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Abstract 
Investigation ~f the ship motion behavior in irregular sea states is an imponant step for 

ship seakeeping performance research. Ship motion identification from the full scale 

measurements is the only way to study the actual motion behavior and verify the motion 

predictions after ship constructions. A particular identification method for coupled heave 

and pitch motions was developed and validated in this research. The two-degree Random 

Decrement technique and the Neural Networks technique were combined in identification 

process. 

This developed method was applied to several motion systems to test its effects. The 

random motion data were obtained from the ship model experiments and numerical 

simulations. The coupled heave and pitch Random Decrement signatures obtained from 

the random motion histories were used as the Neural Networks training data to identify 

the Random Decrement equations. The identification results were verified by comparing 

the predictions with the actual Random Decrement signatures, and with the free response 

signatures. 

The application results suggested that the validation of the identified equations was 

mainly dependent on the nature of the Random Decrement signatures and the quality of 

the Neural Networks training. Only White Noise or broad-band spectrum excitations 

could yield the required agreement between identified Random Decrement equations and 

motion free response equations. 
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1. Introduction 
Ships are designed and built for transportation upon the sea. Any ship must possess some 

basic characteristics to float in a stable upright position. move with sufficient speed. 

maneuver in restricted routes. and withstand the reasonable loads. With the basic 

knowledge of hydrostatics and hydrodynamics. prediction of the ship performance in 

calm water is available for naval architects. and has been the basis for new ship designs 

for a long time. However, the success of a ship design is ultimately determined by its 

performance in a seaway. The real sea is rarely calm. and the ship performance is always 

degraded due to wave effects. Ship seakeeping research aims to limit the wave-induced 

ship motions and reduce the performance degradation. 

There are several sequential steps involved in seakeeping performance research. 

Lloyd(l991) gives an overall description about these steps. incl~ding: 

1. study ship motion behavior in irregular sea state; 

.., estimate the dynamic effects caused by the motions; 

3. determine the maximum permissible motion levels; 

4. find the quantitative index of seakeeping performance measurement; 

5. develop strategies in design to achieve acceptable performance. 
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Obviously ship motion study is the initial point for ship seakeeping performance research. 

Among the six degrees of freedom of ship motions. heave is the motion vertically up and 

down. and pitch is the angular motion about a horizontal transverse axis. These motions 

are always coupled in reality. Identification of coupled heave and pitch motions in 

random waves is the concern of this research. 

Ship motions are usually investigated in four ways: theoretical analysis. model 

experiments, empirical formulae. and ship trials analysis. Theoretical analysis involves 

the methods such as strip theory. spectral theory and computational fluid dynamics 

(CFD). Model experiments method is to scale up the experiment results given the 

corresponding model law. Empirical formulae or database method is to draw conclusions 

based upon statistical observations. Above three methods are mainly used in ship design 

stage for motion predictions. After ship construction. however, ship trials analysis is the 

only way to explore the actual motion behavior and verify all motion predictions. Because 

of the randomness involved in ship motions, direct comparison between motion records 

and predictions is usually impossible. Some statistical methods have to be incorporated 

for motion identification from the ship motion records. In this research a particular 

method for identification of coupled heave and pitch motion from the random motion 

history is developed and validated through the model experiments and numerical 

simulations. 

Various system identification techniques start with the assumption that a ship in seaway is 

an input/output system with the waves as input and ship motions as output. Both input 
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and output are irregular. The random ship motion responses could be measured and 

recorded in real time, but a complete knowledge of wave behavior in seaway is usually 

not available. The conventional identification techniques can not achieve the goal in this 

case. The Random Decrement technique is thus employed for motion data processing. 

Under certain conditions, the resulted Random Decrement signatures would agree well 

with system free response signatures. Application of Random Decrement technique 

makes it possible to identify ship motions without the complete wave input knowledge. 

This technique was empirically developed in the late 1960's by Henry Cole(l971) for 

structure vibration identification. The mathematical interpretation was formulated by 

Vandiver et al.(l982). The single-degree Random Decrement technique was extended to 

multiple-degree cases by Ibrahim( 1977). Haddara and Wu( 1993) fust applied the 

Random Decrement technique into ship rolling identification. In this research two-degree 

Random Decrement technique is adopted to process the coupled heave and pitch motion 

data. 

Since the Random Decrement signature corresponds to free response signature under 

certain conditions, the Random Decrement equations are assumed to have the same form 

as that of ship motion free response equations. In this research the coupled heave and 

pitch Random Decrement signatures obtained from the random motion time series are 

used to identify Random Decrement equations. In conventional system identification 

techniques, the unknown parameters in the assumed motion equations are adjusted to 

match the sample data. For complex coupled motion systems, too many unknown 
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parameters in motion model would make it very difficul4 even impossible. to achieve the 

acceptable identification results. The Neural Networks technique provides a means for 

identification of complex systems instead of the conventional methods. Various Neural 

Networks structures and algorithms are explicitly described in Hush and Home( 1993 ). 

The Multilayer Perceptron networks have been used in ship motion identification by 

Haddara and Hinchey(l995). Haddara and Wang( 1996). In this research the modified 

algorithm of the Multilayer Perceptron networks is applied to identification of coupled 

heave and pitch motions. 

The identified Random Decrement equations have to be verified and analyzed for their 

validation. First of all. the actual Random Decrement signatures should satisfy the 

identified equations. This generalization is verified by comparison between the actual 

Random Decrement signatures and the predicted signatures. Secondly, the identified 

equations have to be analyzed in some ways to show its relation with system free 

response equations. If the free response signatures are available. they will be compared 

with the predicted signatures. Only the Random Decrement equations that agree with 

system free response equations could be used for further seakeeping research. 

This developed method is applied to several motion identifications. One group of the 

motion data is measured from ship model experiments in JONSW AP waves. The other 

motion data are generated from the numerical simulations for both JONSW AP wave and 

White Noise excitations. The presented results show that the validation of motion 

identification is mainly dependent on the nature of the Random Decrement signatures and 
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the quality of the Neural Networks training. The JONSW AP wave input could not ensure 

the agreement between the identified Random Decrement equations and the free response 

equations for coupled heave and pitch motions. Only White Noise or broad-band 

spectrum excitations yield the required agreement. 
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2. Methods and Procedures 
System identification process usually consists of several sequential steps including data 

acquisition, data processing, system model formulation. system identification and results 

verification. There are various methods for every individual step, and the choice of the 

particular method is determined by the nature of the problem. 

In this research. irregular ship motion data were obtained from the ship model 

experiments and numerical simulations. Records of the coupled heave and pitch motion 

histories were processed using two-degree Random Decrement technique. The motion 

system was represented by simultaneous differential equations. Multilayer Perceptron 

neural networks were adopted for system identification. The identified equations were 

verified using actual Random Decrement signatures and free response signatures. 

2. 1 Motion Data Acquisition 
Motion identification method is practically applied to full scale measurements. For 

research convenience. some motion data obt-ained from model experiments and numerical 

simulations are also required because the environmental conditions could be controlled. 

In this research the heave and pitch motion data of a ship model ·R-Class Icebreaker· 

were obtained to develop and validate a particular identification method. The model 

hydrostatic particulars and body plan are presented in Table i and Figure I. One group of 

motion data was measured from wave tank experiments. and the other groups were 

generated from numerical simulations. 
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Table i: Hydrostatic Particulars for Morkl 'R-Class lcebreahr' 

Length between perpendiculars (LPP). m 2.1985 
Length of waterline (LWL). m 2.3250 
Waterline beam at midships, m 0.4840 
Waterline beam at maximum section. m 0.4840 
Maximum waterline beam. m 0.4845 
Draft at midships. m 0.1735 
Draft at maximum section. m 0.1745 
Draft at aft ~ ... ~ndicular, m 0.1790 
Draft at forward pc:;1pc:;ndicular, m 0.1675 
Equivalent level keel draft, m 0.1735 
Maximum section forward at midships, m -0.1850 
Parallel middle body, from aft of midships +0.1850 
to forward of midships. m -0.1850 
Area of maximum station. m2 0.1545 
Center of buoyancy forward of midships. m -0.0080 
Center of buoyancy above keel. m +0.0970 
Wetted surface area. m2 1.1335 
Volume of displacement, m3 0.1190 
Displacement of fresh water. kg 121.6 
Center of floatation forward of midships, m -0.0175 
Center of floatation above keel. m +0.1735 
Area of waterline plane. m2 0.899 
Transverse metacentric radius, m 0.122 
Longitudinal metacentric radius. m 2.4 
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Figure I: Body Plan of 'R-C/ass lcebreakr' Ship Matkl 

2.1.1 Ship Model Experiments 

A group of motion data was directly measured from model experiments conducted in the 

wave tank at Memorial University of Newfoundland. The whole facility consists of a 

large wave tank. an instrumented towing carriage, and a fully equipped control room 

containing a complete range of data acquisition and analysis equipment. 

The wave tank has inside dimensions of 58.27m in length, 4.57m in width, and 3.04m in 

depth. At one end is a hydraulically operated, piston type wave generator. The waveboard 

is fabricated from aluminum with a watertight Teflon seal around its periphery. At the 

other end is a parabolic beach consisting of an aluminum frame covered by wooden slats. 

This construction is intended to absorb and dissipate the energy contained in the incident 
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wave and maintain a minimum reflection coefficient. Waves are created in the tank by the 

translatory motion of the waveboard over its 0.5m stroke. Electronic control for the 

waveboard is provided from the control room. Control signals for irregular wave spectra 

are generated by computer and the resultant time series are transferred to a 

microcomputer controlled digital to analog convener, which allows reproduction of any 

theoretical spectrum. 

The towing carriage over the wave tank is equipped with a dynamometer that can 

measure horizontal forces of ± 20 kg, vertical movements over a 0.4m range. and 

rotations within a ± 30 degree arc. Wave probes are employed to monitor the time history 

of the wave profile. Further data acquisition and analysis are performed in the control 

room. Data from the dynamometer and wave probes are recorded in analog format on one 

or more multi-channel instrumentation recorders. and simultaneously digitized with a 

multi-channel analog to digital converter and a computer. 

During ·R-Class Icebreaker' model experiments, the ship model was positioned along the 

center line of the wave tank. heading towards the wave generator. The model was allowed 

only to move in vertical plane. heaving and pitching. The dynamometer was attached to 

the ship model at the cross point of midship and center line. The coupled heave motion 

displacement and angular pitch displacement were collected simultaneously by the 

dynamometer. A wave probe was located beside the ship model about 0.5m apart. 
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The JONSW AP (Joint North Sea Wave Project) spectrum wave was generated in the 

wave tank as ship motion excitation. This spectrum is always used for coastal waters 

where the fetch may be limited. It is defined by wave energy density S(m2/Hz) as the 

function of wave component frequency f(Hz). In this research the following function was 

employed for generation of required wave time series. 

( I J 

S(f) 

where the parameters are wave significant height Hs. peak frequency fm. peak 

enhancement factory. and shape parameter cr. A particular JONSW AP spectrum is shown 

in Figure 2. 
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In this research two groups of JONSW AP waves were generated for ship model 

excitation. In each group there were three different wave series resulted from the same 

spectrum. The wave spectrum used in the first group is that shown in Figure 2. In addition 

to experiments under JONSW AP wave. the heave and pitch free response tests were also 

performed by giving ship model a certain initial displacement. The various experiments 

are tabulated in Table ii. Motion data were collected for 400 seconds with a time interval 

of 0.05 second. There were 800 l data points in every record. The collected heave data 

was the heave displacement of the cross point of midship and center line. where the 

dynamometer was attached. 
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Table ii: Ship Model Experiments Category 

Wave Spectrum Parameters 
Time Series H5 (em) fm (Hz) y (J 

J7H5 5.0 0.7 3.3 0.07 (f < fm) 
0.09 (f> fm) 

J7H5a 5.0 0.7 3.3 0.07 (f < fm) 
0.09 (f> fm) 

J7H5b 5.0 0.7 3.3 0.07 (f < fm) 
0.09 (f> fm) 

J7H75 7.5 0.7 3.3 0.07 (f < fm) 
0.09 (f> fm) 

J7H75a 7.5 0.7 3.3 0.07 (f < fm) 
0.09 (f> fm) 

J7H75b 7.5 0.7 3.3 0.07 (f < fm) 
0.09 (f> fm) 

Free Response Calm Water 

2.1.2 Motion Simulation 

Besides ship model experiments. some numerical simulations were also employed in this 

research to explore what happened behind the experiment results. The interrelationship 

between the involved parameters could be displayed through analysis of the various 

simulation results. 

Any kind of simulation is based on a particular mathematical model that represents the 

original system theoretically. For ship heave and pitch motion, strip theory is usually 

employed to estimate the parameters in the dynamic motion equations. From the 

calculations detailed in Appendix A. which are based on the algorithm from 
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Bhattacharyya (1979). the dynamic equations for simulation of 'R-Class Icebreaker· 

heave and pitch motions are expressed as ( 2 ). 

2" + 2.8242' + 34.0922 + 0.1589' + 02388 = 0.4126F(t)- 0.0273M(t) ( 2 J 

8" +05802' +0.6292 + 2.6329' + 30.7806 = -o.0273F(t) + 1560M(t) 

where Z denotes heave displacement of ship model CG (center of gravity), e denotes 

pitch angular displacement. and symbols Z" ,9" and 2' ,8' represent second-order and 

first -order differentiation of heave and pitch displacement with respect to time 

respectively. The random excitation force F(t) and moment M(t) for the ship model are 

dependent on wave spectrum and model hull geometry. During simulations two sets of 

excitation forces were generated, one set from JONSW AP wave environment. the other 

set from a white noise excitation spectrum. 

For the JONSW AP wave case, wave time history was generated by adding a large number 

of component sine waves. Every component sine wave was derived from the specified 

spectrum and expressed as equations ( 3 ). where En is a random angle. The random wave 

series were obtained by adding a large number of individual component waves as shown 

in equation ( 4 ). In this research there were 800 component waves involved. For details 

about wave synthesis method, reference should be made to Uoyd ( 1989). For every 

component sine wave. the corresponding excitation forces Fn(t) and Mn(t) were calculated 

using strip theory. The calculations based on Bhattacharyya (1978) are detailed in 

Appendix B. The ratios between force amplitude and corresponding wave amplitude, and 
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the phase differences between the forces and waves were expressed as functions of the 

wave frequency. These excitation transform functions, combined with the wave 

components, generated the fmal random forces F(t) and M(t) expressed as equations ( 5 ). 

( 110 = .J2S(Jn )DJ (3) 

( n { t) = ( 11o cos( 21if 11 t + E 11 ) 

800 

({t) = I,(
110 

cos(2tif
11
t + E

11
) 

( -1 ) 

11-=1 

800 

F(t)= I,r111 ( 110 cos(2rrfnt +E11 + phase1n) (5) 

n•l 

800 

M(t) = I,r2,., nO cos(2rrfnt + e,. + phase2n) 

""'' 

For the white noise excitation case, the generation of the forces was simplified by direct 

employment of the white noise spectrum for excitation forces. White noise is defined as 

stationary random process whose power spectral density is constant. that is. independent 

of frequency. Physically white noise is not possible because this demands infinite power. 

In this research the broad band spectrum shown in Figure 3 was used to approximate the 

white noise excitation situation. The forces F(t) and M(t) were generated as( 6 ). where 

the phase differences were obtained from the excitation transform functions presented in 

Appendix B. 
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White Noise Excitation Simulation 
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Figure 3: White Noiu E.xcirarion Forces Specrrum 

800 

F(t) = ~.J2S10f cos(21!/,.t +E,. + phase111 ) 
( 6 , 

n=l 

800 

M(t) = ~.J2S.lif cos(21C[,.t + E
11 

+ phase
211

) 

n= l 

After the excitation forces were calculated. the simulated motion time series were 

obtained from the numerical solutions to the equation ( 2 ). A fourth-order Runge-Kutta 

method was employed in solving the simultaneous differential equations. The algorithm 

is as follows. 
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Z(t +AI)= Z(t) + (K1 + 2K2 + 2K3 + K4 ) /6 

Z'(t + .61) = Z'(t) + (L1 + 2Lz + 2~ + L4 ) 16 

8(t+Al)=8(t)+(M1 +2M2 +2M3 +M4 )16 

8'(t+.6.t)=8'(t)+(N1 +2N2 +2N3 +N4 )16 

Kl =At X {Z'(t)} 

Ll = .6.t X {F. (t)- 2.824Z'(t)- 34.092Z(t) -0.1588'(t)- 0.2388(t)} 

M 1 =.6.tx{8'{t)} 

Nl =At X {F2 (t)- 0580Z'(t) -0.629Z(t)- 2.6328'(t)- 30.7808(t)} 

K 2 =.6.tx{Z'(t)+05~} 

{[~ (t) +F. (t + .61)]12- 2.824(Z'(t) + 05~ ]- 34.092(Z(t) +05K1 ]} 

L.=litX 
- -Q.l58(8'(t) + 05N1]- 0.238(8(t) + 05M1 ] 

M 2 = .6.t X {8'(t) + 05N,} 

{

(F2 (t) + F2 (t + lit)]/2 -0580(Z'(t) +05~ )-0.629(Z(t) + 05K1 ]} 
N, =litx 

- -2.632(8'(t) + 05N1)- 30.780(8(t) + 05M1 ] 

K3 =lit X {Z'(t) + 05~} 

L.. =lit X {[F. (t) +F. (t +lit)] /2- 2.824[Z'(t) + 05Lz]- 34.092[Z(t) + 05K2 ]} 

- -Q.l58(8'(t) + 05N2 ]- 0.238(8Ct) + 05M1 ] 

l\.1~ =&x{8'(t)+05N2} 

N~ =lit X {[F2 (t) + F2 (t + ll!)] /2 -0580(Z'(t) + 05~]- 0.629(Z{t) +05K! ]} 

~ -2.632(8'(t) + 05N 2 ]- 30.780(8(t) + 05M 2 ] 

16 
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K4 =A!x{Z'(t)+~} 

{
F; (t + .11)- 2.824[Z'(t) + ~]- 34.092(Z(t) + K 3 ]} 

L_. =At X 
~.l58(9'(t) + N 3 )-0238[9(t) + M3 ) 

M 4 =At X {9'(t) +05N3 } 

N_.=AtX 
{

F2 (t +&) -058o(Z'(t) + ~]-0.629(Z{t) + K 3 )} 

-2.632(9'(t) + N 3 ]- 30.78o(9(t) + M 3 ] 

The time interval ~t was taken as 0.05 second with a total of 8001 data points in every 

simulated time series. 

Different simulation series were obtained by varying the damping levels m the 

mathematical model. Various results were compared and analyzed. 

2.2 Random Decrement Technique 
The motion data of ·R-Class Icebreaker', whether from model experiments or from 

motion simulations, are records of random time series. Some statistical methods are 

needed for data processing in the identification process. In this research the two-degree 

Random Decrement technique was employed for heave and pitch motion data processing. 

The Random Decrement technique was empirically developed in the late 1960's by 

Cole( 1971 ). and has been widely used in the aerospace industry for the analysis of 

experimentally generated vibration data. A single-degree random decrement signature is 

simply the trace formed by a waveform averaging a number of specially selected 

segments from a measured motion time history. Each of the selected segments shares the 

common attribute of the same initial conditions. The most popular choice is to only 
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specify the initial motion displacement. From empirical induction. the basic conclusion 

has been widely accepted - if a linear system is excited by a stationary. Gaussian 

random process. the Random Decrement signature of the output is similar to the free 

response signature. 

Although it is difficult to derive the general mathematical conclusions. Vandiver et 

al.(l982) provided a mathematical interpretation through the analysis of a specific case. 

For a linear, time-invariant system excited by a zero-mean, stationary, Gaussian random 

process, the response will also be a zero-mean, stationary, Gaussian random process. Its 

Random Decrement signature Dxo('t) is simply the product of the correlation function and 

the trigger level Xo as expressed in the equation ( 8 ). 

D 't" = Rx('t") X 
xo< ) Rx (0) o 

( 8 I 

Based upon the above expression, there are several conclusions regarding the response 

Random Decrement signature Dxo('t). 

• If the input is white noise. the Random Decrement signature of the output will 

exactly represent the transient decay of the system from the specified trigger 

level Xo. 

• If the excitation is not white noise, but sufficiently broad-band, the above 

conclusion will apply well. 
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• For a band limited excitation spectrum. a lightly damped system often yields 

the results which to sufficient accuracy are equivalent to the response of a 

white noise input. 

For more complicated systems. there have been no general mathematical conclusions in 

the published literature. Obviously the Random Decrement technique is still an empirical 

technique that needs careful verification for every application case. Haddara and 

Wu(l993) presented such an example for the ship rolling identification. which involved a 

light damping system under the band limited excitations. The results were compatible 

with the conclusions in Vandiver et al.(l982). 

The single-degree Random Decrement technique has been extended to multiple-degree 

cases by Ibrahim( 1977) without any mathematical reasoning. In this research the two-

degree algorithm was employed to obtain coupled heave and pitch Random Decrement 

signatures from the heave and pitch random time series X3(t) and X5(t). The heave signal 

X3(t) was chosen as leading signal. The heave Random Decrement signature Z('t') was 

computed according to the following equation. 

( 9) 

with the following conditions: 
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t = ti when X3(t) = Zo and X 3 > 0 

, 
t = tj when X3(t) = Zo and X 3 < 0 

where Zo is the specified trigger value. The successive segments should not overlap to 

ensure their independence. The corresponding pitch Random· Decrement signature 9('!} 

was computed by averaging the segments from X5(t) with the same starting point and 

time intervals as that of the leading signal X3(t). The equation is shown below, 

( /0) 

with the same conditions: 

, 
t = ti when X3(t) = Zo and X 3 > 0 

, 
t = tj when X3(t) = Zo and X 3 < 0 

In this research there were 200 data points in every Random Decrement signature with the 

time interval of 0.05 second. The illustration of the two-degree Random Decrement 

technique is shown in Figure 4. The first two segments start from the points t1 and t2 

respectively, which both satisfy the condition X3(t)=Zo. 
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time I 

I time I 
Figure 4: Illusrrarion o[Two-Degree Random Decrement Technique 

From Ibrahim( 1977). the two-degree Random Decrement signatures were claimed to 

agree with the system free response signatures in most cases. It thus provides a possible 

means to identify the free response equations from the Random Decrement signatures. 

For single-degree Random Decrement signature, Vandiver et aL(l982) presented the 

proportional relationship between Random Decrement signature and autocorrelation 

function. In this case, the autocorrelation function could be used instead of the Random 

Decrement signature and usually is more accurate than the Random Decrement signature. 

However, for multiple-degree Random Decrement signatures, such relationship is not 

retained due to the phase difference between the individual signals in Random Decrement 

signatures. Only for leading signal could some comparisons be made between Random 

Decrement signature and autocorrelation function. 
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2.3 Formulation of Random Decrement Equations 
Among six-degree ship motions, heaving and pitching are always coupled in the venical 

plane. From Lloyd( 1989) the coupled linear heave and pitch motions of a particular ship 

in the wave could be described by the following simultaneous ordinary differential 

equations. 

" " , 
(m+a33)X3 +b33X3 +c33X3+a3sXs +b3sXs +cJsXs =FJ(t) ( II I 

" " 
, 

where X3 indicates linear heave displacement of ship's CG (center of gravity); X 5 

indicates angular pitch displacement; m is the ship mass and Iss is the mass moment of 

the inenia of the ship about the transverse axis passing through the CG; the a. b. c and F 

are the coefficients or values related to the added masses, damping, restorations and 

excitations respectively. Using matrix notation, equation ( 11 ) could be rewritten as 

follows, 

( x,"t(B" B, X x,}(c" c, X x, I=( G, (I)) f 12 I 

l , ) B Bs5 Xs C-sJ C55 X 5 ) G 5 (t) Xs ~ 

(B" B35 )=(m+a33 n b,). aJs b33 where 
BsJ Bss as3 Iss+ ass bSJ hss 

(c" C, )=( m+a33 n aJs C33 c,). 
CsJ Css asJ Iss+ ass CsJ Css 
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For free response situation. the excitation forces F3(t). Fs(t) and G3(t). Gs(t) are all zero. 

The free response equations could be converted from matrix form to the following. 

" , , 
X3 + B33X3 + C33X3 + BJsXs + C3sXs = 0 f 13 I 

" , , 
X 5 + BSJX3 + CS3X3 + B55 X 5 + C55 X 5 = 0 

The above free response equations represent the coupled heave and pitch motion system. 

If the unknown parameters B and C are determined. such motion system is identified. 

However. the free response signatures are usually not available for full scale ship 

motions. Thus the free response equations can not be identified directly. Instead. the 

Random Decrement signatures were used in this research to identify the motion system. 

The heave and pitch Random Decrement signatures Z('t) and 8('t) were obtained from the 

motion time series X3(t) and X 5(t) as expressed in equations ( 9 ) and ( 10 ). If the 

excitation forces are Gaussian. white noise random processes with means of zero. it is 

proved by Haddara( 1997) that the corresponding Random Decrement equations are 

exactly similar to the free response equations ( 13 ). For other excitation cases. it is 

assumed that the Random Decrement equations have the same form. Thus the general 

Random Decrement equations are expressed as ( 14 ). 

Z" + A1Z' + B,Z + C18' + D18 = 0 

9" + A2Z' + B2 Z + C28' + DlJ = 0 

23 
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where A. B. C and Dare unknown parameters. The Random Decrement equations could 

be identified from the Random Decrement signatures. For a particular excitation case. if 

the Random Decrement signature does agree well with system free response signature. the 

identified Random Decrement equations will represent the free response equations. This 

is the aim of the method. 

2.4 Neural Network Technique for Motion Identification 
After formulation of the Random Decrement equations. the identification of heave and 

pitch motions could be achieved by estimating the unknown parameters A. B. C and Din 

( 14 ) from the Random Decrement signature Z('t) and 9('t). The conventional system 

identification techniques are not efficient for such a problem with eight unknown 

parameters. The Neural Networks technique was employed in this research instead of 

conventional methods. 

Neural Networks technique simulates the human brain functions to learn some rules from 

the training process. In practical application. one kind of rules is of functional relation 

between different data groups. It is thus possible to approximate the unknown functions 

by training the Neural Network from the input and output samples. The various Neural 

Network forms and algorithms have been explicitly described by Hush and Home(l993). 

The Multilayer Perceptron Network technique was used in this research with some 

modifications. 
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Because the Neural Network technique was intended for identification of unknown 

functions, lhe heave and pitch Random Decrement equation ( 14 ) was convened to lhe 

following form, 

Z" + a> 3 
2 Z + G1 (Z',Z,8',9) = 0 

9" + a:> 5 
28 + G2 (Z' ,Z,9' ,9) = 0 

( 15, 

where OlJ and ro5 are damped frequencies of heave and pitch respectively. The unknown 

functions G1 and G2 consist of lhe damping terms and pan of lhe restoring terms. The 

damped frequencies C0:3 and ros were estimated directly from the Random Decrement 

signature Z('t) and 9('t). The functions G1 and G2 were identified using the Multilayer 

Perceptron Network shown in Figure 5. 
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Go 

Figur~ 5: Mulli/ay~r P~rct!ptron Nt!ural Nt!twork 

The inputs are J.1.1, J.1.2, J.l.J and J..4 with the output Go. There are six neurons in the hidden 

layer. One set of weight values Wij and Jli uniquely determines the functional relation 

between the output and inputs, which is expressed by the equations ( 16) and ( 17 ). 

The outputs of six hidden layer neurons Ai (i=O, 1 ,293.4,5) are, 

(16 J 

The final output of the Neural Network Go is, 
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s 
G0 =L,C/1;xA;) 

( 17) 

i=O 

Given a group of input sample data and the required output data G, the weight values Wij 

and ~i are adjusted through an iterative training process to minimize the errors between 

the required data G and the output data Go. The fmal weight values should satisfy the 

following conditions, 

( /8) 

JW;j 
0 

0 

This set of weight values is the identification result for the unknown function. 

In this research the inputs sample data were Z'(r). Z(-r), 9'('l')and 6('t), where Z('t).6('t) 

were from Random Decrement signature of ship's CG (center of gravity). and 

Z'(r).8'(r) were obtained by numerical differentiation of Z('t) and 6('t) with respect to 

time t. The required function outputs G1 and G2 , however, were not available directly 

because the accuracy of numerical second-order differentiation Z"(r),9"(r) was not 

acceptable. Thus the conventional error definition (Go - G!)2 and (Go - G2)
2 in ( 18 ) was 

not applicable. The modified error was computed as below, 
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r 191 

t"=l 

200 ., 

£ 1 = I,[o(?:)-oo(r)r 
t"=l 

where Zo('t} and 90('t) were numerical solutions to the following equations. 

, 
Z0 +ru/20 +G0 (Z',Z,8'.(J)=O I 10) 

9 0 , +ru/9 0 + G0 (Z',Z,9',9) =0 

The final weight values should minimize the error E 1 and E2• The iteration algorithm for 

searching the optimum weight values is given by 

w.(n + l)= w.(n)-r-aE_ 
IJ I} aW;j (n) 

( 2 I I 

aE 
f3 i ( n + l) = f3 i ( n) - r ap i ( n) 

where y is a rate value to control searching rate and stability. The initial values of weight 

w.i and ~i were chosen arbitrarilv. The partial values a aE . a:E could not be 
. . W;i (n) r (n} 

computed using the analytical algorithm described in Hush and Home( 1993 ). Instead. the 

following numerical algorithm was employed, 

E[ "-':i (n) + aw]- E[ W;i(n)- aw] ( 22 J 

OW;j (n) 2aW 

aE _ E[/3;(n) + afJ)- E(/3;(n)- ap] 
a{j;(n)- 2a{3 
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The searching process was terminated when the following conditions were satisfied. 

CJE ::0 
OW;j 

CJE =0 
d/3; 
E=O 

( 23} 

The weight values Wij and ~i constitute the identification result for the Random 

Decrement equations. 

2.5 Verification and Analysis of Identified Equations 
The validation of the identification results is dependent on the nature of the Random 

Decrement signatures and the quality of the Neural Networks uaining. The agreement 

between the Random Decrement signatures and the free response signatures is the 

prerequisite to the validation. For training process. too many sample data with a relatively 

small network will reduce the accuracy of function approximation. Too big network 

structure with a large number of neurons and weights will not achieve the required 

generalization. In that case the identified function is possibly not the true function even 

though the training result is perfect. 

In this research the generalization of the identified equations was verified by comparing 

the actual heave and pitch Random Decrement signatures with the predictions from the 

identified equations. Given some specified initial values. the solutions to the identified 
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Random Decrement equations were obtained as predicted Random Decrement signatures. 

The solution algorithm was based on the fourth-order Runge-Kutra method. 

Since Random Decrement technique is an empirical technique without analytical 

conclusions for its application. it is necessary to verify the agreement between the 

identified Random Decrement equations and free response equations for every application 

case. Only the Random Decrement equations that represent the free response equations 

could be used for further seakeeping study. In this research the agreement was verified by 

the comparison between the free response signatures and the predictions from the 

identified Random Decrement equations. For model experiments. the free responses were 

recorded directly from the measurements. For motion simulations. the free responses 

were derived from the mathematical model using the fourth-order Runge-Kutta method. 
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3. Results and Discussion 
In this research the identification method was applied to ship model motion data obtained 

from the wave tank experiments. Also the JONSW AP wave and white noise excitation 

cases were tested separately by simulation method. All results are presented and 

discussed in the following sections. 

3. 1 Ship Model Experiment Results 
During wave tank experiments, ·R-Class Icebreaker' ship model was tested in two groups 

of JONSW AP waves for random motion data and excited in calm water for free response 

signatures. The motion data files were tabulated in the following Table iii with the 

corresponding experimental conditions. 

Tab/~ iii : Model Exp~rim~nu Motion Data Fil~s 

Motion Data Wave Series Wave Direction JONSW AP Parameters 
RHP2l J7H5 Heading Hs= S.Ocm. fm= 0.7 Hz 
RHP22 J7H5a Heading Hs = S.Ocm. fm = 0. 7 Hz 
RHP23 J7H5b Heading Hs=S.Ocm. fm=0.7 Hz 

RHP4l J7H75 Heading Hs= 7.5cm. fm=0.7 Hz 
RHP42 J7H75a Heading Hs= 7.5cm. fm = 0.7 Hz 
RHP43 J7H75b Heading Hs= 7.5cm. fm= 0.7 Hz 

RPHll Calm Water for Free Response 
RPH12 Calm Water for Free Response 
RPH13 Calm Water for Free Response 

The recorded motion data are motion displacements of the cross point of model midship 

and center line. They had to be converted to the heave displacement of the CG (center of 
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gravity) and pitch angular displacement. In this research both heave and pitch time series 

are assumed to be zero-mean. stationary random processes. The experiment results 

presented in Table iv supported such assumption. Since the axis system for experimental 

measurement was not set on the equilibrium CG point. the motion measurements were 

not real displacement values. From definition the real displacements of the stationary 

state should be zero. In Table iv the mean values of every random process agreed well 

with the measurements of the stationary state. thus the real mean values are all zero. The 

real motion series were obtained by subtracting the mean values from the experimental 

measurements. 

Tahlt! n·: Mean Val~ Analyses 

Random Process Heave Mean Value Pitch Mean Value 
(Stationary Measurement) (Stationary Measurement) 

(em) (deg) 
RHP21 18.60 0.43 

(18.62) (0.41) 
RHP22 20.01 0.43 

(20.03) (0.42) 
RHP23 19.99 0.43 

(20.03) (0.42) 
RHP41 19.97 0.44 

(20.00) (0.42) 
RHP42 19.95 0.45 

(19.99) (0.44) 
RHP43 19.94 0.45 

(19.97) (0.43) 
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3.1.1 Random Decrement Signature 
The zero-mean motion series of the ship· s CG were processed to obtain the heave and 

pitch Random Decrement signatures. For different trigger value. there was different 

Random Decrement signature. The Random Decrement signatures from group one 

motion data (RHP21. RHP22. RHP23) and group two motion data (RHP41. RHP42. 

RHP43) are presented separately in Figure 6 to Figure 9 with the same heave trigger value 

0.7cm. Two groups of Random Decrement signatures were also compared in Figure 10. 
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Figur~ 6: Heave Random D~cr~m~nt Signature of Group One- RHP21. RHP22 and RHP23 
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The obtained two-degree Random Decrement signatures had the decay form similar to 

that of the free response signatures. There was a phase difference between the coupled 

heave and pitch signals. Under same wave spectrum. the Random Decrement signatures 

from the different time series (RHP21. RHP22. RHP23 or RHP41, RHP42. RHP43) 

agreed well except the latter part. Even different spectrum significant height did not 

influence this agreement (RHP21 & RHP41 ). The observation of the obtained results 

suggested that the heave and pitch Random Decrement signatures are independent of the 

particular wave time series under the same wave spectrum. 

The latter part of the Random Decrement signatures was apparently interfered by some 

noise. One cause of the noise is the experiment facility. The used wave tank is too narrow 

to prevent from tank wall interference and wave reflection. The seakeeping basin is 

expected to generate better motion data. The other cause is the limited length of the 

motion time series. Since the Random Decrement signature was obtained by averaging 

the selected data segments, too shon motion time series could nor provide enough 

segments with the specified initial value. In this experiment, there were 800 I data points 

in every motion history while the required segment length was 200 data points. Thus only 

about 30 segments could be selected for either positive velocity specification or negative 

velocity specification. The Random Decrement signature was fmally formed by averaging 

about 60 segments. It is insufficient for practical application. 

36 



3.1.2 Neural Network Identification 

The coupled heave and pitch Random Decrement signature obtained from the motion 

time series RHP21 was used for identification of the Random Decrement equations. The 

damped frequencies 0>3 and IDs were estimated from the frrst 100 data points that were 

free of apparent noise interference. The Neural Network shown in Figure S was 

employed to identify the unknown functions G 1 and G2 respectively. After training in 

iterative process, the Neural Network outputs were close enough to training signature as 

shown in Figure 11. The fmal weight values were tabulated in Table v. 

Table ~·: ldentiftcarion Results for Random Decre~nl Equarions 

Weight Values for Identified Function G, (Z', Z, 8', 8) 

f3, ' i=O, 1,2,3,4,5 -9.270 7.066 2.468 1.928 2.644 2.826 
Wti. i=0,1,2,3,4 -2.904 3.569 -2.808 -1.110 4.294 
W2i. i=0.1,2,3.4 8.798 2.975 -4.297 -3.093 1.684 
w3i. i=O.l.2,3,4 2.640 -0.992 -4.205 0.611 1.268 
w4i. i=0,1,2,3,4 1.356 -2.616 -6.127 1.393 -0.494 
W Si. i=0.1,2,3,4 6.225 2.172 -1.187 7.123 3.070 

Weight Values for Identified Function G2 (Z', Z,8',8) 

~I • i=O, 1,2,3,4,5 -1.624 -9.906 -2.654 8.020 5.926 1.169 
Wti, i=0,1,2,3,4 4.789 10.884 1.962 3.321 -1.061 
W2i. i=0,1.2,3,4 0.706 5.386 3.508 2.989 5.304 
w3i. i=O.l.2.3,4 2.979 7.671 -6.729 2.245 10.837 
w 4i • i=O, 1,2,3,4 1.627 10.525 1.572 5.983 1.348 
Wsi. i=0,1,2,3,4 0.865 6.329 2.392 4.325 2.868 

Dam_pc:d Free uencies for Heave and Pitch Random Decrement Signature 
Heave frequency CO:J 4.48799 (rad I sec) 
Pitch Frequency IDs 4.59745 (rad I sec) 
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Neural Network Training Result for Heave 
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Finally the identified heave and pitch Random Decrement equations for ·R-Class 

Icebreaker' model were expressed as the following simultaneous equation system. 

Z'' +4.48799 2 Z + G1 (Z',Z,9',8) =0 

9" + 4597452 8 + G2 (Z',Z,9'.8) = 0 

( 24 J 

where the functions Ga and G2 were uniquely detennined by the weight values listed in 

Table v. 

3.1.3 Verification of Identification Results 

The solutions to the identified Random Decrement equations could be obtained using the 

fourth-order Runge-Kutta method if the initial conditions were specified. They were 

obtained as the predicted Random Decrement signature. With the same initial conditions, 
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the actual Random Decrement signatures could be formed from the recorded heave and 

pitch motion time series. The predicted and the actual Random Decrement signatures 

should be compatible with each other to ensure the generalization of the identification 

result. In this research various trigger values were specified. and the actual Random 

Decrement signatures were obtained from motion record RHP21. The predicted 

signatures were compared with the actual Random Decrement signature in the Figure 12 

to Figure 17. 
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Heave Verification Results {Trigger=0.9cm) 
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Heave Verification Results {Trigger=O.Bcrn) 
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Figure 14: Verification Result for Heave Trigger 0.8cm 
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Heave Verification Result (Trigger=0.6cm) 
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Heave Verification Result (Trigger=0.5cm) 
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Figure 17: Verificmion Results for Heave Trigger 0.4cm 

For heave trigger value l.Ocm. 0.9cm. 0.8cm. 0.6cm. the predicted and actual Random 

Decrement signature agreed well panicularly for the first 100 data points. For heave 

trigger value 0.5cm and 0.4cm. the expected agreement was not achieved after the first 50 

data points. It was due to the noise interference that had much more influence for smaller 

value Random Decrement signatures. Also the predicted signatures contained some noise 

transferred from the training data. Even with some noise interference. the above 

verifications proved the generalization of the identified Random Decrement equations. 

Only the Random Decrement equations that represent the system free response equations 

could be used for further seakeeping research. In that case the free response signature 

should be one of the solutions to the identified Random Decrement equations. During ·R-
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Class Icebreaker' model experiments. the free response signatures were obtained by 

exciting the ship model in calm water. The coupled heave and pitch free response 

signatures are shown in Figure 18 to Figure 20. The initial irregular parts represented the 

manual excitation process, while the other excitations in the laner part were caused by the 

noise due to tank wall interference and wave reflection. The best part of free response 

RPHll. which ranges from point 50 to point 250 in Figure 18, was selected to compare 

with the prediction of the identified Random Decrement equations. The comparison result 

is shown in Figure 21. 
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Experimental Heave Free Response Signature 
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From Figure 21 it is obvious that the experimental heave and pitch free response 

signature was not the solution to the identified Random Decrement equations. The free 

response signature showed heavy damping nature while the identified Random 

Decrement equations represented a light damping motion system. This disagreement 

could not be explored from the ·R-Class Icebreaker' experimental data. nor explained by 

the theory of empirical Random Decrement technique. The only possible way to analyze 

this disagreement is motion simulations. 
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3.2 Ship Model Simulation Results (JONSWAP Wave) 
In ship model experiments. only one model form 'R-Class Icebreaker' was tested for the 

application of the developed identification method. The general conclusions to the 

validation of this identification method could not be based solely on the experiment 

results of one model. The convenient way to test different ship models under various 

environmental conditions is numerical simulation with the variable parameters in the 

mathematical model. In this research, the mathematical model for heave and pitch 

motions of 'R-Class Icebreaker' was derived from the strip theory as shown in Appendix 

A. The excitation forces under the JONSW AP wave were generated from the 

combination of the wave synthesis and the excitation transform functions presented in 

Appendix B. The interrelation between the system parameters and the identification 

results was explored by variation of the damping parameters in the mathematical model. 

3.2.1 System Analysis for Various Damping Parameters 

The mathematical model for .. R-Class Icebreaker' motion simulations was derived in 

Appendix A as the following equation, 

Z" +2.824Z' +34.092Z +0.l588' +02388 = 0.4126F(r)-0.0273M(t) r 251 

8" + 0580Z' + 0.629Z + 2.6328' + 30.7806 = -0.0273F(r) + 1560M (t) 

The random excitation forces F(t) and M(t) under JONSW AP wave were generated from 

the wave spectrum shown in Figure 2 and the excitation transform functions presented in 

Appendix B. The numerical solutions to equation ( 25 ) was obtained as the simulated 
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motion time series. from which the specified segments were selected to form the heave 

and pitch Random Decrement signature. Corresponding to the initial conditions of the 

Random Decrement signature. the heave and pitch free response signature was obtained 

from the system free response equations as below. 

Z" + 2.824Z' + 34.092Z + 0.1588' + 02388 = 0 

9" + 0580Z' + 0.629Z + 2.6320' + 30.7800 = 0 
( 26} 

The agreement between the Random Decrement signature and the free response signature 

is the prerequisite to the validation of the identification results. Their comparison results 

are shown in Figure 22 and Figure 23. 
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Figur~ 22: Comparison B~tw~~n Free Response & Random Decr~menc Signatur~ (Heave Trigger 0. 7 em) 
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Heave Free Response & Random Decrement (frigger=O.Scm) 
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Figur~ 23: Comparison B~rw~en Fr~~ R~5pons~ & Random Decr~~nl Signature (H~ave Tn.gger0.6 em) 

From above comparison results. the heave and pitch Random Decrement signatures were 

not compatible with the free response signatures for the ·R-Class Icebreaker· model under 

JONSW AP waves. The free response signatures showed heavy damping nature while the 

Random Decrement signatures represented the light damping system. This simulation 

result is similar to the experimental result. 

To simulate other motion systems with different damping parameters. the damping 

coefficient ~ was incorporated into the mathematical model ( 27 ). which was based on 

the ·R-Class Icebreaker· simulation model ( 25 ). 
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Z" + 2~.J34.092Z' + 34.092Z +0.1588' + 02388 = 0.4126F(t) -0.0273M{t) ( 27 J 

8" + 0580Z' + 0.6292 + 2~.J30.7808' + 30.7800 = -0.0273F{t) + 156M(t} 

The~ value for the 'R-Class Icebreaker' is greater than 0.2 according to equations ( 25 ). 

The comparison results between the free response signature and the Random Decrement 

signature for the motion model with~ value of0.2. 0.16. 0.12. 0.08, 0.04. 0.02 are shown 

in Figure 24 to Figure 29. The results showed that the lighter damping systems under 

JONSW AP waves could achieve the better agreement between free response signature 

and the Random Decrement signature. The motion system (~=0.02) was further used in 

the following sections to validate the developed identification method. 
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Heave Free Response & Random Decrement 
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Figure 25: Comparison Between Free Response & Random Decremelll sigiJiliUTefor t;=0./6 
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Heave Free Response & Random Decrement 
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Figure 27: Comparison Between Free Response & Random Decrement Signmurefor ~-0.08 
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Figure 28: Comparison Between Free Response&: Random Decrement Signarurefor ~=0.04 

Sl 

200 

200 



2 E 
(.J yo 
Q) 

.s= -2 

10 

c;; 5 
Q) 

"'C - 0 .s= 
(.J 

·a 
-5 

-10 
0 

Heave Free Response & Random Decrement 

50 100 150 

Pitch Free Response & Random Decrement 

50 100 150 
Time (dt=0.05sec) 

Figure 29: Comparison B~cw~en Fru R~sponse & Random D~cr~menl SignaJure for '=0.02 

3.2.2 Identification for Light Damping System 

200 

200 

The coupled heave and pitch Random Decrement signatures obtained from the simulation 

of light damping system (l;=0.02) were used to identify the Random Decrement 

equations. The Neural Network structure is similar to that shown in Figure S. The 

identified weight values are tabulated in Table vi. and the training result is shown in 

Figure 30. 
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Tabll! vi: ld~tntification R~tsultsfor Light Damping Systl!m Simulations 

Weight Values for Identified Function G1 (Z',Z,8',8) 

~I, i=0,1,2,3,4,5 -2.526 0.944 0.847 0.946 0.946 1.579 
wli. i=0.1.2.3,4 -0.024 0.863 -1.387 -0.140 -0.828 
w 2i • i=0.1.2.3,4 -0.071 0.012 -3.592 -0.154 -0.944 
w3i. i=0.1.2.3.4 -0.024 0.868 -1.379 -0.139 -0.831 
w4i. i=0.1,2,3,4 -0.024 0.866 -1.381 -0.140 -0.830 
Wsi. i=0,1,2.3.4 0.043 0.698 -3.028 0.136 -2.067 

Weight Values for Identified Function G2 ( Z', z. 8 ', 8) 

f3t. i=O,l,2,3.4.5 -8.839 4.994 3.540 3.113 3.230 3.085 
w,i. i=0.1.2.3.4 -0.087 4.552 -1.514 1.167 -4.764 
w2i. i=O.l.2.3.4 -0.860 5.702 -1.571 1.122 -9.906 
w3i. i=0.1.2.3.4 -0.311 0.671 -3.745 0.030 -2.062 
W 4i . i=O,l,2,3 .4 -0.760 5.242 -1.656 1.022 -9.166 
Wsi. i=O.l.2,3.4 -0.292 0.706 -3.697 0.040 -2.129 

Dam~d Fre' uencies for Heave and Pitch Random Decrement Signature 
Heave frequency Ol:3 5.64781 (rad I sec) 

Pitch Frequency ro5 5.58505 (rad I sec) 
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Figure 30: Neural Network Training Results for l.ighl Damping Systttm Simulalions 

3.2.3 Verification for Light Damping System 
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The first step was to verify the generalization of the identified Random Decrement 

equations by comparing the actual and the predicted Random Decrement signatures. The 

comparison results shown in Figure 31 to Figure 33 proved the generalization of the 

identified equations. 

The second step was to verify the compatibility between the Random Decrement 

equations and free response signature. The solutions to the identified Random Decrement 

equations were compared with the free response signatures in Figure 34 to Figure 36. 
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Figure 32: Comparison Between Predictions&: Random DecretMnt Signature (Heave Trigger /.Scm) 
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Figure 33: Comparison Between Predictions & Random Decrement Signalure (Heave Trigger l .Ocm} 
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Figure 34: Comparison Between Predictions & Free Response (Heave Trigger 2.0cm) 
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Figure 36: Comparison Between Predictions cfc Free Response (Heave Trigger J.Ocm) 
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3.3 Ship Model Simulation Results (White Noise) 
For white noise excitation approximation. the random time series of force F{t) and 

moment M(t) were synthesized directly from the constant spectrum shown in Figure 3. 

The mathematical model for ·R-Class Icebreaker· motion ( 25) was employed to generate 

the motion time series. which was used later to obtain the heave and pitch Random 

Decrement signatures. This motion system is a heavy damping system. 

3.3.1 Analysis of the Random Decrement Signatures 

The heave and pitch Random Decrement signatures were analyzed by comparing with the 

free response signatures. which were obtained from the equation ( 26 ). Their agreement 

is the prerequisite to the validation of the identification results. The comparison results 

are shown in Figure 37 and Figure 38. The irregularity in the Random Decrement 

signatures was mainly caused by the insufficient segments selected from the motion time 

series. It had much more influence for the small value signatures. Even with such large 

interference. the required agreement was achieved in the first several periods. This 

agreement could be displayed more clearly using autocorrelation function. The heave 

autocorrelation function was scaled up to match the trigger value of the Random 

Decrement signature and compared with both heave Random Decrement signature and 

heave free response in Figure 39. 
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3.3.2 Identification Results 

200 

The Random Decrement signature with the heave trigger value 1.3cm was used for 

Neural Network training. The weight values and the damped frequencies identified from 

Neural Network training process are tabulated in Table vii. The training results are 

presented in Figure 40 and Figure 41 . The training accuracy was not good due to the 

irregularity in the obtained Random Decrement signature. Only the first 50 points 

achieved the good agreement. 
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Table vii: ldenrif~eazion Results for White Noise Excitation 

Weight Values for Identified Function G, (Z', Z,9',8) 

f3r , i=0,1,2,3.4,5 2.842 -5.089 -5.089 -5.089 -5.089 -5.089 
W Ii • i=0,1,2,3A 2.693 0.953 -2.447 0.394 1.677 
w2i. i=0,1.2,3,4 2.693 0.953 -2.447 0.394 1.677 
WJi, i=0,1,2,3,4 2.693 0.953 -2.447 0.394 1.677 
w4i. i=0.1.2.3.4 2.693 0.953 -2.447 0.394 1.677 
Wsi, i=0,1,2,3,4 2.693 0.953 -2.447 0.394 1.677 

Weight Values for Identified Function G2 (Z',Z,9',9) 

f3r • i=0,1,2,3,4,5 -64.431 8.996 10.457 18.790 19.715 18.991 
wli. i=0,1.2,3,4 -0.948 L843 -12.097 0.295 5.641 
W2i • i=O,l.2,3,4 1.942 l.341 -22.639 l.583 -3.198 
w3i. i=0,1,2,3.4 10.836 0.522 -14.913 0.889 -13.927 
w4i • i=0,1.2.3.4 10.416 -10.130 -8.669 -0.450 -5.954 
Wsi. i=O,l,2,3,4 10.136 -9.737 -8.967 -0.400 -5.744 

Dam_ped Fre' uencies for Heave and Pitch Random Decrement Signature 
Heave frequency O)J 5.7776 (rad I sec) 

Pitch Frequency 00s 5.4636 (rad I sec) 
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The identified Random Decrement equations are expressed as ( 28 ). 

Z" + 5.77762 Z + G 1 (Z',Z,8' .8) = 0 

8" + 5.4636 2 9 + G 2 (Z',Z.8',8) = 0 

f 28 J 

where the functions G 1 and G2 are uniquely detennined by the weight values in Table vii. 

3.3.3 Verification Results 

The generalization of the identified Random Decrement equations ( 28 ) was verified by 

the comparison between the predicted and the actual Random Decrement signatures. 

During the Neural Network training, only the agreement for the first 50 points was 

achieved. Thus the generalization was also verified by the comparison of the first 50 data 

points. The comparison results shown in Figure 42 and Figure 43 are not good due to the 

noise interference in both predictions and actual Random Decrement signatures. 

Obviously the identified equations expressed by equation ( 28 ) and Table vii was not 

acceptable. The lack of accuracy in the training data caused such failure of motion 

identification. 
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4. Conclusions and Recommendations 
A particular method was developed in this research to identify the ship coupled heave and 

pitch motions from the random motion histories. The two-degree Random Decrement 

technique and the Neural Networks technique were combined in the identification 

process. The application results suggested several points regarding the validation and 

effects of this identification method. 

Both wave tank experiments and simulation results showed that under JONSW AP wave 

excitations the heave and pitch Random Decrement signatures did not agree with the free 

response signatures for ·R-Class Icebreaker' ship model. The obtained Random 

Decrement signatures demonstrated a light damping nature while the free responses had a 

heavy damping decay form. The identified Random Decrement equations thus did not 

represent the ship model free response equations that could be used for further seakeeping 

research. 

More simulation results proved that under the JONSW AP wave excitations only the light 

damping systems were possible to achieve the required agreements between the Random 

Decrement signatures and the free response signatures. This agreement is the prerequisite 

to the validation of the identification results. 

The broad-band constant excitation spectrum, which approximated the white noise 

excitations in the research, was used in another simulation for ·R-Class Icebreaker' ship 

model. Although the obtained Random Decrement signatures were severely damaged by 

some noise, they did agree with the free response signatures in the decay form. Both the 
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Random Decrement signatures and free response signatures displayed a heavy damping 

nature in this case. 

Above results about the two-degree Random Decrement signatures are compatible with 

the one-degree conclusions presented by Vandiver et al.(l982), 

• For a linear, time-invariant system excited by a zero-mean. stationary. 

Gaussian random process, the system response will also be a zero-mean. 

stationary, Gaussian random process. If the input is also a white noise. the 

Random Decrement signature of the output will exactly represent the transient 

decay of the system from the specified set of initial conditions. 

• If the excitation for the same system is not white noise, but sufficiently broad

band, the above conclusion will apply well. 

• For a band limited excitation spectrum, a lightly damped system often yields 

the results which to sufficient accuracy are equivalent to the response of a 

white noise input. 

For the ship heave and pitch motions, the system is usually heavily damped. In this case 

the JONSW AP wave spectrum is too narrow-banded to achieve the required agreement 

between the Random Decrement signatures and free response signatures. Only the broad

band excitations could yield the acceptable results. 

For two-degree Random Decrement signature, the proportional relationship that exists 

between the autocorrelation function and single-degree Random Decrement signature 

only applied to the leading signal of the two-degree Random Decrement signature. Thus 
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the autocorrelation function could not be used for motion identification even the obtained 

Random Decrement signature was not accurate. 

Besides the nature of the Random Decrement signatures. the quality of Neural Networks 

training is another factor for the validation of identification results. In this research the 

Multilayer Perceptron networks simplified the identification problem by lumping a large 

number of the unknown parameters into a function. This unknown function was identified 

through the Neural Network training. It did provide a means for identification of the 

complicated systems. The quality of the training results was determined by several 

factors. 

The accuracy of the Neural Network training results was mainly dependent on the quality 

of the selected training data. Too much noise in the training samples was not acceptable 

in any case. particularly for the small value signature. In this research the 800 l data points 

in motion series were not enough for selecting sufficient segments to form the Random 

Decrement signature. More motion data should be collected in practical application. 

However. too many training data with a relatively small network also caused the lack of 

accuracy in the training results. 

The generalization of the Neural Networks identification is another concern for the 

quality of the training results. The good generalization is to ensure that the different 

Random Decrement signatures with the varying initial conditions will all satisfy the same 

identified equations. It is mainly dependent on the Neural Network structure. Too small 

network could not achieve good accuracy. Too capable network with too many neurons 

and weights will not yield good generalization. In that case the identified equations are 
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possibly not the true equations even the training results are perfect. From Hush and 

Home( 1993). a useful rule of thumb is that the number of training samples should be 

approximately ten times the number of the weights. The Neural Networks adopted in this 

research have 31 weights and 200 training data with their ratio around 7. which yielded 

the good results. 

Generally the developed method will produce the acceptable identification results under 

the broad-band wave excitations. It is particularly valuable for the case where the 

complete wave knowledge is unavailable. Since the Random Decrement technique and 

the Neural Network technique are basically empirical methods. the careful verification 

and analyses are always necessary for any practical application. 
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Appendix A Parameter Calculations 
The following calculations were based on the algorithm in Chapter Nine (pp.l83-198) of 

Dynamics of Marine Vehicles by Bhattacharyya (1978). 

The hull offsets of the ship model ·R-Class Icebreaker' are tabulated below. which are the 

geometric data for the parameter calculations. 

OFFSETS TABLE OF 'R-CLASS ICEBREAKER' MODEL 
Sta. 0 I 2 3 4 5 6 7 8 9 10 
X( em) -110 -99 -88 -77 -66 -55 -44 -33 -22 -11 0 
Z(cm) 

0 0 0.64 1.13 1.42 1.62 1.62 1.62 1.62 1.62 1.62 1.62 
2.54 0 0.64 1.91 3.22 5.21 10.24 15.67 18.33 19.91 20.62 20.83 
5.08 0 0.64 3.02 5.51 8.52 14.47 18.34 20.60 21.89 22.54 22.75 
7.62 0 0.64 4.65 8.14 11.70 16.89 19.93 21.74 22.85 23.28 23.29 
10.16 0 0.73 7.10 11.22 14.50 18.78 21.12 22.44 23.30 23.56 23.56 
12.70 0 3.33 11.27 14.40 16.89 20.15 21.98 23.00 23.66 23.81 23.81 
15.24 0 8.62 14.80 17.07 18.80 21.19 22.60 23.47 23.98 24.06 24.06 
17.78 5.79 12.50 17.20 18.83 20.15 21.96 23.05 23.83 24.26 24.32 24.32 
20.32 9.30 14.85 18.61 19.96 21.02 22.52 23.40 24.06 24.42 24.46 24.26 
22.86 11.40 16.17 19.46 20.67 21.60 22.9 23.56 23.99 24.29 24.31 24.31 
25.4 12.38 16.84 19.96 21.09 21.97 23.08 23.60 23.89 24.11 24.12 24.12 
Sta. 11 12 13 14 15 16 17 18 19 20 
XC em) 11 22 33 44 55 66 77 88 99 110 
zccm) 
0 1.62 1.62 1.62 1.62 1.62 1.62 1.50 0 0 0 
2.54 20.80 20.46 19.51 17.77 15.09 11.50 7.04 2.15 0 0 
5.08 22.58 22.27 21.66 20 . .;4 18.33 15.07 10.27 4 .20 0 0 
7.62 23.29 23.09 22.69 21 .85 20.19 17.42 12.99 6.48 0 0 
10.16 23.56 23.56 23.28 22.68 21.44 19.15 15.23 9.08 1.00 0 
12.70 23.81 23.81 23.68 23.27 22.36 20.47 17.10 11 .86 4.53 0 
15.24 24.06 24.06 24.01 23.73 23.01 21.45 18.62 14.17 1.95 0.53 
17.78 24.32 24.32 24.30 24.08 23.46 22.16 19.83 15.97 10.66 4.47 
20.32 24.46 24.46 24.46 24.30 23.70 22.68 20.76 17.53 12.87 7.06 
22.86 24.31 24.31 24.31 24.19 23.81 23.06 21.51 18.84 14.66 8.87 
25.40 24.12 24.12 24.12 24.08 23.82 23.29 22.06 19.85 16.03 10.36 

The general equations for the coupled heave and pitch motions were expressed as below. 
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(m +a: )Z" + bZ' + cZ + d6" + e6' + h6 = F(t) 

(1,-y +A~:-· )6" + 86' + C6 + DZ" + EZ' +HZ= M(t) 

The equation parameters for the ·R-Class Icebreaker· ship model were calculated in the 

following tables. 

TABLE I CALCULATIONSFORa ANDA :z: •n 

(1) (2) (3) (4) (5) 
station 

0 0 0.1790 0 -1.092 
5 0.4392 0.1763 0.0574 -0.542 
10 0.4864 0.1735 0.0762 0.008 
15 0.4692 0.1705 0.0650 0.558 
20 0 0.1675 0 1.108 

station (11) (12) (13) (14) 
No. 
0 0 0 0 1 
5 0.1929 75.752 57.572 4 
lO 0.2366 92.913 83.622 2 
15 0.2201 86.433 65.689 4 
20 0 0 0 l 

SUM1 

Descriptions of Table 1 

Column No. Description 
( l ) Station Number 

(2} Beam at Station. Bn {m) 
(3) Draft at Station. Tn (m) 
( 4) Sectional Area at 

Station. Sn (m2
) 

(5) Lever Arm from 
Longitudinal Center of 
Buoyancy. ; (m) 

(6) ro2/(2g)xBn. (.1) was peak 
frequency of the wave 
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(6) (7) 

0 0 
0.4139 2.491 
0.4582 2.803 
0.4422 2.752 

0 0 
(15) (16) 

0 1.192 
230.29 0.294 
167.24 0 
262.76 0.311 

0 1.228 
660.29 

Column No. 
(10) 

( 11 )=(2 )X(2) 
(12) 
(13)=(12)x(l0) 

(14) 

(8) (9) (10) 

0 0 0 
0.077 0.746 0.76 
0.084 0.908 0.90 
0.080 0.812 0.76 

0 0 0 
(17) (18) (19) 

0 l 0 
16.926 4 67.704 

0 2 0 
20.429 4 81.716 

0 l 0 
SUM2 149.42 

Description 
Added Mass Coefficient 
from Fig.4.4 of 
Dynamics of Marine 
Vehicles. 
Beam squared. Bn 2 

.., 
(p1t/8)xBn-
Sectional Added Mass. ., 
an=Cx(p1t/8)xBn-
Simpson • s Multiplier 

(l5)=(l4)x(l3) Simpson•s Product 



spectrum in calculation 
(7)=(2)/(3) Beam Draft Ratio=Bn I 

(8)=(2)x(3) 
(9)=(4)/(8) 

BnXTn 
Sectional AJea 
Coefficien~ Sn I(Bn X T n) 

Added Mass for heaving. az 

az =fan dl; = ( l/3)xSxSUM1 

= (l/3)x0.55x660.29 = 12l.053(kg) 

(l6)=(5)x(5) Lever Arm Square~ l;2 

(l7)=(l3)x(l6) aox~2 

( 19)=( 17)x( 18) Simpson· s Product 

Added mass moment of inenia for pitching. 

Ayy = f (an ~2) dl; = (l/3)xSxSUM2 

= (ll3)x0.55xl49.42 = 27.394(kg m2
) 

TABLE2 CALCULATIONS FORb AND B 
(1) (2) (3) (4) 

station 
0 0 0 0 
5 0.4139 2.491 0.746 
10 0.4582 2.803 0.908 
15 0.4422 2.752 0.812 
20 0 0 0 

station (11) (12) (13) 
No. 
0 0 1 0 
5 96.029 4 384.12 
10 0 2 0 
15 135.24 4 540.96 
20 0 1 0 

SUM2 925.08 

Description of Table 2 

Column No. 
(l) 

Description 
Station Number 

(5) 

0 
0.52 
0.54 
0.60 

0 

(6) (7) 

0 0 
0.2704 326.63 
0.2916 352.24 
0.3600 434.86 

0 0 

Column No. 
(7)=(pg2/m3)x(6) 
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(8) (9) (10) 

1 0 1.192 
4 1306.5 0.294 
2 704.47 0 
4 1739.4 0.311 
1 0 1.228 

SUM I 3750.4 

Description 
Sectional Damping 
Coefficien~ bn 



(2) co2/(2g)xB0 , c.o was peak (8) Simpson's Multiplier 
frequency of the wave 
spectrum in calculation 

(3) Beam Draft Ratio=Bn I (9)=(7)x(8) Simpson's Produc£ 
Tn 

(4) Sectional Area (10) Lever Arm Squared.~~ 
Coefficient, Sn /(Bn X 

Tn) 
(5) Amplitude Ratio for (ll)=(7)x(l 0) bn><l;! 

Heaving, found from 
Fig. 4.6 of Dynamics of 
Marine Vehicles 

(6)= (5)x(5) Square of Amplitude (13)=( ll)x(l2) Simpson's Product 
Ratio 

Damping coefficient for heaving, b Damping coefficient for pitching. B 

b = J bn d<; = ( l/3 )xSxSUM 1 Ayy = J Cbn 1;2 ) d<; = (113)xSxSUM2 

= ( l/3)x0.55x3750.4 = 687.578(kglsec) = (1/3)X0.55x925.08 = 169.598(kg m2/sec) 

TABLE3 CALCULATIONS FOR c AND C 
(1) (2) (3) 

station 
0 0 0 
5 0.4392 4304.2 
10 0.4864 4766.7 
15 0.4692 4598.2 
20 0 0 

Description of Table 3 

Column No. 
(1) 
(2) 

Description 
Station Number 
Beam, Bn (m) 

(4) (5) 

1 0 
4 17217 
2 9533.4 
4 18393 
I 0 

SUM! 45142 
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(6) (7) (8) (9) 

1.192 0 I 0 
0.294 1265.4 4 5061.7 

0 0 2 0 
0.311 1430.0 4 5720.1 
1.228 

Column No. 
(5)=(3 )X( 4) 
(6) 

0 I 0 
SUM2 10782 

Description 
Simpson's Product 
Lever Ann Squared, <;2 



(3)=pgx(2) Sectional Restoring Force 
Coefficien~ Cn=PgBn 

( 4) Simpson's Multiplier 

Restoring force coefficient for heaving. c 

c = f Cn d~ = (pgAw) = (113)xSxSUMl 

=(l/3)x0.55x45142 = 8276.165(kg/sec2
) 

(7)=(3}x(6} CnX~2 

(9)=(7)x(8) Simpson • s Product 

Restoring moment coefficient for pitching. 

C = f Cn ~2 d~- uE (u was model speed 0) 

= (1/3)XSxSUM2 - 0 

=(l/3)x0.55xl0782=1976.66 (kg m2/sec2
) 

TABLE4 CALCULATIONS FORd h D E AND H .~ . ,, 
(1) (2) (3) (4) (5) 

station 
0 -1.092 0 0 1 
5 -0.542 57.572 -31.20 4 
lO 0.008 83.622 0.669 2 
15 0.558 65.689 36.654 4 
20 1.108 0 0 1 

SUM1 
station (11) (12) (13) (14) 

No. 
0 0 0 1 0 
5 4304.2 -2333 4 -9331 
10 4766.7 38.134 2 76.268 
15 4598.2 2565.8 4 10263 
20 0 0 l 0 

SUM3 1007.9 

Description of Table 4 

Column No. 
(1) 

(2) 

Description 
Station Number 

Lever Arm.~ 
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(6) (7) 

0 0 
-124.8 326.63 
1.338 352.24 

146.62 434.86 
0 0 

23.138 

Column No. 
(8)=(2)x(7) 
(9) 

(8) (9) 

0 l 
-177.0 4 
2.818 2 

242.65 4 
0 l 

SUM2 

Description 
bnX~ 
Simpson's 

(10) 

0 
-708.1 
5.636 

970.61 
0 

268.12 



Multiplier 
(3)=(13) of Table 1 Sectional Added (10)=(8)x(9) Simpson • s Product 

Mass Coefficient~ 

a, 
(4)=(2)x(3) anxl; (11)=(3) ofTable 3 Sectional Restoring 

Force Coefficient. 
Cn 

(5) Simpson's (12)=(2)x(ll) CnXl; 
Multiplier 

(6)=(4)x(5) Simpson • s Product (13) Simpson's 
Multiplier 

(7)=(7) ofTable 2 Sectional Damping (14 )=(12)x(13) Simpson's Product 
Coefficient, bn 

d = f anl; dl; = (l/3)xSxSUM1 D = d = 4.242 (kg m) 

= ( l/3 )x0.55x23.138 = 4.242 (kg m) 

e = f bn~ d~ + ua (u is model speed 0) E = f bnl; d~- ua (u is model speed 0) 

= ( 1/3 )xSxS UM2 = ( 1/3 )x0.55x268.12 = ( 113)xSxSUM2 = (1/3)x0.55x268.12 

= 49.155 (kg m/sec) =49.155 (kg m/sec) 

h = f Cn~ d~ + ub {u is model speed 0) H = f cnl; dl;- ub (u is model speed 0) 

= ( 113)xSxSUM3 = ( 1/3)x0.55xl007.9 = (l/3)xSxSUM3 = (l/3)x0.55xl007.9 

= 184.789 (kg m/sec2
) = 184.789 (kg mlsec2

) 

Mass of 'R-Class Icebreaker' ship model' ism= 121.6 kg. The mass moment of inertia 

lyy was approximated as follows. 
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Substitute the calculated parameter values into the ~R-Class Icebreaker' heave and pitch 

motion equations. 

242.6532" + 687.5782' + 8276.1652 + 4.2429" + 49.1559' + 184.7899 = F(t) 

64.1789" + 169.5989' + 1976.669 + 4.2422" + 49.1552' + 184.7892 = M(t) 

Rewrite the motion equations into the matrix form, 

(
242.653 4.242 12") + (687 .578 49.155 )(2') + (8276.165 184.789)(2) = ( F(r)) 
4.242 64.178 8" 49.155 169.598 9' 184.789 1976.66 8 M(l) 

(
242.653 4.242 )-I 

Multiply the above equations by 
4

.
242 64

.1
78 

• 

(
Z") (2.824 0.158¥2') (34.092 0.238)(2) (0.0041258 -o.000273)(F(l)) 
(}" + 0.580 2.632)l8' + 0.629 30.780 9 = -o.000273 0.0155997 M(l) 

If the units for z. e. F(t) and M(t) were (em). (rad). (N), and (Nm) respectively. the 

equations for ·R-Class Icebreaker· ship model heave and pitch motions were converted 

into the following form, 

2" + 2.8242' + 34.0922 + 0.1589' + 0.2388 = 100 X (0.0041258F{t)- 0.000273M(t)) 

(}" + 0.5802' + 0.6292 + 2.6329' + 30.7808 = 100 X (-Q.000273F(t) + 0.0155997 M(t)) 

This is the mathematical model for ship motion simulations in this research. 
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Appendix B Exciting Forces Calculations 
The following calculations for wave induced forces and moments were based on the 

algorithm in Chapter Nine (pp.183-198) of Dynamics of Marine Vehicles by 

Bhattacharyya (1978). 

TABLE CALCULATIONS FOR EXCITING FORCES AND MOl\riENTS 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

station 
0 -1.092 -2.156 -0.834 -0.552 0 0 1.00 0 0 
5 -0.542 -1.070 -0.877 0.480 0.1306 0.2578 0.772 4304.2 107.60 
10 0.008 0.016 0.016 1.00 0.1567 0.3093 0.734 4766.7 119.17 
15 0.558 1.101 0.892 0.453 0.1385 0.2734 0.761 4598.2 114.95 
20 1.108 2.187 0.816 -0.578 0 0 1.00 0 0 

station (11) (12) (13) (14) (15) (16) (17) (18) (19) 
No. 
0 0 0 0 104.68 0 0 0 0 0 
5 57.572 -27.84 79.764 76.020 0 35.913 35.913 -69.95 17.238 
10 83.622 -40.44 78.732 7.379 0 38.728 38.728 1.260 38.728 
15 65.689 -31.77 83.189 -76.02 0 47.813 47.813 74.205 21.659 
20 0 0 0 -119.4 0 0 0 0 0 

station (20) (21) (22) (23) (24) (25) (26) (27) (28) 
No. 
0 0 0 0 0 0 1 0 0 1 
5 -52.72 38.287 -31.50 69.781 -40.70 4 -162.8 53.941 4 
lO 39.988 78.732 0.620 78.112 29.351 2 58.702 57.334 2 
15 95.864 37.685 42.649 -4.964 72.953 4 291.81 -3.778 4 
20 0 0 0 0 0 1 0 0 1 

SUM1 187.73 
station (29) (30) (31) (32) (33) (34) (35) 

No. 
0 0 0 I 0 0 1 0 
5 215.76 22.057 4 88.228 -29.24 4 -116.9 
10 114.67 0.235 2 0.47 0.459 2 0.918 
15 -15.11 40.708 4 162.83 -2.108 4 -8.432 
20 0 0 1 0 0 1 0 

SUM2 315.45 SUM3 251.53 SUM4 -124.6 
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Description of Table 

Column No. 
(1) 

(2) 
(3) 

(4) 
(5) 
(6) 
(7)=kx(6) 
(8) 
(9)=(3) of Table 3 in 
Appendix A 
(10)=(9)x~ 

Description 
Station Number 
Lever Arm. ~(m) 
k~=(21ti'Lw)x; 
Lw=21tg/ro2• ro was 
peak frequency in 
this table 
sin(k;) 
cos(k~) 
Mean Draft, T m(m) 

kxTm 
exp(-kx'fm) 
Sectional Restoring 
Coefficient. Cn 
Cnxl;a. wave 
amplitude l;a was 
2.5cm in this table 

(ll)=(l3) of Table 1 Sectional Added 
in Appendix A Mass. an 
(12) a,.x(-i;axro2

). l;a was 

(13)=(12)+(10) 
(14) 

( lS)=u~rox( 14) 

(16) 

wave amplitude 
2.5cm in this table 

Slope of the added 
mass curve. da../dl; 
(numerical 
differentiation) 
u was the model 
speed 0 in this table 
bn~(J) 

Exciting force component F 1 and F2. 

F•=(ll3)xSxSUMl= (113)x0.55x187.73 

=34.417 (N) 
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Column No. 
( 17)=( 16)-( 15) 
(18)=(13)x(4) 
(19)=(17)x(5) 

(20)=(18)x( 19) 
(21 )=(13 )X( 5) 

(22)=( 17)x( 4) 
(23 )=(21 )-(22) 
(24 )=(20)x(8) 
(25) 

(26)=(24 )x(25) 

(27)=(23)x(8) 

(29)=(27)x(28) 

Description 

dFlldx 
Simpson's 
Multiplier 
Simpson's Product 

dF21dx 

Simpson's Product 

(30)=(24)x(2) dM1 I dx 
(32)=(30)x(31) Simpson's Product 

(33)=(27)x(2) dM2 I dx 

(35)=(34 )x(33) Simpson· s Product 

Exciting moment component M 1 and M2. 

M1=(113)xSxSUM3 = (113)X0.5Sx251.53 

=46.114{Nm) 



F2= (l/3)xSxSUM2 = (l/3)X0.55x315.15 M2=C l/3)xSxSUM4=( l/3)X0.55x( -124.6) 

= 57.776(N) = -22.83((Nm) 

Ratio between force and wave amplitude, Ratio between moment and wave 

rr = F0 /l;a = 67.21 I 2.5 = 26.88 (N/cm) 
amplitude, 

rm = Mo /l;a = 51.45/2.5 = 20.58(Nm/cm) 

The phase difference between force and The phase difference between moment 

wave, and wave 

The above results are excitation forces of 'R-Class Icebreaker' ship model in the regular 

wave with frequency 0.7Hz. For different wave frequencies ro. there will be different 

values for amplitude ratios rr. rm and phase difference 0'. 't'. This group of functions rt{ro). 

rm(ro). O'(C.O), and t(C.O) are excitation transform functions which can be used to deduce the 

random excitation forces from the wave spectrum. The following FORTRAN 77 program 

RA TIO.FOR was used in this research to calculate the excitation transform functions of 

'R-Class Icebreaker' ship model. The results were plotted after the program. 

RATIO.FOR 

PROGRAM TRANSFORM FUNCTION 
REAL DS,X(5).T(5).A(5).B(5),C(5) 
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REAL FRE(800),SPEC(800).K(800) 
REAL DF1(5,800).DF2(5,800).DM1(5,800)J)M2(5,800) 
REAL Fl (800).F2(800).M I (800).M2(800) 
REAL F(800).FANGLE(800).M(800).MANGLE(800) 
DATA X/-1.092,-0.542,0.008,0.558.1.108/ 
DATA T/0.0,0.1306,0.1567 ,0.1385,0.0/ 
DATA A/0.0,57 .572,83.622,65.689,0.0/ 
DATA B/0.0,326.628,352.236,434.860,0.0/ 
DATA C/0.0.4304.16,4766.72.4598.16,0.0/ 
DS=0.55 . 
OPEN (UNIT= 1l,.FII...E='spec 1.d',ST A TUS=VNKNOWN') 
READ (11,*) (FRE(l),SPEC(l),I=l,800) 
CLOSE(l1) 
DO 10 1=1,800 
K(I)=(2*3.1415926*FRE(l))**2/9.8 
DO 201=1,5 
DFI(J,0=((-A(J)*(2*3.1415926*FREC0)**2+C(J))*sin(K(I)*X(J)) 

$ +B(J)*(2*3.1415926*FRE(I))*cos(K(I)*X(J)))*exp(-K(I)*T(J)) 
DF2(J.0=((-A(J)*(2*3.1415926*FRE(I))**2+C(J))*cos(K(I)*X(J)) 

$ -B(J)*(2*3.1415926*FRE(I))*sin(K(I)*X(J)))*exp( -K(I)*T(J)) 
DM 1 (J ,I)=DFl (J .O*X(J) 
DM2(J.O=DF2(J,0*X(J) 

20 CONTINUE 
Fl(I)=DS/300.0*(DF1(l.I)+4*DF1(2,1)+2*DF1(3,1)+4*DF1(4,I)+ 

$ DF1(5.I)) 
F2(I)=DS/30Cl.O*(DF2( 1,1)+4 *DF2(2,1)+2 *DF2(3.1)+4 *DF2( 4,1)+ 

S DF2(5.I)) 
M1(l)=DS/300.0*(DM1(1.1)+4*DM1(2J)+2*DM1(3,1)+4*DM1(4,1)+ 

S DM1(5,I)) 
M2(l)=DS/300.0*(DM2( 1.1)+4 *DM2(2.l)+ 2 *DM2(3 .1)+4 *DM2( 4,I)+ 

S DM2(5.1)) 
F(l)=sqrt(F 1 (I)**2+F2(1)* *2) 
F ANGLEm=AT AN(F2(1)/Fl (I)) 
M(I)=SQRT(M1(1)**2+M2(1)**2) 
MANGLE(I)=AT AN(M2(l)/M 1 (I)) 

10 CONTINUE 
OPEN (UNIT=21,FILE='ratio.d',ST ATUS='UNKNOWN') 
DO 30 I= 1,800 
WRITE (21. *) F(I).F ANGLE(I).M{I),MANGLE(I) 

30 CONTINUE 
CLOSE(21) 
END 
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Fig. Excitation transform functions for ·R-Class Icebreaker' ship model 

The following FORTRAN 77 program FORCE.FOR was used in this research to generate 

the random time series of the wave excitation forces through the combination of the wave 

spectrum and the excitation transform functions. 

FORCE.FOR 

PROGRAM SIMULATION OF EXCITATION FORCES 
REAL FRE(800),SPEC(800).ANGLE(800),AMPLI(800),DFRE 
REAL WA VE(800l).F(8001),M(800l),DT 
REAL FRA TI0(800),F ANGLE(800),MRA TI0(800),MANGLE(800) 
OPEN (UNIT= ll,FILE='spec l.d' ,STA TUS='UNKNOWN') 
READ (11,*) (FRE(0.SPEC(0.1=1.800) 
CLOSE(l1) 
OPEN (UNIT=21 ,FILE='angle.d',ST A TUS='UNKNOWN') 
READ (21,*) (ANGLE(O.I-1,800) 
CLOSE(21) 
OPEN (UNIT=31 ,FILE='ratio.d' ,STA TUS='UNKNOWN') 
READ (31, *) (FRA TIO(O.FANGLE(O,MRATIO(O,MANGLE(I),I=I,800) 
CLOSE(31) 
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PRINT*, 'INPUT FREQUENCY BAND!' 
READ(*,*) DFRE 
DT=0.05 
DO 10 1=1,800 
AMPU(l)=sqrt(2*SPEC(D*DFRE) 
DO 20 1=1.8001 
WA VE(J)=WA VE(J)+AMPU(I)*cos(2*3.1415926*FRE(I)*(J-1)*DT 

$ +ANGLE(I)) 
F(J)=F(J)+FRATIO(I)*AMPLI(I)*cos(2*3.14l5926*FRE(l)*(J-l)*DT 

$ +ANGLE(D+FANGLE(I)) 
M(J)=M(J)+MRATIO(I)*AMPU(I)*cos(2*3.l415926*FRE(I)*(J-1)*DT 

$ +ANGLE(I)+MANGLE(D) 
20 CONTINUE 
10 CONTINUE 

OPEN (UNIT=4l~E='force.d' ,STA TUS='UNKNOWN') 
DO 30 1=1,8001 
WRITE ( 41, *) W A VE(I),F(I),M(I) 

30 CONTINUE 
CLOSE(41) 
END 

For White Noise excitation case, the random time series of the excitation forces were 

generated directly from the White Noise spectrum. The following FORTRAN 77 program 

WHITE.FOR was used for this generation. 

WHITE.FOR 

PROGRAM SIMULATION OF WHITE EXCITATION 
REAL FRE(800).SPEC(800).ANGLE(800).AMPLI(800).DFRE 
REAL WA VE(800l),F(8001),M(8001).DT 
REAL F ANGLE(800),MANGLE(800),FRA TI0(800),MRA TI0(800) 
OPEN (UNIT= 11,FILE='spec 1.d',ST A TUS='UNKNOWN') 
READ (11, *) (FRE(D.SPEC(l),1=1,800) 
CLOSE(11) 
OPEN (UNIT =21 ,FILE='angle.d' ,STA TUS='UNKNOWN') 
READ (21, *) (ANGLE(I).I=I,800) 
CLOSE(21) 
OPEN (UNIT=3I~E='ratio.d',ST A TUS='UNKNOWN') 
READ (31. *) (FRA TIO(I),F ANGLE(I).MRA TIO(I).MANGLE(I),I= I ,800) 
CLOSE(31) 
PRINT*, 'INPUT FREQUENCY BAND!' 
READ(*,*) DFRE 

82 



DT=0.05 
DO 101-1,800 

* Test of white noise excitation! 
SPEC(l)=3.0 
AMPLI(l)=sqrt(2*SPEC(l)*DFRE) 
DO 20 1=1,8001 
WA VE(J)-WA VE(J)+AMPLI(l)*cos(2*3.1415926*FRE(l)*(J-1)*DT 

$ +ANGLE(I)) 
F(J)=F(J)+20.0*AMPLI(l)*cos(2*3.1415926*FRE{l)*(J-1)*DT 

S +ANGLE(I)+FANGLE(l)) 
M(J)=M(J)+20.0* AMPLI(l)*cos(2 *3 .1415926*FRE(l)*(J-1 )*DT 

$ +ANGLE(l)+MANGLE(l)) 
20 CONTINUE 
10 CONTINUE 

OPEN (UNIT=41.FILE='force.d'.ST A TUS='UNKNOWN') 
DO 30 1=1,8001 
WRITE (41,*) WA VE(n,FCI).M(l) 

30 CONTINUE 
CLOSE(41) 
END 
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Appendix C Data Processing Programs 
The following FORTRAN 77 program SIMU.FOR was used to generate the heave and 

pitch motion history from the random excitation forces. The program CG.FOR was used 

to convert the experiment data into the motion data of the ship model CG (center of 

gravity). The program RANDEC.FOR was used to obtain the two-degree Random 

Decrement signatures from the heave and pitch motion history. 

SIMU.FOR 

PROGRAM MOTION SIMULATION BY STRIP THEORY 
DOUBLE PRECISION RHO( 1 :800 l )JU»O( 1 :800 1 ), VHO( 1 :8001 ), VPO( 1:800 1) 
DOUBLE PRECISION F1(1:800l),F2(1:8001),WAVE(0:8001) 
DOUBLE PRECISION A1,Bl,Cl.Dl,E1,DT 
DOUBLE PRECISION A2,B2,C2,D2.E2 
DOUBLE PRECISION GH,GP 
DOUBLE PRECISION K1,K2,K3,K4.L1.L2.L3.lA 
DOUBLE PRECISION M 1.M2.M3.M4.N l.N2.N3.N4 

* Input initial value for motion signature! 
DT=0.05 
PRINT*, 'INPUT INITIAL VALUES FOR HEAVE!' 
READ(*,*) RHO(l),VHO(l) 
PRINT*, 'INPUT INITIAL VALUES FOR PITCH!' 
READ(*,*) RPO(l),VPO(l) 

* Inpu[ heave coefficients from strip theory! 
PRINT*, 'INPUT HEAVE COEFFICIENTS Al.Bl,Cl,D1!' 
READ (*, *) A l.B l,C l,D 1 

* Input pitch coefficients from strip theory! 
PRINT *,'INPUT PITCH COEFFICIENTS A2,B2,C2,D2!' 
READ (*, *) A2,B2,C2,D2 

* Calculation of the excitation forces! 
OPEN (UNIT= l1,FaE::'force.d',STA TUS='UNKNOWN') 
READ ( 11, *) (W A VE(O.F1 (0.F2(1).1= 1,8001) 
CLOSE( II) 
DO 10 1=1,8001 
Fl(0=0.4125878*Fl(I)-0.02727*F2(1) 
F2(1)=-0.02727*F1(1)+ 1.5599688*F2(1) 

10 CONTINUE 
*Prediction of coupled heave & pitch motion! 
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DO 20 I= 1,8000 
CALL NEURAL(GH.A l.B l,C 1.0 1.RHOOO. VHOOO.RPOCn.VPOCn> 
CALL NEURAL(GP .A2.B2.C2,D2,RH0(0. VHO(O.RPOCn. VPO(n) 
K1=DT*VHO(I) 
Ll=DT*{F1C0-GH) 
M l=DT*VPO(I) 
N l=DT*(F2(0-GP) 
CALL 

NEURAL(GH,A1.B1.C1,Dl.RHO(I)+0.5*Kl,VHO(n+0.5*L1,RPO(I)+0.5*Ml. 
$ VPO(n+0.5*Nl) 

CALL 
NEURAL(GP .A2.B2,C2.D2,RH0(0+0.5 *K l, VHO<n+0.5*L 1,RPO(ij+0.5*M 1. 

$ VP0(0+0.5*Nl) 
K2=DT*(VH0(0+0.5*L 1) 
L2=DT*({F1(0+F1(I+ 1 ))/2.0-GH) 
M2=DT*(VPO(I)+0.5*N 1) 
N2=DT*((F2(ij+F2(I+ 1) )12.0-GP) 
CALL 

NEURAL(GH,A1.B1,Cl,D1,RH0(1)+0.5*K2,VHO<n+0.5*L2,RPO(l)+0.5*M2. 
$ VPO(l)+0.5*N2) 

CALL 
NEURAL(GP,A2.B2.C2,D2,RHO(l)+0.5*K2,VHO(I)+0.5*L2.RPO(n+0.5*M2. 

S VP0(0+0.5*N2) 
K3=DT*(VHO(n+0.5*L2) 
L3=DT*((F1(0+Fl(l+l))/2.0-GH) 
M3=DT*(VPO(ij+0.5*N2) 
N3=DT*( (F2(0+F2(I+ 1) )12.0-GP) 
CALL 

NEURAL(GH,A1.B1.Cl,D1,RHO(l)+K3,VH0(0+L3,RPO<n+M3,VPO(I)+N3) 
CALL 

NEURAL(GP,A2,B2,C2.02,RHO(l)+K3, VHO(I)+L3,RPO(I)+M3.VPO(I)+N3) 
K4=DT*(VHO(I)+L3) 
L4=DT*{Fl(l+l)-GH) 
M4=DT*(VPO(l)+N3) 
N4=DT*(F2(1+ l )-GP) 
RHO(I+ l )=RHO(I)+(Kl +2.0*K2+2.0*K3+K4 )/6.0 
VHO(l+l)=VH0(I)+(L1+2.0*L2+2.0*L3+IA)/6.0 
RPO(l+ 1 )=RPOCn+CM l +2.0*M2+2.0*M3+M4 )/6.0 
VPO(I+l)=VPO(I)+(Nl+2.0*N2+2.0*N3+N4)/6.0 

20 CONTINUE 
* Output of predicted heave & pitch motion~ 

OPEN (UNIT=4l,FILE='cg.d',STA TUS='UNKNOWN') 
DO 30 1=1,8001 
WRITE ( 41, *) WA VEOO.RPO<n,RHO<n 

30 CONTINUE 
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CLOSE(41) 
END 

SUBROUTINE NEURAL(G.~.C.DJUI,VH.RP,VP) 
DOUBLE PRECISION G.RH. VH.RP, VP 
DOUBLE PRECISION A,B,C.D 
G=A*VH+B*RH+C*VP+D*RP 
RETURN 
END 

CG.FOR 

PROGRAM CGMOTION 
REAL WA VE(800l).PITCH(8001},HEA VE(8001),MW .MP.MH,HEAD.LCG 
OPEN(UNIT=11.FILE='data.d',STATUS='OLD') 
READ( 11, *) (W A VE(I),PITCH(I),HEA VE(I), I= 1,8001) 
CLOSE(l1) 
MW=O.O 
MP=O.O 
MH=O.O 
PRINT*, 'INPUTWAVEDIRECriONVALUE! 

$ IHEADING=l.O,FOLLOWING=-1.0' 
READ(*,*) HEAD 
PRINT *.'INPUT LONGITUDINAL POSffiON OF CG! 

$ /FORWARD OF MIDSHIP( em)' 
READ (*, *) LCG 
DO 10 1=1,8001 
W A VE(I)=O.OOOS53835845*W A VE(I)-18.5869461 
PITCH(0=0.CX>2l 0797726*PITCH(I)-69 .3330754 
MP=MP+PITCH(I) 
MW=MW+WA VE(l) 

10 CONTINUE 
MP=MP/800 1.0 
MW=MW/800 1.0 
DO 20 1=1,8001 
PITCH(D=-HEAD*(PITCH{I)-MP) 
HEA VE(I)=-0.00277451443*HEA VE(I)+ 134.034007 
HEA VE(I)=HEA VE(l)-LCG*sin(PITCH(I)/180.0*3.1415926) 
MH=MH+HEA VE(l) 

20 CONTINUE 
MH=MH/8001.0 
DO 30 1=1.8001 
HEA VE(l)=HEA VE(I)-.MH 
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W A VE(I)=W A VECn-MW 
30 CONTINUE 

OPEN (UNIT= 12.Fll..E='cg.d',ST A TUS='OLD') 
DO 401-1,8001 
WRITE ( 12, *) W A VE(I),PITCH(n,HEA VE(I) 

40 CONTINUE 
CLOSE(12) 
PRINT*, 'MEAN VALUE OFWAVE(cm),PITCH(deg).HEAVE(cm) FOR CG!' 
PRINT * ,'MW=',MW,'MP=',MP,'MH:='.MH 
END 

RANDEC.FOR 

PROGRAM HEAVE RANDOM DECREMENT 
REAL W A VE(800 1 ),PITCH(800 1 ),HEA VE(800 1 ),RP(0:20 1 ),RH(0:20 l) 
REAL TRIGGER 
INTEGER SP(50),SN(50) 
OPEN (UNIT= 11, FILE='cg.d',ST A TUS='OLD') 
READ ( 11, *) (W A VE(n.PITCH(I),HEA VE(I), I= 1,8001) 
CLOSE(l1) 
M=O 
N=O 
PRINT *, 'INPUT TRIGGER VALUE FOR HEAVE RANDOMDEC!' 
READ(*,*) TRIGGER 
DO lO 1=1,7800 
IF (HEA VE(l).LE. TRIGGER.AND.HEA VE(I+ 1 ).GT.TRIGGER) THEN 
M=M+l 
SP(M)=l 
IF (ABS(HEA VE(1)-TRIGGER) .GT.ABS(HEA VE(l+ 1 )-TRIGGER)) SP(M)=I+ l 
1=1+201 
END IF 

10 CONTINUE 
DO 20 I= 1, 7800 
IF (HEA VE(I).GE.TRIGGER.AND.HEA VE(I+l).LT.TRIGGER) THEN 
N=N+l 
SN(N)=I 
IF(ABS(HEA VE(I)-TRIGGER).GT.ABS(HEA VE(I+ 1 )-TRIGGER)) SN(N)=1+ 1 
1=1+201 
END IF 

20 CONTINUE 
K=M 
IF(M.GT.N) K=N 
DO 30 I=1,K 
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DO 40 1=0.201 
RH(J)=RH(1)+HEA VE(SP(I)+1) 
RH(J)=RH(J)+HEA VE(SN(l)+J) 
RP(1)=RP(J)+PITCH(SPCn+1) 
RP(1)=RP(1)+PITCH(SN(I)+1) 

40 CONTINUE 
30 CONTINUE 

OPEN (UNIT=l2. FILE='randec.d'.STATUS='OLD') 
DO 50 1=0.20 1 
RH(J)=RH(J)/(2.0*K) 
RP(J)=RP(J)/(2.0*K) 
WRITE(l2.100) RP(J).RH(J) 

100 FORMAT (1X.2FI5.6) 
50 CONTINUE 

PRINT *,'NUMBER FOR BOTH POSITIVE AND NEGATIVE SEGMENTS!' 
PRINT*. 'K='.K 
END 
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Appendix D Neural Network Training Program 
The following FORTRAN 77 program NEURAL.FOR was used for Neural Network 

training to identify the unknown function in the heave motion equation. For pitch motion 

identification, the pitch motion data was input instead of the heave data in the program. 

NEURAL.FOR 

PROGRAM NEURAL TRAINING FOR HEAVE 
DOUBLE PRECISION RH(0:20 l ),RP(0:20 1 ), VH( l :200), VP( 1 :200) 
DOUBLE PRECISION WB(0:5),WA(l:5,0:4),DWA(l:5,0:4),DWB(0:5) 
DOUBLE PRECISION SWA( 1 :5,0:4).SWB(0:5),R0(200),ROP(200),RON(200) 
DOUBLE PRECISION IT,JTP.ITN.RATE.DT,DJW,FRE,TIME 
OPEN CUNIT=ll, FILE='randec.d', STATUS='OLD') 
READ (ll,*) (RP(l),RH(I).I=0,20l) 
CLOSE(ll) 

* Numerical differentiation for randomdec signature! 
DT=0.05 
DO 10 1=1.200 
VH(I)=(RH(I+ 1 )-RH(I-1 ))/(2.0*DT) 
VP(I)=(RP(I+ 1 )-RP(I -1) )/(2.0*DT) 

10 CONTINUE 
* Identification of damped heave frequency! 

IK=O 
DO 200 1=1,100 
IF((RH(I)-RH(I-1 ))*(RH(I+ 1 )-RH(I)).LT.O.O) THEN 
IF(IK.EQ.O} IS=I 
TIME=DT*(l-IS) 
IK=IK+l 
END IF 

200 CONTINUE 
TIME=TIMEI(IK-l )*2.0 
FRE=2.0*3.1415926ffiME 
PRINT *,'DAMPED HEAVE FREQUENCY FRE =' .FRE 

*Set initial weight values for training! 
OPEN(UNIT=21 ,FTI...E='initial.d' ,ST A TUS='OLD') 
PRINT *,'PLEASE INPUT THE INITIAL WEIGHT VALUES!' 
READ (21, *) (WB(I).I=0,5) 
PRINT *,'WEIGHT VALVES BETWEEN OUTPUT AND HIDDEN NODES' 
WRITE (*, *) (WB(I),I=O,S) 
READ (21,*) (W A(l,nJ=0.4) 
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PRINT *,'WEIGHT VALUES BETWEEN FIRST HIDDEN NODE & INPUTS' 
WRITE(*,*) (WA(1.nJ=0,4) 
READ (21, *) (W A(2,nJ=<>.4) 
PRINT *,'WEIGHT VALUES BETWEEN SECOND HIDDEN NODE & INPUT' 
WRITE (*, *) (W A(2.n.I=<>.4) 
READ (21,*) (WAC3.n.I=0,4) 
PRINT* ,'WEIGHT VALUES BETWEEN THIRD IDDDEN NODE & INPUTS' 
WRITE(*,*) (W A(3.n.I=0,4) 
READ (21,*) (WA(4,n.I=0,4) 
PRINT *, 'WEIGIIT VALUES BETWEEM FOURTH HIDDEN NODE & INPUT' 
WRITE(*.*) (W A(4,n,I=0,4) 
READ (21,*) (W A(S,n.I=<>.4) 
PRINT * .'WEIGIIT VALVES BETWEEN FIF I H HIDDEN NODE & INPUTS' 
WRITE (*. *) (W A(S.n.I=0,4) 
PRINT *,'PLEASE INPUT SEARCH RATE !' 
READ(*.*) RATE 

*Net training using set of training data by iteration! 
DO 150 K=1.100000 
IF (K.EQ.K/100* 1 00) PRINT *. 'ITERATION TnvfE =·, K 
IT=O.O 
DO 15 1=0,5 
WB(J)=WB(J)-RA TE*DWB(J) 

15 CONTINUE 
DO 20M=1,5 
DO 30N=0,4 
W A(M.N)=W A(M,N)-RA TE*DW A(M,N) 

30 CONTINUE 
20 CONTINUE 

CALL NEURAL(RH,RP,VH,VP,RO,FRE,WA,WB.DT) 
DO 40 I= 1,200 
JT=JT +(R0(1)-RH(l))**2 

40 CONTINUE 
IF (K.EQ.K/100* 100) PRINT *,THE TOTAL ERROR IT=',JT 
IF(JT.LT.0.1D-05) GOTO 155 

* Numerical differentiation of total error to every weight! 
DO 50 1=0.5 
SWB(I)=O.O 1 *WB(I) 
WB(I)=WBCO+SWB<n 
CALL NEURAL(RH,RP, VH. VP,ROP ,FRE,W A,WB,Dn 
JTP=O.O 
DO 60 J= 1,200 
ITP=ITP+(ROP(J)-RH(J) )**2 

60 CONTINUE 
WB<n=WB(0-2.0*SWB(l) 
CALL NEURAL(RH,RP,VH, VP,RON.FRE.W A,WB,DT) 
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JTN=O.O 
DO 701=1~00 
ITN=JTN+{RON(J)-RH(J) )**2 

70 CONTINUE 
WB(O=WBCO+SWB(I) 
DWB(0=(ITP-JTN)/(2.0*SWB(0) 

50 CONTINUE 
DO 80M=1,5 
D090N=0,4 
SW A(M.N)=O.O 1 *W A(M,N) 
W A(M.N)=W A(M,N)+SW A(M.N) 
CALL NEURAL(RH.RP,VH.VP.ROP .FRE.WA,WB.DT) 
JTP=O.O 
DO 100 1=1,200 
ITP=ITP+(ROP(J)-RH(J))**2 

100 CONTINUE 
WA(M.N)=W A(M.N)-2.0*SW A(M.N) 
CAlL NEURAL(RH,RP,VH.VP,RON.FRE.WA.WB,DT) 
JTN=O.O 
DO 110 1=1.200 
ITN=JTN+{RON(J)-RH(I) )**2 

110 CONTINUE 
W A(M,N)=W A(M.N)+SW A(M.N) 
DW A(M.N)=(ITP-JTN)I(2.0*SW A(M,N)) 

90 CONTINUE 
80 CONTINUE 

DJW=O.O 
DO 120 1=0,5 
DJW=DJW+DWB(I)**2 

120 CONTINUE 
DO 130 M=l.S 
DO 140N=0,4 
DJW=DJW+DWA(M.N)**2 

140 CONTINUE 
130 CONTINUE 

IF (K.EQ.K/100* 100) THEN 
PRINT *,'THE SQUARE TOTAL OF PARTIAL DERIVATIVES DJW='.DJW 
END IF 
IF (DJW.LE.0.1D-10) GOTO 155 
IF (K.EQ.K/1000*1000) THEN 
OPEN (UNIT=12.FILE='weight.d' ,ST A TUS='OLD') 
WRITE( 12, *) (WB(I),I=0,5) 
WRITE(l2, *) (W AO.n.I=<>,4) 
WRITE( 12, *) (W A(2,1),1=0,4) 
WRITE(l2,*) (WA(3,1)J=0,4) 
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WRITE(l2,*) (WA(4,1)J=0.41 
WRITE(l2, *) (W A(5,I),I=0.4) 
CLOSE(l2) 
END IF 

150 CONTINUE 
155 OPEN (UNIT=l2. Fll..E='weight.d',STATUS='OLD') 

PRINT*, 'THE FINAL WEIGHfVALUES!' 
PRINT *, (WB<n. 1=0,5) 
WRITE(l2,*) (WB(I). 1=0.5) 
PRINT *. 'FIRST IDDDEN NODE -INPUTS' 
PRINT*, (W A(lJ). 1=0,4) 
WRITE(l2,*) (WA(1,I), 1=0,4) 
PRINT *. 'SECOND HIDDEN NODE- INPUTS' 
PRINT *. (W A(2,I), 1=0,4) 
WRITE(l2,*) (WA(2,I), 1=0,4) 
PRINT *, THIRD IDDDEN NODE - INPUTS' 
PRINT*. (WA(3,1), 1=0,4) 
WRITE (12,*) (WA(3,I},I=0,4) 
PRINT *. 'FOURTH HIDDEN NODE- INPUTS' 
PRINT *. (W A( 4,I}, 1=0,4) 
WRITE( 12, *) (W A( 4,1),1=0,4) 
PRINT *. 'FIF I H HIDDEN NODE - INPUTS' 
PRINT *. (W A(5,I),I=0,4) 
WRITE(l2,*) (WA(5,1).1=0,4) 
CLOSE(12) 
OPEN (UNIT= l3,Fll..E='neural.d' ,STA TUS='OLD') 
WRITE ( 13, *) 'DAMPED HEAVE FREQUENCY FJffi =',FRE 
WRITE (13,*} 'THE TOTAL ERROR IT =',IT 
WRITE (13.*) THE TOTAL SQUARE PARTIAL DERIVATIVES DJW =',DJW 
WRITE (13,*) 'THE PARTIAL DERIVATIVES ARE AS FOLLOWING:' 
WRITE ( 13, *) (DWB(I),I=O,S) 
WRITE (13, *) (DWA(l,l),1=0,4) 
WRITE (13,*) (DWA{2,1),l=0,4) 
WRITE (13,*) (DWA(3,1),1=0,4) 
WRITE ( 13, *) (OW A( 4,1),1=0,4) 
WRITE ( 13, *) (OW A(5,1),1=0,4) 
WRITE ( 13, *) 'THE TARGET VALUE RH(I) AND OUTPUT VALUE RO(l) !' 
DO 160 1=1,200 
WRITE (13,*) RH(I).RO(I) 

160 CONTINUE 
CLOSE(13) 
END 

SUBROUTINE NEURAL(RH,RP,VH.VP,RO.FRE,WA,WB,Dn 
DOUBLE PRECISION RH(0:20 1 ),RP(0:20 1 }, VH( 1 :200}, VP( 1 :200),R0( 1 :200) 
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DOUBLE PRECISION WA(1:5.0:4).WB(0:5},G(1:200),UH(l:5),VO(l :200) 
DOUBLE PRECISION FRE.DT .X,Kl,K2,K3,K4 
DOUBLE PRECISION RHM( 1: 199),RPM( 1: 199), VHM( 1: 199), VPM( 1: 199) 
DOUBLE PRECISION UHM(1:5),GM(l:l99) 
f(X)= 1.0/( l.O+exp(-X)) 

* Calculation for neural-net outputs! 
DO 150 K=1.200 
DO 10 1=1,5 
UH(J)=f(W A(J,0)*1.0+WA(J,l)*VH(K)+WA(J,2)*RH(K)+WA(J,3)*VP(K) 

$ +WA(J.4)*RP(K)) 
10 CONTINUE 

G(K)=WB(O)*l.O+WB(1)*UH(l)+WB(2)*UH(2)+WB(3)*UH(3)+WB(4)*UH(4) 
S +WB(5)*UH(5) 

150 CONTINUE 
* Calculation for neural-net output midpoints! 

DO 20 1=1.199 
RHM(I)=(RH{I)+RH(I+ l) )/2.0 
VHM(l)=(VH(I)+ VH(I+ 1 ))12.0 
RPM(I)=CRPcn+RP(l+ 1) )/2.0 
VPM(I)=(VP(I)+ VP(I+ 1) )/2.0 
DO 30 1=1,5 
UHM(J)=f(WA(J,O)*l.O+WA(J,l)*VHM(I)+WA(J,2)*RHM(I) 

$ +WA(J,3)*VPMcn+WA(J,4)*RPM(n) 
30 CONTINUE 

GM(I)=WB(O)* 1.0+ WB( 1 )*UHM( 1 )+WB(2)*UHM(2)+WB(3)*UHM(3) 
$ +WB(4)*UHM(4)+WB(5)*UHM(5} 

20 CONTINUE 
* Numerical integration for differential equation! 

ROC 1 )=RH( 1) 
VO(l )=VH( l) 
DO 160 1=1.199 
K 1 =DT*( -G(I)-FRE**2*R0(1)) 
K2=DT*(-GM(I)-FRE**2*(RO(I)+DT*VO(I)/2.0+DT*Kl/8.0)) 
K3=DT*( -GM(I)-FRE**2*(RO(I)+DT*V0(1)/2.0+DT*K2/8.0)) 
K4=DT*( -G(l+ 1 )-FRE**2*(RO(I)+DT*VO(I)+DT*K3/2.0)) 
RO(I+ 1 )=RO(I)+DT*(VO(I)+(K 1 + K2+K3 )/6.0) 
VO(I+ l )=VO(I)+(Kl +2.0*K2+2.0*K3+K4 )/6.0 

160 CONTINUE 
RETURN 
END 
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Appendix E Verification Programs 
The following programs were used to verify the identification results in this research. The 

program PREDIC.FOR was used to get the prediction signatures from the identified 

Random Decrement equations and make a comparison with the .actual Random 

Decrement signatures. The program FREE.FOR was used in simulation case to obtain the 

free response signatures and compare with the Random Decrement signatures. 

PREDIC.FOR 

PROGRAM MOTION PREDICTION 
DOUBLE PRECISION RH(0:20 1 ),RP(0:20 1 ), VH(l :200), VP(l :200) 
DOUBLE PRECISION RHO( 1 :200),RP0( 1 :200), VHO( 1 :200), VPO( 1 :200) 
DOUBLE PRECISION WAH( I :5,0:4),WBH(0:5).FREH.DT 
DOUBLE PRECISION W AP(l:5,0:4),WBP(0:5).FREP 
DOUBLE PRECISION GH.GP 
DOUBLE PRECISION Kl,K2.K3,K4.Ll.L2.L3.IA 
DOUBLE PRECISION Ml.M2.M3.M4.N1.N2.N3.N4 
OPEN (UNIT= ll.FILE='randec.d',ST A TUS='OLD') 
READ (11, *) (RP(l),RH(I),I=0.20 1) 
CLOSE(l1) 
PRINT*, 'PLEASE INPUT DAMPED FREQUENCY FOR HEAVE!' 
READ(*.*) FREH 
PRINT *, 'PLEASE INPUT DAMPED FREQUENCY FOR PITCH!' 
READ(*,*) FREP 

* Numerical differentiation for randomdec signature! 
DT=0.05 
DO 10 1=1.200 
VH(I)=(RH(I+ 1 )-RH(l-1) )/(2.0*DT) 
VP(l)=(RP(I+ 1 )-RP(I-1) )/(2.0*DT) 

10 CONTINUE 
*Input heave weight values obtained from training! 

OPEN (UNIT=21.FILE='weight.d' .ST A TUS='OLD') 
READ (21, *) (WBH(I),I=0,5) 
READ (21,*) (WAH(l.I).I=0,4) 
READ (21,*) (WAH(2.I).I=0.4) 
READ (21. *) (W AH(3.1),I=0,4) 
READ (21, *) (WAH( 4.1).1=0.4) 
READ (21.*) (WAH(5,1),1=0,4) 
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CLOSE(21) 
* Input pitch weight values obtained from training! 

OPEN (UNIT=31.FILE='pweight.d' .STA TUS='OLD') 
READ (31, *) (WBP(I)J=O.S) 
READ (31.*) (WAP(l.I)J=0.4) 
READ (31.*) (WAP(2J)J=0.4) 
READ (31.*) (WAP(3J)J=0.4) 
READ (31. *) (W AP( 4.1)J=0.4) 
READ (31,*) (WAP(5.1)J=0.4) 
CLOSE(31) 

* Prediction of coupled heave & pitch motion! 
RHO(l)=RH( 1} 
VHO(l)=VH(l) 
RPO( 1 )=RP( 1) 
VPO(l)=VP(l) 
DO 20 1=1.199 
CALL NEURAL(GH.WBH.W AH.RHO(I).VHO(I}.RPO(I).VPO(I)) 
CALL NEURAL(GP.WBP,W AP.RHO(I).VHO(I).RPO(I).VPO(I)) 
Kl=DT*VHO(I) 
L 1=DT*( -FREH**2*RHO(O-GH) 
Ml=DT*VPO(O 
N l=DT*( -FREP**2*RPO(D-GP) 
CALL NEURAL(GH.WBH.W AH.RH0(0+0.5*K1. 

S VH0(1)+0.5*L 1.RPO(I)+0.5*M 1. VPO(I)+O.S*N 1) 
CALL NEURAL(GP,WBP.W AP.RHO(O+O.S*Kl, 

S VHO(I)+0.5*Ll,RP0(0+0.5*Ml,VP0(1)+0.5*N1) 
K2=DT*(VH0(1)+0.5*L 1) 
L2=DT*( -FREH**2*(RH0(1)+0.5*Kl )-GH) 
M2=DT*(VPO(I)+0.5*N l) 
N2=DT*( -FREP**2*(RPO(l)+0.5*M l )-GP) 
CALL NEURAL(GH. WBH, W AH.RH0(1)+0.5*K2, 

S VHO(I)+0.5*L2.RPO(l)+0.5*M2.VPO(l)+0.5*N2) 
CALL NEURAL(GP,WBP,W AP.RH0(1)+0.5*K2. 

S VH0(1)+0.5*L2,RP0(1)+0.5*M2. VP0(1)+0.5*N2) 
K3=DT*(VH0(1)+0.5*L2) 
L3=DT*( -FREH**2*(RH0(1)+0.5*K2)-GH) 
M3=DT*(VP0(1)+0.5*N2) 
N3=DT*( -FREP**2*(RPO(l)+0.5*M2)-GP) 
CALL NEURAL(GH.WBH,W AH,RHO(I)+K3. 

$ VHO(I)+L3,RPO(I)+M3. VPO(I)+N3) 
CALL NEURAL(GP,WBP,W AP,RHO(I}+K3. 

$ VHO(I)+L3.RPO(I)+M3.VPO(I)+N3) 
K4=DT*(VHO(l)+L3) 
IA=DT*(-FREH**2*(RH0(I)+K3)-GH) 
M4=DT*(VPO(I)+N3) 
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N4=DT*( -FREP**2*(RPO(I)+M3}-GP) 
RHO(I+ l)=RHO<n+(Kl +2.0*K2+2.0*K3+K4 )/6.0 
VHO(I+ 1 )=VHO(I)+(L l +2.0*L2+2.0*L3+IA )/6.0 
RPO(I+ 1 )=RPO(I)+(M 1 +2.0*M2+2.0*M3+M4 )/6.0 
VPO(I+ 1 )=VPO(I)+(N 1 +2.0*N2+2.0*N3+N4 )/6.0 

20 CONTINUE 
* Output of predicted heave & pitch motion! 

OPEN (UNIT=4l.FILE='comp.d',STATUS='UNKNOWN') 
DO 30 I= 1,200 
WRITE C4I.*> RHcn.RHocn 

30 CONTINUE 
CLOSE(41) 
OPEN (UNIT=5l.FILE='pcomp.d',STA TUS='UNKNOWN') 
DO 40 I= 1,200 
WRITE (51,*) RP(I).RPO(I) 

40 CONTINUE 
CLOSE(Sl) 
OPEN (UNIT=6l,FILE='predic.d',STA TUS='UNKNOWN') 
DO 50 I=1.200 
WRITE (61,100) RPO(I).RHO(I} 

100 FORMAT(lX.2Fl5.6) 
50 CONTINUE 

CLOSE(61) 
END 

SUBROUTINE NEURAL(G.WB.WA,RH.VH,RP,VP) 
DOUBLE PRECISION G,RH.VH,RP,VP 
DOUBLE PRECISION WB(0:5), W A( 1:5,0:4 ).UH( 1 :5),X 
f(x)= 1.0/( l.O+exp( -x)) 
DO 10 1=1,5 
UH(J)=f(WA(J,O)* l.O+WA(J,l)*VH+WA(J,2)*RH+WA(J.3)*VP+WA(J.4)*RP) 

10 CONTINUE 
G=WB(O)* 1.0+WB( l )*UH( 1 )+WB(2)*UH(2)+WB(3 )*UH(3)+WB( 4 )*UH( 4 )+ 

S WB(5)*UH(5) 
RETURN 
END 

FREE.FOR 

PROGRAM MOTION FREE RESPONSE 
DOUBLE PRECISION RH(0:20 1 ),RP(0:20 1 ), VH( l :200}, VP( l :200} 
DOUBLE PRECISION RHO( 1 :200),RP0( 1 :200}, VHO( l :200), VPO( 1 :200) 
DOUBLE PRECISION A1.Bl,C1.Dl,DT 
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DOUBLE PRECISION A2.B2.C2,D2 
DOUBLE PRECISION GH,GP 
DOUBLE PRECISION K1,K2,K3,K4.L1.L2.L3.L4 
DOUBLE PRECISION M l.M2,M3.M4.N l.N2.N3.N4 
OPEN (UNIT=11.Fll..E='randec.d',STATUS='OLD') 
READ ( 11. *) CRPcn.RH(I).I=0.201) 
CLOSE(11) 

*Numerical differentiation for randomdec signature! 
DT=0.05 
DO l 0 I= 1.200 
VH(O=(RH(I+ 1 )-RH(I -1) )/(2.0*DT) 
VP(O=(RP(I+ 1 )-RP(I-1) )/(2.0*DT) 

10 CONTINUE 
* Input heave coefficients from strip theory! 

PRINT*. 'INPUT HEAVE COEFFICIENTS Al,Bl.C1,Dl !' 
READ(*,*) A1,Bl,C1,Dl 

*Input pitch coefficients from strip theory! 
PRINT *.'INPUT PITCH COEFFICIENTS A2.B2,C2,D2!' 
READ(*,*) A2,B2,C2,D2 

* Free response of coupled heave & pitch motion! 
RHO( 1 )=RH( 1) 
VHO(l)=VH(l) 
RPO( 1 )=RP( 1) 
VP0(1)=VP(1) 
DO 20 1=1,199 
CALL NEURAL(GH,A l.B l,C l.D 1,RHO(I), VHO(n.RPO(n. VPO(l)) 
CALL NEURAL(GP ,A2.B2.C2.D2,RHOcn. VHOcn,RPO(l), VPO(I)) 
Kl=DT*VHO(I) 
Ll=DT*(-GH) 
M 1 =DT*VPO(I) 
N l=DT*( -GP) 
CALL NEURAL(GH.A l.B 1.C 1,0 1,RHO(I)+0.5*K 1. 

S VHO(l)+0.5*L1,RPO(l)+0.5*Ml,VP0(1)+0.5*N1) 
CALL NEURAL(GP ,A2,.B2,C2.D2.RHO(I)+0.5*K 1, 

$ VHO(l)+0.5*L l,RPO(I)+0.5*M 1. VP0(0+0.5*N 1) 
K2=DT*(VHO(I)+0.5*L 1) 
L2=DT*( -GH) 
M2=DT*(VPO(l)+0.5*N 1) 
N2=DT*( -GP) 
CALL NEURAL(GH,Al,B l,Cl,D1.RH0(0+0.5*K2, 

$ VHO(l)+0.5*L2,RPO(I)+0.5*M2, VP000+0.5*N2) 
CALL NEURAL(GP ,A2,.B2,C2,D2,RH0(1)+0.5*K2, 

$ VHO(l)+0.5*L2.RPO(l)+0.5*M2, VPO(n+0.5*N2) 
K3=DT*(VHO(l)+0.5*L2) 
L3=DT*( -GH) 
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M3=DT*(VPO(I)+0.5*N2) 
N3=DT*( -GP) 
CALL NEURAL(GH.A1.B l.C 1.0 l.RHO(I)+K3. 

$ VHO(I)+L3,RP0(0+M3. VPO(I)+N3) 
CALL NEURAL(GP .A2.B2.C2.D2.RHO(I)+K3. 

$ VHO(I)+L3,RPO(I)+M3, VPO(I)+N3) 
K4=DT*(VHO(I)+L3) 
IA=DT*( -GH) 
M4=DT*(VPO{I)+N3) 
N4=DT*( -GP) 
RHO(I+ 1)=RHO{I)+(Kl +2.0*K2+2.0*K3+K4 )/6.0 
VHO(I+l)=VH0(1)+(Ll+2.0*L2+2.0*L3+L4)/6.0 
RPO(I+ 1 )=RPO(I)+(M1 +2.0*M2+2.0*M3+M4 )/6.0 
VPO(l+ 1 )=VPO(I)+(N 1 +2.0*N2+2.0*N3+N4 )/6.0 

20 CONTINUE 
* Output of predicted heave & pitch motion! 

OPEN (UNIT=4l,FILE='comp.d',STATUS='UNKNOWN') 
DO 30 I= 1,200 
WRITE (41,*) RH(I),RHO(l) 

30 CONTINUE 
CLOSE(41) 
OPEN (UNIT=Sl,FILE='pcomp.d'.STATUS='UNKNOWN') 
DO 40 I=1,200 
WRITE (51,*) RPCD.RPOCO 

40 CONTINUE 
CLOSE(51) 
OPEN (UNIT=61.FILE='strip.d',ST A TUS='UNKNOWN') 
DO 50 I= 1,200 
WRITE (61,100) RPO(I).RHO(I) 

100 FORMAT (IX.2F15.6) 
50 CONTINUE 

CLOSE(61) 
END 

SUBROUTINE NEURAL(G.A.B,C.D.RH.VH,RP.VP) 
DOUBLE PRECISION G.RH.VH,RP,VP 
DOUBLE PRECISION A,B,C.D 
G=A*VH+B*RH+C*VP+D*RP 
RETURN 
END 
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