.4 ⁹	72.0±0.1 ⁹	20.0±0.6	2.7±0.19
	0.28	47.3±0.4 ^h	59.8±0.2 ⁹	69.7±0.3 ^h	22.4±0.2*	2.0±0.3h
Defatted ⁶	0.004	58.0±0.4	65.0±0.1	72.5±0.3	14.5±0.2	15.9±0.3
	0.10	51.0±0.7	57.0±0.2	68.0±0.2	17.0±0.5	11.1±0.2
	0.18	49.5±0.1*	55.0±0.1*	69.0±0.2*	19.5±0.3	9.2±0.2*
	0.20	48.5±0.2	56.0±0.4	69.5±0.2	21.0±0.1	8.4±0.1

Table 4.14 Gelatinization parameters of hydroxypropyl native, defatted and heat-moisture treated starches

¹To, Tp. & Tc indicate respectively, the temperature of onset, mid point, and end of gelatinization.

²Gelatinization temperature range.

³Enthalpy of gelatinization.

⁴Parent starch treated with NaOH and Na₂SO₄ at 40°C.

⁵Heat-moisture treated (30% moisture, 100°C, 16 h).

6Defatted with 75% n-propanol, 7 h.

⁴⁴ Means within a column with different superscripts are significantly different (p≤ 0.05).

(Wootton & Bamunuarachchi, 1979). At excess water content (as used in this study), potato starch develops only one endotherm (G transition). Donovan (1979) postulated that the G endotherm is due to the solvation assisted transition resulting from hydration and swelling of the amorphous region that facilitates the matting of crystallites during heating. The results indicate that the decrease in $T_{\rm e}$, $T_{\rm p}$ and $T_{\rm c}$ on hydroxypropylation is due to disruption of the hydrogen bonds between starch chains in the amorphous regions by the hydroxypropyl groups. This increases the mobility of the starch chains which decreases the glass transition (Tg) temperature (Seow & Thevamalar, 1993) and indirectly the meting temperature of starch crystallites.

The decrease in ΔH on hydroxypropylation (Table 4.14) suggests that hydroxypropyl groups disrupt double helices (due to rotation of the flexible hydroxypropyl groups) within the amorphous regions of the granulé. Consequently, the number of double helices that unravel and mell during gelatinization would be higher in unmodified than in hydroxypropylated starches. Due to crystallite disruption on heat-moisture treatment, the thermal motion of hydroxypropyl groups within the amorphous regions would be of a greater order of magnitude in heat-moisture treated than in native starch. Thus, at the same level of MS (0.11), more double helices would be disrupted in heat-moisture treated than in native starch granule. Consequently, the number of double helices that unravel and melt during gelatinization would be lower (this represents a large decrease in ΔH) in the former. The extent of decrease in AH on hydroxypropylation should have been theoretically lower in defatted than in native starch due to the following reasons : 1) lower degree of molar substitution in defatted starch and 2) increase in crystallinity on deffating (Fig. 4.2). However, as discussed earlier, crystallite reententation occurs in both native and defatted (defatted > native) starches (Fig. 4.3 and Table 4.7) on treatment (at 40°C) with the alkaline reagents used during hydroxypropylation. Therefore, it can be postulated that after reorientation, the crystallites of defatted starch are not packed closely enough to significantly influence the mobility of the hydroxypropylopianis within the amorphous regions.

4.5.6 Brabender viscosities (Pasting properties)

The data in Table 4.15 summarizes the pasting characteristics of native, defatted and heat-moisture treated starches after hydroxypropylation. The pasting temperature of all starches decreased with increase in MS. Similar observations have been made on hydroxypropylated buffalo gourd (Butter *et al.*, 1985) and pea starch (Hoover *et al.*, 1988). Increases in the level of MS progressively increased the viscosity at 95°C for defatted starch (Table 4.15). However, for native and heat-moisture treated starches, an increase in the level of MS (beyond 0.18 and 0.20, respectively), resulted in a decrease in viscosity at 95°C. The changes in pasting temperature and viscosity with increase in MS levels are a reflection of the decrease in the strength of the associative bonding forces within the micellar network and to increases in SF (Table 4.12). The

Starch source & treatment	Molar substitution	Pasting temperature (°C)	Viscosity at 95°C (BU ¹)	Viscosity after 30 min at 95°C (BU ¹)	Viscosity at 50°C (BU ¹)
Native	0.00 ² 0.11	64.5±0.5 ^a 57.5±1.0 ^b	750±10 ^c 1050±10 ^b	870±10 ^a 550±5 ^b	1140±20 ^a 580±10 ^c
	0.18	56.2±0.5 ^b	1200±15 ^a	540±5 ^b	670±5 ^b
	0.25	52.0±0.5°	760±10°	380±5 ^d	410±5 ^d
Heat-moisture treated ³	0.00 ²	91.5±0.5°	30±5 ^h	130±10 ^h	230±5 ^h
	0.11	79.5±0.5	190±10 ⁹	250±15 ⁹	360±10 ⁹
	0.20	67.5±1.0°	430±10 ^e	580±10°	850±15°
	0.28	60.0±1.0 ^h	310±5 ^f	340±5 ^r	480±10 ^f
Defatted ⁴	0.002	87.5±1.0 ¹	330±5 ¹	940±5 ^m	1460±10 ¹
	0.10	74.3±0.5	900±15 ^k	1090±10	1300±5 ^m
	0.17	66.0±0.5 ^k	1025±15	1060±15	1210±10 ⁿ
	0.20	61.5±0.5	1300±10 ¹	870±10 ⁿ	940±10°

Table 4.15 Brabender viscosities (Pasting properties) of hydroxypropyl native, defatted and heat-moisture treated potato starches

Brabender units.

²Parent starch treated with NaOH and Na₂SO₄ at 40°C.

³Heat-moisture treated (30% moisture, 100°C, 16 h).

⁴Defatted with 75% n-propanol, 7 h.

^{a-o}Means within a column with different superscripts are significantly different ($p \le 0.05$).

decrease in the viscosity at 96°C seen at MS levels of 0.25 (native) and 0.28 (heat-molisture treated) can be attributed to the decrease in SF (at 90°C) that occurs at the above MS levels for both native and heat-molisture treated starches (Table 4.12).

4.6 STARCH DIGESTIBILITY BY PORCINE PANCREATIC @-AMYLASE

4.6.1 Enzyme hydrolysis of native, defatted and heat-moisture treated potato starches

The extent of hydrolysis of native, deflated and heat-moisture treated potato starches by porcine pancreatic a-amylase at different time intervals are presented in Table 4.16. Both defating and heat-moisture treatment increased (heat-moisture treatment > defatting) the susceptibility of potato starch granules towards hydrolysis by a-amylase. For instance, hydrolysis (at the end of 72 h) increased by 25.6 and 17.3%, on heat-moisture treatment and defatting (Table 4.16), respectively. It has already been shown that crystalline regions of potato starch granules disrupt on heat-moisture treatment. Consequently, the amount of amorphous regions available for enzyme hydrolysis would increase after themmoisture treatment. This would then explain the difference in reactivity of native and heat-moisture treated starches towards enzyme hydrolysis. It has also been abovn that defatting increases the crystallinity of potato starch granules. On this basis, defatted carries should have been less succeedites the nan were carringen to the start the start of the start of the start of granules.

			amylase	356				
Starch source				Hydrol	Hydrolysis (%)			
and treatment				PT-	Time (h)			
	0.5	-	6	ŝ	80	24	48	72
Native	0.2±0.1 ^b	0.5±0.2 ^b	0.2±0.1 ^b 0.5±0.2 ^b 3.3±0.5 ^b		5.4±0.5 ^b 7.7±0.4 ^b 14.1±0.8 ^b 16.5±0.6 ^c	14.1±0.8 ^b	16.5±0.6°	20.1±0.4°
Heat-moisture treated ¹ 4,1±0.2 ⁸ 5,8±0,1 ⁸ 13,5±0,4 ⁸ 18,1±0.2 ⁸ 26,8±0.7 ⁸ 34,8±1.1 ⁸ 40,5±0.2 ⁸ 45,7±0.5 ⁸	4.1±0.2 ⁸	5.8±0.1	13.5±0.4°	18.1±0.2 [*]	26.8±0.7*	34.8±1.1*	40.5±0.2*	45.7±0.5*
Defatted ²	0.4±0.2 ^b	1.0±0.4 ^b	3.9±0.3 ^b	6.1±0.4 ^b	0.4±0.2 ^b 1.0±0.4 ^b 3.9±0.3 ^b 6.1±0.4 ^b 8.6±0.5 ^b 18.5±1.0 ^c 29.5±1.1 ^b 37.4±0.3 ^b	18.5±1.0°	29.5±1.1 ^b	37.4±0.3 ^b

Table 4.16 Hydrolysis of native, defatted and heat-moisture treated potato starches by porcine pancreatic or

¹Heat-moisture treatment (30% moisture, 100°C, 16 h).

²Defatted with 75% n-propanol for 7h.

^{4 c}Means within a column with different superscripts are significantly different (p ≤ 0.05).

towards hydrolysis by c-amylese. Vasamhan & Hoover (1992a) have shown that amylose chains entrapped within adjacent chain clusters of amylopedin are released into the amorphous regions on defatting. Thus, more amylose chains would be available for c-amylese action in defatted than in native granules. This would then explain the increase in hydrolysis on defatting.

The mode of attack by examplase on native, definited and heat-moisture treated star-thes was investigated by scanning electron microscopy (Figs. 4.6.er). The attack of exampless (F.2 h) on matise (Figs. 4.6.b.). During the same time period, granules of definet (Figs.4.6.c.), and heat-moisture treated (Figs. 4.6.c.), starches were more extensively attacked by o-amylase than those of native starches were extensively encoded and were covered with numerous pits of varying size, ranule splitting was more evident in heat-moisture treated than in definite.

The influence of time of heat-moisture treatment and defatting on the susceptibility of potato starch granules towards o-amylase hydrolysis (24 h) are presented in Tables 4.17 and 4.18 respectively, Heat-moisture treatment for 1, 3, 6 and 8 h, respectively, increased hydrolysis by 176, 218, 24.8 and 29.1%. However, the above ford was not closerved in granules which were heat-

Fig. 4.6 Scanning electron micrographs of native (A, B), defatted (C, D), and heat-moisture treated (E, F) potato starch granules hydrolyzed by porcine pancreatic α -amylase for 72 h.

Time of heat-moisture treatment ¹ (h)	Hydrolysis ² (%)	
Control (native potato starch)	14.1±0.8 ⁹	
1	31.7±1.2*	
3	35.9±0.5 ^{od}	
6	38.9±0.8 ^b	
8	43.5±1.1*	
10	37.5±1.2 ^{bc}	
16	34.8±1.1 ^d	
30	28.6±1.0 ^r	

Table 4.17 Effect of time of heat-moisture treatment on hydrolysis of potato starch by porcine pancreatic α-amylase

¹Heat-moisture treatment (30% moisture, 100°C).

²Hydrolysis with α-amylase (12 units / mg starch, 24 h).

 sg eans within the same column with different superscripts are significantly different (p ≤ 0.05).

Fime of defatting ¹ (h)	Hydrolysis ² (%)
Control (native potato starch)	14.1±0.8°
1	13.4±0.9 ^{od}
2	13.6±0.6 ^{cd}
4	14.8±0.8°
7	18.5±1.0 ^b
9	20.8±0.6*
12	12.6±0.4 ^d

Table 4.18 Effect of time of defatting on hydrolysis of potato starch by porcine pancreatic c-amylase

Defatting with 75% n-propanol.

²Hydrolysis with α-amylase (12 units / mg starch, 24 h).

^{a-d}Means within the same column with different superscripts are significantly different ($p \le 0.05$).

moisture treated for periods exceeding 8 h. For instance, after 10, 16 and 30 h. the increase in hydrolysis was 23.4, 20.7 and 14.5%, respectively (Table 4.17). Significant differences in hydrolysis between native and defitted statures were observed only after 7 h defatting (Table 4.18). Hydrolysis increased by 5.1 and 6.4%, respectively, in starches defatted for 7 and 9 h. (Table 4.18). However, potalo starch defatted for 12 h was hydrolyzed to a lesser extent (12.6%) than native starch (14.7%) Table 4.18).

As discussed earlier, crystallite destruction occurs on heat-moisture treatment. Consequently, more amorphous regions are made available for aamylase action than in native starch. This would then explain the progressive morease in hydroxis during the first 8 of heat-moisture treatment (Table 4.17).

Hoover & Vasanthan (1994a) have shown that in potent stards, AM-MA and AM-AMP interactions accur during heat-molature treatment (100°C, 30% molature, 16). In difference in enzyme succeptibility between heat-molature treated starches for periods greater than 8 h, and heat-molature treated starches for less than 8 h (Table 4.17) suggests that heat-molature treated starches for less than 8 h (Table 4.17) suggests that heat-molature treatment for periods greater than 8 h induces interactions to occur between AM-AMP chains. These interactions lead to the formation of new cystallites which reduce the accessibility of α-amylase to the glycosidic linkages of the starch chains. The data also suggests that cystallite damption does not occur to any significant event beyood 60 for heat-molature treatment.

The X-ray intensity of the peak centred at 5.2 Å (Table 4.19 and Fig. 4.7), also suggests that new crystallifes begin to form only after 6 h of heat-moisture treatment, For instance, at 1, 6, 16 and 30 h of heat-moisture treatment, the intensity of the 5.2 Å peak, was 1674, 1575, 2105 and 2800 goa, respectively. The reduction in peak intensity at 8 Å, hindicase syntallife disruption.

Amylose complexed with lipids has been shown to significantly reduce the availability to a-amylase in vitro (Holm et al., 1983; Biliaderis et al., 1985). The results (Table 4.18) indicate that the increase in hydrolysis on defatting could be due to the interplay of two factors : (1) lipid removal and (2) the availability of more free amylose chains for α-amylase action (Vasanthan & Hoover, 1992a). This seems plausible since granule susceptibility to a-amylase continues to increase (Table 4.18) even after complete lipid removal (lipid removal is completed after 7 h of defatting (Fig. 4.81). Defatting beyond 9 h decreases hydrolysis (Table 4.18) possibly due to AM-AM, AM-AMP and AMP-AMP interactions. The progressive change in X-ray diffraction patterns during defatting (0-12 h) [Fig. 4.9] may also reflect that changes occurred in the crystalline pattern of the starch granule. These interactions probably result in the formation of double helices which are resistant to a-amvlase action. Thoma (1968) postulated that the enzyme catalyzed hydrolysis of the α -D (1 \rightarrow 4)alwasidic band of the starch molecule involves enzyme induced ring distortion of one of the D-glucosyl residues from the 4C1 'chair' conformation to a 'half chair'

	on intensities of the 5.2 Å peak with time course of heat-moisture treatment
Time of heat moisture	Y-revintensities of the neak

Time of heat-moisture treatment ¹ (h)	X-ray intensities of the peak centered at 5.2 Å (cps) ²
1	1674
8	1575
16	2105
30	2809

¹At 100°C, 30% moisture. ² Counts per second.

Fig. 4.7 X-ray diffraction patterns of potato starches heat-moisture treated for (A) 0 h, (B) 1 h, (C) 8 h, (D) 16 h and (E) 30h.

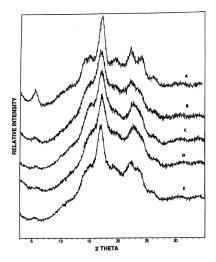


Fig. 4.8 The influence of defatting time on the extent of lipid removal from native potato starch.

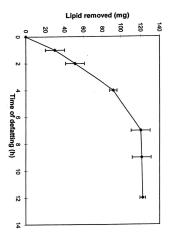
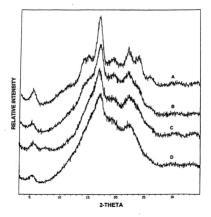



Fig. 4.9 X-ray diffraction patterns of potato starched defatted for (A) 0 h, (B) 1 h, (C) 7 h, and (D) 12 h.

conformation (Fig 2.28b). This ing distortion decreases the enthalpy of activation and increases the susceptibility of the glucosyl residues to nucleophilic stack by functional groups on the enzyme and water. Lassid of al. (2019) have shown that ring distortion or a 'half chair' conformation is involved in the transition state of α-emylase. It is therefore plausible that conformational changes (chair-half chair) during α-emylase hydrolysis may be difficult for those amylose chains that form double helices during defatting. This would then explain the decrease in hydrolysis when defatting is confutured beyond 9 h. This decrease in hydrolysis cannot be due to crystallite formation (resulting from aggregation of the newly formed double helices) since X-ray diffraction intensities did not change during the time course of defation (not shown).

4.6.2 influence of alkali on enzyme hydrolysis of native, defatted and heatmoisture treated potato starches

The influence of the alkaline conditions used during hydroxypropylation on enzyme digestbilly of native, defatted (7 h) and heat-molature treated (30% molature, 100°C, 16 h) polato startex are presented in Table 4.20. Alkaline treatment increased the susceptibility of the above startex (native > defatted > heat-molature treated) towards hydrolysis by α-amylase. For instance after 24 h, hydrolysis was increased by 20.0, 0.7% and 12.2%, respectively, in alkali treated native, heat-molature treated and defatted starches (Table 4.20).

Starch source and treatment	Propylene oxide added (%v/w)	Molar substitution	Hydrolysis ¹ (%)
Native (alkali treated) ²	0	0.00	34.1±0.3°
	2	0.05	33.5±1.1°
	5	0.11	35.4±1.0°
	10	0.18	39.7±1.1 ^b
	15	0.25	44.5±0.9ª
	20	0.29	39.0±0.9 ^b
Heat-moisture treated (HMT)3			34.8±1.1*
HMT (alkali treated) ²	0	0.00	35.5±1.0%
	2	0.05	37.5±0.9 ^{kg}
	5	0.11	37.9±1.1
	10	0.20	44.4±1.0 ^e
	15	0.28	30.5±0.4
	20	0.34	26.2±1.0
Defatted			18.5±1.0°
Defatted (alkali treated) ²	0	0.00	30.7±0.3"
	2	0.05	38.2±0.7
	5	0.10	39.7±0.5
	10	0.17	42.3±0.7*
	15	0.20	43.1±0.9 ^k
	20	0.26	35.5±0.6 ^m

Table 4.20 Hydrolysis of native, defatted and heat-moisture treated potato starches by porcine pancreatic α -amylase before and after hydroxypropylation

¹Hydrolysis with α-amylase for 24 h/12units/mg starch.

²Parent starch treated with NaOH and Na₂SO₄ at 40°C.

³Heat-moisture treatment (16 h / 100°C /30% moisture).

⁴Defatted with 75% propanol for 7 h.

^{a o}Means within a column with different superscripts are significantly different ($p \le 0.05$).

The increase in hydrolysis on alkaline treatment can be attributed to the interplay of three factors : 1) disruption of double helices (within the amorphous regions) in the presence of the alkaline reagents. (This would provide a-amviase greater accessibility to the glycosidic linkages); 2) Ionization of the hydroxyl groups on adjacent starch chains which results in a partial separation of protons leaving the core of the starch negatively charged (repulsion between negatively charged starch chains would increase hydrolysis, by increasing the degree of accessibility to a-amylase); and 3) an increase in granular solubility resulting from appreciation of water dipoles around the negatively charged centres. Double helices within the amorphous regions have been shown to disrupt during heatmoisture treatment. Consequently, fewer double helices would be present in heat-moisture treated starch than in native and defatted starches. Thus, the number of double helices that disrupt during alkali treatment would be of a lower order of magnitude in heat-moisture treated than in native and defatted starch granules. This would then explain the smaller increase in α-amylase hydrolysis after alkaline treatment of heat-moisture treated starch. The different responses shown by alkali treated native and defatted starches towards hydrolysis by qamylase can de attributed to the greater degree of crystallinity (a higher degree of crystallinity would hinder the penetration of the alkaline reagents into the granule interior) inherent within granules of defatted starch (Vasanthan & Hoover, 1992a). This would then explain the observed increase in hydrolysis

(native > defatted > heat-moisture treated) after alkaline treatment. The influence of factors 2 and 3 on hydrolysis is probably of the same order of magnitude in all three starches.

4.6.3 The influence of the level of hydroxypropylation on enzyme hydrolysis of native. defatted and heat-moisture treated starches

The susceptibility of native, heat-moisture treated and defatted potato starches towards hydrolysis by o-amyslase increased with increase in MS levels. However, granular susceptibility began to decrease at MS levels of 0.29 (native), 0.28 (heat-moisture treated) and 0.28 (defatted) (Table 4.20).

Studies on the effect of varying MS levels on hydrolysis of hydrolysropylated starches have been conducted on wheat starch (Wootton & Chaudhy, 1991), maxix, wavy maize and high amyose maize starches (Molid Azemi & Wootton, 1985, 1995; Hahn & Hood, 1980), potato starch (Leegwater & Luten, 1971) and pee starch (Hoover et al., 1988), Wootton & Chaudhy (1981) ahowed that an increase in MS (0.03-0.17) increased the digestibility of raw wheat starch by pancreatic o-amylase. However, a similar increase in MS for postulated that the increased digestibility of raw starches with higher MS is probably due to the greater tendency of more highly substituted starches to swell in odd water (TMI) would allow better access of the excreme to the substrate).

However, the reduction in digestibility of gelatinized starch with increase in MS was attributed to greater reduction of enzyme attack by increasing number of substituent groups. Mohd Azemi & Wootton (1985) showed that hydrolysis of gelatinized normal, waxy and high amylose maize starches decreased with increase in the level of MS (0.05→0.13). A similar increase in MS levels for raw normal and high amylose maize starches, resulted in decrease in digestibility at lower MS levels, followed by increases at higher MS levels (> 0.07). However, the digestibility of raw waxy maize starch showed a continuing drop as MS increased. Hahn & Hood (1980) showed that dimethyl sulphoxide solubilized hydroxypropylated waxy maize starch was hydrolyzed to a lesser extent than its unmodified counterpart. However, the extent of hydrolysis was not influenced by increases in MS. Leeqwater & Luten (1971) showed that the digestibility of gelatinized potato starch by large amounts of pancreatin decreased exponentially with increase in the degree of substitution $(0.02 \rightarrow 0.45)$ Hoover et al. (1988) showed that the digestibility of raw field pea starch decreased with increase in MS up to a level of 0.08. Further increases in MS caused an increase in digestibility which was higher than that observed for native starch.

4.7 RETROGRADATION STUDIES ON POTATO STARCHES

4.7.1 Turbidimetric and microstructural analysis

4.7.1.1 Initial turbidity and scanning electron microscopy of fresh pastes of native, defatted and heat-moisture treated potato starch pastes

Turbidity development in native, defatted and hearmoisture treated polato starch pastes during 24 h of storage at 4°C is described in Figs. 4.106, 4.116 and 4.126. The initial turbidity of the gelatitized starch pastes followed the order : heat-moisture treated (Fig. 4.12a) > defatted (Fig. 4.11a) > native (Fig. 4.10a). The palet of freshly gelatitized native potato starch pastes was devoid of granule remnants and consisted of large sheets of leached amylotes and anylopedin (Fig. 4.13a) (Jacobson et al., 1907). However, fresh pastes of defatted (Fig. 4.13c) and heat-moisture treated : (Fig. 4.13e) starchess consisted of granule remnants (heat-moisture treated : defatted) consided by a matix of eached amyces and amylocedin.

Turbidly effects have their origin in refractive index fluctuation over a distance scale comparable to the wavelength of observation. In a polymersolvent system this is caused by density luctuations over the same distance scale and is most likely due to extensive polymer-polymer aggregation (Gildey & Bulpin (1969) have shown, on the basis of their studies of amyose aggregation in aquous systems, that even at the onset of detectable turbidly, highly aggregated polymer structures are present. Craig *et al.* (1969) have dassified starts basis in of three statepoise aggregation on the behaviour (in turbidly.)

Fig. 4.10 Time course of turbidity development in native potato starch stored at $4^{\circ}C$ (A) and $40^{\circ}C$ (B).

native; ■ alkali treated native (MS 0.00); ▲ hydroxypropylated native (MS 0.11); X hydroxypropylated native (MS 0.18); * hydroxypropylated native (MS 0.25).

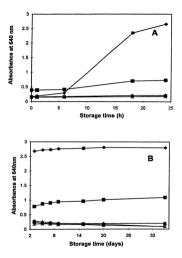
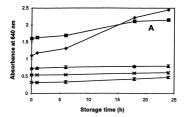



Fig. 4.11 Time course of turbidity development in defatted potato starch stored at $4^{\circ}C$ (A) and $40^{\circ}C$ (B).

 ♦ defatted; ■ alkali treated defatted (MS 0.00); ▲ hydroxypropylated defatted (MS 0.10), X hydroxypropylated defatted (MS 0.17), + hydroxypropylated defatted (MS 0.20).

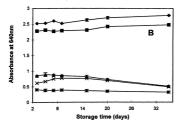
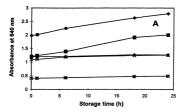



Fig. 4.12 Time course of turbidity development in heat-moisture treated potato starch stored at 4°C (A) and 40°C (B).

♦ heat-moisture treated; ■ alkali treated heat-moisture treated (MS 0.00); ▲ hydroxypropylated heat-moisture treated (MS 0.11); X hydroxypropylated heat-moisture treated (MS 0.20); * hydroxypropylated heat-moisture treated (MS 0.28).

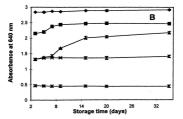


Fig. 4.13 Scanning electron micrographs of freshy gelatrized and stored (2.4 h at 4^oC) polato starch (2.5 head better hallve polato starch, (2.5 brote defined polato starch, (2.6) stored defined polato starch, (2.6) stored defined polato starch, (2.6) stored head-moisture treated polato starch, (7.6) stored head-moisture treated polato starc

Fig. 4.14 Scanning electron micrographs of gelatinized and stored (24 h at 4° C) alkali treated native potato starch pastes. (A) & (B) fresh paste; (C) & (D) stored paste.

Fig. 4.15 Scanning electron micrographs of freshly gelatinized and stored (24 h at 40°C) pastes of alkali treated defatted potato starch : (A) & (B) freshly gelatinized defatted starch, (C) & (D) stored defatted starch.

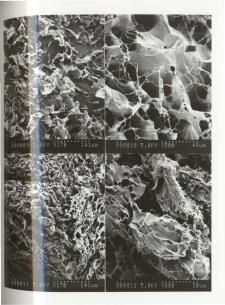


Fig. 4.16 Scanning electron micrographs of freshly gelatinized and stored (24 h at 4°C) starch pastes of alkali treated heat-moisture treated potato starch : (A) & (B) freshly gelatinized heat-moisture treated starch, (C) & (D) stored heat-moisture treated starch.

decrease in light absorbance (in spite of an increase in the amount of granule remnants) on alkaline treatment of heat-moisture treated starch (Fig. 4.12a) is probably due to decreased interaction between leached amylose and/or amylopectin chains (compare freshly gelatinized heat-moisture treated gel [Fig. 4.13e] and freshly gelatinized alkali treated heat-moisture treated gel [Fig. 4.13e]).

4.7.1.3 Initial turbidity and scanning electron micrographs of hydroxypropylated native, defatted and heat-moisture treated starches

The initial absorption of alkali treated starches decreased on hydroxypropylation (Figs. 4.10a, 4.11a, 4.12a). In alkali treated native starch, absorption decreased by 58.9% at MS levels of 0.11 and 0.18, whereas, at MS 0.25 the corresponding value was 61.2% (Fig 4.10a). In alkali treated defatted starch, absorption decreased by 54.3, 66.2 and 80%, respectively, at MS 0.10, 0.17 and 0.20 (Fig. 4.11a). Whereas, in alkali treated heat-moisture treated starch, absorption decreased by 24, 10.0, 66.6%, respectively, at MS 0.11, 0.20 and 0.28 (Fig. 4.12a).

Scanning electron micrographs of freshly gelatinized pastes of native, defatted and heat-moisture treated starches after hydroxypropylation (under sikaline conditions) are presented in Fig. 4.17. Granules of all starches were disrupted on hydroxypropylation. The disrupted granules of hydroxypropylated (MS 0.11) native starch (Fig. 4.17a) and hydroxypropylated (MS 0.10) defatted

Fig. 4.17 Scanning electron micrographs of freshy getatritized and stored (24 h at 4 °C) pastes of hydroxypropiated polato starches : (A) fresh hydroxypropylated (MS 0.11) native starch: (B) stored hydroxypropylated (MS 0.11) native starch: (C) Hesh hydroxypropylated (MS 0.10) definated starch: (C) tored hydroxypropylated (MS 0.10) defated starch: (C) & (A') fresh hydroxypropylated (MS 0.11) heat-moisture treated starch: (C) & (H) stored hydroxypropiated (MS 0.11) heat-moisture treated starch: (C) & (H)

starch (Fig. 4.17c) were in the form of elongated sheets connected by a network of amylose and amylopedith evudates. The morphology of the granule remnants of both freshty gelatinized native (Fig. 4.17a) and defatted (Fig. 4.17c) starches after hydroxyprospitation were different from those of their unmodified counterparts (Fig. 4.13a (native), Fig. 4.13c (defatted)] in comparison with hydroxyprosylated native and defatted starches, the extent of granule disruption was less marked in hydroxypropylated (MS 0.11) heat-molisture treated starch (Fig. 4.17a,), Furthermore, there were many small intact granules (Fig. 4.17a) which seemed to have escaped disruption during hydroxypropylation.

The hydroxypropy groups introduced into the starch chains are said to be capable of destroying inter- and intramotecular hydrogen bonds, thereby weakning the granular structure (Noton & Manatsath, 1984). Kim *et al.* (1992) have shown, using light microscopy, that the central region of the hydroxyprojetated potato starch granules become more and more disrupted with an increase in No.

The results on hydroxypropylated native starch (Fig. 4.10a, Fig. 4.17a) suggests that although granule stability increases after alkaline treatment (Fig. 4.14ab), the extent of this increase in not large enough to prevent granule breakdown (Fig. 4.17a) when hydroxypropylated native starch (MS 0.11) is heated under the conditions used for turbidity measurements. Thus, the decrease in initial absorbance at MS 0.11 is due to a sharp decrease in the around of granule sturburdure present the starch pasts. This would also option the starch past in the starch past. This would also option the starch past.

the lack of influence of increasing MS (0.11-0.25) on light absorbance (Fig. 4.10a).

The progressive decrease in absorbance with increase in MS for defailed (Fig. 4.11a) and heat-moisture treated (Fig. 4.12a) starches suggests that granule remains! of these starches are before able to resist (neat-moisture treated > defaited) the disruptive action of hydroxypropyl groups on granule structure than those of native starch. This can be attributed to the interactions that occur between starch onlines on defatting (Vasamhan & Hoover, 1992a) and heat-moisture treatment (Hoover & Vasamthan, 1994a). At similar MS levels (0.20), the absorption decrease in higher in defatted (99%) (Fig. 4.11a) than in heat-moisture treatment (Hoover & Vasamthan, 1994a). At similar MS levels (0.28) for heat-moisture treated granules. The steep decrease in absorbance (80.2%) at MS 0.28 for heat-moisture starch durch (Fig. 4.12a) due to greater stability of heatmoisture treated granules. The steep decrease in absorbance (80.2%) at MS 0.28 for heat-moisture starch (Fig. 4.12a) due to anguest that at this KB level granules underso cettentive durch(fig. 4.12a) suggests that at this KB level granules underso cettentive durch(fig. 4.12a) that the steep durates that the steep durates the steep durates that the durates that the steep durates the durates that the durates that the steep durates that the steep durates that the durates that the durates that the durates that the steep durates that the steep durates that the durates that the steep durates that the durates that the steep durates that the steep durates that the steep durates that th

4.7.1.4 Turbidity development and scanning electron micrographs of native, defatted and heat-moisture treated starch pastes during storage

The development of turbidity during storage of the above starches at 4°C (1 day) followed by storage at 40°C for 34 days are presented in Figs. 4.10, 4.11 and 4.12, in all starches aborbance increased with storage time. The extent of this increase was more pronounced (native > defatted > hest-moisture treated.) during the first day of storage (Figs. 4.10a, 4.11a, 4.12a). The aborbance

increase between 1st and 35th day of storage followed the order : defatted (Fig. 4.11b) > native (Fig. 4.10b) > heat-moisture treated (Fig. 4.12b).

Scanning electron micrographs of the starth pastes after storage for 24 h (at 4°C) are presented in Fig. 4.13b.d.f. The microstructure of the stored pastes of native starto-channels of a dense network formed by leaded amylose and anylopedin during (Fig. 4.13b), whereas, that of deflated starch (Fig. 4.13b) consisted of swollen granule remnants enmeshed and connected together by thick strands of the leached exudate. Heat-mostature treated granule remnants were enmeshed and held together by a network formed by thin strands of the leached exudate (Fig. 4.13b), wary researchers (Craig *et al.*, 1989; Bello-perz & Paredes-Lopez, 1989; Jacobson *et al.*, 1997) have shown that turbiding development during storage is influenced by factors such as granule swelling, granule remnants, leached amylose and amylopedin, chain lengths, intra or intermolecular bonding, lipids, sucrose, cross-linking and substitution.

The first stage of retrogradation has been shown to involve mainly amylose aggregation and crystallization which is completed within the first few hours of storage. However, the second stage that occurs over a longer periods (days) involves mainly amylopedin aggregation and crystallization (Miles *et al.*, 1985. Goodflow 6. Wilcon: 1990: Silverio *et al.*. 1996).

The rapid increase in turbidity during the first 24 h of storage was thus, mainly due to continued interaction (via hydrogen bonding) between leached

amylose chains and to a lesser extent short range ordering of amylopectin side chains. These interactions would lead to the development of junction zones, which would reflect or scatter a significant amount of light.

As shown before, the extent of amylose leaching during gelatinization is more pronounced in native than in defatted or heat-moisture treated starches (defatted > heat-moisture treated). Thus, the magnitude of interaction between leached amylose chains during storage would follow the above trend. This would then partially explain the extent of increase in absorbance (native (Fig. 4.10a) > defatted (Fig. 4.11a) > heat-moisture treated (Fig. 4.12a)] during the first 24 h of storage. It is likely that the magnitude of the increase in absorbance during the 24 h storage period is also influenced by the presence of granule remnants in starch pastes of defatted (Fig. 4.13c) and heat-moisture treated (Fig. 4.13e) starches (heat-moisture treated > defatted). These remnants would hinder chain aggregation during storage. The slow increase in turbidity beyond 24 h storage (Figs 4.10b, 4.11b, 4.12b) can be attributed to slow interaction between the outer branches of amylopectin chains (Ring et al., 1987) of native, defatted and heat-moisture treated starches, Vasanthan & Hoover (1992a) have shown that defatting increases crystallinity, whereas heat-moisture treatment disrupts crystallinity in potato starch. Consequently, the degree of separation (after delatinization) between the outer branches of amylopectin chains would be much greater in heat-moisture treated than in defatted starch. Thus, during storage the formation and lateral association of double helices involving amylopectin

chains would be easier and much stronger in deflatted than in heat-moisture treated or native starch (native > heat-moisture treated). This would then explain the observed order of increase in absorbance (deflatted (Fig. 4.11b) > native (Fig. 4.10b) > heat-moisture treated (Fig. 4.12b)] between the 1^{et} and 35th day of storage.

4.7.1.5 Turbidity development and scanning electron micrographs of alkaline treated native, defatted and heat-moisture treated starches during storage

In all starches, the extent of absorbance increase during the first 24 h of storage was less pronounced after alkaline treatment (Fig. 4.10a, 4.11a, 4.12a). For instance, during the above time period absorbance increased by only 0.34, 0.55 and 0.77, respectively, in alkali treated native (Fig. 4.10a), detited (Fig. 4.11a) and hest-moisture treated (Fig. 4.12a) starches. The corresponding values for untreated starches were 2.48 (native), 1.35 (defated) and 0.81 (heatmoisture breated), respectively. However, the extent of absorbance increase between the 1st and 35st day of storage was more pronounced after alkaline treatment. Scanning electron micrographs of freeh (Fig. 4.14a) and stored (24) at 4stC (Fig. 4.14c) pastes of alkali treated native starches were similar. In fresh pastes of alkali treated defated (Fig. 4.15a) and hest-moisture treated (Fig. 4.16a) attaches, granular remarks were scattered throughout the mathr. The size of these remainst was larger in heart-moisture treated starch, Fig. 4.16a).

However, in stored (24 h at 470) pantes, granule remnants of both alials instant defatted (Fig. 4.15c,d) and heat-mainture treated (Fig. 4.16c,d) starches were entenshell in the anylose exclution. The above results have shown that the alialine conditions used during hydrosypropylation influence starch chain aggregation during storage. In native starch, the magnitude of the increase in absorbance during 24 h of storage (47C) decreased doctationally (Fig. 4.10a) after alialine treatment. However, in stored pastes of akait treated defatted (Fig. 4.15c,d) and heat-moisture treated (Fig. 4.16c,d) starches, starch chain aggregation was hindered by aggregated granule remnants (larger in heatmoisture treated). This world explain differences in absorbance increase (during the 24 h storage period at 4°C) between untreated and alial treated starches (patve (Fig. 4.10a) > defatted (Fig. 4.11a) > heat-moisture treated (Fig. 4.12a).

4.7.1.6 Turbidity development and scanning electron microscopy of hydroxypropylated native, defatted and heat-moisture treated starch pastes during storage

In hydroxycroylated native starches, absorbance increased with storage time, reaching a maximum value (after 3 days) of 0.28 and 0.24, respective), at MS 0.11 and 0.18. Thereafter, absorbance decreased gradually reaching a value of 0.20 and 0.16, respectively (after 35 days), at MS 0.11 and 0.18 (Fig. 4, 10b). However, at MS 0.25, absorbance remained constant (~ 0.15) until

20⁷ day (Fig. 4.10b). Thereafter, absorbance decreased gradually reaching a value of 0.09 at the end of the storage period (35⁶ day). In hydroxypropylated defatted starch, absorbance confinued in tornesse with storage line reaching a maximum value of 0.89 (MS 0.10), 0.77 (MS 0.17) and 0.47 (MS 0.20), respectively, after 5 days, 6 days and 1 day (Fig. 4.1b). Thereafter, absorption remained constant until 15th days at MS 0.10 and 0.17, and then decreased steeply reaching a walue of 0.51 and 0.47, regectively (after 35 days), at MS 0.10 and 0.17 (Fig. 4.11b). However, at MS 0.20 absorption continued to decrease graduitly beyond day 1, reaching a value of 0.32 after 35 days (Fig. 4.11b).

In hydrosyscopiated heat-moisture treated starch, absorption continued to increase throughout the storage period at MS 0.11 and 0.20 (Fig. 4.12.a.b). The extent of this increase was more pronounced at MS 0.11. However, at MS 0.28 absorption increased only until the 18th h of storage (Fig. 4.12.a). Thereafter, it remained unchanged throughout the storage period (Fig. 4.12.a).

Scanning electron micrographs of stored (1 day) hydroxycroplated native (MS 0.11), defathel (MS 0.10) and heat-moisture treated (MS 0.11) stores are presented in Fig. 4.17. In hydroxycroplated stored native starch paste (MS 0.11), the leaded amylose chains and granule remnants were fused together to form a compactly packed structure (Fig. 4.17b). The morphology of the paste was nearly similar to that of stored alkall treated native starch (Fig. 4.14b). Granule remnant: loaded antivose and amylosedin chains of stored

hydroxypropylated definited starch (MS 0.10) were loosely packed in the matrix (Fig. 4.176), Furthermore, the morphology of this paste was totally different from that of stored abilit instard defined starch (MS 0.11), granule remmants, leached amylose and amylopectin chains were more loosely packed (Fig. 4.17 g.h) than in stored pastes of hydroxypropylated (MS 0.10) defatted starch (Fig. 4.17c.d).

The results on hydrocypropylation indicate that changes in absorbance during the entire storage period (35 days) is influenced by the interplay of 3 factors : 1) eleric effects imposed by bulky hydrocypropyl groups (his decreases the magnitude and rate of increase in absorbance by hydreling starch chain alignment during retrogradation; 2) presence of small granule remnants which gradually aggregate during storage (this would increase the intensity of scattered light); and 3) setting of large aggregated granule remnants below the path of the spectromotemetic beam (this would increase light transmittance).

In hydrosyncoylated (dt MS 0.11 and 0.18) native starch, the gradual increase in absorbance (Fig. 4.10a,b) during the first 3 days of storage is mainly due to slow aggradiation of starch others. The gradual decrease in absorbance beyond day 3 (Fig. 4.16b) at these MS levels, is mainly influenced by factor 2. At MS 0.25, absorbance remained unchanged until day 20 due to factor 1 (which prevents chain aggregation). The decrease in absorbance beyond day 20 at MS 0.25 (Fig. 4.16b) analy inductor factor 2.

In defatited starch, the steep decrease (Fig. 4.11b) in absorbance (after the 15th day) at MS 0.10 and 0.17 is mainly due to factor 3. This decrease does not occur at MS 0.20 since granule memains are probably discupted (due to the large increase in granular swelling that occur at this MS level (Table 4.12)). Consequently, at MS 0.20 the changes in absorbance during storage are mainly inducred by storach chain aggregation.

As described earlier, granule crystallinkly is destroyed on heat-moisture treatment: Consequently, heat-moisture treated granules would be more susceptible than defatted granules to disruption by the bulky hydroxypropy groups. This would explain the absence of large granule emmants (Fig. 4.17c.1) after hydroxypropylation (MS 0.11). The extent of increase in absorbance during storage (DS days) of heat-moisture breated starches at the different MS levels (MS 0.11 > MS 0.20 > MS 0.20) is due to the interplay of factors 1 and 2. The results indicate that ali granule emmants are not disrupted by hydroxypropy groups at MS 0.11 (Fig. 4.17c.f). The undisrupted remnants probably aggregate slowly during storage. This would then explain the steep increase in absorbin after 7th dury of storage at MS 0.11. However, MS 0.20 and 0.25 the extent of absorbin increase in amaly inflaenced by factor 1.

4.7.2 Enzyme digestibility

4.7.2.1 Enzyme digestibility of freshly gelatinized and stored pastes of native, defatted and heat-moisture treated starches

Table 4.21 shows the enzyme digestibility of gelatinized and stored native, defated and heat-moisture treated starch pastes. Freshly gelatinized pastes of number, defatted and heat-moisture treated starchs were hydrolycold enaity to the same extent by porcine pancreatic o-amylaes. Storage of gels at 4°C for 24 h decreased hydrolysis of native, defatted and heat-moisture treated starch gels by 5.8, 2.1 and 1.6%, respectively (Table 4.21), however, storage beyond 24 h caused marindi decrease in hydrolysis in the above starch Calbe 4.21.

Colonna et al. (1992) have shown that o-amylase hydrolysis occurs in three successive steps : diffusion of o-amylase bavarias to substrate, absorption of the enzyme on the substrate and the catalysic event. Many researchers have shown that enzyme succeptibility of a starting oil accreases with an increase in retrogradation (Ring et al., 1988; Eerlingen et al., 1994; Wang et al., 1995; Cui & Oates, 1997). The following factors have been shown to be responsible for the above observations : 1) an increase in the entanglement of the molecules in the genetwork; 2) an increase in the long range (csubli-fields formation); and 3) an increase in the long range (csubli-fields formation); and 3) an increase in the long range (csystallite formation) order. Wang et al. (1985) and Cui & Oates (1997) have shown with sago starch gels, that the decrease in enzyme susceptibility during the first 6 h of storage at 5°C, is mainly due to amylose retrogradieno.

Starch source and		Hydrolysis (%) ¹	
treatment	02	Storage time (days) 1 ³	154
Native	77.2±0.8 ⁸	71.6±0.7 ⁶	69.0±1.1 ^b
Heat-moisture treated ⁵	75.3±0.9 ^a	73.7±1.0 ^{8b}	71.2±0.5 ^b
Defatted ⁶	76.2±1.0ª	74.1±0.9ª	74.1±0.4ª

Table 4.21 α-amylase hydrolysis of freshly gelatinized and stored pastes of native, defatted and heat-moisture treated starches

Hydrolysis for 3 h at 37°C.

²Freshly gelatinized.

Storage at 4°C for 24 h.

Storage at 4°C for 24 h and at 40°C for 14 days .

Heat-moisture treatment (16 h / 100°C /30% moisture).

Defatted with 75% propanol for 7 h.

⁴⁶Means within a row with different superscripts are significantly different ($p \le 0.05$).

When an aqueous starch suspension is heated above the gelatinization temperature, swelling is accompanied by the solubilization of amylose. Even on heating to 100°C, there is little evidence for the release of substantial quantities of amylopectin (Ring et al., 1987; Morris, 1990). Thus, heating results in a medium composed of gelatinized swollen granules with an apparent amylopectin skeleton embedded in a hot amylose solution. As shown before, the extent of amylose leaching during gelatinization (at 90°C) of native, defatted and heatmoisture treated potato starches were 22.7, 13.4 and 8.3%, respectively (Table 4.4). Leached amylose chains would aggregate faster than those within gelatinized granules (due to steric effects imposed by branched amylopectin chains). Furthermore, appreciation between leached amvlose chains would be much faster and stronger in pastes of gelatinized native starch (due to more leached amylose) than in the other starches. Thus, the observed decrease in enzyme hydrolysis during the first 24 h of storage (Table 4.21) (native > defatted > heat-moisture treated] reflects mainly the rate and extent of accregation between leached amylose chains

4.7.2.2 Enzyme hydrolysis in freshly gelatinized and stored pastes of alkali treated native, defatted and heat-moisture treated starches

Enzyme digestibility of alkali threated starch pastes before and after storage is shown in Table 4.22. Alkaline treatment increased the extent of hydrolysis of freshly gelatinized pastes of native, defatted and heat-moisture

Starch source and		Hydrolysis (%)	
treatment		Storage time (days)	
	02	1 ³	15*
Native	77.2±0.8ª	71.6±0.7 ⁶	69.0±1.1 ^b
Alkali treated ⁵	93.4±1.2*	87.0±0.4 ^b	85.5±1.0 ^b
Heat-moisture treated ⁶	75.3±0.9ª	73,7±1.0 ^{mb}	71.2±0.5 ^b
Alkali treated ⁵	81.6±.0.8ª	76.2±0.9 ^b	74.1±1.0 ^b
Defatted	76.2±1.0 ^a	74.1±0.9 ^a	74.1±0.4ª
Alkali treated ⁵	83.5±0.9 ^a	80.1±1.2 ^b	78.3±0.4°

Table 4.22 α-amylase hydrolysis of freshly gelatinized and stored pastes of alkali treated native, defatted and heat-moisture treated starches

Hydrolysis for 3 h at 37°C.

²Freshly gelatinized.

³Storage at 4°C for 24 h.

⁴Storage at 4°C for 24 h and at 40°C for 14 days .

⁵Parent starch treated with NaOH and Na₂SO₄ at 40°C.

⁶Heat-moisture treatment (16 h / 100°C /30% moisture).

⁷Defatted with 75% propanol for 7 h.

³^oMeans within a row with different superscripts are significantly different (p ≤ 0.05).

treated starbes by 160, 7,3 and 6,0%, respectively (Table 4.22). The increased hydrolysis on allaline treatment can be attributed to increased accessibility of oanyses in the beamphous region of the granuk. This is made possible by repulsion between adjacent anylose chains (carrying negatively charged oxogens) which hinder rapid aggregation of anylose chars immediately after gelatinization. This increase is higher in alkali treated rative starch due to more externive anylose leaching. Storage of alkali treated starches at 4° for 24 at decreased hydrolysis in native, defitted and heat-moisture treated starches by 48, 3.4 and 4.9%, respectively (Table 4.22). In all starches, hydrolysis di not charge significatively than storage was continued beyord 34 for 16 trable 4.23.

4.7.2.3 Enzyme hydrolysis of freshly gelatinized and stored pastes of hydroxypropyl native, defatted and heat-moisture treated starches

Enzyme hydrolysis results of hydroxypropylated native, defatted and heatmoisture treated starch pastes before and after storage are given in Table 4.23. In all starches, hydrolysis decreased on hydroxypropylation (Table 4.23). The extent of hydrolysis of freshily gelaticized native starch doscessed by 112, 156 and 21.5%, respectively, at MS 0.11, 0.18 and 0.25 (Table 4.23). The corresponding values for defatted starch were 14.0, 29.4 and 30.2%, respectively, at MS 0.10, 0.17 and 0.20 (Table 4.23). For heat-moisture treated starch, these values were 5.5, 26.3 and 38.4%, respectively, at MS 0.11, 0.20 and 0.28 (Table 4.23). However, hydrolysis decreased on vin marinality on on 0.28 (Table 4.23). However, hydrolysis decreased on vin marinality on

Starch source and	Molar		Hydrolysis (%)	
treatment	substitution		torage time (day	rs)
		0 ²	1 ³	154
Native	0.005	93.4±1.2*	87.0±0.4°	85.5±1.0 ^b
	0.11	66.0±1.0*	64.2±1.0 ^{#b}	63.0±0.6 ^b
	0.18	61.6±0.7*	60.4±1.0 ^{sb}	59.1±0.8 ^b
	0.25	55.7±0.3ª	55.5±0.9ª	55.0±0.7ª
Heat-moisture treated ⁶	0.00 ⁵	81.6±.0.8ª	76.2±0.9 ^b	74.1±1.0 ^b
	0.11	69.8±0.7*	68.0±0.6 ^{ab}	67.4±0.9 ^b
	0.20	49.0±1.1*	47.8±0.9*b	46.4±0.5 ^b
	0.28	36.9±0.6ª	36.1±0.4ª	36.5±0.9ª
Defatted ⁷	0.00 ⁵	83.5±0.9*	80.1±1.2 ^b	78.3±0.4°
	0.10	62.2±0.7 ^a	61.7±0.8ª	59.3±1.0 ^b
	0.17	46.8±0.8*	45.0±1.0*	44.1±0.7 ^b
	0.20	46.4±0.9ª	45.6±0.8ª	45.4±1.1*

Table 4.23 α-amylase hydrolysis of freshly gelatinized and stored pastes of hydroxypropyl native, defatted and heat-moisture treated starches

Hydrolysis for 3 h at 37°C.

²Freshly gelatinized.

Storage at 4°C for 24 h.

Storage at 4°C for 24 h and at 40°C for 14 days .

⁵Parent starch treated with NaOH and Na₂SO₄ at 40°C (alkali treated).

⁶Heat-moisture treatment (16 h / 100°C /30% moisture).

⁷Defatted with 75% propanol for 7 h.

^a^oMeans within a row with different superscripts are significantly different (p ≤ 0.05).

storage of hydroxypropylated starches (Table 4.23). For instance, at a nearly comparable MS level (-0.10-0.11), the decrease in hydrolysis after a 15 day storage period was only 3.0, 2.9 and 3.4%, respectively, in native (MS 0.11), defatted (MS 0.10) and heat-moisture treated (MS 0.11) starches (Table 4.23).

The decrease in hydrolysis on hydroxypropylation is in agreement with Leegwater & Luten (1971), Wootton & Chaudhy (1981) and Hoover *et al.* (1988). A study of the catalytic groups of o-amylase has shown that carboxylate anion acts as the nucleophile and imidazolium cation as the electrophile (Robyt, 1984). It is possible that the decrease in hydrolysis with increase in MS may be due to bulky hydroxypropyl groups on C-2 sterically hindering the action of the catalytic carboxylate ion on the glycosidic bond. The marginal change in hydrolysis on storage (Table 4.23) suggests that hydroxypropylation is very effective in hindering starch chain aggregation within the amorphous domain of the granule.

4.7.3 X-ray diffraction

4.7.3.1 X-ray diffraction of fresh and stored gels of native, defatted and heat-moisture treated starches

The X-ray diffraction patterns of freshly gelatinized and stored (1 day at 4°C and for 29 days at 40°C) pastes of native, defatted and heat-moisture treated starches are presented in Figs. 4.18, 4.19 and 4.20. No significant peak could be distinguished in freshly gelatinized native (Fig. 4.18a), defatted (Fig.

Fig. 4.18 X-ray diffraction patterns of freshly gelatinized and stored pastes (24 h at 4°C and then at 40°C for 29 days) of untreated, aikali treated and hydroxypropylated (MS 0.18) native potato starches : (A) freshly gelatinized untreated native starch. (B) untreated native starch after 30 days storage, (C) freshly gelatinized alkali treated native starch, (D) alkali treated native starch after 30 days storage, (C) freshly gelatinized hydroxypropylated (MS 0.18) native starch after 30 days storage, c) forselv gelatinized (MS 0.18) native starch after 30 days storage.

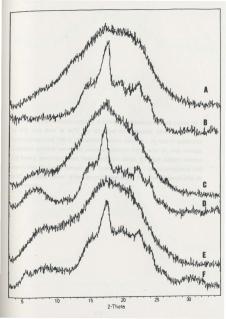
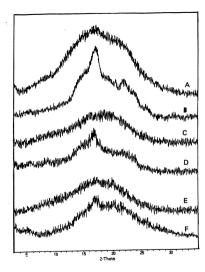



Fig. 4.19 X-ray diffraction patterns of freshly gelatilized and stored pastes (2.4 h at 4°C and then at 40°C for 29 days) of untreated, alkali treated and hydroxypropylated (MS 0.17) definited potato starches: (A) freshly gelatilized untreated defatted starch, (B) untreated defatted starch, after 30 days storage, (C) freshly gelatilized alkali treated defatted starch, (D) alkali treated defatted starch after 30 days storage, (E) freshly gelatilized hydroxypropylated (MS 0.17) defatted starch, (F)hydroxypropylated (MS 0.17) defatted starch after 30 days storage. Fig. 4.20 X-ray difficultion patterns of freely gealantizate and stored pateste (24 h at 4°C and then at 40°C for 25 day) of untenance, askai treated and hydroxyproplated (MS 0.20) heat-moisture treated potato starches : (A) heaving gelainizate untreated heat-moisture treated starch, (II) untreated heat-moisture treated starch after 30 days storing; (C) thereby gelainized askail treated heatmoisture treated starch; (II) alkail treated heat-moisture treated starch after 30 days storing; (C) thereby gelainicat dynoxypropoided (MS 0.20) heat-moisture treated starch; (II) hydroxypropided (MS 0.20) heat-moisture treated starch; (III) hydroxypropided (MS 0.20) heat-moisture treated starch; (IIII) hydroxypropided (

4.19a) and heat-moisture treated starches (Fig. 4.20a). The 'B' type X-ray pattern which is typical of retrograded starch (d spacings at 16, 5.2, 3.9 and 3.7) was evident (in all three starches) at the end of the storage period (Figs. 4.18b) 4.19b, 4.20b). The intensity of the spacing centred at 5.2 Å followed the order : defatted > native > heat-moisture treated (Table 4.24). As described earlier, the distance separating the outer branches of amylopectin chains in gelatinized starches followed the order : heat-moisture treated > native > defatted. Thus, due to closer proximity of the outer branches in gelatinized defatted starch. double helical formation and packing of double helices during storage would be much easier and more ordered in defatted than in other starches. This would then account for the stronger X-ray diffraction pattern of retrograded defatted starch (Fig. 4.19b). It has been shown that the 'B' pattern originates from hexagonal packing of double helices during retrogradation of both amylose (Gidley, 1989) and amylopectin (Zobel, 1988b). As shown in Fig. 4.13, granule remnants are present in celatinized pastes of defatted (Fig. 4.13c) and heatmoisture treated starches (Fig. 4.13e). The size of these remnants being greater in the latter. The presence of granule remnants could hinder aggregation and packing of double belices of both amylose and amylopectin. Thus, the recorded intensities are probably influenced by the interplay of two factors : 1) degree of proximity of the outer branches of amylopectin chains to each other in gelatinized pastes: and 2) size of the granule remnants in the gelatinized paste.

Starch source & treatment	Moisture (%)	Intensity (cps ²) at 5.2Å
Native	9.6	1535
Native (alkali treated) ³	9.5	1496
Native (MS ⁴ 0.18)	9.6	990
Heat-moisture treated ⁵	9.5	1225
Heat-moisture treated (alkali treated)3	9.6	232
Heat-moisture treated (MS ⁴ 0.20)	9.5	194
Defatted ⁶	9.4	1895
Defatted(alkali treated)3	9.5	1383
Defatted (MS ⁴ 0.17)	9.5	715

Table 4.24 X-ray diffraction intensities (at 5.2Å) of stored¹ potato starch gels

¹One day at 4°C and then at 40°C for 29 days.

²Counts per second.

³Parent starch treated with NaOH and Na₂SO₄ at 40°C.

⁴Molar substitution.

⁶Heat-moisture treatment (16 h / 100°C /30% moisture).

⁶Defatted with 75% propanol for 7 h.

4.7.3.2 X-ray diffraction of fresh and stored gets of alkali treated native, defatted and heat-moisture treated starches

No significant peak could be distinguished in freahly gelatinized pastes of native (Fig. 4.18c), defated (Fig. 4.18c) and heat-moisture treated (Fig. 4.20c) starthes. In all alkali treated starches, the X-ray diffraction pattern and the intensity of the 5.2 peak after 30 days of storage was weaker than in their untreated counterparts (Table 4.24). The extent of this intensity reduction followed the order : heat-moisture treated > defated > native (Table 4.24). This decrease can be attributed to the site of granule remnants (heat-moisture treated > defated > native) in the alkali treated pases, which would hinder the formation, aggregation and packing of double hildes in a cytuatine array.

4.7.3.3 X-ray diffraction of fresh and stored gels of hydroxypropyl native, defatted and heat-moisture treated starches

No significant peaks could be distinguished in freshly geletinized parters of hydroxypropylated nailve (Fig. 4.18e), defatted (Fig. 4.18e) and heat-moisture treated (Fig. 4.20e) starbuse. The intensities at 5.2 Å decreased in storetive (MS 0.18), defatted (MS 0.17) and heat-moisture treated (MS 0.20) hydroxypropylated starches were 355, 6.22 and 94.2%, respectively. This decrease is due to a decrease in chain aggregation resulting from the interplay of too factor: 1) store effects imposed by hydroxypropylated starbs.

starch chains; and 2) aggregation of large granule remnants of hydroxypropylated defatted (MS 0.17) [Fig. 4.17d] and heat-moisture treated (MS 0.20) [Fig. 4.17g] starches.

4.7.4 Differential scanning calorimetry (DSC)

4.7.4.1 DSC parameters of native, defatted and heat-moisture treated starches after gelatinization and storage

In all starches, the retrogradation endofterm occurred only after 2 days of storage (Table 4.25). Retrogradation enthalpy (Jahla) at the end of the storage peetiol (7 days) was more pronounced in markle (5.31) gibbs) in defatters (4.5 Jahla) or heat-moisture treated (4.8 Jalg) starches. The transition temperatures $T_{\rm es}, T_{\rm s}$ and $T_{\rm c}$ of the retrogradation endofterm of native starch were higher than those of defatted and heat-moisture treated starches. However, differences between $T_{\rm c}, T_{\rm c}$ and $T_{\rm c}$ of the retrogradation endofterm treated starches were only marginal (Table 4.25). In all starches, $T_{\rm e}, T_{\rm g}$ and $T_{\rm c}$ tremained practically unchanged over the day 7 of storage. The storage of gets beyond 7 days produced endofterms which were too broad for accurate determination of transition temperatures and $\Delta t_{\rm m}$.

Recrystallization of starch molecules occurs during gel storage. Reheating of an aged starch gel in a DSC produces an endothermic transition which is not present in the DSC scan of freshly gelatinized samples. Such a transition is

Starch source and	Storage time	Transiti	Transition Temperatures (°C)	(°C)	Enthalpy of
treatment	(days)	To ²	Tp²	Tc²	retrogradation
Native	-				0.0±0.0
	2	63.3±0.3ª	72.2±0.8"	81.6±0.6 ^ª	3.8±0.0°
	5	62.9±0.2 ^ª	71.7±0.1	81.5±0.4°	4.9±0.2 ^b
	7	63.1±0.4ª	73.4±0.4	82.1±0.3"	6.7±0.0°
Heat-moisture treated ³	-				0.0±0.0
	2	60.9±0.6°	67.7±0.7°	76.8±0.1°	3.3±0.0 [°]
	5	61.1±0.5°	67.8±0.2°	76.8±0.5°	4.2±0.2
	7	61.3±0.0°	67.4±0.1°	77.0±0.1°	4.8±0.0°
Defatted"	-		•		0.0±0.0
	2	59.5±0.1 ¹	67.7±0.4	75.7±0.3	2.9±0.3 ^k
	5	90°270'8	67.0±0.3 ¹	76.7±0.1	3.2±0.1 ¹
	7	60.3±0.5	67.4±0.2 ¹	76.1±0.2	4.5±0.1

Table 4.25 DSC parameters of native. defatted and heat-moisture treated potato starches after delatinization

 2 T $_o$, T $_p$ & T $_c$ indicate respectively, the temperature of onset, mid point and end of retrogradation endotherm

³Heat-moisture treatment (16 h / 100°C /30% moisture).

⁴Defatted with 75% propanol for 7 h.

^{a-1} Means within a column with different superscripts are significantly different ($p \le 0.05$).

generally attributed to the mething of crystallized anny/opectin. This was also proven by the thermo-reversible crystallization of anny/ose free (obtain by leaching avoiden start granules, (Mike et al., 1985). The thermo-reversibility is attributed to the involment of outer branches of anny/opectin which gives rise to low mething crystals (Morris, 1990). The enthality of retrogradation is generally considered to correspond to order-disorder transitions of crystallites (i.e. double helicias present in extended ordered arrays) and regions of lesses crystaller order. Numercus researchers (Ring et al., 1987; Russel, 1987; Ralichevsky et al., 1990; Ward et al., 1994) have observed retrogradation endotherm at similar temperatures well below the temperature range for gelativization. Resputatilization of the amylopicch branch chains in a lies of crystaller anny that desisted for the native starch is an explanation for the observed amylopicch retrogradation endotherm at a temperature range blow that for gelativization (Nicar et al., 194)).

Anytose orystals formed in starch gels contain longer helicial exequences which melt at higher temperatures. Thus, the melting of anytose crystallites were not observed within the heating temperature range studied (2010°C) in DEC. The absence of retrogradation endotherm on day 1 suggests that anytose crystallization takes place mainly during the first 24 h of storage, after which anytopedic in crystallization occurs at a slow rate, which was implied by the ordiaal increase in Afte.

Hoover & Vasanthan (1994a) have shown that during heat-moisture treatment crystallinity is disrupted within granules of potato starch. Thus, after gelatinization the degree of separation between the outer branches of adjacent amylopectin chain clusters would be more pronounced in heat-moisture treated than in native starch. Consequently, double helical formation (during storage) between adjacent amviopectin chains of gelatinized heat-moisture treated starch would be much slower and reduced in number than in native starch. This would explain the slower increase in AH_e (during storage) and its decreased magnitude after heat-moisture treatment (Table 4.25). Vasanthan & Hoover (1992a) have also shown that defatting increases granule crystallinity in potato starch. Thus, the number of ordered double helices that disrupt on gelatinization would be much lower in defatted than in native starch. Consequently, the number of new double helices that form during retrogradation would be much decreased after defatting. This would explain the slower increase in AHe (during storage) and its decreased magnitude after defatting (Table 4.25).

4.7.4.2 DSC parameters of alkali treated native, defatted and heat-moisture treated starches after gelatinization and storage

In all starches, retrogradation endotherm appeared on the day 2 of storage (Table 4.26). The John of alkali treated starch gels increased with increase in storage time, whereas the transition temperatures remained unchanced during of the time ocure of retrogradation. However, the manifulde

Starch source	Storage time ²	Tra	sition temperature	(°C)	Enthalpy of
and treatment	(days)	To ³	Tp ³	Tc ³	retrogradation
Native	1	-	-	•	(J/g) 0.0±0.0 ^d
	2	62.1±0.4*	70.6±0.5*	80.3±0.2*	3.7±0.1°
	5	62.5±0.5*	70.4±0.3"	80.2±0.7*	4.6±0.2 ^b
	7	62.5±0.4ª	71.0±0.3ª	81.1±0.2 ^b	6.3±0.0 ^a
Heat-moisture treated ⁴	1		-		0.0±0.0 ^h
	2	61.4±0.1	70.6±0.5	81.1±0.8	4.3±0.19
	5	62.6±0.4*	71.6±0.8 ^{ef}	81.5±0.5	6.1±0.1
	7	62.1±0.3*	71.7±0.4*	82.9±0.2*	7.3±0.1*
Defatted ⁵	1				0.0±0.0 ¹
	2	63.3±0.2	73.0±0.0	80.6±0.2	2.0±0.1k
	5	63.3±0.2	72.4±0.3 ⁱ	80.8±0.6 ⁱ	3.2±0.1
	7	62.1±0.2 ⁱ	72.2±0.9	80.6±0.1	4.5±0.2

Table 4.26 DSC parameters of alkali treated¹ native, defatted and heat-moisture treated potato starches

¹Parent starch treated with NaOH and Na₂SO₄ at 40°C

²Storage beyond 7 days gave endotherms that were too broad for accurate determination of DSC parameters.

³T_o, T_p & T_c indicate respectively, the temperature of onset, mid point and end of retrogradation endotherm.

⁴Heat-moisture treatment (16 h / 100°C /30% moisture).

5Defatted with 75% propanol for 7 h.

^{al} Means within a column under the same treatment with different superscripts are significantly different (p ≤ 0.05).

and the net of Increase in 1.44, (during storage) decreased slightly after abait treatment. The difference in magnitude of .04k between untreated and alkali treated starches amore procourced in defatted than in native and hearmostave treated starches (Table 4.26). The results indicate that the number of double helices that form on storage is reduced after alkaline treatment. This can be attributed to repulsion between negatively charged oxygens on adjacent interacting starch vains.

4.7.4.3 DSC parameters of hydroxypropylated native (MS 0.11), defatted (MS 0.10) and heat-moisture treated (MS 0.11) starches after gelatinization and storage

In hydroxypropylated darches (Table 4.27), the retrogradation endotherm occurred only near the end (7 days) of the storage period. Hydroxypropylation decrease di Al₁₆ in all starches (Table 4.27). At the same MS (0.11), the extent of decrease in Al₁₆ (bag > 7) was more pronounced in native than in heat-molisture treated starch (Table 4.27). This decrease in Al₁₆ suggests that hydroxypropy groups within the bulk amorphous and intercrystalline amorphous regions hinder double helical formation by preventing proper alignment of the outer branches of the amylopedin chains during storage. The reduction in Al₁₆ on hydroxypropylation was more pronounced in native than in defatted starch (Table 4.27) due to the oreason : 1) the inverse MS level of defatted starch (Table

Table 4.27 DSC parameters of native, defatted and heat-moisture treated hydroxypropyl potato starches	rs of native,	defatted and h	eat-moisture 1	treated hydro	xypropyl pol	ato starches
Starch source	Molar	Storage time	Transiti	Transition temperature (°C)	e (°C)	Enthalpy of
and treatment s	substitution ¹	(days) ²	To ³	Tb ³	Te	retrogradation
Native	0.11	2	63.7±0.4ª	73.3±0.9 ^a 82.7±0.5 ^a	82.7±0.5	2.7±0.0°
Heat-moisture treated ⁴	0.11	7	62.5±0.6ª	72.8±0.4ª	83.3±0.5	3.4±0.2"
Defatted ⁵	0.10	2	62.8±0.3"	62.8±0.3 ^ª 72.4±0.2 ^a 83.4±0.2 ^a	83.4±0.2 ^a	2.1±0.3°
In all starts, a detectable entotherm was not observed at high moler subfitultion levels (> 0.11). The starts was associate of YC to XS have at 40°C. Entotherm was not observed before Y days of storage The TA, TA T, Indicates neperiosity, the temperature of ontest, mild point and and of retrograduation endotherm. Head-molecture treatment (16 h / 100°C /30% molecture).	endotherm w C for 24h and vely, the term 3 h / 100°C /3	ras not observed then at 40°C. El perature of onse 0% moisture).	at high molar ndotherm was t, mid point an	substitution le not observed d end of retro	vels (> 0.11). before 7 days gradation ende	of storage. otherm.

^obetatted with 75% propanol for 7 h. •• Means within a column under the same treatment with different superscripts are significantly different (p ≤ 0.05).

0.10); and 2) the presence of higher amounts of crystallites in the gelatinized defatted starch paste (defatting increases crystallinity) which partially negates the influence of hydroxypropyl groups on chain alignment.

Furthermore, the crystallites formed during storage of hydrosystopylated defatted and hydrosystopylated heat-moisture treated gels method at a broader temperature range (hydrosystopylated defatted. $To-To = 20.8^{\circ}$ C; hydrosystopylated heat-moisture treated, $To-To = 20.8^{\circ}$ C; (Table 4.27); hun did their untreated counterparts (defatted, $To-To = 15.8^{\circ}$ C, heat-moisture treated, $To-To = 15.7^{\circ}$ C (Table 4.22); hus did their untreated gels (defatted, $To-To = 15.8^{\circ}$ C, heat-moisture treated, $To-To = 15.7^{\circ}$ C (Table 4.22). This broadening is possibly due to the formation of loosely acaded gels (as shown by the scanning electron micrograph Fig. 4.174,h) which are composed of crystallites with different stabilities. However, broadening of crystallites storace (as not observed in reforgated native storace) each reformation.

CHAPTER 5

SUMMARY AND CONCLUSIONS

This study has shown that definiting causes clustering of the outer 'A' chains of amylopectin, resulting in the formation of crystalities which are perfectly amyed to diffact Area, whereas, crystallie disruption addre recrientation of the double helices (within the crystalline array) occurs on heat-moisture treatment. Both defatting and heat-moisture treatment changed the 'Area' pattern from 'B' to 'Area'. However, the amount of 'A' unit cells was higher on heatmoisture treatment. Interactions between starch chains (AM-AM and AM-AP) occurred on defatting and heat-moisture treatment (heat-moisture treatment > defatting). Double helical content within the amorphous and crystallie domains decreased on heat-moisture treatment. Un increased slightly on defatting. These stochair domaines decreased the SF. Brabender viscoit/ (at SFC) and AML, and increased the thermal stability and gelatrization transition temperatures of both defatted and heat-moisture treatment but increased on heat-moisture treatment. Use increased on defattion heat-moisture treatment, but increased on defattion.

The reagents (NeOH and Na₂SO₄) used during hydroxycrocytation altered crystatile orientation, disrupted double helioss (within the amorphous regions), increased SF, and decreased Brabender viscosity (at 95°C). The extent of the above changes followed the order : native > defatted > heit-moisture treated. However, starch ration interactions did not occur under these reaction conditions.

The degree of accessibility of hydroxypropyl groups into the granule interior (heat-moisture treated > native > defated > was found to be influenced by granule crystallinity (defated > native > heat-moisture treated). X-ray difflaction patterns showed that hydroxypropylation occurs mainly in the amorphous regions.

The SF (at different temperatures) of hydroxypropylated (at different MS levels) native, defatted and heat-moisture treated starches was influenced by the interplay between the extent of hydrogen bond disruption within the amorphous regions (due to hydroxypropylation) and the increased interaction that occurs between starch chains during defatting and heat-moisture treatment. Hydroxypropylation decreased amylose leaching. The DSC results showed that hydroxypropylation decreased T_o, T_o and T_c (due to hydrogen bond disruption) and AH (due to double helical disruption). The magnitude of this decrease was influenced by the MS level. The pasting temperatures of all three starches decreased with increased MS. Increase in the level of MS progressively increased Brabender viscosity (95°C) for defatted starch. However, for native and heat-moisture treated starches, an increase in the level of MS beyond 0.18 and 0.20, respectively, resulted in a decrease in Brabender viscosity (95°C). The changes in pasting temperature and viscosity with increase in MS levels were attributed to the interplay between changes in SF and hydrogen bond disruption.

The enzyme digestibility study showed that the susceptibility of potato starch granules towards hydrolysis by porcine pancreatic α -amylase increased

progressively with the time of defatting (due to the networks of entrapped anylose chains into the amorphous domains of grandes). However, defatting beyond 9 h, decreased hydropics (due to interactions: between the outer branches of amylopedin chains and between the neighboring segments of the released amylose chains) to a level that was lower than that observed for native starch. Heal-moisture treatment was also found to increase granule ausceptibility brankts hydrolysis by carrylase. A starspin prices in hydropis occurred during the first 8 h of heal-moisture treatment (due to crystallite disruption), followed by a gradual decrease (due to MA-MA and AM-AP interactions). However, at all time intervals, the level of hydrolysis in heal-moisture treated starch was higher than that of native starch.

The skaline conditions used during hydropyropylation were found to increase the susceptibility of native, defiated and heat-moisture treated starches towards hydropylasy or admysian (mather 2 defated > heat-moisture treated). The extent of this increase was attributed to the interplay of 3 factors : a) disruption of double helices, b) orization of the hydropy groups on adjacent starch chains, and ca increase in amange solubility.

The susceptibility of native, defatted and heat-moisture treated starches towards hydrohysis by a-ampliase increased with MS levels (due to increased granular swelling). However, hydrohysis decreased (due to steric effects imposed by the bulky hydrohycompcity aroung) at MS levels of 0.22 (native), 0.28 (heat-

moisture treated) and 0.26 (defatted). The results showed that the structural changes that occur on defatting and heat-moisture treatment do not influence the mechanism by which hydroxypropyl groups influence the reactivity of the granule towards o-amytes.

The retrogradation properties of native defatted and heat-moisture treated potato starches before and after hydroxypropylation were monitored using different techniques. The results showed that changes in turbidity during storage of native, defatted and heat-moisture treated starch pastes were influenced by the interplay of : 1) interaction between leached starch chains, 2) interaction between granule remnants and the leached exudate. However, in alkali treated native, defatted and heat-moisture treated starch pastes, turbidity changes on storage were influenced by aggregation of granule remnants. The extent followed the order : native > defatted >heat-moisture treatment. Hydroxypropylation decreased the rate and extent of increase in turbidity during storage of all three starches. The change in turbidity during storage of hydroxypropylated starch pastes was influenced by the interplay between : 1) steric effects imposed by hydroxypropyl groups on chain aggregation, 2) aggregation between small granule remnants, and 3) settling of large granule remnants beneath the path of the spectrophotometer beam. Reactivity of gelatinized pastes of native, defatted and heat-moisture treated starches towards porcine pancreatic q-amylase decreased on storage. A similar trend was also observed after alkaline treatment. However, hydrolysis remained unchanged

throughout the storage period in hydroxypropylated starches. Stored pastes of native, defatted and heat-moisture treated starches gave a 'B' type X-ray pattern. A similar pattern was also observed after alkaline treatment, and hydroxypropylation. However, the X-ray intensity of the peak at 5.2Å decreased after alkaline treatment and hydroxypropylation. The retrogradation endotherm (monitored by DSC) occurred after 2 days storage in native, defatted and heatmoisture treated starches. A similar trend was also observed after alkaline treatment. However, the retrogradation endotherm appeared only after 7 days in hydroxypropylated starches. The enthalpy of retrogradation in all starches decreased on alkaline treatment and hydroxypropylation. These results showed that, retrogradation properties of native, defatted and heat-moisture treated starches are indirectly influenced by the structural arrangement of starch chains within the amorphous and crystalline regions of the ungelatinized granule, which in turn, influence the extent of granule breakdown during gelatinization, and the interactions that occur between starch chains during gel storage.

5.1 IMPORTANCE OF THIS STUDY TO STARCH CHEMISTS, AND DIRECTIONS FOR FUTURE RESEARCH

This research has provided additional information on the mechanism of starch chain rearrangements within the amorphous and crystalline domains of the potato starch granule under conditions of defatting and heat-moisture treatment. Conditions similar to heat-moisture treatment might be expected to occur during food processing when such conditions are met. Thus, this study would provide a deeper insight into the structure and physicochemical changes that occur during hydrothemal treatment of foods. This study has also shown that granule crystallinity changes on heat-moisture treatment. Since crystallinity imilances starch indicosity, heat-moisture treatment may be one way of modifying the poor functional properties of legume and certain tuber starches (cassaw, yam). Research shuld thus be carried out to improve the functional properties of these starches by heat-moisture treatment (under different time / temperature moisture conditions remes).

The trend in the food industry is moving towards natural ingredients. For years, scientists have been researching for starches that have all of the properties of a modified starch but without the chemical treatment.

Presently, starches are modified by acetylation and hydroxypropylation to reduce retrogradation rates (high retrogradation rates lead to poor freeze thaw stability). This research has indicated that heat-moisture treatment may provide starches with support freeze thaw stability (since retrogradation rates would be starches with support freeze thaw stability (since retrogradation rates would be that the starches with support freeze thaw stability (since retrogradation rates would be starches with support freeze thaw stability (since retrogradation rates would be that the starches with support freeze thaw stability (since retrogradation rates would be starches with support freeze thaw stability (since retrogradation rates would be starches with support freeze thaw stability (since retrogradation rates would be starches with support freeze thaw starches that the starches with support freeze thaw stability (since retrogradation rates starches with support freeze thaw stability) (since retrogradation rates stabi

drastically reduced after heat-moisture treatment, due to decrease in amylose leaching and granular swelling). Thus, starch chemists need to tailor the retrogradation properties of heat-moisture treated starches (by different time / temperature / moisture conditions) to a level that is presently met by chemical modification.

The mode of interaction of sugars and Spids with starch components is still in dispute (Evans & Haisman, 1982; Germani et al., 1983; Eliasson, 1982; Bello-perze & Pareskel-sopez, 1995; Tuthermore, the machanism by which sugars influence starch properties is still not clearly understood. This is because many of these studies have been conducted on native starches. However, if the above studies are conducted on native, defitted, hest-moisture treated and altit treated starchs, a desper insight to the machanism and be obtained.

This work has covered those areas in which the most exciting developments are likely to occur. It will provide the impetus for food scientists and food processors to look for physical means by which starch properties can be talored to requirements whilst avoiding any toxicological problems.

BIBLIOGRAPHY

- AACC. (1984). Approved methods of the American Association of Cereal Chemists, 8th ed., American Association of Cereal Chemists, Minnesota.
- Aguilera, J.M. & Stanley, D.W. (1990). Microstructural principles of food processing and engineering. Elsevier Applied Science, New York, p. 80.
- Alexander, R.J. (1992). Carbohydrates used as fat replacers. In Developments in Carbohydrate Chemistry. R.J. Alexander & H.F. Zobel. (Eds.). American Association of Cereal Chemists, Minnesota, pp 343-370.
- Alloncle, M., & Doublier, J.L. (1991). Viscoelastic properties of maize starch / hydrocolloid pastes and gels. Food Hydrocolloids, 5 : 455-467.
- Atkins, D.P. & Kennedy, J.F. (1985). A comparison of the susceptibility of two commercial grades of wheat starch for enzymic hydrolysis and their resultant oligosaccharide product spectra. Starch, 37: 421-427.
- Banks, W. & Greenwood, C.T. (1971). Amylose : a non-helical biopolymer in aqueous solution. *Polymer*, 12 : 141-145.
- Banks, W. & Greenwood, C.T. (1975). Starch and its components. Edinburgh university press. Edinburgh.
- Bello-Perez, L.A. & Paredes-Lopez, O. (1995). Effect of solutes on retrogradation of stored starches and amylopectins : A calorimetric study. Starch. 47: 83-86.
- Bello-Perez, L.A. & Paredes-Lopez, L. (1996). Starch and amylopectin effect of solutes on clarity of pastes. Starch, 48: 205-207.
- Biliaderis, C.G., Maurice, T.J. & Vose, J.R. (1980). Starch gelatinization phenomena studied by differential scanning calorimetry. J. Food Sci., 45: 1669-1680.
- Biliaderis, C.G. (1982). Physical characteristics, enzyme digestibility, and structure of chemically modified smooth pea and waxy maize starches. J. Agric. Food Chem., 30 : 925-930.
- Biliaderis, C.G., Page, C.M., Slade, L. & Sirett, R.R. (1985). Thermal behavior of amylose-lipid complexes. Carbohydr. Polym., 5 : 367-389.

- Biliaderis, C.G., Page, M.C., Maurice, T.J. (1986a). On the multiple melting transitions of starch/monoglyceride systems. Food Chem., 22 : 279-295.
- Billaderis, C.G., Page, M.C., Maurice, T.J. & Juliano, B.O. (1986b). Thermal characterization of rice starches. A polymeric approach to phase transitions of granular starch. J. Agnic. Food Chem., 34: 6-14.
- Billaderis, C.G., Page, M.C., Maurice, T.J. (1986c). Non equilibrium melting of amylose - V complexes. Carbohydr. Polym., 6: 269-288.
- Biliaderis, C.G & Galloway, G. (1989). Crystallization behavior of amylose -V complexes : Structure-property relationships. Carbohydr. Res., 189 :31-48.
- Biliaderis, C.G. (1990). Thermal analysis of food carbohydrates. In *Thermal analysis of foods*. V.R. Harwalkar, & C.Y. Ma. (Eds.). Elsevier Science Publishers, Oxford, pp 168-220.
- Biliaderis, C.G. & Seneviratne, H.D. (1990). Solute effects on the thermal stability of glycerol monostearate amylose complex. Carbohydr. Res., 208 : 199-213.
- Billaderis, C.G. & Zawistowski, J. (1990). Viscoelastic behavior of aging starch gels : effects of concentration, temperature, and starch hydrolysates on network properties. Cerreal Chem. 67 : 240-246.
- Biliaderis, C.G. (1991). The structure and interactions of starch with food constituents. Can. J. Physiol. Pharmacol., 69: 60-78.
- Biliaderis, C.G., Tonogai, J.R., Perez, C.M. & Juliano, B.O. (1993). Thermophysical properties of milled rice starch as influenced by variety and parboiling method. *Ceresl Chem.*, **70** : 512-516.
- Billiaderis, C.G. & Prokopowich, D.J. (1994). Effect of polyhydroxy compounds on structure formation in waxy maize starch gels : a calorimetric study. *Carbohydr. Polym.*, 23 : 193-202.
- Billiaderis, C.G., Arvanitoyannis, I., izydorczyk, M.S. & Prokopowich, D.J. (1997). Effect of hydrocolioids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch, 49: 278-283.
- Blanshard, J.M.V., Bates, D.R., Muhr, A.H., Worcester, D.L. & Higgins, J.S. (1984). Small angle neutron scattering studies of starch granule structure. *Carbohydr: Polym.*, 4: 427-442.

- Blanshard, J.M.V (1987). Starch granule structure and function : a physicochemical approach. In Starch : Properties and Potential, T. Galliard. (Ed.). John Wiley & sons, New York, pp 16-54.
- Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37 : 911-917.
- Bohlin, L. & Eliasson, A.C. (1986). Shear stress relaxation of native and modified potato starch gels. Starch, 38 : 120-124.
- Bruner, R.L. (1964). Determination of reducing value. In Methods in Carbohydrate Chemistry. Vol 4. R.L. Whistler. (Ed.). Academic Press, New York, pp 67-71.
- Butler, L.E., Christianson, D.D., Scheerens, J.C. & Berry, J.W. (1986). Buffalo gourd root starch. Part Iv. Properties of hydroxypropyl derivatives. Starch, 38: 156-159.
- Caims, P., Miles, M.J. & Morris, V.J. (1991). Studies of the effect of the sugars nbose, xylose and fructose on the retrogradation of wheat starch gels by Xray diffraction. Carboydr. Polym., 16 : 355-365.
- Cairns, P., Sun, L., Morris, V.J. & Ring, S.G. (1995). Physicochemical studies using amylose as an *in vitro* model for resistant starch. J. Cereal Sci., 21 : 37-47.
- Cameron, R.E., Durrani, C.M. & Donald, A.M. (1994). Gelation of amylopectin without long range order. Starch, 46: 285-287.
- Carlson, T.L.G., Larsson, D., Dinh-Nguyen, N. & Krog, K. (1979). A study of the anylose-monoglyceride complex by Raman spectroscopy. *Starch*, 31 : 222-224.
- Chang, S.M. & Liu, L.C. (1991). Retrogradation of rice starches studied by differential scanning calorimetry and influence of sugars, NaCl and lipids. J. Food Sci., 56: 564-568.
- Cheetham, N.W.H. & Tao, L. (1997). Amylose conformational transitions in binary DMSO/water mixtures. Starch, 49: 407-415.
- Chrastil, J. (1987). Improved colorimetric determination of amylose in starches or flours. Carbohydr. Res., 159 : 154-158.

- Christianson, D.D., Hodge, J.E., Osborne, D. & Detroy, R.E. (1981). Gelatinization of wheat starch as modified by xanthan gum, guar gum and cellulose gum. *Cereal Chem.*, 58: 513-517.
- Ciacco, C.F. & Fernandes, J.L.A. (1979). Effect of various ions on the kinetics of retrogradation of concentrated wheat starch gels. *Starch*, 31 : 51-53.
- Clark, A.H., Gidley, M.J., Richardson, R.K. & Ross-Murphy, S.B. (1989). Rheological studies of aqueous amylose gels : The effect of chain length and concentration on gel modulus. *Macromolecules*, 22 : 346–351.
- Colonna, P., Buleon, A. & Mercler, C. (1981). Pisum sativum and Vicia faba carbohydrates : structural studies. J. Food Sci., 46 : 88-93.
- Colonna, P., Buleon, A. & Mercier, C. (1987). Physically modified starches. In Starch : Properties and potential. T. Galiard. (Ed.). John Wiley & Sons, New York, pp 79-114.
- Colonna, P., Leloup, V. & Buleon, A. (1992). Limiting factors of starch hydrolysis. Eur. J. Clinc. Nutr., 46: 517-532.
- Colquhoun, I.J., Parker, R., Ring, S.G., Sun, L. & Tang, H.R. (1995). An NMR spectroscopic characterization of the enzyme-resistant residue from αamylolysis of an amylose gel. *Carbohydr. Polym.*, **27**: 255-259.
- Colwell, K.H., Axford, D.W.E., Chamberlain, N. & Elton, G.A.H. (1969). Effect of storage temperature on the aging of concentrated wheat starch gels. J. Sci. Food Agric, 20 : 550-555.
- Conde-Petit, B. & Escher, F. (1994). Influence of starch-lipid complexation on the aging behavior of high concentration starch gels. Starch, 46 : 172-177.
- Cone, J.W. & Wolters, M.G.E. (1990). Some properties and degradability of isolated starch granules. Starch, 42: 298-301.
- Cooke, D. & Gidley, M.J. (1992). Loss of crystalline and molecular order during starch gelatinization : origin of the enthalpy transition. *Carbohydr. Res.*, 227 : 103-112.
- Craig, S.A.S., Maningat, C.C., Seib, P.A. & Hoseney, R.C. (1989). Starch paste clarity. Cereal Chem., 66: 173-182.

- Cui, R. & Oates, C.G. (1997). The effect of retrogradation on enzyme susceptibility of sago starch. Carbohydr. Polym., 32: 65-72.
- D'Appolonia, B.L. (1972). Effect of bread ingredients on starch gelatinization properties as measured in the amylograph. Cereal Chem., 49 : 532-543.
- De Graaf, R.A., Lammers, G., Janssen, L.P.B.M. & Beenackers, A.A.C.M. (1995). Quantitative analysis of chemically modified starches by ¹H NMR spectroscov. *Starch.* 47: 459–475.
- Donald, A.M., Waigh, T.A., Jenkins, P.J., Gidley, M.J., Debet, M. & Smith, A. (1997). Internal structure of starch granules revealed by scattering studies. In *Starch : Structure and Functionality*. P.J. Fraizier, P. Richmond, & A.M. Donald. (Eds.). The Royal Society of Chemistry, Cambridge, pp 172-179.
- Donovan, J.W. (1979). Phase transition of the starch-water system. Biopolymers, 18 : 263-275.
- Donovan, J.W. & Mapes, C.J. (1980). Multiple phase transitions of starches and naegeli amylodextrins. Starch, 32 : 190-193.
- Donovan, J.W., Lorenz, K. & Kulp, K. (1983). Differential scanning calorimetry of heat-moisture treated wheat and potato starches. *Cereal Chem.*, **60**: 381-387.
- Dublier, J.L. & Choplin, L. (1989). A rheological description of amylose gelation. Carbohydr. Res., 27 : 361-364.
- Durrani, C.M. & Donald, A.M. (1995). Physical characterization of amylopectin gels. Polymer gels & Network, 3 : 1-27.
- Eerlingen, R.C., Jacobs, H. & Delcour, J.A. (1994). Enzyme resistant starch. V. Effect of retrogradation of waxy maize starch on enzyme susceptibility. *Cereal Chem.*, 71: 351-355.
- Eidam, D., Kulicke, W.M., Kuhn, K. & Stute, R. (1995). Formation of maize starch gels selectively regulated by the addition of hydrocolloids. *Starch*, 47: 378-384.
- Eliasson, A.C. (1985). Retrogradation of starch as measured by differential scanning calorimetry. In New approaches to research on Cereal Carbohydrates. R.D. Hill & L. Munck. (Eds.). Elsevier Science Publishers, Amsterdam, pp 93-98.

- Eliasson, A.C. & Krog, N. (1985). Physical properties of amylose-monoglyceride complexes. J. Cereal Sci., 3: 239-248.
- Eliasson, A.C., Finstad, H. & Ljunger, G. (1988). A study of starch-lipid interactions for some native and modified maize starches. *Starch*, 40: 95-100.
- Eliasson, A.C. & Ljunger, G. (1988). Interaction between amylopectin and lipid additives during retrogradation in a model system. J. Sci. Food Agric., 44: 353-361.
- Eliasson, A.C. (1992). A. Calorimetric investigation of the influence of sucrose on the gelatinization of starch. Carbohydr. Polym., 18: 131-138.
- Eliasson, A.C. & Larsson, K. (1993). Physicochemical behavior of the components of wheat flour. In *Cereals in Bread making*. O.R. Fennema, M. Karel, G.W. Sanderson, S.R. Tannenbaum, P. Walstra & J.R. Whitaker. (Eds.), Marcel Dekker Inc., New York, pp 96-129.
- Emiola, L.O. & Delarosa, L.C. (1981). Physicochemical characteristics of yam starches. J. Food Biochem., 5 : 115-130.
- Entwistle, G., Bachelor, S., Booth, E. & Walker, K. (1998). Economics of starch production in the UK. Industrial crops and Products, 7: 175-186.
- Evans, I.D. & Haisman, D.R. (1982). The effect of solute on the gelatinization temperature range of potato starch. Starch, 34 : 224-231.
- Evans, I.D. (1986). An investigation of starch/surfactant interaction using viscometry and differential scanning calorimetry. Starch, 38: 227-235.
- Feam, T. & Russell, P.L. (1982). A kinetic study of bread stalling by differential scanning calorimetry. The effect of loaf volume. J. Sci. Food Agric., 33: 537-548.
- Fleche, G. (1985). Chemical modification and degradation of starch. In Starch conversion technology. M.A. Van Beynum, & J.A. Roels. (Eds.). Marcel Dekker Inc., New York, pp 73-99.
- Flory, P.J. (1953). Principles of polymer Chemistry. Cornell University press, New York.

- Forrest, B. (1992). Identification and quantification of hydroxypropylation of starch by FT-IR. Starch, 44: 179-183.
- Franco, C.M.L., Preto, S.J, Ciacco, C.F. & Tavares, D.Q. (1988). Studies on the susceptibility of granular cassava and corn starches to enzymatic attack. Part 2. Study of the granular structure of starch. Starch, 40 : 29-32.
- Franco, C.M.L. & Ciacco, C.F. (1992). Factors that affect the enzymatic degradation of natural starch granules- Effect of the size of the granules. *Starch.* 44: +422-426.
- Franco, C.M.L., Ciacco, C.F. and Tavares, D.Q. (1995). Effect of heat-moisture treatment on the enzymatic susceptibility of corn starch granules. *Starch*, 47 : 223-228.
- French, D. (1972). Fine structure of starch and its relationship to the organization of starch granules. J. Jpn. Soc. Starch Sci., 19: 8-33.
- French, A.D. & Murphy, V.G. (1977). Computer modeling in the study of starch. Cereal Foods World, 22: 61-70.
- French, D.(1984). Organization of starch granules. In Starch. Chemistry and Technology. Vol 2. D.M. Whitler, J.N. BetMiller & E.F. Paschall. (Eds.). Academic Press, New York, pp 183-247.
- Galliard, T. (1983). Starch-lipid complexes and other non-starch components of starch granules in cereal grains. In Recent advances in Phytochemistry, Vol 17. J.L. Peter & F.A. Loewus. (Eds.). Plenum Press, New York, pp 111-136.
- Galliard, T. & Bowler, P. (1987). Morphology and composition of starch. In Starch : properties and potential. Vol 13. T. Galliard. (Ed.). John Wiley & sons, New York, pp 55-78.
- Germani, R., Ciacco, C.F. & Rodriguez-Amaya, D.B. (1983). Effect of sugars, lipids and type of starch on the mode and kinetics of retrogradation of concentrated corn starch gels. Starch, 35: 377-381.
- Gernat, C., Radosta, S., Damaschun, G. & Schierbaum, F. (1990). Supramolecular structure of legume starches revealed by X-ray scattering. Starch. 42: 175-187.

- Gernat, C., Radosta, S., Anger, H. & Damaschun, G. (1993). Crystalline parts of three different conformations detected in native and enzymatically degraded starches. *Starch*, 48: 309-314.
- Gibinski, M., Palasinski, M. & Tomaski, P. (1993). Physicochemical properties of defatted oat starch. Starch, 45: 354-357.
- Gidley, M.J.(1987). Factor affecting the crystalline type (A-C) of native starches and model compounds : A rationalization of observed effects in terms of polymorphic structures. *Carbohydr. Res.*, 161: 301-304.
- Gidley, M.J. & Boclek, S.M. (1988). ¹³C CP / MAS NMR studies of anylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: Relationship between glycosidic linkage conformation and Solidstate ¹⁵C chemical shifts. *J. Am. Chem. Soc.*, **110**: 3820-3829.
- Gidley, M.J. (1989). Molecular mechanism underlying amylose aggregation and gelatinization. *Macromolecules*, 22: 351-358.
- Gidley, M.J. & Bulpin, P.V. (1989). Aggregation of amylose in aqueous systems : the effect of chain length on phase behavior and aggregation kinetics. *Macromolecules*, 22: 341-346.
- Gidley, M.J. (1992). Structural order in starch granules and its loss during gelatinization. In *Gums and stabilizers for the food industry* 6. G.O. Phillips, P.A. Williams & D.J. Wedlock, (Eds.). RL Press, Oxford, pp 87-92.
- Goodfellow, B.J. & Wilson, R.H. (1990). A Fourier transform IR study of the gelation of amylose and amylopectin. *Biopolymers*, 30: 1183-1185.
- Goshima, G., Abe, M., Sato, N., Ohashi, K. & Tsuge, H. (1985). Amylographic reproducibility of defatted potato starch by re-introduction of lipids. *Starch*, 37 : 10-14.
- Gough, B.M. & Pybus, J.N. (1971). Effect on the gelatinization temperature of wheat starch granules of prolonged treatment with water at 5OC. Starch, 23: 210-214.
- Greenwood, C.T. & Thompson, J. (1962). Physicochemical studies on starches. XXIV. Fractionation and characterization of starches of various plant origins. J. Chem. Soc. 42: 222-229

- Gudmundsson, M. & Eliasson, A.C. (1989). Some physicochemical properties of oat starches extracted from varieties with different oil contents. *Acta Agric. Scand.* 39: 101-112.
- Gudmundsson, M. & Eliasson, A.C. (1991). The effects of water soluble arabinoxylans on gelatinization and retrogradation of starch. *Starch*, 43: 5-10.
- Hahn, D.E. & Hood, L.F. (1980). Physical characteristics of α-amylase hydrolysates from unmodified and chemically modified waxy maize starches. J. Food Sci., 45: 518-522.
- Hahn, D.E. & Hood, L.F. (1987). Factors influencing corn starch lipid complexing. Cereal Chem., 64 : 81-85.
- Hargin, K.D. and Morrison, W.R. (1980). The distribution of acyl lipids in the germ of four wheat varieties. J. Sci. Food Agric., 31: 877-888.
- Hizukuri, S., Fujii, M. & Nikuni, Z. (1960). The effect of inorganic ions on the crystallization of amylodextrins. *Biochim. Biophys. Acta*, 40: 348-348.
- Hizukuri, S. (1969). The effect of environmental temperature of plants on the physicochemical properties of their starches. J. Jpn. Soc. Starch Sci., 17 : 73-88.
- Hizukuri, S., Takeda, Y., Yasuda, M. & Suzuki, A. (1981). Multi-branched nature of amylose and the action of debranching enzymes. *Carbohydr. Res.*, 94 : 205-213.
- Hizukuri, S., Kaneko, T. & Takeda, Y. (1983). Measurements of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism. *Biochim. Rolophys. Acta*, **760**: 188-191.
- Hizukuri, S. (1986). Polymodal distribution of the chain length of amylopectin and its significance. Carbohydr. Res., 147 : 342-347.
- Hizukuri, S. (1996). Starch : Analytical aspects. In Carbohydrates in Food. A.C. Eliasson. (Ed.). Marcel Dekker Inc., New York, pp 347-429.
- Hofreiter, B.T. (1987). Miscellaneous modifications. In *Modified starches : Properties and uses*. O.B. Wurzburg, (Ed.). CRC Press Inc., Florida, pp 180-196.

- Holm, J., Bjorck, I., Ostrowska, S. Eliasson, A.C., Asp, N.G., Larsson, K. & Lundquist, I. (1983). Digestbility of amylose - lipid complexes in vitro and in vivo. Starch, 35: 294-297.
- Hood, L.F. & Mercier, C. (1978). Molecular structure of unmodified and chemically modified manioc starches. Carbohydr. Res., 61 : 53-66.
- Hood, L.F. (1982). Current concepts of starch structure. In *Food Carbohydrates*. D.R Lineback & G.E. Ingett. (Eds.). AVI Publishers Company, Connecticut, pp 217-236.
- Hoover, R. & Hadziyev, D. (1981). Characterization of potato starch and its monoglyceride complexes. Starch, 33 : 290-300.
- Hoover, R. & Sosulski, F.W. (1985). Studies on the functional characteristics and digestibility of starches from *Phaseolus vulgaris* biotypes. *Starch*, 37: 181-191.
- Hoover, R. & Sosulski, F. W. (1988). Effect of cross linking on functional properties of legume starches, Starch, 38 : 149-155.
- Hoover, R., Hannouz, D. & Sosluski, F.W. (1988). Effect of hydroxypropylation on thermal properties, starch digestbility and freeze-thaw stability of field pea (*Pisum sativum cv* Trapper) starch. Starch, 40 : 383-387.
- Hoover, R., Swamidas, G. & Vasanthan, T. (1993). Studies on the physicochemical properties of native, defatted and heat-moisture treated pigeon pea (Cajenuz cajar.) starch. Carbohydr. Res., 246-n158-105-203.
- Hoover, R. & Vasanthan, T. (1994a). Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume and tuber starches. Carbohydr. Res., 252: 33-53.
- Hoover, R. & Vasanthan, T. (1994b). The flow properties of native, heat-moisture treated and annealed starches from wheat, oat, potato and lentil. J. Food Biochem., 18: 67-82.
- Hoover, R., Vasanthan, T., Senanayake, N.J. & Martin, A.M. (1994). The effect of defatting and heat-moisture treatment on the retrogradation of starch gels from wheat, oat, potato and lenil. Carbohvár, Res., 261: 13-24.

- Hoover, R. & Manuel, H. (1996a). Effect of heat-moisture treatment on the structure and physicochemical properties of legume starches. *Food Res. Int.*, 29: 731-750.
- Hoover, R. & Manuel, H. (1996b). The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J. Cereal Sci., 23: 153-162.
- Horii, F., Yamamoto, H., Hiray, A. & Kitamaru, R. (1987). Structural study of amylose polymorphs by cross polarization magic angle spinning ¹³C NMR spectroscopy. *Carbohydr. Res.*, **16**0 : 29-40.
- Hoseney, R.C., Lineback, D.R. & Seib, P.A. (1978). Role of starch in baked goods. Baker's Dig., 52 : 11-40.
- Hoseney, R.C., Zeleznak, K.J. & Yost, D.A. (1986). A note on the gelatinization of starch. Starch, 38 : 407-409.
- Huang, J.J. & White, P.J. (1993). Waxy corn starch : Monoglyceride interaction in a model system. Cereal Chem., 70 : 42-47.
- I'Anson, K.J., Miles, M.J., Morris, V.J. & Ring, S.G. (1988). A study of amylose gelation using a synchrotron X-ray source. Carbohydr. Polym., 8: 45-53.
- Imberty, A., Chanzy, H., Perez, S. Buleon, A. & Tran, V. (1987). New three dimensional structure for A-type starch. *Macromolecules*, 20: 2634-2636.
- Imberty, A., Chanzy, H., Perez, S. Buleon, A. & Tran, V. (1988). The double helical nature of the crystalline part of A- starch. J. Mol. Biol., 201: 365-378.
- Imberty, A. & Perez, S. (1988). A revisit to the three dimensional structure of B type starch. *Biopolymers*, 27: 1205-1221.
- Imberty, A., Buleon, A., Tran, V. & Perez, S. (1991). Recent advances in knowledge of starch structure. Starch, 43: 375-384.
- Imberty, A. & Perez, S. (1996). Structural features of starch. Carbohydrates in Europe, 15: 17-21.
- Jacobson, M.R., Obanni, M. & BeMiller, J.N. (1997). Retrogradation of starches from different botanical sources. Cereal Chem., 74: 511-518.

- Jacobson, M.R. & BeMiller, J.N. (1998). Method for determining the rate and extent of accelerated starch retrogradation. Cereal Chem., 75: 22-29.
- Jane, J. & Robyt, J.F. (1984). Structure studies of amylose -V complexes and retrograded amylose by action of or-amylases, and a new method for preparing amylodextrins. Carbohydr. Res., 132: 105-118.
- Jane, J., Craig, S.A.S., Seib, P.A. & Hoseney, R.C. (1986). Characterization of granular cold water soluble starch. Starch, 38 ; 258-263.
- Jane, J., Xu, A., Radosavljevic, M. & Seib, P.A. (1992). Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross linking reagents. Cereal Chem., 69: 405-409.
- Jane, J. (1997a). Starch functionality in food processing. In Starch : Structure and functionality. P.J. Frazier, A.M. Donald & P. Richmond. (Eds.). The Royal Society of Chemistry. Cambridge. pp 28-35.
- Jane, J. (1997b). Structural aspects of starch granule. In Starch 96 : the book, Proceedings of Symposium Starch 96. H. Van Doren & N. Van Swaaii, (Eds.). Carbohydrate Research Foundation. Noord/wiikerhout, pp 37-46.
- Jang, J.K. & Pyun, Y.R. (1996). Effect of moisture content on melting of wheat starch. Starch, 48 : 48-51.
- Jang, J.K. & Pyun, Y.R. (1997). Effect of moisture level on the crystallinity of wheat starch aged at different temperatures. Starch, 49: 272-277.
- Jankowski, T. & Rha, C.K. (1986). Retrogradation of starch in cooked wheat. Starch, 38 : 6-9.
- Jansson, C., Puthigae, S. Sun, C. & Grenthe, C. (1995). Genetically modified starch as an industrial raw material. J. Mol. Sci. Pure Applied Chem., A 32 : 895-898.
- Jarowenko, W. (1987). Acetylated starch and miscellaneous organic esters. In Modified starches : Properties and uses, O.B. Wurzburg. (Ed.). CRC Press Inc, Florida, pp 55-77.
- Jenkins, P.J., Cameron, R.E. & Donald, A.M. (1993). A universal feature in the structure of starch granules from different botanical sources. *Starch*, 45 : 417-420.

- Jenkins, P.J. & Donald, A.M. (1995). The influence of amylose on starch granule structure. Int. Biol. Macromol., 17: 315-321.
- Johnson, D.P. (1969). Spectrophotometric determination of the hydroxypropyl groups in starch ethers. Anal. Chem., 41, 859-860.
- Kainuma K. & French, D. (1972). Naegeli amylodextrin and its relationships to starch granule structure. II. Role of water in crystallization of B-starch. *Biopolymers.* 11: 2241-2250.
- Kalichevsky, M.T., Orford, P.D. & Ring, S.G. (1990). The retrogradation and gelation of amylopectin from various botanical sources. *Carbohydr. Res.*, 198 : 49-55.
- Kasemsuwan, T. & Jane, J. (1994). Location of amylose in normal starch granules. II. Location of phosphodiester cross linking revealed by phosphorous 31 Nuclear Magnetic Resonance. Cereal Chem., 71: 282-287.
- Kassenbeck, P. (1978). Contribution to the knowledge on distribution of amylose and amylopectin in starch granules. Starch, 30 : 40-46.
- Katsuta, K., Nishimura, A. & Miura, M. (1992a). Effect of saccharides on stabilities of rice starch gels. I. Mono- and disaccharides. *Food Hydrocolloids*, 6: 387-398.
- Katsuta, K., Nishimura, A. & Miura, M. (1992b). Effect of saccharides on stabilities of rice starch gels. 2. Oligosaccharides. Food Hydrocolloids, 6 : 399-408.
- Keetels, C.J.A.M., Oostergetel, G.T. & van Vliet, T. (1996). Recrystallization of amylopectin in concentrated starch gels. Carbohydr. Polym., 30: 61-64.
- Kesler, C.C & Hjermstad, E.T. (1950), Preparation of starch ethers in original granule form. US Patent, 2, 516,633.
- Kim, C.S. & Walker, C.E. (1992). Effects of sugars and emulsifiers on starch gelatinization evaluated by differential scanning calorimetry. *Cereal Chem.*, 69: 212-217.
- Kim, H.R., Hermansson, A.M. & Eriksson, C.E. (1992). Structural characteristics of hydroxypropyl potato starch granules depending on their molar substitution. Starch. 44: 111-116.

- Kim, H.R. & Eliasson, A.C. (1993). Changes in rheological properties of hydroxypropyl potato starch pastes during freeze thaw treatments. II. Effect of molar substitution and cross linking. J. Text. Stud. 24: 199-213.
- Kim, H.R., Muhrbeck, P. & Eliasson, A.C. (1993). Changes in rheological properties of hydroxypropyl potato starch pastes during freeze thaw treatment. III. Effect of cooking conditions and concentration of the starch pastes. J. Sci. Food Agric. 61: 109-116.
- Kim, J., Kim, W. & Shin, M. (1997). A comparative study on retrogradation of rice starch gels by DSC, X-ray and α-amylase. Starch, 49: 71-75.
- Knutson, C.A., Khoo, U., Cluskey, J.E. & Inglett, G.E. (1982). Variation in enzyme digestibility and gelatinization behavior of corn starch granule fraction. *Cernal Chem.*, 59: 512-515.
- Kohyama, K. & Nishinari, K. (1991). Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. J. Agric. Food Chem., 39 : 1406-1410.
- Kowblansky, M. (1985). Calorimetric investigation of inclusion complexes of any/ose with long chain aliphatic compounds containing different functional groups. *Macromolecules*, **18**: 1776-1779.
- Krog, N. & Jensen, N.B. (1970). Interaction of monoglycerides in different physical states with amylose and their anti-firming effects in bread. J. Food Technol., 5: 77-87.
- Krog, K. (1971). Amylose complexing effect of food grade emulsifiers. Starch, 23 : 206-210.
- Krusi, H. von & Neukom, H. (1984). Untersuchunger Über die retrogradation der starke in konzentrierten weizestarkegelen. Teil I. Herstellung konzentrierter gele, einflub der starkekonzentration and herstellungsbedingungen auf die retrogradation der starke. Starch, 38: 40-45.
- Kulp, K. & Lorenz, K. (1981) Heat-moisture treatment of starches. I Physicochemical properties. Cereal Chem., 58: 46-48.
- Lagendlijk, J. & Pennings, H.J. (1970). Relation between complex formation of starch with monoglycerides and the firmness of bread. *Cereal Sci. Today*, 15 : 354-365.

- Larsson, K. (1983). Physical state of lipids and their technical effects in baking. In *Lipids in Cereal Technology*. P.J. Barnes. (Ed.). Academic Press, London, pp 237-251.
- Larsson, K. & Dejmek, P. (1990). Crystal and liquid crystal structures of lipids. In Food Emulsions. K. Larsson & E. Friberg. (Eds.). Marcel Dekker Inc., New York, pp 97-125.
- Laszlò, E., Hollo, J., Hoschke, A. & Sarosi, G. (1978). A study by means of lactone inhibition of the role of a "half chair" glycosyl conformation at the active center of amylolytic enzymes. *Catrohytor, Res.*, 61: 387-394.
- Le Bail, P., Bizot, H. & Buleon, A. (1993). 'B' to 'A' type phase transition in short amylose chains. Carbohydr. Polym., 21 : 99-104.
- Leech, H.W., McCowen, L.D. & Schoch, T.J. (1959). Structure of the starch granule. I. Swelling and solubility patterns of various starches. *Cereal Chem.*, 36: 534-544.
- Leegwater, D.C. & Luten, J.B. (1971). A study of the *in vitro* digestibility of hydroxypropyl starches by pancreatin. *Starch*, 23: 430–432.
- Lelievre, J. (1976). Theory of gelatinization in a starch-water-solute system. Polymer, 17: 854-858.
- Lelievre, J. (1992). Thermal analysis of carbohydrates as illustrated by aqueous starch systems. In *Developments in Carbohydrate Chemistry*, R.J. Alexander & H.F. Zobel. (Eds.). American Association of Cereal Chemists, Minnesota, pp 137-161.
- Leloup, V.M., Colonna, P. & Buleon, A. (1991). Influence of amyloseamylopectin ratio on gel properties. J. Cereal Sci., 13: 1-13.
- Leloup, V.M., Colonna, P., Ring, S.G., Robert, K. & Wells, B. (1992). Microstructure of amylose gels. *Carbohydr. Polym.*, 18: 189-197.
- Lillford, P.J. & Morrison, A. (1997). Structure / function relationship of starches in Food. In Starch : Structure and functionality. P.J. Frazier, P. Richmond & A.M. Donald. (Eds.). The Royal Society of Chemistry, Cambridge, pp 1-8.
- Lineback, D.R. (1984). The starch granule : Organization and properties. Baker's Dig., 58 : 16-21.

- Lineback, D.R. & Rasper, V.F. (1988). Wheat carbohydrates. In Wheat : Chemistry and Technology. Y. Pomeranz. (Ed.). American Association of Cereal Chemists, Minnesota, pp 277-372.
- Liu, H., Lelievre, J. & Ayoung-Chee, W. (1991). A study of starch gelatinization using differential scanning calorimetry. X-ray and birefringence measurements. *Carbolydr. Res.*, 210: 79-87.
- Longton, J. & LeGrys, G.A. (1981). Differential scanning calorimetry studies on the gelatinization of aging gels. Starch, 33 : 410-414.
- Lonkhuysen, V. & Blaknestijn, J. (1976). Interaction of monoglycerides with Starches. Starch, 26: 337-342.
- Lorenz, K. & Kulp, K. (1981). Heat-moisture treatment of starches. II. Functional properties and baking potential. *Cereal Chem.*, 58: 49-52.
- Lorenz, K. & Kulp, K. (1982). Cereal and root starch modification by heatmoisture treatment. I. Physicochemical properties. Starch, 34: 50-54.
- Lorenz, K. & Kulp, K. (1983). Physico-chemical properties of defatted heatmoisture treated starches. Starch, 35 : 123-129.
- Lowry, G.D.A., Sargeant, J.G. & Schofield, J. D. (1981).Wheat starch granule protein : The isolation and characterization of a sall-extractable protein from starch granules. J. Sci. Food April., 32 : 371-377.
- Lu, S., Chen, L. & Lii, C. (1997). Correlation between the fine structure, physicochemical properties and retrogradation of amylopectin from Taiwan rice varieties. *Cerea Chem.*, **74**: 34-39.
- Lund, D. (1984). Influence of time, temperature, moisture, ingredients and processing condition on starch gelatinization. CRC Crit. Rev. Food Sci. Nutr., 20 : 249-272.
- Manners, D.J. & Matheson, N.K. (1981). The fine structure of amylopectin. Carbohydr. Res., 90 : 99-110.
- Manners, D.J. (1985). Structural analysis of starch components by debranching enzymes. In New approaches to research on cereal carbohydrates. R.D. Hill & L., Munck. (Eds.). Elsevier Science Publishers, Amsterdam, pp 45-60.

- Marsden, W.L. & Gray, P.P. (1986). Enzymatic hydrolysis of cellulose in ligno cellulosic materials. CRC Crit, Rev. Biotechnol., 3 : 235-276.
- Marshall, J.J. & Whelan, W.J. (1974). Multiple branching in glycogen and amylopectin. Arch. Biochem. Biophys., 161 :234-237.
- McIver, R.G., Axford, D.W.E., Colwell, K.H. & Elton, G.A.H. (1968). Kinetic study of the retrogradation of gelatinized starch. J. Sci. Food Agric., 19: 560-563.
- Melvin, M.A. (1979). The effect of extractable lipid on the viscosity characteristics of corn and wheat starches. J. Sci. Food Agric., 30 : 731-738.
- Mercler, C., Charbonnier, R. Grebaut, J. & De La Gueriviere, J.F. (1980). Formation of amylose lipid complexes by twin-screw extrusion cooking of manico starch. Careal Chem. 57, 4-9.
- Miles, M.J., Morris, V.J., & Ring, S.J. (1985a). Gelation of amylose. Carbohydr. Res., 135 : 257-269.
- Miles, M.J., Morris, V.J., Oxford, P.D. & Ring, S.G. (1985b). The role of amylose and amylopectin in the gelation and retrogradation of starch. *Carbohydr. Res.*, 135: 271-281.
- Minitab, Inc. (1991). Minitab computer supplement : Statistic for business and economics. 5th ed. Minitab Inc., State College, PA, pp 299-319.
- Miura, M., Nishimura, A. & Katsuta, K. (1992). Influence of addition of polyols and food emulsifiers on the retrogradation rate of starch. *Food Structure*, 11: 225-236.
- Mohd Azemi, B.M.N. & Wootton, M. (1984). In vitro digestibility of hydroxypropyl maize, waxy maize, and high amylose maize starches. Starch, 36: 273-275.
- Mohd Azemi, B.M.N. & Wootton, M. (1985). Action pattern of porcine pancreatic alpha amylase on hydroxypropyl derivatives of maize, waxy maize and high amylose maize starch. Starch, 37: 50-52.
- Mohd Azemi, B.M.N. & Wootton, M. (1995). Distribution of partial digestion products of hydroxypropyl derivatives of maize (NM), waxy maize (WM) and high amylose maize (HA) starches. Starch. 47: 465-469.
- Morgan, K.R., Furneaux, R.H. & Larsen, N.G. (1995). Solid-state NMR studies on the structure of starch granules. Carbohydr.Res., 276 : 387-399.

- Morris, V.J. (1990). Starch gelation and retrogradation. Trends in Food Sci. & Technol., 1: 2-6.
- Morrison, W.R. (1981). Starch lipids A reappraisal. Starch, 33: 408-410.
- Morrison, W.R. & Milligan, T.P. (1982). Lipids in maize starch. In *Maize : Recent progress in chemistry and technology*, G. Inglett. (Ed.). Academic Press, New York, pp 1-18.
- Morrison, W.R. & Laignelet, B. (1983). An improved method for determining apparent and total amylose in cereal and other starches. J. Cereal Sci., 1: 9-20.
- Morrison, W.R., Law, R.V. & Snape, C.E. (1993a). Evidence for inclusion complexes of lipid with V-amylose in malze, rice and oat starches. J. Cereal Sci., 18, 107-111.
- Morrison, W.R., Tester, R.F., Snape, C.E., Law, R.V. & Gidley, M.J. (1993b), Swelling and gelatinization of cereal starches. IV Some effects of lipidcomplexed anylose and free amylose in waxy and normal barley starches. *Careal Chem.*, **70**: 385-391.
- Muller, J.J., Gemat, C., Schultz, W., Muller, E.C., Vorwerg, W. & Damaschun, G. (1995). Computer simulations of X-ray scattering curves : Gelation and crystallization process in amylose solutions. Biopolymers, 35: 271-288.
- Nakazawa, F., Noguchi, S., Takahashi, J. & Takada, M. (1985). Retrogradation of gelatinized potato starch studied by differential scanning calorimetry. *Agric. Biol. Chem.*, **49**: 953–957.
- Nikuni, Z. (1969). Starch and cookery. J. Sci. Cookery, 2 : 6-10.
- Nikuni, Z. (1978), Studies on starch granule, Starch, 30 : 105-111,
- Oostergetel, G.T. & Van Bruggen, E.F.J. (1989). On the origin of a low angle spacing in starch. Starch, 41: 331-335.
- Oostergetel, G.T. & Van Bruggen, E.F.J. (1993). The crystalline domains in potato starch granules are arranged in a helical fashion. *Carbohydr. Polym.*, 21: 7-12.

- Orford, P.D., Ring, S.G., Carrol, V., Miles, M.J. & Morris, V.J. (1987). The effect of concentration and botanical source on the gelation and retrogradation of starch. J. Sci. Food Agric., 39: 169-177.
- Orford, P.D., Parker, R. & Ring, S.G. (1993). The functional properties of extrusion cooked waxy maize starch. J. Cereal Sci., 18 : 277-286.
- Osman-Ismail, F. (1972). The formation of inclusion compounds of starches and starch fractions. Diss. No 4829, Juris Druck, Zurich.
- Ostergard, K., Bjorck, I. & Gunnarsson, A. (1988). A study of native and chemically modified potato starches. Part 1. Analysis and enzymatic availability in vitro. Starch, 40: 58-66.
- Paschall, E.F. (1967). Production and uses of cationic starches. In Starch : Chemistry and Technology. Vol 2. R.L. Whistler & E.F. Paschall. (Eds.). Academic Press, New York, pp 403-422.
- Perez, S., Imberty, A. & Scaringe, R.P. (1990). Computer modeling of carbohydrate molecules. In ACS Symposium series 430. A.D. French & J.W. Brady. (Eds.). American Chemical Society, Washington D.C., pp 281-299
- Pfannemuller, B. (1987). Influence of chain length of short monodisperse amylose on the formation of A- and B- type X-ray diffraction patterns. *Int. J. Biol. Mearomol.*, 9: 105-106.
- Preiss, J. & Lori, C. (1980). Starch biosynthesis and degradation. In The Biochemistry of plants : a comprehensive treatise. Vol 3. J. Preiss. (Ed.). Academic Press, New York, pp 371-423.
- Prokopowich, D.J. & Biliaderis, C.G. (1995). A comparative study of the effect of sugars on the thermal and mechanical properties of concentrated waxy maize, wheat, potato and pea starch gels. *Food Chem.*, **95** : 255-262.
- Rege, A. & Pai, J.S. (1996). Thermal and freeze that properties of starch of chickpea (Cicer arietinum). Food Chem., 57: 545-547.
- Riisom, T., Krog, K. & Eriksen, J. (1984). Amylose complexing capacities of cisand trans- unsaturated monoglycerides in relation to their functionality in bread. J. Cereal Sci. 2: 105-118.
- Ring, S.G. (1985). Some studies on starch gelation. Starch, 37 : 80-83.

- Ring, S.G. (1987). Molecular interactions in aqueous solution of the starch polysaccharides. A review. Food Hydrocolloids, 1: 449-454.
- Ring, S.G., Colonna, P., l'Anson, K.J., Kalichevsky, M.T., Miles, M.J., Morris, V.J. & Oxford, P.D. (1987). The gelation and crystallization of amylopectin. *Carbohydr. Res.*, 163: 277-293.
- Ring, S.G., Gee, J.M., Whittam, M., Orford, P.D. & Johnson, I.T. (1988). Resistant starch : its chemical form in foodstuffs and effects on digestibility in vitro. Food Chem., 28: 97-109.
- Robin, J.P., Mercier, C., Charbonniere, R. & Guilbot, A. (1974). Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cervel Chem., 51 : 389–406.
- Robyt, J.F. & French, D. (1970). The action pattern of porcine pancreatic aamylase in relationship to the substrate binding site of the enzyme. J. Biol. Chem., 245 : 3917-3927.
- Robyt, J.F. (1984). Enzymes in the hydrolysis and synthesis of starch. In Starch : Chemistry and Technology. R.L. Whistler, J.N. BeMiller & E.F. Paschall. (Eds.), Academic Press, New York, pp 87-123.
- Roulet, P.H., Mac Innrs, W.M., Wursch, P., Sanchez, R.M. & Raemy, A. (1988). A comparative study of the retrogradation kinetics of gelatinized wheat starch in gel and powder form using X-ray, differential scanning calorimetry and dynamic mechanical analysis. *Food Hydrocolloids*, 2: 381-396.
- Russell, P.L. (1987). Aging of gels from starches of different amylose / amylopectin content studied by differential scanning calorimetry. J. Cereal Sci., 6: 147-158.
- Russell, P.L. & Oliver, G. (1989). The effect of pH and NaCl content on starch gel aging. A study by Differential scanning calorimetry and rheology. J. Cereal Scl., 10: 122-138.
- Sair, L. (1964). Heat-moisture treatment of starches. In Methods in Carbohydrate Chemistry, Vol 4, R.L. Whistler. (Ed.), Academic Press, New York, p 283.
- Sair, L. (1967). Heat-moisture treatment of starch. Cereal Chem., 44 : 8-26.
- Sajjan, S.U. & Rao, M.M.R. (1987). Effect of hydrocolloids on the rheological properties of wheat starch. Carbohydr. Polym., 7: 395-402.

- Schoch, T.J. (1964). Iodometric determination of amylose. In Methods in Carbohydrate chemistry. Vol 4. R.L. Whistler. (Ed.). Academic Press, New York, pp 157-160.
- Seneviratne, H.D. & Biliaderis, C.G. (1991). Action of α-amylase on amyloselipid complex superstructure. J. Cereal Sci., 13: 129-143.
- Senior, M.B. & Hamori, E. (1973). Investigation of the effect of amylose / I₂ complexation on the conformation of amylose in aqueous solution. *Biopolymers*, **12**: 65-67.
- Seow, C.C. & Thevamalar, K. (1993). Internal plasticization of granular rice starch by hydroxypropylation : Effect on phase transitions associated with gelatinization. *Starch*, 45: 85-88.
- Seow, C.C., Teo, C.H. & Nair, K.V. (1996). A differential scanning calorimetry study of the effects of sugars on thermal properties of rice starch gels before and after aging. J. Thermal Anal., 47: 1201-1212.
- Shiotsubo, T. & Takahashi, K. (1984). Differential thermal analysis of potato starch gelatinization. Agric. Biol. Chem., 48: 9-17.
- Silverio, J., Svensson, E., Eliasson, A.C. & Olofsson, G. (1996). Isothermal microcalorimetric studies on starch retrogradation. J. Thermal Anal., 47, 1179-1200.
- Slade, L. & Levine, H. (1987). Recent advances in starch retrogradation. In Recent Developments in Industrial Polysaccharides. S.S. Stivala, V. Cresenzi & I.C.M. Dea. (Eds.). Gordon & Breach, New York, pp 387-430.
- Slade, L. & Levin, H. (1988). Non-equilibrium melting of native granular starch. Part 1. Temperature location of the glass transition associated with gelatilization of A-type cereal starch. Carbohydr. Polym., 8 : 183-208.
- Solarek, D.B. (1987). Cationic starches. In Modified starches : Properties and uses. O.B. Wurzburg. (Ed.). CRC Press Inc., Florida, pp 113-129.
- Staudinger, H. & Husemann, E. (1937). Highly polymerized compounds. The constitution of starch. Anal Chem., 527 : 195-197.
- Stute, R. & Konieczny-Janda (1983). DSC investigations of starches. Starch, 35 : 340-347.

- Stute, R. (1992). Hydrothermal modification of starches: The difference between annealing and heat moisture treatment, Starch, 44: 205-214.
- Svensson, E. & Eliasson, A.C. (1995). Crystalline changes in native wheat and potato starches at intermediate water levels during gelatinization. *Carbohydr. Polym.*, 26: 171-176.
- Swinkells, J.J. (1985). Composition and properties of commercial native starches. Starch, 37 : 1-5.
- Takahashi, S. & Seib, P.A. (1988). Paste and gel properties of prime corn and wheat starches with and without native lipids. Cereal Chem., 65: 474-483.
- Takahashi, S., Maningat, C.C. & Seib, P.A. (1989). Acetylated and hydroxypropylated wheat starch : Paste and gel properties compared with modified maize and trajoca starches. *Cereal Chem.*, 65 : 499-506.
- Takeda, Y., Tokunaga, N., Takeda, C. & Hizukuri, S. (1986). Physicochemical properties of sweet potato starches. Starch, 38: 345-350.
- Teitelbaum, R.C., Ruby, S.L. & Marks, T.J. (1978). Amylose -iodine complex formation. J. Am. Chem. Soc., 100: 3215-3218.
- Tester, R.F. & Morrison, W.R. (1990a). Swelling and gelatinization of cereal starches. I. Effect of amylopectin, amylose and lipids. Cereal Chem., 67: 551-557.
- Tester, R.F. & Morrison, W.R. (1990b). Swelling and gelatinization of cereal starches. II. Waxy rice starch. Cereal Chem., 67: 558-563.
- Thoma, J.A. (1968). A possible mechanism for amylase catalysis. J. Theoret. Biol., 19: 297-310.
- Tuschhoff, J.V. (1986), Hydroxypropylated starches. In Modified starches : Properties and uses. O.B. Wurzburg. (Ed.). CRC Press Inc., Florida, pp 89-96.
- Van Lonkhuysen, H. & Blankestijn, J. (1974). Interaction of monoglycerides with starches. Starch, 26: 337-342.
- Van Soest, J.J.G., de Wit, D., Tournois, H. & Vliegenthart, J.F.G. (1994). Retrogradation of potato starch as studied by Fourier Transform Infrared spectroscopy. *Starch*, 46: 453-457.

- Van Soest, J.J.G., Tournois, H., de Wit, D. & Vliegenthart, J.F.G. (1995). Shortrange structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. *Carbohydr. Res.*, 279 : 201-214.
- Vasanthan, T. & Hoover, R. (1992a). Effect of defatting on starch structure and physicochemical properties . Food Chem., 45: 337-347.
- Vasanthan, T. & Hoover, R. (1992b). A comparative study of the composition of lipids associated with starch granules from various botanical sources. Food Chem., 43: 19-29.
- Wang, W.J. & Jane, J. (1994). Correlation between glass transition temperature and starch retrogradation in the presence of sugars and maltodextrins. *Cereal Chem.*, 71: 527-531.
- Wang, W.J., Powell, A.D. & Oates, C.G. (1995). Patterns of hydrolysis in raw sago starch : effects on processing history. Carbohydr. Polym., 26 : 91-97.
- Ward, K.E.J., Hoseney, R.C. & Seib, P.A. (1994). Retrogradation of amylopectin from maize and wheat starches. Cereal Chem., 71: 150-155.
- Whittam, M.A., Noel, T.R. & Ring, S.G. (1990). Melting behavior of A type crystalline starch. Int. J. Biol. Macromol., 12: 359-362.
- Whittam, M.A., Noel, T.R. & Ring, S.G. (1991). Melting and glass transition of starch polysaccharides, In *Food polymers, gels and colloids.* E. Dickinson. (Ed.). Royal Society of Chemistry, Cambridge, pp 277-288.
- Wilson, R.H., Goodfellow, B.J. & Belton, P.S. (1991). Comparison of Fourier transform mid infrared spectroscopy and near infrared reflectance spectroscopy with differential scanning calorimetry for the study of the stalling of bread. J. Sci. Food Agric., 54 : 471-483.
- Wootton, M. & Bamunuarachchi, A. (1979). Application of differential scanning calorimetry to starch gelatinization. I. Commercial native and modified starches. Starch, 31: 201-204.
- Wootton, M. & Chaudhry, M.A. (1981). In vitro digestion of hydroxypropyl derivatives of wheat starch. Starch, 33 : 135-137.
- Wootton, M. & Manatsathit, A. (1983). The influence of molar substitution on the water binding capacity of hydroxypropyl maize starches. Starch, 35 : 92-94.

- Wootton, M. & Manatsathit, A. (1984). The influence of molar substitution on the gelatinization of hydroxypropyl maize starches. Starch, 36: 207-208.
- Wootton, M. & Haryadi, (1992). Effects of starch type and preparation conditions on substituent distribution in hydroxypropyl starches. J. Cereal Sci., 15: 181-184.
- Wu, H.C.H. and Sarko, A. (1978a). The double-helical molecular structure of crystalline B- amylose. Carbohydr. Res., 61: 7-26.
- Wu, H.C.H. & Sarko, A. (1978b). The double helical molecular structure of Aamylose. Carbohydr. Res., 61 : 27-40.
- Wu, J.Y. & Eads, T.M. (1993). Evolution of polymer mobility during aging of gelatinized waxy maize starch : a magnetization transfer ¹H NMR study. Carbohydr. Polym., 20 : 51-60.
- Wunderlich, B. (1976). Macromolecular Physics : Crystal nucleation, growth, annealing, Vol 2. Academic Press, New York.
- Wursch, P., Del Vedovo, S.D. & Koellreutter, B. (1986). Cell structure and starch nature as key determinants of the digestion rate of starch in legumes. Am. J. Clin. Nutr., 43: 25-29.
- Wursh, P. & Gumy, D. (1994). Inhibition of amylopectin retrogradation by partial beta-amylosis. Carbohydr. Res., 256 : 129-137.
- Wurzburg, O.B. (1987), Introduction. In Modified starches : Properties and uses. O.B. Wurzburg. (Ed.). CRC Press Inc., Florida, pp 3-16.
- Yamaguchi, M., Kainuma, K. & French, D.J. (1979). Electron microscopy observations of waxy maize starch. Ultrastr. Res., 69 : 249-261.
- Yeh, A. & Yeh, S. (1993). Some characteristics of hydroxypropylated and cross linked rice starch. Cereal Chem., 70: 596-601.
- Yeh, A. & Jeng-Yune, L. (1996). Kinetics of phase transitions of native, cross linked and hydroxypropylated rice starches. Starch, 48: 17-21.
- Yook, C., Pek, U. & Park, K. (1993). Gelatinization and retrogradation characteristics of hydroxypropylated and cross linked rices. J. Food Sci., 58 : 405-407.

- Yost, D.A. & Hoseney, R.C. (1986). Annealing and glass transition of starch. Starch, 38 : 289-292.
- Yuan, R.C. Thompson, D.B. & Boyer, C.D. (1993). Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from 3 wax- containing genotypes in 2 inbred lines. *Cereal Chem.*, **70**: 81-89.
- Yuan, R.C. & Thompson, D.B. (1998). Rheological and thermal properties of aged starch pastes from three waxy maize genotypes. *Cereal Chem.*, 75 ; 117-123.
- Xu, A. & Seib, P.A. (1997). Determination of the level and the position of substitution in hydroxypropylated starch by high resolution ¹H NMR spectroscopy of alpha-limit dextrins. J. Cereal Sci., 25: 17-26.
- Zeleznak, K.J. & Hoseney, R.C. (1986). The role of water in retrogradation of wheat starch gels and bread crumb. Cereal Chem., 63 : 407-411.
- Zeleznak, K.J. & Hoseney, R.C. (1987). The glass transition in starch. Cereal Chem., 64: 121-124.
- Zobel, H.F. (1988a). Starch crystal transformations and their industrial importance. Starch, 40 : 1-7.
- Zobel, H.F. (1988b). Molecules to granules : A comprehensive starch review. Starch, 40 : 44-50.
- Zobel, H.F., Young, S.N. & Rocca, L.A. (1988). Starch gelatinization : an X-ray diffraction study. Cereal Chem., 65 : 443-446.

Publications in Refereed Journals

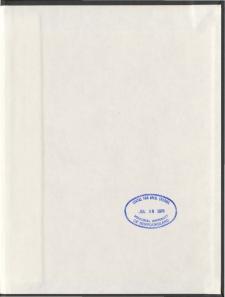
- Perera, C., Hoover, R. & Martin, A.M. (1997). The effect of hydroxypropylation on the structure and physicochemical properties of native, defatted and heat-moisture treated potato starches. *Food Res. Int.*, 30: 235-247.
- Perera, C. & Hoover, R. (1998). The reactivity of porcine pancreatic αamylase towards native defatted and heat-moisture treated potato starches before and after hydroxypropylation. *Starch*, (in press).
- Perera, C. & Hoover, R. (1996). Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated polato starches. *Food Chem.*, (in press).
- Chavan, U., Shahidi, F., Hoover, R. & Perera, C. (1998). Isolation and physicochemical properties of beach pea starch. Food Chem., (in press).
- Hoover, R., Sinnott, A.W. & Perera, C. (1998). Physicochemical characterization of starches from amaranthus cruentus grains. J. Food Biochem, (submitted for publication).

Papers in preparation

 Perera, C. & Hoover, R. (1998). Influence of defatting, heat-moisture treatment and hydroxypropylaiton on the susceptibility of retrograded potato starch gels towards c-amylase. (In preparation).

Presentations

- Perera, C., Hoover, R. & Martin, A.M. (1996). The influence of defatting and heat moisture treatment on the reactivity of potato starch towards hydroxypropylation. 79th Annual conference of Canadian Society for Chemistry, June 23-26. Newfoundland, Canada.
- Perera, C., Hoover, R. & Martin, A.M. (1996). Effect of hydroxypropylation on the thermal characteristics of native, defatted and heat-moisture treated potato starches. 39th Annual conference of Canadian Institute of Food Science and Technology. August 17-22. Guelph, Canada.


- Perera, C. & Hoover, R. (1997). Structural and physicochemical characteristics of native, defatted and heat-moisture treated potato starch granules before and after hydroxypropylation. Annual Meeting of Institute of food technologists. June 14-18, Orlando, USA.
- Perera, C., Hoover, R. (1997). The reactivity of alpha-amylase towards native, defatted and heat-moisture treated hydroxypropyl potato starches. Annual conference of Canadian Institute of Food Science and Technology. September 20-24. Montreal, Canada.
- Hoover, R. & Perera, C. (1998). Retrogradation studies on physically and chemically modified potato starches. Production and uses of starches. Association of Applied Biologists, April 6-8. Edinburgh, UK.
- Perera, C. & Hoover, R. (1998). Role of starch modification on retrogradation of potato starch gels. CIC-APIC Atlantic Student Chemistry Conference. May 13-15, Newfoundiand, Canada.
- Perera, C. & Hoover, R. (1998). A comparative study of the rate and the extent of retrogradation of native, defatted and heat-moisture treated potato starches before and after hydroxypropylation. Annual Meeting of Institute of food technologists. June 20-24, Atlanta, USA.

Scholarships and Awards

1984-1988	Scholarship for Undergraduate studies, Sri Lanka
1991-1993	Scholarship for Postgraduate studies, UK
1995 -1998	Graduate Fellowship, Dept. Biochemistry, Memorial University of Newfoundland
1997	Graduate student paper award (Carbohydrate division), Annual Meeting of Institute of Food Technologists, Orlando, USA.
1998	Fellow of the Graduate School, Memorial University of Newfoundiand
1998-1999	Postdoctoral Fellowship, Iowa State University, USA

