THE EFFECT OF HEAT-MOISTURE TREATMENT ON THE STRUCTURE AND PHYSICOCHEMICAL PROPERTIES OF TUBER AND ROOT STARCHES

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

D.M. ANIL GUNARATHE

National Library of Canada Bibliothèque nationale du Canada Acquisisitons et

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada services bibliographiques 395, rue Wellington Ottawa ON K1A 0N4

> Your file Votre référence ISBN: 0-612-84007-7 Our file Notre référence ISBN: 0-612-84007-7

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothéque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou alurement reproduits sans son autorisation.

Canada

THE EFFECT OF HEAT-MOISTURE TREATMENT ON THE STRUCTURE AND PHYSICOCHEMICAL PROPERTIES OF TUBER AND ROOT STARCHES

by

^oD.M. Anil Gunaratne

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science

> Department of Biochemistry Memorial University of Newfoundland December 2001

St. John's

Newfoundland

Canada

ABSTRACT

Starch from the tubers potato (Solanum tuberosum), taro (Alocassia indica), new cocoyam (Xanthosoma sagitifolium), true yam (Dioscorea alata), and root cassava,(Manihot esculenta) crops was isolated and its morphology, composition and physicochemical properties were investigated before and after heat-moisture treatment (HMT) [100ºC, for 10h at a moisture content of 30%). Native starch granules ranged in diameter from 3.0-110 um and were round to oval to nolynonal with smooth surfaces. The total amylose content ranged from 22.4 -29.3%, of which 10.1 - 15.5% was complexed by native lipid. The phosphorus content ranged from 0.01 - 0.1%. The X-ray pattern of potato and true vam was of the "B " type. Whereas, that of new cocovam and taro was of the "A" type. Cassava exhibited a mixed "A+B" type X-ray pattern. The relative crystallinity, swelling factor, amylose leaching, gelatinization temperature range and the enthalpy of gelatinization of the native starches ranged from 30-46%, 22-54%, 5 -23%, 13 -19°C and 12 - 18 J/g, respectively. Susceptibility of native starches towards hydrolysis by 2.2N HCI and porcine pancreatic «-amylase were 60-86% (after 12 days), and 4 - 62% (after 72h), respectively. Retrogradation was most pronounced in the "B" type starches. Granule morphology remained unchanged after HMT. The X-ray pattern of the "B" type starches was altered ("B"→ "A+B") on HMT. However, that of the other starches remained unchanged. HMT decreased swelling factor, amylose leaching, gelatinization enthalpy and susceptibility towards acid hydrolysis, but increased gelatinization temperatures and enzyme susceptibility. Extent of retrogradation and relative

п

crystallinity decreased on HMT of true yam and potato starches, but remained unchanged in the other starches. The foregoing data showed that changes in physicochemical properties on HMT are influenced by the interplay of crystallite disruption, starch chain associations and disruption of double helices in the amonthous regions.

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my thesis supervisor Dr. R. Hoover for his support, expert supervision, and advice throughout my studies. Grateful appreciation is also extended to Drs. A.M. Martin and T.R. Patel for their valuable advice and supestions as supervisory committee members.

I would like to acknowledge the Department of Biochemistry and the School of Graduate studies for providing financial assistance. Financial support from Dr. R. Hoover is also appreciated.

I also thank my fellow graduate students (Luckchman Jayakof), Wajira Rahayako) with whom I have been privileged to associate these past years. As we have kared doeplert, their camaredire has made life here interesting and most enjoyable. Special thanks also go to, Samudra, Mandujith, Ashoka, Wasana, Chandrika, Janaka, Chris, and Derek (graduate students) for their frindrabin ad supcord during m yast mit the depentment.

Technical assistance provided by Mr. M. Murphy and Ms. K. Stapleton, (Biochemistry student lab), Ms. L. Thompson (DSC lab), Ms. L. Lee (SEM lab) and Ms. M. Piranian (XRD lab) is gratefully acknowledged.

I would also like to thank Dr. A.M. Martin and Dr. F. Shahidi for providing me access to their laboratory facilities.

I would like to express my sincere thanks to the University of Sabaragamuwa, Sri Lanka for granting me study leave to undertake my postgraduate studies at Memorial University of Newfoundland, Canada.

I greatly appreciate Prof. M.U. Jayasekara, Dean Faculty of Agricultural Sciences, Sabaragamuwa University for his assistance extended towards my indiper studies. Thanka are also extended to Dr. Ranaweera and Dr. Mahalayanaarachchi for their support. I highly appreciate Prabodh Ilukpittya and H.M. Chiltayake for the support utures and other materials.

IV.

TABLE OF CONTENTS

	Page
Abstract	
Acknowledgments	iv
Table of contents	v
List of figures	VIII
List of tables	x
List of abbreviation	xii
Chapter 1. Introduction	1
Chapter 2. Review of literature	4
2.1 Starch-general introduction	4
2.2 Uses of starches	7
2.3 Starch granule characteristics	7
2.3.1 Surface of starch granule	9
2.4 Starch structure	11
2.4.1 Major components of starch	11
2.4.1.1 Amylose	11
2.4.1.1.1 Structure and confirmation of amylose	11
2.4.1.1.2 Location and co-crystallization of amylose	13
in the starch granule	
2.4.1.1.3 Complex formation of amylose and	15
V-polymorph	
2.4.1.2 Amylopectin	18
2.4.2 Minor component of starch	21
2.4.2.1 Lipids	23
2.4.2.2 Phosphate	24
2.4.2.3 Protein	25
2.4.3 Intermediate component of starch	26
2.4.4 Semi-crystalline structure of starch granule	26
2.4.41 Amorphous region of starch granule	28
2.4.4.2 Crystallinity	29
2.5 Properties of starch	35
2.5.1 Granular swelling	35
2.5.2 Gelatinization	37
2.5.3 Retrogradation	43
2.5.4 Starch hydrolysis	46
2.5.4.1 Acid hydrolysis	46
2.5.4.1.1 Mechanism of acid hydrolysis	47
2.5.4.1.2 Solubilization patterns of starches	48
2.5.4.2 Hydrolysis by α-amylase	50
2.6. Heat-moisture treatment	53
2.6.1 Influence of heat-moisture treatment on granule	53
morphology	
2.6.2 Influence of heat-moisture treatment on X-ray	56
pattern and X-ray intensities	

2.6.3 Influence of heat-moisture treatment on	57
amylose-lipid complexes	
2.6.4 Influence of heat-moisture treatment on	59
gelatinization parameters	
2.6.5 Influence of heat-moisture treatment on	59
swelling power and amylose leaching	
2.6.6 Influence of heat-moisture treatment on the	60
susceptibility of starch to acid hydrolysis	
2.6.7 Influence of heat-moisture treatment on the	60
susceptibility of starch to α-amylase hydrolysis	
Chapter 3, Materials and methods	62
3.1 Materials	62
3.2 Methods	62
3.2.1 Starch isolation	62
3.2.2 Granule morphology	63
3.2.3 Proximate analysis	63
3.2.3.1 Moisture content	63
3.2.3.2 Ash content	63
3.2.3.3 Nitrogen content	64
3.2.3.4 Lipid content	65
3.2.3.4.1 Lipid purification (Bligh and Dyer method)	65
3.2.3.5 Total phosphorous	66
3.2.3.6 Amylose content	67
3.2.3.6.1 Apparent amylose content	67
3.2.3.6.2 Total amylose content	67
3.2.4 Estimation of starch damage	68
3.2.5 Starch fractionation	68
3.2.5.1 Amylose	69
3.2.5.2 Amylopectin	70
3.2.6. Determination of the purity of isolated	70
amylose by gel permeation chromatography	
3.2.6.1 Iodine affinity	71
3.2.6.2 Determination of total carbohydrate	71
3.2.7 Determination of amylose structure	72
3.2.7.1 Degree of polymerization of amylose	72
3.2.7.2 Determination of total reducing sugar	72
3.2.7.2.1 Preparation of 3,5 dinitrosalicylic acid	72
3.2.8 Determination of amylopectin structure	73
3.2.8.1 β amylolysis limit	73
3.2.8.2 Number average chain length of amylopectins	73
3.2.8.3 Exterior and interior chain length of	74
amylopectins	
3.2.9 X-ray diffraction	74
3.2.10 Determination of relative crystalinity	75
3.2.11 Swelling factor	75

3.2.12 Amylose leaching	76
3.2.13 Gelatinization parameters	77
3.2.14 Differential scanning calorimetry of retrograded	77
starch	
3.2.15 Acid hydrolysis	78
3.2.16 Enzymatic digestibility	78
3.2.17 Heat-moisture treatment	79
3.2.18 Statistical analysis	79
Chapter 4. Results and discussion	80
 4.1 Morphological granular characteristics 	80
4.2 Chemical composition	80
4.3 Molecular structure	81
4.4 X-ray pattern and crystallinity	83
4.5 Swelling factor and amylose leaching	88
4.6 Gelatinization parameters	91
4.7 Acid hydrolysis	94
4.8 Enzyme hydrolysis	98
4.9 Retrogradation	101
Chapter 5. Summary and conclusion	104
Directions for future research	105
Publications	106
References Appendix	107

LIST OF FIGURES

Figure	3	Page
2-1	World starch production and distribution	5
2-2	Information available (% of publications) on various starches	6
2-3	Structural representation of amylose and amylopectin	12
2-4	Schematic illustration of amylose-lipid inclusion	16
2-5	Chain segment designations and chain clusters projected for amylopectin	20
2-6	Model for the semi crystalline structure of the starch granule	27
2-7	X-ray diffraction pattern from different starches	30
2-8	Double helical packing and arrangement in A and B-type unit cell structure	33
2-9	Proposed model for branching patterns of A and B-type starches	34
2-10	The process of swelling of a potato starch granule in hot water	36
2-11	Schematic representation of side-chain liquid crystalline model starch	39
2-12	Models for gelatinization process based on water content available during gelatinization	40
2-13	Schematic representation of starch gel and conformational changes occurring during amylose gelation	45
2-14	Mechanism of acid hydrolysis of starch	49
2-15	Schematic representation of the temperature and moisture in gelatinization, annealing, and heat-moisture treatment	54
2-16	Model of the polymorphic transition from B to A starch, in the solid state	58
4-1	X-ray pattern of native and heat-moisture treated tuber and root starches	85

4-2 Acid hydrolysis of native and heat-moisture treated tuber and root 95 root starches

LIST OF TABLES

Tab	le	Page
2-1	Some of the food and non-food applications of starch and its derivatives	8
2-2	Size and shape of starch granules from different botanical origin	10
2-3	Physicochemical characteristics of amylose of different starches	14
2-4	Proximate compositions of starches from different botanical origin	22
2-5	X-ray pattern and crystallinity of different starches	31
2-6	Gelatinization parameters of starches from different botanical origin	42
2-7	In vitro amylolysis of various starches	52
2-8	Literature available for heat-moisture treatment conditions of starches	55
4-1	Chemical composition (%) and some of properties of tuber and tuber and root starches	82
4-2	Structure of amylose and amylopectins of tuber and root starches	84
4-3	X-ray pattern and relative crystallinity (%) of native and heat-moisture treated tuber and root starches	87
4-4	Swelling factor of native and heat-moisture treated tuber and root starches	89
4-5	Amylose leaching (5) of native and heat-moisture treated tuber and root starches	90
4-6	DSC characteristics of native and heat-moisture treated tuber and root starches	92
4-7	Enzyme hydrolysis (%) of native and heat-moisture treated tuber and root starches	99

4-8 Enthalpy of retrogradation (△H_R) of native and heat-moisture 102 treated tuber and root starches monitored by differential scanning calorimetry

LIST OF ABBREVIATIONS

ΔH	Enthalpy of gelatinization
ΔHe	Enthalpy of retrogradation
AACC	American association of cereal chemists
ACS	American chemical society
AM	Amviose
AMI	Amylose leaching
AMP	Amylopectin
CI	Chain length
Čln	Number average chain length
CP/MAS - NMR	Cross polarization magic angle spinning nuclea
	magnetic resonance
Da	Dalton
db	Dry weight basis
DMSO	Dimethylsolfoxide
DNS	Dinitrosalicylic acid
DP	Degree of polymerization
DP-	Degree of polymerization-number average
DSC	Differential scanning calorimetry
ECL	External average chain length
F-AM	Lipid free amylose
FFA	Free fatty acids
GL	Glycolipids
GPC	Gel permeation chromatography
HMT	Heat-moisture treatment
ICL	Interior average chain length
LPL	Lysophospholipids
L-AM	Lipid amylose
MW	Molecular weight
PPA	Porcine pancreatic a-amylase
PL	Phospholipids
PW	Propanol water
SF	Swelling factor
SAXS	Small angle X-ray scattering
TG	Triglycerides
To	Onset of gelatinization temperature
T.	Peak gelatinization temperature
T _c	Conclusion of gelatinization temperature
T _c -T _o	Gelatinization transition temperature range
v/v	Volume/volume
WAXD	Wide angle X-ray scattering and diffraction
w/v	Weight / volume

INTRODUCTION

Tuber and root crops are grown throughout the world in hot and humid regions. where with sun and rain, and little or no artificial inputs, they are able to grow in great abundance. They are the plants yielding starchy roots, rhizomes, corns, stem and tubers. Tuber and root crops contain 70-80% water. 16-24% starch and trace quantities (<4%) of proteins and lipids. Some of the root and tubers that are grown for edible purposes are: potato (Solanum tuberosum), sweet potato (Ipomea batatas), true yams ((Dioscorea) species (D. alata, D. cayenensis, D. spicata, D. bulbifera, D. esculenta, D. abvssinia)1 arrowroot (West Indian arrowroot (Maranta anundinacea). Indian arrowroot (Hutchenia caulina). East Indian arrowroot (Tacca leonto petaloides), buffalo gourd (Cucurbita foetidissima), Kuzu (Pueraria hirsuta), Cassava (Manihot esculenta) and edible aroid root crops belonging to the family araceae which include five genera (Colocassia, Xanthosoma, Amorphallus, Alocassia and Cytosperma) (Hoover, 2001) The agronomic and phenotypic properties of tropical tuber and root starches are well documented, however, their structure and physicochemical properties, have not been studied extensively. Therefore, intensive research and product development such as physical modification (heat-moisture treatment, annealing) and chemical modification (cross-linking, substitution, cationization) are needed to evoloit tuber and root starches.

Heat-moisture treatment of starches is defined as a physical modification that involves treatment of starch granules at low moisture levels (< 35% moisture w/w) during a certain time period (15min --16h) and at a temperature (84 --120°C)

above the glass transition temperature (Tg) but below the gelatinization temperature. Under the above conditions, changes in X-ray pattern, crystallinity, starch chain interactions, granule swelling, amylose leaching, viscosity, gelatinization parameters, retrogradation, acid and enzyme hydrolysis have been shown to occur in cereal (Sair, 1967; Fukui and Nikuni, 1969; Lorenz and Kulp, 1981, 82, 83; Donovan et al., 1983; Hagiwara et al., 1991; Radosta et al., 1992; Kobayashi, 1993; Maruta et al., 1994; Kawabata et al., 1994; Schierbaum and Kettliz, 1994; Franco et al., 1995; Hoover and Manuel, 1996; Takava et al., 2000), tuber (Sair, 1967; Lorenz and Kulp, 1981.82; Donovan et al., 1983, Kuge and Kitamura, 1985, Stute, 1992, Kobavashi, 1993, Abraham 1993, Hoover and Vasanthan, 1994, Hoover et al., 1994, Schmiedl et al., 1998, Stoof et al., 1998 Collado and Corke, 1999, Collado et al., 2001) and legume (Hoover et al., 1993. Hoover and Vasanthan, 1994) starches. Changes to starch structure and properties on heat-moisture treatment have been found to vary with the source. For instance, tuber starches have been shown to be more susceptible than legume or cereal starches towards heat-moisture treatment (Hoover and Vasanthan, 1994, Jacobs and Delcour, 1998). Most of the studies on heatmoisture treated tuber and root starches have been on potato and sweet potato starches. Thus, it is difficult to ascertain whether changes observed during heatmoisture treatment of the above starches are truly representative of tuber and root starches. Furthermore, tuber and root starches exhibit different types of unit cell structures (A, B, A+B) [Hoover, 2001] Consequently, the magnitude of starch

chain realignment and/or interactions during heat-moisture treatment may vary widely among these starches.

The objective of this study was, therefore, to examine changes to starch structure and physicochemical properties on heat-mosture treatment (under identical time / temperature / moisture combinations) of some selected tuber and root starches. This study is of significance, since there is a growing interest in physical modification of starches for food and no-rood acadications.

2. Review of Literature

2.1 Starch - General introduction

Starch is the major reserve polysaccharide material of photosynthetic tissues and of many types of storage organs such as seads, swollen stems, tubers and roots Starch is the second impest biomas, and the calculation of the storage organization most important source of starches are cereal grains, (40 to 50% of their dry weight), publes (30 to 70%) and tubers (65 to 65%). Starch is predominantly produced in highly industrialized countries like the USA. EU and Jagan (Fig. 2-1 A and B). Other starch containing rew materials from which starches are separated in small production units (mainly in Asia) are sago, palm, eveet potato, arrownod, umananth, sorghum, fotus, smooth pea, taro, cassava, mung bean, lentis, and wide de.

Tuber and root starches such as cassawa, arroword, taro, sago, weret potato and yam have served as staple foods for people throughout the hot and humid regions of the words. These orgos are naturally suited to topical agro-climate oraditors, and they grow in great abundance with little or no artificial inputs. A recent study by the Post Harvest Management Services (Satin, 2001) found that, while exhaustive research has been carried out on their agronomic and phenotypic properties, topical tuber and root crops have not benefited from the fixed or value added research required for competitiveness on an international scale (Satin, 2001), and consequently, com, potato, rice continue to dominate lucrative world markets for starches in food and non-food industries. At the present time, there is addert) of research are up to starches.

Fig. 2-1 World starch production and distribution (Adapted from International

Starch Institute, (1999)

Fig. 2-2 Information available (% of publications) on various starches (Adapted from Satin, 2001)

stry (Table 2-1), No other 1.62 3.66 5.68

> E Yam Millet D Sorghum Cassava Rice Rice Polao E Polao

(Fig. 2-2). It is therefore, clear that extensive research must be carried out on these starches if they are ever to become competitive with corn, wheat, rice, and potato.

2.2 Uses of starches

Starch is used in both the food and non-food industry (Table 2-1). No other ingredient provides texture to as many foods as starch does. Whether it is a soup, stew gavy, or lefting, sauce or curstand, starch provides a consistent hadres satisfue product that consumers rely upon. Functionality is the key to marketing starches in the wide range of food applications such as specific viscosity, mouth feel, plate coating, heree-thaw stability, clarity, emulaion stability capacity, color, fim-forming progregments and anti-cating.

2.3 Starch granule characteristics

Granule size and morphology have received much attention recently, since size of granules are important in determining the taste and mouth feel of some stanch based far minetics (Alexander, 1922). The granules are granular cystalline, insoluble in cold water and their size, the shape, and the composition are essentially genetical. Starch granules may be spherical, oval, polygonal, disk, kinner shaped or robustle (Jan et al. 1994).

Food applications	Examples		
Canning	filling viscosity aid, suspension aid,		
	body or texture agent, aseptically		
	canned product		
Cereals and Snack	hot extruded snacks, chips, ready-to-		
	eat cereals, pretzels		
Bakery	pies, tarts, fillings, glazes, cakes		
Batters and bread	coated fried foods, dry mix coating		
Dressings and Soups	low-fat dressing, soups and chowder		
Cooked Meat binder	pet foods, smoked meat		
Non-food application	Examples		
adhesives	hot-melt, stamps, wood adhesives		
paper industry	internal sizing, filler retention		
textile industry	wrap sizing, printing, fabric finishing		
metal industry	sand casting binder, foundry core		
	binder, sintered metal additive		
cosmetic and pharmaceutical industry	dusting powder, make-up, face cream		
mining industry	ore flotation, ore sedimentation		
construction industry	asbestos, clay, plywood/chipboard		
	adhesive, paint filler		
Biodegradable plastics	Films, coating and food packaging		

Table 2-1. Some of the food and non-food applications of starch and its derivatives (Adapted Satin, 2001; and Galliard, 1987)

In general, cereal stach granules are small and polyhoddic, where as, tuber starch granules are large and spherical or ellipsoid. Most of the tuber and root starches are simple granules, the ocception being cassave and two starches, which appear to be a mixture of simple and compound granules (Hoover, 2001). The sizes and shapes of tuber and noot starch granules are presented in (Table 24).

2.3.1 Surface of starch granules

The outer surface of the starch granule plays an important part in many applications of starch, but there is a lack of definitive information on the nature of starch surface (Galliard and Bowler, 1987). When observed under a scanning electron microscope the surfaces of all granules of root and tuber starches appear smooth with no evidence of any fissures (Hoover, 2001). However, Fannon et al. (1992) discovered pores on the surface of corn, sorghum, and millet starch granules which are real anatomical features of the native granule structure and not artifacts of drving, specimen preparation or observation techniques . Surface pores on granules of corn, sorghum and millet are openings to channels that penetrate in a radial direction through the granule (Fannon et al., 1993: Baldwin et al., 1994: Huber and miller, 1997). Several researchers (Gallant 1973 Fuwa et al. 1997: Planchot et al. 1997) have postulated that pores on the granule surface increase the accessibility of «-amylase into the granule interior. Planchot et al. (2000) have shown by dynamic light scattering. HPAEC-PAD and polyethylene glycol molecular probes, that wet starch granules

Starch source	Shape of granules	Size of granules	References
1. Tuber and root			
Potsto	oval . spherical	15-110	Sivak and Preiss. (1998): Moorhy. (1994)
Potato (watery)	round, oval	14-44	McPherson and Jane. (1999)
Sweet potato	round, oval and polygonal	2.42	Lim et al., (1994); Seog et al., (1967)
Sweet potato (Dipioid hybrid)	round, angular	8.5	Shiotani et al. (1991b)
Sweat potato (tetrapioid hybrid)	round, angular	14.8	Shiotani et al., (1991b)
True yam (Dioscorea alata)	round , oval	6 - 100	Moonthy, (1994)
True yam (Dioscorea rotundata)	round, ovail	10-70	Moonthy, (1994), Emiola and Delarossa, (1981)
True yam (Dioscorea esculenta)	Inno. buo	1-5	Yu et al. (1999)
True yam (Dioscorea abyssinica)	buno	29.2	Mariam and Schmidt, (1998)
True yam (Dioscorea cayenesia)	round, oval	28.5-30.6	Emiola and Delanossa, (1981)
True yam (Dioscorea dumetorum)	round ovai	28.5-30.6	Emiola and Delarossa, (1981)
Elephant yam	round, polygonal	3-30	Moorthy, (1994)
Cassava	found	5-40	Moonthy, (1994)
Queensland arrowroot	oval, eliptical	13-57.6	Soni, et al., (1999)
West Indian arroroot	round, oval, polygonal	10-16	
Kuzu	polygonal	3-23	Soni and Agarwal, (1963); Suzuki et al., (1961)
Taro	polygonal	3-35	Lim et al. (1994)
Cost.			
New occovern	Manufactore and April 1994	10-00	Moorthy, (1994)
Lotus	rod like-round	15-40	Suzuki et al., (1992)
Buffalo gourd	oval to eliptical	2-24	Dreher and Berry, (1983)
Lity	elliptical, polygonal	30-35	Takeda et al., (1983); Jane et al. (1994)
2. Cereals			
Oat	bundung	2.15	Jane et al., (1994)
Wheet	lenticular, polyhedrail	20-35	Lineback, (1984)
Meize (normal)	round .polyhedral	3-28	Elensherd, (1987)
Rice	polugonal	3.6	Jane et al., (1994)
3. Legume			
Lertil	ellipsoidal	10-20	Jane et al., (1994)
Mung bean	oval, irregular	10-27	Jane et al., (1994)
Chick pea	spherical, oval	10-27	Jane et al., (1994)

Table 2-2. Size and shape of starch granules from different botanical origin

can be considered as a porous substrate permeable to low molar mass solutes such as matho oligosaccharides or small polyethylene glycols. Whereas, molecules with a hydrodynamic radius greater than 0.6mm cannot penetrate such a substrate.

2.4. Starch structure

2.4.1. Major components

2.4.1.1. Amylose

2.4.1.1.1. Structure and conformation of amylose

The two migic components of starch are amylose and amylopedin. Amylose, the minor component, consists mainly of α -(1-+4) linked glucose units (Fig. 2-3 A). The degree of polymerization (DP) of this linear polymer is usually in the range of 500-600 units (Jacobs and Delcour, 1998). However, a slight degree of branching (9-20 branch (α -(1-+6) points per molecules) has been reported in amylose from various starches (Rizakuri et al., 1981). The side chains range in chain length from 4 to over 100 (Hizakuri et al., 1981). The side chains range in amylose (Greenwood and Thompson, 1959). Evidence of the occurrence of branching points in amylose is its incomplete conversion into mailose by β amylose: (β emylosis has been shown to vary from 73 to 56% (Morrison and Kantalas, 1990). The molecular weight of amylose has been reported to vary between 10⁴ and 150 Morrison and Kantalas. 1969. Linkuru et al., 1989).

п

Fig.2-3 Structural representation of amylose (A) and amylopectin (B)

(A)

Arryose alsolated from luber and root starches, such as potato and tapoca have larger molecular sizes than those isolated from cereal starches, such as maize, rice, and wheat (Taikeda et al., 1980). The conformation of any tryose has been be subject of controversy and has been shown to vary from helical to an interrupted helix, to a random coll. In alkaline solutions (KOH) and in dimethyl sufloxide (DMSO) smylose probably has an expanded coil conformation, while in water and neutral aqueous potassium chicride solutions it is a random coil with short, toose helical asgement (Banks and Greenwood, 1977). Jaar and Raby, (1985) identified (using "CNMR) expanded and compact helical conformations in aqueous amylose solutions in the absence and presence of complexing agents, respectively. Physiochemical characteristics of amyloses of different botanical onjoin are presented in (Table 23).

2.4.1.1.2 Location and co-crystallization of amylose in the starch granule

Comparison of the amylose content in starch of different maturities has suggested that amylose is more concentrated at the periphery of the starch granule (Boyer et al., 1976). Blanshard, (1960) postulated that amylose is separated from amylosetin in the granules of maize and wheat starches and is partly co-crystallized with amylopedin in polato starch. Cross-linking of maize and potato starches and characterization of the products by molecular sieve chromatography showed that amylose was cross linked with amylopedin and that there was no coss-linking between amylose molecular (and et al. 1982).

Starch source	lodine binding	Limiting viscosity	Degree of	β amylolysis limit
	capacity g/100g)	number (ml/g)	polymerization	(%)
1. Tuber and				
roots				
Potato	20.0	266-507	-	-
Cassava	20.5	-	-	-
Sago	19.9	-	-	-
Sweet potato	18.4-18.8	384	-	
Yam	19.9	-	-	-
Buffalo gourd	20.2	384	-	
2. Cereals				
Maize	20.1	179	930	84
Rice	20.0-21.1	180-216	990-1110	73-84
Barley	19.1-19.9	-	1700-1900	-
Sorghum	14.3-15.3	-	-	
Wheat	20.5	-	300	82
3.Legume				
Lentil	19.6	258-264		
Mung bean	19.4	188	-	-
Smooth pea	18.8-19.2	251		-
Wrinkled pea	17.9-19.2	180-194		
Navy bean	18.5	136-150	-	-
Black bean	22.0	174	-	-

Table 2-3 Physicochemical characteristics of amylose of different starches (Adapted from Hoover, 1995)

Kasemsuwa and Jam, 1994). These dats suggested that in granular starch, amylose molecules do not exist in the form of bundles at the amorphous region but, rather, are interspeed among the amylopedin molecules. Billideris, (1988) that postulated that some amylose molecules participate in double helices with amylopedin and thereby become less prone to aqueous leaching or complexation with indime. Jerkim and Donald, (1985) have shown by studies on normal, waxy and amylomaize starches that although the amylopedin cluster size remained constant, increasing the amylose content had the effect of increasing the size of the crystalline portion of the cluster. The above authors postulated that amylose acts to disrupt the packing of amylopedin chains within the crystalline lamella. Supporting evidence for this hypothesis was provided by the apparent reduction in crystalline lamella electron density with increasing anvices content.

2.4.1.1.3. Complex formation of amylose and V-polymorph

Amyose can form film and complexes with ligands. When amyose forms complexes with various ligands another crystallographically distinct structure of stach, the V-polymorph is formed (Bildarient, 1998). Repenseker and Zugermaier, (1981) and Hinrichs et al., (1987) have shown that the chain conformation in V-amyose is a left handed single helix with aix residues per turn and for complexes with aliphatic alcohols and monoacyl lipids the rise per monomer residue approximately 132-1349/ (Fig. 24). However, whon the septomatic structure is approximately 132-1349/ (Fig. 24). However, whon the septomatic structure is approximately 132-1349/ (Fig. 24).
Fig. 2-4 Schematic illustration of amylose - lipid inclusion (Adapted from Carlson

et al., 1979)

ligand is bulkier than a hydrocarbon chain, helices of seven or eight glucose residues per turn are also feasible (French and Murphy, 1977). X-ray diffraction diagrams of granular starches do not usually show the presence of V-structures. with the exception of wrinkled pea starch, amylomaize, and some other maize genotypes (dull, su) [all with amylose contents greater than 30% (Zobel, 1988a; Gernat, et al., 1993; Zobel, 1992)]. The lack of V-type characteristics peaks upon X-ray analysis does not necessarily prove the absence of amylose-lipid complexes. It merely indicates the absence of organized helices into well-defined three -dimensional structures (Biliaderis, 1998), Recently, 13CCP/MAS-NMR studies provided the proof for the presence of V-conformation in granules of maize, oat, barley, and wheat starches (Morgan et al., 1995; Morrison et al., 1993). The features in the CP/MAS-NMR spectrum indicative of single Vamviose helices were: (1) the presence of a broad resonance peak at 31 ppm (corresponds to mid chain CH₂ carbons of monoacyl lipids), which reflects a solid state structure of lipids due to steric constrains in the helical cavity, and (2) a signal of C-1 at 103-104 npm attributed to V conformation. These resonances are enhanced in linterized starches (Morrison et al., 1993). Gernat et al. (1993) also showed the existence of V structure (indicative of amylose-lipid complex in native starch granules) by X-ray scattering studies on enzymatically degraded wheat starch. Development of V-type polymorph can be induced by heatmoisture treatments of starch (18-45% moisture, 90-130°C for 1-16h) (Zobel, 1988a), and by extrusion cooking (Mercier, et al., 1979 and 1980) or simply by delatinization and cooling of starch dispersions. Under such hydrothermal

conditions there is increased chains mobility which leads to complex formation between amylose chains and naturally occurring monoacyl lipids. Calorimetry and X-ray diffraction have been widely used to study the amylose-lipid complex (Hoover and Hadzivey, 1981; Biliaderis et al., 1993; Karkalas et al., 1995; Biliaderis et al., 1986; Biliaderis and Senaviratne, 1990; Galloway et al., 1989). The formation of a helical complex between amviose and jodine gives rise to the typical deep blue color of starch dispersions stained with indine and forms the basis for quantitative determination of amylose content (Hoover 2001) Understanding the supermolecular structure, stability, and transformations between the various forms of amvlose-lipid complexes is of great fundamental and technological importance, considering the multifunctional role of lipids in starch based products. For, example, incorporation of monoolycerides in the dough is known to retard starch retrogradation and bread firming (Billaderis et al. 1991; Krong, 1971). Similarly, monoglycerides added to dried potato granules prevent stickiness (Hoover and Hadzivev, 1981). Improvements in structural integrity of cereal kernels (eq. rice parboiling) (Biliaderis et al., 1993) as well as decreased swelling, solubilization, and thickening power (Galliard and Bowler, 1987).

2.4.1.2 Amylopectin

Amylopectin is the major component of starch granules with an average molecular weight of the order 10^7 - 10^6 (Aberle, 1994). It is composed of linear chains of $(1\rightarrow 4)$ - α -D-glucose residues connected through $(1\rightarrow 6)$ - α -linkages (5-

6%), leading to highly branched, compact, structure (Fig. 2-3 B). The average unit size of chains of amylopectin is 20-25 (Hizukuri, 1985). Kobayashi et al. (1986) have shown that amylopectin molecules contain several distributions of chains (A. B. and C) which differ in their chain length. The unbranched A-chains are linked to B- chains and do not carry any other chains. the B-chains (B1-B4). carry one or more A-chains and /or B-chains, while the C-chain contains the reducing end group of the molecule (Fig. 2-5). The chain length of A and B1 chains and that of B2-B4 are 14-18 and 45-55, respectively (Hoover, 2001). The molar ratio of short to long chains varies between 3:1 and 12:1, depending on the botanical origin of starch (Hizukuri, 1985). Cereal starches generally have shorter chains in both long and short chain fraction and larger amounts of the short chain fractions, compared with those of tuber and root starches (Hizukuri, 1985; Hizukuri, 1986), Eurthermore, Hizukuri et al. (1989) have shown that the branching points of amylopectin molecules are not randomly distributed but are clustered and the inner adjacent linear segments form thin crystalline lamella domains (5 - 7 nm width). Due to the short length of the unit chains, amylopectin does not form a stable complex with amylopectin and binds only trace amounts (< 0.6%) forming a reddish brown complex (\u03c6mar at 530-540nm). Calorimetry studies have provided indirect evidence for weak interaction between amylopectin and lipids (Eliasson and Liunger, 1988). The 8-amylolysis limit of amylopectin (55 - 60%) is significantly less than that of amylose, since the activity of B-amylase is sterically hindered by the branch points in amylopectin. Morrison

Fig. 2-5 Chain segment designations and chain clusters projected for amylopectin

(B) Hizukuri, (1986 - with permission), φ = reducing chain-end, — = (1→4)- α-D-

glucan chain, $\rightarrow = \alpha - (1 \rightarrow 6)$ linkage

A

and Karkalas. (1990) have shown that there are three types of amylopedins: (1) high molecular weight amylopedin with A and B chains 5 - 15 glucose residues for the moment of the standard standard standard standard standard standard chains: (3) normal amylopedin which contains very long chains (CL 85 - 180) with frequent branching. Several legume and tuber stanches contain type 1 and 2 (Banks and Greenwood, 1975), while Hizukuri, (1996) has shown that tuber and root starches. The blue value, iodins affinity, organic phosphorous, βamylolysis, and average chain length amylopedin in tuber and root starches have been shown to be in the range 0.04 - 0.245, 0.66 - 11, 21 - 960, 33.8 -04 8 and 19-44 - rescentively (Hoops 2001).

2.4.2 Minor components of starch

The most abundant components of starch are any/opecant, which constitute almost of 100% starch dry matter. Apart from these main components, smaller amounts of other components such as proteins, free faity acids, other lipids and phosphate groups may also be present in amounts depending on the botainical source and starch isolation procedure. (Morrison and Laignelet, 1983; Morrison and Karkalas, 1990) and they impart dramatic effect on the physicochemical processing starch.

Statistical								
Name No. <th>Starch source</th> <th>Starch yield</th> <th>Amylose content</th> <th>Total lipid (%)</th> <th>Phosphorou</th> <th>s (% db) Inorganic</th> <th>Notrogen (%)</th> <th>References</th>	Starch source	Starch yield	Amylose content	Total lipid (%)	Phosphorou	s (% db) Inorganic	Notrogen (%)	References
Construction Sin Fig. Fig. Construction Construc	Potato	32	25.4	0.19	630.0	0.001	0.1	Kim et al., (1995); Lim et al., (1994)
Sections Instantiant Parametricanses Display (1) Display (2) <thdisplay (2) Display (2) <t< td=""><td>Potato (Viacey)</td><td></td><td></td><td></td><td>0.069</td><td>0.001</td><td></td><td>McPhersona nd Jane, (1999)</td></t<></thdisplay 	Potato (Viacey)				0.069	0.001		McPhersona nd Jane, (1999)
Starting (Section 1994) Control Contro Control Control<	Sweet potato	30	19.1	0.05-0.6	0.012	×	0.006	Collado et al., (1999); Um et al., (1994); Tian et al., (19
Department Transmit Stransmit Stransmit Marken Stransmit Strans	Sweet potato (Diploid hybrid)		28					Shiddani et al., (1991b)
Systems (Sample) Sign Gal Cal Sign Gal <td>True yam (Dioscorea</td> <td></td> <td>20.7</td> <td>0.05</td> <td></td> <td></td> <td>0.08</td> <td>Mariam and Schmidt, (1998)</td>	True yam (Dioscorea		20.7	0.05			0.08	Mariam and Schmidt, (1998)
Control <t< td=""><td>abyssinica)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	abyssinica)							
Statement/Losses Statement/Losses<	True yam (Dioscorea atate)	84.6	22.8-30	0.03		•	0.33	Emicla and Delarossa, (1951); Gallant et., (1982)
Construction Construction<	True yam (Dioscovea	88.0	10-24.6	8			0.29	Emiola and Delarossa, (1981); Gallant et al., (1982)
National Processor 1 0 1 0	dumetorum)							
Statement Participation Conservation St.	True yam (Discovera	Ì	30				0.013	Gallant et al., (1982); Rasper and Coursey, (1987)
Variation common 6.1 1.4 .0 .0 .1	estmented	2						
Systematic Solution	Elephant yam	3						mani et al., (1990)
Constraint Constra	Taro (old occoyam)	05.1	21.4	PR'	12010		BLOD'	Lim et al. (1994)
Control <t< td=""><td>New coccyam</td><td>43.8</td><td>23.7</td><td></td><td></td><td></td><td></td><td>Moorthy, (19940; Lauzon et al., (1995)</td></t<>	New coccyam	43.8	23.7					Moorthy, (19940; Lauzon et al., (1995)
Opported/VMM 1 14 0.31 0.01 Elsen (10) 20 20 Answer of Constant 40, 20 3 3.12 0.01 Dirac (10) 0.01 Elsen (10) Els	Cassava	Ì	18.6-23.6	0.1	800.0	0.001	0.008-0.0131	Lin et al., (1994); Defloor et al., (1998);
Open of Community D.3 <thd.3< th=""> D.3 <thd.3< th=""></thd.3<></thd.3<>	Arrow root (W.Indian)		18.4	0.32	,		0.03	Erdman, (1986)
Marker of Characteria XI BL / 1 Control	Cort.,							2
Bayes 31 15:17:0 06:14:0 00:06:0 10:06:00:0 00:06:00:00:00:00:00:00:00:00:00:00:00:0	Arrow root (Queensland)	60.3	38	0.3			0.01	Soni et al., (1890)
Bankappund 1 212 101-14 010-14 010-14 Distance (Distance) Grand 2 28.8 2 010-14 010-14 Distance (Distance) Grand 2 28.8 2 010-14 Distance (Distance) Distance (Distance) Distance (Distance) Distance (Distance) Distance (Distance) Distance (Distance) Distance <td>Kuzu</td> <td>34.2</td> <td>15.1-21.0</td> <td>0.48</td> <td>0.005</td> <td>ì</td> <td></td> <td>Soni and Agarwal, (1999); Suzuki et al., (1981)</td>	Kuzu	34.2	15.1-21.0	0.48	0.005	ì		Soni and Agarwal, (1999); Suzuki et al., (1981)
Upper 1 247 640mm 510mm	Buffalo gourd		23.2	0.92-1.14	0.01-0.05	,	0.28-0.49	Dreher and Berry, (1963)
Orby 1 28 2 Object Theorem 1. (1983; Jacobia (1994) 2014 21 11	Lotus		15.9		48 (ppm)	•	•	Suzuki et al., (1962)
Common 2022 11.17 D.054/37/bittely Common et al. <t< td=""><td>Lity</td><td>Ì</td><td>26.8</td><td>,</td><td>60(ppm)</td><td>33(ppm)</td><td></td><td>Takeda et al., (1963); Jane et al., (1994)</td></t<>	Lity	Ì	26.8	,	60(ppm)	33(ppm)		Takeda et al., (1963); Jane et al., (1994)
Open 11/1 0.06/07 (MH GR Guardian (LWB), VBC (MH Name 21 0.01 (MH 0.02 Guardian (LWB), VBC (MH Name 21 0.01 (MH 0.02 Guardian (LWB), VBC (MH 0.04 Name 21 0.01 (MH 0.02 Guardian (LWB), VBC (MH 0.04 Guardian (LWB), VBC (MH Guardian (LWB),	2. Cereals							
Open 1 11 0.0 0.00 0.00 None and Vulnema, 102, 104 Masse from 0 - 2.11 0.0 0.00 0.00 10.00	Oat		20.92	104.7	0.05-0.07 (to	Hall	0.05	Gibinski et al., (1993)
Write C C O 00 (1984) O 01 (1984)	Out		21.1	1.13	•		0.03	Hoover and Vasanthan, 1992, 1994
Make (soma) . ZA 0.7 0.02 (btM) 0.10.013 3. Legitime .	Wheat			8.0	0.05 (total)		0.07	
3. Legume - 36.7 0.14 - 0.02 Hoover and Vasanthan, (1994) Dea 31.7 42 0.31 - 0.04 Retrevolve and Vasanthan, (1994)	Maize (normal)		23.7	0.7	0.02 (total)		0.10-0.13	
Lentil - 35.7 U.14 - 0.04 Retrievable 48.2001) Pee 31.7 42 0.31 - 0.04 Retrievable 48.2001)	3. Legume							
	Lens		30.1	0.14			2	

2.4.2.1 Lipids

The lipid composition of starches from a variety of sources has been described by Vasanthan and Hoover, (1992), while the lipid in cereal starches have been extensively reviewed by Morrison, (1988, 1995). In general, cereal starches contain 1-2% lipids (Tester, 1997) but the content is lower in waxy varieties and higher in high amylose starches (Morrison, 1995). Tuber and root starches contain generally low amounts of lipids (< 1%) (Table 2-4) [Hoover, 2001.]. Lipids associated with isolated cereal starch granules have been found to occur on the surfaces as well as inside the granules (Morrison and Laignelet, 1983: Morrison, 1981). The surface lipids are mainly triplycerides (TG), followed by free fatty acids (FFA), glycolipids (GL) and phospholipids (PL). The internal lipids of cereal starches are predominantly monoacyl lipids, with the major components being lysophospholipids (LPL) and FFA (Hargin and Morrison, 1980; Morrison, 1981). Both surface and internal lipids may be present in the free state as well as bound to starch components, either in the form of amylose inclusion complexes. (Acker, 1997) or linked via ionic or hydrogen bonding to hydroxyl groups of the starch components (Hoover and Vasanthan, 1992). There has been some controversy whether amylose-lipid complexes exist in the intact granules or whether they are formed when granules are swollen or hydrated, but not necessaraly gelatinized. Studies using 13CCP/MAS NMR and DSC have confirmed that lipid amylose complexes and lipid free amylose are both present in cereal starches (Morrison et al., 1993). Swinkels, (1985) summarized the effect of starch lipids as: (1) forming 'inert' complexes with amylose in starch pastes

and films, hence preventing part of the amylose from contributing the thickening power of gelatitized starch, (2) giving rise to undesirable flavors by oxidation of unsaturated lipids (found on the granular surface), (3) reducing granular swelling and amylose leaching.

2.4.2.2 Phosphate

Root and tubers contain significant amounts of mono phosphate esters covalently bound to starch (Table 2-4) [Lim et al., 1994; Kasemsuwan and Jane, 1994]. Many of the desirable qualities of potato starch such as enhanced paste clarity, high peak consistency, significant shear thinning and slow rate extent of retrogradation are attributed to its phosphate content (Jane et al. 1996: Galliard and Bowler. 1987). Starch phosphate - monoesters in native potato starch are mainly found on amylopectin (Jane et al., 1996). The distribution of the phosphate monoester content on the C2, C3 and C8 of the glucose unit of potato starch has been reported to be 1, 38, and 61%, respectively (Hizukuri et al., 1970: Tabata and Hizukuri, 1971). Takeda and Hizukuri, (1982) have shown that potato amylopectin contains one phosphate monoester group per 317 glucosyl residues. The above authors also showed by isoamvlase debranching and ß amylase treatment, that phosphate groups are present in the long branch chain (B chains with average degree of polymerization ~ 41). The phosphate group in notato starch has been reported to be located more than 9 glucosyl residues away from the branch point (Takeda and Hizukuri, 1981, 1982). Jane and Shen, (1993) have shown that phosphorous in potato starch is located densely in the

2.4.2.3 Protein

Nitrogen present in the starch lipids (Lineback and Rasper, 1988). Nitrogen content of tuber and root starches generativy range from 0.0006 to 0.49% (Table 2-4) [Hoover, 2001]. The protein content of in purified starch is a good indicator of starch purify. Alkali extraction is very effective in solubilizing protein, herefore, careful washing of crude starch with diluted alkalic an reduce protein values in purified starches. In what starch, the protein content has been estimated to be 0.1-0.25% (Eliasson and Lancon, 1993), whereas a broader range has been reported for legume starch, 0.05-1.12% (Hoover and Sosukik, 1985). Approximately 10% of the starch protein appears to be associated with the granule surface (Calificat and Bowler, 1997).

2.4.3 Intermediate component of starch

Manners, (1985) has show that some staches contain a third polyascharáde, usually referred to as an intermediate fraction, which has more of less branched materials. However, the average chain length and number of chains per molecule differ from those of amylose and amylosectin. Therefore, this intermediate fraction can not be categorized either as amylose or amylopedin (Colorna and Merrier, 1984; Hikakuri, 1996), Asaoka et al. (1986) and Inouchi et al. (1987) have observed such a intermediate fraction in high-amylose target starch (Tester et al., 1991; Salmonoson and Sundherg, 1994). The anomalous amylopedin of amylomaize starch was shown to be a mixture of short linear amylopedin of amylomatic starch was shown to be a mixture of short linear amylopedin of amylomedia starch was shown to be a mixture of short linear amyloped (DP10) and normal amylopedin (average chain length 25) (Banks and Greenvood, 1998; Bank et al., 194).

2.4.4 Semi crystalline structure of starch granule

Different techniques have been employed to study the structural organization of the starch granule. Among these, electron microscopy, wide angle X-ray scattering and diffraction (WAXD), small angle X-ray scattering (SAXS), solid state ¹⁰C-NMR, various viscometric techniques, and differential scanning calorimetry (DSC) are the most widely used (Billaderis, 1998). However, each of these methods is sensitive to a different level of structure, and over a range of distances, present in a starch system. The molecular order of the starch granule arrangement of amoves and amolecular within the granule, which oovers the variancement of amoves and amolecular order of the starch granule arrangement of amoves and amolecular order of the starch granule arrangement of amoves and amolecular order of the starch granule arrangement of amoves and amolecular order of the starch granule and the starch system. The molecular order of the starch granule arrangement of amoves and amolecular order of the starch granule and the starch system. The molecular order of the starch granule and the starch system. The molecular order of the starch granule and the starch system. The molecular order of the starch granule and the starch system. The molecular order of the starch granule and the starch system. The molecular order of the starch granule and the starch system. The molecular order of the starch system.

- Fig. 2-6 Model for the semi crystalline structure of the starch granule (Donald, 1997 with permission)
- (A) Stacks of amylopectin lamellae are separated by amorphous growth ring
- (B) A magnified view of one stack, showing that it is made up of alternating crystalline and amorphous lamellae
- (C) Double helices formed from amylopectin branches in crystalline lamellae.

Amylopectin branch points are located in the amorphous lamellae

physicochemical properties of native starches is still under investigation. The crystalline lamellae exist in the granule alternatively with anorphous lamellae (Fig. 2-6). The combined thickness of crystalline lamellae plus anorphous lamellae is 0 mm and 2 mm for A-type starches and B-type starches respectively (Jenkins et al., 1993; Jane, 1997). Jenkins et al. (1994) postulated that most of the amylose is deposited in amorphous growth rings which represents the amorphous background. Yamaguchi et al. (1979) showed that clusters of amorboosts hot chains court with the crystalline domains of the annule.

2.4.4.1 Amorphous region of starch granule

The amorphous region accounts for 70% of the starch granule (Costegete) and Van Bruggen, 1993), and consists of free amylose, lipid-complexed amylose, and some branch points of amylopectin (Hizukuri, 1998). The conformation of chains in the amorphous domains appear to be mainly a single helic or random coil (Gidley and Bociek, 1995, 1988). The amorphous region has been shown to be very susceptible to chemical and enzymetic modification (Hood and Mercier, 1978; Robyt, 1994). Diffusion of small water soluble molecules (< 1000 Dathon) in the granule also occurs through the amorphous phase. At the present time, there am to techniques to distinguish between mobile amorphous region (Bpd free amylose and branching regions of amylopectin) and solid like V-amylose chains. Billadoris, (1989) has postulated that there is no sharp demarcation between crystalline and amorphous domains in granular stach. Instead, a range of studurus is accurde between well-develoced ortatilise and fluid isodrets

regions. In this type of suppr molecular organization, the amorphous and crystalline phases are interdependent. The argument provided by Gallant et al. (1997) on the organization of lamellae and their polymeric constituents in organiar starch concurs with the above costulate.

2.4.4.2 Crystallinity

X-ray diffractometry has been used to reveal the presence and characteristics of crystalline structures of starch granules (Katz and Van Itallie, 1930; Zobel, 1988a; Hizukuri et al., 1983; Cheetham and Tao, 1998; Ratnavke et al., 2001), The crystallinity of starch is due to its amylopectin component (Banks and Greenwood, 1975; Blanshard, 1987; Hizukuri, 1996; Biliaderis, 1998), and the crystalline domains are constructed mainly of 'A' chains and outer 'B' chains of amylopectin (Hizukuri, 1996). Starch is classified accordingly to the packing arrangement of the amylopectin double stranded helices in the granules, namely A-, B, and C- type (Fig.2-7) as determined by differences in the X-ray diffraction pattern. The 'A' type crystallinty is found mainly in cereal starches and is characterized by peaks at 15°, 17°, 18°, 20 and 23 29 angles (Zobel, 1988a; Cheetham and Tao, 1998). Most of the tuber and root starches exhibit the typical 'B' type X-ray pattern (Zobel, 1988a) with peaks that are both broad and weak with two main reflections centered at 5.5° and 17° angles, the exception being loomea batatus (A and C. Mainhot esculenta (C., A. C), Nelumbo nucifera (Ca Cs), Dioscorea dumetorum (A) and Rhizoma dioscorea (Cs), (Table 2-5), The Cs. C_n and C_n classification is based on the extent of their resemblance to the 'A' and

Fig. 2-7 X-ray diffraction pattern from different starches (Zobel, 1988a - with permission)

Starch Source	X-ray pattern	Crystallinity (%)	Reference
1.Tuber and root			
Potato	В	28	Zobel, (1998a)
Sweet potato	A, C, C,	38	Zobel, (1998a), Moorthy, (1994), Lauzon et al., (1995)
True yam (Dioscorea abyssinica)	В		Mariam and Schmidt, (1998)
True yam (Dioscorea alata)	B		Moorthy, (1994)
True yam (Dioscorea esculenta)	В		Gallant et al., (1982)
Arrow root (gueensland)	B	26	Rickard et al., (1991)
Taro	A	45	Zobel, (1998a)
New Coco yam	A	24	Moorthy, (1994), Takeda et al., (1993)
Cassava	A. C., C	38	Zobel, (1998a), Moorthy, (1994), Gallant et al., (1982)
Kuzu	C.		Takeda et al., (1983)
Baffalo gourd	в		Dreher and Berry, (1983)
2. Cereals			
Rice			Zobel, (1998b)
Oat	A	33	Zobel,(1998b)
Wheat	A	36	Zobel, (1998b)
Rve	A	34	Zobel, (1998b)
Amylomaize	в	15-22	Zobel, (1998b)
Corn	A	40	Zobel, 1998b)
Waxy rice	A	37	Zobel, (1998b)
3. Legumes			
Field pea (Carnevel)		25.1	Ratnayake et al., (2001)
Field pea (Keoma		24.7	Ratnayake et al., (2001)

Table 2-5 X-ray pattern and crystallinity of different starches

'B' types or between the two types, respectively (Hizukuri et al., 1960), Legume starches have been shown to exhibit a 'C' type pattern (Hoover and Sosulski, 1991: Cheetham and Tao, 1998), with prominent peaks at 29 angles of 5.6° 15° 17°, 20° and 23°, Bogracheva et al. (1998) showed that in C-type starches the 'B' polymorphs are arranged centrally while the 'A' polymorphs are located peripherally within the granules. The amylopectin of 'A' type starches has a closer packing arrangement compared with that of 'B' type starches. The unit cell of anylopectin is estimated to hold 8 water molecules for the A-type and 36 water molecules for the B-type (Fig. 2-8) [Imberty et al., 1991; Zobel, 1988a). The C-polymorph is a mixture of A and B unit cells, and is thus intermediate between the A and B types in packing density. The type of crystalline polymorph has been shown to be mainly influenced (Hizukuri et al., 1983) by the chain length (CL) of amylopectin [A type CL < 19.7; B-type CL > 21.6], and starches exhibiting CL between 20.3 and 21.3 exhibit A, B or C-type patterns. Other factors influencing polymorphism are growth temperature (Hizukuri, et al., 1961). alcohol's and fatty acids (Hizukuri, 1996). The degree of crystallinity and the double helical content (in the amorphous and crystalline domains) of tuber and root starches have not been thoroughly investigated. Consequently, the influence of these parameters on starch properties can not be ascertained. Jane et al. (1997) have shown that in A -type starches, the branch α (1 \rightarrow 6) linkages are located within the crystalline and amorphous areas, whereas in B-type starches. the branches are located mainly within the amorphous area (Fig, 2-9).

Fig. 2-8 Double helical packing and arrangements in A and B-type unit cell structures (Adapted from Wu and Sarko 1978a, 1978b)

Fig. 2-9 Proposed models for branching patterns of (A) A-type starch and (B) Btype starch (Jane et al., 1997 - with permission) A - type amylopectin

B - type amylopectin

A - amorphous C - crystalline

2.5 Properties of starch

2.5.1 Granular swelling

Most starch granules are insoluble in water. When dry starch granules are placed in water, a small amount of water is absorbed (exothermic process), and the heat of immersion decreases to zero at a water content of 0.18g water/g dry starch for wheat and 0.20g water/g dry starch for potato (French, 1984). If the temperature is increased, the amount of absorbed water increases, until a certain temperature (the onset of gelatinization) the water uptake is reversible, but then the changes are irreversible. The sequence of events during swelling of potato starch is presented in (Fig. 2-10). Swelling power and solubility provide evidence of the magnitude of interaction between starch chains within the amorphous and crystalline domains. The extent of this interaction is influenced by the amylose/amylopectin ratio and by the characteristics of amylose and amylopectin in terms of molecular weight distribution and conformation. Granular swelling has been shown to be influenced by granular size (Vasanthan and Bhathy, 1996), amviose content (Eliasson, 1985; Tester and Morrison, 1990), starch damage (Karkalas et al., 1992), temperature (Colonna and Mercier, 1985), bound lipid content (Gudmundsson and Eliasson, 1987, Tester, 1997a) and crystallinity (Robin et al., 1975). Jenkins et al. (1994) showed that the initial absorption of water and the location of swelling occurs primarily within the amorphous growth ring rather than the amorphous lamellae.

Fig. 2-10 The process of swelling of a potato starch granule in hot water (Hancock and Tarbet, 2000 - with permission)

2.5.2 Gelatinization

Starch, when heated in the presence of excess water, undergoes an orderdisorder phase transition called gelatinization over a temperature range characteristic of the starch source. The above phase transition is associated with the diffusion of water into the granule, water uptake by the amorphous background region bydration and radial swelling of the starch granules, loss of optical birefringence, uptake of heat, loss of crystalline order, uncoiling and dissociation of double helices (in the crystalline regions) and amylose leaching (Stevens and Elton, 1971; Lelievere and Mitchell, 1975; Donovan, 1979; Billaderis, et al., 1980; Hoover and Hadzivev, 1981; Evans and Haismann, 1982; Jenkins, 1994). Jenkins, (1994) showed by means of small angle neutron scattering studies that the mechanisms proposed by Evans and Haismann, (1982), Blanshard, (1987) and Biliaderis et al. (1986) were not compatible with his results, but were in broad agreement with the gelatinization mechanism proposed by Donovan, (1979), According to Jenkins, (1994), gelatinization in excess water is a primarily a swelling driven process. This swelling acts to destabilize the amylopectin crystallites within the crystalline lamellae, which are rinned anart (smaller crystallites are destroyed first). This process occurs rapidly for an individual crystallite, but over a wide range for the whole granule. The same mechanism occurs in conditions of limiting water, however, there is insufficient water for gelatinization to proceed to completion. At higher temperatures the remaining crystallites simply melt. Recently, Waigh et al. (2000a) have proposed a model for gelatinization based on the side-chain liquid

crystalline model for starch. In this model, the lamellae in starch are considered in terms of 3 components; 1) backbone, 2) side-chain and 3) double helices (Fig. 2-11). It is the degree of mobility of those three components, coupled with the helix-coil transition, which gives starch its distinctive properties. Waigh et al. (2000a, b) used this model to explain the phenomena involved during hydration and gelatinization. Their postulate is as follows: (1) at low water contents (< 5% w/w) the amylopectin helices are in a glassy nematic state (Fig. 2-12A). Upon heating in a DSC a single endotherm is observed due to the helix to coil transition (Fig 2-12A); 2) Intermediate water (Fig. 2-12B) contents (> 5%, < 40% w/w) have two steps in their breakdown and there are correspondingly two DSC endotherms The first is thought to be due to the rearrangement of dislocation between constituent amylopectin helices leading to a semectic -nematic transition (Waigh et al., 2000b). The second is the helix to coil transition as the amylopectin helices unwind in an irreversible transition: 3) In excess (Fig. 2-12C) water (40% w/w) lamellae break up and the helix to coil transition occurs at the same point, since free unassociated helices are unstable. Gelatinization has been shown to be influenced by a number of factors: 1) species, 2) growth conditions, 3) extraction procedures, 4) water content, 5) added solutes 6) heating rate, 6) thermal history and 7) the malevolent influence of thermodynamic irreversibility (Waigh et al., 2000a). Many methods are presently available for the determination of the gelatinization, such as Kofler hot stage microscope (Watson, 1964), X-ray diffraction (Zobel, 1988a), DSC (Donovan, 1979), pulsed nuclear magnetic resonance (Lelievre and Mitchel, 1975), enzymatic digestibility

Fig. 2-11 Schematic representation of side-chain liquid crystalline model for starch (Waigh, et al., 2000a, with permission)

Fig. 2-12 Models for gelatinization process based on water content available during gelatinization (Waigh et al., 2000a - with permission)

(A) The single stage process in the gelatinization of starch at low water contents

(B) The two-stage process involved in the gelatinization of starch in limiting water (intermediate water content)

(C) The two stage process involved in the gelatinization of starch in excess water: relative values of the orientational = ϕ , lamellar = ψ , and helical order parameter = h

(B) Intermediate water content gelatinization

(C) Excess water content gelatinization

(Shiotsuba, 1983), small angle X-ray scattering (Jenkins, 1994), and small angle neutron scattering (Jenkins, 1994). However, only the Kofler hot stage microscope and DSC have been widely used to study the gelatinization temperatures of root and tuber starches (Table 2-6). Kofler hot stage microscopy is limited by the subjective nature of the observations (loss of birefringence) and only temperature measurements are obtained (Table 2-6). DSC measures the gelatinization transition temperatures [onset [T_a], midpoint [T_a], conclusion [T_c], and the enthalpy (AH)] of gelatinization. Noda et al., (1998) have postulated that DSC parameters (T_a, T_a, T_b, ∆H) are influenced by the molecular architecture of the crystalline region, which corresponds to the distribution of amylopectin short chains (DP 6-11) and not by the proportion of crystalline region which corresponds to the amylose to amylopectin ratio. The above authors have shown by studies on sweet potato and wheat starches, that a low T., T., T. and AH reflect the presence of abundant short amylopectin short chains. Tester, (1997b) has postulated that the extent of crystalline perfection is reflected in the gelatinization temperatures, whereas, the AH reflects the overall crystallinity (quality and amount of starch crystallites) of amylopectin (Tester and Morrison, 1990a). Cooke and Gidley, (1992) have postulated that AH primarily reflects the loss of double helical order. Gernat et al. (1993) have stated that the amount of double helical order in native starches can be strongly correlated with the amylopectin content, and that granule crystallinity increases with amylopectin content. This suppests that AH values should preferably be calculated on an

		a second s		
Starch source	Methodology	T _c -T _d (gelatinization temperature range	AH (J/g) (Gelatinization enthalpy)	Reference
1. Tuber and root				
Potato	DSC:SW1:3	70.2-82.5	18.2	Kim et al., (1995)
Potato (42 genotypes)	DSC:SW 12.3	71.7-63.5	17.3	Kim et al., (1995)
Sweet potato(44 genotypes)	DSC:S:W 1:3	846-646	12.9	Collado et al. (1999)
Sweet potato(RCB selection)	DSC:S:W 1:6	81.4-61.3	15.7	Garcia and Walter, (1998)
Sweet potato (6DLP selections)	DSC:S:W 1:6	83.5-60.0	17.2	Garcia and Walter, (1998)
Sweet potato (6 Dipioid strains)	DSC:S:W 1:3	86.9-72.4	7.4	Asanto ot al. (1993)
Old cocoyam(varieties)	DSC.S.W 1:3	63.3-43.0	6.8	Jane et al., (1992)
True yam (Dioscorea abyssinica)	DSC:S:W 1:2	74.8-84.2	19.2	Mariam and Schmidt, (1998)
True yam (Dioscorea alata)	Koffer hot stage	71.5-65.0		Emiola and Delarossa, (1981)
True yam (Dioscorea rotundata)	Kofler hot stage	71.0-63.5		Emiola and Delarossa, (1998)
True yam (Dioscorea cayenesis)	Koffer hot stage	74.5-68.0		Emiola and Delarossa, (1998)
True yam (Dioscorea dumetorum)	Koffer hot stage	72.5-85.5		Emiola and Delarossa, (1998)
New cocoyam	DSC:SW 1:4	81.8-05.0	129	Valetudie et al., (1995)
New cocoyam	DSC:S:W 1:2	87.0-74.0	4.0	Perez et al., (1998a)
Cassava (5 varieties)	DSC:S:W 12	76.1-57.0	12.9	Moorthy, (1994)
Cassava	Koffer hot stage	70.0-58.5		Srivastava et al., (1970)
Cassava	DSC:S:W 1/2	84.1-82.4	4.8	Perez et al., (1998b)
West Indian arrowroot	DSC:S:W 12	85.8-61.0	19.2	Erdman, (1986)
Queensland arrow root	Koffer hot stage	70.0-65.0		Soni et al., (1990)
2 Caroala	Koffer hot stage	68.8-61.2		Dreher and Berry, (1983)
Barely	DSC S:W 1:2)	74-59	8.3-13.3	Fujita et al. (1992)
Maize	DSC S/W 1/2	72-61	3.6	Inouchi et al., (1991)
Cont.				
Oat	DSC S:W 1:3	73-61	10.4	Hoover and Vasanthan, (1992)
Wheat	DSC S:W 12	82-53	13.7	Shamekh et al. (1994)
Lanti	DSC S:W 1:3	13-55	7.6	Hoover and Vasanthan. (1994)
Black bean	DSC S:W 1:3	82-62	3.0 (callg)	Hoover and Manuel (1996)
Pinto bean	DSC S:W 1:3	82-59	2.9 (cal/g)	Hoover and Manuel, (1996)
Field pea	DSC S:W 1:3	76-61	11.5	Ratnayake et al., (2001)
amylopectin basis. However, ΔH values for tuber and root starches (Table 2- 6) have not been calculated in this manner.

The galaritization and swelling properties are controlled in part by the molecular structure of amylopedin (unit chain length, extent of branching, molecular weight, and polydigenryl), starch composition (amylose to amylopedin ratio, light complexed amylose chains, and phosphorous content), and granular architecture (crystalline to amorphous ratio) [Tester, 1977a]. The molecular structure, amylopedin and granula architecture of many tuber and root starches have not been determined. Thus, it is not possible to discuss structure-gestimization relationships in these starches. Furthermore, gelatinization parameters have been determined at different starch water ratio's (Table 2-6) and at different rates. This makes it difficult to make a meaningful comparison of the ostimization proceedings of these starches.

2.5.3 Retrogradation

Starch granules when heated in excess water above their gelatilization temperature, undergo irrevenable swelling resulting in amylose leaching into solution. In the presence of high starch concentration this suspension will form an elastic gel on cooling. The molecular interactions (mainly hydrogen bonding between starch chains) that occur after cooling have been called retrogradation. These interactions are found to be time and temperature dependent. Starch gels are metastable and nonequilibrium systems and therefore undergo structural channes during storage (Ferror et al., 1994). Mise et al. (1995) and thin at al.

(1967) attributed the initial get firmness during retrogradation to the formation of an anylose matrix get (Fig.2-13A) and the subsequent slow increase in get firmness to reversible crystallization of anylopetch. During retrogradation, anylose forms double -helical associations (Fig. 2-13B) of 40-70 glucose units (Jane and Robyt, 1984; Leloup et al., 1992), whereas amylopetcin crystallization occurs by association of the outermost short branches (DP= 15) (Ring et al., 1987), The retrograded starch, which shows a B-hype X-ray diffraction pattern (Zobel 1988) contracts.

Many factors have been shown to influence starch retrogradation: 1) starch concentration (Longton and LeGrys, 1981; Orford et al., 1987; Gudmudsson and Eliasson, 1990; Biliaderis and Tonogai, 1991; Liu and Thompson, 1998), 2) storage temperature (Clowell et al., 1969; Slade and Levine, 1987), 3) initial heating temperature (Liu and Thompson, 1998), chain length distribution of amylopectin (Yuan et al., 1993; Shi and Seib, 1995; Liu and Thompson, 1998), 4) molecular size of amylose (Lu et al., 1997), 5) salts (Ward et al., 1994), 6) lipids (Biliaderis and Tonogai, 1991; Ward et al., 1994), 7) sugars (Biliaderis and Prokopowich, 1994; Seow et al., 1996), 8) physical modification (Hoover et al., 1994), 9) chemical modification (Hoover and Sosulski, 1986; Hoover et al., 1988; Wu and Seib. 1990: Perera and Hoover, 1998), 10) starch source (Hoover and Sosulski, 1985; Orford et al., 1987; Hoover, 1995), Cereal retrogradation has been investigated by wide variety of methods such as: 1) enzymic hydrolysis (Matsunaga and Kainuma, 1986), 2) differential scanning calorimetry (Eberstein et al., 1980; Eliasson, 1983; Russel, 1983; Roulet et al., 1988; Ishii et al. 1988;

Fig. 2-13 (A) Schematic representation of starch gel. Swollen granules fill the amylose gel (Morris, 1990 - with permission)

- (B) Conformational changes occurring during amylose gelation (Colonna, et al.,
- 1992 with permission)

(A)

Caims et al., 1991; Perera and Hoover, 1988), 3) nuclear magnetic resonance (Teo and Seov, 1992; Wu et al., 1992; Morgan et al., 1992). 4) Raman spectroscopy (Bulkin et al., 1987) 5) Fourier transform infrand spectroscopy (Wilson et al., 1987; Wilson and Behon, 1988; VanSoset et al. 1994; Lizuka and Alahima, 1990), 6) hurbidity (Jacobson et al., 1987; Perera and Hoover, 1988) and 7) rheokogical techniques (Kom et al., 1976; Wong and Lelievre, 1982; Inaba et al., 1994). However, retrogradation of tuber and root starches have not been monitored using different physical probes.

2.5.4 Starch hydrolysis

2.5.4.1 Acid hydrolysis

Acid hydrolysis has been used to modify starch granule structure and produce "soluble starch" for many years Napeli, (1874) reported the treatment of native potato starch in water with 15% H₂SO₄ for 30 days at room temperature. He obtained an acid - resistant fraction ready soluble in hot water, which has come to be known as Nageli anylodestrin and has been shown to be minture of low molecular-weight, linear and branched dextirns, with an average degree of polymerization (DP) of 2530. Subsequently, Lintner, (1985) described an acid modification of native potato starch in which granules were treated in an apueue suspension with 7.5% (wh) HCI for 7 days at room temperature. The product was a high-molecular weight starch, which formed a clear solution in hot water. This is used as an indicator in idoometric titration and for enzyme analysis. In industry add-modified starches (mails), ways mails, which and casasays are

prepared by treating a starch slurry (40%) with dilute HCI or H₂SO₄ at 25-55°C for various time periods. The conditions used during acid hydrolysis are influenced by the ratio of the cold to hot paste viscosity and by the required gel texture. When the desired viscosity or fluidity is attained, the starch slurry is neutralized. and the granules are recovered by washing, centrifugation, and drving. Industrial uses of acid hydrolyzed starches are as follows: 1) as a premodification step for the production of cationic and amphoteric starches (Solarek, 1987); 2) as a wrap sizing agent to increase varn strength and abrasion resistance in the weaving operation (Solarek, 1987); 3) for preparation of starch gum candies (Solarek, 1987) ; 4) for manufacture of gypsum board for dry wall construction (Solarek, 1987); and 5) for paper and paperboard manufacture (Solarek, 1987), Recently, Chun et al. (1997) have shown that rice amylodextrins prepared by hydrolyzing rice starch in acidic (4% HCl) alcohol (70%) solutions at 78-80°C were readily soluble in warm water (50°C). An emulsion prepared by replacing a portion of the oil (used in the formulation of a mayonnaise-type emulsion) with rice amvlodextrin, exhibited small and uniform droplets and displayed high viscosity and stability. This suggests that amylodextrins could be used as fat replacers (Chun et al., 1987).

2.5.4.1.1 Mechanism of acid hydrolysis

In acid hydrolysis, the hydronium ion (H₃O^{*}) carries out an electrophilic attack on the oxygen atom of the $\alpha(1\rightarrow4)$ glycosidic bond (Fig. 2-14A). In the next step, the electrons in one of the carbon-oxygen bonds move onto the oxygen atom

(Fig. 14-B) to generate an unstable, high-energy carbocation intermediate (Fig. 2-14C). The carbocation intermediate is a Lewis base, leading to regeneration of a hydroxyl group (Fig. 2-14E) (Hoover, 2000).

2.5.4.1.2 Solubilization patterns of starches

All starches exhibit a two-stage hydrolysis pattern. A relatively fast hydrolysis rate during the first 8 days followed by a lower rate between 7 and 12 days has been reported for corn, waxy corn, high amylose corn, wheat, potato, pat, rice, waxy rice, smooth pea, lentil, wrinkled pea, adzuki bean, mung bean, and red kidney bean (Robin et al., 1974; Mainngat and Juliano, 1979; Biliaderis et al., 1981; Hoover and Vasanthan, 1994; Hoover et al., 1993). The faster stage corresponds to the hydrolysis of the more amorphous parts of the starch granule. During the second stage, the crystalline material is slowly degraded (Kainuma and French, 1971). Evidence to suggest a preferential attack on amorphous domains within the granule comes from transmission electron microscopy observations of acid hydrolyzed starches (Mussulmam and Wagoner, 1968). These authors observed a preferential etching of amorphous growth rings from normal and waxy maize starches treated with 7% HCl at room temperature for 35 days. To account for the slower hydrolysis rate of the crystalline parts of the starch granule, two hypotheses have been proposed (Kainuma and French, 1971). First, the dense packing of starch chains within the starch crystallites does not readily allow the penetration of H₂O* into the regions. Second, acid hydrolysis of a divcosidic bond may require a change in conformation (chair ->half chair) of

Fig. 2-14 Mechanism of acid hydrolysis of starch (Hoover, 2000 - with permission)

the D-ghocopyranosol (unit, D-koicosty, if the crystalline structure immobilizes the sugar conformation then this transition (chair-haft chair) would be sterically imposable. The difference in the rate and cetter of dytodysis between the starches has been attributed to differences in granular size, extent of starch chain interactions, (within the amorphous and crystalline regions of the granule), and starch composition (extent of phosphorylation, amylose content, and lipidcomplexed amylose chains).

2.5.4.2 Hydrolysis by α-amylase

Alpha-amylase (1,4-a-D glucan glucanohydrolase, EC 3.2.1.1) catalyzes the hydrohysis (endo attack) of the q(1-x4) glycosidic bond in amylose, amylose, amylose, anylose, the and related oligosaccharides. Robyt and French, (1970) proposed that oamylases have a multiple attack mechanism. In this mechanism, once the enzyme remains with one of the fragments of the original substrate and catalyzes the hydrohysis of several bonds before it dissociates and forms a new atche complex with another molecular substrate (Robyt, 1984). The direction of the multiple attack to procrise panceautic -amylase is from the reducing end towards the non-reducing end (Robyt, 1984). Robyt, (1984) has shown that the products of hydrohysis of procrise panceautic -amylase (PPA) are mainly malitole, malitorises and mallolatinase. PPA has been shown to have 5-D glucose substrate methodism and using foro.

Differences in the in vitro a-amylase digestibility of native starches among and within species have been attributed to the interplay of many factors such as starch source (Ring et al., 1988), granule size (Snow and O'Dea, 1981), amylose/amylopectin ratio (Hoover and Sosulski, 1985) and amylose lipid complexes (Hoover and Manuel, 1995; Holm et al., 1982). Furthermore, it has been reported (Marsden and Grav, 1986; Franco et al., 1987) that hydrolysis by α-amylase predominantly occurs in the amorphous regions of the granule. Planchot et al. (1997) have shown that there is a clear relationship between the hydrolysis rate of lintnerized starches and their crystalline type. Regardless of morphology, particles with 'A' type crystallinity were found to be more susceptible to amylolysis than those with 'B' type, "A' type lintners (waxy maize) showed the highest rates, whereas the rates for 'C' type lintners (mixtures of 'A' and 'B' type structures) was dependent on the 'A' type ratio. Jane et al. (1997) have explained the susceptibility differences between 'A' and 'B' type starches towards aanylase in the following way: in 'A' type starches, the branch points are scattered in both amorphous and crystalline regions. Consequently, there are many short 'A' chains derived from branch linkages located inside the crystalline regions. which produces an inferior crystalline structure. This inferior crystalline structure containing a- (1->6) linked branch points and short double helices are more susceptible to enzyme hydrolysis leading to weak "points" in the 'A' type starches. These weak points are readily attacked by a-amylase. However, in 'B' type starches more branch points are clustered in the amorphous region and furthermore, there are fewer short branch chains. Consequently, the crystalline

Starch source 1. Tuber and roots	c-amylase source	Reaction time (h)	Hydrolysis (%)	Reference Hower and Vasanthan
Sweet potato	Pancreatic Bacillus subtilis Bacillus subtilis Pancreatic	55	43.3 43.3	Fuwa et al., (1997 Fuwa et al., (1997 Fuwa et al., (1997 Fuwa et al., (1997
	Pancreatic Porcine pancreatic		43.3 48.8-63.4	Fuwa et al., (199) Zhang and Oates
Cassava	Bacillus subtilis Porcine pancreatic	24	44.0 52.9	Valetudie et al., (Valetudie et al., (
True yam (Dioscorea alata)	- Bacillus subtilis Porcine pancreatic Bacillus subtilis	24	3.5 4.7 15.3	Valetudie et al., (1 Valetudie et al., (1 Valetudie et al., (1
New cocoyam 2. Cereals	pancreatic porcine	24	15.6	Valetudie et al., (1
Oat Wheat	Pancreatic porcine Pancreatic porcine	72	32 63	Hoover and Vasar Hoover and Vasar
lentil Field pea	Pancreatic porcine Pancreatic porcine	72 24	65 22.2	Hoover and Vasar Ratnayake et al., (

Table 2-7 In vitro amylolysis of various starches

structure is superior to that of 'A' type starches, and hence more resistant to aamylolysis. The *in vitro* digestibility of starches is presented in (Table 2-7). Among buber and root starches, polato shows the highest resistance to aamylase. A meaningful comparison can not be made with regards to variations in the sector of hird/orisis due to differences in a-amylase source and reaction time.

2.6 Heat-moisture treatment (HMT)

Heat-molature treatment of starches is defined as a physical modification that involves incubation of starch granules at low molsture level (< 35% water (wwi) during a certain period of time, at a temperature above the glass transition temporature but below the gelatinization temporature (Fig. 2-16). The conditions used for heat-molature treatment of starches from various botanical organs are listed in Table 2-8).

2.6.1. Influence of heat-moisture treatment on granule morphology

The granule morphology of maize, wheat, potato, yam, and lentil starches has been shown to remain unchanged after HMT. (Kuip and Lorenz, 1981; Stute, 1982; Hoover and Vasanthan, 1984; Franco et al., 1988; Hoover and Manuei, 1986). However, Kawabata et al. (1994) observed cracks on the surface of heatmolisture rested potat and maize starches.

Fig. 2-15 Schematic representation of the temperature and moisture differences in gelatinization, annealing, and heat-moisture treatment (Adapted from Manuel, (1996)

Starch	Time (°C)	Time	Water content	Reference
1. Tuber and roots				
Potato	95-100	165	18-27	Sair, (1957)
	100	16h	18-27	Lorenz and Kulp. (1981); Kulp and Lorenze, (1981); Donovan et
				(1963)
	80-120	15-80min	57	Kuge nad Kitamura, (1985)
	110-120	140/240min	20	Stute, (1992)
	100	16h	10-30	Hoover and Vasanthan, (1994a,c); Hoover et al., (1994)
	110	30min	16.5	Kawabata et al. (1994)
	84-105	16h	20-35	Eerlingen et al., (1995,1997)
Cassava	100	16h	18-27	Lorenz and Kulp, (1982)
	110	3-16	18-24	Abraham, (1993)
Arrow root	100	16h	18-27	Lorenz and Kulp. (1982)
Yam	100	16h	10-30	Hoover and Vasanthan, (1994)
2. Cereals				
Barely	100	16h	18-27	Lorenz and Kulp. (1982)
Maize (normal, waxy, high	85-110	165	18-27	Sair, (1967)
amylose)	120	30/180min	25	Fukui and Nikuni, (1969)
	125	5/20	14	Kawabata et al., (1994)
	100	#	25	Schierbeum and Kettiliz, (1994)
	100	165	18-27	Franco et al., (1995)
	100	16h	30	Hoover and Manuel, (1996)
Wheat	120	30/180min	25	Fukui and Nikuni, (1969)
	100	16h	18-27	Lorenz and Kulp. (1981); Kulp and Lorenze, (1981)
	100	165	10-30	Hoover and Vasanthan, (1994), Hoover et al., (1994)
	100	\$	25	Schierbaum and Kettiltz, (1994)
Rice	120	30-180	25	Fukui and Nikuni, (1969)
Rye	18	5	22/25	Radosta et al., (1992); Schierbaum and Kettitz, (1994)
Triticale	10	16h	18-27	Lorenz and Kulp, (1982)
Oat	8	16h	10-30	Hoover and Vasanthan, (1994); Hoover et al., (1994)
3. Legume				
Lentil	100	16h	10-30	Hoover and Vasanthan, (1994); Hoover et al., (1994)
	3	185	ß	Hoover at al. (1983)

and D	Table
ē	2
our, 1998)	3 Literature
	available
	ę
	heat-moisture
	treatment
	conditions
	9
	different
	starches
	R
	fapted
	from
	Jacobs

2.6.2 Influence of heat-moisture treatment on X-ray pattern and X-ray intensities

Heat-moisture treatment has been shown to change the wide angle X-ray pattern from the B to A- (or A+B) type for potato starch (Sair, 1967; Donovan et al., 1983; Kuge and Kitamura, 1985; Stute, 1992; Hoover and Vasanthan, 1994; Kawabata et al., 1994; Sekune et al., 2000) and also for vam starch (Hoover and Vasanthan, 1994). The transition from 'B' to 'A' type X-ray pattern was confirmed by 13CCP/MAS NMR based on variations in C-1 multiplicity (Gidley and Bociek). 1985). Lorenz and Kulp. (1982) observed a shift from 'C' to 'A' type on heatmoisture treatment of cassava and arrowroot starches. However, several authors have shown (Sair, 1967; Fukui and Nikuni, 1969; Donovan et al., 1983; Radosta et al., 1992; Hoover and Vasanthan, 1994; Franco et al., 1995; Hoover and Manuel, 1996) that the A' type X-ray pattern of cereal starches remains unchanged after heat-moisture treatment. Decreased X-ray intensities have been reported after heat-moisture treatment of potato (Hoover and Vasanthan, 1994). barley (Lorenz and Kulp. 1982), and cassaya (Abraham. 1993). However, cereal starches generally exhibit either increased or unchanged intensities after heatmoisture treatment (Sair, 1967; Fukui and Nikuni, 1969; Donovan et al., 1983; Radosta et al., 1992; Hoover and Vasanthan, 1995; Hoover and Manuel, 1996). Several theories have been put forward to explain changes in X-ray patterns and intensities on heat-moisture treatment. These are listed below:

 Destruction of crystallites (decrease X-ray intensities) [Hoover and Vasanthan, 1994).

- Growth of new crystallites (increase X-ray intensities) [Hoover and Vasanthan, 1994].
- Reorientation of the already existing crystalities (may increase or decrease Xray intensities) [Lorenze and Kulp, 1982 Hoover and Vasanthan, 1994; Hoover and Manuel, 1995;]
- 4) Changes in the packing arrangement (B to A type crystallinity) of the double helices (Fig. 2-16), which results in a change in the X-ray pattern. [Stute, 1992; Hoover and Vasanthan, 1994; Hoover and Manuel, 1996]
- Interaction between amylose-amylose, amylose-amylopectin and amylopectin -amylopectin chains(increase X-ray intensities due to formation of new crystallites) (Hoover and Vasanthan, 1994; Hoover and Manuel, 1996)
- 6) Formation of crystalline amylose-lipid complexes (increase X-ray intensities) [Kawabata et al., 1994; Lorenz and Kulp, 1984; Fukui and Nikuni, 1969; Hoover and Manuel, 1996]

2.6.3 Influence of heat-moisture treatment on amylose-lipid complexes

Lorenz and Kulp, (1984), Hoover and Vasanthan, (1994), and Hoover and Manuel, (1999) observed a decreased apparent amylose content on heatmoisture treatment of wheat and potato starches, indicating additional interaction between native starch lipid and amylose chains. Fig 2-16 Model of the polymorphic transition from B to the A starch, in the solid state (Imberty et al., 1991-with permission), parallel double helices =0 and 1/2, water molecules (.) dots

2.6.4 Influence of heat-moisture treatment on gelatinization parameters

Heat-moisture treatment increases the gelatinization transition temperatures and broadens the gelatinization temperature range (Sair, 1967; Kulp and Lorenz, 1981: Donovan et al., 1983: Radosta et al., 1992: Stute, 1992: Kobavashi, 1993: Hoover et al., 1993, 1994; Hoover and Vasanthan, 1994; Erlingen et al., 1996; Hoover and Manuel, 1996). The gelatinization enthalpy were decreased (Donovan et al., 1983; Kuge and Kitamura, 1985; Radosta et al., 1992; Stute, 1992; Kobavashi, 1993; Hoover et al., 1994; Hoover and Vasanthan, 1994; Erlingen et al., 1996) or unchanged after heat-moisture treatment. The increase in gelatinization temperature on heat-moisture treatment has been attributed to interaction between amylose chains (within the bulk amorphous region) and (or between amylose chain and the branched segment (within the intercrystalline region) of amylopectin. This in turn decreases the destabilization effect of the amorphous region on the melting of starch crystallites during gelatinization (Hoover and Vasanthan, 1994). Increase in celatinization temperature after heatmoisture treatment suggest that double belices present in the native granule are disrupted during the polymorphic transformation (B to A+B) that occurs on heatmoisture treatment of tuber starches (Hoover and Vasanthan, 1994).

2.6.5 Influence of heat-moisture treatment on swelling power and amylose leaching

Swelling power and amylose leaching were generally found to decrease on heatmoisture treatment. This has been attributed to an interplay of three factors:

 changes in the packing arrangement of the starch crystallites, 2) interaction between or among starch chains in the amorphous regions of the granule and 3) amylose-lipid interaction.

Decrease in amylose leaching was attributed to interplay of factors 2 and 3 (Kulp and Lorenz, 1981; Hoover and Vasanthan, 1994; Hoover and Manuel, 1996; Collado and Corke, 1999).

2.6.6 Influence of heat-moisture treatment on the susceptibility of starch to acid hydrolysis

The susceptibility to acid hydrolysis decreased after heat-mostive treatment of maize, (Hoover and Manuel, 1996), pea (Hoover et al., 1993), potato (Hoover and Vasanithan, 1994), and wheat, terdin (cal., and yam (Hoover and Vasanithan, 1994), and wheat, terdin (cal., and yam (Hoover and Vasanithan, 1994) starches. The decrease was attributed to starch chain interactions within the amophous and crystalline domains during heat-mosture treatment, which renders these residues less susceptible to Ho⁺C.

2.6.7 Influence of heat-moisture treatment on the susceptibility of starch to α-amylase hydrolysis

Depending on botanical origin and treatment conditions, increased or decreased susceptibility to a-amylase hydrobylis were observed as a result of heat-moisture treatment (Kulp and Lorenz, 1981; Lorenz and Kulp, 1982; Kuge and Kulamura, 1985; Hoover et al., 1993; Kobayashi, 1993; Hoover and Vasanthan, 1994; France at al., 1995; Hoover and Manue, 1996), the reasons for the different behaviors are likely to be ascribed to variations in the magnitude of interaction between starch chains during heat-moisture treatment.

3. Materials and methods

3.1 Materials

Discores aints (true yam), Alocassia indice (timo), Manihof esculariar (casaswa), Solanum tuberosum (potato) and Xanhosoma sagitifolium (new coco yam) were grown on experimental plots (under identical environmental conditions), Crystalline porcine pancreatic s-amylase (EC 3.2. 1.1, type 1A), was purchased from Sigma Chemical Co., (St. Louis, MO, USA). All other chemicals and solvents were of ACS certified grade. Solvents were distilled from glass distilled before use.

3.2 Methods

3.2.1 Starch isolation

All tubers and note were divided into two lots presenting the whole sample. Each of was subdivided into two lots. Each sub lot was further subdivided into two sub lots. Startin was extrated and purified using the procedure of hoover and Hab2yev. (1981). The tubers were peeled, washed, diced, dipped in loc-ould water containing 100 ppm NaHSO, and homogenized at low speed in a Waring blender. The slumy was squeezed through a 100-mesh polyester sizve doth and the filtrate centriluged at 700 x g for 15 min. The superstaint and the ambertrown layer of protein atop the starch layer was removed. Further purification was achieved by repeated suspension in water, centrifugation and removal of contaminating proteins and cells. The purified starth was dired overnight at 30°C in a variaum own to a molitaine content of ~10%.

3.2.2 Granule morphology

Granule morphology of native starches was studied by scanning electron microscopy. Starch samples were mounted on circular aluminum stubs with double sticky tape and then coated with 20mm of gold and examined and photographed in a Hitach (S 570) scanning electron microscope (Nissel Sango Inc., Rexistie, ON, Rachai (S an accelerating potential of 20kV.

3.2.3 Proximate analysis

Quantitative estimation of molieture, ash, nitrogen, and starch were performed by the standard AACC methods (1984). Starch lipids were determined by the procedure outlined by Vasanthan and Hoover, (1992). Total phosphorus content was determined by the method of Movinson (1984).

3.2.3.1 Moisture content

Preweighed (3-5g, db) samples of starch were dried in a forced air oven (Fisher scientific, isotemp 614G, USA) at 10^{9} C for 1 hr. The samples were then removed and cooled in a desiccator. The moisture content was calculated as the percentage weakh loss of the samele.

3.2.3.2 Ash content

Preweighed samples (3-5g, db) were transferred into clean, dry porcelain crucibles, charred using a flame and then placed in a pre-heated (550°C) muffle

furnace (Lab Heat, Blue M, USA) and left overnight and weighed. The ash content was calculated as percentage weight of the remaining material.

3.2.3.3 Nitrogen content

The nitrogen content was determined according to Micro Kjeldahi netbod. The samples (0.3g, db) were weighed on nitrogen-free paper and placed in the digestion tubes of a Buchi 430 (Buchi Laboratorimu-technik AG, FielwillSchweiz) digester. The catalyst (2 Kataba M pellets) and 20m. Ch concentrated H₂SO, acid were added and the samples were digested in the Buchi 430 digester until a clear yealw solution was obtained. The digested samples were then cooled, diluted with 50m. of distilled water, 100m. I d40% (WW) NoOH was added, and the released ammonia was steam diatiled into 50 mi of 4% H₂BO₂ containing 12 drops of end point indicator (M-point indicator, EM Seinone, NJ, USA) using a Buchi 321 distillation unturill 150m. of distillate was collected. The amount of ammonia in the distillate was determined by situring it againt 0.05MH/520, percenting nitrogen was calculated as follows:

%N = (volume of acid-blank) × Normality of acid 14.0067 × 100

Sample weight (mg)

3.2.3.4 Lipid content

Surface lipids were extracted at room temperature (25-27°C) by mixing starch (5g, db) with 100ml of 2:1 (v/v) chloroform - methanol under vigorous agitation in a wrist action shaker for 1hr. The solution was then filtered (Whatman No. 4 filter paper) into a round bottom flask and the residue was washed thoroughly with small amounts of chloroform-methanol solution. The solution was then evaporated to dryness using a rotary evaporator (Rotavapor - R110, Buchi Laboratorimus - Technik AG, Flawill/Schweiz, Switzerland). The crude lipid extracts were purified by the method of Bligh and Dver (1959) before quantification. Bound lipids were extracted using the residue left from surface lipid extraction. The residue was refluxed with 3:1 n-propanol-water (v/v) in a soxhlet apparatus at 90-100°C for 7hr. The solvent was evaporated using a rotary evaporator. Crude lipid extract was purified by the Bligh and Dver (1959) method before quantification. Total starch lipid was determined by hydrolyzing starch (2g, db) with 25mL of 24% HCI at 70 - 80°C for 30min and extracting the hydrolysate three times with 1-hexane (Vasanthan and Hoover, 1992b). The mixture was evaporated to dryness using the same rotary evaporator used for surface lipid and bound lipid extractions.

3.2.3.4.1 Lipid purification (Bligh and Dyer [1959] method)

The crude lipid extracts were purified by extraction with chloroform-methanol water (1:2: 0.8 v/v/v) and forming a biphasic system (Chloroform-methanol water, 1:1:0.9, v/v/v) by addition of chloroform and water at room temperature in

a separatory funnel. The chloroform layer was then diluted with benzene and brought to dryness on a rotary evaporator.

3.2.3.5 Total phosphorous

Total starch phosphorous was determined according to the method of (Morrison, 1964). Dry starch sample (6mg) was placed into a hard glass test tube Concentrated sulfuric acid (5mL) was then added, and the tube gently heated untill charring was complete. Hydrogen peroxide (30% w/v H2O2) was then added dropwise to completely clarify the solution, and the tube well shaken. The tube was then gently boiled for (2min) and allowed to cool to room temperature. The contents were diluted with water (4mL) using the water to wash down the walls of the tube, Sulfite solution (0,1mL) [33% (w/v) Na₂SO₃, 7H₂O] was then added with stirring, followed by addition of 2% w/v ammonium paramolybdate (0 1ml) [(NH4)eMo2O24.4H2O] directly into the solution. Finally, ascorbic acid (0.01g) was added, and the solution was heated in boiling water bath for 10min. After cooling to room temperature, the contents were diluted to 10mL, and the absorbance at 822nm was determined using a UV-visible spectrophotometer (LKB Novospec Model 4049). A standard curve was produced using known amounts of KH₂PO₄ (Fig.I -1 in Appendix I).

3.2.3.6 Amylose content

Apparent and total amylose content was determined by a modification (Hoover and Ratnavake, 2001 of the method of McGrance et al., (1998),

3.2.3.6.1 Apparent amylose content

Starch (20mg, db) was dissolved in 90% dimethylsulfoxide (8mL) [DMSO] in screw-cag reaction vials. The contents of the vials were vigorously mixed for 20 min and then heated in a water bath, with intermittent shaking at 85°C for 15min. The vials were then cooled to ambient timeprature and the contents were diluted with water to 25 mL in a volumetric flask. 1.0 mL of diluted solution was mixed with water (40 mL) and 5 mi 1₂KI solution (0.0025M KI) and then adjusted to a final volume of 50mL. The contents were allowed to stand for 15min at ambient temperature, before absorbance measurements at 600m (Hoover and Ratinvake. 2000).

3.2.3.6.2 Total amylose content

The total amylose content of starch samples were determined by the above procedure, but with prior defatting with hot n-propand-water (31 t/v) for 7h. In order to correct for over setimation of apparent and total amylose content (due to complex formation between lodins and the long outer branches of anylopedin), amylose content was calculated from a standard curve prepared using mixtures of pure potate amylose and amylopedin (over the range 0 -100% amylose and amyloseds in 00 = 5%).

3.2.4 Estimation of starch damage

The starch damage was estimated following the AACC (1984) procedure. Starch samples (1g, db) were digested with fungal α-amylase from Aspergillus oryzae (12500 sigma units) having specific activity of 50-100 unisting, in a water bath at 30°C of 15mm. The enzyme action was terminated by adding 3mL of 3.8M H₂SO₄ and 2mL 12% Na₂WQ₂2.H₂O (2m). The mixtures were allowed to stand for 2min and then filtered through Whatman No 4 filter paper. The amount of reducing sugars in the filtrate were determined using the method of Bruner (1984) [cocion 2.4.3]. The percentage starch damage was calculated as follows:

% starch damage = [M × 1.64] / [W × 1.05] × 100

Where M = mg matiose equivalents in the digest; W = mg starch (db); 1.05 = molecular weight conversion of starch to matiose and 1.64 = the reciprical of the mean percentage mallose yield from gelatinized starch. The latter is an empirical factor, which assumes that under the conditions of the experiment, the maximum hybridnesis is 01%.

3.2.5 Starch fractionation

Amylose and amylopectin were extracted from the tuber and root starches utilizing the aqueous leaching procedure described by Montgomery and Senti (1959).

3.2.5.1 Amylose

Starch (40g, db) was extracted at 2% concentration by adding slurry to water at 98ºC and maintaining this temperature for 15min with stirring the solution. Phosphate buffer consisting of a mixture of 0.2M NaH-PO₄. (45mL) and 0.2M Na-HPO₄ (55ml.) diluted to 200ml, with distilled water, was used to maintain the pH of the solution between 6 0.6.3. The solution was cooled rapidly to mom temperature and then centrifuged (IEC-centra MP-4, International Equipment Co., Needham, MA, USA) at 10000rpm for 20min in order to separate the supernatant and the gel-like material which settled to the bottom of the centrifuge tube. The supernatant was saved and the gel was re-extracted with hot distilled water and phosphate buffer. The supernatant obtained after centrifugation was combined with the first supernatant and the gel was re-extracted a third time. The supernatant from the third extraction was discarded and the gel was saved for the isolation of amylopectin. Amylose was isolated from the supernatant obtained after centrifugation. To the supernatant, 1-butanol (250mL) was added and stirred for 5h. The supernatant was decanted after centrifugation and the butanol-amylose complex was collected and recrystallized by adding it to 1L of boiling distilled water containing 100mL of 1-butanol. Stirring was continued until the solution became clear. The hot solution was filtered with suction and cooled slowly with stirring. An additional 150mL of 1-butanol was added, and stirring continued for 16h. The complextion process was repeated three times. The complex was then mixed with acetone in a blender (Waring Commercial blender. Dynamics Corporation of America, New Hartford, CT, USA) and filtered

(Whatman No. 4). The filtered complex was resuspended in the blender with 95% ethanol, recovered by filtration, treated with 95% ethanol in the blender, recovered by filtration and washed with diethylether. The recovered amylose was allowed to air-day for 24h and then vacuum-dried at 40^oC overright (Montgomey and Senti, 1955).

3.2.5.2 Amylopectin

Amycipeenia was precipitated from the get after mixing with methanol (1000m) in a Waring blender for 45sec. The resulting white precipitate was allowed to settlich menthanic was decented and rife reh methanol (100mL) was added, followed by further blending (45sec.). The mixture was filtered under succion, and the precipitate was collected, again mixed with methanol in the blender, and recovered by filtration. The precipitated amycipeetin was air-dried for 24th and vacuum-diret ad 470 coveright (Montegorers van 65mL; 1956).

3.2.6 Determination of the purity of isolated amylose by gel permeation chromatography (GPC)

Gal permeation chromatography on isolated tuber and root annylose was done by the McFherson and Jane, (1999) method with modifications. 5ML of the sample solution containing fising of isolated luber and root annylose and 0.5mg of glucose (as marker) was injected into an Econo-Column (1.5-100cm, i.d. v. () (80-Rad Laboratorise, Richmond, CA, USA) packed with Septance CL-28 (Sigma Chemical Co, S. Louis, MO, USA). 0.0254 NaC was used to faile the

sample at 30mL/h flow rate. Fractions of 4.8mL were collected and analyzed for iodine affinity (0.0025M I₂/0.0065M KI solution) and total carbohydrate (Dubois et al., 1956).

3.2.6.1 lodine affinity

An aliquet of 0.250mL from each fraction was mixed with 5mL of JrKI (0.0025M I; in 0.0056M KI solution). The reaction mixture was allowed to stand for 15min at 25°C for color development, and the absorbance was then measured using a LKB Novaspec-4049 spectrophotometer (LKB Biochrom Ltd., Cambridge, Endand) at 6000m.

3.2.6.2. Determination of total carbohydrate (Dubois et al., 1956)

Fractions of 0.125mL were diluted to 2mLusing distilled water and the amount of total achohydrate of each diluted fraction was analyzed as follows. 1mL of 5% (wiv) phenol solution was added to 2mL of the sample solution in a test tube, SmL of con-, HSQ, was added directly onto the sample liquid surface and the mixture was allowed to stand for 10min. The test tubes were transferred into a 30°C water bath after mixing. After 15min, the abcohance was taken against a reagent blank at 460m. A standard series was prepared with Inown amounts of maker (Faire Scientific, Fair Lam, NJ, USA) (Figh. 24 N Appendix)).

3.2.7 Determination of amylose structure

3.2.7.1 Degree of polymerization (DP) of amyloses

Isolated anylose (0.01g) was completely discoved in 10mL of DMSO by heating at 60⁵C in a water bath. The resulting solution was divided into two equal volumes and the degree of polymerization (DP) was calculated (Jane and Robyt, 1964) using the quarking show below:

> DP = Total carbohydrate (µg) x 2 Reducing sugar (as µg of maltose)

Total carbohydrate and total reducing power were calculated according to the procedures outlined by Dubois et al., (1956) and Bruner, (1964), respectively,

3.2.7.2 Determination of total reducing sugar (Bruner, 1964)

3.2.7.2.1 Preparation of 3.5 dinitrosalicylic acid (DNS)

20g of DNS was dissolved in 700mL NaOH. The mixture was stirred well to dissolve DNS and then diluted to 1L with distilled water and filtered through a medium porosity fitted glass-filter. The reagent was storde in a dark bottle under refigeration until used.

In the determination of total reducing sugars, Int. of the sugar solution was taken into a screw-capped tube and the volume was adjusted up to 2mL using distilled water. Then, 2mL of 3.5 diminisatility/ic acid was added. The mixture was heated in a boiling water-bath for 5min for color development. The tubes were then cooled in an ico-bath for 15min, and then distiled water was added to make the volume us to 12mL. The absorbance of 450m was readed 12% using a UV.

visible spectrophotometer (LKB Novaspec-4049 spectrophotometer (LKB Biochrom Ltd., Cambridge, England) against a reagent blank. The standard curve was produced using known amounts of maltose (Fisher Scientific, Fair Luwn, NJ, LSA, Viffa, 1-3 in appendix (h.).

3.2.8 Determination of amylopectin structure

3.2.8.1 ß amylolysis limit

The $\beta \, amp(optivals)$ limit of included amplopectin was determined by the method of Nilason, (1999), Amplopectin (Srag) was gelatilized in 1M NaOH (8mL) for 1h at 45^oC, followed by the addition of 1M difficult ica citcl to adjust the PH to 8.0. The final sample volume was adjusted to 10mL. One fraction (SmL) of the sample was withdrawn and used as a blank. The remaining SmL incubated with β amylase (Su) for 2h at 37°C with continuous attring. Complete hydrolysis time in a parallel by addition of another 5 u of β amylase and prolonged hydrolysis time in a parallel sample. The *f* amyloticity was excluded as a shown blow.

% β amylolysis = Reducing capasity (as maltose) × 100 Total carbohydrate (as maltose)

3.2.8.2 Number average chain length (Cln) of amylopectins

Debranching was carried out by a modification of the method of Shi and Seib, (1992). Amylopectin (5.5mg db) was dissolved in 3.0mL of 0.05M sodium acetate buffer (eH 3.5) by boiling for 5min. After cooling to 25%C. 2ml of iscamvlase solution (85 units/mL of 0.05M sodium acetate buffer pH 3.5) was added and the sample kept at 37⁴C in a shaking water bath for 48h. The number average chain length was calculated as shown:

3.2.8.3 Exterior and interior chain length of amylopectin

The average length of the exterior chain (ECL), *i.e.*, those chains located outside the branching points and the interior chain length (ICL)was calculated according to equations 1 and 2 (Manners, 1989).

ECL = CL × (%
$$\beta$$
 Limit /100) +2 \rightarrow Eq (1)
ICL = CL - ECL -1 \rightarrow Eq (2)

The addition of 2 is made in equation (1) since the ECL in β limit dextrin in on average two glucose units. The actual branch point residue is regarded as neither exterior nor interior unit. Therefore the subtraction of 1 in equation (2).

3.2.9 X-ray diffraction

X-ray diffractograms of the starches were obtained with a Rigaku RU X-ray diffractometer (Rigaku-Denki Co., Tokyo, Japan) with the following operating conditions as: target voltage dNV, ournet-100mA, aging time-Smin, scanning range-3-350, scan speed-2.000⁴/min, step time-4.5sec, divergence silt width-100, scatter silt with-10.0 and receive sits width-0.0
3.2.10 Determination of relative crystallinity

Relative crystallinity of the starches was calculated using the method of Nara et al. (1978) [Fig. II-1 in Appendix III], using the peak-fitting aothware Origin-version 5.0 (Microcal Inc., Nohampton, MA, USA). Amorphous starch was prepared by heating a 100°C for 24h. The dried sample was ground into a free flowing powder using a RP Pulaent comminucator (Geoscience Instruments Corp., New York, NY, USA) with denatured alcohol as the solvent. The ground sample was air dried for 24h not appead through the solvent. The ground sample was air dried for 24h not appead through the solvent. The ground sample was air dried for 24h and papead through the solvent. The ground sample was air dried for 24h and papead through the solvent.

3.2.11 Swelling factor (SF)

The SF of the starches when heated to 50-9°C in excess water was determined according to the method of Tester and Morrison, (1990). The SF was reported as the ratio of the volume of avoiden starting ranuels to the volume of dry starch. This method measures only intragranular water and hence the true SF at a given temperature. Starch samples (SOmg &) were weighed into sciew cap tubes, and SmL of water added. Tubes were then heated in a shaking water bath at the appropriate temperature for 30 min. Tubes were coded to 20°C and 0.5mL of blue dextran (5mg-mL⁻¹) was added. Contents were mixed by inverting the tubes. The tubes were then contribuged at 1500 x g for 5 min and the abcolance of the supermatint and a stork-free reference was reasourced at 200m using a

spectrophotometer (Novospec Model 4049). The absorbance of the reference which contains no starch was also measured at 620 nm.

Calculation of SF was based on starch weight corrected to 10% moisture, assuming a density of 1.4 σ -m⁻¹.

Free or interstitial plus supernatant water (FW) is given by:

FW = 5.5 (A_R / A_S) - 0.5

As and As represent the absorbance of the reference and sample respectively.

The initial volume of the starch (V₀) of weight (in mg) is

Vo = W / 1400

and the volume of the absorbed intergranular water (V1) is thus

V1 = 5.0 - FW

Hence the volume of the swollen starch granules (V₂) is

 $SF = V_z / V_0$

This can also be expressed by the single equation

 $SF = 1 + \{(7700/W) \times [(A_8 - A_8) / A_8]\}$

3.2.12 Amylose leaching (AML)

Starch (20mg, db) in water (10mL) was heated (50-00°C) in volume calibrated seeled tubes for 30min. The tubes were then cooled at ambient temperature and centrifuged at 2000 g for 10min. The supernatant liquid (1mL) was withdrawn and its amylose content was determined as described by Hoover and Ratnayake, (2001).

3.2.13 Gelatinization parameters

Gelatifization parameters were measured using a Selko DSC (Gelio Instrument Inc., Chiba, Japan) differential scanning calorimeter equipped with a thermal analysis data station and data recording software. Water (11,µL) was added with a microsyringe to starch (3,0mg) in the DSC pan, which was then sealed, reweighed and allowed to stand for 2h at room temperature in order to attain an even distribution of water. The scanning temperature range and the heating rates were 20-120°C and 10°C/min⁻¹, respectively. In all measurements, the transition temperatures reported are the creat (T_a), peak (T_a), and conclusion (T_a). The enthalpy of geletinization (Atf) was estimated by integrating the area between the thermogram (T_a). PLA appendix II) and a base line under (L) peak dwa was opcreased in terms of joudse per univer(L) (Att).

3.2.14 Differential scanning calorimetry of retrograded starch

Water (3µL) was added with a microsyringe to starch (3.0mg) in DSC pans, which were then sealed, reweighed and allowed to stand for 2h at room temperature for moisture equilibration. The sealed pans were then heated to 120°C at 10°Cmin to gelatinize the starch. The gelatinized samples were stored at 4°C for 24 h to increase nucleation, and then at 40°C for 7 days to increase propagation. Subsequently, the samples were equilibrated at room temperature

for 2h, and then rescanned in the calorimeter from 20 to 120°C at 10°C/min to measure retrogradation transition temperatures and enthalpy.

3.2.15 Acid hydrolysis

The starches were hydrolyzed with 2.2N HCI at 35°C (1.0g starch/40mL acid) for 12days. The starch slurries were shaken by hand daily to resuspend the deposited granules. At 24h intervals, aliquots of the reaction mixtures were neutralized and recentrifuged (2000g) and the supermatant liquid was assayed for total carbohydrate (Dubois et al., 1956). The extent of hydrolysis was determined by expressing the solubilized carbohydrates as a percentage of the initial starch.

3.2.16 Enzymatic digestibility

Enzymatic digestibility (0-727) studies on tuber and root starches were done using a crystalline suspension of porcine pancreatic α -amylase (Sigma Chamical Co. St. Louis, Mo. USA) in 2.5M saturated sodium chicked containing 3mut calcium chicride, in which the concentration of α -amylase was 30mg-mL⁻¹, and the specific activity was 700 units per milligram of protein. One unit was defined as the α -amylase activity which liberates timg malace in 3min at 20⁵C at pH 6.0. Hydrolysis was carried out for 9h, 12h, 24h and 72h. The procedure was essentially that of Knutshort et al. (1992) Starch (100 mg, db) was suspended in distilled water (25mL) and 5mL aliquots were placed in a constant temperature water bath at 37°C. Then 4.0mL of 0.1 M phosphate buffer (pH 6.9) containing 0.00 M Macil were added to the alium of the mixture water that at 37°C.

adding a-amylase suspension (12 umis/ mg starch). The reaction mixtures were ahaten by hand every 6h to resuspend the deposited granules. Aliquots (1mL)) were removed at specific time intervals, and .ethanol (0.2 ml) of 90% pipeted in to the reaction mixture. Followed by centrifugation at 30000, Aliquots of the supernatant were analyzed for soluble carbohydrate (Bruner, 1964). Percentage hydrolysis was calculated as the amount (mg) of mattose released per 100mg of dry starch. Controls without enzyme, but subjected to the above experimental conditions, were run concurrently to eliminate spontaneous hydrolysis of starch (Hoover and Vasarthan, 1994).

3.2.17 Heat-moisture treatment

Starch (15g, db) was weighed into glass containers and the moisture content was brought to 30%. The sealed samples (in glass jam) were heated in a forced air oven (Fisher Scientific, listemp 615g), USA) at 100°C for 10h. After cooling, the jam were opened and starch samples were air-dried to a moisture content of ~10%. The experimental conditions used for heat-moisture treatment were based on the findings of (Hoover and Landmann, 1964; Hoover et al. 1983).

3.2.18 Statistical analysis

All determinations were replicated three times and mean values and standard deviations reported. Analysis of variance (ANOVA) were performed and the mean separations were done by Tukeys HSD test (p-0.05) using Sigmastat Versing 2.0 (Jandwell Selentific/SPSS Science, Chicaso II, USA).

4 Results and discussion

4.1 Morphological granular characteristics

The starch granules ranged from oval to round to spherical to polygonal in shape with characteristic dimensions in the range 3-110µm (Table 4-1). On the basis of starch granules alze, new cocoyam had a very large surface area per unit weight compared to that of the other startsches. The granule surface of all starches appeared to be smooth and showed no evidence of pin holes under the scanning electron microscope. Heat-moisture treatment did not alter the size or shape of the starch granules. Similar observations have been made on heat-moisture treated maize (Hoover and Manuel, 1996) and wheat (Hoover and Vasanthan, 1994) starches.

4.2 Chemical composition

The data on chemical composition are presented in (**Table 4-1**). The putty of the starches was judged on the basis of composition (low nitrogen and low ach level) and microscopic observation (laberen of any adhering protein). The low nitrogen content was in the range 0.01-0.09% and indicated the absence of non-starch lipids (bigds associated with endosperm protein). Therefore, the total lipids (0.3-0.4%) (**Table 4-1**) obtained by add hydrolysis mainly represent free and bound starch lipids (Vashima and Hoover, 1992). The total lipids (Hoover, 2001). The fee lipid bulkned by activation with chloroform methanol (2:1 wir at 25°C) was in the range 0.20-0.90% of the total weekht.

The bound lipid content obtained by extraction of the chloroform-methanol residue with n-propanot-water (3:1vV for 7h) was in the range 0.01-0.3% (Table 4-1). The apparent amylose content (determined by Ly before removal of bound lipid) was in the range 19.8-26.1% (Table 4-1). The total amylose content (determined by Ly binding after removal of bound lipids by n-propanol water was in the range 22.4-29.3% (Table 4-1). A comparison of the apparent and total amylose content (Table 4-1) showed that the percentage of total amylose complexed by native starch lipids ranged from 10.1-15.5% (Table 4-1). New coccoyand differed from the other starches in exhibiting a significantly higher content of total lipid and a much higher proportion of lipid complexed amylose chains (Table 4-1). The phosphorus content ranged from 0.01-0.10% (Table 4-1). Potato contained more phosphorus (0.10%) than any of the other starches (0.01-0.03%) used. The extent of starch damage (0.25-1.5%) was low in all starches (Table 4-1).

4.3 Molecular structure

The average degree of polymerization (DP_0) of isolated amylose followed the order: potato's new cocoyem's cassava > taro > true yam. The DP_n of potato (4850) and cassava (2500) was close to the values reported by Takeda et al. (1984). The DP_n of the other starches have not been reported previously, and therefore, no comparisons are possible. The average chain length (D_n) of isolated amylopedins followed the order: true yam > potato > taro < tassava > new cocoyam. The CL of optiot (251 average classava C4) were close to reported

Total Annylose complexed with lipid ⁶ Phosphorus Starch damage Granule shape Granule size (diameter) [µm]	Lipid Solvent extracted Chloroform-methanof n-Propanci-water Acid hydrolyzed Arrylose content Acorent	Moisture Ash Nitrogen	Characteristic
28.5 ± 0.70 ⁸⁴ 10.1 ± 0.40 ⁸⁴¹ 0.03 ± 0.01 ⁸ 1.23 ± 0.20 ⁸¹ oblong to avail 12-100	0.02 ± 0.01 ^{9/13} 0.01 ± 0.00 ⁹⁴⁴ 0.03 ± 0.01 ⁹ 24 6 ± 0.30 ⁹	10.2 ± 0.20 ^P 0.12 ± 0.01 ^{PR} 0.05 ± 0.01 ^{PR}	True yam
29.3 ± 0.62 ⁴ 10.9 ± 0.30 ¹³ 0.02± 0.01 ¹⁴⁹ 0.85± 0.30 ¹⁴⁹ round to variable 10-50	0.08 ± 0.02 ⁴⁷ 0.04 ± 0.01 ⁴¹³ 0.15 ± 0.01 ⁴¹³	11.2 ± 0.10^{47} 0.14 ± 0.01^{4} 0.03 ± 0.01^{49}	Taro
25.4 ± 0.20' 15.5 ± 0.60' 0.02 ± 0.00' ¹⁴ 1.20 ± 0.02' ⁹ polygonal to variable 3.0-10	0.09 ± 0.04 0.30 ± 0.05 0.40 ± 0.03	11.3 ± 0.03' 0.15 ± 0.02' ²⁴¹ 0.08 ± 0.03'	Composition(%) ^a New cocoyam
22.4 ± 0.13° 11.6 ± 0.32° 0.01 ± 0.00°*** 0.25 ± 0.01° round to variable 5.0-45	0.06 ± 0.02 ^{1/21} 0.08 ± 0.03 ^{1/2} 0.12 ± 0.02 ¹⁰ 19.8 ± 0.20 ¹⁰	13.5±0.24 ⁸ 0.11±0.02 ^{8.0,p} 0.02±0.01 ^{8.p.q}	Cassava
28.1 ± 0.50 ^{40/4} 10.4 ± 0.30 ⁴⁰ 0.1 ± 0.05 ⁴ 1.5 ± 0.04 ⁴⁷ ovral to spherical 10-110	0.08 ± 0.01 ^{1//8} 0.12 ± 0.02 ¹ 0.20 ± 0.04 ¹ 25.2 ± 0.22 ¹	$\begin{array}{c} 13.1 \pm 0.15^{1a} \\ 0.25 \pm 0.01^{1} \\ 0.09 \pm 0.02^{17} \end{array}$	Potato

Table 4-1 Chemical composition (%) and some properties of tuber and root starches

"All data reported on dry basis and represent the mean of three determinations. Means within a row with different superscripts are significantly

interent (p < 0.05)

Lipids extracted from chloroform-methanol 2.1 (wV) at 25°C (mainly unbound lipid) Lipids extracted by hot n-propanol-water 3.1 (wV) from the residue left after chloroform-methanol extraction (mainly bound lipid)

"Lipids obtained by acid hydrolysis (24%) HCI of the native starch (total lipid)

Apparent and total amylose determined by I2-binding before and after removal of bound lipids, respectively

Total amylose - apparent amylose × 100

Total amylose

values (Suzuki et al., 1985; Hizukuri, 1985). The Ch_0 of the other starches have not been reported previously, and therefore, no comparisons are possible. The average exterior chain length (ECL) of anylopectin followed the order potato > true yam > taro > cassava = new cocoyam. The corresponding order for the average interior chain length (ICL) was: true yam > potato > taro > new cocoyam > cassava (Table 42).

4.4 X-ray pattern and crystallinity

Potato and true vam showed the typical "B" type X-ray pattern (Zobel, 1988b) with reflection intensities at 5.5 17 and 22-24020 angle (Fig. 1) However the other three starches showed a "A" type X-ray pattern (Fig. 4-1). Both "A" and "B" type starches are based on parallel standard double helices, in which the helices are more closely packed in the "A" type starch. Furthermore, they also differ in the content of intra-helical water ("B">"A") [Imberty, 1988; Imberty et al., 1988]. The type of crystalline polymorph has been shown (Hizukuri et al., 1981) to be influenced by the chain length (CL) of amylopectin ("A" type CL< 19.7. B type CL ≥ 21.6), growth temperature (Hizukuri et al., 1961) and fatty acids (Hizukuri, 1996). The relative crystallinity (Table 4-3) of potato (30%) and cassava (31%) were comparable to the values reported by Zobel. (1988b) for the above two starches. However, the relative crystallinity of new cocovam (45%) was much larger than the value reported (24%) by Takeda et al., (1983). The differences in relative crystallinity (Table 4-3) among the starches probably represent differences in: 1) crystallite size, 2) orientation of double helices within the

Starch source	Amylose ¹	А	mylopectin		
	DP ²	CL ³	ECL ⁴	ICL5	β amylolysis(%)
True yam	$1,800\pm45^{a}$	29.0	18.5	9.5	$57\pm4^{\text{B}}$
Taro	$2,200\pm60^b$	26.1	16.6	8.4	56 ± 2^{a}
New cocoyam	$2,775\pm59^\circ$	24.2	15.8	7.4	$57\pm2^{\text{B}}$
Cassava	$2{,}500\pm62^{d}$	24.5	16.2	7.3	$58\pm2^{\text{H}}$
Potato	4,850 ± 75°	28.1	18.6	8.5	59 ± 3^{a}

Table 4-2 Structure of amylose and amylopectins of tuber and root starches

¹Amylose from all starches was free of amylopectin (confirmed by gel permeation chromatography (GPC)). The yield of amylose (by GPC) was 26.6,28.8,26.0, and 26.7%, respectively in true yam, itaro, new coccyam, cassava, and polato

²Number average degree of polymerization.

³Average chain length

*External chain length = Cl_a x β amylolysis limit (%) +2

Finternal chain length = (Cl₂ - ECL) - 1

Means within a column with different superscripts are significantly different (p< 0.05)

Fig 4-1 X-ray diffraction patterns of native and heat-moisture treated (HMT) tuber and root starches (10h, 30% moisture, 100⁴C). (A) native cassava, (B) HMT cassava, (C) native taro, (D) HMT taro, (E) native new coccyam, (F) HMT new coccyam, (G) native true yam, (H) HMT true yam, (I) native potato, (J) HMT potato

Selative intensities

crystallite, 3) average chain length of amylopectin (Cl_n), and 4) mole percentage of the short chain fraction of amylopectin (DP 10-13).

Heat-moliture treatment changed the X-ray pattern ($\mathbf{P}^* \rightarrow ^{*}A + \mathbf{P}^*$) of both potato and true yam starches (Fig. 4-1). A shift from 'B' to 'A' crystal type as a result of heat-moleture treatment was confirmed by "VoCPMAS NMR based on variations in C-1 multiplicity (Gidley and Bociek, 1985). The X-ray pattern of tarc, cassave and new coccyam , however, remained unchanged on heat-moleture treatment (Fig. 4-1). The relative crystallinity of potato and true yam decreased by 9% and 9%, respectively after heat-moleture treatment (Table 4-3). However, the relative crystallinity of the core starches mensing drandically unchanged Table 4-3).

Imberry et al. (1989) and Imberry and Perez, (1989) have shown that double helices of 'A' and 'B' type starches are packed in a pseudohexagoral array. The lattices of 'B' type starches have a large void (channe) in which 38 water molecules can be accommodated. However, in 'A' type starches, the lattices contain a helix in the center rather than a column of water. In both 'A' and 'B' type starches, there is a spacing of double helices. That channel is the total lattice between the axes of the two double helices. The channel of the B-unit cell), and 2) movement of a pair of double helices into the central channel of the B-unit cell), and 2) movement of a pair of double helices into the central channel, (that was originally occupied) with waporteed water molecules, Double helical movement during heartingture tradient could dirugt starts crystallise and of

Starch source* & treatment	X-ray pattern	Relative crystallinity ^b (%)
True years		
Native	в	32.0 ± 0.28
HMT ^o	A+B	23.0 ± 0.8 ⁴
Taro		
Native	A	31.0 ± 0.5 ^p
HMT°	A	30.0 ± 0.1 ^p
New cocovam		
Native	A	45.0 ± 0.3 ^p
HMT ^c	A	43.5 ± 0.2 ^p
Cassava		
Native	A	37.0 ± 0.5 ^p
HMT ^c	A	36.0 ± 0.1*
Potato		
Native	в	30.0 + 0.7*
HMT ^e	A+B	22.0 ± 0.4 ⁴

Table 4-3 X-ray pattern and relative crystallinity (%) of native and heatmoisture treated tuber and root starches

Moisture content ~ 16%(w/w)

^cHeat-moisture treated (100°C, 30% moisture, 10h)

Means within a column with different superscripts(for native starch and its heat-moisture treated counterpart) are significantly different (o< 0.05) change crystallite orientation. This would then explain the observed changes in crystallinity on heat-moisture treatment of B-type starches (Table 4-3).

4.5 Swelling factor (SF) and amylose leaching (AML)

The SF and AML at different temperatures are presented in (Tables 4-4 and 4-5), respectively, SF and AML of native and heat-moisture treated starches increased with increase in temperature. The extent of this increase was more pronounced at temperatures beyond 70°C. The, SF of native starches followed the order: potato > cassava > taro > true yam > new cocoyam. Whereas, AML followed the order: potato ~ taro > true vam > cassava > new cocovam. The interplay between the extent of interaction between starch chains (in the amorphous and crystalline domains), phosphate content (Table 4-1), and the amount of lipid complexed amylose chains (Table 4-1) may have been responsible for the observed differences in SF (Table 4-1) and AML (Tables 4-5) The decrease in AML on heat-moisture treatment (Table 4-5) suggests that additional interactions may have occurred between amylose-amylose (AM-AM) and amylose-amylopectin (AM-AMP) chains during heat-moisture treatment. This type of mechanism may also be partly responsible for the observed decrease in SF on heat-moisture treatment (Table 4-4). Tester and Morrison, (1990) have shown by comparative studies, on non-waxy and waxy maize starches, that swelling is primarily a property of amylopectin and that amylose is a diluent. Furthermore, Cooke and Gidley, (1992) have suggested that the forces holding the granule together are mainly at the double helical level and that the starch

Starch	Treatment		Temperature (¹ C	9		
eornos		8	60	70	8	98
True yam	Native	0.0	0.0*	$5.3 \pm 0.3^{\circ}$	26 ± 0.2^{9}	33 ± 0.1^{p}
	HMT*	0.0	1.2 ± 0.2^{4}	3.3 ± 0.2^{4}	$7.9 \pm 0.4^{\circ}$	19.5 ± 0.6^{9}
Taro	Native	0.0	2.5±0.1°	8.5±0.2°	36±.0.1 ^p	34.2 ± 0.0 ⁹
	HMT*	0.0	0.0*	6.0±0.5 ⁴	13.4 ± 0.2"	$23.3 \pm 0.4^{\circ}$
New cocoyam	Native	0.0	5.0 ± 0.2^{2}	$10.6 \pm 0.3^{\circ}$	18.0 ± 0.6°	$22 \pm 0.62^{*}$
	HMT*	0.0	4.0±0.5 ⁴	9.2±0.4	12.6 ± 0.1 ⁴	13.1 ± 0.2^{11}
Cassava	Native	0.0	4.6±0.2"	31.0 ± 0.7*	43.0 ± 0.4"	36.5±0.2*
	HMT*	0.0	2.1±0.1*	16.4 ± 0.3 ⁿ	24.5 ± 0.2"	23.5 ± 0.5^{9}
Potato	Native	0.0	37.6 ± 0.4^{2}	57.4 ± 0.5°	$60.0 \pm 0.5^{\circ}$	$54.0 \pm 0.3^{*}$
	HMT	0.0	10.2 ± 0.2"	17.2 ± 0.6"	18.5 ± 0.8 ⁴	16.4 ± 0.4"
*Starches (50mg) v	were heated with	water (5ml) at	the specified tempera	stures for 30min		

Table 4-4 Swelling factor² of native and heat-moisture treated tuber and root starches

"Heat-moisture treated (100°C, 30% moisture,10h)

Means with the same column with different superscripts (for naive starch and its heat-moisture treated counterpart)are significantly different (P < 0.05)

Table 4-5 Amyl	ose leaching (%) [*] of n	ative and heat-moistun	treated tube	and root st	arches
Starch			Temperature (°C	-		
source		8	60	70	8	90
True yam	Native	00	0.0	1.1± 0.5 ⁹	13.0 ± 0.3*	20.1 ± 0.3 [#]
	HMT*	0.0	0.0	0.1±0.0*	2.0 ± 0.5*	5.5 ± 0.1*
Taro	Native	0.0	0.3±0.3°	23±02	22.1 ± 0.2*	23.0 ± 0.6*
	HMT*	0.0	0.0*	0.2 ± 0.0*	7.3 ± 0.4*	12.2 ± 0.1*
New cocoyam	Native	0.0	0.1±0.1°	0.6 ± 0.1*	2.9 ± 0.6*	5.4 ± 0.4^{P}
	HMT	0.0	0.0*	0.4 ± 0.1 ⁴	2.0 ± 0.2*	2.2±0.5*
Cassava	Native	0.0	7.0 ± 0.2°	15±0.3*	16.6 ± 0.5*	17.2 ± 0.1 ^p
	HMT	0.0	6.3±0.2*	11.5±0.4"	15.3 ± 0.1*	76.1±0.1*
Potato	Native	0.0	4.5±0.5"	$18.1 \pm 0.1^{*}$	22±0.3*	22.2 ± 0.2^{6}
	HMT	0.0	19±0.1"	67±0.2*	8.7±0.6*	9.2±0.3ª

*Starches (20mg) were heated with water (10ml) at the specified temperatures

"Heat-moisture treated (100°C, 10h, 30% moisture

Means within the same column with different superscripts (for native starch and its heat-moisture treated counterpart) are significantly different

(P<0.05)

"crystalling" functions as a means of achieving dense packing rather than as a primary provider of structure. This implies that the decrease in SF on heatmoniture treatment (Table 4-4) could have been to a decrease in granular stability, resulting from unraveling of double helices that may have been present in a crystalline array in the native granule. Disruption of crystallites on heatmositure treatment (Table 4-3) could have controlled to the large decrease in S observed for two arm of potto starches (Table 4-4).

4.6 Gelatinization parameters

The gelatitization temperatures, onset $[(T_a), mid point (T_b), and conclusion (T_b)]$ and gelatitization enthalpy (ΔH) are presented in (Table 4-8). The gelatitization temperatures of native starches followed the order: taro > true yarm > new cocoyarm > cassava > potato. Whereas, the gelatinization temperature range (T_c-T_b) followed the order: cassava > potato. The ΔH followed the order: true varm > cotato > true yarm > potato. The ΔH followed the order: true varm > cotato > true > yarm > potato. The ΔH followed the order: true varm > cotato > true > yarm > cotato.

The differences in gelatilization temperatures among the starches can be attributed to the interplay of three factors: 1) molecular structure of any/opecin (unit chain length, extent of branching 2), starch composition (any/ose to any/opecin ratio, amount of lipid complexed, any/ose chains, phosphorous content), and 3) granular architecture (crystalline to amorphous ratio). Difference in T_{c-1}^{-1} (Table 4-8) suggests that the degree of heterogeneity of crystallines within the granules of the five starches are different. The ΔI values have been above to represent the number of obub helicos that unreveal and metidung

		Ta	nsition temperatu	đ		
Starch source	Treatment	(°C)	(°C)	Τ _ε • (C)	(C)	(JU) (JH)
True yam	Native	75.0±0.3°	80.0 ± 0.5^9	91.2 ± 0.3 [#]	16.5± 0.°	$17.8\pm0.1^{\rm p}$
	HMT	$79.8\pm0.2^{\rm q}$	88.2 ± 0.6^{9}	98.5 ± 0.5^3	18.9 ±0.3 ⁴	$15.5\pm0.1^{\rm 8}$
Taro	Native	76.8 ± 0.2^{9}	83.0 ± 0.6^{9}	95.2 ± 0.7^{9}	18.4 ± 0.2^{9}	14.5 ± 0.3^{P}
	HMT	79.2 ± 0.3 ⁴	89.5 ± 0.1 ^q	98.5 ± 0.2^3	19.5 ± 0.2^{4}	12.2 ± 0.2^4
New cocoyam	Native	71.5 ± 0.6*	$77.2 \pm 0.3^{\circ}$	85.4 ± 0.9^9	13.6±0.3°	$13.1\pm0.4^{\rm P}$
	HMT ⁶	75.4 ± 0.8^{3}	83.1 ± 0.2 ⁴	90.3 ± 0.8^3	$14.7\pm0.5^{\rm 9}$	11.5 ± 0.4^8
Cassava	Native	63.0 ± 0.5 [#]	$71.5\pm0.2^{ m P}$	81.5 ± 0.2"	18.7 ± 0.6^{9}	12.3 ± 0.2^{P}
	HMT ^d	66.4 ± 0.5 ⁴	79.1 ± 0.2^{9}	$87.0\pm0.3^{\rm R}$	$20.6\pm0.3^{\rm Q}$	11.7 ± 0.3^8
Potato	Native	59.6 ± 0.4^{9}	66.3 ± 0.4 ⁹	76.0 ± 0.5^{9}	16.5 ± 0.4^{9}	$16.3\pm0.1^{\text{P}}$
	HMT ^d	61.2 ± 0.3*	75.6 ± 0.5 ³	86.5 ± 0.4^3	25.3 ± 0.2^{9}	11.5 ± 0.2^{8}
"Starch: water ratio	resent the onset, n	isis) id-point, end of gelat	bnization, and the gel	atinization temperatur	e range, respectively	
"Heat-moisture trea Means within the s 0.05	ated (100°C, 30% m ame column with di	oisture, 10h) fferent superscripts ()	for native starch and	ts heat-moisture treat	led counterpart) are si	gnificantly differe

Table 4- 6 DSC characteristics of native, and heat moisture treated tuber and root starches"

gelatifization (Cooke and Gildey, 1992). Thus the higher AH values for two yam and polato starches (**Table 4.6**) could be attributed to the presence of a higher number of double batices (due to their longer anny/opecific main lengh (**Table 4**-2)) and *ior* weaker interaction between adjacent anny/opecifi double helices within the crystalline domains of the native granule (this postulate seems plausible, since crystallite disruption on heat-moisture treatment occurs only in potato and two yam (**Table 4.4**)).

Heat-moisture treatment increased T_6 , T_p , T_e and $T_e T_0$ (potato > true yam > cassava > taro > new cocoyam) [Table 4-6], but decreased ΔH (potato > true yam> cassava > taro > new cocoyam) [Table 4-6].

The melling temperatures (T_n, T_n, T_n) of the starch crystallites are controlled indirectly by the surrounding amorphous region. The reduction in granular assulting on heat-motisture treatment (Table 44) would reduce the destabilization effect of the amorphous region on crystallite melting. Consequently, a higher temperature would be required to met crystallites of heat-moisture treated starches. This would then explain the increase in T_0 , and T_c on heat-moisture treatment (Table 4-6). The decrease in ΔH (Table 4-6) on heat-moisture treatment grables that some of the double helicea present in crystallite and in non-crystalline regions of the granule may have disrupted under the conditions prevailing during heat-moisture treatment. Thus, fewer double helices would uncevel and met during graditrizition of heat-moisture treated starches.

In B-type starches, the packing of helices is less compact than in A-type starches, (Gidley, 1987). Furthermore, there are 36 water molecules per B-type

unt cell, whereas only 4 water molecules are present within the A-type unit cell (Sanko and Wu, 1978). Consequently, on heat-moisture treatment, the double helical chains forming the crystallites of B-type starches would be more mokels, and hence more prone to disruption than those of A-type starches. This would then explain, the large difference in AI between native and heat-motisture treatment B-type starches (**Table 4-6**). The changes in gelatinization parameters on heatmoisture treatment are more pronounced in potato starch due to Its hipper phosphate monoester content (**Table 4-1**). Phosphate groups are mainly located on C₂ C₄, and C₆ of the glucose unit of potato starch (Huckuri et al., 1970). Repulsion between negatively charged phosphate groups on adjacent amylopedim chains would hinder strong interaction between double hollocs. Consequently, crystallites of potato starch would be very susceptible to disruption on heat-moisture treatment. This would here explain the large docrease in T_{ex}T₆. T and 4h on heat-moisture treatment Charlo actions that the large docrease in T_{ex}T₆.

4.7 Acid hydrolysis

Acid hydrolysis of native and heat-motiture treated stanches are presented in (Fig. 4-2). The extent of hydrolysis of native stanches during the first few days (corresponding manyle) to the degradation of amorphour experision [ollowed en order: true yam > potato > taro > cassava > new cocoyam. Thereafter, the extent of hydrolysis (corresponding mainly to the degradation of crystallites) followed the order: true yam > cassava > new cocoyam > potato > taro. Differences in the extent of add hydrolysis between native stanches has been extinuted to arrandu

Fig. 4-2 Acid hydrolysis of native and heat-moisture treated (10h, 30% moisture, 100°C) tuber and root starches, A= native, B= heat-moisture treated

hydrolysis by reducing chain flexibility, and thereby hindering the conformational change (chair →half chair) required for efficient protonation of glycosidic oxygens; and 3) disruption of double belices in the amorphous region (increases hydrolysis by making glycosidic oxygens more accessible to protonation). The influence of heat-moisture treatment on acid hydrolysis varied among the starch sources. For instance, throughout the time course of hydrolysis, heat-moisture treated true vam starch was hydrolyzed to a much lesser extent than that of its native counterpart (Fig. 4-2). However, heat-moisture treated taro, cassava and potato showed increased hydrolysis until the 4th, 6th, and 5th day respectively. After which hydrolysis was less than their native counterpart (Fig. 4-2) The decreased susceptibility of heat-moisture treated true vam starch towards acid hydrolysis (Fig. 4-2) suggests that extensive amylose chain interactions on heatmoisture treatment (Table 4-5) probably negates the influence of crystallite disruption on acid hydrolysis. In potato and true yarn starches, the extent of crystallite disruption (Table 4-2) and amylose - amylose interactions (Table 4-5) during heat-moisture treatment are similar. Therefore, the different hydrolysis patterns shown by heat-moisture treated true vam and potato starches (Fig. 4-2). suggests that double helical structures that may have been present in the amorphous regions of potato starch are probably disrupted on beat-moisture treatment, and are thus rendered more accessible to attack by H₂0⁺. This would then explain the increase in hydrolysis shown by heat-moisture treated potato starch during the first 5 days of hydrolysis (Fig. 4-2). The results suggest that double belical structures are either absent and/or are present only in trace

amounts in the amorphous regions of true yam (due to its shorter amytose chain longh (Table 4.2)). The increased susceptibility of heat-moisture treated new cocoyam starch towards add hydroysis (during the first (3day) can be attributed to the interplay of the following factors: 1) action of H₂O⁺ on disrupted double holices in the amorphous region; 2) weak interaction between amytose chains during heat-moisture treatment (Table 4-5); and 3) action of H₂O⁺ on free amytose chains (thin were originally complexed with highs in the native granulu). The increase in acid hydrolysis on heat-moisture treatment is more pronounced in cassave than in turo due to weaker amytose - amytose interactions (Table 4-5)

4.8 Enzyme hydrolysis

The susceptibility of luber and root starches towards hydrolysis by parcine pancreatic u-amylase followed the order: New cocoyam > casava > tato > postor > true sym (Table 4-7). Differences in vitro digestible of native starches by c-amylase has been attributed to the interplay of many factors such as: granular size, surface area, type of unit cell (A, B or A+8), amylore to amylopedin ratio, amount of lipid complexed amylose chains, crystalline regions of anylopedic hour both the amophous and crystalline regions of amylopedin (Lane et al., 1997; Heinche et al., 1993; Houver and Sosuiaki, 1991). The results indicate that differences in granula size (potato > true yam > tans > casava > new cocoyam) and the presence of (-1-b) branch boths the toward or tooth of the other both or the toward potench potent) the tooth or (1-6) branch boths the toward or too color (1-6) branch boths the toward or too color (1-6) branch boths the tooth or (1-6) branch boths the tooths branch boths the tooth or (1-6) branch boths the tooth or (1-6) branch boths the tooths branch boths the tooth or (1-6) branch boths the tooth branch branch branch branch boths the tooth branch boths the to

Starch	Treatment		Number of hours	5	
source		6	12	24	72
True yam	Native HMT ^a	1.2 ± 0.2^{0} 4.2 ± 0.3^{0}	$\begin{array}{c} 1.5 \pm 0.2^{9} \\ 8.5 \pm 0.3^{9} \end{array}$	3.1 ± 0.2 [#] 11.3 ±0.5 [#]	$\begin{array}{c} 4.9 \pm 0.3^{9} \\ 17.2 \pm 0.5^{9} \end{array}$
Taro	Native HMT ^a	$\begin{array}{c} 8.2 \pm 0.4^{p} \\ 12.3 \pm 0.5^{q} \end{array}$	$\begin{array}{c} 15.3 \pm 0.1^{9} \\ 19.2 \pm 0.4^{q} \end{array}$	$\begin{array}{c} 22.1 \pm 0.2^{p} \\ 28.1 \pm 0.3^{q} \end{array}$	$\begin{array}{c} 38.0 \pm 0.2^{o} \\ 45.4 \pm 0.1^{q} \end{array}$
New cocoyam	Native HMT ^e	$\begin{array}{c} 18.8 \pm 0.6^9 \\ 20.2 \pm 0.7^q \end{array}$	$\begin{array}{c} 24.2 \pm 0.1^{9} \\ 29.1 \pm 0.6^{9} \end{array}$	$\begin{array}{c} 36.1 \pm 0.4^{\text{P}} \\ 40.2 \pm 0.1^{\text{q}} \end{array}$	$\begin{array}{c} 62.5 \pm 0.1^{9} \\ 67.3 \pm 0.3^{9} \end{array}$
Cassava	Native HMT ^a	$\begin{array}{c} 15.3 \pm 0.4^{p} \\ 19.4 \pm 0.5^{q} \end{array}$	$\begin{array}{c} 22.1 \pm 0.2^{0} \\ 38.4 \pm 0.3^{q} \end{array}$	34.2 ± 0.6^{9} 48.1 ± 0.5^{9}	$\begin{array}{c} 56.2 \pm 0.4^{p} \\ 69.5 \pm 0.1^{q} \end{array}$
Potato	Native HMT ^e	$\begin{array}{c} 1.8 \pm 0.6^{9} \\ 8.3 \pm 0.5^{q} \end{array}$	$\begin{array}{c} 2.1 \pm 0.3^{9} \\ 14.7 \pm 0.6^{9} \end{array}$	$\begin{array}{rr} 3.8 \pm 0.1^9 \\ 23.1 & \pm \end{array}$	$\begin{array}{c} 5.9 \pm 0.5^{9} \\ 32.8 \pm 0.1^{9} \end{array}$

Table 4- 7 Enzyme hydrolysis (%) of native and heat-moisture treated tuber and root starches by porcine pancreatic ∞-amylase

*Heat-moisture treated (100°C, 30%miosture, 10h)

Means (for the different stages of hydrolysis) within the same column (for native starch and its heat-moisture treated counterpart) with different superscripts are significantly different (p-0.05) crystallite regions would weaken the crystallite structure thereby increasing the accessibility of a-amylase into the granule interior) in the crystalline regions of Atype starbes (encocoyam, taro, casawa) are the factors that influence hydrobysis of native starches. This postulate is based on the fact that, differences among starches with respect to the level of amylose content (Table 4-1), amylose lipid complexes (Table 4-1) and crystallink) (Table 4-2) are too small to account for the observed differences on exame hidrobvis.

In all starches, enzyme susceptibility increased on heat-moisture treatment (potato > true vam > cassava > taro > new cocovam). Gallant, (1974) has shown that one of the limiting factors in a-amylolysis could be the nature of the granule surface with respect to crystallinity. Furthermore, Planchot et al., (1997) have postulated, that the fraction of total crystalline material is an important factor defining the rate and extent of a-amylase hydrolysis. The initial step of aamylolysis corresponds to adsorption of a-amylase on the granule surface. Thus, crystallite disruption near the granule surface on heat-moisture treatment of true vam and potato (Table 4-3) starches, could facilitate the rapid entry of α-amylase into the granule interior. This would then explain the more pronounced increase in enzyme hydrolysis observed on heat-moisture treatment of the above starches (Table 4-7). The extent of crystallinity disruption during heat-moisture treatment was nearly the same in both true yam and potato starches (Table 4-3). Therefore, the more pronounced increase in hydrolysis after heat-moisture treatment of potato starch (Table 4-7) could be attributed to interactions (during heat-moisture treatment) involving amylose chains (Table 4-5) being of a lower

order of magnitude than in true yarn (Interaction between amylose chains (within the amorphous region) would decrease the accessibility of α-amylase towards the an (1-44) (posicial initiages). In Arype starshes, crystallites are not disrupted on heat-moisture treatment (Table 4.3). Therefore, the extent of increase in hydrolysis on heat-moisture treatment (cassarva > tars > new coccoyam) mainly reflects the interplay between: 1) the number of double helices that may have disrupted in the amorphous regions during heat-moisture treatment (disrupted double helices would increase accessibility of the unrelated chains to the binding sites of α-amylase), and 2) the extent of interaction that occurs between amylote chains (tars > new coccyam) > cassava) during heat-moisture treatment (Table 4.5).

4.9 Retrogradation

The mething enthables (JAI₄) of amylopectin recrystallization are presented in (Table 4.8), JAI₆ reflects the extent of retrogradation during the storage period (Taylay et A/C²), AI₆ followed the order. The yam > peators > tab > hav > new coccyam > cassava. This result confirms earlier reports that amylopectin from Btype stanches retrogrades to a greater extent than amylopectins from A type(cereal) and A+B-type(legume) starches (Kalichevsky et al., 1990; Silverio et al., 1990; This was attribuied to the shorter average amylopectin chain length of the A-type starches (Kalichevsky et al., 1990; Orford et al., 1997). Ward et al. (1994) postuliated that differences in retrogradation between creal amylopectins is influenced by a ja in increased mater proportion of unit chain with D fi-14.24

Starch	Treatment	-	2 Number	of days of storag	Ŷ	01	a	7
True yam	Native	7.4 ± 0.5^{9}	7.2±0.9°	7.6±0.6	8.7±0.3 ⁶	9.2±0.5*	9.3±0.8 ^p	9.8±0.6 ⁶
	HMT*	$7.2 \pm 0.8^{\circ}$	$7.1 \pm 0.3^{\circ}$	7.4±0.5°	$8.1 \pm 0.6^{\circ}$	8.3 ± 0.6*	8.4 ±0.6°	8.7 ± 0.1^{9}
Taro	Native	4.1 ± 0.6^{9}	5.2 ± 0.6^{9}	$5.7 \pm 0.8^{\circ}$	6.3 ± 0.4^{P}	6.8 ± 0.8*	$7.1 \pm 0.8^{\circ}$	$7.1 \pm 0.8^{\circ}$
	HMT	3.9 ± 0.9"	49±02	5.7±0.2	6.2±0.97	6.9±0.2"	6.7±0.1"	$6.9 \pm 0.5^{\circ}$
New occeyam	Native HMT ⁶	3.6±0.7° 3.5±0.5°	3.4 ± 0.6^{9} 3.1 ± 0.2^{9}	3.8±0.6°	4.1±0.3 ^p 4.5±0.4 ^p	4.9±0.3° 4.8±0.9°	5.2 ±0.6° 5.0±0.8°	5.3 ± 0.7° 5.4 ± 0.8°
Cassava	Native	1.3 ± 0.5"	1.4 ± 0.2*	22±03	23±0.6	2.5 ± 0.8*	3.4 ± 0.4^{9}	3.6 ± 0.3°
	11000	0.0 2 0.0	10101	0.010.0		A.7 2 0.0	0.1 2 0.0	0.0 Z A.0
Potato	Native	4.9 ± 0.8	5.3 ± 0.4"	5.9±0.5°	6.6 ± 0.3°	7.2 ± 0.3	$7.6 \pm 0.3^{\circ}$	82±0.7
	HMT	4.8±0.3"	56±0.57	-90 + C M	55+09	20+0 H	7.2 ± 0.8p	7.1+0.57

Table 4-8 The enthalpy of retrogradation (ΔH_R) of native and heat-moisture treated tuber and root starches

" At 40°C

^bHeat-moisture treated (100°C, 30%moisture, 10h)

Meens (for the different days of storage) with different superscripts (for native starch and its heat-moisture treated counterpart) are significantly different (p-0.05)

(increases retrogradation, and (b) an increased molar proportion of short chains with DP 6-9 (inhibits retrogradation). A similar finding was also reported by Wursch and Gumy (1994).

In this study, differences in the extent of retrogradation between taro, new cocovam and cassava (Table 4-8) can be explained on the basis of differences in their external chain length (Table 4-2). However, differences in retrogradation between true yam and potato are probably influenced to a greater extent by differences in their amylopectin chain length distribution (not determined in this study) rather than the external chain length. Heat-moisture treatment decreased retrogradation in B-type starches, but caused no significant changes to the retrogradation of A-type starches (Table 4-8). As discussed earlier, crystallites are disrupted in B-type starches, but remain unchanged in A-type starches on heat-moisture treatment (Table 4-2). Thus, after heat-moisture treatment, the degree of separation between the outer branches of adjacent amylopectin chains would be greater in the B-type starches, but would remain practically the same in A-type starches. Consequently, during gel storage, the formation and lateral association of double helices involving amylopectin chains, would be much slower, more difficult and less stronger for heat-moisture treated B-type starches. This would then explain the observed decrease in AHe for true vam and potato. and the unchanged AHe for new cocovam, cassava and taro starches (Table 4-8).

SUMMARY AND CONCLUSION

The results showed that starch chain interaction, crystalline disruption and dissociation of double helical structures (in the amorphous region) occur on heat moisture freatment. The extert of these structural changes and the accompanying changes to crystallinity, amylose leaching, granular eveiling, acid and enzyme susceptibility, gelatilitzation and reforgradation were more pronounced in the Excess starking costor and rus vami.

Many taker and root starches are not widely used in food applications due to their poor functional properties. Presently, chemical modification is widely used to taker the properties of potata and cassave starches. This duty has shown that heat-moisture treatment may be an alternative to chemical modification for altering the getatificization and retrogradistion properties of tuber and root starches. Many tuber and root crops are endemic to less developed countries. Thus, scientists in these countries need to taker the properties of tuber and root starches. Wheat-moliture treatment (using different temperature / time combinations) to a level that is presently met by chemical modification. Such a study would help these countries to compete more effectively in the markets in hold the for hold on-chord sectors.

DIRECTIONS FOR FUTURE RESEARCH

This study has shown that heat-molsture treatment can be used to modify the structure and properties of tuber and noot starches. Further studies are needed to determine whether these starches could be modified to a level that is presently met by chemical modification. These studies are listed below:

- (1) Determination of structure and property changes when tuber and root starches are subjected to heat-moisture treatment under different time/ temperature/moisture combination regimes
- (2) More detailed investigations (using different physical probes)on the influence of heat-moisture treatment on starch retrogradation
- (3) The use of Atomic force microscopy to study the surface characteristics of native and heat-moisture treated starches. Changes in granular surface on heat-moisture treatment (not detectable by SEM) could influence susceptibility works add and enzyme hydrohysis.

PUBLICATIONS

Gunaratne.A., and Hoover, R. (2001).Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr, Polym., (In press))

AWARDS RECEIVED FOR THIS STUDY

(1). George F. Stewart International Research Paper Competition, Institute of food technologists (IFT) Annual Conference (2001), New Orleans, Louisiana, USA, awarded hird place for "Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root stat-ces"

(2). Title of "Fellow of the School of Graduate Studies" (2000 -2001), in recognition of the continued academic excellence, Memorial University of Newfoundland, St. John's, Canada

(3). Barrowman Biochemistry Travel Award (2000-2001), in recognition of outstanding achievement and pursuit of excellence by a Memorial University student at the graduate level. Memorial University of Newfoundiand, St. John's Canada

(4). Graduate Fellowship, Graduate School, Memorial University of Newfoundland, St. John's, Canada (31st, Aug, 2000 to 31st, Aug, 2002)

REFERENCES

Aberle, Th., Burchard, W., Vorweg, W., and Radosta, S. (1994) Conformation, contributions of amylose and amylopectin to the properties of starches from various sources. *Starke*, 48, 329-335.

Abraham, T.E. (1993) Stabilization of paste viscosity of cassava starch by heatmoisture treatment. Starch, 45, 131-135.

Acker, L. (1997) Die Lipide der Starken-ein forschngsgebiet zwischen kohlenhydraten und lipiden. Fette, Seifen, Anstrichmittel, 79, 1 - 9.

Alexander, R.J. (1992) Carbohydrates used as fat replacers. In Developments in Carbohydrate Chemistry. R.J. Alexander, and H.F. Zobel. (Eds.), p. 343-370. American Association of Cereal Chemists. Minnesota

American Association of Cereal Chemists. Approved methods of the AACC (1984). 8th ed. St. Paul. MN.

Anne, M.B., Bente, W., Cral, E.O., and Tom, H.N. (1994) Starch bound phosphate in potato as by a simple method for determination of organic phosphate and ³¹P-NMR. Starch/Starke, **46**, 167 - 172.

Asante, S.A., Yamada, T., Hisamatsu, M., and Shiotani, I. (1993) Studies on the properties of starch of diploid Ipomea triffida (H.B.K.) Don strains. *Starke*, 45,299-306.

Asaoka, M., Okuno, K., Sugimoto, Y., Yano, M., Omura, T., and Fuwa, H. (1986) Characterization of endosperm starch from high -amylose mutants of rice (Oryza sativa L.) Starch/Starke, 38, 114 - 117.

Baldwin, P.M., Adler, J., Davies, M.C., and Melia, C.D. (1994) Holes in starch granules: confocal, SEM and light microscopy studies of starch granule structure. *Starch*, 46, 341-346.

Banks, W., and Greenwood, C.T. (1968) Studies on starches of high amylose content. IX. the detection of linear material in the anomalous amylopectin from amylomaize starch. Carbonydr. Res., 6, 241-244.

Banks, W., and Greenwood, C.T. (1971) Amylose: a non helical polymer in aqueous solution. *Polymer*, 12, 141-145.

Banks, W., and Greenwood, C.T. (1975) Starch and its components. p.52-66. Edinburgh, University Press, Edinburgh. Banks, W., Greenwood, C.T., and Muir, D.D. (1974) Studies on starches of high amylose content. 17. A review of current concepts. Starch, 26, 289-328.

Biliaderis C.G., and Grant, D.R., and Vose, J.R. (1981) Structure characterization of legume starches. II. Studies on acid-treated starches. *Cereal Chem.*, 58, 502-507.

Biliaderis, C.G. (1998) Structures and phase transition of starch polymers. In Polysaccharide association structures in food. R.H. Walter (Ed.), p. 57 - 168. Marcel Dekker, Inc, New York.

Biliaderis, C.G., and Senaviratne, H.D. (1990) Solute effects on the thermal stability of glycerol monostearate-amylose complex Crabohydr. Polym., 13, 185-206.

Billaderis, C.G., and Tonogai, J.R. (1991) Influence of the lipids on the thermal and mechanical properties of concentrated starch gels. J. Agric. Food Chem., 39, 833-840.

Biliaderis, C.G., Maurice, T.J., and Vose, J.R. (1980) Starch gelatinization phenomenon studied by differential scanning calorimetry. J. Food Sci., 45, 1669-1674, 1680.

Biliaderis, C.G., Page, C.M., and Maurice, T.J. (1986) Nonequilibrium melting of amylose-V complexes. Carbohydr. Polym., 6: 269-288.

Biliaderis, C.G., Prokopowich, D.J. (1994). Effect of polyhydroxy compounds on structure formation in waxy maize starch gelailtzation. A calorimetric study. *Carbohydr. Polym.*, 33, 193-202.

Biliaderis, C.G., Tonogai, J.R., Perez, C.M., and Juliano, B.O. (1993) Physical properties of milled rice starch as influenced by variety and par-boiling method. *Ceresal Chem.*, **70**, 512-516.

Blanshard, J.M.V. (1986) The significance of the structure and function of the starch granules in baked products. In *Chemistry and Physics of Baking*, J.M.V. Blanshard (Ed.), p. 1-2. Royal Society of Chemistry, London.

Blanshard, J.M.V. (1987) Starch granule structure and function: A physicochemical approach. In: Starch Properties and Potentiel. T. Galliard. (Ed.), p.16-54. Critical Reports in Applied Chemistry. Society for Chemistry and Industry, London.

Bligh, E.G., and Dyer, W.j. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys., 37, 911-915.
Bogracheva, T., Ya, Morris, V.J., Ring, S.G., and Hedley, C.L. (1998) The granular structure of C-type pea starch and its role in gelatinization. *Biopolym.*, 45, 3323-332.

Boyer, C.D., Shannon, J.C., Garwood, D.L., and Creech, R.G. (1976) Changes in starch granules size and amylose percentage during kernel development in several Zee mays L.genotypes. Careal Chem., 53, 327-333.

Bruner, R.L. (1964) Determination of reducing value. In 'Methods in Carbohydrate Chemistry," Vol. IV – Whistler R L (ed.), p. 67-71. Academic Press, New York, NY, USA.

Bulkin, B.J., Kwak, Y., and Dea, I.C.M. (1987) Raman spectroscopiy of starch retrogradation. Carbohydr. Res., 160, 95-112.

Cairns, P., Miles, M.J., and Morris, V.J. (1991) Studies of the effect of the sugars, ribose, xylose and fructose on the retrogradation of wheat starch gels by X-ray diffraction. *Carbohydr.* Polym. **16**, 355-365.

Carlson, T.L.G., Larsson, D., Dinh-Nguyen, N., and Krog, K. (1979) A study of the anylose-monoglyceride complex by Raman spectroscopy. *Starch*, 31, 222-224.

Cheetham, N.W.H., and Tao, L. (1998) Variation in crystalline type with amylose content in maize starch granules: and X-ray powder diffraction study. *Carbohydr. Polym.*, **36**, 277-284.

Chun, J., Lim, S., Takeda, Y., and Shoki, M. (1997) Properties of high crystalline rice amylodextrins prepared in acid-alcohol media as fat replacers. *Cereal Food* World, 42, 813–819.

Collado, L.S., and Corke, H. (1999) Heat-moisture treatment effects on sweet potato starches differing in amylose content. Food Chem., 65, 329 - 346.

Collado, L.S., Mabesa, L.B., Oates, C.G., and Corke, H. (2001) Bihon type noodles from heat-moisture treated sweet potato starch. *J.Food. Sci.*, 66,804-609.

Collado, L.S., Mabesa, R.C., and Corke, H. (1999) Genetic variation in the physical properties of sweet potato starch. J. Agric. Food Chem., 47, 4195-4201.

Colonna, P., and Mercier, C. (1984) Macromolecular structure of wrinkled-and smooth pea starch components. Carbohydr. Res., 126, 233 - 247.

Colonna, P., and Mercier, C. (1985) Gelatinization and melting of maize and pea starches with normal and high amylose genotypes. *Phytochem.*, 24, 1167-1674. Colonna, P., Leloup, V., Buleon, A. (1992) Limiting factors of starch hydrolysis. Eur. J. Clin. Nutr., (Suppl. 2) 46, S17 -S32.

Colwell, K.H., Axford, D.W.E., Chamberlain, N., and Elton, G.A.H. (1969) Effect of storage temperature on the aging of concentrated wheat starch gels. J. Sci. Food Agric, 20, 550-555.

Cooke, D., and Gidley, M.J. (1992) Loss of crystallinity and molecular order during starch gelatinization: origin of the enthalpic transition. *Carbohydr Res.*, 227, 103-112.

Defloor, I., Dehing, I., and Delcour, J. (1998) Physicochemical properties of cassava starch. Starke, 50, 58-64.

Donald, A.M., Waigh, T.A., Jenkins, P.J., Gidley, M.J., Debet, M., and Smith, A. (1997) Internal structure of starch granules revealed by scattering studies. In starch, *Structure and Functionality*. P.J. Fraizer, P. Richmond, and A.M. Donald. (Eds.), p. 172-179. The Royal Society of Chemistry, Cambridge.

Donovan, J.W. (1979) Phase transition of starch - water systems. *Biopolymers*, 18, 263 - 275.

Donovan, J.W., Lorenz, K., and Kulp K. (1983) Differential scanning calorimetry of heat-moisture treated wheat and potato starches. *Cereal Chem.*, 60, 381-387.

Dreher, M.L., and Berry, J.W. (1983) Buffalo gourd root starch. Part 1. Properties and structure. Starke, 35, 76-81.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. *Anal. Chem.*, 28, 350-352.

Eberstein, K., Hopcke, R., Konieczny-janda, G., and Stute, R. (1980) DSCuntersuchungen an Starken. Starke, 12, 397-400.

Eerlingen, R.C., Jacobs, H., Van Win, H., and Delcour, J.A. (1996) Effect of hydrothermal treatment on the gelatinization properties of potato starch as measured by differential scanning calorimetry. J. Therm. Anal., 47, 1229-1246

Eliasson, A.C. (1983) Differential scanning calorimetry studies on wheat starch gluten mixtures. II Effect of gluten and sodium stearoyl lactylate on starch crystallization during aging of wheat starch gels. J. Correol Sci, 1, 207 - 213.

Eliasson, A.C. (1985) Starch gelatinization in the presence of emulsfiers. A morphological study of wheat starch. Starch/Starke, 37, 411-415. Eliasson, A.C., and Larsson, K. (1993) Cereals in bread making: A Molecular Colloidal Approach. Marcel Dekker, New York.

Eliasson, A.C., and Ljunger, G. (1988) Interaction between amylopectin and lipid additives during retrogradation in a model system. *Science and Food Agriculture*. 44, 353-361.

Emiola, L.C., and Delarossa, L.C. (1986) Physicochemical properties of yam starches. Food Biochem., 5, 115-130.

Erdman, M.D. (1986) Starch from arrowroot (Maranta arundinacia) grown at Tifton, Georgia Cereal Chem., 63, 277-279.

Eerlingen, R.C., Jacobs, H., Block, K., and Delcour, J.A. (1997) Effects of hydrothermal treatment on the rheological properties of potato starch. Carbohydr. Res. 297, 347-356.

Eerlingen, R.C., Jacobs, H., Block, K., Delcour, J.A. (1997) Effects of hydrothermal treatment on the rheological properties of potato starch. *Carbohydr. Res.*, 297, 347-356.

Evans, J.D., and Haismann, D.R. (1982) The effect of solutes on the gelatinization temperature of potato starch, Starke, 34, 224-231.

Fannon, J.E., Hauber, R.J., and BeMiller, J.N. (1992) Surface pores of starch granules. Cereal Chem., 70, 611-613.

Fannon, J.F., Shull, J.M. and BeMiller, J.N. (1993) Interior channels of starch granules. Cereal Chem., 70, 611-613.

Ferrero, C., Martin, M.N., and Zantzky, N.E. (1994). Corn-starch-xanthan gum interaction and its effect on the stability during storage of frozen gelatinized suscensions. *Starke*, 48, 300-305.

Franco, C.M.L., Preto, S.J.R., Ciacco, C.F., and Tavares, D.Q. (1987). Studies on the susceptibility of granular cassava and com starches to enzymatic attack. Part 2: Study of the granular structure of starch. Starch/Starker, 40, 29-32.

Franco., C.M.L., Ciacco, C.F. and Tavares, D.Q. (1995) Effect of heat-moisture treatment on the enzymatic susceptibility of com starch granules. *Starch*, 47, 223-228.

French, D. (1984) Organization of starch granules. In *Starch Chemistry and Technology*, 2rd ed. R.L. Whistler, J.N. BeMiller, Paschal, E.F. (Eds.), p.183 - 212 Academic Press, New York. French, D., and Murphy, V.G. (1977) Computer modeling in the study of the starch. Cereal foods World, 22, 61-70.

Fugita, S., Ida, T., Fujiyama, G. (1992) Relationship between gelatinizing temperature and enthalpy of starch from graminaceous crops by differential scanning calorimetry. Starch/Starke 44, 456-461.

Fukui, T., and Nikuni, Z. (1969) Heat-moisture treatment of cereal starch observed by X-ray diffraction. Agric. Biol. Chem., 33, 460-462.

Fuwa, H., Nakajima, M., Hamada, A., and Glover, D.V. (1997) Comparative susceptibility to anylases of starches from different plant species and several single endosperm mutants and their double-mutant combinations with opaque-2 inbred oh 43 maize. *Cereal Chem.*, 54, 230-227.

Gallant, D.J. (1974). Contribution a' l'etude de la strcuture et de l' ultrastrcuture de l'amidon. Th'ese de Doctorat d'Etat: Univ, Paris.

Gallant, D.J., Bewa, M., Buy, Q.H., Bouchet, B., Szylit, O., and Seaty, L. (1982) On ultrastructural nutritional aspects of some tropical tuber starches. *Starko*, 34, 255-262.

Gallant, D.J., Bouchet, B., and Baldwin, P.M. (1997) Microscopic of starch: Evidence of a new level of granule organization. *Carbohydr. Polymers*, 32: 177 -191.

Gallant, D.J., Derrien, A., Aumaitre, E., and Guilbot, A. (1973) In vitro degradation of starch. Studies by transmission and scanning electron microscopy. Starke, 25, 56-64.

Galliard, T, and Bowler, P. (1987). Morphology and composition of starch. In Critical reports on applied chemistry vol:13-starch: properties and potential. T.Galliard (Ed.), p. 55-78. John Wiley and Sons, Chichester, U.K.

Galloway, G., Billaderis, C.G., and Stanely, D.W. (1989) Properties and structure of anylose-glycerol complexes formed in solution or extrusion of wheat flour. *J.Fcod.Sci.*, 54, 950-957.

Garcia, A.M., and Walter, W.M. (1998) Physicochemical characterization of starch from Peruvian sweet potato selections. Starke, 50, 331-337.

Gernat, C., Radosta, S., Anger, H., Damaschun, G. (1993) Crystalline parts of three different conformations detected in native and enzymatically degraded starches. *Starb/Starke*, 45, 309 - 314.

Gidley M. J. (1987) Factors affecting the crystalline type (A-C) of native starches and model compounds. A rationalization of observed effects in terms of polymorphic structure. Carbohydr.Res. 161, 301-304. Gidley, M.J., and Bociek, S.M. (1985) Molecular organization in starches. A ¹³CCP/MAS NMR study. J. Am. Chem. Soc., 107, 7040-7044.

Gidley, M.J., and Bociek, S.M. (1988). ¹³CCP/MAS NMR studies of amylose inclusion complex cyclodextrins and the amorphous phase of starch granules: Relationship between glycosidic linkage shift. conformation and solid-state ¹³C chemical shift. J. Am. Chem. Soc., **110**. 3820-3829.

Greenwood, C.T., and Thompson, J.A. (1959) A comparison of the starches from barely and malted barely. Journal of the Institute of Brewing, 65, 346-353.

Gudmundsson, M., and Eliasson, A.C. (1990) Retrogradation of amylopectin and the effects of amylose and added surfactants/emulsifiers. *Carbohydr. Polym.*, 13, 295-315.

Gudmundsson, M., and Eliasson, A.C. (1987) Some physicochemical properties of oat starches extracted from varieties with different oil content. Acta Agric. Scand., 39, 101-111.

Hagiwara, S., Esaki, K., Kitamura, S., and Kuge, T. (1991) Observation by photo microscopic and X-ray diffraction method of heat-moisture treatment on starch granules. *Denpun Kagaku*, 38, 241-247.

Hancock, R.D., and Tarbet, B. (2000) The other double helix - The fascinating chemistry of starch. J. Chemical Edu., 77, 988 - 992.

Hargin, K.D., and Morrison, W.R. (1980) The distribution of acyl lipids in the germ of four wheat varieties. J. Sci. Food Agric., 31, 877 - 888.

Hinrichs, W., Buther, G., Steifa, M., Betzel, Ch., Zabel, V., Pfannemuller, B., and Saenger, W. (1987) An amylose antiparallel double helix at atomic resolution. *Science*, 238, 205-208.

Hizukuri, S. (1985) Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. *Carbohydr. Res.*, 141, 295-306.

Hizukuri, S. (1986) Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr. Res., 147, 342-347.

Hizukuri, S. (1996) Starch analytical aspects. In. "Carbohydrates in Foods".. A.C. Eliasson, (Ed.), p. 342-429 Marcell Dekker, New York.

Hizukuri, S., Fujii, M., and Nikuni, Z. (1960) The effect of inorganic ions on the crystallization of amylodextrin. *Biochemica and Biophysica Acta.*, 760, 188-191. Hizukuri, S., Fujii, M., and Nikuni, Z. (1961) Effect of temperature during germination on the crystalline type of starch in soya bean seedling. *Nature*, **192**, 239-242.

Hizukuri, S., Kaneko, T., and Takeda, Y. (1983) Measurement of the chain length of amylopectins and its relevance to the origin of crystalline polymorphism of starch granules. *Biochemica et Biophysica Acta*, **760** 188 - 191.

Hizukuri, S., Tabata, S., and Nukuni, Z. (1970) Studies on starch phosphates, Part 1. Estimation of glucose - 6 phosphate residues in starch and the presence of other bound phosphate(s). *Starke*, 22, 338 - 343.

Hizukuri, S., Takeda, Y., Maruta, N., and Juliano, B.O. (1989) Molecular structures of rice starch. Crabohvdr. Res., 189, 227-235.

Hizukuri, S., Takeda, Y., Yasuda, M., and Suzuki, A. (1981) Multibranched nature of amylose and the action of debranching enzymes. *Carbohydr. Res.*, 94,205-213.

Holm, J., Bjorck I., Ostrowska, S., Eliasson, A.C., Asp, N.G., Larrson, K., and Lundquist, L. (1982) Digestbility of amylose-lipid complexes in vitro and in vivo. *Starke*, 35, 294-297.

Hood, LF., and Mercier, C. (1978) Molecular structure of unmodified and chemically modified manioc starches. Carbohydr. Res., 61, 53 - 66.

Hoover, R, and Hadziyev, D. (1981) Characterization of potato starch and its monoglyceride complexes. Starch, 33, 290-300.

Hoover, R, and Manuel, H. (1996) The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and anylomaize v starches. J. Carels Sci., 23, 153-162.

Hoover, R, and Ratnayake, R.M.W.S. (2001) Determination of total amylose content of starch. In R.E. Wrolstad, T.E. Acree, H. An, E.A. Decker, M.A. Penner, D.S. Reid, S.J. Schwartz, C.F. Shoemaker, and P. Sporns, *Current Protocols in Food Analytical Chemistry* (Section E, Unit 2 - 3). John Wiley & Sons, Inc.

Hoover, R, and Sosulski, F. W. (1991) Composition, structure, functionality and chemical modification of legume starches. a review. Can. J. Phys. Pharm., 69, 79-92.

Hoover, R, and Vasanthan, T. (1994) Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, tuber, and legume starches. *Carbohydr. Res.*, 252, 33-53. Hoover, R. (1995) starch retrogradation . Food Rev. Int., 11, 321-346.

Hoover, R. (2000) Acid-treated starches. Food. Rev. Int., 16, 369-392.

Hoover, R. (2001) Composition, molecular structure and physicochemical properties of tuber and root starches: a review. Carbohydr. Polym., 45, 253-267.

Hoover, R., and Hadziyev, D. (1981) The effect of monoglycerides on amylose complexing during a potato granule process. Starch, 33, 346-355.

Hoover, R., and Manuel, H. (1995) A comparative study of the physicochemical properties of starches from two lentil cultivars. Food Chem., 53, 275-284.

Hoover, R., and Sosulski, F.W. (1985) Studies on the functional characteristics and digestibility of starches from *Phaseolus vulgaris* biotypes. *Starke.*, 37, 181-191.

Hoover, R., and Sosulski, F.W., (1986) Effect of cross-linking on functional properties of legume starches. Starke, 38, 149-155.

Hoover, R., Sosulski, F.W. (1991) Composition, structure, functionality, and chemical modification of legume strches: A Can. J. Physiol. Pharmacol., 69, 79-85.

Hoover, R., Hannouz, D., and Sosulski, F.W. (1988) Effects of hydroxypropylation on thermal properties, starch digestibility and freeze-thaw stability of field pea (*Pisum sativum cv.*, Trapper), *Starks*, 40, 383-387.

Hoover, R., Swamidas, G., and Vasanthan, T. (1993) Studies on the physicochemical properties of native, defatted and heat-moisture treated pigeon pea (*Cajanus cajan. L*) starch. *Carbohydr. Res.*, 246, 185-203.

Hoover, R., and Vasanthan, T., (1992) Studies on isolation and characterization of starch from oat (Avena nuda) grains, Carbohvdr, Polvm., 19, 285-297.

Hoover, R., Vasanthan, T., Senanayake, N., and Martin, A. M. (1994) The effect of defatting and heat-moisture treatment on the retrogradation of starch gels from wheat, cat, potato, and lentil. Carbohydr, Res., 281, 13-24.

Huber, K.C., and Bemiller, J.N. (1997) Visualization of channels and cavities of corn and sorghum starch granules. *Cereal Chem.*, 74, 537-541.

Imberty, A. (1988) A revisit to the three dimensional structure of B-type starch. Biopolymers, 27, 1205-1221.

Imberty, A., and Perez, S. (1989) Conformational analysis and molecular modeling of the branching point of amylopectin. *Int. J. Biol. Macromol.*, 11, 177-185. Imberty, A., Buleon, A., Tran, V., and Perez, S. (1991) Recent advances in knowledge of starch structure. Starch/Starke, 43, 375 - 384.

Imberty, A., Chanzy, H., Perez, S., Buleon, A., and Tran, V. (1988) The double helical nature of the crystalline part of A-starch. J. Mol. Biol., 201, 365-378.

Inaba, H., Hatanaka, Y., Matsumura, Y., and Mori, T. (1994) Changes with retrogradation of mechanical and textural properties of gels from various starches. *Carbohydr. Polym.*, 24, 31-40.

Inouchi, N., Glover, D.N., Sugimoto, Y., Fuwa, H. (1991) DSC characteristics of gelatilization of starches of single double and triple-mutants and their normal counterpart in the inbred oh43 maize Zea mays L. Background. Starch/Starke, 43,468-472.

Inouchi, N., Glover, D.V., and Fuwa, H. (1987) Chain length distribution of anylopectins, of several single mutants and the normal counterpart, and sugary -1 phytoglycogen in maize (Zea mays L.). Starch/Starke, 35, 335 - 340.

International starch institute (1999) htt://home3.inet.tele.dk/starch/isi/stat/rawmaterial.html

Ishii, Y., Kawabata, A., and Nakamura, M. (1994) Retrogradation specificities of amylopectins isolated from tropical starches using differential scanning calorimetry. Oyo, *Toshitsu Kaguku*, 41, 297 - 330.

Jacobs, M., and Delcour, J.A. (1998) Hydrothermal modifications of granular starch with retention of the granular structure. A review. J. Agric. Food Chem., 46, 2895-2095.

Jacobson, M.R., Obanni, M., and BeMiller, J.N. (1997) Retrogradation of starches from different botanical sources. *Cereal Chem.*, 41, 859-860.

Jane, J., Kasemsuwan, T., Leas, S., Zobel, H.F., and Robyt, J.F. (1994) Anthology of starch granule morphology by scanning electron microscope Starch/starke.46, 121.

Jane, J., Kasemusuwan, T., and Chen, J.F. (1996) Phosphorous in rice and other starches, Cereal Food World, 41, 827 -832.

Jane, J., Xu, A., Radosavljevic, M., and Selb, A. (1992) Location of amylose in normal starch granules. i. Susceptibility of amylose and amylopectin to crosslinking reagents. *Carela Chem.*, 69, 405-409. Jane, J.L., and Robyt, J.F. (1984) Structure studies of amylose-v complexes and retrograded amylose by action of alpha-amylase, and a new method for preparing amylodextrins. *Carbohydr Res.*, **132**, 105-118.

Jane, J., and Robyt, J.F. (1985) ¹³CNMR study of the conformation of helical complexes of amylodextrin and of amylose solution. *Crabohydr. Res.*, 140, 21-35.

Jane, J.L., and Shen, J.J. (1993) Internal structure of the potato starch granule as revealed by chemical gelatinization. *Carbohydr. Res.*, 247, 279 - 290.

Jane, J.L., Wang, K., S., and Mopherson, A.E. (1997) Branch structure difference in starches of A and B type X-ray pattern revealed by their Naegeli dextrins. *Carbohydr. Res.*, 300, 219-227.

Jenkins, P. (1994). X-ray and neutron scattering studies on starch granule structure, Ph.D. thesis, University of Cambridge.

Jenkins, P.J., and Cameron, R.E., Donald, A.M., Bras, W., Derbyshire, G.E., Mant, G.R., and Ryan, A.J. (1994) In situ simultaneous small and wide angle Xray scattering: A new technique to study starch gelatinization. J. Poly. Sci. Part B Polym. Phys., 32(8), 1579–1583.

Jenkins, P.J., and Donald, A.M. (1995) The influence of amylose on starch granule structure. Int. Biol. Macromol., 17, 52-62.

Jenkins, P.J., Cameron, R.E. and Donald, A.M. (1993) A universal feature in the structure of starch granules from different botanical sources, *Starch*, 45, 417 -420.

Kainuma, K., and French, D. (1972) Naegell amylodextrin and its relationships to starch granule structure. II. Role of water in crystallization of B-starch, *Biopolym.*, 11, 2241-2250.

Kainuma, K., and French, D. (1971) Naegeli amylodextrin and its relationships to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolym. 10, 1673-1680.

Kalichevsky, M.T., Orford, P.D., and Ring, S.G. (1990) The retrogradation and gelatinization of amylopectins from various botanical sources. *Carbohydr. Res.*, 198, 49-55.

Karkalas, J., Ma, S., Morrison, W.R., and Pethrick, R.A. (1995) Some factors determining the thermal properties of anylose inclusion complexes with fatty acids. Carbohydr. Res., 268, 233-247. Karkalas, J., Tester, R.F., and Morrison, W.R. (1992) Properties of damaged starch granules 1. Comparison of a micro method for the enzymic determination of damaged starch with standard AACC Farrand methods. J. Cereal Sci., 16, 237-257.

Kasemsuwan, T., and Jane, J. (1994) Location of amylose in normal starch granules. 11 Location of phosphodiester cross - linking revealed by phosphorous -31 nuclear magnetic resonance. *Cereal Chem.*, 72, 169 - 176.

Katz, J.R., and Vanitallie, T.B. (1930) Abhandlungen zur physikalischen chemieder starke und eler brotbereitung. v. Alle starkearten haben das gleiche. Retroaradationspektrum, Z. Physik. Chem., A150, 90-99.

Kawabata, A., Takase, N., Miyoshi, E., Sawayama, S., Kimura, T., and Kudo, K. (1994) Microscopic observation and X-ray diffractometry of heat-moisture treated starch granules. *Starch*, 46, 463-469.

Kim, Y.S., Weisenborn, D.P., Orr, P.H., and Grant, L.A. (1995) Screening potato starch for novel properties using differential scanning calorimetry. J. Food. Sci. 60, 1060-1065.

Kim, S.K., Ciacco, C.F., and D' Appolonia, B.L. (1976) Kinetic study of retrogradation of cassava starch gels. J. Food Sci., 41, 1249-1256.

Kobayashi, S., Schwartz, S.J., and Lineback, D.R. (1986) Composition of the structure of amylopectins from different wheat varieties. *Cereal Chem.*, 68: 71-74.

Kobayashi,T. (1993) Susceptibility of heat-moisture treated starches to pancreatic «-amylase, and the formation of resistant starch by heat-moisture treatment. Denpun Kagaku, 40, 285-280.

Krog, N. (1971). Amylose complexing effect of food grade emulsifiers. Starch, 23, 206-210.

Kuge, T., and Kitamura, S. (1985) Annealing of starch granules- warm water treatment and heat-moisture treatment. J. Jpn .Soc. Starch Sci., 32, 65-83.

Kulp, K., and Lorenz, K. (1981) Heat-moisture treatment of starches. 1. Physicochemical properties, Cereal Chem., 58: 46-48.

Kulp, K., and Ponte, J.G. (1981) Staling of white pan bread: fundamental causes. Crit. Rev. Food Sci. Nutr., 15,1 - 48. Lauzon, R.D., Shiraish, K., Yamazaki, M., Sawayama, S., Wugiyama, N., and Kawabata, A. (1995) Physicochemical properties of cocoyam starch. Food Hydroxloiv, 9, 77-81.

Lelievre, J., and Mitchell, J. (1975) A pulsed NMR study of some aspects of starch gelatinization. Starke, 27, 113 - 115.

Leloup, V.M., Colonna, P., Ring, S.G., Roberts, K., and Wells, B. (1992) Microstructure of amylose gels. Carbohydr. Polym., 18, 189-197.

Lillford, P.J. and Morrison, A. (1997) Structure/function relationship of starches in food. In Starch: Structure and functionality. P.J. Frazier, P. Richmond and A.M. Donald (Ed.), p. 1-8. The Roval Society of Chemistry, Cambridge, U.K.

Lim, S.T., Kasemsuwan, T., and Jane, J.L. (1994) Characterization of phosphorus in starch by ³¹P -nuclear magnetic spectroscopy. *Cereal Chem.*, 71, 488 - 493.

Lineback, D.R. (1984) The starch granule: Organization and properties. Baker's Dig., 58, 16-21.

Lineback, S.T., and Rasper, V.F. (1988) Wheat carbohydrates. In. Wheat Chemistry and Technology. Pomeranz, Y., (Ed.), p. 277-372. American Association of Cereal Chemists, St. Paul, Minnesota.

Lintner, C.J., (1886) Studien uber diastase. J. Prakt. Chem., 34, 378-386.

Liu, Q., and Thompson, D.B. (1998) Effects of moisture content and different gelatinization heating temperature on retrogradation of waxy type maize starches. Carbohydr. Res., **314**, 221-235.

Lizuka, K., and Ashima, T. (1999) starch gelation process observed by FT-IR/ATR spectrometry with multivariate data analysis. J. Food Sci., 64, 653-658.

Loloup, V.M., Colonna, P., Ring, S.G., Roberts, K., and Wells, B. (1992) Microstructure of amylose gels. Carbohydr. Polym. 18, 189 - 197.

Longton, J., and LeGrys, C.A. (1981) Differential scanning calorimetry studies on the crystallinity of aging wheat starch gets. Starke, 33, 410-414.

Lorenz, K., and Kulp, K. (1981) Heat-moisture treatment of starches.ii Functional properties and baking potential. *Cereal Chem.*, 58, 49-52.

Lorenz, K., and Kulp, K. (1983) Physicochemical properties of defatted and heatmoisture treated starches. Starch , 35, 123-129. Lorenz, K., and Kulp, K. (1982) Cereal and root starch modification by heatmoisture treatment. 1. Physicochemical properties, Starch, 34, 50-54.

Lu, T.J., Jane, J.L., Keeling, P.L. (1997) Temperature effects on retrogradation rate and crystalline structure of amylose, Carbohydr, Polym., 33, 19-26.

Maningat, C.C. and Juliano, B.O. (1979) Properties of litnerized starch granules from rices differing in amylose content and gelatinization temperature. *Starch*, 31, 5-10.

Manners, D.J. (1985) Structural analysis of starch components by debranching enzymes. In New approaches to research on cereal carbohydrates. R.D. Hill and L. Munck, (Eds.), p. 45-80. Elsevier Science Publishers, Amsterdam.

Manners, D.J. (1989) Recent developments in our understanding of amylopectin structure. Carbohydr. Polymers., 11, 87-112.

Manuel, H.J. (1996) The effect of heat-moisture treatment on the structure and physicochemical properties of legume starches. (M.Sc. thesis), p.58. Memorial University of Newfoundland, Canada.

Mariam, T.G., and Schmidt, P.C. (1998) Some physicochemical properties of dioscorea starch from Ethiopia. Starke, 50, 241-246.

Marsden, N.L., and Gray, P.P. (1986) Enzymatic hydrolysis of cellulose in lignocellulosic materials. Critical Reviews in Biotechnology, 3, 235-276.

Maruta, I., Kurahashi, Y., Takano, R., Hayashi, K., Yoshino, Z., Komaki, T., and Hara, S. (1994) Reduced-pressurized heat-moisture treatment: a new method for heat-moisture treatment of starch. *Stark/Starke*, 46, 176-186.

Matsunaga, A., and Kainuma, K. (1986) Studies on the retrogradation of starch in starchy foods. Part 3-Effect of the addition of success-fatty acid ester on the retrogradation of corn starch. Starke, 38, 1-6.

McGrance, S.J., Cornell, H.J., and Rix, C.J. (1998) A simple and rapid colorimetric method for the determination of amylose in starch products. *Starch*, 50, 158-163.

McPherson, A.E., and Jane, J. (1999) Comparison of waxy potato with other root and tuber starches. Carbohydr. Polym., 40, 51-70.

Mercier, C., Charbonniere, R., Gallant, D., and Guilbot, A. (1979) Structural modification of various starches by extrusion-cooking with a twin -screw French extruder. In *Polysaccharides in Foods*. J.M.V. Blanshard, and Mitchel, J.R. (Eds.), p. 152-170. Butterworths, London. Mercier, C., Charbonniere, R., Grebaut, J., and de la Gueriviere, J.F. (1980) Formation of amylose-lipid complexes by twin-screw extrusion cooking of manioc starch. *Careal Chem.* 57: 4-9.

Miles, M.J., Morris, V.J., Orford, P.D., and Ring, S.G. (1985) The roles of amylose and amylopectin in the gelation and retrogradation of starch. *Carbohydr.* Res. **135**, 271 - 281.

Montgomery, E.M., and Senti, F.R. (1958) Separation of amylose from amylopedtin of starch by extraction sedimentation procedure, *J. Polymer Sci.*, 28, 1-9.

Moorthy, S.N. (1994) Tuber crop starches, Sreekariyam, Thiruvanathapuram, Kerala, India: Central Tuber Crops Research Institute (p), 1-40.

Morgan, K.R., Furneaux, R.H., and Larsen, N.G. (1995) Solid-state NMR studies on the structure of starch granules. Carbohydr. Res., 276, 387-399.

Morgan, K.R., Furneaux, R.H., and Stanley, R.A. (1992) Observations by solid state ¹⁵C CP MAS NMR spectroscopy of the transformation of wheat starch associated with the making and staling of bread. *Carbohydr. Res.*, **235**, 15-22.

Morris, V.J. (1990) Starch gelation and retrogradation. Trends in Food Sci. and Technol., 1, 2-6.

Morrison, W.R. (1964) A fast simple and reliable method for the micro determination of phosphorous in biological materials. Anal. Biochem., 7, 281-224.

Morrison, W.R. (1981) Starch lipids - a reappraisal. Starch/Starke, 33, 408 - 410.

Morrison, W.R. (1988) Lipids in cereal starches. A review. J. Cereal Sci. 8, 1-15.

Morrison, W.R. (1995) Starch lipid and how they relate to starch granule structure and functionality. Cereal Food World, 40, 437 - 446.

Morrison, W.R., and Karkalas, J. (1990) Methods in plant biochemistry. In Starch, Vol.2. p.323-352. New York, Academic Press.

Morrison, W.R., and Laignelet, B. (1983) An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1, 9 - 20.

Morrison, W.R., Law, R.V., and Snape, C.E. (1993) Evidence for inclusion complexes of lipid with V - amylose in maize, rice, and oat starches. J. Cereal Sci., 18, 107 - 111. Morrison, W.R., Tester, R.F., Snape, C.E., and Gidley, M.J. (1993) Swelling and gelatinization of cereal starches. iv. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. *Cereal Chem.*, 70, 385-391.

Muhrbeck, P., and Tellier, C. (1991) Determination of the phosphorylation of starch from native potato varieties by ³¹P-NMR. Starke, 46, 25 - 27.

Mussulmam, W.C., and Wagner, J.A. (1968) Electron microscopy of unmodified corn starches. Cereal Chem., 45, 162-171.

Nara, Sh., Mori., and Komiya, T. (1978) Study on relative crystallinity of moist potato starch. Starch, 30, 11-114.

Nielson, T.H., Wischman, B., Eneroldsen, K., and Moller, B.J. (1994) Starch phosphorylation in potato tubers proceeds concurrently with de novo biosynthesis of starch. *Plant Physiology*, **105**, 111 - 117.

Noda, T., Takahata, Y., Sato, T., Ikoma, H., and Mochida, H. (1996) Physicochemical properties of starches from purple and orange fleshed sweet potato roots at two levels of fertilizer, *Starke*, 48, 395 - 399.

Noda, T., Takahata, Y., Sato, T., Suda, I., Morishita, T., Ishiguro, K., and Yamakawa, O. (1998) Relationships between chain distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. *Carbohdr Polym*, 37, 153-158.

Oostergetel, G.T., and Van Bruggen, E.F.J. (1993). The crystalline domain in potato starch granules are arranged in a helical fashion. *Carbohydr. Polym.*, 21, 7 - 12.

Orford, P.D., Ring, S.G., Carroll, V., Miles, M.J., and Morris, V. J. (1987) The effect of concentration and botanical source on the gelation and retrogradation of starch. J. Sci. Food Agric, 39, 169-177.

Perera, C., and Hoover, R. (1998) The reactivity of porcine pancreatic alphaamylase towards native, defatted and heat-moisture treated potato starches before and after hydroxypropylation. *Starch*, **50**, 206-213.

Perez, E.E., Breene, W.M., and Bhanassey, Y.A. (1998a) Gelatinization profiles of Peruvian carrot, coccyam, and potato starches as measured with the Brabender Viscoamylograph, rapid viscoanalyzer, and differential scanning calorimetry. Starke, 50, 14-16.

Perez, E.E., Breene, W.M., and Bhanassey, Y.A. (1998b) Variations in the gelatinization profiles of cassava, sago, and arrowroot native starches as measured with different thermal and mechanical methods. *Starke*, 50, 70-72 Planchot, V., Colonna, P., and Roger, P. (2000). Suitability of starch granule porosity with regard to starch biosynthesis and susceptibility towards amylolysis. *Starch*, 52, 333-339.

Planchot, V., Colonna, P., Buleon, A., and Gallant, D. (1997) Amylolysis of starch granules and «-glucan crystallites In. "Starch Structure and Functionality". R.J. Frazier, A.M. Donald, and P. Richmond, (Eds.), p.141-152 Cambridge. UK. Roval Society of Chemistry.

Radosta, S., Kettlitz, B., Schierbacum, F., and Gernat, C. (1992) Studies on rye starch properties and modification part 11. Swelling and solubility behavior of rye starch granules. *Starch*, 44, 8-14.

Rani, V.S., Joh, J.K., Moorthy, S.N., and Raja, K.M. (1998) Effect of pretreatment of fresh Amorphophallus paenoiifolius on physicochemical properties of starch. *Starke*, **50**, 72-77.

Rappenecker, G.R., and Zugenmaier, P. 1981 Detailed refinement of the crystal structure of V_n-amylose. Carbohydr. Res. 89: 11-19.

Rasper, V., and Coursey, D.G. (1967) Properties of starches of some West African yams. J.Sci. Food Agric., 18, 240-244.

Ratnayake, W.S., Hoover, R., Shahidi, F., C., Jane, J. (2001) Composition, molecular structure, and physicochemical properties of starches from four field pea (*Pisum satium* L.) Food Chem., 74, 189-202.

Rikard, J.E., Asaoka, M., and Blanshard, J.M. (1991) The physicochemical properties of cassava starch. Tropical Science, 31, 189-207.

Ring, S.G., and Stainsby, G.R. (1982) Filler reinforcement of gels. Progr. Food Nutr. Sci., 6, 323 -329.

Ring, S.G., Colonna, P., l'anson, K.J., Kalicheversk, M.T., Miles, M.J., Morris, V.J., and Orford, P.D. (1987) The gelation and crystallization of amylopectin. *Carbohydr. Res.*, **162**, 2777–293.

Ring, S.G., Gee, M.J., Whittam, M., Orford, P., and Johnson, I.T. (1988) Resistant starch: its chemical form in foodstuffs and effect on digestibility in vitro. Food Chem., 28, 97-109.

Robin, J.P., Mercier, C., Charbonniere, R., and Guibot, A. (1974) Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. *Cereal Chem.*, 51, 389-406. Robin, J.P., Mercier, C., Duprat, F., and Guilbot, A. (1975) Lintnerized starches. Chromatographic and enzymatic studies of insoluble residues from acid hydrolysis of various cereal starches, particularly waxy maize starch. *Starch*, 27, 36-45.

Robyl, J.F. (1984) Enzymes in the hydrolysis and synthesis of starch. In Starch Chemistry and Technology, 2nd edition, R.L. Whistier and J.N. BeMiller, (Eds.), p. 87-124. Academic Press, New York,

Robyt, J.F., and French, D. (1970) the action pattern of porcine pancreatic α -amylase in relation to the substrate binding site of the enzyme. *J.Biol.Chem.*, **245**, 3917-3927.

Roulet, P.H., MacInnes, W.M., Wursch, P., Sanchez, R.M., and Raemy, A. (1988) A comparative study of the retrogradation kinetics of gelatinized wheat starch gel and powder from using X-ray, differential scanning calorimetry and dynamic mechanical analysis. *Food Hydrocolloids*, 2, 381-386.

Russel, P.L. (19830 A kinetic study of bread staling by differential scanning calorimetry and compressibility measurements. The effect of added monoglycerides. J.Cerea Sci., 1, 297-305.

Sair, L. (1964) Heat-moisture treatment of starches. In: Methods of carbohydrate Chemistry, vol. 4, R.L. Whistler (Ed.), p.283, Academic Press, NY.

Sair, L. (1967) Heat-moisture treatment of starch. Cereal Chem., 44, 8-26.

Salomonsson, A.C., and Sundberg, B. (1994) Amylose content and chain profile of amylopectin from normal, high amylose and waxy barleys. *Starch/Starke*, 46, 325 - 328.

Sarko, A., and Wu, H.C.H (1978) The crystal structures of A, B, and C – polymorphs of amylose and starch. Starch, 30, 73-78.

Satin, M. (2001)Tropical starch misses market. Food and Agriculture Organizationhttp://www.fao.org/WAICENT/FAGINFO/AGRICULT/magazine/9809 /spot3.htm

Schierbaum, F., and Kettlitz, B. (1994) Studies on rye starch properties and modification. Part 11. Viscograph pasting characteristics of rye starches. *Starch*, 46, 2-8.

Schmiedel, D., Konig, B., and Jacobasch, G. (1998) Hydrothermische behandlung von starke in gegenwart von maltosirup. Teil 1 Einflußard DSCparameter und de ko nisitenz von kartoffelstarkege len. *Starch*, **50**, 297-305. Sekune, M., Otobe, K., Sugiyama, J., and Kawamura, Y. (2000) Effect of heating vacuum drying and steeping on gelatilization properties and dynamic various starches. Starch/Starke, 52, 398-405.

Seog, H.M., Park, Y.K., Nam, Y.J., Shin, D.H., and Kim, J.P. (1987) Physicochemical properties of several sweet potato starches. *Harn guk Nanghwa Hakhoechi*, 30, 179-185.

Seow, C.C., and Teo, C.H. (1996) Staling of starch - based products: a comparative study by firmness and pulsed NMR measurements. *Starch/Starke*, 48, 90 - 93.

Seow, C.C., and Thevamalar, K. (1988) Problems associated with traditional Malaysian starch - based intermediate moisture foods. In *Preservation by moisture control. C.C. Seow*, (Ed.), p. 233 - 522. Elsevier Applied Science,

Shamekh, S., Forssell, P., and Poutanen, K., (1994) Solubility pattern and recrystalization behavior of oat starch. Starch, 46, 129-133.

Shi, Y.C., and Seib, P. (1992) The structure of four waxy starches related to gelatinization and retrogradation. *Carbohydr. Res*, 227, 131-145.

Shi, Y.C., and Seib, P.A. (1995) Fine structure of maize starches from four wx containing genotypes of the W 64A inbred line in relation to gelatinization and retrogradation. *Carbohydr. polym.*, 26, 141-147.

Shiotani, I., Nishimura, A., Yamanaka, S., Taki, M., and Yamada, T. (1991b) Starch properties of the sweet potato, diploid *ipomea trilida* (H.B.K) Don and tetraploid hybrids. *Starke*, 43, 133-138.

Shiotsuba, T. (1983) Starch gelatinization at different temperatures as measured by enzymic digestion method. Agric. Biol. Chem., 47, 2421-2425.

Silverio, J., Svensson, E., Eliasson, A.C., & Olofsson, G. (1996). Isothermal microcalorimetric studies on starch retrogradation. *Thermal. Anal.*, 47, 1179-1200.

Sivak, M.N., and Preiss, F. (1998) Physicochemical structure of the starch granule, Advances in food and nutritional research: starch-basic science to biotechnology, Vol. 41, p. 32-74. Academic Press, London, UK.

Slade, L., and Levine, H. (1987) Recent advances in starch retrogradation. In. Recent Developments in Industrial Polysaccharides. Stivala, S.S., Cresenzi, V., and Dea, I.C.M. (Eds.), p. 387-430. Gordon and Breach, New York. Snow, P., and O' Dea, K. (1981) Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr., 34, 2721-2727.

Solarek, D.B. (1987) Hydroxypropylated starches. In: Modified starches: Properties and uses. Wurzburg O.B. (Ed.), p. 97-112. Press Inc, Florida. Soni, P.L., and Agarwal, A. (1983) The starch of *Pueraris tuberosa-* comparision with maize starch. Starke, 35, 4-7.

Soni, P.L., Sharma, H., Srivastiva, H.C., and Gharia, M.W. (1990) Physicochemical properties of *Cana edulis* starch-comparison with maize starch. *Starke*, 42, 480-484.

Srivastava, H.C., Harshe, S.N., Gharia, M.M., and Mudia, G.P. (1970) Physicochemical studies on some starches. Starke, 22, 162-166.

Stevens, D.J., and Elton, G.A. (1981) Thermal properties of the starch/water system 1. Measurement of heat of gelatinization by differential scanning calorimetry, Starke, 23, 8 - 11.

Stoof, G., Schmiedl, D., Anger, H., Rehbrucke, B., and Bergthaller, W. (1998) Hydrothermische behandlung von starke in gegenwart von α -amylase Teil 4. Anderungen der eigenschaften von kartoffelstarke durch hydrothermischenzymeitsche behandlung. *Starch*, **50**, 108-114.

Stute, R. (1992) Hydrothermal modification of starches: the difference between annealing and heat-moisture treatment. Starch, 44, 205-214.

Suzuki, A., Hizukuri, S., and Takeda, Y. (1981) Physicochemical studies of Kuzu starch. Cereal Chem., 58, 286-290.

Suzuki, A., kaneyama, M., Shibanuma, K., Takeda, Y., Abe, J., and Hizukuri, S. (1992) Characterization of lotus starche. Cereal Chem., 69, 309-315.

Suzuki, A., Takeda, Y., and Hizukuri, S. (1985) Relationship between the molecular structures and retrogradation properties of tapioca, potato, & kuzu starches. Denpun Kagaku, 32, 205-210.

Swinkles, J.J.M. (1985) Composition and properties of commercial native starches, Starke, 37, 1 - 5.

Tabata, S., and Hizukuri, S. (1971) Starch on starch phosphate. Part 2. Isolation of glucose - 3-phosphate and maltose phosphate by acid hydrolysis of potato starch. Starch/Starke, 23, 267 - 301. Takaya, T., Sano, C., and Nishinari, K. (2000) Thermal studies on the gelatinization and retrogradation of heat - moisture treated starch. *Carbohydr. Pohm.*, 41, 97-100.

Takeda, C., Takeda, Y., and Hizukuri, S. (1983) Physicochemical properties of lifty starch. Cereal Chem., 64, 313-316.

Takeda, Y., and Hizukuri, S. (1981) Re-examination of the action of sweet potato beta amylase on phosphorilated (1-4) (-D-glucan). Carbohydr. Res., 89: 174 -189.

Takeda, Y., and Hizukuri, S. (1982) Location of phosphate groups in potato amylopectin. Carbohydr. Res., 102, 321 - 325.

Takeda, Y., Hizukuri, S., Takeda, C., and Suzuki, A. (1987) Structures of branched molecules of amyloses of various origins and the molar fractions of branched and unbranched molecules. *Carbohydr, Res.*, **165**, 139-145.

Takeda, Y., Shiraska, K., and Hizukuri, S. (1984) Examination of the purity and structure of amylose on gel permeation chromatography. *Carbohydr. Res.*, 132, 83-86.

Takeda, Y., Tokunaga, N., Takeda, C., and Hizukuri, S. (1988) Physicochemical properties of sweet potato starches. Starch., 38, 345-350.

Teo, C.H., and Seow, C.C. (1992) A pulsed NMR method for the study of starch retrogradation. Starke, 44, 288-292.

Tester, R.F. (1997a) Properties of damaged starch granules: composition and swelling properties of maize, rice, pea and potato starch fractions in water at various temperatures. Food Hydrocolidis, 11(3), 293-301.

Tester, R.F. (1997b) Starch: The polysaccharide fractions. In Starch: Structure and functionality. P.J. Frazier, P. Richmond, and A.M. Donald (Eds.), p. 163 -171.

Tester, R.F. and Morrison, W.R. (1990b) Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem., 67, 558 - 563.

Tester, R.F., and Morrison, W.R. (1990a) Swelling and gelatinization of cereal starches I. Effects of amylopectin, amylose and lipids. *Cereal Chem.*, 67, 551-557.

Tester, R.F., South, J.B., Morrison, W.R. Ellis, R.P. (1991) The effect of ambient temperature during the grain filing period on the composition and properties of starch from four barley genotypes. J.Cereal Sci., 13, 113 - 127. Tester, R.F., and Sommerville, M.D. (2001) Swelling and enzymatic hydrolysis of starch in low water systems. J. Cereal Sci., 33, 193 - 203.

Tina, S.J., Rickard, J.E., and Blanshard, J.M.V. (1991) Physicochemical properties of sweet potato starches. J. Sci. Food Agric., 57,459-491.

Valetudie, J.C., Colonna, P., Bouchet, B., and Gallant, D.J. (1995) Gelatinization of sweet potato, tania, and yam tuber starches. *Starchl Starke*, 47, 298-306.

Valetudie, J.C., Colonna, P., Bouchet, B., and Gallant, D.J., (1993) Hydrolysis of tropical tuber starches by bacterial and pancreatic (*c*-arrylases). *Starke*, 46, 453-457.

VanSoest, J.J.G., DeWit, D., and Tournois, H. (19940 Retrogradation of potato starch as studied by fourier transform infrared spectroscopy. Starke, 46, 453-457.

Vasanthan T., and Bhathy, R.S. (1996) Physicochemical properties of small and large granule starches of waxy, regular and high amylose barleys. *Cereal Chem.*, 73, 199-201.

Vasanthan, T., and Hoover, R. (1992) A comparative study of the composition of lipids associated with starch granules from various botanical sources. Food Chem., 43, 19-27.

Waigh, T.A., Gidley, M.J., Komanshek, B.U., and Donald, A.M. (2000a) The phase transformations in starch during gelatinization: a liquid crystalline approach. *Carbohvdr. Res.*, **328**, 165 - 176.

Walgh, T.A., Kato, L.K., Donald, A.M., Gidley, M.J., Clark, C.J., and Riekel, C. (2000b) Side - chain liquid - crystalline model for starch. Starch/Starke, 52, 450 -460.

Ward, K.E.J., Hoseney, R.C., and Seib, P. A. (1994) Retrogradation of maize and wheat starches. Cereal Chem., 71, 150-155.

Watson, S.A. (1964) Determination of starch gelatinization temperature. In Methods in Ccarbohydrate Chemistry, R.L. Whistler (Ed.), p. 240-242. Vol. 4. New York, Academic Press.

Wilson, R.H., and Belton, P.S. (1988) A fourier transform infrared study of wheat gels. Carbohydr. Res., 180, 339-342.

Wilson, R.H., Kaichevsky, M.T., Ring, S.G., and Belton, P.S. (1987) A fourier transform IR study of the gelation and retrogradation of waxy maize. *Carbohydr. Res.*, 166, 162-170. Wong, R.B.K. and Lelievre, J. (1982) Effect of storage on dynamic rheological properties of wheat starch pastes. Starke, 34, 231-235.

Wu, H.-C., and Sarko, A. (1978a) The double-helical molecular structure of crystalline B-amylose, Carbohydr, Res., 61, 27-40.

Wu, H.-C., and Sarko, A. (1978b) The double-helical molecular structure of crystalline A-amylose. Carbohydr. Res., 61,27-30.

Wu, Y., and Seib, P.A. (1990) Acetylation and hydroxypropylation distarch phosphate from waxy barely: Paste properties and freeze-thaw mobility *Cereal Chem.*, 67, 202-208.

Wursch, P., and Gumy, D. (1994) Inhibition of amylopectin retrogradation by partial β-amylolysis. Carbohydr. Res., 256, 129-137.

Yamaguchi, M., Kainuma, K., and French, D.J. (1979) Electron microscopy observation of waxy maize starch. J. Ultrastructure research, 69, 249-261.

Yu, B., Fuji, S., and Kishihara, S. (1999) Physicochemical property of Huai shan (Rhizoma dioscorea) and Matai (Eleocharis dulcis) starches. Starke, 51, 5-10.

Yuan, R.G., Thompson, D.B., and Boyer, C.D. (1993) Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from 3 wx- containing genotypes in two inbred lines. *Cereal Chem.*, **70**, 81 - 89.

Zhang, T., and Oates, C.G. (1994) Relationship between (amylase degradation and physicochemical properties of sweet potato starches. Food Chem., 65, 157-163.

Zobel H.F. (1992) starch granule structure. In *Development in Carbohydrate Chemistry*. R.J.Alexander, and H.F. Zobel (Eds.), p. 1-36. American Association of Cereal Chemists, St. Paul, Minn.,

Zobel, H.F. (1988a) Starch crystal transformations and their industrial importance. Starch, 40: 1 - 7.

Zobel, H.F. (1988b) Molecules to granules: A comprehensive starch review. Starch, 40, 44 - 50. Appendix 1

Fig.I-1 Standard curve for determination of total phosphorus (Morrison, 1964)

Fig. I-2 Standard curve of total carbohydrate as maltose (Dubois et al., 1956)

Fig.I-3 Standard curve for determination of reducing sugar as maltose (Bruner, 1964)

Appendix 2

Fig. II-1 Determination of relative crystallinity (Nara et al., 1978)

% Crystallinity = $\sum |I_a - I_a| / \sum |I_c - I_a| \times 100$, where $I_a - I_a =$ difference between the sample $[I_a]$ and amorphous $[I_a]$ intensities and $I_c - I_a =$ difference between the crystalline (quartz) $[I_c]$ and amorphous $[I_a]$ intensities.

The shaded area of the above figure represents $\sum \mid I_s$ - $I_s \mid$, where, I_s = intensity of native starch (moisture content = 17%, w/w) and I_a = Intensity of amorphous starch.

According to the same method, the value of $\sum |I_c \cdot I_s|$ can be calculated (not shown in the figure).

Fig. II-2 Schematic representation of a DSC thermogram. The gelatinization enthaloy (AH) is evaluated as the area under the peak

