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Abstract

Investigation of the ship motion behavior in irregular sea states is an important step for
ship seakeeping performance research. Ship motion identification from the full scale
measurements is the only way to study the actual motion behavior and verify the motion
predictions after ship constructions. A particular identification method for coupled heave
and pitch motions was developed and validated in this research. The two-degree Random

Decrement technique and the Neural Networks technique were combined in identification

process.

This developed method was applied to several motion systems to test its effects. The
random motion data were obtained from the ship model experiments and numerical
simulations. The coupled heave and pitch Random Decrement signatures obtained from
the random motion histories were used as the Neural Networks training data to identify
the Random Decrement equations. The identification results were verified by comparing
the predictions with the actual Random Decrement signatures, and with the free response

signatures.

The application results suggested that the validation of the identified equations was
mainly dependent on the nature of the Random Decrement signatures and the quality of
the Neural Networks training. Only White Noise or broad-band spectrum excitations
could yield the required agreement between identified Random Decrement equations and

motion free response equations.
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1. Introduction
Ships are designed and built for transportation upon the sea. Any ship must possess some

basic characteristics to float in a stable upright position, move with sufficient speed,
maneuver in restricted routes, and withstand the reasonable loads. With the basic
knowledge of hydrostatics and hydrodynamics, prediction of the ship performance in
calm water is available for naval architects, and has been the basis for new ship designs
for a long time. However, the success of a ship design is ultimately determined by its
performance in a seaway. The real sea is rarely calm, and the ship performance is always
degraded due to wave effects. Ship seakeeping research aims to limit the wave-induced

ship motions and reduce the perforrnance degradation.

There are several sequential steps involved in seakeeping performance research.

Lloyd(1991) gives an overall description about these steps, including:

)
.

study ship motion behavior in irregular sea state;

9

estimate the dynamic effects caused by the motions;
3. determine the maximum permissible motion levels;
4. find the quantitative index of seakeeping performance measurement;

5. develop strategies in design to achieve acceptable performance.



Obviously ship motion study is the initial point for ship seakeeping performance research.
Among the six degrees of freedom of ship motions, heave is the motion vertically up and
down, and pitch is the angular motion about a horizontal transverse axis. These motions
are always coupled in reality. Identification of coupled heave and pitch motions in

random waves is the concern of this research.

Ship motions are usually investigated in four ways: theoretical analysis. model
experiments, empirical formulae, and ship trials analysis. Theoretical analysis involves
the methods such as strip theory, spectral theory and computational fluid dynamics
(CFD). Model experiments method is to scale up the experiment results given the
corresponding model law. Empirical formulae or database method is to draw conclusions
based upon statistical observations. Above three methods are mainly used in ship design
stage for motion predictions. After ship construction, however, ship trials analysis is the
only way to explore the actual motion behavior and verify all motion predictions. Because
of the randomness involved in ship motions, direct comparison between motion records
and predictions is usually impossible. Some statistical methods have to be incorporated
for motion identification from the ship motion records. In this research a particular
method for identification of coupled heave and pitch motion from the random motion

history is developed and validated through the model experiments and numerical

simulations.

Various system identification techniques start with the assumption that a ship in seaway is

an input/output system with the waves as input and ship motions as output. Both input



and output are irregular. The random ship motion responses could be measured and
recorded in real time, but a complete knowledge of wave behavior in seaway is usually
not available. The conventional identification techniques can not achieve the goal in this
case. The Random Decrement technique is thus employed for motion data processing.
Under certain conditions, the resulted Random Decrement signatures would agree well
with system free response signatures. Application of Random Decrement technique
makes it possible to identify ship motions without the complete wave input knowledge.
This technique was empirically developed in the late 1960’s by Henry Cole(1971) for
structure vibration identification. The mathematical interpretation was formulated by
Vandiver et al.(1982). The single-degree Random Decrement technique was extended to
multiple-degree cases by Ibrahim(1977). Haddara and Wu(1993) first applied the
Random Decrement technique into ship rolling identification. In this research two-degree
Random Decrement technique is adopted to process the coupled heave and pitch motion

data.

Since the Random Decrement signature corresponds to free response signature under
certain conditions, the Random Decrement equations are assumed to have the same form
as that of ship motion free response equations. In this research the coupled heave and
pitch Random Decrement signatures obtained from the random motion time series are
used to identify Random Decrement equations. In conventional system identification
techniques, the unknown parameters in the assumed motion equations are adjusted to

match the sample data. For complex coupled motion systems, too many unknown



parameters in motion model would make it very difficult, even impossible, to achieve the
acceptable identification results. The Neural Networks technique provides a means for
identification of complex systems instead of the conventional methods. Various Neural
Networks structures and algorithms are explicitly described in Hush and Home(1993).
The Muitilayer Perceptron networks have been used in ship motion identification by
Haddara and Hinchey(1995), Haddara and Wang(1996). In this research the modified
algorithm of the Multilayer Perceptron networks is applied to identification of coupled

heave and pitch motions.

The identified Random Decrement equations have to be verified and analyzed for their
validation. First of all, the actual Random Decrement signatures should satisfy the
identified equations. This generalization is verified by comparison between the actual
Random Decrement signatures and the predicted signatures. Secondly, the identified
equations have to be analyzed in some ways to show its relation with system free
response equations. If the free response signatures are available, they will be compared
with the predicted signatures. Only the Random Decrement equations that agree with

system free response equations could be used for further seakeeping research.

This developed method is applied to several motion identifications. One group of the
motion data is measured from ship model experiments in JONSWAP waves. The other
motion data are generated from the numerical simulations for both JONSWAP wave and
White Noise excitations. Thé presented results show that the validation of motion

identification is mainly dependent on the nature of the Random Decrement signatures and



the quality of the Neural Networks training. The JONSWAP wave input could not ensure
the agreement between the identified Random Decrement equations and the free response
equations for coupled heave and pitch motions. Only White Noise or broad-band

spectrum excitations yield the required agreement.



2. Methods and Procedures

System identification process usually consists of several sequential steps including data
acquisition, data processing, system model formulation, system identification and results
verification. There are various methods for every individual step, and the choice of the

particular method is determined by the nature of the problem.

In this research, irregular ship motion data were obtained from the ship model
experiments and numerical simulations. Records of the coupled heave and pitch motion
histories were processed using two-degree Random Decrement technique. The motion
system was represented by simultaneous differential equations. Multilayer Perceptron
neural networks were adopted for system identification. The identified equations were

verified using actual Random Decrement signatures and free response signatures.

2.1 Motion Data Acquisition

Motion identification method is practically applied to full scale measurements. For
research convenience, some motion data obtained from model experiments and numerical
simulations are also required because the environmental conditions could be controlled.
In this research the heave and pitch motion data of a ship model ‘R-Class Icebreaker’
were obtained to develop and validate a particular identification method. The model
hydrostatic particulars and body plan are presented in Table i and Figure 1. One group of
motion data was measured from wave tank experiments, and the other groups were

generated from numerical simulations.



Table i: Hvdrostatic Particulars for Model ‘R-Class Icebreaker’

Length between perpendiculars (LPP), m 2.1985
Length of waterline (LWL), m 2.3250
Waterline beam at midships, m 0.4840
Waterline beam at maximum section, m 0.4840
Maximum waterline beam, m 0.4845
Draft at midships, m 0.1735
Draft at maximum section, m 0.1745
Draft at aft perpendicular, m 0.1790
Draft at forward perpendicular, m 0.1675
Equivalent level keel draft, m 0.1735
Maximum section forward at midships, m -0.1850
Parallel middle body, from aft of midships | +0.1850
to forward of midships, m -0.1850
Area of maximum station, m° 0.1545
Center of buoyancy forward of midships, m | -0.0080
Center of buoyancy above keel, m +0.0970
Wetted surface area, m* 1.1335
Volume of displacement, m’ 0.1190
Displacement of fresh water, kg 121.6
Center of floatation forward of midships, m | -0.0175
Center of floatation above keel, m +0.1735
Area of waterline plane, m* 0.899
Transverse metacentric radius, m 0.122
Longitudinal metacentric radius, m 24
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Figure 1: Body Plan of 'R-Class Icebreaker’ Ship Model

2.1.1 Ship Model Experiments
A group of motion data was directly measured from model experiments conducted in the

wave tank at Memorial University of Newfoundland. The whole facility consists of a
large wave tank. an instrumented towing carriage, and a fully equipped control room

containing a complete range of data acquisition and analysis equipment.

The wave tank has inside dimensions of 58.27m in length, 4.57m in width, and 3.04m in
depth. At one end is a hydraulically operated, piston type wave generator. The waveboard
is fabricated from aluminum with a watertight Teflon seal around its periphery. At the
other end is a parabolic beach consisting of an aluminum frame covered by wooden slats.

This construction is intended to absorb and dissipate the energy contained in the incident



wave and maintain a minimum reflection coefficient. Waves are created in the tank by the
translatory motion of the waveboard over its 0.5m stroke. Electronic control for the
waveboard is provided from the control room. Control signals for irregular wave spectra
are generated by computer and the resultant time series are transferred to a

microcomputer controlled digital to analog converter, which allows reproduction of any

theoretical spectrum.

The towing carriage over the wave tank is equipped with a dynamometer that can
measure horizontal forces of + 20 kg, vertical movements over a 0.4m range, and
rotations within a *+ 30 degree arc. Wave probes are employed to monitor the time history
of the wave profile. Further data acquisition and analysis are performed in the control
room. Data from the dynamometer and wave probes are recorded in analog format on one
or more multi-channel instrumentation recorders, and simultaneously digitized with a

multi-channel analog to digital converter and a computer.

During ‘R-Class Icebreaker’ model experiments, the ship model was positioned along the
center line of the wave tank, heading towards the wave generator. The model was allowed
only to move in vertical plane, heaving and pitching. The dynamometer was attached to
the ship model at the cross point of midship and center line. The coupled heave motion
displacement and angular pitch displacement were collected simultaneously by the

dynamometer. A wave probe was located beside the ship model about 0.5m apart.



The JONSWAP (Joint North Sea Wave Project) spectrum wave was generated in the
wave tank as ship motion excitation. This spectrum is always used for coastal waters
where the fetch may be limited. It is defined by wave energy density S(m’/Hz) as the
function of wave component frequency f(Hz). In this research the following function was

employed for generation of required wave time series,

(f-fa) 1)
SH 2 4 5 4 exp[ = 2] {
s¢y=Heda exp(—-—:;z y LR
16f °y?

where the parameters are wave significant height H,, peak frequency f,, peak

enhancement factor ¥y, and shape parameter G. A particular JONSWAP spectrum is shown

in Figure 2.
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JONSWAP Wave Spectrum
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Figure 2: JONSWAP Wave Spectrum

In this research two groups of JONSWAP waves were generated for ship model
excitation. In each group there were three different wave series resulted from the same
spectrum. The wave spectrum used in the first group is that shown in Figure 2. In addition
to experiments under JONSWAP wave, the heave and pitch free response tests were also
performed by giving ship model a certain initial displacement. The various experiments
are tabulated in Table ii. Motion data were collected for 400 seconds with a time interval
of 0.05 second. There were 8001 data points in every record. The collected heave data
was the heave displacement of the cross point of midship and center line, where the

dynamometer was attached.

11



Table ii: Ship Model Experiments Category

Wave Spectrum Parameters
Time Series H; (cm) fm (Hz) Y c

J7TH5 5.0 0.7 33 0.07 (f < fr)

0.09 (f > fin)

J7HSa 50 0.7 33 0.07 (f < fm)

0.09 (f > f,)

JTHSb 50 0.7 33 0.07 (f < fr)
0.09 (f>fwm) |

JTH7S 7.5 0.7 33 0.07 (f < frm)
0.09 (f>fm)

J7H75a 7.5 0.7 33 0.07 (f < fm)

0.09 (f> fm)

J7H75b 7.5 0.7 33 0.07 (f < frn)
0.09 (f>fm) |

Free Response | Calm Water

2.1.2 Motion Simulation
Besides ship model experiments, some numerical simulations were also employed in this

research to explore what happened behind the experiment results. The interrelationship
between the involved parameters could be displayed through analysis of the various

simulation results.

Any kind of simulation is based on a particular mathematical model that represents the
original system theoretically. For ship heave and pitch motion, strip theory is usually
employed to estimate the parameters in the dynmamic motion equations. From the

calculations detailed in Appendix A, which are based on the algorithm from

12



Bhattacharyya (1979), the dynamic equations for simulation of ‘R-Class Icebreaker’

heave and pitch motions are expressed as ( 2 ),

Z” +2824Z’ +34.092Z +0.1580" + 02380 = 04126F (1) — 0.0273M r) (2)
8” +0.580Z" +0.629Z + 2.6320 + 307808 = —00273F (1) + 1.560M (¢)

where Z denotes heave displacement of ship model CG (center of gravity), 0 denotes
pitch angular displacement, and symbols Z”,0” and Z’,8’ represent second-order and
first-order differentiation of heave and pitch displacement with respect to time
respectively. The random excitation force F(t) and moment M(t) for the ship model are
dependent on wave spectrum and model hull geometry. During simulations two sets of
excitation forces were generated, one set from JONSWAP wave environment, the other

set from a white noise excitation spectrum.

For the JONSW AP wave case, wave time history was generated by adding a large number
of component sine waves. Every component sine wave was derived from the specified
spectrum and expressed as equations ( 3 ), where €, is a random angle. The random wave
series were obtained by adding a large number of individual component waves as shown
in equation ( 4 ). In this research there were 800 component waves involved. For details
about wave synthesis method, reference should be made to Lloyd (1989). For every
component sine wave, the corresponding excitation forces Fy(t) and Mu(t) were calculated
using strip theory. The calculations based on Bhattacharyya (1978) are detailed in

Appendix B. The ratios between force amplitude and corresponding wave amplitude, and

13



the phase differences between the forces and waves were expressed as functions of the
wave frequency. These excitation transform functions, combined with the wave

components, generated the final random forces F(t) and M(t) expressed as equations ( 5 ).

Lo =25 (3)
§.(1) =0 cos2f 1 +€,) -

C(‘)=§CROCOS(ZT¢;:+£,) (4)

800
F(t) = Z rlngno COS(Z]#.": + gn + Pha‘geln) (3 )

n=}

800
M(t)= Z r,.$ .0 COS(27f .t + €, + phase,,)

For the white noise excitation case, the generation of the forces was simplified by direct
employment of the white noise spectrum for excitation forces. White noise is defined as
stationary random process whose power spectral density is constant, that is, independent
of frequency. Physically white noise is not possible because this demands infinite power.
In this research the broad band spectrum shown in Figure 3 was used to approximate the
white noise excitation situation. The forces F(t) and M(t) were generated as( 6 ), where
the phase differences were obtained from the excitation transform functions presented in

Appendix B.
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White Noise Excitation Simulation
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Figure 3: White Noise Excitation Forces Spectrum

(6)

800
F(1)=Y \[25,&f cos(2nf,t + €, + phase,,)

n=l

800
M) -—-Z,DS:@" cos(2nf,t + €, + phase,,)
n=l

After the excitation forces were calculated, the simulated motion time series were
obtained from the numerical solutions to the equation ( 2 ). A fourth-order Runge-Kutta
method was employed in solving the simultaneous differential equations. The algorithm

is as follows.
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Za+An=Z()+ (K, +2K, +2K, +K,)/ 6
Z'(t+AN=Z'(t)+ (L, +2L, +2L,+L,)/ 6
6(t+A)=00)+ (M, +2M, +2M,+ M )/ 6
@' (t+A1)=0"(t)+ (N, +2N, +2N; +N,)/6

K =arx{Z'(1)}

L =Arx {F (r)—2824Z'(r) - 34.092Z(r) — 0.1586°(r) — 02380(s) }
M, =A< {6°(1)}

N, = At x {F, (1) - 0580Z’(r) - 0.629Z(r) — 2.6328"(¢) ~ 30.7800(1) }

K, =Arx{Z’'(r)+05L,}

[F, (1) + F,(t + Ar)]/ 2 — 2824 Z’(r) + O5L, |- 34.092[Z(r) + 05K, |
-0.158[6°(¢) + 05N, |- 0238[0(¢) + 05M, | }
M, =Arx{6°(t)+ 05N, }

N. = Arx {[1:z (1) + F,(t + Ar)]/ 2 - 0580[Z°(¢) + O5SL, | - 0.629[Z(z) + 05K, ]}
; —2.632[6(r) + 05N, ] —30.780{6(r) + 05M, ]

L-.=Atx{

Ky =Arx{Z'(t)+05L, }
[F,(t) + F, (¢ + Ar)]/ 2 —2.824[Z"(r) + O5L, ] ~ 34.092[ Z(¢) + 05K, ]}
~0.158[6°(r) + 05N, ] - 0238[6(r) + 05 M, |
M, =Arx{8°(t)+05N,}
{[F2 (2) + Fy (1 + Ar)]/ 2 - 0580[Z°(r) + 05L, | - 0.629[Z(r) + 05K, ]
—2.632[6°(t) + 05N, |- 30.780[{8(¢) + 05 M, | }

L3=Atx{

N,=Arx
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K, =&t x{Z'(2)+L,}

. {F, (¢ + Ar) — 2824[Z°(r) + L, |- 34.092[Z(1) + K, ]}
) —0.158[6°(r) + N, |- 0238[6(+) + M, ]

M, =Arx{@°(t)+ 05N, }

N = Arx {f;(: +Ar) —0580[Z°(r) + L;] - 0629[Z(¢) + K,]}
) ~2.632[6°(¢) + N, |- 30.780{0(r) + M, ]

The time interval At was taken as 0.05 second with a total of 8001 data points in every

simulated time series.

Different simulation series were obtained by varying the damping levels in the

mathematical model. Various results were compared and analyzed.

2.2 Random Decrement Technique

The motion data of ‘R-Class Icebreaker’, whether from model experiments or from
motion simulations, are records of random time series. Some statistical methods are
needed for data processing in the identification process. In this research the two-degree

Random Decrement technique was employed for heave and pitch motion data processing.

The Random Decrement technique was empirically developed in the late 1960's by
Cole(1971), and has been widely used in the aerospace industry for the analysis of
experimentally generated vibration data. A single-degree random decrement signature is
simply the trace formed by a waveform averaging a number of specially selected
segments from a measured motion time history. Each of the selected segments shares the

common attribute of the same initial conditions. The most popular choice is to only

17



specify the initial motion displacement. From empirical induction, the basic conclusion
has been widely accepted — if a linear system is excited by a stationary, Gaussian
random process, the Random Decrement signature of the output is similar to the free

response signature.

Although it is difficult to derive the general mathematical conclusions, Vandiver et
al.(1982) provided a mathematical interpretation through the analysis of a specific case.
For a linear, time-invariant systemn excited by a zero-mean, stationary, Gaussian random
process, the response will also be a zero-mean, stationary, Gaussian random process. Its

Random Decrement signature Dxo(T) is simply the product of the correlation function and

the trigger level X, as expressed in the equation ( 8 ).

RX (™) (8)
R, (0)"°

Dyy(7) =

Based upon the above expression, there are several conclusions regarding the response

Random Decrement signature Dxo(T)-

e If the input is white noise, the Random Decrement signature of the output will
exactly represent the transient decay of the system from the specified trigger

level Xo.

e [If the excitation is not white noise, but sufficiently broad-band, the above

conclusion will apply well.
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e For a band limited excitation spectrum, a lightly damped system often yields
the results which to sufficient accuracy are equivalent to the response of a

white noise input.

For more complicated systems, there have been no general mathematical conclusions in
the published literature. Obviously the Random Decrement technique is still an empirical
technique that needs careful verification for every application case. Haddara and
Wu(1993) presented such an example for the ship rolling identification, which involved a
light damping system under the band limited excitations. The results were compatible

with the conclusions in Vandiver et al.(1982).

The single-degree Random Decrement technique has been extended to multiple-degree
cases by Ibrahim(1977) without any mathematical reasoning. In this research the two-
degree algorithm was employed to obtain coupled heave and pitch Random Decrement
signatures from the heave and pitch random time series X3(t) and Xs(t). The heave signal

X3(t) was chosen as leading signal. The heave Random Decrement signature Z(t) was

computed according to the following equation,

1 | & ad (9)
Z(t)=——| D X;(1, + )+ D X, (t, + T)
2N 1=l =1

with the following conditions:
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t=t when X3(t)=Zpand X, >0

t=t when X3(t)=Zpand X, <0

where Z, is the specified trigger value. The successive segments should not overlap to

ensure their independence. The corresponding pitch Random" Decrement signature 6(t)

was computed by averaging the segments from Xs(t) with the same starting point and

time intervals as that of the leading signal X;(t). The equation is shown below,

1 | & ud (10)
6(1):5; Y X (f, +T)+ D, X (2, +T)

i=1 J=l
with the same conditions:

t=t whenX3(t)=Zpand X, >0

t=f whenXs3(t)=Zpand X, <0

In this research there were 200 data points in every Random Decrement signature with the
time interval of 0.05 second. The illustration of the two-degree Random Decrement
technique is shown in Figure 4. The first two segments start from the points t; and t»

respectively, which both satisfy the condition X3(t)=Z,.
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Figure 4: [llustration of Two-Degree Random Decrement Technique

From Ibrahim(1977), the two-degree Random Decrement signatures were claimed to

agree with the system free response signatures in most cases. It thus provides a possible

means to identify the free response equations from the Random Decrement signatures.

For single-degree Random Decrement signature, Vandiver et al.(1982) presented the
proportional relationship between Random Decrement signature and autocorrelation
function. In this case, the autocorrelation function could be used instead of the Random
Decrement signature and usually is more accurate than the Random Decrement signature.
However, for multiple-degree Random Decrement signatures, such relationship is not
retained due to the phase difference between the individual signals in Random Decrement
signatures. Only for leading signal could some comparisons be made between Random

Decrement signature and autocorrelation function.
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2.3 Formulation of Random Decrement Equations

Among six-degree ship motions, heaving and pitching are always coupled in the vertical
plane. From Lloyd(1989) the coupled linear heave and pitch motions of a particular ship
in the wave could be described by the following simultaneous ordinary differential
equations,

” ’ ” r
(m+ay)X; +buX, +cpX;+a,Xs +b3, X, +c,, X =F(1) (11
”

a3 X3 +bX; tcX;+U+ag)Xs +bys X +ci X =Fs(2)

where X, indicates linear heave displacement of ship’s CG (center of gravity): Xs
indicates angular pitch displacement; m is the ship mass and Iss is the mass moment of
the inertia of the ship about the transverse axis passing through the CG; the a, b, c and F
are the coefficients or values related to the added masses, damping, restorations and
excitations respectively. Using matrix notation, equation { 11 ) could be rewritten as

follows,

(Xs”\+(333 B\ x, +[c33 C,,)(X,\=(G3(t)) (12)
LX”J B;, By Xﬁ' Ca Cu ij G (1)

-1
(Csa Css)_[m*'an Qs J [‘:33 Css)
Csy Css Qs Ig +ag Cs3 Css
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4 (G,(:)) _(m+a33 Qs J"(F,(:))
G, (1) a, Ig+ag) \F@))
For free response situation, the excitation forces Fi(t), Fs(t) and Gs(t), Gs(t) are all zero.

The free response equations could be converted from matrix form to the following,

X3” + B,;X,' + Cy X5 + B”X,' +C;s X5 =0 (13
X, +BgX, +CgX,+ ByX; +CysXy=0

The above free response equations represent the coupled heave and pitch motion system.
If the unknown parameters B and C are determined, such motion system is identified.
However, the free response signatures are usually not available for full scale ship
motions. Thus the free response equations can not be identified directly. Instead, the

Random Decrement signatures were used in this research to identify the motion system.

The heave and pitch Random Decrement signatures Z(t) and 8(T) were obtained from the
motion time series Xs3(t) and Xs(t) as expressed in equations ( 9 ) and ( 10 ). If the
excitation forces are Gaussian, white noise random processes with means of zero, it is
proved by Haddara(1997) that the corresponding Random Decrement equations are
exactly similar to the free response equations ( 13 ). For other excitation cases, it is
assumed that the Random Decrement equations have the same form. Thus the general
Random Decrement equations are expressed as ( 14 ),

Z°+AZ'+BZ+CO +D6OH=0 (14
6”"+A,Z’+B,Z+C,0°+D,6=0



where A, B, C and D are unknown parameters. The Random Decrement equations could
be identified from the Random Decrement signatures. For a particular excitation case, if
the Random Decrement signature does agree well with system free response signature, the
identified Random Decrement equations will represent the free response equations. This

is the aim of the method.

2.4 Neural Network Technique for Motion Identification
After formulation of the Random Decrement equations, the identification of heave and

pitch motions could be achieved by estimating the unknown parameters A, B, C and D in
( 14 ) from the Random Decrement signature Z(t) and 6(t). The conventional system
identification techniques are not efficient for such a problem with eight unknown
parameters. The Neural Networks technique was employed in this research instead of

conventional methods.

Neural Networks technique simulates the human brain functions to learn some rules from
the training process. In practical application, one kind of rules is of functional relation
between different data groups. It is thus possible to approximate the unknown functions
by training the Neural Network from the input and output samples. The various Neural
Network forms and algorithms have been explicitly described by Hush and Home(1993).
The Multilayer Perceptron Network technique was used in this research with some

modifications.



Because the Neural Network technique was intended for identification of unknown

functions, the heave and pitch Random Decrement equation ( 14 ) was converted to the

following form,

Z"+w,"Z+G,(2',2,6°,6)=0 (15)
8" +w,’0+G,(2’,Z,0’,6)=0
where w3 and ws are damped frequencies of heave and pitch respectively. The unknown

functions G, and G; consist of the damping terms and part of the restoring terms. The

damped frequencies @w; and ®s were estimated directly from the Random Decrement
signature Z(t) and 6(t). The functions G, and G- were identified using the Muitilayer

Perceptron Network shown in Figure 5.



Go

Bs

1 M 1P} M3 Ha

Figure 5: Multilaver Perceptron Neural Network

The inputs are u;, W2, 13 and py with the output Gg. There are six neurons in the hidden
layer. One set of weight values Wj; and B; uniquely determines the functional relation

between the output and inputs, which is expressed by the equations ( 16 ) and ( 17 ).

The outputs of six hidden layer neurons A; (i=0,1,2,3,4,5) are,

Ay =1 (16)
A, ={l+exP[-(lw;o + W+ 1, W, + 1, W+ u W, )]}-l (i=12,34.5)

The final output of the Neural Network Gy is,
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3 (17)
Go=z(ﬁi X A;)

=0

Given a group of input sample data and the required output data G, the weight values Wj;
and PB; are adjusted through an iterative training process to minimize the errors between
the required data G and the output data Go. The final weight values should satisfy the
following conditions,

8[(G—Go)2] (18)
w,

a[(o-c;o)’] B
aB,

This set of weight values is the identification result for the unknown function.

In this research the inputs sample data were Z’(7), Z(t), 8°(T)and 6(t), where Z(T1).8(T)
were from Random Decrement signature of ship’s CG (center of gravity), and
Z’(1).0’(r) were obtained by numerical differentiation of Z(t) and 6(t) with respect to
time t. The required function outputs G; and G> , however, were not available directly
because the accuracy of numerical second-order differentiation Z”(7),0”(t) was not
acceptable. Thus the conventional error definition (Gg - G,)* and (Go - G2)*in ( 18 ) was

not applicable. The modified error was computed as below,
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N 2 1t 19)

E =) [2(1)-2,(v)]
=1
Ly 2

E. =Y [6(r)-0,(7)]
=]

where Zo(T) and 8(T) were numerical solutions to the following equations,
Z, +@,°2,+G,(Z',.Z,6°.6)=0 (20

8, +@,'0,+G,(Z,2,6°,8)=0

The final weight values should minimize the error E|, and E.. The iteration algorithm for

searching the optimum weight values is given by

W, (n-+ )= W, (n) =7 50—
ﬁi(n"' l)zﬁi(")—ya;E(n)

where v is a rate value to control searching rate and stability. The initial values of weight

W, and B; were chosen arbitrarily. The partial values IE . could not be
! oW, (n)" 3B, (n)

computed using the analytical algorithm described in Hush and Horme(1993). Instead. the

following numerical algorithm was employed,

dE E[W:, (n)+AW]-E[Vi’ii(n)—AW] (22
W, (n) 2AW

OE __ E[B.(n)+ AB]— E[B,(m) — AB]
ap;(n) 2A8
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The searching process was terminated when the following conditions were satisfied.

JE =0 (23)
3%

_a_E_E.O

B,

E=0

The weight values Wj; and B; constitute the identification result for the Random

Decrement equations.

2.5 Verification and Analysis of Identified Equations
The validation of the identification results is dependent on the nature of the Random

Decrement signatures and the quality of the Neural Networks training. The agreement
between the Random Decrement signatures and the free response signatures is the
prerequisite to the validation. For training process, too many sample data with a relatively
small network will reduce the accuracy of function approximation. Too big network
structure with a large number of neurons and weights will not achieve the required
generalization. In that case the identified function is possibly not the true function even

though the training result is perfect.

In this research the generalization of the identified equations was verified by comparing
the actual heave and pitch Random Decrement signatures with the predictions from the

identified equations. Given some specified initial values, the solutions to the identified

29



Random Decrement equations were obtained as predicted Random Decrement signatures.

The solution algorithm was based on the fourth-order Runge-Kutta method.

Since Random Decrement technique is an empirical technique without analytical
conclusions for its application, it is necessary to verify the agreement between the
identified Random Decrement equations and free response equations for every application
case. Only the Random Decrement equations that represent the free response equations
could be used for further seakeeping study. In this research the agreement was verified by
the comparison between the free response signatures and the predictions from the
identified Random Decrement equations. For model experiments, the free responses were
recorded directly from the measurements. For motion simulations, the free responses

were derived from the mathematical model using the fourth-order Runge-Kutta method.
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3. Results and Discussion

In this research the identification method was applied to ship model motion data obtained
from the wave tank experiments. Also the JONSWAP wave and white noise excitation
cases were tested separately by simulation method. All results are presented and

discussed in the following sections.

3.1 Ship Model Experiment Results

During wave tank experiments, ‘R-Class Icebreaker’ ship model was tested in two groups
of JONSWAP waves for random motion data and excited in calm water for free response
signatures. The motion data files were tabulated in the following Table iii with the

corresponding experimental conditions.

Table iii : Model Experiments Motion Dazia Files

Motion Data Wave Series Wave Direction JONSWAP Parameters
RHP2I J7THS Heading H;=5.0cm. f;,=0.7 Hz
RHP22 J7H5a Heading H;=5.0cm, f,=0.7 Hz
RHP23 J7THSb Heading H,=5.0cm, f,=0.7 Hz
RHP4] JTH7S Heading H,=7.5cm. {;,=0.7 Hz
RHP42 J7TH75a Heading H.=7.5cm, f,=0.7 Hz
RHP43 J7TH75b Heading Hs=7.5cm, fn,=0.7 Hz
RPHII Calm Water for Free Response
RPH12 Calm Water for Free Response
RPHI13 Calm Water for Free Response

The recorded motion data are motion displacements of the cross point of model midship

and center line. They had to be converted to the heave displacement of the CG (center of
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gravity) and pitch angular displacement. In this research both heave and pitch time series
are assumed to be zero-mean, stationary random processes. The experiment results
presented in Table iv supported such assumption. Since the axis system for experimental
measurement was not set on the equilibrium CG point, the motion measurements were
not real displacement values. From definition the real displacements of the stationary
state should be zero. In Table iv the mean values of every random process agreed well
with the measurements of the stationary state, thus the real mean values are all zero. The
real motion series were obtained by subtracting the mean values from the experimental

measurements.

Table 1v: Mean Value Analyses

Random Process Heave Mean Value Pitch Mean Value
(Stationary Measurement) | (Stationary Measurement)

(cm) (deg)

RHP21 18.60 043
(18.62) 0.41)

RHP22 20.01 0.43
(20.03) (0.42)

RHP23 19.99 043
(20.03) 0.42)

RHP41 19.97 0.44
(20.00) (0.42)

RHP42 19.95 0.45
(19.99) (0.44)

RHP43 19.94 0.45
(19.97) (0.43)
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3.1.1 Random Decrement Signature
The zero-mean motion series of the ship’s CG were processed to obtain the heave and

pitch Random Decrement signatures. For different trigger value, there was different
Random Decrement signature. The Random Decrement signatures from group one
motion data (RHP21, RHP22, RHP23) and group two motion data (RHP41, RHP42,
RHP43) are presented separately in Figure 6 to Figure 9 with the same heave trigger value

0.7cm. Two groups of Random Decrement signatures were also compared in Figure 10.

Heave Random Decrement Signature (Trigger=0.7cm)
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Figure 6: Heave Random Decrement Signature of Group One - RHP21, RHP22 and RHP23
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Pitch Random Decrement Signature
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Figure 7: Pitch Random Decrement Signature of Group One -- RHP21, RHP22 and RHP23
Heave Random Decrement Signature(Trigger=0.7cm)
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Figure 8: Heave Random Decrement Signature of Group Two -- RHP4!, RHP42 and RHP43




Pitch Random Decrement Signature
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Figure 9: Pitch Random Decrement Signature of Group Two — RHP41, RHP42 and RHP43
Heave Random Decrement Signature(Trigger=0.7cm)
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Figure 10: Random Decrement Signature of Group One & Group Two
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The obtained two-degree Random Decrement signatures had the decay form similar to
that of the free response signatures. There was a phase difference between the coupled
heave and pitch signals. Under same wave spectrum, the Random Decrement signatures
from the different time series (RHP21, RHP22, RHP23 or RHP41, RHP42, RHP43)
agreed well except the latter part. Even different spectrum significant height did not
influence this agreement (RHP21 & RHP41). The observation of the obtained results
suggested that the heave and pitch Random Decrement signatures are independent of the

particular wave time series under the same wave spectrum.

The latter part of the Random Decrement signatures was apparently interfered by some
noise. One cause of the noise is the experiment facility. The used wave tank is too narrow
to prevent from tank wall interference and wave reflection. The seakeeping basin is
expected to generate better motion data. The other cause is the limited Iength of the
motion time series. Since the Random Decrement signature was obtained by averaging
the selected data segments, too short motion time series could not provide enough
segments with the specified initial value. In this experiment, there were 8001 data points
in every motion history while the required segment length was 200 data points. Thus only
about 30 segments could be selected for either positive velocity specification or negative
velocity specification. The Random Decrement signature was finally formed by averaging

about 60 segments. It is insufficient for practical application.
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3.1.2 Neural Network Identification
The coupled heave and pitch Random Decrement signature obtained from the motion

time series RHP21 was used for identification of the Random Decrement equations. The
damped frequencies @3 and ws were estimated from the first 100 data points that were
free of apparent noise interference. The Neural Network shown in Figure 5 was
employed to identify the unknown functions G; and G, respectively. After training in
iterative process, the Neural Network outputs were close enough to training signature as

shown in Figure 11. The final weight values were tabulated in Table v.

Table v: Identification Results for Random Decrement Equations

Weight Values for Identified Function G,(Z’,Z,6°,8)

Bi,i=0,1,2,3,4.5 -9.270 7.066 2.468 1.928 2.644 2.826
W,;,i=0,1,2,3,4 -2.904 3.569 -2.808 -1.110 4.294
W, ,1=0,1,2,3,4 8.798 2.975 -4.297 -3.093 1.684
W, ,1=0,1,2,3,4 2.640 -0.992 -4.205 0.611 1.268
Wi, i=0,1,2,3.4 1.356 -2.616 -6.127 1.393 -0.494
Wsi,1=0,1,2,3,4 6.225 2.172 -1.187 7.123 3.070
Weight Values for Identified Function G,(Z’, Z,8’,0)
Bi.i=0.1,2,3,4,5 -1.624 | -9.906 -2.654 8.020 5.926 1.169
Wi, i=0,1,2,34 4.789 10.884 1.962 3.321 -1.061
W, ,i=0,1,2,3,4 0.706 5.386 3.508 2.989 5.304
W, ,i=0,1,2,3,4 2.979 7.671 -6.729 2.245 10.837
Wi, 1=0,1,2,3,4 1.627 10.525 1.572 5.983 1.348
Ws; , i=0,1,2,3,4 0.865 6.329 2.392 4.325 2.868
Damped Frequencies for Heave and Pitch Random Decrement Signature
Heave frequency @3 4.48799 (rad / sec)
Pitch Frequency s 4.59745 (rad / sec)
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Neural Network Training Result for Heave
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Figure 11: Neural Nerwork Training Results

Finally the identified heave and pitch Random Decrement equations for °‘R-Class

Icebreaker’ model were expressed as the following simultaneous equation system,
Z”+448799°Z+G,(Z2',2,6°,8)=0 (24)
8” +459745°0 + G,(Z2',Z,6°.8)=0

where the functions G| and G2 were uniquely determined by the weight values listed in

Table v.

3.1.3 Verification of Identification Results
The solutions to the identified Random Decrement equations could be obtained using the

fourth-order Runge-Kutta method if the initial conditions were specified. They were

obtained as the predicted Random Decrement signature. With the same initial conditions,
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the actual Random Decrement signatures could be formed from the recorded heave and
pitch motion time series. The predicted and the actual Random Decrement signatures
should be compatible with each other to ensure the generalization of the identification
result. In this research various trigger values were specified, and the actual Random
Decrement signatures were obtained from motion record RHP21. The predicted
signatures were compared with the actual Random Decrement signature in the Figure 12

to Figure 17.

Heave Verification Result (Tngger=1.0cm)
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Figure 12: Verification Results for Heave Trigger 1.0cm
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Heave Verification Results (Trigger=0.9cm)
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Figure 13: Verification Results for Heave Trigger 0.9cm

Heave Verification Results (Trigger=0.8cm)
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Figure 14: Verification Result for Heave Trigger 0.8cm
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Figure 15: Verification Results for Heave Trigger 0.6cm
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Figure 16: Verification Results for Heave Trigger 0.5cm
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Heave Verification Result (Trigger=0.4cm)
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Figure 17: Verification Results for Heave Trigger 0.4cm

For heave trigger value 1.0cm, 0.9cm, 0.8cm, 0.6cm, the predicted and actual Random
Decrement signature agreed well particularly for the first 100 data points. For heave
trigger value 0.5cm and 0.4cm, the expected agreement was not achieved after the first 50
data points. It was due to the noise interference that had much more influence for smaller
value Random Decrement signatures. Also the predicted signatures contained some noise
transferred from the training data. Even with some noise interference, the above

verifications proved the generalization of the identified Random Decrement equations.

Only the Random Decrement equations that represent the system free response equations
could be used for further seakeeping research. In that case the free response signature

should be one of the solutions to the identified Random Decrement equations. During ‘R-
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Class Icebreaker’ model experiments, the free response signatures were obtained by
exciting the ship model in calm water. The coupled heave and pitch free response
signatures are shown in Figure 18 to Figure 20. The initial irregular parts represented the
manual excitation process, while the other excitations in the latter part were caused by the
noise due to tank wall interference and wave reflection. The best part of free response
RPH11, which ranges from point 50 to point 250 in Figure 18, was selected to compare

with the prediction of the identified Random Decrement equations. The comparison result

is shown in Figure 21.
Experimental Heave Free Response Signature

4 T 1 1 b 4 ¥
= 2 -
o
T 0 :
>
= -2 | B

_4 L S 2 1 L y]

c 100 200 300 400 500 600 700
Experimental Pitch Free Response Signature

4 ] ¥ L L] L3 L
— 2 = "
g
= 0t 4
L
= Sl ]

-4 L 1 L L 1 L

0 100 200 300 400 500 600 700
Time(dt=0.05sec)

Figure 18: Experimental Heave & Piich Free Response Signature RPH1]
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Experimental Heave Free Response Signature
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Figure 19: Experimental Heave & Pitch Free Response Signature RPH |2
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Figure 20: Experimental Heave & Pitch Free Response Signature RPH13




Comparison of Heave for Free Response & Prediction
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Figure 21: Comparison Between Experimental Free Response and Random Decrement Prediction

From Figure 21 it is obvious that the experimental heave and pitch free response
signature was not the solution to the identified Random Decrement equations. The free
response signature showed heavy damping nature while the identified Random
Decrement equations represented a light damping motion system. This disagreement
could not be explored from the ‘R-Class Icebreaker’ experimental data, nor explained by
the theory of empirical Random Decrement technique. The only possible way to analyze

this disagreement is motion simulations.
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3.2 Ship Model Simulation Results (JONSWAP Wave)

In ship model experiments, only one model form ‘R-Class Icebreaker” was tested for the
application of the developed identification method. The general conclusions to the
validation of this identification method could not be based solely on the experiment
results of one model. The convenient way to test different ship models under various
environmental conditions is numerical simulation with the variable parameters in the
mathematical model. In this research, the mathematical model for heave and pitch
motions of ‘R-Class Icebreaker’ was derived from the strip theory as shown in Appendix
A. The excitation forces under the JONSWAP wave were generated from the
combination of the wave synthesis and the excitation transform functions presented in
Appendix B. The interrelation between the system parameters and the identification

results was explored by variation of the damping parameters in the mathematical model.

3.2.1 System Analysis for Various Damping Parameters
The mathematical model for “R-Class Icebreaker’ motion simulations was derived in

Appendix A as the following equation,

Z” +2824Z° +34.092Z + 01580 + 02380 = 04126 F(t) — 0.0273M (¢) (25)
6” +0580Z" +0.629Z + 2.6326° + 30.7808 = —0.0273F (¢) + 1560M ()

The random excitation forces F(t) and M(t) under JONSWAP wave were generated from
the wave spectrum shown in Figure 2 and the excitation transform functions presented in

Appendix B. The numerical solutions to equation ( 25 ) was obtained as the simulated
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motion time series, from which the specified segments were selected to form the heave
and pitch Random Decrement signature. Corresponding to the initial conditions of the
Random Decrement signature, the heave and pitch free response signature was obtained

from the system free response equations as below,

Z" +2824Z' + 34.092Z + 01580’ + 02380 = 0 (26)
6” + 05802’ + 0.629Z + 2.6328’ + 30.7808 = 0

The agreement between the Random Decrement signature and the free response signature
is the prerequisite to the validation of the identification results. Their comparison results

are shown in Figure 22 and Figure 23.

Heave Free Response & Random Decrement (Trigge r=0.7cm)
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Figure 22: Comparison Between Free Response & Random Decrement Signature (Heave Trigger 0.7 cm}
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Heave Free Response & Random Decrement (Trigger=0.6cm)
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Figure 23: Comparison Berween Free Response & Random Decrement Signature (Heave Trigger 0.6 cm)

From above comparison results, the heave and pitch Random Decrement signatures were
not compatible with the free response signatures for the ‘R-Class Icebreaker’ model under
JONSWAP waves. The free response signatures showed heavy damping nature while the
Random Decrement signatures represented the light damping system. This simulation

result is similar to the experimental result.

To simulate other motion systems with different damping parameters, the damping
coefficient { was incorporated into the mathematical model ( 27 ), which was based on

the ‘R-Class Icebreaker’ simulation model ( 25),




Z" + Zng "+ 34.092Z +0.1580° + 02380 = 04126F (1) —0.0273M (1) (27)

6” +0580Z" +0629Z + ZQM "+ 30.7800 = —0.0273F (t) + L56 M (1)
The § value for the ‘R-Class Icebreaker’ is greater than 0.2 according to equations ( 25 ).
The comparison results between the free response signature and the Random Decrement
signature for the motion model with { value of 0.2, 0.16, 0.12, 0.08, 0.04, 0.02 are shown
in Figure 24 to Figure 29. The results showed that the lighter damping systems under
JONSWAP waves could achieve the better agreement between free response signature
and the Random Decrement signature. The motion system ({=0.02) was further used in

the following sections to validate the developed identification method.
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Figure 24: Comparison Between Free Response & Random Decrement Signature for {=0.20
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Figure 25: Comparison Between Free Response & Random Decrement signature for {=0.16
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Figure 26: Comparison Between Free Response & Random Decrement Signature for {=0.12
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Heave Free Response & Random Decrement
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Figure 27: Comparison Between Free Response & Random Decrement Signature for {=0.08
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Figure 28: Comparison Between Free Response & Random Decrement Signature for {=0.04
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Heave Free Response & Random Decrement
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Figure 29: Comparison Between Free Response & Random Decrement Signature for {=0.02

3.2.2 Identification for Light Damping System
The coupled heave and pitch Random Decrement signatures obtained from the simulation

of light damping system ({=0.02) were used to identify the Random Decrement

equations. The Neural Network structure is similar to that shown in Figure 5. The
identified weight values are tabulated in Table vi, and the training result is shown in

Figure 30.
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Table vi: Identification Results for Light Damping Svstem Simulations

Weight Values for Identified Function G,(Z°,Z,6°,8)

Bi,i=0,1,2,34,5 -2.526 0.944 0.847 0.946 0.946 1.579
Wiy, i=0,1,2,3.4 -0.024 0.863 -1.387 -0.140 -0.828
W;,; ,1=0,1,2,3.4 -0.071 0.012 -3.592 -0.154 -0.944
Wiy ,i=0,1,2,3,4 -0.024 0.868 -1.379 -0.139 -0.831
Wy , 1=0,1,2,3,4 -0.024 0.866 -1.381 -0.140 -0.830
Ws; ,i=0,1,2,3.4 0.043 0.698 -3.028 0.136 -2.067
Weight Values for Identified Function G,(Z°,Z,6°,68)
B,,i=0,1,2,3,4,5 -8.839 4994 3.540 3.113 3.230 3.085

Wiy, i=0,1,2,34 -0.087 4.552 -1.514 1.167 -4.764

W ,1=0,1,2,3.4 -0.860 5.702 -1.571 1.122 -9.906

Wi, i=0,1,2,34 -0.311 0.671 -3.745 0.030 -2.062

Wi, i=0,1,2,34 -0.760 5.242 -1.656 1.022 -9.166

Wsi, i=0,1.2,3.4 -0.292 0.706 -3.697 0.040 -2.129

Damped Frequencies for Heave and Pitch Random Decrement Signature

Heave frequency s 5.64781 (rad / sec)

Pitch Frequency s 5.58505 (rad / sec)
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Heave Training Result
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Figure 30: Neural Network Training Results for Light Damping System Simulations

3.2.3 Verification for Light Damping System
The first step was to verify the generalization of the identified Random Decrement

equations by comparing the actual and the predicted Random Decrement signatures. The
comparison results shown in Figure 31 to Figure 33 proved the generalization of the

identified equations.

The second step was to verify the compatibility between the Random Decrement
equations and free response signature. The solutions to the identified Random Decrement

equations were compared with the free response signatures in Figure 34 to Figure 36.



Heave Prediction & Random Decrement (Trigger=2.0cm)

2 d = = . T T
e .. S5 S = ': o A 3
1 @ D & @ :" T 416 ";'- r—: ;-; f."-w
g Q) 3 Q 3 Q 3 G D h < l. :: 3 O G :: >
=N ® b O 4 @ Q @ 9 D ad b D P & O D
o 0FfF Y & @ Q D ® Y ¢ @ @ 7
] O @ @@ ¢ X g D 3 0 b ¢ " o @
= b D A4 ? N9 ® ¢ L @ !
Sardd ad &d 2% ¥ &Y B & ]
g e e = L Y v, v,
_2 o — i H i
o 50 100 150 200
Pitch Prediction & Random Decrement
10 v 1 L]
"-" Randomdec “o0" Prediction
—_ 5
=
=
= 0
=2
‘a -5 A, .
-10 : - :
o 50 100 180 200
Time(dt=0.05sec)
Figure 31: Comparison Between Predictions & Random Decrement Signature (Heave Trigger 2.0cm)
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Figure 32: Comparison Between Predictions & Random Decrement Signature (Heave Trigger 1.5cm)
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Heave Prediction & Random Decrement (Trigger=1.0cm)
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Figure 33: Comparison Between Predictions & Random Decrement Signature (Heave Trigger [.Ocm)
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Figure 34: Comparison Between Predictions & Free Response (Heave Trigger 2.0cm)
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Heave Prediction & Free Response (Trigger=1.5cm)
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Figure 35: Comparison Between Predictions & Free Response (Heave Trigger 1.5cm)
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Figure 36: Comparison Between Predictions & Free Response (Heave Trigger 1.0cm)
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3.3 Ship Model Simulation Results (White Noise)

For white noise excitation approximation, the random time series of force F(t) and
moment M(t) were synthesized directly from the constant spectrum shown in Figure 3.
The mathematical model for ‘R-Class Icebreaker’ motion ( 25 ) was employed to generate
the motion time series, which was used later to obtain the heave and pitch Random

Decrement signatures. This motion system is a heavy damping system.

3.3.1 Analysis of the Random Decrement Signatures
The heave and pitch Random Decrement signatures were analyzed by comparing with the

free response signatures, which were obtained from the equation ( 26 ). Their agreement
is the prerequisite to the validation of the identification results. The comparison results
are shown in Figure 37 and Figure 38. The irregularity in the Random Decrement
signatures was mainly caused by the insufficient segments selected from the motion time
series. It had much more influence for the small value signatures. Even with such large
interference, the required agreement was achieved in the first several periods. This
agreement could be displayed more clearly using autocorrelation function. The heave
autocorrelation function was scaled up to match the trigger value of the Random
Decrement signature and compared with both heave Random Decrement signature and

heave free response in Figure 39.
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Heave Free Response & Random Decrement Signature (Trigger=1.3cm)
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Figure 37: Comparison Between Free Response & Random Decrement Signaiture (Heave Trigger |.3cm)
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Figure 38: Comparison Between Free Response & Random Decrement Signature (Heave Trigger 1.0cm)
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Figure 39: Comparison Between Heave Autocorrelation. Random Decrement, and Free Response

3.3.2 Identification Resuits
The Random Decrement signature with the heave trigger value 1.3cm was used for

Neural Network training. The weight values and the damped frequencies identified from
Neural Network training process are tabulated in Table vii. The training results are
presented in Figure 40 and Figure 41. The training accuracy was not good due to the
irregularity in the obtained Random Decrement signature. Only the first SO points

achieved the good agreement.
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Table vii: Identification Results for White Noise Excitation

Weight Values for Identified Function G,(Z’,Z,6°,6)

Bi,i=0,1,2,3.4,5 2.842 -5.089 -5.089 -5.089 -5.089 -5.089
Wi ,1=0,1,2,3.4 2.693 0.953 -2.447 0.394 1.677
W ,i=0,1,2,3.4 2.693 0.953 -2.447 0.394 1.677
W3 ,i=0,1,2,3.4 2.693 0.953 -2.447 0.394 1.677
Wi, 1=0,1,2,3.4 2.693 0.953 -2.447 0.394 1.677
Ws; , i=0,1,2,3,4 2.693 0.953 -2.447 0.394 1.677
Weight Values for Identified Function G,(Z’,Z,6°,6)
Bi,i=0,1,2,34,5 -64.431 8.996 10.457 18.790 19.715 18.991

Wiy, i=0,1,2,3,4 -0.948 1.843 -12.097 0.295 5.641

W,; ,1=0,1,2,3,4 1.942 1.341 -22.639 1.583 -3.198

Ws; ,1=0,1,2,3,4 10.836 0.522 -14.913 0.889 -13.927

W , i=0,1,2,3,4 10.416 | -10.130 -8.669 -0.450 -5.954

Ws; ,i=0,1,2.3.4 10.136 -9.737 -8.967 -0.400 -5.744
Damped Frequencies for Heave and Pitch Random Decrement Signature
Heave frequency m; 5.7776 (rad / sec)
Pitch Frequency ws 5.4636 (rad / sec)
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Heave Training Result
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Figure 40: Heave Training Result for White Noise Simulations
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Figure 41: Pitch Training Result for White Noise Simulations
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The identified Random Decrement equations are expressed as ( 28 ),

Z”+57776*Z+ G,(Z2’,2,8°,6)=0 (28)
8” +54636*0+ G,(Z’,Z2,6°,6)=0

where the functions G, and G; are uniquely determined by the weight values in Table vii.

3.3.3 Verification Resuits
The generalization of the identified Random Decrement equations ( 28 ) was verified by

the comparison between the predicted and the actual Random Decrement signatures.
During the Neural Network training, only the agreement for the first 50 points was
achieved. Thus the generalization was also verified by the comparison of the first SO data
points. The comparison results shown in Figure 42 and Figure 43 are not good due to the
noise interference in both predictions and actual Random Decrement signatures.
Obviously the identified equations expressed by equation ( 28 ) and Table vii was not
acceptable. The lack of accuracy in the training data caused such failure of motion

identification.
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4. Conclusions and Recommendations

A particular method was developed in this research to identify the ship coupled heave and
pitch motions from the random motion histories. The two-degree Random Decrement
technique and the Neural Networks technique were combined in the identification
process. The application results suggested several points regarding the validation and

effects of this identification method.

Both wave tank experiments and simulation results showed that under JONSWAP wave
excitations the heave and pitch Random Decrement signatures did not agree with the free
response signatures for ‘R-Class Icebreaker’ ship model. The obtained Random
Decrement signatures demonstrated a light damping nature while the free responses had a
heavy damping decay form. The identified Random Decrement equations thus did not
represent the ship model free response equations that could be used for further seakeeping

research.

More simulation results proved that under the JONSWAP wave excitations only the light
damping systems were possible to achieve the required agreements between the Random
Decrement signatures and the free response signatures. This agreement is the prerequisite

to the validation of the identification results.

The broad-band constant excitation spectrum, which approximated the white noise
excitations in the research, was used in another simulation for ‘R-Class Icebreaker’ ship
model. Although the obtained Random Decrement signatures were severely damaged by

some noise, they did agree with the free response signatures in the decay form. Both the
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Random Decrement signatures and free response signatures displayed a heavy damping

nature in this case.

Above results about the two-degree Random Decrement signatures are compatible with

the one-degree conclusions presented by Vandiver et al.(1982),

e For a linear, time-invariant system excited by a zero-mean, stationary.
Gaussian random process, the system response will also be a zero-mean,
stationary, Gaussian random process. If the input is also a white noise, the
Random Decrement signature of the output will exactly represent the transient

decay of the system from the specified set of initial conditions.

e If the excitation for the same system is not white noise, but sufficiently broad-

band, the above conclusion will apply well.

e For a band limited excitation spectrum, a lightly damped system often yields
the results which to sufficient accuracy are equivalent to the response of a

white noise input.

For the ship heave and pitch motions, the system is usually heavily damped. In this case
the JONSWAP wave spectrum is too narrow-banded to achieve the required agreement
between the Random Decrement signatures and free response signatures. Only the broad-

band excitations could yield the acceptable results.

For two-degree Random Decrement signature, the proportional relationship that exists
between the autocorrelation function and single-degree Random Decrement signature

only applied to the leading signal of the two-degree Random Decrement signature. Thus
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the autocorrelation function could not be used for motion identification even the obtained

Random Decrement signature was not accurate.

Besides the nature of the Random Decrement signatures, the quality of Neural Networks
training is another factor for the validation of identification results. In this research the
Multilayer Perceptron networks simplified the identification problem by lumping a large
number of the unknown parameters into a function. This unknown function was identified
through the Neural Network training. It did provide a means for identification of the

complicated systems. The quality of the training results was determined by several

factors.

The accuracy of the Neural Network training results was mainly dependent on the quality
of the selected training data. Too much noise in the training samples was not acceptable
in any case, particularly for the small value signature. In this research the 8001 data points
in motion series were not enough for selecting sufficient segments to form the Random
Decrement signature. More motion data should be collected in practical application.
However, too many training data with a relatively small network also caused the lack of

accuracy in the training results.

The generalization of the Neural Networks identification is another concern for the
quality of the training results. The good generalization is to ensure that the different
Random Decrement signatures with the varying initial conditions will all satisfy the same
identified equations. It is mainly dependent on the Neural Network structure. Too small
network could not achieve good accuracy. Too capable network with too many neurons

and weights will not yield good generalization. In that case the identified equations are

67



possibly not the true equations even the training results are perfect. From Hush and
Horne(1993), a useful rule of thumb is that the number of training samples should be
approximately ten times the number of the weights. The Neural Networks adopted in this
research have 31 weights and 200 training data with their ratio around 7, which yielded

the good results.

Generally the developed method will produce the acceptable identification results under
the broad-band wave excitations. It is particularly valuable for the case where the
complete wave knowledge is unavailable. Since the Random Decrement technique and
the Neural Network technique are basically empirical methods, the careful verification

and analyses are always necessary for any practical application.
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Appendix A Parameter Calculations
The following calculations were based on the algorithm in Chapter Nine (pp.183-198) of

Dynamics of Marine Vehicles by Bhattacharyya (1978).

The hull offsets of the ship model ‘R-Class Icebreaker’ are tabulated below, which are the

geometric data for the parameter calculations.

OFFSETS TABLE OF ‘R-CLASS ICEBREAKER’ MODEL

Sta. 0 1 2 3 4 5 6 7 8 9 10
X(cm) | -110 -99 -88 =77 -66 -55 44 -33 -22 -11 0
Z(cm)

0 0 0.64 1.13 1.42 1.62 1.62 1.62 1.62 1.62 1.62 1.62
2.54 0 0.64 1.91 3.22 5.21 10.24 | 15.67 | 18.33 19.91 | 20.62 | 20.83
5.08 0 0.64 3.02 5.51 8.52 1447 | 1834 | 20.60 | 21.89 {§ 2254 | 22.75
7.62 0 0.64 4.65 8.14 11.70 | 16.89 | 19.93 | 21.74 | 22.85 | 23.28 | 23.29
10.16 | O 0.73 7.10 11.22 1450 | 18.78 | 21.12 | 2244 | 23.30 | 23.56 | 23.56
1270 | 0 3.33 1127 | 1440 | 16.89 | 20.15 | 21.98 | 23.00 | 23.66 | 23.81 | 23.81
1524 | 0 8.62 14.80 | 17.07 18.80 | 21.19 | 22.60 | 23.47 | 23.98 | 24.06 | 24.06

17.78 | 5.79 1250 } 17.20 | 18.83 } 20.15 | 21.96 | 23.05 | 23.83 | 24.26 | 24.32 | 24.32

20.32 1 9.30 1485 | 18.61 | 19.96 | 21.02 | 22.52 | 23.40 | 24.06 | 2442 | 24.46 | 24.26

2286 | 11.40 { 16.17 | 1946 | 20.67 | 21.60 | 22.9 2356 | 2399 |24.29 | 24.31 | 24.31

254 12.38 | 16.84 | 1996 | 21.09 | 2197 |23.08 | 23.60 | 23.89 | 24.11 | 24.12 | 24.12

Sta. 11 12 13 14 15 16 17 18 19 20
X(cm) | 11 22 33 44 55 66 77 88 99 110
Z(cm)

0 1.62 1.62 1.62 1.62 1.62 1.62 1.50 0 0 0
2.54 20.80 | 20.46 | 19.51 17.77 | 15.09 | 11.50 | 7.04 2.15 0 0
5.08 22.58 | 2227 | 21.66 {2044 | 1833 | 1507 {10.27 | 4.20 0 0
7.62 23.29 123.09 | 2269 2185 |20.19 | 1742 | 1299 | 648 0 0
10.16 | 23.56 | 23.56 | 23.28 | 22.68 | 2144 | 19.15 | 15.23 | 9.08 1.00 0
12.70 | 23.81 | 23.81 | 23.68 | 23.27 | 2236 2047 | 17.10 | 11.86 | 4.53 0

15.24 ] 24.06 | 24.06 | 2401 ] 23.73 | 23.01 | 21.45 | 18.62 | 14.17 | 7.95 0.53

17.78 | 24.32 | 24.32 | 24.30 | 24.08 | 2346 ] 22.16 { 19.83 | 1597 ] 10.66 | 4.47

20.32 | 24.46 | 2446 | 24.46 | 2430 | 23.70 | 22.68 | 20.76 | 17.53 | 12.87 | 7.06

22.86 |24.31 ] 2431 | 2431 | 24.19 | 23.81 |} 23.06 ] 21.51 | 18.84 | 14.66 | 8.87

2540 | 24.12 | 24.12 | 24.12 | 24.08 | 23.82 [ 23.29 | 22.06 | 19.85 | 16.03 | 10.36

The general equations for the coupled heave and pitch motions were expressed as below,
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(m+a,)Z" +bZ'+cZ+dO" +eB’+ hO=F(t)
(, +A,)8”+B6’+CO+ DZ”+EZ’ + HZ = M(r)

The equation parameters for the ‘R-Class Icebreaker’ ship model were calculated in the

following tables.

TABLE 1 CALCULATIONS FOR a; AND Ay,
(1) 2 (&) @) &) 6 ) 8 9 (10)
station
0 0 0.1790 0 -1.092 0 0 0 0 0
5 0.4392 | 0.1763 | 0.0574 | -0.542 | 0.4139 | 2491 | 0.077 | 0.746 | 0.76
10 0.4864 | 0.1735 ] 0.0762 | 0.008 | 0.4582 | 2.803 | 0.084 | 0908 | 0.90
15 0.4692 | 0.1705 | 0.0650 | 0.558 | 0.4422 | 2.752 | 0.080 | 0.812 | 0.76
20 0 0.1675 0 1.108 0 0 0 0 0
station | (11) (12) 13) 14) (15) (16) a7 (18) (19)
No.
0 0 0 0 1 0 1.192 0 1 0
5 0.1929 | 75.752 | 57.572 4 230.29 | 0.294 | 16.926 4 67.704
10 0.2366 | 92913 | 83.622 2 167.24 0 0 2 0
15 0.2201 | 86.433 | 65.689 4 262.76 | 0.311 | 20.429 4 81.716
20 0 0 0 1 0 1.228 0 1 0
SUM1 | 660.29 SUM2 | 149.42
Descriptions of Table 1
Column No.  Description Column No. Description
(1) Station Number (10) Added Mass Coefficient
from Fig.4.4 of
Dynamics of Marine
Vehicles.
(2) Beam at Station, B, (m) (11)=(2)x(2) Beam squared, B,
3) Draft at Station, Tn (m) (12) (pT/8)xB,*
4) Sectional Area at (13)=(12)%(10) Sectional Added Mass,
Station, S, (m®) a,=Cx(p1/8)xB,
&) Lever Arm from (14) Simpson’s Multiplier
Longitudinal Center of
Buoyancy, £ (m)
(6) ©*/(2g)xB,, ® was peak (15)=(14)x(13) Simpson’s Product

frequency of the wave
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spectrum in calculation

(7)=(2)/3) Beam Draft Ratio=B, / (16)=(5)x(5) Lever Arm Squared, &>
Ta

(8)=(2)x(3) BaxTa (17)=(13)x(16)  2,%E*

(9)=(4)/(8)  Sectional Area (19)=(17)x(18) Simpson’s Product
Coefficient, S, /(Bn X Ty)

Added Mass for heaving, a, Added mass moment of inertia for pitching,

a, = [ ay dE = (1/3)xSxSUM]1 Ay = (a, E?) dE = (1/3)xSxSUM2

= (1/3)x0.55x660.29 = 121.053(kg) = (1/3)x0.55x149.42 = 27.394(kg m°)

TABLE 2 CALCULATIONS FORb ANDB
1) (2) 3) C)} (5) (6) @ (8) &) (10)
station
0 0 0 0 0 0 0 I 0 1.192
5 0.4139 | 2491 | 0.746 | 0.52 | 0.2704 | 326.63 4 1306.5 | 0.294
10 04582 | 2.803 | 0908 | 0.54 | 0.2916 | 352.24 2 704.47 0
15 04422 | 2.752 | 0.812 | 0.60 | 0.3600 | 434.86 4 17394 | 0.311
20 0 0 0 0 0 0 1 0 1.228
SUM1 | 37504
station (11) (12) (13)
No.
0 0 1 0
5 96.029 4 384.12
10 0 2 0
15 135.24 4 540.96
20 0 1 0
SUM2 | 925.08
Description of Table 2
Column No. Description Column No. Description
(1) Station Number (7)=(pg*/@’)x(6) Sectional Damping
Coefficient, b,
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©*/(2g)xB,, ® was peak (8) Simpson’s Multiplier
frequency of the wave
spectrum in calculation

Beam Draft Ratio=B, /

(2)

(3) (9)=(7)x(8) Simpson’s Product

Ta
4) Sectional Area (10) Lever Arm Squared, &’
Coefficient, S, /(B, X
Ta) .
(5 Amplitude Ratio for (1 D)=(7)x(10) baxE"
Heaving, found from

Fig. 4.6 of Dynamics of
Marine Vehicles

Square of Amplitude
Ratio

(6)= (5)x(5) (13)=(11)x(12)  Simpson’s Product

Damping coefficient for heaving, b Damping coefficient for pitching, B

b =J b, dE = (1/3)xSXSUM1 Ayy =] (b E%) dE = (1/3)xSxSUM2

= (1/3)x0.55x3750.4 = 687.578(kg/sec) = (1/3)x0.55x925.08 = 169.598(kg m*/sec)

TABLE 3 CALCULATIONS FOR c AND C
(1) 2) 3) 4) )] (6) ) (8) 9)
station
0 0 0 1 0 1.192 0 1 0
5 0.4392 | 4304.2 4 17217 | 0.294 | 12654 4 5061.7
10 0.4864 | 4766.7 2 95334 0 0 2 0
15 0.4692 | 4598.2 4 18393 | 0.311 | 1430.0 4 5720.1
20 0 0 1 0 1.228 0 1 0
SUM1 | 45142 SUM2 | 10782
Description of Table 3
Column No. Description Column No. Description
(1) Station Number (5)=(3)x(4) Simpson’s Product
(2) Beam, B, (m) (6) Lever Arm Squared, &2
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(3)=pgx(2) Sectional Restoring Force
Coefficient, ch=pgB,
4 Simpson's Multiplier

Restoring force coefficient for heaving, ¢
¢ =[c, dE = (pgAw) = (1/3)xSXSUMI

=(1/3)x0.55%45 142 = 8276.165(kg/sec’)

caxE?

(N=(3)x(6)

(9)=(7)x(8) Simpson’s Product

Restoring moment coefficient for pitching,
C = ¢, &* dE - uE (u was model speed 0)
= (1/3)xSxSUM2 - 0

=(1/3)x0.55x10782=1976.66 (kg m*/sec’)

TABLE 4 CALCULATIONS FOR d, e, h, D, E, AND H
1) 2) 3) C)) () (6) @ 3 9) (10)
station
0 -1.092 0 0 1 0 0 0 1 0
5 -0.542 | 57.572 | -31.20 4 -124.8 | 326.63 | -177.0 4 -708.1
10 0.008 | 83.622 { 0.669 2 1.338 | 352.24 | 2.818 2 5.636
15 0.558 | 65.689 | 36.654 4 146.62 | 434.86 | 242.65 4 970.61
20 1.108 0 0 1 0 0 0 1 0
SUM1 | 23.138 SUM2 | 268.12
station | (11) (12) (13) (14)
No.
0 0 0 1 0
5 4304.2 | -2333 4 -9331
10 | 4766.7 | 38.134 2 76.268
15 | 4598.2 | 2565.8 4 10263
20 0 0 1 0
SUMS3 | 1007.9
Description of Table 4
Column No. Description Column No. Description
() Station Number (8)=(2)x(7) bax&
(2) Lever Arm, § 9) Simpson’s
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Multiplier

(3)=(13) of Table | Sectional = Added (10)=(8)x(9) Simpson’s Product
Mass Coefficient,
a,
(@)=(2)x(3) apxE (11)=(3) of Table 3 Sectional Restoring
Force Coefficient,
Cn
(5) Simpson’s (12)=(2)x(11) Cax§
Multiplier
(6)=(4)x(5) Simpson’s Product (13) Simpson’s
Multiplier
(7)=(7) of Table 2  Sectional Damping (14)=(12)x(13) Simpson’s Product

Coefficient, b,

d = [ a.E dE = (1/3)xSxSUMI D =d =4.242 (kg m)

= (1/3)x0.55%23.138 = 4.242 (kg m)

e = [ bsE dE + ua (u is model speed 0) E = [ b,E d& - va (u is model speed 0)
= (1/3)xSXSUM2 = (1/3)x0.55x268.12 = (1/3)xSxSUM2 = (1/3)x0.55x268.12
=49.155 (kg m/sec) = 49.155 (kg m/sec)

h = [ ca€ dE + ub (u is model speed 0) H = [ c,& dE - ub (u is model speed 0)
= (1/3)xSxSUM3 = (1/3)x0.55x1007.9 = (1/3)xSxSUM3 = (1/3)x0.55x1007.9
= 184.789 (kg m/sec?) = 184.789 (kg m/sec?)

Mass of ‘R-Class Icebreaker’ ship model’ is m = 121.6 kg. The mass moment of inertia

I,y was approximated as follows,
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I, =mk,’ =m(0.25L)* =121.6 X (0.25x2.2)* =36.784(kgm*)

Substitute the calculated parameter values into the ‘R-Class Icebreaker’ heave and pitch
motion equations,

242.653Z” + 687.578Z" + 8276.165Z + 4.24208” + 49.1550° + 184.7896 = F(1)
64.1780” +169.5988" + 1976.660 + 4.242Z" + 49.155Z’ +184.789Z = M(1)

Rewrite the motion equations into the matrix form,

242653 4242\ Z” . 687578 49.155Y Z’ . 8276.165 184.789YZ\ ( F(1)
4242 64178 A\ 87 49.155 169.598 A 8’ 184.789 197666 \ 0 ) \ M(z)

242.653 4.242 )"

Multiply the above equations by ( 4242 64178

z" 2824 0.158YZ’ . 34.092 0238 \YZ 0.0041258 —0.000273Y F(r)
+ =
e” 0.580 2632 )6’ 0.629 30.780 A\ € —0.000273 0.0155997 A\ M(t)

If the units for Z, 8, F(t) and M(t) were (cm), (rad), (N), and (Nm) respectively, the
equations for ‘R-Class Icebreaker’ ship model heave and pitch motions were converted

into the following form,

Z”+2824Z" +34.092Z + 0.1588" + 0.23860 = 100 x (0.004 1258 F(r) — 0.000273M(1))
68” +0.580Z" +0.629Z + 2.6326" + 30.7800 = 100 x (—0.000273F(t) + 0.0155997M(r))

This is the mathematical model for ship motion simulations in this research.
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Appendix B Exciting Forces Calculations

The following calculations for wave induced forces and moments were based on the

algorithm in Chapter Nine (pp.183-198) of Dynamics of Marine Vehicles by

Bhattacharyya (1978).
TABLE CALCULATIONS FOR EXCITING FORCES AND MOMENTS
1 2) 3) @ &) (6) D (8 9 (10)
station
0 -1.092 | -2.156 | -0.834 | -0.552 0 0 1.00 0 0
S5 -0.542 | -1.070 | -0.877 | 0.480 | 0.1306 | 0.2578 { 0.772 | 4304.2 | 107.60
10 0.008 | 0.016 | 0.016 1.00 | 0.1567 | 0.3093 | 0.734 | 4766.7 | 119.17
L5 0.558 | 1.101 | 0.892 | 0.453 | 0.13850.2734| 0.761 | 4598.2 | 114.95
20 1.108 | 2.187 | 0.816 | -0.578 0 0 1.00 0 0
station | (11) (12) 13) (14) (15) (16) a7 (18) 19)
No.
0 0 0 0 104.68 0 0 0 0 0
S 57.572 | -27.84 | 79.764 | 76.020 0 35913 | 35913 | -69.95 | 17.238
10 83.622 | -40.44 | 78.732 | 7.379 0 38.728 | 38.728 | 1.260 | 38.728
15 65.689 | -31.77 | 83.189 | -76.02 0 47.813 | 47.813 | 74.205 | 21.659
20 0 0 0 -119.4 0 0 0 0 0
station | (20) (21) 22) (23) (24) (25) (26) 27 (28)
No.
0 0 0 0 0 0 1 0 0 1
5 -52.72 | 38.287 | -31.50 } 69.781 | -40.70 4 -162.8 | 53.941 4
10 39.988 | 78.732 | 0.620 | 78.112 | 29.351 2 58.702 | 57.334 2
15 95.864 | 37.685 | 42.649 | -4.964 | 72.953 4 201.81 | -3.778 4
20 0 0 0 0 0 1 0 0 1
SUM1 | 187.73
station | (29) (30) 31) (32) 33) 34) (35)
No.
0 0 0 1 0 0 1 0
5 215.76 | 22.057 4 88.228 | -29.24 4 -116.9
10 114.67 § 0.235 2 047 | 0.459 2 0.918
15 -15.11 | 40.708 4 162.83 | -2.108 4 -8.432
20 0 0 1 0 0 1 0
SUM2 | 31545 SUMS | 251.53 SUMM | -124.6
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Description of Tabie

Column No.
(1)
(2)
(3)

4

(5)

(6)

(7)=kx(6)

(8)

(9)=(3) of Table 3 in
Appendix A
(10)=(9)xLa

(11)=(13) of Tabie 1
in Appendix A
(12)

(13)=(12)+(10)
(14)

(15)=ulex(14)

(16)

Description

Station Number
Lever Arm, &(m)
KE=(2m/Lu)xE
L.=2ng/0’, ® was
peak frequency in
this table

sin(k&)

cos(k&)

Mean Draft, T(m)
kxTp

exp(-kx<Tnm)
Sectional Restoring
Coefficient, ¢,

cnxCa, wave
amplitude {, was
2.5cm in this table
Sectional Added
Mass, a,
apx(-Laxw?), L, was
wave amplitude

2.5cm in this table

Slope of the added
mass curve, day/dg
(numerical
differentiation)

u was the model
speed O in this table

bala@

Column No.

(17)=(16)-(15)
(18)=(13)x(4)
(19)=(17)x(5)

(20)=(18)x(19)
(21)=(13)x(5)
(22)=(17)x(4)
(23)=(21)-(22)
(24)=(20)x(8)
(25)

(26)=(24)x(25)

(27)=(23)x(8)

(29)=(27)x(28)

(30)=(24)x(2)
(32)=(30)x(31)

(33)=(27)x(2)

(35)=(34)%(33)

Description

dF, / dx
Simpson’s
Multiplier
Simpson’s Product
dF, / dx
Simpson's Product

dM, / dx
Simpson’s Product

dM, / dx

Simpson’s Product

Exciting force component F, and F,, Exciting moment component M, and M,

Fi1=(1/3)xSxSUM 1= (1/3)x0.55x%187.73 M;=(1/3)xSxSUM3 = (1/3)x0.55%x251.53
=34.417 (N) =46.114(Nm)
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Fa= (1/3)xSxSUM2 = (1/3)x0.55x315.15 M)=(1/3)xSxSUM4=(1/3)x0.55%(-124.6)

= 57.776(N) =-22.83((Nm)

Fo =V F/>+F2" = 67.21(N) Mo =V M*+M:” = 51.45(Nm)

Ratio between force and wave amplitude, Ratio between moment and wave
amplitude,

rr=Fo/{,=67.21/25=26.88 (N/cm)

Tm =Mp /L, =51.45/2.5 = 20.58(Nm/cm)

The phase difference between force and The phase difference between moment
wave, . and wave
o = tan™ (Fo/F}) = 1.034(rad) T = tan™ (Mo/M, )= -0.460(rad)

The above results are excitation forces of ‘R-Class Icebreaker’ ship model in the regular
wave with frequency 0.7Hz. For different wave frequencies ®, there will be different
values for amplitude ratios rr, &, and phase difference &, T. This group of functions r{®).
rm(®), 6(w), and T(w) are excitation transform functions which can be used to deduce the

random excitation forces from the wave spectrum. The following FORTRAN 77 program
RATIO.FOR was used in this research to calculate the excitation transform functions of

‘R-Class Icebreaker’ ship model. The results were plotted after the program.

RATIO.FOR

PROGRAM TRANSFORM FUNCTION
REAL DS.X(5).T(5).A(5).B(5).C(5)
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20

10

30

REAL FRE(800),SPEC(800),K(800)

REAL DF1(5,800),DF2(5,800),DM1(5,800),DM2(5,800)

REAL F1(800),F2(800),M1(800),M2(800)

REAL F(800),FANGLE(800),M(800), MANGLE(800)

DATA X/-1.092,-0.542,0.008,0.558,1.108/

DATA T7/0.0,0.1306,0.1567,0.1385,0.0/

DATA A/0.0,57.572,83.622,65.689,0.0/

DATA B/0.0,326.628,352.236,434.860,0.0/

DATA C/0.0,4304.16,4766.72,4598.16,0.0/

DS=0.55 .
OPEN (UNIT=11,FILE='specl.d',STATUS="UNKNOWN")
READ (11,*) (FRE(I),SPEC(I),I=1,800)

CLOSE(11)

DO 10 I=1,800

K(D=(2*3.1415926*FRE())**2/9.8

DO 20 J=1,5
DF1(J,D)=((-A@)*(2*3.1415926*FRE(D))**2+C()))*sin(K(D)*X (1))
+B(J)*(2*3.1415926*FRE())*cos(K(I)*X (1)) *exp(-K(D)*T())
DF2(J,.D=((-A(J)*(2*3.1415926 *FRE())**2+C(N))*cos(K(D)*X (1))
-B(1)*(2*3.1415926*FRE(D))*sin(K(I)*X (1)) *exp(-KM*T (D))
DM1(J.)=DF1(J.D*X()

DM2(J,D)=DF2(J,D*X)

CONTINUE
F1(D)=DS/300.0¥*(DF1(1,)+4*DF1(2,[)+2*DF1(3,[)+4*DF1(4,D)+
DF1(5.1))
F2(I)=DS/300.0*(DF2(1,1)+4*DF2(2,)+2*DF2(3,)+4*DF2(4,D)+
DF2(5.I))
MI(I)=DS/300.0*(DM1(1,)+4*DM1(2.1)+2*DM1(3,.1)+4*DM1(4,1)+
DMI(5.D))
M2(I)=DS/300.0*(DM2(1,D)+4*DM2(2,1)+2*DM2(3,.D)+4*DM2(4,D+
DM2(5.))

F(D=sqrt(F1(I)**2+F2(T)**2)

FANGLE(@)=ATAN(F2(D/F1(I))

MD=SQRTM I1(I)**2+M2(I)**2)
MANGLE(D=ATANM2(I)/M1(I))

CONTINUE

OPEN (UNIT=21,FILE="ratio.d',STATUS="UNKNOWN")

DO 30 I=1,800

WRITE (21,*) F(I), FANGLE(),M(I),. MANGLE(D)

CONTINUE

CLOSE(21)

END
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Fig. Excitation transform functions for ‘R-Class Icebreaker’ ship model

The following FORTRAN 77 program FORCE.FOR was used in this research to generate

the random time series of the wave excitation forces through the combination of the wave

spectrum and the excitation transform functions.

FORCE.FOR

PROGRAM SIMULATION OF EXCITATION FORCES

REAL FRE(800),SPEC(800), ANGLE(800), AMPLI(800),DFRE
REAL WAVE(8001),F(8001),M(8001),DT

REAL FRATIO(800),FANGLE(800), MRATIO(800), MANGLE(800)
OPEN (UNIT=11,FILE="specl.d’,STATUS="UNKNOWN")

READ (11,*) (FRE(I),SPEC(I),I=1.800)

CLOSE(11)

OPEN (UNIT=21,FILE="angle.d',STATUS="UNKNOWN")

READ (21,*) (ANGLE(I),I=1,800)

CLOSE(21)

OPEN (UNIT=31,FILE="ratio.d’,STATUS="UNKNOWN")

READ (31,*) (FRATIO(),FANGLE(I), MRATIO(I),MANGLE(),I=1,800)
CLOSE(@31)
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PRINT *, INPUT FREQUENCY BANDY'
READ (*,*) DFRE
DT=0.05
DO 10 I=1,800
AMPLI(I)=sqrt(2*SPEC(I)*DFRE)
DO 20 J=1,8001
WAVE)=WAVE()+AMPLI(I)*cos(2*3.1415926*FRE(1)*(J-1)*DT
$ +ANGLE®))
FJ)=F(J)+FRATIO(*AMPLI(I)*cos(2*3.1415926*FRE(I)*(J-1)*DT
$ +ANGLE(D+FANGLE())
M@@)=M@J)+MRATIOM)*AMPLI(I)*cos(2*3.1415926*FRE(I)*(J-1)*DT
$ <+ANGLE(I)+MANGLE())
20 CONTINUE
10 CONTINUE
OPEN (UNIT=41FILE="force.d'.STATUS="UNKNOWN")
DO 301=1,8001
WRITE (41,*) WAVED,F(I).M(I)
30 CONTINUE
CLOSE(41)
END

For White Noise excitation case, the random time series of the excitation forces were
generated directly from the White Noise spectrum. The following FORTRAN 77 program

WHITE.FOR was used for this generation.

WHITE.FOR

PROGRAM SIMULATION OF WHITE EXCITATION

REAL FRE(800),SPEC(800),ANGLE(800),AMPLI(800).DFRE
REAL WAVE(8001),F(8001),M(8001),DT

REAL FANGLE(800), MANGLE(800),FRATIO(800),MRATIO(800)
OPEN (UNIT=11,FILE="specl.d',STATUS="UNKNOWN")

READ (11,*) (FRE(D),SPEC(I).I=1,800)

CLOSE(11)

OPEN (UNIT=21,FILE="angle.d .STATUS="UNKNOWN")

READ (21,*) (ANGLE(T),1=1,800)

CLOSE(21)

OPEN (UNIT=31,FILE="ratio.d,STATUS="UNKNOWN")

READ (31,*) (FRATIO(I), FANGLE),MRATIO(I) MANGLE(I),I=1,800)
CLOSE(31)

PRINT *, INPUT FREQUENCY BAND!

READ (*,*) DFRE
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DT=0.05
DO 101=1,800
* Test of white noise excitation!
SPEC(1)=3.0
AMPLI(I)=sqrt(2*SPEC(I)*DFRE)
DO 20 J=1,8001
WAVEJ)=WAVE()+AMPLI(I)*cos(2*3.1415926*FRE(1)*(J-1)*DT
$ +ANGLEQ®))
F()=F(J)+20.0* AMPLI(I)*cos(2*3.1415926*FRE(D)*(J-1)*DT
$ +ANGLE(M+FANGLE())
M(D)=MJ)+20.0*AMPLI(I)*cos(2*3.1415926*FRE(I)*(J-1)*DT
$ +ANGLE()+MANGLE))
20 CONTINUE
10 CONTINUE
OPEN (UNIT=41,FILE='force.d .STATUS="UNKNOWN")
DO 301=1,8001
WRITE (41,*) WAVE(D),F(D.M()
30 CONTINUE
CLOSE@41)
END
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Appendix C Data Processing Programs
The following FORTRAN 77 program SIMU.FOR was used to generate the heave and

pitch motion history from the random excitation forces. The program CG.FOR was used
to convert the experiment data into the motion data of the ship model CG (center of
gravity). The program RANDEC.FOR was used to obtain the two-degree Random

Decrement signatures from the heave and pitch motion history.

SIMU.FOR

PROGRAM MOTION SIMULATION BY STRIP THEORY
DOUBLE PRECISION RHO(1:8001),RPO(1:8001),VHO(1:8001),VPO(1:8001)
DOUBLE PRECISION F1(1:8001),F2(1:8001),WAVE(0:8001)
DOUBLE PRECISION A1,B1,C1.D1,E1,DT
DOUBLE PRECISION A2,B2,C2,D2 E2
DOUBLE PRECISION GH,GP
DOUBLE PRECISION K1,K2 K3,K4,1.1,1.2,1.3,14
DOUBLE PRECISION M1 ,M2M3,M4N1,N2,N3 N4

* Input initial value for motion signature!
DT=0.05
PRINT *, INPUT INITIAL VALUES FOR HEAVE!"
READ (*,*) RHO(1),VHO(1)
PRINT *, 'INPUT INITIAL VALUES FOR PITCH!
READ (*.*) RPO(1),VPO(1)

* Input heave coefficients from strip theory!
PRINT *, INPUT HEAVE COEFFICIENTS A1.B1,C1,D1¥
READ (*,*) A1,B1,C1,DI

* Input pitch coefficients from strip theory!
PRINT *,INPUT PITCH COEFFICIENTS A2,B2,C2,D2"
READ (*.,*) A2,B2,C2,D2

* Calculation of the excitation forces!
OPEN (UNIT=11,FILE="force.d,STATUS="UNKNOWN")
READ (11,*) (WAVE(D),F1(D),F2(I),I=1,8001)
CLOSE(11)
DO 10 I=1,8001
F1(I)=0.4125878*F1(I)-0.02727*F2(I)
F2(1)=-0.02727*F1(I)+1.5599688*F2(I)

10 CONTINUE

* Prediction of coupled heave & pitch motion!
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DO 20 I=1,8000
CALL NEURAL(GH,A1,B1,C1,D1,RHO(),VHO(I).RPO(I),VPO(I))
CALL NEURAL(GP.A2,B2,C2,D2, RHO(I),VHO(I),RPO(I),VPO(I))
K1=DT*VHO()
L1=DT*(F1(I)-GH)
M1=DT*VPO(I)
N1=DT*F2(I)-GP)
CALL
NEURAL(GH,A1,B1,C1,D1 RHO(I)+0.5*K1,VHO(I)+0.5*L 1, RPO(I)+0.5*M1.
$ VPO(I)+0.5*N1)
CALL
NEURAL(GP,A2,B2,C2,D2,RHO(I)+0.5*K1,VHOI)+0.5*L 1, RPO(I)+0.5*M L.
$ VPOI)+0.5*N1)
K2=DT*(VHO(I)+0.5*L1)
L2=DT*((FL(I)+F1(1+1))/2.0-GH)
M2=DT*(VPO(I)+0.5*N1)
N2=DT*((F2(D+F2(1+1))/2.0-GP)
CALL
NEURAL(GH,A1,B1,C1,D1,RHO(I)+0.5*K2,VHO(I)+0.5*L2, RPO(I)+0.5*M2,
$ VPO(I)+0.5*N2)
CALL
NEURAL(GP,A2,B2,C2,D2, RHO(I)+0.5*K2,VHO(I)+0.5*L2,RPO(I)+0.5*M2,
$ VPO()+0.5*N2)
K3=DT*(VHOI)+0.5*L2)
L3=DT*((F1(I)+F1(1+1))/2.0-GH)
M3=DT*(VPO(I)+0.5*N2)
N3=DT*((F2(I)+F2(1+1))/2.0-GP)
CALL
NEURAL(GH,A1,B1,Cl,DI,RHO(I)+K3,VHO(I)+L3 RPO(I)+M3,VPO()+N3)
CALL
NEURAL(GP,A2,B2,C2,D2, RHO(I)+K3,VHO(I)+L3 ,RPO(I)+M3,VPO(I)+N3)
K4=DT*(VHO(I)+L3)
L4=DT*(F1(I+1)-GH)
M4=DT*(VPO(I)+N3)
N4=DT*(F2(I+1)-GP)
RHO(I+1)=RHO(I)}+(K1+2.0¥K2+2.0*K3+K4)/6.0
VHO(I+1)=VHO()+(L1+2.0*L2+2.0*L3+1.4)/6.0
RPO(I+1)=RPO(D+(M1+2.0*M2+2.0*M3+M4)/6.0
VPO(I+1)=VPO(D)+(N1+2.0*N2+2.0*N3+N4)/6.0
20 CONTINUE
* Qutput of predicted heave & pitch motion!
OPEN (UNIT=41,FILE='cg.d.STATUS="UNKNOWN")
DO 30 I=1,8001
WRITE (41,*) WAVE(D),RPO(I),RHO()
30 CONTINUE




CLOSE(®41)
END

SUBROUTINE NEURAL(G,A,B,C.D,RH,VH,RP,VP)
DOUBLE PRECISION G,RH,VH,RP,VP

DOUBLE PRECISION A,B,C.D
G=A*VH+B*RH+C*VP+D*RP

RETURN

END

10

20

CG.FOR

PROGRAM CGMOTION

REAL WAVE(8001),PITCH(8001), HEAVE(8001), MW MP,MH HEAD,LCG
OPEN(UNIT=11,FILE='data.d'. STATUS='OLD")
READ(11,*) WAVEQ),PITCH(I), HEAVE(]), I=1,8001)
CLOSE(11)

MW=0.0

MP=0.0

MH=0.0

PRINT *, INPUT WAVE DIRECTION VALUE!
HEADING=1.0,FOLLOWING=-1.0

READ (*,*) HEAD

PRINT *'INPUT LONGITUDINAL POSITION OF CG!
/FORWARD OF MIDSHIP(cm)'

READ (*,*) LCG

DO 10 1=1,8001
WAVE(D)=0.000553835845*WAVE(I)-18.5869461
PITCH(I)=0.00210797726*PITCH(I)-69.3330754
MP=MP+PITCH(I)

MW=MW+WAVE(I)

CONTINUE

MP=MP/8001.0

MW=MW/8001.0

DO 20 I=1,8001

PITCH(I)=-HEAD*(PITCH(I)-MP)
HEAVE()=-0.00277451443*HEAVE(1)+134.034007
HEAVE(I)=HEAVE(I)-LCG*sin(PITCH(I)/180.0*%3.1415926)
MH=MH+HEAVE()

CONTINUE

MH=MH/8001.0

DO 30 1=1,8001

HEAVE(I)=HEAVE(I)-MH
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30

WAVE(D=WAVE(D-MW

CONTINUE

OPEN(UNIT=12,FILE='cg.d’,STATUS='OLD")

DO 40 1=1,8001

WRITE (12,*) WAVE(),PITCH(I), HEAVE()

CONTINUE

CLOSE(12)

PRINT *, 'MEAN VALUE OF WAVE(cm),PITCH(deg), HEAVE(cm) FOR CG"
PRINT *,'MW= MW 'MP='MP 'MH="MH

END

10

20

RANDEC.FOR

PROGRAM HEAVE RANDOM DECREMENT

REAL WAVE(8001),PITCH(8001),HEAVE(8001),RP(0:201),RH(0:201)
REAL TRIGGER

INTEGER SP(50),SN(50)

OPEN (UNIT=11, FILE='"cg.d'.STATUS='OLD")

READ (11,*) (WAVE(),PITCH(I),HEAVE(]), I=1,8001)

CLOSE(11)

M=0

N=0

PRINT *, 'INPUT TRIGGER VALUE FOR HEAVE RANDOMDEC"
READ (*,*) TRIGGER

DO 10 I=1,7800

IF (HEAVE(I).LE.TRIGGER.AND.HEAVE(I+1).GT.TRIGGER) THEN
M=M+1

SP(M)=I

IF (ABS(HEAVE(I)-TRIGGER).GT.ABS(HEAVE((I+1)-TRIGGER)) SP(M)=I+1
I=I+201

END IF

CONTINUE

DO 20 I=1,7800

IF (HEAVE().GE.TRIGGER.AND.HEAVE(I+1).LT.TRIGGER) THEN
N=N+1

SN(N)=I
IF(ABS(HEAVE(I)-TRIGGER).GT.ABS(HEAVE(I+1)-TRIGGER)) SN(N)=I+1
I=[+201

END IF

CONTINUE

K=M

IF(IM.GT.N) K=N

DO 30 I=1,K




40
30

100
50

DO 40 J=0,201
RH()=RH(+HEAVE(SP(D+J)

RH(=RH(N+HEAVE(SN1)+))

RP(=RP(J))+PITCH(SP(D+J)

RP()=RP(N+PITCH(SN(I)+])

CONTINUE

CONTINUE

OPEN (UNIT=12, FILE="randec.d',STATUS="OLD")

DO 50 J=0,201

RHJ)=RHJ)/(2.0*K)

RP(J)=RP(})/(2.0*K)

WRITE(12,100) RP()),RH(J)

FORMAT (1X,2F15.6)

CONTINUE

PRINT * 'NUMBER FOR BOTH POSITIVE AND NEGATIVE SEGMENTS!"
PRINT *, 'K='K

END
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Appendix D Neural Network Training Program
The following FORTRAN 77 program NEURAL.FOR was used for Neural Network

training to identify the unknown function in the heave motion equation. For pitch motion

identification, the pitch motion data was input instead of the heave data in the program.

NEURAL.FOR

PROGRAM NEURAL TRAINING FOR HEAVE
DOUBLE PRECISION RH(0:201),RP(0:201),VH(1:200),VP(1:200)
DOUBLE PRECISION WB(0:5),WA(1:5,0:4),DWA(1:5,0:4),DWB(0:5)
DOUBLE PRECISION SWA(1:5,0:4),SWB(0:5),RO(200),ROP(200),RON(200)
DOUBLE PRECISION JT,JTP.JTN,RATE,DT,DJIW FRE,TIME
OPEN (UNIT=11, FILE="randec.d’, STATUS='OLD")
READ (11,*) (RP(I),RH(I),I=0,201)
CLOSE(11)
* Numerical differentiation for randomdec signature!
DT=0.05
DO 10 I=1,200
VH(D)=(RH+1)-RH(I-1))/(2.0*DT)
VP(D=(RP(I+1)-RP(I-1))/(2.0*DT)
10 CONTINUE
* Identification of damped heave frequency!
IK=0
DO 200 I=1,100
IF(RH(I)-RH(I-1))*(RH(I+1)-RH(I)).LT.0.0) THEN
IF(IK.EQ.Q) IS=I
TIME=DT*(I-IS)
IK=IK+1
END IF
200 CONTINUE
TIME=TIME/(IK-1)*2.0
FRE=2.0*3.1415926/TIME
PRINT *,'DAMPED HEAVE FREQUENCY FRE =',FRE
* Set initial weight values for training!
OPEN(UNIT=21,FILE='"initial.d',STATUS='OLD")
PRINT *,'PLEASE INPUT THE INITIAL WEIGHT VALUES!
READ (21,*) (WB(),I=0,5)
PRINT *,WEIGHT VALUES BETWEEN OUTPUT AND HIDDEN NODES'
WRITE (*,*) (WB(),1=0,5)
READ (21.*) (WA(1,I),I=0,4)
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PRINT *,'WEIGHT VALUES BETWEEN FIRST HIDDEN NODE & INPUTS'
WRITE (*,*) (WA(1.]),[=0.4)

READ (21,*) (WA(2,]),I=0.4)

PRINT *,‘WEIGHT VALUES BETWEEN SECOND HIDDEN NODE & INPUT
WRITE (*,*) (WA(2.1),I=0.4)

READ (21,*) (WA(3.1),1=0,4)

PRINT *,'WEIGHT VALUES BETWEEN THIRD HIDDEN NODE & INPUTS'
WRITE (*,*) (WA(3.1).[=0.4)

READ (21,*) (WA(4.D),1=0,4)

PRINT *,'WEIGHT VALUES BETWEEM FOURTH HIDDEN NODE & INPUT"
WRITE (*.*) (WA®4.,D,I=04)

READ (21,*) (WA(5.D,1=0,4)

PRINT *,'WEIGHT VALUES BETWEEN FIFTH HIDDEN NODE & INPUTS’
WRITE (*,*) (WA(S.]),I=0,4)

PRINT *,'PLEASE INPUT SEARCH RATE !

READ (*,*) RATE

* Net training using set of training data by iteration!

15

30
20

40

DO 150 K=1,100000

IF (K.EQ.K/100*100) PRINT *, TTERATION TIME =, K
JT=0.0

DO 15 J=0,5

WB(J)=WB(J)-RATE*DWB(J)

CONTINUE

DO 20 M=1,5

DO 30 N=0,4

WAMN)=WAM,N)-RATE*DWA(M.N)

CONTINUE

CONTINUE

CALL NEURAL(RH,RP,VH,VP,RO,FRE,WA WB.DT)
DO 40 I=1,200

JIT=IT+(RO(I)-RH(I))**2

CONTINUE

IF (K.EQ.K/100*100) PRINT *, THE TOTAL ERROR JT='JT
IFOJT.LT.0.1D-05) GOTO 155

* Numerical differentiation of total error to every weight!

DO 50 1=0.5

SWB()=0.01*WB()

WB()=WB([)+SWB()

CALL NEURAL(RH,RP.VH,VP.ROP FRE,WA WB,DT)
JTP=0.0

DO 60 J=1,200

JTP=JTP+(ROP(J)-RH(J))**2

CONTINUE

WB(D)=WB(I)-2.0*SWB(I)

CALL NEURAL(RH.RP,VH,VP,RON,FRE, WA ,WB,DT)
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70

50

100

110

90

80

120

140
130

JTN=0.0
DO 70 J=1,200

JTN=JTN+(RON(J)-RH(J))**2

CONTINUE

WB(D=WB(D+SWB(I)
DWB(D)=(JTP-FTN)/(2.0*SWB(D))

CONTINUE

DO 80 M=1,5

DO 90 N=0,4

SWAM,N)=0.01*WA(M.N)
WAM.N)=WA(M,N)+SWA(M.N)

CALL NEURAL(RH,RP,VH,VP,ROP,FRE,WA ,WB.DT)
ITP=0.0

DO 100 J=1,200

ITP=JTP+(ROP(J)-RH()))**2

CONTINUE
WAM.N)=WA(M,N)-2.0*SWA(M,N)

CALL NEURAL(RH,RP,VH,VP,RON.FRE,WA . WB.DT)
JTN=0.0

DO 110 J=1,200

JTN=JTN-HRON(J)-RH(J))**2

CONTINUE

WAMN)=WAM.N)+SWAM.N)
DWAM.N)=(JTP-JTN)/(2.0*SWA(M,N))
CONTINUE

CONTINUE

DIW=0.0

DO 120 I=0,5

DIW=DJW+DWB(I)**2

CONTINUE

DO 130 M=1.5

DO 140 N=0,4

DJW=DIJW+DWA(M.N)**2

CONTINUE

CONTINUE

IF (K.EQ.K/100*100) THEN

PRINT *, THE SQUARE TOTAL OF PARTIAL DERIVATIVES DJW='DJW
END [F

IF (DJW.LE.0.1D-10) GOTO 155

IF (K.EQ.K/1000*1000) THEN

OPEN (UNIT=12 FILE='weight.d’,STATUS='OLD")
WRITE(12,*) (WB(I),I=0,5)

WRITE(12,*) (WA(L,D),I=0,4)

WRITE(12,*) (WA(2.1).1=0,4)

WRITE(12,*) (WA(3.1),1=0,4)
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150
155

160

WRITE(12,*) (WA4,),]=0.4)

WRITE(12,*) (WA(S.D,I=0,4)

CLOSE(12)

END IF

CONTINUE

OPEN (UNIT=12, FILE='weight.d',STATUS="0LD’)
PRINT *, THE FINAL WEIGHT VALUES"
PRINT *, (WB(), I=0,5)

WRITE(12,*) (WB(I), I=0,5)

PRINT *, 'FIRST HIDDEN NODE - INPUTS'
PRINT *, (WA(L,D), =0,4)

WRITE(12,*) (WA(LD, I=0,4)

PRINT *, 'SECOND HIDDEN NODE - INPUTS'
PRINT *, (WA(2,]), [=0,4)

WRITE(12,*%) (WA(2,]), [=0,4)

PRINT *, 'THIRD HIDDEN NODE - INPUTS'
PRINT *, (WA(3.D), I=04)

WRITE (12,*) (WA(3,D),1=0,4)

PRINT *, ‘FOURTH HIDDEN NODE - INPUTS'
PRINT *, (WA(4,]), I=0,4)

WRITE(12,*) (WA®A4,D),]1=0,4)

PRINT *, FIFTH HIDDEN NODE - INPUTS'
PRINT *, (WA(5,]),1=0,4)

WRITE(12,*) (WA(5,]),]1=0,4)

CLOSE(12)

OPEN (UNIT=13,FILE="neural.d',.STATUS='OLD)
WRITE (13,*) 'DAMPED HEA VE FREQUENCY FRE ='FRE
WRITE (13,*) THE TOTAL ERROR JT ='JT
WRITE (13,*) THE TOTAL SQUARE PARTIAL DERIVATIVES DJW = DJW
WRITE (13,*%) 'THE PARTIAL DERIVATIVES ARE AS FOLLOWING:'
WRITE (13,*) (DWB(),I=0.5)

WRITE (13,*) (DWA(L,]),I=0,4)

WRITE (13,*) (DWA(2.1),I=0.4)

WRITE (13,*) (DWA(3.D,I=0.4)

WRITE (13,*) (DWA®4,D),I=0.4)

WRITE (13,*) (DWA(5,),1=0.4)

WRITE (13,*) THE TARGET VALUE RH(I) AND OUTPUT VALUE RO(I)"
DO 160 I=1,200

WRITE (13.*) RH(I),RO()

CONTINUE

CLOSE(13)

END

SUBROUTINE NEURAL(RH,RP,VH,VP,RO,FRE,WA , WB,DT)
DOUBLE PRECISION RH(0:201),RP(0:201),VH(1:200), VP(1:200),RO(1:200)
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DOUBLE PRECISION WA(1:5,0:4), WB(0:5),G(1:200),UH(1:5),VO(1:200)
DOUBLE PRECISION FRE,DT.X,K1,K2,K3 K4

DOUBLE PRECISION RHM(1:199),RPM(1:199), VHM(1:199), VPM(1:199)
DOUBLE PRECISION UHM(1:5),GM(1:199)

£(X)=1.0/(1.0+exp(-X))

* Calculation for neural-net outputs!

$
10

DO 150 K=1,200

DO 10J=1,5

UH)=f(WAJ,0)*1.0+WA(J, 1) *VH(K)+WA(J,2)*RH(K)+WA(J.3)*VP(K)
+WA(J.4)*RP(K))

CONTINUE
G(K)=WB(0)*1.0+WB(1)*UH(1)+WB(2)*UH(2)+WB(3)*UH(3)+WB(4)*UH(4)

S +WB(5)*UH(S)

150

CONTINUE

* Calculation for neural-net output midpoints!

$
30

$
20

DO 20 I=1,199

RHM(D)=(RH(I)+RH(I+1))/2.0

VHMO)=(VHD)+VH{+1))/2.0

RPM(D)=(RP(I)+RP1+1))/2.0

VPM(D=(VP(D)+VPI+1))/2.0

DO 30 J=1,5
UHMD)=f(WAJ,0)*1.0+WAJ,1)*VHM[D+WAU,2)*RHEM(I)
+WAU,3)*VPM(D)+WA(J,4)*RPM(]))

CONTINUE
GM(D)=WB(0)*1.0+WB(1)*UHM(1)+WB(2)*UHM(2)+WB(3)*UHM(3)
+WB(4)*UHM(4)+WB(5)*UHM(5)

CONTINUE

* Numerical integration for differential equation’

160

RO(1)=RH(1)

VO(1)=VH(1)

DO 160 I=1,199

K1=DT*(-G(I)-FRE**2*RO(I))
=DT*(-GM(I)-FRE**2*(RO(I)+DT*VO(1)/2.0+DT*K1/8.0))

K3=DT*(-GM(I)-FRE**2*(RO(I)+DT*VO(I)/2.0+DT*K2/8.0))

K4=DT*(-G(I+1)-FRE**2*(RO()+DT*VO(I)+DT*K3/2.0))

RO(I+1)=RO(D)+DT*(VO(D)+(K 1+K2+K3)/6.0)

VO(I+1)=VO(D+(K1+2.0¥*K2+2.0¥*K3+K4)/6.0

CONTINUE

RETURN

END
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Appendix E Verification Programs

The following programs were used to verify the identification results in this research. The

program PREDIC.FOR was used to get the prediction signatures from the identified

Random Decrement equations and make a comparison with the .actual Random

Decrement signatures. The program FREE.FOR was used in simulation case to obtain the

free response signatures and compare with the Random Decrement signatures.

PREDIC.FOR

PROGRAM MOTION PREDICTION
DOUBLE PRECISION RH(0:201),RP(0:201),VH(1:200),VP(1:200)
DOUBLE PRECISION RHO(1:200),RPO(1:200),VHO(1:200),VPO(1:200)
DOUBLE PRECISION WAH(1:5,0:4),WBH(0:5), FREH,DT
DOUBLE PRECISION WAP(1:5,0:4),WBP(0:5),FREP
DOUBLE PRECISION GH,GP
DOUBLE PRECISION K1, K2 K3, K4 L1121314
DOUBLE PRECISION M1 M2 M3 M4,N1,N2N3N4
OPEN (UNIT=11,FILE="randec.d'.STATUS='OLD")
READ (11,*) (RP(I),RH(I),I=0,201)
CLOSE(11)
PRINT *, 'PLEASE INPUT DAMPED FREQUENCY FOR HEAVEY
READ (*,*) FREH
PRINT *, 'PLEASE INPUT DAMPED FREQUENCY FOR PITCH"
READ (*.*) FREP
* Numerical differentiation for randomdec signature!
DT=0.05
DO 10 1I=1,200
VH(D=(RH(I+1)-RH(I-1))/(2.0*DT)
VP(I)=(RP(I+1)-RP(I-1))/(2.0*DT)
10 CONTINUE
* Input heave weight values obtained from training!
OPEN (UNIT=21FILE='weight.d'.STATUS='OLD")
READ (21,*) (WBH(),I=0,5)
READ (21.*) (WAH(L,1),I=04)
READ (21,*) (WAH(2,1).I=0,4)
READ (21,*) (WAH(3,),I=0,4)
READ (21,*) (WAH(4,1),1=0,4)
READ (21,*) (WAH(S,I),]1=0,4)
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CLOSE(21)
* Input pitch weight values obtained from training'
OPEN (UNIT=31.FILE="pweight.d ,STATUS='OLD")
READ (31,*) (WBP(1),1=0.5)
READ (31,%) (WAP(1,1),1=0.4)
READ (31,*) (WAP(2,1),I=0,4)
READ (31,*) (WAP(3,1),I=0,4)
READ (31,*) (WAP(4.1),1=0,4)
READ (31,*) (WAP(5.I).1=0.4)
CLOSE@31)
* Prediction of coupled heave & pitch motion!
RHO(1)=RH(1)
VHO(1)=VH(1)
RPO(1)=RP(1)
VPO(1)=VP(1)
DO 20 I=1,199
CALL NEURAL(GH,WBH,WAH RHO(I), VHO(I),RPO(I), VPO(1))
CALL NEURAL(GP,WBP,WAP RHO(D),VHO(),RPO(I),VPO(I))
K1=DT*VHO(I)
L1=DT*(-FREH**2*RHO(I)-GH)
MI[=DT*VPO(I)
N 1=DT*(-FREP**2*RPO(I)-GP)
CALL NEURAL(GH,WBH,WAH RHO(I)+0.5*K1,
$ VHOI)+0.5*L1,RPO(I)+0.5*M1,VPO(I)+0.5*N1)
CALL NEURAL(GP,WBP,WAP RHO(I)+0.5*K1,
$ VHOM+0.5*L1,RPO(+0.5*M1,VPO(D+0.5*N1)
K2=DT*(VHO()+0.5*L1)
L2=DT*(-FREH**2*(RHO(I)+0.5*K1)-GH)
M2=DT*(VPO(I)+0.5*N1)
N2=DT*(-FREP**2*(RPO(I)+0.5*M1)-GP)
CALL NEURAL(GH,WBH,WAH RHO(I)+0.5*K2,
$ VHO(IX0.5*L2,RPO(I)+0.5*M2.VPO(I)+0.5*N2)
CALL NEURAL(GP,WBP,WAP RHO(I)+0.5*K2,
$ VHOM+0.5%L2,RPO(1)+0.5*M2 VPO(I)+0.5*N2)
K3=DT*(VHO(I)+0.5*L2)
L3=DT*(-FREH**2*(RHO(I)+0.5*K2)-GH)
M3=DT*(VPO(I)+0.5*N2)
N3=DT*(-FREP**2*(RPO(I)+0.5*M2)-GP)
CALL NEURAL(GH.,WBH,WAH RHO(I)+K3,
$ VHOM+L3,RPO(I)+M3,VPOI)+N3)
CALL NEURAL(GP,WBP,WAP,RHO(I)+K3,
$ VHO(M+L3,RPO(I)+M3,VPO()+N3)
K4=DT*(VHO(I)+L3)
LA=DT*(-FREH**2*(RHO(I)+K3)-GH)
M4=DT*(VPO(I)+N3)
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20

N4=DT*(-FREP**2*(RPO(I)+M3)-GP)
RHO(I+1)=RHO(D)+(K1+2.0*K2+2.0*K3+K4)/6.0
VHO(1+1)=VHOM+(L 1+2.0*L.2+2.0*L3+L4)/6.0
RPO(I+1)=RPO(I)+(M 1+2.0*M2+2.0*M3+M4)/6.0
VPO(I+1)=VPO(D)+(N14+2.0*N2+2.0*N3+N4)/6.0
CONTINUE

* Qutput of predicted heave & pitch motion!

30

40

100
50

10

OPEN (UNIT=4! FILE='comp.d . STATUS=UNKNOWN')
DO 30 I=1,200

WRITE (41,*) RH(I),RHO(I)

CONTINUE

CLOSE®#41)

OPEN (UNIT=51,FILE="pcomp.d'.STATUS="UNKNOWN)
DO 40 I=1,200

WRITE (51,*) RP(I),RPO(I)

CONTINUE

CLOSE(S1)

OPEN (UNIT=61,FILE="predic.d',STATUS="UNKNOWN’)
DO 50 I=1,200

WRITE (61,100) RPO(I),RHO(I)

FORMAT(1X,2F15.6)

CONTINUE

CLOSE(61)

END

SUBROUTINE NEURAL(G,WB,WA,RH,VH,RP,VP)

DOUBLE PRECISION G,RH.VH,RP,VP

DOUBLE PRECISION WB(0:5),WA(1:5,0:4),UH(1:5),X
f(x)=1.0/(1.0+exp(-x))

DO 10 J=1.5
UHJ)=f(WAJ,0)0*1.0+WAU,1)*VH+WA(J,2)*RH+WAU.3)*VP+WA(J.4)*RP)
CONTINUE
G=WB0)*1.0+WB(1)*UH(1)+WB(2)*UH(2)+WB(3)*UH(3)+WB(4)*UH(4)+
WB(5)*UH(5)

RETURN

END

FREE.FOR

PROGRAM MOTION FREE RESPONSE

DOUBLE PRECISION RH(0:201),RP(0:201), VH(1:200),VP(1:200)
DOUBLE PRECISION RHO(1:200),RPO(1:200),VHO(1:200),VPO(1:200)
DOUBLE PRECISION A1,B1,C1,D1,DT
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DOUBLE PRECISION A2,.B2,C2,D2
DOUBLE PRECISION GH,GP
DOUBLE PRECISION K1,K2,K3,K4,1.1,L.21.3,14
DOUBLE PRECISION M1 M2 M3 M4 NI ,N2N3N4
OPEN (UNIT=11,FILE="randec.d ,STATUS='OLD")
READ (11.*) (RP(D,RH(D),I=0,201)
CLOSE(11)
* Numerical differentiation for randomdec signature!
DT=0.05
DO 10 I=1,200
VH(D=(RH(I+1)-RH(I-1))/(2.0*DT)
VP(D)=(RP(1+1)-RP(I-1))/(2.0*DT)
10 CONTINUE
* Input heave coefficients from strip theory!
PRINT *, 'INPUT HEAVE COEFFICIENTS Al1,B1.C1,D1"
READ (*,*) A1,B1,C1,D1
* Input pitch coefficients from strip theory!
PRINT *INPUT PITCH COEFFICIENTS A2,B2,C2,D2"
READ (*,*) A2,B2,C2,D2
* Free response of coupled heave & pitch motion!
RHO(1)=RH(1)
VHO(1)=VH(1)
RPO(1)=RP(1)
VPO(1)=VP(1)
DO 20 I=1,199
CALL NEURAL(GH,A1,B1,C1.D1,RHO(I), VHO(),RPO(I),VPO(I))
CALL NEURAL(GP,A2.B2,C2,D2,RHO(T), VHO(I),RPO(I),VPO(I))
Ki=DT*VHO(I)
L1=DT*(-GH)
MI1=DT*VPO(I)
N1=DT*(-GP)
CALL NEURAL(GH,A1,B1.C1,D1,RHO(I)+0.5*K1,
S VHO()+0.5*L1,RPO(I)+0.5*M1.VPO(I)+0.5*N1)
CALL NEURAL(GP,A2,B2,C2.D2 RHO(I)+0.5%K1,
$ VHO(D)+0.5*L1,RPO(I)+0.5*M1,VPO(I)+0.5*N1)
K2=DT*(VHOI)+0.5*L1)
L2=DT*(-GH)
M2=DT*(VPO(I)+0.5*N1)
N2=DT*(-GP)
CALL NEURAL(GH,A1,B1,C1,D1,RHO(I)+0.5*K2,
$ VHO(I)+0.5*L2,RPO(I)+0.5*M2,VPO(I)+0.5*N2)
CALL NEURAL(GP.A2,B2,C2,D2 RHO(I)+0.5%K2,
$ VHO(D)+0.5*L2,RPO(I)+0.5*M2,VPO(I)+0.5*N2)
K3=DT*(VHO(I)+0.5*L2)
L3=DT*(-GH)
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M3=DT*(VPO(I)+0.5*N2)

N3=DT*(-GP)

CALL NEURAL(GH,A1,B1,C1,D1,RHO(D+K3,
VHO((I)+L3,RPO(I)+M3,VPO(I)+N3)

CALL NEURAL(GP,A2,B2,C2,D2, RHO(I+K3,
VHO(D+L3,RPO(I}+M3,VPO(I)+N3)
K4=DT*(VHOI)+L3)

L4=DT*(-GH)

M4=DT*(VPO()+N3)

N4=DT*(-GP)
RHO(I+1)=RHO(I)+(K1+2.0*K2+2.0*K3+K4)/6.0
VHO(I+1)=VHOM)+L1+2.0*L2+2.0*L3+LA4)/6.0
RPO(1+1)=RPO(D+(M1+2.0*M2+2.0*M3+M4)/6.0
VPO(I+1)=VPO(I)+(N1+2.0*N2+2.0*N3+N4)/6.0
CONTINUE

* Output of predicted heave & pitch motion!

30

40

100
50

OPEN (UNIT=41,FILE="comp.d’,.STATUS="UNKNOWN)
DO 30 [=1,200

WRITE (41,*) RH(T),RHO(T)

CONTINUE

CLOSE(41)

OPEN (UNTT=51,FILE="pcomp.d' STATUS="UNKNOWN")
DO 40 I=1,200

WRITE (51,*) RP(T),RPO(I)

CONTINUE

CLOSE(51)

OPEN (UNIT=61 FILE="strip.d'.STATUS="UNKNOWN")
DO 50 [=1,200

WRITE (61,100) RPO(I),RHO(I)

FORMAT (1X.2F15.6)

CONTINUE

CLOSE(61)

END

SUBROUTINE NEURAL(G.A,B,C,.D,RH,VH,RP,VP)
DOUBLE PRECISION G,RH,VH,RP,VP

DOUBLE PRECISION A,B,C.D
G=A*VH+B*RH+C*VP+D*RP

RETURN

END
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