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Abstract

The work focuses on the stability of steady state and local bifurcation analysis
in partial differential equations with different delays. Especially, a neural network
model with discrete delay and diffusion is proposed in the first part; a diffusive
competition model with uniformly distributed delay s studied in part 2. An
extended reaction-diffusion system with general distributed delay is treated in

part 3. In the last part, a Nicholson's blowflies model with nonlocal delay and

For a diffusive neural network model with discrete delay, by analyzing the
distributions of the eigenvalues of the system and applying the centermanifold
theory and normal fom computation, we show that, regarding the connection
coeffcients as the perturbation parameter, the system, with differentboundary
conditions, undergoes some bifurcations includingtranseritical bifurcation, Hopf

bifurcation and Hopf-zerobifurcation. The normal forms are given to determine

In

with discrete delay. We study a competition diffusion system with uniformly

distributed delay. The complete analysis of the characteristic cquation is given



And via the analysis, the stability of the constructed positive spatially non-

fon s obtained. Morcover, the occurrence of

homogeneous steady state sol
Hopfbifurcation near the steady state solution is proved by using the implicit
function theorem with time delay as the bifurcation parameter.  Finally, the
formuladetermining the stability of the periodic solutions is given

‘The uniformly distributed kemel is only one of the widely used time kemel
Itis natural todisclISS more general time kernels. We consider a class of reaction-

diffusion system with general kemel functions. The stability of the constructed

postive spatally non-h steady state solution
erat kernels by using the similar method in part 2. Morcover, taking minimal

time delay as the bifurcation parameter, we can not only show thee
Hopfbifurcationsnearthesteadystatesolution, but also prove that the Hopf
bifurcation s forward and the bifurcated periodicsolutionsarestableundercer-
taincondition. The general results are applied to competitive and cooperative
systems with weak kemel function

In many application models, if individuals move, it is more reasonable (o
model delay and diffusion simultaneously, which induces nonlocal delay by em-
ployingBriton's random walk method. We study the stability of the uniform

steady states and ofdiffusive Nicholson's
i h

obtained the global stability conditions at the constant stcady states, and dis-
cussed the local stability. Moreover, for a special Kernel, we have proved the

andgiven formula

indeterminingstability of bifurcated periodic solutions.
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Chapter 1
Introduction and preliminary

Nonlinear dynamical systems are ubiquitous in biology, chemistry, enginceriog,
s a vast literature on theap-
119.20,21,29,

ccology, economics, and even sociology. There

plication of nonlinear dynamics on thoSedisciplines (see

33,36,39,40,49,62,63,66,73,74,75,76)). The mathematical analyss of
the dynamical models in science and engincering makes the systematic study
of complex nteraction between fictors available, and deeper understanding of
the entirety of processes that happen in systems s therefore possible. Indeed,

nonlineardynarnics and other science fiekds has brought great benefit for cach

other.
developments in mathematical theory is also stimulated by its application([88))

The qualita for models in
ity and complex bifurcation behavior, which are two of the fundamental tasks in
dynamical theory. Studying the stability determines whether the systemsetUes
down 1o equilibrium or keeps repeating in cycles. A dynamical system usually

has several independent parameters. With the varying of system parameters



the stability can be lost, then the qualitative properties have significant change

Bifurcation theory is amain theme of dynamics. Inapplications,thebifur-
cation theory attempts to explain various phenomena that have been discQuered
and described in natural science. The principal theories for dealing with local bi-
furcation analysis at fixed point ar the center manifold and normal form. Both
of them are fundamental and rigorollsmathematical techniques, whichingen-
eralareused to reduce the dimensionality of the system without changing the
dynamical behaviors

Before the time of Volterra (72], in most applications, one assumed the system

under consideration was independent of the past states and wes only determined

by the present. However, it is getting apparent that the principle of sciiing
models in the form of ardinary or partial differential equations, is often only a
first approximation o the considered real system ([28]). Andinsomecases,itis
more realistic to include some of the past states of these systems, ie.  system
should be modeled by differential cquations with time delays. Indeed.aftereffect
arises from various causes such as presence of time delays in actuation, and in
information transmission and processing of controlled signals, hatching period

of species, duration of gestation, and slow replacement of food supplies (see

cg [8,37.38,61,77]
surrounding world. Since last centuryl the study and application ofthe aftereffect
have developed and spread 1o a remarkable extent in biological, ecological and
control models, etc. (see e [5,50,51,89]). In some cases, it turns out
that only certain past events influence on future ones, for which the discrete

delay can be used to describe the hereditary systems with selective memory. For



example, discrete delay is  good approximation in control theory, whenitmodels
a feedback signal transmitted as a nerve impulse [78]. But in other disciplines,
discrete delay may ot be  good choice and spread of the delay around some.

Iuei.e. adistributed.del F I .

of an environment by dead organisms is a cumulative effect 126]
In many disciplines. the dynamical models are in the form of reaction diffusion

equations since individuals under consideration are allowed todiffusespatially

(152,60]}. Forinst:

most species have the tendency that migrate towards regions of lower popul
density ([14]). The scemingly random movement of particles suspended in a fluid
e " is described by

a reaction diffusion system in particle theory ([4))

is very

natural to make the model closer to the reality, and the partial functional differ-

ential equations (PFDE) is applicable. In population ecology, the logistic equa-

tion with delay and diffusion s proposed to describe a single speciesdistributed
uniformly in an isolated environment ([S4); a three-compartment model with
diffusion and delay in one space dimension ariscs in modelinggenctic repression
(@

In most of the existing literature, investigators simply add a diffusion term
‘o the corresponding ordinary differential equations. Recently,someresearchers
pointed out that diffusion and time delays are not independent of cach ather,
since individuals may move around and should be at different pointsatdiferent
times (26]). Britton [ s the first one to model delay and diffusion simul-
taneouslyviarandom walk method for a Fisher equation on an infinite spatial



domain, in whicha so-called spatiotemporaldelay o nonlocaldelay isintroduced
(see, g [22,25,70,80,81)

fusion system with delay has been extensively studied by many investigators (see
67 77) and references therein). The abstract form of reaction diffusion equations
with time delay is

B aDu) + ey + Flew) w0y

whereu = (uy,++- ,up), w(6) = u(t +0), ¢ is a parameter, & > 0, Dis the
Laplacian operator, dom(D2) C X, X is a Hilbert space of functions, and

linear operator and Fanonlinear function. Without loss of generality, one can

assume that F(e,0) = 0.and DF(..0) = 0, ie. there is an equilibrium point at

the origin. Furthermore,F(, ) has the Taylor expansion near trivial equilibrium

Fle,u) = Fale,u) +ofllu

(102)

where £, is an n multilinear mapping

In [71), the existence and stability properties of solutions to (1.0.1) are in-

tigated . stableand hyperbolic
cquilibrium of (1.0.1) wete considered. Based on this work, Lin, So and Wu 144!
developed a center manifold theory for (1.0.1). Later, Faria derived a method
to obtain the explicit nomal form of PEDE (1.0.1) by relating the PFDEto a
corresponding functional differential cquations (FDE). In 117 with the following
hypothesis (HI)-(H4) (sce also [44]. 48] and 7)),

(HI) dD’ generates a Co semigroup T(t) g on X with IT()] < MeW" for M 2 1,
weRand t >0, and T(f) isacompactoperatorfort=




(H2) the ei ons {4 )2, of dD?, wit i {Be}izo

form an orthonormal basis for X and § — -ooask- 00;

(H3) the subspaces By of C. Bu=span{(v(-),B)Bklv E C) satisty L(B,) ¢
span{Bel;

(H4) L can be extended to abounded linear operator from BC 1o X, where

BC = {: [T, §— X|¢ is continuous on

20), 3 limg.g-¥(0) £ X),
with thesuperemum norm,
the normal form is proved to coincide with the normal form for a FDE associated
withthegivenPFDE, upto acertainorderofterms
In 116], a moregeneral case isconsidered.i.c.. Ldoes notsatisfy(H3). but

ofap?

that Lu, for Yu E dom(L), can be cxpressed as sHoear combination of the
generalized cigenfunctions. For this case, the assumptions (H2) and (HS) can be
replaced by

(H2) let (8 k€N,

cigenfunct

= 1"" pa} be the eigenvalues of dD2 and Ff* be
us comesponding to (51}, such that {5 1k ENix = 1. .PK

(H3') thesubspaces By ofC, By=span{(v(-), 5)A'lv E C.i, = ..., .p.}
satisfy L(B,) ¢ span{@}, -6}

Withhypotheses(HI), (H2'), (H3'), (H4), the author showed thedecompo-
i applicable for the local stability

sifion of the characteristic equation, whi
analysis of constant steady state solutions. The characteristic equation of the

linearized systemofPFDE (10.1)

\y = dD% — L{e,e*y) =0
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lent 1o the sequence of cquations

for some nonzero y € dorn(D?), s eq
det&y(X) =0, (KEN).here

Ba(N) 1= AT = M= L6, ),

M = diag(8},-- ) and Li(e,) = (Lh(e, ), , LE(e,0)

satisfying

for o= (1, ,¢n) € Cp = C([-7,0,R™)

On B}, the lincarized equation
4 ?
0 = D0 + Lesu)
is cquivalent to the FDE iff) = M.2(9) + L.(" =) on G Let
Aw= [NEC: X isa solution of detAy(A) - 0 with Re = 0]

and A = Ui, Ak, for some N EN. One can assume A # 0. Otherwise, there

exists only astable and unstable manifold, and the dynamical properties are

quite clear. Then decomposing Cp a5 G, = Pu@Qu, Where By = span(®,}
o

the phase space of PFDE (1.0.1) can be decomposed by a projection 7 : C — P,

P Imr, Q= Kers and for  EC,

@




@4, (90, AN )b

(¥ = I, (). heing thehilincar form (307

According to 116, Theorem 4.1), if another hypothesis (HS) holds
(HS) (DFy(u)(@B?), 8} = 0.¥u Ep. Vi E C{[-r, 0] )

for 1< <N, 1<in<Pr | >N and 1<i; <7 then the normal forms of

thePFDE(1.0.1) and its associated FDE arc the same, up to at least the third

order terms on the center manifold. The assaciated FDE is defined as
0= Rex) + Gox) (103

where (1) = (@)l with x. ER™. and Re).Go) : €y — R with J =
Siape are

Rie,9) = (Mupn(0) + Lule, pa)er,

Sle) = (Fle Y (Bl 50%) o), BN
=1

for p=(p. ... on)T € Criu = (k- 92 € Gy N

Faria's method is very useful for theoretical analysis of many kinds of bi-

weations, including the important Hopfbifurcation which is marked by the
appearance ofa small periodic orbit near the steady state. Besides using Faria's
approach, weean also employ the method in 131] for Hopfbifurcation, which
needs 1o obtain a center manifold first. Suppose that when parameterf = eo
the characteristic equation of the linear equation of (101 has a pair ofpurely

-
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respectively, for iwn. The adjoint cigenfunction isq, the nonlinear functionf

has Taylor expansion as (10.2) withn=2. It is well known that
Xe=X@iX = {z +izlz, 2 € X}

has a decomposition as Xc = X' @ X' where X' =

2+ 3l E C) and
X' = (W E Xef (") = 0). Then u can be written in the form

where w E X" According 1o the decomposition, the system (1.0.1) becomes

&~ @ F@n T ),

d
S = el s Bz

Tow) = o, 2+ Fq+0)~ (", FiED, 20+T0+u))g—{g", FIED. 2q+T74u))]

W= WZ FwnzEtugd +O(2l'),
HEZw) = Hiz'+ Hust+ Hy® +O(12f)

Then the system (1.0.1) on the center manifold is

inst (¢ FOa) =iz + 50 JLF O (104)
st
@"F.(q.9.40%),  gil = (0", Fa(@,, do) + Fa(@,9, %)),

2. @ hEaw), 2

= (6" Falwn, g, }o)+ Fa(wm, 7, 20)+F3(0,7, o))
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dz
Gt

BE
&

dw_de
Letokow +H = 7 = 7'

L0o)lxs(wa02” + wn12% + wea??) + H20Z + Hyya% + Hoa¥ +hoot
= (w2 + wnZ)(iwnz + (0", F(do))

HVIZ+ weg¥)(iu? + (@, F)), 103)
bycomparingthecoeflicientofzandzzon both sidesof(1.0.5),we have

wan = (iwol = L(Xo)|x+) ™ Hao,

wn =T and wi =L |x(d)(Hn),

where Hy and Hy are defined as

Hio = F(g, 4. %) = (4" F.(. 4. %)) = (T 0.4 2o,

HI = F@T%) % Ful@g. 3o - 1" F0.7,%)
F(g.9.20)a= @ F.(4.3,%) + Fa(@, 4. A3

With W20.wiwoz determined as above, the flow on the center manifold
(1.04) is obtained. One can find a transformation

. &
EronS +ant oy




under which (1.04) can be transformed into the Poincare form.

o + i (O)EIEP + O(),

. ol om
(0= el 219,10 L) 4 2

The bifurcation direction and the stability of the bifurcating periodic solutions
are determined by jy = —zhRe(ci(d)) and Re(ci(Ao)) respectively. The
bifurcationissupereritical (subcritical) if g >0<0); thebifurcatingperiodic
solutions are stable (unstable) when Re(es(do)) <0(=0).

In thepresentwork,westudy models of neural network and populationdy-

narmics in the form of (1.0.1). In the following we will describe the models

In Chapter 2, we consider a model including a pai of neurons with time-

delayed connections between the neurons and time delayed feedback from cach

= d.D'u-u() +al(u(t-r)) +b/(v(1-r)),
= dD— vy *al(v(t- 1) +b/(u(t=7)) (106)

EENE

The recurrent neural networks such as cellular neural networks (CNNs) and
delayed cellular neural networks (DeNNs) are widely used in some image pro-

cessing, quadratic optimization and pattern recognition problems ([12][131[58)

imvolved in the modeling of the biological neuron networks or artificial neural
networks. Since time delays may lead to bifurcation, oscillation, divergence or
instability, the study of dynamic phenomenon of delayed problem is important



for high quality neural networks. In [§6], by considering a neural network of
four identical neurons with time-delayed connections, Yuan and Weigavesorne

anddiscussed

the oceurrence of pitchfork bifurcation, HopfandequivariantHopfbifurcations.

For more study of dynamics of delayed neutral network systems, sce 184,86] and

Most previous work did not consider the effect of diffusion in neural net-
works. However, with the movement of neurons the diffusion is unavoidable.

F I

when electrons are movingin asymmetric electromagnetic fields. The sability of
neural networks with diffusion terms, but without delay, have been consideredin
litrature (see ¢z PLIILI, [151132). Recently,the problem of delayed neural net-
works with diffusion terms i attracting some experts'attention. In 3L Caoand
Liang gave new suffcient conditions for existence, uniqueness and global expo-

nential stability of the equilibrium point ofaclassofreaction-diffusionrecurrent

neural networks with time-varying delays. By constructing suitable Lyapunov

functionalsand utlizing some inequality techniques, Lu 145] analyzed the global

exponential stability and periodicity for a class of reaction-diffusion delayedre-
current neural networks with Dirichlet boundary conditions.

The model (1.0.6) is based on the model in ($9) without diffusion. In 1591,

Campbell and Shayerconsidered a model with multiple parameters for a pair
of neurons with time-delayed connections between the neurons and time delayed
feedback from each neuron to tself. They showed conditions for the stability

of the trivial solution. Moreover, they analyzed possible bifurcations that may
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of three types of codimension-two bifurcations.

I our work, we investigate the stability of the fixed points and bifureations
in (10.6) under dilferent boundary condition by computing the normal form and
trying to find out theelfect of diffusion on the model by comparing with the
result in (391, We can check that with dilferent boundary conditions, system
(106) satisfies the general assumptions in [161. S0 we will folow the work of
ligttodothecomputationandanalysis

In Chapter3,weconsideroncofthemost interesting and applicable popula-

tion models, the competition diffusion model with delays in the following form

- -
= w7 KO- 0200 [ KON-0.040)

R

- Dkt [ KO- 0,2)i0<a [ KIOW(t-0,9d0)1.0.7)

di,aq,by,¢; (i=1.2) are positive, and the kernel function Ksatisfies
[ ko =1

With different kinds of kemel functions, especialy the delta function which
corresponds 10 a discrete delay, system (1.0.7) has been investigated and many
interesting dynamical results have been obtained (see, e.g. [171and references
therein). Althoughthe diffusioneffect isconcerned whendealingwith the local

stability and bifurcation problem, most of the research focused on a spatiallyho-

dy state solution. steady state solu-

tionofsystem (10.7).by Billowingaroutinecalculation, one can decompose the

Leg
[17,341). But as for the spatially nonhomogeneous steady state solution, there




are only a fiw works in literature because the decomposition ofthecharacteris-
tic equation is unavailable, which makes the analysis mucbmoredifficult ((61)
By using the implicit function theorem and technical construction, Busenberg
lfully overcome the obstacle of the analysis of characteristic
equation and investigated the existence and direction of Hopfbifurcation near

and Huang in 6) s

a spatially non-homogencous steady state solution of the diffusive Hutchinson
equation. Motivated by the method in [5}, some researchers investigated the dy-
namical behavior for some particular systems near a spatially nonhomogencous
steady state solution. For example, in [3, for a coupled competition diffusion
system, not only the Occurrence and the direction of Hopfbifurcation, but also.

the stabiliy of the in [68)
based on [6 with a general time-delayed growth rate function is discussed; and
in [42] the authors showed the existence and properties of Hopf bifurcation for
a cooperation system. It is noticeable that all the models in (6. 42}, 651 and
[90] are discussed with discrete delay. To our best knowledge, there is little dis-
cussion (12)) about the bifurcation behavior near the spatially non-homogencous
steady state solutionofmodels withdistributeddelay whichis foundto bemore
realistic and accurate in some cases ( [7, 10.231). Tn [2}, the authors show the
existence of Hopf bifurcation near a spatially nonhomogeneous steady stateof a
kind of reaction-diffusion equation with uniformly distributed delay by using the
techniques in 16]

In this chapter we consider the dynamical properties near a spatially noo-
homogeneous steady state solution of system (1.0.7) with a simple but widely
wsed kemel function-uniform distribution, i, the Kemel function inthe form



PO 4 r<0<i+n 720, §>0)
O.otherwise.
The homogencous Dirichlet boundary condition is imposed in the system
(10:7), which means that the exterior environment is hostile and the species

cannot survive on the boundary or outside of the domain. Let d; = dya; = a
(i=1,2) for simplicity. After re-scaling, system (1.0.7) becomes

))dé)

- dl]’mﬁuu-/—‘%1h,u41—l‘z)+mvh
< a0t [ Yot-o,2)rentt-0,0)0), 0. 0<x<x
U0) = ) =0 = ol =0, ¢20,

2P 2

@y = (P ~(r+8<t<0, 0<z<w 1.08)
We keep the assumption
(CS) bifer>1>eifby

to ensufe that the spatially non-homogencous steady state solution (s, ug) con-
structed is positive and stable for > d = §-

We employ the method analogue to that in [2,6.42,68,90]. Existence of
positive stcady state and Hopfbifurcation are addressed. The analysis of the
distributed delay models is ot just simple and parallel to that ofthe discrete
delay ones because of the complex calculation and tough analysis of stability of

the spatially non-homogencous steady state solution.

InChapterd,



delay s proposed. We consider a model in the following form

u
%
»
a

= dD%+Bu(z,) / K(O)fi(u(e,t — 0),v(z t - 6))dd,
= dDv I3 / K(O)alu(z,t - 6), vlz,t - 6))do,
Wh0) = wt = vt 0) = veE) =0, 120,
W) = [(pnea), (1.x) E(-000] x [0,7]. (1.0.9)
In this chapter, we will investigate the tability o the spatally nonhomoge-
neous positive steady state solutions of (10.9) and Hopfbifurcation when the

stability is lost with the varying of the minimum time delay 7. We call a Hopf
bifurcation liforward” if there exist periodic solutions for parameter Tsatisfying

Denote $0) =t L, B) = Jiv RO = Suder FHO) =t e and
Jiow (= 1.2). We study Eq. (1.09) under assumptions

(G) SulOfp(0) 20, ij= 12, i#]
(G) (frun = S fren =

Assumption (Cy)

posed since it guarantees the simplicity of pure imaginary
cigenvalue and is satisfied for many population hiologicalmodels. (Cy) is required
to make sure the existence of pairs Ofp0Sitive steady state solutions. Especially,

we consider the following four subcases of (G,)
(CF™) frun = faue <0, frue = fion <0 804 fovefrse = fronfone >0,
(CF7) frun= fawe >0, frue = froe >0 80 forefrve = frvofrwe <0,

(€27)  frue = foue <0, fove = f100 <0 804 fovufrue = froefrue < 0,
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(G fU - fow> 072, 7. >0 and Fowfiue = frvnfrue >0,
We mainly discuss the first two cases hy following the basic framework of16j

and [90]. The last two cases can be studied in the same way and similar results

[nChapterS, we study diffusive  icholson's blowflies model withnonlocal
delay. Gurney [27] modified Nicholson's model and made it more realistic, which
is later referred as the "Nicholson's blowfles equéion”,

@
]

—dD%u(t) + pult ~ ) expl-an(t - 7, (1010

which the blowfly population reproduces at its maximun rate, § is thepercapita
daily adult death fate and 1 is the generation time. To explain interactions
among organisms: the diffusion effect was introduced in [65, 83], the authors

extended (1.0.10) to a diffusive form and via a rescaling

1 F=ér, B=plh

o
BF = 4D, 0) = 7z, ) + Brife,t - Dexpl-ia,t~ 1] (1017
The global stability of the cquilibrium of (10.11) with homogencous Dirichlct
boundary condition is studicd in [65] and the existence Hopfbifurcation and its

properties under Neumann boundary condition is addressed in [$31. Especially,

the oceurrence of steady state bifurcation and Hopfbifurcationat positiveeq

libriumareinvestigatedin I67). Based on (1.0.11),adistributeddelayisusedby

Ruan and Gourley (23 in the equation

Gt or [ 16 st savespt [ =t i (1012



for (x,1) E £ x [0,00), where @ s cither all ofIR" or some finte domain, and

the kernel satisfies f(1) 20,
i /‘z](:)dt:. (10.13)

[

In their paper, the global and local stability of uniform steady statesaremainly

studied. Especially, for the global stability, energy methods and a comparison
principle for delay equations are employed.
By using the random walk method [3,25),onccanincorporatetimedelayand

spatial diffusion simultancously. In the present chapter, w¢ consider the modified

BB ) g e (1040
for (t.x) E [0,00) x 10,], with initial condition

u(s,z) = ¢(s,2) 20, (s.x) E (-00,0x 0,7],
and homogeneous Neumann boundary condition

ou
=0 0 x=0"

(gw)(tx) f / ( e“'"“"mﬂ(ﬂz)wﬂ(nv')/ll\)u(v\)dw/\

£(¢) satisfies conditions in (1.0.13) and it is easy to see that [
1

Jo 9(s,2,y)dyds =

As far as we know, the main topic in most of the literature about (1.0.14) is

about traveling wave. For example, in [41] the existence of travelling wRve-front
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solutions of (10.14) is established.  [19] proves the existence ofnon-monotone

traveling waves from the trivial solution to the positive equilibrium of (10.14)
Works about the dynamical behavior around the uniform steady state solutions
are few. So, our main purpose is to investigate the stability of two constant

steady states and possible Hopfbifurcation when the stability is lost.




Chapter 2

Stability, bifurcation analysis in a
neural network model with delay

and diffusion

consider n model including

a pair of neurons with time-delayed connections between the neurons and time

delayed feedback from cach neuron to tself,
& D) +al b1
7 d,D'w-u(t) +al (u(t-r)) +bl(v(1-r))
G - @Dt ral(v(t-r)) tbl(u(t-r). @on

where @b denotes the feedback and connection strength respectively, 7 is the

edback function

timedelaY.ds andd arediffusioncoefficients, the nonlinear

rality

J: R = R is smooth enough with 1(0) = 0 and without loss of
1(0) = 1,17(0) # 0. Moreover, we denote ¢ = (g, @) E C(1-r,OLIR),

&= (7@ EC KEN,n ENU{0) = No, Vi = (LD, ¥, = (1,=1)T and



¢
=) fihedelay
ts
G = da = 1. "The work of this chapter is the main content of 41 which will

‘appear in Expanded volume of Discrete Contin. Dyn. Syst.

2.1 Neumann boundary condition

First, we consider (20.1) with ~ eumannboundaryconditionin
X = {(u.v): u,v EW(0,7), dufdz  dv/dz — a at x = 0,7},

with the inner product (- induced by that of the Sobolev space W23(0,)

SettingW(1) = (u(1),v(1)j Tandusing Tayiorexpansionaithetrivial equilibrium
point, (2.a.1) can be given, in abstract form inC=C([-r,al;X) as
dwidt = DW() +L(W) + F(W), (@19

L(@) = ~3(0) + 33(~)

F(@)=

2 S Bl-n 0/t

The cigenvalues of the Laplacian on X are 6 = ~(k _1)' = 8u,iy = 12,
with eigenfunctions } = (1,0)7 and B2 = (2, 1")T, respectively, for
cos((k — 1)z)
7.0x) = | osl(k =Tl
(HI)-(H4) hold with .2, snce the linear part L() of (2L1) satisfies

LioBitoad) = " Yioor(—r)BR
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i of(2.1.1

detDa(N) = [M+(k=1)+1-(a—bJe™|[A+(k—1)*+1—(a+b)e™>] = 0. (k EN)
A€C is an eigenvalue ifand only if fo some Kk
PEN) =2+ (k-D)'+ 1-Ce™ = 0

with € = a=bor C = a+ b We frst analyze the distribution of zeros of P&
with zero real parts. Let A = it,t E R. By comparing the imaginary and real
parts of PA(it), we get a parametric system as

€)= (U + (k-Dy)cos(tr) ~rsin(ir) and ImPyit) = 0

To salve this system, we consider its corresponding curve 1y determined by
80 = ClY nd T = (1+ (k- 1))sintr) +tcos(tr). Let o) = T()/8(1)
ThenO'(1) > Ofor all ¢ EIRsatisfying8 (1) # 0. Thusr, moves counterclockwise
around the origin in the (8,T)-plane. It is easy to see that at a sequence of
critical values {8}, with # = 0,68 E «2n = 1)w/(2r),n/7), T intersects
with 8-axis at (C4,0). Since

80 +T'(0) = 1+ (k= D)+ 1, G = (=00 (k= 1Y = (42

and {ICHllnere is an increasing sequence. Obviously G4 = 1+ (k - 1)’ and
(=1)"C} >0, hence the following result holds

Lemma 2.1.1 (see Figure 1) For some k, (i) P4(X) has a simple pair of purcly
imaginary roots &ith if and only if C = €4 for n # 0; PA(X) has a simple zero
o0t A =0 if and only if C = C3;



(ii) PE(N) only has roots with negative real parts if C¥ < C < G¥; 21 +1) roots
with positive Teal parts ifCliag S C < Clyyyi 21 1 00tS with posiive rea parts

FCH<C<Cha IENo

Proof. () From PA(N) = 0 and (PA(NY = 1+ Cre™™, P/(&ith) # 0 and

PI(0) #0, () s obvious from the process to form X
(i) First, A is a continuous function ofC according 10 the implict funetion
theorem. 1 C = 0, PA(A) = 0 has only one root A = (I + (k- 1)) < 0
Moreaver, differentiating PA(A) = 0 with respect to C, we have
P
C = LiCreshe:

By computation, sign(Relo-cy) =sign(CA). Hence, as C increases to Ci=

I+ th-1)" > 0, only one root of P =0 is.cro while the others have negative

ral parts; when C fies between G4 and C4, P has one zero with positive real
part while the others have negative real parts. AsCreachesC;,apairofcomplex
roots of P% = 0 have zero real part and one has positive real part while the others
have negative real parts; when C crosses Cf, P4 has three zeros with positive
real parts while the others have negative real parts. Similarly, we can finish the

remaining proof. 0

Bt BoR' BY Bsth
other A Rer <0 nu'«: ahe A RAZS
fwoA: Bed > 0 ex
L her A Rex < 0 'J—mu e X8 ‘|
a

c o




CHAPTER 2. NEURAL NETWORK MODEL

In order to study the dynamical behavior in (2.1.1), we need to discuss the
distribution of roots in detAu(X) =0. PA(itk) =0 gives us th/(1+(k_ 1)) =
tan(thr), th < 64*, and [CA] < C}*!]. Thus we have,

Theorem 2.1.2 (See Figure 2) For the ehameterisie equation of he lincaized.
equation of (2.1.1) with Neunann boundary condition.

(0 all cigenvalues have negative veal parts if and only ifC: < a+b< G}
and C} < q-b= 1, which implies that, when (@.b) E ((a.b): C} <a+b=

1, Ol <a-b= ). the trivial solution 01 system (2.0.1) is asympoticall siable
(i) ifa+b = C} and C} < a-b < 1 ora-b=C} andC: <a+h <1, then all
cigenvalues but X = it} have strictiy negative real parts, where it} is a pair of
purely imaginary roots 01 detty(A) = 0 when € = Cl;

(i) ifa+b= Cfya-b=1 ora+b=I,a-b = C} then all cigenvalues, except

A= it} and>=0j have stricty negative real parts

3 = it}
other A :
ReX <0

nexic e

Combining the resultsin Lemma 2.1.1 and Theorem 2.
parameter C is beyond [C], G, there exists at least one cigenvalue with positive

real part and the trivial solution may lose stability and bifurcationoceur



The occurrence of bifurcation implies a qualtative change in the solutioos. The
study of such changes is important, especially when the system possesses only a
center manifold and astable manifold near the trivial solution, we are able to
determine the whole dynamical behavior of the system. In this subsection, we
wil study all generic bifurcations at the trivial solution of (2.0.1) withNeumann
boundary condition. We are only interested in the bifurcations at the boundary
critical values, implying det&s = 0 has only cigenvalues with zero real part, so
N=lin(1.0.3). More precisely, the potential bifurcations include steady state

bifurcation with simple zero eigenvalue at 0 = G = 1, Hopf bifurcation with

a simple pair of purely imaginary cigenvalues it} at C = C} and Hopf-zero
bifurcation, the interaction of the twocodimeosion-one bifurcations

To discuss the bifurcation, we fix band
aotpp E R Then in 211) L(Z)
3 T (1) fO0)/31. n (103),

cter 0 at the it
=@(0)+T#@(~) and F(@)=Thp(-1+
R(p) = Lu(p) since & = 0 and M = 0,

1 value ag 18 a

La(p) = = (£1(0), @2(0))" + X2(r(=7), al-r)" (212)

satistying L(18] +¢207) = (8}, 6) La(). Let f9(0)(ri, ) = 5. Then

Gle) = Tiul-) + X, T () ey

where @(=7) = (A=), GA(~r))T. Therefore, with ({,m) = (1/v/7¥, the
FOE associated with (2.1.1)byAatthetrivialequilibriumpointis

#(t) =—a(t) (T8 + Tha(-THY_

e 2T VIR



where x(t) = (z1(t), 22(6)T E C(FrOLIRY, xi(t) = (2}(¢),53())T. Denote
£(4) be the second-order term of the nonlinear terms in this associated FDE,

we have

Fa@ /2 = T63(-r) + X2 OF (-r)/2 L)

Case 1. Transcritical bifurcation We first consider the simplest bifurca-

tion occurring in (2.1.1). When the critical value ao satsfies () ag + b= G} = 1
and @b E (C}, 1), or (ii) a0 ~b= C} and as+b € (C},1), Theorem?? implies
A={0}. Itsufficestodiscussthecase(i). The phase space C of the lincarized

equation of (2.1.1) can be decomposed as C = P@ Qwith respect tox :C— P,
(@) - (85, 5) [®(¥, ((BC), B @16

with & VIT(242C37)™ =V Do B = (1/VF,0)7 and B = (0,1/y)"
Following Theorem 4.1 in (17, the normal forms of PFDE and its associated

FDE are the same for thefirst-and second-order terms. Bycomputation,wecan
obtain the nomnal form of the associated FDE (2.1.4) up to the second order,

with respect to A={0) as

2Dy (2 + Clar?/2) + ot 2Ly

Thus the bifurcation at ag is transertical since ¢ = /*(0)/v/7 # 0

Case 2. Hopfbifurcationlfaosatisfies(i)ao-+b=CI and aa=b € (C1,1),
or (i) da—b= C} and da +b E (G}, 1), the system undergoes a Hopf bifurcation
at a = ag since the transversality condition is confirmed in theproofofLemma
2.1,A= {~it},i}}. We consider (i) only. (i) can be treated in a similar way

The phase space of the lincarized system of (2.1.1) = p @ Q with respet to
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rrdefined by (2.16) for

B = 1" Vie"TViL= (1,6a), ¥ = col(VTDye e, VD), (21.8)

with r <0 <0< s <7and Dy = [2+2rCle~*I"|1. For any
1w EP =span{(],6)61, (81, 7)¢a),
1= PBL AN + (B} B = (or, 0T IVF
for p.qEIR. (H5) holds since from (2.1.5), for k > 2, 1,63 € C([~7, 0 R) and

D Fa(u, 1) (baB+aE)
U= Healaar (=)o (~rHbpr(~ra( 7))} 3%
Husta(-rHalbo(-r(=rhaspa(-ra(-TI}BE (219
Hence we can derive the normal form of (2.1.4) in polar coordinates, up to
the third order, as

b= Re(e™ " D)up + Re(K\)g* + ot
@110

=t +hot

"(0)/rr.and

CIDy(ClG A + i),
B DT sy,

B
e (€4 1, T
27 MG (D145 D))+ (2t} +1-Cle-2i) et

«i3-2me(0)4 2 9,4 D) G,
o ”

R S s g (0-ci)tsane( 2

[UNCAREY)
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Case 3. Hopf-zero bifureation To discuss the codimension-wo bifurca-
tion, we perturb the parameters a.bat the critcal values ag and by as a=ao+,
b=boty, my ER Then in .11, L) = —p(0)+ X2p(~7) and F(@) =
TEP(=7) 73 L5 SP(0)P(~7)/3. When the critical values ag, by satisty (i)
90=by=C{ and ao+bo=C}, or (i) do—bo=C} and ao-+by=C}, A={it}, 0}. It
is sufficient to consider the case (). The phase spaceC related 1o (2.1.1) can be
decomposed by ¥ similarly as (2.16) with ® = ¢y, g5, 6] and ¥ satsfying

(0)= [V 1V, 1], U(s)=col(V{ Dye*, VI D", VI Dy), (21.12)
where =7 S0 <0< s <T D, and D, are defined in (2.1.6) and (2.1.8)
respecively.

The FDE associated with (2.11) by A has a similar form as (2.14) with T30
and T4 replaced by Y83 and T respectively. It s easy to verify that (HS) holds
Since in the normal form of the associated. FDE the coeflicients of the second-
order terms are zero due to the strueture in (2.01), the higher-order terms have
qualitative effcts and we need to compute the normal form up to the third order
Therefore, the normalform of (2 11), upto thethird order,canbeobtainedin
eylindrical coordinate as

= (u+ v Re(D,e-<tl)p+ Re(K Jp3 + Re(K3p="+ hot
—-tl+h.ot @y
2Dy(u- v)z+ Kozp'+ Kizd+ hot,
with Kt and hgivenin (2.1.11)and
Ky =2D1C4 Re(diCle=1" Dy [t} +€47hy +ha) 2+ 2, D€,
Ks=DiaCH{2ilCl(Dye™ - Dy)~2¢~47 DyCY)/th +ho} + (3D,Cle-"iT,
Ki=2D,5,C} Re(2i;C}e™i* D, /tD + 4 D,C} /3,
13 = ADaClsae 1" fi/t: ~eHO /24 Clit it} + 1 Cle-vir))




2.2 Dirichlet boundary condition

In this section we study (20.1) with Dirichlet boundary condition u(t0) =
(t,0) = u(t,x) = (t,x) = 0. Under this condition, (HS') does not hold and
we will set up the relationship between the normal forms of the PFDEand its

associated FDE. Define X = ((u,v): u,v E W"(0,%): u(0) = v(0) =

um) =

Jwiththeinnerproduct(.,-)inducedbythatofL'(O, m).Itis easy to see

Infact eigenvalues
in X of D are 6% = _k? =: 8, ix = 1,2 with corresponding normalized
eigenfunctions 8] = (m,0)7, 08 = (0,m)7 respectively, (z) = sin(kz)y/2]F.
Similarly (HI)-(H4) hold withpk = 2 and at the trivial equilibrium point, (20.1)
can be transformed into (2.1.1) in C = C(/[-r,0/.X). Denote

dettu(X) =N+ K+ 1 (a—Be A+ K +1— (a+be™)

Ph= A+ +1-Ce™, C4 = Ll =k + (B Lemma2. 1.1 holds and

For the same reason as that in the previous section, we only need to consider
the region R0 = ((a,b): C} < C = a=b< G} where C§ = 2 and Cf =
_VATTEP. At the boundary critical vlues of S, the system has possible
bifurcations including steady state (simple zero) at C = G, Hopf bifurcation at
e . imensionbitarcati

To discuss the codimension-o

Then in (2.1.1)

bifureation, we fix b and let a=ao-+u, 4 ER

L@) = -3(0)+T3(-7)



F(@) = THo(=7) + T3 P (1) 0)/5.
k=
Corresponding to (1.03), & = -1, M, = diag(-I, -1). In the associated FDE
of (2.1.1), Gly) is defined in (2.1.3) with our choice of B} and B, Risp) =
M,<p(0)+L.(<p) where Ly(") is defined in (2.1.2). Parallel to the discussion in

See

n2.2,wehave

Case 1. Transcritical bifurcation Let ag satisfy ag+6 ~ Gf = 2 and
0=b E (C},2), then A= {0}, The phase space C can be decomposed similarly
with respect to ¥ as (2.1.6) with @ = 7 = VTD" The normal fonn of the

associated FDEwith respecttoA has the same form as (2.17) with G} —2and

(=420 110)/3,

Case 2. Hopfbifurcation Let ag aatisfy ag+b = C} and ag—b € (C},C),
then A = {it}}. The phase space Ccan be decomposed as before by = as (2.1.6)
associated with A, and @ and ¥ have theaame form as that in (2.1.8). But (HS)
fails. In fact, foralluEP, u = (g1, 2)7, for k2 2, Ve, ¥ € C([-7,0]:R),
1/2D1Fa(u, w1 B1-+52) has the same form as (2.19), whereas

({I2DF fu, a8k + o), B1)ica
= Ter(=1(=7), a(=7)¥a(~7)) /" (O)ax

with ay := (wn,m) = Oif k i even, or 4(2/)/2/[k(k* - 4)] ifkisodd
Since (HS) does not hold, we can not obtain the information directly from

the normal form of the associated FDE. However, we can still make use of the
relationship between the normal formsofPFDE (2.1.1) and its associated FDE

o study the Hopfbifurcation. By the decompositionofC, (2.1.1) can be trans-
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=Bt} /it wd dyfde= A+ Y St

where B = dingfit], ~it]}, 2= (2, 2) EC\ YEGINQ

€= {peC:$€C,5(0) € dom(DY),

A= &+ XolL(P) + D*3(0) - §(0)],
= W(0) (F (81, 57) [#2]+v)  B1)..

)= - mXoF; (8, 82) [@2]+y)

Since the characteristic cquation of the associated FDE, detA; = Oonlyhas
4 pair of igenvalues with zero real parts, L. £}i which correspond to the cigen
functionspace 4. then we can decompose the phase space C, = C(/-r, OF R")of
the associated FOE as C. = span{® @Q. Let x, - a(t)

i with =) E €
and here, different from that in PFOE, y E Qndom(Aq)

Aaig = ¢+ XolR(e) - ¢(0)], @ F dom(dar) © C,

o) = 00O ((F, (887 W=+ 4)) By
Rz = (1= m)Xo (pi ((81,68) (02 +41) BD)L,

§=B:4 Y fiy(a)/i! dyfat = Ay + Y 3 z0)/ !
= =
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Let = Bz+g3(2,0,4)/2+ .. and &= Bz +gly(2,0,4)/2+
forms in complex coordinates on the center manifold at zer for PFDE (2.L1)

and its associated FDErespectively, we have the follows'
Theorem 2.2.1 The normalform of PFDE (2.1.1) 1

£ = Bz+g)(x0,m)/2+ gl(=,0,u)/3 + hot
= Bz+ %02, 0.0)/2 + ghy(2, 0. p)/31 + (K. 22 23 Red)T + hot

Ks = 8 Y (Coxe ™ + caciumon \Goy = k,
=

o

Qs KTIEE L wih = SOl

Proof. From theproofof 117,Theorem 4,1) and because of the occurrence of
Hopibifureation in associated FDE, ghy(z, 0)=g}(2,0) = 0 and fory = 0

Tie0m = Tast0.0) + 300 e ymolBe-Dy . )lymolia(e )]
= Toals,0,) + 30O GD1FA(8}, B3], )
S+ WA, AR ez
where f(z, #) 7=U3(z W)=y, (k8] + KAE) is the unique solution of
(VZR)(z, ) =Dihz, ) Bz~ Arlh(z, 1) = £2(2,0,1)

(sce [18)). For hi(z) :=hi(,0) (i=1.2).

(GDF((8}, 87 [82)) (T (WAL + WAD)(:), B,

= (T2 + ey Ty m (2, BT, ).,

= Tz + eV a)anf O TR (L)1), B()(-r)T



Now, we need to compute h}(2), A}(2) in (22.1) by solving

(M3h)(2,0) = £3(2,0,0),

1(5,0.0-XaFs ((51,59) )-8, ) [0900) r2((81 20 19210) 80|
On the other hand, since (Mih)(z,0)=D.h(z)Bz-Alh(z), then for k > 1,i=
12
D,hBz — by =
{ = Li(h}, B3)+kh§ (0) + i (0)=(e 1" 2, +e¥17 )% 22

where &y = Clawf"(0), ax = (3], ) = (n7,m) and
Lu(h, B)=TEo(h(=7), h(=r))~(hi(0), hL(O)=(L}(h}, 1), Li(h, D),
hi(2)(0) = hi(2) (@)l Starting from the lowest order, we set
hy(z) = hiouat + Wyaniza + higash
Solving(2.2.2).we have
Biyg = 28/ +1- Ol = COk

2052t + K+ 1) = O] = Cuae™® and iy = Fagye

After obtaining A(i = 1,2) and substituting h(z #) = Tz (L8] + h183) into
@2.1).then
Tiz0
= Tosle0) +390) [X, S OuT3 (b, 1)
= Taal2 0)+6[3_1"(0)anCH(Cose™ V" +Cupei)ztny
&

+Coke"IT + Crxe™4)2)|(D1, D) +hDi.
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@Y (Coxe™ 7 (4, m) + Craetn) Dy

=

1(2,0,0) = g4(2,0,0) + (6K 2222, 6K 523

and we completed the proof. 0

In fact, the normal form of the associated FDE in polar coordinate has the
same form as (2.1.10) with corresponding value of ¢}, Then the normal fom of
PFDEinpolarcoordinaeis
Re(e™"Dy)up + Re(K, + K )p3 + hGt
.G

Case 3. Hopf-zero bifurcation Let a = ag+ i b= by +u, ag. by satisfy
o +bo=Cl and ag — by = C}. Then A = (it} 0} and in (2.1.1),

L@»~p(0)+TR@(-r)

FERTLR(-r) +T-E/“’m)«9(»r)/:'

associated FDE is in the form of (10
Mig(0) + L) with Lic defined in (2.1.2), M; = -1 and G(g) is defined in
(2.1.3) with T8 replaced by T¥. With the same procedure as in Case 2, it is easy
o verify that (HS) fails, As for the reluionship between the normal forms of
PFDE (2.1.1) and its associated FDE, similar to Theorem 221, we have the
following result, the proof is similar to that of Theorem 2.1 and we omit it

Fo g0 m )24, and 2= Bzgl(n0u )2t
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21,2'23) EC*. B=diag (itL-itL0)

ojor PFDE

be normal forms in complex coordinates on the centermanijold at =

(2.1.1} and 88 associated FDErespectively. Then, the normal form oj PFDE is
. . Kesdop+Kozdn

2= Brtgaa(a,0m0) + 5003(2.0,0,0) + | RydasRedss |+hot,
Kz} + Ksnzmz

where Ksi Cox and Cix are given in Theorem 2.2.1, and

= L EDCu 2. Kr= 3 L OmDClC,
>t &
K = .):mn)n.uzc;(m:tcu)wu). Cax=2f"(O)au/[(thi+k*+1)eftr/CY-1]

According to the result in Section 2. the normal form of the associated FOE.

indrical coordinates, Thus, the normal form of PFOE in

= (u+v)Re(Dre™4)p + Re(K, + KJp3 + Re(K3+ K )zp+ hot
l+h.o.t
= 2Dyl vz (K, Kjzp' (K. + K23 H o




Chapter 3

Dynamics in a competition
diffusion system with uniformly

distributed delay

We consider a competition system with uniformly distributed delay and diffusion,

ult, ™) = v(t,0) = o(t,m) =0,

W) = (pnea) ~(r+8)<t<0, 0Sz<w,

with initial functions @1, ¢z E C« ~(7+48),0), Y). [n the present chapter, X =
for the reak-valued Sobolev spaces

HAOH] where H2 Hy is the standa.rd notati

The work in this chapter is the main content of 135 which has been submitted
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3.1 Existence of positive steady state solution
and corresponding eigenvalues
ThesteadystateequationofEq. (3.0.1) is

dD'u+3u(l - bire=c.v) 0.

5
1 D%+ fu(1 - by — o) =0 o
Similar to [6)we havethefollowingdecomposition
LY(OIT) =N(dD'+ B.) ® R(dD* + 8,)
where B+ = d N(dD’+ (1.) and R(dD? + (1.) are null and range spaces of the

operatord D'+ { 3. with the form
N(@D" +{3.) =span{sinx}, R@D'"+{3.) = (UE L(O.T): (sinxu) = 0),
respectively. Let

up(z) = (8= Bu)an(sinz + (6 - B.)6(z)

 a(e) = (B B)an(sinz + (3 - B)ex), 612
where (68inz) = 0 (7= 1,2) Substituting (312) into (3.L.1 yields
(D 4 0.)6 +sinz + (5 - B0 — Blsinz + (8 - A.)61)
x[ai(sing +(8 - B.)61) + eraa(sinz + (8 - £)&)] =0,
(dD? + fu)6a +sinz + (8- B.)6 — Blsinz + (5- B.)&a)
Albaan(sing + (3~ £.)6) + can(sinz + (5 - A)61)] =0
Next, i Ty
of the solution (ip.vp)of @. 13) for 3 near (. At f = f.. (.13) becomes
(4D + B.)61. + 8nz — B.sin’ z(byay, + c103.) = 0,
{ubuﬂ.)c,.m.,,a..i,.f,(m,_”,m., o 614



/n sin? zde/ (5. L sind zde) - 31r/(5p.)

Forming inner product with sinx on both sides of (3.14), afier an algebraic

calculationwe haveat.,Q2.as

b bea
= by Bazaa™> 0

under the given condition (CS1). From (3.1.4) and (3.1.5), & and &, are well

defined which solve Eq. (3.14). We have the following theorem.

@315)

g
™0 ™

Theorem 3.1.1 (40, Theorem 2.1] There are a small enough constant p’ > p.
and a continuously differentiable mapping 13 — (€xp,Eapy vz ang) from 113131
to X" X IR such that (8.1.1) holds and (§g,sinz) =0 (i~ 1.2)

lar proofs and only emphasize the ones which are

We will omit some s
different from that in [901

According to Theorem 3.1 itiseasy to sce that (ug, s) defined in (3.12)
satisfes the steady state equation (3.1.1). Consequently,thefollowing corollary

Corollary 3.1.2 ForeverypE [Bu,8%], (8.0.1) has a positive solution (ug, vp)
with the asympotic expression (3.1.2)

LetpE [8,8°,0 < 8= 8, « 1.and (up(x).vp(v)) be the positivespatially
nonhomogencous equilibrium of system (3.0.1) expressed as (3.1.2). Define the
operatar A(S) : DIA(S)) = ¥? as
bugran

Ap) = (@D p)l ~§
O bwystou
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with domain P(A)) = X Then the linearized system of (3.0.1)is

1 ( ") o u) V}, ( 03 [ Jbru(-0) +ervy(~6))dp
9 [ Yoru(~0) +eru(-0) a0

= DT, £50 616
(u) - ”""‘).«s[»(w),o},
)
e
Hene) = a( "‘“’)ﬂs( bugtan 0 #0)
40 0 augtbg ) | a(0)
_presy [Bs s (-9
ﬂf."l( i ey ) [
ATy i

- 400 3
= Liresdn(®) (m‘:l:) 5 (1 ) €C(-(r+8),05?)

with ™ beinga2x2 matrix and each clement of g In the space of bounded
variation BV([~(r +8)0}. ¥). Then A(B) generates a compact Co semigroup
158). Let A+(5) be the infinitesimal generator of the semigroup induced by the
Solutions of (3.1.6) with

h o d

o
A0y =w () -rososo

and D(4,(3) being the set of all

N 0.7
& ) EeO-0.007)

(V'J gc-oror0ny), [ HO) £x,
% #(0)

satisfying
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(M(O)) e ( ¢x(0)) i ( u;f,"'%(bmw)+c..mfa)).w)

44(0) 6:(0) v ST Ybaba(~0)+catr (~6))dp
Therefore the characteristic equation of (3.0.1) is

% o 0
aapn( ™) <o,
(2o ()0

07 =A@ -5 [ Lo ( by g ) =Y

i
g v by
EigenvaluesofA,.(f]) with zero real parts play key roles for the analysis of

stability of steady state solution. We first analyze the existence of the zero

cigenvaluc.
Lemma 3.1.3 /7 20, then 0 is not an eigenvalue of A,(8) for §. < f < §*
Proof. IfOisancigenvalue, then (3.1.8) holds for some (3, )T # (0,0)7 a0d
AB) = 0.ie
a0 ("
" (WH, b )| [
vy by n
B (ww ( Moty g S
g 2byug+eaug—1 -

W1 =msinz+ (3 - ), (m,sing) - 0.
2= masinz + (8- A, (msinz) 0,

(.110)
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where n, € C. Then substitutingY1,Y2into(3. 19), wehave
(,D,w,ﬂ, (wamnu aws 5y msaz+@-8om) - 011
vy 2byug+caug. masinz+(8-4.)m
By a simple caleulation, (3.1.1) & equivalent to the system
(@p2 Bom + (misinz + (8~ Bm) ~ Bl(Zren(sinz + (8 - £.)6)
cuog(sing + (3 A6 sinz + (3 - Bm)
am(sinz + (8- 4.)6) x (nzsinz + (8- B.)m)] =0

(D7 '+ B)m+(nasinz + (8- B)m) - Blsaalsinz + (4 - B)e) 12
% (sing + (8- m) + 2broa(sin + (9 - B)62)
¢ cmlsing+ (8- A)6)) x (nasinz + (8- B.)na)] =0
LiG=1.2
withrespecttofd. We can expand my,ny (i= 1.2) as
m=3 106 Ay n =Y 0B - gy,
=
o
L
a0
When 1313., (.1.12) becames
| @D*+8.)5 40" sinz—pu[(Brene +ao)n +eranen o

| @024 402 sinz— ufcrcnen) + (bra +ao)nl?
Without loss ofgeneralit, we first assume that both n®,nf® £ @ Then (. 113)
becomes
@D+ Bu)(r" /nf? ~ €1) = e + cxnund?)/nfPsnz = 0
@D+ )" ) — €0~ lronun/nd + stz =0, (114
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where €+ is defined in (3.1.4). If

b+ cionn/n? = cyagn /) 4 byaq,

O
then 4/ — /s = e which contrdicts the condiion (G, 1fone
or both of

b+ x0n? /0, o) 4 by,
is/are nonzero, (3.1.14) does not fuoldsincesin'x @ n(D'+/3.). From the

above, discussion, we have n{' and tlen pf' = O( = 12) With the same

with the same analysis. The proof is completed. 0

In thefollowingwe consider the existence of purely imaginarycigenvalues
Itis obvious that (13 has an imaginary eigenvalue A = iy (y  0) ifand only
if that the following equation is solvable for (¢, )7 # (0,0)7

b ( *
w

G

(Aw%nl—ﬂ(’".la‘ Jeap (”““ ”"‘*’)) ("') -0, '

au by )) \ v

-+ and @ € (0,2r). Denote

where 7 = @+ 2nm,n = 0,
= (@4 20wy (n=0,1,2,...)
We have the following lemmas

Lemma 3.1.4 (50, Lemma3.1] If (y, @, %1, ¥) solves Eq. (3.1.15) with (0,0)T #
(¥ ¥2)7 € X, theny = 0/3-13.). 7/(B~B.) = h is unijonnly boundedjor



OE (0..1-7, and Y(Ialfe+Igall) is equal o

L _ _
i 1Bty B et o e
Lemma 3.1.5 (6, Lemma 3] If = E Xc and (sin(x),3) = 0, then
TedD*f )21 2 38ulel

NowforfJE (B, 8%, assume that (7,1, ¥, ¥s) i a solution of (3.L15) with
(¥1,6a)" # (0,0)7. If we ignore a scalax factor, (v, ) can be represenied as

% = sinz+(8-A)m(z), (sinz,m) =0,
¥ = (N+iM)sinz + (8- B)m(z), (sinz,m) =0

(3.116)

To show the existence of m, m, M and N for § E (8,,8°), substituting
(u3,8) in (3.1.2), (¥1,¥a) in (.1.16) and y = (/- )hinto (3.1.15) yields the

010m, b, M, N, B)
= @D+ Bm + (1= ih)(sinz + (8 - BIm)
@11

X[br(sinz + (8~ B)m) +ex((N +iM)sinz + (8 Bm)] =0,

92(m,m, h, @, M, N, )

= (dD*+Buym + (1~ ih)(N +iM)sinz + (8~ Bu)nm)
~Blbrag(sinz + (8 — B.)6as) + cama(sinz + (8- B)6xs)] (G.118)
(N +iM)sinz + (3- B)m) ~ Basa(sinz + (3 - Au)eas)
X7 [ Jeablbn(N -+ iM)sinz + (5 - Bu)m)
+exsinz + (5-B)m)] = 0.
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Notice that J3 §¢™d8 — 1 as § — ., we ca0 choose

= (- Mg M= (- iRN.G,

with €ie defined in (3.1.4), M. = 0, @, = /2, and h.,N. E R# satisfying

e + (biar. — byoa, )N, - ciag, = )

aur+aN) = hao, o

°
2> fiom (CS,) and h

Then it is easy to see that
e @ MN/3) =0, =12
Defining G = (91~~~ .96) : X2 x R* XR, with
9a(my 2, b 0, M, N, B) = Re(sinz, m) =0.
94,2, by @, M, N, 5) = Im(sinz, ;) =0,
95(m,m, h, @, M, N, ) = Re(sinz, gy) =0,
96(m,, b, @, M, N, 6) = Im(sinz, ) = 0.

(3.120)

it is obvious that G(Me Mk @ M. N.A.) = 0. To obtain the existence ol
roots in (3.117), (3.1.18) and (3.120) by using the implicit lunction theorem,

we need to prove that the operator

J= U, Je): XE xRV S VxR

s bijective, where J = Dl G, Tae b 1, Mo, N, 5.)

Theorem 3.1.6 /50, Theorem 9.1 There is a continuonsly diferentable map-
3= (Mo by, My, Ng) from [8.5%) t0 X' x g

such that (Mo, T3, hs, 3, M, Np) solves (9.1.17). (9.1.18) and (9.1.20). More-
over,ij/3E(/3

3. the solution mapping is unique,



Theorem 3.1.6 shows the existence of geometric simple purely imaginary
cigenvalue i"(andits cigenfunction(wy, ¥a)” # (0,0)7 for 8 € [4., "]

‘The following corollary can be obtained immediately from the above theorem

Corollary 3.1.7 Foreach{3E((3..3-] the eigenvalue problem

S ()

s a solution (1, 7,1, and only !

aman [ *
v

W= (3 B hp, T=Tn = (@ + 2n7) /99, 0 =

b snz+ (8- Ay
Coag) = CC Ny ibMg)sinz + 5 Bymy ) [EREN
and D My are de

scribed in Theorem 3.1.6

3.2 Stability of the positive equilibrium

In this section we study the stability of the positive equilibrium (ug.vp) with (3E

(3] fixed ;and the delay T as a parameter passing through Tn,n= 0,1,

First, we need to find the eigenfunctions of the adjoint operator of the inear

operator of (3.0.1) by solving the adjoint of (3.18)

o

A%inagn) (“’;f,)
“
R [

(A(mﬂwaz f;f ) (W hv’))( ;




Similarly, let

W) =sinz+ (3 AIn3, i) = (NS +iM{) sinz + (8- B (3:2:2)

Then there is a continuously diffeentiable mapping 8 — (n{gns, N§?, MS?),
from [8.,8°] 1o X2 xIR'suchthat (3.22)satisfies (3.2.1).andat (3=(3.

e
oy

(- NS, N = MO =0

Ta+ 8. We can choose a basis of cigenspace in C'(/-(T + 6)0LIR) of the linear
operator of (3.0.1) as (B, Bp) where By = (vug, Yaa) e, g (i = 1.2) is given
in (3121, for ~(r +8) <6< 0

<(y,,s.), ( » )> - [ o) + sarmtene, ox moevi=12,
% b
and the inner product of %, ¢ as
. .
(¥,4) = (¥(0), - -
9= woe0r - [ /‘: o | vt DO

where §,¢ € C*(|~(m +8),01, ¥?) and n is defined in (3.1.7)
Let S, denote the inner product of ¥3, &, related to 7, as
S, = (95,85
= I O8O0z - [T [y I3 36 - O)in(O)Bs(E)ce
= B+ v



whereL(-) is defined in (3.1.7). Then we have the followinglemroawhich will be

useful in the proof of the algebraic simplicity of the purely imaginaryeigenvalue

iy in Lemma 32.2.
Lemma 3.2.1 For cachi3 E (B, Sa, #0

Proof. Noting that 95 = O(8 - 4,) and

=) [

! 'ﬁ,’a;. 9') ( ) s

+ [+ NN, sin? zdz £ 0 as 8 — B,

Sa, — iB(F+20m)(1,

whereOi_.

1,2,N1),N " areallpositive.0

Lemma 3.2.2 (90, Lemma 48] For each {8 E (3.3, A = ip is a simple
eigenvalue of Awy(3), 1 = Q1.

SinceA <"V isasimplecigenvalucofATlit isnotdifficul ttoshow that there
are & neighborhood of (rn #73, Y19, ¥as) in Op, X Cp, x Ha, € IRXC x X3 and a

contins ch that for each 7 E O,

Iy differentiable mapping Op. — Ca, x X2

the only eigenvalue of A.(8) in G, is A(r) and its corresponding eigenfunction
s (1(7, 8), $alr, AT with

A, B) =73, (7 B) = g, ¥a(7n, B) = ¥

In the following, we discuss the sign of ReX/(7a) which will be used for ana-
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Iyzing the property of the steady state (ug, ug). Differentiating
hi(r.f)
B),8,7) 0. 7€ O
) -

with respect to 7 at 7y, multiplying by (¥{3, ¢{}) and integrating on (0, ), we

e

N)Sp, = [ 1808508 b ey w.a) "
ey im0 )€

Theretoe,

X(m) = (i + B)/1S5 [

3 %Ms“w"’)( o o )wm,m)'d

XL Qv + wivnade

Iy = Ty [ fe=rotas [} Jaershas

el (2 ) (1) of

Lemma 3.2.3 For each(3 E (i

ReX(r) =0 (n=0,1,"

Proof. Since % = 03 = (3) and @ =

FH O3 1), it s casy 10 sec that

) = 358+ O((3 - )"
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/w.,w.,w;;’wi-z»n+N(~W)—+uw ),

biug cug. s
an by ) (o)

(e (e s
02y biazy

) 1) ssindxax) (B-B.)+0@- B

ThenR el is cqual to
WHUNONE (7. vr) (N [ 2tz (3-100(3-87>0
3 ( s o) W b 4
T (5 c08(736)d8 fommmmmeeeeeeeeeeeeee—
TG +0(B-B°
)|, = Rely + Rely
To check the stability of the nonconstant steady state solution (g, us) with
delays 7 > 0 and § > 0, firstwhen T= Otheeigenvalue problem is reduced to
/ 1o - Ay~ erupmn / Lesegg o

/ Led9— Ays — Beavgm / Lesgg—o

eigenvalue A and can b

VI =sinz+0(8- P), Y. =pgsinz+0(8- £),

wher € C ey — p 18— . SubtutngYLY" o the sharacerstic
“ . : e .

oo = (b +clPal j“ 246 +O(F - f.)
Frawr = ~(bp+ ca)aa. 3 e d0+ 0(5 - B.)



Denoting Ol((3 = (3) = My, Jj Je™d8 = My(h), (3.23) implies

200, Ma(N)
AM & b2, Ma(A)

FQ) = s Gmhen g () - Slasgiee v ()
=5 X+ BAM(Y) + BMEO) = 0.

where according to condition (CS,), B..B, > Q To analyze the zeros of F(X),
we follow the method in [23] and [24). From & general result in complex variable
theory, thenumberofrootsofF("\)=0Oin the right half of the complex plane

will be given by
FR)
A zm s FO
since F(A) is analytic for ReA > 0. Here 7(R) is taken as the closed semicircular

FaPzo

contour centered at the origin and contained in ReA > 0
FromAppendixA,wehave

o L [ FO),

R iy TV

1t follows that the number of eigenvalues of Aoft) with positive real partsisO.

Then we have the following lemma

Lemma 3.2.4 Foranyi/ > 0 andT = 0, the sicady state solution (ug,va) is

stable

Remark 3.2.1 For the case 8 = 0, i.c. the uniformly distributed delay becomes
discrete delay, it i well proved in [88] that all the eigenvalues of.((3) have

negativerealpartsaiT=0



The following theorem holds since ReX((7a) > 0 fiom Lemma 3.2.3

Theorem 3.2.5 FOTuny (1 E (.41') 0 < (0" - T 1, there exist2(n+1)
cigenvalucs of ihe infnitesimalgenerntor Ar(5) with posiive real part whenr E;
(TnTnsdn=Q,

3.3 The existence of Hopf bifurcation

In this section we will study the Hopfbifurcation from the positive equi

(3, 15) s the time delay T crosses . A similardiscussion can be car

for all otherTn,n=1,2"" . For fixed(J E (.. "/ and T=To+',denote
U(t,) =ult,”) —up, V(1.)=u(t,)-up

Substituting UV into (3.0.1).wehaveasystemequivalent o (30.1),

2 (V):A,w.d(vm; g, Vil 621

mcss
A0 = AW ( u)J by aug ) (SRUGE 0w
avy by [V - 0)d0

b vy [ et iue- o
cv wv \ mve-ow

and g : C([~(r +),0], X?) — ¥? is a nonlinear operator defined by

g U@ ali(o) S L (-0)de
Vo) bvi() |\ [27 vi-6)as




Letuw = 2/79 and 1) = U(I+w)t),w, (1) = V(I+u)t). Then (U@, Vit»
is an wg(1 + o)-periodic solution of (33.1) if and only if (w,(0)w,(1) is an
wyrperiodic solution of

é@")nm(\‘f (b*‘dw)(l““ ‘-'ae)‘(ﬂ e

I

v by

whereGe

is cqual to

wi(t) by e\ ([ (e )0

74(5) ~B(1+0) o dnt=i
(vm(tl) ( ) (rb“*w:(lfﬁi)dﬂ
[t e .:“'((Hu)-v-(tf%}.) w(t-6)d
cavg bavs ) \ [T 3+ oJualt - £2) - wale - 6))do.

4 and for convenience omitting the tilde. Similar to (i1l we use
the following notations

1) 6(0) = (8:(0)3:(0)), -T0+8<0<0,

W) - (.’f(’)/s’"), 0<s<m+s

V(B
- ¥)(s)
¥0) - [#00), 800) - BOH, W)~ | (),
¥3(s)
] ) @)
00) =
) 40) (o#’m 4

0 900 = (490, 999) i =12

(2) LetA be the cigenspace of An(8) corresponding to eigenvalues vy



(3) Let P, beaBanachspacedefinedas
I3 s
Pos () ECR XY, 1t +wg) = flthi= 12,0 ER
h

@ p=(p,p)", pi: Py = Ryi = 1,2, are defined by

af =1 [ OAE) + U0 s,

It is casy to see that @ is a real basis of A and W is a real basis of the
cigenfunction subspace of the formal adjoint operator. By a direet calculation,
it s clear that (¥,8) = I

We state the following lemma about the existence ofa periodic solution(see

(6] and [77))

Lemma 3.3.1 For [ € Py, the equation
dw by
G- A -p |
eavs by
has an wp periodic solution if and only iff° EN(p), thatisp;/=0.i= 12
Hence there is a linear operator K. from N(p) 10 Py such that for cach fised
€ Np), Kf is the wy periodic solution of (3.3.3) satisfiing (Kf)§ = 0, ie
(¥, (K1) where (Kf)o is defined by (Kf)o(6) = (K£)(6),8 E [-(ro+0),0)

ComparingwithEq. (3.3.3), we know Eq. (3.32) has an wy-periodic solution

iy
[ jue-0w 10 a3n

w(®) if and only if there is a constant csuch that

pCItaW) = 0 334

wey) = () + [KGle,0.w)j(t). tER, [EEE))



o =1 [(Z:)mw(w )fw], ter.
s

Following the procedure in (6, we introduceachangeofvarislostce.a
o and
wet) = () + cW(y], tER, Wet) £ P, (¥,(Wo) =0
Then (3:34) and (33.9) are cqivalent t0
Teasw) = [N

M
w - KNGesw) =k [ @3
Ny

W(s))*ds =0, (336)

whereN, is equal to
D+ 5 3b,um + e O7(0) + QM) - 111+ 000 + (1)
X ST @ + oW (- g+ (@ + oWt - 9B
Bup/8 [ a [0t 0 — sca) + e, (¢ - 0  sca))dsdd
s [T AL 9 W= 0) 4, (Wt 0 W (- 0)
=Bua/8 L7 @0+ WE - @)+ (@) + W) (t- gk,

and My s cqul 10
S(dD + 15 - Bleus + byua)) (@) + W) - 30 + c)(O(e) + CWL(O!
I Ve + Wt g+ (@ + W) (- gl
+0a/ [ a oDt~ 0 — sca) + bd{P (¢ - 0 — sca)ldedd
Bl 2 Wit - Wt 0) +bWatt- 0~ Wit~ O)ad
~Bcu/5 [ Iea(®D + cW,)(t - g) + ba(#5) + OW.)(t - ghB,



=@/ x)a= (e K1+ ),

Since a periodic solution is aC'«-(To +.),0j,¥) function, without loss of

generality, we can restrict the discussion on Egs. (33.6) and (33.7) toW €

P, Ifle, +lllp... 1n the following. we are

trying to use the implicit function theorem o verify the existence ofa periodic

solution in Eqs.(33.6) and (33.7) for a small .. First, we have the following

°

Lemma 3.3.2 For any I E Pl 7(0,0,0,
Proof. Since
Nl ( (0 [ e + cad|(e ame)

NOOO.WW) = ( N:0 =75 | aP(e) [P ie,d® + b2t - )0

70,001 = [ (¥(),N(0,0,0,W(s)))ds (38)

o (( Re(wFerm/55)No(s) + Re(pigle5/S3 ) Na(s) )
= 2d b —Im(e 53N () — Im(ue 0 (Sp ) Nofs) s
Noting that

0(0) = (Re(ye™), Re(pose ™)),
and wp = 2m/7g, we have
815" I3 Re({e~"/5p)Ny(s)dads =0,
and similarly
[ [ retser o sumsyiads
- /;’ [ Im(${Jle~"/S,) N, (s)dzds — 0.

that the assertion holds. 0

Then it is easy tos




Lemma 333 (90, Lemmas.2j

wooom [ wvw
W& wp

—Im\(n) ~vs

Wy =i+ 34 e

by cug ) [
(8)-8
o= (s )0
8 (vl
A\ v I3 S et +bavas) o
G = (am-p (P o
s by
. /"'“ 8 ( J.,,mw+mm)r‘"'ww(w,,m%)ewﬂ)
o 38\ Togleatua a0+ g T o)
d

0t 4 4(0)d

(w.Ghe + 3 +Zhemw)
Wy = K(N(0,0,0, W)
1SBaw perlodicsalutionofihecquation
“LL;" - AGt) - (::: :: ) [ ™ Lt o+ 3000w

Proof. Through a direct calculation, we can verify that W defined in the lemma



Furthermore, with defined d we can verify that (¥(s), (Wa)o) = 0. Thus by the
definition of K, we have Ws = K(N(0,0.0.Ws)). 0
The following lemma gives a detailed description of Wy

Lemma 3.3.5 (10, Lemma 5.6/ Let G} and G be defined as in Lemma 3.3.4
Then
Jim G(8— ) =misiny, Jim 8- P) =

f=2

sihecg— [ e Gen ) i mran o
o, b A\ N+ b

Now weare in the position to complete the verification of the existence of

Hopfbifurcation

Theorem 3.3.6 (The esistence of Hopf bifurcation) For cach fized 8 E (' P

Hopfbifurcation occurs from the bifurcation point (ro, ug,vg)

Proof. From the results in Lemmas 323, 3.3.3 and 332, we know that (33.6)

tions (e, W) s(e, W) satisying e(0, W) =<(0,Wp) 0. (337 is also satisfied
by using Lemmas 334 and 332, that s, there exist /) for some small
enoughe. Then, thewp-periodicorbits near the nonconstant steady state solu-

tion (ug,us) atT ~70 is obtained as
Wiy = d@0(t) row (1),
and consequently

€ =«fc, W), o =esle,Wic). 0



Recall that € = 7- 10 and € = cz. Then we can determine the direction of

the Hopf bifurcation from the sign of+. For sufficientlysmalle,
« = CIIC, We)) = !%(n‘ Wa) + 0(e).

For convenience, we denote . *(e) = e(c, W*(e)), ¢*(¢) = s(e, W*(e)). Since for ¢

small enough,

T(e"(e),s"(e), W*(e)

Differentiating both sides of the above equality at e

27(0.0.0 Wy) +37(0.0,0 Wa)
ac 0(e,s)

Lemma 3.3.3 implies that

2y -1 R¥TO) 0 ) -,07(0,0,0.Ws)
(LG ImX(m) - o

87(0,0,0,Ws) - (Z‘)

ma = (b +ack) + G JH 10w + cus)eas
+Bis [ 4oich + eiCh)e a0 + G [T YT + ciTa)eta]
+l6aslexch +bach) + G eawns + brvagle
B0 7 Heath + bha)em 000 + Gy [ YerTip + biTg)e ).




3310)

Therefore, the sign OfT; decides the direction of the Hopfbifurcation

3.4 Stability of periodic solutions

Next, we will investigate the stability of periodic solutions by using the center

( g ) =200 42,0 + (21,2, ),
Vi

)
BARC) (i WU))) ax [y J we-0in0) ("j“;’) dea,

i, xi is the local coordinate for the center manifold in the direction of &
(i=1,2)

Denote = = Xl —ix... We decompose (3.3.1) in the complex form as

= (L= X5 = iz + GEE ()
= Ani+H(:,2,0)

wher: X5y = (¥, Xag), H(z,7,0) =g - ®5g and

@4

B2 B

o ()= 5230 = wnl) + un(0)7 + a5




with X : [{TO +8),00 — B(Y', ¥') given by 2(8) = 01 {TO+8) £ 0< 0
and Xor0) =1
We expand the functions G(z,,) and H(2,7,) as

e Tt 342)
ooy o (42
= Huo + Hus7 + Hos (343)

Using the method in [77}, the Poincaré normal form of (3.3.1) is obtained as

AB,7)E + aa(r)ETE + P,

forT in a neighborhood of 1. Denote A(3,7) = a(8,7) +i0(8, ) and from [31j

o (B0(8,7) +i9(8,7)
2(a?(B,7) + P(3,7))
loul” ol o
(B, 7) +i9(8, 2(a(8,7) +30(8,7) * 2

a) =

o

_— - - Ligap) + 2
25 (gm0 =2t - B + 2

following & normal computation routine in Appendix B (see[281,[31] and [77))

= ~Reay(n), Rec(n) = JRega,

with g giveninAppendix.(3.5.14)



3.5 Example and numerical simulation

Although the formulas are given in the above section, it is still diffieult to deter-
mine the direction and stability ofa bifurcating periodic solution for general sets

ofpararnetersof{3.0.1) because of the complexity of calculation. As an exarnple,

we consider a particular case: assume the parameters b, c,, i=1,2,satisfythe

following condition’
(CS) bi=byer=cy and by >
Under this condition, we can abtain thesignofT; defined.in (3.3.10) viaasimilar
calculation a8 that in Lemma$. 7 in (3]
Lemma 3.5.1 11(CS, )holds, thenT, <0

Hence ifthe parameters satisfy (CS;),the Hopfbifurcstionoccurs only when
770 Next. we will check the stability of the periodic solutions under (CS,). It
isa
(352) and (35.11)

G Bbita) o 160+a)
P Bt st

c.

8B +a)(2i +7)
—srtrrr—

- B-B-2

S+l 7)
e

W,
10

Subatitutingthe above values into (3..13),wehave

= (b.tct)sinx [;168.(2i + %)  i165,(2i — )
) et [T R

()




and wil = wld), therefore

o = RIS [ [ Jul(-0)d0 + iu(0)] dz
- e [-RER

Since wit

Rzml):—s.(ﬂﬁ <o

Thus the periodic solutions are stable.

By e —3n
A=Ay 2T

In the falowing we give some numerica simulations to llustrate our analytic
then . =4 = 1, and when 8 > ,

there exists anonconstant positive steady state solution. We always let(3

Land §

results. Fix d =1, b =

101 > B-. From the discussion of Section 3.1, we know h. =1, w, =IT2, and
there exist periodic Slutions near a sequence ofcritical values 72 = (-+2nx)/73

(0= 0.1.+). Since 7 = hg(8 - B2, we can choose hy ~ 1, w & 72, then the

first critical value 7o % (8 = B.)™/2 % 157, Hence, when r crossesro, periodi
soluions are expected due 1o the Hopfbifurcation

To observe the various dynamical behaviors, we choose the following two

(P)

=05 or (P) o =081,=076
and initial conditions: for — (7 +8) S£<0,

I Lt
(e u(t) =v(t) 00041 + —p)sinz,



(IC.) u(t,2) =0004(1+ z5)sinz, v(t,z) = 0.002(1 + -45) sinz.

When choosing the same values of the parameters (Py) and initial condition
(1C.). we can observe the effect of time delay in Fig. 31 and Fig. 32 In

Fig. 3.1,withr=80<ro, one can observe the existence of nonconstant stable

steady state solution. Fig. 3.2 shows the appearance of periodic solutions when

On the other hand, we can also realize the effect of parameters and initial

conditions as well. Fig. 3.3 depicts the solution curves of u showing the impact of

parameters in the existence of different nonconstant steady state solutions,
same delay (T = 80) and initial condition (ICh) butdifferentpararneters (P.)
and (P). The effect of the initial condition is demonstrated in Fig. 34. It is
noticed that when () is chosen, the condition (CS,) in Section 3.5 issatisfied.
Then a Hopfbifurcation should appear as 7 passing 1o increasingly and the limit
cycle is stable. WhenT = 160 > 0 and the parameters satisfy (R), we can

observe quite different oscillation curves if the initial conditions aredifferent

Appendix A. Proof of i .o 25 [, F%dA= 0
Denote by %(R) the curved part, %(R) = (Rei;, R > 0.6 E [-x/2.7/2]} and
fet %(R) be the straight scgment, 3(R) = fiv,y E [R,-R]}. Then 7(R) =
WR) +%(R). First,wecanshow

pi )
M [ 5
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Figure 3.1: WithT=80, (P,) and initial condition (IC,) anonconstantsteady

Figure 3.2: A periodic solution with obvious osciliations appears when

the parameters satisfy (P,) and the initial condition is (IC,)
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igure 3.3: Different spatially nonhomogencous steady state solutions with same

delay T = 80 and initial condition (/C,). Left: with (Py); Right: with (P,

The effect of initial condition is demonstrated whe

Figure 160 and

(P) s wsed. Left: with (1C,); Right: with (IC,)
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Proof. Note that 2t JeR) 2 = 1. Thus

LI (E@ g

| 83 - D

[ (20

sonst. 17, M (Reth)

s
=

sincelM2(Re")ls1

[ovanys - [ si{]

sy
< / A /5exp(~0Rcos )dodd

/2 L
(/ame ‘*-‘"w)da
<af'el ( /ﬂ'/'z,nm,,du,)m,

e o 580 g e

The proof is done. 0

i TR = 1+ i 1 [ B
= 1+ lmpssg 2 (InF(~iR) —

limpy

= 1= bR oo argFR)




F(IR) = LR =-R "+ BiRM,(iR) + M}(R)By
We now know that the number of roots of F(X) = 01n the right half complex
plane is determined by argF(iR) which will be estimated as follows.
Lemmaa.2
Jim argF(iR) = .
Proof. First we note that F(0)=B,>0,andin
F(iR) = RI-R+ B,iM,(iR) + M}(iR)By/RI,
the terms in the bracket has real part which approaches to-00 88 Rgoesto +00.
and imaginary part which is bounded
The curve of F(iR) wil start on the positive real axis and go to infinity
along the direction of the negative real axis. Then the value ofargF(iR) must
beTr-2n7r.n=0.1,2." as Rgoes from zero to infinity. Note that

ImF(iR) = (BIR— 2By [§ } sinRBJdB) [} } cas(RB)dB

= (BiR - 2B, -ty el

F.(R):= B.R- 2B, 1.‘-....4m).15 IR 28,18,
thenF'.(0)-OandwhenO=RS 1/d,
R(R)- 5. 28, l%m(ﬂﬂ)dlz B, - 2Bybcos(RS) > B, - 2Bab >0
for B — B, « 1, since

Beos(RB)dB= (1 cos(R4)) > ~4? cos(RS)
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and BI =O(fl- fl), B, =O(fl- 1.)'; when R> 176,

FIR) = BIR- 26,1 . B8 > 21428, (1 colr) > 0

for fl- L. 1. Then clarly. FI(R) > 0 fo all R> 0 while (88 i oscilsed
toapproachtozeroask—++oo. Morcaversince

Ror(R) = R e 1 S0 (B, ncotm)

s
- (3 i)

has only one zero, which means that when ReF(iR) crosses zero, it is always neg-

and By, B,can be small enough such that F, (R}

ative. Then one can draw the schematic graph of F(iR) with R as parameter
(see Fig. 1),
TmF(iR)

Figure 1. Schematic graph ofF(iR)

Appendix B. Computation of (/70)
Step 1. Noting that N = N. +O(fi - fl.), we have

() (::) B [(‘: )anxmum )] Reld).
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4= Wz — i) = ez

and(Reqz)mo = 2,
/"“‘ L {ze=td + 3ol -
A F(Regz)uemgdd = E[(:e +3) - (2 +3)]

. G mw—a.)) (z-2)

.
YOF +-) xlha+as)

o = (e s 00~ ) ZE 4205 4 )l )

:(mnnow—g.))(%mw-g.) +/""‘l! O L a0+ )

= ((N.sinZ+Offf - ﬂ»(§+o(nr ) @- 2 'L "’( 5) s+ )
n

Step 2. From the definition of the operator &,

((m +aN.)sintz + 08 - f) )+

N.(c2 #&N.)sind z + O(ff ~ f1.)

~(n+8)Ss <o,
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)+hot

£
e

T

where b=t + 6N, + NN (e +BN.), S =5, + (8- 8,) with

e ‘ﬂh(%+2ﬁ7)(1<N‘(")(blﬂl. nm.)( 1 )/‘;i..’m
AT Y

+/n'(l + NEIN,) sin? zdz.

I+ 0(8-8.),

= % - (g)
(

8- [Careu(L42),
8mt [t (-3)
Setting "
= (xc'. +G).C = 2(xc. G (352
H(z,%) (353)

s o) () () )

X(2—

[L’.z-w' (:u) +Caemt (::) +Avo.¢] (P-4, A8 <s<0.
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o e ), )y [
# e =B () (2]

+hot, s=0,

+hot, ~(m+8)<s<0,
Hil(s) = and Hoas) = ~Hanls)
Step 3. Fi

m

20757 = An()un(s) = Han),
~Anton = 1, (20201 - An(B)luta(s) = Ho.6)

(355)

substituting (354) into (3.5.5) we have wit = 0, w0, = gy and

il — - g (98 ) 4 gyeime [ V10
(20757 = Ary () wao(s) 2{0.5 (%)u‘:, (W)} a5

thot, ~(rt)<s<o,

with the initial condition at s= Ogiven by

Mﬁ 52 """)um(fam;umm) asn
> 8 \ews vy

n(s) = Aie + Ay~ 4. Eee, ©58)

Then from (3.5.6) we have

A.—@ Y0 ) hot, ap= 20 [ T} poy
™ B \ Vo




Ats=0, from (3.5.4) and (3.5.7) we have the following relation to determine

L Y (i e
0 cugtbug  \cau by (59

rate ) s sginEshot.
o(2+ b))

Since.N{dD"+P.
forxEX,yEY (X, YT, 0)issolvableiff

pansinx), an equation in the form of (dD"+ P, )x

(y.sinx) = (35.10)

Setting

paa () (2 e

where (sinx,E5) =0 {i= 1,2),bythesolvabilitycondition {3.5.10),weget

-(1-2h.hao+c.a. -c.a, ) (B
« -Cd, ~{1-2h=)ao + cans E
( b +eN ) +hot
Nofea +bN.)
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~{0-2hear-baanbrierNorano Moozt ,)

B \Jl0-2hedagcitty I (ezsbaladicaan buica ML)
8) (OZhdaraa ) (Zidoraaracema, o 0512
Uyand(3.5.1 5) o206
o (J)+(E‘)]m+0
6513

Takingw20,wll W02 into

Gz = [ (W00 - 9010)) gtz Y T O

f
m—mmmw +NNO(er +baN) + hot.,
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m

=k /:“ Ll 0) + @0

1 @ : i

/ xmwﬂ'(,mmmh’(—nw»;w;é‘mmm M- JufPO)b +CN
1N,

~’[; [ thwﬁ.‘,’(-!nmm"’t—mm;n el (-0)+ b2

+ {0+

F 0| fax

thot

@51



Chapter 4

Spatially nonhomogeneous
equilibrium in a
reaction-diffusion system with

distributed delay

We consider a reaction-diffsion system with a general distributed delay

=u(t) =0, 20

(@1) = (onga () E(-000)x[o
where the initial data 91,3 E C - 00,043, ¥ = L3(0,x), and the delay keroel
K) B LT,00) saisties [T K9)d9 = 1, K(9) — 0 na 8 = 00 Ag for g ©
R2 = R,(i = 1,2), without loss of gencrality we assume J(0,0) = 1. Here
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X=H?nHJ.

4.1 Existence of positive steady state solution
e stady state solation shoud sty

D2 Sl ) =
a2yt o) =0
According to (6], L(0,7) = N(dD? + 4.) © R(dD" + 8.) where f, = d, and

@iy

N(D? +is.) = span{sinz), R(D?+ B.) - (uE £X(0,7): (sinx.u) =0),

WIthN(dD2+iJ.) beingthenul spaceofdD2 +i). and R(D +8,) is 102¢ space

{ua(z}=w-u.7n.(-nuw— \(2) .
@12

() = (9 - fu)aa(sinz + (3 - B)ea(x)),
where (€n8inz) = 0 (i~ 1,2). For any function g : R? —» R, denote g(ug,5) = g5
Substituting(4.1 2)into(d.1.1),weh.ve

(AD* 4 )6y +sin 2+ (3-A)6 + Blsinz + (8 - IE)Ti(8) = 0
{(dD? + )6 +sinz+(8~u)6a + Blsinz + (8 - B)E)Ty(8) = 0

w)_{ 5 [I2T%

(@@t fu@ar)sinz, it §=4,, iy
u(B.) (i=1.2)

ALB=A. (413) becomes

(4D + Bu)6uu +8inz + Busin? 2(frunane + frena) = 0,

{ (D4 ) + 80 + B in? 2 fonte + fonz) = . Ll
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xdx/UL - )<
both sides of (4.15), and solving out Q.. ag.. Then we have.
Save—fiue.

ot = Fofue= frnfau ™ 2
Note that when (C7™*) or (C3") holds, aye, ag, =0.

As for the existence of the positive steady state solution for € R near f,, V¢ have

Theorem 4,11 90, Theorem2.1{ There are a canstantp’ > p./ar (c;) (o
(GF), anda cotiuonsy aferenabe mappi - (6,2, ) o '3
1aX'xRsuchthat 4.1 haldsand (p.sins) = O (i1,
Corollary 4.1.2 FareveryPE[{3..P., (4.0.1) has a positive salutian (up, vg) with
the asymptotic expression (4.1.2)

In the following. we anly emphisize the main results which aredifferenromthose
in[90jandalvaysassumePE[ (3. P-jand O<p: _P. « 1

To investigate the local dynamical behavior of (4.0.1) ncar (ug, yg). e rewrite the

system (4.0.1) With t = Uit ug and v = Vi 4 vy nn

& (Um ) =dD, ( Un) ~LUV)+9(UY)
Ver) Vey

-(23) e

@16
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Loy = ,(f: IS))(um)

vio)
+i("“““ T ) 40 (U0))
Insts, s ) I vii-6)
- /‘] dn(@) ( U(0v)
=" v

WithT/
BV(I-(r+6),05;Y).andthenonlincarfunction

gU V)
“8 [( s [y KOGHE 1 fogivi+ 252 4 ) opan
0 L3 KOEHE + fngtivi+ 2% 1y g)i0
. (u,(o) S KO faslick froaVit 2% 1 Ui 5292 4 010 )7
VilO) [y KO st uogVirt B4 4 L+ 282+ gra0

Define the operator A(3) : D(A(B)) — ¥? as
soreasss( 0)
0 fu

with domain DAB)) = X", From [56), A() geoerates a compct Co semigroup

Let Ar(8) b the el generator of th semigroup induced by the soutionsof
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for (#1,€2)T € C((~00,0], ¥?) and D(A,(8)) being the set

" e 28 EC00.0.72 (@b B X2
() ECm 02 () ECH0n. 03 (0 :0)

#(0) #i(0) 2t Sisus fruous | (&1
-
(ﬁ(ﬂ)) a (mm) R ( Tnsts Fugun s

value equation 0(4.0.1)
» w 0
AT =0, 3 ¥
("1) (W)*(“) @

ABAT =A@+ I‘““K‘M,),uﬂ(/uw o ),
Tnts s

Therelore the

When (C5™*) ar (GF"7) wolds, we can obtain the following resalis about zero

alue X = iy (3 4 0) ifand only IC

1tis obvious that Ar(8) has an imaginary <

“ “u 0
A, =0,
H(m) (w)#(n) (419)

s solvable, where 97 = @ + 2n%,n = 0,1,2, .. and @ € (0211]. Thercfore, if (4.19)
s solvable for some 7 > 0, and (%1, ¥2) # (0,0), A7(6) has an imaginary cigenvalue

solves (d,1.9). We first introduce two lemmas.
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Lemma 4.14 (90, Lemma 311 11 (1,,¥1,%) solves Sq. (4.0.9) with ¥y, ) #
(0.0) and (91¥a) ExXe, theny = O(8~ 5.) and 1/(8 ~ B.) is uniformly bounded for
PEP.P)

Lemma 4.1.5 (6, Lemma 23] 1= E Xe and in(s). ) = 0. then LedD"+ P.jz. 9l >
E2E

Assume that (7,,%1,¥) is & solution of (4.19) with (v1,42) # (0,0). If we
fgnore a scala factor, (¥, vs) can be represcnted pe

Wi =sinz + (09— Am(2), (nz,m) =0,
Vas (VFiM)sinz + (8- )ma), (sinz,m) =0,

@.L10)

for M, € R. Substituting (ug, vs) in (4.2) and (1, v5) i (4.110) and y = (3-4.)h
into (4.1.9) weohtainthefollowing system (4 L11)-4.1.13) which iscquivaJent to Eq
@19y

210, b, M, N, 9)
(@D%4 By (L -ib)(sinx (8= Bm)
+OTL()(sinz + (8~ BIm)

+Bange™t® [ K(0-+ r)e-dB(sinz + (8- .)61s)
*(fuualsinz + (8- B.)m) + fia((N +iM)sinz
+(0-pm) =0,

@

o, N, M, )
= @D B (1 N M) S+ (- Bymg)

+BT(B)((N + M) sinz + 3 B)m)

+Baspe™® S K0+ e-mas sing + (5 - f)

XE) (N +iM)sinz + (8 - B jm)

+inalsing + (3 - Bm)) =0,
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93mym, by, N, M, ) - Re(sinz, m) ~0.
9. by, N, M, ) = Imsinz, m) - 0.
95(0m,72, @, N, M, 9) = Re(sinz, my) = 0

g0l 2, ho 2, N M, ) = Tn(sinz ) =0

Las(s = o Define G = 01 .9

@

Mo (- e M= (- ROV ML)y,

of 1) 1t is casy 1o see that G(nte, vy e, VoMo, (1) = 0 M)feover,
(G™) (or (C3) bold, v have the howingiheorem

B (mavmass oy, No M) from (8,87 1o XV xRS

the solution of (4.1.11)-(4.1.13) is unigue.
The following

Corollary 4.17 170 <
(4.1.9) has a solution (y,7,$y,ya) i/and only i/

" Bhg, 7 =10 = (g +2nm)/yg, = 0.1,
(a.) c(vm)zc(‘an“w,@_)m, .
v Vas (Np +iMg)sinz + (5~ . nag

*is an arbitrary nonzero constant, and g, mag, hs, @, Ng, My are describea
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4.2 Stability of the positive equilibrium

I this setion we study the stability of the positive cquilibrium (y ) With 1 fixed

igenfunctions of the adjoint operator of the linear

Corresponding to = 7, the

operatorof (40.1) aredelermined by
©
me(” ) -
- (A(l)ﬂ*wﬂ’ K@+ e ( v Inavs | \( 013
s fos J\ o2

sz 8= B0, 43 = (VG + iMPsinz + (8- gnty)  (42)

(“22)and

i

m = -k w = (1 im)NEg,, M) =0

o~

column veetor B = (Y1, 25) e for —c0 <0< .
Denote

" .
<(n,n), ( - )> = [ 0me + nenn o waey, i-1a
and th iner productof 4,6 s

0= 00000~ ["[* [ stc - ounococes



where %, € C%((~00,01,¥%) and n is 8 in (4.1.7).
Let S5, denote the inner product of ¥} and & when 7 = 7, defined in [28],

Sa =[5+ v es [ (v{;’.v;:})tQOKmmg—mm
o[ fss Srsva w.,) )
foavs foavs ) \ vae

Lemma 4.2.1 Foreach(3E (Bu,8),Sp, #0.

P roof. Noting that 7 = (3~ 4.) and as § — 6.

5 B L K0+ )0+ ragermtds — i i+,
Sa = i85 +20m)(L N ( frcte ""“") (1) dsinsx
frus0ze favoze

+ [+ NN, sinzdz £0 as 5 — 6.
where ue,i = 1.2, N, N, are all positive

Lemma 4.2.2 190, Lemma §.8] X = iy is a simple cigenvalue 0/Av. (), = 0,1,

SineeA=i"(1} T
itis not difficult to show that there are a neighborhood of (a, 7, 1, ¥as) in O, x
G, x HU" C R x C x X and & continuously differeniable mapping Og, — Ca. x X3

such that for each 7 € Og, the only eigenvalue of A,(8) in Ca, is>(T) and

M) = 73,1 () = Y10, ¥a(ra) = g,

wl

()
ABANLT) =0, rE 0;
(8, \() (ﬁ(f)) o
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Difrentining e bove quaton with respect o7 5t 1. we have
A ( :""' ) + RO, 10,70) + 808, 2) ( :: )

Wi(m)
= (B, ir,m)
o ()

(423)
+ X) (e K0 e (04 “,)(/w’u llw'ta)( v.,)
Juats fanats
BlR et — [ K8 -t ( Ty Jm;) ( Vi ) o
tuava ey ) \ oo
+can veriy that

/ i LRSI, /"' oK+

tiplying (4.23) by (¥(3,¥43) and integrating on (0,7), then we obtain

N)Sa, = —femton /n W v ()
- 0K (0 47) s fss (15
4O gy ds,
/ % (lzu"ﬁ /wa) (m)

Nm) = (11 + 1)1, 1",

‘according to the expression of . Then

o= —fe*=[K(r,)
g o (S B ) e
Sravs, fagvs
i 2% + o0z

T = TR K () + [ 2o a(r) [ K(0)pentan,
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| w&;’.w;;’)(hw Jn-m) (wu )M
™

Jrugvs  fresvs
R v
N = T L

Then wa have the following result

Lemma 4.2.3 For each 8 E (4] (O<{J- - (. <I)

ReN(m) > On = 0.1

Proof. Since W = k(- (1) + Ol - B} a0d my = w2 O (1), 1 cngy t©

K )+ / T a4 = g, + O~ 1

@i+ Yoz (14 NONDT a5 0

Jravs, frgva ) \ o
= =(1+ NN o8~ B.) [ sind zdz + O(8 - B

R ( o, /Mw) (w,, ) B

O<Reli - -achlB(1+N.NS(8 - B.)2 [y sindzdz + O(8 - B.))
1212 [ K@it = 011110

sign(ReX (7)) = sign(Rel)
and we have ReX/(7a)| 5,7 > 0 a8 0 < 5 - 4, < 1. Thus, the assertion is proved (I



Lemma 42.4 [/r=OandthekemelK(0) satisies the conditions

(H) K®)EC, K20, Kioo)=0 and Koo

(i) when fuue, fave <0, if (C7**) holds, all eigenvalues of A,(8) have negative real
par: if (CF) halds, A, () have cigemvalucs with positve real parts;

(ii) when fiue, fave >0, Ar(8) hias two cigenvalues with positive real parts if (C5**)
holds il thre cigenvalues have positive veal parts if (C3) i true

Proof. Whenr=0,
cquation F() =0, where
EQ)= 2 buomhooargy 4 Unsheclip) doven s}

N+ BIAM + BaM]

it /(30 = My, [ KO0 =ty
H=0in

L))
3 420

cular contour centered at the origin and

where 7(R) is taken as the closed ser
contained in ReA 2 0. Wecan sbowtbat([351}
(424)

= limp gy TN = 1 = oo argF(R).
Therefore, the number of roots of F(A) = 0 in the right half complex plane is
determined by argF(iR) < = which will be estimated as following

FR) = - R+ B.iRM.(iR)+ MYGR)By = R(-R-+ B,iM, (i) + M}(iR)/RBy),
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e total SBADEY i arg (R a8 R goes from 26 f iy mst b6 one o g

). Todeterminen, we need 10 check the sign of ImF(x), Note that

IR = FI) 5 K(O)cos(ROYS @25

FIR) = BIR

28, [ K0y sinroyas
o
First, we can prove J6" K(0) costRDIO 2 Orwhen (8) is satisfied.  Actually, using
integration by parts tWice ([23)).
5 Ki0) cos®1is =~ (K0) + [5° K'O) cos(Re)de)
= 7 5" K0)(1 ~ cos(RE)0 > 0

. the sign of FI(R) can be determined by

Morcover, since FI(0)

F(R)=

h - 28, [ KOWOcos(RDIO

which i ifferent 3ccording 0 the S0 of fye,foe
O 1 fiesfaw <0, B, > 0and F,(B) 3 0 since

Fi(R)2 B, ~2Bj|E >0

where = Ji7 K(6)6ds,
InF(0) = Oand InF(iR) > Oftx R > 0 implyingareF(iR) — x aa R —s 0. Morcover,
when (™) holds, F(O) - B,>0(argF(0) - 0) and consequenly the tota change
in argF(iR) is = (se Fi. 1, curve A) e =0 i (42.4); while f (G )i st
the total chang in argP(iR) is 0 and 9 = 1, since FI0) = B, <0 (arg(0) = g) (sec

Fig. 1, curve B). Therefore, the result in () holds

O(3-13..B. = O3 - [3.)'forf3-f3. 1, Therefore,
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n 1mF (iR

B

ReF(iR)

Figurel. SchematicgraphofF(iR)whenhu..!1v.<0

(i) 11y, hv. >0,Bt<Oand

Fi(R)< B+ 2Bi|E <0

whih implics ImF(iR) < 0, argFGR) =~ as R — 400 (< Fig. 20 When (c*)
holds, the total change in argFR) 18 —x since FO) <52 > 0 and 0 = 2, that i

Ar(B) bas o cigenvalues with posiive real parts (see Fig. 2,curveA)if (Ci') &

ficd, areF(iR) is- 211 2 <Oand =3

Then A;(8) possesses three cigenvalues with positive real parts (sce Fig. 2, curve B).

mF(iR)

ReF(iR)

FrETeS—tichemtie e ot wherhm. 1V, =0



Remark 4.2.1 I is casy to check that the weak kemel, K(O) = o-(“T) for 82 T,

satisfies condition (H) in Lemma 4.2.4 while uniform ke,

,“,)n{ Lo felnred
0, otherwise

and strong kemel, K(6) = (0~ 7)e™*~") for 0 > 7, do not.

Lemma 4.2.5 Forr = 0, when the kernel is asrong hernel, K(8) = (- the resuls
in Lemma 4.2.4 still hold

Proof. Via the sime proof as that of Lemma 424, we can sill have 00
lima_o08raF(R), the total change in argF(iR) as R gocs from zer0 o infiity
being one of % - 2n

0.0,2°.,) and InFIiR) il the form off (42.5), ie. the

ame vay anpevious. Using the cqution
[ K et = o [ o - otrmyan
for the strong kernel K*(0) = (0-2)e-8, we have
[ K [oct et
o T oo
- %[: (0 2)e~"(1 — cos(RE))d0
= o 0 0 con) - 240 - s
whichyields

z 0 2741 — cos(RO)IdD

[ koo -




Then (i) if fiue, fave < 0, when R increases from zero to infinity, Fy(R) > 0 and the

sign of IMF(iR) is changing from positive o negativeandargF(iR)-+ ¥ as R+ 400

T = 1. (i) I fuwe fow > O, F.(R) < Oand the sign of ImF(iR) from negative fo
R) s =7 for Risinfinits. When (C5**) holds, the
% when (CF*7) holds, the total change of

The proof completes. 0

positive, Le, the value of a7
total change of argF(iR) is — and 91
argF(iR)is-21Eie. Il

Consequently, we have the following result

Theorem 4.2.6 For any 8 € (3,471, 0 < 8~ B « 1, when kernel function satisies
condition (H) of Lemma 4.2.4 or it is srong kernel, (C5™*) holds and fuw. fon < 0,
e posiive steady stae solution of (+40.1) i asymptotically stable o T € 0,) and

4.3 Hopf bifurcation

o chissection we will study the Hopfbifurcation at the positive equilibrium(t) $(x).v8()
a8 the time delay 7 crosses . LetT = 1+ ¢ in (416), wp = 2r/75 and v.(1)
Vel ra)n,w, () = Vel +ayy). Then (U0), V(1) i n w1 +0) periodic soluiion
of (4.1.6) if and only if (wi(8), wa(t) i an wp-periodic solution of

e
@\t

= a0 g [ s /W,, xorm [0 g
w)(unit) . / O -ty

“G(*aw). “sn
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Gle,0,uy)
) - w(t-q)
= gA(f) +80 K0+ o
(qm) (/..m. JM»,) L ( (t-0)
o s s w(t=0)-wi(t-n-0)
T, St t~0) -t 0)

T ®, fugei®) wilt—q)
+80+0) X -
Kl o /z.mu)f" g ""'( ,)

T K@+m)

(w.mm,‘ K@) (‘T“’x*flwam;w+7'}"w7m "
0 wt)+uy ‘r“"f*/’wﬂwxnﬂ+~'¥‘w’}(z»q)
+0(uh,u)

with g:= 4. Similar to (90}, we use the following notations
1) 80) = (#5(0)
- W5(s)/Sp,
wi(e) = 8 L 0Ss<mtd
(WSM/FA, ) "

2(6) = [#)(6), 8®(0)) = b(B)H, W(s) = [

1850)), ~(n+) <00,

wii)(s)

where

1=3(17) wme (250, w0

(2) Let A be the elgonspace of A(B) corresponding (o the cigenvalues i

(#4700, 90) =12

(3) Let Puy be the Banach space defined as hy

P . )
P~"{(I ) ECRX).Mt+We)=f: (1)'i= I’2,tER)
]

)4
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@ 2= (Pp2)T, i Py~ Ryi = 1,2, are defined by
at = [ [ @R+ ) oot i = 12

We state the following lemma about the existenceofa periodic solution (s [g
7] ana [903)

Lemma 431 ForjEPwis,theequation

W s t Tugta, fuauy

KO+ (e -
@ iy IMV‘) A @+ m)ult - m - 6)d0 + f(11a.3.2

hatis,ilpd = 0,1 = 1,2. Hence

there ™ a linear OPerator K. from N(p) to Pay such that for cach fized £ END). icp
i the wy-periodic soution of (1.3.2) saisfying (K1)} = 0. k<. (¥, (Kf)g) ~ 0. Where
(K1) idejined by (K10(0) = (K1)(0),0 € (-00,0

wp-periodic solution wi(t) if and only ifther is a constant csuch that
PpG("0.w) =0,
w(t) = ¥N(e) +[KG(e, o w))(r), 1EIR
Furthermoe, e inroduce o change of variables ¢ = g, g A1
w(t) =) + WO, W)€ R, (9,W))=0
Then (43.3) and (43.4) are equivalent to

TleesW) = [ (90, Nest,5, W(s))da=0,

o KN(:.:,r,W?:K(N')
»
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(D40 15) @ W) )~ Bup [ KO + ) o Hi(0,6) * finst0, 10
= Bst o K(0+70) frua(@+Wa) 4 froa (850 I )i (1-0)5
- B e)@D ) [ KO3+ )l fuaa(@) + et — 9
+ha(@) + cWa)(e - g)ldo
- B+ ) + (8 4 1) [ KO8+ ) fang /2080 ) g)
o Fana() 4 W)= (O + Wa)(~0) + /208 + Wt s
Beug/3 5 ke (54 10 (Froa(® + 1. )7+ 31, g (00 + ey (@l + 70"
¢ Srwag(® WO 41+ fap( + O (- 415+ o),
and N iscqual t0
(D +0) @D +Wa)(0)~Bup 3 K (O +0) fus s (0,6) * fang (0, ke
5 [ K(040) g (4 cW) + oy (@1 + W) (1-g)d5
+B -+ @+ ) % K5+ ) foua( @D * iyt — )
(@) + Wa)(t - g)do
UL+ e5)(ua +e@ +10,)0) [ K (5 ) fag /200 * s - o
g (@) + W) Y@+ 0,1 )+ fong/2(afD + W, (1 _ g
o BB ks ) (faua @+ W)+ 3fps(0P + ety o +or)
< Sansn(® + WO 4 ) + fony(@ + O (1 s + o)

0. = Wt~ 0= )= Wilt=0) 0 [ 600~ —acsht, 1 1.2
o
and 0 = ={ttn

Since a periodic solution s a C'¢-00,0Ly2) function, without loss ofgenerality,
we can restrict the discussian an Eq. (43.5)and(4.3.6)t0WE PL— {J EP, i E
Poado Wles, = 1 lpu, + 11

Lomma 3.2 For any I © B, 7(0,0,0,W
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Lemma 4.3.3 With Nr), X(r) are dejinedas befor,

87(0,0,0,w) _ ReX(m), 0)
@9 (), -7
Lemma 4.3.4 Let Wa(€) = e 4+ (3 + (le=2t 4 (t)d, where 3 is equal to

2 (A(ﬂ) 8 ( i T T y——
Sruavs fagvs
[(I:” RO s(Fustis + otuple=m0smar)’

0
+ ( ‘;ﬂ o ( o™ KO+ 1) fyua/20% + fuapthravng + /,,,/z.,,z,y,—m.mw);]

and B is equal 10

2 Swgus fugus |\ T _ )
(ace) . _—

#(( w(/m Fang )) [(R A )

u 0 oo - =
+( i W)(fn O+ ) Sy BT + 2o RelssFos) + ) 20

Then Wi = K(N(0,0,0,Wy)
Now by implict function theory, we have

Theorem 4.3.5 (Existence a/ Hop/bifurcation) Foreachfixed(3 €

bifurcation occurs at the bilurcation point (T.U.Y) * (m up,up)




le,W).sle, W) satisfying £(0,Ws) = <(0, W)

Lemmas 4.3.4 and 43.2, that is, there exists 1¥+(c) for some small enough c. Then

(436) is alo satisfied by using
the wp-periodic orbits near the nonconstant stcady state solution (ug,53) atr=Tois

i) = @) +eW @)(0)

e=cele, W), o = esle,W(e). 0

€= es(e W(0) = IE(0, W) +0(e)

T obtain the dircetion of the bifurcation with respect 1o the parameter 1. we necd
<. the sian of 0e(0,Wg)/de. Forconvenience, we denote
-, (¢W- (c». SinrefnrcE [-c'.c'),

1o abtain the sign of

o (c)=e(c. W' (c»,." (

7(c.€(c), <'(c). W' (c))=D,

2700.0.0.W5) , 870.0.0.Wy) [ G
Lojomy  HOAN
o) 1 rew ° ) ose00wy)
ECl) ) s — L3

sansara (1)

&
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and gy be
T 3 KO pUnach + Fmsh)e ™ + s+ )
+ 64 Ui + f,uame"-' + Gy Upustis + fyvavas)e™w¥ds
+ T 3 ng,f[wu(/,umm, + Ires¥a¥as + SymabrsB1n * fjagtastas)
FiUss 2l + pmsists + s 2630 ds
St S UK OB (s + fgbasdCh + Upnsig * sy (57
+ Usstas + 10X + Uy + Spmsia )i
Y KOS 8T+ LoV + @i+ sg)
+ pnabra (BB + 1sas)ds
where Uy = s Uy = . Then we obisin

where Ty = fuj [7 Repdz. Then if Ty < 0, %50 > o, whldllmpliuthnlhn
10, an

prove that the Hopf bifurcation isawaysforward. We frst introduce the following

Lemma 4.3.6 (90, Lemma 55} Let G} and G} be defined as in Lemma 4,3.4, Then
im G3—p.) = mlsinz, Jim 3(6-6.) =0,
where ! = (mby, miy)T and

(2ih, +1)
Ty ™ (438)

mhy

Ty <0 and the Hopf bifurcation is

Lemma 4.3.1 For system (4.0.1), Repy <0, i,
Sorward



Proof. Accordiog to Lemma 3.6 and (43.7)

05 = T bl + o) ey + )]
L

bl + f) . Moo + )] +00 - 0)
e 28 D + M) + 006 5

f

since N. = 22, a(0) + falO)N. = 2 and N1
According to (4.3.8)wehave

O, iz 2005y
Nty bz

[

_ fysinzds ag S 200
Listads oo gy _in g
s b, - D zik ik

W )AZi(2ik, +1)5
:
wheres—-1- §i. Ths,
of - h2Re[(1 — ih.)i(2ih, +1)3]
] rente - <0

Rel{1~ih)ic2ih. + 13 =

‘According to center manifold theory (see, for example, [177),th

jrectionofHopt
bifurcation at 7 and the stability of bifurcated periodic solutions are determined
by sins of s = ~Recy(m)/ReX'(m) and Recy(m) respectively. Since pg > Oand
ReX() > 0, we have Recy() < 0 and then the following lemma holds



Remark 4.3.1 Under assumptions (Gy) and one of (C:
following results

(CF7), v have the

(1) A positive sparially nontrivial equitibrium exists for a small range of parameter
P And when the minimaldelay, =0, the stabilty of the spatially nontrivial
steady state i analyzed if the kernel function satisfies condition (H) in Lemma
4:2.4, for which weak kernel is an ezample. As for another widely sed kernel,

strong kernel, conditions in Lemma 4.8.4 are not satisied and we have similar
results aoout the stability of this nontrivil steady state.

(2) 4 sequence of Hopfbifurcations near the spatially nontrivial steady statesolution

s

4.4  Examples and numerical simulation

wherealU,022 > 041221 > 0. IF01221 > 0, the system is competitive whie if
012021 <0, it i & rooperative system. It is easy 10 sce that (C1) holds.

Moreaver, for the competitive system, if &1 > 1 > 2, (G;'") holds; while if
& <1< 8, (Cf) holds. For the cooperative system, if apa > aygan, (C3**)
hold whil it iscasy to veify that (G is impossibe.

() i the form a5 (4.1.2). Aseies of Hopf bifurcations occur rom (ug, v whenT



passescritical values T (n= 0. 1,+++). Especially. the Hopfbifrcatioo at theeriial

It is casy to check that the kernel function K(t) =

! satisfics the condition ()
‘Then with such a weak kemel, Hopfbifurcationfrom7b issupereritical for Eq. (44.1)

In the followiogwe give some numerical simulations to illustrate our analytie re-

suits. Fixd - 1, then(3. =d/= 1. Acconding to the previous results, when 3 > [

Hopt
bifurcation wil occur. We always let(3 = 101 >

Theo the first eritcal value
o % 167, Hence, when Terosses7, periodiesolutionsareexpecteddue totheHopl

To observe thedynamical behaviors of system (44, Dwith(C2"+),we choose the

(B) an=an=1, an=an=-05

10) ultz) = 4x 10-(1+ g)sinn, v(tx

2 101 + hp)sing
“The fllowing graphs only depic th solution curvesofu, which are simila tothase of

v. When (P) is satisied, (44.1) is & competitive system with condition (C3*). With

in the Ieft grapb of Fig. 41 which is stable; the right graph of Fig. 41 shows the
170 -

system (44.1), the lef and right graphs of Fig. 42depict the impact of minimal
delayTon the stabiliy ofoonconstant sicady state solution and bifurcated periodic
solutions respectively with (P2) holding. BychoosingT ~S0andT - 17respeetively,
the resuls are similar as the one in Fig. 41
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Figure 41: When (P1) and

ate uscd. Left: 1 = 80, solutions of (44.1)

converges to a spatially nonhomogeneous steady state; Righ rd

=170, forw

Hopfbifurcationoccursand the bifurcated periodicsolutionsarestable.

Figure 42: When (P2) and (IC) are chosen. Left: 7= 80; Right; 7= 172



Chapter 5

Stability and Hopf bifurcation
analysis for Nicholson's blowflies
equation with nonlocal delay

2a) - ape-TUC ) BTE D)

Dt ) Tt st [ [ e rssucsravas

.0.)

for (1, [0.0) 10,7, with nitial condition
u(s,2) = 6(5,2) 2 0 (s,2) € (~00,0] x [0,7],
and homogencous Neumann boundary condition

u_y, -0,1t,
22=0 o, x=0,f,
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where ¢ E C((-00,01 x [0,7]) is bounded. uniformly Holder oontinuous, $(0,)
CIO.1rLandU, = ult,),Us = (g + w)(t,2),

ry.-»(x,z)=/f_[(§+§f;

100 sasis (10, 13)and it i sy t0 s that
[ [ otes orrivas= s

5.1 Positivity and boundedness of solution

Eq. (50.1). The positivity of solutions arising from population clynamics should be
gusranteed becauseofthe biobgical realism. By using the strong maximum principle,

we have the following theorem

TheoremS.L1 (Positivity of solutions) Ifthe spatial domain 48 fnit, with homo-

gencous Newmann boundary conditions Vu-n —0 on the smooth boundary 00 and

initial datau(t.x) = ${t,2) fort <0, = € T satisying 6 2 0 and ¢ s not idensical 10
" i xEn

Since this result i essentially the same as Theorem 21 inI23],weomittheproos.

super-solutions due to Redlinger [$7],as it applics to our particular case

Definition!

1 Apairojsuitablysmoothfunction.si/(t.x) andw(t.x) i said 1o be

sjor(5.0.1), . £ 10,00)xnwith
the boundary conditionVin=0 on 00 and initial condition u(t,x) = 6(t,) for
<0, z €T, ijthefolwwingcondition.shold
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(i) v(t,z) Sw(t,z) lor (LX)E10,00)xTI

(ii) ThedijJerentialinequalities

an(t.z)
o= SAD(t,2) = Tv(t,2) + Br((a + ¥)(t,2)) expl~(g + ¥)(t,2))
oult,)
o= 2 dDu(t,2) - ru(t,z) + r((g + ¥)(t,2)) expl-(g + ¥)(t, )]

hold for all functions v € C(([0,00) x ) U ((~o0,0] x ), with v < ¥ < w
(i)9v-n=0=Vw-n on 0,00) x O
(i) v(t,2) < $(t,2) < wlt,2) in (00,01 xT

‘The following result s from (57, Theorem3.4],whichshowsthecontrol o fsub-and

supersolutionsonthesolutioosofEq.(5.0.1).

Lemma $.1.2 Assumethatv(ts) andvw(t.) isapairofsub.andsupersolutionsfor
(5.0.1). ¢ EC((-00, 01 x ) is bounded, nonnegative,unilormJyHoldercontinuous
and ¢o(z) = $(0,x) € C'(), then there ezists a unique regular solution u(t,x) 01 the
intalboundary vlue roblem (50,1 weh tht

W,2) Sute) S wlta) Dor (42) €l0,00) xTE

By the usc of the comparison lemma, ic. Lemma 5.1.2, we know that the positive

solutionsofEq.(5.0.Disbounded.

Lemma 5.1.3 Thesolutionu(t.x)olEq. (5.0.Dsatisjics
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with WO(0) = SUP'E(_o0,0) MaXzen ¢(s, 7).
Defne
o= ™0 000)
w(t), =0

Since 0 < 6 < wo(O),wecanchoose (0,) 35 a pai of subvand supersolutions of

(50.1) under the initial and boundary conditions. Actually, it s casy to see thatOis
asubsolution. Asforwo,sinceye-11Se-1Cory>0,onchas

Fmo(t, )
T - aD0,2) + r0(,5) - (9 + )t 2 ol ), 2]

omo(t,)

¥ €C((10,00) x MU (~00,0] x T0),
with 0S¥ < To. This shows that Bo is a supersolution. Thus Lemma 5.1.2 implies
0 u(t,2) € o, Since limt_oowo(t) = &, one has

Jim supu(t;z) < 2.
=t el

The proofis complted. 0

5.2 Global asymptotic behavior of the uniform
cquilibria

usreadilyscenthatEaq. 5.0.1) admits  trivial steadystate soluion and  nontrial

constant cquilibrium 188 for 2 > 1. In this section, we study the global stabilityof

e nonnegaive wiform stcady iae soltions iausing tbe upper-and lowersouion

metboddeve)opedbyPao[55].

According to Lemma 5113, there xists fa > Osuch that u(z,8) < & for £ > g

To investigate the asymptotic dynamical behavior, in the folowing we only need to
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sonsider Bq. (5.0.1) when t > to. Since when f < ¢ % = (ire-V'(1- U) >
3re=4(1 - 2) > 0 with Q(Uy, Us) de
520 >0 such that
1€+ pree
weeallCandCasupper-andiower-solutioosforEq. (5.0.1).
We can vrify that QU102 possesses a Lipschitz condition,
1Q(, ) - Qlun,wa)| =
< K(lw =] + ug = wal)

Ty 4 Brige™

Tuy * Brine™)|

22

for it € < v < €= 1,2). Constructing two sequences T}y a0 ()50

by the rollowing iteration process

Cn = Cmei+ 5(-1Cmos +rCmore Tnt)

1

Cm = Gt + g (TCony + 7Cpye™Cnet) (523)

with initia ieration Co = & and Gy = &, respectively, condition (5.2.2) implics that
€S Cn S Cny <Tir ST Cm=0.1.2 6524)

lim Ty, C= lim G,

1T+ 6T T+ preee 629
a ¥ 6.01) in the interval
16,81 in general, T and € are nat the solutinn of Eq. (5.0.1). 11T = G, it i the

unique sollion of (50.) inthinteral 6, ], The following remlt i 5 consequence
o5, Theorem2.1 and 22)
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Theorem 5.2.1 Assume hat € and € is a pair of upper- and lower-solutions 0/
(5.0.1) Then the sequences {Cin Y35, and {C}Sag . eiincdby (5.2.3) converge mono-

satify (5.2.5). 1fC = C, then T (or C) i the unigue solution of (5.0.1) in the inter-
val [C,C] for any initial function satisfying ¢ € [C, &) and the corresponding solution
wo/(5.0. satisjies
Jim ult,z) =C.
Now, we are in the position 10 state and prove our main results on the global
stability of the two constant steady state solutions

any nontrivial solution

Thearem 5.2.2 (1) If1< 8 < e,Inf i globally stable, i
ultx) 0/(5.0.1) with initial boundary conditions sarisics

Jim ult,z) = Inp

@) 13= Lu=Oisgloballystable

Proof. (1) According to Lemma S13, u(1.5) < & for 1> 0. Then 8= 2,8 % g,
: Forfq.(5.0.0) Noteh

0<co5 m.B. "

1oP < € = Bince B ¢ Then it is casy to see the inequality (5:2.1) hold for

1< S e Acuallysince | < e we have ~1+ fe

2 <0, which means that
1G4 pre® w1y pety <o,

1 B> 0, e,

and since 0 < g0 < In|
—7C +prCeC = ayr(-1 + pe0) 20
* A)holds,sobothofthe

timits of (Com}ua a0 {CanlEg exist and satsfy

0<t< o<cs?
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Furthermore, according to (2.5 we have
“1+peC=—14peC =0,

C=T=ng. Therefore,

Jlim u(t,2) =Inf

Init. Thus the limits T and C of the

W

o

w

Be% -1 <0, which is obvious since £

Cr(-1+4e9) =Tr-1 480 =0
Since 8 < 1 and T,C > O,weh.ve-1+iJe-C <0, =1+ 8¢S < Oand then
€ =T =0, Theretore,
Jim u(t;z) =0

5.3 Lincarized stability of constant steady state

Intheprevioussection, we have proved that the trivial stcadystatesolution and
u- =In Sarcgloballyasymptotically stablefor® <3< 1 and 1< 8 < e respectively

= Lisa crcal value after which usiform stcady stte Inf appears and 0 begins



CHAPTER's.  NICHOLSON'S BLOWFLIES EQUATION

10 lose its stability. For {3=¢, weconsiderthelocalstabilityofu = InB. Let

w=1Inf+U. The linearized system ofEg. (50.1) at u* =Infl s

WD) — yp2ys,2) - rU(e2) + 11~ B)g *UNE2) = LU, (53.1)

AsuitabletrialsolutionisU=e,\tcosfIX,m=0,1,2,-+-. A calculation shows that

92 (N cos(ma)) = FA+ dmd)eM cosgny).
Solution It0Eg.(5.3. b
PO t= Ak dm? 7~ 7(1 - BT +dm) 0. 32)

where 1

+dm')= f° f(s)e~Ptdnledy

Thenrem $.3.1 Ife < < &, the steady state u*
with Newniann boundary condiion is incarly siable!

108 of (5.0.1) on [0,00) x [0,5]

lor any delay kernel

Proof. First, it s casy (0 sce that 7ero is not an cigenvaluc. Then, we only need o
prove that al the root A of (532) are in the left halfofthe complex piane for any
W23 0.1t is false, then there exisis a root Ao with Reda 2 0 for some m? 2 0. Since
(2o + dm)l <1, for e < 3 < ¢?, one has
< No+dm? +7| =|r(1 - InB)F(A +dm?)| <
“This i o conteadiction. 0
For (1> ¢ there is no way to analyze the local stability of uniform stcady state

Solution Ing for general kernel sinee 3 is involved in F(A + dm?) mathematically.
Th

i the folowing, we will investigate some further suffcient stability conditions

by applying the theory of complex variables
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It ollows from a general result in complex variable theory that the numberofroots

of the eigenvalue equation (5.3.2), F(A)~O,intheright halfof thecomplex plane will

tained in ReX 2 0. We know that if ReA > 0, F(A +dm?) < 1, A parallel analysis in
sble. Then

i 1 L
lm L P, 1 (i)
e Sy FO T 2t g [ Fay
1y
37 7 plim aTgF(iR), (533)

. the mumber ofthe roots of (5.32) is determined by } = 1 mR_co argFi(iR).
FO) = r-r(I- i)/ ooe-"dm"! (dt+dm2
( -[e “’"‘fmac) uunu/:g 4 () + dim > ¢
for > 1, and [J(iR+dm) < 1, we know that IRGF(IR)1is bounded and independent
of R, ImF(iR)growslinearlywith R,where

ReF(iR) 7(1=1n8) .00!()e- ‘dm'cosRudr +dm2

1mFGR) = R 70~ 108) [0 - dmsinea, 633
The tota change in argF(R) 58 Rgoes from zro to infinity would be the viles
(I—dn)n/2, n = 0,1,2. __ Accordingto(5.3.3), IniJis locallystable if and only if
7=0,Le. limn-sooargPGR) = §
I the following theorens,we consider o onditions tosssurethateither ReF(iR) =
Oor ImF(IR»O. Inboth casesthecurveofF(iR) i ahvays in the firt quadrant of

the complex plane and Timn_-#y argF(R) = §
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Thearem 5.3.2 Let > 2. Assume that the kemmel f(t) satisies £"(2) >0, f(o0)
and f/(00) =0, Then the stcady state u* =In{3 of (5.0.1) is linearly stable

Proof. We will prove ReF(iR) > 0 for all R 2 0 here. Actually, according to the form
<Oand

OfReF(IR)in(5.3.4)thisassertionholdssineee-"" >0, 1-1n;

-
/:[(x)m.m ?‘/o F7(0(1 - cos Rt > 0

integration by parts twice. This implis that

under the given assumption by usin

argF(iR) can only be § asRgoes from zero (o infiniy. Thus, there are 10 roots of

F)

in the right halCeomplexplane, and sou: = Inf) is linearly stable. 0

Theorem$.3.3 1f(3>¢'and

then the steady stateu’ =103 of (5.0.1) is lincarly sable

INFGR»O. Indeed,a.ccordi

Proof.
o the 10rmolimF(iR) in (5.3.5) wehave

[Ty
[
Y

> R-T(In{3-DR>

7 < ey, since
([ ettt [ e it [ s
A

(3 i lincarly stable. 0

‘Thus argF(io0) must be /2. Similar to Theorem 532,

Remarks.3. From the above discussion, we have the following results about he
stability of the two constant steady state solutions zero and In f, with f as parameter:
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(2) 171 < B, w=0 loses it local stabiliy: when | < B e, u* - Inf3 i giobaly

asymptotically stable. see Theorerns 2.2

it 8 iarly stablelor al kemels, asshownin The-
orem 53,85 when(3 > €, u* = Inf i lnearly stabl ijthe kernl saiaies he

conditions in Theorems 5.3.2 ot the inequality aboutT ond(3 in Theorem$.9.5

Remark $.3.2 /1 is easy 10 sce that the weak kemel (1) =c-' is a convex finction

Therciore. with

w* =108 18 alvays locally asymptotically stable, inotherwords,itcannordestabilize

5.4 Hopfbifurcation from the non-zero uniform
state with strong kernel

I the previous scction, with the widely used kernel, the weak kernel, theslabiity
ke

of the constant steady state solution InfJofsystem (5.0.1) is described i Res
532, But as for another frequently considered kemel function, the strong kernelthe
discussion in Theorem 532 docs not work. How is thestabilityofu: = Inf with
strongkernelfor,B>c2 Thisisouraiminthlssection

i = ste-2Lsatistying(LO.13) whose |

7(w) = 1/(1+u/2), acoordingto (532) the characteristic cquation abouts

TR mt\?
B e R (R T UV
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Frst, wecan veify that Oisnotaneigenvaluc. I fct, (A = 0, from (S:4.1) we have
i\ d? ant\?
Z(I+T) T+7(1+T) =r(1-1ap)

which implies 188 < 1. Thiscontradictstofi>c2.

To consider the existence ofa pure imaginary cigenvalue, let A = 244, v E R,
d=2d. (541) becomes
s 4 ey 1, 2P P20+ 1 i
hich implic tht tbere exsttwo sequences of criicl values 077 satsfing

(T+dm)r+14(12dm ) (L +dm')+H-In L4 () (1+2dm) =0, (542)

A(1+dm)(1+2dm') >0

andr=0,Eq.(5.4.2)haspositiverootsforrifandonlyif

I 2 1+8(12dm)(1rdm')=: o U

Its casy to sce that f < B < B <
From the above analysis, the characteristic equation (54.1) has pure 4 imaginary.
cigenvalue only if 3> fo. Moreover, since 0 s not an eigenvalue, fore2 <(J</30=¢9

thestead stateln, isstable.If,\Jo <11 1JLEq.(5.4.2) hasapairofroots(denoted

butnosucbrootswhenm=0. Then (5.4.1) has s pair

5¥Ti00 %0d 700 whenm=¢
of purcly imaginary cigenvalucs when 1 is ane of rp O pa, As/3increases and passes

BesidestworootsdenotedbY TI10and1"2oform=0,Eq. (542) has 40 more roots
(M, 7o) for m = 1 and no more when m > 2. In this case, Eq. (5.4.1) has a pair of
imaginarycigenvalues ifT is one of the four valucs. Generally, assume fy < 8 < e
‘Then Eq. (5.4.:2) has roots Tyum, 7aom With 0 < Tigm < Taum for 0 < m < n. At each
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eriticalvalue' Tjnm(j= 1,2), thecharacteristicequation (5.41) has

pairofpurely

imaginaryeigenvalueS A=iwjnm(i=1,2) (54.1) implicitly

i+ P+ 2 10 — (A + )6 +4 + 7yum)

=) W+ O+ 4+ Ty
o4 1 + W2 1) 41) 41 = 1 By + i+ 1)
T8 + (63 + 4+ Tyum)]
L4y Thom = Tonm >0, ifi=1
G 'w?m*f(s-*m’uwm)’{ i)
Thersir, he holds ana Actord

totheaboveanalysis,wehavethefollowingresult:

Theorem S4.1 Forkq. (5.0.1jwithstrongkernel,theuniformsteadystateu: = ln I

is globally stable/or 1< B < e andirislocallystablewhene<({3<e’-as(3=¢"- a

serieso/ Hop/bijurcationscanoccuratT="Tinmj=

125 n,m=0,1,"%)

In the following, by using the center manifold method,we investigatcthedirection

of Hopf bifufeation at the critcal value 7 with purely imaginary eigenvalues diuy,
and the stability of the bifurcated periodicsolutioos

Let 7= 7 and w= U+ In . Then (5.0.1) becomes

& - U+ Fim0)

F(n,0)

(g (62} 9e0) (6. 2)+ 3 1 AlgeU) (62) - I BlgeU) (2 o(|UF)
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The cigenfunction corresponding 10 iwo s 7(6) = cos(mz)e*™ for oo < § < 0,
ad the adjoint eigenfunction of iuy is 7°(s) = De™*%* cos(mz) for 0 < s < oo, Here

D=21-n0-ng /v " a1

I T R T Y A Oy P S—

b
. 8
= 32403 [ e

The abstract fom of (5.43) s
au
i = At XF(U) G4
where, for ¢ € C((-00, 0,.)

P

{ # -00<0=0

L) 0=0

XoF(6)(6) = { 0.
F)

Let Us = 2Re{nz) + w with 2 = (", ;). Then (5.44) becomes

2
G = ort (7, XoF(@Refne) +u) = iwnz + (2,7, )
2

B - T (T XF(ERe{n:) +u)

o

B = Anv+ XF(QRe{ns} +u) - Re(n(n’, XoF(2Re{nz) + )

At H(z,u)
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By usingtbeexpansion OF (5, 5), (2,7), H(z,3) and the notations in B1J.weean
obtain

Y(z%,0)

“""“’"(g*Hl(v‘v)’t’ﬂs-w’#mm)u-mmz@.m,.w.,y
2 g e ) + [ coma) 3200 - 0 s e
= ’T":’omu+"z—"r’«%;’1’+ '

m =2 /: (2 — 1) cor¥ o) + iy
I~ o, m#0
- { (% - )P (), m=0
o = [ o ot Team? + s
_ { o m#o
" Lo - nifor,  m-o
49

(546)

v

[ 7 OmE ~ 66 1+ g w1+ 206 g et +hot
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CHAPTER S,

T
Il ‘5’§EI=""u-(nx)m<nm/(.1u-¢my)e*'-m

(gem) -
ot [t 1 3 T+,
(€ = costmn)f dn’ - ivn) = cos(me)fidn’+ iuy)
(0", X%oF(2Re{nz} +w))

[ Dot meyn(38 ) i 4 iy
+207(dm? - o) P2)dz + O(*)

mgo,
me=

oz,
= e D) (P )+ 7 i)+ 2 ) 27) +O(Y),

Hez) - | RO, PRz ), 00 <g<0
F(2Re{nz} +1w) = 2Re(n(0)(n", XoF (2Re{nz} 1)), 6= 0.

e have,when - 00 <8< 0,
oz,
—mno(Fo)s? + P(-iun)

H(6,2,3) =
X(eH0?D + e-09D) (2
H(0,2,%)
(7 (i) + T (4 o) + 2] (am? + i)
X (¥ - 1)cos'(mx), m#0,
7 )=+ i) + 27 )Ps3]
m-0

(4 = 1)(1 - 27ReD),
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Then viaadircctealeulation, Ha = Hoa, when-00<8<0, where

H_,(E,:{u o
~2m(eD +e" D)5 ~ )] (iww), m =0,

o { N B mA0,
2n(e D + D) (% - 1) J(iun)’, m =0,

Hu() = 2~ Doostma)Fam? +isn), m 40,
{ am(% - )01 - 2eReD)P (i), M=O-

_ 2% - Deost(ma)J(dm? + iwn)?, m£0
Hu(© ¢ 2n(s - 1 2eReD) (i), ™0

SinceH(().22) s obiained explicitly + weare i the positon (0 8¢t g Wi andwi?
From [31], wnp = T and

(2ict ~ AnJun(6) = Hn(0), ~Arnuons(0) = Hir(0). a1

wn(6) = Are™ 4 Ayend | petint

From (3 471, we havefor -00< 0< 0,

~2rm(e-D+e-“4D)(% - )P (iwy), m=0

-7, meo [=
4 {“ﬂlﬂ‘#ﬂ)ﬁw -0, 4 {?m& A

BT (wn), MO
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(2icy — An(0) (B
2004 — 1) cosma)Fdm? + i), m#o,

= ) 2%~ 17 Gew)l(1 - 20ReD) - (2icn +m)(§ + D)2 (549)
+(1 - 00) R (-ien) + D) ], m=0.

ing 10 use the initial condition (o determine E. Forl1=0,

241+ 43) ~ Am(O) (A7 41, cin )
= (A + Aa) = LA 4 g
= Zon(A1+ 42) + s + A) = o1~ )y o (Ayen A, v
= (Riwo+m) (A1 + Az) — o1 - In B)(As F(~in) + AT (iwn))

o,
I’ {(ien +7)(B + D) ~ (1 1 B)(BF(~ian) + D i)}
X2~ 1 ), me

When m #0, lct £=Et+E,cos(2mx), E1E.ER. Then fiom (5.49)

ZHenl~dD BB -ro(1-Inf)(g o (b)) =15 _y) Lcosma) oy

By salving the above cquation, we have

£ = Bt n = - o)) (5 ) + ),
B - [Zu;+“mz+m—7u(l7hm](m1‘mn.17ﬂ¥_”
P (dm? +icn). )

When m = 0, et £= Bo £ R Via a direct calculation from (5.4.9), onc pag
[ D, o, R

& | T a3 g
zien 0~ (1 197 i)' 2E 1) i), 41
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E={ B+ Eacos(ma), m#0
E, m=0
The explicit form of wp is obtained and

A1F(~ian) + Ao (i) + ErF(~2iun)

+Ex] (dm? + Jicn) cos(zma),  m £0, (5412)
Eof (~2iun), m=0.

(9% wm)=

WIO) = A3, 45+ fosisnd 4 pg,
43,44, MEC.For-00<0<0.

—ienAse™ i Ay =~y (9),
1 follows from  dirset caleulatiad that

B o, mA0
R A (O
For® =0, when m # 0, let M = M, + M, cos(2mx): when m =0, ket M = Mo. Then

M- gL i i,

W, = BT k) b2y Fam syt (5415

G- 2D .
o = P2 10~ 21eD) + Z 1 iy 5410
Thuswu s well defined and

o) { Lv7(>mz)*M/lm)¢M.+M17(umi)m(m7 .

5 6419
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Then by substituting ws, wy into (5.46), we have for m # 0
g
o =2 (-*l) [57(dm® i) A (i) + AT ) + Er F(~2i)

ﬁﬁ?«dmzumn +7(dm? o) (2Re{ AsT (~iun)} + My)]

+ 900~ 27 i) T i) 416
w8 \Mo
e (2 [%/(—q)so/(»mwmwn]
s
) lf¥)7(w!71w\' (s.417)

9w = 2aul’ - Jlonl?) + 2
and for m # 0, with ga; defined in (5.4.16)

1
Re(m) = 3Regar,

n.x,,.,zng{;( = 2gnf? - Ngol?) + 21
() = Re g (90m - 2i0ul” - Jlaal?) + 211,
Withg20,91190,definedin(S.4.S)ando21in(S.4.17)

5.5 Numerical simulations

I et prsent some sl simbons supporing s sl
Ple,wec Eq.(5.0.)withd=1
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and omogenoousNcumann boundary conditon as folloving:
o, z) . p
T - D -rta) e [ [ oy tagucsavas
sexal- [ Gteant=nste— i
w(t) =cSin's+ Inil- 1, (LX)E(-00,0/x10.",

& =0 0 z-01

Glamt-g=ts é)‘":, 01 o) co(rn)
=

and constant cis used to adjustthe isbilty of the numercal souton.
When 1 </3 < ¢ according to Theorems S22 and 53.1, the nontrivial stcady
statesolutons®® = 188 is stable for any kemel. With wesk and srong kerels o
L e=2andr3-¢1.5, Fig. 51 shows hat the posive slution

examples.wetake T
oos

ofEq. (551) ¥ 1o the

2 and Section 5.4, u"is still stable or weak

When /3 .38 shown in Theorem
Kernel and when /3= ¢ the strong kemel can not destabilize the stability o Cu”, To
demonstratetheprediction,wechoose/3=e’, T+
the stability of nontrivial cquilibrium ofEq. (5.5.1) with both weak apdstrongkemel

. Then onc gy observe.

and

the SHabIBEY of 4. = 10 in ths case. Neverlheless, u- olay Jos itsslabililyas

increases, BOCa of the accurrence of Hopf bifurcation from Theorem 5.4.1. Since
- —cp

M= <p=c<p €%, (5.42) has a pair of roots 1o = } and meo = 2

from which Hopf bifurcations OCeue and ReX(ri) > 0. ReX'(rg) < 0. By usin
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Figure 5.1: With[J=01.5, r=landec = 2,solutionofEq. (55.1) converges to
'; Right: strong kemel f(1) = 4i0-11

e = TnfJ = 1S, Left: weak kemel /(1)

the explicit algorithm provided in the previous section for detecting the dircction and
stability of the Hopfbifurcatioos, we have ReciT}(0) = - 13692 <0, ie. from the
i i i i Hopf bifurcation

L i T1QO,

solution converges asymptotically toa periodic solution (see the right graph of Fig
531
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Figure 5.2: For i = €, r = land ¢ = 2, 3

3 is stable. Left: weak

w = I

Kemel; Right: strong kemel

Figure 53: With 3 = ¢, strong kemel, ¢ = 10, Left 4= = i3 = 10 s

asymptotically stable when 7 =

% < ghor; Right: positive solution converges




Chapter 6
Conclusion and future works

This work focuses on the stability and loca! bifurcation analysis of some models arising

from different disciplines, which are in with dis-

erete delay, distributed delay or nonlocal delay. Lincar stabilit of models near steady

state solution is investigated by analyzing the associated characteristicequations.For

constant equilibrium, by means of space decomposition, the characteristic equation is

‘composed of a series of "characteristicequations”, which are algebraic equstions. Then

one may determine

However,for

acteristicequation is unavailable and the discussion of lincar stability is moredifficult
(see Chapter 3 and 4). Thelocal bifurcation analysis is usually based on the normal

form approach and the center manifold theory. But the application of these general

results to concrete models is nontrivial tasks. As one of the interesting bifurcations,
Hopfbifurcation is widely discussed in the literatures. By using the standardHopf

and derive formula for det

bifurcation theory, we investigate its existen: rminingthe

properties of the bifurcating periodic orbit, such a8 the direction of Hopf bifurcation

and the stability of the bifurcating periodic orbits. Our main results in this thesis are




InChapt i oeal stability
around the trivial cquilibrium through a detailed analysis of the mathematical prop-
ertes of the systemofPFDE (20.1) under two boundary conditions. The stability
depends on the connection of the cocflicients of the nonlincar feedback functions, a-+5.

and a-b. When y and point,

erty of the solutions changes and bifurcation oceurs. Thediscussionofthebifurcations
OF(20.1) s related. 10 the discussion of its associated FDE. Under Neumann boundary

conditions, the normal form of (20.1) is the same as that of its associated FDE,at

least up 1o the third-order term, while under Dirichlet boundaryconditions, the nor-
mal form of (2001) is different Crom that of its asoclated FDE fiom the third-order
term. We have obiained three kinds of bifurcations under both boundary conditions.
includingtranseritical bifurcation, Hopibifurcation and Hopfzero bifurcation

In Chi behavior non

trivial steady state solution ofa competitive system with uniformly distributeddelay
and diffusion cffect. Via the implicit function theorem, the existenceofa positive spa-

tiallynontrivial equilibrium was obtained under certain conditions. By analyzingthe

of perator, there only p

eigenvalues. Usingrasbifurcationparameter, 4 sequence of Hopr bifurcations near

the appearswhen thep: passes tbrougb eri

cal valuest.n=0. 1.+, Applying tbe center m

ifold theory. some results about
the dircction and stabilty of Hopf bifurcation arc obiained. To explain the formula
morcelcarly, we take a special case (under the condition (C2» as an example. The
dircction and stabilityoftbe bifurcating periodicsolutions on theeenter manifold are

abtained in detail. Numerical si

ulat

ns demonsirate the existence of the spatially

sets of
parametersandinitialeonditions




In Cbapterd, motivated by tbe works in [6] and [90],ourstudy bas focused oo the
dymamical behavior near a spatially nonrivial seady state solution ofsreaction-
iffsion system (40.1) with genersl time-delayed growth rae functons and dis
tributed delay kemels. Under the assamptions () and one of (G7), (GF*7), we

have the following results

)
cter{3uncler(C+), (Ci-). FortbeminimaldelayT = O, thestabilityofthe
spatially nontrivial steady state is analyzed if the kemel functionsatisfiescon-

dition(H) inLemmad.2.4, forwhich the weak kemel s an example. We extend

(2) Taking the minimal delaYT as bifurcation parameter, a sequence of Hopfbifur-
cations near the spatially nontrivial steady state solution appears when r passes
38

througheriticalvaluesrn, n

(3) Formulas determining the dircction and stability of Hopf bifurcation are ob-

Due 10 the complexity of the system, the formula obtained istoocomplicatedto
determine the dircction and stability of Hopf bifurcation casily. A fiw rescarchers have
P o In o). (S)the

Hopfbifurcation is proved to be forward and bifurcated periodic solution on the center
manifold is stable; in [82].similar results arcabiaincd only for competitive systems
I this paper, without any limitation, we baveobtained that theHopfbifureations are
forward and the periodic solutions are stable on the center manifold for thegenera!
system (4.0.1). Numerical simulations for botb comperitive and cooperative systems
demonstrate the existence and stability of the spatially noshomogencous steady state

solution and the periodic solution



In Chapter 5, we consider the diffusive Nicholson's blowfies model with nonlocal

delay ona bounded domain.
calityarises due to thefact that i biological models individuals usually have been at
diffrent points in spatial location at different fimes. We adopt tbespatial averaging
kemel introduced in 125}.by using theupper-and lower-solution method. wehaveob-
tained suficent condition for the global convergence of the uniform equilibrivn 10 the
proposed problem. More specifcally. the trivial equilibium is proved 1o be globally

when 8 < 1 (3

the local stability of uniform steady state solutions by investigating the corresponding
characteristiccquations. We have proved that the nontrivial steady state solution
= (3 is lincarly stable for ¢ < 8 < ¢ forall kemels. When{3> & wehave
eiven conditions to assure the local stabilityofu: ~In{3. We notice that the effect of
)t d?y
instead of 7(A) in 231 Since [F(A +dm)1 < [FN)| < 1 for ReA > 0, webavetbe
similar resultsns that in 23] for kool stability analysis
Bt b 3

By investigating the distribution ofcigenvalues, we found out that there exists a series
of o< B <+ suchtharwhene={3<{30~¢", the local stability of the uniform
= I3 is rotained when{3 > o -

(1)e-" destabilises the uniform steady state (3 through Hopfbifurcations withras
parameter. Moreover, when {3passes{3i,(i-0,1.+),thenumberoferitical values
is2(i+1). Formulas determining the dircction of Hopf bifurcation and thestabilityof

bifurcated periodic solutions were obiaincd by using center manifold methods[311

dynamical propertics in some models. In [22), a diffusive predator-prey system with




nonlocal delay is studied. By considering various spatial and temporal kemels, some
Kinds of bifurcations can occur under tbecooperationofiffusion and nonlocal delay,

while such when the nonlocal delay d Tocal

delay. Such dynamical behavior i evidently not brougbtabout by diffsion alone,but

“The finished projects in this thess stimulate some related problems, which can be
my future work. AS in Chapter 2 and 5.cortespondingtosimplecigenvalues, we can
use thecenter manifold approach to reduce theoriginal ime-spatial dynamical system
1o an absteact ordinary diferental equation, then the normal formeamputationand
the bifurcation analysis can be carried out astbat in [16]. 7] and (1L However.
if there exist cigenvalues with multiplicity greater than one, 10 our best knowledge,
there i o general theory about the high-codimension bifurcation for PFDE. Inmy
subsequentwork, Iwillirytoinvestigatetherelated bifurcations fom the multple

1 functional

InCh a4

by using the implicit function tbeorem, the existence of the solutions can be obtained
when the parameter 8 is small enough. Therequirementof (] being small cnough
restricts the application of our results. Therefore, it will beinteresting to consider

the dynamical behavior of spatially nonbomogeneous steady state solutions for more
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