

Concurrency in DES And A Class of Hybrid
Systems: Theory And Computation

by

© Seyed Mehdi Fatemi Booshehri

B.Sc., Shiraz University, 2002

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of
Master of Science

Computational Science Interdisciplinary Programme
Faculty of Science

MEMORIAL UNIVERSITY

June 2010

ST.JOHN'S NEWFOUNDLAND

Copyright by S. Mehdi Fatemi B. 2010
All Rights Reserved

Concurrency in DES And A Class of Hybrid Systems:

Abstract

Theory And Computat ion

by

Seyed Mehdi Fatemi Booshehri

This thesis explains the general concurrency of discrete event systems (DES), and

then extends it to hybrid systems. To this end, firstly, a theoretical extension with

n-ary structure is considered for the concurrency of a group of DES in the presence

of specifications. A new concept (called map) is then introduced to meet a particular

class of specifications, which are based upon both events and stat s. The map will

be used to develop the n-ary synchronous product composition to a new composition

rule, called accommodating synchronous product (ASP), which can implement the

mentioned class of specifications.

Moreover, the DES concepts will be extended to a class of hybrid dynamical

systems, whose concurrency is allowed to happen exclusively in the logical part. In

such systems, a continuous dynamics (a physical behaviour) generates an event which

then is passed to a DES to cause a transition (if any) .

In the last part , a MATLAB-based software has been developed as the testbed

for the theory and algorithms described throughout the thesis. The software has

been designed with the consideration of object-oriented design, vectorization, and

11

compatibility with standard DES software. Based on its structure and a variety of

different methods, it can be used for manipulating and exploring both concurrent

DES and concurrent hybrid systems. Finally, the concepts pr sented in the thesis

will be demonstrated in an extensive computational example olved by the software.

iii

To my parents,

Mahmood and Firoozeh.

l V

Acknowledgements

Computational Science is an interdisciplinary programme, thus during the course of

my studies, I have had the opportunity to be with a group of excellent p ople from

different parties. I should say, being at Memorial and the National Research Council,

I have greatly enjoyed the learning and the discovery that comes with the graduate

work.

First of all, I would like to take this opportunity to thank my thesis supervisor,

Dr. Jim Millan, who has been working with me closely every step toward this thesis.

He has provided me with wonderful research opportunities and has been an enormous

source of support. Dr. Millan is actually the person who introduced me to the world

of discrete-event and hybrid systems and control. I am most grateful for his guidance,

insights, and consistent encouragement through course work, research, presentations,

and publications.

I have been honored to work with my programme supervisors: Dr. Tina Yu and

Prof. Siu O'Young over the past more than two years. Dr. Yu was the first one at

Memorial I had talked to and was instrumental in introducing me to my ngineering

co-supervisor Prof. O'Young, and then a telephone interview. I would like to thank

her efforts which allowed me to start my programme at Memorial.

I would be grateful for all the helps and endless supports from Prof. O'Young.

When you n ed a new idea, Siu is always the one you should have a talk with. His

v

greatly unconditional support, in fact , allowed me to concentrate solely on my research

and come up with the current thesis.

I would al o like to express my appreciation to the ational Research Council

Institute for Ocean Technology the federal organization for which I have been working

for just less than three years wit h lots of great memories and experiences.

Last but by no means least, I would like to thank my family: my father Mahmood,

my mother Firoozeh, my brother Mohamad Reza, and my sister Elaheh for all their

love, great support and understanding while I left them to cont inue my educations in

Canada.

This thesis was carried out for the RAVEN (Remote Aerial Vehicles for ENvi

ronmental monitoring) research program of Memorial University of ewfoundland

(MUN). The project is jointly being supported by the Atlantic Canada Opportuni

t ies Agency (ACOA) , the ational Research Council of Canada (RC), Institut for

Ocean Technology (IOT) and the Institute for Aerospace Research (IAR) , Provincial

Aerospace Limited (PAL) , the National Science and Engineering Research Council

(SERC) and Defence Research and Development Canada (DRDC) .

Vl

Contents

Acknowledgements

Contents

List of Tables

List of Figures

List of Abbreviations

1 Introduction

1.1 Background

1.2 Problem Statement

1.2.1 Motivation .

1.2.2 Problem Statement

1.3 Contributions

1.4 Scope

1.5 Organization

2 Background and Related Work

2.1 Systems and Modeling

vii

lV

Vll

X

xi

Xlll

1

1

2

2

3

3

4

4

5

5

2.2 Time-driven Systems ..

2.3 Discrete Event Systems .

2.3.1 Supervisory Control

2.4 Hybrid Systems

2.4.1 Timed Automata

2.4.2 Hybrid Automata .

3 Synchronization of Discrete Event Systems

3.1 DES Concepts And Methodologies

3.2 Concurrent DES

3.3 Composition Rules

3.3.1 Product Composition .

7

8

10

11

12

12

14

18

24

29

32

3.3.2 Synchronous Product Composition 33

3.3.3 Accommodating Synchronous Product (ASP) Composition 37

3.4 Reachability of g (The Resulting DES) . . . 51

3.5 Hierarchical Composition Structures of DES 54

3.6 A Class of Hybrid Systems 58

3.6.1 Hybrid Automata . 59

4 Computational Design 65

4.1 General Structure 65

4.2 Logical Entity . . 68

4.2 .1 Import from standard DES software. 68

4.2.2 Memory-usage Efficiency in Concurrent Systems 69

4.2.3 Class Structure of The Logical Entity . 69

4.2.4 Class: Logic , method: nextState .

4.2.5 Class: Logic , method: transition

4.2.6 Class: Logic, method: isDeadlock

4.2.7 Class: multiLogic, method: transition .

Vlll

71

71

73

73

4.2.8 Class: mul tiLogic , method: isDeadlock .

4.3 Physical Entity

4.4 Class HySys: Modeling of Hybrid Systems

4.5 Implementation .

4.6 Test and Results

4.6.1 Problem Description

4.6.2 Solution and Results

5 Conclusions

5.1 Summary

5.2 Contribut ions

5.3 Future Work .

References

Appendices

Appendix A Binary vs. N-Ary in Synchronous Product

A.1 Part I: .

A.2 Part II: .

Appendix B Binary vs. N-Ary in ASP

Appendix C Numbering of Product States

IX

73

75

75

77

77

78

79

92

92

93

94

96

100

101

101

103

108

111

List of Tables

4.1 Continuous-state Partitioning Functionals.

4.2 Events Due To The Sensor.

4.3 Parameters of the multi-tank problem.

X

80

80

84

List of Figures

2-1 An automaton model for example 2.1 using IDES software.

3-1 Two DES, generating and marking the same languages

3-2 Chapter Outlook

3-3 Schematic of two warehouses .

3-4 Two warehouses of Example 1

3-5 DES set with maps and pecifications

3-6 Schematic of three warehouses . .

3-7 Three warehouses of Example 3.3

3-8 Discrete Abstraction of Two-mode Liquid Tanks .

3-9 Collect ions for liquid tanks of Example 3.4

3-10 Event-based Specification of Example 3.5.

3-11 Automata of Example 3.7.

3-12 Remark: N-ary vs. Binary

3-13 N-ary Map Example . . .

3-14 Reachability of three-warehouse example

3-15 Hi rarchy

3-16 DES Specification Structure

4-1 Object-oriented structure of the software

xi

. 10

16

17

22

23

24

26

27

28

30

37

45

47

49

53

55

58

67

4-2 Class diagram of Logic and multiLogic classes (in UML standard). . 70

4-3 Computational class diagram and components (in UML standard) . . 76

4-4 Multi-tank example 78

4-5 The specification for example 1 80

4-6 The explicit specification for a single tank 81

4-7 The explicit specification for a single sensor 81

4-8 Q: the resulting DES of C 83

4-9 m-filc 1: TSM for Tank 1 . 86

4-10 m-filc 1: Guard for Tank 1 87

4-11 Sample MATLAB user-code for example one. 88

4-12 Simulation results for three concurrent tanks without supervisor 89

4-13 An automaton representing the specification to block g1,2 . . . 90

4-14 Simulation results for three concurrent tanks with supervisor 91

xii

List of Abbreviations

ASP Accommodating Synchronous Product

CS M Continuous System Model

DES Discrete Event System(s)

FSM Finite State Machine

FSA Finite State Automaton

IVP Initial Value Problem

ODE Ordinary Differential Equation

OOP Object-Oriented Programming

OOD Object-Oriented Design

OOE Object-Oriented Environment

TDS Time-Driven Systems

TSM Time-driven System Model

UAV Unmanned Aerial Vehicle

Xlll

C:l
Introduction

1.1 Background

In this research , a general class of systems involving more than one discrete event

system (DES) is considered, in which each DES is accepted to be an independent

entity. Roughly speaking, a DES is a level of abstraction in the modeling of a real

world system, in which the occurrence of an event is responsible for the volution of

the system's behaviour (instead of the progress of the t ime) . As such , the behaviour

of a DES is basically a finite or infinite number of strings of possible events, which

is then called the language generated by the DES. However , in the modeling of real

world applications, a DES may be a model for a part of a larger system. More

technically, in real-world applications, we have to deal with a set of concurrent DES.

A computational problem emerges here is that to cop with the engineering i u s

such as information hiding and interface design, an n-ary framework is required , while

the main body of the existing literature has been developed on the basis of binary

operations (see for example (Wonham 2009) and (Cassandras and Lafortune 1999)).

Mor over, when dealing with a set of DES, a specification for a DES can be introduced

based not only upon the events generated by other DES, but upon the current state

of the DES itself. As a result, a generalization to the current literature appears to be

1

required before introducing the desired object-oriented design.

As a natm al extension, a seL of continuous dynamics can be added to this n-ary

view of DES, as the source of event generation. This will shap a simple class of

hybrid systems which are allowed to have synchronization only in the logical level of

abstraction. This class can be explained by the existing theory of hybrid automata,

which shapes the last part of t his work.

In this thesis, the basic theoretical concepts and required definitions are first

considered. We then extend t he theory to computation by introducing software which

has been designed during this research.

1.2 Problem Statem e nt

1.2.1 M otivation

Discrete event systems and supervisory control are well-d veloped areas, which have

received considerable attention and research for more than two decad s. However,

when dealing with a group of DES, two issues are still remained to be addressed

properly:

1. The DES theory, for the most part , has been constructed upon the binary

formalism. It is still required to have standard definitions and methodologies

dealing with a set of DES of the arbitrary cardinality n 2:: 2. Note that, thanks

to the commutat ivity and the associativity properties, the binary formalism can

be generalized to an n-ary version; however, for the sake of software develop

ment, it is more convenient to have a complete n-ary formalism at the th ory

stage.

2. The existing theory and computational environments tackle only pecifications

which are solely event-based ; it is required to meet the specifications based a! o

on the states of each DES in the group.

2

3. Such a fram work can also be extend d to a limit d class of hybrid systems,

having ynchronizat ion only in the DES level of abstraction.

1.2.2 Problem Statement

1. Suppo that a number of ystem working togeth r , ea h modeled as a DES

and a et of p cifications (in the mo t basic way can b tated in natural lan

guage words) which perf ctly d fine both the individually and the concurrently

desired behaviour, are given. An n-ary framework is required to capture th

mention d typ s of specification which can be modeled using both events and

tat s, while the framework also allow for an object-orient d design.

2. It is de irabl to have the framework extended to a limited cla of "sy tern

of hybrid systems" (more than one), having synchronization only in the DES

level of abstraction. Such a class of hybrid systems can be used to model a

group of systems which are working concurrently, while only share th ir logical

behaviour (their generated events) .

1.3 Contributions

The very basic idea behind this research is the implementation. Thus, the work, in

both the theoretical and the computational parts, is done with the idea of possibili ty

of an object-ori nted design. The contribut ion are as follows:

1. The theory of automata is ext nded with the goal of designing an n-ary con

current system of DES:

• to meet a part icular class of specifications, which arc based upon boLh

vents and states a new oncept (called map) is introduced,

3

• the map will then be used to extend the n-ary synchronous product com

position to a new composition rule, called accommodating synchronous

product (ASP) , which can implement the mentioned class of spe ification .

2. Software implem ntation:

• Encompassing the concepts of the theory,

• Object-oriented structure,

• Importing from standard DES software,

• Real-time addit ion/deletion of new system(s) to/from a given collection.

1.4 Scope

Although the theory for a hierarchical structure of a group of DES is described in

t his thesis, the implementation of the DES hierarchy in the software is beyond the

scope of this work.

1. 5 Organization

This thesis is organized as follows: Chapter 2 contains a gen ral revi w of related

concepts in the literature, and discusses primitive explanations, over which furth r

concepts will be built up. Chapter 3 provides detailed explanations of the theory. All

the main definitions will be explained through simple and extensive examples. Chap

ter 4 develops an object-oriented computational environment based on the theory and

with the emphasis on software reliability and reusability. It also contains a complete

example which demonstrates the capabilities of the proposed framework. Finally,

Chapter 5 again summarizes the contributions of this thesis and offers direction for

future work.

4

Background and Related Work

In this chapter , a high level descript ion of systems theory is provided. Since this

thesis, for the most part , is about discrete event systems, the background provided in

this chapter mostly focuses on the DES and supervisory control; however , cont inuous

and hybrid systems are also explained. The writing is more descriptive than formal

and is meant to provide a g neral background to a reader with little background in

discret -event and hybrid systems theory. Some further review will also be provided

throughout Chapter 3 when discu 'Sing the definitions.

2.1 Systems and Modeling

As Cassandras and Lafortune (1999) pointed out , the idea of systems is an intui tiv

concept rather than an accurately defin d term. However , there exist a number of

definitions in the standard encyclopedias which are all similar in their main concept:

Wikipedia: System (from Latin systema, in turn from Greek <JU<JTTJ /-La systema)

is a set of interacting or interdependent entit ies, real or abstract, forming an

integrated whole (Wikipedia.org 2009).

Princeton WordNet: Instrumentality that combines interrelated interacting arti

facts designed to work as a coherent entity (Princeton University 2009)

5

IEEE Standard Dictionary of Electrical and Electronic Terms: A combina

tion of components that act together to perform a function not possible with

any of the individual parts (Radatz 1997).

There also exist definit ions for specific types of systems or for the usage in a

specific field of study, among which:

Biology (Wikipedia): A system is a group of organs that work together to perform

a cer tain task. Common systems, such as those present in mammals and other

animals, seen in human anatomy, are those such as the circulatory system, the

respiratory system, the nervous system, etc. (Wikipedia.org 2009).

Biomedical and cognitive (Princeton WordNet): A group of physiologically or

anatomically related organs or parts (Princeton University 2009).

Thermodynamics (Wikipedia): A thermodynamic system, originally called a work

ing ubstance. is defined as that part of the universe t hat is under considera

tion. A real or imaginary boundary separates the system from the rest of the

universe, which is referred to as the environment, surroundings, or reservoir

(Wikipedia.org 2009).

In t he fields of science and engineering, these defini tions imply the need for: first,

modeling of the part of the world under consideration (study and harness of natural

phenomena governed by physical laws in general) ; and second, considering the in

put/output behaviour (which is necessary for concurrency and control). Both these

constituents can be addressed by the concept of state-space mod ling. However , a

state of a system- which is normally one (or a set of) variable(s) indicating the xact

condition of the system uniquely- can evolve over time eit her as a direct or indirect

function of time itself (time dependent), a function of some specific events (time in

dependent), or a combination of those two (hybrid). As a result, a general high-level

classification can be considered for all systems based on the natural behaviours and

regardless of what the area of study is:

6

1. Time-driven Systems

2. Discrete Event Systems

3. Hybrid Systems

In the next s ctions, we d scribe the e classes in more detail.

2.2 Time-driven Systems

Time-driven systems (TDS) are characterized by two important attributes:

1. state variables are continuous over JR, t hat is, accept any real number as their

value,

2. state variables are functions of t ime.

Regarding t he first property, t ime-driven systems arc also known as continuous

systems (Millan 2006). This type of system can be then distinguished (Lu nberger

1979) in two sub-branches of discrete-time and continuous-time systems which nor

mally lead into difference equations and differential equations respectively. However,

to model real-world systems, computational techniques are someLimes necessary due

to complexity issues (Cellier 1991) , (Pichler and Moreno-Diaz 1990). Diff r nt control

techniques have also b en d veloped for such systems both analytically and compu

tationally (Ogata 2001) , (Khalil 2002).

A general state-space formulation for the continuous-time is of the form

{
x = f (x, u, t) , x(to) = xo

y = g(x, u)
(2 .1)

Where, x E X ~ lRn is the state vector , x0 is the init ial state, u E U ~ lRm is Lhe

control (input) vector, y E Y ~ JRP is the output vector, and t denotes the cont inuous

7

time. Functions f and g are both considered to be Lipschitz continuous for the

sake of exist ence and uniqueness (locally) of the solut ions (Fonseca and Leoni 2007),

(Freeman and Kokotovic 2008), and (Khalil 2002).

In discrete-t ime systems, modeling is quite similar , only in the form of difference

equations instead (Luenberger 1979):

{

x(k + 1) = J(x(k), u(k) , k),

y(k) = g(x(k), u(k)),

x(O) = xo
(2.2)

for k E { 0, 1, 2, ... } . This form, in general, is computationally more convenient for

implementation, especially when dealing with stochastic properties (Kalman 1960).

Other classifications have also been widely applied (linear and non-linear systems

for example); however , such classifications are not of concern in this thesis.

2.3 Discrete Event Systems

Although most of t he work done in the systems control area is about time-driven

systems, there still exist systems which cannot be described by the theories and

framework presented in the previous section . The reason is that these systems int rin

sically show different behaviours regarding both t heir state space and state evolution

(Cassandras and Lafort une 1999). This class of systems, as opposed to time-driven

systems, is characterized by two attributes of

1. state variables accept discrete values

2. st ate variables are no longer functions of t ime, rather , they jump t hrough their

different possible values only as a result of the occurrence of an event.

Tangibly, this class of systems is called Discrete Event Systems (DES). Mathematical

definitions for such syst ems are quite different from those of time-driven systems,

regarding the fact that continuous mathematics is no longer applicable in this area.

8

Indeed, diverse approaches have been developed to address the modeling of DES

(Cassandras and Lafortune 1999) , among which the theory of automata1 is considered

in this thesis because of its explicitness of events and states, and computational

privileges. Exploration of other modeling theories (Petri Nets, for example) is beyond

the scope of this thesis.

Example 2.1

Consider a machine including four states as the following (Millan 2006):

1. Working

2. Down

3. Scrap

4. Idle

Also consider the following six events for such a systems:

• a: the machine starts working, Idle to Working,

• b: completes its work and returns to the Idle state, Working to Idle,

• c: breaks down, going to the Down state, Working to Down,

• d: gets repaired, returning to the Idle state, Down to Idle,

• e: gets repaired, returning to the Working state, Down to Working,

• f: is scrapped , moving to the Scrap state, Down to Scrap.

The DES abstraction for this machine is illustrated in Figure 2-1 using IDES

software2 . The machine is initially at the Idle state (illustrated by a small arrow

1 Also called state machines.
2IDES (Integrated Discrete-Event Systems) is a Java-based software developed by The Open

Symphony Group at Queen's university and under the supervision of K. Rudie (Rudie 2008).

9

d

e

Figure 2-1: An automaton model for example 2.1 using IDES software.

next to state 4). It starts, working at the occurrence of event a. Then, by event b

it goes back to Idle or by event c it goes to the Down state, and so forth. States 1

and 4 are marked (desired) sta tes, illustra ted by double circling, and all the v nts

except event f are controllable3 , illustrated by a short dash on the corresponding

arrows. One may observe that if this system goes to state 3, it will then completely

stop running. Such sta tes are called deadlock (Cassandras and Lafortune 1999); one

goal of control synthesis for DES's can be avoiding the deadlocks.

Mathematical details of the automata theory will be provided in Chap ter 3.

2.3.1 Supervisory Control

A specification is typically a set of logical policies to be applied to a machine, a

mechanism, or a behaviour which can in turn be modeled at a logical (un-t imed) level

of abstraction (Cassandras and Lafortune 1999) . To achieve the desired behaviour

meeting the provided specifications, a closed-loop cont roller can be defined to disable

specific controllable events when required . A control synthesis paradigm known as

supervisory control theory (SCT) was developed by Ramadge and Wonham (1987) for

DES. More detail about the implementation of supervisory cont rol can be found in

3In the context of DES, an event is called cont rollable if it can be prevented from happening, or
it can be disabled by a supervisor (Cassandras and Lafortune 1999).

10

(Wonham 2009). However, it should be noted that the standard sup rvisory control

only deals with the specifications defined on the events. In this thesis, the model for

specifications are considered on the basis of both states and events .

The basic SCT has been developed in different direction , including decentral

ized upervisory control (Rudie and Wonham 1992) , supervision of infinite behaviour

(Thistle and Wonham 1994) , supervisory control under partial observation (Lin and

Wonham 1995), and supervisor reduction (Su and Wonham 2004) . Li (1997) explains

the problem of synthesizing deadlock-free modular supervisory. Other end avors by

O'Young (1991) and Branclin and Wonham (1994) resulted in extending SCT to timed

automata (will be explained in Section 2.4.1). More recently, a descriptive work by

Lafortune (2007) explains how supervisory control can be extended to the problems

where local controllers cannot explicitly communicate with each other in real-time.

A more computational work done by Leduc, Lawford and Dai (2006) cl scribes

how to cope with the problem clue to exponent ial growth of staLe-space in large

scale practical systems such as manufacturing systems. It suggests a "hierarchical

interface-based" supervisory control for systems with a natural master-slav structure.

In another work done by Gaudin and Marchand (2005) , the supervisory control and

deadlock avoidance problem is discussed for concurrent discrete vent systems. The

work implies its emphasis on viewing the problem as the entire collection, instead of

adding up binary behaviours. Regarding this view, the work don by Gaudin and

Marchand (2005) can be compared in part to our view in this res arch.

2.4 Hybrid Systems

Since a class of hybrid systems is also addressed in this thesis, this section provides

a brief explanation of these systems and how they are connected to the previou ly

explained systems.

Hybrid systems are the integration of TDS and DES, and therefore cannot be

11

modeled by either of TDS or DES modeling alone. In the literature, diverse mod

eling approaches have been developed to address inconsistency of the two types of

modelings.

2.4.1 Timed Automata

By definition. an automaton is a model for DES, and therefore dose not include

the concept of time. However , due to the fact that most logically-behaving systems

require time for measurement and synchronization, the concept of time appears to be

necessary in the modeling and control of real-world applications. It was first added

to the automata as integer clock events, called ticks (O'Young 1991) which can be

considered as a formal step towards hybrid system modeling. The coarse-timing,

how ver, does not meet the real-world requirements; as a result a set of real-valued

clock added to the theory of automata by Alur and Dill (1994). The upervi ory

control for such systems was then explained by Brandin and Wonham (1994).

The theory of timed automata has been implemented mostly in the real-time

computing applications, such as on-line transaction processing systems (Kourkouli

and Hassapis 2005); however , it has not been widely used in th systems and control

community.

2.4.2 H ybrid Automata

While timed automata theory has achieved promising r sults (Saadatpoor 2004), it

still does not include the concept of time-driven dynamics. In other words, any phys

ical systems with logical constraints (more generally, with logical behaviours) cannot

be modeled by t imed automata. This not ion shaped the idea of hybrid automata.

The theory of hybrid automata was first developed by Alur, Courcoubetis, Hen

zinger and Ho (1993) and Benzinger (1996) . It has then evolved through a wide range

of work done by different researchers including Lygeros, Tomlin and Sastry (1999),

Lynch, Segala and Vaandrager (2001) , and Cassandras and Lygeros (2006) .

12

The formal definition of hybrid automata will be presented in Chapter 3 (Section

3.6), where more relevant references will also be provided.

13

Synchronization of Discrete Event Systems

In this chapter, we consider a system of more than one DES, each accepted to be

an independent entity. The normal behaviour of each DES is the language it g n

erates before applying any constraint (see (Wonham 2009) and (Cassandras and

Lafortune 1999) for a complete description of language and automata in the DES

literature), while the desired behaviour is the language generated after applying a set

of constraint, callccl the specification. For a group of given DES (more than one), two

types of specifications arc considered in this t hesis:

1. (Event-based specification) is a behavioural constraint to an individual DES

(or a number of DES together, which share common events), such as blocking

of specific events in one or more DES,

2. (State/event-based specification) is a "state-dependent," and still 'event

based" constraint for concurrent DES, such as having a specific transition in

a DES as a result of the occurrence of a specific event from the event set of

another DES in the group.

More precisely, if we have a group of more than one system, a specification can

be applied to the group because of individual desired behaviour and/or concurrent

14

(intra-systems) de ired behaviour. For a given problem one or both of the above

sp ifications can be applied .

As we will see, an event-based specification is normally a separate automaton

added to the group, wit h events from the event set(s) of the system(s) to be controlled,

and the states which are not from Lhe state set(s) of the main system(s) . This type

of specification has been well-developed in the context of supervisory control.

For a st ate/ event-based specification, a set of local functions is proposed in Lhi

thesis to locally translate an event, generated by other systems of the group, into

an "owned" event while being in a specific state. This type of specification becomes

more important in the implementation of real-world applications, where, due to the

engineering considerations such a~ information hiding the state of a DES is as impor

tant as its generated language. Addi tionally, when a DES is a model for a part of a

larger system, each state of the DES can bear a physical concept in behind, regarding

the ent ire system. As a re ult, a specification may b set up once the DES i in a

specific stat e.

Remark 3.1: (Theory vs. Implementation)

Generally speaking, in systems theory and control, there is almost always a distinction

between the theory, which is pure mathematical explanations, and t he implementa

tion, which is the way that is preferred because of computational and/or ngineering

considerations. From the mathematical point of view, different modeling methods

may be considered as 'equal" provided they generate t he same results. However,

from the implementation point of view, those methods may be consid r d as "com

pletely different," because of the reasons ranging from the physical meanings behind

the constituents of a model, to the computational complexity (and even possibility).

For example, in the context of cont inuous systems theory, it is said that the state

space model is not unique, which is true. However, engineers prefer to use a model

that matches each state variable with a physical concept (say in a high-lev l modeling

15

Figure 3-1: Two DES with different topology, which generate and mark the same languages.
The one at the right has infinite number of states, thus can not be implemented .

of a car, the state variables can be the car 's location, velocity, etc. instead of sheer

mathematical variables so that their combinations provides the car's location, etc.).

Likewise, in the context of DES, from the mathematical point of view, as long as

we are only concerned about the generat d and marked languages, the result would

not be different from that when we consider implementation issues such as an object

oriented design. Figure 3-1 illustra tes two DES, both of which generate and mark

the same languages , while only the one on the left can be implement d using a finite

amount of memory; behaviourally, Lhese two automata are identical, but only on

can be implemented .

Mathematically, it is always possible to "edit" a DES by changing its topology to

achieve a desired b haviour. Therefore, both types of specifications can be performed

by re-labeling, and/ or augment ing, and/ or omitting the edges of the main syst ms,

inst ead of introducing a separate DES and/ or local functions. However , in practic , to

have an object-oriented design (th refore, benefit from the ideas such as information

hiding, hierarchical design, and reuse), a basic premise is not to allow for the change

of a model (hidden information) after the very first stage of design. This premise

puts forward only methodologies which permit this "hiding" and "interfac -design"

for both types of mentioned specifications.

Figure 3-2 summarizes the theoretical concepts which will be presented in this

chapter. We begin with the formal modeling of discrete event systems (whi h is

the concept of "automaton"). We then extend the modeling of one single syst m

to a finite set of systems having interaction explicitly by sc ing each others' events,

16

Ruled-collection

Map-automaton

Figure 3-2: Th outlook of Chapter 3.

which results in the definition of "map". These two togeth r will shape the "map

automaton", which in turn is the basis for the definition of a "DES collection." Over

a DES call ction a "composition rule" can be defined . A DES collection with a

defined composition rule will shape a "ruled-collection," which is the basis for "DES

hierarchy ' at the final step.

The goal of this chapter is to establi h a unified and solid mathematical framework

to moc!C'l multi-DES structures effectively. Both the standard and the introduced

definitions and cone pts are clarified by simple examples.

17

3.1 DES Concepts And Methodologies

Definition 3.1.1 (Automata) An automaton1 (Cassandras and Lafortune 1999) is

a six-tuple

(3.1)

where:

• Q is a set of discrete states,

• 2: is the fi:n:de set of events associated with tmnsitions ·in G ,

• 8 : Q x 2: - Q is the transition function, which is generally a partial function

on its domain,

• r : Q - 2E is the active event function; r (q) is the set of events cr , for which

8 (q, cr) is defined, and is called the active event set of G at q,

• q0 is the initial state,

• Qm ~ Q is the set of marked states.

For the sake of convenience (Cassandras and Lafortune 1999) , 8 is always extended

from domain Q x 2: to domain Q x 2:* in the following recursive manner2
:

8(q, E) := q,

8(q, scr) := 8(8(q, s), cr), for s E 2:* and cr E 2: ,

(3.2)

(3.3)

1The terms automaton and finit e automaton will be used interchangeably through out this text,
but both are distinguished from hybrid automaton. Additionally, automata theory is a methodology
to model DES; however, in this text, automata and DES are both being referred to as in the definit ion
3.1.1.

2 Through out this text, the symbol ":=" means "by definition is equal to."

18

where, E is t he empty string. Also, it is important to note that we allow th transition

function c:5 to be partially defined over its domain which is a standard definition

in DES area (but a variation over the automata theory in the computer science

literature). This definition allows for blocking, which is a basic concept in the DES

area (Cassandras and Lafortune 1999).

Definition 3.1.2 (Languages Generated And Marked) The language generated

by G = (Q, I:, c:5, r , q0 , Qm) is

.C(G) := {s E I:* I c:5(qo, s) is defined.} (3.4)

The language marked by G is

.Cm(G) := {s E .C(G) I c:5(qo, s) E Qm}· (3.5)

By definition, two automata G1 and G2 are said to be equivalent and shown as

G1 = G2 if and only if they generate and mark the same languages. Also, the

reader may note that, in the DES area, it is usually more desirable to construct the

definitions based on the generated and marked languages instead of the automata

themselves (see for example the text by Wonham (2009)). However , in this Lhesis,

the theory will preferably be built upon the automata definition, due to the role that

states play in the real-world applications (the reader will observe .that each stat can

carry a physical meaning, rather than being a sheer name, especially in the hybrid

systems area) .

Example 3 .1: (Automaton)

Consider the machine explained in example 2.1, the automaton for this machine would

be defined as

19

G = (Q, I: , <5, r , qo, Qm)

Q={1, 2,3, 4},

I: = {a, b, c, d, e, f},

6 is defined as:

<5(1 , b) = 4,

<5(1, c) = 2,

<5(2, e) = 1,

<5(2, d)= 4,

<5(2, f)= 3,

c5(4, a)= 1,

and r is defined as:

r(1) = {b, c},

r(2) = { e, d,!},

r(3) = 0,

r(4) ={a},

qo = 4,

Qm = {1 , 4}.

•

where, (3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3. 11)

(3 .12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Let us now extend the single-system architecture to a mult i-system one, where each

DES is supposed to be modeled as a stand-alone automaton (that is, we are not going

to let the entire system be flattened).

20

Remember t hat for a system of more than one DES, the specifications are ac

cepted in two different ways: event-based and state/event-based . The idea behind

the implementation of a st ate/event-based specification is to encode the event-bas d

interaction of multi-DES in local functions call d map, so that the topology of each

DES remains unchanged to preserve information hiding and promote reuse. Consider

the following definition:

D efinition 3.1.3 (Map) Given a set ofn DES, {G1 , ... , Gn}, and I: = U;=1 L:P, Mi

is called the map for the i -th DES and defin ed as 3 :

u
jE{l, ... ,n}\{i}

(3.21)

(3.22)

For qi E Qi, a- E I::\I::i, and a-' E f i (qi)\ U#i L:J ; Jl![i(qi, a-) = a-' provides a t ranslation

of event a- to event a-' , which can cause a local transition (8i(qi,o-')) in system i .

Therefore, inside a group of DES , a map can be thought of as a local, one-sided

interface of a DES to the rest of the group. Thus, a map hides its DES details.

We have not yet talked about the composition rules, which are t he formal ways of

constructing a new DES from a set of given DES. However , note that a given map

(say Mi) only preserves the local translation of events, and does not directly affect the

t ran ition function of the corresponding system (5i) . Th transition function should

then be defined separately by a composition rule, which can t ake advantage of these

locally translated events (for example, if the translated event (a-') is blocked by an

event-based specification, which is one of the DES in the group, then no transition

will occur). We will explain it completely in Section 3.3. Now, consider the following

example:

3 The symbol ~ indicates the range of a function as partial.

21

Product Bundle

~'
____ !3__,1 -==~ o~--~~~~~~~~~~~~~~--~~~~-ol!-_~~--a-2 _ _ __,.

W1 Transportation W2

Figure 3-3: Schematic of two warehouses, each has two states of door-open (Oi) and door·
close (Ci); in addition to the two events of product-arrival (ai) and product-depar·ture (f3i),
and the event wi which is not shown. The warehouses are working in series, so that the
product-departure event of W1 (!31) is mapped to the product-arrival event of W2 (a2) once
w2 is in the state c2.

Example 3 .2: (Two-warehouse System)

As an example, consider two warehouses each of which has two states of door-opened

(0) and door- closed (C) ; and three events of product-arrival (a), product-departure

(/3), and time-off (w) (see Figure 3-3). Suppo e these warehouses can be modeled

by the automata W1 and W2 , shown in Figure 3-4. Consider the case that these

warehouses are working in series, namely, the product departed from vV1 is sent to

W2 (see Figure 3-3). At t his point, we are not going to model the compositional

behaviour as a single DES, rather we are interested in modeling the system as a

group of two stand-alone DES, each of which has a map.

For l::i = { ai, f3i, wi}, i = 1, 2, let us define the following maps to encode the

in-group behaviour:

(3.23)

22

W1 W2

Figure 3-4: Two warehouses of Example 3.2, W 1 and l¥2, in which W2 accommodates the
event a1 of W1 through its own event f32·

It means that using M2 , W2 translates /31 into a 2 , while it is in state C2 . Whereas, W1

does not perform any translation. With such a definition, the concurrent behaviour

is accurat ly captured without the need to re-model each sy tern from scratch. •

Having a stand-alone model without having to think of its synchronization with

other automata (Figure 3-5) encourages an object-ori nted approach to modeling.

Indeed, the maps are the local interface between automata, thus the basic object

oriented concepts such as re-use and data-hiding can be taken advantage of, while

the maps preserve the in-group information (that is, statejcvcnt-bascu specifications)

of the modeled systems. Let us summarize t he characteristics of a map:

1. it allows for encoding specific interactions among a set of DES without having

to modify each DES model directly,

2. the input event of a map can still be blocked by an event-based specification,

3. it is local, thus it is able to ncode non-symmetric translations,

23

Figure 3-5: A group of DES with both state/event-based and event-based sp cifications,
which are indicated by the set of maps {M1, ... , Mn} and the set of automata {S1 , ... , Sp }
respectively.

4. it is also defined over the local (owned) stat s, therefore it provides the ability

to specify the sta tes for which a t ranslation is required,

5. it is not defined over the st ate of other syst ems; therefore, the sta te of each

system is still local (hidden from the group) , and t he result is an event-based

concurrency,

6. it is limited in the sense that the result of a map is restricted only to the exclusive

events in the active event set of the current stat e.

In the next section , we utilize these concepts to establish a general composit ion rule

which in turn allows for the desired hierarchical structure design.

3.2 Concurrent DES

Once a group of DES is given, along with required information of how ach single DES

locally translates the events from other DES, each DES can be promoted by its map

to include those st ate/ event-based specifications. Consider the following definition:

D efinition 3.2.1 (Map-Automata) Given a set of n DES, { G1 , ... , Gn}, and a

map Mi for each, a map-automaton Gi is a tuple

(3.24)

24

which is defined for each automaton Gi inside the group.

Therefore, a map-automaton consists of two entities: an automaton , which i normally

not allowed to be changed at the run-time; and a map that can be changed (up-dated)

if required. This encourages the main thread of hiding (encapsulation) and interface

design in object-oriented programming. See the following example:

Example 3 .3: (Three-warehouse System)

Let us extend the previous example (Example 3.2) to three warehouses. As illustrated

in Figure 3-6, consider the case that the third warehouse (W3) receives products de

parted from both W1 and W2 , while l¥ 2 only receives products from W1. Additionally,

W1 does not receive products which are departed from the other warehouses (W2 and

W3) . To avoid the concept ual inconsistency in the case that a product d parts from

W1 (thus, should be received by both W2 and W3) , assume each product departed

from W1 is a bundle which has two parts each can be sent to a differ nt warehouse

as an arrival product. The corresponding automata are illustrated in Figure 3-7. The

maps for this case will then be defined as:

M2(C2, fJ1) = a2,

M3(C3, fJ1) = a3,

Jvh(C3,{32) = a3,

M1 , M2 , Jvf3 are not defined for all other events.

(3.25)

(3.26)

(3.27)

For the group of three warehouses, the three map-automata can then be defined as:

(3 .2)

where, M1 is defined as null or empty, meaning that there is no t ranslation local to

system wl . •
In this example, while Mis encode the local translations, the modeling of W1 and W2

25

--------------''_:'":.:_:(C:~ ,Ild =a:~

Wl

Figure 3-6: Schematic of three warehouses, each has two states of door-opened (Oi) and
door-closed (Ci); in addition to the two events of product-arrival (a:i) and product-departure
(f3i), and the event wi which is not shown. The warehouses are working in series, in such a
way that the product-departure event of W1 ({31) is mapped to the product-arrival event of
W2 (a:1), and W 3 (a:3), while they are in their door-closed states (C2 and C3 , respectively) .
Also, product-depar-ture of W2 (!32) is mapped to product-arrival of W3 (a:3) while it is in
its door-closed state (C3).

26

W1 W2 W3

Figure 3-7: Three warehouses of Example 2, W1, W2, and W3, in which both W2 and W3
translate the event fJ1 of W1 into their own events a2 and a3 respectively. In addition, W3
also translates the event /32 of W2 to its own event et3.

(the automata of example 1) has left unchanged, that is no re-labeling is required.

As mentioned before, this property is an important characteristic since it allows for

abstraction and encapsulation in object-oriented programming. We will return to this

basic advantage in the next chapter.

Now, inside a larger group of DES, let us collect each set of map-automata as a

DES collection. Formally,

Definition 3.2 .2 (D ES Collection) Given a set of automata { G1 , ... , Gm}, the set

(3.29)

is called a DES collection, where Gi = (Gi, Mi) is the map-automaton corresponding

to Gi with the map Jl![i defined for the set {G1 , ... , Gm}·

Therefore, a given set of DES can be partitioned into a finite number of smaller sets

of (possibly one-element) DES, each form a DES collection, provided that inside each

set, any DES is defined with a map (possibly empty). See the following example:

27

(3;

Figure 3-8: Discrete abstraction of two-mode liquid tanks of example 3.4.

Example 3.4: (DES Collection)

Suppose we have n two-mode liquid tanks, which are supposed to be at either t he

filling (F) mode or the rest (R) mode. Each tank is equipped with a two-mode tap,

which defines whether the tank is in F or in R by two events of tap open (a) and

tap closed ((3). The automaton corresponding to the i-th tank is then defined as (sec

Figure 3-8) :

where,

Q; = {F;, R;} ,

l::; = {a;' ,6;} '

8; : 8;(Fi, (3;) = {R;} , 8;(R; , a;)= {F;} ,

f ; : f ;(F;) = {,6;}, f ;(R;) = {a;}.

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Let these tanks be arranged in two groups (with the cardinality of m 1 and m2 , m 1 +
m2 = n) , where all the tanks of each group have to share a single tap . Suppose

each tap is single-user, that is it can only fill one tank at a time, and therefore

each tank has to transit to its rest mode (say R;) once any other tank in the group

goes to filling mode (say Fj)· In other words, inside each group, each tank should

28

have a translation of all other fillings to its own rest. Formally, if the set of indices

I = { 1, ... , n} is partitioned into two sets, h and h, corresponding to the indic s of

automata in each groups, we have

(3.35)

Aggregating these maps and the original automata forms two collections r presenting

the two groups (see Figure 3-9):

fork = 1, 2,

(3.36)

•

3.3 Composition Rules

It would be natural to think of a mathematical n-ary composition rule over a given

DES collection. Such a rule, as far as this thesis is concerned, should result in a

new DES. Additionally, to the best of our knowledge, the composition rule should

satisfy basic mathematical properties to be "con i tent" and "useful ," while still being

considered as a general rule4
. We then make use of such a rule (as a general term)

to define a hierarchical design. Consider the following definition (Cassandras and

Lafortune 1999) :

D efinition 3.3.1 (Accessible Function) The accessible part of an automaton G =

4 It is open to tliscussion what "consistent" and "useful" are, while it can be compromising that
such basic propert ies a re more intuit ive than based on a finn reasoning. In this text, these properties
are mostly influenced by the standard operations in t he existing literature.

29

• • •
I

\ I
'------------------------------

• • •
I

\ I
'------------------------------

Figure 3-9: Liquid tanks of Example 3.4, grouped into two collections of Cr (of cardinality
ICrl = mr) and C2 (of cardinality IC2I = m2).

30

(Q, 2:, 8, r , q0 , Qm) is denoted by Ac(G) and defined as

Ac(G) := (Qac, 2:, 8ac, r ac, qo, Qac,m), where

Qac = {q E Q I :ls E 2:* (8(qo,s) = q)},

Qac,m = Qm n Qac,

8ac = 8 I Qac X 2: ---t Qac,

rae= r I Qac ---t 2E.

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

The notation 8 I Qac x 2: ---t Qac means that 8 is restricted to the smaller domain of

the accessible states Qac, and so is r. Let us now define the n-ary composition rule:

Definition 3.3.2 (N-ary Composition Rule (NCR)) For a given DES collec

tion C = (G\, ... , Gm), a function * which is defined over every sequence of the

mapped-automata of C as:

(3.42)

is an n-ary composition rule {NCR) if the fo llowing three axioms hold:

1. {DES closure) g is an automaton,

2. {Accessibility) g = Ac(Y) ,

3. {In-group commutativity) G1 *· ·· *Gi*· ··*Gj*···*Gm = G1 *···*Gj*..-*Gi* ···*Gm,

for all i,j E {1, .. . ,m} .

g is called the resulting DES.

As a result, each composit ion rule depends also upon how the local maps are

defined (because it is defined over the set of map-automata rather than the automata

31

themselves) . In general, the resulting transition function of a rule takes the form of:

(3.43)

wher , 8Hqi, 0') is a local ruled-transition function and is defined based on the selected

rule (which uses the local map Mi). However the use of maps i not a nece sity in the

design of a composition rule: an arbitrary composit ion rule can be defin d over a set

of automata alone. We will observe how standard product and synchronous product

compo it ion operators (which are defined over a set of automata) are composition

rules.

Here, a number of composition rules are pr sented. Special attention will also be

placed on the n-ary version of standard operations to be considered as composition

rules.

3.3.1 Product Composition

Definition 3.3.3 (Product Composition(Cassandras and Lafortune 1999))

The product of G1 , 00. , Gn is the automaton

n

Gl X 000 X Gn := Ac(Ql X 000 X Qn , n I:i , 6, r , (qol, 000 , qon) , Qml X 000 X Qmn), (3.44)
i=l

where,

(3.45)
otherwise.

By definition, product composition holds the first two axioms. And, by re-labeling,

it is also verifiable that it is commutative (see (Cassandras and Lafortune 1999)).

Therefore,

32

Lemma 3.3.4 Product composition (x) is an NCR.

3.3.2 Synchronous Product Composition

Let us begin with the standard binary operation:

D efinition 3.3.5 (Synchronous Product Operation) The synchronous product5

operation (binary) {by Wonham {2009} and Cassandras and Lafortune {1999}) of

G1 , G2 is the automaton

(<51 (q1 , (j) , <52 (q2, (j)) if (j E r 1 (qt) n r 2 (q2) ,

8((ql, q2) , (j) :=
(<51 (q1 , (j) , q2) if (j E r1(ql)\I;2,

(3.46)
(ql , <52 (q2 , (j)) if (j E r2(q2)\I;1 ,

undefined otherwise.

Therefore, f((q1, q2)) = [f1(q1) nr2(q2)] U [f1(ql)\I;2] U [f2(q2)\E1]. In the literature,

the synchronous product is normally defined as a binary operation. Because it is

verifiable that the binary synchronous product is both commutative and associative

(se (Wonham 2009) and (Cassandras and Lafortune 1999)), it can be generalized

to an n-ary version without experiencing any inconsistency, which is desired for our

purpose.

The core idea behind the presented n-ary definition is to observe that for a given

event O" E U~1 I;i, there would be a transit ion only when all the automata to which

O" belongs, enable it too. In that case, all those automata have their local transition

8i(qi, O"). In other words, there will be no transition (namely, O" will be blocked) if

:Ji E {1, ... , n} I (j E I;i (\ (j tJ. r i(qi) · Let us define a set of indexes n, if all the

5 Also called par-allel composition (Cassandras and Lafortune 1999).

33

automata to which cr belongs, also enable it ; such that 0 contains the indexes of all

those automata: for a given event cr E U~=l Ei,

0 ={ViE {1, ... ,n} I (cr E Ei ==> (T E r i(qi))}. (3.47)

ote that 0 can be an empty set (if cr belongs to some automata, but not all of

those automata enable cr simultaneously). Therefore, if 0 is non-empty then there

will be a local transition in all Gi, i E 0 . Let us now re-write the preceding formula

including the logical condition of (cr E Ei ==> cr E r i(qi)) in an algebraic form of

0 E 2{l, ... ,n} I (T E [n kEf'! rk(qk)] \[Uk~n Ek]· We state this latter clause as the condit ion

for defining the n-ary synchronous product composition, and then explain the formal

justification of this definition:

Definition 3.3.6 (Synchronous Product Composition) The synchronous prod

uct of G1 , ... , Gn is the automaton

Glii ... IIGn := Ac(Q, E, 8, r , qo , Qm), where

Q = Ql X ... X Qn,
n

Qm = Q ml X .. · X Qmn, and

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

if:JO E 2{l, ... ,n} I i E 0/\cr E [n kEnrk(qk)] \ [Uk~nEk] ,

if:JO E 2{l , ... ,n} I i ¢:: 01\cr E [n kEn r k(qk)] \ [Uk~nEk] ,

undefined otherwise.

and 8 is undefined if any one of the f/ is undefined.

34

Therefore,

(3.54)

Consider the following theorem:

Theorem 3.3. 7 Given a set of automata { G1 , ... Gn},

See Appendix A for the proof. In addition that this theor m prov s the n-ary d f

inition as t he generalization of the binary definition, this is an important theor m

since, firstly, it provides a formal justifi ation for using an n-ary synchronous product

inst ead of a flattened binary one. Secondly, it brings the advantages of th binary syn

chronous product. For example, using the commutativity and a sociativity propertie

of binary synchronous product, we can write:

(3.55)

Therefore, it is straight forward to show that the third axiom of RC holds under

the synchronous product composition. Also, similar to th product composition, by

definition, synchronous product composition holds the first two axioms. Thus

Lemma 3.3.8 Synchronous product composition mJ is an NCR.

The generat d and marked languages of synchronous produ t composition can be

found using the binary counterparts (which are described by (Wonham 2009) and

35

(Cassandras and Lafortune 1999)). Formally,

n

.C(GI II··· IIGn) = n pi-1[.C(Gi)], (3.56)
i= l

n

.Cm(GII I···IIGn) = n pi- 1[.Cm(Gi)], (3.57)
i=l

where pi-1
(.) is the inverse of projection map, Pi, for system i (see (Wonham 2009)

and (Cassandras and Lafortune 1999)), defined as:

n

Pi: CU Ej)*- E;, for i=1 , .. . ,n.
j=l

(3.58)

Most importantly, Wonham (2009) explains how to apply an event-based specification

using synchronous product. See the following example for the implementation of

synchronous product:

Example 3.5: (An event-based Specification)

In example 3.3, say for the reason that the second warehouse is full , t he specification

is "to prevent product arrival to the second warehouse (W2)." For the moment , let us

assume that the warehouses are not in series (we will return to the complete version

of this example later). The premise here is to define this specification by an automa

ton and then have a synchronous product of the main system and t his automaton.

Let the specification be characterized by the automaton 5 1 (Figure 3-10). This au

tomaton has only one event a 2 which belongs to system W2 , while th states have

no connection to the state of the warehouses (however, they can still be thought of

"good" state and "bad" state for "1" and "2" respectively). The specification 5 1 sim

ply shows that the event a 2 goes to an un-marked state, thus it is undesirable. The

marked language of the synchronous product will then be our desired behaviour. An

alternative automaton is 52 shown in Figure 3-10 with Es2 = E = Ew1 U Ew2 U Ew3·

Here, we have all the events in the self-loop, except for C\'2 . Because 0'2 still belongs

36

51 52

Figure 3-10: Event-based specification of Example 3.5: the event-based specification S1 ,
which affects the marked language, and the event-based specification s2, which affects the

language of(}= W1 IIW2IIW3.

to 2:;52 , this supervisor blocks all t he a 2 of the main system. ow, the language of

the synchronous product is our desired behaviour. •

Indeed, synchronous product is a powerful mathematical tool in implementing super

visory control. Now, let us extend the concept of synchronous product composition,

using the systems' maps.

3.3.3 Accommodating Synchronous Product (ASP) Compo-

sit ion

D efinition 3.3.9 (Accommodating Synchronous Product (ASP) Composit ion)

The accommodating synchronous product of G1 , . . . , Gn which shape a DES collection

C = {(G1, M1), ... (Gn, Mn)} = {G1, ... , Gn} is the automaton

37

where,

(3.59)

(3.60)

(3.61)

Qm = Qml X · ·· X Qmn, and (3.62)

(3.63)

(3.64)

undefined

if30 E 2{l, ... ,n} I i E 0 1\CJ E [n kEn r k(qk)] \ [Uk\J!nEk],
if 30 E 2{l , ... ,n} 1 i tJ. o A (J E [n kEn r k(qk)] \ [Uk\J!n Ek],

and Mi (qi, CJ) is not defined,

if30 E 2 {l, ... ,n} I i tJ. 0 1\CJ E [n kEnr k(qk)] \ [Uk{lnEk],

and Mi (qi , CJ) is defined,

otherwise.

and {J is undefined if any one of the {J' is undefined.

Therefore,

(3.65)

As a result , for each DES, the ASP composition exactly works as the synchronous

product does, unless when the event is an "exclusive" event of another (or another

set of) DES, and at the same time, a map is defined for it. In such a case, the DES

will perform a transition (namely, fJi(qi, Mi(qi, CJ))) based on the translated version of

CJ (which is Mi(qi, CJ)) . Also, note that f(q1 , .. . , qn) is not changed.

38

For the case of only two systems, the transition function of the above definition is

reduced to the following (see Appendix B for the proof):

6((q1, q2) , CT) :=

(61 (q1, CT) , J2(q2 , CT))

(61 (q1, CT) , 62 (q2, M2 (q2 , CT)))

(61 (q1, (T) ' q2)

(61(q1, M1(q1, CT)), 62(q2, CT))

(q1 ' 62 (q2 , (T))

undefined

(3.66)

if (T E r 1 (q!) n r 2 (q2),

if (T E r1(q1)\E2 and M2(q2, CT) is defined,

ifCT E r1(q1)\E2 and M2(q2 , CT) is not defined,

if (T E r2(q2)\E1 and M1(q1, CT) is defined,

if (T E r2(q2)\E1 and M1(q1 , CT) is not defined ,

otherwise,

Lemma 3.3.10 Accommodating synchronous product (J_) is an NCR.

Proof. Similar to the previous compositions, by definition , ASP holds the first two

axioms of CR. As for the third axiom, intuitively, since each DES is on its own, the

order in the composition is not important. Formally, we can prove the commutativity

property by re-labeling:

Let G1 and G2 represent any two DES in the set { G1 , .. . , Gn}, and suppose G' =

G1..lG2 and G" = G2..lG1 . Since V(qi, qj) E Q1 x Q2 , 3(qj , qi) E Q2 x Q1 , we

can relabel both (qi, q1) in G' and (q1, qi) in G" with a unique new name >..k, k E

{1, ... , IQ1I x IQ21}. Therefore, the state-space of both G' and G" are equivalent to

A= {Ak I k E {1, ... , IQ1I x IQ21} }. Also, for q~ E Q1 and qj E Q2 let us perform the

following substitution:

39

then, we can write:

&e,(>.k,g) = &e,((qi, qj),g) = (6~(qi , g),&~(qi,g)) = (q~,qj) £ >.~,

&e"(>.k,g) = &e"((qi ,qi),g) = (6~(qi,g),&~(qi,g)) = (qj,q~) £ >.~.

(3 .67)

(3.68)

As a result, &e,(>.k,g) = &e"(>.k,g). Therefore, under this relabeling and because

:Be' = :Be" = :E1 U :E2, and also qe' ,o = (q1,o, q2,o) = >.~ E A and qe" ,o = (q2,o, ql,o) =

>.~ E A, both G' and G" generate the same languages. On the other hand, in G',

Ak,m = (qi,m, qj,m) , and in G", Ak,m = (%m, qi,m), that is our introduced relabeling

can be extended to the marked states. Thus, since t he transition function of G' and

G" are equivalent, they generate the same marked language as well, and therefore G'

and G" are equivalent . •

Remember , a given map (say Mi) only preserves the local translation of events

(which is state/event-based specifications), but docs not directly affect the transi

tion function of the corresponding system (&i) · Thus, if the translated event (O"')

is blocked by an event-based specification (which is characterized by an added DES

in the group) , then no transition will occur. This enables "blocking" to be used.

Blocking is one of the basic and important concepts in the DES literature for apply

ing control. The following extensive example demonstrates the case of having both

state/event-based and event-based specifications at the same time. All the derivations

are presented in detail.

40

E xample 3.6: (ASP Composit ion)

Let us again return to the warehou es of Examples 3.3, but this t ime we assum

t hat the war houses are in series (as explained in the Example 3.3). As explain d

in Example 3.3, we encode the state/event-based specification by maps .M1, J.. / 2, and

M3 corresponding to each warehouse. ow we would like to analytically find the

result ing DES, namely

c1 = {W1, w2, w3},

Ql = W1l_W2l_ ltV3 = (Q,E, 8, r ,qo, Qm) ·

First of all , note t hat Q = Q1 x Q2 x Q3 ; therefore, Q = {q1, ... q } with

ql = (CI, C2, C3),

q2 = (01 ,C2,C3),

q3 = (C1 0 2,C3),

q4 = (0 1, 0 2,C3),

q5 = (cl,c2, o 3),

q6 = (01 ,c2, o 3),

q7 = (C1, 0 2, 0 3),

qg = (01 , 0 2, 0 3) ·

Also (becau the event sets are disjoint),

E = U Ei = {a l ,a3,a3,,81,,82,,83,wl ,w2,w3}·
i=l,2,3

41

(3.69)

(3.70)

For each state qi E Q, f(qi) can be found directly:

r(qi) = r((CI, c2, C3))

= [fi(CI)\(E2 u E3)] U [f2(C2)\ (EI U E3)] U [f3(C3)\(EI U E2)]

= ri(CI) u r2(C2) u r3(C3)

= {a t} U {a2} U {a3}

Likewise, we have

f (q2) = {,BI,wi , a2, a3},

f (q3) = {ai,,B2,w2,a3},

f (q4) = {,BI, WI, ,82, w2, a3},

f (qs) = {a1 ,a2,,83,w3},

f (qB) = {,BI, WI, a2, ,83, w3},

f(q7) = {ai,,B2,w2,,83,w3},

r (Qs) = {,BI, WI) ,82, w2, ,83, w3} 0

The transition function can then be found exhaustively. Consider the following deriva

tions for state QI , and all the events in f(QI):

8(qi , ai) = 8((CI, C2, C3), ai)

= (8~(CI,ai) , 8~(C2 ,ai) ,8~(C3,ai))

= (8I(CI , at) , C2, C3)

= (OI , c2, c3) = Q2,

42

8(q1 , a2) = 8((C1, C2, C3), a2)

= (8~ (C1, a2) , 8;(C2 , a2), 8~(C3 , a2))

= (C1, 82(C2, a2) , C3)

= (C1, 02, C3) = q3,

8(q1, a 3) = 8((C1, C2, C3), a3)

= (8~(C1 , a3) , 8;(c2 , a3) , 8~(C3,a3))

= (C1,C2,83(C3 ,a3))

= (C1, C2, 03) = qs .

For q2 , and events in f(q2) we have:

8(q2 , fJ1) = 8((01, c2, c3), fJ1)

= (8~ (01, fJ1), 8;(C2, fJ1), 8~(C3 , fJ1))

= (81(01, fJ1) , 82(C2, M12(C2, fJ1)), 83(C3, M13 (C3, fJ1)))

= (C1 , 82(C2, a2), 83(C3 , a3))

= (C1 , 02, 03) = q7,

8(q2 , w1) = 8((01, C2, C3), w1)

= (8~ (01, w1) , 8;(C2, wi), 8~(C3, w1))

= (81(01,w1),C2,C3)

= (C1, C2, C3) = q1,

8(q2 , a2) = 8((01, C2, C3), a2)

= (8~(01,a2) , 8;(c2 , a2),8~(C3,a2))

= (C1, 82(C2, a2), C3)

= (C1 , 02, C3) = q3,

43

6(q2, a3) = 6((01 , C2, C3), a3)

= (i5~(01 ,a3) , 6~(C2,a3) , 6~(C3,a3))

= (C1, C2 , 63(C3, a3))

= (C1, c2, 0 3) = q5.

Similarly, the transition function for all other states and the events in their corre

sponding active event sets can be derived exhaustively.

Finally, for qo and Qm we can write:

•

Qm = { (qi, qj, qk) I qi E Ql,m A qj E Q2,m A qk E Q3,m}

= { (C1 , C2, C3)} = { ql} ,

qo = (ql,o,q2,o, q3,o) = (C1,C2,C3) = q1 .

Remark 3.2: (Map-dependent Violation of Blocking)

When an event CJ E Ei of Gi is blocked by a supervisor (an event-based specification),

by the definit ion of ASP (Definit ion 3.3.9), any mapped version of CJ will also be

blocked (because it falls into the category of "undefined") . Similarly, because the

range of maps is defined as the exclusively owned events (not in the alphabets of

other DES in the collection), any event can be blocked by a supervisor without the

fear that it will be viola ted by a map.

Consider the case that in Definit ion 3.1.3, the range of a map is defined over

its complete active event set (rather than its exclusive subset), namely Mi : Qi x

(E\Ei) ~ r i· Then, if an event CJ E Ei of Gi is blocked by a supervisor and at

the same time CJ exists as t he output of a map for another event CJ1 tJ. Ei generated

by another DES in the collection, then the occurrence of CJ1 can cause the transition

bi(qi, Mi(qi, CJ')) = bi(qi, CJ) in system Gi, which must have been blocked. In other

44

b

s s s
· ------- · ------- · -------

b c d

Figure 3-11 : Three automata of example 3.7. The only defined map is Af2(q2, a) = b (for
q2 E Q2).

words, a "badly-designed" map can cancel the effect of a supervisor once the DES

is in some specific states for which the map has been defined. Despite this adverse

effect , a map with such a definition is generally more expressive, because it is free to

be defined all over t he C (qi) set .

The following example shows the case that a shared event is required to be in the

range of a specific map. For simplicity, no supervisor (event-based specification) is

presented in this example.

Example 3.7: (ASP Composition with Non-safe Maps)

Consider t he ASP composit ion of three automata, G1 , G2 , G3 , with :

l::1 = {a, b },

l::2 = {b,c},

l::3 = {b, d} , and,

(3.71)

(3.72)

(3.73)

(3.74)

and let only one map be defined for G2 as M2(q2, a) = b (for q2 E Q2). Note t hat,

this map is not legitimate by Definit ion 3.1.3, since b is not an exclusive event of G2 .

Also, assume that after a given string s E l:: j_, the current state of each automaton is

45

q1, q2, and q3 respectively, where:

f1(q1) = {a, b} ,

r 2(q2) = {b, c},

r3(q3) = {b , d}.

(3.75)

(3. 76)

(3.77)

The case is illustrated in Figure 3-11. Let us investigate the occurrence of events a

and b separately.

For a, notice a E f 1(q1)\[I:2 U :E3] and at the same time M2(q2, a) is defined and

.!Vf3(q3, a) is not defined. Thus, by definition , we can write

8 ..L ((q1, q2, q3), a) = (8~ (q1 , a), 8~ (q2, a), 8~ (q3, a))

= (81(q1, a), 82(q2, M2(q2, a)), q3)

(3.78)

(3.79)

(3 .80)

It is important to note that when ASP composit ion is used, by definition , the map

M2 (q2, a) only changes the consequence of the occurrence of event {a} in G2, and the

result of M2 (q2 , a) (which is b) will not cause any transition in G1 and G3.

Forb, observe that bE [f1 (q1) n f 2(q2) n f3(q3)] . Therefore,

8 j_ ((ql ' q2 ' q3) ' b) = (8~ (ql' b) ' 8~ (q2' b) ' 8~ (q3' b))

= (8l (ql , b) , 82(q2, b) , 83(q3, b))

(3.81)

(3.82)

(3.83)

If c or d occurs, since they exclusively belong to one automaton and "no" map is

defined for them at the other automata, the transition will only occur at the owned

automaton, while t he other two automata stay on their current states.

46

Cnew2

Figure 3-12: Two possibilities of adding a new automaton to a given collection. On the
top, an n-ary composition is shown, where the new automaton is added to the group while
the existing automata are preserved by updating their maps; and at the bottom, a binary
composition is shown, where the new automata is added to the resulting DES of the existing
group (9) .

In this example, if bE E 3 , but b rt r 3 (q3), then it must be blocked. However, one

can observe that the occurrence of a can cause 52 (q2 , b) , which violates the blocking. •

Remark 3.3: (N-ary vs. Binary)

The set of maps, {M1, ... , Mn}, is defined in the group of automat a, {G1, ... , Gn},

before introducing any composition rule. The automata along with t heir correspond

ing maps, t hen shape a collection (C) over which a specific composition rule can be

defined. If a new DES (Gn+l) requires to be added to the group with "the same"

composition rule, as shown in Figure 3-12, t here will be two possibilit ies:

Where, after addit ion, in the first line t he domain of each Mi (i E { 1, .. . , n + 1})

is Qi X n ;=l ,#i Ej (see Figure 3-12) . In the second line, 9 is the resulting DES of

47

collection C and the given composition rule; 1'111' is the map for g when Gn+l is add d;

and M~+l is the map for G n+l when it is added to g. To distinguish the differen e

betwe n the two cases, observe that case (1) is an n-ary composition, while case

(2) is a binary one: in Cnewl, G n+l is added by introducing its own map along with

augmenting the required translations to each initial map, while in Cnew2, Gn+l is added

to the flattened result g (with the new state and event sets Q and~) by introducing

Jl([~+l and M'. The point is that, in general, Cnewl and Cnew2 are not equivalent.

M n+l and Jl([~+l arc equivalent because both arc clcfincd as Qn+l x ~ ~ ~n+l , and

they are consistent . Whereas, 111' docs not have the same effect as the modification

of the set {M1 , . . . , Mn} does. The reason is that in Cnewl, if for a given event of Gn+l

(say O" E ~n+l) we have a defined translation for each of G1 through Gn (while they

are in their current states), then to have the same effect in Cnew2, we should have a

"string" of those translations (a concatenation of all those events) as the translation

of O", which is inconsistent with the definition (by definition, an event can only be

translated to a single event, not a string of events). Indeed, Cnewl is more general

since all the information of previous DES are still in place. The following example

demonstrates this issue.

Example 3.8: (Augmenting A New DES to A Given Group: "N-ary" vs.

"Binary")

Consider th three automata G1 , G2 , and G3 shown in Figure 3-13 (left side) with:

~i = { ai, ,Bi}, for i E { 1, 2, 3}. (3. 4)

Let G1 and G2 be grouped together with empty maps (no translation of events).

Therefore, G' = G1 _L G2 would be a shuffie of G1 and G2 as shown in Figure 3-13

48

Ql

--0:==8 Q2

{:JI

G2
(ll

Q2

--0:==8 ~

(32 G'
G1

G3

Figure 3-13: Two DES of G1 and G2 are grouped together with empty maps. Then, the third
DES, G3 is supposed to be added to the group as an n-ary addition (without flattening),
with the maps M1(l, a3) = a1, M2(l , a3) = a2, and M3 = 0. G' = G1 ..l G2 shows the
resulting automaton of G1 and G2 before adding G3.

49

(right side). Now, let us explore the addition of G3 to the n-ary group with the maps:

M1 (1, a3) = a1,

M2(l. a 3) = a2,

M3 = 0.

(3. 5)

(3.86)

(3.87)

Since there is no shared event, no blocking will occur. For all the ev nts in L: =

u:=l L:i, except for a3, the result ing automaton is a shuffle of the three automata.

Thus, say G1, G2, and G3 are all in state 1, and a 3 occurs. Because a 3 E f 3(1)\(L:1 U

L:2), each DES will perform t he following transition:

G1: qnewl = 81(1 ,.Ad"1 (1 ,a3)) = 81(1,a1) = 2,

G2 : qnew2 = 82(1, .Ad"2(1, a3)) = 82(1, a2) = 2,

G3 : qnew3 = 83 (1 , a3) = 2.

(3.88)

(3 .89)

(3.90)

Therefore, it is identical to say that G' must go from the state q' = (1, 1) to the state

q" = (2, 2) by the event a 3. Let us probe if there exist a map so that the addition of

G3 toG' can have the same result as the previous case of being at the state ((1 1), 1)

and a 3 occurs. It is obvious that there are at least two transit ions required in G' to

travel from (1 , 1) to (2 , 2) ; therefore, it is identical to the result of the n-ary composi

tion. As a result, as mentioned before, the map .Ad' (the map for G') should t ranslate

a 3 to the string of either "ar/32" or "a2{31 ," which is inconsistent wi th the defini tion. •

In t his research , due to the goal of having an object-oriented design , it is preferred

to preserve (and hide the information of) each DES as a separate entity. Thus, when

a new automaton is added to a collection, we prefer to modify the init ial maps, rather

than flattening the init ial collection (we prefer to use Cnewl) .

50

As a final remark, given a set of automata, if we let maps be empty for all the

automata, then the result of ASP will simply reduced to the standard synchronous

product composition (it is directly resulted from the definition):

Proposition 3.3.11 Synchronous product composition is a special case for ASP.

3.4 Reachability of Q (The Resulting DES)

Let us first epitomize a DES collection by a given composition rule:

D efinition 3.4.1 (DES Ruled-collection) A DES collectionC = {G\ , .. . , Gm} and

an n-ary composition rule over it, shape a DES ruled-collection C as

C := (C, *) . (3.91)

In DES context, when there is no fear of confusion, it can be simply called ruled

collection. Therefore, a ruled-collection always results in an automaton which is the

resulting DES of the corresponding composit ion rule (Q under Definition 3.3.2).

The reachable state set (and the possible transition triplets Q x B x Q) of the

resulting DES of a ruled-collection (using any arbitrary composition rule) can be

found by the following recursive, exhaustive algorithm:

51

Algorithm 3.1: Reachability Algorithm
input : P r-- (a multiLogic obj ct), ps r-- (the present state), A r-- 0 (the

set of visited state)

output: S (the set of transit ion)

1 Function Reach(P ,ps) ;

2 if ps E A then

3 I R eturn;

4 else

s I A r-- A u {ps}

6 end

1 foreach a-E f(ps) do

s ns r-- nextState CP ,ps ,a-) ;

9 S r-- SU{(ps,a-,ns)};

10 Reach(P ,ns);

11 end

12 returnS;

In which, the function nextState(P , ps, a-) evaluates 8p(ps, a-) for the selected

composition rule. For the sake of visualization this algorithm can also be used to

construct the result ing automaton of a ruled-collection, using a graphical-sketch g n

erator. As an example, using this reachability algorithm, Figure 3-14 illustrates the

resulting automaton of the three warehouses of Example 3.6 with the ASP composi

tion rule. To generate this graph the following renaming has b en used: the events

ai with i1, f3i with i2, and wi with i3. For xample, 32 means (33. Additionally,

in the product state, the door-closed and door-opened states are shown as 1 and 2

respectively. For example, (1 2 2) means W1 is in door-closed, W2 is in door-opened,

and W 3 is also in door-opened. The details of the software and how to use it, will be

provided in the next chapter.

52

21

13

Figure 3-14: The resulting automaton of the three warehouses of Example 3.6, using the reachability algorithm (Algorithm 3.1).
The cyan hexagon illustrates the initial state.

3.5 Hierarchical Composition Structures of DES

In this section, the previous concepts are extended to have a set of ruled-call ctions

which are arranged in a hierarchical structure. Although the theory is explained and

highlighted by an example, the software implementation of DES hierarchy is b yond

the scope of this thesis, and will be left as a future work.

Definit ion 3.5.1 (D ES Hierarchy) Given a set of DES, A1 = {G1 , ... , Gn }, a DES

hierarchy is a finite number of levels (with the cardinality of P), where in each level

the existing set is partitioned into np (p is the level index) number of sets, each shapes

a ruled-collection with the cardinality of mf (i is the index of ruled-collection in a

level} . P is called the order of the DES hierarchy, and by definition, np = 1.

Therefore, using NCR , a DES hierarchy defines a hierarchical structure for a finite

number of DES, grouped together . Figure 3-15 exemplifies a simple DES hierarchy.

The result of the pth level is reducing np number of DES to np+l < np numb r of

DES. Let us denote the ith DES ruled-collection in the pth level by Cf. By definition,

mf := ICfl, (3.92)

Where, 1- 1 denotes the cardinality operation. It is then straight forward to show

i=l

ni

"L::: mf=np_1, p=2, ... ,P.
i=l

(3.93)

(3.94)

ow, consider the following example which illustrates how to construct and modify

a DES hierarchy.

54

Cf
Level3: IC~ I = m~ = 2

!Level 31 = n~ = 1

cr c~
Level2: ICrl = mf = 3 IC~I = 171.~ = 2

!Level 21 = n2 = 2

Level1 :
CJ CJ
ICJ I= m1 = 1 ICJI=m~ = 3

CJ
ICJ I= mA= l

!Level 11 = n1 = 5

Figure 3-15: A DES hierarchy with three levels. Each blue box illustrates an automaton,
and each pink box with dashed-line stroke shows a DES collection. At level one, there are
10 automata, which form five DES collections of C} to Cg, each will then be ruled by a
given composition rule *, which can be different for each collection. Then, at level two,
the resulting DES of these ruled-collections (which are Ql through 9s) shape the other
collections of Cf and Ci, and so on. As it can be observed, at the final level, the result of
the hierarchy is a single DES (Qg).

55

Example 3.9: (A Simple Hierarchical Design)

Returning to example 3.4, we would like to shape a hierarchy of order three. At the

first level of hierarchy, we have two collections, ruled by ASP composition to satisfy the

concurrent behaviour after the ment ioned t ap-unification. Then, at the second level,

we would like to add a supervi ·or (an event-based specifi at ion) to t he fir t collection

to block system Gb (1 ::; b ::; m1) from going to its .filling state (Fb) (say because of

some technical problems in that tank). Clearly, here the choice is the synchronous

product composition (though it can also be performed by ASP composit ion). Finally,

at the third level, we would like to have a shuffle of the resulting automata. Ther fore,

t he choice would be a synchronous product composition (notice since the resulting

automata of level two do not share any event, the synchronous product composition

results in a shuffle composition).

To capture the hierarchical naming, let us call the collections C1 and C2 of Example

3.4 by C} , Ci. Their ruled-collections, C} and Ci , are defined as:

C[= (C[, j_) for i= 1, 2. (3.95)

The result of each ruled-collection of level one will then be a new automaton (say 9l,
i = 1, 2). Now, at the second level of hierarchy, we need a product composition of C}

and the following supervisor:

S := (Qs, L:s, 6s, qos, Qms), such t hat ,

Qs := Qms := {qs },
I
ffiJ

L:s := U l.:i,
i = l

56

(3.96)

(3.97)

(3.98)

(3.99)

(3. 100)

That is, S is a single-state supervisor with a self-loop including all the events of the

collection except for a 2 , and at the same time, a 2 E Es. Consequently,

9i = (9{, 0),

§ = (S, 0),

Ci = {9{ ,S},

c? = (Ci, II) ,

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

The last line emphasis the fact that the second ruled-collection of level Lwo is that of

level one without any change (an exact copy). Computationally, we may need only

t o make a reference to cJ instead of overloading it. Again, let us call the resulting

automata of these ruled-collections as Q[, i = 1, 2, and finally, at the third level,

9? = Wi,0), i = 1,2,

3 -2 -2
cl = {Ql , g2},

c~ := (c~, II).

•

(3. 106)

(3.107)

(3.108)

Let us emphasize the fact that once a DES hierarchy is designed , (1) a DES can be

added to and/or deleted from each ruled-collection at any level of hierarchy provided

t hat the maps are updated if required ; (2) both the event-based specifications and the

maps are allowed to be changed; and (3) once a DES collection i defined, from the rest

of hierarchy it is exclusively considered as its resulting DES. Figure 3-16 summarizes

the entire design process. The computational implementation and algorithm design

for this structure will be explained in Chapter 4.

57

• A Set of DES

7 new automata

{

• event-based
• Specifications

• state/event-based 7 local maps

Hierarchy ...--- Ruled-collection ...--- Composition Rule ...--- DES Collection .----

Figure 3-16: A high-level structure of a multi-DES system including two types of specifica
tions .

3.6 A Class of Hybrid Systems

In this section, we briefly extend the results of the previous sections to a class of

hybrid systems. A hybrid system is a multi-phased physical plant which is expected

or allowed to follow logical behaviours through jumping among its phases. These

logical attributes originate from either physical restrictions or our control objectives

(or disturbance), and can be best described by the discrete event system (DES)

theory. On the other hand, the physical behaviours of a hybrid system are often

explained with differential or difference equations, typically derived from physical

laws governing the dynamics of the system under consideration . Thus, the interaction

between physical and logical behaviours results in the incorporation of discrete and

continuous mathematics and modeling issues. To address this challenge, a number of

different approaches have been proposed including the theory of hybrid automata by

Benzinger (1996); Tomlin, Lygeros and Sastry (2000); and Cassandras and Lygeros

(2006), and the switched continuous model by Millan (2006).

58

3.6.1 Hybrid Automata

In this thesis a deterministic hybrid automaton (as oppo ed to stochastic hybrid

automaton) is considered as follows:

Defin it ion 3.6 .1 (Determin istic H yb r id A utomata) A deterministic hybrid au

tomaton is a septuple

H := (Q ,X, j , Dom,T, E,8) , (3.109)

which chamcterizes the evolution of continuous state variables x E X ~ !Rn, and

discTete tate variables q E Q (of caTdinality JQJ = n) by means of fouT entities

• a vector field f : Q x X ---t X,

• a domain map Dam : Q ---t 2x,

• discrete event set E, which chamcterizes a collection of functionals with unique

alphabetical name {can be integeT numbeTs), and

• a reset function r: Q x Q x X ---t X.

Therefore, a hybrid automaton is a yst m with discrete mode Q (of cardinality

JQJ = n) and discrete events E. We denote f as t he set of continuous dynamics given

by the functions fi, with i E {1 , ... , n}. Each mode qi E Q has dynamics x = fi(x), in

which Lhe continuous state is x E X. Th transition function 8 is deterministic, and

indicates th volution of the discrete tate when a transition occurs: qk+l = 8(qk a-).

The set of events which can enable or force the hybrid system to transition between

modes is indicated by E. The event in E fall into one of three cat gories (Oishi 2003):

they can be controlled , disturbance, or automatic (determined by onditions on the

continuous states) . In this thesis, however , we only consider automatic events. The

map Dom(q) provides the continuous domain of the discrete stat q. The initial set

is (q0 , x0), which will then be reset after ach transition by the re et function r.

59

The modeling framework used here is a simplification of that presented in (Tomlin

et al. 2000) and (Cassandras and Lygeros 2006). Basic introductions to hybrid systems

and hybrid automata can be found in (Branicky 1994) and (Lygeros, Tomlin and

Sastry 2008).

Let us separate a hybrid automaton into two entities of physical behaviours (time

driven and continuous dynamics) and logical behaviours (event-driven and discrete

dynamics) . Namely, a hybrid automaton can be re-written as:

H := (P, G) , where

P := (Q, X , f , Dam, r), and

G := (Q, I: , 8) .

(3.110)

(3.111)

(3.112)

The physical entity, P , is called a time-driven system model (TSM), and is a collection

of continuous systems, each is labeled by a discrete state, and the logical entity, G, is

a DES whose event set I: is defined from the "automatic" guards (events). The details

of partit ioning the state-space in order to define the automatic guards, is explained

in (Millan 2006). Basically, the state-space of each mode of operation (represented

by a discrete state) can be partitioned through a set of functionals. Then, zero

crossing of each functional in a specific direction (either from greater values (1), or

from lower values (i) , or both) will generate an event, which is called as guards 6
.

We do not go much through the details of this well-developed theory; instead , we are

interested in deploying the theoretical structure designed in the previous sections for

the logical entity of hybrid automata. The following example explains a primit ive

modeling problem using hybrid automata theory, which helps the understanding of

basic concepts before we proceed with the computational design.

6 Also known as output events.

60

Example 4 .1: (Bouncing Ball)

As an example, consider a bouncing ball, which has two discrete states of f alling

(qf) , and jumping (qJ). Let there be no input defined. For t he continuous state-space,

let us assume that with the ball 's vert ical position from the floor (h) and the ball's

velocity (h) we can capture the physical dynamics completely. Thus,

(3.113)

X=[::] [~] (3.114)

Using the physical laws of motion, the vector fields corresponding to each discrete

st ate will be driven as:

h: X = [::] [- g :2~XJ (3.115)

h: X = [::] [-g :'~x,] (3.116)

where, g is the acceleration due to gravity, cd > 0 is the drag coefficient (due to air

resist ance), and m is the mass of the balL We will also use a second index to indicate

the initial and final values of each stat e variable (namely, X k ,o and Xk,f demonstrate t he

initial and final values of the k-th state variable respectively) . Note that the dynamics

of both modes are identical in this st ate-space modeL However , to capture the logical

(switching) behaviour of the ball, it is more convenient to have two separate discrete

states corresponding to falling and jumping (for the modeling by only one discr te

state wit h a self-loop see (Lygeros et aL 2008)). Then, in each discrete switching, the

initial value of velocity (x2,0) should be reset to the negative of its final value from

the last mode (- x2J). Therefore, the init ial value for each discrete state comes from

61

t he reset function:

(3.117)

where, X 1,f and x2 ,1 are the final value of the continuous states in the previous discr te

stat . Note that, for simplicity, the energy lost due to restitution has not been

considered.

Now, we introduce the following guards:

0"1 : X 1 = 0, l, (3.118)

(3.119)

Where, the downward arrows indicates that the guard considered as an "event" only

when the value of Xi reaches zero from positive values. Therefore, "E = { o-1, o-2}, where,

o-1 indicates the event of reaching the floor, while o-2 indicates the event of reaching

the maximum height. The following automaton indicates the logical behaviour of the

ball:

G = (Q, "E, 5, qo, Qm) , with (3.120)

Q = Qm = {qf,qj } , (3.121)

"E = {o-1 , <72 }, (3.122)

qo = qf , (3.123)

5 : 5(qf , o-1) = qj , 5(qj , 0"2) = qf. (3. 124)

We assumed that the initial physical behaviour is falling, and also t hat both modes of

physical behaviours are considered as "desired," thus, both discrete states are marked.

This simple automaton effectively captures the logical behaviours of our sy tern. More

importantly, it allows for applying a specification. As an example for an event-ba ed

62

specification , let us assume that at some point, the floor moves out of the way so

that the ball no longer has the physical limit . To apply this new constraint without

"changing" the main model, it is adequate to add a new DES with the synchronous

product to block a-1 (see Chapter 3, Example 3.5). The specification can be defined

by the following DES:

•

S = (Qs, L:s, bs, qos, Qms), with

Qs = Qms = {qs },

L:s = 2:: ,

qos = qs,

6s : 6s (qs , a-2) = qs .

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

We ment ioned that in this view of the hybrid automata, the physical ent ity is the

source of event generation , while the logical entity modifies the t ransitions effectively.

ow, consider a set of hybrid automata {H1, . .. , Hn}, which are grouped together

by allowing communication only in their logical level of abstraction. As a result, t he

physical entities are supposed to generate the events independently (without accessing

to the state-space and dynamics of other systems), while the event names can be t he

same (t hat is, in t he logical level of abstraction , different systems can have shared

events in their event sets). Thus, we have a set of DES, { G1 , ... , Gn}, which can shape

ruled-collections and hierarchy as explained in the previous sections. Also, note t hat

additional hybrid automata with proper physical entity can be added to the group for

event-based specifications, and maps can also be defined to encode the state/ event

based specifications. This will be clarified by an example in the next chapter (under

Section 4.6).

63

As a final remark, in order for the software development to be performed efficiently,

we need also to consider issues such as parallel computation once solving ordinary

differential equations. The computational implementation of this new look to hybrid

automata is discussed in the next chapter.

64

Computational Design

In this research, a software package has been developed as a testbed for the theories

introduced in Chapter 3. The core structure exactly follows the presented definitions.

For the sake of software reliability and reusability, an object-oriented design has

been considered, in addition to employing standard t chnologies such as XML as

the data transmission format to standard DES software. All the algorithms and

platform design are implemented in MATLAB with the consideration of vectorization

(as opposed to traditionally scalar software design).

4.1 General Structure

The software integrates two main ntities of mul tiLogic and Generator as its main

"classes," which represent the two main entities of logical and physical behaviours

resp ctively, as explained in the previous chapter. Technically,

• each automaton is represented as an object of the Logic class.

• The Logics together with their maps then form a DES collection defined by an

object of the multiLogic class. As a DES collection, multiLogic encapsulates

the entire logical part and manages t he concurrency of mult i-system problems

in a memory-efficient manner .

65

• The composition rules (product, synchronous product, and ASP) are appli d as

the methods of the multiLogic class .

• A ruled- collection is also characterized by the class multiLogic.

• For hybrid systems of the form xplained in Section 3.6:

- All t he entities regarding the time-driven behaviours of the hybrid sys

tem along with managing simulations and parallel computations of multi

system problems, are encapsulated in the Generator class. An object

of the Generator class is a collection of TSM as explained in Chapt r 3

(Section 3.6).

- Mul tiLogic and Generator are then collected as two objects in a general

class called HySys which in turn applies all the required functionalit ies by

calling the corresponding methods.

This structure allows for both DES and hybrid systems to be added to or deleted from

the current n-ary collection, as the theory suggests. In HySys (the class representing

hybrid systems) , the synchronization only occurs in the logical part, which is the

multiLogic component. Figure 4-1 highlights the object-oriented structure of the

software as explained here. The execution process starts by running the Generator

from an init ial value up to reaching a guard (an automatic event defined as a parti

tioning functional over the state-space) by any of the physical sub-systems. Then, this

guard will be passed to the multiLogic to be passed properly to each Logic. Each

Logic then specifics a transit ion (if any) based on its pre-defined transition matrix

(called transArray) , which can come from an XML-filc, and the entire composition

rule, which can be either of synchronous product , ASP, product , or shuffle. Fi

nally, the result transition which is selected by the mul tiLogic will be f d back into

the Generator, and the process will be repeated by resetting the Generator to a

new mode of operation (with proper initial value inherited from the last mode of

operation).

66

Hybrid System:

DES Collection, and
Composition Rules:

Maps: Mapl II Map2

Automata: ~~

Logical Entity

HySys

Dynamical Dynamics2

Guardl Guard2

Physical Entity

F igure 4-1: Object-oriented structure of the software

67

For pure DES problems (problems involving only DES without any continuous

dynamics behind), the multiLogic class can also be used separately. In such a

case, again , each DES can be int roduced either by an X).tlL fil or by a MATLAB

script to shape a Logic, then collected together as a mul tiLogic object. A set

of various methods are available for manipulating them (for example, checking for

deadlock states) in addition to different composition rules as defined in the previous

chapters.

4.2 Logical Entity

The oftware offers a set of different methods for handling a collection of DES as an

n-ary. Two main issues have to be considered:

1. the capability of importing data from the standard DES software,

2. memory-usage efficiency in concurrent sy terns.

4.2.1 Import from standard DES software

Most of the current existing DES software (such as IDES1 and JFLAP2
) use the

Extensible Markup Language (XML) as the format to save information (state names,

event names, transitions, properties, and graphical structme). As a result, XML has

been selected in om software as the standard for importing of external data (of an

automaton model) . However, once the XML-files generated by an external software

are imported to our software, they will be reformatted to a new data structure, while

the graphical/structural information will be ignored.

1 IDES (Integrated Discrete-Event Systems) is a Java-based software developed by T he Open
Symphony Group at Queen's university and under the supervision of K. Rudie (Rudie 2008).

2 JFLAP is a package of graphical tools which can be used as an aid in learning the basic concepts
of Formal Languages and Automata Theory and is under the support of The National Scien e
Foundation (SF). JFLAP is licensed under a Creative Commons Attribution- onCommercial
ShareA!ike 2.5 License (Rodger and Finley 2006) and (Rodger 2009) .

68

For the tests and examples of this chapter IDES has been s l cted . Any alterna

tive software can also be used as long as it supports the standard XML 1.0 formaL.

For parsing the XML file, a free-shared package called xml-tree is used, which helps

importing XML files in MATLAB environment.

4.2.2 Memory-usage Efficiency in Concurrent System s

Once a new system is added to the current system, the straight-forward method

is to perform the composit ion operation first and then save the resulting flattened

automaton. In such a case, the number of states and transitions (and as a result the

required memory to hold the information) will b increas d dramatically. In this work,

in addition to the object-oriented design (which was counted as the main premise in

this thesis) , for the sake of efficiency in memory-usage, each automaton (can be read

from an XML-file) is managed independently in a class called Logic. Then, all the

objects of the Logic class will be managed together in the main mul tiLogic class

with appropriate methods. Because, at the end of the day, the entire DES collection

of a mul t i Logic object with a given composition rule should be treated as a single

DES (regardless of its non-fiatt ned structure), a convent ion has been introduced as a

standard to numbering the states of the new system (the composition of old systems).

This standard is implemented by the private methods multi Logic . new2old () and

mult i Logic . ol d2new() , whose algorithms are provided in Appendix C.

4.2.3 Class Structure of The Logical Entity

Each single logical constituent, which is described by an automaton, is encapsulated

by the class Logi c. The main components of this class are illustrated in Figure 4-2.

The properties of a Logic object are normally read from an XML-file directly (they

can also be modified by a MATLAB script) . In such a case, the XML-file should be

compatible with the IDES software standard. Then, all the Logic objects are encap

sulated in the class mul t i Logic ready for an n-ary composition. The components of

69

multiLogic

+eventSet
Logic +currState

+initState

+eventSet +numStates

+currState +numGuards

+initState
1..* I/' +numSubsys

v
+numStates +SUbSys

+numGuards
+mul tiLogic ()

+numGamma
+addLogic ()

+NumTrans
+delLogic ()

+transArray
+sync()

+Log ic() +asp()
+nex tState() +product()
+transition() +transition()
+isDeadlock () + i sDeadlock (l

- old2new()

-new2old()

Figure 4-2: Class diagram of Logic and multiLogic classes (in UML standard).

70

Logic and mul tiLogic are illustrated in Figure 4-2.

A mul tiLogic consists of at least one Logic object inside its subSys property.

In the case of having more than one Logic object, it should also be modified with

the map vectors for each new Logic object. For more details see Section 4.6. The

algorithms implementing the main methods are as follows:

4 .2.4 Class: Logic, method: nextState

Algorithm 4.1: nextState method of the Logic class

input : g t- (a DES object), eventName E E

output: resultState E (Q V {False})

1 Function nextState(g,eventName) ;

2 if eventName E r(g .currentState) then

3 I resultState t- g .transArray(g.currentState, eventName);

4 else

s I r sultState t- False;

6 end

7 return resultState;

This method evaluates what the next state is for each automaton (which is

Oi(qi, CT)) (abstracted in a Logic object); however , it does not perform a transition.

4 .2.5 Class: Logic, method: transition

This method implements the transitions of each single DES (abstracted in a Logic

object).

71

Algorithm 4.2: transition method of the Logic class
input : g <- (a DES object), event Name E I:

output: g

1 Function transition(9, eventName) ;

2 temp <- nextState(9,eventName) ;

3 if temp=/= False then

4 I 9 .currentState <-temp;

5 end

6 return 9;

Algorithm 4.3: isDeadlock method of the Logic class
input : g <-(a DES object), stateName E Q

output: result

1 Function isDeadlockW, stateName) ;

2 if y.numGamma(stateName) =/= 0 then

3 I result <- False;

4 e lse

5 I result <- True;

6 end

1 return result;

72

4.2.6 Class: Logic , method: isDeadlock

Thi method evaluates if a given state is a deadlock state in each single DES (ab

stracted in a Logic object) .

4.2. 7 Class: mul tiLogic, method: transition

Algorithm 4.4: transition method of the multiLogic class
input : g t- (a multiLogic obj ct), stateName E Q (new)

output: 9 t- (a multiLogic object)

1 Function transition (9, stateN a me) ;

2 nextState t- 9. method(eventN a me);

3 C].currState t- nextState;

4 nextStates t- C] .new2old(nextState);

s foreach i E {l , ... ,Q.numSubsys} do

6 I Q.subsys.logic{i}.currState t- nextStates(i);

7 end

s return 9;

This method performs a transition in a multiLogic object based on a g1ven

method which can be one of sync, asp, and product.

4.2.8 Class: mul tiLogic, method: isDeadlock

This method evaluates if a given state is ad adlock state in a multiLogic object

regardless of the existing maps.

73

Algorithm 4.5: isDeadlock method of the multiLogic class
input : g ~ (a multiLogic object), stateN ame E Q (new)

output: result E {0, 1, 2}; 0 means not deadlock, 1 means deadlock, 2

m ans some subsystems are at deadlock.

1 Function isDeadlock (Q , stateN ame) ;

2 stateS et ~ new2old(Q, stateName);

3 temp ~ zeros (G. numSubsys) ;

4 foreach i E {1 , ... , Q.numSubsys} do

5 I t emp(i) ~ Q.subsys.logic{i }.isDeadlock (stateS et(i)) ;

6 end

1 if sum(temp) = length(temp) then

s I result ~ 1;

9 else if sum(temp) = 0 then

10 I result ~ 0;

u else

12 I result ~ 2;

13 end

14 return result;

74

4.3 Physical Entity

In this ent ity, parallel simulation and res tting of a set of physical systems (with con

tinuous dynami s coming from external m-files) are performed. Each physical syst m

(a time-driven system model (TSM), and its guard generator) i haract rized by a

pair of m-files representing a TS ti and its corresponding Guard. Ea h guard an

have access to only its own TSM (as a local information), that i , by definition, no

synchronization/communication is allowed to occur in the physical level of abstrac

tion. Similar to the class mul tiLogic , all th constitu nts of th physical entity is

encap ulated in a class called Generator. The main role of Generator is to generate

events from a given continuous dynamical models . This class reads the cont inuous

dynamics from separate pairs of m-files corresponding to each physical system and

its guard. For example, if we have three physical systems we must hav three m-files

for the TSM's and three others for the corresponding guards. The main components

of Generator are shown in Figure 4-3. ote that a Generator obj ct do s not s lect

its current mode of operation: it will perform the appropriate simulations based on a

"selected" mode of operation and a prop r initial value v ctor. A simulation can b

done by calling the method simulate, for whi h t he mode of op ration, start time,

and initial value should be provided a the input argument . A Generator object

can be reset by the method Generator. reset (so that the new initial value will be

the last value of the state vector, obtained from the la t use of simulate method).

4.4 Class HySys: Modeling of Hybrid Systems

Both the physical (Generator) and the logical (multiLogic) entities are collected

in the class HySys. Thus, each object of the class HySys is a DES collection with

the corresponding phy ical systems a the source of event generation. This cla s ha

proper methods for adding new hybrid systems, deleting previous hybrid systems, and

running the entire system to see the results. It also manages th interface betwe n

75

HySys

~
+logical o:-+physical

+alpha

+HySys ()

+addSystems ()

+delSystem()

+runSystems (}

multiLogic Generator

+eventSet +guard

Logi c +currState +currTime

+initState +testTime

+eventSet +numStates
~ +initXO

t..•
+currState +numGuards +contState

+initState
I..· ' ~ +numSubsys

L-- +numStates
1.. .

+numStates +subSys
+numGuards

+numGuards
+SUbSys

+numGamma
+mul tiLogic () +numSubsys

+NumTrans
+addLogic () +timestep

+transArray
+d e lLogic () - q_test
+sync()

+Log i c () +asp()
+Generator {)

+nex tS tate () +product()
+addSystem ()

+transition() +transition()
+delSystem ()

+ i &Deadlock () +isDeadlock ()
+simulate()

-old2new ()
+reset()

-new2old()
-old2new()

-new2old ()

Figme 4-3: Computational class diagram and components (in UML standard).

76

logical and physical entities, in order to t ransmit the generated guards and the sel cted

transitions back and forth, in addition to resetting each layer properly. The main

components of HySys are shown in Figure 4-3. Note that adding any number of event

based specifications and defining a set of maps for state/event-based specifications

ar quite feasible in the design of a mul tiLogi c object, and HySys only manages the

entire system after all the specifications ar appli d in the logical level of abstraction.

Thus, the software also enables the design team to see how well the final system will

behave (and if any changes is required in the specifications, for example).

4.5 Implementation

For hybrid systems which have only interactions in the logical level of abstraction,

the software usag is normally started by defining the automata which represent the

logics of each system (can be performed in IDES, for example, or directly by scripting

the l ogi cal property of a HySys object. And, the TSM and guard files should be

set up for each corresponding physical system. The automata represent ing event

based specifications (if any) should also be defined as Logics. At the final step, from

MATLAB command or a script file the compon~nts can be called to set up a HySys

collection and se the results for any desired time duration.

In the next section, the implementation and sample user-codes for an extensive

hybrid-systems example is provided. It would also be worth to see the simplicity and

flexibility of the final design process on top of all the hidden object-oriented concepts.

4.6 Test and Results

This motivating example highlights the logical concurrency of multi-systems in real

time, using one DES collection and ASP as the composition rule. It also demonstrates

a realistic logical interaction among physical systems. In addition, this problem tries

77

To the liquid supply

h, :::-:~:::i -::::::: __ :::::::_::::
Tank parameters

(a) (b)

Figure 4-4: Multi-tank example: (a) schematic of the problem, and (b) state variable and
other parameters.

to illustrate the simplicity and power of object-oriented algorithm design.

4.6.1 Problem Description

Consider n liquid tanks (n 2: 2) , each of which is connected t o a plant that consumes

the liquid from its corresponding tank with a known non-linear flow with the draining

factor /-Li for the ith tank, while the consumption (draining) t ime is unpredictable

(Figure 4-4). Each t ank is equipped with a sensor that shows wh ther or not the

tank is in the consumption mode. There is only one tap filling all the tanks one at

a time with a known constant flow of u. It is also assumed that the filling rate i '

always adequate to fill at lea t one of the tanks regardless of what the consumption

rate is. For simplicity, it is assumed t hat t he tap can be either on or off and it takes

no t ime to switch to a new t ank position (otherwise it has to be d fined wit h new

modes of operation for each intermediate case). The only state variable for each tank

is its level of liquid (xi). Different modes of operation are then as follows:

78

• m ode 1: (filling), the tap is filling this tank, while th corresponding plant is

off (based on the tank sensor); xi= u, x0,i;

• mode 2: (filling, consumption), the tap is filling this tank and the correspond

ing plant is on (based on the tank sensor) ; Xi= - f..tiVXi + u, Xo,i;

• mo de 3: (consumption), the tap is off, while the corresponding plant is on

(based on the tank sensor); Xi= - f..ti,fXi, Xo,i;

• m ode 4: (rest), both the tap and the plant are off; xi= 0, xo,i ·

It is possible that at any time one tank is added to or deleted from the system.

The goal is to keep all the tank levels between a minimum and a maximum level (hi

and h~ respectively) all the times.

4 .6.2 Solution and R esults

To model this problem, since each tank is a multi-phased system, it has to be modeled

as a hybrid system with four discrete states corresponding to each mode of operation.

This system then follows a logical behaviour when controlled. However to capture

the behaviour of the sensor , we have to add another state variable Xs,i, which accepts

two values of {0, 1} regarding whether or not there is consumption. ote that Xs ,i

do s not have any dynamics, rather it receives its value from a sensor with a specific

sampling time. Once the value of Xs,i changes, the tank must switch to another mode

of operation; as a result, Xs,i will remain constant during one mode of operation

(xs ,i = 0). Based on this state-space, four guards are defined for each tank:

(4.1)

Definitions of these guards are provided in Tables 4.1 and 4.2. Consequently, the log

ical behaviour of a tank based on both our control objectives and physical constraints

(the sensor behaviour) can be introduced by an automaton shown in Figure 4-5. This

79

Table 4.1: Continuous-state Partitioning Functionals.

Label Guard Name Functional Direction Condition

i 1 91 g1(x, t) =Xi- hi l not enough liquid

i2 9i g2(x, t) =Xi- h~ i tank i full

Table 4.2: Events Due To The Sensor.

Label Guard Name Explanation Direction Condition

i3 9c if Xs ,i switches to 1 - consumption

i4 9n if Xs ,i witches to 0 - non-consumption

specification is the synchronous product of the tank and its sensor. The explicit spec

ifications of a tank and a sensor is shown in Figures 4-6 and 4-7 respectively, each of

which has two states: tank, filling (F) and rest (R) ; and sensor consumption (C) and

non-consumption (N). The total specification represented by the automaton of Figure

4-5 follows from those explicit specifications with the consideration of the fact that

in the resulting automaton , the combination of R and N is R; R and C is C; and F and

N is F.

g,.

Figure 4-5: An automaton corresponding to the logical behaviour of a single tank with four
states of Filling (F), Consumption (C), Filling and Consumption (F /C), and Rest (R).

80

Figure 4-6: The explicit specification for a single tank with two states of filling (F) and rest

(R) .

g.,

9c

Figure 4-7: The explicit specification for a single sensor with two states of consumption (c)
and non-consumption (N).

Considering a set of n tanks with only one tap, the specification is that if tank i

transits to Filling mode (that is, if g1 of a given tank is generated), and at the same

time tank j has also been in its Filling mode, then tank j must exit its Filling mode.

This state/event-based specification can be captured by introducing the following

maps:

Vi,j E {1, ... , n}, and if= j

fl;f1(F1, gt,i) = .9r,j,

JI![1((F/C)1,gLi) = .9u·

(4.2)

(4.3)

These maps encode the enforced synchronization among tanks using a single tap,

meaning that each tank will see the g1 of other tanks as its own g1, which then

automatically results in a desired transition. The logical behaviour is then given by

81

the ASP composit ion. These explanations can be written formally as:

(4.4)

where, 8i and r i are as defined in Figur 4-5, q0i = !4., and Qmi = Qi. The coll ction

and ruled-collection are as follows:

C = {(Gl, JVJ1), .. . , (Gn, .1\!In)},

C = (C, _1_).

Here, a typical case for n = 3 is exemplified:

(4.5)

(4.6)

g (the resulting DES of C) is shown in Figure 4-8. For generating this graph,

t he reachability algorithm of Chapter 3 (Algorithm 3.1) has been used to generate

a DOT-file which then be plotted using Graphviz3 . In this figure, each node on the

graph (illustrated by an ellipse) is a product state. The initial state is distinguished

by the cyan hexagon on t he lower-right part . The parameters for each tank are

provided in Table 4.3. The system commences with the first tank for 25 seconds.

During this time, a specification, shown in Figure 4-5, will be applied to the syst rns

at the logical layer. Then, another tank is added to the system and both are kept

cont rolled for another 45 seconds, during which the two tanks will accommodate each

other for having only one tap (i.e. once one of them requires to be filled, it rec ives

the tap flow, and as a result if the other tank i in the filling mode at the arne time,

it accommodates the filling of the other tank by going to its appropriate non-filling

mode). Based on the problem specifications, the filling priority always goe to the first

tank. Afterwards, the third tank would be added and three of them will be controlled

for another 30 seconds (again, during this time all three tanks will accommodate each

other). Finally, the last tank will be deleted from the system and the remaining two

3 Graphviz is an open ource graph visualization software developed by AT&T. It has been dis
tributed under its Common Public License (CPL), which can be reached on-line.

82

Figure 4-8: Q: the resulting DES of C for three tanks using the ASP composition rule.

Table 4.3: Parameters of the multi-tank problem.

I Tank II hi (m) I h~ (m) I Initial Level (m) I /Li (.,fiiijs) I
1 2 4 3 .03

2 3 3.5 2.5 .03

3 1.5 4.5 4 .06

tanks are kept controlled for another 30 . econds.

For this example, a MATLAB function simulates th sensor which r ads the con

sumption of a hypothetical plant with the sampling rate of one sample per second . In

each 10 seconds, the plant consumes liquid for a duration of 4-6 seconds followed by a

rest duration of 4-6 seconds unpredictably. To make it more realistic, t he plant may

also show chattering-like on/off switching rarely in every 10 seconds. The MATLAB

code for such a simulation is as follows:

function consumption = factorySensor(threshold)

% Plant Sensor Simulation

%

% "threshold" == an integer number in [0,9]

% the factory keeps consuming while the last right digit of the

% external computer clock (in seconds)is between "zero" and

%"threshold" (including threshold), then turns zero upto the end

% of 10 seconds duration and then repeats consumption.

%

% The swiching is on the basis of !-second integer sampling, while

% over the semi-closed duration of [threshold+!, threshold+2) it may

% show rare and random chaterings.

temp clock;

temp = fix(temp(6)) - 10*fix(temp(6)/10);

84

if temp <= threshold

consumption = 1;

elseif temp == threshold+!

% a random selection of {1,0}, most likely to be {0}:

consumption= fix(rand+ .15);

else

consumption o· '
end

end % end of function

This function will then be called by each TSM appropriately. The m-files r pre

senting the TSM and guard for tank1 are shown in Figures 4-9 and 4-10 respectively.

A sample user-code for final implementation is also shown in Figure 4-11.

The results for this implementation is plotted in Figure 4-12. The yellow globes

on the first trajectory indicate ticks of five seconds (which i an event generated

by the first tank in every five seconds to demonstrate the t ime volution), the red

squares demonstrate when the level of liquid exceeds its pre cribed lev ls (hi, and

hD , and the green diamonds show when the sensor status of each tank is changed.

ote that, when xi exceeds h~ (its maximum level) , the cont roller stops filling, by

specification; however, since there is no control on the draining, it is possible that at

the same time the corresponding plant is off, and therefore xi stays at the exc d d

level (in a margin which comes from computational t ime ste~s) for a while, then start

decreasing. Other than this, at all the times, the liquid level in all the working tanks

hav been properly kept betw en their allowed limits.

85

function output = TSM1(tspan, q_current, xO)
switch q_current

case 1
f = ' @f1 ' ;

case 2
f = ' @f2 ' ;

case 3
f = ' @f3 I ;

case 4
f = ' @f4 ' ;

otherwise
error(' Discrete state value is illegal ');

end
% tspan = tO : . OOOS:tO + 1.005;
%options= odeset('RelTol ' ,1e - 8, 'AbsTol' ,1e - 8);
[t, x] ode15s(eval (f), tspan , x 0([1;3]));
output = [x(end,1) ;factorySensor(6) ;x(end,2)];
end
function xdot = f1(t,x) %% q1
global tap;
xdot [tap

1];

end
function xdot
mu1 = . 03;
global tap;

f2(t,x) %% q2

xdot [-mu1*sqrt(x (1)) +tap
1];

end
function xdot = f3(t , x) %% q3
mu1 = .03;
xdot [-mu1*sqrt (x(1})

1];

end
function xdot f4(t,x) %% q4
xdot [0

1] ;

end

Figure 4-9: A MATLAB code characterizing the TSM for tank 1.

86

function val= guard1(t_end,x,preFactorySensor)

% position hypersurfaces/events
%val is the event detection value ; i . e . when val = [),
% no event is detected, otherwise the event id will
% return .

tol = 1e-6; % computational tolerance
val = [);
tick = 5; % ticks of 5 seconds
h1 = 2;
hl_prime 4;

if (x(1) - h1) < tol
than h1

val(end+1,1) = 11;
else if (x(1) - h1_prime) >
greater than h1,

val(end+1,1)
greater than h1 '
end

less than
= 12;

%

tol %
h1'

~'o

liquid

liquid

liquid

height is less

height is

height is

if abs(x(2) - preFactorySensor) >= tol % if sensor status
has changed

end

if x(2)==1 % '0' or '1' (the new status)
val(end+1,1) 13;

else % x(2)==0
val(end+1,1) 14;

end

if abs(rem(t_end,tick)) < tol
val(end+1,1) = 1;

elseif abs(rem(t_end,tick)-tick) < tol
val(end+1 ,1) = 1;

end

end

Figure 4-10: A MATLAB code characterizing the Guard for tank 1.

87

%% controller:
global tap;
tap = .08;

%% System 1
pl = ' tank_l_spec . xmd ' ;
xOl = [3;0;0);
alpha = .1; % latency number (sec)
hs = HySys(pl,xOl,alpha, 'asp ')
plo t (1' 1, I WI)

hold on ; xlim([O 200)); ylim ([O 5)); grid;
hs = hs.runSystem(25) % simulation

%% adding System 2
disp(' A n ew System is now added ... '); pause ;
p2 = ' tank_2_ spec . xmd ' ;
x02 = [2.5;0;hs.physical . currTime);
ml {[112 ;212) 000};
m2 { 0 [1 2 2 ; 2 2 2 J 0 0 0 } ;
hs hs.addSystem(p2,m2,ml,x02)
hs hs.runSystem(45) % simulation

%% adding System 3
disp(' A new System is now added . .. '); pause;
p3 = ' tan k_3_spec . xmd ' ;
x03 = [4;0;hs.physical.currTime);
m3 { 0 [1 , 3 2 ; 2 , 3 2) 0 0 0 [1 3 2 ; 2 3 2) 0 0 0 } ;
ml {[1 12 1 22;2 12 2 22) o 0 0 } ;
hs hs . addSystem (p3,m3,ml, x 03)
hs hs.runSystem(3 0) % simulation

%% adding an event-base d specification
disp ('Addi ng an event-base specification . . . '); paus e;
S = ' speci fication_ tank_2 . xmd ' ;
x04 = [0;0;0);
m_ s = {o o o o o - 1 o o o o o o o};
ml { - 1 [0 0 1 2 2 0 0; 0 0 2 2 2 0 0 J } ;
hs h s.addSystem(S,m_ S,m1,x04)
hs hs.runSystem(35) % simulation

%% deleting the Supervisor
disp(' The Sup ervi sor i s now de l eted . .. '); pause;
hs hs . de1System(4); % Delete the third sub-system
hs = hs.runSystem(30); % simulation

%% deleting System 3
disp(' The last Syst em is now deleted ... '); pause;
hs hs.de1System(3); % Delete the third sub-system
hs hs.runSystem(30); % simulation

Figure 4-11: Sample MATLAB user-code for example one.

88

Adding Tank 3

3.5

Start-point of Tank 1

deleting Tank 3

2.5

6 r

/ I
"0
~ Adding Tank 2

· j

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (second)

Figure 4-12: Simulation results for three concurrent tanks controlled by one tap. The yellow
circles on t he first trajectory indicate ticks of five seconds, the red squares demonstrate
when the level of liquid exceeds its prescribed levels (hi , and h~), and the green diamonds
show when the sensor status of each tank is changed.

89

Figure 4-13: An automaton representing the specification to block 91,2·

Let us now extend t his example by assuming that at the t ime t = 101 sec., due

to a technical problem, the second tank should be prevented from filling. Therefore,

two steps should be done: (1) if the second tank is in its state F or F I C it should be

forced to t ransition to R or C respectively, and (2) the event gL2 of the second tank

should be blocked (disabled) by a supervisor (an event-based specification) in order

for the second tank to stay in the {R, C} subset of its discrete state-space. Figure

4-13 demonstrates the automaton which characterizes this specification. The event r.p

will be mapped to the event 9r,2 , while the second tank is in R or C. Thus, after the

ASP composit ion, once r.p occurs, it will cause the second tank to have the desired

transition. Additionally, note that gL2 belongs to the event set of this specification,

but not to the active event set of its current state (gL2 tf. r s (2)); therefore, this

specification always blocks g1,2 . We also need a physical system to generate r.p in the

desired time. This physical system can be formed by a simple dynamics and a guard

to fire r.p at the requested time. This physical system and the automaton of Figure

4-13 will then shape a hybrid system to be added to our existing HySys obj ct.

Figure 4-14 shows the entire simulation from the beginning. This time, the new

mentioned specification will be added in the t imet = 101 sec (in real-time), before the

third system is deleted . The entire system continues running for another 35 seconds.

It can be observed that once the second tank reaches the height of 2 meters, it no

longer switches to its filling mode. After this 35 seconds, the specification is deleted

and it can be seen that the second tank immediately switches to the filling mode.

90

~
Q)

.§.
Qi
>
~

4

3.5

~ 2.5
g -;~

Addind Tank2

0 20 40

/~. ·
Adding Tank3

·~

: AddingS~

60 80 100 120 140 160
Time (second)

Figure 4-14: Simulation results for three concurrent tanks controlled by one tap. The yellow
globes on t he first trajectory indicate ticks of five seconds, the red squares demonstrate
when the level of liquid exceeds its prescribed levels (hi , and h~), and the green diamonds
show when the sensor status of each tank is changed. The horizontal green and cyan thick
lines represent the minimum allowable levels. Additionally, the two vertical black thick lin s
show the time of adding and deleting the supervisorS.

The system keeps running for another 30 seconds.

91

Conclusions

5.1 Summary

After a high-level description in Chapter 2, which is mostly meant for a reader with

limited background in DES and hybrid systems areas, Chapter 3 has provided the

required theory in detail. In this chapter, the concepts of map and ASP have been in

troduced with the goal of implementing the state/event-based specifications prop rly.

The reachability of the resulting DES of a ruled-collection (using any arbitrary com

position rule) was also derived through an exhaustive, recursive algorithm. All the

details were also clarified by simple and related examples. Moreover, DES hierarchy

has been explained in this chapter. Finally, the DES concepts have been xtended

to a class of hybrid systems which are allowed to have synchronization only at the

logical level of abstraction.

Because of the importance of implementation, the idea of using object-oriented

concepts (such as information hiding) has been maintained through out the thesis. As

explained in Chapter 4, in this thesis, a MATLAB-based software package has been

developed, which implements the theoretical concepts. The chapter has discuss d

the object-oriented structure of the software. Efficient methods and algorithms to

overcome memory overflow have also been discussed in Chapter 4. Finally, an ex-

92

tensive example, which demonstrates the basic concepts targeted in this research,

was introduced. Additionally, this example highlighted how both mentioned types of

specifications (namely, event-based and state/event-based) can be applied together

in concurrent systems.

5.2 Contributions

As explained in Chapter 1, the work presented in this thesis contributes in the fol

lowing two items:

1. The existing theory of DES has been developed to meet t he computational

requirements for an n-ary concurrent system design (Chapter 3):

• The concept of map has been int roduced to capture the specifications

which are defined based on both events and states (called state/ event

based specifications).

• An n-ary composit ion rule, called accommodating synchronous product

(ASP), has also been int roduced to formally address the state/ event-based

specifications. This rule is an extension of the n-ary version of the standard

synchronous product, and is reduced to synchronous product when the

maps are set to be empty.

2. Software has also been designed as a testbed for the theory (Chapter 4):

• Main properties:

- Encompassing the concepts of the theory

- Object-oriented structure

- Importing data from standard DES software

- The ability of real-time addition/deletion of new system(s) to/from a

given collection

93

• the implementation of the oftware has been described in solving an ex

tensive hybrid-system problem.

5 .3 Future Work

Based on the desired theoretical, computational, and practical aspects, this work

can be ext ended in different directions. As explained before, the theory provided

in Chapter 3 is, for the most part, meant for computational design. A research

extension is still reasonable to cover other theoretical aspects such as a collection of

"distributed" DES and partial observation. In the computational part , at the current

stage, an end-user software design is beyond the scope of this work. The software

also is not meant to be a general-purpose software, although it includes a considerable

number of different methods to tackle a given problem. As a result , another future

step can be to develop the software in a more general format. From a theoretical and

computational point of view, some possible future work can be itemized as:

1. extending the theory to cover other theoretical issues in the DES area, such as

partial event-observation,

2. enhancing the software so as to encompass the DES hierarchy completely,

3. improving the software to meet end-user software requirements, such as having

GUI and being stand-alone, and

4. developing the theory to a more general class of hybrid systems to include

concurrency also in the physical level of abstraction.

From a practical point of view, on the other hand, it should be noted that DES

IS a logical level of abstraction, that enables logical policies to be modeled in an

appropriate way. Additionally, the modeling of most of today's complex syst ms

involve continuous dynamics with phase jumping, which can be best described by

94

hybrid systems. Therefore, a framework that formally formulates the concurrency of

such systems would be of great importance and can be developed in most applica

tions which involve logical interaction among more than one discrete-event or hybrid

system.

95

References

Alur, R., Courcoubetis, C., Henzinger, T. A. and Ho, P.: 1993, Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems, Vol.

736 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, chapter

Hybrid Systems, pp. 209- 229.

Alur, R. and Dill, D. L.: 1994, A theory of timed automata, Theoretical Computer

Science 126, 183- 235.

Brandin, B. and Wonham, Vv. M.: 1994, Supervisory control of timed discrete event

systems, IEEE Transactions on Automatic Control 39(2), 329- 342.

Branicky, M.: 1994, Control of Hybrid Systems, PhD thesis, Department of Electrical

Engineering and Computer Sciences, Massachusetts Institute of Technology.

Cassandras, C. G. and Lafortune, S.: 1999, Introduction to Discrete Event Sy tems,

Kluwer Academic Publishers.

Cassandras, C. and Lygeros, J.: 2006, Stochastic Hybrid Systems, Vol. 24, CRC Press

and IEEE Press.

Cellier, F. E.: 1991, Continuous System Modeling, Springer-Verlag.

Fonseca, I. and Leoni , G.: 2007, Modern Methods in the Calculus of Variations: Lp

Spaces, Springer.

96

Freeman, R. A. and Kokotovic, P. V.: 2008, Robust Nonlinear Control Design: State

Space and Lyapunov Techniques, Birkhuser.

Gaudin, B. and Marchand, H.: 2005, Supervisory control and deadlock avoidance

control problem for concurrent discrete event systems, pp. 2763 - 2768.

Benzinger, T.: 1996, The theory of hybrid automata, Proceedings of the 11th An

nual Symposium on Logic in Computer Science (LICS), IEEE Computer Society

Press, pp. 278- 292.

Kalman, R. E.: 1960, On the general theory of control systems, First !FAG Congress

on Automatic Control, Moscow, Butterworths, pp. 481- 492.

Khalil , H. K.: 2002, Nonlinear Systems, third edn, Prentice Hall.

Kourkouli , M. and Hassapis, G.: 2005, Application of the timed automata abstraction

to the performance evaluation of the architecture of a bank online transaction

processing system, the 2nd South-East European Workshop on Formal Methods

(SEEFMOS}, pp. 142- 153.

Lafortune, S.: 2007, Advances in Control Theory and Applications, Springer Berlin

/ Heidelberg, chapter On Decentralized and Distributed Control of Partially

Observed Discrete Event Systems, pp. 171 - 184.

Leduc, R. , Lawford, M. and Dai P.: 2006, Hierarchical interface-based supervisory

control of a flexible manufacturing system, Control Systems Technology, IEEE

Transactions on 14(4), 654- 668.

Li, Y. : 1997, On deadlock-free modular supervisory control of discrete-event systems,

Automatic Control, IEEE Transactions on 42(12) , 1705 - 1708.

Lin, F . and Wonham, W . M. : 1995, Supervisory control of timed discrete-event

systems under partial observation, Automatic Control, IEEE Transactions on

40(3) , 558- 562.

97

Lu nberger, D. G.: 1979, Introduction to Dynamic System s: Theory, Models, and

Applications, John Wiley Sons.

Lyg ros, J. , Tomlin, C. and Sastry, S.: 1999, Controllers for reachability specifications

for hybrid systems, Automatica pp. 349- 370.

Lygeros, J. , Tomlin, C. and Sastry, S.: 2008, Hybrid Systems: Modeling, Analysis and

Control.

Lynch, ., Segala, R. and Vaandrager , F.: 2001 , Hybrid i/ o automata revisited,

Proceedings FouTth International Workshop on HybTid Systems: Computation

and Control (HSCC'Ol , Springer-Verlag, pp. 403- 417.

Millan, J. P.: 2006, Online DiscTete Event Control of Hybrid Systems, PhD thesis,

Memorial University of Tewfoundland.

Ogata, K. : 2001 , Modern Control Engineering, Prentice Hall.

Oishi, M.: 2003, User-Interfaces for Hybrid System s: Analysis And Design Through

Hybrid R eachibility, PhD thesis, Stanford University.

O'Young, S.: 1991, On the synthesis of the supervisors for timed discret e event pro

cesses, Technical RepoTt 9107, Department of Electrical and Computer Engineer

ing, University of Toronto.

Pichler , F . and Moreno-Diaz, R. (ds): 1990, Computer Aided System TheoTY

EUROCAST'89, Lecture otes in Computer Science, Springer-Verlag.

Princeton University: 2009, Wordnet®, http: I /wordnet . princeton. edu/.

Radatz, J .: 1997, The IEEE Standard DictionaTY of Electrical and Electronics Terms,

IEEE Standards Office, New York, NY, USA.

Ramadge, P. J. and Wonham, W. M.: 1987, Supervisory control of a class of discrete

event processes, SIAM Journal on Control and Optimization 25, 206- 230.

98

Rodger , S. H.: 2009, JFLAP official we ite, http: IIWWY. jflap. orgl.

Rodger, S. H. and Finley, T. W.: 2006, JFLAP: An Interactive Formal Languages

and Automata Package, Jones Bartlett Publishers.

Rudie, K.: 2008 IDES official wesite, https:llqshare.queensu.ca1Users01l

rudielwwwlsoftware .html.

Rudi , K. and Wonham, W. M.: 1992, Think globally, act locally: decentraliz d

supervisory control, Automatic Control, IEEE Transactions on 37, 1692- 1708.

Saadatpoor, A.: 2004, State based control of timed discrete event systems using bi

nary decision diagrams, Master's thesis, Department of Electrical and Computer

Engineering, University of Toronto.

Su, R. and Wonham, W. M.: 2004, Supervisor reduction for discrete-event system ,

Discrete Event Dynamic Systems 14(1), 31- 53.

Thi tlc, J. G. and Wonham, W. 2\L 1994, Supervision of infinite behavior of discr te

event systems, SIAM J. Control Optim. 32(4), 1098- 1113.

Tomlin, C. , Lygeros, J. and Sastry, S.: 2000, A game theoretic approach to controller

design for hybrid systems, Proceedings of the IEEE 88(7).

Wikipedia.org: 2009, Wikipedia.org, http: II en. wikipedia. orgl.

Wonham, W.: 2009, Supervisory Control of Discrete-Event Systems, niversity of

Toronto, Toronto, Canada. Notes for the course ECE1636F / 1637S, Control of

Discrete-Event Systems.

99

Appendices

100

Proof of Consistency of Binary and N-ary

Synchronous Product

A.l Part 1:

In the definition 3.3.6, for n = 2, Q , 2: , q0 , and Qm will be directly reduced to those

of the binary operator (definition 3.3.5) . For 6 and r , by definition,

6((ql, .. . , q2)) , 0") := (6~(ql , 0") , ... , 6~(qn , O")), in which

6~(qi , 0") :=

Ji(qi, 0") if ::Jn E 2{l, ... ,n} I i E n A() E n kErl rk(qk)]\ [Uk~n L:k],

qi if ::Jn E 2{l, ... ,n} I i rf. n A() E n kErl rk(qk)] \[Uk~n L:k],

undefined otherwise.

and 6 is undefined if any one of the 6' is undefined.

(A.1)

(A.2)

If n = 2, then n E 2{1•2} = { {1} , {2} , {1, 2} }. Each possibility of n makes a

unique condition for O":

101

Case 1: n = {1}

i E n (=* i = 1) : 8~ (q1, a-) = 81 (q1 , a-)

i tt n (=* i = 2) : 8~ (q2 , a-) = q2

Case 2: n = {2}

i E n (=* i = 2) : 8~ (q2 , a-) = 82 (q2 , a-)

i tt n (=* i = 1) : 8~ (ql , a-) = q1

Case 3: n = {1, 2}

i En:

(i = 1) :

(i = 2) :

8~(q1 , o-) = 81(q1 , cr)

8~ (q2' (T) = 82 (q2 ' (T)

i fj. n not possible.

if a- E r 1 (q1) \ ~2,

if a- E r 1 (ql) \ ~2.

if a- E r2(q2) \~1,

if a- E r2(q2)\~1·

if a- E [f 1(q1) n r2(qz)],

if a- E [r 1(qi) n r 2(q2)],

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

Otherwise (none of the above cases which defined for all the possible choices of D),

both 8~ and 8~ are undefined , by the definition.

Combining equations A.3 and A.4; equations A.5 and A.6; and equations A.7 and

A.8, results in:

(8~ (q1' (T) ' 8~ (ql ' (T)) = ((h (ql ' (T) ' q2)

(6~ (q1 ' (T)) 8~ (q1' (T)) = (q1 ' 82 (q2) (T))

(6~ (q1 , a-), 8;(q1 , a-)) = (81(q1, a-) , 62(q2 , a-))

102

if a- E r 1 (q1) \ ~2,

if a- E r2(q2) \~1,

if a- E r 1 (qi) n r 2 (q2).

(A.9)

(A.lO)

(A. ll)

For the r, by definition :

(A. 12)

Again, if n = 2, then n E 2{1,2} = { {1} , {2} , {1 , 2} }. Thus,

f(q1 , .. . , Gn) = [n f k(Gk)\ U ~k]
kE{l} k¢{1}

(A.13)

U [n f k(Gk)\ U ~k]
kE{2} k~{2}

U [n fk(Gk)\ U ~k]
kE{1,2} k~{1 ,2}

= [r1(G1)\~2l u [r2(q2)\~1 l u [rl(Gl) n r 2(G2)]. (A.14)

which completes the proof.

•

A.2 Part II:

For the sake of simplicity and clarity let us introduce the following notations:

• r i := C(qi):=active event set of the current state of Gi,

• " (j) ·- " - u j " w .- wGtii···IIGi - k=1 wk ,

>(j) · - X - (" £ 1 ") • u .-uGtii···I IGi- u1,u2, ... ,uj ·

103

We prove the second part of the theorem by induction: given the correct case of

n = 2, G (n) and f (n), we show G (n+l) is equivalent to Gnew := G(n)IIGn+l, and f (n+l)

is equivalent tor G(n)IIGn+l' The base of induction (n = 2) was proved in the first part

of the theorem. Also,

n

i=l
n+l

= u Ei = I;(n+l).
i=l

(A.15)

(A.16)

(A.17)

(A.18)

Suppose 3D E 2{l, ... ,n} I (J E lnkE!1 rk(qk)]\[Uk~n Ek]·

definition and the introduced notation we have:

smg the binary product

(J(n), Jn+l) if CJ E f (n) n f n+l

8c(n)IIGn+l :=
(£5(n) , qn+l) if (J E f (n)\En+l

(q(n), 8n+I) if (J E f n+l \E(n)

undefined otherwise.

On the other hand, using the n-ary definition we have:

.r ._ .r(n+l) ._ ('' '' '') - (.r(n) '') 1'n wh1'ch uc<n+l) .- u .- u1 , .. . , un , un+l - u , un+l ,

(A.19)

(A.20)

(A.21)

if 3D' E 2{l, ... ,n+l} I n + 1 E D' (\ (J E n kE!1' rk \ uk~!1' Ek,

if 3D' E 2{l, ... ,n+l} I n + 1 ¢:. D' (\ (J E n kE!1' r k \ uk~!1' Ek,

undefined otherwise.

We used the symbol D' to distinguish this case from the case of n, where we used D.

Thus, £5(n+l) = (£5(n), c5~+1) should be evaluated for different possibilities of D': having

104

!1 E 2{l, .. . ,n}, we should show that first, for each case, there exists a specific !1' for

which equation A.20 results in equation A.19, and second, t he union of all the D' is

equal to 2{l, .. . ,n+l}. To this end, let us partition 2{1, .. ,n+l} into four sets:

2{l, ... ,n+1} = {D U {n + 1} , VD E 2{1·· .,n}, !1 -:/= 0} U 2{1, ... ,n} U {n + 1} U {0} .

(A.22)

ow, let us investigate each case separately:

Case 1: D' = n u { n + 1}

=> [,Q, r,] \ [,~, E,] [(Q r,) n r n+l] {."~#n+l E,]

~ [(or,)\ cn~n+l E,) l n rn+l
= r (n) n r n+1>

(A.23)

(A.24)

(A.25)

which is the condition in t he first line of equation A.19. In the second equality, we

have used the fact that (AnB)\C = (A\C)nB 1
. For this case, since D' = {n+1} u n,

from equation A.21 we have 8~+1 = 8n+l; therefore from equation A.20 we have:

8(n+l) = (8(n) 8') = (8(n) 8)
> n+l ' n+1 ' (A.26)

which is identical t o the first line of the transition function of G (n) II G n+l (equation

A.19).

1 It can be simply proved as: (A n B)\C = (A n B) n cc = (An cc) n B = (A\C) n B.

105

Case 2: D' = n

=> [n r.] \ [,~, E,] = [!J, r.] \ [!d E•] (A.27)

= [n rk] \ [U r:k u r:n 1-1]
kEn k~n,k#n+l

(A.28)

= ([D, r} [,,n~n+l E,]) \ n+l (A.29)

(A.30)

which is the condition in the second line of equation A.19. In the third equality, w

have used the fact that A\(B U C)= (A\B)\C 2
. For this cas , from equation A.21

we have: 8~+ 1 = qn+l · Therefore,

5n+l = (c5(n) 8') = (8(n) q) n+l ' n+ l · (A.31)

which is identical to the second line of th transition function of c<n) IIGn+l (quation

A.19).

Case 3: D' = { n + 1}

:::? [n rk] \ [u Ekl = f n+l\ U L:k
kEfl' k~n' k#n+ 1

2It can be prov d using De Morgan 's law:

= r n+l \ u L:;k = r n+l \L: (n) '
kEn

(A.32)

(A.33)

A\(B u C) = An (B u cr =A n (Ben c e) = (An Be) n c e = (A\B) n c e = (A\B)\C.

106

which is the condit ion in the third line of equation A.19. For this case, since D' =

n + 1 =? CJ ¢:. U~=l Ei , in other words, CJ ¢:. Ei , for i = 1, ... , n, by definition we have:

.r(n) _ (-'' -'') _ () _ (n) u - u1 , ... ,un - q1 , ... , qn -q ,

therefore,

<5Cn+l) = (<5(n) <5') = (q(n) <5) ' n+l ' n+l '

(A.34)

(A .35)

(A.36)

which is identical to the third line of the transition function of G(n) IIGn+l (equation

A.19).

Case 4: D' = 0

(A.37)

=? no transition is allowed, (A.38)

which is corresponding to the forth line of the transition function of G(n) IIGn+I (equa

tion A.19).

The validity of r n+l = r G(n)I IGn+l also follows the same arguments of the four

described cases above.

•

107

Proof of Consistency of Binary and N-ary

Accommodating Synchronous Product

Similar to Appendix A, for n = 2 in t he definition 3.3.9, 8 and r could be clcrivccl.

By definition,

8((q1, ... , q2)), a):= (8~ (q1 , a), ... , 8~(qn , a)), in which

8~(qi, a) :=

(B .1)

(B.2)

if :30 E 2{l, ... ,n} I i E 0 (\a E lnkE\1 rk(qk)]\[Uk~tn L:k],

if :30 E 2{l, ... ,n} I i ~ 0 (\ a E [n kE\1 rk(qk)]\ [Uk~tn L:k],

and Mi(qi, a) is not defined,

8i(qi, Mi(qi, a)) if :30 E 2{l, ... ,n} I i ~ 0 (\a E lnkE\1 rk(qk)]\ [Uk~tn L:k],

undefin ed

and Mi (qi, a) is defined ,

otherwise.

and 8 is undefined if any one of the 8' is undefined.

If n = 2, then 0 E 2{1,2} = { {1 }, {2} , {1 , 2} }. Each possibility of 0 makes a

unique condition for a:

108

Case 1: f2 = {1}

i E f2 (=> i = 1) : 6~(q1 , CT) = 61(ql,CT) if CT E f 1(q1)\l:2, (B.3)

i ~ f2 (=> i = 2) and M2(q2,CT) is undefined : (B.4)

c5~ (q2, ()) = q2 if () E r 1 (q1) \2:2,

i ~ f2 (=> i = 2) and l\!h(q2 ,CT) is defined: (B.5)

6~(q2,CT) = 62(q2,M2(q2,CT)) if CT E f1(q1)\l:2.

Case 2: f2 = {2}

i E f2 (=> i = 2): 6~(q2,CT) = 62(q2 , CT) if CT E f2(q2)\l:1, (B.6)

i ~ f2 (=? i = 1) and M1 (q1 , CT) is undefined : (B. 7)

6~(q1 , CT) = ql if CT E f 2(q2)\l:1,

i ~ f2 (=> i = 1) and M1 (q1 , CT) is defined: (B.8)

6~(q1, CT) = 61(q1, M1(q1, CT)) if () E r2(q2) \ l:1.

Case 3: f2 = {1 , 2}

i E f2:

(i = 1) :

(i = 2) :

b~ (ql, CT) = 81(q1, CT)

c5~(q2, CT) = 82(q2, CT)

i ~ f2 not possible.

if () E [rl(qi) n r2(q2)],

if () E [f1(q1) n r2(q2)],

(B.9)

(B.10)

Otherwise (none of the above cases which defined for all the possible choices of 0) ,

both 8~ and c5~ are undefined, by the definition.

Combining equations B.3 and B.4; equations B.3 and B .5; equations B.6 and B.7;

109

equations B.6 and B.8; and equations B.9 and B.10 respectively, results in:

(81(ql,O"),q2) if <7 E f1 (q1)\~2 and .l\12(q2,<7) is not defined ,

(81(q1,<7),82(q2,M2(q2,<7))) if <7 E f1(q1)\~2 and .l\12(q2 , 0") is defined,

(q1 , 82(q2,0")) if <7 E f2(q2)\~1 and .l\1l(ql , <7) is not defined,

(81(q1, M1(q1, <7)), Oz(qz, <7)) if a- E fz(qz)\~1 and .l\1l(ql , a-) is defined ,

(81(q1 , <7), 82(q2, <7)) if 0" E f1(q1) n r2(q2) .

The proof of r is identical to th::tt of synchronous product. By dPfinition:

(B.12)

Again, if n = 2, then S1 E 2{1•2} = { {1} , {2} , {1, 2} }. Thus,

f(q1 , ... , qn) = [n fk(qk)\ U ~k] (B.13)
kE{l} kft{l}

u [n rk(qk)\ u I;kl
kE{2} k~ {2}

u [n rk(qk)\ u I;kl
kE{l,2} k~{ l ,2}

= [r1(q1)\I:2] u [r2(q2)\I:1] u [rl(ql) n r2(q2)]. (B.14)

which completes the proof.

•

110

Numbering of Product States 1n An N-ary

System

In a product state, the counting of the entire system's state is first performed by the

older DES, then by the added DES. For example, if the first Logic has four states, then

the multiLogic states are counted from 1 to 4 corresponding to the Logic's stat s.

Once a new Logic added (say with four states), the multiLogic will have 16 states,

which by the convention are corresponding to '1 = (1, 1) ', '2 = (2, 1) ', ... , '5 = (1, 2) ',

'6 = (2, 2)', ... , '16 = (4, 4)'. The following algorithms (Algorithms C.l and C.2) im

plement this convention (for example, if the two mentioned Logics have been added in

a multiLogic object called testMultiLogic, then testMultiLogic. old2new([3, 1])

gives 3, and testMul tiLogic. new2old(15) gives the vector [3 , 4]) :

111

Algorithm C.l: old2new method of th multiLogic class
input : g f- (a multiLogic object), oldState E Q1 x .. . x Qn

output: n ewState E Q

1 Function oldnew((} , oldStat) ;

2 newState f- oldState(1) ;

3 newNumStaie f- 1;

4 foreach i E {1 , ... , 9 .numSubsys- 1} do

5 newNumState f- newNumStat * 9. subsys.logic{i }.numStaie

6 newState f- (oldState(i + 1)- 1) * newNumState + newSlaie·

1 end

s return newState;

112

Algorithm C.2: new2old method of the multiLogic class
input : g ~ (a mul tiLogic object) , newState E Q

output: oldState E Ql X ... x Qn

1 Function newold(Q, newState) ·

2 num ~ 1;

3 foreach i E {1, ... , g .numSubsys - 1} do

4 I num ~ num * Q.subsys.logic{i }.numStates;

5 end

6 oldState ~ zeros (1 , G. numSubsys) ;

7 foreach i E {1 , .. . ,Q.numSubsys} do

8 qn ~ floor (newStatejnum) ;

9 md ~ mod(n wState, num) ;

10 if md =/:. 0 then

11 oldState(end - i + 1) ~ qn + 1;

12 newState ~ md;

13 else

14 oldState(end - i + 1) ~ qn;

15 newState ~ num;

16 end

11 if i =/:. Q.numSubsys then

18 I num ~ numj Q. ubsys.logic{end - i } .numStates;

19 end

20 end

21 return oldState;

113

