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ABSTRACT 

Tills r('~arch explored a few opportunIties of Improving the simulations available 

to reservoir engineers In the 011 and gas Industry. Three very speclflc simu latlon 

models were used In thIs thesis. Firstly, Improvements were made to an InHow 

model for a horizontal well by making it possible to run the model for different 

fluids easily. Se(ondly. a vertical flow model was developed by combining a well

known. multi-phase flow correlation with a multi-phase temperature model. A 

novel approach was developed to solve these two models In sequence. Thirdly, 

this thesis scoped out the application of two different wax crystallization models. 

[t was the first time that these wax models were tested using a flow simulator. 

The results obtained from all three simulat ion models were In par with theory 

and expectations. It was concluded that these models together would be a very 

useful tool for both the Industry and for fu rther research work. 
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CHAPTER 1 

INTRODUCTION 

1-1 Background 

The use of oil and gas has had a big effect on our societies. The dense source of 

energy has provided mankind with many luxuries as well as necessities. such as 

easy access to clean water. food preserva tion. disease controL etc. (Ezzatl etal. 

2004).011 demand In 2004 In Canada alone was 2.3 million barrels per day ror its 

32 million people (CBC News 2005. Fourth quarter 2006). Worldwide oil demand 

In 2009 was 65 million barrels per day (International Energy Agency 2010). and 

this number Is expected to rise as countries develop and populations grow, even 

while Infrastructures develop for other sources of energy (Levant 2010). As a 

result. there Is immense pressure to have secure oi l supply sources. 

During the all embargo set by the OAPEC countries In 1973. It be<ame very clear 

that oil was an extremely important driving force of world economies. and that 

controlling Its supply could be a powerful political tool (Essley 1974). This 

experience forced new means of diplomacy and cooperation to ensure all supply 

would be steady. 011 supply also controls th.e market oil price. which. In tum 

detennlnes the amount of funds avallable to companies for weli exploration and 

research projects. Such prolects are essential to ke<>p up with the growing 



demand - technological advances allow new wells to be drilled In extreme 

conditions. such as offshore in deep water and in the arctic. It Is also Important to 

counter act the declining productivity of aging wells by using enhanced 

production. optimizing production plan. etc. to recover as much oil as possible. 

The use of such new technologies in the industry Is calling for Improved 

simulation models to plan well design and operations. 

Simulation programs are complex mathematical models that are able to calculate 

useful parameters. In the case of a producing well In an 011 field. the useful 

operating parameters are pressure and flow rates along the length of the well. If 

Inappropriate operating pressure and/or flow rates are used. It could be a safety 

concern (e.g. causing blowouts). or it could reduce the life of the well [e.g. early 

gas /water breakthrough could occur If there Is a sharp drop In pressure along 

the well. or, flow assurance problems could occur If timely cleanup operations are 

not performed. etc.). Thus having the proper simulation tools could result in big 

rewards - both for the performance of the operator, as well as for the optimal use 

of available natural resources. This Is warranted by the fact that companies are 

willing to make big Investments to obtain and suppon the development of such 

software. 

There are a number of simulation software packages that are commonly used In 

the Industry. These software packages are tools to the reservoir engineers to 

accurately plan and design well operating conditions. They incorporate many 



models that can perform calculations on complex 011 reservoir situations, such as 

aquifer support. gas/water injection, etc. Over the years. these packages have 

been Improved and new calculation schemes have been added. ThIs thesis Is a 

step In that direction, proposing a new method of calculating well operating 

conditions that could be sui tab le for horizontal well applications. The research 

work also calculates temperature distribution, which can have many applications. 

such as Investigation of now assurance problems due to wax deposition in the 

well. The complete body of work can be summarized by the research objectives 

outlined Inthe next section. 

1·2 Research Objectives 

1. To make a vertical flow model that calculates the pressure, flow rate and 

temperature profiles 

Z. To apply proper fluid characterization to horizontal and vertlcal flow mode I 

3. To calculate operating pressure and flow rate and temperature 

4. To Investigate the effect of different completions on operating parameters 

5. To compare analytical and numerlcaltemperature models 

6. To evaluate condillons when wax precipitatIon Is expected 



1-3 Relevance oflhlsResearch 

In producing wells, the 011 from the reservoir nows Into the perforated sealon of 

the tubing. This section Is designed to optimize production ~s well ~s m~xlmlze 

the usefu l li fe of the well. II Is Increasingly common for this section 10 be 

horlzontal,suchlhat there Is more contact with the oil in the reservo Irandhence 

hlgherrateofproductlon(Figurel-3-1J. 

Figure 1·3·1 Types of 011 Wells 

Inlhls study. a theoretkal model is applied to calculate the pressur e,nowrate 

andtemperatureprofilesacrossthehonzontalsecllon.Thlsmodellsreferredlo 

as the "horizontal now mooel". Itcan becalegorlzed as a "hard wire d" model,l.e. 

all Ihe parameters are p~rtofa single non-llnear mathematical unit. and are all 

solved at the same time. This approach makes the model very stable during the 

Iterativesolv!ngprocess. Followlnglsashortllstofthelmportanceof applying a 

good horizonta l now model. 



[t [s imperatlve to maintain the pressure above bubble !'OInt In the reservoir 

to ensure that flu id is produced in Ilquid form. If fluid sits below bubble 

point. the dissolved gas In the fluid Is Uberated In the reservoir pores. which 

could cause flow restrictions and lower oil production. Pressure profile 

calculations In the horizontal well help to Investigate such possibilities by 

allowing the reservoir engineer 10 see where the lowest pressures occur, 

how it could affect production performance. If subsurface pressure support 

Is required or not,et<:. 

F[owrateandpressurecalcu[ationsareessentla[tooptlmlzeproductlon. [n 

a producing well. the quickest way of controlling the operation is by 

changing the surface flow rate USing the · choke". Calculating flow rate 

profile along the horizontal part of the well would be the first step to find 

out how the choke should be controlled to provide the desired pressure 

profile for optimal productIon. 

The expected pressure profile. together with reservoir geology. can indicate 

If there are risks for gas breakthrough. increased water production. etc. ' 

factors that affect the life of the well. This in tum could dictate the design of 

the completion. 

When the calculated horizontal temperature profile Is matched with 

collected temperature data along the horizontal completion. detailed 

information about the "skin" values (I.e. the extent of flow restrlCilon sin the 

near well reservoir) can be obtained. This Infonnatlon can be used by 

reservoir engineers for produCilon plannlngas the well ages. 



Therefore. there are numerous motivations to calculate the flow rate. pressure 

and temperature using the horizontal flow model. By applying the mathematical 

model for a given reservoir and a given completion. one can flnd out crucial 

Infonnatlon about operating the spedfic reservoir. The results presented in this 

study will touch on the flrst three points noted above. 

In the remaining section of the well. the fluid flows upwards from the reservoir to 

the surlace. A dllTerent model Is applied to this section. because, unlike the 

horizontal section. fluids do not enter this part of the well and the flow Is against 

gravity. This Is tenned as the · vertlcal flow model · In this thesis. The Important 

parameters calculated for this vertical section are the pressure. flow rate. liquid 

hold up (volume fraction of liquid) and temperature profi les. This model ca n be 

categorized as a·oorrelallon"be.::ause Its equations are adjusted usl ng field data. 

as opposed to fully theoretical equations in the horizontal flow model. The 

correlation allows the use of one simplified method to calculate parameters for 

various flow regimes expected in the well. such as bubble flow. slug flow, etc. The 

output from Ihls oorrelation can be useful in many ways, two of which will be 

discussed Inlhls thesis. These are introduced below. 

The pressure and flow rate profile obtained from the vertical flow model 

conne<:ts the horizontal flow model outputs to surface control equipment 

measurements. The horizontal flow model Is used to check that a workable 

pressure level Is maintained allhe reservoir deptll. lIowever. the only way 



to control this pressure at the bottom of the hole Is by using the choke at the 

surface of the well (tubing head). The vertical flow model calculates the flow 

rate that has to be maintained at the tubing head, such that It Is possible to 

have the desired pressure at the bottom of the well. 

As fluids flow up the well. they experience big changes in pressure and 

temperature. This leads to phase changes of certain components, such as 

ashphaltenes and waxes. These newly formed solids may deposit along the 

tubing wall and cause flow assurance problems. Wax deposits can clog the 

tubing such that wells have to be shut down and production has to be 

abandoned. In the less extreme Instances. expensive ·pigging" methods have 

to be utilized for the wells to operate properly (Begatln et al 2008). By 

having a good Idea of wax deposition Issues that can occur, It may be 

possible to design and operate in a way that would address these Iss ues.ln 

this study, a thermodynamic correlation Is used to calculate wax 

crystallization profllewhlch utilizes the temperature change as the pr imary 

driving force for wax to change into solid phase. This temperature profile is 

generated from the vertical flow model. 

Unlike the horizontal flow model where all the parameters are calculated 

together. the vertical flow model Is solved by iterating between two different 

models - the momentum balance and the temperature balance. These models 

were developed separately and. therefore, it is possible for them to function 

without being coupled together. However. a temperature profile has to be 



assumed to run the momentum balance Independently, and a pressure pronle has 

to be assumed to run the temperature balance Independently. In this study. a 

metllod was developed to Intertwine tile two models In a way that the final 

output values would not have sucll underlying assumptions. By linking up two 

separate models, the simulation is very versatile because It allows the possibility 

of other such models to be linked in. Since tile calculations are not done In 

tandem. there Is also more flexibility regarding the sequence of calculations. For 

Instance, In this study, tile temperature balance calculations starts wltll the 

bottom hole flUid temperature and solves sequentially all the way to the final 

value of tubing head fluid temperature; however, the momentum balance solution 

starts at the tubing head pressure and solves sequentlally down 10 the value of 

bottom 1I0ie pressure. Thus, the two solution methods run In opposite directions, 

which conveniently accounts for the fact that during production, it i sthetubing 

head pressure and the bottom-hole temperature that are known 

The effect of Integrating various mathematical models and solving them In 

creative ways Is of Interest in academic circles and to software developers. The 

practical application of this researt:h work is of interest to the companies that 

operate 011 fields. Thus. this thesis touches on both Industrial and academic 

motivations of developing a simulation program for use In the upstream 011 and 

gas business. 



1-4 Scope oftheStudy 

This research work is focused on making a program that combines a few existing. 

highly regarded models. These models are combined such that an optimum 

operating range is calculated. and predicts now assurance problems from wax 

deposition. This would be the flrst time that the complete. elaborate fonns of 

these three models are put together. In addition, specinc reservoir and nuld 

properties will be used. which will allOW the program to be as Held speclnc as 

possible. The literature review shown In the next chapter will describe in details 

why these models were selected. The technique of solving and utlllz.lng these 

models w!II be described In details, as well as the outputs will be shown. Results 

will be displayed for various reservoir properties, and for various well 

completions. Also, the model outputs w!ll be compared with results from current 

a commercial software package. as well as field data to evaluate its performance. 

Using these findings, it will be possible to comment on further work that could be 

done to make valuablecontribullons tothls research. 

1-5 Organlzallon of the Thesis 

This thesis is organized Into seven chapters. This current chapter Introduced the 

topic and described its relevance in the oil and gas Industry. Chapter 2 outlines 

the literature review that was performed to get the directions for this study. 

Chapter 3 describes the horizonta l now model used in this study. Chapter 4 

covers the vertical liftcorrelallon and temperature model. Chapter 5 outli nesthe 



wax deposlUon models used In thIs thesIs. In chapter 6. the models from c hapters 

JtoSarecombinedtogether andtheresultsareshown.Operatingpressure and 

flow rates are calculated for specific fluid and reservoIr. for different well 

completions. Wax deposition profiles are also shown. Chapter 7 summarizes the 

conclusIons from this research work. comments on its novelty and makes 

recommendations for further study. The MATL.AB computer programs developed 

In thiS research are contaIned In the AppendIx A. For ease of future referenc1ng. 

all the parameters that descrIbe the mathematical models are defined In the 

nomenc1attJresectionpriortoChapterl. 

10 



CHAPTER 2 

LITERATURE REVIEW 

In this study. a computer program is proposed that combines a horlzont<ll flow 

model and a vertical flow model to calculate the parameters In a well. Gilbert 

(1954) was the tirst to split the oU production system to calculate a separate 

Inflow performance and a separate vertical lift performance. In the same decade. 

the use of computer systems saw Its light In the 011 and gas Industry. Warren and 

Mueller (1957) were among the first to solve a common reservoir engineering 

problem using computer te<:hnology. This new te<:hnology quickly solved complex 

calculations over very fine Integral SlepS, and hence provided useful Information 

that was previously unavailable (McCarty and Peaceman 1957). Over the decades. 

a lot of researd work has been done using computers \0 solve novel problems In 

the oil and gas Industry. Brill and Arlrachakaran (1992) classified the 

developments In multlphase flow modeling Into three broad categories. At flrst. 

empirical models were used to approximate pressure and flow profiles. In the 

next st<lge. computers were used to do full calculations of the empirical models. 

which highlighted their shortcomings. Since the \980'5, bener models have been 

developed with the aid of better testing and measuring Instruments In 

completion. The following sections describe some of the models relevant to this 

research work. 



2,1 Horizonta l Model 

Some of the first horizontal pipe flow models developed was for the purpose of 

fluid movement between surface equlpments. These empirical models. such as 

the ones developed by Dukler et al. (1969) and by Beggs and Brm (1973), 

considered frictional pressure drop. flow regimes and liquid hold up during fluid 

flow along pipes only. Such models are different from the horizontal flow model 

used in this research work In that the horizontal flow pipe In this study Is situated 

subsurface (in the 011 reservoir itself) and there are multiple fluid entry locations 

situated along the horizontal section. As such, the model used in this study is 

better categorized as an Inflow performance relation ([PR) for a horizontal well. 

which considers aspeclS of flow through a pipe and flow In the annulus (which 

will be further discussed In the next chapter) 

The first JPR models were developed by Vogel (1968) and Fetkovlch (1973). 

These were empirical models developed for wells with perforations In the vertical 

section of the well. and did not take Into account rock damage zone due to 

drilling. Standing (1971). Dias·Couto and Golan (1982). and L.ekla and Evans 

(1990) built on these empirical models for better prediction. Ilowever. since the 

1980·s. much attention was given to the use of wells with perforations in the 

horizontal section of the well (Nzekwu 1969). Due to Improvements In drilling 

technologies, horizontal wells are commonly used at the present time. Therefore, 

availability of mllltl·phase JPR models for such wells Is increasingly important 



In theIr paper, Kamkom and Zhu (2005) complied a list of horIzontal well IPR 

models avaIlable. They pointed out that there was a lack of good models for 

horizontal wells. Bendakhlia and Azit (1989) proposed a model by improving on 

the work by Vogel (1968). which was further developed by Cheng (1990) to make 

the model specHic to a bounded rectangular reservoir. Retnanto and Economldes 

(\998) proposed the flrst two-phased lPR model for horizontal wells, and this [s 

also base on the Vogel model (1966). Kablr (1992) combined these works and a 

solution of productivity Index (such as by Joshi 1966 and Butler 1994) to propose 

a method to estimate the open-hole flow potential of a horizontal well. However, 

all these models are semi-analytica l and empirical In nature since they all have 

their roots from the empirical Vogel model. Moreover, they are only able to 

provide flow rate corresponding to a certain well operaUng pressure. Additional 

models need to be used in conjunction with IPR models to get a pressure and 

flow-rate profile. which are useful parameters for well operations as noted 

before. The first of such models was proposed by Dikken (1989) for single phase, 

turbulent and steady-state flow. Novy [1995) used Dickken's model to determine 

an optimal length of the horIzontal well so that frictional loses would still be 

Inslgniflcant Joshi [1991) proposed a pressure drop model for single-phase now 

through slotted liner. Sharma et al. (1995) incorporated Dlkken's model to have 

well·defined reservoir inflow equations, The analytical model developed by 

Anklam and WiggIns (2005) provides a quick method to estimate pressure drop 

and flow rate profile along a horizontal well 



Even In recent tlmes. there has been much attention on developing an accurate 

IPR and flow model for horizontal wells. Tabatebaei and Ghalambor (2009) 

pointed out the underperfonnance of the existing horizontal well models, and 

hence proposed a new semi-analytical model that incorporates multilateral wells 

for easy use by reservoir engineers. Jahanbanl andShadlzadeh (2009) developed 

a method to accurately develop IPR using well test Information. Ostrowski et al 

(2010) outlined the complexity of modern horizontal completions. and hence 

proposed a model to incorporate the role of Inflow control devices In the 

horizontal well model. Bryne et al. (2010) proposed a 3D model to accurately 

represent the fluid inflow equations Into the horizontal well. Such continued 

development work affinns that there Is a need ror further work In developing a 

horizontal flow model. The most comprehensive horizontal. multi-phase model 

for advanced completions was developed by Johansen and Khoryakov (2007) 

In this research work. a horizontal flow model 15 used to calculate pressure. flow 

rate and temperature profile for multi-phase fluid at steady state conditions. It 

was first developed for single phase flow by Johansen (2007). Thanyamanta et al 

(2009) further developed this model to allow 2-phase flow calculations together 

with a temperature model. Liu {2009) incorporated 3-phase calculations Into this 

model. This model 15 solved numerically by calculating at predetermined nodes 

throughout the length of the well iteratively. Although the calculation is complex. 

It can be easily performed using a computer. This complexity allows the user to 

define mUltiple entry points of reservoir fluids into the well. as well as define flow 



directions as expected In the complex well completions with Inflow control 

valves. Flow rate and pressure profile will he c~kul~ted for both Inside the tubing 

and inside the annulus. Therefore, this model combines many of the desired 

ch~r~cteristics that ~redesired in reservoir simulation software. In this study, the 

2·phase model developed by Thanyamanta et aJ. (2009) was used. Improvements 

were made to it such that the model can be run using specific PVT data for 

characterized fiulds, as well as plot IPR curves from Its calculations. 

The first vertical now models were developed at the same time as the nrst 

horizontal now models for surface pipes. Pootmann and Carpenter (19S2) 

proposed a model for vertical now In a pipe by fitting with experimental data. It 

was commonly accepted that an empirical model was necessary to capture the 

comple~ e/Teets of various flow patterns, While formulating their own vertical 

now mode!. Duns and Ros (1963) did extensive experimentation to propose a 

method to define the various flow regimes. Even today, after many decades of 

further work on thiS subject, Duns and Ros' model produces good results for 

bubble flow, slug now and froth region. However, In a comparative study of 

empirical models done by Rao (1996), It was recommended that the Hagedorn 

and Brown (196S) and Orkizewskl (1967) models produce superior results. 

Hagedorn and Brown developed their model by fitti ng to field data, as opposed to 

data from laboratory experimentation, Additionally, it does not distinguish 
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between the various now regimes. Orklezewskl proposed a model that combined 

Hagedorn and Brown. Duns and Ros. Griffith (196Z), and Griffith and Wallis 

(1961) models. The Standard Handbook of Petroleum and Naturall Gas 

Engineering (Lyons and Plisga ZOOS) recommend that the Hagedorn and Brown 

method and Orkizewskl method be used In conjunction with each other. because 

the latter made better predictions for extreme flow situations, such as annular 

andmistnows. 

Further development has been done In multlphase, vertical flow models over the 

years. Taltel and Dukler (1976), Taltel et al. (1980) and Barnea (1987) proposed 

different methods of calculating pressure drop based on flow regimes. Many 

mechanistic models have also been proposed. However, Ansari et al. (1990) and 

Hasan and Kabir (1990) did studIes to compare empirical and mechanistic 

models, and concluded that there was no significant improvement in pressure 

drop predictions using the complex mechanistic models. Fa lcone et al. (Z007) 

noted that mechanistic models are not able to handle intermittent nows In multi-

phase nows very well and hence proposed to look more carefully at experimental 

now loop designs. It is difficult to classify a model as fully mechanistic or fully 

empirical. This is because even Ihe mechanistic models still use empirical 

parameters, such as friction factor, and the empirical models still use momentum 

halanceasthe basic starting polnl Similar deductions aboutpert'ormanc ecanbe 

made from the results of the numeric model proposed by CaUlrH-Candla and 

Vasquez-Cruz (2004). 



In this thesis, the Hagedorn and Brown correlation Is used to predict the vertical 

flow parameters. This model is chosen because it Is still one of the most highly 

regarded models, and it Is able to predict pressure, flow rate and liquid hold up 

easily. It also works well with multi-phase systems. The ana lysis done In the 

results chapter (Chapter 6) ensure that the vertical flow regimes are fit for 

Hagedorn and Brown's method, and does not require Orkizewskl's model to 

supplement for certain parts. However. the Hagedorn and Brown method 

requires that the temperature proflle of the fluid in the vertical well be known. tn 

this study, temperature Is one of the parameters that Is ca!culated In the vertical 

flow model. This Is done by intertwining a temperature model In the solving 

process. 

One of the very well known temperature models in the 011 and Gas industry was 

deve loped by Ramey (1961). He took Into account the conduction of heat through 

the wall of the vertical well completion and into the layers of rock structure. The 

model also takes into account the vertical transfer for heat by the fluid itself. The 

fluid temperature is solved over small incremental sections of the well depth. 

Ramey applied the concept of an overall heat transfer coefficient from Moss and 

White (1959). Because this model applied the fundamentals of heat transfer 

mechanism, there are few methods that completely deviate from Ramey's theory. 

Lindeloff and Krejberg (2002) used a simplified, single-phase. analytical form of 

Ramey·s model since it is widely accepted to produce superior results. Hagoort 

(2004) resonated the same message. but proposed a different method of 



approximating the so lu tion at early time periods to better match fleld data. Wu 

and Pruess (1990) proposed an analytical method of solving for temperature 

proflle. but Pruess and Zhang (2005) later proposed it would be benertohavea 

semi-analytical method. much like Ramey's model, All (1981) and Wooley (1980) 

have proposed numerical methods to solve for temperature balance to get a 

better idea of the bottom-hole temperatures. However. these models are far more 

complex. and would depend of highly accurate fleld data to have significant 

differen(es from Ramey's model. 

In this study. Ramey's model Is used. with the added complexity of using 

properties from fluid characterization and simultaneous solution ofihe Hagedorn 

and Brown method. This provides the flow and pressure Information along 

vertlcalwells. 

2-3 Wax Deposition Model 

Wax deposition in pipelines Is considered one of the worst flow assurance 

problems encountered In the 011 and gas Industry (Misra et al. 1995). however. 

the phenomenon (auslng waxes 10 hulld up on pipes Is stili not fully understood 

(Merino' Garda el al. 2007). Bidmus and Mehrotra (2004) found that wax 

deposition was not encountered in liquids unless there was a temperature 

gradient: this was the (as(> even if the liquid contained wax (rystals suspended In 

it Therefore. 011 field production pipelines provide ex(ellent provisions for wax 



build up, since the cylindncal coordinates for heat transfer (from the pipeline 

nuld to the surrounding rocks) ensures that a thermal gradient will always be 

present. It Is also widely known that wax precipitates only after the nuld 

temperature goes below a certain value, known as the Wax Appearance 

Temperature (WAT) or Pour POint Temperature (PPT), Over the years. much 

experimental work has been done to improve the method of estimating this value 

(Erickson et al. 1993, Calange et al. 1997). Menno-Garda et al. (2007) formulated 

a set of thermodynamic calculatlons to estimate WAT. Allin all, the Importance of 

temperatu re and heat transfer rate In wax deposition means that a good 

temperature prediction model Is a prerequisite (or a good wax deposltton model. 

Much work has also been done to develop a wax deposition model. As early as In 

1966, Weingarten and Euchner (1966) had proposed a wax deposition model 

through experimentation. They looked at diffusion of wax molecules from the 

bulkfluidtothetubewaliandsheardispersionasthephenomenondiclatingwax 

deposition. Over the years. further research work has been done to Improve the 

mathematical models and back them up with experimental data. since it is not 

possible to find out the extent of deposition along actual wells. A comprehensive 

list of these developments Is noted by Nazar et al. (200l). However, a big draw 

back to this method is that the diffusion constant and other constants (whose 

values have a physical significance) are completely unknown. They are only 

determined In a trial an error method by fitting with experimental data. 

Therefore. there is no guarantC(' that this set of phenomena actually occurs. On 



the contrary, it has been long known that wax solldiflcatlon occurs be1:ause 

crystals form below the WAT (Holder and Winkler 1965). A new trend in wax 

precipitation modeling Is, therefore, to look at a crystallization model as opposed 

to a diffusion model. Moreover, a turbulent flow regime Is expected In the oil 

wells, where Is It unlikely for wax molecules to be able to diffuse In the radial 

direction to the tubing wall, Even In the case of laminar flow, wax molecules may 

travellnthea~laldirectionduetovlscousforcesfromthelamlnarvelocity profile, 

as opposed to diffusion forces (which require a concentration difference as the 

driving force). Also, when diffusion models are applied to turbulent flow 

situallons. the effect of turbulent flow Is considered to playa role only In the 

shear removal of deposits (Hsu et al. 1994, Hsu and Brubaker 1995)}. 

Some of the most widely used crystallization equations used for wa~ precipitation 

are the Ozawa equation (1971) and the Avraml equation (1940). Correra et al. 

(n.d.) and Fasano and Prlmicero (n.d.) have done extensive model development to 

propose a crystallization model for wax deposition. Begatin et al. (2008) noted 

that this model was stili underdevelopment and that this approach n eeds to be 

invesllgated thoroughly, since the current soltware packages on wax deposition 

are nol performing up to the mark. A similar model Is recommended by Zougarl 

and 50pkow (2007). In this thesis, these two models are applied 10 a complete 

simulation study for the flrsttime. 



CHAPTER 3 

HORIZONTAL MODEL 

In this study, the horizontal model Is referred to as the Innow Performance 

Relationship model for a horizontal well. The model that Is used In the 

programming was first developed by Johansen (2007) as a single phase, hard-

wired model, which uses numerical methods to solve for parameters at "nodes· 

defined by a grid representation oFthe well. Thanyamanta (2009) and Llu (2009) 

did additional work to allow the use of two·phase and three-phase nulds In the 

model. Thanyamanta's (2009) code was used as the starting point for the 

research work outlined in this thesis. to calculate the pressure and flow rate 

profi les in the horizontal well. This chapter describes the mathematical basis of 

the model and the addillonal work done on it in detail. 

A horizontal well generally consls(S ofa tubing section and an annular section 

Fluid flows occur in each of these sections. as well as between them. The path and 

direction of the nows are determined by the well completion. In this horizontal 

model, a grid Is used to define the fluid flow. Figure 3-1-1 superimposes the 

network grid used In the hOri1.ontal model on a generic horizontal well. I tcanbe 

seen that the grid sumces For flow everywhere In the horizontal well. 



Tubing 

FlgureJ-l-lHorlzontaIWeIlGrldlnaCompletion 

The users have the ~billty to m~ke the grid as fine as they like. The points where 

the grid lines meet ~re c~lIed "nodes". These are the locations where mO$t of the 

c~lcul~tlons are conducted - Inflow equations and mass balances. There are two 

different types of nodes depending on their locatlon-theexternal n odes are In 

the reselVolrand bOllom-hole.and the Internal nodes are In the annulus and 

some In the tubing. 

The boundary conditions are speclfled at the external nodes. The reselVolr 

pressure and fluid saturaUonsare set al the reservoir nodes. These parameters 

are used to define the Inflow equations (also known as the productivity 

equations). The boundary oondlt!on at the bottom-hole node Is the bOllom-hole 

pressure. These boundary conditions dictate the amount of fluid that enters the 

well from the reselVolr. 



The Internal nodes are found In the annulus and In the tubing section of the well 

completion. The nodes In the annulus combine the flow from the reservoir and 

the flow from the previous annular node (If applicable). The tubing nodes 

combine the flow from the annulus and the flow from the node where the fluid Is 

coming from (lfapplicable).There Isa special situation forthea nnularandtublng 

nodes at the well toe and heel - they only receive flow from the reservoir and 

annulus respeclively. and hence do not have to account for the f1ulds c omlngfrom 

a previous node of the same type. This Is demonstrated In Figure 3· 1-2. 

(a) lleelsegment (b) Middle segment (c) Toe Segment 

Figure J -1-2 Grid at the various segmenlSofthe well 

The grid lines themselves are called "bridges". The momentum balances (or this 

system Is calculated across these bridges. Thanyamanta·s (2009) model also 

proposed a method to calculate temperaturedlstrlbullon along the horizontal 

well. by carrying out a temperature balance across the bridges. Although the 

tempera ture balance Is usPdIn the calculation process to generate the results o( 
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this thesis, It Is not the focus of the thesis. That Is why thecalcul atedtemperature 

pronle has not been Investigated and commented on In this work. Therefore, the 

temperaturebalancelsonlydescribedinAppendixB. 

These brldges connect the variOus nodes, and hence dictate the dlrectl on of now. 

This direction can be easily adjusted accordinglytodenne the eITect softhelnnow 

control valves In well completion by adjusting the "bridge index· value to be +1.0 

or -1. Figure 3·1-3 demonstrates this Idea with the example of a stinger 

completion. A value of 0 means there Isno now In that dlrert!on, a val ueof+l 

means now Is towards the wen hell, a value of -1 means now Is away from the 

well toe. There are many different types of completion that would requ Ire such 

adjustments. Figure 3-1-4 shows the gird fora completion that has the annulus 

partially packed off. 

~l 
~ 

Figure 3·t ·3 "Stinger""Comple!lon Grld 

This Completion has DiITerentBrldge Indexes at six locations (val ues In purple) 



~l 
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Flgure3-1-4 CompletionGrldwhentheAnnuluslsPacked-Off 

ThlsCompletlon hasOlfferent 8rldge Indexes at three locations (v alues In purple) 

Figure 3-1-5 shows a segment of the grid network and labels the varl abies would 

need to be calculated. There ar ... a tOlalar 10 unknown variables. and hen~ 10 

equations are needed to lind a spe<:lllcsolution selAt the heel of the wei l.anlyS 

equallons are needed for the 8 unknowns. The following sections layout the 

equatlonsu~dlnthemodel. 

(a) lIeelsegment 

±qqq, 

p, q" q, a 

p, q"Qf1 a 

{b)MlddlefToesegment 

Flgure3-1 -S GrldSegmentShowlngtheUnknownValues 



3-2 Productlvlty Equation 

A prDductivltyequallon Isappl1edl03 reservoir nDde. It dictates the amounlof 

fluid flow from the reservoir to the well because the reservoir pressure and fluid 

saturations are speclned as boundary condilions. BOlli !heon and gas saturations 

were defined. since thIs Is a Z·pllase model. The principle behind the productivity 

equation Is the Oan:y's law, which predicts flow through a IJOrous medium due 10 

a pressure differentiaL which acts as the driving fon:e. Therefore, Ille wen 

operallng pressures are always less than the reservoir pressure. Fo 1I0wingisthe 

equation used In the model. 

Eq.3-2-1 

Where. 

Eq.3-Z-2 

Eq. 3-2-1 applies to flow from each of the reservoir nodes In the well grid. Eq. 3-2-

2 appl ies for a homogeneous, Isotropic reservoir section In Ille vicinity of a wen 

segment. However, II is IJOssible to have a different set of values for tile properties 

and parameters at each segment. This functionality anows the simulation to have 

a very precise picture of the reservoir conditions, since It Is common to find 

different values forpenneability, skin, etc. along the reservoir I ength 



Eq. 3-2-1 describes the factors that affect the Inflow of fluid Into the well - a 

higher permeability and pressure difference will Increase fluid production, while 

a hlghervlsoosltyand skin value will do otherwise. 

ForthI' segment shown in Figure 3-1-5 (a). there Is no Inflow equation. since the 

heel of the well does not have flow coming in from Ihe reservoir. The segment In 

Figure 3-1-S(b). one Inflow equation applies. since there Is one opening that 

allows fluids to flow In from the reservoir. 

Mass or material balance equations are applied al each internal node In the 

annulus and tubing. This Is because at these nodes. flUids from different 

directions meet and then split to travel through other bridges deflned by the grid. 

Mass balance equations are applied to each phase 10 ensure that the law of 

conservation of mass Is applied to the calculations that will produce the pressure 

and flow rate profiles. The following set of equations shows how the mass balance 

equations are developed individually for 011 and gas under stock tank conditions. 

For each component at each Internal node. 

rm~ - u,,_ = O 



For 011 component, th!scan be wr!tten as, 

And s!mUarly for gas oomponent. 

Flgure ] -]· l AShortbampleGrid 

The mass balance equat!ons look different depending on the number of bridges 

Involved In fluid passage through the associated Internal node, The above mass 

balanceequatLonsapplyfornodeBandnode 1 shown In Flgurel·l·LAtthese 

nodes. one bridge brings nuld In and one bridge takes fluid out The mass 

balances for node Bare the foUowlngequatlons. 

±e.!. _!l!eJ. =o 
R, R, 

[q,,(l - a.J +~l-[q" ( I - a! ) + !iJ£!J!il · O 
0, 0, 8, 8, 

" 



In the cases where there Is one inflow bridge and two outflow bridges at a node. 

aSlnthecaseofnode2InFlgure3·3·l.themasshalanceequationsareas follows. 

!b& _!fu!!J.._ 'h8.." o 
n. B. 8. 

[q,, (i - a, ) + q" a,R' j _[Q,, (l - a,) + Q"a}R'j_ [q,,(1 - a, ) + q"a,R, j;o 
~ ~ ~ ~ ~ ~ 

In the case of nodes 4 and 7 (Figure 3·3·1). there are two Inflow bridges and one 

outflow bridges. This yields the following set of equations For node 4. 

~+.fu5. _ii& ; o 
B, B, 8. 

[q" O- a,) + q"a,R j.[.fu!!..:.£J+!lJ.8!!..j_[q,,(I-a.) +~j;o 
B. 8. 8, 8, B, B, 

The wmblnatlon of two Inflow and two outflow bridges at node 5 (Figure 3· 3·1) 

requires the following mass balance equations. 

_[q,,(l - a,) + q,,,;.R j;o 
8, , 



Another as pect of mass balance that is relevant Is the va lue of liquid fraction at 

the exit bridges from each node. (t Is assumed that the fluids get wel l mixed at the 

nodes. and hence the exit streams from each node are assumed to have to the 

same value forllquld fractlons. This Is also te rmed as the "spilt equation". and Is 

notedbelowfornode5InFlgure3·3·\. 

a" = a, .. 

Therefore. for a toe or middle segment (shown in Figure 3· 1·5(b)). there are 3 

nodes. one of which is part of the inflow equation. Of the remaining 2 modes. each 

node will have three mass balance equations. and hence 6 equations are 

generated for each segment For the heel segment shown In Figure 3-1-5(a). there 

are 2 nodes. a nd hence that segment will have 6 mass balance equations. 

3-4 Momentum Balance 

Another factor that causes changes in pressure of a flowing fluid Is the 

momentum balance. Gravity. flUid acceleration and frlctlonallosses are some of 

the factors that are considered In this balance that considers the conservation of 

momentum. I.e. Newton's second law. The following equation describes this 

phenomenon 

"'- o[-"~l - ['-'!'.1 - {pg·i"81 d: Ak A 
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Since the nuid now is not against gravity in a horizontal well. the momentum loss 

due to gravitational pull Is not relevant The third term can therefore be dropped 

for the equation system. Moreover. It Is understood that the concrlbution of 

acceleration to momentum Is only about 10% at the maximum. Therefore. for 

simplicity purposes, the first term can also be ignored. The following Is the 

equation we are left with to account to momentum loss. 

The above form of this equation cannot be used to calculate pressure. since shear 

stress values cannot be estimated. However, the workable equation for pressure 

loss due to friction can he expressed as follows . 

dp fp., ' 
;j; " W;-

The Blasius friction factor. f. below for turbulent now Is used In thiS work. This 

is because the high now rates In wells provide an environment for turbulent now, 

and hence laminar now can be ignored. 

f- 0.3164 -v.;: where. Re " P':, 

The above set of equations account for pressure loss for now through a pipe only. 

Another area in the well where pressure loss Is expe.:ted Is when nulds now from 



the annulus to the tubing due to the convergence of flow through a small opening. 

In this case, the equation characterizing flow through nozzle is incorporated. 

P_- P. ;cP;' 

These momentum balance equations are calculated across all the brldges. 

Therefore. In each segment. there are three momentum balances. Following Is the 

equationformomentumbalanceintheannulus (node2to5 In Figure 3-3 -I). 

The equation below Is the momentum balance in a tubing bridge (node 1 to 4 in 

Flgure3-3-1) 

The momentum balance of flow from the annulus node to the tubing node Is as 

follows (flow from node3 t021n Figure 3-3-1). 

P'- P,; q~? 

Thus. momentum balances contribute to 2 more equations to the heel segment 

shown in Figure 3·I-S(a). since the segment has 2 bridges. The middle and toe 

segments shown in Figure 3-1-5(b) shows 4 bridges. however one of these 



bridges denote the innow equation. Therefore. the segment has 3 momentum 

balances from the remaining 3 bridges. 

The following table summarizes the equation counts for each type of segments. 

Table 3-4-1 Equation Count for Each Type of Segments In the Grid 

Unknowns (F;gure 3·1·Sj 

InnowEquatlon 

Mass Balance 

Momentum Balance 

3-5 Fluid Properties 

Heel Segment Middle Segment Toe Segment 

As can be seen from the sets of equations above, It Is Important to know certain 

nuld propenles and bJack-oil properties in order to use the derived equations. 

These are R, . B, • B • . Ii. and Ii, . Moreover, these values need to be known 

over a range of temperature and pressure values, since these propertlescilange 

over the length of the well. Tilere are many different ways of estimating these 

properties. The most reliable Information would come from doing extensive 

laboratory analysis of samples taken from the reservoir - this Is the method IIsed 

by 011 field operators to perform Ihe most reliable simulation calculations. In the 

past. correlations have been developed 10 estimate these properties 



corresponding to a specific pressure. temperature and fluid API value. Such 

correlations were used by Llu (2009) to propose a 3-phase calculation scheme for 

the horltontal model described above. Thanyamanta (2009) used the software 

package PVTslm- (Calsep Inc.) to generate properties for characterlted fluids, 

and performed regression on the data to generate an equation of state. In this 

study. a table of nUld properties are generated In the same way as Thanyamanta 

(2009) using PVTslm'" (Calsep Inc.). However. a code for a double liner 

Interpolation Is developed to calculate the properties using the table at the 

reqUired pressures and temperatures. This method will easily allow different 

fluids to bf' used In the simulation. This is because the time consuming and 

potentially not very accurate process of regression to generate equations of sl<lte 

will not have to be performed. Data collected from laboratory analysis could also 

bf' used if available. Consequently. this method will generate far more specific 

information than using correlations. This method of calculatlng nuld properties is 

also used for the vertical model described in the next chapter. 

As mentioned earlier. the horizontal non-linear model used in this thesis is a 

hard-wired model, which is solved iteratively using the Newton Raphson method. 

In other words. all the unknown parameters are solved simultaneously. as 

opposed to solving for one parameter using one scheme of calculations followed 



by another In a sequential manner. The system of non-linear equations was 

wr1tten In the following formaL 

F,(.>:" .>:" ... .r. ) ; O 

F. (.>:" .>:, ..... .r. ) ; O 

The solution to this system was obtained by solving the following equation. 

F(;) ; O 

where, F ; (F,.F" 1-: 1 

The Jacobian matrj~, J. of matrl~ F was used to solve the system. This Is shown 

In order to calcuJate the parameters for the tlrst tlme.a set of values have to be 

assumed. When new values are calculated, they are tallied against the values 

assumed at the beginning. IF these values are within the threshold limit, then 

these values are accepted to be correCL This can be represented by the Following 

equation. 
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Ifthedlrrerencesbetweenthecalculatedandtheassumedvaluesarebig,thenthe 

newlyca1culated values are used as the guessed values, and the calculations are 

carried out again. The flowchart In Figure 3-6·1 explains this process . 

Properties Similar 
to the Guessed 

Values? 

y" 

Figure 3·6-1 Ilorizontal Model Solution Scheme 
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As can be seen, Thanyamanta's model also had a temperature calculation, the 

detallsofwhkhcan be found In Appendix B.It Is not described In details In this 

thesis, since the temperature protlle will not be used Inlherpsultsanddl scusslon 

This model calculates a pressure and now rate protlleacross the horlzo ntalwell. 

Additionally. a set of bottom·hole pressures are given to calculate different 

opera ti ng now rates. This data Is then used to generate Innow Perfonnance 

Relationship (IPR) for the well. 

Bottom Hole Pressure 

Flgure l-6-2 TyplcaIIPRCurve 

Figure 3-6-2 shows a typical IPR curve at fixed values of water· cut, gas-oll· ratio, 

tubing head pressure. etc. Each of the data points In the plot are gen eratedby 

running the hOrizontal model once, each time using a different bottom-hole 



pressure to calculate a now rate. The plot demonstrates what Is expected: as 

bottom·hole pressure is decreased, the pressure differential increases. hence 

there Isa greaterdrJvlng force for more nulds to come Into the well (I.e. higher 

now rate). However, the Increase In now rate is not proportional to the increase 

In pressure differential: this Is because resistance due to friction Increases at 

higher now rates. IPR curve produced using the computer program quoted In this 

thesis is shown in the results section. 



( HAPTER4 

VERTICAL MODEL 

In the previous chapter, a horizontal well model was described. which generates 

the IPR correlation for an oil well. However, that model could only provide 

infonnation about the bottom-hole conditions. The vertkal model described In 

this chapter will calculate the pressure, temperature, flow-rate and liquid fraction 

prollles from the bottom-hole to the tubing head location. In order to achieve this, 

Hagedorn and Brown (1965) correlations are used to calculate pressure. flow rate 

and liquid fraction prollles, coupled with Ramey's model (1961) to calculate the 

temperature profile. These two models are run in series, thus all the parameters 

are not calculated at the same time. This is the basis ofthe modular nature of this 

part of the programming. The final solution is obtained by Iterating between the 

two models unti l the estimated and calculated values converge. The detailed 

framework of equations Is discussed In the following sections. 

4-1 Pressure, Flow Rate and Liquid Hold-Up Correla tion 

The Hagedorn and Brown correlation proposes a series of calculations to 

calculatethepressure,flow rate andliquldfractionofthefluld rals ing up from the 

bottom-hole to the tubing head. The fundamental flow equation this correlation Is 

based on is as follows. II is presenled in fie ld units, since thai is how the 



correlation was developed. The list of actual units used in this research work Is 

outlined In the "Nomenclature" section of this thesis on page Ix. The momentum 

balance equation used In this correlation Is as follows. 

This equation assumes steady state flow, and the gas-liquid mixture Is assumed to 

be a homogeneous fluid with combined properties. Expanding the frlCllonal 

losses (using two phase frlctlon factor) and assuming no external work done by 

the fluid, the above equation can be rearranged after lilting with field data to 

obtain the following correlation. 

Eq.4-1- 1 

.(",-] 
144!!!!..=P +~+P~ 

Ilh • 2.9652><]O" D' p. • Ilh 

where, 

In order to use this equation, a set of pre-calculations need to be performed In 

series. At first, the mass of one barrel of liquid is calculated using the following 

correlation. 

M : 350r·L +~OR + 350r. XI :~~R)+(O.0764)(GLR)(}'. ) 



Thevolumetricflowrateof theliquldcomponents(q • . q,)arethenoonvertedto 

massflowrateq, using the next equation. 

llleparametcrs M and q, appear In Eq. 4·1·1. In order to de!ermlne the other 

parameters that are present in the flow equation 4-1-1. it is Important to 

understand the progression of calculations. Two se!Sofpressure and temperature 

\'alut'S wt'reSt'lected, and dt'!1oted as p" 1; and p" I;. The values for 1' ,. 1; are 

known at Ihe tubing head. which will be at the boundary conditions. The gues~ 

\"alues althtIl<'XljJOinlar~ p, . T,. Thisisdemonstl1lted inFigure4·1-1 

/,....,..,.H~ ... 

: ... ... 01.<>1""." .... 

pI Tl" ~ lib: [ -r--IB---

e' n o< - -0-~:I-l ~_.<"~._. 
plT1 "t 
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Hgull' 4- ]- ] Vcnical Model Caiculation Progression 



By ilerali~e melhod, lbe correel values of p,. T, will be ealeulaled. and tilt lOUlion in 

Ihe tubing deplh where IM-se values occur. In Ihe nexl seI of cakulaliOlls. IM-se known 

values of P, . T, will become Ihe P" T, for Ihe neXI incremental calculalions 

However. for lhe inilia! guess, p, and T, are bolh assumed 10 be 10"10 greater than 

p ,lnd T,. This is demonstrated by Ihe flowchan below (Figure 4-1-2) 

Figure 4-1-2 Hagedorn and Brown ealeulallon Scheme 



As can be seen from the flow chart, the temperature profile needs to be known for 

this method to provide the pressure profUe. with the corresponding flow rate and 

liquid fractions. The details of the temperature Cil1culatlons are described In the 

The fluid properties are evaluated by Interpolating from data generated In 

PVTsim (as described In section 3·5). These properties Include R, . B •. 8~, z, P. , 

110 , {T • • {T~. Y. ' Y, and Yo' The viscosity and the surface tension of the liquid 

phase (oil and water together) are averaged using the following equations. 

In the next step. the superfldal liquid and gas velocities are calcul aled. 

-~[. ( I l '( WaR l] 
v", - 86400A, • L+WOR + wll +wOR 

v = q,[GLR -R,(dm)][!!!I 'T+460l; 
.. 8640011, P 520 r 

The above values are used 10 calcuLate the L. and BB parameters (defined below). 

which in tum a", u~ to check if Hagedorn and Brown method is suited for this 



calculation. The fluid e;.;amples shown in me results seclion were all checked to ensure 

IhatlM- Hagedorn and Brown method was suitable 

L ", I 071_ 0 .2218(Y.!I+ l"sG l ' 

• . (%l 

ThIs model was proposed such that L. could only have a value ofO.1 3 or greater. 

If a value of less than 0.13 was calculated for this parameter. then the value 0.13 

was used Instead of the calculated value in the next step. If (BB-L. l yields a 

positive value, only then it is recommended Iltallhe Hagedorn and Brown method be 

used. Otherwise, the Orkiszewski memod is preferred. This is how it was checked 10 

ensure the suitability of the Hagedorn and Bro,,·n method. For all the calculations 

perfonned in mis thesis, il was checked mat me Hagedorn and Brown method was 

suilable for the purpose. Therefore, 1M- Orkiszewski memod is not used 

Thecorrelalion to calculate liquid holdup consists oftbe following s et ofca1culations 

io w-ies 



NO : 120.8T,(!!..XEL) " 
1..12 (JI. 

The work of Hagedorn and Brown complied a numiJ.er of graphs that facilitate the 

calculation procedure. The graph of eN/. YS. N, gives CN,.whkh Is used In the 

nextsetofcalculatlonstogettheholduprorrelationfuncuon. 

[ N" I p 1 [eN,] ;111. " {N".)" " 14.7 N; 

A different graph of '* \'~ . ,"'- is then used to provide the corresponding value 

Of*_ The secondary correlation factor is calculated next, as shown below. 

This value is used \0 find Qut the value of 't' from the graph of 't' vs. , •. At this 

point. the liquid hold up value,i,e. Ihe fraclionofliquid in the flui d,canbecalculated 



The two phase density is then calculated using two different methods, as shown by the 

equations below 

The bigger of tile two values are ~d in the final flow equation (Eq. 4_1_1) 10 

determine the depth and its corresponding pressure. 

Friction factor is one of the parameters that appear in the final flow equation (Eq. 4_1_ 

I). This is delennined by first calculating the two pbase Reynold's number. and then 

evaluating the friction factor. using the equat ions below 

where,t was assumed to be a constant value of 0.00015. 

The last parameter that appears in Eq. 4-1-1 is the velocity parameter. It is calculated 

by doing a scries of calculations. once at PL ' T, conditions. and then at p,. T, 

conditions. The following a~ the equations to calculate at the p" T, location 

" 



T,,=T,~~MJ 

p " ",li 
P. 

~[D ( 1 1 D( WaR II 
v"" = S6400A, 0 I .. WOR"· I .. WOR 

" . q,[GLR-R.(dmll["·'IrH6()1; 
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Orn:e the superficial liquid and gas velocities at p" T, and p" T, are known, then the 

final parameteTcan be calculated as follows 

The incremcnllli depth between location of P" 1; and p" T, is thell calculated by 

rearranging the original flow equation (Eq. 4-1-1). Figure 4-1-1 demonstrates where 

the physical significance of where this incremental depth appear. Equa\ion4-1-1 can 

be rearrallged to solve forlhe incremental depth as follows. 
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As can be seen from the calculations, this method calculates the pressure, flow 

rateandllquldholdupprofliesofthevertlcalsec!lonoFthewell, 

4-2 Temperature Balance 

We know from the previous section, It Is Imperative to know the temperature 

profile to be able to detennlne pressure profllein the vertical section, which In 

turn is essential to determine the operating conditions of the well. In this section, 

the equations governing the temperature profile from Ramey's method (Ramey 

1961)aredescnbed, 

.. ., I ----0 ------_ 0.. 

--- ----0 ---- -

Flgure4·2- t Temperature Balance Schematic 



Ramey developed an energy balance between two points along the well tubing. 

This Is demonstrated In Figure 4·2·1 by locations "1" and "Z". The energy at each 

point was evaluated In terms of enthalpy. potential energy and kinetic energy of 

the fluid. As fluid travelled from pOint 1 to point 2, heat Is generated due to 

friction. Some heat is transferred to the surround ing rock (since the fluid Is 

warmer). The following equation compiles this information 

This equation can be rearranged as follows 

where, 

t:Jf = c, O; - T, l - C,c. (p,- p,) 

f"h = h,-h, 

f"v' = f"v,' -f"v; 

In order to solve this equation, each of the parameters needs to be evaluated firs\. All 

,he parame,u1 can be evaluated once the fluid propenies are known. and from the 

calculations done in ,he Hagedorn and Brown process, except for Q ... and Q_ 

Ramey proposed that Q_ can be ignored. Thuefore, a method was devised to 

calculateQ_ 



[t was assumed that heat istransferrwfTomtl>e fluid 10 the rock through cor>duction. 

This is because, from the point where the fluid touches the tubing wall (i.e. where the 

heat excbange occurs) and beyond, all the layers of material waugh which heat 

transfer takes place are solid. Heat conduction can be defined by Fourier' s law, which 

states lhat the rate of heat transfer is proportional to the temperature differentiaL The 

heat nansfer in the formal ion itself can be "Tinen in cylindrical coordinates as follows. 

One needs to know the steady-state fluid rock temperature in order to calculate the 

steady state fluid temperature. However. the problem is that the rock temperature never 

reaches a steady-stlte value because of the cylindrical gcometry of the dircction of 

heat transfer (i .e. the solution to the above equation is not unique), As time progresses. 

the beal fr()n1tbe fluid will heat up the rock farther away; hence the temperature 

boundary in the rock will keep on moving farther away from the tubing. This is shown 

by the Basel function solution as fol!ow~ 

where, 

7~ " 0.4063 + ~lnl,, (3t large Urnes/semI-steady flow) 
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The conductive heat transfer from the wellbore to the formation can be written as 

follows. 

Q= -~(T .. - T.l 

The overall heat transfer value, U. , lsassumedtobe a constant value of 17.61 

BtujChr.ftl.oF). as calculated by Dawkralal et al. (200S). The conductive heat 

transfer from the fluid to the wellbore (through the layers ofcompletl on) can be 

expressed by the equation below. 

Byequatlngtheaboverwoequatlons,thefollowlngequationlsobtalned. 

where, 

This represents the heat loss from the fluid to the formation, i.e. Q_ . To Is 

ca lculated by assuming a constant time. Ther ... rore, this model calculates the 

temperature prome at a spedfic time only. This allows the model to be versatile 

in the ability to recognl1.e the drop In fluid temperatures at the tubl ngheadas 

time progresses. This could be used to estimate the time when the fluid 

temperatures could go below theWAT. 



Since now all the parameters of the tubing energy balance can be calcu] ated,ltcan 

bewntteninthefollowlngform. 

=' [L, e , (h, - h, )r, - L, e, (It, - h, )1", J 

When calculating the temperature profile, the starting point Is the tubing head 

temperature. This Is bl'1:ause the temperature at the bottom·hole is fixed at the 

reservoir temperature, and It does not change. Depending on the time, now rate, 

and other factors. the temperature at the tubing head \laries. Therefore. for the 

first step calculation (Figure4-2·1),polnt 1 Is at the bottom-hole and the model 

will calculate the temperature at point 2.The above equation can be rearranged 

10solveforTj,whichlstheparameterofconcem. 

e,T, +L.c, (It, -1t,)1", CJc, (p,-p, )+(h, - h,)t+~¥ 
L.c, (h, h, )+c, 

These values calculated at point 2 will be considered as point I for the next step 

This procedure Is repeated until the tubing head temperature Is calculated. AJithe 

temperature points together form the temperature profile of the vertical model. 

It is clear from Ramey's calculations tllat many fluid properties nl'f'd to be 

calculated to find the temperature proHle. Tllese properties and other values 

depend largely on the calculations done In the Hagedorn and Brown method. 



However, as noted earlier. the Hagedorn and Brown method rellesona known 

temperature profile. The following section outlines how the Hagedorn and Brown 

ca1culationsandtheRamey'stemperaturecalculatlonsaresolvedtogether in an 

iterative way. such that it overcomes the need of having a known temp erature 

profileoraknown pressurepronle. 

4·J Solution Method 

There are two reasons why spedal attention needs to be paid to how the 

Hagedorn and Brown method and Ramey's method are being solved together. 

Firstly. as outlined above. both models require the other model to be solved first 

Secondly. one of the calculation procedure starts at tub ing head and en dsatthe 

bottom.hole location. while the other runs In the opposite direction. Both these 

Issues are addressed In the solving process proposed In this thesis. The flowchart 

In Figure4-3-1 describes the process. 

The two models are run in series. and the calculaUons loop until the values 

converge. This eliminates the problem of having to know either the pressure or 

the temperature profile in fu ll beforehand. Moreover. because the complete 

pressure and complete temperature pronles were calculated separately. It was 

possible to calculate In their respective directions wltllout any prob lems.Flgure 

4-3-2 Is a visual representation of the outputs in the iterative pnxess . 
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FIgure 4-3-1 Solution Method for Vert ical Model 



Figure 4-3-2 Results Progression of the Vertical Model 

Wi th the calculations done using the vertical models, It Is posslhle t ocrtatellfi 

curves(Flgure4-3·3),lnthesamewayas IPR curvesuslngthehonzonlalmodel 

The single curve below Is fora flxed value or tubing head pressure, gas-oll-rallo. 

water·oll·ra tlo.eIC. 

Figure 4·3-3 Lift Curve 
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The bottom-hole pressuru are calculated for varIous operatlng flow rat eS,and 

these points are plotted on a graph to give the characteristic shape. As bonom 

hole pressure Is Increased, there Is a greater pressure differential between the 

tubIng head and bottom hole, whIch gives a greater driv1ng force, all owlngmore 

fluIds to flow up.A unit inHease in the bottom-hole pressure Is not match bya 

proportionalincreaseinflowrateduetothehigherfrictlonallossesexperienced 

at high flow rates. Thecun'e in Figure 4-3-3 Is obtained when the tubing head 

pressure and other parameters are fixed. A family of curves can be generated by 

varyingtheseparamete~.suchnthetublngheadpressure 

Flgure4-3·4WellOperatlngCondltlons 

The well operating condItions are determined by allowIng an IPR and a Lift Curve 

to Intersect, as shown In FIgure 4-3·4. Operating at the poInt of Intersectlon 

$lgnlfles that the well Is driving up the same amount of fluid that the we IIlsable 

to collect from the reservoir. On the other hand, if the well was to be ope rated at 
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bottom-hole pressures al "A", a 101 more fluid will be coming In from the reservoir 

Ihan the well's ability to pull Itoul that that tubing head pressures. At that point. a 

lifl curve using]owertubing head pressure is required to give thedriv ingforcelo 

draw out more liquid up 10 the surface. This is the usual scenario If the 

production rate from that reservoir needs to be Increased. The oppos Iteapplies lf 

the production rate needs to be slowed down to ensure a higher recovery 

Figure 4-3-4 demonstrates lust one e~ample of why the operating conditions may 

need to be changed. and In doing so, the program developed In thisthes Is would 

be a very important tool. However, there are many more reasons that could 

trigger the need to change the operation conditlons.A further discussion about 

this topic Is outJined In Reservoir Englneerlngbooks,suchasby]o hansen (2008). 
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CHAPTERS 

WAX MODEL 

There are a number of professional software programs available to predict tile 

wax precipitation In oil wells. However. all of them make use of deposition 

models that are based on wax diffusion. In such models, It is assumed that when 

the fluid temperatures reach and go below the WAT. the wax molecules diffuse to 

the tubing wall and become deposited as soHds. This model may be appHcable for 

surface or sub-sea pipelines. where tile flow regime may be laminar. However. In 

recent times. attention had been drawn towards developing a model for the 

turbulent flow regime In the on productngwells. In which It is not possl blefor 

diffusion to occur In radial direction. In this tIlesls, IWO different wax models are 

programmed with a romplete well flow model for the first t ime and compared. 

These models assume that wax molecules crystallize at WAT. form gels that stick 

to the tubing, and harden overtime. Both the models are not composition al.inan 

efforttok~pthecalculat1on Slmpleenoughforeasyapplicablllty. 

The two models described In this thesis are by Zougari and Sopkow (2007) and 

Segatln et al. (2008). Both the models are based on the Ozawa (1971) kinetlc 

model forcrysral growth. which can be expressed as follows. 
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The aoove equation was expanded for non·lsothermal conditions by Oliver and 

Calvert [1975}. Turnbull and Spacpen (1978) and HolTman (1985) for a single 

componenL 

For the case of multiple components. such as for crude oils. crystallization Is 

considered as a cumulative process. Crystallization kinetics for m ·components 

can be described by the following equation. This Is also supported by some of the 

srudles done by Hammaml (1992). 

{ . { i(~fAT )· l X ,(T.,t)=I -ex -LC .. ~Tex -'f.rr --, 
'.1 '-'" 

In the next sections. two different models are described. each applying the above 

equations In different manners. However. both these models calculate relative 

crystallinity. which basically describes the percentage of area under the 

microscope that is in some form of ordered or crystalline state. This Is only the 

first step towards determining if a change of phase Is expected to occur. Further 

calculations need to be developed to determine a relation between the relaUve 

crystallinity and phase change. as well as between phase change and deposition 

on the wall. One of the motivations for applying these developing wax models Is 

to show the re levance ofa good vertical temperature model to many applications. 
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5-1 Zougart a nd Sopkow Model 

In their study, Zougarl and Sopkow (2007) developed a kinetic model that was 

able to satisfactorily fit the experimental data from 0115 of five different wells. 

each from a different region of the world. They used tl1e following equation for 

relative crystalli nity. which Is a nonnalized equation that has Its beginnings from. 

but nOt exactly the same as. the Ozawa e<juatlon. 

X,(O.rp) = l-ex{ _ K~~)) 

K(O) = C' exJ_ ~\'·-, ,. 1 (O + C~ )O' J 
O =~ 

T_ - T_ 

c;. =C;(T_ -T_r-A~T- )" 

C' -~ ,. - (,_ - ' _I 

c~ = (T_ T.:-;._ ), 

In their sTUdy. the authors conducted laboratory testing by cooling §tagnant (non-

flowing) samples of cTUde oils at a known rate. and measuring the crystallinity. They 

fit lheir relative crystallinity equation to the upo:rimeotal data by chang ing values of 

the constants. T .... is a temperature at which the waxes in the samples were §till in 



dissolvw condi tions: il was assumed to be a conSWII value of 8O"c. T _ is the 

tempenlture at which crystal grov.1h Stops: this was alsoronsiderw a CORstantwith a 

vl lueof-ltO·C. A."- ' the effective cooling nlle. WIS delermined to be a conStaDl of 

OJ·Clmin. The !!CllIal cooling rate. A., was varied during e~perirnentation_ These 

recommended values were u!;e(lto calculate relative crystallinity in Ihis sllIdy as well . 

A value of 3, l e_9and_9.8e6wasused for theconstanlS II. C; and C; 

5-2 Begatln el aJ. Mode l 

In this model,Begatln etal. (200B) took a different approach to define therelatlve 

crysta lli nity function. They proposed an equation with lust one filtlng 

parameter C, which Is the Ozawa constanL The single Important variable that 

affects the crr.;tallinity Is T. (=)whlch Is assumed to he the Inside wall 

temperature. This Is be<ause the inside of t he wall Is the coldest surl ace that the 

well nuld comes Into contactwlth,and hence provides a reason for nucleation 

and crystal growth 10 occur, The relation between TA:)and relative crystallinity 

Is shown In theequaUon below. 



The equation also assumes that velocity and wax ap~arance temperatures 

changes over the length of the horizontal well. This Is to accommodate for the 

changing oil composition and tubing diameter respectively, as wax solids build up 

at various locations. Moreover, in the original Ozawa equation. there Is a cooling 

rate term. In this modeL the cooling rate Is assumed to be related to the 

tem~rature gradient In the axial direction. Also. an Ozawa exponent of 1 Is 

assumed to signify a rod morphology for the crystal structure. which Is a 

phenomenon also noted by Zougarl and Sopkow (2007). Holder and Winkler 

(1965) also obsented that wax solldlfled Into get only afier a certain level of 

crystallinity was reached. This value was quoted to be as low as 0.5% for certain 

crude oils. Therefore. Segatin et al. (200S) proposed that wax depOSition could be 

considered a possibility only when the relat1ve crystallinity Is calculated to be a 

value greater than 0.5%. 

Therefore. this theoretical model ca n be applied with the help of a good 

temperature and flow model for the vertical well. as well as good experimental 

data forWA T(=) . Since this study alms to che.::k the applicability of these models. 

only a simplified equation Is used with assumed values for expetimental data. 

WAT(=) is assumed constant throughout the well. v(=)ls assumed to be the 

values calculated by the vertical flow model. and T,. (=)ls assumed to be same as 

the fluid temperature for simplicity purposes In this study. 



CHAPTER 6 

RESULTS 

The previous chapters describe the mathematical basis of the models used In this 

srudy. ln this chapter, the results obtained from these models are shown. At first. 

the results obtained from running only the horizontal model are outlined. This 

Includes running simulations for a generic well completion and producing an IPR 

for the well. The results from runnIng a complex well completion are also shown. 

In the next section. various profiles and Iiflcurves are obtained from executing 

the verti cal model alone are shown. The horizontal and vertical models were then 

combined to produce the operating parameters for a production weli. A section Is 

also dedicated to comparing the temperature profiles from the vertical model to 

the approximate, analytical temperature profiles commonly used In industry. This 

leads into the last section, where the temperature profile is used to ca lculatethe 

waxcrystalUnlty In the fluid. 

The horizonta l and vertica l models used in this thesis produce results that are 

reservoi r and fluid specific. There Is provision for changing reservoir properties 

by making changes to the Input files. For fluid properties. a table was generated 

using PVTslm'· (Calsep). which was then embedded as an input file to the 

program. This table could be regenerated for different fluids to produce flUid 

specl fi c results. One of the pre-existing flUid compositions on PVTslm'" (Calsep) 



was used to generate the results in this section. This nuid has a bubble point 

pressure 0(265 bars. Further details could be seen In the input Hies outlined In 

Appendix A. Some of these detailed informaUon, such as the length of the 

completion, can also be deduced frorn the values shown on theaxesofthe graphs. 

The following table shows the fluid composition. 

Table 6-0·1 Fluid Composition 

Component Mol % Mol wt (g / mol) 
N2 0.56 28.014 

CO2 3.55 44.01 
ct 45.34 16.043 
C2 5.48 30.07 
C3 3.7 44.097 
iC4 0 .7 58.124 

," 1.65 58.124 
'CS 0.73 72.151 
,CS 0.87 72.151 
C6 1.33 86.178 
C7 2.73 89.9 
C8 3.26 103.2 
CO 2.14 117.7 

CIO 1.94 133 
ct1 1.62 147 
Ci2 160 
C13 1.69 172 
ct. 1.62 186 

1.59 200 
C16 1.3 213 
C17 1.11 233 
C18 1.26 247 
C19 1.07 258 
C20 13.32 '21 



6-1 Hor1zontal Model Resul15 

The horizontal model applied In this thesis determines the flow rate, pressure 

and 011 fraction profiles along the length ofa horizontal well,foramax imumof2-

fluid phases. The simplest Cdse that could be run In this simulation Is fora single 

phase fluid uslngthegenericcompletionshown In Flgure3-1-1.Fo llowlng are the 

profilesobtalnedwhenthegenerlccompletlonlsoperatedabovethebubblepolnt 

.-~ 1..- - ._._ 
j - ._.-.. '.-

0 ..... >00 "'" «» "'" 

Flgu~6- 1 - 1 GenerIcCompletionOperatedAbovethe8ubblePointPreS$ure 

The flow rate profiles show that Inflow rate increases from the weliloe 10 the 

well heel. This is because more inflow locations become available. which allows 
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more fluids to flow In. This is the main advantage of horizontal wells. All the fluid 

flowing Into the completion first goes to the annular section. However. the 

annular section holds far less fluid at any distance than the Inflow amount This is 

because the fluids get transferred Instantaneously to the tubing and to the next 

annular node. At any pOint in the completion. the total fluid in the annulus and 

tubing will equal the inflow rate at that location, as sel by the mass cons ervation 

equations. II can be seen that the annular-to-tublng flow rate Is constant 

Ihroughoutthe length of the well. This Is because the Inputparamete rsaresetln 

a way such that there Is equal distribution of slots along the body of the tubing. 

which faci litate this type of flow. Towards the heel, there Is a big spike In the 

annular·to-tublng flow rate (which Is matched by the spike In the tubing flow 

rate). This Is because at the last annular node near the heel. all the fl uldfromthe 

annulus flows Into the tubing. Therefore. Ihe generated flow rate proflles match 

thee~pected behaviour. 

The above flow rate was achieved due to a pressure drawdown from the reservoir 

to the well. As Ind!cated by the pressure profile, the reservoir pressure was 

assumed to be at 270 bars. and the bottom-hole pressure was set to 269 bars. As 

can be seen, a pressure differential uists throughout the length of the well. which 

Is the driving force for the flUid to flow Into the well. The pressure Is lower at the 

heel of the well due to frictional pressure losses that occur over the length of the 

well. The tubing was assumed to bea smooth pipe in this case. Depending on the 

restrictions of flow In the completion. this pressure drop along the length of the 



well would change. Therefore. the calculated pressure profile matches the 

expected behaviour as well. 

The oil fraction profiles have a value of approximately I. because the nuld Is 

always subjected to pressures above the bubble point pressure. A slight drop In 

011 fraction is calculated due to pressure drawdown calculations. 

In the next example. the same well Is operated at pressures below the bubble 

point pressure. 

" .. "'" "" - ..., __ ... _{>o) 

~'b-~·-i"" - -""" .. ,.....,. 
,2"1.$ 
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Figure 6·1·2 Generic Completion Operated Below the Bubble Point Pressure 
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As can be seen from the pressure profile In Figure 6·1·2, the reservoir pressure Is 

assumed to be 260 bars, and the bottom·hole pressure was set to 258 bars. A 

similar pressure profile Is obtained as the first example, because the same 

completion was utilized. The corresponding 011 fraction profile shows a much 

greateramountofgasbelngproducedthanthelastexamplebecausethe pressure 

Is below the bubble point pressure, However, bec;ause of lack of data. it was 

assumed that the oil fraction In the reservoir was 1. In reality. Ihis value is 

expected to be less than 1 when the reservoir pressure is below bubble point 

pressure. and hence more gas is expected to be produced. In real appll cations, the 

reservoir 011 fraction value can be obtained by PVT sampling and the data can be 

input into this program to give a realistic picture. The shape of the liquid fractIon 

profile is also dependent on the pressure drawdown. A higher pressure 

drawdown would result in more gas liberation. 

Itcanalsobeseenlnthlsexamplcthattherateofproouctlonlshlgherthanthat 

of the first example. This Is mostly due to the fact that this example has a higher 

pressure draw down of2 bars (compared to 1 barin the first example) 

Inthisnextexample.theprofilesareca!culatedforacompletionforwhichthelast 

250m section near the het'l Is packed off. A grid representation of this type of 

completion can be seen in Figure 3·1·4 (page 25). This completion has two 

locations where all the fluid in the annulus gets transferred into the tubing. This 

phenomenon is dearly represented by the flow rate profiles in Figure 6·1·3. At 



the well heel and at 250m from the well heel. there are large Jumps In the tubing 

now rate because of the placement of the packers. The tubing now rate re mains 

constant for the last 250m section. since there Is no ann ular·to-tu bing now. 
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Flgure 6· t -J250mPacked-OffCompletion 

The last 250m of the annulus has higher pressure. because of the nuld buil d up 

that Is only able to now into the tubing rrom one locaUon. This provld es amore 

unlfonn pressure different ial (between the reservoir and oompletlo n)throughout 

the length of the well. This Is desired In the situations where a gas cap or water 

breakthrough Is ImminenL 5imllarly. different types ofcompleUons. such as the 

stinger completion In Figure3-l-] (page 24). can be uUllzed to tackle various 

production concerns. This horizontal now model Is able to provide the pr ofllu 



speclHc to the completion type. which IS;I very desirable attribute . It gives the 

reservoir engineer the opportunity to easily cakulatethe results ofma nyposslble 

solutions before Investing Into It. 

As described InChaptersJand 4. It Is neassaryto make an IPR plot to dete nnlne 

the optimal operating pressure and How rate for a given reservoir. FI gure6·1·4Is 

the IPR plot generated for the generic completion using this horizontal How 

model. The IPR has the characteristic slant and curvature as Hpe<:ted - as the 

bottom·hole pressufe Is decreased {I.e. Increase In pressure differentia I with the 

reservoir). more Hu ids now Inlothe well. Frictional effects at high How rales 

explain the curvature of the plot S!:'ctlon 6·J shows how this IPR plol c ouldbe 

used In contuncUon with llficurves to provide the operating rondltlons 

."',------; __ -,;o-,;o----;;;,------;~ __ 1I>On1 

Figure 6·1·4 InHow Perl'ormance Curve of Generic Completion 
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6-2 Vertical Model Results 

The vertical flow model developed In this thesis models the flow ofnuld from Ihe 

well heel 10 the surface. Dunng thIs voyage. the fluid expenencesa much greater 

pressure and temperature drop. causIng drastic changes In liquid hold-up (I.e. 

liquid fraction) and now regime. The combination of Ramey's model and the 

Hagedorn and Brown model calculates temperature, pn.'ssure. liquid hoi d-upilnd 

nowrateprofi1esasshownlnFigure6-2- l intherespectlveorde r . 

. "., -, " , 
~ 

FIgure 6-2-1 Profiles Calculilted Using the Vertical Flow Model 

FIgure 6-2- 1 was the results obtained when the selected fluid {Table 6-0-1. page 

64) was run in the simulation at very high bottom-hole flow rate of about 1000 

m1/d. This was done because the flow rates calculated In the horizontal model 



also had very high values. which is characteristic of horizontal models. The 

t ... mperature profile was calculated staning with th ... bottom-hole temperature 

(I ..... reservoir temp ... rature) as th ... boundary condition and moving upwards. It 

can be s ... en that the temperature slightly increases as it flows upwards. and the 

fluid temp ... rature at the tubing head was calculated to be just slightly below the 

bottom-hal ... temperature. This is because th ... high fluid flow rat ... caus ... s frictional 

heating in the piping. It wlll be shown In Section 6·3 how a low ... r flow rate 

produces a different typeoft ... mperature profile. 

Th ... pressur ... profile can b ... s ... en to chang ... from over 160 bars at th ... bottom·hole 

to about 30 bars at th ... tubing h ... ad. This high pr ... ssure dlff ... rentlal provides the 

force needed to naturally pull up such a big amount of fluid from the bottom·hole 

against gravity. It can be seen with th ... us ... of a rul ... r that the pressure profile Is 

not a straight line; It is curved to account for the momentum loss due to friction. 

The loss of pressure causes gas to be liberated from the liquid. This Is indicated 

by liquid hold up profile. The liberation of gas causes the flow rate to shalllly 

Increase. due to the low density of the gaseous phase. 

Thus overall. the model results are in par with what Is expected. These results 

were calculated through an Iteratlv ... method. Flgur ... 6·2-2 shows th ... It ... ratlve 

process that took place. Itcan be seen that the model converged In2ite rations. 
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Figure 6-2-2 Calculation Progression for Vertical Model 

Figure 6-2-2(a) shows the initial assumed temperature profile. This is the same as 

the geothermal profile, which was used to calculate the pressure profile and a 

new temperature proflle using the pressure va lues. This Is sh.own In Figure 6-2-

2(b). The program then checked Ifllle temperatureproflles In Figu re 6-2-2(a) 

matched the one in Figure 6-Z-2(b). Since the temperature profiles are very 

different, the program went forward with the 2..1 Iteration. The pressure protlle In 

Figure 6-Z-2(c) was calculated using the temperarure profile In Flgure6-Z-Z[b). 

At the same Ume, a new temperature profile Is calculated In this Z".Jlteratlon with 

the new pressure profiles. The computer then checked again \0 see If the 

dltTerence Iwtween the temperature profiles in Figure 6-2-2(bJ and Figure 6-2-

2(c) were within the allowed to lerance, In this case. it was; thlsc an also be seen 

from the similar shapes of the temperature profiles in the flgure. Therefore. the 

program stops iteratlng afier this step. 
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The ven1cal model Is also used to plot the 11ft curves for the system. This was 

done by running the simulation for different values of bottom·hole fl ow rate. The 

model produced the corresponding values for bottom-hole pressures.Th eplotof 

these flow rate and pressure values Isthe 11ft curve. as shown In Figure 6-Z·3.The 

curve has the characteristic shapeofa 11ft curve. 
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Flgure 6 ·Z-3 Lift Curve fromVenlca l Model 

This lin curve, together with the IPR from the previous sealon, can be used to 

calculate the operating conditions. This Is shown In the next section 



6-3 DelermlnlngOperatlngParameters 

In the previous sections. both an IPRand a Llfl Curve were produced. The pol ntof 

in tersection of the IPR and Llfl Curve dictates the operating parameters of the 

well. This Is b&aus<>. at this point. both the fluid coming Into the bottom-hole 

(definedbythelPR)equalsthefluidthatlsabletoflowoutoftheweII {deflned by 

the Lift CUlVe). Figure 6-3-1 shows the plot when both Flgure6-j-4 (IPR) and 

Figure 6-2-3 (Lift Curve fora tubing head pressure of about 20 bars an daGLRof 

300jare drawn on the same axis. It shows that if the well head is oper atedat20 

bars. about 16 000 ml/day (at bottom-hole conditions) of fluid can be p roduced. 

35 X10' 
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Figure 6-3-1 Operating Conditions 



If for some reason It Is desired to reduce the production rate. the tubing head 

pressure could be increased. Figure 6·3·2 shows the shift In Lift Curve when the 

tubing head pressure Is changed from 20 bars to about 35 bars. This gives a new 

Intersection point wllh the IRP. where the produdlon raleat the bottom·hole 

conditions will be lower. Various other factors affect the Lift Curves, such as 

water cut.gas·liquld ratio. tubing radius, etc. These values could also be changed 

Inthe program developed in this thesis to glve different families of 11ft curves. By 

having such quick simulation tools available to the reservoir engineer. It Is 

possible to Investlg.atevarious possible operating conditions and thel reffects. 

0;:0--,:;;-----,:,.,;;----;"":::-----;:;;---7. ... .-, 
Flllure 6 -J -2 OperatingCondlllons at Different Tubing- Ilead Pressure s 
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6-4 Tempera ture Profile Comparison 

The temperature profile Is an Important factor for certain flow ~ssu rance Issues, 

In this thesis, the direct relationship between the fluid temperature and wax 

crystallization has been discussed. Therefore, there Is a need to have a good 

temperature model. A substantial amount of effort was invested to achieve this by 

~pplylng a detailed temperature model for two phase flow, where only the 

reservoir temperature Is known. This allows this model 10 be used for "redlcUon 

purposes before the well Is drilled. In Ihls section. a fewflndlngs from r unnlngthe 

temperature model are d iscussed 

-30000 0.5 1 

Flgure6-4-1 Vertical Model for a Low Flow Case 



Figure 6·4·1 shows the pronles from a vertical model with bottom-hole How rnte 

of about t50ml/d (much lower than the example from Sertlon 6-2. page 71). Such 

How rntes are derent production rntes for vertical wells. It can be seen that the 

tubing head temperatu re can very easily be as low as SQoC. At sucil tempera tures. 

It ls notunllkelyto ilavecrossedtheWATvaluefor theHuld.lnlhenextsectlon. 

this temperature proHie will be used 10 perform calculations r"8ard1ng wax 

crystallinity. 

~ 
~--rd1S 

Figure 6-4 · 2 Wellbore Temperature ProHles over Time 



There are certain advantages of using the temperature model used In this thesis. 

It acknowledges the fact that wellbore fluid temperature changes with time. 

Figure 6-4-2 shows how the temperature profile is different at different values of 

dimensionless time (Td). As the temperature of the surrounding rock rise over 

time (due to heat transfer from the fluid In the well). the temperature differential 

between the fluid and the rock de1:reases. Therefore. less heat Is lost from the 

fluid, which results In the fluid to be warmer over time. By using this function. the 

reservoir engineers will be able to determine if certain concerns are e xpectedto 

affe1:1 only on Ihe short run or will It affect In the longrun. 

While doing literature review regarding wax deposition models, it was seen that 

an analytical model was used most frequently as the basis of the wax deposition 

model . This model Is a s ingle-phase simplification of Ramey's model. Tile 

motivation to select the analytical model was that It performed well for single-

pllase situations. The model can be written as follows. 

{ - dJU 1 T(.-) = T .... + (T.-T .... )ex ---, 
c,q, 

As can be seen. for this analytical model. botll tile tubing head and bottom-liole 

temperatures n~d to be known. Moreover. a constant value for c, has to be uSN! 

In lhe model used in this thesis, all the propenies used were evaluated for the 

tem~ra(U1l' and pressure val~s al ea<;h sp<:e ific localion. Thell'fore. the analytical 

model is limited in its ability to predict a fluid sp<:eific profile before production starts. 
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Ftgure6-4-3 Numerical vs. Analytical Temperature Profiles 

Figu~ 6-4-3 shows how this analytical model ,,,rnpares with the numerical model 

The temperature profiles plotted In (olourare the profiles produced using the 

numerical meth.od coded in this thesis at different values of dimensional time. All 

these three profiles were plolted for an overall heat transfer(U) v alueofabout17 

B{ulhr/~t'F. as calculate.:! by Oawkrajal et 31. (2005). The temperature profiles In 

black colour are generated usi ng the analytical solution described I nthlssectlon 

(with the same values for diameter anrl overall heat transfercoeffi clent).ltcanbe 

seen that the analytical model produced very dltTeren t profiles compa red to the 

numerical model. The analytical prome produces very steep changes ror a 
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realistic overall heat transfer coefficient value. Only at very unreallstlcally low 

values of the overall heat t ransfer coefficient. it is possible to see a curvature 

similar to the numerical model. In most on wenS, It Is common to have a two 

phase fluid at the tubing head. Hence. a numerical model, such as the one 

Implemented In this thesis. may be worthwhile developing and Investigating 

further Into for accurate prediction. This is because the choice of temperature 

model will dictate the results of the wax model. For Instance. If the fluid In Figure 

6-4-3 had a WATvalue of800(. the analytical temperature model would conclude 

that wax deposition is not a concern. However. the numerical temperature model 

would flag It as a concern for at least halfof the depth of the well. 

6-5 Wax Model Results 

The tempernture profiles generated In the vertlcal model could be applied to wa~ 

deposition models. since low temperature Is the driving for wa~ crystallization. 

Two different wax crystallization models were discussed In this thesis. Although 

both the models were derIved from the same concept. the final models have a 

number of differences. Figure 6-5-1 and Figure 6-5-2 show the results from 

applying these models. Both the models have different fitting parameters. The 

purpose of these parameters is 10 match the model to dab, However. since field 

dab were not available, the curve fittIng was not possible. The graphs generated 

in this sectlon only give an ImpressIon of the performance of these models. The 

models were then applied to the case generated In Figure 6-4-1 on page 77. 



----------~---------~ 

Crystal linity 

(bJ (oj 

Flgure6-S- I ZougarianrlSopkowModel 

Figure 6-$-1(a) shows the plot generated using the Zougar1 andSopk ow (2007) 

wax crystallization model. 11 shows that the wax crystallinity goes up and 

temperature goes down. It was assumed that the WAT waS BOO( for this flUid. and 

therefore, the graph Isanly rt>levant for temperatures below 800c. Figure 6-5-

l(b) shows the temperalure pN)flIecalculated In the vertical rnodel In Sect1on6-4. 

for this temperature prol1le. the wax crystallinity proflleln the well (calcula ted 

using the Zougarl and 50pkow Model) Is shown In Figure 6·S-I(c). It can be 

ronduded that the wax crysta llization and deposlUon Is possible only for the first 
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1300 m of the well. since further below. the fluid temperature is above the WAT 

It should be noted that the crystallinity values inthegraphsareh Ighlydependent 

onthecholceofvalueforthefitUngconstants.Thustnecrystalllnltyvalues.whlch 

woulddeterminetheamountofsolidwaxavailabletodepositiononthe tubing 

wall. would be relevant only if some fluid spedfie data were available. 

°40 150 150 
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Ftgure6-5-2BegatlnetaI.Model 

ery.talOnity 

C<l 

SlmHarly, Figure 6-5-2 was generated using the Begatln e! al. (2008) wax 

crystaIlIUl!lonmodeI.Thecrystalllnltymodelltselfproducesaprotlle(Figure 6-5-
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2(a)) mucll different from tile Zougarl and Sopkow model. Tile result of this 

mode! Is also specific to tile well compared 10 Ille Zougari and Sopkow model. 

Tliis Is because tllis model utilizes tile axial temperature gradient and velocity 

valuescalculaled in the vertlcal flow model to produce tile crystallinity p rofile,as 

op.,.ased to tile radial cooling rnte In the 20ugari and Scpkow model. Figure 6·5· 

2(b) Is tile temperature profile generated for the well using the vertical model. 

The wax crystallinity profile for tills well is shown in Figure 6·S·2{c). The shape of 

this profile is much different from the shape generated using the Zougarl and 

Sopkow model, hence highlighting the differences between the models. However. 

like the resu lts of the Zougari and Sopkow model, the crysta ll inIty values itself 

(shown In this figure) are only a product of the flttlngconstant used. In order to 

apply the model In real lire sltuatlon, some experimentation Is necessary to 

evaluate the value of this constant. 

The need for such experimentation is a drawback. since it prevents the user from 

llslng the mOOel very easily. However, some level of experimentation is necessary 

to be able to apply sucll phase·change models. Other models often require a 

tllorough compositional analysis. and tile availability of properties that are very 

difficult to evaluate. Therefore. relatively. tile crystalliz.ation models described In 

tllis thesis are not very difficult to apply 



CHAPTER 7 

SUMMARY 

This r~search e)(p lored a few opportunities of Improving the simulations ava ilable 

to reservoir engineers in the oil and gas industry. Today, the Industry Is paying a 

lot more to explore and produce crude petroleum from e)(treme locations. 

Therefore, It Is of more interest today than ever before to use mathematical 

models and computer software pad,ages as a cheap and highly effective tool to 

plan fo r petroleum production. 

Three very specific models were used In this thesis. Firstly. Thanyamanta's 

(2009) IPR model for horizontal wells was Improved. Although the model Itself 

has made a big contribution to provide a comprehensive 2-phase model for 

horizontal wells, there was room to add to Its abilities. It was made easy to Input 

specific flu id properties into the program. In this way. IPR curves could be 

generated for horlzontal wells with not only specific completion desl gns.andwi th 

regional reservoir conditions. but also with very specific fluid properties. This 

could not be achieved using property correlations (as recommended by Llu 

(2009)). With this addition. the model Is able to produce accurate profiles for flow 

rate, pressure drop and liquid fractions over the length ofthewell,a nd as well as 

IPR plots. Such Information Is a must for good well design and operation plan 
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The second model used was the vertical flow model by Hagedorn and Brown 

(1965) in conlunctlon wIth the temperature model developed by Ramey (1961). 

In thIs research work. the two Independent models were IntertwIned In a way 

such that their sequential and Iterative solution would provIde the temperature, 

pressure, flow rate and liquid fraction profiles. These are important parameters 

to consIder during the design of this part of the well, when the fluid moves from 

bottom-hole to tubing head. A big change In pressure. temperature and velocities 

are often encountered during this journey. The model is also able to produce lift 

curves. Lift curves, together with tbe IPR plots, provide the optimum operating 

conditions for the well. This, in \Urn, dIctates the desIgn oftllls portion of the well. 

As can be seen, both the horizontal and vertical models play an Important role In 

the design and the day to day planning. scoplng and operation of an 011 well unit. 

Other than working as an everyday crucial tool for the Industry, these horizontal 

and vertical models also play an important basis for further research work and 

risk assessment. This was illustrated by using the temperature profile generated 

In the vertical model In this thesis as the basis for two different wax 

crystallization models. The~ wax models are still in the process of being fully 

developed. By providing acrurate temperature and velocity profiles from the 

vertical flow model, It gives these prelimInary wax models a platform to be 

evaluated for their performance in oil field situations, which can provide 

Important clues about how the models needs to be further developed and direct 

new areas of experimentation. It was shown how a widely used analytical 



temperature model provides very different profiles compared to the ones 

generated In this thesis. 

The resul15 generated from the models applied In this thesis were coherent and 

logical. A few trends could be conflnned from the results, as well as from doing 

the work of creating the program. These are outlined In the next section, together 

with recommendations for further study on the research carried out In this thesis. 

The last section of this thesis discusses the novelty of the research wo rk done in 

this study. 

7-1 Findings and Recommendations 

While working with the horizontal model on a separate project. the Importance of 

applying appropriate fluid properties was discovered. The model produced 

distorted results if an error was made with providing the correct values. This was 

one of the motivations to make changes to Thanyamanta's model (2009) to allow 

easy switch over from one fluid to another. It is recommended that this 

mKhanism be applied to the 3·phase model developed by Llu (2009). 

The use of different horizontal completions in Thanyamanta's model (2009) was 

one of the strengths of the model. In this research work, only one complex 

completion was further Investigated. Further investigation of other such 

completions is encouraged. It would be very useful if the user Is able to switch 



from one compleUon to another much easily. The current method is not very user 

frlendly. and hence leaves much room for the user to make errors while settlng 

up such completions. 

It would also be useful to tie the horizontal model with a reservoir streamline 

model, such as the one recommended by Skinner (In progress). This would not 

only make the lPR more accurate. It would also give the user a visual 

representation of situations such as gas breakout. water coning. etc. Moreover. by 

changing the calculation grld such that reservoir nodes were able to communicate 

between each other. it could be possible to give the program the ability to 

determine the direction of now. This would make the simulator more powerful 

When using the calculation grld for horizontal weI! used In this thesis. the now 

directions had to be predetermined by the user. 

It Is also recommended that the horizontal model be compared with field data to 

evaluate if there is room for improvement Since the use of temperature sensors 

are becoming common practice on horizontal wells, the temperature model 

proposed by Thanyamanta [2009) could also be compared and evaluated. 

The current horizontal model allows the user to input different rock and 

completion properties for each segment described using the model grid. It would 

be useful to extend this property to allow segments to deviate from the horizontal 

placement by few degrees, since this is a common situaUon in real well s. This 



would allow the model to be more accurate in terms of produclng data for the 

specHlc wells. It is known that these slight deviations In well placement have a 

substantial effect on the temperature profile of the horizontal well. It would be 

Interesting to evaluate If the produces a prominent effect on the now and 

pressure profiles as well. 

It was noticed that the productivity of the horizontal well would dictate the 

design of the tubing In the vertical well. This Is because the high now rates of 

horizontal wells require wider vertical wells for lifting the nuid out of the well. It 

was also noticed that high now rate in vertical now caused nuid to heat up due to 

friction. It would be great if these data generated by the vertical model could be 

compared with field data to evaluate its performance. It would be interesting to 

further study to see If wax deposition Is minimal in high production wells, sInce 

thIs study suggests that the high now rate has the tendency to heat up the Huld as 

It travels up the pipe, as opposed to cooling It Moreover, expanding thevert!cal 

model to Include now In risers would be very useful. since a bIg temperature drop 

can be experienced there. 

The wax models applied in this thesis were under development It is 

recommended that these models be first applied by fitting them with field or 

experimental data to evaluate their performance and aid their development. Use 

of high temperature and high pressure now loops could playa critical role \0 

provide useful data. It Is also recommended to apply the wax models when they 



are complete. such that the location and amount of wax deposition can be 

predicted. Llndeloff and Krejbjerg (2002J also concluded that It is Important to 

perform transient analysis (with respect to fluid temperature proflle in the 

vertical section) for wax deposition. This may also be further Investigated USing 

the models developed In this thesis. 

7-2 Novelty orResearch 

The work done In this research work comprised of the application of various 

existing models. The novelty of the work lies In the Improvements that were 

made and how these models were applied. 

The use of fluid property tables to interpolate for the right data point was applied 

for the first time in the horizontal model. This was a favourable improvement 

both in terms of results generated and as well as increasing the versatility and 

usability of the program. 

The complete Hagedorn and Brown method (196S) and the complete Ramey's 

model (1961) were applied together in the proposed complex. yet relevant and 

appropriate solution process for the first time. The use of this vertical model and 

Thanyamanta's horizontal model (2009) to determine operating conditions using 

lPR and lift curve intersect was also a new addition 



The wax crystall!nlty models applied In this research were only applied using 

analytical temperature models so far. In this research. these models were applied 

using data from the integrated horizontal and vertical model developed earlier. 

The wax deposition software packages that are available today all use diffusion as 

the driving force for wax deposition, while the models applied in this study 

consider a kinetic limited crystallization process as the main mechanism for wax 

deposition. 

Therefore, a substantial amount of new research work has been presented In thiS 

thesis. However, there Is always room for Improvement, some of which are 

outlined Inthe previous section. Itls hoped that the work In this rese arch would 

provide some new, useful information, as well as encourage furthers tudy In this 

subjecL 
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Horizontal Model Code 

File name De$~rl tlon 
checkConver ence,m Checksforconver enceof 
checkconvmu.m Checksforconve enceofvlscosi 
che<:kConvT.m Checksforconve enceoftem erature 
converslon.m Converts ressure to bara and nowrates to m' d 
dis la u.m Cate orlzesvlscosi values 
dis la out ut.m Dis la conver edresultslnthea ro rlateunlts 
dis la out utT,m Dis la andcate orlzeconver edtem eraturevaJues 
f1 enerator.rn Generates function matrix for se ment 1 
flT.m Generates function matrix for segment 1 for 

tern ratures 
f2 enerator.m Generates function matrix for $e ment 2 to N- ! 
f2T,m Generates function matrb for segment 2 to N'I for 

tern eratures 
f3 eneratof.m Generates function matrix for se ment N 
f3T.m Generates function matrix for segment N for 

tern eratures 

enerate dro .m Generate ressure dro between nodes 
generateResprop.m· Calculating black oil properties at reservoir conditions 

usln tables 
eneraterho,m' Calculatesdensi from tables 
enerateRhores,m' Calculates densi from tables 

generateT.m 

Calculates Rsfrom tables 
Calculates Rs from tables 
Set\lng wellbore temperatuesto he same as reservoir 
tern eraturesforisotherrnalcakulatlons 



Settln Initial uessedvaluesforunknown arameters 
uessGeneratQr.m Generate' uess' matrix 
essGeneratQrT.m Generate ' uess' matrix for tem erature calculations 

In utli uidfractlonsinthereservolr 
In ut c.m In ut slot dlscha e coefficients 
In u data.m In utdataforcalculatlons 
In ut dataT.m In utdatafortem eraturecalculatlons 
In utK.m In utabsolute ermeabtlltles 
in ut.m In ut asrelatlve enneabtlitles 
In ut kro.m In utotirelaUve ermeabillties 

In utse mentlen ths 

lnte olate.m'· 
Iteratlon.m 

In ut skin values 
Inter latestocalculate ro rUes 
Salvin usnln Newton-Ra hson method 

IGenerator.m 
IT.rn 
2Generator.m 
2T.m 
3Generator.m 
3T.m 

Salvin tem eratures usln Newton·Ra hson method 
Generates acoblanmatrlxforse ment1 

Mysubplots.m" 

Networksolver.rn 
lotflowrates.m 
lotfractlons.m 

lot ressure.m 
10tT.m 
lottin m 

Tern eratures.m 
Tern Solver.m 

variables 

'Only these flies were slgn!Dcantly changed (about 90% average) to the work 
done by Thanyamanta et al. (2009) 
"Only these files were newly added to the work done by Thanyamanta et al 
(2009) 



fl a'1- U u@: 
epoUon _O : 

u''''P - 0, 

fort_loU 

~HaFetus at nn. 1tua~:on 
~~.~::~~~~ : at n<th 'tmti.o· 

·'.Le to~ ohecking ~cr ~'nverge".c. 

CQnverqenc~ Hatus f~ a:H • c~nv"rger.c.) 

COn"<·e~.ence value 

funcl l_ checkConve r'1ence IXl,X2 ,N,thruhold ) 

i!Xllil-_O 
elu t @mp - abS IXl(i) - X2Ii))/(Xllil ' U) : 

i!X2 __ 0 

e hetemp- O, 

Xl (1) - l e-<O, 

epoilon _ "psilon + t~mp; 

if (epsilon < thas holdl 

func _ n a g : 
funcl _ .. psilon: 

uo 



Peturn : 

"liooosh,e5 used in 
Reoa:culated 'J~~oc,o tie. 

~~;~n~! ~~~~;. 

r:aq :cnver~en:e sU~u. (tal .. - ccn'Jer~enc.1 
ep.ilcn Ccc.,'ergen~~ volue 

hmc~ion I!~ncl !yncZl _ 
checkcon ..... ul"'u2P ,"'uZP_t e mp,br1dge.,t-hre.hold) 

fla~ - trye: 
epoUon-o: 
t .. rnp _O, 

for 1_l. : br1d~u 

e p ollon - .. pollon ~ te",p; 

Hlepdlon < thns holdl 

(unci _ flag : 
f unc2 _ ~psilon : 



t~"'P<"ut"ru n ~u, Heuti~n 

~~"'p"ratu r @5 ~~ n> . H_ 1 ~~"~10n 

cf unknown t~mF-~ra~ ".,"~. 

-•• : " .. ~ !G~ o)-,eci'-"-1 for ocr,',' HQ~nc~ 

Caq COO -.uQH.ee $UO"OS Ihl.e - cocNuQec_oel 
~p.ilon Conve:gence ,'a lue 

f h g - true , 
eplllon - O, 
te",p - O: 

torj. _ l,N 
if Xl (il- - O 
e lse t~"'p - ab . IXl (i)-X2 (i)/ (Xl (1) oN); 

H X2 __ 0 

~hete"'P"'O ' 

~ps1lon _ ~psllon , t emp' 

U a Q _ fa lse , 

func - U . .. , 
!uncl - e p ollon: 



t:~3;~~~~ ~;'ck t h@ v'r1abl~~ so tc.n p ru." r~~ ar~ lc. bAn ac.d 

","ol d 

Ur.known para,"H~U Ic~m' ~rq@d va :".Je51 

::~:~:~~: ~~::.~~~. 
l'u rnl>e< ct o"~n¢"n. 

function f unc _ conv"rolon(Xl ,pnf . '1a!,num_vul 

Xl (1-1 _ Xl (11 ' pr~f/1,,5; 

t~rnpCount"r _ t"rnpCounur • I, 

el.~ 

variabl~s 

if (hrnpCo~nter<- 61 

Xliii -Xl(11 ''1 rd'60'60'24 : 
umpCountH _ t<ernpCount"r.l; 

e lseH (t empCounter>61 
tertpCo unt .. r _ t~"'pCount" < + 1; 



"'~_tub1ng - zero_II , II); 
IIlu_annu lus- .. ,ro_II.N); 
mu_re .... voir _ zero. (l,N-i): 

S~<pren t ~ t o N- _ 
"lU_tubing(1+1) _ ",uZP(4"Hl): 
rnu_annulu . (1+11 _ mu2P(4 " 1+3) : 
IIlU r~.ervo1r (1+1) _ rnu2P(4" i.4) : 

- S ~ 9"'~nt Il 
mu tubin9(N) _ muZP(bridges-l): 
",u::annulu.(N) - Irlu2P(l:>r1dgeol; 

Viscosity ,n lubln~ 
v isco.1:y or .• nn"J: "" 
Yhcc.ity In r e .... vOH 



~n~~:,,:~~,on. of th~ c0nvHq~d · .. ari .. L~. loacY. to thdr appropriate 

rud~ diopl a y 

""'play n~~.I:>H c{ it.uticr .• 
diap(" l.;:nber o ! i-te:a~ion. w!cn cor.v .. ge~~. 'I. 

disp(num2 o u(.~ntin~lC"untll: 

x _ conv~uionIXl,pr~f,qat,nu",_vul: 

Oi'phy !in.l res~lt. 
di.p(--- - ---------- ---------'I; 
d h pl' X'I : 
d isplnUlll2 s trltr. ns po ' .. IXIII, 

C.u~orl:e vUlOblu intO puu~re. , ne" raton , and liq~ld hold~po 

:_ ~~~~~~. -_ I: ;; ;~:::~~:: ;~ ~~~~~~$ 
t"binqFlowrat~ o • II, rub,nq !lo'~ uUo 

:~~~r!~;~~::t:. I ! ; ( 1, ~;~~i:~-~~~;"~~~~$ no" utu 
inflowRa~u _ (1 , r n flo'~ atu 
tubingrraction . _ (1 I Liquid ~.old"p. ~n tubing 
~ i ::~ractiou • (], L>quid ~.old"p. ~n Annular-to-~ubir.q 

l.:lquidhOldup$j.nann,,:'uo 

Ip_ tubin9 . p_ .. nn~lu ' l • pressure . IX, N, num_ varl, 
Cateoori<e p r~uur~s 

{ t"bin~nowrat~s, .1otFlo"Ratu , ann~larFlowraus , inUowRn~.1 • 
flownt".IX . N,nuDI_vu.blndexl, Cau~oci .. flow rat~. 
ItubinqFractions . ol"eruction5, .nn~hrFu<:tion s l -
! uc t l onoIX ,N, nu",_vul; C~u~o<la fuctions 

Ca~culate Gundatov~ ,c.fl c w. at HC~ . • ep",nt 
inte9ulFlo"s. zeros ll.NI; 

!orja l, 1 
c nd l ntegra lFlo" . 111 -l nt e 9ulFlow$ lll + in!lowRa t es ljl; 

Int~qulFlows lNI - lnt~gulFlo"' (N-11, 

Plot r~sulto 
plotting 



~ate~Orl:e convuged umpeuture VU;'ablu u,d 

,e.ult diophY 

Ouphy n~l'\be r 01 i~Hotiono 
dl . pl' NUl'\ber 01 iteutlor..be!ore COCo',ergence ') : 
dhplnuM2sul sentlneICoun tl): 

v.i~:l1ng b.~~ th~ vulablu if the ',dues are relative to ref"renee 

)('1' _ 'l'conv.,uion()('I',num_var'l' , Tuf) , 

Dupl.y Lnal ruulU 
dhpl' -- -- ----- -
displ' X') : 
dhp(numZ s trlt.unspose ()(T)I): 

Cate~or1:e vuiablu 

T t.ubi.n~ - I l ' 
T:annulu~ - 11; 

Plot ruulu 
plo~t 

'l'e"'p"uturu in tubin~ 
'l'e"peuturu In annulus 



XI Unhown par"" . .,t.,ro at uch Heunon 
! f= .. -c&lc~:at.,d cceUio,-"c.t for ,n!lc·" ,,~u~tlcns 
pres ?",uvoir rr~nuI"5 
I>e~a fu-calc"la., .. d oc,,!!iCCI'"' fo= ~'cb1n~ !Icw 

cdc~htlon. 

50 . 5\1 . ?s 

alpha r~s 
n -
pr.,f 
'qrd 

h~~H. 

Blad·.-o'.l pr"p.,rti." 
Two-phue vJ..cosi'>u 
r·.o-phue dens'tiu 

~~~ ~~t~~l~~;~ ~:n~;~:~"~~~r'x 
::;:~:~~: ~~:~$~:~e 

F~nct1o" ""tdx fer S"'I"en< I 

!lG-enerat or(XI,! , pr u , beU,alpha , B,BO , B9,RS , mu2P , rho2P, a lpha_r< .. , !l , p 
re! , qre t) 

Llq~ld-phue matedal balance 
tl(l) a XI (t)'X I (8) / So(2) - XI(3)*XIP)/Bo(l); 

!l1 2 ) a ~1 ~~)I~ ~:~~~i~;~~~;~.(3) .. 
-XI151"XI(9)/BoI 2 1, 

Intlo~· eq.,"ti.(m 
flI31 _ XI(6) . . 

- 1111 " Ipreo II I Ip r .. ! - Xl 12 ) I "pr .. tlqr .. f; 

Mo~~~~;"". b~ i~~~" _ f ~ ~ I ~~~~~g brid\l" 

- I>eU(l I·(X l ( 3 ) ' l.?51"rh02PIl J ' O. ? 5·m~ 2 P(1) 'O . 25 , 

n~: (;~u~t~~~Z:O: ~~~~;~~-to -tuMn~ brld~e 
- B(l)"IXI141'2 1*rho2PI 2 1, 

Moment'o,"h) a "c. for .nm,lnbrldg. 
tl(6) - Xl (2) -Xllll) .. 

- alpha(l)·(XI( S)'I . 7S)'rho2P(3)'O. 1S·mu21'1 3 1'O. 2S , 
""-ph ... ".Herl"l balance 

tll7 l - ((I - XI (e))"XI(tI/ BQ (2 ) +XI 18)"Rs (2 )"X l (4) iBo I2 )1 .. 
- (Il-Xli7)I'Xl(J)/BgIlI t X1 P)'Rs ll)"XlI31 /11o (1 ) )I 

At nod., 1 

fl( e ) • «(l - dpha_us ll))"XlI61/BQ I3 1 + 
al pha_ r eo ll ) "Ro I3 )" XlI 6)/lloI311 . .. 

- (l l-XlI81)"XlI41/BQ(2) + XI1 8 ) "R. 12 1· Xl ( 4 1/ao(2 )1 .. 
- ( (l-XI1 9 1) "XlI51/BQ( 2 1 + Xl1 9 ) " R~ 12 1 *X l ( 5 1/80 (2 ) I. 



SF:.t ~qo .tocn 

U 19) - X1(9) - Xl (8); 



~~~; . L ••• 

Trd 

, 
L!rac 
~o . 2q . R. 

Kapp,,_, 
'·"bln~ 

a~~.~~~;a 

" "eluP t 

KJT -

hec"lou:"te~ coe!f~c,ents 

i'.e<e,-·.c,= 'e:np<t~atur .. 
~&fe=enc e ,e"p<trat~u 
UCJ.no""n tompeut·ou. at HOi". l~e=a~,~n 

flow nce. 
L!qu~:; no:dup. 

~:~:~~i~e~~O~;:~;~:r ,oef!l.ci~nto for fluid 

Iunctionfunc -
!l T 10<>11 . Dqu, 1r ... , Tref,X1 ,q, Unc , eo . B~ . Rs , uppa_ t, Uppa_ " . fl, delUP 
_1I. ,de lto P_t , KJ1) 

"e~;.:;;~~;:ItP~ratu r e in tubing of Segment or .• ~qu.l r eservoir 

O(l) _ X1(1) - Ttoef1uI; 
~nerqy bohnce at tubinq node 

fi(2) __ (DoIl*q(2) · Urac(2)/1Io(2) .. 
+ Dqu· (q(2)·(1-Lfuc(2»/B<,J(2) .. 
+ qI21 · Uuc(2)·Fl.(2)/1Io(2»I * I(X1111-Ttoe/Tref» 

- (Doll'q(l)·Lir&c(l)/IIo(II .. 
~ Dq .. , (qll)' (I-Uraclll )/B~Il) .. 
~ qll)'Uuc lll ' Rs (I)IBolll) ' (IXTI3)-X11l»

KJT · deltaP_ t(l)) .. 
- Kappa_t(11 · (X1(1I-Tto.o /Trd), 

~nugy ta la~ce . t "c.nula< ~ode 
fi l l) ~ - (Do1Pqi3) · Lfuc(l)/Bo(2) . . 

t Pgu·(qI3)'(I-1.fuc(3»fBq(21 . . 

KJT'"elUP_&(I); q(l)·Lfrac(3)'R. (2)/1Io12») - ((XT(2) - 1toe /Trefl-



~neut .. hmoticn ",anix for Seq""".t : 

Xl U,,):nO'"1n pua"ete=. H .. eh ~tHat1GC 
beu h~-caIG-"laud :o.!!'cieot f,- r tube_. !lc" 

!~~e~:~Culati~n5 :oe!Lci .. c_t for annu~ar 

pre. 

~:::q,R5 

,ho:P 
alpha ~"s 
f: -
pat 
~r .. t 

o 

Ret~'n: 

Pu-calc -olat~j ooeUcc1e".t tor 5lc~/vah~ t",-.. 

"~s .. rvolr pre .. ~u. 
Bla~k - c;J properL". 
:"o-pr.aseviscooitiu 
:wo-phue <lensHi ... 

~~~::t:~l~~~: ~~n~~~~~v;;~rlx 
~:~:;:~~: ~~::'~~;e 
];urneerctu9"!ents 
Eri<lgeindexes 

~unctio~ :Mtrix bt S.,went : 

f unction tun~ -
f2Geneutor (XI , bets , Alpha ,S, I,pru , 50,Bq, R.,mu2P, ,ho2P , alp~. _,ea, fl, p 
ref ,qref ,N,b) 

Liquid-Fhase mater .. l bahnc. 
f2(Hvar) _ XI(l3+var)·Xl(l1+var)iBoI3+H5)-b(4 · H61,. 

+ Xl(3+va r)·XlO+var)iBo(3 +l+II-b(4 · i'11 .. 
- XlII2+varl · Xl(16+varfiBo(3-iH ) · b(4-;'S); 

At ~ -_binq ~O<I" 
!2(2 ~ var) _ Xl( 5 +var) - Xl(9+var)i50P-it2)·b(4·H3) ... 

+ Xl(15+varl'Alpha_ n s (HZliSoO - iH)-b(4 - 1+81 ... 
_ Xl(IHvarl 'XI(lB+var)l5o(3 · H~) -b (4 - i+1) ... 
- Xl(13+varl ' Xl(17+vuli50(3 ' H5) ' b (4-H6); 

A~ an~ ,lar nod~ 
!M:o" .. q-"a~'on 

if b(4'i+B) - _ 0 l".l.~ flo" exiBu 
f2(3+vu) _ X11IS +var) ... 

- II(HZI - lpr". (i+2fipre! 

Xl (l!;~:r))) ' pr"Uqr,,!; 

f2(3tvarl - O; 
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betal1+2)'IXlI12.var)'I.?S) ' .ho2PI4'H5)'O . 7S '",u2PI4 ' l+S1'O . 25, 
Flo ... "qu.tion t o • • "nuh:- t o-tuHnQ b'id.g@ 

it b14'H6) -_ 0 Ar.nulu - to - tubi ng f:ow exi.to 

00" 

f2lS+vu l _ XIIIHvul - XIIIO+vu) .. 
_llIH2) _ IXII13'vu)'2)'rho2P14 'H 6) I 

No anr.ulu - to-tubin~ flow 
f2IS+vu)-0, 
f<19+vu) _0 , llo 'plit .qu~Hon 

Mo"'~nt u", bah nce fe. an nular bddge 
HbI4 ' lH) --0 lInnulu flo".xists 

f216+var)_XlI1l+var)_XI120+var) ... 

:;f~.11+2)'IXIIH +V"I-I. 751 ' rho2PI4 ' 1+7).0.15 'mu2PI4'i+1)'0.2S -1>14 ' 1 

if 1>14'1+7) - - I 
if 1>14 ' 1+6) ._ 0 It ~~.~ r @ ia bon. ~ nnulu and. 

annular -to-t~bln~ flo". 
f219+varl _ XlIl7+var) - XIIU+var)I 5plit 

0 0" 
d seif bI4-1+?) __ -I H !lo," in .nnul~5 10 toward t o@ of 

equ.tion 
00" 

eh~ 

t216+var) - O, 
f219+var) - 0 ; 

Gao - phase .... urhl balance 
f2(?'var) - 111-XIIl?+var)-Xl.113+vdr)/Bo;J(3 ' 1'51 + 

XIII1+var) ' Ra I3'1+S)·XIIll+var)/lloI3·i+51)'1>14 ' l+61 .. 
+11l_Xl(1+var)) ' XI13+varl/1I<J13 ' i+l)+ 

XlI7'vu) ' R_ 13*1+I) ' XI13+varl/SoI3'i+I»-bl4"i'I) .. 
_ 111_XI1l6+vu» ' XI1l2+var)/llqI3'1H) + 

XlI I6+var) 'RsI3 ' 1+4I'XI(l2,varl/BoI3 ' 1+41I ' b14*i+S) ; 
t ~bl."9 Md.~ 

f 216+var) _ IIl_XlI9+var)I ' XlI5'var)/l!q(3'1+2)+ 
XI19+var) ' Rs (3 ' i +2) -XI(5+vu)/So(3 · 1+21)'1>14'l+31 ... 

No split 

+ Ill-dpha re.(i+2)'XlllS+var)/B913-1+6) + 
alpha_resliH)- RS I3 ' i+6)·Xl(IS'ViUI/8013'l+6))·bI4*1+8) .. 

_III_XII18 +varl)'XIIIHvarl/8Q(3*1+5)+ 
XI(l8+v a rl'Rs(3-io5)'XI(l4+vu)/BoI3'1+S)) ' bI4 ' !+71 .. 

_ (II_XII17tvar)I ' XI(l]+vul/8'1 13 ' HS) + 

~~~~~:;a~~::s 13 ' 1+5) 'Xl (lHvu) /So(3*1+SI) 'b14' 1+61 , 



" Lfr<l.~ 

~o . Eg , ?' 

hppa t 
tubinq

Kappa . 
ac.nul,,:; 

" , 
d~ltaP t 

'd"ltaPa 
rJT -

Precalculued c"e!!io~.~a 
R .... rvoir tUP'f'uturu 
Rderanc" t~r'per&ture 

~~~:O~':t~::npe=ot"ru u nen 
L1(J'"i~ holdup. 
Elack-cllpropeni". 

~~:~l o ;_e:~'l'~:~:fer coe!hcienu !cr !lUld in 

G"neraud zero functien :na~<l~ 
Bridgelnd"x .. 
Pr"s~ur" drop bHween nodes !or fluid in t-.;binQ 
Pr"ssu~~ drop h.,,,· ... ,, r.odu ~cr flUld in &"_0"1"$ 
Joul,,-tho~p.o" coefficient 

Functicnmatr,x!orS"""",n t :,oN-l 

functionfunc _ 
f2T IDeil. Oo;!U , ires , Tret, X'l', q, Lfrac, Bo, Bg , Rs , N, Kappa _ t, Kappa __ , n,b, d& 
ltaP_," , ddhP_ CKJT) 

Enerqy balanc~ de tubi n" ned" 
f 2 (l+2"U . - (Dcll"q(var+6) *L! rac(varH)/So (3· H51 .. 

: Do;ias ·(ql"a<+6)·ll-L!raclv .r+6)/Jl.913·H~). 

~~~~;~!~;;;~~~~~;::~~ ~~ . (3"1+51/80 (3. it5))) ' I IXT (2' i+3) -

- IDoil ' 'l lv a uS) ' Lha c(var+S)!Bo(3 *i H) .. 
+ Dqas ' ('l(var+S)'(l - Lfuc(va r+S))!Bg(l' I H) 

'l(var'S)'L!nc(vu+S) ' Rs (3 ' i'4)!1lo13 ' 1+ 4))) ' I(XTI 2 '1+5)-XTI2'H3))
!(JT'de ltaP_ tli+2)) ' b(var+S) . 

- K,o.ppa t(H2) ' (XTI2*it3) - XTIZ ' H2)1, 
~c,,,<qy bahnce &t ."",,1 .. node 

[21 2 +2*1) _ _ (DoII'q(vn +S)'L!uc(var+S)!Bo(3'i+6) . . 
+ Dg U '('l(vaH8) ' (l - Lfuc(van8))fBg(3'i+6) .. 

q(Hr+8) - Lt u c(va r +el ' !ls(3'H6)!1l<>13*H611)'«(XTI2 ' i+21 -
T< U (1+ 2 )!Tre fl)'b(va r+8). 

-!(appa a (I+2)'(XT IZ ' i+21 - Tr". U+2IfTrel ) .. 
- (Doit""'l(var+ 7 I ' L!rac(va r+7J!Bo(3*HSI ... 

+ Dga "('l(vu+7I ' (l - Lf rac(vaH1))!Bq(J'H51 .. 
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1 -~(v.r+1J ' UU<:(VU+l;'Fl'(3 ' .\+SJ/Bo(3'1+~J) ' «X'l'12 ' i+~)_X1(2'H2») 
KJT · <:Iel ~.f' .(1+2) )"b(vAr +l) 
11;;' n",e~ 5 d1S~ont,"ulty .n &"nu)a 'Ie", the u,.,p ... tuu at te 

th:nn~lU node u ... "",ad·o hav. °Je ,,,"'perature of 'he In',ow fTo" 

it I)lv .. +71-- 0 
f2(2+1·I). XT1i"Z+41-'I'uo(!+Zl/Tnf; 

for ;ne l I"'ell "ith".,uit'ph lntlow control ·,.lvel). add 
~ _ b ; <: u bddqe 1,,01;<: •• 

dU~r~:te all-podt;". bti<lqe 1n<:l.<: •• 00 ~hat n.e temp.rature 

FU"uU drep 10 ""pendent On the !low <;HuctH>n but ~nly ell tn. 
prestu .. 

drop Iutl'.e< pooH;'''. or uqauve ~h.nqe along the !leI< dlu~tion) 
[orl.: , (:'jl - :I 

,f blll~O 
I)(1)-'b( i ), 

n~;O" d"ections can .till M dete~"';n.d ,"In" " c N 

th:~e~~ the ~.,·ers.,d !low Urn Huts , t he tU,peutu<" is flud I( 

.. quI .. to n.e ",,,,perature of the C" .. rYO" in!low 

if l ~ (~~~:!:~7:!, 

""' ."' 

CI:';: ' ,) - xt(1":~:I-l'r"'IH:l/rret ' 
t: I:'~ ' !i - Ill • Xl'I (i-II ' :~~ 1- 1' .... li-:I fIr.,! ; 



calc':JlatJ.cns 

!~.:~g.R O 

~r1dgu 

<inkno .... n p~u,,~o~~. at uc~ iteutict. 
h"-calc,,ht~d codficant !cr tu~;". flo", 

5J.~c<-01 1 p"o".,:ti~. 

rwo - p~ .. e viocoolt,u 

;:~~;:~:: ~:~:~;~;'~tiOC. ,"at 
P~hr~nc@ pru.ua 
B~~to:nhc:~ pu.u,,, 

~:~:~ ~~ ~~~::~: 
Nu"b~ < of nod~. 
N=.b~ r o f bnd.~s 
B<'-d.~ , d~x~. 

YuncUon rroatrix fo< 5~~:nent n 

functionf unc _ 
n(;en .. ucor lXl, betio .• B, Bo.II<J . Rs , mu2P . <h 02P . fJ ,pr .. t ,pbh. N. nu",_va r. Nodu 
,brid~es . b) 

Liquid - phue "'oterid balanc .. 
B( l) - Xllnu," var -12)*Xllnum var - 81/Bo lNodu-41'b(brldqu-5 1 .. 

~ Xl (nu,"_var - 21 ' XI (nu",_v.rI/BoINodul ·b(bridqul .. 
-Xl(nu,"var- JI*X I (nu,"v&r- l.I/Bo lNodu- l)·b(brldqu-I) ; 

At tut~q nod~ - -
n(21 _ Xl (n"",_var -10 J 'X l (m.llll_var - 6J/Bo(Nodea-3 )·b(bridqes- 3J .. 

At annula< - n~~~ n ~",-var -2 J ' Xl (n~m_var) IBo (Nodes ) ' b(brid~ ... ) ; 

Mor!)@nt~:n i>ahnc ~ to< tubln1 brid9" 
D(31 _ Xl (num_ v iu-51 - pbh/p~ef .. 

- beU(N) 'IX1(num_var - 31'1.751*rho;:P(brldQu 
)1 'O.75 ·",u2P (br 1d~u- I)' O. Z 5' 

now .,quotion to~ annuhr-to-tublnQ bridge 
if b(br1dqn )'- 0 J. onu lar - to-tub;'ng 00 ... exi.a 

t3(41 - Xl(nu,"var-4) - Xl(numvar- S) - B(N)'IX1(nulOvar-

2) -2~~ ~~o2p(brldq.,.) ; - No a:nular-tO-tUb1n~ flo" -

G,,~-phas., mat.,dd b~lanc~ 
f3(S) _ ((1 - Xllnum_var - 8) I'XI (nu11l_va ~- 1 21/11<J(Nodu-4 ) ~ 

Xl (num_var-e ) 'R. (Node.- () ' Xlln"",_vu-12 J IBO (Nod ... - 4 » · b (bddqes-S) .. 
~ «l - Xl(nUlll vu)I ' XI(num vu-2 )/Bq INodes l + 

Xllnu,"_var) ' Rs (Nooe a ) ' XI(n"",_vu-2 ) /eO(Nodes» ' b(bddq.,s ) . 



_ 1(l _XllnWllvar_lll°Xl(numvu_31/~INodes_ll. 

Xl In"" var - l) - RsINod. ... -l')oXllnum var_J)/Bo(Nod ... _ II) Oblbrid" ... _l) : 
... t t :;;bir.; node -

D(G) • «l_XllnUlll_vu_61) _X llnU",_vu_lOl/!l<.lINodes_31 + 
Xl(nU",_vu_6I oRSINodeo_Jl oXlln"",_var _10l/BOINod ... _311 °blbr1<lg ... -3) . .. 

(11_Xl(nu",_v.rl)OX1(nU",_vu-21/~INodul • 

Xl ~~u:;;;':~~:R~!~~dU I ° Xl In""'_ var-2) IBo INodu1 1 ° b (br idges) : 
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runction rraUix tor S~g""'r_t ~ 

function func -

fo~ fl.,;d '-~ "n"u: ·c ~ 

fo~ ~ lui~ 1~ t'obin ~ 

t3T (Dcil , [>gas ,XT '<I,Lf u c<Bo,eg,Rs ,ll, t3 ,num_var1 ,Nod .. ,bdd~e . ,!(&ppa_t 
,Kappa_. ,b,d~lUF_. ,d~ lUF_t,KJT) 

Eneo'n b a :anoe at t ·"bing node 
f 3 (l) __ (Dc11'qlbddgu)<Lfuclbddgu )!Bo(NOdu) ... 

~ [>gas ' ( q(br1d~u)' (l - Lfnc (bddgu )) 1B<j(NO<!@s ) .. 

qlbr1dge S )'Ltue(bridgU )'Rs (NOde s I/Bo(tlOO~ S I)) -«XT(n~", varT - l) -
XTln u",_varT-2)) I·b(bddg~sl .. , -

_ IDol 1· q(bddg ... _ll · Lfuelbr1dgu_l)IBO(NOd~._1 1 
.. [>ga s ' (<I(b<id~" . - l)· (l_Lfrae {bddgu_l ll /lJ.g INod~ " -

~ q(br l dg~s- l) 'Uue Ib r1d~"._I )·R'INoou_1.)/Bo(Nod~s_ 
1 )) I'(IXT l num_varTl _XTl n,,",_varT_ 1 11 _ KJT 'ddtap_t(N)) ' blbridq~s-l ). 

_Kappa_ tO')_ IXTl nurn_v arT_ l )_XTlnurn_varT _2)) ; 



, ~~~~ ~y~.:~:~:~~s 
. n n ·-,h r Flo"'ut~s 
ItlflowRat.,s 

Tub.\ng now ute. 

~~~~i:~-~~:~o~~~;s flow utu 

In fl ow rat~ s at ~ach inlH bnd"e 

f~Ilcti oll [ funcl , fUllc2, func3, func4] • 
tlowra tes (XI,N , num_ vu,bindu) 

S.,,,mentl 

!~~~~Y~!:~:~~~il~ ;1 ~! I(~); 
a nnuluFlowu t " . li) _ XI(5); 
i nflowR.o.t.ull) • Xl(6); 

;~~;~~~!~:~:~~ ~ ~ ~ ~l ~ ;1 ~!!~ : ~ ; ~ I; 
annu h rFlown.tu(itl) _ Xl(5+9'i); 
InflowR.o.te s (itl) _ Xl(6.9 "i ) ; 

S~"",~nt N 
tubingFlowrates lN) _ Xl(nUlllvar - J); 
s l otFlowRateS (N) _ Xllnum_var-2 1; 

fori- l,N- i 
annularrlowrat u (i) • a nnuhrFlowu t u (i)'bindu(4*(j- l l t JI; 
slotFlowRatu(l) - .lotFlowRHe.l\l·b l nde~14·(1- 1 I t21; 

~ ~~~~ : ~~~!~Y!!~:~:~7S ; 
func3 _ annularFiowrat.,s ; 
fUnc4 - intlowRat.,., 



Ret~rn 

~~~~~~~~~~~~~ns 
ac.r_uhrf".o~i0n. 

~iqUld 

Liquid 
Ltq"id 

;ntubing 
in annulu - to-tubinq flows 

fun~tion [tun~l, fun~2, func3] _ fucHcns(Xl ,N,num_vu) 

S .. q~e~t 1 
tubinqFuct:ionoll) - Xl(1 )1 
s lotFracUona(l) _ XlIS): 
annulacFn.ctions(1)_ Xl(9)1 

t ubi n9Fn.ction s 1iH) _ Xl(1+9 " 1) ; 

:~~~~::~~!~~~~~:~~. ; ) x: (~~~;!~ : 1) ; 

Seg"",ntll 
tubinqFra~t!ono (N) _ XI (num nr- l): 
s!otFuctions (lI) - Xllnu,"_var) ; 



a1: rrGP~<tiu ue at g c 
thi. !luld 10 • li'r.id at .:1 "e"'p"utuu ani F ~~"S~U range shown 

!ale..-

86.11 
1;:9.57 

429 . 57 
02 . 43 

686.71 
7<9.57 
17<.0 
815.29 
858.14 
901.00) ; 

<;110m3 
Den. 1tyVap - r 
0 . 00).0 -
0 . 03<4 

0.0961-
0.1;:88 
O.H13 
0 . 1935 
0 . 0000 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0 . 0000 



0.0000 

" 

0 . 1885 
0 . 1110 
0 . 1544 
0 . 1383 
0.1225 

0.1313 
0.1H9 
0.1420 
0 . 1H1 
0.1511 
0.1552 
0 . 1590 
0 . 1626 
0.1660 
0.7691 
0.7121 
0 . 1750 
0 . 1116 

0.0000 
0 . 0000 
0 . 0000 
0 . 0000 

0.0000 
0 . 0000 
0 . 0000 
0.0000 
0 . 0000 
0 . 0000 
0 . 0000) ; 

'30 



1.0116 
0 . 8161 
0.1161 
0 . 6623 
0 . 5568 

0.5925 
0 . 61~6 
0 . 6465 

0 . 7771 
0.8026 

0 . 8777 
0.9024 

.~ - , 
1. 043 
1.111 
1.221 
1.211 

1.444 
1. 456 
1.445 
1.433 
1. 422 
1. 412 
1. 403 
1.395 
1.381 
1..381 
1.. 314 
1..368 
1.362 
1.357 

~~2; 
, 

0.026 

0.009 
0.001 
0.006 
0.005 . . 

13< 



, 
OJ; 

~Rs • I 

33 . 1 
52 . 3 

143 . 4 
148 . 2 

148 . 2 
1.48 . 2 
148 . 2 
14B . 2 
148 . 2 

148 . 2 
148.2 



f u nc tion func ~ '1 .. n .. rat .. BqIXI . pr u ,Bg_ r " " ,pr .. f , pl> . N,n,,,n_var . Nod~ s l 

B9 - ze ro~ II.Nod ... I: 
~dOmix; 

Xl(l+varl _ XlIHvarl*pr .. fl l O'S: 
o~ pre"ure >"ron ?a t o b on 

Xl(2+varl _ XilZ+varl *p r .. fl l O'S: 
0>" ~re.,ure Oro,", • • tc bna 

p _ X! ( l+ var l; 
[ ii, pI. . 2 . 1'2 ] • interpolatelpl; 

dp - 1' ; : ~~ ~ c ,,~e, '~ e Fo" i~ ~ li t. y of d : vi"o" by " e ro 
H dp __ O 

dp _ 2 ; 

yBg - (p-pll/d1'* (xBgI1l) - xllqli2 1)+xBgI1l 1: 
B~(3'l+ 1 1 - yBq ' 

d1' . pl - 1'2 ; 



uadic.tu the pcuibility ot d.vision by ,~rO 
i tdp"- O 

dp _ 2 , 

yB'I_(p_p l )ldp ' (xBg (1l)-xBq(i2)l+xBq(il) , 
Bq(3 '1+2) - yBq ' 

G .. for"",iten volul"e :.ctor U inlH nod~ - oil tcn"a1ten 
volum" factor In the r., .. rvo i r 

SQ(3 ' H31 - BqJ u(i+l) , 

X! (n"",.vu-S) _ Xllnum_vu- 5) ' pref/lO'5 , 
of pressuu frO,. Fa to bau 
Xllnum.vu-~ ) • Xl(mllll.vu-4 ) ' pr~f/iO'5 , 
ot pr.uuI~ frO/ll Fa to ba .. 

Cdc"laU ~as tot"",iton voimn<! foctoI n tubin~ nod" o f S.l,i'l'I'>'Ont 11 
p · Xllnwo.vu-5) , 
[ il . pl , 12 , p21 _ lnt~rpolatelp) , 

dp _ pl_pZ , 
~udlcat~. th~ po .. ibility of div;'sion by 'HO 

if dp·-O 
dp - 2 , 

yBg _ (p-pl)/dp ' ( ><SQIH) - xSQli21) + x8g(ll) , 

Bg(l<od".-il - YIl9 ' 

C.lcuhte 'i0l !otl: ..... aon vol"",e hctor at ~nnulu nod .. of Se9"'ent N 
p _ Xllnu",.vu_( ), 
[ II , pi , 12 , p21 _ l~t~rpolatelpl ' 

d p · pl - p2 , 
",ad,eu", th"poulbi-!ityof dinsion by :no 

Hdp--O 
dp _ 2, 

y8g _ (p_pl)/dp ' (xll9lill-x8g(12 ))' xBg( ll ) , 
8g(Nodu ) - yBg ; 

,,< 



C.l:u:Ue puu"u~dependect ~ •• Lr"Hicn vo lu" . hcto .. 

)lurr.!) .. or ngrr_enu 
pru Re.e"-'OH puuures at re~erVOH ncde. 
pb Bubblepc"ntpre.,ure 

Pet'.Jrn : 
hray ccc_u~c, in ~ gas !o=",.~;on vo)u". hctors de ~nlet ~oju 

function func . ~en .. nt"Bgres(N,pns , pb) 

pr". temp . pus/10'5, 
~o bora 
B~_re . - zerolll ,N - l) , 
~as",ix' 

p . pre l t<!mplt) , 
(11, pl ,-H, 1'2). int"rpol-u(p), 

Ct'.ange ~nit o! pre .. ure !ro", h 

dp • 1'1 -1'2; 
"radicat".thepossib,lityofdn-iuonby:ero 

H dp--O 
dp -2 ; 

yBg - lp-pl)/dp' IXBglil)-xBgIi2) + xBglll)1 
Bg_r ... lll - yBg' 

i! pres t<!mpl-ll<pb 
b"bblepoint pre.sure . 

For pre •• ureabelO\o the 

Bg '''Ii) - - 4e - 09'pres t""1'(;)'3 t :~ -06'pru t~rnpl;I';: -
G.OO'j':;'P!U te"pl' ) • 0.J3'8, - [xprU"on obuin;d ~rOl" 
curve- ritting of p"e-g"neuted values u.ing an EOS 

"he for ;oressurn above H,e 
bubblepoint pressure. 

Bg_resli) _ ·~,,·O"·pb·J • ;:e<'6"pt': - '),OO~~'pb ~ C , OJ7? , 
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l"r.aeX ""~be of .; mun. flo .. in~ 
tinaex v.lu .. o! ~; mun. f:ow i n9 
bindex' b • . r 0 ,"ur .• ~[,e b"oqe 

b i nd.,x .on u (l, b r idq u ) ; 

b~ndex (.; ' Iblal".-ll· 31 • 
annul~. of S.,q"",nt blAh 

bindex(4 · lblah-ll.cl • 

tU~~~Q bnd1~' 

or '0" u requued 

for Exal'ple can 1 ~·~.er~ the~~ H • seO-rete< p~c:' '' d ,U ot 
of th~ w,,:1. tl'P~' 

bind"xI4"1149-1)+3) • 0 ; to •• move the ann~)u b<:i.dge 
r"pr".ntlnq p.c~ -cU mat •• ,.) 

tor i _ l50'19~ To r.,move tf,e ... nn~lu-to-t~b~nq 

brldge~,~~~~~:~~~=7f .~~.~0~~ectior., bW'een .nr.dus a nd t~binq 

POt can 3 (well "ith multiple inLow control ·."a.iveol , 
bindu(4 ' 169-1)+31 .0 ; To r.m",e ~he .no"lu btidg. 

<epr".entin9 p"ck-oft ".atuhl 
for i .'0 : 99 10 tu.ove the annulu-to-tubinq 

br::'d\le::.~:~:~:~~~~~f +~~ .:o~r .• ctlO'" betw"en annulus a nd tuhnq 



F~, c .... :-c .,,~ll "lt~. ,~c tnr~ut"u ;:cnul . dlffeunt-pruour~ 

~c;'~~~~:;,:.i;~~:~I:;~;: Tn ,~ua d,.~onmuity bet"een 

tor i • _·;'l ' H~ 
i>lnd@x{4'{1-11+:) a~ ; To a",c·'. tr.e ann~lu-to-tubinq 

br~~~U "@Fe,,"Lnl d,.conr.ec~lo,," b.,twur. t~.e t"o w@lh 

blndex {4 · (~9 - ll.3) _ ~. , :0 relllov@ th. ar.r.ular b"icl~~ 
repreoent1n~ p .. d-of! "otH'.l 

for i • '~ , "9 To remov@ n .•• nnuhr - to-tublr.q 

bd<l~e:i~.~~~~:~~~~~f.~:.~onne:tl.on. bet"@~n &".nulus &n~ tubi"~ 

"0' 
bl ".<lex I ~. ISS - l) .: I - 1 , 

th~~~~:x ~y: I ~~~~ I :~i-"': 1;5 

Ofb~~~:~~~ · ;~6_1I'3) _ -1 ; 
of s.q~.@nt H 

b,nduI4'1,,1-1)+3) • 

0\;~~::~~'~~8-l1031. -. , 
ot Se<;n"nt ~6 

To ~uate uvuoed flo" l.n .. n1lu1uo 

:0 onate uveu"d flow in .nnulus 
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Uc_~nCI1~ pna,,,."~ro at uc~_ 

~~:e~~~~i~~~·~~~~;.e a~a~~~;r~~H 
~e!eac_ ee preU'"U 
B~bblepoint pu .. ~a 

~~::~ ~~ ~~rr;~:~; 

f unction f~nc • qene ra teBo (Xl , prn , So_reo,pr,,! , pb, N, nUlU_ ViU, NOOu ) 

So ~ zeros(I,Nodu), 
Qum1x; 

Xl(ltvarl _ Xl(ltvarl ' pr"f/10'5, 
prusur" hom Pa to bau 

XI(2+varl - XI(2~vu)'pref/IO'S' 
preuon ho," r. to ".:a Chanq~ unit of 

Calculne gu for"",aon volu"", facter at tubin9 nod" of SeQm<ont 

p - Xl (Hvarl , 
til , PI. 1-2, p2] - int.,rpolio.ulpl, 

dp · p' - p2, 
~UdlC.ot"S th" po,nb111ty of division by uro 

if dp __ O 

dp _2 ; 

ySo _ (p- plildp • (xBo(il) - xBo(i2)) ~ xBo(H), 
SoI3 'i+l) · yBo, 

Calculat~ qas fonna~tcn ve,o"", fac,o< H ann~lAr c.od~ o~ 

S~qrn"nt i'l 
p _ Xl(Z~vu); 

[il, pl, 12 . pZJ ~ intnpQlate(p); 



dp ~ pl-p2; 
~~Adi.~atU U.~ po .. ,bHlty ! div1.ion by oUO 

if dp~-O 
dp - 2; 

ySo _ (p-pil/dp , (XBo(1l1-xBoli211 ~ xBO(UI, 
So(3'H2) _ .,.Bo, 

Gu !o"r,aiccn vd .. _",~ Io:~o~ a~ ~r.le~ ".o~e - ",: 
',d',;"" fact~ r '.n th~ ru~r"'oo< 

Bo(3 01+31 _ Bo~ru (;'+ll' 

Xl(nuBI_vu - 5 ) _ Xl(n"",_v..r - 5)OpretIlO'5; 
preuure !rcm P. ~o bua 
Xllnu,"_var - 4) . )(1Inu,"_vu - 4 ) ' pre t!IO " 5: 
puu~r~ fro," F. to bu<l. 

C&l:uhte 'las !"nr,.1to~ volu~e ! .. oto= at t'cb1ng n"d~ c! s.g_nt II 

p _ Xllnum_ var-5 ): 
(tl, pi, 12, p2J - interpolate lpl: 

dp _ pl_p2 ; 
eud.cU~~ th~ pc .. ,biloty of d1v:'.j.~n by 

if dp_. O 
dp - 2 ; 

yBo . (p_pll/dp *IXBO(ll)-XBoIi2II+X!lolill ; 
Bo(Nodes-l)-yB<> ; 

C.lcuht~ ~ •• foc",a iton vol~,.e factor at anm,hr nod~ of s@9ment N 

p _ Xl(n"",_vu-4 1; 
til , pi , 12 , p 2J - inte<po h t.,lp): 

dp _ pl_p2: 
eradioa'~3 th~ p"uiioilH)' o! d'.v)sicn by .no 

H dp- -O 
dp - 2: 

yBo _ lp_pl)fdp' (xBo(1l) - xBO(12 ))+xBo(1l); 

BOWodu ) - yBo; 



N~mi)"r <>! U'P'"na 
pru ?unveu pres.uru ~t 
pb eubblepo;'nt pUU~"" 

~~~;_t""'P - pr ... / I O'5; 

lI<>_ r u - .uo. (l,N- l): 

p _ pas_t~mp(i) : 

(11 , pI. 12, p2 ) _ int~rpolate(p) : 

dp _ pl - p2 , 
HiOdo ciOte. the ~os51b:!.li~y of d1vioion by : .. rO 

if dp __ O 

dp - 2 : 

yeo - (p-pl) Idp • (~1I<>(11)-~1I<>(i2» + xllo(J.l) ; 
lIo_ r<! s (i) _ yeo, 



~ner.t.eflow,. 

if 1~-N-1 Se~"ent I ~o 11-1 
qU "4+1) - tu!)l ngrlc"utu (iH)!(60 " 60" 24 1; 

'1(1 "4+2) - dctf'lo"Rate . li+lI!I60 " 60·2(I ; 
.nn~1.r - to-tul:>1c.q r:cw 

q(i "H 3) - annuhrrlowrate.(1+11!160 ' oO'241 ; 

ql!+4+41 - intlowR.-te.(i+:\1!160·oO ' 24) ; 
inflow 

eheif i __ N_l Sel"",".t!1 
q lPHll _ tu!)ln~nowute.(i+ll!160 " 60'241 ; 

qli" (2) _. lotrlowR.o.tes(1+11!(oO ' 60 " 241; 

ann~!~~ to- t~b ~ng Ho', 



!1"'noorateFraction' . • 

!ori-O , U-l 
H i __ U_ 1 Se9"'~n~ • 

Ltra e l i 'H1 ) _ tub1n~Fractions IH1) ; 

Ltnc IP H2 ) _ slotFracUonsli"l l; 
tuD1c.\I!low 

Lfracli ',. 3 ) _annularFra ction s ( i +l ); 
Lf racli 'H4 ) _ dph._r~.(i.·l. l; 

~h~if i--N- , se~"ent N 
LfracU'4 +l ) _ tubi n~rr.ctio,,"(1HI ; 

Lf u cU ' 4+2) _ slo t Fuctions (iHI ; 

t"b1~~dflO" 



' ~i:n~ n t : tC 1'-1 

hR:~~~~d: mlJ:-.b~rs o! ' .-ci1 In t url. C_ ] 

tub~nqFlowratu (1) i60/60/241lp1' r1 (1) '2)' 12"r ~ It) I' r~o2P « t -
1)'H2)/.,u2P1(1-1)"H2) : 

F_el'no'.~. n-.l"b<ou ot tlui a ~n an"~J,~s 

R" a nn111 •• nn~hrn"wnt" 1i1/60/60124/(pi'%o1~) '2-
p{- dli)'2)"1 4'lpt",,(11'2-
~~ : ~:i~ ~ '2) / 12'pt'r,,(1) +2'pPr1 (1) I)' rh,,2P 11~-11 '4'21 h.~2P 111-

?un~tl n",:nbero 
Pr_NOU) • Coomu2Plli - l)04.2)/h_fl; 

hS~~~:~t.1' 
~~binqFlo",u~H IN)/60/60124/lp1'd1N) '2) ' 12-d IN) I '% ho2PIIN -
1)-4+2)iOlu2PIIN-11-h2) : 
Pr_N"IN I • Co-mu2P1(N-l) 04+2)/h_fl: 

it R,,_aM(1) < 3000 ror lo,.,IMr no"s 
h annUl . 3_656"h Ui(rolt)-. 1 1il): 

HH t 'an.!~" oceEioi@r.t d nu,d in ann u~ u . 
"Is" Fo r turb~l~nce tlo ... 

if R __ NO(l) < 3000 Foc laminae nCW5 
hfluldli) - 3.656°h fl/2lr i (1) ; 

"l~:.t tun.fel coefficient of f!;U~~r~~l;~~~n~l.CW' 
h_fl~ld(i) • O . OZJ·Re_No(l)AO_B-Pr_Nc(~) 'O.J3·h_tliU< i (il; 

Utube(1l . (xtub<oiktub4t+l/hfluldUI)'(-I): 
OVe;.ll hut tu;;.!er c;~ffichnt of fl~ld in l~bln~ 

C.I:ulAte coefflc1 .. nh c',n the au. fcr udal hut tun.ter 
i f blnde x(4'li -l )+2I-* O Flol< tl'ro~ght slo~. 

lI.ppa_ t (t) - ~.'" _ tube'U_ tube 11 1 *2'pl'r111) -L Ii) "Tre t; 

el ~:· " transfer co .. tflci~n'_ o! f~'.id ·~o "~~~~~ __ no a nnuhr-to

,ubing!low 
Kappa_tlil • !'U_tube(i)'2'pi'ri1tI ' Ll1l'Trd; 



for S@],"~ nt I; 
h flu1<11NI a O. 023'Re NoINI"O.S'P< NO(11" O.33'h U/2IdlNl , 

-Ru t tU".I~e~ ~""tfTcien~ o~ CcTd on t""bi.nQ -
U_ tube lNI ~ ( X_t~be/k_tubeH /h_n~1d IN I IAI - 11 ; 
Kapp a_t lNI a U_~uJ:><,( N I ' 2 ' P~ ' ri(NI ' L(11'Tnf ; 

To exo.".,de heat ~rar. , hr b~t."un f:~i.d a nd s·"uo"~jinQs . 
upp&_a -KaFP'_a -J; 
~ 'Ha_t - ~ .. ppa_t·O; 



~TumF 

~u. 

F::e! 

Tu,?euture. uoed:'n isothu"d 
rr.Y.no-~n p o""",,,er. at nco. 
;<uervoH tenpHoture. o~ 
p_~h"er_c~ pu .. un 
8ubt:epoint pu .. -,,::e 

~b 
num_vu 

Node. 

:;~::~ ~~ :~f~~:~.: "~ i.ott_erreal 

~~:~:~ ~~ ~~~~~"C, tercpeutom 

~~7::1~~i~~~~~:' ~:idqu 

mu:rru 
IT,y_re. 

T;oo - phue vueo.iti .. at useno" ~ond:;' tJ. cn. 
Vi.cosities of both ph ..... at uoerv<>1r cor.dltio,," 

"eturn : 
rru2P 

T><o_pl" ... e_,isco.niu in everybrd7e;'n the net -.o,k 
Vi.eo.ltie. of beth phosu a t e'-HY nQd~ in "he 

function [funclfunc2) -
~:~~~~~:~~ ~~: ~::~' Xl, Tre., pu L pt> , N, nu" _ vor, num _ va~T , Nodu . br I d9u, fl. 

mu . zuo.(2, Node'); 
po ... eo(1.llqu1d. :_qas) 
IIIY_od _ : e ros (LNod"'I, 

~~'::~i;i~:ro. (1, Nodu l, 

9 40101>< 1 

Xl (Hvul _ Xl( Hv mr)'prd/lO'3 1 

pru.uH f<"," Fa to H. 
Xl(2)vor) _ Xl(2)varl ' prd/lO'~' 

preuur~ ftom r. to kPo 

Vi.sco.Ha. ,-f both 

o..ad-oil-.hc"it,e. 
Sotuutedo11 

fr~:l~~;~t~ viscosity for the ~u phase {from curve-fit to volue. 

X_temp(l) ~ Xl (l+var)/l0'2, 
prenuu from I:PO to b .. ~ 



XtempI2f - Xl(2+varf/IO"2, 
p<enua 7ro," "Fa to han 

Tuh,n\l nod" - ,alcuhtin\l vloco"ty Igas pha~,,' 
p _ X_temp(ll; 
(l L pI. 12, p21 - interpolatelpl, 

dp _ pl_p2 ; 
ifdp __ O 

dp _ '; 

,"u(2,3 ' h ll _ Ip-pil/dp ' IVh cco1ty_Vap(ill-Viscc.lty_Vap l12)1 + 
VhcodtyVapl ll), 

",u(l ,'j' i+ll _ Ip-pll/dp' IViscc.1ty_ Llg(l.II -Viscc . l tLL1Q I12)1. 
Vhco51 ty_Uq Ul)" 

i>.nnulu nod" calculating vi.conty Igu pha,,,' 
p _ Xtemp(2); 
[1.1, pi, 1.2 , p2] _ lnt"rpolau lpl; 

d p _ pl_pZ , 
ifdp--_O 

dp - 2 , 

IIlu(2 , 3' 1+2) . Ip-pil/dp ' IVi.co . itLVap lll) - Vhcos itLVapl 12 » + 

Vi 'C::~~~3;~~~;l : : Ip-pil/dp , IVloco.1.ty Liqlll)-Viocosity Lig(12) 1 + 
Vl . c o . ity_LlgI1l): - -

Ruuvoir node _ calcuhtin\l vi.cooity I\lao pha,,,) 
",uIZ , ] ' ;']1 - lIIuJ". (2,HI) : 
",ull , l ' U]1 - muJ u ll,iH) : 

Xl ln u",_va r - S) _ Xllnu",_var_ 5)'pref/lO"3 : 
~r" •• ure from Fa to kP. 

Xlln u",_var -41 _ Xllnum_var _4)'pref/lO'3 ; 
rrft .. ur ~ from Pa tc kPa 

Chan\leur_itof 

Ca~cula~" vi.co.1ty !o< the \las phue (hon curve-fa to valun 
!rontOS) 

X_",mp 11 I _ XI Inu",_vu-S)IIO'Z; Change un~t of 
p<nsure hom kh tob.,. 

X_t"mpI Z) _ XI InUlll_vu-4)IIO'Z : Change unH of 

p<"uur" from ~P~ to han 

Tubin\l node - calculating vi.cosity I~as pMas"l 
p _ X_t",.pll) : 
[il , pl , 12 , p2) _ 1nt"rpoiat e lpl: 



d.p - pl~p2, 
Hd.p __ O 

d.p _ 2, 

muI2 ,Nodu-11 _ Ip-pil/d.p * IViscosity Vaplill-Vi.coshy Vap(1211 
• VhcosHy Vaplnl ; - -

mu(l,Nodu-l) _ Ip-plll<ip * (Viscosity LiqOl)-Viscos 1ty L1q(1211 
+ V.I..co.HLL.l.qlil), - -

Annu lar ncd.e - cdl~~:d"c.g ',~sccs:ty I; .. pt ..... ) 
p _ X_temp(2); 
(il , pi, 12 , p21 • 1nt"~pOlate(p); 

dp - pl-p2, 
ifdp--O 

dp . 2; 

lI'lu(2,Nodu) - (p- pl)idp • IVilcos Hy_VapIUI-vt s cositLVap(.I.2)) + 
Vhcosity_VapUI) ; 

lI'lull,Nodu) - (p - pl)/dp' IVi.cosHy Liqlill -Viscoohy Liq(i2)) + 
Viocolity_L1q(il), - -

,..u2P - z .. ro s ll,bridqu ): 
,n .. "e<yl,.id.qa 

m~2PIi'4+l) - "'~(LJ*i+l) 'XI(" .. +71 • tIIu(2,3*HI)'(I-XI("ar.'); 
Tubin~ brid~. of S .. gment ,+1 

Irtu2PI1'4+2) - "u(I,3'H2)*XI (varH) + muI2,3 ' it2j'(l-Xl,lvdu8), 
Imc,ulU$-to-tubing bndg .. o f Seg"",nt HI 

lrlu2P(t'4t3) _ lIIu(I.3* i+21 *Xl (vac+9) , mu 12.3 ' 1+21 ' !l -Xllv"r'~)); 
Annular bridge of Segment H I 

.m2P(.\*4+4) _ mu:!p ruIHI); 
Inlet b<idge of Segrr_~nt 1'1 

lIIu2Plbddgu-l) - m~II,Nod ... - II "X I(nu .. _var- 11 • lIIu(2,NodU-l)" 11-
Xl (num va r-III' Tubir.q b:idge o! S~g""'nt N 
lI'lu2Plbridgui _ r.m(j,Nodul*XI(nUlO var) + l1Iu(2,Nodu)* !l-
Xl (num var) , Annulu,·to·tubing bridge ot Seg"",nt , -

[uncl _mu2P ' IOA(_J); 
tuna _ mU'lO'I-3); 



" 
VJ.Ocon~iu of both F"'u~" at uO"'Joi-r ~Qnd1t~ons 
l;=.b ~r of .eg"",nto 

:;;~.-'U Li 'lil~d holdup. at U.H' .. cH ccndi~;on. 
P.e ,e =v~lI pru.uas n r e.er70l~ M<:! .. 
Butb~~p"'- c.t P"~.scu ,> 

it p" .. <~1/1 .. 5 < pI> 
mu2P_re s (i) ~ mu_ru Il,i) "alpha_r u (1) + mu_usI2,1j"11 -

.IPh:I~:' Ii) I; 

mu2P_re~(i) - ",u_r ... II. 1) ; 
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R~.~<v~.r H~.p~ra~u~~. 

F.enrvoi: Fru.uru a~ r~'Hvoir nod~ . 
Eubblepo~nt pu.ua 

~~:~~l:!;~:~7::t:n rmrvoir 

... r ay ccna~r.in'i oil v i .cc.Hi~. at ~nlet nod~. 

~:;:_t~mp . .pn. /lO"5 ; 

pb_te mp.pb, 
pb _ pb ' le2 ; 

~~ : •• pru/le3 ; 

,.~_ru • ze r os (2,N-l); 
aurvoir (l -!1qUld . :-g") 
mu od - zeros (l,N- I I; 
",u:: .. t _ '~ro. n,N-l), 

9 urnix ; 

p _ pres_t empli.l l; 

E~bblepoint puuure in ban 
Lbblepe;nt pnoour~ in ·,P. 
Change un~t cf pu~.ure from Pa to 

~.d-o,: v iSCQsit~~. 

5at~uted o~l n~co.,ti~. 

[iI, pl . 12 . p2 J _ int~ rpelio.t " (p), 

Hadicat~. th~ po .. ib,lity of d,vinon by ~HO 
if dp __ O 

dp . Z; 

c.l:U;U; n 9 ',;.cooity (g" ph.UI 
",u reo(2 .H ll - (p-pil/dp' (Viscosity Vap(ill - Vl s cosity V. pH21l 

• Vh~osHy V. p(UI, - -
t\'lU_ r u (I.H ll - (p - pil/dp • (V h cod ty_Li q(ill - Vlsco . itLLl'l1i2 Il 

• Vh coo1ty_L1'1lil), 



d~luP t _ zeros (J.,N), 
t ub:'~ ~-
deltaP_" _ zero. n,N-I), 

fori_ I:N_1 
dduP t(i) _ (p tubin~(HI)-p tubin~(i))/Tuf , 

ddu P::,, (i) _ (p::a n nuluo l!+l) - p _ a nn u l u .(i ))/Tr"f; 

!~l~:~l~d: ~~~; : ;T~~;~"C"_ e ~te c t , 
1@l~A P::a • 1@lt. P::. ·C , 

ISO 



Nu"b .. o! ug.,.,nu 
pr .. R .... vo'r pes.uns at r~s@r·,o~r node. 

Eubblepo1noprusure " 
0,: !crNtion vc;u"", ! .. c~on a t in le t nodu 
Gn forNt,on volume ! .. non at inl@tnode. 
Gas oolub1l1Uu .. ~ ,niH nodu 

fUn ction [ tuncl f unc2 tunc)) a Q~neut~Ruprop(N , pr~.,pbl 

~~~:_te,"p a pru/10'5; 

Borua .ero. ll ,N - II; 
BQ- ru a . e ro.Il ,N-II ; 
R. -ru a .ero. 11 . N- II ; 
~a;",1x ; 

p - preo_ temp(il ; 
(11. pi, 1 2 . 1'2) - interpoht~(pl' 

dp _ pl - p2 ; 

eradicaa. u." Fo .. ibility of diviSlon by zero 
H dp __ O 

dp _ 2; 

calculat;ngllo 
yBo _ (p-pl)/dp • (xBoUI) - xBoI12)) • xBo(HI; 
Bo_r~s(iJ _ yBo; 

calcu:atin~ BQ 
yB~ _ Ip- pll/dp • (xBg(lll-l<Bg (12) I + xBQ(il) ; 
Bg_ " ,. 111 - yBq; 

c .. lcuht'nq R. 
RS_r u 111 - (p - pl)/dp • IxR . ltl )-xh (HIJ ~ xRs(tl); 

tuncl _ Bo_ r u ; 
func2 _ BQ_ r u ; 
tund _ R~_r"~ ; 
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9'"nerau.rho . • 

pal 
rho~P UI 
rt.o r;~ 
pr~I 

'" 

1)n~r.ol<n PIU"..UU ot uet. 1teHt1o~ 
Reur"c,~ pesl~ru It rue,"o" node. 
T><c - phuecter.sit'uIt ruervoir ocnditicns 
Derli~'eo cf l>c~~. pll .... at rnervoi: ~nctlt'~ns 

Peterenc., Fr~.s~re 
E'"bblepoint pr~~lur~ 

~~::~ ~~ ~~r:::~: ". uother",.l eol,,~ht1ou 
'l~ml>4or ot ~octu 
Nurr.b~r of bridae. 

rl<c~pt.a"~ d~nsiti~5 in e"'~ry o rcd,~ ,n tt." n~h'or" 
~n~it>~. of both ph.e, at ~very node ::.n 'he n~~l<otk 

f unction [ funcl , func2] . 
~~n"r"t~rhO (Xl,pru , tho2P_us , rho_reo ,pref . pb, N. nurn_ v a t , Nodu , br id~,," 

rho_ru. rh"_ ",,sflO'(3 ) ; 
'''''''UI~ from kll/,,-3 ~o .1",,'3 
rho2P_ r eo - rho2P_ns/lO'(3); 
P=UIUU ~rc" kql"-~ to ;Ic,"-~ 

rho _ zerosI2,Node . ) ; 
<,lil..mix ; 

X1Il+var) _ X1Il +vu) ' paf/lO'S; 
FIe .. ur ~ hc~. Pa to bard 

XlI2+var) _ Xl(2+var) ' pr.,f/10'S; 
~H' O'~U !r~r' r. to bu. 

1"ubingnode 
p _ XJ,(Hvu) ; 
til, pl , 12,p2] _ 1nt"rpolate lpl; 

dp _ pl - p2; 
ifdp • • O 

dp _ 2; 

rho(2,3'i+l) _ Ip-pl)/dp - (Oenllty_" ap(ll)-Dendty_ Vo p( lZ )I + 
Densl ty_Vaplil); 
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rho(l,3+Hl) - (p-pl)/dp • IDend t y_Liq(1l) - DendtLLiq(12)1 + 

De~~~~ri~i~~~!) : 
p -Xl(2.""r); 
[11 ,1'1, 12 , I'll -interpolAte( p) ; 

dp-pl -p2 ; 
Hdp-_O 

dp _ 2; 

D<ln . ~~~~~~! ; ! ~~: - (p-pli/dp • ( Den. ity_V" p(ill-DensitLV"p(12)I • 

rhoIL3 '1+2) - (p- pl)/dp ' (Den s i t y_Liq(ill-D,ms itLLiq(i211 . 

DoI~ ~ i~~_~~~~1l) ; 
tholl,J · l.J) _ rho_rull.i.l l, 
rhoI2,J · I.J) _ r ho_ruI2,1+II: 

X1Inum_var -S ) _ Xl(num_vu_51 ' pretllO_5, 
F<e .. ure !'ro" Fa to ban 
Xl(numvar-4) - Xl(nu,"v • • -41 · proof/lO"S ; 
pret.u;. ~ro" Pa to ba;:a 

~ubing " e d ~ 
p - Xllnumvar-5) ; 
IB, pl, 12, 1'21 - inte rpolate lp); 

dp - Fl - p2 ; 
ifdp-_O 

dp - 2 ; 

Change.nit,,! 

rhoI2 ,Nodes - 1J _ (p _plJ/dp ' IDen s ity_Vaplil)-Dens ity_Vap(12)) . 
Density_Vapll1) ; 

rholl.N<><Iu - ll _ (p-pli/dp' lDensity_Llq(il) - Densi ty_LiQIl-2) 1 . 

De~~~~ra;i~~~~ ) ; 
p _ Xll nUlllvar _( I; 
[11 , 1'1 , i2 . p21 - interpol"t .. (p) ; 

dp _ pl_p2 ; 
ifdp __ O 

dp - 2 ; 

tholl,Nodes ) _ Ip-pl)/dp' IDoIn oitLV"p (1l) - DensltLV.pI12). 
Density_V"pIU) ; 

tholl,Nodul _ Ip-pl)/dp ' ID<lndty_Liq (1l) - Den sULLiqli2). 
Den.ity_Liqlll) ; 

Generate t"o-pl1a.~ dentitie. in every bridge 

153 



rho2Plt*4+11 ~ t~o(1,3 ' H l) *Xl(vU+') + rho(2,3*Hl) ' I1-
Xl (vu_1) I, T"cb,ng bt~ jge o! S~9:n~n ~ HI 

rho2P(i'H21 ~ rho(L3'1+2I 'Xl(vu+8 ) + rho(2,)'i+2)*Il-
Xllva r+8»), Mr.ulu~-to-tl'~lC.g brid._ 01 5~qnen~ ;' '- 1 

rho2P(i-4+3) _ rho(1,3 - i+2I 'X1 lvar +9) + r ho(2,3' 1+21 - 11-
Xl lvu+9»: Annularbndgeo(5ecy..ent, - 1 

rho2P(1 'H4) - rho2P n s ( H l) , 
Incet bridge o! s . qment i<1 

r ho2Plbr1dq".-1) _ rho(l,Nod"o- l) ·Xl(nu,".vu-ll + rhoI2 .Nod~s-11 · (l-
Xl(nu",.v.ar-l )), Tubinq br,dge of Se q" .. nt N 

rho2P(bridq~s) ~ rholl ,Nodu) *XI (nUIII.varl + rho(2,Node.I·Il -
Xl (nu", var)) , "'nnulu.-to-~~b(nq bridqe of 

s~q"ent N 

tuncl - rho2P, 
tunc2 - rho, 

Char.qe unit o(pr u s ure frorcq/cm'3 

15< 



pus 

~b 

?ot~~" 

<c.on ' 
<ho:ru~ r 

? e ... voir P"u.~"u ", n.e~vo," 
E·"bbl~po1ot pa • ...,"e 
N~,.bH 01 oel~.e"·to 
Li.q,,1i ~ol,,"~p. ,n ruervo~ < 

Der .• ;t~~. 0: bo t h ph.,es at " e.""voi < co~dit10'" 
'!'.o - phu~ !l~ld den.itlU H r .. oervoir cond~t1on. 

fun ction [ fu~cl func21 • ",""erat e Rho< u (preo ,pb,N, alpha_r," s) 

pr... t"mp * pr" ./ 10'5, 
bu. -

c.lc~laU deu1ties of uch ph .. " at inl"t "od~, 
E.p~*"ion obUi n~d !ro!"l c~rve-flt.cinq of pre-~,," .. at ~ d .,.J.~e. 

~ .;' nq .n E05 

rl'to r eo * '~ro. {2,N"- ll ; 

g .. ;;;'x ; 

dp _ pl-p2; 

if dp·-O 
dp _ 2: 

the pouibiHty of div;'sion by 

oa:c"l~Lnq (!enOlty (gao pl'tue l 
r l'to_ r n (2,il * (p - plildp • l tt..ns ity_vap(1l1-tt..nSity_V4I. pl t 2l) + 

Den.Hy_V. plil) , 
r no_ nt l l l ,i) _ (p- pl)ldp • (o..n s i t y_ Liq(llj-Den.l ty_Liq(12jl + 

o..n s 1ty_ L1qlill ; 

Calc~lal* t ... o-p),u" den.Hiu H inht nodes 



~ho2P_re'li l _ rho_ a ol l,il" alpha_re. l i l t rho_reoI2,il " ll 
.lp~ .• _ru lill; 
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Xl!l+var ) _ Xl(lwar)"pref/lO A 5 , 
pr~"u=~ fro," ?a to b. a 

Xl (2+varl _ Xl (2 +varj'pre UIO'5; 
~::u,ur e !ro", p~ to h a a 

:-cbingre<le 
p . Xl (Hvu), 
(1 1,pl , i 2 , p2 ] _ in te cpolate (p); 

dp · pl - p2, 
lt dp.-O 

dp - 2, 

~ $ (3'iH) _ (p-pil/dp • (xR~ (1l)-xR. (i 2 11 + xRs (1J); 

dp · pl-pZ, 
H dp.-O 

dp - 2; 

_ interpolaUlpl, 

R'13 " H2) - (p-pl)/dp' (xRs (il) _x" . Ii2))+xRs (il), 
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Xl InU1ll_vil.r~51 _ Xl InUl!l_vu~51·pr .. flIO'5, 
preSlH" frcl'l\ Pa to bau. 
Xl (n"",_var - 41 • Xl(nWII_vil.r ~ 4 ) · prd/IO'5, 
pre .. "re from FO tobau 

C'~C\lh~" ,U o",l. ""bll"ty .~" t UD 1n; ned" ~! S"gl"er.t '1 
p _ Xl In"", var ~ 5) ; 

[11, pi , 12, p21 - inUrpoht" lpl; 

dp _ pl~p2' 
it dp·· O 

dp - Z; 

Ro I NlXlu~ l) _ (p~pli/dp • IxR. (il) - xRs (1211 • xR. (il); 

Calculate gas .olubi.lity U ,ubing node o! s .. ~""'n t N* j 
p • Xl (nUl!l_var-4); 
[11, pi, 12, p2J • 1nterpolat .. (p); 

dp - pl ~p2; 
itdp-- O 

dp _ 2 , 

h(Nod ... , _ (p -pl)/dp' (xR . (1l) ~~R. U2» • xRs(llj ; 
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lkmh~~ o! 'eq"",nto 
pas ~~'H·JO~ r F=~"u~" a t r ~,er'Joi" ncd~s 
pb a'"bbl~poin t press'ore 

Return : 
Array coua,dn~ 1.0 solut:':itu>s .t ~nlH node, 

!uncti"n tunc • q@n~rateR""es (N,pru,pbl 

~~e~.~: rnp . pres /lO'5; 

R. Jes ~ z~ ro. (l,N- II; 

p ~ pru _te",p(lI ; 
[11 , pl. 12 , p21 • interpolat~(pl ; 

dp · pl - p2; 

~adic.tu th~ possibility o! d~vi.ion by aro 
Hdp--O 

dp · 2, 

:.lculat in9 d,"uity Igu phu~1 
Ra_r u (1 I • (p- pl)/dp' IxR.UII - xRa (il l)' xR. (lll, 



T~rp .. at~ru in anndu~ and tub,r.g . :e ~q~a l 
t~mpeutur~ 

o! t~.e · ·or"~"por.din9 "gr'".~ r.' 

~o~"( _ -0 ~~:~ . (1, nu," _ "u't'l, 

T_tel':'lp(1 ' 2H) _ Tr,," l i H) ; Mnu;'o. 
T_hmp(i'2"21 _ Tr". l i H) ; :'.blng 
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: _1\ Iwell ~1th :inurly jeC=eUH.q rHuvo;'r 
_ 100 ; :e:nFe~uu=e at. the to~ 

Fer Cue: B IweH with lineArly lnorH5lng re~eHoi~ te"perat1,:u) , 
Truill _ ,.' ; !e,"p"ra'~re at n." to~ 

;~~L,-_O~'N !e"p"rat~u increues at th .. ute 
O.Oj C/~ 

.~ ~.L • "~lTL' LI;I , 
Ire. Iii • eO .. ~"'L"j . )1; 

for Cu~ ~-C Iwe:l 'nth <wo te"p.e::at~=e zor.~.) , 
:uo.oc'cnull , N); !e"p"ut""U J.n Zone: 

fe:: i -D_ , 20~ 

~ru ( ;'1 • leO ; 



G~nH&t. dt.un on :'0" t c~ Or ~'@ll (e . g . l~ ." 
tcr 10 - ,,- 5e'l""'nUI 
l en~th • • [ I I 

~~~Pi :l~~ 
l@n<,ltho li) - L(1) + tU:'P I 
t@!1lP ~ lenq~hslil ; 

Gec.ua'~ ini,,:.l q ·c ..... d unkc.c"n par&:n~a .. 
Xl _ump 
<,luusGeneutorlpre',I,L, il. lpha_<u,pref,qref ,pbh,N,n"",_vu,rl,'oi l 

va~~:.un)o.no"ns (Xl) uud in the tunGti<·~~ @qud ,ni tial .. u.u~d 

Xl _ Xl_temp, 



FU , 
C 
.:pha r~. 
pat -

gaf 

~bh 

d-

!unctionfunc _ 

F.ese.vo;', preuu.e •• ~ re'Hvo1.r r.odes 
I .. ~~.l~~hted coeft;'cieM tOt in fl o" .q~nion. 
~e9"ent :ln9th. 
Li-q.,,~~ ho l d up. ,n "Be~VCH 

~:~:~:~~: ~~::O~:~. 
Ect t :;.mho:. pn .. · .. :. 

~~::~ ~~ ~~f::~: 
~:.~~ ~ ~ r d!~~: ~e~o.""'m 

queu~nerator Ipre., r.~ , d pha_ ru, pre!, qrd, pbh, N,num _ var, ri , m) 

0- 0 ; 
b _O; 

to; i : l~~" OUIf o! d: ,eWl" n t lenQ~.t. ·op ~o the <;o~.idered "gc"er.t 

Calc ·oh~e queued unk r.o",.. PIoro :n,,:ero 
""r~u.uru o"""ad llnau:"y dacraul~g !r0/ll re .. ,voir t< Mul o! 

flo~· utu proport"or .• l to <;ro .. - .. ct~o n ol areu o! the Cow pat~.O 
L.qdd holdups u>ured equa! to tna v.l~u i n V.e tuervo" o f the 

""espendlng .egmenu 

que .. _ () ; 

C01cuhte er",s~.ectio~.l areas 
Al( H l) - pl '(r1(Hl)'2 ); 
A2(Hl) - pi ' (<<>lHl)'2-riIHl)'Z); 



p3k_I " (. · p .... (1+I) +b·pbl»/( . um · pref) I 
.nr,~l~o e! S~~,"ent • 

~ue .. 11 + 9'1) .. pH_I I G~~ .. ed preu~u ,n 
.nnulu,of Se<;ment1 

que .. (2 + 9 ' 1) _9uess( H9'i), Guessed pressure in 
tuMngof Segment I _p<u.ure in .r.nulu. 

p3k_l_ (&' p<u( i +l) +b· pbh)l(01.llll·prd) I 
u.n"l"s of 5~9'"ent HI 

9ueosU + 9'1) - plk_l, 
pressure inann"I". 

queul2 + 9'1) -9u .... (I' g ' 1) 1 
pre .. "re in tuUng ~ pressure in annulus 

'In 3~ I _ I(1'I) "lprd/qu!) " lpres (l+l)/pref - p3k_ l) I 
InflowOtSe<p:tenti·j 

SeQl"'entl 

G"es.er~~; i~ .. : r!;! ) - q3k_3k_II 

'iuus (3.9' 1)_«.>.I(1+I)/(AlIi+l)'.>.2(1+lI)) · q3k_J);_1 ); 
G"used tubin~ flo", UU 

ques s ( 4 .9" O - gueu (3.9 ' i) ; 
Guessed slot/valve flow ute .. tubinq flow ute 

Guesu~u:~~~~a; ~~~~ ;a~~'>'2 (I.H) I (Al (1+11 tA2 (1'111 ) " '13k _3k_ll; 

Se"""ent:toN- ) 

GU~~::: ( ~n;)~~ i~a~e q3k_3k_1 I 

9ueul3 + 9'1)" ( ... IIHI)/( ... HiH) .... 2(1+1)II · (q3k_3k_1 + 
9u .... (9 ' (1-11 +5)1 + 'i"e .. (g" 11-1)'31, Guessed tubin .. flow rate 
.. tubln\lut.o!Se~nt'·I .. tubinQuteofSe<p:tent ; 

'iuess (4+9' iI_I'>'1(1+1)/IAlIi+II +1I2(1+I)I)'(q3k3kl' 
quesoI9 ' (i - II.5)) ; GUUUdllot/valve flow 



queu (S + 9 *1) • (A2(1+1) / (Al (1+1) • .>..2 (1 +1))) - (q 3k_3 k_ l ~ 

qu u oI9-(1- 1 )+SI), Gu .... <1 HflU'''' flow 

que .. n + 9 *i) - alpha .... IH1), 
tubing -

Slot~:~~~e + 9 *1 1 - a lpha_"u l1+11; 

'1ue .. 19 + 9'1) _ a l p h a _ u s l i+l) ; 

'J""u lnum_ var - 5) • pbhfpnf ; 

Gu ..... <lliqui<:lhcldupln 

Guess e<:l p~e .. ur~ 'n tubinll of S"~,""nt " • bot:cr.)-.cle pu .. ·"< ~ 
lIu" .. lnum_vu - 4) • pbh/puf ; 

Gue.,ed pr" .. ·.lr~ ,~ "n~dus o! Sel~"". t ~ I • bcttomhc:e p<eosure 
\lUeu lnum_vu - 3 ) • "uno (3 + 9°i) + \IU"os 15 + 9°il; 

Guessed flo" rate H t"binll o! Sellmen t t1 
q u e os l num vu - 2) . q u e u lS + 9 ° 1) , 

G~eosed flow ute- in ,:"oUval·,e o! Seq"",nt ){ • !lo,", rate 

o!Se~nt){-1 

q u e u (numvu - 1 1 - a lph a r ... l i H) ; 
Gu ... ed llquid holdup in tubinq oCSeqrr_ent t1 

q ue u (numvu l _ alpha ..,o l i H) ; 
~"eued l'q'oi<l hol<lup jn acnul~. of S.g"",n~ 

"~date a a n d b va:".,. fo r calou:. ~r_1I t~e pua",euH cf th n e xt 

s" 'J"',,:t. a ' L (1+2 1 ; 

b · b + L (1+2 1 ; 



P~~H"01r t~,.,-p.ut~r .. 
Se~"",,,, :.nQth. 
Pd.,unce te"peutcre 
(;~ ..... d bottomhole ,eMpeuture 
llU".bHof,e~nt. 

Return : 
lnit;'algue .. edunkno"ntemperatures 

fUnction tunc - gue .. (;eneu t orl'(Trn ,L,l'ret ,Tbh,N) 

tr~n~~:te ~niL.l te:npeutur e ,,&:~U .s.un!ng 

to ~.e .. l o! .ell 
guess ~ [ ] ; 

i;;; ~_~;N_2 
a - . -1,11+)); 
b ~ b + LIH1) ; 

H (i - - O) Soq"",nt ) 
gueu(l + <'i) _ l'ru(l+l)/Tret; Tel:"peratuu at tub;c.\1 node 

e ],se 5e\lment:toll-! 

T_ l _ (a'Tns(1+1) + bOTbh)/(I"", OT ref ), 

:~::::~ : ;: 1~-:) ~u;.!(~ ' + 2:~~'~~~;~'~r;e:";:~~;:~u;~~: node 

Se\l1'entll 
gue .. IZ o N-2 ) -Tbh/Tret , 
guen(Z'II- 1) -fbh/Tref, 
gueu«"N)_Tbh!Tr"t, 

t unc _'luen, 

T"".peratue at .nnular node 
Te"perat ·"reat tub'''\Incde 
Tenpuature at thebotto",hol .. 



input alpha . • 

if pre.(i)/ le5 < ph for pr"'.~u, lalo,", ~l-.e bubblepoint 
pr""UI'" 

.. lpha_r u (1) _ h0(1I/mu_r u (l, 11 / 
(ho(i)/mu_re. (I,iIHcr9(i)/lI1u_re.(2 ,il), 

else Fo: Fa •• ~:.,. abc"" n.., t>ubble~oint 

puuur ... 
a lpha_ r u (l) - 1., 



c lO'onu ll , N)' Gen"ute discharqe 
~oefhci .. nts ,t ar.ndar-~o-t~blnq flews in .n N '.9~·en .. 

rOt ean ~ 1>< .. 11 with m~ltipl~ inflow control val v ... ) • 
1~1~~) ~ ~ . 5.7 : Discharqe coeff1~i~nt of 

~Il) I • tischuqe ~odrici .. nt f 
ICV 1 b.,rore bunq phqqed wlth uphdtene puc1pitet@ 

th:f~~~h:~:t~!~~q~~~v~"'Ult1nq in rev~rsed flow in 3 seqments dur 

c I~~I ~ 0 . 5 .. '; Dhcharq" cO<!ffiolen< of 

Dischuqe :o .. ttlcient or 
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input c!a.t:a.a 

r!urllu of .ecp>en~ s 

SeQ'"entlenqtt.I"t.enali 

~~~::~~~d are _ °i.:~; ; u,.,,, leqth or "~d~!ie;:~~! -~~~~. to ~heck tor 

convuqenc. 
stop 

nop 1t.ratl!n~ o, 

rl _ 5" 0,0254/2 , 
_ ~HO,02, 

rl * rl·one. (l,IlI, 
- ro"one. U,/l - I) , 

u~,"ent~ 

~~~~~a~:d~:~ i~;1 Iml 

Qu'H ud::". Inl 

~:~:~:~: ~~ ~~~ :ii ~ _ ~eQ'".mts 

;r!:mp !:~:~,,~ :~ i ~~e~;u;:n~~~: a im II "h"n 
.:1 ~e~::len~~ t.ave th e sa"", ~e,e~ ccr pre,.ures ~< nA1fy >fiFot p .rr.1 
pbh _ 2n, Botte~.t.ol.e p,.euua Ibu;, 

~~O~ d.en : ;~~~o, BU;~!~~;~~ i~~e~:~~;.,~~~UI 
: i~~:~ - 0 . 01; ~i~~ ~~~~~h I~~" 
So _ l'onu(l,N~II' ~il u tuutlcn ("hen So ' s are 
equal ! cr all ~eqrr.ee. tol 
n_ k _ 2 ' one s ll,N~1 1' EXFOe.en t f or calcu:atin9 
relathe p.HFeab,Lti .. I.·h en n_k' . are equl for all ,e .. m .. ntsl 
qenerauTres , ;;"neu.u reouvoir te",peratures 
deltaybh - ~e5; 

nUll! .... ar - 9"N-~; 

'.other"",l calculatior. 
NiXle. - 3' N-l, 

~~;d~::T * _ 4 ;~;~; 
un):iiown. H. te"'perat'"re c.lculationl 

$eg rr ec.ts 
<temp 
!cr i _ 
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ofnodu 
of brld9u 
ofte",peuture 

lnur .adi·"s (~. I 

Outerradlu,I",1 
:;enerat.eritcralill 



- --- -- -------

r ~nlplll· ; 
w~ll .n-~or,~ : 

"C, 
fcrl_l'Jl l N_l . ~. 

Ann~lu. us~d .. t\Obin~ in th .. 

Freu..,u in ZOM 1 
Pnuure in Zone 2 

For eU" l )well wnh multlpl .. intlo~ conuol vdvu) , 
U_IOC , W"lldivld"dintolOO 

for Cue 4 1 .... 11 with r utriot"d flo." In .nnuh ... ) . 
r_t"mplJ70J • <111691<, . ,)05 , 

110 



lnputdAoU,!' .• 

num-vnT 
Nod •• 
brldqu 

U"):no",, tu_pun-"ru I or.v~rgedl 
Ar rAY oonUlr.i"Q punuu p.u_t~U 
?~.erv"U teTTlp~utuus at o~oervoi r nodn 
R~!ennce pressure 
Bubblepoj."t pre .. uu 

:=~ ~; :~~~::~: in IOW.en".l cdculAnOni 

::~::~ ~; ~~::~wn te"" .. ut~""" 
~~~::l~~j.~~~~::· 
!wo-pt.ue "-,isCO.,des.t u ... rvoir c¢ndi,,~n. 
Viocosities cf b<>th pt ...... H aurv<>1r ,ndh'~". 

!wo-pt .... viscosities in .very bd<l9~ in H.e net"ork 
V;oC<>SH1U of both p~ .. u at e ·,uy nod .. ;n the 

function f~nc -
upd1l.u,."lXT,Xl , Tr u .prel,pref,ph,N , n"",,_viO r,num_vuT,Nodeo,bddQ" O.u, 

.. "U_r .. ,,",,_ r eol 

pb_urop-pb; 

~_;::1;~~'111; 
Blu _ .. tro,12 ,Nod .. o); 
:-Q .. l 
.. II od _ . .. ros n,Nod~. ); 

.. ,,-u, _ z .. ro . l1,Nod" ' I' 
9 • • "ix; 

8~bblepoint prusun in ban 
eubblep<>iMpress,",n in Ha 
Temperature at toe oi well 

"iseo,Hind bothpha ... ll_l1quid. 

Dead- ol1vlocol:i.t lU 
Sa t~rated oil vl5co.l ti .. 

Xlll+v .. ) _ Xlll+vAr)'prd/lO-3; 
pressun ic"," fa to Ha 

Xl(2+vu) _ Xl.12+vu)"pretllO'3, 
p""uure hOOl P. t< kPA 

Cdculn .. v;scos;'y for the g .. phose 1frc,. cu r ve-in t< v.l~u 
trOOl EOSI 

X te"'pll) - X)n~v .. )/10'2; 
pr .... u'e f ro<ll kPA t ban 

Xterop121 _ XlI2+ varl/lO'Z; 
puuur"frOlll kPa '0 b ... 



Tubing nod~ calculating vio: "ty I~" pr.ue) 
p . X_ templl), 
[ II . pl. iZ. p2J _ lnte rpolau [pl, 

dp - pl-p2 , 
l fdp-.O 

<lp - 2, 

",u(2,3*1+I) _ (p_pll/<lp ' (Viscosity Vap(ll)-Vhcol ity Vap(1<)) + 
Vilcodty_Vaplll)! - -

rlmll,3 ' HI) _ Ip-pl)ldp' (Vl l co.ltY_L1'l11l) - Viocosity_Liq(12)) + 

Viscos itLLiq(il ); 

Imnular r.ode _ :alculatj.n~ 'llce'it, Iga, p~-.. ~) 
p _ X_U .. pI2), 
Iii, pi, 12, p2] _ l~terpohtelp), 

<lp _ pl _p2 ; 
Hdp--O 

dp - 2, 

llIu12,3'H2) _ Ip- pl)/dp' IV1 . co . lty_VapI1l)-Viocosity_Vap(12)) + 
ViocositLVaplll l . 

.. ul1 . 3*1+21 - lp.pll/<lp ' IV1.coaitY_Li'l11l1-Vis co . 1ty_L1Qli211+ 

Vlocolity_L1 'l lil) , 

R.urvoir r.ode - ca:'culHinQ vi.cosily (Qa. pt ... ,r) 
,",,12,3*1<31 _ .. .,reo (2,HI) ; 
.,ull,3 ' \<31 _ Dlu: rU(I,HI)' 

XI (nu,"_var - 51 _ Xl Inum_var-5)'pn, UIO"3, 
pa"-ure ho:nU teHa 

Xlln","var _4 ) _ Xllnumva r-4I ' pret/lO A 3, 
pressu re ! r c" fa to"r. -

fr~i~~;~t~ '''1$C051ty tor t il e gao pl'u~ ( ~r~rt ourve-Lt ,0 va lues 

x_t e",p(l) _ Xllnum_var _51/10A2, Ct_anQe '"nit o f 
preuure fro", kPa to ban 

X_ tempIZ) _ Xllnu,"_var_ 4)110'21 Chang.unito! 
pressurr fro," kP. to ba .. 

Tub'~9 nod~ - c: .. lcuhtin'l ... lsc:onty (qas phdS~\ 
p _ X_t~mpll) : 

[il , pl,12,pZ] - 1nterpola t c lp) : 



dp - pl-p2 , 
if dp __ O 

dp - 2, 

mu I2 , Nodes-l) _ Ip-pl)/dp , IVisco . ity.V_p(il)-Visco. itLVAp(12)) 
+ ViscositLVap (il), 

muII.Nodu-l) - Ip- pl)/dp • (Vhco.i.ty_L1q(H)-Vi .cosi ty.Llq(12)) 
+ Vl.cos ity.Liq(lll, 

h!mulu n od~ - calc".h";r.,. -,o .cc.i ty (,.IS pr.,se) 
p _ X.tempI2) , 
[II, pi , 12 , p2] -interpola u (p), 

dp _ pl-p2 , 
if dp._O 

dp -2 ; 

mu(2,Nodu ) _ (p-pll/dp * (ViscodtLVapll1) - Vhco.lty.Vapl12)) + 
Visco . lty.vap(ll) ; 

mu ll , Nodes l - (p-pl)/dp * IVlIco.lty.Llq(11) - Vl.codty.Llq(12)) + 
Vhcooity • .Llq(ll) ; 

.. .,2P _ nro.(l,brldge.), 
lC .• ·'ery b, ~dge 

mu2Pli' H I ) _ mU(l , 3 ' i+I) · Xllv .. «7) + muI2 . 3 ' 1+1I ' Il-Xl(vu+JI), 
Tub ing b<idge 01 Se'P"eu i _ l 

mu2Pli ' (.2) _ mu (1,3* \.ZI · XI(var+8 ) + mu (Z , 3 ' H21 ' Il-XI(vauSI), 

An~~~~~~:~:~~b~n~u ~~:~Y~+~; . ~~1~:~~9~'! mu 12, 3 ' H21 ' 1 !-Xl (mH)) ; 

Annu la r bIidg~ 01 S~\lm~nt hi 
mu2FU ' 4+41 _ ,"u2P. r .. (J+!) ; 

!~let b<idqe of Seg"", n t Hl 

mu2P(brid\l~.-I) _ .. u(1 . Nodes-ll · XI(num."'iI. ~-I) + muI2 , Nodes-I I ' (I-
XI(num. vu- I)I , tubl~~ bridge of Sequ~t N 
muZPlbrid9u) - mu(1 , lIode, )·XI(nu",.var) + m~(2 , Nodu) ' (l-

Xl (num. vu) I; "~nul" •• - to -tul:~n" bridge o f 
Seg""~ r.t 'I 



input. 1: .• 

Change un,t of p~nf~.blLty fro" ~arcy 



Input 1t"'9 .• 

kr<j_.ero. ll,N-l) I 

Il - SoIU)'n klil : 



1nputkooo .• 



inputL .• 

To cha ng e 
nqrr.e~to .. . ~. 

LI:J)I • 
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input.1". 

pret . pe u n); 
~~\I~.~nt 1 u r~f~anc~ pr@.,uc~ 

ta~~~~c. p~"@"'O· 5 ; 

pret · prulll; 
Se;,.,~n~ . .. "e~enc.ce preuuu 

Pu~r·.·~H puuuu In :cne , 
F.u~r·>'~H pressH~ ~c. :cn~ : 

C-hac_1~ ~"_lt of pru.ute f~o .. 



Input s\:in [odOU 

:<>ct_"nQe 
U9"!<'nta e .Q . 

a !:COI -

(;~c.~ute • tor ]l - l se~mento 



function [u , v . " . xl - lnt4l r pobt.lp) 
~al:u:'.uy _ calcul. .... th. vulOus prop .. rtas !rc", I'V7 dAn 
5(>0 . 5(0(,1 . Rs. lie. IIq, "'lu~c , ",iu~q, sl~~O , 

slq",,"~" 

forl-I , 22 
if pre .. ~ re( L l) -- P 

p i _ p .... ~r.(I.I) 

t~ : ~~ess~U1i . I) ' 

12 - 1, 
I>r".~ 

el .. , if Pressure(I.I)<p 
eh.PI - P .us~," (1 . 1) , 

t~ : ~~~;.ure(I . 11 ; 
12-1 , 
brH~ 

.0' 
Hil--O 

11-1, 
pi _ Pressure HI , I !: 



oaicuhtiono ~o .olve tor unknown. ulln~ lIewton-

fl _ .. ~o.n,91' 
!2 _ z<,~o.n,nuftl vu-(9+611' , -

jl _ t@~os(9,m'ftI varl i , -

funct!.on matn" tor SeQTr.@nt I 
function ma trix lor segrn<>nt:': to N-

runct!.cn .. I U'>< lor SeQl'l"ntN 

j2 ,. .. ~o.(num vn- (9+61 , nuftl varl' 
:toN- 1 - -
~,3 _ tuos(6,nUDI_"arl ; 

!l,,:n~utl.n9 !uncticn _trlcu 

UG<onuator(Xl ,l, pr@ . ,b<ou,AlP!l.a,B,Bo,IIq,lIs ,OIU2P,r!l.02p,AlP!l.a_us , fLp 

rd,~~@!); 
!2Geneutor(Xl.beU,alpha,B, I,pr..s,Bo,Il<j",Rs ,mU2p " h02P , AlPha_,@s , f2,p 

ref,~~e:,N , bindeX) ; 

!JG<onerator(X).,beU,B,Bo,Bq , U,.,uZp , rhoZp,f3,pr@f,pl>h ,/l, nu,"_var , Nodes 

, brldQu , bindex); 

Cornhine th~ _«lCU 

G<on .. ut!.nq jacobUn rnatri<:@' 

". jlG<onera tO[( I,Xl,beU,alpha , B,jl,Bo,II9 , lIs,rho2P , mU2P , aI Pha_res,pu! , q 

, .. fl; 

" . jZG<onerator( XI,I><oU,aipha,I,B,j2,1I<>,SQ,lIs,r!l.o2P,",u2P,alPha_res , pref , q 

r e C,N,bindexl ; 
p . 

)3Cieneutor IXl , beU , Il,j3 , llo ,lIq,h" h02P, .. uZp,pref , N,nUDI_var,Nodu , bd 

d<;J@s,blnd~xl ; 

jac _ [)I; ,2,j3) ; 

(LIUI) _ luljaci , 

LI_INV _ l nv (LlI ; 
Ul_lllV _ l nv IUli ; 

__ Inversionofthejacobhnmatrix 



tempi _ U_UIII · tranlpo .. (fl, 
t .. mp2 _ Ul_llN ' Umpl , 

temp3 _ tranopoaeltemp2) , 

X2 - XI - ump3, 

rr .. thodch"~kin~ !or con",uqenc" . 

[(1.,. . t u t) _ Ch"C~COnv" r9" .. n<: .. (Xl,X2,nUl!l_va.,thresl>old); 

uChc~~:;~~7!~entinelcount +l) • test Com'U9"ence v.l~e 'Of 

suti-e.q zn. Xn+l !or the next itention 

__ ____ _ ___ REC1o.LCULIITElltLLBOREFLUIDPROfERTIESIIEGIIl---- - ---

Ro . qener&teRS (Xl,pres,RI r .. . ,pnf,pb,N,nu",viH , llodes ), 
Calculate pr .... ~r .. -d .. ~nd .. nt- q ... olubilitiU -

80 _ qe neuteSoIXl,pr .. . , Bo_ u s ,pre f,pb,N,n\lI .. _ vAr,Nodell, 
calculAte puuure-dependeM oil fon •• uon volume hctou 

llq _ genen.teBq IXl, pres , Sq_reo ,prd,pb.N , num_var,Nodesl , 
CdculaU preuur e-dep.mdent .. n formation voh,. .. hctou 

[""'Pm") -qeneuumuIT_temp,Xl.Tr • • ,prd ,pb,N,num_vu ,n"",_varT ,Nodes ,br ic:l9". ,Flo 
. mu2P_~ .. , .. u_re.l: Cdculau pnu~rritetl\p~utuu dependent 
vi.cosinu tor ~.ch phase and two-pha .. (TPI fluid 

(rho2prho] . 
qen"nterhO(XI,p~ .. ,rho2p_re s ,rho_reo,pret ,pb,N,nu .. _va r,Nod ... ,brldge. 
I; C.lcubU p~ .... un_dep~ndent densiti .. for each 

phu. andtwo-phue (TPI fluid 

_PECALCI,1l.ATEWELLOORErLU1:>FPOPERTlESElID--

This if .tate ..... nt ",.):u su r ft that the ituation stOPI H 
the men,od doeo not con"er .. ~ wh Hhin a nurnb~r o! iteration 

inpu t b~ the 
user in 'np~t_daU " '" 

lflsentlne lCount aa a topl 

d io 'pl ' "j : 
:~:~~; Oid not COn"erq. whithJ.n the limitations 1I'''en ' 'I : 
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f OI i. ~~'~~~ ~~ ~ "'l. .. ~i.nuy r.umbUo 

it i .... q(Xl)<le-12 If the iuqinuy pan cf tte .oluuon u 
ius th~n .. v~lu. It J.O n.qllq~bl~ 

Xl_realIXl); 
else II t~ ... ;~_a .. lnuy put u large display 

d.hp(' ,,,,,,g' ) , 

~n;~:''':~~'C~' c! th~ o~nv"rqed vnUb!'" b.ck to th@ir appropriate 

ruultdisploy 
di s ployoutput; 
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""Ung 
'4e~'t o~~~. ph.ce. ....~hod 

n-zero. ll,3): 
f2 - zero. ILnu",_vuT- (4)); 

f) - aro. IL 1): 

~.,n .. uhno,,; 
tempeutne c.lc~latior.~ ud 
genu.te Fract1ons ; 
u",peut~te calc'J:otlor .• 

~~~~.~?: ~¢~~unce ,,.:ce 
"hilelfbgT) 

fl ":nerotln~ !'~ncticn ,., .~~1cu 

f·._n:t~o" ~ . Ui" fot Se"",..nt 1 
f~nction ""tri~ ror Se""",H ;;: to N-

flT~Doll, D9u, Tre. , Tre!, XT , q, Liue , Bo,~, Rs , Kappa_t , lI.ppa_a , fl, deltaP 
_- ,d~it:p_t,IIJT ) , 

f2T ~Doll, [)gu, Tre~ , Tre!, Xi, 'I, Lfue, 1lO , Bq, RS , N,lIappa_ t,lIappa __ , t2,l:>1nd 
ex,d~it:p_. ,deltap_t ,)(JT) : 

flT IDoH, D9as,XT, 'I, Lfuc,IlO,Bq, Rs , N, (3 , num_ v"~T, Nodes . bdd\l"o, M pp __ t 
,Kappa_a ,bind.,x ,deltaP_a ,ddtio.P_ t,IIJT); 

t>eneuti"g j.ccbhn "Utieu 
jl - jlTIDoIl , Dq .. ,XT,q,Lfue,I:\O,~,R. ,Kapp"_t,Kapp._ .. ,jl)' ,, -

j2T (Doll, D9u, XT , q, true, So,~, Ro, N, Ka pp.t. _ t, Kapp.t. _ a , j2 ,b1ncl~x): 
p -

j3T IDoH , O9ao ,)(T, q , Lt u e, So , ~ , "", N, :)3, nUIrl _ varT , Nod~o, bricl~u,Kappa_ t 
, )(apP"_a , bindex ): 

jac_(j l;j 2 , j3]; 



Ll_lIN _ lnv(Ll); 
Ul_ltN_inv(Ul): 

umpl _ LlltN°tra nspou (f), 
temp2 _Ul:I1"" oUJnPl. , 

XTl _tell'lj> - XT: 
XT2 _ XT_t .... P), 

method Chechn~ tO t COI'lVH'i/ence . It che:~Con·,uqence !inds that n.e 

convu",,' it .. ill set fla" to falu .nd the p r oqu", will ncp . 

Th,. it uatem .. nt .... k .. sure that the iterauon Uops it 
the_thoddou no t conver .. ewhlthina nUI':"Nt of iteution 

input by the 
USH in input_ data . ", 

H(unHne ICount •• stOp) 

dhp(' 'J; 
~; ::!; Nd not conve r "e whithin the lim1tat1ons <;11""1'1 ") ; 

CU""ori'" convu~ed ,,,,,,perature vuhble. and 
"esult di.phy 

diop h youtputT, 
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pre-c. 1cul a ted cod f~ c i .n t 
Ur_'.no.n p our.ete a a' e.-on 
F~ . - cal~uh :e d o cet~1cce n~ 

fu nct ion f unc · 
~!~n~utor (I,Xl , t><,ta, a lph a . E, j l. EO . Bg, R:O. tho2F,rnu2P, al pha_ r u . pre f. q 

:l l(3, 2 ) a I (l)'(prd/qre f), 
j1 (3,6) - 1, 



jl(1,3) _ -1(1-Xl(7))/Sq(11 + Xl(7)'RsIU/llo(1lli 
l1(7,4) _«(1 _X1(811/SqI2)+X1(S)'RI12)/BoI211: 
ll(7,11 __ ( _XI(3)/SqI0 + FlIlll ' XI13)/lIoOl), 
1\(7,8)_I_XI14)/Sq (2)+I'tO(2) ' )(11 41/1Io 12 )), 

jl(8,4) _ _ HI_XI(8))/Sq(2) + X1(8) ' 1't112)/1I0(2)), 
jI18 , 5) __ (II-XI(9)) /Sq(2) + XI (~) 'RO(2)/BOI21) ' 
j1(8 ,6) _ (Il-Alpha_ us(lllISqI3) + dpha_r ulll ' Rs(J)/B<>l3))1 
j1(S ,S) _ _ (_Xl(4)/SqI2)+RI(2)'X1(4)/BoI2f): 
jl (8 , 9) • -1-XlI5)/Sq(2) + Ro(2) ' X1(~) /110(2)1: 

lI19 , 8) - - I, 
ll(9 , 9) - I ; 

tunc - ll : 



:lIT .• 

~~i" Dgn . hec.1 ".lh,eo -)ef!jc: .. n ~s 

~~~~O;~t~:".peut-~re. at uch aeut1cn 

~iqu;d hcldups 
, 
Lfra~ 

Bc,oq , ~. 

K.pp._t 
tublnq 

a~~~i~;& 
~ ; 

~~:~~;~ i~e~~o~;~~;~;r o~et!lclen t ' to~ !luid 

function runc - jIT(Doll,Dgu,xT,q,Lrn c,50,B<;I , R.,K' PI>fI_t,KOPP&_' ,jll 

j10 , 11 - 1: 
j1(2,1) - -IDoll'q(2)'Hroc(2)/Bo(2) ..• 

+ Dqu "(qI2I'O-Lfrac(2)1/B<;I(21 ... 
+q(2)"Ltu c(2)"R. (21/Bo(2))I'(HI .. 

- (Doll · qlll · Lfuc(l)/lIo(l) ... 
~ Dgu* (qll) * ll-Lfuc(lll/llq(l) .. 
+qlll *Ltr, c(II"R. (lI/Bo(l)II*I-i) ... 

- Ka pp. _t(l) ' ( +l); 

jl(2,31 _ - (Doil · qOI · Lha cllI/Bo(l) .. 
+ !)gAO ' (q(lj·(l - Ltra c(lI)/B<;I(l) .. 
+ q(l)·Lfrac(l) · R. (l)/50(l»)) · (+l) ; 

:) 1(3,11 - -O"(Doil*qI21*Lfn c(2)/Bo(21 ... 
+ Dqu "(q(21*(l-Lfrac(2))/B<;I(21 .. 
+q(2)"Ltnc(2)"Ps(2)/Bo(21)·(HI .. 

+ O·Kapp. t(l)'( +l): 
j113,2) _ - IDoil'ql3'j" 'LtncD)/BoI21 .. 

• Dqu · (q(3) · II - Lhae(3)1/B<;I(2) .. 
• ql31 ' Ura e(3) ' R~ 121/80(2) I ' 1+1); 

fun,, _, l; 



j2a.nerator .• 

l'c.kno~n pa: .cr",'e", a t u ch ltouLon 
F=o-c.:c~lU~d cooof~olert fo" -·.lbing Lo,,' 

functionfu nc 
j 2r;"nerator()(1 ,bHa,alpha , !,S, j 2,Bo , !l<;J,Ro , rho2p , mu2P , a lpha _ H"puf,q 
r~t,N , bl 

j2llwa r,3warl _ Xl(Hvnl!Bo(3'H11'bl~'i<l l; 
j2(l+vor"warl ~ X I Owu)!Bo(3"Hl)'bl~ " iH); 
j2(lwu , 12 'varl _ - Xl(l6'var)/BoO'H4)"b(4*H51 ; 
j2(Hvh,13+vul _ Xl(l7 ' var)/BoI3-i+SI'b(4-j+6l, 
j2(Hvar,16+var) __ Xl(l2+var )/BoI3 ' i+4) "b(4" h51; 
j2( Hvar, l'H var ) _ Xl(lHva r)!l!o(3"H5 )* b I4 "1<61; 

j2(2+var ,5+vu) _ )(1 19War )/l!o13- i +2)'b(4'H3), 
j212war , 9'var) _ Xl(5war)/Bo(3 _1+<)'b(4 " H31: 
j212war,J3>var) _ _ Xl(lHvar)!Bo(3'i+SI _b j 4"H6) , 
j212War,lHvar ) _ - X11J.6+varl!BoO·HS I · bI4"1H), 
j212+vu , J.S+var) - a l p~a . ~s U .21/Bo(] 'H61"b(4' 1+SI ' 
j2(2+vu ,l Hvar) _ - XlI13warl/BoO'H5) ' bI4"1+6): 
j2(2+vu , 18+var l _ -Xl(l4+var)/So(3'H5) "b(~"1+1); 

j2(7war,3'va r) _ 111 _Xl I7 +var l)!Bq(3'i+ l ) • 
Xl(Hvar ) · R. (3 ·1+ 1)/BoI3 · i+l))-bH'iHI, 

j2 (Hvar,7-vu) _ (- Xl(3+var)!Bq(3'1+ 1 ) + 
H O'i+l)'Xl(3+var)!Bo(3"Hl))'b(4'iHI; 
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j2(7+va r ,12+vu) • _«1 _Xl(H+va r))!Bq(3'H4) ~ 

Xlll6+v <>.r ) ' h(3 ' i+4)!Bo(3'lHII ' b(4'HSI: 
12I H var , 13+var) - 1(1 - Xl (lhvarl)!Bq(3'h51 t 

Xll17 tvarl'h(3'i~S)!!;o13'H5) I' bI4 ' lH): 
j2i1+var ,l6+varl _ - 1-XlI 12+va r)!Bqi3'1<4) + 

R' 13 ' l+4I ' XII 1 2+varl!BO(3 ' l H ))'bI4 ' HS); 
j 2(7+v u , 1 7+ varl _ I - X l (13~varl!B.(3'H5) + 

R.(3·HS) ·Xl Il3+vul!BOI3',H5)) ' bI4 ' iH); 

j2IS~var,S+vu) • (Il-Xl(9+varll!B. (3'H2) + 
Xl (9+vu) ' R. (3'H2)!Bo(3 ' i+21)'b(4 'i+ 3); 

j2(S+var,9+var ) _ (_XlI5+var l!Bq(3'i+2)+ 
RsP ' i +2)'Xl(S+v ar )!Bo(3 ' H21I'b(4'i+3) ; 

j2IStvar,lHvar ) _ - (ll-Xl( 17+vu))/B9(3'HS) + 
Xl {l7+vu) · ~ . (3' i +5) !Bo(3'i+SII'b(4'i+6); 

j218+v u ,lHvar) _ - «1 - X.l(18+var))/eq(3·l+5 ) + 
XlI18+var)'Rs(3 ' i ~ 5)/BOI3'H S)I'b(4'H1): 

j 21a+vu , lS+varl _ I (l - d p hll. r es (H2)I/SqI3'H6) + 
aIFha_r U (H2 )'RsI3 'H6)/BO(3'i+611 ' b(4'HS); 

j 2 (8+var,17+varl - -1 ~Xll13 t var)lBq(3 'i+ 5) + 
ROI3 ' H5)'Xll13+var)IBol3 ' i+5)I ' b(4'H6) ; 

j 2 (8+v ar,1. 8 +var) - - I- XI(14+var)/8q(3'H5)+ 
R.( 3 ·HS)'Xl{l4~varl/!;O(3' i + S )) ' bI4'i+71; 

if b(4'HS) - _ 0 T~u~ i , i n Lo'~ ~qc:~,'C-, 

12IHv8<,l1+var l ·I IH21 ' prd!qrd; 

0.1.0. 12 (hvu,15+var l • T~~"~ 
j2(3+va r, 15 +var ) - 1; 

it b(4'i+6) ~- 0 
j215+vu , l H var l -
j2(5+vu ,lO+var l -
j2(S+var,13+var) -

j 2(S+vu ,iJ+var) -
j 2 (9+var,17+v~r) -
j 2(9+vu,18+var) -

if b(4'H1) __ 0 T'.ue H . 'm'~.la r t low e q • • t1on 
j 2 IHvar ,ll+varl - l : 
j2IHva r , lHvar l -

alp"ali+21 ' l ,7S'IX.l(H+var)'O ,7SI ' r"o2P I 4 ' i+71AO.75 ·m~2P(4' ; +7) " 0.25; 
j 2(Hv a r,20tvar) - - I ; 
if bI4'i+61 - _ 0 lb. eq~ .t'.Qn-

co ,plit. ~~~aLQn 
j219tvar , 17t"ar l - l; 
j219+var, 16+var ) --1; 



"00 
if 1>(4-1+;) ~a -I :1 flo;.' In . nn~:'.1 i. 

"0' 

j2(6+var,ll+vu) a_)., 
j2(6+var , 20+vu) a I: 

.rf@:: .:?~(:::~~:~~+::r~ a I: :hm i. no ;~~~;:~~!l~: "e~~::'~~t 
j2(Hvu,17+vu) _I , 

i~(::~~~:~~+::rt -I : 
j2(6+v.r,\i+var) _ ie-20: 10 .void .'n~\I1u1tY 
j2(2+vu,IHvarl _ h-20: 
j2(2+vu,17+var) _ h - 20 , 
j2(s+var,H+vu) - 1 .. ·20 ; 
j2(e+var , I;+var) -le-20 ; 

t~n~ _ j2 , 



~il , Dgu 

, 
Llue 

~O ' E~ . Po 

K.pp&_t 
tubi"~ 

&~~~r~;· 
~~ 

frec"lcuhted eo~fflciefits 

~~~:O;~t~:FP<lUt~UI at uch lauUOfi 

Liquid ~.old~pl 
Black-oil p<opHtiu 

~~~l O~~:~~:~:ter Go~Hicl@fiU f or !;ui~ in 

GeneuUd "'"0 jaeobhn ",Urix 
B<1d~e Jndexes 

J"cobian.,nrix !cr Se'P""nt _ toll-l 

functionfunc · 
j2T(Doll , Dgu,XT,q,Lfrac , llo,IIq ,Rs ,Il,!(app"_t,I\"pp"_",j2,b) 

:12(1+2 ' 1 , 2 ' 1+3) _ -(Do11'qlvart6I ' Uuc(vart6)/llo(3'1+S) .. 
t og .. ' lq(vart6)·ll-

Lfuc(varH»/1Iq13 ' H5) ,. 

q(v.H6) ' Ura e(varH) 'RI(3'HSI/SoI3"HS»)' (H) ' b(var+6) .. 
- (Doil'qlv<l. rtS)'Lfuc(vaHS)/SoO'H4) .. 

t Dqu ' (qlvar+5) ' (1-
Li<aclvar+5»/1Iq(3 ' 1+4) .. 

qlvar t 5)'Lfaclv<l. r+5) ' RI13 ' 1+4)/B<)(3 ' i+4»)'( - 1)'b(v"rt S)., 
-1\. pp,,_tl1t2)"(tl): 

j2Ilt~ ' 1 , 2 "H2) - - (Doll'qlvart6)"Lfuc(var+6)/800"1t5 ) .. 
+ Oqu 'lqlvar +6) ' (l -

Lf u cl var t6»/1Iq(3 'it 5) .. 

qlvarH)"Urac(v •• +6) 'R.(3 ' it5)/80(3".\tS» I' I- l)'blvu+6) . . 
-Kapp"_tli+2) "( -1) : 

j211+2 ' i , 2 ' 1+5) _ - (Doll 'qlviu+5) ' Lfn.clvar+5)/Bo13 ' lH) .. 
• Dqu ' lq(var+5)'O -

Lfn.clvil. r+5»/1Iq13'l+4) .. 

q(var+5)'Uuc(v.r+5)'Rs (3 'H4 )/lloI3·H4 »)·IHI'b(var+5): 

j2(2n·1 . 2 ' it~) • -(DoU'q(var+8) ' Lfra clv<l.r t e)/BoI3 ' j,t6) .. 
tOqu '(q(var+ 8) ' (1 -

Lfuc(vu+811/I1qO ' i'6) .. 



'llva r'B) "Lfnclvu .8J ' Rs (3 " i'6) / Bo13 " i+6)11 " (+11 "b lvar+ 81. 
- P;:ap pa .. (i.21 ' I+l l .. 
- (Poit"" 'llvar'7)"Unc(vu +71!IIoP ' i+5 1 . . 

• D<}U " ('l(vu +7) ' 11 -

'l (vuHI +Lh&c(v&r+7)"ROI3 ' 1+5)!Bo13+1+5 11) ' (- I) ' b(vu .'J) , 
j2(2 +2 +1,2 ' IH I - - IPoll'q(v. rt7) ' Ur .. c(v .. r +'JI!Bo(3 +'.5) .. 

+ D<}u " ('llvu+ 7) "(l-
Ltnc ( v. r +']) ) /Bg(3 ' 1+5) . . 

q lvar +'JI *U nc lva r HI*Rs O * I +5)/ Bo(3 ' 1+5))) " (+I) -b(vu+'J), 

H bI4 " I H ) ·-0 
j 2 (2 +2 *1 . 2 ' I H ) - I , 

f unc-j2 , 

for cue 3 (well wlt~. multiple ,nflcM control V";V~"l. 
_ - !;> ! C i. !;><i.clg~ inclices 

clu~r~:a all-p".,ti ·,~ !;>riclq~ ,c.d~c~s so thao the te,"pHatur~ ch&~~~ 

preu';re cl,op ~. cl~penclent on ~~." flow <iirecticc. bu~ ~n~y ~n t~.~ 

prusur~ 

~~~p~ (:i~;.:~.~~~~~'.v" or nelatlv~ Change along !;he flew dincHor.1 

ifbli)<" 
~HI- b(i) ; 

n"~!ow directions can still b~ dHe<"~n.d · ... in~ ' c " . 

th:~"~~ t.'" rev"r.~d flow f,ut .U;t. . tr.e ~enpuat'.lte 10 f'~.d so 

~'t~~~a~~3~~:_~e"perature d the reservoir 

,felva r',) -_j 
F (2'~·i.~ · i.~) - . ; 
j2 (~+:. 1>- I.;' (;-11 HI - II 



unh_~"n para"""_~ c" .t ~,,~:" i'~ra·_ion 
rI e -calG·ola'e~ o o~:'f ,c '.~n~ !OI t~"'-r. 1 Lo,,-

!unctionfunc 
j3Genua t orIXl,beU ,B, j3,Jl.o,Il<j,R. , rhO;>p,,,,u;>P ,pU! ,N, m''''_Var , Nodu , br 1 

d~e . ,b) 

j3Il ,n"",_vu- 12) _ X l ( nurn_vu_61/BO(NodH_ 4 1· b lb rid~eS _ 5) ' 
j3( 1,num_var -S I _ Xl(~"m_Var _ 121/ee(NodU_4) · b(bridgU_S) ' 
j3( 1,n ~m_var-3) _ -Xl Inu:n_var _ l)/BoINodu _ll'l:>(bridQes_lI , 
j3(1 ,nu",_var-2) _ X I( n\llll_vu)/Bo INod~s )*l:>lbridQ~')' 
j3Il ,nu",_var-l) _ _ X I( num_vu_3)/eo(NodU_ l l* l:> lb ridg~s _ 1)' 
j311,n~",_v"r) _ Xl (n~",_var-2) IBo(Node.) 'blbrldQ~ s )' 

j3(2,n~",_var-10I _ Xl (nlll!l_var _ 6)/llo(Nod~s _ 31 ' b(b ridqoo. _3 1' 
j312 , nurn_var-6) _ Xl {num_var-1 0) IIIo(NOd~s-3 1·b ( brjdge . -3)' 
j3 12,nurn_vu- 2) • _ XlI~um_vu)/IIoINode " )·blbridg~.), 
j3(2,nu,"_va r) • - Xl (nu,,_var -2 ) Illo(Nodeo ) -b (bridq~ 5 1' 

j315 , ~u", var-12) _ I Il - Xl lnUlll ,,:or -a )) IIl<j(NOd~s - 41 + XlI~u", var 
SI · R $ (Nodes -4) /IlO I NodU- 4)1 * 1:>"'il:>ri d~oo .-5) , -
j3IS ,num_var - S) _ (_xl(num_ va r _ 121/1l<j (Nod •• _41 ~ Rs (Nodes -
4) . Xl (num_var _ 121/IlOINed~._411·blbrldQe 5 - S I' 
j315 ,nU1Tl_ v u - 3) . _ 111 _Xl(nu",_var_ l l)!Il<j(Node ._l) + Xl (num_var -
11·Rs INedu_l )/lIo{Nodu_ l)l*blbridge._l ); 
j3 (S,num_ vu -2 ) _ I Il-Xl(nu",_var l)IIl<j(Nodu) + 
Xl (nurn_va r) ·R. INod~5 )/Jl.o INedoos)) ·I:>(bridgesl , 
j3 1 ~ ,nu,,_var- li _ - I-Xl (m,,"_var_3 1 /11qINod~s _ 1) .. Rs I Nod~s -
1)'Xl ln~m_var-3)/IIo(Nodu-1I)-b(l:>ridQes - II ' 
j3(5,num var) _ (_XI(numvar _2 )IIIq(Nodu) + Rs(Nodu) ·Xl(mmvar-

2)/llo(Nod~" 11 *b{brldq~")" -



1316,nu",_vu.10I _ IO _X!inum_var_6»/BQINOdes_31+Xllnum_var_ 
6)'RJoINodu_31!So(Nodes_3» ' blbridq"._31 , 
:)316, n"",." .. -6). (-X! In"",.viOr-I Ol 1\I<;l(Nodu-3) +R. (NO<ies 
)1·X!lnUlll.vu_10lfBo(lIod ... _31I ' blbridqu_31 ; 
j316,n"",. var-2) _ -«l-X\ Im"".var)) 1\I<;lINodu) • 
X! Inum.va!'1 ' 1UoIlIodul/Bo (Nodu l) ' b(bridqeo) i 
j3(6,n"""v,,) _ _ I_Xlln"",. vu_2)/II9(1lodeo) + RalNodu , ' Xl Inu",.var-

2)/B<>(Nodu) ' b(bridqu ) , 

:l3(3 , nu",.v .. -5) -I ; 
j3(3 , nu",.var-J) __ 1 . i 5·!>eUIN)·(XllnU",.var-JI-O.i51 · rho2Plbrldqeo' 
1)-O.7S , .,u2P(brldqes-l )-O . 25; 

equation 
j3(4,m'lI\ Yar-5) • -I ; 
j3 14 , n"",'" .. -4)-I; 
j314 , n"",:::vu-2) __ 2 ' IHN) ' Xl(nu",. v a r - 2) ' rho2P(bridQeo ) ; 

"In There .. no ... nular-to-tubinq fie" 

The7i1.lu. " ,' does not .thet the 

!unc-j3 , 
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:pT .• 

F~ecalc~:~ted ocett'Cient 8 

~~~:C;: t ~:"'Feuturu at each 

Liquid '.dd·cp o 
Bla:<- oil p::ope::tlu 
l:uMl>e< ~t seqr:cer.ts 
~~ne"Ud :uo ; a :ol:>hn "'H':X 
~~:~ ~~ ~:~:~~.n terr~mtum 

~~:;: ~ l C~e~~i~::~~fer "odf~"ienu for tlu.d 

JAccb a c. IT.atnx lor SeQlnent I; 

functionfunc _ 
j3T lDoil . D<Ju,)IT, 'I , Uue, So,Sq, Ro , N, j 3, num_ varT, Nodu ,bddqes , K.pp&_ t 
, Kappa_a , b) 

nU , nu",_varT- U - -(Doll"q(brldqe,)·Lfracll:>rldqes)/Bo(Nodes) .. 
~ Dqu'(q ll:>r ldqes) ' U

Lfuc(brldQeo)f/SqINode.) .. 

qlbrldqul'Lfuc lbrldqeo) 'R 'INodeol/eo(Nodeol)) ' ( ~ l) ·l:>(l:>r l dqes) .. 
- (DoH · qlbrldqu-l.)·Uu c ll:> riclq".- l.)/II<>(Nod .. . -

* D<Ju · lq(brldQes-l.l·ll - Lfr a c(bddq"o-
IIl/eq INodes ~l.) .. 

~ qlbriclQ".-l.l·Uuc lbrid\les-l.) · RoINocl".
l)/SoINodes-lJ)) · (-l.) · b lbriclqe.-lJ .. 

- K.ap"""_t(N) ' (.lI; 
j3U , nu,"_varT-Z) - -IDoll"qlbrld'ilesl · Ur .. c(bridquI/BoINodeo ) .. 

~ Dq ... ·(q(l:>r1clqe. )·(l
Lfnc(l:>rlclqeo))/Bq(Nodeo) .. 

q(briclqes)·Urac(bridq".) · Rs(Nodes)/Bo(Nodesl)) · ( - l)·b(brid\l"' ) .. 
- Kapp. _tIN) · (-l) ; 

j31l ,num varTI _ - (DoH · qlbrid\l".-II · UraclbridQes-l.)/BoINodes -
1). . -

+ D<Ju ' lqlbridqes - 1) ' (l - Lfraclbrid\les- lIJ/B<}(Nodes-

+ q(bridQeo-1) ' Uuc lbridqe.-1 1·RO(Node.-l f!/!,QINodes-
111 ) ' (+l) ' blbrid\lu- l.l; 



n .. two.kSolvUI 
T" mpSolvHI 

!~ ~~~x-_t~~@1 
convu~@",u _ 0 , 
wh.tl@ Ifhgm1.l1 

mu2Pt@mp _ 
updat:"mu IXT. Xl, TIM, PI.,. . pI..t . pb. N. nu",_ var. num_ V<l IT. Nodes . br1c:1~ ... , RS . 
!l!u2P r"' , mu res) 1 Re~.lculat@ p""oou,,,jt~mpUH"r~ d"p~nd~nt 

v ~ 'CO.it1U-

[ thgmu ep. i l onmu) - checkcon","ulmu2P,mu2P t"mp,bridll".,thr"s hold) I 
Check to~ conve.genc. -

converllemul",u1nde xt l) - "p. i l onmu 

Auign cal~ulat"d u,"p":atur" . for un in =,,~alc'"la " r_l flo .. 
paurnHeu 

1n ioctC."",'''';' c .. lc'.J:u10r .• 
,"u2P-mu2P_t""'P i Updat~ ",,,~p 

T_t"~!l~:~ ~~:~l~~rT G~n.,~ate ne w r_'~rp fo< preuure c_lc'Jlat;or.' 

T_ UmpIII - XTIi-lli 

C_t@\Iouze -,isco.1tyvahe. 
dhplayrru l 

G-et now pua""teu at n .• location ·~r."u upha:un~ p,~c~piUtion 

c lc; 
c:li. &plnumZ. u Ip tubln~1l00111 1 
c:l h plnum2. trlt;:;bingno .. ut~'1l00) II 1 

"pizzi _ p ~ u binll ll O OI 
.. QI .. ) _ t;;:bln ~nowratu ll00) 



plot(<<p , »Q) 
yh«l(' f,o~'uU i".' 3/1 ) ') 
xl.«1( ' f'~5" u n I ta=~ 1 ') 



subplot(2,2,[131) 
plotflown.tu : 

s ubplot(2,2,2) 
plotpressure ; 

subplot(2,2,4) 
plotfn.ction. : 



---<'AT/< 101<I:':N<> e~<>1:1-

input_dan : 

pbh - pbh - H - deltaybh ; 

inputy, 
inputL, 
inpu t -c, 
coe~{;:ci e n ,s 
inpu~ K, 
input-kro , 
Fe r"",abili~lU 
input_ h ll ' 
Fe ~"",abili"a$ 

input_5 ' 

r e5~r"'o:~ p' euure5 
.eg"'~n' : e n\l tt .• 
.1ot/· .. ~:v e due-hug e 

mU_H" _ ~e~ e .. temur~'ITre~ .p ru,pb.N,Rs_r~s l: 
Ca~cula~ .• puuur~h,,~.p~rat~u deF~nd~nt oil Vl'CO.j~lU 
i nput a lpha , 
Calc~ra~e Hqu~j hc :dup. i n th~ r Ber".·cl r 
[~ho2P r ea <h o re.i _ lIe nera teRho < es (pr~ s .pb.N, " l-ph" r es l, 

~~~~.c~~~~lr~';"r"-dependent d~c.,iti .. , fot each FO,d';; a c.d 

mu2P_r". _ lI"neraU!lm2P I ",u_res,N . a lph"_r ~ s .pr~. , pb l' 
Calc '_hte l,·o - p~d.e IT? I flu~d vi.co. itie~ 

p<~c.lculation", Pr~cal cu:'te .0I1>e c""~Eci~n t 

~~!~:; to 11 " :p incraoe th e ~.;cUlatiO~:~~~~.1 a'o~ .. ~d '.-ah". of 

ucr,no'.n par~rr.e ter ~ 

------- ---GENEAAJING '·' ~L:!30RE FLUID FFOPl:R~HS 5LGIll- --
C. l ou la t e r:dd proP<'~ties 8 t all node. in tile ;,"ell r.~~ ~orl: ~u~d 

en th~ g'.Je.,ed un:,no,.-" pau","'ers 
Rs _ gen.,rH~Rs (l{l,pu • • R ._r~ •• prd.pb,~.~U!II_var.Nod~ s l' 
c.).cuht~ pre~~u< e -d"P<'r.c~n t lIa, . olu;' i:i t1e~ 
So _ q~ner .. teBo(l{l,pres , Bo_r".,pref . pb,~ .num_var ,Node~ I'

CalcUate pu.s,.,<e -d ep~nd~ nt ell for"","'on volurr.e !a~t.ors 

III! - lI"neu telJ.g ( Xl,pr~"Bg_ <~. ,p re f.pb,N .num_va r,Nod"' I: 
C .. lc,., late P~'''~·.Jt~ -dep<"nd<'n t ifU tor"",aor, ·,olu~.., fa o~o". 



[,.u2P m~) -
qen .. utemu(T_te mp,)(l,Troos,pnt , pb,N ,num_vu,nu,"_varT,N<>du ,br ldqu , h 
, .. u2P_ r u ,mu_rel) ; Calculate pr .. u~u/temp .. a t ur" dependent 
vi-sconti,," t~l .. ell pt.u" and t.~-pr.a." (T~) nUld 
[rho2Prhol -

f~neramhO (Xl, pus, rho2 P - r~:l~~~i ~:. ~~~:!~~::~~~d:~~ ' :~:: ~ ~~ !~~~ 
.. ·:h phue and t"o-phne ITP) tbid 

th;~n~;,~"lcoun t countl how uny iurations thn r ... bun dor,,, . 10 

progum nop. ~h.n the d .. .,red number ot Hu&tionl are ruched 
nntine!Count _ O; 

Fhg d .. ten,ir. .. whethu the iteution should .. op I.ol~tiono 

conv .. rg"d) 
n ag _ tru" , 
g"n"ril.teBind" ~, 

~~ ~ ~:~~o~;Ch bridge 

tor ·"n):nown.u.ingN" .. ton -Raph.on~thod 

,0> 



plotflowrat. • .• 

plot llenqths , lnteqraHlo"., -c ' , 

plotll .. nqths,t"binqrl""Htu,' - r' ): 
plot (l .. nqths II : .. nd-l), a nnulurlowratu n :~ndJ, 
plot(l .. ngthsl l :end),.lotFlowRatesU,end), ' :I)'); 

titl .. (' r:ownteprorilu' ): 
laq .. ndl' :n<lo" ut", ',';UblC,' !lo~' race ' , ' ''nn'Jl.or !le'. ~ote ', 

' "nnula=-tc·tul),n9 flow ut~ ', 'Location' , 
l .. q .. ndl' b¢xoH ')I 
xlal>ell' Dl .tanoerro,",,,elltee 
yliobo!l(' Flow rat .. (","lid) ') 



pl otl l ength.ll :end - ll , .. l ph ,,_ res , 

hold -on , 
plot l l~n gth . ,tub lngrn.ction . , ' -:n ' I , 
plot llength ' l l : end~ I I, .nnuhrrn.ction . l l : endl, 

tHle l ' tiqui.d-.elufI"_" !ucti-cn p.d,"u ' l, 
l e g"ndl ' ru~tio.n en a~~~vc~r ' , ' ,aonon i.n tubi ng ' , 
.nnulu~ ' , ' ~ocatlon ' , ' 3".~ ' I' 

;~~:~ : : ~r:~!~~ ~ ' from w~ll c O" Ire ) ' ) 
yhbttl l 'OilvolUJ'" !racticn' ) 



plot(lenqth. l l :"nd-ll, m~_"@sH ... o~r(l:endl · le3, 

plot(le nqth.,mu __ nnul u . ·le3, ' ".' 1· 
plo~ Ilenqth l , ":,'_tul>~n'il*l e3 , '-1> ' , 



xlll.U • len~th l l~I' 

ymin - pbh/l . S, 
ymax . p< ... 01/1. 5+1: 

plot(le n\lt!>.I\l :N-ll . pres/ h 5 , 

plotllenqthl (l. :endl,p_a nnulu o ll:endl, 
plot(lenqths , p_tubim;J . 

tit1e(' Pr ... u,"profilu 'j; 
je 'lendl' Peservoir preuure ', 'Pruoure.n 'Mulus ' , 
tublnq ',' LoCltl.on ', ' eest 'l' 
l eqend(' boxdf '), 
xlabttl(' OhUnce hOl'w .. ll to. H,,) 'I 
ylabttl(' Pnsun Ibou) ') 
I x, " (( O xwox)"Oinymax)1 
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plotT .• 

Truplo~ ~ [Tr ... ,Tr ... (end)[; 
T_tublngylot ~ [T_t~blngl; 
length>ylot ~ to,length>l , 

plot(l .. n9th oylot , Tresplot, 

hold en ; 
plot(lenqtn.ylot(I'end-l),1_ann~lu'll,"nd), 
plot(lengtn.ylot, T_tubingylot, '-rx 'I' 

titl.,(· n "..peratuu p ro f l l u ' I, 
leg@nd(' RuervoH t e",pe~.~u,e ', ' T"n!"'utue In "nn~lu. ', 
' -;emperotua In tutin9 ', · LocatlOn ' . 
l@g" nd(' boxoff ') , 
xlabel(' Di5tance !rom".l1 toe 1m) ') 
ylabel(' Te"'peutur" Ie) ') 
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plotting .• 

disp(' ll) Prusuu p r o!il .. ·); 
dhp(' I:) Flow ute p r o!1lu ')/ 
di-pl ' 13) Uquid volume fuction profi) .. '): 
displ ' I41 Temperature pro!1lu' ) : 

plotFhq - O: 
..ouplot _ true ; 
fiqureF h.q _ I ; 
plotFl.q _ Inputl' Sehct a plot to be disphyed ' ) ; 

whllelmorep l ot) 
fiqureltiqure n aq) 

iflplotFhq __ I) 

plotpreuure : 

plotflowrate. , 

dse1t IplotFl&q -- 3) 

plotfuction s : 

eluif IplotFlaq •• 4) 

pLotT; 

Select 1 to plot prenura profile 

Select J to plot l1qUld holdup prohl .. 

Select 4 to plot liquid holdup profile 

..oreplot _ Input(' you wan t to .elect other ploU~ 1f yu - type " ) " 
itno-type"O··) ; 

if ~~:~;7t -- 0 
,., 
fiqurenaq _ f1qu r e r hq + 1 ; 
dl.pl· (l)Pr .... ure profll ... ·) ' 
di-spl' (2) Flo .. rateprofllu 'l ; 
di'pl' 131 Volume !ractionprofilu 'J' 
dhp(' (4) Te"'Perature profllu 'l ; 
plotFlaq _ l nput( ' Salec taplottobedl s playad 'l , 
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Calc~:.u crcu-.~ctiona~ are., and hl'du~lic dUmetHo 

:~:~in9_ana _ "rooll , N-I I: 

hyduul1c dhm<!tu - ,"roa(l , N- l ) : 
t ubinll di."...tu _ .eroo< l , N): 
tubinll::U'" _ aros ll,N) : 

tor l - l. , N- l 
if r _ temp<i) -- rlli l 

An~~:~;n~r~~:~!!~t:o~;;r~:!~ -< 

Ac.n~ba hydu~"ic "iameter 
:~b;ng di." ..... ~ 
rUblr.g cro .. - nc~;'onal. ar .. 

hydraulic dhlOetuli) - 4 ' I( opac JnIJ aru lil)!« ' pi'ro(il ~ 
!~~! ' riUII) : - Annu!u. :.yduulic di.,,;t .. r 

s p a cinIJ_Hea lil _ pi ' ro(i) '2 - pi'r_t~mp(1)'2: 

hydn.ulic dia~tH(l) _ 4-« s PAc inll ar"'(i))/(2 ' pi ' ro(i) + 

!~~i ' r_temp l il)) : -

t~binll_diame tu l il _ 2'dUI : 
Tublng dh""tH 
~~bing_aua (i) _ pi'lri1i)"21: 
!~~J.ng CIos,-sectionAl u<-a 

t~bing_dh...,~~r(lI) _ 2 ' d(N); 
t~binIJ_u ... (NI _ pi"(d(N)'2), 

~8:c~~~tiOn5 
~~~~. C:l~~~aticn. 
~~: :"i;~ ~atJ.Cr.' 
B - I I; 
c.:c~l.' lor .• 
to r i - l,N 

HI! _. II) 
if p<e. (1)/l<:5 <pb 

Codhcients for t~bing 

Ili l - (2-pi·lt(i)"L(1))/(llog(re/ ro( i)) t 

s( l)))'(kro (i l/mu r .. a(l , 1)tk<g(1)/muzu(2,ill: 
"h~ - -

Iii) _ (2 ' pi ' K(i )- L( i ll!« 10lJ (re!ro (i)1 > 
s (i)))'(ho(il/mu r~ s (l , i)l ; 

e nd -
if ( i-~ l) 

qret ~ 1(i)'(pref(i)-pbh)'(1I- 1) : Geneute 
"e:.,e"_~e f~o'" <aU ( inflow H Seq"",nt I X numl:,," A inlet br;dgesl 



&lpna li )-
IO .Jl.6('Ll1l ' IqretA l.. 75 11 /12' (hydra u lic_,liarteter (iIAl..25I ' ( ~ p.dn'Lu 

•• (1.~~;.7S I·PUfl' 

!>eUlil -
IO.3164 ' Llil'lqr d"l. . 7SII/I Z'(tubinq d1aO"le t"r(iIAl. . 251' ltubl.n~ .a.li 
I A l..75 I ' pre!) , - -

81i l _ Ir(il'(qrd A 211/11I s l. ot_den ' slot_ L" 5 l.0t_I'!·Ll1II A2 1·prdl, 

zoo 



.eg"'~n" 

p_t~bl.nq(1) - X1 (1), 
p_.nnul~s (l) _ X1 12), 

p t~binqli+l) - X11l+9-~), 

p::annulu. IH1 ) - XlI2 +9-i), 

_ Xl(mllnvu - 5), 
_ Xl(nu;;;:_var_l) ; 

funcl _ p _ tul:>i. nq; 
funcZ _ p_o nnulu s ; 
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X1 {i. ) _ XTI 11 " 1r..f ; 



ar:-pHdt~res (~OC.YH~~j v~~ 

of ~~g~er.U 
of ~nkno~·n .,,,,,peut~us 

!;~'"P.,ut~u. 

Te""P"ut~r'" 1n tubing 
T""peut -.J"'" in ac,c_ clu~ 

Iun~ ti"n rfun~l, f unc2 1 • T"mp"raturu (XT,N , num_vuT,Tno. ) 

."' 'I'_tub 1nq(N+l) • XT(n~",_va rT)' 

! unci • ' _ tubi ng, 
! unc2 - ' _a nn u lu , ; 



Q .. neut .. pdrop; 

XTt .. mp _ zeros (l,numvarT); 
un~no;m ternpeutuus -
XT temp _ '1" .... Geneuto.T(Tr .. ,L,Tre!,Tbh,~I; 

XT-· XT_ temp; 

th!~n~;.~elcount ,ounto ho" 1TIf.ny iterations thn hu bun done, '0 

pro~ra", stops ~hen n.e duired n~mber of iterations are rea~hed . 
s entinelCount - O; 

flaQ determ,n ... ,,~.Hhe< th .. iteration should stOP (solutions 

converQ"d) 

i~:~~t ~ o~~:''''' Iterate function calculations to solve 
tor tempeutur .. un~no ... ns usinQ N .. "ton·R.phson ".,.,thod 



!'we _pc_ue v;.c~s.liB in ~very bridge in th c.et"crk 
V~ sccs :!.t,u ct bon. pC .•• e, ,t eve~y nca .. ". th e 

func tion f~nc -
~pdate"u(X1 ,Xl, 1res , pr"" ,pref 'Pb,N ,,, ul'I\_var,num.v arT,Nad .. . ,hddg". ,Ro , 

m~2P_<es , ",u_r". ) 

ph.t@"'p><ph: 
ph _ ph'l eZ : 
Xf_to@ - Tres (ll; 

m~ _ ,,,ros {2,Node.) ; 

:-gu l 
""'_00 _ zuas (LNad". ); 
,"u.sa t _ ,eros (l,Node,); 
lIasr>lx; 

tud-~1 1 vi.cas!t i e~ 
SHunted oil viscc.,tln 

_ ~;~l +var) 'pref/ IO') ; 

_ ~!!2+VU) .pref/10'3; 

_ Xl(1+va r )/lO'2 ; 
cobara 



x t@l!lp(Z) - X11~+vu )/I O'~ ; 
prUS~H l ro", ~_P. to bHa 

Tu~o,_] nc <1@ - oaJ.culatn.g nocc$Hy (g" ph ... , 
p _ Xt"mpll) : 
[11 , pl , 12, p2] . 1narpohn(p) : 

dp·pl-p2, 
if <1p-- 0 

<1p - ~ ; 

",~(2,3 " i+ll • (p-pl)/<1p • (Vi s cos ity Vap(il) -Viscosi ty Vap(i2)1 + 
Vhcodty_vap(ll) : - -

l!lu(I,3 "Hl) • (p - pl)/<1p • (V 1sco.ity_LiqI1l)~Vioco. ltLLlq( i2 )1 + 
V1scosHy_ Liq(1l) : 

Ann -"lar no,,~ - c.lculat:ng ","coo1ty (gao pha .. ) 
p • X t@mp( 2 1: 
[11, pi , 12, p2 ] • ;'ntupoht@(pl : 

<1p • pl-p2 : 
if dp-_O 

dp _ 2 : 

n:u(2,3"i+2) • (p ~pl l/<1p " ( Viscosity_Vap(11) ~Vioc o .lty_Vap(i2)1 + 
Vhco. 1ty_Vap(11) : 

,"u(I,3 " H2) - (p-p l l/<1p • (Vh<:odty_L1q(1l) ~Vioc o .1ty_Llq(1ZI) + 
Vi s c o . 1ty_Llq (111 : 

P@ 5@"-'CH no<1@ ~ oa:cu~.tinq V~SC0Uty (Qu Fha,~ ) 
rnu (2,3 "1+3) _ mu ru(2, i*I), 
",uU , 3'H3) - mu::ruILi+l): 

Xl (n~ m_vu-5) _ Xl l num_ var - 5) "prd / 10'3 , 
preuure tro," Po to ~Po 

Xl(num var- 4) _ Xl(num vu-41 "pr@t/10-3: 
preuuu t:';o," Pa to kPo -

Chan~e ~nit of 

tr~:l~~;~t<, visco.ity for th e qu ph .. ., (fro,", C -"~V~--t1t to -.. a: -.. ". 

X_ t'""'Pill _ Xl (mllll_var-51/10-Z, Chanq@ unit ot 
pr@s,ur@trorn<Patcbara 

X_ temp(Z) _ Xl(n~l!1_var -4 1/ 10'2 , Change unit of 
preu~r" from kPa to bau 



p_X_t"mp(l) ; 
(lL pi , 12 , pZl - interpolau(p) ; 

d p _ pl_pZ; 
Ifdp--O 

dp - Z; 

,"uIZ , Nod .. - I) _ Ip-pl)!dp ' (Viocos itLVapllll-Vhco.ity_VIPUZ» 

+ Viscos ity Vaplll) I 
muILNod". - I) _ Ip-pl)!dp ' IViocos 1ty_ Liq(ill-Viscos Hy_Llq(i2» 

+ Vh co . lty_Liq(11) I 

AMular Md., - ealeu!&tlnqviscosity 19"uphua ) 

p_x_ump(21 ; 
[11 , pL 12 , pZl - IMerpolate(p) ; 

dp·pl-pZ I 
ifdp-- O 

dp-2 ; 

mu(l , Nodesl . Ip-pl)!dp ' IVIlc0 1 ItLVap(il) - Viscod t y_Vapli2»' 

Viscosity_Vap(ll) ; 
mu Il , Nodes) • Ip-pilldp ' (Vlsco . ity_LiQ(lll-Vlocoslty_LiqliZll + 

Viscos1ty_LiqI111 ; 

muZP _ z"ro . (I , bdd ..... ) ; 
i n ev .. rybridqe 

mu2PIi"HII _ ,"u(L3 ' i<l) ' Xl('1u.7) • mu(2.3 ' j,'l) ' (l - XllvuH» ; 

Tubin9"b<id ... ofSe9""",nt i_I 
rnu2P(i ' H2) _ mull.3 ' i.Z)'XllvH.81 + rnuIZ , 3'H2) ' (I-Xl(Var+S» ; 

Annulus - to-tub i ng bud .. " of 5"9"",nt 1 ' 1 
OIu2P(l ' H3) _ ,"ull , 3 ' 1+2)'XI(vu'9) ' mu(2 , 3'H21 ' U-Xl lvar+9» ; 

T<n :~~~~1 ~;:~r". O!v~;9";::~I:~: ; 
Inl"tbrld .... o I S .. qrMnti+l 

mu 2P(bridqes-l) _ mu (l , Node s -ll ' Xl(numvar-ll • "",(Z,Nodu -ll'(I-
XJ(nu,"_ va r - l.l) ; TuM nqbri dQ"of S"qm<'MN 
mu2P(bridqu) _ mull , Nod".I ' )(l.lnumvH) ,,.vll,Nodes) ' ll -
Xllnum_'1 .. r» ; - T<nnulu5-to - tubl"" bdd9"e 01 

Seq"",ntN 
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Vertical Model Code 

Filename 
analyticalTplotm 

Descrl tlon 
Plots analytical temperature proflle and plots It on the 
exlsUn2 fl~ure 

cakulate_heatProp.m Interpolates and converts fluid properties that are used In 
Rame stem raturebalanceonl 

calculate_prop.m Interpolates and converts fluid propertles that are used In 
the Ha edorn and Brown correlation onlv 

calculateT.m Calculates tern erature roflleusln Rame s model 
checkT2match.m Checks If temperature profile matches to decide for 

Iteration 
fluld.m Contalnstablesoffluld ro rties 
guessT2p2.m Guesses the values of11 and p2 for Hagedorn and Brown 

correlation 
HB.m Ha edom and Brown correlation calculations 

In utsintothella edownandBrownoorrelation 
interpolateT.m Interpolates the value of temperature from the previous 

Ramey's calculation in order to do the next Hagedorn and 
Browncakulations 
Runs all the flle name In sequence and stores the 
calculated values for future use and lottln 

mainQ.m Executes maln.m me for different values offlowrate to 
Ive a lift curve 

mainSINGLE.m Runs maln.m file for a sin Ie run 
Executes maln.m lile for different valuesofTd to give 
tem erature rofilesasa function of time 

lotflnal run onl.m Plotstheflnalresultsofthecalculatlons 
lot 0 resslon.m Plots the ro essionofcalculation 
lotHB.m Plots all the Iterations of the vertical flow model 



for c oun te r - l 'l~n ~th(x h l 
l ana lcounter ,ll _ Tanio t (Tin- 1 arnbl • ~ xp( 

! ~~ . 1 ' 2 'DD'OOO'Xh(C O Y nUr ' Tj,uratJ,on l /cPOo/mdotl 

ho l d en 
p lot«Tan. _ nl · 5/9 , ·O.304a ·xh(I ' len~th(l<hl , T1terationl , · 

yl abel(' h.iqhtl:nI '1 
xl a bttl(' 11'oC) ') 



function [Cp,Cjl_calculateyrop(T,p,IILI 
calcuIH,,_huthop - oalc~la tu ~,ut prcputi-u !rcll'> PVT <Ina 

Cp . Cj 

<lata hom pVToim 
flul<l : 

if puu ure(LII - - P 
pi" Pruoure(LI) : 
~~ : i~uoure (1. I), 

!2-I: 
br u k 

e \a@ifPressure(I .I )<p 
@J,uPl - puuure (1.11 : 

~i : i~~~ sur@(i, II; 

12 - 1, 
bru k 

if 11 __ 0 

11 - 1: 
pl _ Pressure (11,11; 

forj - I:lO 
if Te <tlP<'rature(l,jl ·- T 

TI _ Tempera turen,j) : 
TZ _ Te<tlP<'uture(l,jl: 
jl - j; 

~;":kj, 
e ls@ itU_n.ture(l,jl<T 
e ls" TI .. T""'P"utur~(I,jl; 

TZ _ T~mperatur .. n, jl; 
jl - j - I; 

~;e: l:j, 

<IT _ Tl_T2; 
<lp - pl - p2; 
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,., 
if dp · ·0 

dp - 2, 

:alcu lat in ~ Cp I J/ ~.ol ~I 
X . Cp_Totlll, j1) + (Cp_'I'otlil, jll - Cp_1ot(il , j2) )* (T-Tll/(dTH 
y _ Cptotli2,:l11+ (Cptot(i2. jll_CP_'I"Otli2,j2))'iT-Tl )!(dTI , 
Cp . x-+(X- YI · IP-Pl)/ldP), 

Cp • C . OH~/ICp-3: 1' IJI=l ~ to Ilt'o/lbo"< n 
cp _ l.42 · lO'(-SI *Cp·l OO, 



.... lc:uh .... prop .• 

tunction [SG.o,SG9,lIs,Bo,i!9,mlu_o,mlu_Q , . iQm<l._"'z, SGw, Bw , 
rniu_w, .IQm<1._w [ . calculu"yrop(1,p) 

calcuht .. p _ calcuhtu the ·iuiou. proputiu ho," !'VI data 
SGo, SGg, -Ra, 80 , B~, rnlu_o, ml~_9 . sigrr.a_c, z , S(;>J, Bw. "'iu_" , 

data horn PVT.im 
fluid , 

to.i · l : ll 
H Puu uu(1,l) ·· p 

pl · Pre u uu(1,l), 

~i : ~~euureli'l)' 

12 - 1, 

e l uit f ..... ur .. (I,I)<p 
elsePI . Pressure (i , I), 

p< . puuure(I,II, 

g: !~l' 
hru.k 

it 11 --0 
11 - 1, 
pl . Pussure (11,1), 

for:l- l:l0 
itT"mperature(l. , j) ·- 1 

11 . T .... p"utuu(l, jl : 
TZ·T"rnperature(J.,:lI , 
jl.j , 

a~":kj , 
ds" it 1 "",peuture(l, :l I<T 
"h"TI.1ernpeutun(I,:I)' 

T2 . 1emperature(I,:lI , 
jl . j-I: 

a~e:l:j , 

dT · Tl -12 , 
dp . pl-p2: 
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;! dp __ 0 
dp _ Z, 

oa:culacng 5Go lun~tl.u ) 
,, _ ~nsitLL1ql il. jl l • l~ndty_LiqIH , :l1 1-o.,nsity_Liq(11. 
j2)) " (T-T))/(dT) , 
y _ ~ndty_Liq (i2 , :II) • (~nsity_Llq(12, jl)-o.,nsi t y_Liq(i2 , 
j2)) - (T-T1)/(dT) , 
eH_ d .. nshy _ x • (x-y) ' (p-pl)/(dp) I 

c . ~eu lating 5Gg (unit I us I 
x _ ~n.ity_Vap(il , :III • lo.,n s i~y_V.plil. j l l - o.,naHy_Vil.p(il, 
j2)1 - (T- TI)/(dT) ; 
y _ ~nd~y_Vap(i2 , :Ill • (~n.ity_V.p(i2, jll-o.,nai~LVil.p(i2, 

j2)1 - (T- TI)/(dT) ; 
qu_dendty _ x ~ (x -yl " (p- pl)/(dpl , 

calculaun'J ~ s , Be , 8q luni.tl~ss) 

x - x8o(il , jl) + (xBo(II , jl) - xBo(ll , j2)) - (T- TO/(dT) , 
y _ xllo(i2 , jl) + (~Bo(12 , j l )-x Bo(i-2 , j2) - (T - tU/(dT) I 
Bo _ x+ (x-y) " lp - pl)/(dp) : 

x _ x llQ" lil , :II ) + (xllq (1 1, j l)-x Bq( i l , j2) '(T-T1 I/ (d1 )I 
y _ xllQ" l i2 , :II) + (xllQ"(lZ , j l )-xll<,l(12 , 12) -(T- TII/(d T), 
llQ" _ x+ (x-y) "lp - pl)/(dp) ; 

x • xRaUI. :II) + (x Rs (l1 , jl) - x~s (ll , j2» - (T- TU/(dT) ; 
y _ xR.IH , jl)' (><Ra(12 , jl)-x R. (12 , j2) " (T- TII/(dTI; 
Rs _ x • (x - y)" lp-pl)/(dp) I 

calc u h ting dl: 0 (epl 
x . Vhcosity_Liq(ll , :II) • IVhcos ity_ Liqlil. jll-Viscosity_Liq(il, 
j2»'(f- fl)/(dT) ; 
y _ Vhcos lty_ Liql i 2 , jl) • IVhcos lty_Llqli2 , jll-ViscositLLlq(i2, 
j2) - (T-TII/(d T) ; 
oi!_de ndty _ x .. (x - yl " lp- pl)/(dp ), 



c.lo~:&ti~~ ".iu_~ jepl 
x _ Viocoa1ty_VApjll, 11) • IVioco.1ty_Vil.pUl , 111-Vioco. ULVAI'(11, 
j2)1 ' (T- Tl)/(dT) ; 
y _ Vioco. HLV_I'(12, 11) , IVhcod~y_v. I'(12 , jU-Vhco.itLVAI'(12, 
j2»'(T- Tl)/(dT) ; 
.. u _den.lty _ x+(x_Y)_(I'_I'I)f(dl') ' 

cAlc~lAtin .. siqrna 0 !l n!V~ - I dyne/em) 
x _ S~rf Ten(il , ll) + (surf TenliL jU -S~rf_Te~(ll, j2) ' (T-
TI)/(dT), -
Y _ Sud Ten(12, 11) • (S~r! Ten(!2 . :ll) - S~rf_TMI12 , :l2) '(T-
TI)/I<lTI, -
oll_n - x+ (x - Y)-(I'-l'll/ldl')' 

cAlculninq: 
x - Z_Fil.ctor_Va pllL jll + (z_u,ctor_Vap(il, j l) -Z_Fil.ctor_V" pliL 
j2))' IT - Tl) /ldT) ; 
y _ ZJ"Actor_V" plt2 . ll) ~ (~_FActor_Vap(12, jl)-Z_ Fa ctor_VAI'(i2, 
j211 ' IT- TI)/I<lTI: 
.. u _, _ x'lx_yl·lp_pl)/(<!p) ; 

5(; .. - 0 , 
e .. - o, 
.,lu_,, - l; 
. 1qrt1011_w _ O; "' dynfc11I 



ifcounter--length(xT2) 

.. h@ 

Th1lcount@r, THuat1on-l) _ TBH, - -

T d . xh(count@<, TitHat i on - l)'(T_BH-T_TH)/h_w"ll + T_TH' 
q- · 32.n , 

Ill;.<:" . !t/~~ f 7. ~~ · 11 : 
Jc · 178 . 16: 

I nf . !t/~t:) 17 . 61 : 

IB, /hr/ !~: ~d;:~~. f) 

IBt~in'l!tldegruf) 
T . (Thi(counuc+l,Tituation-II-32) • 5/9, 

ccr.v@r~ to j@~ree C to r ud of! tr.@ ~rid 
p . 0 . 0689 47572 9 ' xp 2(counUr,THua tlon-l) , 

ooc.ve r ~ to baa to r .. ad oft t h" qrid 
(Cpo Cjl • calculate_huthop (T,p,H LI, 
Lr _ 2 ' 3 . H2 ' r_to·U'~./( ICp '~"12 4 )' (~@H_to·l.I'Tdl I : 

T hil coun t"r , Tituation- I) - IICp'i hi(countuH,TitHation
!11 +I Lc · CP· xd@lt __ hlcounter ,Tit .. ntion-l) ,r:::@i) -
ICj ' Cp'xde l UJ' Icounter , Tite ntion- I I 1+ (xdel t e_h (counUr, Titen tion
I) · ~/Jc/9<:)+I"d. IU_v_,,_"q ( <:ounter , Tlteration
I II ZlJclq<:»/IILr · Cp·xde lta_h( counte~,Tit .. ndon-I) I.CpI' 



if Tiun.don --1 
Th _ h·(TBlI- TTHl/hw. ll'TTlI, 

. 1 ... - - - - -

ifk--klnax 

els.T_h -T_BH ' 

lnterpolat4lT, 

if ab . (T2-T hI < 0 . 1 
T2~h .. ck:O; 

eh .. 

~;c~e~i~~' 
h_h_delt&_h, 

m 



flYid 
PVTsiml£ST4SHSOIlCIO + 

Pru'~HI~ [ 
1.01 1.01 
1.01 
SO . 91 
SO.91 
100.81 100.81 
100.611.00 . 81 
IS0.7I 150 . 71 
ISO . 7I IS0 . 71 
200.61200.61 
200.61200.61 
250 . 51250.51 
250.51 
300.41 
300.41 
350.31 
350 . 31 
400.2 1 
400.21 
450.11 
450.11 
500.01 
500.01 
) , 

~"m~~"t~~@-!o 
o 306090 
o )06090 
o 306090 
o )06090 
o 306090 

306090 
306090 

o 306090 
o 306090 
o 306090 
) , 

~z~~tL~~~~ 1 [ 
0 . 00150.0016 
0 . 0485 0.0436 
0 . 04010.001 
0.1084 0.on9 
0.07370 . 0784 

120150180210240210 

~;~ i;~ !:~ ~!~ ;:~ ~~~ 
120150\80210240210 
120150\80210240210 
120150180210240270 
120150180210240270 
120 lSO lSO 210 240 2iO 
120 150 180 llO 240 2iO 
120 lSO lSO 210240270 
120150180210240210 



0.n~5 0 . 1438 0 . 126 O.IIH 0.108 0.1042 0.103 0.1043 0.108 
0.1\44 
o 0.1932 
0 . 1528 
o 0 O. HOB 0 .1153 0.1825 0.1952 
o 0 0 0 
a 0 0 0 
o 0 0 0 
o 0 0 0 
o 0 0 0 
) , 

0.7358 
0.8072 0.8041 
O. 70~9 0.6842 
0.18650.7837 
0.61e8 0.6549 
0.1816 

0.7925 
0.6214 
0.79560.1798 
0 . 6413 0.6189 
0 . 19850.7834 

0.6H1 
) , 

0.6326 

~-:-~~~~oro ~:~3; ! 0 . 6483 
0. 8685 
0 . S8n 0.6219 
0 . 1396 0.1591 

0.815 
0.925 
0.8915 
1.1361 

1.8095 1 . 6676 
1.24351.2286 
2.1012 1.9339 
1.41281.3886 



Z . ~911 
1.5191 
2.67952 . HI 
1.14311.1009 
2.96652.7221 
1.90511 . 854 
], 

0.3797 0.3303 
1.4088 0.9895 
0 . 3186 0.2742 
1.514 I.ons 

0.2365 
1.1321 
0.2532 0 . 2204 
1.8441 1.22H 
0.2692 
1.9591 
0 . 2641 0.2493 
2 . 011 1.)519 
0 . 2998 0.2~31 

], 

SurfT"n_ ] 

0.02450.02520.02630.02790.0302 
, 0 , , , , , , , , 
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Z~ . 5~4 25.ni 
IS . 111 18. ~~5 
16 . 06 16.422 
8.596 
S.Jel 

1.189 
o 0 
o 0 
o 0 
o 0 
o 0 
o 
o 
) , 

CpTot _ 1 
19;: . 44 210 . 99 222 232 . 2J 241 . 13 250 . 44 259 . 55 26ti . 01 212.92 

224. 1 5 
2'09 . 31309.).9 
213 . 45 225.1 
302 . 15 3U.21 
212 . 12225.06 
303 . 99 3B . 16 

312 . 1 

224 . 15 
315 . 37 

209 . 87 222 . 19 
301 . 44 311.06 
209 . 46 
309 . 16 

299.16 
) , 

JTII - [ 
0.7943 0.614S 
0 . 5003 0. 4H4 
0.56n 0 . 011 
0.22420 . 2195 
0. 40390.3512 



o 
o 
o 

" 
JTL · [ 
-0:-0545-0 . 0504-0,0467-0 . 0432-0 . 0401-0 . 0373-0 . 0347-0,0324-
0.0304-0 . 02e8 
-0.0525-0 . 0485-0.0445-0 . 0406-0 . 0367-0 . 0321-0 . 0285-0.0241-
0.0195-0 . 0145 
-0.051.4 -0.004 -0 . 0434 -0 . 0395 -0 . 0355 -0 . 0314 -0 . 021 -0 . 0223-
0.0112-0.0115 
-0.0506-0.0(66-0 . 0426-0 . 0387-0.0347-0 . 0305-0.026 -0.0212-

-0 . 0516-0.0468-0 . 042 -0 . 0375-0.0334-0 . 0291-0.0246-0.0197-
0.0141-0.0079 
-0.0523-0.0477-0.0432-0.0387-0.0342-0.0296-0.0248 - 0.0199 -

-0 . 0538-0 . 0496-0.0457-0 . 042 -0 . 038(-0.035 -0.0317-0.0284-
0 . 0253 - 0.0223 
-O.0542-0.0501-0.0464-0.0428 - 0.0394 - 0 . 0362 - 0 . 03Jl - Q.0301-
0.0273 - 0.0246 

" 

1.234 
6.165 
1 . 254 
6 . 732 

7.486 
1.242 

1.2H 
7 . 192 
1 . 232 
7.593 
1.228 
7 . 427 
1 . 223 
7 . 288 

" 



xB<j-t 
0.016 
2 . 111 
0 . 001 
0 . 031 
0 . 005 
0 . 018 
0 . 000 
0 . 012 
0 . 000 
0.010 
0 . 000 
0 . 008 
0 . 000 
0.000 
0.000 
0 . 000 
0 . 000 
0 . 000 
0.000 
0 . 000 
0 . 000 
0 . 000 
I , 

~~; ~ [0 0 a 0 a a a I. 7 
41. 1 39 . 6 36 .3 35 . 7 31.9 
202 . 4 
al . 3 
294 .1 
112 . 9 
398 . 9 
125 . 5 11 4. 6 109 . 8 110.6 IU . 6 127 . 9 144. 4 166.9 

528.6 
125.5 130 . 8 In 139 . 3 140 . 6 148 . 3 H2 . 7 184. 6 216 H9 . 5 
125 . 5 130 . 8 I n 145 .4 15? 4 IB . 8 196225 . 2 263 . 8 845 . 5 
125 . 5 130 . 8 In 145 . 4 IS7 . 4 173 . 8 )96 US . 2 253 . 8 845.S 
125 . 5 130 . 8 137 14 5.4 151.4 113.8 196225 . 2 263 . 8 845 . 5 
125.5 130 . 8 137145 .4 157 . 4 113 . 8 196225 . 2 263 . 8 845 . 5 
125.5 130 . 8 137 14S .4 1 57 .4 173 . 8 196 225.2 263 . 8 845 . 5 

I , 



91J ••• T2p2 .• 



p_bu Ip5i.) and :_bu Id~9ae fl 
pbu _ (pHp2)/2 + 14.7 ; pOla 
T::bu _ ITHT21/2; d~~re~ F 

T _ (T_bar-321 ' 5/9; coc.vnt to d~~a~ C to read of~ t~.e 

qr~d 
p _ O. 06e947S729 • p_bu; coc.vut to bou to read eft tI' .• 
• d~ 
[SGo, SGg , RS . BO, B<J. miu_o, mill_g • • i(,jm&_o, Z, SGw, Bw, ",iu_w. 
aiqma_,,] _ c . lculat" yrcpIT. p) ; 

""'58 ... aoeLAted with loau~: <Of ST h'f~id - m t Ilbo) 
m_t _ 3S0'SGo*111(HKOIO:) + 350 ' SG,, ' (WOR/(1'WOR» + IO.076~ ' GLIO: ' SG<,lI' 

~lowu:e at aveug~ ug",.nt po,c.t - 'l..'" I:bmldayl 
'l..m · m.t ''l..l ; 

de~.ity ot l'qcid phu~ - =;:;h : (lb( !t3) 
roh 1 - -
1 162 . 4 ' SGo+IO:"SGg ' O. 016(15 .615) f I (1+101010:) ' SOl) + (62.4 ' 5G"'1I01O:1 (1HIOIO:); 

d~ns1ty o~ 9u Fhd5~ roh_9 (1bfft3) 
roh_" _ O.0764S ' SGg ' (p_bu ' 520/(14 . "z* IT_bar~460) I I' 

VhC05ity of liquid ",huH! - miu_l lerl 
miu_l . (miu_o * l/llH!ORII • l"'iu."·WOIO:I11 HIOR)1 : 

.urfae~ '~n5ion of liqu,d d>u,e - .,g"",_; Idyn!cml 
51""",_1 ~ (519"",,_0*1/IHIIOIO:» + Is lq"",_"*WOR/(HIIOIO:» ; 

liq·,,1d va,cuty n~tlber - N 1 
N_ l • 0.15726 ' Kliu_1 ' (l/lroh_1 , .1"", __ 1"311"O.25 ; 

~·cperf'chl ~lq~'d veloc;~y - v_ .1 IH /.I 
v_~l ~ 5.61S''l..1/ 186400'1\t) ' (ISO'l/II+IIORII • (Bw ' IfOR/IHIfOR») ; 

:1q~,d vi.co.tty nmnl)u - II LV 
II_LV - 1 . ~3e'v_.l'(rOh_l/'i9";;_11'O . 25 ; 

.~p<Orfidd ".0 v~locHy - v '9 Ift/ol 

;"~~I ~/!~;)I~~~;6400 ' At l ' 114 . 7~P_bUI ' IIT_bar+ 4601/ 520) ' z ; 

~a, v~lonty n~nber -



!l",", regl",~ d.~ck - L 6 
L_6 _1.0?1_0 . 221S " (v:.t +v_sq)'21dt ; 

if L 6< 0 .13 
1:_6 _ 0.13: 

oalcuhtlng ee 
BB _ v_sq/ lv_ol+v_sq l ; 

ch~ck dHfu~nc~ B6-L B 
diU _ Be - L_el -

it diU<O 
crUuewski.; 

,~ . 

elae 
typt! · 'IlB ' , 

continuing H.B .. pl~ di..",Her nu~.b~< 11_0 
N_ O. 120.en · dt"(~"h_l/.lqma_l)' O .S ; 

hold~p c"rr~1ation function - phi HI. 
phi_HI. - IN_LV/N_GV'O .S15)O(p_urll"4 . 11'0.1 · ICN_I/N_OI : 

calculaU hom graph - HL.l 
ifphl_HL<- 3,.-4 -
endHL_OI - 16°Phl_HLAO . 4185, 

ifphi_IlL>3e-4 
end HL_OI-0 .2628 ' 1<>g(Phi_HLI + 2 . 6553 , 

It phi HL>1.-3 
HL:si_O .1099 "1<>glphl_HL) +1.5945: 

sec"ndary correl.elon het"" - phi._" 
phl_, _ N_C;V " (N_l l'0 . 38/IN_Oj'2.I4, 

c.lcu1at~ hOfll "uph - 01 
It phi 0<-0 . 025 
~ nd oe - 211?O'phi_o"3 - 3l1 . 52"phl_0'Z • 0 . 5412·phi_o + 0.9999, 

It phl _s >0 . 025 
01 • -533 .33·phi_~"2 + 58.524 "phl_O + 0 .1111: 

Uphl_PO . 055 
.t_2 . S114"phl_" + 1.5962 ; 



t-.'o ~r .• u aynol~. ~~ml><!: - R@ 
Re - 2.2e - 2 · ~"'/(dt·'"tu_l"HL · "'tu_q"(l-HLII ; 

ulc-"h", friction h:to~ 
r _ (l.8 ' loQIOI6.9/Re . (e n.1/dtl"(l0/9111"( - 21 ' 

t-"o pha~e densi'y roh '" Ilb/!')I "ethod. - Ill MB , 
~~:"~L;; roh_l'HL • roh_~:; (l-HLI ; 

~;~:;~, _; 13S0'SGo+0. 0164 · SGq'GOR+3S0'SGw' IfORII (5. 61·So+5, 61 ' ~R+ (GOR-

if roh .. I>roh m2 
rOh_," - rOh_,"I ' 

ca l cu~atior.. at pl and 1: , two phu~ velocity - "_,,,I (ft/sl 
'I' _ ('1'1-321 • 5/9 , con ',e~t to deQae C t ~ l-U'; c ff t h ~ 

~dd 
P _ 0.0689475729 ' pi COllvert to hu to a.d o~! the 
9dd 
[SGo, SGq, R. , So, 89 , mlu_o, ",iu_q, sigma_o. ", SG .. , Bw, OIiu_ ", 
s iqrna_ ,,) _ ~.lcul.tfty<op('I',pl; 

v_~ ll _ 5 . 61S·'L1I(86400'Atl· I (SO ' I/Il+WORII + (S,,'WOR/Il+WOItIII , 
v_ .~l. . 'L1'(GLR- lts ' .I.I(!+WOItII!186400 ' Atl'(H . 7/p11'«'tlH601!5201·z 

c&lcuhtlon$ H p2 .e,~ 't~ , two ph .. ~ "elocity v_m~ I!th l 
'I' • (12-321 • 5/9 ; :oe."'ert to ~egr~~ C to "Hd off the 
9rid 
p . 0.0689415729 ' p2; conv@n t o b. r a to 
g<id 
[SGo , SG<j, Ita , Bo , 11<], m1u_ o , miu_~, , 1gma_ o , Z, sew, ew, .. lu_ ", 
oigma_ ,, ) _ calculu~yropIT , pl; 

v_.12 • 5.615 · 'L1/(e~400·/ltl · «So·I/(l+WOIIII • (Bw ' WOII/(HWORIII ; 
v_.q2 • 'Ll" (GLR-R, · 1/(lHIORII/(8HOO · /ltl ·( 14.1/p2 1 ·« T2 +HOI/5201·Z 



he'1t_t to< "ht F rus~n dtc~F (ttl 

~~~:-;~.~t~~~~:~~~~~~~;C» I !r<>h_ m. W~1'2 ' ''_ t '2) I Ii. 4leWdt '2 ' r<>h_. 
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i!OFl -O ; 
GLFl - 300 ; 

p l _ p_TH; 
Tl _ T_ TH; 
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interpolateT .• 

H xhU , Titeution- I)-- h 
hI _ xh(i, Titeution-I ), 

~: : ~~(1, Tituat1on-l), 

12 _ 1 , 
oreal: 

e l ~e if xh(i, Tit .. ution-l )<h 
els"hl - Xh(l, T1tuat1on-l), 

~i : ~~i; ' 

i.f1l-
U · 

ifh>h2 
h2 - h, 

ifh2 __ h 

Th - T8H , 



~1_4e,- , 

inpuu, 

fprtnU( ,n\ndepthlftl\t'"'~ll TlfI\tw@ll P(psi9)\tholdup\t\tflow 

typeln 'l 
fprinU(' 2!\n ·. h. TI . pi) 

for Titeution· I ' IO 

If Titeution 
cdeuiateT , 

~ • ~ + I, 
9u,,"sT2p2, 

T2eh~d· I ' 
while T2ch"c~·- l 

HB, 
h . h tde lUh, 
eh.c~T2 .... t ch' -

fprtnU(' . ~I\t\t . :Ih\t .Z!\t\tlt .~!\t\t sIn '. h. T2. p2. 

HL . type) 

xTl(k, Tlura tion) · TI , 
xh(k, Tit .. ration) ·h , 
xT2(k, Titeution) · T2, 

:~~:~: ~~~: ~:~~:~: : ~~: 
xQ(k, Tite ration) .v_In2· ... t, 
xdelt._h(~ . Tituation) • de lta_h' 
"delt.y (l: . Tlte .. tion) · _1'(pl_p2l ; 
"deltA_v_,"_s q(l: . Tlteration) · delt._ v _ ,"_sq; 

pl · p2, 



fpdntf(· ... c.\~\n 'l 

k s (Titera tionl - k, 

if Titeration -- 1 
1<10. ,, - );; 

else 
if max~);s ITiterationl 

x h l"",,, x : k . IHterationl, 1 1 _ xh(klnax, I ' , 
xT21"",,,x : k.(~1tentionl, 1 1 - xT2 llunax , 1.1 , 
xp 2 1);"...x : h(TituHlonl, 1.1 _ xp2(krnax , l l, 
xHL( knax: h(Tite u tion l, 11 - xHL(krn. x, I) , 
xQ (ma xtk. ITiteration), 11 _ xQI);",,"-x,l ) , 

"bex " IJunax:);.I Titention), 11 - ><vl"",,,x,ll, 

Tite utionl -
Titerationl -
Titen.tion) -
Titerationl -
Titerationl -
Tit"rationl -

H teu.tion) -

~~~:~:~~:~: : ~i~: ~:~~~~ : ~ 
Titerationl 
Titeution) -

Titera tionl; 
Titeration) ; 

itTiteration - - l 
if ", ... x(.b. (xT2(k, Titer&tion)-xT2(1:, Titeution- l) II ~O . l 

brea l: 

fprintf l '\n\n' ) 
i _hill:","",x , Titeution) _ T_hlI1,)uoax , 

plotHB' 
Hqure , 



dc, 
dur; 

for ~~n7 eOOOO:20000:160000; 1 

xp2QI'L1/20000-31_xp2Ilenq~h(xp21,Titen.donl; 
'~I _"p:(k~x , Ltuuicnl , 

xQQ Iq . l!~C-SI-xQ (I , Ta" n.t loni . 

'L1 - 80000'20000'160000: ) 

plo~ (xp20/).4 . $''L1/6 . 31 
xliobd( ' p r e u u r e (bual ' ) 
y l "bel ( , 'L 1 ( ",~ 3! d I . ) 



!prind( \r,\nd~pHlftl\.t> .. ~ll r(~I\tw@:l Plp.iql\tholduplt\dlow 
ty;o@\ n ') 
fprint! (' . ~~\ t\, . ~~ c \ t . _ fIn '. h, 11. pll 

k_l, 
xhll, Tite ntion) - 0, 
xT21 1 , Ti t e utionl - 0 , 

:~~:! : ~~~:~ : ~~ ~~: : ~ ~ 
xQ 11 , Titeutionl - 0 , 

pi _ p_TH' 
M~'J~dorn ~nd Brown 1u.raticn 

Tl _ T_ TH' 

Que u T2pZ , 
~agedorn a n d Brown ~.Hhcd 

T2che ck_l, 
... h lle T2check __ l 

HB; 

Do-claring value ~or p~ and T: for 

Run n1r.\I t~.e Ha~~do~n and Bro"n 

C.luldti"~ d~pl)' 
Checking It ;t.ution;$ needed tor 



fprlntil' ,::··'.t'>.t . :f,t··t :f\t t'··t . :I\<\t .'n ', h. n, p2, 

IIL.typct) 

xTl(k. Titeration) _ Til Sto n q ' valuu It m tb. run 
xh(k, Tit@tUlon) _h; 
xT2(k,Ttt"ntion) - T2; 
xp2Ik,'I'itention) -p2 ; 
xIlLlk,Titention)-HL; 
xv(k, Tlteration) - v_m2' 
xQ(k, Titeratlon) - v_m2'lItl 
xdelU h(k, Titeration) - d@luh: 
xdelh.Ylk, Titeration) _ - I '(pI-p2)1 
xdelu_v_,"_.qlk, Titeration) - delU_v_,"_sq: 

pI _ p21 ""d.rln~ · .. due for p1 &r.d T1 fer 

next H.9;~o:nT; ~d Brown luut:i.on 

k~ (TiterUion) - k; 

ifTit"ration - -1 
I:ru.x - kl 

el se 
if ksu~<ks(Titention) 

xh(klnoox : ksITHeution) , 
xT2(jcmax:k~ IT1teution) , 1) - xT2(Juux,1); 
xp2(larIax:~.(T1terat1on), 1) - xp2(kNx ,1), 
xHL(larIax : k.(Ttt"utton), 1) - xHLlkNx,ll; 
><0 (l<mo.x,~ .(Tit"utionl . 1) - xQ(ksux,ll; 

"hexv (l<mo.x : k~ (Tit@nt1on), 1) - xv(ksux,l); 

~h(k:kmlI.;<, Titeution! - h: 
xT2(k:klu.x.Titeution) - TBH; 

:~~:~:~: : ~!~:~:~~~~: : ~~~ 
xQ (~ : larIax, Titention) _ " m2 ' /lt: 
XV (k : kIna~, Titer.tion) _ ":,,,2: 

~~(l. Titeration) - 0; 
xT2(1, Tit~ntion) - x'l'2(2, Tite ration) , 
xp2(l . 'I'iteution) _ xp2(2 , Titeution); 
XHL(l, 'I' lt"rat!on) - xKL(2, Titeution): 
xQIl,'I'it"ution) _ xO(2,Titeration)' 

if 'I'it"ution - - 1 
if lIIu(abslxT2(~, Titeration)-x'I'2(k . Tlt~ration-l»)<O.1 
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fp r 1nU( ' \nlr. ' ) 
1_h11 1 : kmax , T1t~utionl • r_hi (l: kmo.x, 

pl otHB; 

'" 



dc ; 
char; 

"-.-1_4 60; bpd 

for Td _ 10 : S :20 
mAin 
xT2Td(1:kmax, Td/S_l)_xT211:kmax, Titeration l; 
xhTdll:kmax, T<l/S-l) _ xhn,kmax,TiteraUon ) ; 

forcolumn - l : 3 
forrow . Z:len9th (xT2Tdl 

H xT2Td(ww, column) · " O 
xT2Td(row, column) - xT2Tdlrow-l, 

"0' 
H xhTd(row, columnl--O 

xhTd(row, column) _xhTd(row_l, co lumn) 

NS 



plot tinal run ""ly .• 

• ubplotU,4,11 . plot((xT2(1'lenqth(xT21,31-l2I*S/9,
O. 304S -xh(1 : lenqt h(xT21 , 311 
yhbell· heiqht(ml 'l 
x h bell· rl'oCI '1 

. ubplot (1,4, 2 1 . plo t(xp2(l :lenq thlxT2), 3 1/H . 5 , 
O. 304S 'xh(1 : lenqth (xT2I , 311 
xlal>ell· plbanl ' ) 

.ubplotIL4 , 3 1, plot(xHL(l:lenqthlxT2),3I ,-

~i!~~;~~~;; l e nqth IxTZl, 311 

. ubp l ot (l,4,4), plot(xQ(1:lenqth(xT21,3)/O.00041, 
O. 304S -xh(l : lenqt h(xTZ) , 3)) 
xlabel(' ()(m'3Idl ') 



s~bplot(l, 7, 1 1 , plot11xT2U ' 1"ngth1xT2I , 11 - 321'S/~, 
O,304S'xhO,hngth1xT2 I,ll,' g ' ,' L, c.el,.dtl-, ' , 2 1 
ylabel l 'c.eight l:tlI ' 1 
xlabell ':! ''''::;I ' ) 

SUbplotU , 1 ,3), plotlxp21 1 '1 ~ n ~thlxT21, I I/H.5, 
O. 304e'xh1 1:1 ~ n g thlxT2), II, r' , 'Line',!id::o' , 21 
x hbel(' p lb a u, ' ) 



plo tKB , • 

• ubplot(l, 4, II, plot I (~T2-32I' 5/9 , -O .3048·~hl 

)'hbel(' h.,i~~t(~1 'j 

xhbe l(' t('oCI '1 

.ubplot(l , 4,21,plot(xp2l14.5,-O.3048 ' xhl 
dabOlU' p(baal' ) 

. ubplot(l,4 , 31 . plotlxKL, - O.30a·xhl 
xhbOl ll' HL ' ) 

.ubplot(I,4, 4 1, plotlxQ/O . 00041.-0 . 3048 ' xh) 
xhbell' OW·:l!dl 'l 

2<' 



i Descrlptlon I Filename 
w=m I ~a~~~ll:tes and plots the results of two different wax 

fo< i-I , lenqt~(xTZ) 

Zougar;. And Sop~o" Mod .. l Ccn~unt$ 

~l--~ : Ie-e l 
d __ 9 . s..6, 
Tmin _ -100: 
Tma x _eO , 

d~9~~~' C 
d .. 9' .... sC 
df~co;. v .. oooling rao .. 
cooling rat .. 

~OU9ui and Sop~ow Model ca lc".JIHionl 
cln - cl - (1'lMx - Tmin) ' «Tmax - Tmin) Ihr.U>da_eft) "n: 
c2n-c2/(Tmax- Tmin)"3 , 
dn - Tmi n /(Tmax-Tmin)'J I 
th~U - «l xTZli , Ti.teutton)-n) · (5/9» - Tmin)/(Tmax-Tmin)I 
K thHa _ cl n ' " xp(-I ' c2n/( (t heU+c3n) ' th"U-2) ·th~ta- ! n +l ) ; 

phi - lallllxl.a/larn.bda_eU, 
crystallinityl !i) - I - exp(-I-K_theu/(ph O'n) I 

B~gatin H a l. Model C.lcuhtiono 
ifi __ l .mqth (x T21 

dTdz _abo( xT2(i,Ti'"ra t ion)_xT2(i_ 
l , Ti~~~:tion) lab olxh(i , Titeration )-xh (i-l , Tit"ution» ) , 

dTdz _ a b 'lxT2(i , THeratl.onl-
xT2 I!~~, Ti t e .. Uon » l iObs (xh Ii, Titer.aticnl - x h (iH , T1t~ .. tionll ; 

crystalHnity2lii _ 1 - e xp(l - l ' C'! IIAT
xTZ(i , Titeution »'2)/ab.(dTdz ' x.,,(i , Titeution»I: 



MatriOn tor plcninq p'.rpono 
xT2><a,,(1) . xTZ(i,T1t .. rn1on): 
xh ... u(i). xh(i,T1t .. ution); 

s ubplotl),3,1) 
plot«xTZ ... ull ,I, 1511-32) ' 5/9, c r ys tdlinitylll , I,157» 
yl a b41(' Cryoullin,ty ') 
xlabd (' TI'oCl ') 

.ubplotll ,3,2) 
~i:~i~~;~~~g~~ : lS7)-321'5/9 , _O.30Wxhwu 11.1: IS7») 

yhbel(' Ooopth(mj ') 

s ubplot(I,3 , 3) 
plot(ccy.U1l1nHylll,I:157) , _O.304S 'xhwul)..1 : lS'l» 
xlabell' CrysU1Hni~y ') 
yhbel(' o.,pth(m) ') 

subplotll,3,1) 
plo t (lxT2 .... x(1,1 : 157)-n) · S/9 , crysUliinHy2Il,l,!S'l» 

~~:::i: : ;~~~~7;:1"itY ') 

aubplotll , 3,2) 
~~:~:~~;~~~~: " ~:1571-3WS/9 , _O . 3Q4S ' xhwu(l ,1 :157) I 

ylabd(' Do:pthl"') ') 

subplot(I , 3,3) 
pl"t(crys t .1l1n1ty21l , 1 : 15'l) , _O.304S ·xh .... xII,1:157» 
xhbel(' Cry.Ul11nity· ) 
yl ab<! i(' Ooopth(m) ') 



ApPENDIX B: HEAT BALANCE IN HORIZONTAL WELL 

COMPLETION 

,5> 



This report descrLbes the concept behind the heat balance calculatLons ut LLizedLn 

the horlzonlal 011 well slmulalordeveLoped as part of the rpsearcltwork d one by 

Thanyamanla (2009) 10 compute temperature changes in the lengtll of the well. 

whkh In turn was used to predict asphaltene precipitation. 

General equation derivation 

Initially. the undisturbed rpservolr has a temperature of T", . The temper atureof 

the 011. T .. . Is tltesame as T"" slnce they are In contaci fora longtime and hence 

have reached thermaleqllillbrlum 

Once the well Is drilled Inlo place and the 011 start llowlng.. the lemperatu reof the 

011 changes. This Is becallse of the following. 

(1) heatcondllctlonfromthereservoirthrollghlhewallofthewelltllblng 

(2) frictional heat production 

(3) eKpanslonUoule-Thomsoneffect) 

(4) Inflowofoll through the slotslocaled over the length of the horlronta I well 

In order to Incillde all the above aspects Into the energy balance. tile follow Ing 

general eqllatlon is used to caklliate the tola l energy in tile system 



The total energy Is a sum of the energy by convection. conduction and due to 

work. Convection Includes the kinetic energy and Internal energyofth emolecules 

comprising the system. 

Conducted energy Includes all forms of energy transfer due to the difference of 

temperature equilibrium. The difference In the temperature of the nuld and 

tubing wallis accounted by this. and can be written In the following general form 

with a general coefficient of heat transfer. 

; _ = -k.Vr 

The work done by the molecules In the system Is to oven::ome tensor stress. 

Tensor stress Is a combination of normal and shear stress. 

Cw= If' .q 

;r'=PJ+ f 

Substituting each of the above components breakdowns into the general total 

energy equation yields thc following. 
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A series ofalgebratc manlpulatlonsare performed on this equation to be able to 

simplify IL In the first step. the equation is substituted with the value 0 ftensor 

The term containing pressure Is multiplied by density in both the nume ratorand 

denominator. such that overall ithaSlheeffe<:lofmultlplyingby1. 

Inverse of density yields specHlc volume. This term Is then rearranged and 

combined with specific Internal energy term. 

From thermodynamics we know that sum of spedfic internal energy and the 

product of pressure and internal volume gives the specific enthalpy. This Is 

substituted in the next step. 



For fully developed flow, It is known that enthalpy Is the dominating term. Hence 

kinetic energy and shear stress terms are ignored. Thus the fo\\owlng equation Is 

ohtalned. 

This equation deocrlbes the energy transfer In the system. It can he applied to 

each dlocrete segment In the network/grid of the reservoir solver. The system can 

be dassifled by the direction of flow to break the calculations down - In the axial 

and radial flow directions. This gives the following equations. 

e_ =pqH 

~,_ =pqH+ Q 

These equations are in par with the physical system of the model. Following Is a 

schematic of the system used In model. 

. .•.• ~- Tubing 

Sionffi 

Figure: Reservoir Completion 
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The equations show that energy now in the axial direction Is due to the change of 

enthalpy In the fluid and expansion. The energy transfe r in the radial direction 

occurs due to both (1) the enthalpy of the fluid flowing in from the reservoir. and 

(2) heat transfer from the reservoir to the fluid In annulUS, which Is denoted by 

Q. 

Q accounts for the entire process of conductive heat transfer through the 

annuluswall,and then convective heat transfer from the inside wall 0 fannulus 

Into the nuld by convectIon. 

In the sections below, we work on further developing the above axial and radial 

energy equations. 

In the axial energy transfer equation. the enthalpy tenn can be expanded to show 

a change in temperature and Joule-Thomson expansion as shown below. 

;...., "' pq!J H 

~ ..... "' IXiC,(T -r )+q(l - fJTXp- r ) 

Joule-Thomson effect describes the change In temperature due to a pressure 

change. This physical effect Is widely used for liquefying gas. For example. In 

order to liquefy carbon dioxide, the gas Is passed though a nozzle from high 

pressure to low pressure. The expansion causes the gas to cool. When suffiCient 



pressure drop Is applied,we get enough temperature drop to ronvert to liq uld. 

Forothermaterlal,the pressure drop can cause Increase In temperature. This Is 

determined by the specific Joule-Thomson coefficient, which Is described below. 

The above equation can be rearranged to be more suitable for our purpos e. 

The left hand term in the above equation appears In our axial energy transfer 

equatlon. If we substitute It in, ItyLelds the following. 

; ..,., = pqc, (r -r' )+{ - KnPC, Jp-p" ) 

1;_ 0 NO,!T - r )- NC, Kn(p - rj 

In simHar fashlon. the equation for energy transfer In radial direction can be 

expanded. 

;'_= P'I~H+ Q 
; ....., = pqC ,(T- T' )+A,U(r. - T.) 

Unlike In the case ofalCial heat transfer. Joule-Thomson expansion Is ignored for 

radial heat transfer. Also. the outside temperature. T"' .lsassumedtobethesame 
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as the reservoir temperature. Thus. our final radial heat transFer equation Is 

shown below. 

Equation de rivation for model grid 

In this section. the general equation derived above Is applied to the speclflc grid 

network used to model the flows In the producer tubing system. The Following is 

Ihe schematic of the producergrld. 

~J'-"=f:j '." "'. 'I ~-"M~' 1<.., 1(, 1(, 1(, 

Annulu. 

'. - Tu bi"lg 
Ilotto>mIlOle N 1'1-1 3 2 Se9ment1\ 

~r. T", 

Figure: Completion grid 

The heat balance system Is applied to each segment of the grid. Looking at the 

annulus.thesourcesofheatlnfloware (l)theheatln thefluidinthesegment.(Z) 

the heat in the fluid coming in from the reservoir {radial flow). The he at outflows 

due to (I) fluid transfer to the ne~tsegment (axial flow). and (Z) fluid transfer 



through the slots Into the tubing (radial nowj. This gives the Followlnge quatlon 

for segment 1. 

Previously. equations were made rorheat transrer In axial and radia l directions. 

When applying these equations to the above balan(e. thlsyields t hefollowlng. 

If we do a mass balan(e at node 2,theequatlon looks as shown below. II( an be 

rearrangedlosolvefornode1parameters.whkhlsthensubstlluledlnthe above 

equation. 

p,'l,= P,'l,+ P,q,-p.'l. 

p,'l, = p,'l, - p,'l, + P.'l. 

Upon subslltutlon. we gel the following equation. 

LE...-- -(Pl'l' H,-p,'l, H,+ P.",. H, )+(p,,,,, i(l+Q, )-(P,q,HI )-(p,,,,, HHQ.) 

Lt:...-- cp,,,,,( H,-H')+ P,q,( H,-H,)+P'''''( H, -H. )+Q, Q. 

The followlngassumpllons are made at Ihlspolnt: 



(1) Enthalpy of the fluid at the annulus segment (H,) Is the same as the 

enthalpy of the fluid going down the slots (H , ),Thls Is because part of the 

fluid at annulus segment goes down the slots. 

(2) Q. ls zero, because there is no heat transfer from thewallslntot he slots. 

After applying the above assumptions and using the appropriate expansion for 

enthalpy, we get the following equation. 

r.E_ =p,q,[C,(T, - T, l+C, Kn (i~ -PJ]+ p,q, [c,(1; - T_l]+Q, 

r.i.'_ =p,q,[c .(T, - T,)+C. K".{p, - P,l]+ p,q, [C.·,(I; - r", l]+ A,U(T,... - T.) 

This Is the final equation that Is used for energy balance. In the steady state 

system we are concerned about, the sum of the input and output would be zero, 

i.e.thelefthandSldehasavalueofzero 

The equation uses parameters that can be obtained from tables and from data of 

the reservoir. However. special calculations need to be done \0 get the value for 

U. This Is described in details in the next sedlon 

zo" 



A point to be noted Is that the flnal equations were obtained using only annulus 

segments. Similar equations can be setup for nodes In the tubing as well. Thus for 

a well with N segments. we get 2N equations. However, we have 2N+ 1 

temperatures to calculate. This is dealt with by assuming that node 1 

temperatures are known to be equal to the reservoir temperature. 

Also to be noted is that the equations shown In this document are for only single 

phase. Asphaltene precipitation was described for a two phase system. This can 

be Included by taking Into consideration the specific heat capadties and flow 

rates of each phase in the energy equation. 

Calculatlng U 

This metOOd was developed by Dawkrajai et al. (2005). U Is the convective heat 

transferooefficient from the wall to the fluid. It is described as follow s 

u . -'-'J~ (T. -T, )A 

Where, Q Is the heat being transferred, A is the heat transfer surface area. The 

temperature difference Is the only unknown. In the next parts, th eobjectiveisto 

get an expression to calculate the temperature difference between the bulk fluid 

inside the tube and the Initial reservoir temperature. Following Is a schematic of 

the heat transfer layers. 



"--~2:=f' " ~ .. :.. (casing. conduction) 

T. (rubing,COD>'cc!ioo) 

Figure: Temperature proflle In the completion and surroundings 

The heat being transferred between each layer Is assumed to be same, I.e. no heat 

loss. This heat is denoted by Q. The following equation shows the conduction 

differential equation (Fourier's law) betw~n the outer wall and casing. It is then 

integrated. 

Q = -21T(1- r)u , q; 
QI7.d~= - 21f(I - y)k, 'rdT 

Qln( 4t ) = -21r(I - Y)k,(T_ - 7;.) 

Similarly,theequationforheattransferbetweenthecasingandcement. 



Q = -211"(I - r)rk_q; 

Q I ~.dr =-211"( I - r)k_ldT 

Ql{!!;-) =-211"0 - r)1-_(T, - T_) 

The condllctlve heat transfer between the cement layer and bllik nllid Is given by 

the fo li owlng eqllatlon. 

Q =-211"(1 - rl Rh(T, - T, ) 

NowweareabletocakulateT,- T, asfoliows. 

e{R=] 
T,- T, = T, +~-T_ + 211"(1 - :~_ 

Ol{i<",.] 
T. - T =_O_. __ R_·_+ T _T 
, , 211"(I - r)Rh 211"(l - r)1-_ ' --

Subslitutingintheequation forT,-T_ yleldsthefoliowlng. 



Substituting this temperatore difference lerm lnlO the original U equation gives 

the Following. 

UI_'=~ 

In order to calculate the value For It In the above equation For lamina r now. weuse 

the following equation. 

1t = 3.6S6~ 
2R 

For turbulent now. we need to calculate the Nu number before we can calculate It 



NU = O.023 ReO' rrU'(p:) 
h = Nu.t 

J 
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