WIND SPEED ESTIMATES AND PRECIPITATION DETECTION USING AMBIENT SOUND IN THE OCEAN

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

DOUGLAS J. SCHILLINGER

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6° x 9° black and while photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

> Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

UMľ

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Otawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

55, rue Wellington Ditawa ON K1A 0N4

Your Se View relevance

Our file None reteinence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format electronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-55540-2

Canadä

Wind Speed Estimates and Precipitation Detection Using Ambient Sound in the Ocean

by

© Douglas J. Schillinger B.Sc.(Hon) (University of Guelph, Guelph, Canada) 1998

> A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science

Department of Physics and Physical Oceanography Memorial University of Newfoundland

June 2000

St. John's

Newfoundland

Abstract

This thesis explores the relationship between ocean ambient sound levels, wind speed and rain. It has long been known that these surface processes generate sound in the ocean, but the development of accurate algorithms has been complicated by the difficulty in obtaining location independent sound levels. Here, absolute source level estimates are achieved by modelling the sources as an infinite field of dipoles at the surface, and accounting for acoustic absorption and reflection from the ocean floor. It is shown that bottom reflections are an important component in elevating sound levels at frequencies below 35 kHz. Knowing absolute source levels, these sound levels can be used to estimate both wind speed and detect the occurrence of precipitation. It is shown that the wind-only generated ambient sound spectrum has a mean slope of -18 dB/decade and ranges from -16 to -20 dB/decade corresponding to wind speeds from 0 to 20 $m s^{-1}$ for frequencies from 1 to 10 kHz. The spectral slope at frequencies greater than 10 kHz depends upon wind speed. Existing estimation algorithms are shown to overestimate the speed for wind speeds below 10 $m s^{-1}$ but underestimate wind speeds above 10 $m s^{-1}$ and that there is a maximum sound level which limits wind speed estimation for frequencies above 10 kHz. A wind speed dependent correction for the existing algorithms is proposed which gives accuracies $\pm 1.3 - 2 m s^{-1}$ depending on deployment characteristics and sampling parameters. The accuracy of precipitation identification is limited by the wind speed and the precipitation type. Precipitation classified as Rain by the World Meteorological Organization (WMO) is detectable via acoustic means. Sub-division of the classification of the WMO categories shows that $50\% \pm 10\%$ of 'Continuous Rain' and 25%±12.5% of 'Intermittent Rain' are detectable using the ambient sound spectra.

Acknowledgements

I would like to thank Len Zedel, who provided me with not only a functatic project, but also many hours of enalghened political and economic debates. In addition, Len put up with my 9 to 5 attitude, and a granter concern for the playoff hahits of the Ottawa Senators than performance on final exams. Working with Len. booh in the field and in the lab, was a great learning experience complemented by Len's easy going personality and patterne with the student learning curve. Finally, Len provided outstanding advice which helped to corral my thoughts, research and writing into a more content outstanding ender outstanding descent and the student set.

This thesis would not have been possible without the assistance of Svein Ortechus. of the University of Bergen, Norway. Svein deployed the OASIS instrument at 00% Mike, and the maccomapare hits the Svahard to deploy the instrument in shallow water, in Storr Fjord. My trip was another funtatic learning experience, and a press tits seeing tour of Astrici environs. I would like to thank the crew of the RV Laces and Christian Foreson of the NOSK Instituto.

I would also like to thank Jessica Peddle whose advice on style and layout was invaluable. Her edits and comments were most helpful and appreciated.

Brad deYoung was supportive in giving me time to complete my thesis while I was working as his research assistant.

Finally, Dave Schneider of the Memorial University of Newfoundland gave me direction with the statistical analysis of Chapter 5.

Contents

A	bstr	act							ii
A	.ckn	owled	gements						iii
L	ist a	f Figu	ires						vi
L	ist o	f Tab	les					,	iii
1	Inte	oducti	on						1
	1.1	Thesis	Outline	,					4
2	Lite	rature	Review						6
	2.1	Introd	uction						6
	2.2	Sound	In Water	÷		÷			8
		2.2.1	Generation and Propagation of Sound						10
		2.2.2	Relaxation Processes						12
		2.2.3	Effect of Salinity and Temperature on the Speed of So	u	nd				14
	2.3	Scatter	ring and Absorption of Sound by Air Bubbles in Water	5					16
		2.3.1	Breathing Mode Frequency	į.	÷	ł.	×		17
		2.3.2	Dipole Source: Bubbles Near a Perfect Reflecting Surf	ac	æ				21
		2.3.3	Scattering Cross-Section						23
	2.4	Source	s of Ambient Sound			÷			27
		2.4.1	Ambient Sound Produced By Breaking Wind Waves .						28
		2.4.2	Ambient Sound Produced by Precipitation						34

3	Dat	a Processing	12
	3.1	Introduction	42
	3.2	Sampling Rates and SSL Estimates	43
	3.3	Spectral Processing	47
		3.3.1 Calibration of Hydrophone	47
		3.3.2 Water Temperature, Hydrophone Depth, and Bottom Depth .	48
		3.3.3 Sources of Uncertainty in SSL Estimates	58
	3.4	Uncertainty in Spectral Slopes	62
	3.5	Electrical Noise Floor	64
4	Spe	ectral Belation of Ambient Sound and Wind Speed	87
	4.1	Introduction	67
	4.2	Wind Speed Estimate from Ambient Sound	69
		4.2.1 Determination of a Frequency Dependent Wind Speed Equation	70
		4.2.2 Comparison of Frequency Dependent and Independent Wind	-
		Speed Estimation	76
		4.2.3 Uncertainty in Wind Speed Estimation	80
	4.3	Improvements in Wind Speed Estimates	87
		4.3.1 Spectral Averaging	87
		4.3.2 Time Averaging	91
		4.3.3 Systematic Wind Speed Correction	92
	4.4	Spectral Behaviour for Different Wind Speeds	94
		4.4.1 Critical Wind Speed	94
		4.4.2 Spectral Slope From 1 to 10 kHz (Region I)	96
		4.4.3 Spectral Slope From 10 to 35 kHz (Region II)	00
		4.4.4 Spectral Slope From 35 to 72 kHz (Region III) 1	04
	4.5	Conclusions	07
5	Rai	in Detection 1	11
-	5.1	Introduction	11
	5.2	Effects of Sampling Bates	13
	5.3	The Different Precipitation Becords	15
	0.0	531 Statistical Comparison	16
		5.3.1 Statistical Comparison	16

		5.3.2	A Simplified WMO Precipitation Classification System		÷		÷	118
		5.3.3	Precipitation Distribution for 1996 and 1997			ż		121
	5.4	Precip	pitation Identification Algorithms (PIAs)					123
		5.4.1	The Algorithms		×	÷.		124
		5.4.2	PIAs Based on other Spectral Slopes					136
		5.4.3	Comparison Parameters for PIAs					136
	5.5	Obser	vations					139
		5.5.1	'Drizzle', and 'Rain' Distinction					139
		5.5.2	Overall PIA Performance		×	×		140
		5.5.3	Sensitivity of the PIAs					144
		5.5.4	PIA Confidence and Wind Speed					148
	5.6	Concl	usions		×.	x		149
в	iblio	ograp	hy				1	160
A	Ab	orptic	on Coefficient					166
в	An	alysis I	Using Unaveraged Spectra from 1996					169
С	χ^2 J	Hypotl	hesis Testing for Contingency Tables					173
			·····					
D	Ad	ditiona	al Rain Detection Information					175
D	Ad D.1	ditiona New V	al Rain Detection Information WMO Categories: Definition, and Comparison to ORG d	at	a			175
D	Ad D.1 D.2	litiona New V ORG	al Rain Detection Information WMO Categories: Definition, and Comparison to ORG d Comparison to each WMO sub-Category	at	a			175 175 178
D	Ad D.1 D.2 D.3	New V ORG PIA I	al Rain Detection Information WMO Categories: Definition, and Comparison to ORG d Comparison to each WMO sub-Category	lat.	a .			175 175 178 181
D	Ade D.1 D.2 D.3 PI/	New Nord ORG PIA I dent	al Rain Detection Information WMO Categories: Definition, and Comparison to ORG d Comparison to each WMO sub-Category	lat.	a .			175 175 178 181

List of Figures

1.1	The location of Ocean Weather Station Mike (OWS Mike), 210 km west of Bergen, Norway (at 66°N, 2°E).	4
2.1	Sound refraction due to vertical distribution of the speed of sound, as shown in Clay and Medwin (1977).	16
2.2	Bubble radius in μ m and corresponding Minnaert frequency in kHz.	20
2.3	Geometry of a dipole source: two monopole source separated by $l \ll k$,	
	where k is the wave number, taken from Clay and Medwin (1977).	21
2.4	Magnitudes of the damping parameters, from Brekhovskikh and Lysanov	
	(1991).	25
2.5	Ambient sound spectra for various sea states (Urick 1967). The num-	
	bers on the right vertical axis are the SSL in dB re: $1 \mu P a^2 H z$	29
2.6	Ambient sound spectra for various meteorological conditions, taken	
	from Nystuen and Selsor (1997).	37
2.7	A precipitation identification scheme using the elevated sound levels	
	at 25 kHz relative to 8 kHz, taken from Nystuen and Selsor (1997).	
	'High seas' marks the wind speeds when bubble attenuation affects	
	the ambient signal.	38
3.1	The percent uncertainty in ambient sound intensities, with 95% con-	
	fidence, for 9, 17, and 1 ensembles in each averaged spectra, corre-	
	sponding to the 1996-10, 1996-60 and 1997 data sets	46
3.2	Sample spectrum with the -19 dB/decade slope removed, centred	
	about 8 kHz, from the 1997 ambient sound data, recorded during	
	a wind speed of 7.7 m s ⁻¹ .	46

3.3	a) Hydrophone calibration characteristics for 1997 (solid blue line)	
	and 1996 (dashed red line) deployments. b) Difference between de-	
	ployments.	48
3.4	Geometry for a source at the surface, a distance of r m horizontally	
	from the hydrophone at depth D m in H m of water	49
3.5	The acoustic intensity as a function of range, for no bottom reflections	
	using Equation 3.13 (solid blue line) and including bottom reflections	
	using Equation 3.22 (dashed red line). Both examples had the fol-	
	lowing parameters: ocean depth of 1600 m, hydrophone depth 250 m,	
	temperature 10°C, $\beta = 0.16$, $\gamma = 1$ and frequency of 1 kHz.	54
3.6	The acoustic intensity as a function of range, using Equation 3.22.	
	Hydrophone depths were 250 m (solid blue line) 100 m (dashed red	
	line). In both cases the ocean depth was 1600 m, the temperature was	
	10°C and the frequency tested was 1 kHz.	55
3.7	a) The difference between the response characteristic when specular	
	and non specular reflections are modelled, for depths of 250 and 1600	
	m with instrument depth of 25 and 250 m. b) Response characteris-	
	tics for depth 1600 m and instrument depth 250 m for temperatures	
	of 0, 5, 10 and 20°C. c) Response characteristics for 10°C and instru-	
	ment depth 250 m for ocean depths of 250, 500, 1000, 2000, and 4000	
	m. d) Response characteristics for 10°C and infinite ocean depth for	
	instrument depths of 100, 250, 1000, and 4000 m	56
3.8	Response characteristics calculated for the 1996 deployment (blue	
	solid line) and for the 1997 (red dashed line) deployment with ocean	
	depth 1600 m, hydrophone depth 250 m and temperature 7° C	58
3.9	Temperature profile from single CTD cast taken at OWS Mike during	
	1996	59
3.10	Temperature profile evolution for the upper 350 m of ocean during	
	1997, from single CTD casts taken on Julian Day (JD) 121 (blue solid	
	line), 165 (red dashed line) and 178 (green dashed dot line)	60

0.11	The uncertainty in 352 estimates after spectral processing the to	
	uncertainty in temperature (green dashed dot line), and ocean depth	
	(red dashed line) are shown with the combined temperature and depth	
	uncertainty (blue solid line) as functions of frequency.	61
3.12	Sample spectrum for the 1996-10 (blue), 1996-60 (red dashed), and	
	1997 (green dashed dot) data sets. The spectrum from 1997 has been	
	shifted down by 5 dB, and the spectrum for 1996-60 has been shifted	
	up by 5 dB. The wind speeds for the three cases were: 1996-10, 7.5	
	m s ⁻¹ ; 1996-60, 7.2 m s ⁻¹ ; and 1997, 7.2 m s ⁻¹ .	64
3.13	Average ambient sound spectra from the 1996-10 data set using wind	
	speeds less than 3 $m s^{-1}$ (red solid line) and for wind speeds with in	
	$0.5 m s^{-1}$ of $8m s^{-1}$ (blue solid line). Included is the predicted thermal	
	noise for frequencies from 35 to 72 kHz (solid black line).	65
3.14	The average ambient sound spectrum for wind speeds less than or	
	equal to 3 $m s^{-1}$ for the 1996-10 (blue solid line), 1996-60 (red dashed	
	line), 1997 (green dashed dot) data sets.	66
4.1	a) A(f) and b) B(f) from Equation 4.5. In both plots, the Coefficients	
	were calculated using wind speeds greater than 3 m s ⁻¹ , wind-only	
	events, and 'flattened' spectrum centred about 8 kHz. The 1996-10	
	(blue x), 1996-60 (red *), and 1997 (green Δ) are shown in both a)	
	and b).	73
4.2	Wind speed estimates for SSL from 45 to 65 dB using $A(f)$, and $B(f)$	
	(from Equation 4.5) determined from the 1996-10 (blue x), 1996-60	
	(red *) and 1997 (green Δ) data sets.	74
4.3	Wind speed distributions measured by the ship-mounted anemometer	
	for the a) 1996-10, b) 1996-60, c) 1997 data sets.	75
4.4	The $\mu(U_e)$ (solid) and $\sigma(U_e)$ (dashed) for: a) the 1996-10, b) 1996-60,	
	c) 1997 deployment. In a to c, the results using Equation 4.5 are	

2.11 The second later in CCI and second and a second secon

plotted in blue, Evans' Equation in red, and Vagle's Equation in green. 77

4.5	The sum of the mean σ_{SSL} , σ_T and σ_D for ambient sound from the	
	1996-10 (solid blue line), 1996-60 (red dashed line), and 1997 (green	
	dash dot line) data sets	81
4.6	The percent uncertainty in $A(f)$ multiplied by ten (blue solid line),	
	and B(f) (red dashed line).	83
4.7	The expected mean error in wind speed estimate from both the un-	
	certainty in SSL and the uncertainty in Coefficients $A(f)$ and $B(f)$.	
	The $\mu(U_e)$ (solid line), and $\sigma(U_e)$ (dashed line) are both included for	
	the a) 1996-10, b) 1996-60, and c) 1997 data sets.	84
4.8	Error in mean wind speed estimate using frequencies from 1 to 10	
	kHz in Equation 4.5 compared to the estimated wind speed, for the	
	a) 1996-10. b) 1996-60, and c) 1997 data sets. Red dots are spectrum	
	contaminated with precipitation as identified by the algorithms in	
	Chapter 5, blue dots are the estimates for wind-only spectrum	86
4.9	The relative improvement in $\sigma(U_*)$ when mean values of SSL and	
	wind speed estimates are used to estimate wind speed compared to	
	the SSL at individual frequencies, using Equation 4.5 (blue solid line),	
	Evans' (red dashed line) and Vagle's (green dash dot line) Equations.	
	Results from the a) 1996-10, b) 1996-60, and c) 1997 data sets are	
	shown.	89
4.10	The improvement in $\sigma(U_s)$ when 17 ensembles are averaged instead of	
	only 3. using Equation 4.5 (blue solid line), Evans' (red dashed line)	
	and Vagle's (green dash dot line) Equations.	91
4.11	Mean wind speed correction term (black solid line) superimposed on	
	the scatter plot of the mean error in the wind speed estimate for	
	the 1996-10 (blue x), 1996-60 (red *) and 1997 (green Δ) data sets	
	obtained using wind only spectrum. Only initial wind speed estimates	
	greater than 3 m s ⁻¹ are included.	93
4.12	Scatter plots of SSL ₂₅ as a function of SSL ₈ (wind speed) for the	
	1996-60 data set The SSLs which occurs at the peak SSL; value is	
	marked by the vertical line.	95

4.13	The critical wind speed as a function of frequency for the ensembles	
	from the a) 1996-60 and b) 1997 data sets. Included in both plots is	
	Equation 2.64 reprinted from Vagle et al. (1990) as the solid line	96
4.14	The relation of the spectral slope in Region I to the SSLs from the	
	a) 1996-10, b) 1996-60, and c) 1997 data sets. The empirical linear	
	fit for wind speeds greater than 3 $m s^{-1}$ for both 1996 data sets and	
	for wind speeds greater than 6 $m s^{-1}$ for 1997 are included as the red	
	solid line.	97
4.15	The relation of the spectral slope in Region I to the wind speed es-	
	timates from Equation 4.19. The approximate SSL ₈ is included as a	
	reference and was determined using an inverse method from Equation	
	4.19.	99
4.16	The relation of the spectral slope in Region II to the SSLs for the a)	
	1996-10, b) 1996-60 and c) 1997 ambient sound levels. The empirical	
	fit is shown by the red solid line.	101
4.17	The relation of the spectral slope in Region II to the wind speed	
	estimate from Equation 4.19.	103
4.18	The relation of the spectral slope in Region III to the estimated wind	
	speed using Equation 4.19 for the a) 1996-10, b) 1996-60 and c) 1997	
	ambient sound levels. The empirical fit is shown by the red solid line.	105
4.19	The relation of the spectral slope in Region III to the wind speed	
	estimated from Equation 4.19 for the a) 1996-10, b) 1996-60 and c)	
	1997 ambient sound levels.	106
5.1	Histogram of minutes of rain for WMO sub-categories a) 'Intermittent	
	Rain' and b) 'Continuous Rain.'	120
5.2	Histogram of the number of occurrences in each WMO sub-category,	
	for the a) 1997 deployment and b) 1996 hourly deployment. The cate-	
	gories are: 0, 'No Precipitation'; 1, 'Intermittent Drizzle'; 2, 'Continu-	
	ous Drizzle'; 3, 'Intermittent Rain'; 4, 'Continuous Rain'; 5, 'Showers';	
	6, 'Solid Precipitation'; 9, 'Unclassified'.	121

5.3	The probability of detecting precipitation as a function of number of
	samples over a 72 minute interval given the 1997 precipitation distri-
	The stand as a second s
3.4	individual spectrum from 1997 data set. The red dashed line is the
	raw spectra and the blue solid line is the smoothed spectrum. The
	wind speed corresponding to the ensemble was $5.1 m s^{-1}$
9.9	Scatter plot of the SSL_{20} versus SSL_8 for a) 1997, b) 1996-60, and
	c) 1996-10 data sets. The precipitation identification lines are shown:
	high seas inflection point (vertical red dashed line): maximum SSL_{20}
	or 'apex line' (horizontal dashed line); 'drizzle line' (green solid line
	to the left of high seas); and 'rain line' (red solid line to the right of
	high seas)
5.6	The mean smoothed ambient sound spectra for successful precipita-
	tion identifications by the NA (solid blue line), unidentified precipi-
	tation by the NA (dashed green line), incorrect identifications made
	by the NA (red dot dashed line) and wind-only spectra (dotted black
	line) from the 1997 data set
5.7	The mean smoothed ambient sound spectra for drizzle identifications
	made by the NA (solid blue line), rain identifications made by the NA
	(red dot dashed line) and wind-only spectra for wind speeds greater
	than 12 $m s^{-1}$ (dotted black line) from the 1997 data set 130
5.8	Scatter plot of the slope of Region III kHz versus SSL
	1997, b) 1996-60, and c) 1996-10 data sets. The precipitation identi-
	fication lines are shown: high seas roll over (vertical red dashed line);
	minimum spectral slope or 'apex line' (horizontal dashed line); 'driz-
	zle line' (green solid line to the left of high seas); and 'rain line' (red
	solid line to the right of high seas)
5.9	The mean smoothed ambient sound spectra for successful precipita-
	tion identifications by the SA (solid blue line), unidentified precipi-
	tation by the SA (dashed green line), incorrect identifications made
	by the SA (red dot dashed line) and wind-only spectra (dotted black
	line) from the 1997 data set

5.10	The mean smoothed ambient sound spectra for drizzle identifications made by the SA (solid blue line), rain identifications made by the SA (green dashed line), the 'apec' identifications made by the SA (red dot dashed line) and wind-only spectra for wind speeds greater than
5.11	12 m s ⁻¹ (noted black line) from the 1997 data set
A.1	The relative importance of the different absorption factors in deter- mining the overall absorption coefficient (remake of figure from Clay and Medwin (1977), with the axes limited to the frequency range rel- evant to this study)
B.1 B.2	Auto-Correlation of the SSL2-4 (blue solid line), spectral slope of Region I (red dashed line), Region II (green dash-dot line), and Region III (cyan dashed line) as a function of the lag in hours
D.1	a function of the lag in hours
D.2	(y) and (y) an
F.1	Auto-Correlation of the ORG rainfall rate as a function the lag in minutes. The ORG rainfall rate was converted to a binary time series using the threshold for precipitation detection of 0.1 mm hr^{-1} 183

List of Tables

2.1	Examples of sources and frequency ranges of underwater sound	9
2.2	Rain drop size classification and acoustic profile	39
3.1	Regions used to determine the spectral slope and the number of fre- quency bins in each region.	62
3.2	The mean uncertainty in the spectral slope, in dB/decade, from the random uncertainties in SSL listed as Mean Linear Regression (Mean	
	Lin Reg), and uncertainty in spectral slope. in dB/decade, from the	
	temperature and depth uncertainties (here σ_{sn} refers to the uncer-	
	tainty in slope for the spectral Region n_i in Table 3.1)	63
4.1	The $\mu(U_{\epsilon})$ and $\sigma(U_{\epsilon})$ when the $SSL_{\overline{1-10}}$ is used in Equations 4.3 and	
	4.4, and the mean wind speed estimate using SSL1 to SSL10 from	
	Equation 4.5. Results for 1996-10, 1996-60 and 1997 are listed	88
4.2	The $\mu(U_{\epsilon})$ and $\sigma(U_{\epsilon})$ when the SSL_{1-10} is used in Equations 4.3 and	
	4.4, and the mean wind speed estimate using SSL1 to SSL10 from	
	Equation 4.5. Results for 1996-10, 1996-60 and 1997 are listed.	93
4.3	The slope (m) and intercept (b) relating the spectral slope of Region	
	I to wind speed estimates from Equation 4.19 using wind-only data	
	points. The uncertainty in the slope (δ_m) and intercept (δ_b) are in-	
	cluded. [†] when estimated wind speeds greater than 3 $m s^{-1}$ are used.	
	* when estimated wind speeds greater than 6 m s ⁻¹ are used	99

4.4	The slope (m) and intercept (b) relating the spectral slope of Region
	II to the wind speed estimate using Equation 4.19 for wind speeds
	greater than 10 $m s^{-1}$. The uncertainty in slope and intercept (σ_m
	and σ_b) are included
4.5	The slope (m) and intercept (b) relating the spectral slope of Region
	II to the wind speed estimate using Equation 4.19 for wind speeds
	greater than 10 $m s^{-1}$. The uncertainty in slope and intercept (σ_m
	and σ_b) are included
4.6	The coefficients of the polynomial $ax^3 + bx^2 + cx + d$ relating the
	spectral slope of Region III to wind speed estimate from Equation
	4.19
4.7	The $\mu(U_e)$ and $\sigma(U_e)$ when the $SSL_{\overline{1-10}}$ is used in Equations 4.3 and
	4.4, and the mean wind speed estimate using SSL_1 to SSL_{10} from
	Equation 4.5. Results for 1996-10, 1996-60 and 1997 are listed 108
5.1	Contingency table for ORG record of precipitation to the WMO record
	of precipitation
5.2	Rainfall rates and frequency of precipitation over hour intervals, corre-
	sponding to the WMO sub-categories for the 1997 data meteorological
	data
5.3	The SSL in dB for the end points of the test lines used by the NA for
	the 1997, 1996-60 and 1996-10 data sets
5.4	The SSL in dB for the end points of the test lines used by the SA for
	the 1997, 1996-60 and 1996-10 data sets
5.5	Measure of success for the two PIAs for the 1996-10, 1996-60 and
	1997 data sets. The uncertainty in each column was determined using
	Equation 5.20 with 95% confidence
5.6	Summary of correct identifications for the 1997 and the 1996-60 data
	sets, sorted by wind speed and precipitation category. [†] the number of
	ambient sound recordings in a given wind speed range. * the number of
	WMO observations with precipitation. ** the number of observations
	within the WMO sub-category

5.7	Percentage of total precipitation correctly identified by the SA and
	the NA (the Sensitivity, Equation 5.11), sorted by WMO sub-category
	for the 1997 and 1996-60 data sets combined. Included is the total
	number of precipitation intervals in each sub-category under the Oc-
	currence column. The uncertainty in each column was determined
	using Equation 5.20 and 95% confidence
5.8	Percentage of total precipitation correctly identified by the SA and
	the NA (the Sensitivity, Equation 5.11), by wind speed for 1997 and
	1996-60 combined. Included are the total number of precipitation
	intervals in each wind speed range (Occurrences). The uncertainty in
	each column was determined using Equation 5.20 and 95% confidence. 147
5.9	Summary of algorithm Sensitivity sorted by WMO sub-category for
	both the 1996-60 and 1997 data sets. Included are the total number
	of precipitation intervals in each WMO sub-category (Occurrences).
	The uncertainty in each column was determined using Equation 5.20
	and 95% confidence
5.10	Percentage of correct identifications of precipitation made by the SA
	and the NA (the Confidence, Equation 5.10), sorted by wind speed
	for 1996-60 and 1997 data sets combined. The uncertainty in each
	column was determined using Equation 5.20 and 95% confidence. [†]
	the 95% confidence bound for 6 selections
C.1	Sample 2 by 2 Contingency Table
D.1	The ww entries from the WMO chart for No Precipitation 176
D.2	The ww entries from the WMO chart and their corresponding Cate-
	gory
D.3	Summary of correct identifications for the 1997 data set, sorted by
	wind speed and precipitation category. [†] the number of ambient sound
	recordings in a given wind speed range. * the number of WMO obser-
	vations with precipitation. ** the number of observations within the
	WMO sub-category. 182

D.4	Summary of correct identifications for the 1996-60 data set, sorted	
	by wind speed and precipitation category. [†] the number of ambient	
	sound recordings in a given wind speed range. * the number of WMO	
	observations with precipitation. ** the number of observations within	
	the WMO sub-category.	182

Chapter 1 Introduction

In the cena, sound travels great distances relatively unimpode while electromagnetic waves suffer great attenuation. As a result, the generation and propagation of sound in the cenas io of great importance as acoud is the principal mechanism of navigation and communication. With the advent of submersible vessels, the study of sound in the cenas has become relevant to military applications. Recent technologies and new understanding of ocean accounties have expanded this field to meteorological and oceanographic applications. Two of these new applications are estimating wind speed and detecting precipitation from subsurface hydrophones using the very sources of sound which were historically a minance to hydro-acoustic operations – Ambient Sound.

Meterorological data is important in understanding the world around us. Weather prediction is arguably the most important aspect of meteorology to marine operations har recent netwironmental concerns, specifically global varning, have increased the importance of collecting meteorological data. However, collecting accurate wind speed data and rainfall data on land can be problematic. Ensuring that messurements are not affected by local togography or man made structures, including the data collecting devices themselves, is difficult. This problem is magnified at sea where waves, spray and ice can affect surface buoys. Compounding this problem, the occasa represent 70% of the Earth's warface, and collecting meteorological data from the open occas is of the structure importance. Many existing oceanographic equipment record sound over the frequency range of wind-generated and precipitation generated ambient sound. In some sense, while surfacing occasion, you can get the wind speed at the surface for free. A more down-to-earth apprainal is that using ambient sound. In some same wind speed and precipitation represents an alternative means of meteorological data collection.

While previous studies of ambient sound as generated by wind (Kambes et al. 1948: Wenr 1962; Shaw et al. 1978; Evans and Watts 1962; Vagle et al. 1990) and proprintation (Franz 1959; Lokken and Bonn 1752; Nystum 1966; 1987; Meivrist et al. 1992) have been limited in duration, recorded sound handwidth, and wind apeeds, the present data include the ambient sound spectra for wind speeds from 1 to 21 m s^{-1} and coincide with a variety of meteorological events, for example, 'rain,' 'ditrizi' and "for,' 'largi this mingue data set, the accuracy of two existing wind speed equations, from Vagle et al. (1990) and Evans and Watts (1982), are compared to the accuracy of a wind speed algorithm developed using the present data. The performance of these three equations are quantified for frequencies from 1 to 72 kHz by contrasting the mean and standard deviation of the absolute error in the wind speed estimates from the Sound Source Levels (SSL). Contributional to the wind speed. To characterize this behaviour, comparisons of the spectral slope with wind speed. To characterize this behaviour, comparisons of the spectral slope with wind speed. To characterize this behaviour, comparisons of the spectral slope between two data sets are made over three spectral regions. One result of the non-linear spectral slope ambient sound from 1 to 72 kHz is that there exists a maximum resolvable wind speed for frequencies greater than 10 kHz.

In addition to placing limits on the accuracy of wind speed estimates and characterizing the spectral behaviour with wind speed, the effect of both wind speed and rainfall rates on the acoustic signature over frequencies from 1 to 72 kHz are explored. The effects of precipitation and wind are studied by comparing the identifications of precipitation made using two characteristic features of precipitation dominated ambient could spectra to two reference records of precipitation. These identifications are classified as either correct or incorrect and are further divided into correct identification target and precipitation rese.

The amhient sound data persented here were recorded by the Ocean Amhient Sound Instrumentation System (OASIS) as Ocean Weather Station Miles (OWS Miles). The OASIS device consists of an AD Instruments (ROI) Broadband upwardlooking ADCP and an International Transducer Corporation (ITC) Hydrophone, model number 6050-C. OWS Miles is a weather station located 210 km wers of Bergen, Norway (at 66¹⁷N, 2¹²K), as shown in Figure 1.1. The weather station is described in Gammedoorf et al. (1992).

The presents data spans 37 days in 1996, from Jalian day 137 to 174 (mld-May until mid-June), and spans 74 days in 1997, from Jalian day 111.8 to 183.8 (mld March to the beigning of July). Durity the desployment, sevenal atornas are onserved over the instrument. From OWS Milse, a complete meteorological record is available, as well as wind speed records from a ship-mounted amemometer. Quantitative measurements of rainfall rates from an Optical Rain Gauge (ORG) are available for the 1997 deployment.

Figure 1.1: The location of Ocean Weather Station Mike (OWS Mike), 210 km west of Bergen. Norway (at 66°N, 2°E).

1.1 Thesis Outline

Chapter 2 outlines general theory for sound propagation in water, the generation of sound by air bubbles and the scattering potential of air bubbles. This theory is completed by a literature review of the study of wind-only ambient sound and the ambient sound generated by falling raindrops. The historical research on bubble enrimament and precipitation are also reviewed.

Chapter 3 is devoted to the signal processing and data acquisition of the O.SSIS instrument. This instrument provides both the intensity of ambient sound, and the backscatter intensity from an upward-boling ADCP for the purpose of determining wind direction. Wind direction estimation is not discussed in this thesis. For a detailed explanation of wind direction zero tambiant of the ADCP data at OWS Mills using the data from 1996 and 1997 see Zeele et al. (1996). For an overview of the technique for determination of the wind directions zero factor et al. (1996). Chapter 4 explores the determination of a universal wind speed from ambient sound equation. The coefficients of this equation are determined, and their behaviour with frequency are examined. This frequency dependent wind speed etimation equation is compared to two existing frequency independent methods of estimating wind speed by examination. Further to wind speed estimation, three methods of improved wind speed estimation. Further to wind speed estimation, three methods of improved wind speed destimation are constrained: time averaging, spectral averaging, and a wind speed dependent correction factor. In addition to the wind speed estimates, the spectral behaviour with wind speed for three speatra regions on the ambient sound spectrum is examined. Finally, the maximum wind speeds which can be estimated from SSL are determined for all frequencies, and these results are compared to those presented by Vagier 4.0 (1990).

Analysis of Precipitation feedulication from ambient sound Algorithms (PlAs) is given for two different algorithms in Chapter 5. The account of the source of the compared to visual neeroth from even members of OWS Miles, as recorded following the World Meteorenizedical Organization (WMO) observing standards. The 100 WMO wither observation conditions are re-acceptized into eight we sub-actegories so that the accountic observations can be compared more easily. These nub-categories are then compared to the ORG data in 1997. The success of precipitation identification from ambient sound is analyzed by wind used and precipitation category.

Chapter 2 Literature Review

2.1 Introduction

There are many applications involving sound in the oreas. Most of these applications are active, that is, a pulse of sound is emitted from a source and changes in the signal are model at a review. The most finaling of these applications is Sound Xvigtion and Ranging (SONAR), which estails locating objects in the water through the dretection of reflected sound. This simple technology has many cosmographic applications: for example, it can be used to study oceas currents using Acoustic Doppler Current Profiles (ADCPs), to measure ocean depth via depth sounders and to full fish. In addition, variations in the travel time of sound through the ocean can be measured via an array of hydrophones to measure the ocean's temperature (as in acoustic tomographe).

Limitations are placed on these applications by the background sound in the occus, specifically referred to as a ambient sound. A mhient sound in the occus is the sound a hydrophone (or an underwater microphone) in the absence of artificial sound sources. Knowledge of the magnitude and location of the source of ambient sound in the occus is important in hydro-acoustic applications because in active applications sound at the receiver other than the active signal (the 'ping') must be minimized. As a result, ambient sound has historically been classified as 'noise' along with detectical and mechanical noise from the apparature. While some authors refer to this background sound in the ocean as ambient noise, others are more deliberate in their decription and make the distinction that this signal is not 'noise' but rather sound servered by an identifiable source.

There is additional value in knowing the magnitude and location of ambient sound (e.g., the infinite plane of dipole sources at the surface generated by wind), in that the directionality of the ambient sound can be used to create passive subsurface images (Potter 1993). This application is called Ambient Daylight⁷²⁴ (Potter 1993), and works in a similar fashion as ensuring a bright light source is behind the photographer and in from of the subject in photography:

While knowing the wind speed and the rainfall rate *a-priori* is important for active hydro-acoustic applications and passive imaging one question remains: can the ambient sound signal be interpreted confidently enough to determine surface meteorological conditions accurately?

The measurement of the wind speed at the ocean surface is important because the wind stress at the surface randers momentum from the atmosphere to the ocean. Since the wind stress at the surface of the ocean varies approximately in proportion to the wind speed spaced, accurate measurements of wind speed are meded. Ocean storms provide momentum transfer from the atmosphere to the ocean which hades to significant mixing of water properties throughout the water column. Precipitation is mother important ocean surface process; it provides a fresh water imput to the sea and ocean. This imput is an important component infiberatic convection, see ice formation and the large-scale thermohalise circulation. However, 60% of the precipitation is over the oceans, where only 10% of the weather stations are located (System 1980). Along of these weather stations are located on islands which affect the veather systems which pass over them. Subsequently, there is an immediate need to study precipitation and storms as they occur in the open ocean with no land masses present cafe them.

It is idlificult to collect this meteorological data at sea. Some problems associated with using surface buoys to collect wind speed and rain-fall data are: waves, ice, sayce and submossion. Specifically, meaning wind speed that be coard's surface is difficult because of the troughs created by waves. Ship-mounted anomoneters must be deployed with care to ensure there is no interference by the superstructure with the wind measurements. The threat of ice forming as surface buoys and pack ice duranging equipment are potential problems in coller climates. In addition, rain-gauges and distilcometers are wabject to spray and possible submersion, making accurate measurements difficult.

Both wind stress and precipitation cause characteristic ocean sounds which can be used as an alternative means of studying these oceans surface processes. Subsurface listening systems have an additional advantage over surface deployed instruments, in that they spatially average over an area of radius equal to the depth of the instrument.

2.2 Sound In Water

To begin with we must define the physical phenomenon known as sound. Sound in a fluid (or solid) is the longitudinal motion of particles in that medium. Any mechanim which causes a change in pressure creates sound in a compressible modium. Often in occanography, the ocean is assumed to be incompressible. However, if the medium were incompressible, the speed of sound would be infinite in that medium, so in ocean acountics this assumption in not reasonable. The rate of change in pressure defines the frequency of the sound and the frequency determines how the sound wave interacts with its surroundings. The sound area is a progression of areas of compression and rarefraction. An area of compression is where particles are pashed choor together compared to when the sound wave is absent, while rarefraction is an area where the particles are further against than in the absence of the sound Assew. An example of a longitudinal wave similar to sound waves can be demonstrated in a stretched spring: Bunch a number of coils together at one end, and upon release this area of compression travek the length of the spring.

There are numerous sources of sound in the ocean, ranging from sounds made by living organisms to sounds created by breaking waves. Table 2.1 presents some sources of underwater ambient sound and the frequencies over which they are generated.

Frequency	Source
10-100 Hz	Microseism
50-500 Hz	Shipping
1-20+ kHz	Wind
10-20+ kHz	Precipitation
1-10 kHz	Fish and Crustaceans
50+ kHz	Thermal Noise

Table 2.1: Examples of sources and frequency ranges of underwater sound.

To study the characteristics of ocean ambient sound, the generation and prop-

agation of sound in salt water must be explained. To begin, consider the generation and propagation of sound in fresh water.

2.2.1 Generation and Propagation of Sound

A time-dependent pressure can propagate as either a plane or upherical wave. Following the approach of Burdle (1994), consider an infinite plane at x_0 in y_c , and apply a force in the direction. For a plane wave, assume that the applied pressure is equal over the whole plane. As a result, there will be a slight change in volume to the right of the plane, which he plane moving some distance $\Delta\xi$ along the x-axis. The change in volume is $y\Delta \Delta$ and the train is then

$$\frac{\Delta V}{A} = \Delta \xi$$
. (2.1)

The stress is given by the change in pressure and the ratio of stress to strain is given by the bulk modulus B. The change in pressure, Δp , resulting from the displacement $\Delta \xi$ can be written as

$$\Delta p = -B \Delta \xi. \qquad (2.2)$$

If the change in plane position is dependent on x and if $\Delta \xi \ll 1$, then the pressure is given by

$$p = -B \frac{\partial \xi}{\partial x}$$
. (2.3)

Using Newton's second law

$$F(x, t) = -m a(x, t)$$
, (2.4)

$$\frac{\partial \rho(x, t)}{\partial x} = -\rho \frac{\partial u(x, t)}{\partial t}$$
(2.5)

where u is the velocity of the plane. Strain will also be time varying. The time derivative of Equation 2.3 becomes

$$\frac{\partial p}{\partial t} = -B \frac{\partial}{\partial t} \frac{\partial \xi}{dx}$$
(2.6)

where

$$u(x, t) \equiv \frac{\partial \xi(x, t)}{\partial t}$$

(2.7)

Changing the order of differentiation in Equation 2.6, and substituting Equation 2.7 in as the time rate of change of ξ gives

$$\frac{\partial u}{\partial x} = -\frac{1}{B} \frac{\partial p}{\partial t}.$$
 (2.8)

Using the time derivative of Equation 2.8 and Equation 2.5, then we can find the one dimensional wave equation:

$$\frac{\partial^2 p}{\partial x^2} = \frac{\rho}{B} \frac{\partial^2 p}{\partial t^2}.$$
(2.9)

Using standard differential equation solutions there exists a forward and backward traveling wave with the form

$$p(x, t) = p_1\left(t - (x + k_1)\sqrt{\frac{\rho}{B}}\right) + p_2\left(t + (x + k_2)\sqrt{\frac{\rho}{B}}\right)$$
 (2.10)

where p_i and p_2 are arbitrary functions, k_1 and k_2 are the wave numbers for the functions, and the wave speed is $c = (\frac{R}{2})^i$. Note that c is not the speed of the particles since in a longitudinal wave there is no net translation of the particles, but rather the speed of the energy propagation.

The pressure can be generalized in three dimensions as

$$\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}. \quad (2.11)$$

The plane wave solution is a special case of Equation 2.11 where the partial derivatives with respect to z and y are both equal to zero. In general, for spherical waves it is convenient to represent the solution in spherical coordinates. Doing so gives

$$\nabla^2 p = \frac{\partial^2 p}{\partial r^2} + \frac{2}{r} \frac{\partial p}{\partial r} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$
(2.12)

which is equivalent to

$$\frac{\partial^2 rp}{\partial r^2} = \frac{1}{c} \frac{\partial^2 rp}{\partial t^2}. \quad (2.13)$$

Solutions to Equation 2.13 are of the form

$$p(r, t) = \frac{1}{r} f_1\left(t - \frac{r + k_1}{c}\right) + \frac{1}{r} f_2\left(t + \frac{r + k_2}{c}\right) \qquad (2.14)$$

where f_1 and f_2 are arbitrary functions, k_1 and k_2 are the wave numbers for the functions, and the wave speed is $c = (\frac{R}{2})^{\frac{1}{2}}$.

It must be noted that both the diverging and converging spherical waves dissipate as $\frac{1}{2}$, whereas the plane wave does not. Also, the converging wave has a singularity at r = 0 that is generally ignored in acoustic modeling, with the arbitrarily large pressure at r = 0 for the outgoing wave handled by the acoustic displacement at r = 0 for the set of the spheric 1984).

2.2.2 Relaxation Processes

A more realistic model of sound passing through water includes a time-dependent relixation parameter in addition to Hooke's law in Equation 2.3. This time-dependent addition models the delay in the pressure change caused by the passing pressure front as a result of three physical processes. These processes are thermal relaxation. structural relaxation and demical relaxation. Physically the presente changes and vibrational or rotational energy, changes in phase or structure, and ionic dissociation corresponding to periods of rarefraction and compression.

Adding the relaxation effect to Equation 2.3 makes the pressure change take the form

$$\Delta p = c^2 \Delta \rho + b \frac{d\Delta \rho}{dt} \qquad (2.15)$$

where b is constant. Using Equation 2.15, Equation 2.13 becomes

$$\frac{\partial^2 \Delta \rho}{\partial x^2} + \tau_r \frac{\partial^2 \Delta \rho}{\partial x \partial t} = \frac{1}{c^2} \frac{\partial^2 \Delta \rho}{\partial t^2}.$$
 (2.16)

This equation can be solved if a solution of the form

$$\Delta \rho = \rho_s e^{i\omega t}$$
(2.17)

is assumed. Substituting this assumed solution into Equation 2.16 gives

$$\frac{\partial^2 \rho_s}{\partial x^2} (1 + i \omega \tau_r) = -\frac{\omega}{c^2} \rho_s.$$
 (2.18)

The spatial behaviour of density ρ_i , can be assumed to vary as $\rho_i \propto e^{-(k+q_i)x}$, with k being the wave number. Using the spatial dependence in Equation 2.18, and by considering real and complex components separately, the exponential attenuation rate is

$$\alpha_{e} = \frac{\omega^{2} \tau_{r} c_{p}}{2 c^{2} (1 + \omega^{2} \tau^{2})}. \quad (2.19)$$

Assuming $c = c_p$, where c_p is the phase speed, and defining a relaxation frequency $f_r = \frac{1}{2\pi r_r}$, the exponential relaxation parameter can be written as

$$\alpha_e = \frac{(\pi f_r/c) f^2}{f_r^2 + f^2}$$
(2.20)
with units of nepers per meter. For frequencies less than f_r the attenuation is proportional to f^2 and approaches a constant for frequencies above f_r .

The relaxation time is found by considering the case where a pressure of Δp is applied until t = 0, at which point the pressure is released and from then on $\Delta p = 0$. In this case, Equation 2.15 becomes

$$\frac{d(\Delta \rho)}{\Delta \rho} = -\frac{c^2}{b}dt \qquad (2.21)$$

and is integrated to give

$$\Delta \rho = \Delta \rho_0 e^{-t/\tau_r}$$
(2.22)

$$\tau_r \equiv \frac{b}{c^2}$$
. (2.23)

where τ_r is the relaxation time parameter.

2.2.3 Effect of Salinity and Temperature on the Speed of Sound

In udificit to the effect that aiking and temperature have on the relaxation parameters and therefore the frequency dependent absorption of sound, both aiking and temperature directly affect the speed of sound in water. The temperature of the occurs ranges from -4 to 30°C, while the salinity varies from 32 to 35 practical salinity units (psn). The variability in temperature and salinity occurs in both horizontal and vertical directions and must be considered in occurs acoustics.

While some oceanographic applications assume that the ocean is an incompressible medium, this assumption is not applicable to ocean acoustics. If ocean water was incompressible, the speed of sound in the ocean would be infinite. The compressibility of water is affected by the temperature and, to higher orders, by sait content. In addition to temperature and salt content, the speed of sound increases with increasing pressure (i.e., the depth in the ocean). Pickard and Emery (1996) give an empirical equation for the speed of sound as

$$c = 1449 + 4.6T - 0.55T^{2} + 1.4(S - 35) + 0.017D$$
 (2.24)

where T is the temperature in degrees Celsius, S is the salinity in paa, and D is depth in metres (m). The speed of sound in water increases with T, S, and D, and this combination leads to a variety of speed of sound distributions with depth. where c = c(z).

One common result of the stratification of density in the oceans is the formation of own dchamtels. Sound refracts as it encounters a change in density and, as a result, it rhanges direction as it passes through the ocean. Consider a two-javer y source modular. If the lower medium had a larger speed of sound than the upper layer, the sound vectoring downward from the upper layer would refract as it entered the second modular. If the lower medium had a larger speed of sound than the upper layer, the sound would benet downsite the vertical, a dictated by Subill issue. On the other hand, if the medium holdow had a lower speed of sound, the downward traveling ray would bend townsite the horizontal. To illustrate this, sound can be modeled using ray theory, in which sound wave is represented by a lane groupedicator to the wave fronts (the ray), pointing in the direction propagation of the wave fronts. (the ray), pointing in the direction propagation of the wave fronts with dopt. It be onuel would refract townis the horizontal is each placer tageaut through, so that a downward traveling ray would bend and eventually travel upward. If the density increases with depth them a downward traveling ray would progress towards traveling travitation down.

A typical sound-speed profile and sound channel are shown in Figure 2.1. taken

from Clay and Medwin (1977). All sound originating at the depth of the density

Figure 2.1: Sound refraction due to vertical distribution of the speed of sound, as shown in Clay and Medwin (1977).

minimum would be trapped in the channel. The temperature and salinity distribution therefore has a tremendous impact on ocean acoustics and the interpretation of ambient sound. The concentration of air bubbles in the water also affects the speed of sound in water (see Brekkowskikh and Lowanov (1901, pp. 238), 12(3).

2.3 Scattering and Absorption of Sound by Air Bubbles in Water

The presence of air bubbles near the water surface is relevant to the study of ambient sound. Their importance at the surface is threefold. First, individual bubbles generate sound went help are cented to deformed. The intensity of sound from acoustically active bubbles at the surface is magnified by the surface which is a perfect reflector and, as a result, the bubbles emit sound as a dipole source (see §2.3.2). Second, bubbles are efficient scatterers of noon at their resonant frequency. A large number of bubbles at the surface, common in near shore surf zones but also in the open sea during high winds, can result in large attenuation at certain frequencies. Third, the presence of bubbles increases the void fraction (the ratio of air to water in a given volume) which changes the speed of sound. As a result, there exists the possibility of a ware guide present at the surface.

2.3.1 Breathing Mode Frequency

As noted, bubbles are efficient sound scatterers, particularly at resonance, and emit sound when they are created or when they are given energy through mechanical deformation. To examine resonant frequency, a spherical hubble of radius a, which is much smaller than the wavelength of the sound wave in water, is considered. Following the approach of Brehkowskih and Lynanov (1991), the incoming pressure intensity a, and the outgoing pressure $p_{\rm est}$ are assumed to have the form

$$p_i = A e^{-i\omega t}$$
(2.25)

$$p_s = \frac{B}{R} e^{i(kR-\omega t)} \qquad (2.26)$$

where A and B are amplitudes to be determined from boundary conditions. It is a radius from the centre of the bubble to some arbitrary point, ω is the angular frequency, and $i = \sqrt{-1}$. Assuming the incoming pressure is incident from far enough away that it can be considered planar, it acts equally over the whole bubble removing any spatial dependence in Equation 223. Consider the adiabatic case, where

$$pV^{\gamma} = constant$$
. (2.27)

The time-dependent volume change from the initial volume V_0 caused by the incoming pressure change p_{i_1} is given by

$$\frac{dV}{dt} = 4 \pi a^2 \frac{dr}{dt} = 4 \pi a^2 v_r$$
(2.28)

where v_r is the radial component of the velocity at the surface of the bubble and ais the radius of the bubble. The time derivative of the adiabatic Equation 2.27 is

$$\frac{1}{p_0} \frac{dp}{dt} = -\frac{\gamma}{V} \frac{dV}{dt}.$$
(2.29)

From the time-derivative of Equation 2.25 and Equations 2.28 and 2.29

$$p = \frac{3 \gamma p_0}{i a \omega} v_r \qquad (2.30)$$

since $V = \frac{4}{3} \pi a^3$.

If shear viscous stresses and surface capillary tension can be neglected, then the boundary conditions are

$$p = p_i + p_s$$
 (2.31)

$$v_r = v_i + v_s$$
 (2.32)

where v_i and v_p are the velocity components due to the incoming and outgoing pressure fields respectively. Recall that the radius is much smaller than the wavelength of the incoming sound. As a result the acoustic pressure is constant over the surface of the bubble. This means

$$\rho v_i \propto \frac{\partial p_i}{\partial R} \ll 1$$
. (2.33)

As a result, $v_r = v_s$, where v_s is given by the rate of change of p_s with respect to R.

Equating 2.30 to 2.31, and substituting

$$v_r = v_s = \frac{\partial p_s}{\partial R}$$

(2.34)

the amplitude of B with respect to A is given by

$$A + \frac{B}{a}e^{ika} = -\frac{3 \gamma p_0}{\rho \omega a^3} B(ika - 1)e^{ika}.$$
 (2.35)

Note that $ka \ll 1$, and $e^{iku} \approx 1 + ka$ so

$$B = \frac{a A}{\frac{l^2}{l^2} - 1 - i k a}, \quad (2.36)$$

where

$$f_0 = \frac{1}{2 \pi a} (3 \gamma \frac{p_0}{\rho})^{\frac{1}{2}}. \quad (2.37)$$

In the ocean, pressure can be approximated by

$$p_0 = 10^5 (1 + 0.1 z)$$
, (2.38)

where z is the depth in metres, and p_0 is the pressure in Pascals (Pa). For an ideal gas

$$\gamma = 1.4$$
. (2.39)

The density of the ocean can be approximated by

$$\rho = 1025 \frac{kg}{m^3}$$
, (2.40)

and as a result Equation 2.37 for the ocean becomes

$$f_0 = \frac{327}{a} (1 + 0.1 z)^{\frac{1}{2}} \qquad (2.41)$$

where a is the radius of the bubble expressed in centimetres, and z is the depth of the bubble in metres.

Any bubble which is not created symmetrically will oscillate and emit sound at the frequency f_{μ} as it is driven by pressure forces to become spherical. f_{μ} is the herathing mode frequency of a bubble (also called the Minnaert frequency, as Minnaert (1933) cited in Leighton (1994)). The energy created at the resonant frequency is powerted by the damping parameters which are discussed in [32,37] damping parameter is equal to the which of the resonant peak divided by the peak frequency (Clay and Medwin 1977, pp 198). The damping parameter is discussed in [32,33]. Figure 24 shows the resonant bubble radius for equencing from 1 to 7 kHz.

Figure 2.2: Bubble radius in µm and corresponding Minnaert frequency in kHz.

2.3.2 Dipole Source: Bubbles Near a Perfect Reflecting Surface

Acoustically active bubbles entrained by breaking waves at the surface will remain close (within an acoustic wave length) to the surface due to buoyancy forces. As a result, the effects of the ocean's surface on acoustic sources near the surface must be investigated.

The surface of the ocean is a near perfect around: reflector because of the large density difference between air and water. Consequently, oscillating bubbles near the surface of the ocean radiants sound in a dipole pattern in the far field. The bubble and its reflection in the ocean's surface are two closely spaced sources as viewed by a receiver at a depth much larger than the separation of the bubble and it's image. Figure 2.3 from Close and Modein (1977, po 429) shows the geometry.

Figure 2.3: Geometry of a dipole source: two monopole source separated by $l \ll k$, where k is the wave number, taken from Clay and Medwin (1977).

The mathematical summation of the two sources gives

$$p_d = p_+ + p_-$$
. (2.42)

As a result of the density difference between air and water, the surface acts as a pressure release surface. The image will be exactly out of phase with the bubble, so that

$$p_d = \frac{i \rho_A \omega V}{4 \pi} \left(\frac{e^{i(\omega t - k R_1)}}{R_1} - \frac{e^{i(\omega t - k R_2)}}{R_2} \right).$$
 (2.43)

When $R \gg l$, where l is the separation between the source and its reflection (or, in general, the two sources), $R_1 = R_2 = R$. Assuming that the receiver is sufficiently far from the two sources, then

$$p_d = \frac{i \rho_A \omega V}{4 \pi R} e^{i(\omega t - kR)} 2 i \sin \left(\frac{kl}{2} \cos \phi\right). \quad (2.44)$$

The coefficient in front of the sine term is the pressure of the monopole source for $ka \ll 1$ at $R \gg a$. When the wave number is much less than the separation between the source and its image (or more generally the separation between two sources), then.

$$|p_d| = |p_m| k l \cos \phi$$
. (2.45)

For the dipole sources listed in this thesis, the monopole intensity (or pressure) and the $kl \ll 1$ term will be incorporated into an I_5 term, so that only the cosine squared directionality is modeled. This model is reasonable since all bubbles will be close enough to the surface to ensure $kl \ll 1$.

2.3.3 Scattering Cross-Section

Not only do hubbles generate sound when they are created or deformed but they also s-atter sound, particularly at their resonant frequencies. To describe the acoustical power scattered by the hubble or, more supply the acoustical power scattered brough a surface normal to the direction of the incident wave, it is useful to define the scattering cross-section of the bubble. By definition, the scattering cross-section is the ratio of incident acoustic power to outgoing acoustic intensity. Mathematically, this is defined by

$$\sigma_s = \frac{W_s}{I_i} = 4 \pi R^2 \frac{I_s}{I_i}. \quad (2.46)$$

Substituting

$$I = \frac{p^2}{2 \rho v}$$
(2.47)

into Equation 2.46, σ_s can be expressed by

$$\sigma_s = \frac{4 \pi a^2}{(\frac{k_1}{2})^2 - 1 + (k a)^2}. \quad (2.48)$$

If best exchange and viscous have are neglected and the radius of the bioble is much less than the wavelength of incoming sound, then the effective scattering size is more than 2000 times ing commetric size. It should also be noted that I_i is much less than the resonant frequency f_0 , then σ_i approaches zero since the scattered energy drops rapidly with $J - f_0$. If the frequency is much greater than the resonant frequency then the cross-section is at most four times the geometric area, since $k = \sqrt{3}$ If the frequency $(k = \sqrt{3})_{i=1}^{N}$.

Realistically, the thermal conductivity of water cannot be neglected and the scattering and absorption of energy by bubbles is neither purely adiabatic nor isothermal. In fact, as volume decreases the temperature must increase. The exchange of temperature happens before the volume can increase again. As a result, there is a phase difference between the pressure and temperature fluctuations and the fluctuations in volume. In other words, when volume is at its minimum, pressure and temperature will be less than their maximum. To model this behaviour, let gamma in Equation 2.29 as combination of erad and imaginary composents given by

$$\gamma = \gamma_1 - i \gamma_2$$
. (2.49)

As a result, the pressure given in Equation 2.30 becomes

$$p = \frac{3(\gamma_1 - i\gamma_2) p_0}{i a \omega} v_r.$$
 (2.50)

The initial pressure p_0 is the sum of the hydrostatic pressure, and the capillary pressure. The new initial pressure is given by

$$p_0 t = p_0 + 2 \frac{\alpha}{a}$$

(2.51)

where α is the surface tension, which can not be neglected for tiny bubbles where the volume fluctuations are not adiabatic.

For a real bubble the shear viscous stresses which act at the surface of the bubble in the radial direction must be considered. Viscous stresses result in

$$-2 \eta \frac{\partial (v_i + v_s)}{\partial R}\Big|_{R=a} = -2 \eta \frac{\partial v_s}{\partial R}\Big|_{R=a}$$

(2.52)

since the incident velocity is the same over the whole radius of the bubble. Equation 2.52 gives a new boundary condition at R = a for pressure.

$$p = p_i + p_s - 2\eta \frac{\partial v_s}{\partial R}$$
. (2.53)

Solving for B now gives

$$B = a A \left(\frac{\overline{f_0}^2}{f} - 1 - i \delta \right) \qquad (2.54)$$

where

$$\overline{f_0} = \frac{\gamma_1}{\gamma} \chi f_0 \qquad (2.55)$$

$$\chi = 1 + \frac{2 \alpha}{p_0 a}$$
(2.56)

$$\delta = \delta_r + \delta_n + \delta_t = k \alpha + \frac{4 \eta}{\rho \omega a^2} + \frac{f_0^2 \gamma_2}{f \gamma_1}.$$
 (2.57)

The individual deltas are the damping parameters due to re-radiation (δ_i) , viscosity of sewater (δ_i) and the damping due to thermal conductivity (δ_i) . Below 100 kHz, δ is dominated by the damping parameter due to thermal conductivity (Brekhovskii and Lysanov 1991), Figure 2.4 shows the relative magnitudes of the damping parameters, from Brekhovskish and Lysanov (1991).

Figure 2.4: Magnitudes of the damping parameters, from Brekhovskikh and Lysanov (1991).

The real scattering cross-section can be written as

$$\sigma_s = \frac{4 \pi a^2}{D^2 + \delta^2}$$
(2.58)

where

$$D = \frac{f_0^2}{f} - 1$$
 (2.59)

When considering total energy absorbed or scattered by a real babble we must consider energy lost to thermal conductivity and shear viscosity. These loaves are incorporated in an absorption cross-section defined in a similar way to the scattering remessection. Both the scattering cross-section and the absorption cross-section can be combined to define the energy loss to an incident wave due to scattering from the bubble and absorption by the bubble. Incident wavelengths comparable to the scattering recessection, and the absorption cross-section will be affected by the bubble.

When considering the consequence of bubbles in the water column due to breaking waves, the ramifications of many bubbles with different radii must be considered. The distribution of bubbles of different sizes creates the need to refer to a volume scattering coefficient and the need to examine dispersion effects on the sound velocity.

Interactions between bubbles can be ignored when the average spacing between the bubbles is less than the larger of the wavelength of sound or the square root of the scattering cross-section. To examine the volume effects, consider *n* bubbles of radius as in a unit volume. The total power is

$$W_s = n \sigma_s I_t$$
. (2.60)

If there is a distribution of bubble sizes in the volume, then the integral of the volume scattering coefficient over the range of sizes must be calculated. As a result, the intensity of sound decreases by the following relation

$$dI = -\beta I dr$$
 (2.61)

where β is the integral over the range of bubbles of $n(a) \sigma_{\epsilon}$. One solution to Equation 2.61 is

$$I(r) = I(0) e^{-\beta r}$$
. (2.62)

I(r) is the acoustic intensity of the sound wave after traveling some distance r from the source I(0) through the layer of bubbles, which absorbs and scatters energy in an exponential decay with β .

2.4 Sources of Ambient Sound

As Table 21: showed, there are many potential sources of ambient sound at various frequencies. Wind-generated ambients cound has a large baselouth, extending free frequencies. Wind-generated ambient cound of an along baselouth, extending free fusion extends from 10 to 23 kHz. Beaptie fifty years of research, both the source and accut behaviour of the spectra of ambient sound are poorly understoid. However, enough is known that the wind speed at the surface can be estimated empirically from the ambient sound. Additionally, it is well known that periods of rain can be identified from the ambients usond approximation of the surface can be determined (Modwin et al. 1992). What still needs to be addressed is the time scale over which accurate observations of vind speed and rainfall rate can abse measured varia minimum and the effects of biotrohome depth on the measurements. addition, the effects of time or spectral averaging still need to be quantified. Finally, the exact spectral behaviour over the entire range of frequencies for wind-generated and precipitation-generated ambient sound has not been identified.

2.4.1 Ambient Sound Produced By Breaking Wind Waves

Ambient sound in the ocean extends over a large spectral range. It is generally accepted that thermal noise dominates the spectra af frequencies higher than 50 kHz (Burke: 1894; Urici 1907). Mdlen: (1932) derived the formaling for thermal noise by considering the number of compressional modes of vibration in a cubical box of vulume V. The frequency density of normal modes can be used to get the energy per unit vulume from the equipartition theorem. For an considirictional hydrophone, the expression derived in Mellen (1932) can thes be transformed to

$$NL = -15 + 20 \log f$$
 (2.63)

where NL is the thermal noise level in dB and f is the frequency in kHz. Sound intensity levels are often reported in dB to allow addition and subtraction operations to replace multiplication and division (see Clay and Medwin (1977)).

For frequencies below 50 kHz the first description of ambient wind-only sound was given by Kandsen et al. (1948), who noted a 5 dB/octave (equivalent to 19 dB/dexclo) decreases in the ambient sound level with frequency. The sound literativity peaked at 300 Hz and extended to 30 kHz. In addition, the intensity of ambient sound levels were observed to be directly related to the wind speed. Figure 2.5 shows a spectral plot of thermal noise and the ambient sound for different sea states, as given be Urich (1967).

Wenz (1962) confirmed this wind-speed-ambient-sound relation and proposed

Figure 2.5: Ambient sound spectra for various sea states (Urick 1967). The numbers on the right vertical axis are the SSL in dB re: $1 \mu Pa^2 Hz$.

that the cause of wind-generated ambient sound might be oscillating bubbles entrained by breaking wind waves. Other hypotheses for the cause of wind-generated ambient sound included ocean spray (Wilson 1980) and shattering bubbles in breaking waves (Kerman 1984).

A common theme for all hypothesis relating to the source of wind-generated ambient sound is bubbles. Banner and Cato (1988) showed video evidence dramotrating the mechanism for the generation of ambient sound is bubbles entrained by breaking waves. The first attempts to capture the acoustic emissions from breaking waves in fournes were conducted by Banner and Cato (1988), Mellville and Rapp (1989) and Papascicalous and Raidelle (1988). The futures suffered from reveteration, to absolute noise levels were unobtainable, however Banner and Cato (1988) showed convincing high speed photographs of bubble production and the absolushowed convincing high apped photographs of bubble poly (1989) presented absolute spectra from breaking waves in a finme with waves generated by an oscillating plunger, so that hubbles associated with the breaking waves that on association with wind. The bubbles produced a spectrum with a SdB/Octard work from 1 to WithMetvin and Beaky's (1989) conclusions are still important to the study of wind-only ambient sound. They noted that while the far field intensity varies with the dopth of the hydrophone synaptic (h²), the area of observable sources at the unifice as seen by the receiver also varies with h³. The increased number of observable sources at the surface for increasing depth of receiver cancels the energy loss due to spherical spreading from an infinite plane of dipole sources at the surface. In their paper, they summarized years of ambient sound research by asying

"Three is a long history of ocean noise being "instantly" sensitive to the onset of winds. Since wave height depends on the fetch and duration of the wind, it in not the wave height that is crucial to ocean noise; it is the presence of breaking waves. This was clearly evident in these laboratory experiments [... whose] implications [are] that the ocean noise in the frequency range I to 20 kHz, and perhaps a higher and lower frequencies as well, is due to wind-only through the mediation of the spilling breakers which are the sources of the sound-radiating bubble." (Medwin and Beaks 1989, p. 129)

To fully understand wind-only ambient sound, three types of wave breaking processes must be considered. The first is the 'phanging breaker', which is the types of wave breaking are creaking in the surf zone. It occurs when the amplitude of the wave grows to the point where gravitational forces overwhelm the wave and results in catarophic breaking of the wave. The second type of wave breaking is the 'spilling breaker.' This type of wave breaking is similar to the planging breaker except that it occurs on a longer time scale. Also, only the creat of the wave breaks and, in success dish down the front of the wave. The site of the part wave breaks and, in success dish down the front of the wave. The site of the part of wave breaks involves "incohoraking", as outlined by Updegarf and Anderson (1991). This type allows for paranitic capillary wave action on swell waves to entrain bubbles at the once of low magnitude wind peeds. It is this microbreaking which is responsible for ambient sound at low wind speeds. This threshold is no doubt related to the conset of ambient sound which occurs at wind speeds less than the wind speed threshold of white capoinc.

Aside from variations in the SSL produced by precipitation (see §2.4.2), Farmer and Lemon (1984) noted deviation from Kundem wind-only behaviour: a decrease in signal at 1.3 and 2.3 kH for wind upseds greater than 10 m s⁻¹ when compared to the SSL at 8 kHz. From the apparent decrease in the ambient sound levels at high frequencies, the extinction radii of bubbles was calculated, and provided evidence of a resident tabile layer. Relevant to the creation of a reisident bubble layer is the bypothesis that the bubble size distribution near the surface can be modeled by a power law. To this end, the exponent on the power law for bubble size distribution was calculated from the ratio of the attenuism of the signal at two frequencies, and was compared to the relation determined by Johnson and Cooke (1979) and Kolovayer (1976). The experimental exponent for Farmer and Lemon's (1984) study was between the values exceeded by three two studies.

Nexe-surface bubble size distributions are of the unmost importance as they scatter sound, affect the speed of sound, and generate wind-only sound. Initial mersurement techniques concentrated on photographic methods, util a linear acoustic technique for sizing bubble was presented by Medvin (1977). Several bubble sizing studies were compared by Wu (1981). These early studies (Kolowyev 1976: Johnno and Coole 1979, Medvin (1977) above any difference. Medvin (1977) and imthat his results may have been skewed by biological activity, while other factors such as temperature differences and the influence of the bubble trap apparatus on the bubbles may also have been the reason for the observed differences.

Although there has been further study of bubble size distributions, there is still not a clear understanding of the distributions which exist in the open ocean. Second other methods exist to measure tubble sizes in size for example, methods based on non-linear acoustics (Leighton 1944) and acoustic resonators (Farmer et al. 1998). Further discussion of bubble sizing techniques can be found in Meiville et al. (1990).

The presence of a bubble layer in winds above 4 m s⁻¹ has been confirmed (Dali and Jesup 1095; Crawford and Farmer 1987). Dali and Jesup (1993) observed a significant increase in the backscatter intensity from the surface for wind speed above 4 m s⁻¹ using ADCPs. The backscatter intensity increases with wind speed as the resident bubble population grows. As waves break and inject bubbles into the water column, the plann of bubbles remains and as wave breaking increases the bubble population at the unfrace changes from podets to a will be are at the surface.

Capillary gravity waves also preduce acoustically active bubbles. In an ancchoice wave take, production of these bubbles was observed at wird speeds graves than 14.6 m s⁻¹, and the spectra covers a broad frequency range (from a few kHz to 100 kHz, and peaks at 4 HE) (Kolaini et al. 1994). The exact spectral hape of the observed spectra does not reflect the that apped of an in spectra breasan to bubble layer is allowed to build. From the histograms of bubble size distributions the most frequently occurring bubble radius is 0.1 mm, which corresponds to a resonant frequency of 23 HHz, which the distribution is centred around bubble radius 0.2 mm. which corresponds to a resonant frequency of 16 kHz. Increasing the salinity increases the number of smaller radii bubbles compared to the distribution of bubbles observed in freshwater (Kolaini 1998).

Before there was conclusive evidence indicating the source of ambients sound or exhaustive research on the correlation of wind speed and ambient sound Shawe et al. (1073) suggested, although only qualitatively, that wind speed could be derived from ambient sound through empirical acloutations. Since then, there have been many studies confirming this relation. Vagle et al. (1990) and Evans et al. (1984) both derived empirical equations relating the ambient sound to vind speed. Existing wind speed estimation data are limited by the range in wind speeds, and the frequencies over which the ambient sound is recorded.

Of the existing studies, the Found Al-Sea Interaction Experiment (FASINES) (Vagie et al. 1990) is the mast comprehensive. Many other data sets were employed in cullorating the algorithms used to exclude shipping noise and precipitation sound. The wind speed estimating equations are also tested on the various other data sets. One of the conclusions from this experiment was that there estimate a critical frequency beyond which the ambient-sound-wind-speed-relation so longer exists, and that this frequency is dependent on wind speed. The relation for the critical frequency *J*, with wind speed it given by

$$\log f_r = 1.9 - 0.07 U$$
 (2.64)

where U is the wind speed.

The data collected in FASINEX were limited to frequencies below 25 kHz, and wind speeds of 16 m s⁻¹. In addition, the ambient sound data were not corrected for reflections off the ocean floor, and the meteorological data is measured either away from the hydrophone or is measured at the surface where interactions with wave crests can be problematic.

Nysturn and Selsor (1997) present ambient sound and wind speed data collected using Acoustic Noise Senson (ANS) driffers set to driff in the Parific ocean. Comparison using Vagle's wind speed estimate from ambient sound equation are made to satellite observations. The ambient sound wind speed estimates show correlation (r = 0.91) with the satellite standard wind speeds.

Despite the general agreement of the wind speed from ambient sound equations, a comparison with wind speeds ranging from 0 to 20+ $m e^{-1}$ and recorded sound frequencies from 1 to 72 MH is required to confirm the accuracy of the wind extinutes at all wind speeds. Additionally, the time or spectral averaging meessary for accurate wind estimates must allo be investigated. Consideration to the study of the wind from ambient sound equation for various frequencies, the behaviour of ambient sound spectra over the entire range of wind induced ambient sound must be determined.

2.4.2 Ambient Sound Produced by Precipitation

Pumphrey et al. (1989) provided as brief look at the previous research on the sound produced by a falling drop of water onto a surface of water. This research dated back to Wurchington's high holosopaphy (1990) of falling drops on water. Several theory of the strength of the strength of the strength of the strength was finally given by Minnaert (1933) who provided the breaching mode frequency derivation of gas hubbles in liquid that are the source of the sound generated by filling drops. Minnaert (proped that the sound of running water comes from block strength of the bles. To come to this conclusion, he adapted the theories provided by Bragg and Mallock, who described the airborne sound of drops hitting water (see the discussion in (Franz 1939) for the references).

Francis (1939) high-speed movie photography provided excellent pictures of the process of falling drops on water as well as the sound produced by the bubble extrainment and impact to the drop. In this study, the sound generated by the falling drops was described as a sharp pulse attributed to the initial impact accompanied by a slower sinusoidal decaying sound wave generated by entrained air bubbles. The entrainment of these bubbles was described as eartist. In addition, these oscillating bubbles were observed to be dipole sources of sound. Franc noted that the sound levels were proportional to drop size and impact velocity. He also provided results from some experiments in the sound generated by grays. In this part of the study, Franz noted that for bubbles with a radius of 0.24 cm, a canopy of water formed which prevented lubble formation. The overall sound spectra has a boad frequency range that extended from 1 to 10 kHz.

In their study of heavy rainfall, Heindman et al. (1055) found that the absolute sound levels are 77 dB re 1 μ Pa for frequencies from 1 to 10 kHz. Further, Bom (1059) plottet the doy of rainfall rates from 1 to 25 mm h⁻¹ against the sound level and found a linear relation. He also speculated that the sound level depends on the drop size and impact velocity. Lokken and Bom (1972) reported that drop size varies with the rainfall rate, so that the ambients sound spectra reflects the distribution of drop sizes in the precipitation. Changes in ambient sound with drop size are not simple: the spectral character as well as the intensity of the generated sound changes with changing drop size. Given that raindrop size changes the acoustic signature and that the rainfall rate changes the drop size, in principle it should be possible to determine the rainfall rate from the acoustic signature. An algorithm to determine the rainfall rate from the acoustic signal was developed by Nystaen (1996). This algorithm involved using a matrix of known spectrum generated by raindrops of certain sizes. It also gave an inverse method to determine the spectral delowine at al. 1992).

The general shape of the spectra for light miniful was described by Scrimger et al. (1987) as a narrow peak centered about 15 MHz, with a steep slope of approxlimately 60 afflycture on the low frequency ascent and a slower of 40 dB/octure defline on the higher frequency side of the peak. Observed to 50 MHz, this slope is quite different from Konsten's wind-only slope of 5 dB/octure. This description of the sound from rainfall also highlights the fact that the acoustic signature of snow and halar a distatic from each other a well as from liquid periptiation.

The frequency of the spectral peak is shifted by wind and by surface waves (Xystuen 1897). Wind affects the impact velocity as well as the angle at which the drop strikes the surface. This angle changes the energy released on impact. The upward velocity and phase of the wave also affect the impact velocity. If there is an equal probability that rain drops will strike the wave at any point, the sum of the drops hitting the wave at all phases causes a broadening of the spectral peak. In fact, the peak is dependent on drop impact velocity, and the spectral peak location is given by

$$F_p = 13.4 \frac{v_i}{v_p}$$
(2.65)

where F_p is the frequency in kHz, v_t is the terminal velocity of the drop (dependent on

drop size), and $v_i = \sqrt{v_i^2 + v_u^2}$, with v_w the upward component of the oceans surface due to wave action (Nysteen 1987). The spectra Scrimger et al. (1987) described, and the shift with wind speed as Nystuen (1987) noted, are shown in Figure 2.6, taken from Nystuen and Selsor (1997).

Figure 2.6: Ambient sound spectra for various meteorological conditions, taken from Nystuen and Selsor (1997).

Ogue and Prospertist (1992) showed that certain velocities and drop sizes will produce a conside curate in the surface of the water and that this carter will always estimation a bubble. Bubble entrainment is dependent on the shape of the impact carter; bubbles which do not have the correct drop size will not create a carter suitable for hubble entrainment. By plotting the terms individual will be more corresponding to the drop radius, the intersection yields a region of rain drop sizes which will entrain bubbles provided there is no wind, i.e., they impact at zero angle to the surface of the corean (Meviers et al. 1992; Pumphery et al. 1998). Inaddition, for large enough drops (e.g. diameter greater than 2.2 mm), a jet of water forms which can subsequently entrain a bubble after drop impact. The estrainment by these jets is dependent on the angle a which the jets in this surface, with increased probability of entrainment corresponding to the increase in angle of the jet with the water (Medwin et al. 1992).

Precipitation can be identified from the spectra by plotting the SS2. at high frequencies (e.g., 20 Hit) against the SS1 at 8 Mit. The resulting scatter plot also a linear low-wind speed region, where the wisel-odly Knudsen spectral aloge is objected and a high wind speed region where the magnitude of this critical wind speed varies with frequency (Vagie et al. 1980). Above the critical wind speed a resident hubble layer begins to attenuate the sound. Periods of precipitation can be identified by increased sound levels at 20 to 25 Mit with respect to sound levels at 8 Mit (Notwen) Bigs) as shown Faure 27.

Figure 2.7: A precipitation identification scheme using the elevated sound levels at 25 kHz relative to 8 kHz, taken from Nystuen and Selsor (1997). 'High seas' marks the wind speeds when bubble attenuation affects the ambient signal.

Medwin et al. (1992) provide the most detailed description of the sound signal produced by drops of different sizes. Their results and definitions of bubble types are given in Table 2.2. Medwin et al. (1992) classify the bubbles created on impact

Medwin	Diameter (mm)	Notes
Miniscule	≤ 0.8	No sound
Small	$0.8 \le D \le 1.1$	Type I
		range 12-21 kHz
		dipole
		bubble production to 10% for incident angle 20
		major component of 0.6 $mm hr^{-1}$ drizzle
Mid Sized	$1.1 \le D \le 2.2$	No bubble cavitation
		Impulse signature only
		short lived broad band sound
Large	$D \ge 2.2$	Type II
		primary bubble peak frequency $\propto \frac{1}{1_{\infty}}$
		$f = \frac{162}{762} + 0.6$
		f is frequency in kHz, D is drop diameter in mm
		1.8 to 8.5 kHz, for D 4.8 to 2.2 mm

Table 2.2: Rain drop size classification and acoustic profile.

as Type I and Type II. A Type II bubble is "formed at the apec of a conical crater, which is produced by the hydrodynamic forces generated by the vertical impact of a small drop noto a smooth, horizontal surface" (Medvin et al. 1992, p. 1614). This bubble is the dominant source of sound in the sea for precipitation with drop ater distribution which hendees small drops (e.g., those with dimenster ranging from OS to 1.1 mm). Larger rain drops (e.g., with diameter greater than 2.2 mm) generate sound through the Type II process. This finctheds sound produced by the impact, as well as from the oxidiation of a large Type II bubble and problem samile bubbles.

In summary, drops of water less than 0.8 mm in diameter make no sound because the energy of impact is not enough to form a bubble on impact. As the drop size increases the probability of bubble entrainment increases with increasing wind speed. There is another drop diameter threshold at 1.1 mm. Drops between this size and less than 2.2 mm in diameter, eraste out a short-lived broadband sound from the impact and have no cavitation following impart. This is breast the crarker formed down to have the proper sharps to entain bubbles, therefore they are acoustically undetectable (Ogizz and Prosperetti 1992). Large drops (e.g., these greater than 2.2 mm in diameter) do have a probability of retraining bubbles. For these bubbles, the probability of bubble extrainment increases with increasing wind speed. These bubbles are propublic for sound from 1.8 to 3.5 kHz. The frequency of the sound generated by these drops can be estimated by an empirical section.

$$f = \frac{160}{D^3} + 0.6 \qquad (2.66)$$

as determined by (Modwin et al. 1992). Precipitation has a spectrum of drop sizes and therefore a corresponding spectrum for the sound generated by the drops. To just the drop sizes to perspective, meteorologists classify miniacule drops as less than 0.4 mm in diameter and refer to this distribution as "Fog". Drops greater than 0.4 mm but less than 1.0 mm in diameter are referred to as "Drizzle". Combining the metorological definitions with the drop size study. "Drizzle should be acountically detectable, while "Fog" should not. Rainfall rates dominated by drop sizes from 1.1 to 2.2 mm in diameter and not be acountically detectable, as no bubbles are excitation following impact.

The account data available for study of precipitation data are limited by the frequency range recorded as well as the wind speeds and the rainfall rates present during the studies. Seringer's et al. (1987) study is limited to rainfall rates of 10 mm hr⁻¹ and to wind speeds less than 5 m s⁻¹, which allows for the isolation of precipitation ambients sound, but does not fully reveal the complexities of the signal at higher wind speeds. Thereme and Lemon's (1984) study measured the ambient sound in shallow water, subsequently an absolute comparison cannot be made. However it must be noted that in their study ambient sound measurements were limited to 25 kHz and recorded only in 5 frequency Dist. The wind speeds were less than 15 *m*-*i*⁻¹. While Pumphrey et al. (1989) provide well isolated rainfall rates, their experimental results are not from the field. Rainfall rates are produced artificially, and swell and wind waves are no from the field.

Nysture (1098) demonstrates the effect of rainfall on freshwater input using data collected for the Acountic Surface Reverberation Experiment (ASREX) which spanned 5T days in the winter in the mich-Alunatic occan. In this review, there is evidence of bubble interference during heavy rainfall in high wind, indicated by the lower-than-expected SSL az 20 to 25 kHz for wind-only spectra of similar wind species. There is also ancedotal evidence of a reduction in wave height growth during periods of precipitation (Nystare 1990).

While it is known that wind speed affects the acoustic signature of precipitation, and that precipitation can be identified by the acoustic signature, a complete in situ study of the probability of detection from ambient sound is still required. In addition to this categorical gap in the research, the high frequency spectra signature attributed to precipitation has not been throughly described.

Chapter 3 Data Processing

3.1 Introduction

Abolute measurements of the intensity levels of ambient sound are modified by several factors. This chapter will examine the following factors: hydrophone response: cound bottom depths, and hydrophone more only factors. hydrophone responses as collected with the hydrophone more depth to the present study, data was collected with the hydrophone moved at two different depths. Increasing the depth of the hydrophone increases the spatial average over which the meteorological estimates are determined using the ambient sound, as well as increasing the path length for the direct sound signal from the surface to the hydrophone. To make abolute comparisons of the estimated Sound Source Levek (SL) in ddi. measured intensities must be adjusted to a 1 m measurement reference depth. In addition, the proceed data must account for any additional signal due to reflections at startuation as the sound travels through the ocean. These potential elevations to the signal are dependent on the temperature of the water, the nature of the effections

The accuracy of the intensity levels recorded by a hydrophone are affected by two factors: the amount of spectral averaging and the amount of temporal averaging per ensemble. In the present data wat, the data wat collected at a sampling rate of one ensemble recorded every 3.5 minutes in 1996, and at a sampling rate of one ensemble recorded every 7.2 minutes in 1997. As such, the 1996 data set can be examined in two ways, as outlined in Chapter 4. One way is to average the data into 10 minute ensembles. and the other is to average into hourly ensembles. These two methods are transford as perparate data sets, and are referred to an 1996-10 and 1996-60. The sampling rate directly affects the temporal scale from which comparisons between the estimates from ambers sourd can be made to the metocological neurormeents recorded by the azemometer, the crew member (via the W310 chart entry), and the Optical flain Gauge (D46). The accuracy of the SSL estimates improves with more temporal average.

Knowing the uncertainty in SSL measurements is important when describing any of the following: the absolute sound levels which occur at specific wird speeds; the absolute SSL for specific precipitation events, and SSL threshold. The uncertainty is important so that comparison of the SSL of these properties observed in the present data set can be made to other data sets. In addition, ambient sound in the occus has been drasterized pios spectral shops of between - 1 and - 20 dB/sedded (Knuthen et al. 1948; Wenz 1962; Shaw et al. 1978). The accuracy of the SSL estimates can be used to estimate an uncertainty in spectral slope so that the spectral slope of the present data can be compared to this historical range.

3.2 Sampling Rates and SSL Estimates

In order to measure both the direction of the wind and the wind speed using a sub-surface listening instrument, the OASIS device consists of an Acoustic Doppler Current Profiler (ADCP), and an omnidirectional hydrophone (ITC model number 6050-C). For the purposes of wind speed determination and precipitation detection, only the hydrophone data will be considered.

The instrumentation is designed so that the ADCP and hydrophones are set to joing and records an appropriate helds in order to avoid any subhest sound signal contamination from the active SONAR transmission of the ADCP. The signal at the hydrophone is digitized at 4.50 HHz and converted to frequency spectra using a S192/point FTF anyorhum. Data storage constraints previous recording the article 4006-point FFT output, so data were averaged into bins using a constant ratio of hundwidth to frequency. For the two data sets considered in this thesis, that ratio was

$$\frac{\Delta f}{f} = \frac{1}{25}$$
(3.1)

where Δf is the width of the bin and f is the centre frequency. Data were recorded in 128 bins at frequencies from 1 to 72 kHz.

The confidence interval(ci) of the FFT is given

$$c_i = \frac{\nu}{\chi^2_{p,q}} SSL \qquad (3.2)$$

where $\chi^{*}_{I,\alpha}$ is the χ^{2} value for ν degrees of freedom at $1 - \alpha^{25}$ confidence and the SSL is in $W \cdot m^{-1}$. The degrees of freedom for a real time-series in a Bartlett window FFT is $\nu = 2 \cdot 3 \cdot N/M$, and here N/M = 8192/4096. The uncertainty in intensity levels can be estimated using

$$\sigma_I = (1 - ci) SSL$$
 (3.3)

and is reduced by the averaging necessary to maintain Equation 3.1 which is associated with the data storage constraint. The amount of averaging for each processed frequency, np, is given by

$$n_p = \frac{f}{25} \frac{8192}{450}$$
, (3.4)

The resulting uncertainty in intensity for each recorded ensemble is reduced by the square root of n_{p} , so that the uncertainty in the intensity levels recorded in one ensemble is

$$\sigma_I = \frac{(1 - ci)}{\sqrt{3 n_p}} \cdot SSL, \quad (3.5)$$

since one ensemble is the average of three samples. If further averaging is performed, in principle the uncertainty drops by $\sqrt{n_1}$, where n_2 is the number of ensembles, or frequency bing are average. However, from the averaging used non-inte the frequency bins, the frequency bins are not independent, so that averaging of bins will not make the uncertainty drop by the square root of n_2 . The uncertainty σ_1 is converted to dB by

$$10 \cdot \log(1 \pm \sigma_l)$$
 (3.6)

Figure 3.1 shows the uncertainty in SSL for averaging of 3, 17, and 1 ensembles together, corresponding to the 1996-10, 1996-60, and 1997 data sets.

Figure 3.1: The percent uncertainty in ambient sound intensities, with 95% confidence, for 9, 17, and 1 ensembles in each averaged spectra, corresponding to the 1996-10, 1996-60 and 1997 data sets.

A sample wind-only spectrum, recorded during a wind speed of 7.7 $m s^{-1}$ where the constant wind-only slope of -19 dB/decade has been removed to decrease the range of the y-axis, is shown in Figure 3.2.

Figure 3.2: Sample spectrum with the -19 dB/decade slope removed, centred about 8 kHz, from the 1997 ambient sound data, recorded during a wind speed of 7.7 $m s^{-1}$.

The improvement in SSL estimate with frequency is demonstrated in the spectra shown in Figure 3.2 by the decrease in the random noise peaks from frequency to frequency. For example, compare the ± 3 dB noise in the spectra for frequencies ≤ 4 kHz to the ± 1 dB peaks for frequencies ≥ 35 kHz.

3.3 Spectral Processing

In order to make the SSL deployment independent, so comparisons can be made to other data sets recorded by hydrophones at different dorations, the effects of ocean depth and hydrophone placement must be calculated. The first step in processing, however, must account for the frequency dependent characteristic of the hydrophone devident in the effect and endormental.

3.3.1 Calibration of Hydrophone

Regardless of different deployment parameters, the signal from any hydrophone must be corrected for the hydrophone's unique performance characteristic. The ITC-6030-C Uydrophones conserve with a factory calibration, but with due extended anabient sound data from each deployment further calibration was obtained for the hydrophone. The mean from either data set is a wind-generated signal with some constant spectral slope. By examining the mean of the spectra and comparing it to the factory calibration, a new calibration response characteristic for the hydrophone during each deployment was calculated. Figure 3.3a shows the three calibration carves and Figure 3.3b shows the differences between the 1966 and the 1976 ordphysmet. Zold et al. (1998) explain how the calibration curves are calculated from the data set and compare the 1996 values to the factory and lab calibrations. Figure 3.3b sumstifies the difference in the performance of the hydrophone between deployments.

The largest differences between the performance of the hydrophone in the two

Figure 3.3: a) Hydrophone calibration characteristics for 1997 (solid blue line) and 1996 (dashed red line) deployments. b) Difference between deployments.

deployments occur at 4, 7, 20 and 30 kHz. As Zedel et al. (1998) point out, the difference between field and factory calibration (not shown) comes from the narrow spectral resolution of the OASIS system compared to the factory calibrations. The cause of the difference in performance between deployments is unknown (the same hydrophone was used in 1996 and 1997.)

3.3.2 Water Temperature, Hydrophone Depth, and Bottom Depth

In order to make qualitative comparisons between ambient sound data recorded at different depths, the effects of attemuation and additional signal due to bottom reflections must be removed from the SSL (see Chapter 2). To do so, the effects of temperature, hydrophone and bottom depth are investigated. The source of ambient sound in the ocean as generated by breaking waves and precipitation can be modeled by an infinite plane of dipole sources located at the ocean's surface. Each individual dipole source radiates energy as

$$I_d = I_0 \sin^2 \theta \qquad (3.7)$$

where I_0 is the equivalent intensity of a monopole source and θ is the angle from the surface. The sound field at depth D, from an infinite plane of dipole sources is determined by integrating over the entire plane and is given by

$$I = \int_{\phi=0}^{2\pi} \int_{r=0}^{\infty} \frac{I_0}{R^2} \sin^2 \theta \, r \, dr \, d\theta \qquad (3.8)$$

where R is the distance from the source, r is the radius at the surface, and ϕ is the angle through the plane at the surface. The geometry for the integral in Equation 3.8 is shown in Figure 3.4 with the assumption that there is no refraction. Equation 3.8

Figure 3.4: Geometry for a source at the surface, a distance of r m horizontally from the hydrophone at depth D m in H m of water.

represents the contributions to the sound field from the direct path from source to
receiver, and does not include attenuation due to chemical absorption. If attenuation is included, Equation 3.8 becomes

$$\tilde{z} = \int_{\phi=0}^{2\pi} \int_{r=0}^{\infty} \frac{I_0}{R^2} \sin^2 \theta \, e^{-\alpha R} \, r \, dr \, d\theta$$
 (3.9)

where α is the frequency dependent absorption coefficient in nepersm⁻¹, and is calculated from equations A.1, A.3 and A.5 taken from Clay and Medwin (1977) (see Appendix A).

To solve Equation 3.8, the following substitutions are made:

$$R^2 = D^2 + r^2$$
, (3.10)

$$sin^2 \theta = \frac{D^2}{R^2}$$
, (3.11)

$$r = R \cos \theta$$
, $dr = R \sin \theta d\theta$. (3.12)

From these substitutions, it follows that the sound field intensity at depth D, becomes

$$I = 2 \pi I_0 \int_0^{\pi/2} \sin^3 \theta \cos \theta e^{-\alpha D/\sin \theta} d\theta . \qquad (3.13)$$

An interesting result of this geometry is that the sound from an infinite plane of dipole sources at the surface suffers no losses in intensity due to spherical spreading below the surface. The sound field is dependent only on the depth of the hydrophone through the absorption along the ray paths.

3.3.2.1 Bottom Interactions

Reflections of sound off the ocean floor can add significant energy to the ambient sound levels generated by wind and precipitation for frequencies less than 35 kHz. This fact is true even for ocean depths of 4000 m at sufficiently low frequencies (e.g., less than 10 kHz), and for a broader range of frequencies (e.g., less than 35 kHz) for depths around 1000 m. In shallow water, multiple bource parks (e.g., south which (e.g., s reflects off both the ocean floor and the surface) can also increase the ambient sound level.

In order to apply universal wind speed algorithms to either data set, as well as to make comparisons between the two sets, the depth attenuation of the signal and increased signal from bottom effections must be accounted for. Farmer and Lemon (1984) maintain that is deep water, bottom interactions are non important. Jowever it can be shown that the energy from reflections is significant at frequencies lower than 10 kHz (see Figure 37c). The generative for bottom reflections as well as multiple reflections off the bottom and ocean surface maintain the same generatry as the direct path, and thus use the same trigonometric substitutions thereby eliminating solverial occurring ions.

Figure 3.4 shows the geometry for reflections of the sound off the bottom and surface. The total path length can be calculated by considering the distance to the image from the reflecting surface. The image of the source is located at an additional depth H below the occass hottom, and is 2H - D from the receiver. The path length from the length to the hydrophone is $(2H - D)/\cos\theta$. For multiple reflections of the bottom and the work, the hydrophone is located H + D from the image in the surface and the total path length is then $(2H + D)/\cos\theta$. Assuming a loss factor at the surface of γ , and a loss factor at the bottom of β , the equation for the sound field at the hydrophone is now

$$I = 2 \pi I_0 \int_0^{\pi/2} \sin^2 \theta \cos \theta$$

$$(e^{-\alpha D/\sin \theta} + \beta e^{-\alpha (2H-D)/\sin \theta} + \beta \gamma e^{-\alpha (2H+D)/\sin \theta} + ...) d\theta. (3.14)$$

This equation assumes that the reflections will maintain their dipole nature.

However, variations in the ocean floor and at the surface would scatter the incident sound. A factor of sin² θ , which models the directionality of the dipole, is removed from the trans respensiting the reflected energy in order to model the maions assitering of energy. More importantly, the intensity constant t_0^i for upward traveling energy from the specular reflections would not be equal to the constant i_0 for Equation 3.14 representing the downward traveling energy because energy must be conserved. To derive the relations between these two intensities, consider the energy assing through an infinite plane just above the ocean floor; it must be equal to the reflected energy coming up off the ocean floor; hegelering the attenuation term in Equation 3.14, the total energy possing down through a point on this plane is

$$2 \pi I_0 \int_0^{\pi/2} \sin^3 \theta \cos \theta \, d\theta = I_0 \frac{\pi}{2}$$
. (3.15)

The energy passing up through this point on the plane is

$$2 \pi I'_0 \int_0^{\pi/2} \sin \theta \cos \theta \, d\theta = I'_0 \pi$$
. (3.16)

Since the total energy must be conserved, Equation 3.15 must equal Equation 3.16, so

$$I_0 = 2 I_0^r$$
. (3.17)

The sound field generated by an infinite plane of dipole sources at the surface of the ocean subject to specular reflections within the wave guide and chemical absorption along the ray path at depth D is given by

$$I = 2 \pi I_0 \int_0^{\pi/2} \left\{ \sin^3 \theta \cos \theta e^{-\alpha D/\sin \theta} + \frac{\sin \theta \cos \theta}{2} \left(\beta e^{-\alpha (2H-D)/\sin \theta} + \beta \gamma e^{-\alpha (2H+D)/\sin \theta} + \dots \right) \right\} d\theta. \quad (3.18)$$

Writing Equation 3.18 using summation notation yields

$$I = 2\pi I_0 \int_0^{\pi/2} \left\{ \sin^5 \theta \cos \theta e^{-\Delta/in\theta} + \frac{\sin \theta \cos \theta}{2} \left(e^{\Delta/in\theta} \int_{n=1}^{\infty} g^{\alpha} \gamma^{\alpha-1} e^{i-2nnH/in\theta} + e^{-nD/in\theta} \int_{n=1}^{\infty} g^{\alpha} \gamma^{\alpha} e^{i-2nnH/in\theta} \right) \right\} d\theta.$$
(3.10)

Equation 3.19 can be simplified by noting that

$$\sum_{n=1}^{\infty} \beta^n \gamma^n e^{-2\alpha n H/\sin\theta} = \frac{1}{1 - \beta \gamma e^{-2\alpha H/\sin\theta}} - 1, \quad (3.20)$$

since $e^{-a} \leq 1$. Rearranging Equation 3.20 using

$$\frac{1}{1-s} - 1 = \frac{1}{\frac{1}{s} - 1}$$
(3.21)

Equation 3.19 becomes

$$I = 2 \pi I_0 \int_0^{\pi/2} \left\{ \sin^2 \theta \cos \theta e^{-\alpha D / \sin \theta} + \frac{\sin \theta \cos \theta}{2} \frac{1}{\pi^{1/2} e^{-\alpha D / \sin \theta}} - 1 \left(e^{-\alpha D / \sin \theta} + \frac{e^{\alpha D / \sin \theta}}{\gamma} \right) \right\} d\theta. \quad (3.22)$$

Equation 3.22 is a simplified form of Equation 3.18 and solutions to Equation 3.22 can be determined unmerically for all frequencies where the solution is called the response characteristic for the deployment. The integrands of equations 3.22 (bits solid line) and Equation 3.13 (red dashed line) are shown in Figure 3.5 for the ambient sound at 1.4 Mer, a 2.4 B bettom loss, no loss in intensity for reflections at the surface and a temperature of 10°C. Incorporating specular reflections off the bottom and multiple reflections from bottom and surface increases the amount of energy includes the helpedopase With absolute commarison in no souble using

Figure 3.3. The acoustic intensity as a function of range, for no bottom reflections using Equation 3.13 (solid blue line) and including bottom reflections using Equation 3.22 (dashed red line). Both examples had the following parameters: ocean depth of 1800 m, hydrophone depth 250 m, temperature 10°C, J = 0.16, $\gamma = 1$ and frequency of 1 kHz.

the curves plotted in Figure 3.5, the acoustic intensity when considering reflections is more than double that when reflections are neglected at 1 kHz.

In Figure 3.5 the peak in acoustic intensity is within a circle of radius equal to the hydrophone depth, while in Figure 3.6 the integrand from Equation 3.22 for hydrophone depth 100 m (red dashed line), and hydrophone depth 250 m (blue solid line) are contrastict. This shows the change in location in peak intensities.

The response characteristic can way with temperature through the absorption coefficient, cocan bottom depth, hydrophone depth, and reflection type (i.e. specular on on-specular). The influence of these components are demonstrated in Figure 3.7, using $\gamma = 1$, and $\beta = 4^2$ which represent 0 and 8 dB loss respectively. The difference in response between dipole reflection (Equation 3.13) at the ocan't bottom and monopole reflection (Equation 3.12) is shown in the Figure 3.5. The overall

Figure 3.6: The acoustic intensity as a function of range, using Equation 3.22. Hydrophone depths were 250 m (solid blue line) 100 m (dashed red line). In both cases the ocean depth was 1600 m, the temperature was 10° C and the frequency tested was 1 kHz.

difference between specular and non-specular effections is less than 0.12 dB, starting at 0.04 dB and increasing to a peak of 0.115 dB at 8 kHz, and decreasing to 0 dB at 35 kHz. Shifting the hydrophone depth while keeping the oean bottom forpk1 constant has little effect as can be noted by comparing the dashed and solid lines in Figure 3.7a. In contrast, changing the ocean depth while keeping the hydrophone depth constant results in an incrussing difference with increasing frequency as illutrated by the green dash-dot line in Figure 3.7a. The increased effect of the nature of the reflections at high frequency is a result of one simple fact: when the ocean depth is 200 m, the high frequencies (e.g., greater than 10 kHz) interact with the bottom blefore absorbion doing the path length attenants the sound breed. Minimal difference occurs when the hydrophone depth varies and the ocean depth is larger compared to the hydrophone depth (compare the solid blue line to the dashed red line in Figure 3.7a. The reasons for this minimal difference is tash tydrophone placement largery

affects the direct path to the hydrophone and does not affect the energy reflected off the hottom. The frequency dependence of the difference in additional sound signal from specular and non-specular reflection is a result of the convolution of the increasing effect of absorption and the constant loss in reflection. For each of the resumble in Figure 2.7 the difference between reflection to the less than 0.2 diff.

Figures 3.7b to d show how the observed SSL changes as a function of frequency, subject to various parameter changes. Changing the assumed temperature from 0 to 20°C results in an approximate 2 dB change in response at frequencies above 10 kHz (Figure 3.7b).

Ocean depth has a profound effect on the response characteristic as a result of its wave guiding potential. For frequencies higher than 35 kHz and at depth greater than 300 m. the depth dependence vanishes while at lower frequencies the difference is approximately of 0.2 dH per depth doubling as can be seen by comparing the 1000 m response to the 2000 m response in Figure 3.7c. The depth dependence vanishes for large enough depths and high frequencies because the absorption effect dominants. The reason for the depth dependence at low frequencies is the increased path height for the effected rave.

The dopth of the hydrophone has little effect on frequencies below 10 kHz, but has great effect on frequencies above 10 kHz, as shown in Figure 3.7d. Here, trumprature is fixed at 10°C and the cosen bottom in moved to infinity (bottom depth set to 1000 km). It is remarkable that the strength of the signal at depth 4000 m for frequencies less than 10 kHz, indicating that ambient sound measurements mode at this depth words all effect entrance phenomenon.

The response characteristics expected for the hydrophone depths, water tem-

perature and ocean depth, for each deployment are shown in Figure 3.8. The red

Figure 3.8: Response characteristics calculated for the 1996 deployment (blue solid line) and for the 1997 (red dashed line) deployment with ocean depth 1600 m, hydrophone depth 230 m and temperature 7^{a} C.

dashed lines shows the 1997 response, while the blue solid line shows the response for 1996. The difference in the response for the two deployments, which begins at 20 MH; is 3.4 GB VO MH: This difference is caused entirely by the change in hydrophone depth. Increasing the hydrophone depth increases the length of the direct ray path which increases the directs of chemical absorption. Higher frequencies use graterized the two increasing demutical absorption with increasing frequency:

3.3.3 Sources of Uncertainty in SSL Estimates

The spectral processing necessary to account for the additional signal from bottom and surface reflections add uncertainty to the estimates of SSL. The temperature of the water column is not constant with depth or time, and temperature affects the magnitude of absorption of sound in water. In addition, the cosm floor is quite steep at OWS Mike, changing by 400 m in 10 km, as noted by the depth of 2000 m at the CTD station, and the depth of 1600 m at the OASIS mooring. The uncertainty in SSL from these two sources of uncertainty will affect the estimates of spectral slope as well.

3.3.3.1 Uncertainty due to Temperature Variation

Recording taken at OWS Mike show that water temperature covers a substantial range during the course of the deploymenta. These changes in temperature have the potential to last the apparent sound sectrum though changes in the response characteristics (i.e., the solution to Equation 3.22). The temperature poslile from a signel CTD cast taken during 1906 shows a range of temperatures for the upper layer of between - 1 and 7 C ene Figure 3.20. The time sector of temperature poslile from

Figure 3.9: Temperature profile from single CTD cast taken at OWS Mike during 1996.

single CTD casts in Figure 3.10 show the surface varianing from 6% to PC during the 1997 deployment. By calculating the difference between the response curve using a tumperature of PC and that using 2C the uncertainty due to temperature charges of $\pm NC$ was determined (green dashed line in Figure 3.11). This uscertainty in SL due to temperature is less than 0.5 dB, and heavily dependent on frequency. A response characteristic using the temperature profile dashed in Figure 3.

Figure 3.10: Temperature profile evolution for the upper 350 m of ocean during 1997, from single CTD casts taken on Julian Day (JD) 121 (blue solid line), 165 (red dashed line) and 178 (green dashed dot line).

calculated for each deployment. This approach was discarded in favour of using a single representative temperature. These two approaches differed by less than 10%. For 10%, the temperature of the usput ener variaf from 0.0 to 7C, while in 1997 the mean temperature for the surface is 8.4°C, with a maximum temperature of 9.73°C, and a minimum of $\Delta 00^{\circ}$ C. Nose of the temperature profiles indicate that there would be any significant channeling of sound, a there is no temperature minimum.

The complicated shape of the uncertainty in SSL from temperature is a convolution of the affects due to absorption on the direct and reflected signals.

3.3.3.2 Bottom Interactions

By calculating the effects of bottom interaction at two different depths, while keeping the effect due to absorption constant (i.e., by keeping the temperature the same betwoen the two), the encertainty in SSL due to any uncertainty in depth is calculated. To account for the slope in ocean bottom, but not to overestimate the uncertainty in SSL, an uncertainty in bottom depth of \pm 300 m is assumed. With the temperature fixed at 10°C, the estimate of the uncertainty in SSL from the depth uncertainty or SSL at 10°C, the straints of the strategiest in SSL from the depth uncertainty of obtained from half of the difference in response between a bottom depth of 1300 and 1300 m, and is shown as the red dashed line in Figure 3.11. The total uncertainty in SEC, from uncertainties in depth and theremetrate in plotted as the solid blue line in Figure 3.11. Maximum differences are less than 0.5 dB and occur at approximately 5 and 35 kHz, as a result of a declining effect from reflections due to absorption of the energy as frequencies greater than 10 kHz; in fact, for frequencies above 35 kHz, it is a stift occurs in infinitely dept.

Figure 3.11: The uncertainty in SSL estimates after spectral processing due to uncertainty in temperature (green dashed dot line), and ocean depth (red dashed line) are shown with the combined temperature and depth uncertainty (blue solid line) as functions of frequency.

The confidence intervals from the FFT and the uncertaintic calculated here are used later to determine the accuracy with which the spectral slope of the observed million stand, can be measured. The calculation of this accuracy for the spectral slope is described in the next section, while the observed spectral slopes are described in Chapter 4. In addition, the uncertainty in wind speed estimates from the known sources of uncertainty are compared to the observed error in the wind speed estimates in Chapter 4.

3.4 Uncertainty in Spectral Slopes

While wind-only ambient sound has been characterized with a spectral slope of between -17 and -19 dB/decade (Kaudsen et al. 1948; Wenz 1962; Shaw et al. 1978). it has been noted that at wind speeds over 10 $m s^{-1}$ the spectrum above 10 kHz loses this slope (Farmer and Lemon 1984). To explore the spectral behaviour over the bandwidth presented here, the spectrum is divided into three regions: 1 to 10 kHz, 10 to 35 kHz, and 35 to 72 kHz. These regions were chosen through visual inspection of the ambient sound spectra. The boundary between the first two Regions is 10 kHz, approximately coinciding with the frequency at which Farmer and Lemon (1984) noted a change in spectral behaviour for high wind speeds. The boundary between Regions two (II) and three (III) is 35 kHz, and was chosen because of a consistent shift in spectral slope in the observed spectra at this frequency. This frequency corresponds approximately to a bubble production peak between bubbles of diameter 0.1 and 0.05 mm (or from 32 to 64 kHz) caused by capillary waves riding on the crests of gravity waves (Kolaini et al. 1994). It is therefore reasonable to expect the wind-generated ambient sound spectra to extend up to these frequencies. The regions as well as the corresponding frequency range and bin numbers are listed in Table 3.1

Region	Frequency Range	Bins		
I	1-10 kHz	1-64		
11	10-35 kHz	65-104		
III	35-72 kHz	105-129		

Table 3.1: Regions used to determine the spectral slope and the number of frequency bins in each region.

To commiss the spectral behaviour of these regions, the spectral slopes of each region are plotted against the wind speed estimate from the SSL (see Chapter 4). The spectral slopes were determined using a linear regression algorithm, which returned the estimated uncertainty associated with each spectral slope. The total uncertainty in spectral slope is the sum (incoherent) of the uncertainty in the spectral slope as determinion using interar regression and the uncertainty in the spectral slope for where the solid line drawn in Figure 311. The uncertainties for each engine are listed, for both transpectrue and depth uncertainties (Temp/Depth) and for uncertainty from linear regression (Man Lineg), in Table 32.

	1997		1996-10			1996-60			
Source of $\sigma(dB/m)$	σ_{s1}	0,2	0,3	(dal	Os2	σ_{s1}	σ_{s1}	O.a	0,3
Temp/Depth	0.13	0.12	1	0.13	0.12	1	0.13	0.12	1
Mean Lin Reg	0.92	1.14	1.50	0.54	0.72	1.05	0.24	0.37	0.64
Total	0.93	1.15	1.80	0.56	0.73	1.45	0.28	0.39	1.19

Table 3.2: The mean uncertainty in the spectral slope, in dB/decade, from the random uncertainties in SSL listed as Mean Linear Regression (Mean Lin Reg), and uncertainty in spectral slope, in dB/decade, from the temperature and depth uncertainties (here σ_m refers to the uncertainty in slope for the spectral Region n_i in Table 3.1).

Time averaging reduces the error from the linear regression by reducing the magnitude of noise in the spectra. The effect of time averaging on the spectrum is illustrated by comparing the sample spectrum for 1996-10 (solid blue line), 1996-00 (red dashed line) and 1997 (green dashed dot line) in Figure 3.12, where 1996-00 has been shifted upwards by 5 dB, and 1997 downwards by 5 dB.

Figure 3.12: Sample spectrum for the 1996-10 (blue), 1996-60 (red dashed), and 1997 (green dashed dot) data sets. The spectrum from 1997 has been shifted down by 5 dB, and the spectrum for 1996-60 has been shifted up by 5 dB. The wind speeds for the three cases were: 1996-10.7.5 $m s^{-1}$: 1996-60.7.2 $m s^{-1}$: and 1997.7.2 $m s^{-1}$.

3.5 Electrical Noise Floor

When recording ambient sound there are three factors which limit the minimum SSL which can be recorded. The first factor is, as discussed in Chapter 2, thermal noise that dominates at frequencies graves than 30 MHr. In addition, there exists a minimum wind speed below which there is no dominant wind signal. Finally, in any electronic system there is a noise floor, that is, a constant electrical signal from the power source which terromously recorded as sound by the hydrophone.

From the ambient sound spectra from 1996-10, for wind speeds less than 3 ms^{-1} (red solid line), here is an apparent noise floor in the recorded ambient signal (Figure 3.31). Units (1997) defines the sound made by the thermal adjustion of the water molecules against the hydrophone as thermal noise (Equation 2.63). It has been thought that thermal noise dominates the ambient sound signals for frequencies above 90 biff. (Urite) 4097. Burdle 1944).

Figure 3.13: Average ambient sound spectra from the 1996-10 data set using wind specds less than 3 $m a^{-1}$ (red solid line) and for wind speeds with in 0.5 $m s^{-1}$ of $\delta m s^{-1}$ (blue solid line). Included is the predicted thermal noise for frequencies from 35 to 72 kHz (solid black line).

Comparing the minimum anhient sound spectra to Equation 2.55 (Made solid line) shows that the observed minimum is much loader than the predicted thermal mines at these frequencies. Wind-only intensities should decreme by 19 30/declade, however, the SSL for frequencies greater than 10 kHz do not decrease, but rather become approximately constant from 10 to 35 kHz, and increase from 35 to 72 kHz. In addition, the mean ambient sound spectra for the 1996-10 (bus solid line) shows on sign of a noise minimum in the spectra, where the mean wind specifis 8 m/s.

The effects of this noise floor which dominates the signal at low wind speeds are shown for the 1996-60 and 1997 data sets in Figure 3.14. The spectra plotted in Figure 3.14 are the mean spectra for wind speeds less than or equal to 3 $m s^{-1}$ for the ambient sound from 1996-10 (blue solid line), 1996-60 (red dashed line), and 1997 (green dash dot line).

The ambient sound spectra from 1996-10 are more sensitive to the noise floor

Figure 3.14: The average ambient sound spectrum for wind speeds less than or equal to 3 $m\,s^{-1}$ for the 1996-10 (blue solid line), 1996-60 (red dashed line), 1997 (green dashed dot) data sets.

as a result of the short time interval and limited time averaging (compared to 1906-60). One reason for this sensitivity might be that over short time intervals, when the wind speed outlinets from below the wind speed threshold to above it, the effect of the noise floor are averaged into measured wind-generated spectra, while those recorded over over larger intervals are more likely to record either the noise floor or wind-generated spectra.

Chapter 4

Spectral Relation of Ambient Sound and Wind Speed

4.1 Introduction

It is well known that the wind speed at the coarts' surface can be estimated from the intensity of the ambient sound in the coarts (Wear 1962; Shaw et al. 1973; Evans and Watt 1982). There are two well known wind speed semination equations developed by Evans and Watts (1982) and Vagle et al. (1990). Both these empirical relations were designed for use of Sound Source Levels (SSL) at cose frequency. The equation from Evans and Watts (1982) is for use with the SSL at 4 kHz (SSL), while the equation from Vagle et al. (1990) is for use with SSL_4 . Vagle et al. (1990) demonstrate that these equations can accommodate SSL at 4 kHz (SSL), while the expansions can accommodate SSL at 4 kHz (SSL), while the expansions can accommodate SSL at 4 kHz (SSL). adjusting the SSL_f to some reference frequency using the spectral slope of windoiry ambient sound, which is well documented to its between -17 and -30 dB/dcada. Zeelel et al. (1998) show that for the present data set, the SSL_2 correstimate the wind speed, and SSL_g underestimate the wind speed. As a result of this spectral variation in wind speed estimate, they propose using the average SSL from 1 to 10 kHz (SSLT=10) to estimate wind speed.

The accuracy of the two existing wind-speed-fram-ambient-sound equations is determined for two sampling rates, and for three different time averagings. In addition, a new frequency dependent relation is developed. This new relation serves two functions: 10 to determine if all frequencies from 1 to 72 kHz can be shifted to some reference frequency and give accurate wind speed estimates; ii) to improve the accuracy in the wind speed estimate obtained using the two existing equations. The wind speed estimates presented here are for time intervals of 10, 60 and 72 minutes. Previous studies have made estimates using 12 boar averages.

The performance of the wind estimating equations is measured by both the mon errors in wind used estimates $(\mu(U_i))$ and the standard deviation in the error of the wind speed estimate $(\mu(U_i))$. Estimates of the expected $\mu(U_i)$ and $\sigma(U_i)$ are calculated using the uncertainties in the coefficients from the new frequency dependent wind-speed-chara-absents-mode quaration, and the uncertainty in estimating the SSI, from each data set. The calculation of the uncertainty an estimation the coefficients in found in this chapter, while the uncertainty in the SSI measurements were calculated in Chapter 3.

In addition to correlating the ambient sound to the wind speed, the spectral behaviour of the ambient sound with wind speed is investigated for frequencies from 10 or 24 kHz. Termer and Lemon (1984) more that for wind speeds graver than 10 $m s^{-1}$ the SSL at 14.5 and 25 kHz are less than the SSL at 8 kHz would predict given a constant spectral slope. They proposed that the mechanism for this reduction in high frequency SSL is a bubble layer which builds up during periods of high wind speeds and absolve snergy at frequencies corresponding to the resident bubble size. Vagle et al. (1990) expanded on this observation by noting that for frequencies up to 25 kHz, the wind speed at which the onset of absorption occurs decreases for increasing frequencies. Thier observation is represented by Equation 2.64 in Chapter 2. The relation for this critical wind speed as a function of frequency is determined for frequencies from 1 to 72 kHz for the present data and is compared to Equation 2.64.

To investigate the spectral behaviour of ambient sound as a function of wind speed, the ambient sound spectrum has been broken down into three spectral regions. These divisions achaed on visual importion of the present ambients sound spectra in various wind conditions: specifically the frequency noted by Farmer and Lemon (1984) above which high winds attenuate the SSL. Quantitative measurements of the spectral relation to wind speed are presented by policity the spectral value to each spectral relation to wind speed are presented by policity the spectral value of a sho trete for variations in deployment parameters: hydrophone depth: sampling rate: and ensemble averging.

4.2 Wind Speed Estimate from Ambient Sound

For both deployments which make up the present data set, the wind speed was measured at OWS Mike by a ship-mounted anenometer. Estimates of the wind speed from the anhibers cannot recorded by the abs-surface hydropates will be compared to the wind speed recorded at OWS Mike. The ship-mounted anenometer sampled continuously, and recorded the average wind speed every hour. This time averaging of the amenometer improves the correlation to the patially averaged estimates of wind speed mate by the hydrophone. The 1996 ambient sound data was collected from samples taken every 70 seconds and recorded every 3.5 minutes, the 1997 ambient sound data was recorded from samples taken every 34 minutes and recorded every 72 minutes. Therefore, the wind estimates from the ambient sound from 1997 may not be expected to be as a strongly correlated to the amenometer data, because the ambient sound was not sampled forcemently month to reflect store true markability in the wind seed.

In 1996 wind speeds were available in 10 minute intervals. Characteristics of ambient sound which change on short time scales are maintained by averaging ensembles into 10 minute intervals. This data is referred to as the 1996-10 data set. One hour ensembles were also formed and will be called the 1996-60 data set.

In 1097, only the boxity wavraged amenometer measurements were available, while the ambient sound ensembles were recorded every 72 minutes. Consequently, estimates of wind speed from the ambient sound are compared to the wind speed measurement recorded closest to them in time. For the cases where the wind speed measurement fell in the middle of the time interval between two ambient data ensembles, the measurements of ambient sound and wind aveed were discarded.

4.2.1 Determination of a Frequency Dependent Wind Speed Equation

The wind speed estimation equation derived by Evans and Watts (1982) is based on the relationship

$$U_{10} = 10^{A \cdot SSL + B}$$
, (4.1)

where A and B are empirical constants. The Equation developed by Vagle et al. (1990) uses the relation

$$U_{10} = \frac{10^{\frac{550}{10}} - b}{s}, \quad (4.2)$$

where s and b are empirical constants. In both equations, U_{10} is the wind speed at 10 m height above the ocean surface.

For the remainder of this thesis, the wind speed equations will be referred to as Evans' equation (Equation 4.3), which is the equation from Evans and Watts (1982) shifted to 8 kHz, given by

$$U_{10} = 10^{0.0420 \cdot SSL_8 - 1.33}$$
(4.3)

and Vagle's Equation (or Equation 4.4), given by

$$U_{10} = \frac{10^{\frac{2414}{29}-80.94}}{52.87}.$$
 (4.4)

To determine if shifting the SSL_I to a reference SSL frequency is appropriate. linear exgression was used to determine the slope and intercept of the line relating the SSL at a given frequency to the logarithm (base 10) of the measured wind speed. This approach results in frequency dependent coefficients A(f) and B(f), for which the wind speed estimate Equation 4.1 must be modified to be

$$U'_{10}(f) = 10^{A(f) \cdot SSL(f) + B(f)}$$

(4.5)

where f is the frequency. Equation 4.5 is different from the approach used for Evans' and Vagle's Equations, where only the constant spectral slope of wind-only ambient sound is used to adjust the SSL. To accluate $\mathcal{A}(f)$ and $\mathcal{B}(f)$ (referred to as the Coefficients), only those points which did not alter the spectral slope over 35 to 72 kHz from its wind-only behaviour, and those which did not devate the SSZ, with maycer to the SSL avere considered in the wind specel-ambient sound relation. These criteria eliminated data "contaminated" by procepitation, as will be discussed in Chapter 5. In addition, the SSL at all frequencies other than 8 kHz were adjusted by -19 dB/decade. This correction hus the effect of flattening the spectrum by removing the constant spectral along of wind-only ambient sound, and allows the Coefficients to be calculated as though at an 8 kHz, consistent with Vagle et al. (1990).

Authent sound is not correlated with wird peeck less than 3 $m^{-1}/\log de$ et al. 1990, Nystrem 1998); speculation sets the wird speed threshold for thouset of antibient sound to be lower than the wind speed threshold for white-capping, which is approximately 5 m^{-1} . Dahl and lessing (1995) detected a backscatter intensity threshold at 4 m^{-1} , indicating the presence of bubbles at the surface at this wind speed. While there is no model describing this wind speed threshold for a molecular sound, the present data set exhibits this minimum value betwees 3 and 5 m^{-1} . Noting this characteristic, the Coefficients for Fountier 1.4 were determined using wind speeds greater than 3 m^{-1} . Wind speed greater than 15 m^{-1} were included for the calculations of A(f) and B(f) to examine the effects of high wind speed on the S52 at alffered frequencies.

Figures 4.1a and b shows how Coefficients A(f) and B(f) from Equation 4.5 vary with frequency. There is systematic behaviour between the two Coefficients for each deployment case shown in Figure 4.1. For frequencies less than 10 kHz, there

Figure 4.1: a) A(f) and b) B(f) from Equation 4.5. In both plots, the Coefficients were calculated using wind speeds greater than 3 ma^{-1} , wind-only events, and 'flattened' spectrum centred about 8 kHz. The 1996-10 (blue x), 1996-60 (red *), and 1997 (green Δ) are shown in both a) and b).

are approximately constant values for A(f) and B(f), while a frequency dependence exists for frequencies greater than 10 kHz.

The sensitivity of the estimated wind speed to small changes in the Coefficients is demonstrated in Figure 4.2.

Wind speeds are estimated using the Coefficient values for 8 kHz, and show that for SSL less than 55 dB (corresponding to wind speeds up to 10 ms⁻¹), the difference in wind speed estimates between any choice of Coefficients is on the order of ms^{-1} . At these low wind speeds, the estimates using the Coefficients is determined

Figure 4.2: Wind speed estimates for SSL from 45 to 65 dB using A(f), and B(f)(from Equation 4.5) determined from the 1996-10 (blue x), 1996-60 (red *) and 1997 (green Δ) data sets.

from the 1997 data are granter than those using either averaged data set from 1996. For SSL greater than 55 dB ($\approx 10 \text{ ms}^{-1}$), the difference in wind speed estimates from the ambient sound recorded in 1996 and 1997 increases with increasing SSL (or wind speed), resulting a maximum difference of h ms⁻¹ between 1996-60 and 1996-10 for SSL greater than 55 dB. At these higher wind speeds, estimates from both data sets from 1996 coxeed those from 1997. The marginal difference between the 1966-00 and 1996-10 data sets is expected, as the year both derived from the same data set.

In order to develop a universal wind estimation from ambient sound equation, the mean of the three Coefficient functions plotted in Figures 4.1a and b are used as the Coefficients in Equation 4.1. The frequency dependent Coefficients which are used in Equation 4.5 for comparison to estimates from Vagle's and Evan's equations

$$A'(f) = \frac{A_{1996-10} + A_{1996-60} + A_{1997}}{3}$$
(4.6)

$$B'(f) = \frac{B_{1996-10} + B_{1996-40} + B_{1997}}{3}$$

(4.7)

where the subscripts refers to the data set from which A(f) and B(f) were determined.

Figure 4.3: Wind speed distributions measured by the ship-mounted anemometer for the a) 1996-10, b) 1996-60, c) 1997 data sets.

are

In choosing universal values for the Coefficients, it is important to consider differences in wind speed distribution for the various data sets. From Figure 4.3, wind speed is est han or equal to 3 m s⁻¹ account for 7%, 5% and 6.5% of the distribution of vind speeds for the 1997, the 1996-60, and the 1997 data sets respectively. All duployments have approximately the same percentage of wind speeds in this range is no that any difference reading from exclusion of wind speeds in this range is no cascaded by differences in the distribution of wind speeds. However, both the 1996-10 and 1995-60 data sets have more high wind speed verset than done the 1997 data ac-10.1% of an encounter readings are greater than or equal to 15 m s⁻¹ in the 1996-60 datas. while the 1996-10 data has 4.7% measured wind greater than 15 m s⁻¹.

4.2.2 Comparison of Frequency Dependent and Independent Wind Speed Estimation

The error in the wind speed estimate is given by

$$U_e = U_{OWS} - U_a$$
(4.8)

where U_a is the wind speed estimate, and U_{GWE} is the wind speed recorded by the ahip-mounted anemometer. Two parameters can be used to measure the performance of each wind speed estimating equation; the mean error in the wind speed estimate $(\mu(U_a))$ and the standard deviation of the error in wind upsed estimate $(\mu(U_a))$. The $\mu(U_a)$ is the mean bias of the estimate and is characteristic of the empirical relation. But can be removed by adjusting parameters. The $\sigma(U_a)$ represents the mean variation of the estimate for all wind speeds and is a measure of the reliability of any estimate wind speed.

Figure 4.4: The $\mu(U_{4})$ (solid) and $\sigma(U_{4})$ (dashed) for: a) the 1996-10, b) 1996-60, c) 1997 deployment. In a to c, the results using Equation 4.5 are plotted in blue, Evans' Equation in red, and Vade's Equation in green.

In Figure 4.4, the wind speed estimates from Equation 4.5 (blue) are compared to estimates made using Evans' (red), and Vagle's (green) Equations by plotting the $\mu(U_e)$ (solid lines) and $\sigma(U_e)$ (dashed lines).

For frequencies from 1 to 10 kHz, estimates from both Vagle's and Evan' equation do not show a frequency dependence in the $\mu(U_i)$. In 1997 there is an approximate 1 m s⁻¹/decade change in the $\mu(U_i)$. The $\mu(U_i)$ of Equation 4.3 shows on general trunt, although there are variations in the mean estimate in this frequency range. For frequencies above 35 kHz all three equations show an increasing oversetimation of the wind speed using the 1990-1 and 1986-0 data. Coly Equation 5.4 increasingly overestimates as the frequency increases using the 1997 data. Both Evans' and Vagle's equations reach a maximum overentimation of 2.5 m s⁻¹ in 1996-10 to and 1996-00 and 1 m s⁻¹ in 1997 ar 2 kHz.

There are several interesting questions which arise from examining the mean error in the estimated wind speed for each data set. First, if the Coefficients are the usen values of the empirical relations for each data set then why do the mean errors not sum to zero for all deployments? In other words, why is

$$\mu_{1997}(f) + \mu_{1996_{10}} + \mu_{1996_{10}}(f) \neq 0, \forall f$$
? (4.9)

Second, why is there no frequency dependence in the $\mu(U_4)$ for Evan's and Vagle's Equation as Zeidet et al. (1998) observed? Third, why do Evan's and Vagle show no high frequency (greater than 35 kHz) dependent overestimation in 1997? These questions are considered individually.

The sum of the mean errors for all the data sets do not sum to zero because of the non-linear response function of the estimated wind speed (Figure 4.2) and the specific data being used to establish the Coefficients (Figure 4.3). The frequency dependent mean observed by Zodel et al. (1998) was assued by an inappropriate choice of bottom loss parameters in their model (see Section 3.3.2). By choosing an inappropriate value for signal loss with referenci on of the bottom adjusts the calibrated signal incorrectly and introduces a frequency dependence in the mean error. This fact introduces the possibility that the bottom parameters, such as the reflection coefficient, can be determined from the ambient sound at several froursencies from 1 to 10 kHz.

The increasing overestimate with frequencies greater than 35 MHz in 1950 is not present in 1970 because there are free which wind speed events in 1997. The high wind speeds of 1996 skew the error because there exists a maximum measurable wind speed for frequencies greater then 33 kHz. This is examined in detail in Section 54.4.1.

Wind estimates for frequencies above 10 kHz will not be considered for the remainder of the thesis. A more complete outline of the problems of using the SSL for frequencies greater than 10 kHz is provided in Section §4.4.1.

If all wind speeds are included, the mean values for A(f) and B(f) using results from each deployment and both ime intervals from 1996 over the frequency range 1 to 10 kHz are: A = 0.042 and B = -1.38. These values are within 1.0% of A, and 3.5% of B from the adjusted version of the equation used by Evans et al. (1944) (Evantion 4.3).

The $\sigma(U_c)$ of each equation show little variation for frequencies less than 10 kHz. All equations show an increasing $\sigma(U_c)$ with increasing frequency above 10 kHz for both 1996 data sets, while only Equation 4.5 shows an increase for frequencies above 33 kHz in 1997. The equations can be arranged in the order of decreasing $\sigma(U_s)$: Vagle's Equation, Evans' Equation, Equation 4.5. A more detailed examination of the $\sigma(U_s)$ is included in Section 4.3.3.

4.2.3 Uncertainty in Wind Speed Estimation

The uncertainty in the wind speed estimate has three possible sources: poor correlation at the time/spatial scale over which the measurements were made; uncertainty in the SSL, which in turn has several sources; or a poor model of the ambient-soundwind-speed relation.

Prior studies have shown that the ambient sound is correlated to wind speeds measured as far away as 55 km (Cato et al. 1995), so the time/spatial scale is unlikely to cause large effects of spatial awareign and annipular frequency cannot be distinctly separated from time averaging with the present data. The uncertainty in the wind speed estimate introduced by errors in determination of A(f) and B(f) and in the recorded SSL are determined in this section. The accuracy of the model for Examine A. 34 is capabed as 14.33.

4.2.3.1 Uncertainty: SSL

Zetlel et al. (1998) state that using Vagle's Equation accuracy in SSL of 1 dB is needed for a 10% accuracy in wind speed estimation. This estimate is found by differentiating the wind speed estimate from ambient sound equation with respect to SSL. For wind speed estimates using Equation 4.5 the uncertainty in the wind speed estimate is given by

$$dU = U_{10} \cdot A(f) \ln 10 \cdot dSSL$$
. (4.10)

To get the uncertainty in SSL, the confidence intervals from the FFT and the uncertainty from temperature and depth errors must be included (see Chapter 3). The total uncertainty in the SSL is the sum of the uncertainty in the SSL from the FFT, and the uncertainty from temperature and depth. The total uncertainty is given by

$$dSSL(f) = \sqrt{\sigma_{SSL}^2 + \sigma_{T,D}^2} \qquad (4.11)$$

where $\sigma_{7,0}$ is the combined uncertainty in the SSL due to the uncertainty in temperature and depth (see Figure 3.11), and σ_{55L} is the uncertainty in the SSL meanurment (see Figure 3.1). The dSSL, measured in dB, for the 1996-10 (blue solid line), 1996-60 (red dashed line), and 1997 (green dash dot line) data sets are shown in Figure 4.3.

Figure 4.5: The sum of the mean σ_{SSL} , σ_T and σ_D for ambient sound from the 1996-10 (solid blue line), 1996-60 (red dashed line), and 1997 (green dash dot line) data sets.

4.2.3.2 Uncertainty: A(f), B(f)

Zedel et al. (1998) chose to ignore the uncertainty in the estimation of A(f) and B(f), however, small changes in A(f) and B(f) do lead to large differences in wind speed estimates (Figure 4.2). While it is not clear that it is appropriate to consider the uncertainty from A(f) and B(f) as coherent (recall the systematic behaviour shown in Figure 4.1), the uncertainty in SSL from uncertainty in A(f) and B(f)can be estimated by

$$\sigma(U_{10}) = \sigma_A + \sigma_B$$
, (4.12)

where

$$\sigma_A = \frac{\partial U}{\partial A} \delta A, \quad (4.13)$$

$$\sigma_B = \frac{\partial U}{\partial B} \delta B$$
, (4.14)

and

$$\frac{\partial U}{\partial A} = U_{10} \cdot \ln 10 \cdot SSL(f)$$

(4.15)

$$\frac{\partial U}{\partial B} = U_{10} \cdot \ln 10. \quad (4.16)$$

When calculating the Coefficients using regression, the uncertainty in the estimated Coefficients are also calculated. The mean uncertainty for each frequency was calculated from the uncertainty for each of the data sets. For all three data sets the precess uncertainty for A(f) (solid blue line) and B(f) (red databel line) are shown in Figure 4.6, where the uncertainty in A(f) has been multiplied by 10 to make the scales comparable. The percent uncertainty in A(f) is less than 1% for all frequencies, while the percent uncertainty in B(f) is S for frequencies between 1 and 20 kHz. The percent encore degins to increase solvy with increasing frequency 20 kHz, reaching 5% at 50 kHz. At 50 kHz the percent error in a tincrease rapidly reaching a maximum value of 12% at 72 kHz. The percent error is a line case pairly for increasing frequence 4 30 kHz, eaching a maximum of 0.2%.

One source of the uncertainty in the coefficients relating wind speed to the ambient sound levels might be the limited correlation between wind speed and am-

Figure 4.6: The percent uncertainty in A(f) multiplied by ten (blue solid line), and B(f) (red dashed line).

bient sound. Recall that at any given instant the sound recorded by a sub-surface hydrophone may be loader or quieter than the wind speed might indicate. At some time interval, the argument SSI recorded by the hydrophone reflects the mean amount of wave breaking which is characteristic of the mean wind speed. Another potential cause for this uncertainty is the potential time tag between any increase in wind speed and the subsequent increase in animelies sound in the ocean.

4.2.3.3 Uncertainty: Wind Speed Estimate

By plotting the uncertainty in the wind speed estimats from both the uncertainty in SSL (blue line) and the uncertainty in A(f) and B(f) (red line) in the same plot, the magnitude of both source of uncertainty are compared in Figure 4.7. The uncertainty arising from the uncertainty are integrated in Figure 4.7. The uncertainties in the Coefficient result in larger $\mu(G_i)$ (bold line) and $\sigma(G_i)$ (red dashed) than do uncertainties from SSL for both 1996-10 and 1996-60 where time averaging of several speets (3) and 17 for discus the uncertainty in SSL.

Figure 4.7: The expected mean error in wind speed estimate from both the uncertainty in SSL and the uncertainty in Coefficients A(f) and B(f). The $\mu(U_a)$ (solid line), and $\sigma(U_a)$ (dashed line) are both included for the a) 1996-10, b) 1996-60, and c) 1997 data sets.

4.2.3.4 Uncertainty: The Model

The form of Equations 4.3 and 4.5 assumes that the relation between the logarithm of the wird speed and ambient sound in innear. Any systematic error caused by deviation from the assumed model of the ambient-sound-wind-speed relation would result in a wind speed dependent error. For the present data set, the μ and $e(U_i)$ using Vagit's modified from show so improvement over estimates from the form of Equation 4.3. The wind speed from ambient sound equations can be arranged in the order of descending μ and $e(U_i)$: Vagit's Equation; Evan's Equation; and Equation 4.5.

To cannine the effects of the magnitude of the wind speed on the wind speed estimate. the error in the wind speed estimate (Equation 4.8) is plotted as a function of the estimated wind speed in Figure 4.8 the precipitator events identified by the algorithms to be presented in Chapter 5 are plotted in red. In Figure 4.8a, precipitation during high wind speeds leads to more accurate estimates of wind speeds in 1996-10. This phenomenon is not repeated in 1996-60 or 1997, indicating that this phenomenon occurs at a about time scale and is sensitive to both time averaging and infrequent sampling rates. Perhaps the results observed in 1996-100 are caused by additional low frequency (\leq 10 kHz) *SSL* added by the precipitation signal.

In 1096, the mean wind speed estimate using the SSL from 1 to 10 kHz in Equation 4.5 overestimate wind speed below 10 m s⁻¹ and understimate wind speeds above 10 m s⁻¹, as shown in Figure 4.8a and b. Figure 4.8c shows a similar relation between wind speed and the errors in wind speed estimates using the 1997 data. Improved wind estimates using this wind speed dependence in error are included in

Figure 4.8: Error in mean wind speed estimate using frequencies from 1 to 10 kHz in Equation 4.5 compared to the estimated wind speed, for the a) 1996-10, b) 1996-60, and () 1997 data sets. Red dots are spectrum contaminated with precipitation as identified by the algorithms in Chapter 5, blue dots are the estimates for wind-only spectrum.

4.3 Improvements in Wind Speed Estimates

If the error in the wind speed estimates were due only to the uncertainty in the SS2L estimates, better wind speed estimates could be derived by either spectral averaging or time sveraging. Improvements based on time averaging are explored by comparing the results from the three data sets. In addition, the wind speed estimetes are calculated using spectral averages (SSL. Both from of averaging reduce the variation in the wind speed estimate by reducing noise in the ambient source the variation in the wind speed estimate by reducing noise in the ambient source messurements. Finally, the systematic mean error can be removed by introducing a wind speed dependent correction term.

4.3.1 Spectral Averaging

To reduce the variance in the SSL, the mean SSL is used in Equations 4.3 and 4.4. In general, a non-linear transformation (e.g., the SSL to wind speed equation) has the effect of magnifying variance. As a result, averaging the data abefore the non-linear operation is more effective at reducing the overall variance than averaging the data after the non-linear operation (i.e., calculating the mean SSL and then computing the wind speed is perferable to computing the mean SSL and then computing the wind speed is perferable to computing the mean SSL and then computing SSL3). This approach in not an option for Equation 4.3; using the mean SSL is Equation 4.5 would require new values for the constants A and B. Instead, the mean wind ispeed estimate using the SSL for frequencies from 1 to 10 kHz is used to reduce the variance in that seminate.

The upper bound of the frequency used in either the wind speed average or

the average SSL must be selected accounting for the possibility of signal absorption by bubble clouds at high winds. For the present data thin bound has been set to 10 kHz. This frequency threshold for high wind speed corresponds to the frequency noted by Farmer and Lemon (1084). Assuming 'contamination' from shipping sound is not present, the lower bound is set to 14 kHz.

The mean $\mu(U_e)$ and $\sigma(U_e)$ for the estimates obtained using the average SSL or average wind speed estimates are listed in Table 4.1. To determine if the spectral

Deployment.	1995-10		1996-60		1997	
Equation	#(U_1)	(U.)	+(U,)	#(U_r)	e(U_1)	#1(Ca)
Exans	2.15	4.65 m #***	1.51	-1.12 m s ⁻¹	1.62 - 1-1	-0.19 m s ⁻¹
Vagle	316	-0.70 m s -1	2.37 m 1	-1.17 m s -1	2.44 m s-1	0.39 m s *1
Eqs. 4.5	1.93	-0.42 m s ⁼¹	1.29 m s ⁻¹	-0.56 14 2 1	1.57 m	-0.65 m + "T

Table 4.1: The $\mu(U_{\ell})$ and $\sigma(U_{\ell})$ when the SSL_{1-10} is used in Equations 4.3 and 4.4, and the mean wind speed estimate using SSL_1 to SSL_{10} from Equation 4.5. Results for 1996-10.1996-60 and 1997 are listed.

averaging improved the wind speed estimate at frequencies less than 10 kHz, the difference between $\sigma(U_e)$ obtained using the spectral average and the $\sigma(U_e)$ obtained using SSL_ℓ is considered (Figure 4.9).

$$I_{\sigma} = \sigma_f - \sigma_* \qquad (4.17)$$

where σ_a is the standard deviation determined when wind estimates are obtained using spectral averages, and σ_j is the standard deviation determined using the SSL_f . From this definition, positive I indicates a reduction in the $\sigma(U_d)$ when averaging is used.

Figure 4.9: The relative improvement in $q(t_e)$ when mean values of SSL and wind speed estimates are used to estimate wind speed compared to the SSL at individual frequencies, using Equation 4.5 (bute solid line), Evans' (red dashed line) and Vagie's (green dash dot line) Equations. Results from the a) 1996-10, b) 1996-60, and c) 1997 data sets are shown.

The reduction in $e(U_i)$ datamed for Vagé's and Evans' equations follow similar tends for frequencies less than 10 kHz in each of the 1996-10, 1996-60 and 1997 data sets. For 1996-10 and 1996-60 tenes is a decreasing improvement for increasing frequency. Using the 1996-10 data, spectral averaging reduces the $e(U_i)$ obtained using SSL; by 1, 0.7 and 0.2 m s⁻¹ for Vagé's equation. Evans' equation and Equation 4.3 improves by 0.2 m s⁻¹ while the $e(U_i)$ for both Evan's equation is no better than the estimate obtained using SSL.

Using the 1996-60 data, spectral averaging reduces the $e(U_i)$ by 0.3. 0.4 and 0.15 m s⁻¹ for Vagle's equation, Evans' equation and Equation 4.5 at 1 kHz respectively. For frequencies between 2 kHz and 4 kHz, there is no improvement in the wind speed estimate using Equation 4.5. For frequencies above 5 kHz, Evan's equation does not improve when spectral averaging is used, while the $e(U_i)$ from Vagle's equation becomes larger for increasing frequency: The $e(U_i)$ from Equation 4.3 declines with increasing frequency. Evan $e(U_i)$ from Equation 4.3 declines with increasing frequency. The $e(U_i)$ from Equation

Using the data from 1997, the $\sigma(U_i)$ of Equation 4.5 is reduced by 0.5 m s⁻¹ at 1 kHz and follows an approximately linear relation with frequency, reaching improvement of 0.3 m s⁻¹ at 0.14 Hz. A sulfillar linear relation is obtained for Yagle's and Evans' equations, however they both show identical spectral structure. At 1 kHz the reduction in the $\sigma(U_i)$ is 1.2 and 1 m s⁻¹ for Yagle's equation and Evans' equation respectively, while at 10 kHz the reduction is 0.8 and 0.6 m s⁻¹. Examples of the spectral structure are the three posts at frequencies less than 2 kHz.

Further comparison of the deployments is presented in the next section, however the data sets can be organized by the magnitude of the overall reduction in $\sigma(U_{i})$ in increasing order: the 1996-00 data set; the 1996-10 data set; the 1997 data set. Arranging the data set in this way indicates the increasing importance of averaging, as the 1997 data set was recorded with the hydrophone at hallower depth than 1996 (100 m compared to 250 m). In addition, there was no time averaging used in 1997. Unfortunately, the present data set does not allow for the contribution of these variables to de distinctly experianted.

4.3.2 Time Averaging

The effects of time averaging on $\sigma(L_j)$ are evaluated by comparing the individual plots for 1996-10 and 1996-60 of $\sigma(L_j)$ in Figures 4.4a and b. To illustrate the reduction of the variation in the estimate, the plot of the standard deviation in the wind estimate using 1996-60 is subtracted from 1996-10 in Figure 4.10.

$$I_{\sigma} = \sigma_{1996-10} - \sigma_{1996-60} \qquad (4.18)$$

Figure 4.10: The improvement in $\sigma(U_e)$ when 17 ensembles are averaged instead of only 3. using Equation 4.5 (blue solid line), Evans' (red dashed line) and Vagle's (green dash dot line) Equations.

The $\sigma(U_e)$ for estimates using the 1996-60 ambient sound data is lower than

when the 1996-10 data is used for all three equations. Equation 4.5 has a $\sigma(U_c)$ approximately 0.8 m⁻¹ smaller in 1996-60 than in 1996-10. Both Vagle and Evans show spectral variation in the improved $\sigma(U_c)$ when 1996-00 is compared to 1996-10. For all the equations, more improvement in $\sigma(U_c)$ is realised through ensemble (time) averaging than through spectral averaging.

From the previous section, the 1996-60 data set, where 17 ambient sound ensembles have been averaged, the reduction in the $c(U_r)$ is the least. This result indicates that the benefits (reduction in variance of the error) of time and specular averaging do not add.

4.3.3 Systematic Wind Speed Correction

Figure 4.8 shows that there is a wind speed dependent error in the wind speed estimate. Vagle et al. (1990) noted that when winds from 0 to 20 $m s^{-1}$ are included the ambient-sound-wind-speed relation is not linear. To eliminate this systematic error, a correction term is added to Equation 4.5 resulting in

$$U_{10} = 10^{A \cdot SSL + B} + \alpha (10^{A \cdot SSL + B}) + \beta \qquad (4.19)$$

The coefficients α and β are determined by linear regression of the wind speed estimate from Equation 4.5 and the error in the estimated wind speed. While this correction term could be acaduated for each frequence, only the mean estimate using Equation 4.5 for frequencies between 1 and 10 kHz will be investigated. It has been shown that averaging the results using Equation 4.3 in this way has the simulator $\sigma(L)$.

The error in the wind speed estimate is plotted against the estimated wind speed (Figure 4.11). Only wind speed estimates greater than $3 m s^{-1}$ are considered. From the behaviour of the present data, the error can be divided into two separate wind speed regions. These regions are wind speeds less than 10 ms^{-1} and those greater or equal to than 10 ms^{-1} . From Figure 4.11 the form of the correction for wind speeds less than 10 ms^{-1} is constant at $-1.22 ms^{-1}$ in all three data sets. Both

Figure 4.11: Mean wind speed correction term (black solid line) superimposed on the scatter plot of the mean error in the wind speed estimate for the 1996-10 (blue x), 1996-60 (red *) and 1997 (green Δ) data sets obtained using wind only spectrum. Only initial wind speed estimates greater than 3 m s⁻¹ are included.

 α and β were calculated using linear regression for each of the three data sets at wind speeds greater than 10 m s⁻¹. The results from the individual data sets were then averaged to determine the common correction factor (see solid line in Figure 4.11). For wind speeds at 10 m s⁻¹ the correction factor is -1.22 m s⁻¹ and increases to 5 m s⁻¹ at wind speeds of 20 m s⁻¹.

Deployment:	1996-10		1996-60		1997		
Equation	$\sigma(U_d)$	$\mu(U_{\pm})$	$\sigma(U_k)$	$p(U_d)$	$\pi(U_{\pi})$	A(U_2)	
Equ. 4.5	1.99 vs.s ⁻¹	-0.00 m s ⁻¹	1.17 m.s-1	-0.33 m s^-1	1.63 m.s=1	0.12 m s^-1	

Table 4.2: The $\mu(U_e)$ and $\sigma(U_e)$ when the $SSL_{1=10}$ is used in Equations 4.3 and 4.4, and the mean wind speed estimate using SSL_1 to SSL_{10} from Equation 4.5. Results for 1996-10, 1996-60 and 1997 are listed.

The μ and $\sigma(U_e)$ using Equation 4.19 for each data set are shown in Table 4.2. While the variance listed in Table 4.2 is greater for both the 1996-10 and 1997 data sets than it is for the spectrally averaged results in Table 4.1, the differences are small. For the 1996-10 data set this difference is only 0.04 m s⁻¹ (2% of the spectral averaged result), while it is 0.6 m s⁻¹ (4% of the spectral averaged result) using the 1997 data. Most importantly, the $\mu(U_{c})$ has dropped to 0.00, -0.33 and 0.12 m s⁻¹ from .0.2, .0.86 and .0.65 m s⁻¹ (see Table 4.1) for the 1996-10, 1996-60 and 1997 data sets.

4.4 Spectral Behaviour for Different Wind Speeds

It has been shown that the behaviour of the ambient sound spectra is not solely governed by Knudsen's - 19 dB/decade relation for frequencies higher than 10 kHz (Farmer and Lemon 1984; Vagle et al. 1990). The following four sub-sections outline the relation between the ambient sound spectrum and wind speed.

Ambient sound levels at all frequencies are more closely correlated to changes in SSL below 10 kHz than they are to the measured wind speed. Accordingly, the corrected wind speed estimate obtained using the mean result from frequencies between 1 and 10 kHz using Equation 4.19 is used to measure the change in spectral slow. For reference, the associations SSL are included in the olots.

4.4.1 Critical Wind Speed

The critical wind speed is the frequency dependent threshold for which sound levels decrease with increasing wind speed. This decrease in SSL for wind speeds greater than 10 m⁻¹ is seen as an inflection point in the scatter plot of the SSL versus the SSLs. The magnitude of SSLs at which the maximum wind-only SSL occurs represents the maximum wind speed which can be estimated by SSL. Figure 13. shows sample scatter plots for f = 35 kHz for the 1996-60 data set. The inflection point, corresponding to the maximum SSL_f , is indicated by the vertical solid line.

Figure 4.12: Scatter plots of SSL_{35} as a function of SSL_8 (wind speed) for the 1990-00 data set The SSL_8 which occurs at the peak SSL_f value is marked by the vertical line.

To determine the critical wind speed, only wind-only 'spectra were used to climitate spectral contamination from precipitation. The mean SSL₄ corresponding to SSL₇ values within 1.5 dB of the maximum SSL₄ were converted to with speed using Equation 4.19. For reference, the mean wind speeds measured by the amounter were and obterminion F, Epper 21 M show plots of the critical wind speeds as a function of frequency, for each frequency above 8 MLs, for both 1996-50 (a), and 1997 (b). Plotted with these figures is Equation 2.64 (solid bke line). The wind speed estimates from the maximum SSL₄ are is host \sim , while the measured wind speed are in red circles. These figures demonstrate that Equation 2.64 is inaccurate for frequencies above 10 MLs using the present ambient sound data. The critical wind speed spectra constant values for frequencing sprarer than 2.04 Hz. For frequencies from 8 to 15 MLE Equation 2.64 is broadly consistent with the present data. while a second linear relation for frequencing sprarer 1.31a. Subject of 10 by the deviation of the present data from the solid line in Tigner 1.31a. Subject of 12

Figure 4.13: The critical wind speed as a function of frequency for the ensembles from the a) 1996-60 and b) 1997 data sets. Included in both plots is Equation 2.64 reprinted from Vagle et al. (1990) as the solid line.

(1990) could not explicitly note this behaviour, as their measurements of SSL extended to only 25 kHz. However, their value for the maximum wind speed at 25 kHz did not fall on the linear relation exhibited by the lower frequencies and would apoper to be consistent with the present result.

4.4.2 Spectral Slope From 1 to 10 kHz (Region I)

For wind-only ambient sound, a -19 dB/decade slope is assumed to characterize the spectrum. To investigate if this constant spectral slope is maintained for all wind mpeaks, the spectral slope from 1 to 10 kHz is plotted against the corrected wind speed estimate using Equation 4.19 and the equivalent SSL_6 in Figure 4.14 for the 1956-10 (a), 1996-10 (b), and 1997 (c) taka sets.

In all the data sets, the spectral slope varies from -17 to -20 dB/decade with wind speed. The scatter in the plots comes from the uncertainty in estimating the

Figure 4.14: The relation of the spectral slope in Region I to the SSL_8 from the a) 1996-10, b) 1996-60, and c) 1997 data sets. The empirical linear fit for wind speeds greater than 3 $m s^{-1}$ for both 1996 data sets and for wind speeds greater than 6 $m s^{-1}$ for 1997 are included as the red solid line.

spectral slope. From Chapter 3, the uncertainty in the spectral slope in this region for the 1996 40 data are is ± 0.23 dBJ/decade, for 1996-10 is ± 0.54 dBJ/decade, and for 1997 is ± 0.33 dBJ/decade. The decrease in the uncertainty in spectral slope between 1996-40 and 1996-10 is a result of time averaging, and is illustrated by comparing Figures 1.14 as to: there is a substantial reduction in scatter in b.

The mean spectral idege of the wind-only data points in Region 18 $\sim 1.8.7 \pm$ 0.36. -18.89 ± 0.28 and -18.10 ± 0.03 dB/decade for the 1996-10, 1996-60 and 1997 diate suts. These values are equivalent within uncertainty. The spectral aloge of Region 11 has a characteristic mean spectral aloge of -18.6 ± 0.4 . However, there is a wind speed dependent decrease in the spectral aloge of a star regression for wind-only data points (see Figures 4.14a to c). For comparison, these three lines are plotted ladog with errors specified by the uncertainty in slope (m) and intercept (b) given by

$$\delta = R \cdot \delta_m + \delta_b$$
 (4.20)

where R is the range of wind speeds, δ_m and δ_b are the uncertainty in the slope and intercept determined by regression in Figure 4.15. The slope, intercept, δ_m and δ_b values are given in Table 4.3

In 1097, the data shows more scatter for wind speeck less than 6 m^{-1} than dues the data for either 1996 data set (compare Figures 4.14 at o.). To get a linear relation which matched the relation for the 1996 10 and 1996 00 data based on visual inspections of the data plotted in Figure 4.14c, wind speeck less than 6 $m s^{-1}$ were excluded for the 1997 data, while only wind speeck less than 3 $m s^{-1}$ were excluded for the two toda sets from 1996.

Figure 4.15: The relation of the spectral slope in Region I to the wind speed estimates from Equation 4.10. The approximate SSL_4 is included as a reference and was determined using an inverse method from Equation 4.19.

deployment	m	δm	Ь	ő,
1996-10 †	-0.15	0.01	-17.43	0.06
1996-60 1	-0.13	0.02	-17.69	0.15
1997 '	-0.19	0.13	-16.10	0.29

Table 4.3: The slope (m) and intercept (b) relating the spectral slope of Region I to wind speed estimates from Equation 4.19 using wind-only data points. The uncertainty in the slope (G_n) and intercept (δ_0) are included. I when estimated wind speeds greater than 3 m s⁻¹ are used. * when estimated wind speeds greater than 6 m⁻¹ are used.

4.4.3 Spectral Slope From 10 to 35 kHz (Region II)

The spectral slope from 10 to 35 HBr can be sorted into three distinct wind speed ranges when plotted as a function of the wind speed estimate. Thuse three wind speed ranges are 10 heat hat $3m^{-1}$ till between 3 and 10 m e^{-1} ill greater than 10 m e^{-1} . The spectral slope of Region II is plotted as a function of estimated wind speed in Figure 4.16. The clustered data points greater than 48 dB but less than 36 dB are data points where Systems' indignithm detects predictions on a which match the WMO (see Chapter 5). These points are excluded from the mean spectral slopes and the empirical flux of spectral slope to wind speed in order to exclude any contamination from the precipitation data which indicates spectral

Figure 4.16: The relation of the spectral slope in Region II to the SSL_8 for the a) 1996-10, b) 1996-60 and c) 1997 ambient sound levels. The empirical fit is shown by the red solid line. 101

It has already been discussed that there is little correlation of ambient sound to wind speeds less than 3 m s⁻¹, so the first wind speed range will not be quantified. The relation for the remaining wind speed ranges are determined using linear regression as was Region I. As such, the uncertainty in the relations for this Region are also given by Example.

The slopes (m) and intercepts (b) for the relation of the spectral slope of Region II with wind speeds between 3 and 10 $m s^{-1}$ are given in Table 4.4. By

deployment	m	8m	ь	65
1996-10	-0.76	0.02	-10.87	0.17
1996-60	-0.84	0.04	-10.52	0.32
1997	-0.83	0.08	-11.46	0.65

Table 4.4: The slope (m) and intercept (b) relating the spectral slope of Region II to the wind speed estimate using Equation 4.19 for wind speeds greater than 10 $m s^{-1}$. The uncertainty in slope and intercept $(\sigma_m \text{ and } \sigma_s)$ are included.

visual inspection of Figure 4.16 this relation looks similar to that for all wind speeds of flegion I. From Chapter 3, the uncertainty in the spectral slope of this Region is 07, 0.09, 1.15 df/scales/ for the 1996-10, 1996-00 and 1997 are $-16.86 \pm 0.73, -17.05 \pm$ 0.30 and -18.10 ± 1.15 respectively. While these mean values are equivalent to the mean slope of this region, only the mean slope of Region II for 1996-00 and 1977 are equivalent to the mean slope of Region II within the estimated uncertainty. The spectral slope of Region II is characterised by a mean spectral slope of -17.3 ± 0.3 for wind speechs less than 10 m⁻¹. This mean spectral slope is different from that of Region II for und speech.

The slopes (m) and intercepts (b) for the relation of the spectral slope of Region

If to wind speeds greater than 10 ms^{-1} are given in Table 4.5. By visual inspection of Figure 4.16 this relation is not similar to Region 1. Consistent with Farmer and Lemon (1984), there is a decrease in spectral slope corresponding to a reduction in SSL for frequencies between 10 and 30 kHz for wind speeds greater than 10 ms^{-1} .

deployment	m.	δ_m	b	8b
1996-10	-1.79	0.02	0.29	0.26
1996-60	-1.78	0.06	-0.60	0.69
1997	-2.30	0.27	3.22	2.92

Table 4.5: The slope (m) and intercept (b) relating the spectral slope of Region II to the wind speed estimate using Equation 4.19 for wind speeds greater than 10 $m s^{-1}$. The uncertainty in slope and intercept $(\sigma_m \text{ and } \sigma_b)$ are included.

The relations for both wind speed ranges in this Region are plotted in Figure 4.17 for the 1996-10 (blue solid line), 1996-60 (red dashed line) and 1997 (green dash dot line) data sets. The uncertainty given by Equation 4.20 is shown by the error bars. Based on visual inspection, the relations describing the spectral slope of

Figure 4.17: The relation of the spectral slope in Region II to the wind speed estimate from Equation 4.19.

Region II is equivalent when comparing the data from 1996 to the data from 1997.

4.4.4 Spectral Slope From 35 to 72 kHz (Region III)

Ambient wound at frequencies above 35 kHz is not well studied. Scringer et al. (1987) did make mention of the rain signal extending to 50 kHz. Urick (1967), cited in Burdi (1984), noticell studies that the ambients sound signal at frequencies above 00 kHz, is dominated by thermal noise. Figure 4.18 shows a scatter plot of the slope of Region III where a distinct wind speed dependent relation is demonstrated. The clustered data points with speetral alopes is studies above 0.20 kHz, which we have the Biope algorithm detects precipitation and which match the WMO (see Chapter 19). These points are excluded from the mean spectral slopes and the empirical fits of spectral slope is studied speet. In the relation of opectral slopes wind speed in his Region is determined by fitting a third order polynomial to the data. A polynomial for each data set is shown by the rel line in Figure 4.18 at to . These polynomials for each data set is shown by the rel line in Figure 4.18 at to . These polynomials

Deployment	a	ь	с	d
1996-10	-0.03 ± 0.0003	1.13 ± 0.01	-15.11 ± 0.10	42.26 ± 0.30
1996-60	-0.03 ± 0.0009	1.20 ± 0.03	-15.67 ± 0.24	47.43 ± 0.70
1997	-0.06 ± 0.0056	2.00 ± 0.12	-21.76 ± 0.78	56.41 ± 1.52

Table 4.6: The coefficients of the polynomial $ax^3 + bx^2 + cx + d$ relating the spectral slope of Region III to wind speed estimate from Equation 4.19.

Here, the error bars are determined by the uncertainty in the spectral slope of this Region. These values were determined in Chapter 3 to be: \pm 1.45, 1.19 and 1.80 dB/decade for the 1996-10, 1996-60 and 1997 data sets. The wind estimates only extend to 15 m⁻¹ for the 1997 data. This places are upper bound on the accuracy of

Figure 4.18: The relation of the spectral slope in Region III to the estimated wind speed using Equation 4.19 for the a) 1996-10, b) 1996-60 and c) 1997 ambient sound levels. The empirical fit is shown by the red solid line.

Figure 4.19: The relation of the spectral slope in Region III to the wind speed estimated from Equation 4.19 for the a) 1996-10, b) 1996-00 and c) 1997 ambient sound levels.

between 0 and 13 m s⁻¹ these polynomials are identical within uncertainty. There is no similarity with the spectral behaviour in this Region to either Region I or II. The difference in behaviour between Region II and Region II may be related to the increase in bubble production of capillary-gravity waves in wind speeds greater than 15 m s⁻¹ noted by Kolaini et al. (1994). At these frequencies, or for bubbles that are of small enough radius, there is not the same attenuation at bigh wind speeds as corresponding to frequencies greater than 35 kHz there is either less sound being generated at the lower wind speeds (5 to 15 m s⁻¹), or there is attenuation from a resident bubble lower which forms at lower wind speeds than the resident bubble they replicited by Farmer and Lemon (1984). There might also be a saturation point for the bubble lower at wind speeds of 10 m s⁻¹. For wind speeds greater than 10 m s⁻² hapang the bubble sources are mixed below the resident acoustic absorbing bubble layer.

4.5 Conclusions

It has been shown that the SZL for frequencies from 1 to 10 kHz altifield to a reference frequency of 8 kHz provide accurate wind estimates using the wind-speedfrom-ambient-sound equations of Evana MVatts (1923) and Vaglee 4.1 (1904). Determining individual relations for each frequency (from 1 to 10 kHz) results in smaller variation in the error of the wind speed estimates when compared to Evana' and Vagle's equations. All three equations produce a mean error in the wind speed estimate in this frequency range of approximately 1 ma⁻¹. The variance in the wind speed estimate for this frequency range depends on the sampling rate, the spatial averaging of the ambient sound field and time averaging of the ambient sound enembles.

The three wind-speed-from-ambient-sound equations can be arranged in order of dicreasing $\sigma(U_c)$ (or increasing accuracy): Vagle's equation. Evans' equation. Equation 4.5. The mean $\sigma(U_c)$ for frequencies from 1 to 10 kHz and each data set are approximately 3, 2.3 and 1.8 m s⁻¹ for Vagle's equation, Evans' equation and Equation 4.5.

In general, Equation 4.5 shows half the $e(U_i)$ thus 'Aggle's equation does, while Ermas' equation is approximately midway between the two. The three data sets can be arranged in order of decremaing means $o(U_i)$ (or incremaing accuracy): 1990-60. 1997. 1996-60. The mean $o(U_i)$ of Equation 4.5 for each data set for frequencies from 1 to 10.1Hz is on order of 2.1, 2.0, 1.5 ms^{-1} for the 1996-10, 1997, and 1996-60 data sets. These values represent the accuracy with which the wind speed can be determined for the smalling actors and accuracy for addata set.

Spectral averaging reduces the $\sigma(U_e)$ for the wind speed estimates from each

of the equations. The variance in the error is reduced the most for Vagle's equation, and shows a frequency dependence for this reduction. Spectral averaging does not improve the estimate from SSL₁₀ as much as it does the SSL₁. This result is consistent with the amount of uncertainty in SSL recorded by the hydrophone (see Figure 4.5). The reduction in the estimate-warknee wange Expansion 4.5 results in approximately constant warknee reduction. Only the 1907 data are improved by the spectral exception 4 mer education. Only the 1907 data are improved by the spectral exception 4 mer education. Only the 1907 data are improved by the spectral exception 4 mer education 1 mer education 4 m e⁻¹.

Then averaging is more effective than is spectral averaging in reducing the $\sigma(z_{i})$. The $\sigma(U_{i})$ is 0.8 m s⁻¹ less for estimates from Equation 4.5 using the data from 1996-04 han when the data from 1996-10 is used. Averaging 17 examples reduces in the error more than when 64 frequency bins are averaged toorther.

The $\mu(U_{\ell})$ is removed by adjusting Equation 4.5 by a correction factor, resulting in a wind speed-from-ambient-sound-equation of the form of Equation 4.19. Wind speed estimates using this equation result in μ and $\sigma(U_{\ell})$ values listed in Table 4.7.

Deplayment 1996-10		106	4-90	1997		
Equation	010.1	a(0.1	010.)	A(U.)	a(0.)	(a)(C_a)
Eqs. 4.5	2.9 -1	-0.0 m s ⁻¹	1.3 ms ⁻¹	-03 m/-1	1.6 m / 1	0.1 m / 1

Table 4.7: The $\mu(U_e)$ and $\sigma(U_e)$ when the SSL_{1-10} is used in Equations 4.3 and 4.4, and the mean wind speed estimate using SSL_1 to SSL_{10} from Equation 4.5. Results for 1996-10. 1996-60 and 1997 are listed.

These results show that the wind speed can be estimated to an accuracy of: 2.0 $m s^{-1}$ when the data is collected every 70 seconds and averaged into 10 minute ensembles, with the hydrophone at a depth of 250 m; $1.6 m s^{-1}$ when the data is collected every 24 minutes and averaged into 72 minute ensembles, with the hydrophone at a depth of 100 m; $1.3 m s^{-1}$ when the data is collected every 70 seconds and averaged into 60 minute ensembles, with the hydrophone at a depth of 250 m.

These results are not expected. The ambient sound was collected less frequently, had less spatial averaging and lewer ensemble averages in 1997 than in 1996-10. yet the variance in the error in the wind speed estimate was less in 1997 than in 1996-10. This may reflect a time scale limit of between 10 and 60 minutes for which the ambient sound levels adjust with the wind peed.

Estimates of wind speed using frequencies between 10 and 35 kHz still provide reasonable wind speed estimates (see Figure 4.4). It has been shown however, that at these frequencies there is a maximum wind speed which can be measured. As a result, quoting a μ and $\sigma(U_c)$ for results where the distribution of wind speeds includes values greater than 10 m κ^{-1} is not representative of the estimate accuracy at these frequencies.

The scatter plot of SSL versus SSL₆ has an inflection point. This inflection point marks that wind speed at which there is a decline in SSL with increasing wind speed. This wind speed is 10 m^{-1} for frequencies greater than 20 kHz, and follows Equation 2.64 for frequencies from 8 to 15 kHz. This maximum wind speed means that the wind-speed from-ambient source quarking kit-speed.

A consequence of the critical wind speed is that the spectral slope of the ambient sound spectrum is frequency dependent over the range of 1 to 72 kHz. The spectrum is divided into three Regions based on the relation of spectral slope and wind speed. Region [1] (1 to [04Hz] has a constant spectral slope of approximately 1-8 (Bl/cecale. This slope varies by 4 (Bl/decade over a wind speed range. For wind speed 20 $m s^{-1}$, Region II (10 to 35 MHz) has two wind speed ranges. For wind speeds less than 10 $n s^{-1}$ the spectral slope is approximately -17 (26)/cecade and varies by 4 (Bl/decade over 0 to 10 $m s^{-1}$. For wind speeds greater than 10 $m s^{-1}$ the spectral slope dramatically decreases changing by 15 (Bl/decade from 10 to 20 $m s^{-1}$. Region III (33 to 72 HHz) sublice shifts Region 0 to II. The spectral speeds drama by a displayed dBl/decade over vind speeds from 0 to 8 $m s^{-1}$. Between 8 and 13 $m s^{-1}$ the spectral slope dramatically discussed from 0 to 8 $m s^{-1}$. Between 8 and 13 $m s^{-1}$ the spectral slope drifts region is approximately constant at -20 dBl/decade, and then increases as the wind speeds forcemester.

The results presented here support the sound model used in Chapter 3 to set the SSL to a reference level independent of location and hydrophone depth. First, the fart that there is on frequency dependent mean error in the wind quest estimate for frequencies between 1 and 10 MHz. Second, the critical wind speed is identical when idertrained using the 1996-60 and 1997 data. Finally, the spectral behaviour with wind speed determined using each of the three data sets is identical.

Chapter 5 Rain Detection

5.1 Introduction

A characteristic sound is generated when drops of wares tritice the occan surface. It is through this characteristic sound that precipitation can be identified and the rainfall arrange of the drop on the surface and the subsequent erratic entrainment of bubbles. It was also thought that sound levels were proportional to the raindop diameter and the impact velocity of the drop (Franz 1929). Experiments have confirmed that the sound levels are proportional to drop size and impact velocity and are dropendent on the entrainment of bubbles (Medwin et al. 1920; Oguz and Prosperetti 1922). Pumpherey et al. 1989). While controlled experiments have expanded from the study of single falling drops to a spectrum of drops simulating rainfall, current field studies of ambient sound generate by rainfall over the ocean have been limited in duration, handwidth for exceeds down, becchino, on have been historicy controlled precipitation measurements (Scringer et al. 1987). Nystaen and Seloze 1927). Of these previous works. Scringer et al. (1987) study includes the largest frequency range, exceeding frequency line 100 ftr to 50 fits the in unformative line to a widt appear. range of 1 to 5 m a^{-1} . Despite the existing description of the ambient sound spectra generated by falling drops and further work describing the effects of wind speed on the ambient spectra (Oxystem 1986), countification of the sampling rate necessary to identify precipitation is still required. In addition, it is still unclear how accurate precipitation identification would be given continuous sampling for varying rainful rates.

The present data set is unique in the duration, frequency range, and wind speechs of observations. For both the 1966 and 1997 deployment, meteorological extivity was recorded visually at OWS Mike following World Meteorological Ogonization (WMO) protocol. In 1997, automatel precipitation observations were available from an Optical Rain Gauge (ORG). The ORG determines the rainfall rate by observing the extintillations caused by drops passing through its LASER beam. This LASER beam is emitted at one end of the ORGs sampling area and observed by the ORG at the other. Rain drops passing through the beam block or aller the intensity of the LASER before it reaches the reviewer, by apocens similar to the light from stars passing through the atmosphere. These scintillations are characteristic of specific rainfall nets.

To begin this chapter, the WMO precipitation records from 1997 are compared to the ORG data. For this comparison to be valid, it must first be determined if the two reference records are dependent. This hypothesis is tested using a 2x2 contingency table and a 2^k population is test (see Appendix C).

The WMO data is also reclassified into eight sub-categories describing the type of precipitation which occurred in the observation hour. The new classification makes statistical comparisons of successful acoustic identification possible. Both the WMO system and the new classification system (WMO sub-categories) are presented in Appendix D. Comparisons are then made between the hourly averaged ORG observations and the WMO sub-categories, as well as to the acoustic identifications.

Finally two precipitation-identification-from-ambient-sound algorithms (PLA) are compared. One algorithm identifies the characteristic peak between 10 and 20 MeI (Lemon et al. 1948; Nysten 1969), which shall be called the Nystene Algorithm (NA). The other is developed in this chapter and makes use of the slope of the high frequency side of the peak reported by Scrimgre et al. (1987) and is called the Slope Algorithm (SA).

The performance of both algorithms is compared to the WMO observations, because this data is available for both data sets. Where possible, quantification of rainfull rates and minutes of rainfall over the interval are presented using the ORG data. The effectiveness of both algorithms will be explored for various sampling intervals, precipitation types and wind conditions.

5.2 Effects of Sampling Rates

Data acquisition parameters were different between the 1996 and 1997 deployments. In 1996 the hydrophone was set to sample for 100 ms three times every 32 minutes, while in 1997 the hydrophone was set to sample for 100 ms three times every 72 minutes. This difference is significant considering the time scale for changes in precipitation. If there is no precipitation during one of the three 100 ms samples, then no precipitation can be detected. For a precipitation event that is not continuous over the ensemble length, there is a finite chance of not detecting the precipitation. only once is given by

$$p = \frac{i}{N}$$
, (5.1)

where i is the number of minutes of precipitation in N minutes. The probability changes when the interval is sampled more than once: for m samples the probability of detecting intermittent precipitation is given by

$$p(m) = 1 - \left(\frac{(N - m)!}{(N - m - i)!} \frac{(N - i)!}{N!}\right). \quad (5.2)$$

More specifically, Equation 5.2 is the probability of detecting at least one minute of rain out of N minutes of recorded ambient sound, and is determined by simplifying the appropriate hypergeometric distribution.

The sampling time also affects how the ambient sound data will be compared to the meteorological data. The WMO data is recorded every hour and reflective of the events in the path hour, while the ORG data is recorded every minute. For the 1996 anniheris sound data, the 3.3 minute emembles can be averaged into one hour emembles and compared to the WMO data. The disadvantage of this approach is that it averages on toolkated precipitations signals occurring in one of the averaged ensembles and may result in a missel identification of precipitation for that hour (referred to as a loss in Sensitivity, see §3.4.3). For future reference this processing will be referred to a the 1996-00 data are (a defined in Chapter 3).

Since 10 minute wind speed data exists for 1996, the 3.5 minute ambient sound data has been averaged into 10 minute intervals for comparison to the ammometer data. The ambient sound spectra from this shorter averaging interval will also be compared to the WMO precipitation observations to examine the effects that averation has on the accounts ingral dominand by precipitation. This approach will be referred to as the 1996-10 data set.

For the 1997 data set, ambient sound was sampled 3 times every 72 minutes and averaged to give the recorded ensemble. As a result, the 72 minutes ensemble is composed of 2 spectra from one hour, and another from an adjacent blox. Ambient sound identifications are compared to WAIO observations corresponding to the hour in which two of the three ambient sound spectra in the ensemble occur. For the times when the ambient sound recording is easely in between two WAIO readings, the data are ignored.

Comparisons to the ORG data are straightforward because the ORG recorded rainfall rates every minute. From these rainfall rates the mean rainfall rate for any longer interval can be excluded: An interval will be considered to have contained precipitation, as determined by the ORG, if any one minute in that interval contained a rainfall rate growter than or equal to 0.1 mm hr^{-1} (the minimum resolution of the ORG).

5.3 The Different Precipitation Records

Recorded very minute, the ORG rainful data represent the most comprehensive reference for comparison with the ambient sound spectra. A comparison between the WMO and ORG data is presented to allow a consistent comparison between 1997 data (with both WMO and ORG observations) and the 1996 data where the ambient would data was sampled more frequently, but for which no ORG data is available.

5.3.1 Statistical Comparison

Do these two standard methods of identifying periods of precipitation differ statistically? To answer this question, the precipitation data from the ORG data and WMO observations are summarized in a 2x2 contineency table (Table 5.1). The

		ORG				
		Precipitation	No Precipitation			
WMO	Precipitation	632	388			
	No Precipitation	130	1016			

Table 5.1: Contingency table for ORG record of precipitation to the WMO record of precipitation.

Proputation column under the ORG baseling identifies the elements in the data for which the ORG Indicated perceipitation. The rows divide the ORG Precipitation data into elements when the WMO observations simultaneously indicated perceipittion, and those when the WMO observations did not indicate precipitation indicate precipitation and order the elements of the data when the ORG data did not indicate precipitation and order the elements of the data when the ORG data did not indicate precipitation and on precipitation. The ORG data and the WMO data provide metrocological information for 2166 boars, the two instruments simultaneously indicated them had been precipitation during 622 hours and on precipitation during 318 hours. To test whether these two methods of reporting precipitation are statistically dependent, the null hypothesis that the results from the ORG are independent of the results from the WMO as assumed to the state when the WMO as an endowed and the WMO as assumed to the results from the ORG are independent of the results from the WMO as assumed to the state of the state of the state of the theory data the state of the results from the WMO assumed to the state of the state of the state of the theory data the two the state of the theory data the state of the results from the WMO assumed to the theory data the state of the state of the theory data the state of the state of the two theory data the two theory data the state of the state of the two theory data the two theory data the state of the two theory data the state of the state of the two theory data the two theory data the state of the two theory data the state of the state of the state of the two theory data the state of the two theory data the state of the state of the state of the two theory data the two theory data the state of the state of the two theory data the state of the state of the two theory data the two the state of the two theory data the state of the state values in Table 5.1 results in $\chi^2 = 622.6$. This value is greater than the rejection criteria using a 95% confidence of $\chi^2 = 3.84$, so the null hypothesis is rejected. The two standards are statistically dependent.

In order to quantify this dependence, a comparison parameter is defined by

$$\frac{m_r}{r}$$
(5.3)

where m_r is the number of times the WMO record and the ORG data simultaneously indicate precipitation, and r is the number of precipitation events the WMO observations or the ORG data indicate in total. For the WMO observations $\frac{m}{r}$ is 2%, and for the ORG data $\frac{3}{8}$ is 3%.

It is also useful to consider how often the two methods agree on the presence and absence of precipitation. Consider

$$\frac{m_r + m_{ur}}{N}$$
(5.4)

where m_{er} is the number of times the two records simultaneously indicated there was no precipitation, and N is the total number of samples in the data set. Using this comparison, of the 2166 intervals examined, these two methods of reporting precipitation match 78% of the time.

The difference in comparison percentage is a consequence of the fact that there are more non-percepitation events in the observations than precipitation events. This wighting creates a larger number of matches where considering non-precipitation events. A contributing factor that limits agreement to a 76% match is the sampling area difference between the two methods of reporting precipitation. And, the sampling area of the hydrophone is different than the sampling radius of both the WMO winal record and the ORG measurement. The hydrophone samples an area at the surface approximated by a circle of radius equal to the depth of the hydrophone, whereas the WMO entries are limited by the distance to the visual horizon, and the ORG measures 364 X 50 mm² area. Although the ORG measures rainfall at what is effectively one point in space, it averages data over a longer interval. Precipitation is expected to occur on length scales of approximately handreds of mercers so, like the anenometer, over long time intervals, the ORG represents precipitation measurements over a spatial scale larger than the lintening radius of the hydrophone's listening area, so in reality the ambient sound data is correlated to sourching on a spatial scale smaller than the bid bodievations or the ORG observations. Given the less than 100% apprecipitation acoustically cannot be better than the negative threever, the WMO and the ORG, that is 76%.

5.3.2 A Simplified WMO Precipitation Classification System

The WJM weather observation standard consists of 100 different entries corresponding to the current meteosological conditions, including conditions as common as fog and a exotic sa satisticans. Many of the certica are similar in nature but are dietinct depending on specific details. For example, whether the entry had occurred in the past hour or at the time of observation. Based on these similarities, the entries have been reclassified lino sight sub-categories as follows: no precipitation of may type present (0); "intermittent Detzick" (1); "Continuous Detzick" (3); "intermittent Rain" (3); "Continuous Rain" (4); "Showers" (5); "Soid Precipitation" (Mall, snow, "fronzi pain etc.(b); and "Uccataside" (b). Thu exclusive charactery continues elements which do not fall into the six main precipitation categories (1-6). The actual WMO descriptions and the sub-categories in which they are reorganized are included in Appendix D.

In order to give quantitative parameters to the qualitative WMO sub-categories, the mean rainfall rate and the duration of precipitation over the hour as given by the ORG data are shown for each WMO sub-category in Table 5.2.

Category	Size	Mean Rainfall Rate	Mean Minutes of Precipitation
Intermittent Drizzle	13 hours	0.10 mm hr ⁻¹	15 minutes/hr
Continuous Drizzle	18 hours	0.13 mm hr ⁻¹	17 minutes/hr
Intermittent Rain	37 hours	0.36 mm hr ⁻¹	27 minutes/hr
Continuous Rain	147 hours	0.55 mm hr ⁻¹	38 minutes/hr
Showers	94 hours	1.47 mm hr ⁻¹	15 minutes/hr
Solid	186 hours	1.66 mm hr ⁻¹	19 minutes/hr
Unclassified	137 hours	0.37 mm hr ⁻¹	12 minutes/hr

Table 5.2: Rainfall rates and frequency of precipitation over hour intervals, corresponding to the WMO sub-categories for the 1997 data meteorological data.

The data from this table are also represented graphically by the bitograms shown in Figure D. 1 and Figure D.2. As a cascapilor of these bitograms, the distribution of minutes of precipitation per boar for 'Intermittent' (a) and 'Continuous Rain' (b) are shown in Figure 3.1. Figure 3.1. shows that there is the highest probability of precipitation over the earlies hour compared to any other duration for the 'Continuous Rain' sub-category, as noted by the approximately 1.9 ratio of any duration to the 60 minute duration. This ratio is between 1.5 and 3.3 for 'Intermitten Rain' and distinguishes the intermittent category from the continuous category (Figure 5.1a). From Table 5.2, there is a larger mean rainfall rate for the "Rain' categories than for the "Dritzle' categories and a larger mean number of minutes of precipitation observed during intervals identified as 'Continuous' rates.

Figure 5.1: Histogram of minutes of rain for WMO sub-categories a) 'Intermittent Rain' and b) 'Continuous Rain.'

precipitation. The 'Shower' category describes precipitation events that have measurable rainfall during 15 minutes of every hour, and correspond to a rainfall rate of $1.47 mm hr^{-1}$.

The 'Luclussified' precipitation describes intermittent precipitation with a rainfull rate of 0.37 mm hr⁻¹. This rainfull rate is identical to that for 'Intermittent Rain,' but the minutes of rain during an hour are less than those for 'Intermitent Drizzle.' For classifying the performance of the identification algorithms, this category will be treated as an intermittent entegory.

"Solid" precipitation generates a distinct acoustic signal from wind-only or liquid precipitation events (Seringer et al. 1987). It is unclear if the rate of precipitation for this category has an effect on the chance of detection, and is only included for a cursory comparison.

5.3.3 Precipitation Distribution for 1996 and 1997

To illustrate the different precipitation patterns between the two deployments, Figure 5.2 shows the breakdown of precipitation events by WMO sub-category for the two deployments.

Figure 5.2: Histogram of the number of occurrences in each WMO sub-category, for the a) 1997 deployment and b) 1996 hourly deployment. The categories are: 0. 'No Precipitation'; 1, 'Intermittent Drizzle'; 2, 'Continuous Drizzle'; 3, 'Intermittent Rain'; 4. 'Continuous Rain'; 5, 'Solder Precipitation'; 9, 'Unclassified'.

The main distinction between deployments is the frequent occurrence of 'Intermittent Drizzle' (category 1) in 1996 (Figure 5.2b)compared to 1997(Figure 5.2a). These frequencies are quantified later in Table 5.9

Equation 5.2 gives the probability of detecting intermittent precipitation if the sound levels are sampled n times over a sample interval. From the ORG data, the number of minutes of rain in a set of the 7.2 minute interval is available. Using this distribution of precipitation, the probability of detecting precipitation in the determined for the specific temporal distribution can be achieved from the num of the area.
probabilities of detecting an interval with *i* minutes of precipitation, sampled for *m* minutes over that interval. By modifying Equation 5.2 to include the number of intervals with *i* minutes of precipitation the probability of detecting intermittent precipitation as a function of the number of samples taken is given by

$$p(m) = 1 - \left(\frac{(N-m)!}{(N-m-i)!}\frac{(N-i)!}{N!}\right)\frac{H(i)}{\sum H}$$
. (5.5)

where H(i) is the number of observations with i minutes of rain and N = 72 is the length of the interval. The resulting probability as a function of samples per interval is plotted in Figure 5.3. Sampling the 1997 data set three times in a 72 minute

Figure 5.3: The probability of detecting precipitation as a function of number of samples over a 72 minute interval given the 1997 precipitation distribution.

interval yields a 56% chance of detecting precipitation, while sampling 17 times per 72 minute interval yields an 86% chance of detecting precipitation.

Although the distribution for the 1996 data set is unknown, a similar probability distribution can be obtained. Figure 5.2 shows that there is more 'Continuous' and 'Intermittest Drizzle' in the 1996 (b) WMO observations than in 1997 (a) WMO observations. The distribution of WMO sub-categories from Figure 5.2 b and the minutes of precipitation for each WMO sub-category from Table 5.2 define the distribution of minutes of precipitation for 1996 as

$$H(i) = WMO(j)$$
 (5.6)

$$i = \{15, 17, 27, 38, 15, 19, 12\}$$

(5.7)

$$j = \{1, 2, 3, 4, 5, 6, 9\}.$$
 (5.8)

j is the set of WMO sub-categories indicating precipitation, WMO(j) is the number of observations in sub-category j and i is the number of minutes of rain for that sub-category from Table 5.2. H(i) is then used in Equation 5.5 with N = 60. For the ambient sound spectra from 1996-60, the probability of detecting precipitation over the 60 minute interval is 90% when that interval is sampled 17 times.

The probabilities for detecting precipitation must be adjusted to the fact that the ORG and WMO observations agreed 76% of the time. The total probability of detecting precipitation is then a combination of the probability from Equation 5.5 and the percent agreement between the ORG data and the WMO observations (i.e., 75%). This is given by

$$P(m) = 0.76 \cdot p(m)$$
 (5.9)

where p(m) is given by Equation 5.5. For 1996-60 the modified chance of detecting precipitation is 75% and for 1997 is 43%.

5.4 Precipitation Identification Algorithms (PIAs)

A sample precipitation spectrum is shown in Figure 5.4. In this figure the constant wind-only slope of -19 dB/decade has been removed to reduce the dynamic range of the spectrum. Noise in the spectrum is seen as various 2 dB peaks in the red dashed line. The blue solid line shows the spectrum after a moving average filter of

Figure 5.4: Individual spectrum from 1997 data set. The red dashed line is the raw spectra and the blue solid line is the smoothed spectrum. The wind speed corresponding to the ensemble was 5.1 m s^{-1} .

length 9 frequency bins has been applied; this processing will be discussed later. The spectrum (raw or smoothed) shows two distinct features of ambient sound generated by precipitation: i) the broad peak in *SSL* between 10 and 25 kHz; ii) the spectral slope in Region II (from 35 to 27 kHz) which is less than -19 dB/decade.

The following section describes two algorithms, each of which use one of these two features to identify precipitation from the ambient sound spectra of the present data.

5.4.1 The Algorithms

5.4.1.1 The Modified Nystuen Algorithm

The Nystuen Algorithm (NA) identifies precipitation by the increased sound level at 20 kHz relative to the sound level at 8 kHz. Smoothed spectra are used for the N house false identifications occur when noise in the spectra cause an anomalous increase in the SSL at 20 kHz or a decrease in SSL at 8 kHz. To increase the spectra are removed by means of a smoothing algorithm. For points away from the end of the spectra, an average value was compared using a moving average of variable length. The distance in frequency bias from 8 to 20 kHz is 30 bias. The moving average should be designed to filter variations in the signal that are shorter than half this size. Experience suggests an optimal moving average length for smoothing is 9 bias for the present data. A sample spectrum which has been smoothed by this moving average should be one as the red solid line in Figure 3.4

The NA works by fitting now text lines to a scatter pilo of the SSL₀ versus the SSL₄ from the smoothed spectra. For wind-only spectra three points should fit a straight line, with a slope of 1 and an intercept governed by the 1-81 dB/dccdca slope of wind-only ambient sound. At high wind speeds (i.e., above 15 $m s^{-1}$) there is an inflection point in the scatter pilot (Farmer and Lemon 1984), so that an increase in the wind speed, or increase in the SSL₆ causes a decrease in SSL₈. Text lines are used to separate wind-only events from precipitation events by applying the known spectral characteristics of ambient sound, specifically the linear relation SSL to wind speed and the inflection point in the scatter pilot SSL at high wind speeds. Scatter plots of the smoothed spectra for the 1997, 1996-40 and 1996-10 data sets are shown in Figure 5.3a, b, and c with text lines indicated in green (the dritzle line), and red (the rain line).

Attempts were made to automate the process of selecting the rain and drizzle line using the estimated uncertainty in SSL_{20} and SSL_8 . However optimal performance (see §5.4.3) was obtained identifying the end points of the test lines by visual inspection.

For this algorithm, the distinction between rain and drizele comes from the difference in rain-drop size. Rain (or large drops) adds a significant amount of energy to the lower frogenery SSI and therefore raises the SH KS SZ relative to 20 kHz, thereby flattening the spectrum. Drizzle significantly raises the SSL at 20 HH without affecting the signal at 8 kHz. Examples of drizzle and rain dominated ambient sound appears are shown in Figure 26 from Chapter 2.

A third text line, called the "spect line", can be included if meessary to separate the trepion has forms in the apers of the triangle subserded by the "britch" and Rain line" from vind-only SLi, in the scatter plot. Physically, the apex line is the maximum SL_{20} intensity for wind-only events and is shown as the horizontal red dashed line in the three scatter body of SL_2 , we rest, SL_2 . The apex line becomes necessary as scatter in the plot lengthen the radius of curvature at the inflection point carcating a larger area in the triangle formed by the maximum SL_{20} , the "fain Line" and the "Dritch Line. "The apex line is only meeting in the 1995-104 and set.

Parameter	1997	1996-10	1996-60
D X1.Y1	58,52.5	59.5.53.5	59.5.52
D X2,Y2	40,36	40,35.5	40,35.5
R X1.Y1	58,52	59.5,53	59.5,52
R X2,Y2	65,46	65,49	65.46.5
High Seas	58	59.5	59.5
Max 20 kHz	52	51.5	51.5

Table 5.3: The SSL in dB for the end points of the test lines used by the NA for the 1997, 1996-60 and 1996-10 data sets.

Test line parameters for 1996-10, 1996-60 and 1997 are shown in Table 5.3. For

Figure 5.: Scatter plot of the SSL_{20} versus SSL_8 for a) 1997, b) 1996-60, and c) 1996-10 data sets. The precipitation identification lines are shown: high scass inflaction point (vertical red dashed line); maximum SSL_{20} or a_{200} line (horizontal dashed line); 'drizzle line' (green solid line to the left of high scas); and 'rain line' (red solid line to the right of high scas).

each data set, the test line and points as well as the maximum "ind-only S5L₀ and the S5L₀ at the inflection point are set initiar in value. All x-coordinates (DXI, DXZ, RXI, RX2 and High Saca) have an uncertainty equal to the uncertainty in S5L₀. The y-coordinates (DYI, DY2, RYI, RY2 and Max 20 MH2) have an uncertainty equal to the uncertainty in S5L₀. The uncertainty in the S5L₀ for the 1996-10, 1996-00, and 1997 data are star \pm 0.40, 0.43, 0.62 dB respectively. Comparing the 1996-00 test line points to the 1997 test line points, within the experimental uncertainty only D X2 and RX1 values are identical. The uncertainty in the S5L₀ for the 1996-10, 1096-06, and 1997 data sets are \pm 20, 2.02 and 0.04 dB. Within the experimental uncertainty, only the DY2 and Max 20 MHz points are identical. That there test lines cannot be set by shifting them by a common value proportional to the expected uncertainty means that a simple automated scheme with maximizes precipitation identification is not possible with this approach. It is, however, encouraging that all the values are identical within twice the uncertainty in both coordinates (00% confidence).

While the argument can be made that identifying the test lines by slope and intercept would make comparison between deployment examples more char, identifying the test lines by physically significant intensities of sound at specific frequencies allows for easy identification of the meteorological events which cause the characteristic intensity fratures: ii), choosing the edp obtain is source to do from the scatter plots.

Averaged spectra of correct (solid blue line) and incorrect (red dot dashed line) precipitation identifications made by the NA are shown in Figure 5.6. These two spectra are not visibly different; there is a pronounced peak between 10 and 20 HH in both spectra. The mean sound spectra for precipitation not identified by the NA (green dashed line) has a constant spectral slope and therefore reflects wind-only conditions. The similarity of the miscel destifications to the wind-only spectra indicates that this algorithm cannot identify all precipitation, although the exact cause is not clear from this data. The iniliarity of correct and incorrect identifications indicates one of three possibilities: 1) there is a time dependent decay of the precipitation generated isonals on that the NA identifies precipitation when the WMO does not: 2) this technique is sensitive to spray and splashing which might lead to false identification: 3) precipitation. Sound is entering the listening radius from conside the sampling areas of the WAO.

The amhient sound spectra for correct identifications made by the NA but closelised as dritter (sould blue line) and an in (red dualed dot line) do differ (Figure 5.7). In this comparison, the wind-only amhient sound spectra (dashed black line) includes only wind speeds greater than 12 ms⁻¹ in order to illustrate the difference of the rain sound spectra. This difference is that both have similar SSL as 84 kHz, not the rain spectra has devaned SSL at 20 kHz compared to the wind-only sound spectra. For rain generated amhient sound there is no attenuation in the SSL diving wind specify greater than 21 ms⁻¹ for frequencies from 10 to 35 kHz a sound by Farmer and Lemon (1984). The high wind speed threshold was chosen as 12 m s⁻¹ and not 10 m s⁻¹ because this choice more clearly demonstrates the distinction between the rain and wind-only oxed spectra.

Figure 5.6: The mean smoothed ambient sound spectra for successful precipitation identifications by the NA (solid blue line), unidentified precipitation by the NA (dashed green line), incorrect identifications made by the NA (red dot dashed line) and wind-only spectra (dotted black line) from the 1997 data set.

Figure 5.7: The mean smoothed ambient sound spectra for drizzle identifications made by the NA (solid blue line), rain identifications made by the NA (red dot dashed line) and wind-only spectra for wind speeds greater than 12 $m s^{-1}$ (dotted black line) from the 1997 data set.

5.4.1.2 The Slope Algorithm (the SA)

The SA uses the distinct spectral alope from 30 to 72 kHz (Region III) to distinguish vind-only conditions from those with precipitation. Although the spectral alope over this frequency changes with wind speed (see §4.4.4), it is utill possible to distinguish the slope from spectra generated by the wind-only mechanism from those that were recorded during precipitation. Figures 5.8 b, and show the scatter picts of the SS2-gree versus the spectral slope from 35 to 72 kHz for the 107 and 1096 data.

Three lines are used to distinguish wind-ody ambient sound from that dominated by precipitation. The first line is the 'Apex Line', which is the horizontal line corresponding to the minimum value for wind-ody slopes in Region III. The other two lines are entered by choosing their end points, and are distinguished in the same manner as the 'Rahi and 'Drizzle' lines are for the 'X-k by the inflection point in the spectrum identified by Farmer and Lemon (1984). To distinguish the "Rahi and 'Drizzle line between algorithms, the algorithm name for which the line is sued shall accompany the line name (i.e., 'Nystuen's Rahi line', or the 'Slope Rahi line'). The end point method for the text lines is used for reasons identified when describing the XA.

The parameters used to choose these test lines for the 1907 and 1908 cambient sound data are given in Table 5.4 and do not show continuity between data sets. The uncertainju in the yocondinates is given by the uncertainstin in the spectral above from 35 to 72 kHz for the 1906-10, 1906-60 and 1907 ambient sound spectra which are \pm 1.45, 1.19 and 1.80 dB/decade, respectively. The uncertainty in the x-coordinate is given by the uncertainty in the SSL₄ for the 1906-10, 1906-60, and 1907 data sets which are \pm 0.40, 3.40, 62d He respectively. The uncertainty D_{12} , D_{12} and D_{12} and

Figure 5.8: Scatter plot of the slope of Region III kHz versus $SSL_{T=10}$ for the a) 1997, b) 1996-60, and c) 1996-10 data sets. The precipitation identification lines are shown: high uses roll over (vertical red dashed line); minimum spectral slope or 'apex line' (horizontal dashed line); 'drizzle line' (green solid line to the left of high sea); and 'an line' (red solid line to the right of high seas).

Parameter	1997	1996-10	1996-60
D X1,Y1	53.5,-23.5	54,-20	54.5,-19
D X2,Y2	37,0	43.0	43,0
R X1,Y1	57,-23.5	59,-20	59,-19
R X2,Y2	65,-10	65,-10	65,-9
High Seas in dB	56	57	57
Min S, in dB/dec	-23.5	-20	-19

Table 5.4: The SSL in dB for the end points of the test lines used by the SA for the 1997. 1996-60 and 1996-10 data sets.

R)² are not within the expected uncertainty in SSL when the test line end points for 1996-60 and 1997 are compared. However, there is consistency for the D)¹ and R)¹: they are always equal to the Whitimum Sloge' coordinate. The high sea inflection point is identical within uncertainty for all deployment examples. For this algorithm there is no simple scheme to select the test lines in order to maximize the proceiptation identification using the expected uncertainty for the scatter pilot.

Averaged ambient sound spectra for correct (old) blue line) and incorrect (red induch due line) projectization identifications made by the SA are shown in Figure 5.9. These two spectra are visibly different: the spectral slope of correct identifications is steeper than those for incorrect identifications. The mean sound spectra for projectization not identified by the SA (gene dashed line) resumables the mean vision only ambient sound spectra (black dashed line). The similarity of the vind-only spectra and the missel precipitation identifications indicates that all precipitation counds be identified by this algorithm, through the cause of the limitation is not identifiable from this data. The similarity of the correct and incorrect identifications indicates one of three possibilities: 1) there is a time dependent decay of the precitizion generates douts of such at the XA indicatifies precipitation withe whice WXD does the three With the spectra of the size of the star the X-regular base the WXD does the the WXD does the the WXD does the the WXD does the the WXD does not: 2) this technique is sensitive to spray and splashing which might lead to false identification; 3) precipitation sound is entering the listening radius from outside the sampling area of the WMO.

The ambient sound spectra for correct identifications made by the 3.5 Au classified as articr20 (cold blue line) and rain (green dashed line) do differ (Figure 5.10) but not in spectra (cold blue line) and rain (green dashed line) but not in spectra (cold able field) are similar. In this comparison, the wind-only ambients wound spectra (chadhed black line) includes only wind spectra drawn and spectra (chadhed black line) includes only wind spectra drawn wound spectra (chadhed black line) includes only wind spectra from the wind-only ambients wound spectra (chadhed black line) includes only wind spectra drawn and spectra (chadhed black line) includes only wind spectra from the wind-only sound spectra. For all types of previption (inclus) (i.e., rain (xitz) and xyzer) greented ambient conductive is a distance of the drawn of the site of the drawn of the drawn of the site of the drawn of the drawn

Figure 5.9: The mean smoothed ambient sound spectra for successful precipitation identifications by the SA (solid blue line), unidentified precipitation by the SA (dashed green line), incorrect identifications made by the SA (red dot dashed line) and wind-only spectra (dotted black line) from the 1997 data set.

Figure 5.10: The mean smoothed ambient sound spectra for drizzle identifications made by the SA (solid blue line), rain identifications made by the SA (green dashed line), the 'apex' identifications made by the SA (red dot dashed line) and wind-only spectra for wind speeds greater than 12 $m s^{-1}$ (dotted black line) from the 1997 data set.

5.4.2 PIAs Based on other Spectral Slopes

The location and nature of pask in the rain sound spectrum suggests that the spectral slope from 10 to 20 kHz could be used to identify periods of precipitation. However, relabulating the slope over this region does not provide a better indicator of precipitation compared to the NA. The XA already intrinsically compares this property. Explicit calculation of the slope in this range is complicated by the drop size dependers SLS pairs in this frequency range, and the limited number of bias in this frequency range. In contrast, there is no single frequency above 33 kHz which can be compared to the SLA at 84 kHz in order to identify precipitation. Further, the limited frequency bias in the 35 to 22 kHz region is constructed with more degrees of freedom per bin and consequently less uncertainty. In addition, there is no infletion point in the sound spectrum except when low signal levels are obscured by the electrical solve minimum at low wind speci conditions.

The spectral slope from 1 to 10 kHz is insensitive to acoustic precipitation signals.

5.4.3 Comparison Parameters for PIAs

The two precipitation identification algorithms will be rated for efficiency by defining two parameters: the Sensitivity (S) and the Confidence (C). The Confidence represents how often the indication of precipitation form the algorithms coincides with an observation of precipitation from the reference. Either the WMO observations or the ORG data could be used but for continuity, only the VMO data will be used since it is available for all data sets. The Sensitivity is a measure of how many precipitation coreas, is identified by the WMO observations, are correctly identified by the algorithm. These parameters are defined as:

$$C = \frac{m_r}{n_u}$$
(5.10)

and

$$S = \frac{m_r}{s_r}$$
(5.11)

where s_i is the number of WMO observations which indicate precipitation, n_* is the number of ambient sound spectra the algorithm flags as precipitation, and m_r is the number of flagged ambient sound spectra which correspond to WMO observations of precipitation.

The Confidence and Sensitivity quantify two aspects of precipitation identification. An understanding of these indicators can be gained by considering a binomial distribution of precipitation and a randomly selected sample flagged as precipitation. For a probability of precipitation, p, given by

$$p = \frac{r}{N}$$
, (5.12)

where r is the number of precipitation events as indicated by the reference and N is the total number of time intervals being considered. The mean number of random samples correctly flagged as precipitation is given by

$$\mu_r = n_a p$$
 (5.13)

and has a standard deviation of

$$\sigma = \sqrt{n_a p q}$$
. (5.14)

q is the probability of no precipitation, and is given by

$$q = 1 - p$$
. (5.15)

A randomly chosen sample would contain no more than

$$\mu_t + 1.96 \cdot \sigma$$
 (5.16)

precipitation events (with a 95% confidence).

From these considerations, two new parameters can be defined to quantify how much better the algorithms perform compared to randomly selected samples. The first parameter is the standard normalized random variable, z, which is given by

$$z = \frac{m_r - \mu}{\sigma}.$$
 (5.17)

z represents the difference, as a ratio of standard deviation, of the statistical mean μ and the algorithm identifications m_r . The second parameter to quantify performance is the standard random variable, t, which is the ratio of the number of events correctly identified by the algorithm to the randomly selected mean and is given by

$$t = \frac{m_r}{\mu_r}$$
. (5.18)

If t were equal to one then the algorithm would have correctly selected the same number of precipitation events as would a randomly selected sample. From elementary statistic, for a romally distributed metions 09% of the distribution lise within 1.96 $-\sigma$ of the mean. If $t \geq 1$ but z < 1.96, then it would be unclear if the PIA performed any better than the random sample with a 50% confidence. In order to accommodate this by confidence interval in a performance parameter, define

$$t_{95} = \frac{m_r}{\mu_r + 1.96 \cdot \sigma}$$
(5.19)

which is the ratio of events correctly identified by the algorithm to the maximum limit of the random sample with 95% confidence. This new definition of t provides an unambiguous indication if the algorithms are selecting more precipitation events than a random sample from the time series of ambient sound spectra.

The uncertainty in both the Confidence and the Sensitivity are determined by integrating

$$P_{i} = \frac{n!}{i!(n - i)!}p^{i} \cdot q^{(n-i)} \qquad (5.20)$$

and determining the point at which the integral is equal to 0.95, for 95% confidence. n is the number of identifications made by the algorithm for the Confidence, and is the number of WAO observations for the destinitivy, i the number of balance algorithm correctly identified by the algorithm. p is the ratio of correct identifications made to the total identifications for the Confidence, and is the ratio of correct identifications made to the total WAO observations for the Sensitivity. In all cases, q = 1 - p.

5.5 Observations

5.5.1 'Drizzle', and 'Rain' Distinction

Using the parameters described in Tables 5.3 and 5.4, the distinction between "Drizrale" and "Rain" for the two algorithms is quantified using the ORG data from 1997. For the SA, the mean rainfull rate for time intervals corresponding to ambient sound spectra identified as "Rain" was 1.65 mm hr^{-1} , while those identified as "Drizzle' had a mean rainfull rate of 0.29 mm hr^{-1}. These results are comparable with those obtained using the NA, where the mean rainfall rate of "Rain" events is 1.64 mm hr^{-1} .

Using the SA, the 'Apex' events do not clearly fall into either 'Drizzle' or 'Rain' categories. The events identified as 'Apex' using the SA have a mean rainfall rate of $0.42 \text{ mm} hr^{-1}$ which is greater than the 'Drizzle' events but less than the 'Rain' events. There are no points within the 'Apex' when the NA is used for the 1997 data.

5.5.2 Overall PIA Performance

The performance of either algorithm can be measured by its gross identification of precipitation (Sensitivity), its accurate identification of precipitation (Confidence), and its performance relative to a nation sample within 95% confidence (s₄₀). Table 5.5 summarizes the performance parameters of both algorithms for the three deployment cases. In all cases the identifications from the algorithms are compared to the meteorological records from the WMO diversations only.

Data Set	Algorithm	Confidence	Sensitivity	1.95
1996-10	SA	$64.0\% \pm 11.1\%$	$17.4\% \pm 2.1\%$	1.41
1996-10	NA	$69.6\% \pm 14.9\%$	$10.1\% \pm 1.6\%$	1.43
1996-60	SA	83.3% ± 11.7%	$13.2\% \pm 1.6\%$	1.83
1996-60	NA	$78.3\% \pm 11.6\%$	$14.2\% \pm 1.8\%$	2.1
1997	SA	$76.8\% \pm 9.5\%$	$18.2\% \pm 2.0\%$	2.21
1997	NA	$86.3\% \pm 11.8\%$	$10.9\% \pm 1.3\%$	1.19

Table 5.5: Measure of success for the two PIAs for the 1996-10, 1996-60 and 1997 data sets. The uncertainty in each column was determined using Equation 5.20 with 95% confidence.

In all data sets, the algorithms perform better than a randomly selected sample, demonstrated by the t_{gy} values in Table 5.3. A t_{gy} value of 1 indicates that the algorithm identified as many precipitation events as would a randomly selected sample with 95% conditionce. In all data sets both algorithms have $t_{gy} > 1$, indicating that they both correctly identify more precipitation than avoid at anadomly select sample of equal size.

The Sensitivity of ether algorithm in all deployments is less than the predicted Sensitivity: Theoremizelly, the Sensitivity should apprease the values given in 55.11 of 41% for 1907 and 74% for 1996-60. The values presented under Sensitivity in Table 5.5 show that, in the present data, the λ A detect 30% less precipitation than predicted for 1997, while the SA detects of Nelses. Both algorithm detect 60% is precipitation than predicted during 1996. This result indicates that certain meteorological conditions, such as rainfall rate or wish speed, may affect the probability of nonutrially identifying precipitation.

5.5.2.1 Time Averaging

The effects of time averaging are explored by comparing the 1096-60 data set to the 1096-10 data. The Bennitivity of the AS improves from 13% to 13% while the Sensitivity of the NA drops from 14% to 10% when 3 ensembles are averaged, as in the 1096-10 data set, than when 17 ensembles are averaged, as in the 1096-60 data set. This requires these shares more independent of the sensitivity approach the expected level from 55.31 of 74%. In addition, the Confidence of both algorithms drops: the NA area a reduction in Confidence of 10% while the Confidence for the S4 decrements by nearly 20%.

The limited improvement in Sensitivity and the drop in Confidence for the 1996-10 data set is expected. There is no precipitation record sampled at 10 minute intervals available for reliable comparison. As such, the 1996-10 data set will not be examined further.

5.5.2.2 Similarities in PIAs

To illustrate the results of the algorithms for the 1996-60 and 1997 data sets, Venn

diagrams show the intersection of the WMO observations and the identifications from the both algorithms in Figures 5.11a and b.

Figure 5.11: Venn diagram for the intersection of the sets (SA,NA, and WMO) for a) the 1997 data set and b) the 1996-60 data set. z, t_{e6} , Confidence and Sensitivity are defined in 55.4.3.

The number located in the intersection of the three circles is the number of acoustic observations for which both algorithms detected precipitation when the WMO observation simultaneously indicated precipitation. Similarly, the number in the area of intersection of any two circles is the number of observations that fell into the two stars represented by the circles which intersect. For example, the number of observations for which both the SA and the NA identified precipitation, but the WMO observations do no. its d'attirg 107 (see Figure 3.1a).

Five of the incorrect identifications made by one algorithm overlap with the other in 1997, while eight incorrect identifications overlap in 1996. This overlap might indicate correlation to an event which affects both the algorithms. Further support to the correlation between the decrease in spectral slope and the increase in SSL_0 relative to SSL_2 is the 41 element overlap in correct identifications made during (97) and the 45 element overlap observed in 1996. In 1997 there are 32 additional correct SA identifications compared to 3 additional correct NA identifications, whereas in 1996 there are 9 more identifications made by the NA and 6 more by the SA. In 1997, the 95% confidence bound was determined to be ± 8 and ± 5 events for the SA and NA respectively (see Equation 5.20 and Table 5.5). This result means that the difference between the SA and the NA are statistically significant. For 1996-60, the 95% confidence bound was determined to be +6 and +7 events for the SA and NA respectively. The difference between the NA and the SA in 1996-60 is not statistically significant, however, the difference between the SA in 1997 and 1996-60 is statistically significant. One possible explanation for the increased SA identifications in 1997 is that the effect of precipitation on the spectral slope may be longer lasting than the increase in SSL₂₀, so that at the short sampling rate used in 1997, the majority of the observed precipitation spectra have the spectral slope characteristic and not the elevated sound level. A second possible explanation is that the SA is more sensitive to time averaging: the number of identifications made by the SA is reduced in 1996 compared to the identifications made using the NA.

In general, there is no improvement in either the Sensitivity or the Confidence of either algorithm in 1996 compared to 1977, lending support to the theory that the majority of missel identifications are a consequence of drop size distribution and not the sampling mismatch. This theory is investigated by examining the Sensitivity of each algorithm in detail.

5.5.3 Sensitivity of the PIAs

Three are two known factors which affect the precipitation generated analysism. signal. The first is the drop size, which affects the probability of bubble entrainment. If there is no bubble then there is no significant scound generated by the drop impact (Medvin et al. 1992). The second is wind speed which increases the probability of bubble production for large drops (Medwin et al. 1992) but decreases the probability of bubble entrainment for small drops (Nystum 1986). To examine the importance of the current meteorological conditions, the results from both data sets have been combined and then sorted into detections based on both wind speed and the type of precipitations and defined by the WMO outbe-accessries in Table 5.0.

Wind Speed ma ⁻¹	0.1	271 8	2*	5.10	1067	123'	10-13	tite" :	46*	15-2	241 2	3'
Category	WSHO	5.4	NA .	WSO	5A	NA I	WSIO.	5A	SA.	WMO.	5A	NA .
Int. D. 64	- 1			22	- 1	3	33	0		1	1	- A -
Cest. D 42"	3	0	•	28	0	0	15	0	1	1	0	
Ant H 65"	7			- 44	14	1.1	1.2		•			
Cort R. III**		3	- 3	54	30	36	34	14	10	11	- T	7
Showers 125	14						44	1.2			0	0
Notes P. So."	15	3	6	21	7	0	17	6	3	3	2	-
Elizationed 387	1.4	- 1	- 5	176	- 19 -			5			0	. 0
Totals 782**	92	12	9	410	69	64	244	R	15	10	1 11	- 6-0
FIA Tet		1.	-11	_	- 64	42		33	19	_	15	- 10

Table 5.6: Summary of correct identifications for the 1997 and the 1996-60 data sets. sorted by wind speed and precipitation category. I the number of ambient sound recordings in a given wind speed range. * the number of WMO observations with precipitation. ** the number of observations within the WMO sub-category.

5.5.3.1 By Precipitation Category

To investigate the influence that the type of precipitation has on the ambient sound spectrum, the detections for both deployments have been combined for each algorithm based on WMO subcategory in Table 5.7. In the *Totals* row, the 3.8% difference between the total identifications of the NA and the SA is statistically significant, using 05% confidence bounds (see Equation 3.0).

Category	SA Sensitivity	NA Sensitivity	Occurrence
Intermittent Drizzle	$6.3\% \pm 6.25\%$	$6.9\% \pm 6.25\%$	64
Continuous Drizzle	$0.0\% \pm 2.4\%$	$2.3\% \pm 2.4\%$	42
Intermittent Rain	$28.4\% \pm 12.3\%$	$22.4\% \pm 12.3\%$	65
Continuous Rain	$51.3\% \pm 9.9\%$	$51.4\% \pm 9.9\%$	111
Showers	$4.0\% \pm 4.3\%$	$2.0\% \pm 2.2\%$	139
Solid Precipitation	$14.1\% \pm 10.2\%$	$3.3\% \pm 3.3\%$	59
Undefined	$8.1\% \pm 3.3\%$	$5.5\% \pm 2.9\%$	308
Total	$15.7\% \pm 1.4\%$	$12.5\% \pm 1.4\%$	831

Table 5.7: Percentage of total precipitation correctly identified by the SA and the NA (the Sensitivity, Equation 5.11), sorted by WMO sub-category for the 1997 and 1096-00 data sets combined. Included is the total number of precipitation intervals in each sub-category under the Occurrence column. The uncertainty in each column was determined using Emation 5.20 and 95% confidence.

In general, neither algorithm is officient as identifying. Orizink' as defined by the WMO sub-categories. Both algorithms identify nearly 7% of the 'Intermittent Dirack' corresponds to a 0.10 mm/-" taifall rate (see Table 5.2). Due to the small sample size in this category, the uncertainty is 6.23%. There is no significant precipitation identified by either algorithm (within 5% confidence) for this WMO sub-category. Nether algorithm (within significant amounts of 'Continuous Dirzle', which corresponds to 0.13 mm/n⁻¹. 'Showen,' which are defined as intermittent shown by the number of minutes of rain but have rainfall rates of 1.47 mm/n⁻¹, are also unidentified by acoustic means. The 'Undefined' precipitation is inconsistenty identified through the ambien sound spectra, with the X-A detecting 5% and the SA-8% of the precipitation. In each of these four categories it is not clear whether the low Sensitivity is a result of 1) the intermittent nature of the rainfall 1) the drop size distribution associated with the rainfall rate.

'Solid' precipitation shows the largest difference between the two algorithms:

the SA detects 10.8% more Solid precipitation than does the NA, but this difference is not significant. If a 60% confidence is assumed, where the uncertainty is approximately half the subjection of 1.8 keV is the difference is between the identifications made by the NA and SA is significant. Regardless, neither algorithm identifies a significant portion of this form of precipitation. This category is also intermittent having on average 200 municed opercipitation per hour.

The two 'Rain' categories show more frequent ambient sound signals corresponding to precipitation. Both algorithms identify approximately 25% of the Intermittent Rain.' The access rate of both algorithms is equal within the confidence bounds, and distinct from 0, resulting in a minimum detection of 28.4% and 22.4% for the SA and the NA respectively. Both algorithms detect slightly more than 50% of the Continuous Rain' vents.

These results indicate that there is a strong relation between the acoustic signal of precipitation and the WMO sub-category.

5.5.3.2 By Wind Speed

To determine if the wind speed affects the precipitation generated ambient sound, signal identifications for both data sets are presented for each algorithm in Table 8.8. These results show that there is only statistically meaningful differences (using 95% confidence intervals) between wind speeds graver than $15m e^{-1}$ and these less than $15m e^{-1}$ for both the NA and the SA. This result is remarkable in that at high wind speeds (15 to $2m e^{-1}$) the Semitivity of both algorithms is at a maximum, correctly identifying more than 40% of the precipitation. This results may be due to the drop size present during the storms which generate such high wind speeds.

Wind Speed	SA Sensitivity	NA Sensitivity	Occurrence
$0-5 m s^{-1}$	$14.1\% \pm 7.6\%$	$9.8\% \pm 7.6\%$	92
5-10 m s ⁻¹	$16.3\% \pm 3.8\%$	$15.1\% \pm 3.8\%$	423
10-15 m s ⁻¹	$12.3\% \pm 4.5\%$	$6.1\% \pm 3.3\%$	244
15-20 m s ⁻¹	$47.8\% \pm 26.0\%$	$43.5\% \pm 26.0\%$	23
Total	$15.7\% \pm 1.4\%$	$12.5\% \pm 1.4\%$	782

Table 5.8: Percentage of total precipitation correctly identified by the SA and the NA (the Sensitivity, Equation 5.11), by wind speed for 1997 and 1996-60 combined. Included are the total number of precipitation intervals in each wind speed range (Occurrences). The uncertainty in each column was determined using Equation 5.20 and 95% confidence.

a large uncertainty of approximately 26%.

95% confidence bounds are perhaps too strict. If 90% confidence bounds were user a^{-1} hand one is 3λ . Aloo, the NA aloos a wind speed dependence, identifying more precipitation in the 5 to 10 m a^{-1} range than in either the 0 to 5 or 15 to 20 m a^{-1} range. The Semitivity of the NA ranges from a low as 6.1% (wind speeds between 10 and 15 m a^{-1}) and as high as 15.1% (wind speeds or 5 to 10 m a^{-1}). The semitivity of the SA ranges from a low or 21.2% (for wind speeds from 10 to 15 m a^{-1} and the 16.4% (wind speeds to 10 m a^{-1}).

5.5.3.3 Effect of Sampling Rate

The ambient sound sampling rate affects the probability of detecting precipitation (see §5.3.1). The importance of the sampling rate is explored by comparing the identifications made from the hourly averaged ambient sound gasters from the 1996-00 data and those from the 1997 data. Tables D.3 and D.4 in Appendix D.1 show a complete break down for each deployment by wind speed and category. The Sensitivity data from these two tables are summarized by WOM obsciences in Table 3.0.

Data Set	1996-63			1067				
Chirgary	SA SA	NA	Occurrence	5A	NA	Occurrence		
Intermittent Drizale	3.9% ± 3.9%	1.9% ± 1.9%	\$2	14.7% ± 14.1%	A3% + 1.2%	12		
Continues Drivile	345	0.0%	25	2.03	3.5% 4 3.7%	12		
International Race	31.2% + 14.3%	33.3% ± 18.7%	33	33.0% ± 14.8%	13.4% ± 13.4%	33		
Continuous Rain	45.0% 2 15.0%	58.0% + 16.0%	50	37.4% ± 9.8%	44.3% + 9.8%	61		
Showers	3.2% ± 3.3%	3351335	60	5152515	125 \$ 1.15	73		
Salid Precipitation	0.0%	0.0%		34.0% ± 14.0%	6.6% ± 6.5%	83		
Codamfed	2.7% ± 5.3%	7.3% ± 4.6%	131	7.3% & 4.4%	2.6% + 1.0%	151		

Table 5.9: Summary of algorithm Sensitivity sorted by WMO sub-category for both the 1966-60 and 1997 data sets. Included are the total number of precipitation intervals in each WMO sub-category (Occurrences). The uncertainty in each column was determined using Equation 5.20 and 05% confidence.

Within 95% confidence bounds, there is no Semitivity difference between the 1966-60 and 1967 data. This means that using the present data, the increased sampling rate of the 1966-60 (sampled 31 times per head) does no better than the sampling rate of 1997 (sampled 31 times per 72 minutes). However, there is substantial ensemble averaging (17 ensembles) for the 1996-60 data, and no ensemble averaging in 1997. Ensemble averaging has the effect of smoothing out the spectral characteristics of precisitation.

The values of Sensitivity based on wind speed range are more likely to vary with the precipitation type within each wind speed category for each deployment than with wind speed. Realistically, there is no relation between sampling rate and wind speed, while there is a relation between the sampling rate and precipitation category.

5.5.4 PIA Confidence and Wind Speed

The Confidence (Equation 5.10) of a PIA is a measure of the correct identification rate and is shown for overall performance in Table 5.5. With a 95% confidence bound there is no difference in the Confidence of the two algorithms. The detection method of the two PIAs depends on the spectral structure that changes with wind speed. We might then expect PIA confidence to depend on wind speed.

Table 5.10 shows the Confidence of each algorithm for both data sets combined for four wind speed ranges. The SA makes fewer fake identifications in the $10-15 m s^{-1}$ wind speed range when compared to the identifications in the 5-10 $m s^{-1}$ range. The SA does not reflect this trend. The 100% identification remements the

Wind Speed	SA	Occurrence	NA	Occurrence
$0 - 5 m s^{-1}$	$72.2 \pm 27.7\%$	18	$81.8 \pm 18.2\%$	11
$5 - 10 m s^{-1}$	$73.4 \pm 9.6\%$	94	$80.0 \pm 10.5\%$	76
$10 - 15 m s^{-1}$	$93.8 \pm 6.3\%$	32	$78.9 \pm 21.1\%$	19
15 - 20 1 m s ⁻¹	100%	11	100%	10
Total	$79.4 \pm 7.1\%$	155	$81.7 \pm 7.8\%$	116

Table 5.10: Percentage of correct identifications of precipitation made by the SA and the XA (the Confidence, Equation 5.10), sorted by wind speed for 1996-60 and 1997 data sets combined. The uncertainty in each column was determined using Equation 5.20 and 95% confidence. The 95% confidence bound for 6 selections.

95% confidence bound for $60\% \pm 40\%$ identifications, given the limited number of identifications made in this wind speed range, which were only 11 and 10 identifications by the SA and the NA respectively. Within 95% confidence there is no difference between the healapoint most area wind speed range.

5.6 Conclusions

There is significant correlation between two characteristics of ambient sound. These characteristics are the spectral slope of Region III (from 35 to 72 kHz) and the elevated SSL at 20 kHz (SSL_{23}) generated by precipitation. Two distinct algorithms can be used to identify precipitation using either of these characteristics. In addition to the classical detection algorithm using the SSL₂₀₀, the slope of Region III provides an alternative means of detecting precipitation. In this §5.5, the present data shows that limitations in detecting precipitation are placed on both algorithms by meteroplogical conditions.

There is meaningful signal in the ambient sound at frequencies from 35 to 72 Hzr. This signal is generated during precipitation, and occurs in conjunction with the precipitation signal used by the NA. In contrast, Urick (1967) stated that the ambient sound at frequencies greater than 50 kHz is dominated by thermal noise. The results presented here support the findings from Chapter 4 which state that the intersection of thermal noise and ambient sound is at frequencies greater than 27 kHz when the wind species [greater than 30 m s⁻¹ or precipitation is present.

Using 50% confidence bound, neither algorithm is effective at detecting all forms precipitation. The overall Sensitivity (Equation 5.11) is affected by the disribution of precipitation rates. In general, only the rain WMO categories are detretable via ambient sound. Both algorithms successfully identify 25% ± 12.5% of "intermittent Rain" events, and 50% ± 10% of 'Costinuous Rain' events. However, the cause of this limited Sensitivity cause to be determined conclusively from the presendata because the intermittent nature of the rainfall cause the separated from the instantaneous rainfall rate (or drop size). The limited Sensitivity is likely due to a combination of three factors: i) the sampling rate of the ambient sound is too short to detect intermittent precipitation signals: ii) time averaging reduces the precipitation signal by averaging intermittent precipitation signals with wind-optionized opticator. or iii) the rainfall rate for a give WMO sub-category varies during isolated precipitation events. Comparison of the 1996 data averaged to 10 minute intervals and 60 minute intervals indicates that time averaging is not the dominant cause of fore Semitivity: Comparison of the hourly averaged data sampled 31 time per hour (1995-60) to the 1997 data set, sampled once every 24 minutes, indicates that the sampling rate is not the dominant cause of the observed low Sensitivity. A more frequently sampled proprintation records and a measurement of the drop size distribution is required for further study of the sampling rate effect. The present data is consistent with an evolving raindrop distribution: the rainfall rate determines the acoustic signal; this rainfall rate will vary for a given condition changing the probability of determines. More frequent WMO recorded observations, or preferably disdometer and ORG measurements, are necessary to compare to unaveraged short time interval ambient sound data in order to rigorously test the effect of sampling rate and time averagin.

Complementing the description of the high frequency prectral precipitation signal is the fiet that the high frequency diof of the signal burkes differently than the 20 MIz peak under different meteorological conditions. The SA is more effective at identifying "Solid Precipitation" than is the NA, although the SA only identified High ± 0.2 of the "Solid" events compared to the $3\% \pm 3$ identified by the NA confinal difference between the algorithms: the SA makes fewer fake identifications, and identifies more precipitation than does the NA in wind speeds of 10 to 15 m e⁻¹. Overall, the SA identifies 3% more precipitation than does the NA.

There are occurrences when the SA correctly identifies more precipitation than the NA, particularly using the 1997 data (see Figure 5.11). This result might indicate that the precipitation signal at frequencies from 35 to 72 kHz is less robust to time averaging than is the elevated SSL_{20} . In the 1996-60 data set, 17 ensembles are averaged together, whereas in 1997 there is no ensemble averaging. In both cases each ensemble is an average of three individual ambient sound samples.

Chapter 6 Conclusion

There are many sources of ambient sound in the ocean (see Table 2.1). For frequencies from 1 to 72 kHz the dominant source is wind through bubble entrainment caused by broaking waves. Precipitation at the surface also devates sound levels between 10 and 25 kHz. It has been shown in this thesis that there is a distinct spectral aloop for frequencies from 35 to 72 kHz during precipitation. The sound source here is air boubbles entrained by randoro junctat at the surface (Pumphrey et al. 1989: Metwin et al. 1992). When created, pressure and tension forces drive air bubbles at their breaking mode, generating sound at frequencies related to their radius. Smaller bubbles preserves higher frequencys sound (see Figure 2.2).

Acoustically active bubble entrained by both breaking waves and drop impact remain close to the surface. The surface is a near perfect acoustic reflector, and as such, the bubble generate sound a dipole sources as a consequence of the bubble image through the surface. The resulting sound field can be modelled by an infinite plane of dipole sources at the surface, although this assumption might not be valid for intermittent rain showers. Due to this geometry, the sound field does not die off according to spherical speeding (Jedewin and Backy 1989), but in onlay affected by chemical absorption along the path length. Sound reflected of the ocean bottom retains this characteristic. As a result, significant energy is added to the sound field when the bottom is on sufficiently for such that chemical absorption completely attenuates the sound. To identify characteristics of wind-generated or precipitationgenerated amhient sound, measured Sound Source Levels (SSL) must then account for reflection of sound of the bottom of the ocean.

As a real of the different effects of hydrophone depth, and the ocean hottom depth. S2L must be adjusted to deployment independent levels. This adjustment is done using a model developed here (Equation 3.22) which calculates the energy added to the system through reflections and loss from the system by chemical absorption. Several factors are incorporated in this model: the hottom loss reflection coefficient. the chemical absorption (via the hydrophone and ocean bottom depth), the temperature (via the deveload absorption), and the nature of the reflections at infinite plane of dipoles, non-specular reflection, and no reflactions. By integrating over the infinite plane, and modelling multiple reflections, the deployment Tesponor is calculated additionally allowing for the factory determined hydrophone response.

Results of this model show that significant energy is added to the spectrum for frequencies below 10 MHz (see Figure 3.7c). Using a bottom reflection loss coefficient of 5.4 Gb, there is significant energy added to the sound field for frequencies less than 10 MHz even for ocean depth greater than 4000 m. A maximum of 1.5 dB is added for all depths at 1 kHz. The frequency range to which this energy is added increases with decreasing water depth. Further, there is little difference whether the reflections are spectrate or non-special microarounding for a difference in Response OF less than 0.2 dB (see Figure 3.7a). The temperature of the water does not change the Response for frequencies less than 4 kHz. For frequencies between 4 and 10 kHz is a temperature damage of 20 °C alters the Response by half a dB. This difference increases to a maximum of 2 dB by 35 kHz for a temperature change of 20 °C (see Figure 3.7b). The dehy of the hydrophese affects the attraction of the ambiensoon signal by increasing the path length to the surface. At mooring depths of 4000 m, there is a long preserve than 18 dB for frequencies greater than 35 kHz. At this depth, lowerse, there is a long of only 2 dB for frequencies treaters that and 10 kHz, indicating that accurate measurements of the ambient sound generated at the surface can be recorded at such a large depth (see Figure 3.7d). This result assumes no refraction of the monitorial results may many the horizontal.

Uncertainty in the model arises from the uncertainty in the temperature, depth and the monuted SSL. These sources of uncertainty are calculated in Chapter 3 and estimates of frequency dependent uncertainty in SSL are shown in Figure 3.11. (in dB). The uncertainty in depth and temperature affect the accuracy of spectral slope estimates. Three spectral regions have been considered and are Regions I (1 to 10 MHz), H (10 to 35 MHz), and III (35 to 72 MHz) with uncertainties of 0.13, 0.12, and 1.4B/scduc texpredived.

Any subsurface hydrophone records sound generated at the surface in a circle of radius approximately equal to the hydrophone depth due to the dipole nature of the sources. As a require, the mean sound generated by breaking wind surves in that circle can be translated to a wind speed estimate (Knudess et al. 1948; Wenz 1942; Shaw et al. 1978). The mean sound level is characteristic of a given wind speed. Due to the transless nature of breaking wave, at any instant in turn bits SSC could be be louder or quieter than the characteristic sound proportional to the instantaneous wind speed. However, given sufficient averaging an accurate wind speed estimate can be determined.

If the SSL are not set to reference levels which are deployment independent, a frequency dependent mean error in wind speed estimate results. Even if the calibration in performed correctly to the best of can ability, the wind-speed-from-ambientmond equations tested here (Equations 4.3, 4.4 and 4.3) result in a mean wind speed error using the SSL from 1 to 10 kHz. The mean error can be removed by adding a wind speed dependent correction term to the wind-speed-from-ambient-sound equations.

Time averaging and spectral averaging both work to reduce the variance in the wind speed estimate. The effects of this averaging are not additive: even when frequency effects have been removed (guadion 4.3) there is no reduction in the variance of the estimate when both time averages and spectral averages are used. In contrast, when only spectral averaging has been performed, variance for this equation is reduced to 0.4 m e⁻¹.

The equations determined by Vagle et al. (1999) (Equation 4.4) and Feans and Watts (1982) (Equation 4.3) can be used for any frequency from 1 to 10 kHz, by adjusting the SL to a reference frequency. The accuracy of the wind speed estimates are determined in part by the accuracy of the SL measurement, so that spectral averaging improves the wind speed estimate from the SSL at 1 kHz (SSL,) but does not reduce the variance for the SSL for frequencies between 8 and 10 kHz in the 1996 data set.

The accuracy of the mean wind speed estimate when the wind speed dependent

error has been removed (Equation 4.19) for frequencies from 1 to 10 kHz are 1.99. 1 27 and 1.63 m s⁻¹ for the 1996-10, 1996-60 and 1997 data sets respectively. These differences reflect the different deployment characteristics and sampling parameters of each data set. The 1996 data was collected with the hydrophone at 250 m, while the 1997 data was collected with the hydrophone moored at 100 m. In 1996, the ambient sound field was sampled every 70 seconds while in 1997 it was sampled every 24 minutes. Two time intervals were considered in 1996: 10 minute averages (1996-10) and hourly averages (1996-60). The more frequent sampling, larger listening radius, and ensemble averaging of the 1996-10 data set unexpectedly produces greater variance than the data of 1997. It was expected that time averaging and spectral averaging would reduce the variance, and that more frequent ambient sound samples would provide more accurate resolution of the wind field. This result indicates that there may be a time scale between 10 and 60 minutes over which the ambient sound does not respond to changes in the wind speed. In other words, more frequent sound sampling may not provide a more accurate estimate of wind speed, below some threshold sampling rate.

It was observed that the spectral alope depends on both the wind speed and the frequency. The spectral alope for frequencies from 1 to 10 kHz (Region 1) was observed to vary by 4 dB/decade over wind speeds from 0 to 20 m s⁻¹. The mean spectral alope of thirty for is 1-8.5 e 0.4 dB/decade. For frequencies from 10 to 25 35 kHz (Region 11), the spectral slope for winds from 0 to 10 m s⁻¹ has a mean of -17.3 = 0.5 and varies by 4 dB/decade. For wind speeds from 10 to 20 m s⁻¹ the spectral slope thirty for the spectral slope for frequencies from 10 to 70 kHz (Region 11) has been modelled using a polynomial of order three 10 to 71 kHz (Region 11) has been modelled using a polynomial of cost https:
For wind speeds from 0 to 9 ms^{-1} the spectral slope steepens from greater than 0 dB/decade to approximately -18 dB/decade. For wind speeds from 9 to 13 ms^{-1} the spectral slope of this Region remains constant, then increases to -10 dB/decade at wind speeds of 20 ms^{-1} .

Precipitation generates sound by entraining bubbles through cratters resulting from drop impacts at the ocean surface. Not all drop sizes create cratters capable of entraining bubbles. The wind speed abac affects the probability of bubble entrainment. These two factors combine to create a complicated relationship, where rain creates a different acoustic ignature than does dritize. As well, some significant forms of precipitation do not generate any significant ambient sound. Two algorithms capable of identifying precipitation via the ambient sound vere presented in Chapter 5. They are the Nysteen Algorithm (NA), which identifies the increase in SSL at 20 Mr (SSL90) relative to SSL4, and the Slope Algorithm (SA) developed hew, which identifies the distinct spectra disposed layed frame (SA).

Precipitation events classified as "fair by the World Meteorological Organization (WMO) can be identified via the ambient sound. The NA is as effective as the SA. Neither algorithm detects more via the 30% ± 10% of the "Continuous Radio events, and 25% ± 12.5% of the "Intermittent Rain' events. Using the minutes of precipitation observed by an Optical Rain Gauge (ORG) available from the 1997 data for WMO sub-atteprises, a larger precentage of precipitation, should be identifield for the more frequently sampled data from 1996 (see Equation 5.2). This result indicates that rain detection is drop size dependent. The data show some variation between the two algorithms in detection of "Solid Precipitation." The SA detects $15\% \pm 55\%$ and the Xo detects $3\% \pm 30\%$ of this WXO sub-astepsory (within 95%). confidence bounds).

The data from 1966 seregard into 10 minute intervals do not provide more significant identification of percipitation via either algorithm, indicating that the sampling rate is not a factor in the limited detection of precipitation. However, the averaging of the W3LO observations after these results. Further, when comparing the data from 1966 ampled every minute but averaged into hourly intervals to the unaveraged 17 minute essenthis from 1997. A larger percensage of identifications of precipitation via the ambient sound are not observed. Time averaging of frequent observations motivates no exhauscement cover has frequently autoeffed observations control cover the frequently autoeffed observations.

Bibliography

- Banner, M. and Cato, D. H. (1988). Physical mechanisms of noise generation by breaking waves. Sea Surface Sound: Natural mechanisms of surface generated noise in the ocean, 1:429–436.
- Bom, N. (1969). Effect of rain on underwater noise level. J. Acoust. Soc. of Am., 45:150-156.
- Brekhovskikh, L. M. and Lysanov, Y. P. (1991). Fundamentals of Ocean Acoustics. Springer Verlagg.
- Burdic, W. S. (1984). Underwater Acoustic System Analysis. Prentice-Hall.
- Cato, D. H., Tavener, S., and Jones, I. (1995). Ambient noise dependence on local and regional wind speeds. Sea Surface Sound '94, 1:95–111.
- Clay, C. S. and Medwin, H. (1977). Acoustical Oceanography. Wiley-Interscience.
- Crawford, G. B. and Farmer, D. M. (1987). On the spatial distribution of ocean bubbles. J. Geophys. Res., 92:8231–8243.
- Dahl, P. H. and Jessup, A. T. (1995). On bubble clouds produced by breaking waves. J. Geophys. Res., 100:5007–5020.

- Evans, D. L. and Watts, D. R. (1982). Wind speed and stress at the sea surface from ambient noise measurements. Proceedings International Symposium on Acoustic Remote Sensing Atmos. and Oceans., pages 69–78.
- Evans, D. L., Watts, D. R., Halpern, D., and Bourassa, S. (1984). Oceanic winds measured from the sea floor. J. Geophys. Res., 89:3457–3461.
- Everitt, B. S. (1992). The Analysis of Contigency Tables. Chapman and Hall.
- Farmer, D. and Lemon, D. (1984). The influence of bubbles on ambient noise in the occan at high wind speeds. J. Phys. Oceanogr., 14:1762–1778.
- Farmer, D. M., Vagle, S., and Booth, A. D. (1998). A free flooding acoustical resonator for measurement of bubble size distribution. J. Atmos. and Oceanic Tec., 15:1132-1146.
- Franz, X. (1959). Splashes as sources of sounds in liquids. J. Acoust. Soc. of Am., 31:1080–1096.
- Gammelsroed, Osterhus, S., and Godoy, O. (1992). Decadal variations of ocean climate in the norwegian sea observed at ocean station "mike". *ICES Marine Symposium*, 195:68–75.
- Heindsman, T., Smith, R. H., and Arneson, A. D. (1955). Effect of rain upon underwater noise levels. J. Acoust. Soc. of Am., 27:378–379.
- Johnson, B. D. and Cooke, R. C. (1979). Bubble populations and spectra in coastal waters. J. Geophys. Res., 84:3761–3766.

- Kerman, B. R. (1984). Underwater sound generation by breaking wind waves. J. Acoust. Soc. of Am., 75:149–165.
- Knudsen, V., Alford, R., and Emling, J. (1948). Underwater ambient noise. J. Marine Research, 7:410-429.
- Kolaini, A. R. (1998). Sound radiation by various types of laboratory breaking waves in fresh and salt water. J. Acoust. Soc. of Am., 103:300–308.
- Kolaini, A. R., Crum, L., and Roy, R. (1994). Bubble production by capillary-gravity waves. J. Acoust. Soc. of Am., 95:1913–1921.
- Kolovayev, P. A. (1976). Investigation of the concentration and statistical size distribution of wind-produced bubbles in the near surface ocean layer. *Oceanology*, 15:659–661.
- Leighton, T. G. (1994). The Acoustic Bubble. Academic Press.
- Lemon, D. D., Farmer, D. M., and Watts, D. R. (1984). Acoustic measurements of wind speed and precipitation over a continental shelf. J. Geophys. Res., 89:3462– 3472.
- Lokken, J. and Bom, N. (1972). Changes in raindrop size inferred from underwater noise. J. Appl. Meteor., 11:553-554.
- Medwin, H. (1977). Acoustical determination of bubble size spectra. J. Acoust. Soc. of Am., 62:1041–1044.
- Medwin, H. and Beaky, M. M. (1989). Bubble sources of the knudsen sea noise spectra. J. Acoust. Soc. of Am., 86:1124–1130.

- Medwin, H., Nystuen, J., Jacobus, P. W., Ostwald, L. H., and Snyder, D. E. (1992). The anatomy of underwater rain noise. J. Acoust. Soc. of Am., 92:1613-1623.
- Mellen, R. H. (1952). The thermal-noise limit in the detection of undewater acoustic signals. J. Acoust. Soc. of Am., 24:478–480.
- Mellville, W. K. and Rapp, R. J. (1989). Experiments on breaking waves. Sea Surface Sound: Natural mechanisms of surface generated noise in the ocean. 1:39–49.
- Melville, W. K., Terrill, E., and Ding, L. (1995). Field measurements of air entrainment by breaking waves. Third International Symposium on Air-Water Gas Transfer, 95.
- Nystuen, J. A. (1986). Rainfall measurements using underwater ambient noise. J. Acoust. Soc. of Am., 79:972–982.
- Nystuen, J. A. (1987). Influence of wind on the underwater sound generated by light wind. J. Acoust. Soc. of Am., 82:270-274.
- Nystuen, J. A. (1996). Acoustical rainfall analysis: Rainfall drop size distribution uisng the underwater sound field. J. Atmos. and Oceanic Tec., 13:74-84.
- Nystuen, J. A. (1998). Rainfall at the air-sea interface. Conference Proceedings, American Meteorological Society, 9th Conference on Interaction of the Sea and Atmosphere, January:146–148.
- Nystuen, J. A. and Selsor, H. D. (1997). Weather classification using passive acoustics drifters. J. Atmos. and Oceanic Tec., 14:656–666.

- Oğuz, H. N. and Prosperetti, A. (1992). Drop impact and the underwater rain noise. Natural Physical Sources of Underwater Sound: Sea Surface Sound (2), 2:669–682.
- Papanicolaou. P. and Raichlen, F. (1988). Sea Surface Sound: Natural mechanisms of surface generated noise in the ocean, 86:97–110.
- Pickard, G. L. and Emery, W. J. (1996). Descriptive Physical Oceanography, 5th Ed. Butterworth Heinemann.
- Potter, J. R. (1993). Acoustic imaging using ambient noise:some theory and simulation results. J. Acoust. Soc. of Am., 95:21-33.
- Pumphrey, H., Crum, L., and Bjørnø, L. (1989). Underwater sound produced by individual drop impacts and rain fall. J. Acoust. Soc. of Am., 92:1613-1623.
- Scrimger, J., Evans, D., McBean, G., and Farmer, D. (1987). Underwater noise due to rain. hail, and snow. J. Acoust. Soc. of Am., 92:1613–1623.
- Shaw, P., Watts, D. R., and Rossby, H. (1978). On the estimation of oceanic wind speed and stress from ambient noise measurements. *Deep Sea Res.*, 25:1225–1233.

Updegraff and Anderson (1991). J. Acoust. Soc. of Am., 89:2264-2279.

- Utick, R. J. (1967). Principles of Underwater Sound for Engineers. McGraw-Hill.
- Vagle, S., Large, W., and Farmer, D. (1990). An evaluation of the wotan technique of inferring oceanic winds from underwater ambient sound. J. Atmos. and Oceanic Tec., 7:576–595.
- Wenz, G. (1962). Acoustic ambient noise in the ocean:spectra and sources. J. Acoust. Soc. of Am., 34:1936–1956.

- Wilson, J. H. (1980). Low frequency wind-generated noise produced by the impact of spray with the ocean's surface. J. Acoust. Soc. of Am., 68:952–956.
- Wi, J. (1981). Bubble populations and spectra in near-surface ocean: summary and review of field measurements. J. Geophys. Res., 86:457–463.
- Zedel, L., Gordon, L., and Crawford, G. (1996). Wind direction from and upward looking adep. J. Geophys. Res., 101:12163-12176.
- Zedel, L., Gordon, L., and Osterhus, S. (1998). Ocean ambient sound instrumentation system: Acoustic estimation of wind speed and direction from a sub-surface package. J. Atmos. and Oceanic Tec.

Appendix A Absorption Coefficient

In Chapter 2, the equation describing the propagation of sound through water were developed. In the process, the absorption coefficient due to three chemical components of salt water were identified. Equations describing the absorption coefficients from these three components are included in this appendix.

The finite time response of water to a changing pressure field. causes dispersion of sound waves in water. The phenomenon is modelled by adding a time dependent term to Hooke's law model of sound travelling in water. This time response is modelled by an absorption coefficient.

If the relaxation time is longer than the period of the pressure variations, then some of the energy at this frequency is lost as heat. It is this mechanical relaxation process which is responsible for increasing absorption with increasing frequency. In solid water the mechanical relaxation is governed by three processes, each of which are characterized by individual absorption coefficients. Clay and Medwin (1977) give a complete description of all the components of the absorption coefficient is nait water. The three processes are: freshwater absorption (Equation A.1): absorption by magnetism subject (MgSO₄) (Equation A.3): and absorption by botic call (Equation A.5).

$$\alpha_f = 1.71 \cdot 10^8 \frac{\frac{4}{3} \cdot 1.2 \cdot 10^{-3} + 3.3 \cdot 10^{-3}}{1000(1.46 \cdot 10^3)^3} f^2$$
(A.1)

$$f_{rm} = 21.9 \cdot 10^{\frac{6-1100}{17+273}} 1000$$
 (A.2)

$$\alpha_m = 35.0 \frac{2.03 \cdot 10^{-5}}{f^2 + f_{rm}^2} (1 - 1.23 \cdot 10^{-5}) \qquad (A.3)$$

$$f_{rb} = 0.9 \cdot 1.5 \frac{1}{16} 1000$$
 (A.4)

$$\alpha_{b} = \frac{1.2 \cdot 10^{-4}}{1000} \frac{f^{2} f_{rb}}{(f_{rb}^{2} + f^{2})} \qquad (A.5)$$

where α_f , α_m and α_b are the components of the absorption coefficients and f_{rm} , f_{rb} are the resonant frequencies of magnesium sulphate and boric acid relaxation process in kHz.

The temperature of the water has a strong influence on the fresh water component of the relaxation process. For the frequencies studied here, the dominant components of absorption are the magnesium sulfate and horic acid components (see Figures 3.3.1 a and b in Clay and Medvin (1977, pp. 100-101), or a reproduction based on the equations above in Figure 3.1 assuming 10°C).

Figure A.1: The relative importance of the different absorption factors in determining the overall absorption coefficient (remake of figure from Clay and Medwin (1977), with the asces limited to the frequency range relevant to this study).

Appendix B

Analysis Using Unaveraged Spectra from 1996

In Chapter 4 and 5, the unaveraged ambient sound revels from the 1996 dopportent are not used in the data analysis. They are not used because there are no wind speed or precipitation observations to compared to. However, in Chapter 4, it was distrmined that the spectral slope of the ambient sound spectrum changes with changes in the ambient sound levels. The time scale over which these properties change is acamined using the ambient sound ensembles recorded every 3.5 minutes during 1996.

Ambinet sound levels cannot be absolutely correlated to wind speeds: the correlation is a result of time and spatial averaging of breaking wave caused by the wind. However, two physical properties, the spectral slope of Region II and the spectral slope of Region III, are directly correlated to the instancous sound levels below 10 MR. The response time of these properties to changes in the sound level are measured for time intervals as short as 3.5 minutes using the unaveraged ambient sound data from 1966.

These recorded ensembles are averages of three measurements recorded at

eventy spaced time intervals over the 3.5 minute total essemble length. As such, the ambient sound spectra are susceptible to changes in the ambient sound field at time intervals of 70 tops cancels. The state is 10000 stated that tops at accurate wind estimates, the time intervals must be averaged over three hours. Chapter 4 demonstrates that accurate wind speed estimates can be obtained for 10 minute intervals when 3 ensembles (for a total of 9 ambient sound measurements) are averaged over the entire 10 minute period and the spatial average occuring for the ambient sound measurements is over a circle of radius of 250 m. In addition, accurate wind speed estimates can be made from sampling as infrequently as 3 times over a 72 minute period. for sould a sergence over a circle of radius of 00 m.

From the reduction in the standard deviation of the error in the wind speed extinute $(\sigma(U_s))$ that spectral averaging has on the wind estimate it was determined that there was the lass spectral available horeven 2 and 4 kHz (Figure 4.9). The spectral slopes will be compared to the mean SSL using frequencies from 2 to 4 kHz (SSL₂₇₂₁) because of this imiting, and to ensure that the SSL is not affected by mechanism behalion the changing slope of Region II.

Figure B.1 shows the anto-correlation of the SSL₂₇₁ (bute solid line), and the spectral slopes of Region 1 (red dashed line), Region 11 (gree dash-do line), and Region 111 (gree dashed line). This figure shows that the SSL₂₇₁ has antocorrelation coefficients greater than 0.5 for time lags of 10 hours or less Bohk Region 11 and Region 11 have an anto-correlation coefficient R = 0.5 that the lags of Shows The spectral slope of Region 1 is has an autocorrelation of less then R = 0.5 for time lag system than 3.3 minutes. The result for the spectral slope of Region 1 is a concurrence of online the spectral slope in the region A spectral super star with slope of the spectral slope of Region 1 is a spectral spectral slope at the spectral slope of Tegion 1 is a concurrence of online the spectral slope at the region A spectral super star with slope of Region 1 is a spectral spectral slope at the region A spectral s

Figure B.1: Auto-Correlation of the $SSL^{2}-4$ (blue solid line), spectral slope of Region I (red dashed line), Region II (green dash-dot line), and Region III (cyan dashed line) as a function of the lag in hours.

so time series is the sum of a constant and a white noise time series. Consequently, the auto correlation is a measure of the correlation of the noise.

Figure B.2 shows the cross-corelation of the SSL₂₇ to the spectral slopes of Region 1 (red dashed line), Region II (green dash-dot line), and Region III (cap and dashed line). This figure reflects the stationary nature of the spectral alope of Region I (red dashed line). There is no correlation between the spectral alope of Region I and the SSL. In correlation between the spectral alope of Region I and the SSL in Correlation, this figure shows the negative correlation of the slope of Region II and Region III to the SSL₂₇₁. At zero time lag both regions have a conso-correlation coefficient with the SSL of R = 0.8. At a lag of 5 hours the cross-correlation coefficient for both regions is R = 0.6.

While the correlation plots show symmetry which indicates that the spectral slopes may lead the SSL, it is presumed that the SSL corresponds to the generation of bubble, and the variation in spectral slope is an effect of the resident bubble cloud. It is therefore nonsemical to consider the possibility that the spectral slope leads the SSL.

Figure B.2: Cross-Correlation of the spectral slope of Region I (red dashed line), Region II (green dash-dot line), and Region III (cyan dashed line) as a function of the lag in hours.

Appendix C

χ^2 Hypothesis Testing for Contingency Tables

In Chapter 5, the World Meteorological Organization (WMO) observations and observations from the Optical Rain Gauge (ORG) are compared. A standard statistical test is used to determine if the two sets of observations are dependent. This method, v² hypothesis testing, is outlined here.

Given two binary data sets, each with outcome of Heads (H) and Tails (T), it can be determined whether the two sets are independent by using a χ^2 analysis. To do so, the data can be presented in a contingency table, which compares how often the outcomes of the two sets match (see Table C.1.). In Table C.1. a represents the number of times both data sets indicate result H simultaneously, b represents how often data set 2 indicated result. H with the data set 2 indicated NR. Finally, d is the number of times both data set 1 indicated result NR. Simultaneously, and the number of times both data set 1 indicated result NR. Finally, d is the number of times both data set 1 and 2 indicated result NR.

The null hypothesis that two sets are independent is proposed. In other words, the outcome of the first set is in no way affected by the state of the other set. A

		Dat	a Set 1
		H	T
Data Set 2	H	a	ь
	Τ	с	d

Table C.1: Sample 2 by 2 Contingency Table

 χ^2 test is used to reject or accept this hypothesis. This test uses the sum of the difference between the expected values and the actual values of the entries in the contingency table. For this table, the ratio of $\frac{1}{2}$ to $\frac{1}{2}$ should be the same if the two sets were independent, where N is the total number of trials. Everitt (1992) gives the χ^2 for such a table as

$$\chi^{2} = \frac{N \cdot (a \cdot d - c \cdot b)^{2}}{(a + b) \cdot (c + d) \cdot (a + c) \cdot (b + d)} \qquad (C.1)$$

Using a look up table, the χ^2 value for 1 degree of freedom, and a 95% confidence interval is 3.84. If the χ^2 alare is greater 3.84 we reject our null hypothesis and the sets are not independent. Conversely, if the χ^2 is less than 3.84 the hypothesis is supported, and the data sets are independent.

Appendix D

Additional Rain Detection Information

In Chapter 5, the meteorological observations from the World Meteorological Orgavization (WMO) standard are subdivided for simplicity. The entries from the WMO standard are presented lever for each sub-accegny: In addition, histograms of the rainfall rate and minutes of rain per loar for each sub-accegory are presented. Finally, the tabular data for precipitation identification for the algorithms presented in Chapter 5 sorted by wind special add WMO sub-accegory are given.

D.1 New WMO Categories: Definition, and Comparison to ORG data

A transfard method of recording meteorelogical activity is given by the International Meteorological Code for Ships according to the World Meteorological Organization (WIMO). The data world from this Code for Ships was *Prevant Weather Code*. The 100 categories of this code have been divided in to eight sub-categories to make comparison to the prespiration (isolatifications from ambient sound. These sub-categories are: no precipitation (0): Intermitten Dirich (1): Continuous Dirich (2): Continuous Intermittent Rain (3); Continuous Rain (4); Showers (3); Solid Precipitation (6); Unclassified (9). The corresponding entries in the WAO chart for the 'No Precipitation' category are given in Table D.1. The other entries are listed in Table D.2. The entries categorized as some form of precipitation are listed in Table D.2.

WMO	Condition	Category
00-03	Change of Sky During past hour	No Rain (0)
04-09	Haze, Dust, Sand or Smoke	No Rain (0)
10-12	Mist and Shallow Fog	No Rain (0)
13-14	Phenomenon within Sight, but not at ship	No Rain (0)
17-19	Thunder, Squalls, Funnel Clouds	No Rain (0)
28	Fog in past hour	No Rain (0)
30-39	Dust storm, Sand storm or Snowstorm	No Rain (0)
40-49	Fog at time of Observation	No Rain (0)
98	Thunderstorm with dust or sand storm	No Rain (0)

Table D.1: The ww entries from the WMO chart for No Precipitation

WMO	Condition	Classification			
15	Precipitation beyond 3 n miles (reaching surface)	Unclassified(9)			
16	Precipitation within 3 n miles (reaching surface)	Unclassified(9)			
20	Drizzle in past hour	Unclassified(9)			
21	Rain (not Freezing)	Unclassified(9)			
22	Snow	Solid(6)			
23	Rain and snow mixed	Solid(6)			
24	Freezing Drizzle or freezing rain	Solid(6)			
25	Shower(s) of rain	Showers(5)			
26	Showers of snow or rain and snow	Solid(6)			
27	Showers of hail, or rain and hail	Solid(6)			
29	Thunderstorm, with or without precipitation	Unclassified(9)			
50	Intermittent Slight Drizzle	Intermediate Drizzle (1)			
51	Continuous Slight Drizzle	Continuous Drizzle(2)			
52	Moderate Intermittent Slight Drizzle	Intermediate Drizzle (1)			
53	Moderate Continuous Drizzle	Continuous Drizzle(2)			
54	Heavy Intermittent Drizzle	Intermediate Drizzle (1)			
55	Heavy Continuous Drizzle	Continuous Drizzle(2)			
56	Slight Freezing drizzle	Solid(6)			
57	Moderate or Heavy Freezing drizzle	Solid(6)			
58	Slight Rain and Drizzle Mixed	Unclassified(9)			
59	Moderate of Heavy Rain and Drizzle Mixed	Unclassified(9)			
60	Intermittent Slight Rain	Intermediate Rain(3)			
61	Continuous Slight Rain	Continuous Rain(4)			
62	Intermittent Moderate Rain	Intermediate Rain(3)			
63	Continuous Moderate Rain	Continuous Rain(4)			
64	Intermittent Heavy Rain	Intermediate Rain(3)			
65	Continuous Heavy Rain	Continuous Rain(4)			
66	Slight Freezing Rain	Solid(6)			
67	Moderate of Heavy Freezing Rain	Solid(6)			
68	Slight Rain or Drizzle with snow	Solid(6)			
69	Moderate or Heavy Rain or Drizzle with snow	Solid(6)			
70-79	Solid Precipitation no falling as Showers	Solid(6)			
80-84	Slight Rain Shower	Showers(5)			
85-90	Solid Precipitation in Showers	Solid(6)			
91	Slight Rain (w/ Thunderstorms)	Unclassified(9)			
92	Moderate or Heavy Rain(w/ Thunderstorms)	Unclassified(9)			
93-97	Thunderstorms and Solid	Solid(6)			
99	Heavy Thunderstorms with Hail	Solid(6)			

Table D.2: The ww entries from the WMO chart and their corresponding Category

D.2 ORG Comparison to each WMO sub-Category

Histograms of the rain full rates in mmh^{-1} and frequency of rain full over the hour for each category can be made for the 1997 deployment asing the ORG data. These histograms are aboven for categories 11 (Intermitteen Useritz), 2 (20mitmos) Dirizhe), 5 (Showen), 6 (Solid Precipitation), and 9 (Unclassified) in Figures D.1a to e (the rate) and Figure D.2a to c (the frequency). The histograms for sub-category 3 (Intermitter Ring and 4 (Continuous Rain) are shown in Chatter 5.

The rainfall rate determines the acoustic signal from the precipitation via the raindrop size distribution. The minutes of rain per hour corresponding to the WMO sub-categories determines the probability of detecting precipitation based on how many times each hour is sampled.

Figure D.1: Histogram of rain fall rates, as determined from by ORG, for WMO sub-category a)'Intermittent Drizzle' (1), b)'Continuous Drizzle' (2), c)'Showers' (5), d)'Solid Precipitation' (6). e)'Urclassified Precipitation' (6).

Figure D.2: Histogram of minutes of rain, as determined from by ORG, for WMO sub-category a) Intermittent Drizzle' (1), b) Continuous Drizzle' (2), c) Showers' (5), d) Solid Precipitation' (6). e) Unclassified Precipitation' (6).

D.3 PIA Identifications for each Deployment Case

The number of correct identifications of precipitation for both algorithms for each driplogment have been tabulated by wind speed and precipitation category in tables D and D A. The two numbers in brackets by the wind speed range are the total number of data points in that wind speed range. The number in brackets next to the category is the total number of algorithm of the starting set of the total of the total categories in the table and the start of the total range of precipitation. By definition this means these points are precipitation only points. The 'Total' row is the total of each column in the table, and the 'PIA Total' are the total number of sections must be wither algorithm.

Wind speed	0.5 m	4 332	56'	2-10 m	N 646	734*	10-11 .	UN 247	165*	11-20	m/n 3	4.
Category	10.00	SA	NA	#210	54	SA	WM0	3A	NA	W510	84	NA.
1.13.	0	0	0	10		6	2		0		0	
2.15**	1	0	0	T	0			6	-	6	6	3
3.32	7	1	1	23	7		2	0	0		0	
4.63		- 3 -		3.5	1.5	14	26	1.5	9			1
2.184	10	1	0	51	1		1 18	1	0	0		-
6.56	- 0)		21	2	+	16		.2	2.	2	1
0 171	31		1.1	54	2	3	32			6		+
Totals 461	- 54	10	0	236	33	23	285	27	- 13	1	1.2	- 2
PIA Tex		1.3			50	35		22	15		6	1

Table D.3: Summary of correct identifications for the 1997 data set, sorted by wind speed and precipitation category. ¹ the number of ambient sound recordings in a given wind speed range. ^{*} the number of WMO observations with precipitation. ^{**} the number of observations within the WMO sub-category.

Ward speed	0.5 m	(* 128 ⁷	36*	5-19 m	1. 010	185*	00.15 .	1/1 283	139*	13-20 #	*/* 20	28*
Category	WSIO	1.33	34	WSIO	34	NA I	14210	34	SA.	WSIO	1.53	SA.
1 52**		6	6	12		1	31	0		- 3	0	
1.15	4	0		1.2	-	0	0			1 1	0	0
3.33	2	2		17	7	10	1 12	- 0			1	1
1.50**	2	0	0	30	14	23		1	3	1.0	1	6
5.60	1	0		20	1	2	1 16	1	2	0	0	0
80"		0	6		-	0		3		0	0	0
2 151	15	1.1	1	1.0	17		27	- 2 -		1	0	0
Tetals 350	36	3	3	165	38	45	1.39		1	- 20	1.1	
PIA Tecal		1	3		- 44	34			1			

Table D.4: Summary of correct identifications for the 1996-60 data set, sorted by wind speed and precipitation category. ¹ the number of ambient sound recordings in a given wind speed range. ⁻ the number of WMO observations with precipitation. ⁻⁻ the number of observations within the WMO sub-category.

Appendix E

PIA identifications compared to the ORG

In Chapter 5, it was determined that the observations made using an Optical Rain Gauge were statistically dependent to observations made following to the World Microsoficiel Organization (WMO) postcol. For consistency of remits, the WMO observations were used in comparison to observations made using the ambient sound. However, the ORG sampled the precipitation every minute and as such might present a better studied to GGR as the reference are presented here.

There is a sampling minarch between the ambient sound recordings in 1997 and the WMO log entries from OWS Mike. The ORG data provide a convenient means of creating a record which matches the sampling rate of the hydrophous by choosing the ORG entries which correspond to the three minarcs at which the hydrophous mapping. Howeve, might the ORG as the control for perceipitation in the 1997 data set does not yield statistically different results than those obtained using the WMO chart entries. The total number of precipitation events identified by the ORG for the period when the hydrophone was recording was 330. This number can be compared to the indications of precipitation from the WMO entries of 451. The ratio of precipitation events flagged by the ORG to those flagged by the crew sender recording the WAO log entry 16 75%, which is approximately the ratio determined earlier for the entire deployments of the ORG and OWS Mike. The WMO log entries and ORG data agreed during 261 intervals. Of the 330 ORG flagged precipitation events, the SA correctly directified 27 Drizier events. 29 Real events, and 77 Apex' events, compared to 31, 27, and 5 intervals when using the WMO record only. The WMO observations and ORG data agreed during 24, 26, 5 intervals. The XA correctly distributed 27 Drizier linearies, and 12 "Lain' intervals when the ORG data is used as the reference versus the 30 and 15 intervals identified when the WMO observations are used as the reference. The WAO observations and ORG data agreed diving 24, and 12 of the intervals. These results are summarized in Table E.1, and indicate that the while the Sensitivity of the PLAs are highest when precipitation is limited to when both the ORG data and the WAO observations isometaneously indicate receivation, the Conditiones is used harrithms.

Control	Intervals	SA (86)	NA(55)
ORG	293	63	41
WMO	402	73	44
Exculsive Combination	222	59	30
Inculsive Combination	544	77	45

Table E.1: The correct identifications of precipitation from either algorithm, when the ORG data or WMO observations are used as a reference. The numbers in brackets in the column headings are the total identifications made by the algorithms (correct and incorrect).

The results given in Table E.1 show that there is not better correlation with the precipitation record given by the ORG data. The *Exclusive Combination* category are identifications made by the algorithms which correspond to both the WMO and the ORG observations. Using identifications in this category, the Semitivity of the SA improves to 27% (Júrg 224)form 13.8% while the XA improves to 13.4% (Júr 222) from 10.9%. The increase in Semitivity is offset by a decrease in Confidence. The Confidence of the SA drops to 68% from 76% while the Confidence of the NA drops to 34% from 85%. The *Increase* Confidence is the Markov of the NA drops to 34% from 85%. The *Increase* is Destination category are distinifications made by the algorithms which correspond to either the WMO or ORG observations. For identifications in this category, the Semitivity of the SA of both the NA and the SA drops compared to using either the ORG or WMO observations. The Confidence of the SA improves to 89% from 76% while the Confidence of the NA drops to 87% from 85%. The results given in Table E1 show that there is not better correlation with the userification record dives better ORG data.

Appendix F Spatial Scale of Precipitation

Throughout this entire thesis, observations of ambient sound recorded by the OASIS device at one location are compared to data not necessarily recorded at the exact location of the mooring. To justify these comparisons, the length scale overwhich these meteorological phenomenon occur is necessary.

In an occan context, micrometeorology is not well studied at spatial scales less than a kilometre. As such, it is hard to specify on what length scales precipitation occurs. A few simple calculations are used to specify this spatial scale. The ORG data provides a time series of rainfall rate recorded every minute. By calculating the autocorrelation as a function of the lag in minutes, the time scale for which metoreological conditions remain constant is estimated. If the ORG rainfall rate time series is coverted to a binary series using the threshold rainfall rate for the instrument (0.1 mm h⁻⁴), a more representative approximation of this property is realized. The correlation at a lay of 10 minutes.

Consider a precipitation event lasting one minute. Assuing that this disturbance propagates at speeds between 5 and 10 $m s^{-1}$, which are typical values, the

Figure F.1: Auto-Correlation of the ORG rainfall rate as a function the lag in minutes. The ORG rainfall rate was converted to a binary time series using the threshold for precipitation detection of $0.1 mmhr^{-1}$.

disturbance will travel between 300 and 600 m. From the correlation-lag plot it is reasonable to assume that precipitation events, albeit intermittene ones, will travel nearly 5 km (10 minutes - 450 m). From this simple calculation, it is realistic to assume that precipitation occurs over spatial scales on the order of kilometres for this data set.

