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Abstract 

In this thesis, the one dimentional moving finite element (MFE) scheme of Miller is 

analyzed and simplified. 

We show how the MFE scheme can lead to a decoupled system of nonlinear ordinary 

differential equations for node placement and conesponding amplitude of approximate 

solution. 

For a scheme with penalty terms, the simplified MFE scheme leads to nonlinear ordi

nary differential system with respect to mesh points and a separate system of differential 

equations related to solution values at each mesh point. 

We also establish simplified scheme for Gradient Weighted Moving Finite Element 

method. The resulting ordinary differential equations are completely decouple, and partly 

decouple when penalty terms are added into the scheme. 

The error analysis for application of MFE scheme to linear partial differential equations 

is discussed. An a posteriori error estimate is derived. It provides insight into overall 

accuracy of the approximate solution. 

We also combine MFE with the moving mesh method of Russell. Specifically, we 

couple the equation for mesh points from Russell's method with the one for solution of 

POE in simplified MFE. This combination allows for the application of the MFE scheme 

without an explicit selection of a penalty function. 

Finally! results from a set of numerical experiments are presented. These demon-
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strate both the reduced computational cost and improved stability of the simplified MFE 

method. 
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Chapter 1 

Introduction 

Many mathematical models of science and engineering take the form of partial differential 

equations (POE's). With the rapid development of high speed computers over the last 

decades the possibilities of efficiently utilizing these models have dramatically increased. 

Using computer-implemented mathematical models, one can simulate and analyze com

plicated systems in engineering and science. This reduces the need for expensive and 

time-consuming experimental testing and makes it possible to compare many different 

alternatives for optimization and so on. To use mathematical models on a computer one 

needs numerical methods. Only in the very simplest cases is it possible to find exact 

analytical solutions of the equations in a given model, and in general one has to rely 

on numerical techniques for finding approximate solutions. The finite element method 

(FEM) is a general technique for the numerical solution of differential equations. The 

method was introduced by engineers in the late 50's and early 60's for the numerical 
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solution of POE's. Later, mathematical study of the finite element method started and 

was developed soon by engineers, mathematicians and numerical analysts, into a general 

method for the numerical solution of POE's with application in many areas of science and 

engineering. 

The basic idea in FEM is to approximate the solution by using piecewise polynomials. 

In this thesis, we mainly consider piecewise linear approximation, which is most common 

in FEM. Actually, many functions, especially piecewise continuous functions, can be ap

proximated by a piecewise linear function with respect to a suitable subdivision 1r for the 

considered interval such as [0, 1] 

1r : 0 = Xo < X1 < • · · < Xn < Xn+l = 1. 

Let piecewise linear function U be the approximation of u with zero boundary values by 

Figure 1.1: The function u and its approximation U, a piecewise linear function. 

8 



Notice that the approximation is decided by its values at all endpoints of subinterval 

[xi_1, xi) or amplitudes at Xi fori= 1, · · · , n. To obtain an approximation to the solution 

of a given POE, the first step is to divide the considered interval into several subintervals 

(or elements) and then find the approximation of the exact solution at endpoints of each 

subinterval. In most cases, those subintervals are of the same shape, and the division 

thus is called uniform mesh. The amplitude U(xi) (i = 1, · · · , n) at xi can be obtained 

by solving a system of equations which may be nonlinear. In such a case, the issue of 

existence and uniqueness of solutions is more difficult to settle. The details for finite 

element methods can be seen from Ciarlet [18] and Johnson [34], and from Brezzi and 

Fortin [11] for advanced finite element methods. 

Many important POE's have solutions that are too rough to be approximated satis

factorily by uniform meshes. For this reason, the literature on adaptive mesh algorithms 

is growing rapidly. Most of approaches that have been developed so far rely on one of 

two basic mechanisms: grid refinement, in which an initial coarse mesh is enriched by 

subdividing selected cells or elements, and mesh movement, in which, for a fixed number 

of cells or elements, the nodes of the given initial mesh are moved to new locations. 

The necessity for mesh movement can be seen from solving time-dependent problems. 

When the solution has steep front and the location for this front is unknown, one is 

naturally led to consider methods which would place a large number of the nodes or 

conduct mesh refinement in the vicinity of the steep front. It is also clear that such 

methods will not be very efficient since it is difficult to figure out where the steep front is. 
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Moreover, in the case that the steep front is changing with the time, or moving steep front 

exists, grid refinement can hardly be used even if the location of steep front is known. 

The ideal scheme for this is to allow grids to concentrate on steep front automatically, i.e. 

mesh movement method. However the resulting ODE system contains unknowns of both 

nodes and amplitudes and causes larger computations than that in fixed nodes. 

One mesh movement approach is the so-called moving finite element (MFE) method. 

MFE method was first introduced in 1981 by Miller and Miller (43], in which the MFE 

approach was established for dealing with problems whose solutions develop sharp transi

tion layers or "near-shocks". This method, based on a least square principle, succeeded in 

allowing many nodes to automatically concentrate in the critical regions and move with 

them by solving a nonlinear ODE system for nodes and corresponding amplitudes. 

In [44], MFE method was extended and improved by Miller. To prevent all movable 

nodes from moving towards critical regions and to prevent resulting matrix from being 

singular, penalty functions, or "internodal spring forces", were added. Also improvements 

included a working implicit stiff ODE solver. 

MFE was extended to 2-D problems by Alexander, Manselli, and Miller [1}, extended 

in 1-D to systems of POE's by Djomehri [20] and by Djomehri, Gelinas, Doss, and Miller 

[21], and extended in 2-D to systems of POE's by Djomehri and 1\Jliller [19] and by Gelinas, 

Doss, Vajk, Djomehri and Miller (28]. 

Researchers in MFE also concern about two aspects, nodes distribution and resulting 

ODE solver. 
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Herbst and Schoombie [29], and Thrasher, Sepehrnoori (48] showed that MFE moves 

nodes according to approximate equidistributing principle and leads to a criterion for the 

placement of the nodes. Miller (39] considered and demonstrated, on test examples, a 

variety of approaches to achieve more desirable and fully automatic control of the nodal 

movements in the MFE method by using suitable penalty function. Hrymak, McRae and 

Westerberg (30} discussed in detail the choice of penalty function to generate better node 

control. The key for node control is actually users-chosen constants in penalty function. 

Unfortunately, choices for those constants are mostly based on experience and test. 

For ODE solver, the attention is focused on studies of mass matrix. Wathen (51, 52] 

found that the eigenvalues for diagonally-preconditioned piecewise linear moving finite 

element mass matrix in d-dimensions lie in the interval [1/2, 1 + d/2]. Then Wathen (53] 

extended these results moreover to the mass matrix of standard fixed node finite element 

methods. One important conclusion to be drawn from this is that the mass matrix can be 

inverted extremely rapidly by a few iterations of the diagonally-preconditioned conjugate 

gradient method. Wathen, Baines and their colleagues (see (4], [5], [36] and [54]) are 

thus able to use explicit rather than implicit solvers for the resulting ordinary differential 

equation (ODEs) of the MFE method in multidimensions. This leads to a class of high 

efficient explicit methods for certain purely hyperbolic problems. Miller [41} pointed out 

the inappropriateness of employing explicit methods to parabolic problems, i.e. it should 

be avoided due to the extremely small time steps imposed by stability considerations. 

Because the computations (including the few conjugate gradient iterations) can all be 
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done locally (element by element and then node by node) with little global storage of 

the mass matrices or Jacobians as required by implicit methods, Baines [4} and Baines & 

Wathen [5} call these methods "local " ~1FE. 

Baines, using similar considerations, also designed methods which have block-diagonal 

mass matrices [5}. This therefore does away completely with the need to invert the 

mass matrix in multidimensions when attempting to solve the ODEs by explicit meth

ods. Baines also calls these methods "local" MFE. Miller [41} called this method "very 

local" MFE, extended it to gradient-weighted MFE method (GWMFE) and designed an 

equivalent method to Baines' to retain the desired conservation properties for POE's in 

"conservation law" form. 

In this thesis, we discuss a simplified ?YIFE scheme for Miller's method formulated 

with and without penalty functions. This scheme only needs to solve a decoupled ODE 

system for nodes, and then solve other ODE system for amplitudes. Numerical examples 

show that the computational cost is greatly reduced and the accuracy is also improved. 

In Chapter 2, we introduce some concepts for finite element methods. It includes 

Sobolev space and related norms, weak formulation for POE's and basic ideas for Galerkin 

methods in one dimensional case. 

Chapter 3 presents the MFE method (Miller & Miller (43}) by least square principle. 

Its derivation is also examined together with Lagrangian methods. This chapter mainly 

derives the simplification of Miller's method by using discrete sided 8-function technique 

to reduce computational cost. This is the main aim of this thesis. Also the analysis for 
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this simplification is shown. 

Chapter 4 discusses the error analysis for MFE method. It presents both a priori and 

posteriori error estimate. 

In Chapter 5, we derive simplified scheme for Gradient-Weighted MFE (GWMFE) 

with and without penalty. Chapter 6 presents simplified MFE form for systems of POE's, 

which is direct extension of scalar POE's. 

In Chapter 7, we combine MFE with moving mesh method of Russell. The mesh POE 

is determined from moving mesh method, which is based on the approximate equidis

tribution principle, to obtain the location of nodes. The original POE is then solved 

numerically by using simplified l.VIFE scheme. This method does not require the explicit 

selection of a penalty function. But its application is limited. 

Chapter 8 presents some numerical examples, which includes the comparison of accu

racy and execution time between usual and simplified MFE scheme. 

Chapter 9 brings together our conclusions and presents open problems worth further 

investigation. 
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Chapter 2 

Prelin1inary 

2.1 Sobolev space 

2.1.1 The space LP(n) 

To study FEM for solving PDEs, it is necessary to introduce Sobolev space and some 

related concepts (see (2}). 

First, we review basic concepts of Lebesgue integration theory. Let the real valued 

function, u, on a given domain, n, be Lebesgue measurable: by 

L u(x)dx 

we denote the Lebesgue integral of u (dx denotes Lebesgue measure), for 1 < p < oo, let 
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and for the case p = oo set 

lluiiLaa(n) := ess sup{!u(x)! :X E 0}. 

In either case, we define the Lebesgue spaces 

LP(O) := { u : llui!LP(!l) < oo }. 

Two fundamental inequalities are: 

Holder Inequality For 1 ::; p, q ::; oo such that 1/p + 1/q = 1, if u E LP(O) and 

v E £9(0}, then uv e £ 1{0) and 

Schwarz's Inequality This is simply Holder's inequality in the special case p = 

q = 2. H u, v E L 2(0) then u, v E £ 1(0) and 

2.1.2 Weak derivatives 

For the sake of simplicity, we let 0 be an interval in one-dimensional space. There are 

several definitions of derivative that are useful in different situations. The "calculus" 

definition 

lim u(x +h) - u(x) 
la-+0 h ' 

is a "local" definition, involving information about the function u only near the point x. 

\Ve call this strong deriv-ative. The most we discuss later is integration so tha.t pointwise 
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values of derivatives are not needed. Only derivatives that can be interpreted as functions 

in the Lebesgue space £ 2(0) occur. Thus it is natural to develop a global notion of 

derivative more suited to the Lebesgue spaces. 

Definition 2.1 Let n = (a, b) be a domain in R1. We denote C8"(a, b) to be the set 

C:'(a, b) = { v : v<n) exists and vCn) (a) = vCn) (b) = 0 for any nonnegative integer n }. 

For example, 

is in C~(O, 1). 

lxl < 1, 

!x! ~ 1, 

Definition 2.2 Given a domain 0 1 the set of locally integrable functions is denoted 

by 

Lloc(O) := {u: u E L1(K) 'Vcompact K C interior 0}. 

We remark that L/oc(O) contains all of continuous functions. Now we come to a more 

appropriate (for our purpose) definition of a derivative. 

Definition 2.3 A given function u E L/oc(O) has a weak derivative of order n, denoted 

by D:u, provided there exists a function ·v E Lfoc(f!) such that 

L v(x)tp(x)dx = (-l)n L u(x)tp<n>(x)dx 'Vcp E C:'(O). 

If such a v erists, we define D~u = v. 
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For example, take n = 1 and n = [0, 1), and U(x) be the continuous piecewise linear 

function with respect to the subdivision 1r defined in Chapter 1. From Fig 1.1 we see 

that in each subinterval [xi-lt xi), the strong derivative of U is a constant, denoted by Ci· 

We claim that D~U exists and is given by v(x) := Ci for x E (xi_1, xi)· To see this, we 

integrate by parts. Let cp E C~(O, 1). Then since U is continuous and ~(x) vanishes at 

the endpoints of [0, 1}, we have 

J.' U(x)<p'(x)dx = ~ {~, U(x)<p'(x)dx 

- ~ [- f, U'(x)<p(x)dx + U(x)<p(x)l~!-,] 

- -1:: {; e;<p(x)dx 
i=l %i-l 

- -J.' v(x)<p(x)dx 

One can see that, roughly speaking, the weak derivative is the same as the strong 

derivative wherever the function being differentiated is regular enough. In particular, 

continuity of U in the example is enough to ensure existence of a first-order weak deriva-

tive, but not second-order and not strong differentiability. Without confusion, we still 

denote uCn) by D~u later since being strongly differentiable implies being weakly differ-

entiable. 

2.1.3 Sobolev spaces and related norms 

Using the notion of weak derivative, we can generalize the Lebesgue norms and spaces to 

include derivatives. 
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Definition 2.4 Let k be a nonnegative integer, and let u E Ljoc(n). Suppose that the 

weak derivatives D: u exists for all nonnegative n < k. Define the Sobolev norm 

for 1 < p < oo, and in the case p = oo 

In either case, we define the Sobolev spaces by 

When p = 2, we denote Wk.P(n) by Hk(fl). In particular, 

For technical reasons it is necessary to introduce the following notation for the Sobolev 

seminorm. 

Definition 2.5 For a nonnegative integer k and u E Wk.P(f!), the seminorm of u in 

wt·P(n) is defined by 

for 1 < p :5 oo. 
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2.2 Weak formulation of PDE 

Consider the PDE 

Ut = U:n + f(u,u%) X E (0, 1) t > 0, 

u(O, t) = u(1, t) = 0, (2.2.1) 

u(x, 0) = uo(x). 

For any function v E HJ(O, 1), through multiplying both sides of the first equation in 

(2.2.1) by v and integrating by parts, we obtain that 

J.' u1vdx - J.' u..,vdx + J.' f(u, u,)vdx 

- -J.' u,v,dx + J.' f(u, u.)vdx. 

Thus the weak formulation of (2.2.1) seeks u E HJ(O, 1) such that 

J.' u,v =- J.' u,v,dx + J.' f(u, u,)vdx 'Vv E HJ(O, 1). {2.2.2) 

Now we try to find the relation between (2.2.1) and (2.2.2). 

Lemma 2.1 Let u and v be continuous in HJ(O, 1) and 

J.' u(x)cp(x)dx = J.' v(x)cp(x)dx 'Vcp E HJ(O, 1), 

then u = v in (0, 1). 

Proof. If there exists an x0 E (0, 1) such that u(x0 } "# v(x0 ), then there exists a neigh-

bourhood p(x0 ) c (0, 1) such that u(x) "# v(x) for any x E p(x0 ). Define c,o(x) by 

{ 

u(x) - v(x) x E p(xo) 
c,o(x) := 

0 x rt p(xa)-
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Thus we have cp(x) E HJ(O, 1) and 

{

1 

[u(x} - v(x)]cp(x}dx = 1 [u(x) - v(x}] 2dx # 0, 
_fo p(zo} 

which contradicts with the condition. D 

Theorem 2.1 The solution of {2.2.1} satisfies (2.2.2). Conversely the solution of {2.2.2} 

satisfies {2.2.1} if u(x, t) E C 2 (0, 1) for any t. 

Proof. The first part of theorem has been proved from the derivation of {2.2.2). From 

integration by parts, we can also obtain from (2.2.2) that 

J.' u,vdx = J.' [u,. + f(u, u.)]vdx Vv E HJ(O,l), 

which, from lemma 2.1, implies that 

2.3 The finite element method 

Let 

0 = Xo < X1 < · · · < Xn < Xn+l = 1 

be a partition of [0, 1}, and let V be the linear space of functions v such that 

1. v is continuous in [0, 1}. 

2. vl[o,I! is a piecewise linear polynomial, and 
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3. v(O} = v(1) = 0. 

We see that v is in the Sobolev space HJ(O, 1} or we can say finite dimensional space V 

is a subspace of HJ(O, 1). 

Figure 2.1: The basis function ai. 

For each i = 1, · · · , n, we define 

0 elsewhere, 

where ~xi =xi - Xi-l· Figure 2.1 illustrates a typical ai(x). 

Definition 2.6 Given a continuous function v defined in (0, 1], the interpolation vr E V 

of v is detennined by 
n 

Lv(xi)O'i· 
i=l 
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In fact, {ai(x) : 1 < i < n} is a basis for V since E:=l kiai(x;) = 0 implies k; = 0 for 

each j = 1, · · · , n. 

The set { ai} is called a nodal basis for V, and { v(xi)} are nodal values of a function 

of v (the points {Xi} are called the nodes). 

Now it is time to introduce finite element approximation for the equation {2.2.1). 

Regarding V as an approximate space of HJ(O, 1) and then replacing HJ(O, 1) in weak 

formulation {2.2.2) by V, we obtain the Galerkin or finite element approach which seeks 

(2.2.3) 

such that 

(Ue, v) = -(U:r, v'Z) + (f(U, U:r), v) 'Vv E V (2.2.4) 

with U(x, 0) = (u0 (x)) 1 . Here and thereafter (·,·)denotes the inner product in the space 

(u, v) = L uvdx. 

Taking v =a; (1 < j < n) in (2.2.4) yields 

n 

<L ai(t)ai, a;} = -(U-z, (a;):r) + (/(U:r, U), a;). (2.2.5) 
i=l 

Denote b;(t) by the right hand side of (2.2.5) and let A = [(ai, a;}]nxn, y(t) = 

[a1 (t), · · · , a11 (t)JT and b(t) = [b1 (t), · · · , bn(t)]T, then (2.2.4) implies a linear ODE system 

AiJ(t) = b(t) {2.2.6) 
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with the initial value y(O) = [uo(xl) · · · uo(xn)JT. As well 

li- il > 1, 

j = i- 1, 

j = i + 1, 

which shows that A is tridiagonal. In addition, A is positive definite since 

for any % = (zlJ ... 'Zn)T E nn so that zT Az = 0 if and only if z = 0. 

In principle, we can use ODE solver to solve the initial value problem (2.2.6). The usual 

finite element method with fixed mesh, which is described above, is popular and powerful 

amongst numerical methods for PDEs. However, some PDEs, especially in nonlinear 

cases, have very large gradient or moving steep front in a local area. For these, the usual 

finite element with fixed mesh is inefficient. To see this, consider Burger's equation 

Ut - VUzz- UUz, X E (0, 1), 

u(O, t) - u(1, t) = 0, 

u(x, 0} - sin(2trx) + sin(trx)/2, 

with v = 0.01. 
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ljr-------~------~------~-------r-------, 

.,~ ____ _. ______ ._ ____ ~------~----~ .,~ ____ _. ______ ._ ____ ~------~----~ 
0 u a u 

IJr-------~------~------~------~-------, ljr-----~~----~------~------~-------, 

··~----~~----~~----~------_.------~ 
.,~ ____ _. ____________ ~------~----~ 

a " u a « u 
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Figure 2.2: Solution of Burger's equation, solved by usual FEM with n = 80. 

With n = 80, we solve (2.2.6) using explicit Euler method and illustrate the results in 

Fig 2.2, which shows an oscillation with the increase of time. A shock is evidently forming 

around which the method is not capturing sufficient information. 
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Chapter 3 

Moving Finite Elelllent 

3.1 Dirac 8 function 

The Dirac 8 function is widely used in mathematics and physics. For any point z in a 

domain (0, 1), the 6 function with respect to z is defined by 

't:/x "::/; z 

It can be thought of as the limit of 

x E (z - e, z +e), 

other points 

as e--+ 0. Since for any function q; continuous at z, 
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we have 

L: cp(x)6:(x}dx = cp(z}, 

which is an important property of 6 function. From 

we see that 

and thus conclude that the 6 function is not in £ 2 space. 

3.2 8 - Mollification 

To see the necessity of 6-mollification, let us consider £ 2 norm of Vzz given v E V, 

a piecewise linear function. For the sake of simplicity, we assume the partition 1r be 

uniform with mesh size h, that is lxi- Xi-tl = h for any 1 S i < n + 1. Then Vr = 

[v(xi)- v(Xi-d]/h := mi when x E (xi-b Xi)· From the intergration 

J.' v,q>,dx = i; {, m;q>,(x)dx 

n 

- L m;[cp(xi) - cp(xi-t)] 
i=l 
n 

- L(Tni- Tni+t)cp(xi} 
i=l 

- t.(m;- m;+l) f.' O,;q>dx 

- 1' r :f)m; - m;+l)o.;l q>dx. 
u L. i=l ~ 
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From the definition of weak derivative we see that Vz:z: is linear combination of O:z:, for 

i = 1, · · · , n and is thus not in L2 since o-function is not in L2 • The complication with 

v:z::z:, namely the discontinuities, is concentrated at nodes. Since we have to deal with 

a least square minimization in L 2-norm containing V:z::z: in later discussion, we need to 

smooth V:z::z:. The technique for dealing with this problem we adopt herein is known as o 

mollification. 

Let P6 be a Cif function of unit total integral which has support within a radius 6 

about the origin. We consider the smootiling operator T6 defined by Miller as 

(T6cp)(x) = l: P6(x- y)cp(y)dy 

for any function cp E £2 (0, 1). Then T6cp E C{f(O, 1) and 

Also 

(T6v):z: - /_: (p6(X- y)):z:v(y)dy 

- -L-oo (P6(z))::v(x- z)dz 

- L-oo P6(z)v::(x- z)dz 

-l: P6(X- y)vy(y)dy 

in L2 norm as 5-+ 0. For piecewise linear function space lr '.\'ith basis function ai, · · · , ~' 
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define its approximate form V.S by TcfV:=(T5a11 • • • , Tcfon)· Thus for any function in T5V, 

it should be in the form T6v = E::o v(xi)T6ai with v E V. 

3.3 The alternative interpretation for finite element 

method 

Now we can give an alternative interpretation for finite element method introduced in 

section 2.3 by finding U E V such that the residual function 

is orthogonal to T6 V. This requires 

(3.3.1) 

which, if .C(u) is in the form Uzz + f(u, Uz), is expressed by 

where we use integration by parts 

Taking the limit as 6 -+ 0 over the above equation, we have 
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which is exactly the same as Galerkin formulation. Also the equation (3.3.1) is equivalent 

to minimizing 

(3.3.2) 

with respect to (T6U)t. This gives the "best fit" of (T6U)t to .C(T6U). So the Galerkin 

formulation can be thought of as the limit of the least square minimization {3.3.2). 

3.4 Moving Finite Elements 

The moving finite element scheme of Miller [43} was developed for numerically solving 

time-dependent PDEs which have the propagation of sharp fronts or very large gradients 

through the mesh. Its basic principle is almost the same as the usual finite element 

methods (MFE) except that the mesh is function of time. This allows nodes to move 

automatically with the solution, ideally to regions where high resolution is required as 

time evolves. 

To be more general, we consider the equation 

Ut = .C(u) x e (0, 1) t > 0, 

u{O, t) = u(l, t) = 0, (3.3.3) 

u(x, 0) = uo(x), 

where .C is a differential operator to be specified. Let the partition for the interval (0, 1} 

be 

-:r(t'1 : 0 = x~ft\ < ""· (t\ < ""2 (+) < · · · < x .. (+) < x · • ft\ = 1 - U\ .. J -.1. J - ~ •• • rlTL\•J - 1 
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and the basis corresponding to the node Xi ( t) be 

%-Zi-l(t) (t) < (t) 
Azi(t) Xi-1 _ X < Xi 1 

Zitl(t)-z Xi(t) $ X < Xi+l(t), 
Azitl(t) 

0 elsewhere, 

fori = 1, · · ·, n, where ~xi(t) = xi(t) - Xi- 1(t) and s(t) - (x1(t), · · · ,xn(t)]T. The 

derivative of the approximate solution 

n 

U(x, t) = L <li(t)oi(x, s(t)) 
i=l 

(with time-dependent coefficients) with respect tot is then expressed by 

where 

The function U contains Xi only when x E (xi-lJ xi+d· In (xi_1, xi), 

so that 

Similarly, we have for x E (xi, Xi+d 

au 
axi = 
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Hence, 

0 elsewhere, 

where 

is the gradient of U over the segment [xi-tt xi]· Unlike the usual finite element method, 

U has two sets of basis functions; Qi and /3i for i = 1, · · · , n. The function f3i is discon-

tinuous at x = xi unless ffli = 111i+l· In general, Tni =F mi+t holds for each i so that 

o 17 • • • , Qn, {317 • • • , f3n are linearly independent. As a result, if is usually discontinuous at 

all nodes. 

Figure 3.1: The function U, ai = g~, /3i = g~. 

It can also be easily seen that 

n 

(T6U)t = E[~(t)Toot + xiT.s.Bi]· 
i=O 
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In analogy with the usual finite element methods with fixed nodes, we fLx ~(U) := 

where S = span{ot,· ··an, fit,··· ,f3n)· This generates 

((ToU)t, T6ai) - (C.(T5U), Tooi) 

((T6U)t, T6f3i} - (C.(ToU), Tof3i) 
(3.3.4) 

for i = 1, · · · n. The equation (3.3.4) can be also obtained by seeking the "best fit" of 

realized by minimizing 

{3.3.5) 

If .C(u) is in the form .C(u) = Uu + f(u, u:t), then the first equation of (3.3.4) becomes 

the limit of which as 6 ~ 0 is 

As for the second equation, we have to deal with limit of the term ((T6U)u, T6/3i} com-

plicated by the fact that f3i is usually discontinuous. 

It is easily seen that 
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Since (T5U)zz is concentrated near the nodes (because Uzz is linear combination of 6 

functions with respect to nodes) and that ai is linear with the value 1 at the ith node 

and 0 at the others, we have 

1
z,+6 

((T.rU)zz, T.rf3&} - - Zi-.J (T,sU)zzT.r(Uzai)dx 

1
Zi+6 1z,+6 

- - z,-
6 

aiT6Uzd(T,sU)z + z,-
6 

(aiT6Uz- T.s(aiUz))(T,sU)udx 

.- I +II. 

Notice that ai ~ 1 as 5---+ 0 in the above equation, the sign of T6Uzz does not change as 

I~ 

and 

l/~0, 

so that 

(6---+ 0). 

The limit (as 5 ~ 0) of (3.3.4) or (3.3.5) is the the MFE scheme which can now be put 

in the form 

n 

<Ecaja:; + ±jf3j)-£(U), ai} - o, {3.3.6) 
i=l 

n 

<ECa;a:j + ±;f3j) - £(U), f3i> = o, (3.3.7) 
j=l 

fori= 1, 2, · · · , n. If £(U) contains aU%% term then we interpret {U%%, ai) = -{Uz: (ai)z) 

t 0 ......... _ ,.,., .\ "' .. d trr !3·'- -fm2 _ m2)1? 
\.a. '"'t+1 ''-t./.,... \'-'%%' t/- \ "t+l · •in--
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Let y denote the vector [all x 17 a2, x2, · · · , an, xn]T, we see that {3.3.6) and (3.3.7) lead 

to a system of coupled nonlinear ordinary differential equations of the form 

A(y)il = g(y) for t > 0 and y(O) given, (3.3.8) 

where A(y) is symmetric and 2 x 2 block tridiagonal since (ai, a 1),(o:i, {31) and (/3i, {Ji) 

are zero when li - il > 1. Also A(y) is positive semi-definite since it arises from IIUIIi
2 

in (3.3.6) and (3.3.7), which in the absence of C.(U) gives 

This shows that the quadratic form iJT A(y )il is positive semi-definite, being zero only for 

nonzero il when A(y) is singular. On the other hand, when mi # mi+l for any 1 =:; i =:; n, 

a 1, • · • , an, {31 , • • • , f3n are linearly independent so that A(y) is nonsingular. In this case, 

.4(y) is positive definite and of the form 

At,2 

A= 

An-l,n-2 An-l,n-1 An-l,n 

An-l,n An,n 

where 

Ai.; = [ (ai, a;) {ai, !3;) ]· 

{/3i, a;) {/3i, /3;) 

For the right-hand side vector of (3.3.8) , we see that 

g(y) - u~rrn ..... ' trtrr} R.\ ..• '~(rn \ t~rrn R \tT - L\"-\v ,, ..... l,, ,_,v ,,., .. ,, , ,.:... ~,,an, , .... \t.; nt-•ltJ · 
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The calculation of A(y) is simplified by the relations 

0 li- il > 1, 

lAx· j = i -1, 
(ai, ai) = 6 • 

(3.3.9) 

i{Axi + Axi+t) j = i, 

lAx· 6 • j = i + 1, 

0 li- il > 1, 

-1m-Ax· j = i- 1, 
(ai,/3i) = 

6 1 1 

(3.3.10) 

-i(miAxi + mi+tAXi+d j = i, 

-lm-+tAX· 6 1 1 j = i + 1, 

and 

0 li- il > 1, 

1 2A j = i- 1, 
({3;, {ji) = 

6mi Xi 
(3.3.11) 

k(m~Axi + m~+1Axi+d j = i, 
1 2 A 6mi+l Xi j=i+l. 

Solving the nonlinear systems numerically quickly leads to large scale computation 

as the number of nodes n increases. To determine the vector function y, it remains to 

integrate the solution of (3.3.8) in time. One approach is to use the explicit forward Euler 

method, which, when applied to {3.3.8), leads to the linear system of algebraic equations 

(3.3.12) 
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Of concern is the condition number of A(yN) which is defined by IIA(yN)IIIIA- 1(yN)II and 

affects the accuracy of any numerical solution of (3.3.12). 

In section 3.8, we shall show how one can obtain explicit expressions for x and a in 

terms of Xi, l!i, Axi and mi (i = 1, · · · , n), thereby simplifying considerably the computa

tional effort involved with (3.3.8). 

3.5 Node Crossing for MFE 

One of the most important problems for MFE is whether all nodes stay in the order in 

which they are initially specified or whether there exists i such that Xi+ 1 ( t) - Xi ( t) is not 

positive at a certain reachable time. If one node catches its neighbour, then we have 

a, = ai+t for certain i so that A(y) is singular. Here we study this node crossing for the 

second order problems, in which 

.C(u) = VUr:z: + f(u, t.&z) 

where /(u, Uz) is continuous with respect to u and Uz. 

Theorem 3.1 If .C(u) = Uzz+ f(u, u:.:), f(x, y) is continuous, and {3.3.8} is well-defined1 

then Axi > 0 as long as mi 'I mi+l· 
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Proof. We only need to prove that ~i cannot be zero when mi f= mi+l· After 

integration, the form of (3.3.6) and (3.3.7) are 

1A • 1(A A )' 1A • 1A • 6u.xiai-t + 3 u.Xi + u.Xi+l ai + 6u.Xi+tai+l - 6~ximiXi-l 

-i(~ximi + ~xi+lmi+dxi- ~~xi+1mi+1:.ti+t = (L.(U), ai) 

l\vtultiplying (3.3.13) by mi+1 and then adding to (3.3.14) we obtain 

Since 

we see that 

( )
A (1. 1 . 1. 1 . ) m ·+l - "'· u.x · -a· 1 - -m·x· 1 + -a·- -m·x· I •• "'1 I 6 I- 6 I &- 3 1 3 & I 

Assume that there exists t 0 such that ~xi(t0 ) = 0 and then we define 

ffii(to) = lim ffii(t}. 
t-+to 

Since f is continuous we see that 

1
:ri 1 

:ri-l f(U, ffli)aidx < 2l~xil max lf(U, ffii)l. 
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We immediately obtain m; = m;+1 at t = t0 from (3.3.17), which contradicts with the 

assumption. 0 

This theorem indicates that node crossing never happens as long as the matri."< A(y) 

in (3.3.8) is nonsingular. 

3.6 Time-stepping 

The MFE method gives rise to the system of ODE's in (3.3.8), which requires integration 

in time to obtain a complete solution. There are two entirely different views on how the 

ODE's should be integrated, dependent upon the type of approach used. 

For MFE methods without penalty functions it has been suggested by Johnson (35], 

Johnson, Wathen & Baines [36], and Wathen & Baines {54}, that for a wide range of 

problems explicit time-stepping is sufficient and that implicit methods do not give any 

advantage. This is particularly true in the simplified MFE introduced in a later section. 

Here time-stepping is carried out using the explicit Euler method 

Ideally we want the time-step to be as large as is consistent with good accuracy while re

maining within the solver's stability region. However to avoid node crossing (in which case 

a single-valued solution is expected) the time step must be no larger than that which would 

allow any node to catch up with its neighbors, that is, the condition max1:si:Sn+L ~xi(tN+l) > 

0 must be satisfied, (where tN is the time after N-th time ~tep). 
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An alternative view was presented by Miller [43], who introduced a penalty function 

to prevent node crossing. On the grounds that system of ODEs that are obtained are stiff 

he argued that an implicit method must be used. In many papers, the systems of ODEs 

obtained by this method have been solved by Miller using the implicit Euler time-stepping 

method 

yN+l = YN + tl.tyN+l 

with a Newton solver. The iteration does not always converge, however, as the resulting 

nonlinear problem may not have solutions and both At and the parameters in the penalty 

functions have to be tuned so that convergence can take place. We'll examine the relevant 

details in later sections. For the moment it suffices to say the both approaches are 

problematic. 

3. 7 Discrete delta-function 

In the analysis of numerical computation, the discrete Dirac tS function, which is defined 

in a finite dimensional function space, is very powerful. This is manifested in maximum 

norm error estimate for the usual finite element methods with fixed mesh (46]. The use 

of Dirac tS function is also instrumental in the derivation of simplified ~!FE. Note that 

several authors prefer the term Dirac ma.ss to Dirac function as 'function" in a strict 

sense is abuse of terminology. 

Hopefully without confusion, we still denote discrete delta-function by dz for a fi..xed 

point z. 
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Theorem 3.2 For a finite dimensional function space V c L 2 (!l), there exists, for a 

fixed point z E !l, a unique discrete delta-function 6z E V such that 

(cp, 5z) = cp(z) 'Vcp E V, 

if cp is well-defined at z. 

Proof. Let N be the dimension of V and cp17 • • • , 'PN be its basis. Since 8z E ·v, there 

exist numbers k1, • • • , kN such that 

From (cpi, 6z) = C;?i(z) for i = 1, · · · , N and for z fixed in !l, it follows that 

. . . . . . . . . . . . (3 3 18) . . 

The coefficient matrix is positive definite because for any vector [ct, · · · , cN]T, 

so that 

if and only if (c1, • • • , cNJT = 0. 

Thus the system has unique solution, and the existence and uniqueness for 6z is proved. 

0 
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When q; is discontinuous at z, we need to consider both q;(z+) and cp(z-). For the 

special case involving the space S spanned by a 1 , · • · , On, {31 , • • • , Pn defined in section 

3.4, every node xi corresponds to two basis functions Oi and f3i· Note that Sis a subspace 

of the discontinuous piecewise linear function space S with respect to 1r(t). S also has 

two independent degrees of freedom associated with each node Xi· Therefore, Sis exactly 

the discontinuous piecewise linear function space S. On S, we need to find two one-sided 

delta-functions ai- and at for each Xi respectively SUCh that 

(a;, q;) = cp(xi) and (fit, rp) = cp(xt) 

for any q; E S. 

Figure 3.2: The one-sided discrete a-function 
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It can be checked by (3.3.9)-(3.3.11) that when IDi-1 =F Tni for each i E [2, n] 

whereas 

Likewise 

6- 3m2 3 
f3t - ctl+ 1 (m2- mt)Ax1 (m2- ml)Ax1 

{ :~~~ in [xo, xi], 
-

elsewhere. 

67 -l 

4IDi 217li+2 
Q·- Q·+l 

(mi+l - mi)Axi+l ' (Tni+2- mi+t)Axi+1 ' 
4 2 

------/3· - /3·+1 
(ffli+1 - 17li)Axi+1 ' (mi+2- "4+1)Axi+1 ' 

- { o-(6x- 2xi - 4xi+t)/ Ax~+l in [xi, Xi+1], 

elsewhere, 

for each i E [1, n- 1] and 
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For simplicity and generality, we write 

(3.3.23) 

(3.3.24) 

3.8 A Simplified Moving Finite Element (SMFE) 

Obviously, the computational cost for MFE is much more than that for usual FE-method 

because of the added unknowns and nonlinearities involved. This section will use discrete 

sided delta-function to simplify the system (3.3.8). 

Since both tS; and 6"[ are in the spaceS, we can derive from (3.3.6) and (3.3.7) that 

Thus we have 

<E'i=1 (a;a; + x;f3i) - C(U), 5;) - o, 

<E'J=1 (a; a;+ x;tJ;) - C(U), tSt) - o. 
(3.3.25) 

(3.3.26) 

(3.3.27) 

When mi =F mi+1 for every 1 5 i < n, we obtain the Simplified Moving Finite 

Element in the form 

Xi 
(C(U), 6;) - (C(U), tSt) 

(3.3.28) -
77li+t- mi 

tit 
Tni+l (C(U), o;) - mi(.C(U), ot) 

(3.3.29) -
Tni+l -Tni 
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fori= 1, · · · , n, which is a decoupled nonlinear ODE system. 

Substituting i- 1 fori in (3.3.27), we obtain 

which when subtracted from (3.3.26), yields 

or 

(3.3.30) 

then decribes the rate of front formation on [xi_ 1, xi)· 

As an example, let us consider the semilinear parabolic equation 

Ut = 'Uzz + u2 t E (0, 1), t > 0, 

u(O, t) = u(1, t) = 0, 

u(x,O) = 20sin(7rx), 

the solution of which is known to blowup in finite time. We shall attempt to solve it 

numerically by using SMFE with n = 20. 
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Figure 3.3: The solution at t = 0.07798 with n = 20. 

G U U U U U U V U U I 

Figure 3.4: The node movement for t E [0, 0.07798] with n = 20. 

From Figure 3.2 and Figure 3.3, we see that all the nodes except endpoints come 

quickly close to x = 0.5, the blowup point. This produces two big gaps between the first 

and the second node and between the last and the second last node. We cannot have good 
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approximate solution because there are no nodes in those two large and growing gaps. In 

the following section, we shall use penalty to control the movement of nodes. This idea 

was presented in [43) and [44] by Miller & Miller. 

3.9 MFE with penalty function 

The ODE system (3.3.28-3.3.29) strongly depends on the condition m 1 ~ mi+b which 

means the gradients of U on adjacent cells cannot be equal. If for some i, m 1 = mi+1, 

there are at most 2n- 1 linearly independent functions for {a1, · · · , On, /31, · · · , .Bn} and 

the matrix A in {3.3.8) becomes rank deficient. 

In addition, in the practical computation for MFE described above, the nodes move 

quickly towards the shock so that there are almost no nodes left outside shock to represent 

the solution (see Fig 3.2). Of course, this produces a poor global approximation. To avoid 

this, Miller suggests that these two problems can be tempered by introducing a penalty 

term in the residual minimization; namely, that in place of (3.3.5) one instead minimize 

or 

n n 

II L(aiai + x1.81) - .C(U)IIi1 + L(e1Llxi + S1)2 (3.3.31} 
i=l i=l 

with respect to if. This minimization is still interpreted as limit of tS mollification. The 

parameters {c-1, S1} are presented later. Setting derivatives of (3.3.31) with respect to x1 
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and ai to be zero and keeping in mind that ( ai, o:;}, ( ai! /3;) and (f3i, !3;) are zero when 

li- il > 1, a minimum requires that 

r:~:;_1 [(a;, ai}a; + ({3;, o:i)±;] - (.C(U), o:i}, (a) 

I:~~!- 1 ((a;, f3i)a; + (!3;, /3i}±;] )- ( (.C(U), /3i) (b) 

+e1~xi- e1+ 1 ~±i+l +ciSi- Ci+Isi+l, 

(3.3.32) 

or 

{3.3.33) 

(3.3.34) 

fori= 1, · · · n. Equation (3.3.32) leads us to a coupled nonlinear ODE system 

(3.3.35) 

with the same order and structure as (3.3.8). 

When mi = ffli+l, the equations (3.3.33) and (3.3.34) are the same if without the 

penalty term so that AE is singular. Since A€ is 2 x 2 block tridiagonal, it is nonsingular 

if each two rows within a block are not in proportion. Hence penalty term can effectively 

prevent .4€ from becoming singular. If mi = mi+l happens, (3.3.34) can be replaced by 

The choice of penalty terms will be discussed in the following section. 
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3.10 Node Control 

As discussed previously, the penalty used in the least squares formulation (3.3.31) will 

prevent the system of ODEs (3.3.35) from becoming singular. The penalty terms ei and 

Si also prevent nodes from coming too close together. By controlling the node spacing 

the stiffness of the ODE set is not made worse by the introduction of a moving mesh. 

Therefore, the selection of the Ci and si parameters is important in a robust and efficient 

implementation of the MFE. However, one must remember they are required only because 

the basic formulation of the moving finite element method is singular for a number of 

important cases. In the least square formulation (3.3.31), ei is coefficient of ~xi and thus 

specifically monitors the size of axi' the speed of the relative node spacing, while si takes 

into account the possibility that there may be no relative node movement, as the steady

state is approached or when nodes are brought together into a shock. In the degenerate 

case the penalty terms solely determine the solution in the local interval containing the 

singular set of equations. 

Though many different types of penalty forms have been tried, the basic requirements 

of Ci and si are simple. The parameters Gj and si cannot be functions of the nodal 

amplitudes because this would change the classical finite element formulation embedded 

within the moving finite element method, i.e. MFE has to be the same as classic FE when 

Xi is zero for every 1 < i < n + 1. The penalty terms must only be a function of nodal 

positions Xi and must increase as the nodal positions approach one another. 
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Consider the structure of Ac, the entries containing penalty terms are of the form 

or 

since mi = ll.a;./ !::..xi. This can be also seen from (3.3.32b). Therefore, to maintain balance 

between the solution and penalty terms, Djohmeri [20] and Miller [39] have suggested 

C2 
e - 1 
i- A d' 

~xi-

where C1 is a constant and dis a minimum approach distance. Note that as ll.a;, becomes 

very small then the e1 terms become important. Since ll.ai is known only within an order 

of magnitude of the relative error tolerance e from the ODE integration, this then suggests 

that 

C1 ~ O(e). 

If the constant C 1 is chosen a few times larger than the error tolerance then this will cause 

a smoothing of the node movement due to more drag on the nodes. 

Now let us consider the penalty term Si. The size of S1 directly affects !::..xi since the 

least square formulation tries to keep 

n 

L(Eill.Xi - Si)2 

i=l 

small. So the presence of positive Si prevent ~xi from being too big in the negative 

direction, that is, it keeps the nodes apart. As an e."'tample, we consid~r Burg~r's equation 
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in which 

.C(u) = vu~~- u~u, 

with small number v, usually viewed as dissipation parameter. Then the right-hand side 

of (3.3.32b) contains 

or 

So the right-hand side terms are augmented by 

and 

In this case, it is better to have C2 smaller than the truncation error because the nodes 

will come apart too quickly if there are no convective forces present and the solution has 

zero gradient. 

The only constants left for the user to choose are the ODE truncation error and 

the minimum node separation. In the examples to be presented it was found that d is 

determined by the expected gradients within the problem itself, and therefore, is not 

really at the user's discretion. The ODE truncation error cis very important because an 

excessively small error tolerance will lead to very many iterations in the ODE solver. 
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Herbst & Schoombie ([29]) proved that approximate equidistribution principles are 

implicit in MFE methods. Thrasher & Sepehrnoori (48]) gave stronger distributing prin-

ciple in the assumption that the third derivative of the exact solution e.."<ists. We can 

use the former to check or confirm if the distribution of mesh points is reasonable. The 

approximate equidistribution principles derived in ([29]) is 

where h = maxhi. Provided that the O(h2 ) terms are insignificant compared with the 

other terms in the above, the ''forces" responsible for the movement of the nodes are 

provided by the second derivative of the solution. In practical computation, we can 

properly appriximate u%x( xt) by 

to see if mesh points are well distributed. 

3.11 The First Simplified MFE (SMFE1) 

In this section, we present a simplified MFE involving penalty. This scheme is composed 

of a nonlinear ODE system of equations with respect to velocity of nodes and the explicit 

expression of each ~. 
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From (3.3.23) we see that 6i is linear combination of ai-l! ai, Pi-l and /3i with coeffi-

cients rfi, ri;, sit and sj;. Multiplying (3.3.33) by rj; and then by ril with substitution of 

i - 1 for i we obtain by summing that 

Doing likewise for (3.3.34) with multiplier sj; and sit we obtain 

Adding the above two equations, we see that 

} - { 
Similarly, we have for 6[ that 

("U,6t) + sii(e~~xi- er+1 ~xi+t) } { (.C(U),6[) + sii(eiSi- ei+lSi+d 
- (3.3.37) 

+s£2(e~+~~xi+l - e~+2~xi+2) +s~(ci+lsi+l - ei+2Si+2) 

which, as per derivation of (3.3.26-3.3.27), are actually 

} - { 
} - { 
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Eliminating ai from {3.3.38) and {3.3.39), we obtain that 

{3.3.40) 

Denote [a1(t), · · · , an(t)]T by a and [x1{t), · · · , Xn(t)]T by s. We then obtained, from 

{3.3.40), a nonlinear ODE system of order n describing the velocities of nodes Xi· This 

system can be expressed in the form 

B(s, a)s = b(s, a). (3.3.41) 

As for nodal amplitudes, they can be individually obtained from either (3.3.38) or 

(3.3.39) after (3.3.41) is solved. 

We now briefly summarize the process for obtaining SMFEl as follows. Using MFE 

with penalty term, we discretize the equation (3.3.3) into a system of equations 

(3.3.42) 

which is actually {3.3.35). Then, (3.3.42) is simplified using one-sided discrete delta-

functions into a system of equations of the form 

{ B(s,a)s - b(s, a), 
(3.3.43) 

a - Ms+c. 
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where M = diag(m1, • • • , mn); 

Thus, by using the one-sided discrete delta-function, we are able to obtain an equiva-

lence or a simplified form of (3.3.35) when mi+1 '# mi, which contains an adaptive mesh-

motion algorithm (3.3.41) together with an explicit equation for each nodal amplitude 

dependent on this moving mesh. 

In the next section, we study the properties of matrix B(s, a) and feasibility of sim-

plification when ffl.& = mi+1 for some i. 

3.12 Analysis for SMFEl 

In the process of simplifying (3.3.35) or (3.3.42), the condition Tni ¥: mi+l is necessary 

since division by fni+l - mi is often required. Although we can multiply 6i by (mi-

to avoid this, at least two equations disappear when ffli = mi+1 for certain 1 < i < n. 

Hence we have to study how the system (3.3.43) is equivalent to (3.3.35). Notice that 

{3.3.38) and {3.3.39) contain a term of the form 

for k = i - 1, i or i + L 

eiMt - ei+l ~:i:t+l - etSt + et+lSt+t 
mt+l- mt 

We shall prove that m, = mi+1 exerts no infiuence on the SMFEl. 
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Theorem 3.3 If there exists reachable time t 0 such that mi(to) = mi+1(to), then the 

system (9.9.32a) and (3.9.92b} is still equivalent to (3.9.98} and (9.3.39}. 

Proof. Multiply (3.3.32a) by mi and then add to (3.3.32b} to obtain 

-~(mi+l -1'11i)~xi+l~- ~(mi+l - mi)~xi+l~+l 

+~mi(mi+t- mi)~xi+tXi + ~mi+t(mi+l- ffli)~xi+lxi+l 

1
Z'i+l 

- -(mi+l - mi) Z'i C(U)a1dx 

which, when 1'11i = mi+tt implies that 

at t = t0 • As well, 

Since (3.3.32) is equivalent to (3.3.39) and (3.3.38) when mi -:f: 1'11i+1 for all 1 < i < n, 

we see that (3.3.38) and (3.3.39) is still equivalent to {3.3.32) at t 0 since when Tnj+l = 1'11i 

(3.3.44) can be well-defined due to the above limit. D 

Now we can say that the system (3.3.35) is equivalent to (3.3.43) in any cases and 

thus B ( s, a) is nonsingular. 

From the form of (3.3.40), we see that B(s, a) is a band matrix with width 5. However 

it is neither symmetric nor positive definite, making it difficult to decide whether it can 

be safely solved by Gaussian elimination without row interchanges. 
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De&nition 3.1 Given ann x n matrix A of order k, a leading principal submatrix of A 

defined to be a submatrix of the form 

au a12 a11t: 

a21 a22 a21t: 

a1t:1 ak2 au 

Now we show that Gaussian elimination can be performed to B(s, a) without row 

interchanges so that computational cost is reduced. Actually Gaussian elimination can 

be reliably performed on a matrix without row interchanges if and only if all its leading 

principal submatrices are nonsingular. Hence we only need to show that any leading 

principal submatrix of B(z, a) is nonsingular at any reachable time t0 • For any 1 < k < n, 

we consider the equation with initial time t0 

Ut = .C(u) X E (O,XA:+l), t ~to, 

u(O, t) = u(xk+l (t0 ), t) = 0, t > to, 

u(x, to) = U(x, to) x E {0, XA:+l)· 

(3.3.45) 

Solving the above equation by penalty MFE method with the initial nodes x0 (t0 ), x1{t0), · · • , XA:+l(to), 

we then derive a nonlinear ODE system 

{3.3.46) 

which, in form, is similar to equation {3.3.42) except that the order of matrix here is 

2k, where tlk = [x1(t),at(t),··· ,x"(t),a~~:(t)]T and s1c = [xt(t), · · ·xk(t)]T. A~t:(y(to)) is a. 
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positive definite matrix, which is in fact the 2k-th leading principal submatrix of A£(tl) 

at time t0 • Using delta-function technique, we can derive a simplified MFE system for 

(3.3.46} 

which are in form similar to (3.3.43} where Bk = [a1 , • • • , ak]T and sk = [x1, • · • , x~c]T. 

Actually, B1c is just the k-th leading principal matrix of B(y) in the first system (3.3.43) 

at t = t0 and thus is nonsingular. 

3.13 The Second Simplified MFE (SMFE2) 

In the least squares problem (3.3.31}, we have two unknown vectors, a and 8. Similar to 

that for SMFEl, the principle for the SMFE2 is to find an explicit expression of each~' 

and then minimize the residual with penalty. This idea was proposed by Dukowicz [24}. 

From (3.3.26} and (3.3.27) we can write 

.. = mi + m;+l. . (~(U) 8; + dt) 
~ 2 x, + I., ' 2 ' (3.3.47} 

where 

can be regarded as average slope of U at the point Xi, by which we denote mi. Although 

there are some other expression of ai which can arise from (3.3.26) and (3.3.27), we prefer 

(3.3.47) for a reason to be presented in the section 3.15. The least squares problem (3.3.31) 
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then becomes 

n 6~ +67 n 
II L[(m;a; + /3;)x1 + (.C(U), 1 

2 
1 )a;}- .C(U)II~2 + L(e;~x;- 8;)2 

j=l j=l 

(3.3.48) 

which, by setting the derivative with respect to Xi to zero, yields 

~i+l ( - /3 - + R ) • 
L-lj=i-1 aimi + ;, ai~ JJi x; 

}= 
(3.3.49) 

With i ranging from 1 ton, we obtain an ODE system only with respect to the velocity 

of node 

B(at s)8 = b(a, s). (3.3.50) 
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Notice that ({3;, oi} = (o;, f3i} so that we have, 

0 li- il > 1, 

j = i- 1, 

j = i + 1, 

0 li- il > 1, 

-.!.(m·- m· l)(m·+l- m·)~x · 24 l 1- t I l j =i -1, 

j = i, 

The i-th row and j-th column entry in matrix B of (3.3.50) is 

0 li- il > 1, 

j = i -1, 

j = i + 1, 

and thus B is tridiagonal and symmteric positive definite, since it arises from the least 

squares problem (3.3.48). 
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3.14 Lagrangian framework for MFE 

To analyze the SMFE2 and give MFE more intepretation, we need to recall the Lagrangian 

framework and approach to the derivation of ~IFE given by Mueller and Carey in [45). 

Define a coordinate transformation (assumed nonsingular) between x, t and new in de-

pendent variables ~, r by 

x = x(~, r), t = r, u = u(x(~, r), t) = ii(~, r). 

The Jacobian matrix of the transformation is 

and its determinant 

J = 8(x, t) 
8(~, r) 

IJI = det(J). 

(3.3.51) 

lJI is associated with length in one dimension. For invertibility of the transformation, it 

is necessary for IJI to be sign definite over the entire domain or IJI :F 0. Accordingly, we 

shall take as a constraint on the admissible transformations 

IJI < 0 for any allowable t. 

The partial derivatives of ii satisfy 

au au auax 
-=-+---
Or 8t 8xlh-' 

(3.3.52) 

Then the equation {3.3.3) becomes, in a Lagrangian framework, 

au auax 
- -;r-~ = .C(u), 
{}r .... X...,. 

(3.3.53) 
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with initial and boundary condition. Using the notation 

we can write 

au 
u= ar' 

. ox 
X={};' (3.3.54) 

(3.3.55) 

Here and in what follows Uz is to be regarded as a notation for u{/x{ (cf. (3.3.52)). 

Define the mean square residual 

R(U,i:} = J.\u- u.i:- .C(u)}2dx. (3.3.56) 

For a solution (x, u), R(u, x) is identically zero and minimizes R with respect to both the 

transformation and solution rates x and u. It can be done by minimizing 

R(u + pv, x + pz) 

with respect top with test function v and z selected both from HJ(O, 1) since the endpoints 

are fixed at the boundaries. The variational problem is to seek ( u, x) such that 

{u- u::i:- .C(u), v) - 0 v E HJ(O, 1) (3.3.57) 

(u- u:x- .C(u), zu:) - o z e HJ(O, 1) (3.3.58) 

hold for all admissible T > 0. The test functions (v, z) are with respect to (u, x), instead 

of ( u, v). We require here that the admissible transformations be invertible. If .C( u) = 

U:z::z: + f(u, u:), then the above equations become 

J.' (U- u.i:}vdx - - J.' u.v.dx + J.' f(u, u.}vdx v E Hj(O, 1) (3.3.59) 

J.' (U -u.i:)u.zdx - ~ J.' u!z.dx + J.' f(u, u.)u.zdx z E Hj(O, 1) (3.3.60) 
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for any possible T and admissible transformation. Notice that if the transformation is 

x = ~, then x = 0 so that z = 0 and the above equations are the same as weak formulation 

(2.2.2). 

One can choose various pairs of finite element spaces Ve x W~ c [HJ(O, 1)]2 to find 

approximations of u and x as long as the transformation is invertible. ~lueller and Carey 

called this a continuous deforming finite element methods ( CDFEIVl). In the author's 

point of view, it is a kind of mixed finite element method (see Brezzi and Fortin [11}). In 

this thesis, we set the approximation U of u and X of x to piecewise linear functions, i.e. 

(U, X) E Vl, where Ve is similar to V defined in section 2.3 but it is with respect to ~ 

(and the mesh for~ is fixed). By writing 

n 

u - L ai(r)&i(~) (3.3.61) 
i=l 
n+l 

X - L Xi(r)&,(~), (3.3.62) 
i=l 

where Xn+l = 1, we see that 

(3.3.63) 

for~ E (~i-ll ~i)· Hence the transformation (3.3.62) is invertible if and only if Xi does not 

catch Xi+l for any 1 < i < n. This result is the same as in Miller's method. 

Actually, for ai(X) E V and &i(~) E \'e, both are of value 1 at ~i and 0 at other nodes. 
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Furthermore, 

Xitt-X(-r,() X E [X v ) 
Xitt-Xi it -~~i+l 

0 elsewhere. 

Since X ( r, ~) is piecewise linear and X ( r, ~i) = Xi for any 1 < i ~ n, we can see by mean 

value theorem that ai(X(r,~)) = &i(~). The discrete formulation of (3.3.59) and (3.3.60) 

become 

J.\U- UxX)vdX - - J.' UxvxdX + J.' !(U, Ux)vdX (3.3.64) 

f.' (if- UxX)UxZdX - 4 f.' U'fcZxdX +f.' f(U, Ux)UxZdX (3.3.65) 

for all test functions (v, Z) E Vl. Hence by transformation (3.3.62), we can rewrite 

(3.3.64} and (3.3.65) as 

(M;+L- M;)- f.' j(U,Ux)a;dX (3.3.66) 

(A--1]+1 - Mj) 1.1 

2 
+ 

0 
j(U, Ux)1\tf;o:;d~.3.61) 

for j = 1, · · · n, where Mi = Ux is slope of U in segment (Xi-tt Xi)· We can see that 

(3.3.66} and (3.3.67) are exactly the same as (3.3.6) and (3.3.7) respectively when £(U) = 

U%% + j(U, U%). So we can say that Miller's MFE scheme is a special case of CDFEM 

in which X is taken piecewise linear function. The distribution of ~i is dependent on 

the initial mesh of x. In this way, one can circumvent the 6-mollification and limit 

interpretation. 
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3.15 Analysis for SMFE2 

This section will present why the equation (3.3.47) in SMFE2 is the approximation of 

the original equation (3.3.3). To do this, we need to use the Lagrangian framework of 

~IFE, which, through the transformation x = x(~, T), t = T, make the original equation 

Ut = .C(u) be 

(3.3.68) 

Since u(x,, t) = u(x(~h r), r) = u(~i, T) and ai(t) is an approximation of u(~i' t), ai(t) = 

ir,(t) is the approximation of u(i(~i, T), r). Also x,(t) = x(~, t) implies that ±, = ±(~,, r). 

Finally mi is the average slope of U in [xi_1, xi) and [xi, xi+L), which is thought of as the 

approximate slope at the point x1, and thus the approximation of u% at xi. Now we show 

that 

~{.C(U), cSi + cS{) 

is approximation of .C(u). For convenience, restrict .C(u) = vuu + f(uz, u), which is the 

general form we study in this thesis. We first show that 

~{Uzz, cSi + cS{) 

is an approximation of U:n, and then 

is an approximation of J ( Uz, u). 
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From a direct computation using (3.3.9)-(3.3.11), it follows that 

(3.3.69) 

Actually, mi = U% for any x E (xi-lt xi). If we ignore the subscript i, we can write 

l ffii X E (Xi-lt Xi) 
m=U%= (3.3. 70) 

17li X= Xi, 

which, through the transformation x = x({, r), t = T, becomes k/({, r), a piecewise 

smooth function. Hence 

2·mi+l - 3mi + 11li-1 

A xi 

and similarly 

2M({i+l' r)- 2k/({,, r) - M({i, r) + M({i-1, r) 

X({it r)- X({i-1t r) 

-mi+2 + 3mi+l - 2mi ~ M( I 
AXi+l X{ ({i,{i+l) 

so that the right hand side of (3.3.69) is a difference approximation of the expression 

(3.3.71) 

~loreover, the above term is actually 

which is an approximation of u%% at Xi· 

It remains to deal with the function f(U-z, U). As explained in section 3.7 the space 

spanned by a 1, · · · , an 1 {31 1 • • • 1 f3n is actually piecewise linear (discontinuous) function 
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space Sand both 5i and 5t are functions of S. Let P be the projection operator to S, 

then 

(P f(Uz, U), cp) = (/(Uz, U), cp) 'Vcp E S. 

Thus 

~(j(Uz, U), 6i + 5t) - ~(P /(Uz, U), 6i + 5t) 

- H(PJ(U., U)(xj,t) + (P f(U., U)(xt, t)] 

which is the approximation of /(uz, u). 

Hence, the solution of (3.3.50) followed by (3.3.47) constitutes an approximate solution 

of the original problem (2.2.2). 

67 



Chapter 4 

Error Analysis for MFE 

In the description of Chapter 3, the MFE equation is of the form 

(U, ai) - (..C(U), ai) 

(U, /3i) - (..C(U), ,Bi) +penalty 

(4.4.1) 

( 4.4.2) 

fori= 1, · · ·, n. If we solve the equation (4.4.1) for i& 1, • • • ,an and then substitute the 

result in ( 4.4.2), the latter then yields equations only with respect to derivative of the 

mesh points Xi (i = 1, · · · , n). Thus we can think of MFE equation as an approximation 

of original POE coupled with a mesh POE. In this section, we shall pay more attention 

to the equation (4.4.1) to conduct error analysis. 

As we all know, MFE method is very efficient to solve the problem with steep moving 

front. To the author's knowledge, few papers show why this method is efficient. The 

principal piece of error analysis known for the MFE method is the early work of Dupont 

(25j, although a number of authors have been encourged by the ~IFE method to obtain 
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error estimates for related adaptive methods ([7], [38] and [49]). 

Since we have been able to show that the method can be broken into a mesh PDE 

separate from the orginal PDE (4.4.1), we only need to analyze the error of the discrete 

formulation of original PDE based on the mesh which is just obtained from mesh PDEs. 

In this chapter, we always use L2 and Hr to denote £ 2 (0, 1) and Hr(o, 1) respectively 

for r = 1 or r = 2, and also denote hi(t) = .:1.xi(t) as well as h(t) = max1$i$n+l Axi(t). 

The constant c that arises are always independent of the mesh and the solution but can, 

of course, differ wherever they occur. 

4.1 Interpolation with piecewise linear functions 

We have mentioned a little about piecewise linear interpolation in Section 2.3. Now we 

discuss a bit more about it as it relates to error analysis. For convenience, we repeat some 

concepts introduced previously. Thus, let V be the piecewise linear function space with 

respect to the division 

1r(t): 0 = Xo < Xt(t) < · · • < Xn(t) < Xn+L(t) = 1, 

that is 

V = {v E C(O, 1) x L 00 (0, T] : vl[~1_ 1 ,~i) is linear for x, 1 < i < n + 1, v(O, t) = v(l, t) = 0}. 

(4.4.3) 

Let {ai}i'::1 be the basis function of V. The interpolation of u is defined by 

n 

u1(x, t) := L u(xi! t)a:i(x, t), (4.4.4) 
i=l 
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which implies u(xi, t} = ur(xi, t) fori= 0, 1, · · · , n + 1. 

Lemma 4.1 Let Pr be an operator with Pru being polynomial of degree less than r+ 1 and 

satisfying Pru = u when u is a polynomial of degree less than r+l. lfu E wr+l,.t(Xi-lJ Xi), 

then there exists a constant c independent of h and u such that 

llu- Prullw1·•(:z:;-t.Zi) < ch~+"-l(t)lulwr+~··(:z:;-t.Zi) 

where 0 < l < r, 1 < s < +oo and Jl = 0 or 1. 

Theorem 4.1 

llu- utiiL•<••-~o••) < min ( h;(t)luln•c••-•"'•l• ~h~(t)luln•c••-•·••l). 

This theorem can be seen from (34]. 

It follows from Theorem 4.1 that 

llu- UtiiL• :5 min ( h(t)luln•, ~h2 (t)luln•). 

Lemma 4.2 If u E H2 (Xi-l, xi), we have 

Proof. Since 

(4.4.5) 

from u:(xi) = u= and u = u.1 when u is linear function and Theorem 4.1, the Lemma 4.2 

follows. 0 
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4.2 A priori error estimate for linear equations 

Consider the equation (3.3.3) with 

8 8u 
.C(u) = ax [p(x, t) 8x (x, t)] - q(x, t)u(x, t) + r(x, t) ( 4.4.6) 

and t < T, where 

p e C 1[o, 1], P > o, 

q, r E C(O, 1], q > 0. 

Lemma 4.3 (Poincare Inequality) There exi.st.s a con.stant c such that 

for any u E HJ. 

Proof. Integrating by parts and Schwarz's inequality yield 

llulli2 - 1' u•tb: 

- xu21~- 211 

xuu'dx 

< 211

iuu'idx 

:5 211 u IIL21!u'll L2, 

which implies that 

From the proof, we see that the constant for Poincare Inequality is 2 when the interval 
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Lemma 4.4 There exists a constant 'Y such that 

Proof. Let 'Y be the minimum value of pin (0, 1], then 'Y > 0 and 

since q > 0. 0 

Lemma 4.5 If u E H 2 , then there exists a constant c such that 

Proof. Let s = +oo, l = r = 0, then we obtain from Lemma 4.1 that 

since p = p(xi, t) when p is a constant with respect to x. Considering V:r is a constant in 

each subinterval [xi-b xi], we obtain by Schwarz's inequality that 

(p(u- ur) •• v.) = ¥~ ( [~, fp- p(x,, t)](u- ur ).v.dx + p(x,, t) [~, (u- ur).v.dx) 

< ~(liP- p(x,, t)i]L~(•;- 1 ,z;) [~, ](u- ur).v.]dx + p(x,, t)v.(u- ur{_) 

n+l 

< c L hi(t)ll(u- ur):r!IL2(:r•-•.z.JIIv:r!IL2 (:ri-L.Zi) 
i=l 
n+l 

< c L hi(t)l-uiH2(:r,_l,z,}lviH1(:ri-l.Zi) 
i=l 

72 



Considering 

we get the result of this lemma. 0 

Now we go back to the equation ( 4.4.6). The weak formulation of ( 4.4.6) is to find 

u E HJ(O, 1) such that 

(u, v) + (pu.z:, v:z:) + (qu, v) = (r, v) 'Vv E HJ. 

We let a( u, v) denote the bilinear form 

From (3.3.6), we see that 

(U, v) = (£(U), v) 'Vv E V, 

which with respect to ( 4.4. 7) is 

(U, v) + (pUz:, V:z:} + (qU, v) = (r, v) 'Vv E V 

or 

(U, v} + a(U, v) = (r, v) 'Vv E V. 

Substracting (4.4.7) from (4.4.9} yields 

(u-U,v)+a(u-U,v)=O 'VvEV 
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since V C HJ. For usual FE-method with fixed mesh, the error estimate for parabolic 

equation is obtained via the elliptic projection Ru of the exact solution which is defined 

by 

and the estimate 

a(Ru- u, v) = 0 Vv E V 

( . dRu ) u-dt,v - (U. - RiJ., v) 

( 4.4.11) 

However, for MFE, d!" is different from Ru since the former contains discontinuous parts 

n 

Lxi(Ru):z:ai 
i=l 

so that we have to employ other technique to derive the error estimate. 

Lemma 4.6 Let u E H2 x L00 {0, T). Furthermore let ~tk denote the time step for the 

k-th iteration and let K be the number of total iteratioru, there exists a constant c such 

that 

for any T E [0, T], where 
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Proof. From Lagrangian framework for lVIFE in Section 3.14, we have 

from which, we see that 

( u,)r = t, [ U(x({;, t), t) - u,(x({;, t), t):i:({;, t)] <>; 

- t [u(xi, t) - uz(xi, t)xi] ai 
z=l 

where we use x(€i, t) = xi(t). Since for any v E V, 

n n 

v = L v(x,, t)ai = L vi(t)ai 
i=l i=l 

we have 

~[·c )av . av] vt=~ vxi,t-
8

_+xi-
8

. , 
i=l v, x, 

and thus we see that 

(u!)t = t [u(xi, t)oi + xif3i] = t [u(xi, t)oi- (ur )zXioi]. 
•=l •=1 

Applying Lemma 4.2 we obtain 

I { ((u,)r- (ui)t. v)l = I { <t,((ur).- u,(x;, t)):i:;<>;, v) I 
< i: o~f's't I [ ((ur)s- u.(x;, t))a;vdxl i; j:i:,jAt• 

n 

< l~l~· L ~h(t)luiH2{z;-l.Zi+dllviiL2 (z,_l,z,+d 
-- i=l 
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In the following, we shall often use the inequality 

ab < ~(c-- 1a2 + eb2) for nonnegative a, b, and positive £. (4.4.12) 

If e = 2v, we have 

where v is a positive number. 

Theorem 4.2 If u E H2 and Ut E H2 , there exists a constant c such that 

1 

llu-UI!L:~ < c max ( [h4 (t) !..,. (lueiH'l+luiH2)2dt+..\2h(t)2 lulk2+h4 (0)Iuolk2] 
2 
+h2 (t)luiH2). 

- O$t$T o 

where 

Att is the time step for the k-th iteration and K is the number of total iterations. 

Proof. Let 8 = U - u1 and p = u1 - u, then U- u = p + 8. From ( 4.4.10) and Lemma 

4.5, we see that 

(8t, v} + a(O, v) - (ue- (u,)h v) + a(u- u,, v) 

Taking v = 8, we see from Lamma 4.4 and the inequality (4.4.12) with£= 2-y that 
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which implies 

(4.4.13) 

For any fixed 0 ~ r ~ T, we assume that r' E (0, r] such that 

max IB(t)l = IB(r')j. 
09$T 

Integrating (4.4.13) from 0 to T
1 and using Lemma 4.6, we see that 

which can yields 

Hence, we have 

IIBIIL2 < ll8(r')IIL2 

~ c max [h4(t) J.T (lutiHl + jujH2)2dt + A2 max [h(t)2 lul~2 + h4 (0)luolk2] t 
O$t$T 0 09$T 

since 

Finally, this theorem follows from 
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and 

In this error estimate, the number A is related to computation. Now let us see an 

example by considering the equation 

Ut = U:r:z: + (1r2 + 1) sin(1rx) X E (0, 1) t > 0, 

u(O, t) = u(1, t) = 0 t > 0, 

u(x, 0) = sin(1rx), 

with T = 2 and nodes as indicated in the table. 

n=25 n=50 n= 75 

A 67 70 102 

max(o,TJ h(t) by SMFE 0.176809 0.086335 0.06087 

llu- Ull£2 0.144019 0.101917 0.053815 

n = 100 

93 

0.071309 

0.049851 

Table 4.1: ,\and maximum mesh size when solving (4.4.14) by MFE. 

(4.4.14} 

We see that a priori error estimate presented above is not sharp because ,\ is not in 

proportion with the reduction of max[o,T) h(t). The following section considers other kind 

of error estimate. 
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4.3 A posteriori error estimate 

In most of the error analysis in finite element methods, the error is bounded by the 

product of a constant, the mesh size with certain power and the Sobolev norm of the 

exact solution. The general form is chrllull. This kind of error estimate, as in Theorem 

4.2, needs smoothness of the solution, which depends on the norm needed. Moreover, the 

exact solution is an unknown so that the error bound cannot be predicted. For ~lFE, the 

mesh size is the function of time t. In some cases (see Table 4.3), the maximun length 

of subinterval is very large and almost half of the whole interval. Furthermore, !lull can 

be large too so that the error estimate in the form chrllull is almost meaningless. In the 

following, we introduce so called a posteriori error estimate, in which the error bound is 

a function of the approximate solution. 

Theorem 4.3 Let U be the approximate solution of (4.4.6) solved by MFE and; be the 

minimum of the function p in [0, 1], then 

where 

R(U) = U- (pU:z):z + qU- r on each subinterval (xi-L, xi)-

Proof. Let e = U- u. Considering 

(uh e} + a(u, e) = (r, e) 

and 
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then since e E HJ and e1 E V, we see 

(Ut- ue, e)+ a(U- u, e) - (Utt e)+ a(U, e)- (ut, e) - a(u, e) 

- (Ut, e)+ a(U, e)- (r, e)+ (r, er) - (Ut, er) - a(U, er) 

- (Utte- er) + a(U, e- er)- (r, e- er) 

n+11r-
- (Ut + qU- r, e- e1) + L ' pUz(e- er)%dx. 

i=l %a-t 

Integrating by parts over each subinterval [xi_1,xi] in the second term and using (e-

e1 )(xi) = 0, so that all resulting boundary terms disappear, we obtain from Theorem 4.1 

that 

(U, - u., e) + a{U- u, e) - ~ 1•; [U, - (pU,), + qU - r](e- e1 )dx 
i=l %j-l 

n+l 

~ L ~(t}IIR(U)IIL2(%a-L•%•) leiH1(:z:,_,,%i) 
i=l 

n+l 

< [ L hHt)IIR(U)IIl2(%>-t.r>)]! leiH1{%i-t.%d 
i=l 

which implies from Lemma 4.4 that 

1 diiU- u!li:z I 
1
2 1 ~ 2( [[ ( -)'[2 2 

2 dt + 'Y e Hl < 47 ~hi t) R U I L2(:z:i-t.%i) + 'YIIe[IH'· 
i=l 

Integrating both sides in the above from 0 tot and considering U(x, 0} = (u0 ) 1 , we have 

Now if we return to our example from the previous section we can see, from the following 

tables, that this bound has more to offer than priori error estimate. 
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n=25 n=50 n=75 n = 100 

A posteriori £2-error bound by SMFE 0.527510 0.504474 0.500638 0.499517 

max[o.T] h(t) 0.176809 0.086335 0.06087 0.071309 

min[o.T] h(t) 8.918E-7 4.25E-8 3.459E-9 9.14E-10 

l!u- Ull£1 0.144019 0.101917 0.053815 0.049851 

Table 4.2: A posteriori error bound, real £2 error and maximum mesh size when solving 

(4.4.14) by SMFE. 

4.4 Sharp error bound for a posteriori error estimate 

This section deals mainly with a posteriori error estimate for the equation 

with small positive v. Similar to the former section, we still denote 

e = U- u. 

Using various integral identities, instead of inequalities, we can derive a sharp error 

bound. Let x~ be the midpoint of the interval [xi_1, xi] and Ai = hi/2, then the error 

function 
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is negative on {xi-If xi), zero at Xi-t and Xi. Moreover we have 

( 4.4.15) 

Lemma 4.7 Let v be a linear function in the internal [xi_ 1 , xi}, then we have 

Proof. Using Taylor expansion 

integration by parts, and considering that both Ei(x) and e- e1 are zero at x = Xi-l and 

x =Xi, we have 

Taking e = 2v in inequality (4.4.12), we have 

/.

:r · 1 /.:r' ( 1 ) 2 /.:r' :,~ 1 (e - er )vdx < 4v :,_
1 

E;(x)v(x~) + 6[Ei(x)]"v: dx + v :,_
1 

(e')2dx 

-
4
1
11 

Ii + vlel~l(:r,_ 1 ,:rd. ( 4.4.16) 

Now let us calculate Ii. Since 

EHx) =x-x~ 
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and 

- 3(x- xi)2 - ..\~ 
c ', 

we see that 

We obtain from (4.4.16) that 

Lemma4.8 

(i) (U + U~)(x~) = ~(ai + cii-1 -ffii(xi + ±i-d + 27ni), 

(1.1.) u· 1 (. · (. · )) ~ = hi £li - £1i-1 - ffli Xi - Xi-1 · 

Proof. In the interval (xi-1, xi], 

with 

X- Xi-1 
0•= 

• Xi- Xi-1 
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and 

so that 

for x E [xi-1, xi]· Thus, we obtain that 

Hence (i) can be derived from u~ = mi in [Xi-1, Xi], and 

yields (ii). 0 

Lemma 4.9 

Proof. From integrating by parts, we have 

(U~- u~, e) - l'ezed:J: 
1 211 - -e o 
2 

- 0. 0 

Theorem 4.4 There holds that 
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where 

G ( ) 1 h3 (. . (. . ) 2 )2 i t -
720 

i a;- ai-l- mi Xi- Xi-1 + mi 

1 h3(• . (" . ))2 + 48 i ll; + Cli-1 - ffii Xi + Xi-1 · 

Proof. Since 

and 

we have 

Notice that since Ux is a constant on each interval [xi_ 1 , x1}, we have 

Thus we have 
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Take v = (J + Ux in Lemma 4. 7 and then use and lemma 4.8 to yield 

Thus we have 

so that 

1 d[J 11 2 1 n+l 
e L

2 + v[e[2 < - '"'G·(t) + v[e[2 
2 dt Hl - 4v t;r 1 Hl 

1 diJelli,2 < ~ E Gi(t). 
2 dt - 4v i=l 

Notice that e(x, 0) = (uo)r- u0 and hence we have 

Let us consider solving the equation 

Ut = liU-z:: - Ux X E {0, 1) t > 0 

u(O, t) = u(l, t) = 0 t > 0, 

u(O, x) = sin(1rx) 

( 4.4.17) 

by SMFE and SMFEl respectively with v = 0.1. The posteriori error estimates are as 

follows. 
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n=25 n=50 n=75 n = 100 

Sharp a posteriori £ 2-error bound by SMFE 0.517523 0.517080 0.516375 0.516136 

max{o,T] h(t) 0.637405 0.643031 0.596892 0.616661 

min[o,T) h(t) 1.9E-8 3.93E-10 8.4E-11 8.17E-11 

Table 4.3: A posteriori error bound, maximum and minimum mesh size when solving 

(4.4.17) by SMFE. 

n = 25 n= 50 n = 75 n = 100 

sharp a posteriori L2-error bound by SMFEl 0.495637 0.494188 0.491299 0.482700 

max{o,TJ h(t) 0.040026 0.02 0.01333 0.01 

min[o,T] h(t) 0.039819 0.19998 0.01332 0.01 

Table 4.4: A posteriori error bound1 maximum and minimum mesh size when solving 

( 4.4.17) by SMFEl. 

We can observe that the distribution of mesh points using penalized ~IFE is much 

different from that without penalty. Although the model considered is linear PDE, some 

nodes are still very close at certain time when using MFE without penalty. The presented 

tables show that a posteriori error from penalized MFE is better than method without 

penalty. Hence, we can conclude that distribution of mesh points affects a lot on accuracy 

and penalty plays an important role in MFE computation. 

The reason we cannot usc theorem 3.2 is that in (4.4.17) .C(u) = VU.zz- Uz is not of 
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the form (3.3.6) and there is no result similar to Lemma 3.4 with respect to it. Unlike 

solving (4.4.14), SMFE yields such a large maximum mesh size when solving (4.4.17) that 

it is over half the domain. When using SMFEl, the error bounds are improved a little 

bit and the maximum mesh size is controlled to be small. 
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Chapter 5 

Gradient-Weighted Moving Finite 

Eletnent 

The gradient-weighted moving finite element (GWMFE) method was introduced by Miller 

in (39} and [40}. Similar to MFE, GWMFE allows the nodes of the approximant to move 

and concentrate automatically and is especially suited to those many nonlinear PDEs 

which develop sharp moving fronts. One of the major weaknesses for MFE method is 

the need for excessive tuning in the choice of the internodal regularization terms (e-i and 

51 in (2.2.30)). A consistent rationale for the form and coefficients of the regularization 

terms of MFE was given in [39], but the choice of coefficients for an efficient computation 

nevertheless remains overly sensitive. It was in part for this reason that gradient weighting 

was introduced (see [39] and [55]). The reported experimental computations shows that 

GWMFE is far less parameter sensitive than MFE. This excessive sensitivity of MFE 
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has been reported by some researchers, most recently by Furzeland, Verwer, and Zegeling 

{[27]) in an extensive comparison of MFE with two other moving node methods in one 

dimension. Since then, that study has been extended from l\tlFE to GWl\tlFE by Zegeling 

and Blom [55], who report greater robustness in the choice of regularization coefficients. 

The gradient-weighting amounts to the use of weighting functions in the finite element 

formulation that depend on the gradient U:z: of the solution. This treatment results in a 

more robust process in that parameter tuning becomes easier and less critical. 

5.1 The description of GWMFE 

We still consider the initial boundary value problem 

Ut = £(u) X E (0, 1), t > 0, 

u(O, t) = u{1, t) = 0, 

u(x, O) = uo(x). 

(5.5.1) 

For Burgers' equation, .C(u) = vu%%- uu:z:, representing an important class of PDEs. As 

discussed in chapter 3, this equation develops a steep moving front. In such a front, Ut 

behaves like a delta-function and in case of a true shock, Ut is not an £ 2-function. To 

use the £ 2-norm in the minimization of the residual Ut- .C(u) with respect to Ut in the 

sense of limit of 8-mollification is therefore not appropriate for such problems. Since the 

normal component of uh [ut}N, remains bounded even in an arbitrarily steep front, it is 

preferable to minimize the residual of the POE for the normal motion of the solution. So! 
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instead of using the £ 2-norm, GWMFE uses the weighted £ 2-norm 

[ [U,- .C(U)]~ds =f.' [U,- .C(U)]2 wdx, (5.5.2) 

where the weighting function w = w(U:r) is defined by 

1 
w(U:r) = . 

y'l +Ui 
(5.5.3) 

We still assume that U(x, t) is a piecewise linear approximation in space expressed by 

U(x, t) = a1(t)a1(x, t) + · · · + an(t)an(x, t). (5.5.4) 

The variational interpretation to motivating the GWMFE minimization procedure is to 

multiply the differential equation (5.5.1) by J! + u;, giving 

.C(u) 
(5.5.5) 

The left hand side of equation (5.5.5) is then the component of the velocity of the solution 

curve at right angles to itself. Minimizing the square of residual of (5.5.5) with respect 

to Ut over spatial variable yields 

based on which, we get the equivalent form to ( 5.5.2) 

min f.' (U, - .C(U))2 ..; 1 dx. 
UtEV o l+Ui 

( 5.5.6} 
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Since U is the linear combination of the basis functions a 1, • • • , an, we obtain the normal 

equations of {5.5.2) by setting the derivatives with respect to Xi and ai to zero 

for i = 1, · · · , n, or 

i+l 

L (ai, a;w)a; + (ai, /3;w)x; = (ai, .C(U)w}, 
i=i-1 

i+l 

L (/3i, a1w)a; + {/3i, /3;w)x1 - {fJi, .C(U)w), 
i=i-l 

{aiw, U) - {aiw, .C(U)}, (a) 

(f3iw, U) - (/3iw, .C( U)}, (b) 

(5.5.7) 

(5.5.8) 

(5.5.9) 

where the weighting function is defined by {5.5.3). When .C(U) contains Urr we still 

consider the minimization as the limit of 8-mollification. The only difference with (3.3.6) 

and (3.3.7) is the inner products are replaced by weighted inner products. A nice property 

of w, due to the piecewise linear approximation {5.5.4), is the fact that it is a constant 

on each cell. Like in Chapter 3, insertion of all inner products yields the semi-discrete 

GWMFE system of the form 

(5.5.10) 
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where y is the same as that in {3.3.8), A9 (y) is symmetric and 2 x 2 block tridiagonal of 

the form 

Af.t Af,2 

Af.2 A~.2 

A!-l,n-2 A!-l,n-1 A!-l,n 

A!-l,n .4~,n 

where 

For the right-hand side vector of (5.5.10) , we see that 

g(y) = ((£(U), o1w), (.C(U), f3tw), · · · , (£(U), Onw), (C.(U), .Bnw)JT. 

The calculation of A9 (y) is based on 

0 

0 

!Ax·w· 6~ ' t 

-l7n·~X ·W· 
6''"1 ' ' 

-lm ·+t~X ·W· 
6 ' ' ' 

li- il > 1, 

j = i -1, 

j = i + 1, 

li- il > 1, 

j = i -1, 

j = i + 1, 
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0 li- il > 1, 

j = i -1, 
(5.5.13) 

j = i, 

j = -i + 1, 

where 

1 
Wi= . 

Jl+m~ 

Also in this case, the mass-matrix A9 may become singular. It is known that singularity 

occurs if we have parallelism, i.e. mi = mi+l for certain i. In order to prevent these 

singularities, Miller [40} has suggested to carry out the minimization for the penalized 

expression (if £(U) contains Uu, the minimization is still in the sense of 6-mollification) 

(5.5.14) 

or 

1' [t(B,o, + X,{J,)- .C(u)]2wdx + t(e,i,- S,)2
, 

0 i=l i=l 

(5.5.15) 

the length of the ith segment. In contrast with MFE, the modifications involved induce 

changes to both equation of (5.5.9a) and (5.5.9b). The combined effect is that each 

ith segment adds a "viscous" penalty force of magnitude cr/i = .4.2ii/li, and a "spring" 

penalty force of magnitude ~isi = B2/l~ to the two nodes at its ends, both penalty forces 
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working in the tangential direction. It is clear that, with the modifications, GWMFE 

produces equations that are even more complicated and nonlinear than the penalized 

MFE equations (3.3.32). 

As for MFE, the "segment viscosity" terms c~ serve to avoid parallelism. This means 

that the parameter A provides for the regularity of the mass-matrix A9 in the near de

generate situation of an almost flat solution. Likewise, the "internodal spring" terms £iSi 

take over to regularize the semi-discrete system in the steady-state case b9 = 0 whenever 

parallelism occurs. In applications, it is often possible to put B equal to zero so that 

only the parameter A remains. A third penalty parameter, such as the din MFE, is not 

considered in the present form of £i or ciSi. The direct analogue l1 - dis redundant: it is 

unlikely that l1 tends to zero because this would require that both ~x1 ~ 0 and ~ai ~ 0. 

Leaving out the penalty parameter to refrain ~x1 from becoming zero might be defended 

by noting that GWMFE is supposed to send considerably less points in the steep parts 

of the solution. 

95 



The system (5.5.7) and (5.5.8), based on (5.5.11)-(5.5.12), becomes 

- {oi, .C(u)w) (a) 

(5.5.16) 

- (f3i, .C(u)w) . (b) 

The system is almost the same as MFE system (3.3.8) in the form. 

Let us get an idea of the complexity of the ODE system arrived at from penalized 

least square form (5.5.14). The normal system for (5.5.14) is 

c~tl ~Gitl~Zitl~i+l +£~±1 ~a~tl ~ciitl 
lf+l 

Due to 

1 

- I 
- I 

Wi = ~==:;;: 
Jl+m~ 

and 

96 

(.C(U)w, oi) 

+c;S;Aa; _ EittSitl~Gitl 
t, litl 

(.C(U)w, Pi} 

+e;S;~z; _ EittS&ttAZ;tt . 

l; '•+1 

(a) 

(5.5.17) 

(b) 



we see alternative form of (5.5.17) 

-I (b) 

(5.5.18) 

5.2 Relation between MFE and GWMFE 

Notice in the equations (5.5.16) that the test functions { a;.w, ,B;.w} span exactly all piece-

wise linear functions (continuous or discontinuous) and that the original test functions 

{a;., .Bi} do the same. It seems that the weighted MFE (5.5.16) and unweighted (3.3.6) and 

(3.3.7) MFE equations are equivalent. This however is not the case when .C(u) contains 

second order terms Uzz; recall that the second order inner products must be interpreted in 

the sense of mollification, and that makes all the difference. Let now our piecewise linear 

functions U be slightly smoothed off or '"mollified" to be T6U. Using {3;. = -a;.Uz, we 

obtain, if W(m) denotes any antiderivative of w(m) and MW(m) denotes any antideriva-

tive of mw(m), the following limits (as the mollification parameter tS tends to zero) for 
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our second order inner products 

.-

(5.5.20) 

since the values of U:u concentrate at nodal points and are zero at elsewhere. The im-

plementation of the "uu-terms" has to be done carefully because both the formulas 

ln(mi+t + Jml+t + 1) -ln(mi + Jm1 + 1) and v'm~ + 1- v'm1+t + 1 are susceptible to 

loss of accuracy by roundoff error if mi or ffii+t is large and negative. Usually (U::, f3iw) 

is evaluated as 

V V m~ m~ m~ + 1 - m~ + 1 = ' - •+1 

' •+l 1 + Jm~ + 1 1 + Jm1+1 + 1' 

98 



which gives automatically the correct expression even for small values of mi. In {Uzz, oiw), 

ln(mi + Jm~ + 1) is evaluated as 

to avoid the problems for large and negative mi, and in case TJ = ffli/ vm1 + 1 is small as 

a truncated Taylor series, i.e. 

5.3 Simplified GWMFE 

In this section, we use delta-function technique to simplify GWMFE without penalty 

terms. Similar to (3.3.25), we obtained from (5.5.9) that 

{b;w, U) - {b;w, !.(U)), 

{btw, U) - {b"tw, !.(U)), 

which simplify to 

ci·-m;:i:; 
Jt+m~ - {b1-w, !.(U)), 

Gi-mitlZi - {btw, !.(U)). 
v'l+mf+l 

Thus we obtain the simplified GWMFE of the form 

~ -

.jl + m~(6;w, L:(U)) - .j1 + m1+1 (btw, .C(U)) 
17lj+l- mi 

ffii+l Jl + mN5;w, L:(U))- TnjJl + m~+l (8"tw, L:(U)) 

1'lli+ 1 - 1'lli 
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(5.5.23) 
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when ffli # m1+1 for each i E [1, n] or no parallelism. If .C(U) does not contain the second 

order term U::, then w can go out of inner products since it is a constant in each cell. As 

a result we obtain exactly the same form as simplified MFE (3.3.28) and (3.3.29}. 

5.4 Simplified Penalized GWMFE (SGWMFE) 

In chapter 3, we use delta-function technique to obtain a simplified MFE (SMFEl} scheme 

which is equivalent to the original penalized MFE. The main idea is to get a system only 

involving velocities of nodes. The technique is feasible mainly because the penalty term 

is only with respect to nodes and only half of MFE equations have penalty. However, the 

penalty term in GWMFE is function of both velocities of nodes and its amplitude and 

thus attached to all GWMFE equations. When <5; and <St are in the inner products by 

using (5.5.17) neither velocity of node nor velocity of nodal amplitude is removed. Hence, 

to obtain simplified GWMFE, we have to use the technique similar to SMFE2, that is, we 

get approximation of ai from (5.5.9) and then minimize penalized square form {5.5.15). 

From (5.5.22), we see that 

it; = m;X; + H J 1 + ml(c5i w, .C(U)) + J 1 + m~+l (Otw, .C(U))). 

where mi = ~(ffli + ffli+d· Denote kli by 

~{<5; J1 + m~ + <St Jt + m~+l' .C(U)w). 
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Since 

we see from (5.5.25) that 

Thus (5.5.15) becomes 

Aa1A~ + Ax,Axi 
l~ -

J(aa,)2 + (Ax1}2 

- wi(m,aai +at,), 

11 [t ((m;a; + f3;)x; + !vl;a;)- £(U)]
2

wdx 
0 ]=l 

+ t (c;W; [(1 + m;m;)x;- {1 + m;m;-d±;-1 + m;(kl;- M;-d] - s;)~,5.26) 
J=O 

Minimizing the above square formulation with respect to [x 11 · · · , xn]T by setting the 

derivative with respect to ±1 being zero yields 

i+l 
L (m;o:; + !3;, (m,o:i + !3i)w)x; 

i=i-l 

-crwr(1 + mimi-d(1 + m;mi)±1-1 

-€;+1w;+l (1 + mi+tm.H1 + mi+lmi+t)xi+l 

- J.' (m;a; + {J;)C.(u)wdx 

1 
-

12 
(m1+1 - mi)[Mi-tAxiwi + 2Mi(axiwi- Axi+lwi+d - Mi+tAXi+tWi+t)] 

+(1 + m.mi)[crw:ffljaM, - c,wis,] 

(5.5.27) 
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where 

and 

(miai + /3i, (Tniai + /3i)w) 

0 

- 2~ (mi- mi-L)(ffli+L - mi)~xiwi 

li- il > 1, 

j = i- 1, 

j = i, 

- 2~ (mi+L- mi)(mi+2- mi+t)~xi+lwi+L j = i + 1. 

This can be expressed in the form 

(5.5.28) 

where matrix B 9 is symmetric, positive definite, tridiagonal and its order is n. Hence the 

system of equations (5.5.28) is much simpler than the penalized GWMFE system resulted 

from (5.5.18). 

5.5 Analysis of SGWMFE 

Similar to SMFE2, (5.5.28} can be regardea as mesh equation, based on which the ap

proximate solution is obtained from (5.5.25} which in turn is an approximation of the 

original equation (5.5.1). 

Now we show that (5.5.25} is really an approximation of the original equation (5.5.1}. 
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We still assume that 

.C(U) = vUn: + f(Uz, U) . 

When mi is close to mi+ 1 and mi-l, we use formulas 

and 

to obtain 

ln(mi + Jl + mn - ln(ffii-1 + Jl + mr-d ~ 

ln(ffii+l + Jl + m~+l) -ln{mi + Jl + mr) ~ 

where Ami = ffli - mi-l· In the same way, we see that 
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The above two equations indicate that 

~[Vl +m~(Uu,6iw) + Jt +m~+1 (U:z::z:,6i)w)] 
~ [271li+l - 3mi +mi-l + -mi+2 + 3mi+l - 2mi], 

AXi ~Xi+l 

which is the same as 

so that it is an approximation of U:z::z: at x = Xi . 

As to 

it is directly the same as 

since the gradient weight function can go out of inner product, and thus it is an approxi-

mation of /(U:z:, U) (we discussed in section 3.15). 
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Chapter 6 

SMFE, SMFEl and SMFE2 for 

Syste111s of Equations 

Many problems of practical interest involve systems of equations with several unknown 

variables, for example the equations of Euler or Navier-Stokes in fluid mechanics. 

An obvious departure point for such systems is a generalization of the residual mini-

mization of (3.3.5), which may simply be extended to include a sum of the norms of the 

residuals taken over all the equations ([20}, [21}, [16}) 

For the system of evolutionary equations 

(6.6.1) 

we may generalize the procedure in section 3.4, seeking semi-discrete solutions of 

n 

U1(x, t) = L a~(t)o:~(x, t), (6.6.2) 
i=l 

105 



where ai is the nodal amplitude at x~ for each component of U. For each component l, 

we use a separate mesh 

1r
1(t) : 0 = x0 <xi (t) < · · · < x~1 (t) < x~,+l (t) = 1. 

The argument proceeds as in Chapter 3 with addition of superscripts l. 

In place of {3.3.5), we minimize the £ 2 norm 

M 

I: llir' - C1(U1
, U2

, • • • , uM)IIi:z (6.6.3) 
l=l 

with respect to ift in the sense of 6-mollification and this leads to the set of MFE equations 

- (C1(U1,U2,··· ,UM),on 
(6.6.4) 

- (C1(U1,U2,··· ,UM),,B1} 

for i = 1, 2, · · · 1 n1 and l = 1, 2, · · · , M, where o1 and ,Bf have the same definition as ai 

and !3i in section 3.4, except that the partition is different. If we write 

(6.6.5) 

the equation (6.6.4) can be written as M ordinary differential equation systems linked 

only by their right-hand sides, namely, 

(6.6.6) 

for l = 1, 2, · · · 1 kf. 

The structure of the 2n1 x 2n1 matrix .-1 of (6.6.6) is precisely the same as for the 

scalar case, with elements calculated using the nodal amplitud~ and positions of the ith 
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component only. The 2n1 vector g1 has elements given by 

~i-1 - {C1(u1 u2 • • • uM) a~) 
' ' t ' l ' (6.6.7) 

for l = 1, · · · , n1• 

In this chapter, we'll focus on SMFE methods for systems since the adaptation of 

SG MFE to systems can be arrived at via a completely analogous manner. 

6.1 SMFE for systems of equations 

Let V 1 be the space spanned by oi (i = 1, · · · , n1) and S1 be the space spanned by 

a~ (i = 1, · · · , n1) and tJ! (i = 1, · · · , n1), 6:- and tS:+ be two sided discrete delta-functions 

with respect to the mesh 1r1(t) such that 

(6.6.8) 

for any v1 E S, where 

The coefficients of 8~- and c):+ are exactly the same as those of c5i and tSt in Chapter 3 

except superscript l. 

Then (6.6.4) is equivalent to seeking U1 E V1 such that 

n, 
L a~{a~, v1

} + :i:~{f:J}, v1
) = {C1(U1

' U2
' ••• 'UM), v1

) 'Vv1 E S' (6.6.9) 
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for l = 1, 2, · · · , M. 

Since both J~- and 8~+ are in 81, we see that 

""n' ·l ( l .£1-) ·l (t:ll d-) _ ( ""'(Ul U2 UM) d-) LJi=l ai a;, ui +xi Pi' ui - ,_, ' , ... , 'ui 
(6.6.10) 

""'~' a1.(al. 5~+) + xl.(t:l'. 8~+) = (C1(U1 U2 • • • uM) 8~+) LJ1=l J ] 1 I ] fJ3 1 I I I 1 I I 

for l = 1, 2, · · · , M, from which it follows that 

(6.6.11) 

ci~- m~+ 1x~ - (£}(U1,U2,· ·· ,UM),8~+). 

Therefore, we obtain SMFE for system of equations in the form 

·l 
xi -

(£1(U1,U2,· • • ,UM),8~-)- (£1(U1,fP,. · · ,UM),8~+) 
l l mi+l- mi 

·l 
ai -

mi+1 (£
1(U1, U2 , • • • , UM), 8~-) - mH.C'(U1, U2 , • • • , UM), 8~+) 

l l mi+l- mi 

for i = 1, 2, · · · , n1 and l = 1, 2, · · · , M. 

6.2 SMFEl for systems of equations 

Being almost the same as in scalar case, the penalized MFE for systems is based on the 

minimization of 

M M ~ 

E IIU' -t}(U\ U2
, • • ·, UM)IIi2 + E ~(e~ax~- SD2

, 

l=l l=l i=l 

in the sense of 5-mollification, which yields a set of penalized MFE equations 

E;~1[ciHa~,aD +x}(f3~,ai)] -

E~t[ci}(a}, f31} + ii<f3~, f31)] ) _ 

+(~)2~x~- (e~+l)2~xf+t 
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Using the method similar to derivation of {3.3.39), we see that 

•l l•l l-[( l )2A •/ ( l)2A.~l1) X;- miai + si1 ei-l uxi-l - e; ur; = 

+s!1[(e:D2A.t~ - (e~+ 1 )2A:q+1 ] 
+i-1 (e~ ~s~ 1 - e~S~){6.6.14) 

I 1- 1- 1 I 

{C.1(U1 
I ••• I UM)I <S!+> 

+s~+1 (e:~S~- ~ 1S~ 1){6.6.15) 
I I 'I 1+ 1+ 

We obtain the mesh equation by eliminating a~ from above two equaitons 

{ J9(Ut UM) rt- d+) + t- t S' + ( t- t- l+) tst 
- ,.., ' • • • ' , 0 i - ui sil ei-1 i-1 -sil + si2 - sil Ei i 

(6.6.16) 

Either {6.6.14) or {6.6.15) couples with {6.6.16) for i = 1, · · · n, and l = 1, ···AI to form 

SMFE1 for system of equation. 
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6.3 SMFE2 for systems of equations 

Similar to scalar case, we find the expression of a~ from the summation for two equations 

of (6.6.11), 

a.~ = rrt + !< ""1(U1 . . . uM) 8~- + 8~+> I I 2 1.., ! l I 1 1 • (6.6.17) 

Then the minimization of (6.6.12) becomes 

M Rl 

L II L[(~a~ + ,B~):i:~ + ~(.Cl(Ul' ... 'UM), 8~- + 6~+)] - £'(U1' ... 'UM)) II~:~ 
l=l i=l 

M n1 

+ LL(e:~~x~- S~)2, 
l=l i=l 

which yields 

i+l 

L (~a~+ ,B~, ~a~+ .B:>x~ + (e:D2~x~- (e:~+ 1 ) 2 ~±~+1 
i=i-1 

- (.C1(U1 
• • • UM) nf.a~ + ,B~) - !(C.1(U1 • • • UM) 8~- + 8~+) 1 1 ! 11 I 2 I l IJ 1 

(6.6.18) 

fori= 1, 2, · · · , nl and l = 1, 2, · · · , M, where 

0 li- il > 1 

j=i-1 
(6.6.19) 

j=i 

j=i+l. 
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Thus, we derive SMFE2 in the form 

B1(a1,z1
) - b1(a1,z1

) (6.6.20) 

a~ - ~ + ~{£1 (U1 , ••• , uM), 6~- + 6:+). (6.6.21) 

0 li- il > 1 

<Tilcl + R~ ml.a~ + R~) - (e~) 2 1 1 }J] 1 & I Pa I j =i-1 
(6.6.22) 

j = i+1 

for l = 1, 2, · · · , i\t/. 
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Chapter 7 

The Co111bination of Moving Mesh 

Method and Moving Finite Ele111ents 

In previous chapters, we studied simplified moving finite elements and gradient weighted 

moving finite elements. Although the computational cost is greatly reduced, the sensitivity 

for choosing parameters is still a problem. Furzeland [27] compared several moving grid 

methods for solving one dimensional equations and recommended the one that has been 

developed as so-called moving mesh method by Russell et. al. in (31]-[33]. The basic idea 

for moving mesh method is similar to all simplified scheme described before. That is to 

establish a mesh PDEs first and then solve the original POE based on the derived mesh. 

Unlike simplified MFE and GWMFE, the mesh PDEs of which arise from least square 

minimization, the mesh equation for moving mesh method is based on an equidistribution 

principle introduced by de Boor and Dodson [12]. This chapter will present a method, in 
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which the mesh PDE is determined from moving mesh method and the original PDE is 

solved by SMFE and SGWMFE. 

7.1 The equidistribution principle and continuous equidis-

tribution equation 

The basic idea of equidistribution, introduced by de Boor [22] and Dodson [12], takes 

some measure of the error M(x, t)(> 0) such that a good choice for a mesh 1r(t) : 0 = 
xo < x 1(t) < · · · < Xn(t) < Xn+l <= 1 distributes the contributions to the error evenly 

over the subintervals, i.e. the meshpoints of 1r(t) are taken to satisfy the integral identity 

/.

:Z:i+t(t) 9(t) 
M(x, t}dx = --

1 :z:,(e) n + 

or equivalently 

/.

:z:,(t) i 
M(x, t)dx = -9(t) 

o n 

where 

8(t) =f.' Mdx. 

If we still take the transformation x = x({, t) for 0 < { < 1 such that xi = x(i/n, t), then 

the above algorithm can be interpreted in a continuous form such that x({, t) satisfies 

/.

:z:({,t) 

0 
1\f(x, t)dx = {9(t) (7.7.1) 

with 

x(O, t} = 0 and x(l, t) = 1. 
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Here {is regarded as the computational coordinate. Of course, u(x({, t), t) is smooth in 

{, and thus we can use a uniform mesh in the computational coordinate {. Differentiate 

both sides of (7.7.1) with respect to {to obtain 

a ax 
a{ ( M a{ ( {, t)) = 0. (7. 7.2) 

Discretization of (7. 7.2) coupled with the discretization of the original equation leads to 

system of ODEs for the solution ai and mesh point Xi. 

7.2 Moving mesh PDEs 

In [47], Ren and Russell pointed out that moving mesh methods based on (7.7.2) can 

be unstable and that some sort of smoothing of the mesh is often necessary in order to 

obtain nonoscillatory and reasonably accurate solutions. We use smoothing in both the 

temporal and spatial variables. It follows from (7.7.2) that 

a ax 
a{ (M(x({, t + -r), t + -r) 8{ ({, t + -r)) = 

a ax a a ax 
8{ ( lvf (X' t) 8{ ( {' t)) + T &t a{ ( M (X' t) 8{ ( {' t)) 

1 fP a ax 
+2~ lJt2 a{ (M(x, t) a{({, t)) + ... 

- 0 

where -r is a suitable small relaxation time. Dropping higher order terms in -r, we get [31] 

that 

aa ax 18 ax 
at o{ ( M c x, t) a{) = - :;a{ ( M ( x, t) a{ ( ~, t)). (7.7.3) 
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Two simplified versions of (7.7.3) often used are 

~(!vlax) =-~~(Max) 
a~ a~ Ta~ a~ 

(7. 7.4) 

and 

fPx 1 a ax 
a~2 = -;a~<M a~) (7.7.5) 

for which 

1 /.z :i; = --[ Mdx- ~8(t)]. 
T 0 

(7.7.6) 

In the latter case the relaxation time becomes T / M. Solving these equations has the 

additional advantage that we may start with an initial mesh xi(~i, 0) = ~i = i/(n + 1), 

which is not equidistributed. 

However, for most problems which involve large solution variations, the monitor func-

tion M is generally fairly nonsmooth in space, and some kind of smoothing of 1\tl(x, t) 

should be employed in (7.7.1) in order to make the transformation smooth (see (27] (31] 

and (23]). In (23}, Dorfi and Drury use a technique which smooths the node concentration 

defined by z,+~-z,. In (50], Verwer et al. prove that smoothing the node concentration is 

basically equivalent to smoothing the monitor function over all points. To maintain the 

local structure of the underlying difference equations, we use the technique employed in 

(31] and [14]. Specifically, the values of the smoothed monitor function M at nodes are 

defined by 

(7.7.7) 
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where Mi = M({i, t), i, is a non-negative integer and "Y is a positive constant. The 

summations in ( 7. 7. 7) are understood to contain only elements with indices in the range 

between 0 and n + 1. The replacement of Mi by k/i is basically equivalent to using a 

smoother monitor function and i, = 0 corresponds to the non-smoothing case. Values of 

the parameters "Y and i, need to be selected for these moving mesh POE methods. In this 

chapter, we use "Y = 2. The value for i, usually is taken as 0, 1, 2 , 3, or 4. The final 

forms for the discrete moving mesh equations for (7.7.4) and (7.7.5) are 

(7.7.8) 

and 

(7.7.9) 

for i = 1, · · · , n - 1 supplemented with x0 = 0, Xn = 1, where 

We couple (7.7.8) and (7.7.9) with SMFE and SGWMFE to yield following algorithms, 

{ 

r((Mi+l~Xi+l- Mi_l~i) = -((Mi+1.~Xi+l- kl1_!.axi) 
3 3 2 2 

iL.& = mixi + !(.C(U), 5i + 5t), 

(7.7.10) 

{ 

r((Mi+l~Xi+l- Mi_l~Xi) = -((Mi+!.~Xi+t- ~li-1~xi) 
3 2 2 2 

ui = mixi + ![ y'1 + mHL(U)w, 5i) + J1 + m~+t {L(U)w, 5i) ), 

(7.7.11} 
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{ 

r(i:i+t - 2i:i + Xi-d = -([~li+!.~Xi+l - Mi_lLUi) 
2 2 

ui = mixi + ~(£(U), 8; + 8j) 
(7.7.12) 

and 

{ 

T(i:i+l - 2xi + ±i-d = -([~Ii+!.~xi+l - Mi-1~xi) 
2 2 

ui = mixi + ~[ y'l + mHL(U)w, 8;) + y'l + ml+1 (L(U)w, 6T)]. 
(7.7.13) 

for i = 1, · · · , n. 

We have already mentioned in Chapter 4 that 1\tiFE equation can be divided into mesh 

equation and the approximation of original POE. For moving mesh method, we can use 

either finite difference method or finite element method. If the latter is used, the resulted 

equation is the same as {3.3.6), which needs to solve linear system for each time step. The 

method presented in this chapter only needs to solve an explicit ODE system. Also this 

method keeps advantage of moving mesh method, which avoid sensitivity of user-chosen 

parameters. However, it is good for blowup problems, but not for many other problems. 
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Chapter 8 

N uDierical Experiments 

This chapter presents numerical examples introduced in previous chapters. Through this 

chapter, we denote the number of nodal points by N + 1; CFE stands for classical finite 

elements with fixed mesh; and PMFE stands for the general penalized MFE. 

We mainly use explicit Euler method to solve the nonlinear ODE systems that arises. 

The main reason for using Euler's method is that it can be controlled so as to avoid node 

crossing by restricting time step via 

for each 1 < i < N, where the superscript n stands for n-th iteration. Such a time step 

makes 

positive for each 0 < i < N + 1. In practical computation, we select ~tn+l by following 

algorithm; 

118 



1. Initialize ~tn+l (eg. ~tn+l = 0.01). 

2. Keep multiplying ~tn+l by 1/10 until ~x~ -~t~xf+ 1 is positive for each i E (1, N]. 

3. Multiply ~tn+t by a constant IJ.· 

Through this chapter, the initial mesh is always uniform, that is 

i 
Xi(O) = -. 

N 

8.1 Sample calculations with SMFE 

As describe in Chapter 3, SMFE only needs to solve a decoupled nonlinear ODE system 

(3.3.29), which is in the form 

{£(U), 6;) - (.C(U), 8t) 
{8.8.1) 

mi+l- mi 

mi+t {.C(U), 6i-} - ffli(£(U), 8t} 
(8.8.2) 

for i = 1, · · · , n. 

Now we consider solving the diffusion equation 

u(O, t) = u(1, t) = 0 (8.8.3) 

u(x, 0) = sin(1rx), 

by both SMFE (p. = 1) and classical finite element method with fixed mesh. The exact 

solution of this equation is et sin(1rx). We present in the following tables the L2 error 

obtained by two methods with various divisions at t = 0.5 and t = 1 respectively. 
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N=10 N=20 N=40 N=80 

CFE Error 4.02051E -1 3.48182E -1 3.10685E -1 2.8887E -1 

SMFE Error 7.7264£-2 5.2293E- 2 2.9121E- 2 1.2995E- 2 

Table 8.1: CFE and SMFE error in L2 norm when t = 0.5. 

N=10 N=20 N=40 N=80 

CFE Error 9.0594E -1 8.45173E- 1 7.86583E -1 7.47789E -1 

SMFE Error 1.09527E -1 8.7044E- 2 4.8643E- 2 1.7925£-2 

Table 8.2: CMFE and SMFE error in L2 norm when t = 1. 

These two tables show that the L2 error by SMFE is better than by CFE. The reason 

is MFE (equivalent to SMFE) confirms to approximate equidistributing principle (see [29} 

and (48] ). Therefore nodes move to a good place to make L 2 error smaller. From following 

figure, as the solution remains relatively smooth, the overall motion of the nodes is not 

too much different from the original nodal distribution. Hence we can say that SMFE 

is of advantage not only for steep front problems but also for other problems. However 

SMFE is at risk if mi = mi+l for some 1 < i < N although the condition does not arise 

with this problem. 
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Figure 8.1: The movement for nodes when solving equation (8.8.3) by SMFE with N = 25 

and t E [0, 2]. 

Now we use SMFE (JJ = 1/50) to solve the Burger's equation 

Ut = II'Uzz- UzU X E (0, 1), 

u(x, 0) = sin(27rx) + sin(7rx)/2 x E [0, 1}, (8.8.4) 

u(O, t) = u(l, t) = 0 t > 0, 

with v = 0.001. 
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u 
1.5 r----------r---""T"""---,......-----, 

0.5 

.0.5 

·1 '-------~----------'----......... -----....~ l 
0 u ~ ~ ~ 1 

Figure 8.2: The solutions of Burger's equation (8.8.4) solved by SMFE. 

Figure 8.2 indicates that nodes rush into steep front leaving no nodes outside the 

front region as time evolves. This, of course, yields poor global approximations. Figure 

8.3 illustrating nodal displacement also shows this fact. Another problem is that the 

computation cannot continue because m 15 = m 16 when t = 1.416246. For both these 

reasons, the penalty term is needed. 
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Figure 8.3: The movement for nodes when solving Burger's equation by SMFE with 

t E (0, 1.416). 

8.2 SMFEl applied to Burger's equation 

In deriving our first simplified MFE method with penalty, we obtained in (3.3.43) a 

problem of the form 

B(s, a)s - b(s, a), 

a - Ms+c. 

The above requires the solution to a linear ODE system only when solving the mesh 

equation B(s, a)s = b(s, a). 

123 



First let us still consider the Burger's equation (8.8.4). We present the computational 

results with v = 0.001 and N = 25, as well as with c1 = 0.01, c2 = 0.001 and d = 0.0005. 
u 

1.5 .-----.......,.----"""T"-----r-----.,...-------, 

0.5 

0 

.().5 

·1~---~-----_. _____ ~-----._----~ X 
0 0.2 0.4 0.6 0.8 

Figure 8.4: The solutions of Burger's equation (8.8.4) 

We have no formula to chose the paramters c1, c2 and d, by using experience instead. 

Unlike our results with SMFE, the solution of (8.8.4) solved by Sl\1FE1 always bas some 

nodes (first three and last two) out of front although most of them still rush towards steep 

front. We can also see that from Figure 8.5. 
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Figure 8.5: The movement for nodes in solving Burger's equation by SMFEl. 

For SMFE2, the nodes rush towards the front although at a slower rate than observed 

with SMFE. Moreover we do not need to worry about the condition mi = 111i+t for any 

0 < i < N. The role of parameters is the same as that in PMFE or SMFE and we still 

have sensitivity for chosing parameters. Although the cofficient matrix of linear system 

is positive definite and tridiagonal, the cpu time is not reduced too much and in some 

situation it is longer than PMFE because of more iterations. Nodes move faster than that 
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in S:MFEl with increase of time to preduce gap when solving Burger's equation. We shall 

see that from the following section. But equations for solution tli (i = 1, · · · N) is explicit 

and thus the lost accuracy should be less than that of PMFE. 
u 

1~~----~------~------~-----T------~ 

0.5 

0 

~.s 

... .... ~ 

/" \ 
// ~.3 

.. t 
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0 ~ ~ ~ ~ 1 

Figure 8.6: The solutions of Burger's equation at different time by SMFE2. 

From the above figure, we can see that the solution of Burger's equation solved by 

SMFE2 is not so good as one solved by SMFEl. The reason is that the amplitudes 

are obtained from least square formulation without penalty and the mesh points are 

derived from penalized one. By comparing results from SMFEl to those of SMFE2 for 

t > 0.7, we observe substantial difference in node position relative to developing front and 

corresponding differences in amplitude of the solution to Burger's equation. 
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The match between mesh points and amplitudes is not so good. 

8.3 Application to blowup problem 

Now we consider solving quasilinear parabolic equation 

Ut = U%z + f(u) X E (0, 1) t > 0, 

u(O, t) = u{l, t) t > 0, (8.8.5) 

u{O, x) = u0 (x), 

where f(u) is any convex function of u such that f(u)fu --+ oo as u --+ oo. It is well 

known (26] that if u0 (x) is "sufficiently large" and has single non-degenerate maximum, 

then there exists T, and x, such that 

and 

lim u(x, t) = u(x, 16) < oo, if x # x,, 
t-tTb 

that is, the solution exhibits blowup behaviour. If t > T6 the solution becomes infinite 

everywhere. Close to x,, the solution u(x, t) develops an isolated peak which becomes 

narrower, tending to zero width, as t --+ T,. A derivation and general study of these 

systems are given in [8]. Brunner took a survey in [6] for numerical solution of blowup 

problem. Existing adaptive numerical methods for solving (8.8.5) are also described in 

[10], [13], [17] & [37]. These are based either on closely exploiting the known analytic 

127 



structure of the singularity or on an adaptive procedure with request for an increasingly 

larger number of mesh points to model the developing singularity as t ~ Tb. lvloving grids 

method was initially used for solving (8.8.5) in [14]. This section will use MFE to solve 

(8.8.5). 

We first consider the equation 

Ut = Uu + u2 
X E (0, 1) t > 0, 

u(x,O) = 20sin(7rx) x e (0, 1), 

u(O, t) = u{1, t) = 0 t > 0. 

(8.8.6) 

In SMFE1 for solving blowup proplems, the constant IJ in time step algothrim is 1/500 

and the number of nodes is N = 40. Through this section, we consider u to have blown 

up once lui> 105 • 

First we set user-chosen constants by c1 = 0.1, c2 = 0.01, and d = 0.001. On a DEC 

Alpha AXP, the CPU time for this problem was 118.6 seconds. 
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. 

Figure 8. 7: The solution for (8.8.6) with Tb = 8.257 E - 2 and xb = 0.5. 

We repeat the calculation with c1 = 1.3, c2 = 0.08, and d = 0.001 and observe blowup 

in 86.9 seconds (see Figure 8.8). 
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Figure 8.8: The solution for (8.8.6) with T6 = 8.255E - 2 and Xb = 0.5. 

From Figure 8.7 and Figure 8.8, we see that when c1 and c2 are larger, the speed of 

nodal movement is slower and computational effort is less. In both cases, many nodes 

concentrate near x6 leaving two symmertric gaps. The situation can be avoided by setting 

the time step as monotonic decreasing so that atn+l < at" for each time increment. 

Figure 8.9 and Figure 8.10 are obtained by using SMFE1 with monotonic decreasing time 

step increment. 

130 



u 
1~~------~.--------~.---------~.------~.--------~ 

100000 

-

-

20000 . 

0._----~~·--~-=;L~--------~£:=-.__..~-------«x 

0 0.2 0.4 0.6 0.8 

Figure 8.9: The solutions of {8.8.6) solved by SMFE with c1 = 0.1, c2 = 0.01 and 

d = 0.001. Tb = 8.2573£ - 2 and Xb = 0.5. 
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Figure 8.10: The solutions of (8.8.6) solved by SMFE with c1 = 1.3, c2 = 0.8 and 

d = 0.001. Tb = 8.2551E - 2 and Xb = 0.5 

With monotonic decreasing time step increment, we still see that larger c1 and c2 

result in lower speed of nodal movement and less computational effort. This can also be 

shown from following PMFE examples. 
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Figure 8.11: The solution of (8.8.6) solved by PMFE with c1 = 1.3, c2 = 0.8 and d = 0.001. 

Tb = 8.261£-2 and xb = 0.5. 
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Figure 8.12: The solution of (8.8.6) solved by PMFE with monotonic decreasing time 

step, c1 = 1.3, c2 = 0.8 and d = 0.001. Tb = 8.261E - 2 and Xb = 0.5. 

Now let us see the comparison of CPU times between SMFEl and PMFE in solving 

(8.8.6). User chosen parameters are c1 = 1.3, c2 = 0.8 and d = 0.001. 
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unrestricted time step monotonic time step increment 

SMFEl CPU time 86.94 262.86 

PMFE CPU time 156.2 3817.97 

Table 8.3: The comparison of cpu time when solving {8.8.6) by SMFEl and PMFE 

Obviously, SlVIFEl is much more efficient than PMFE. 

Now we consider an initially unsymmetric blowup problem in the form 

Ut = Uu + u2 t E (0, 1) t > 0 

{ 

20sin ~ 
u(x, 0) = 2za 

20 COS 7r(X-Xa) X
4 

< X < 1 
2(L-xa) 

X E (0, 1) (8.8.7) 

u(O, t) = u(1, t) = 0. 

Unlike equation (8.8.6), The initial condition in (8.8.7) is not symmetric if x4 is not 1/2. 

The point at which initial maximum value reaches is X4 • We use SMFEl with c1 = 0.8, 

c2 = 0.08 and d = 0.001 to solve (8.8. 7) with x4 = 0.2. The adopted time increment is 

still monotonic decreasing. 
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Figure 8.13: The initial condition of (8.8.7). 
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Figure 8.14: The solution of (8.8.7) solved by SMFEl with monotonic decreasing time 

step, Tb = 8.931£ - 2 and Xb = 0.468067. 
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Figure 8.15: The movement of nodes when solving (8.8.7) SMFEl with monotonic de

creasing time step. 

We see that after certain time, some nodes are concentrating on blowup point x = 0.5. 

8.4 Comparison of PMFE, SMFEl and SMFE2 

Table 8.4 lists times for the three methods to solve Burger's equation when v = 0.001. 

Similar results for v = 0.01 are presented in Table 8.5 while errors are shown in Table 8.6. 

When v = 0.001, we describe the cpu times as in the following table. 
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t = 0.01 t = 0.3 t = 0.7 t = 1.0 t = 1.5 

SMFE1 CPU time 0.34 10.23 22.92 32.93 49.91 

SMFE2 CPU time 1.66 55.21 122.91 173.72 255.88 

PMFE CPU time 1.24 212.36 705.46 1074.49 1208.86 

Table 8.4: Comparison of cpu time when solving (8.8.4) with v = 0.001 by SMFE1, 

SMFE2 and PMFE. 

and when v = 0.01, the CPU times are listed in the table. 

t = 0.01 t =0.3 t = 0.7 t = 1.0 t = 1.5 

SlVIFE1 CPU time 0.36 9.8 22.84 32.72 49.12 

SMFE2 CPU time 1.7 49.98 116.40 166.16 249.08 

PMFE CPU time 1.23 37 86.43 123.53 185.04 

Table 8.5: Comparison of cpu time when solving (8.8.4) with v = 0.01 by SMFE1, SMFE2 

and PMFE. 

We see that SMFEl uses shortest CPU time and is thus most efficient. 

Now let us see L2 error comparisons for solving usual equation (8.8.3). 
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t = 0.01 t = 0.1 t = 0.3 t = 0.5 t = 0.7 

PMFE Error 4.691E- 3 4.3474E- 2 1.433694E - 1 2.65377E- 1 4.144E -1 

SMFE1 Error 5.92E- 4 6.25E- 4 7.13E- 4 8.7E -4 l.061E- 3 

SMFE2 Error 7.83E- 4 1.811E- 3 2.806E- 3 3.427E- 3 1.811E- 3 

Table 8.6: Comparison of error when solving (8.8.3} by SMFE1, SMFE2 and P~lFE. 

SMFE1 is equivalent to PMFE in theory. In SMFEl, the solution is explicitly ex

pressed and the linear system is only for solving mesh equation. Hence the accuracy lost 

in solving mesh equation has few affects on accuracy of solution. That is the reason the 

L 2 error obtained by SMFEl is much better than by PMFE. For the same reason, the 

approximate solution solved by SMFE2 is more accurate than that solved by PMFE (K. 

Dukowixz has the same result in (24)). We see that SMFEl is still most efficient in the 

accuracy's point of view. 

8.5 Combination of moving mesh method and MFE 

As seen earlier, the moving mesh method does not need to set user-selected parameters 

if the monitor function is chosen. We use the algorithm (7.7.12) with the same monitor 

function as one in (14), which is M = u, to solve the equation (8.8.6). 
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Figure 8.16: The solution of (8.8.7) solved by (6.6.12). 

Most of nodes are located on steep fronts but still some are out of them. 
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Chapter 9 

Conclusion 

We present several simplified moving finite element methods. The common point of those 

is that equations with respect to solution of model equation are explicit and separate from 

mesh equation. Compared with usual MFE, in which both mesh points and amplitudes are 

solved simultaneously from one ODE system with incumbent accuracy loss from having to 

solve nonlinear system, simplified MFE separates mesh equation from discrete formulation 

of original POE so that the nonlinear system only appears in mesh equations. In this 

way, solution is obtained based on an existing mesh so that not only is computational 

cost reduced, but also the lost accuracy due to solving nonlinear system influences little 

on the approximate solution. 

All equations in SMFE are explicit and thus have least computational cost. However, 

nodes tend to move too fast and form some big gaps (without mesh points) when front 

appears. Of course, the global approximation is very poor in this case. In addition, 
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the slopes in neighbor elements are possibly equal, especially in nonlinear case, so that 

computation cannot continue. This problem can be solved by removing common endpoint 

of those neighbor elements if such a phenomenon happens only for limited times. 

Of all simplified MFEs, SMFEl, which is equivalent to the original penalized ~IFE, 

is most efficient. Comparisons for solving Burger's equation, blowup problems and linear 

equations support this assertion. SMFEl is actually direct simplification of penalized 

MFE. However, mesh points and amplitudes are solved from different least square for

mulation and thus mesh equation and discrete formulation of original PDE do not match 

very well. That is one reason why SMFEl is better than SMFE2 although the resulting 

matrix in SMFE2 is symmetric, positive definite and tridiagonal. 

Like other simplified MFE scheme, SMFE2 loses less accuracy and has simple ma

trix structure for nonlinear system. However that does not imply computational effort 

is reduced. For example, a model calculation using Burger's equation with modest diss

apation parameter nu, computational effort when using SMFE2 is more than that when 

using general penalized MFE with the same user-chosen parameters. 

All of the simplified MFE schemes can be easily extended to POE systems. The idea 

for yielding SMFE2 can be applied to generating simplified gradient-weighted MFE. The 

G WMFE is much more nonlinear than MFE and thus the computational cost will be 

much more expensive. However, for WGMFE, the sensitivity of user-chosen parameters 

are reduced and it behaves well when the gradient of solution is very large (i.e. the front 

is very steep). 
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Also we can combine mesh PDEs in Russell's moving mesh method with discrete 

scheme of original PDE in Miller's method to avoid sensitivity of user-chosen parameters. 

Sample numerical test is done with a model blowup problem. However, in other problems 

such as Burger's equation, the application is not successful. In author's point of view, it 

is because mesh equation does not match discrete formulation of PD E well. 

In priori error estimate, discontinuous part of derivative for approximate solution 

with respect to time contributes a term related to time step in every iteration and the 

number of iterations in error bound. A posteriori error estimate is more practical and 

gives approximation reliability theoretically. Unfortunately, the result is derived strictly 

for linear problems. Nonlinear cases are still an open problem. For example, we have 

for Burger's equation. But we cannot decide if (uu:r, u) is positive. Not knowing much 

about (uu:r, u) brings difficulties for error analysis. 

The sensitivity of user-chosen parameters for MFE is still a problem. That is, we 

cannot use function in terms of mesh points to express those parameters. It is main 

weakness of MFE. From numerical examples presented in Chapter 8, we can see that 

those parameters impact considerably on computational effort and the movement of nodes. 

Thus keeping balance between execution time and good distribution still depends on the 

problem considered and user experience. 

In the literature, MFE has been extended to two dimensional PDEs both with and 

... vithout penalt'J. However, how to establish simplified MFE methods in two dimensional 
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cases needs further study. In one dimensional case, every node is associate with at most 

two elements and each element at any time is just an interval. The only difference for 

those elements are in their lengths. Higher dimensional cases are different. Even though 

we could obtain the 6-function with respect to an initial mesh when is regular or uniform, 

how to get that for moving mesh is still a problem for higher spatial dimensions. 
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