

Analysis and compilation techniques for

HARPO/L

St. John's

by

© Li Xiangwen

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

September 2008

Newfoundland

Abstract

Coarse grained reconfigurable architecture (CGRA) is a reconfigurable architec

ture that uses word-width processing elements, and provides custom designed recon

figurable datapath units (rDPUs) as basic logic units. It combines some strength of

both software and hardware to provide an easy to develop, and highly efficient plat

form. In this thesis, I make contributions to the development of an object oriented

language, HARdware Parallel Object Language (HARPO/L) , which is suitable to

describe the parallel execution of hardware, and hence can be compiled directly to

CGRA platform.

This thesis will mainly concentrate on the front-end of the HARPO/L compiler,

to address technical issues arising from some of the unique characteristics of our lan

guage. This thesis will develop a formal mathematical representation for HARPO / L,

to help verify the semantics of the language. It will also develop a method to identify

synchronization problems in shared variable access, and to simplify the implementa

tion of atomicity in language. Furthermore, in addition to the research work in this

thesis, a compiler front-end is also implemented in JAVA to compile the plain text

source code to typed abstract syntax tree (AST) . We will also discuss some techniques

involved in implementing such a compiler front-end .

ii

Acknowledgments

First of all, I would like to thank my supervisor, Dr. Theodore S. Norvell, for

his guidance through my three-year graduate study in Memorial University of New

foundland in both my current and previous degrees, and his continuous support in

the research work and the writing of this thesis. I would like to also thank my class

mates in Master of Applied Science Computer Engineering program. Your friendship

encourages me to continue my study in a country so far away from home.

I am also grateful to my wife, Li Jing, for her love and company in Canada.

Finally, I dedicate this thesis to my parents, for their love and support through

my whole life.

lll

Contents

Abstract

Acknowledgments

List of Figures

1 Introduction and Background

1.1 Introduction to Reconfigurable Architecture

1.2 Introduction to HARPO / L . . .

1.3 Structure of HARPO /L project

2 Language Design

2.1 Meta notation

2.2 Type system . .

2.2.1 Primit ive type .

2.2.2 Array .

2.2.3 Interface

2.2.4 Class ..

2.2.5 Conditional Initiation .

iv

II

iii

X

1

1

3

7

9

9

10

10

12

13

14

16

2.3 Statement .. . 16

2.3.1 Thread. 16

2.3.2 Variation of statements . 17

2.4 Genericity 20

2.5 Example . 21

3 Colored Petri Net representation of HARPO /L 23

3.1 Motivation 23

3.2 Introduction to Colored Petri Net 25

3.2.1 Petri Net ••• 0 0 25

3.2.2 Colored Petri Nets 27

3.3 Basic elements of the CPN representation of HARPO / L 28

3.3.1 Token color sets for the representation 28

3.3.2 Basic transition types 29

3.4 Control flow of CPN representation of HARPO / L 33

3.4.1 Sequential control flow 34

3.4.2 Branch control ftow . 34

3.4.3 Loop control ftow 35

3.4.4 Parallelism . 37

3.5 Variable operation 37

3.5.1 Temp variable . 38

3.5.2 Local variable . 38

3.5.3 Shared variable 40

3.5.4 Array variable . 43

v

3.6 Method calls .

3.7 Atomic blocks

4 safety of fission

4.1 Motivation

4.2 Introduction to trace theory

4.2.1 Projection

4.2.2 Weaving .

4.2.3 Equivalence of traces

4.2.4 Definition-use chain .

4.2.5 Equivalence relationship between two symbol traces

4.2.6 Equivalence of trace sets

4.3 safety of fission •••• 0

4.3.1 Fission and fusion .

4.3.2 safety

4.3.3 Proof of equivalence of traces

4.3.4 Equivalence of result sets . . .

4.3.5 Proof of decomposability of the context .

4.4 Applying the method . . .

4.4.1 Multiple variables .

4.4.2 Loop and branch structure .

4.4.3 Mutual exclusion 0 • 0 • . .

5 Implementation of the compiler front-end

5.1 Structure of the compiler front-end

vi

44

46

48

48

51

52

53

55

56

56

58

59

59

63

64

66

68

70

70

71

73

74

74

5.1.1 Syntax analyzer .

5.1.2 Type checker ..

5.1.3 Specialization/ instantiation

5.2 Type system

5.3

5.4

5.2.1 Types and expressions

5.2.2 Type dependence ...

Specialization & Instantiation

Implementation

5 .4.1 Parsing

5.4.2 Representing types

5.4.3 Expressions

5.5 Working examples .

6 Conclusion and future work

6.1 Thesis summary .. .

6.2 Thesis Contribution .

6.3 Open issues for future work

A Language Design for CGRA project. Design 5 [Draft).

A.1 Classes and Objects .

A.l.1 Programs

A.l.2 Types .

A.l.3 Objects

A.l.4 Constants

A.l.5 Classes and interfaces .

Vll

74

76

77

78

79

82

86

89

89

94

97

100

107

107

109

110

111

112

112

112

113

115

115

Aol.6 Class Members 0 0 116

Aol.7 Interface Members 117

Ao2 Threads 0 • 0 0 0 • •• •• 118

A0201 Statements and Blocks 118

A o3 Expressions 121

A.4 Genericity 121

Ao5 Examples 122

Ao6 Lexical issues 123

B The Static Semantics of HARPO /L 124

Bol Abstract Syntax 0 124

Bo2 Types 124

B 0201 Typing relation 124

Bo3 Building a class environment 0 126

B.4 Types of expressions 128

B.401 Identifiers are looked up in the context 128

B.402 Constants • • •• •• 0 128

B.403 Arithmetic expressions 12

B.4.4 Arrays 0 0 0 129

B.4.5 Inheritence 130

Bo4o6 Fields and methods 0 130

B0407 Initialization Expressions 0 131

Bo5 Type checking types 132

B0501 Primitives 0 0 132

viii

B.5.2 Class and interfaces . 132

B.5.3 Array types 133

B.5.4 Generic parameters 133

B.6 Type checking of commands 133

B.6.1 Assignments 134

B.6.2 Local variable declaration 134

B.6.3 Blocks 134

B.6.4 Method calls 134

B.6.5 Sequential control flow 134

B.6.6 Parallelism 135

B.6.7 Method Implementation 135

B.6.8 Atomicity 0 0 ••• • 135

B.7 Type Checking Declarations 135

B.7.1 Class declarations . . 135

B.7.2 Interface declarations . 135

B.7.3 Global object and field declarations 135

B.7.4 Method declarations 0 •• 0 0 ••• 135

Bibliography 136

IX

List of Figures

1.1 The overall structure of HARPO/L project.

3.1 A simple petri net.

3.2 Switch transition

3.3 Copy transition

3.4 Merge transition

3.5 Product transition

3.6 Split transition . .

3. 7 Operator transition

3.8 Write transition . .

3.9 Sequential execution of statements

3.10 Branch control flow

3.11 Loop control flow .

3.12 Parallel control flow .

3.13 Example of using a temp variable in expression a + b + c

3.14 Local variable subpage

3.15 An example of local variable read and write action .

3.16 Writing of shared variable

X

7

25

30

31

31

31

32

32

33

34

35

36

37

38

39

40

41

3.17 Local part of the shared variable writing

3.18 Reading of local array

3.19 Called thread part of method call

3.20 CPN representation for atomic block

4.1 Example for loop structure that is not safe for fission.

4.2 Example for loop structure that is safe for fission. . .

4.3 Example for branch structure that is safe for fission ..

4.4 Example or thread divided by semaphores

5.1 Structure of HARPO/L compiler front-end

5.2 Abstract Syntax Tree for a := a + 1

5.3 Typed Abstract Syntax Tree for a := a+ 1

5.4 Example of symbol table hierarchy

5.5 Different types in the type system .

5.6 Structure of an Array Type

5. 7 Expression type for a.d . . .

5.8 A simple example of type dependence .

5.9 Symbol table entries and dependence relationship

5.10 An example of cyclic dependence

5.11 Symbol dependency stack for the cyclic dependency example

5.12 Structure for Specialized Class Type

5.13 Symbol tables of generic and specialized table

5.14 An example of parse tree ..

5.15 Class diagram for class Type

xi

42

43

45

47

71

72

72

73

75

75

76

78

79

80

82

83

84

85

86

88

88

92

94

5.16 Class diagram for class BaseType

5.17 Class diagram for ExpressionType

5.18 Class diagram for Expression, Operator and OperatorType

xii

96

98

99

Chapter 1

Introduction and Background

1.1 Introduction to Reconfigurable Architecture

When solving a specific problem using digital computing technology, there are two

conventional methods: hardware and software. One of the most popular solutions of

hardware implementation is Application-Specific Integrated Circuits (ASIC) . ASICs

are hardware chips built to solve a specific problem, hence they are very efficient

when dealing with the problem they are designed for. Despite its high efficiency,

ASIC has two major drawbacks: long development time and low flexibility. Designing

and optimizing an ASIC circuit usually takes a lot of time, and once the circuit is

fabricated, modification to any part of the circuit or the target application itself will

result in a redesign of the whole circuit.

The second method is using software. Software utilizes microprocessors, which

can perform a number of different operations depending on the instruction. This

solution is very flexible because the major part of the system, the microprocessor ,

1

remains unchanged from application to application. The user only needs to change

the instructions to make the system suitable for different applications. However, the

efficiency of such a solution is far lower than that of ASIC, because the processor needs

to perform a series of extra operations, such as instruction fetching and decoding, to

execute a single instruction. Moreover, the datapath in this solution is much longer

than hardware implementations that are optimized for the specific problem.

Reconfigurable computing is intended to fill the gap between hardware and soft

ware, achieving potentially much higher performance than software, while maintain

ing a higher level of flexibility than hardware[1] . Reconfigurable devices contain a

number of logic blocks that can be configured to perform different tasks and a set

of configurablc routing resources to connect logic blocks together. Hence, a custom

circuit can be mapped into a configuration specifying the function of logic blocks and

the wiring between them.

One of the most popular reconfigurable architectures is Field-Programmable Gate

Array (FPGA) [12], which is a fine-grain reconfigurable architecture that combines

several layers of AND-OR gates to implement its logic. Although this technique can

be used to develop very efficient circuits, it also has some major drawbacks comparing

to coarse-grained approaches.

Coarse-Grained Reconfigurable Architectures (CGRA) are reconfigurable archi

tectures with datawidth greater than 1 bit.[4] CGRAs provides custom designed re

configurable datapath units (rDPUs) as basic logic units. So instead of working on

gate level configuration for basic computations in FPGA, the programmer can utilize

these rDPUs to implement the application. Because these custom designed rDPUs

have higher performance, area and energy efficiency than computation units assem-

2

bled from single bit Configurable Logic Blocks (CLB) in FPGA, the whole circuit

built in this way will also be more efficient than the fine grain implementation.

The other major advantage of CGRA is that the placement and routing problems

are greatly simplified by reducing the number of reconfigurable units. This will also

result in a massive reduction of configuration memory and onfiguration time. Our

goal in the HARPO project is to define a hardware development method that is

as easy to code and configure as software solutions that produces high performance

circuits. Therefore, we find CGRAs to be a very suitable class of target architectures.

1.2 Introduction to HARPO /L

HARPO stands for HARdware Parallel Objects Language. HARPO/ L is an object

oriented language that can be used to create hardware configurations [8]. When

creating a hardware configuration, instead of working on electronic circuits directly

or using some Hardware Description Language (DSL), the user can choose to use

HARPO /L, which is a high level, object oriented language similar to C. This solution

brings the simplicity of software coding into the otherwise cumbersome hardware

configuration development.

Although there are approaches that exist to compile high level languages such

as C[7][14] and Java[3] into reconfigurable architectures, most of them suffer from

the same problem[2]: the source language, which is designed to describe sequential

program running on microprocessors, is not suitable for describing the behavior of

hardware effectively.

HARPO /L is hence a language designed to fulfill this task As a result of this

3

objective, it contains a number of features and characteristics that are different from

typical high level programming languages.

The first difference is the support of user-specified parallelism. Typical high-level

programming languages are meant to be compiled and executed on microprocessor

machines, which fetch and execute instructions one by one in a sequential order. This

fact makes these languages only optimal for describing sequential behaviors. The level

of parallelism the compiler can exploit from programs written in this way is hence

very limited. However, because of the parallel nature of hardware, programs written

in t his way are very inefficient for hardware implementation.

For example, when performing an array operation on a microprocessor, because

the processor is only capable of executing one instruction at a time, the operation to

multiple array elements must be performed one by one. This is commonly represented

in typical high level languages by a loop structure.

for(int i= O;i < length;i++)

array[i]++;

These loop structures are usually the most time consuming part of the whole

program. However, in hardware, the programmer can create a much more efficient

implementation of the same problem with concurrent execution. This requires the

compiler to identify possible parallelism within source code to be efficient. This is

often not possible without the input of the programmer.

To deal with t his problem, HARP0/1 defines a co statement to support explicit

parallelism. Programmers can manually indicate portions of the code to be executed

4

in parallel. With t his new feature, the code in the above example can be written as:

(co i:length do array[i] := array[i] + l co)

This line of code indicates that different iteration of the loop body "array[i] :=

array[i]+ 1" will not interfere with each other and asks the compiler to execute these

instructions in parallel if possible. With this extra information provided, the compiler

can utilize a much higher level of parallelism to significantly improve the performance

of the hardware configuration generated.

The second difference between hardware and software is the representation of ob

jects. In software, an object is a block of memory that contains the value of all the

fields for the object. Objects can be dynamically instant iated by allocating a block of

memory at run time. However, in hardware, an object is a concrete block of gates and

instruments, which must be created by the t ime the hardware configuration is gen

erated. In typical object oriented languages, objects can be defined and instantiated

dynamically, this can be implemented without any difficulty by memory operations.

However, this is not possible for hardware implementation.

This difference also causes problem in object reference. In software, object can be

accessed by its reference, which is a pointer to the address where the object is located

in memory. References can also be assigned to point to another object with a same

type. This behavior is also not possible in hardware implementation, where access to

a logic block must be carried out by actual wiring. The connection on board cannot

be modified once the configuration is generated. This constraint requires all objects

in HARP0/ 1 to be instantiated at compile t ime, and that object references can not

5

be assigned once initialized.

The implementation of function call in HARPO /1 is also different from typical

programming language. In software, a class may contain a number of different func

tions. Multiple functions can be called at the same time, and one function can be

called by several different threads at the same time. Moreover, one function can call

itself for recursive algorithms. This is not easy in hardware because, in hardware, a

function call is a set of instruments containing the necessary units and wiring for the

body of the function, these instruments can not be utilized by multiple threads at the

same time. This fact also makes the structure of HARPO /1 classes and functions

very different from typical programming language.

In addition to these characteristics that come from the nature of hardware, HARPO /1

also contains a number of other features worth mentioning:

• HARPO /1 allows implicit type definition that permits type information to be

omitted from the object definition. This feature improves the flexibility of

programming by allowing operations to be performed on different data types

using same block of code.

• HARPO /1 employs a generic mechanism to provide polymorphisms for class

definitions. This feature further enhances the flexibility of programming by

bringing in polymorphism, which will also greatly reduce the work involved in

dealing with different data types.

• HARP0/1 also supports explicit indication of atomicity. Instead of having to

write a number of complex program controls such as semaphore and monitor,

6

the user can write a single statement to request a block of code to be executed

atomically.

1.3 Structure of HARPO/L project

A compilation system is also being implemented for HARPO /1.

HARPO/L Source ccxle

Intermediate Representation

C, Java code CGRA Configuration

Figure 1.1: The overall structure of HARP0/ 1 project.

As shown in the figure above, the HARPO /1 system mainly consist of 3 parts:

compiler's front end, software back-end and hardware back-end. As any typical com

pilation system, the HARPO / 1 compiler takes the plain text HARPO / 1 code de

fined in language design[8] as input to the system. The front-end then makes lexical

analysis based on the language design to verify if the source code is using correct

HARP0/1 grammar. The front-end also performs semantic analysis according to

language semantics[9] to find the meaning of the input code, and verify if the mean

ing is legal in language definit ion.

7

The output of the compiler front-end is an intermediate representation, called

an object graph. The object graph is a data structure reflecting all information

contained in the source code, with additional information such as variable type and

execution flow being derived from context and added to their corresponding position.

This intermediate representation is platform independent, and can be used alone to

generate executable code, once the information about target platform is available.

The HARPO project targets two platforms: software and hardware. The hard

ware back-end is the major objective of this project. Used in combination with the

front-end, it is capable of compiling programs written in HARPO / 1 directly onto

reconfigurable architectures such as CGRA. The software back-end is used to gener

ate code in languages with available compiler such as C. Results generated by this

back-end can be used to debug and verify the correctness of the source code without

having to first download it onto hardware boards.

The rest of this thesis is organized as follows: chapter 2 gives a detailed introduc

tion on HARPO /1 language design. Chapter 3 uses a mathematical representation

the Petri Net - to describe this language. Chapter 4 will discuss a way of analyzing

the safeness of shared variable access. The techniques employed in the implementa

tion of the front-end will be discussed in chapter 5. Chapter 6 concludes the thesis

and provides future research directions.

8

Chapter 2

Language Design

2.1 Meta notation

This chapter used a number of meta notations to describe the language grammar,

which are explained as follows:

N ---> E N onterminal N can be an E

~E2 Groups the enclosed content into one item

E* Zero or more Es

E*F Zero or more separated by Fs

E+ One or more Es

E+F One or more separated by Fs

E 7 Zero or one Es

lEl Zero or one Es, same effect as above meta notation

E I F Choice of either E or F

Note that underlines are added to parentheses and brackets here to distinguish

9

them from their normal occurrence. So for example, when parentheses without un

derlining is encountered in the grammar rules, it means there should be literally a

"()" pair in source code.

2.2 Type system

A HARPO/L program is a set of class, interface and object declarations. Each object

in HARPO /L is characterized by its type.

2.2.1 Primitive type

Primitive types are predefined basic types that are used to represent values. They

are the only types in HARPO /L that can be assigned to after being initiated.

Primitives type includes 3 major categories: integer, real and boolean. Integer

and real types also have a number of subtypes with different precision. For example,

an intl6 is an integer value that is represented by a 16 bit bit-vector (16 bit precision)

in hardware configuration. A complete list of primitive types is shown as follows:

• int8, int16, int32, int64, int

• real16, real32, real64, real

• bool

The declaration of a primitive variable should be in the following form:

iohj I constl Name 1: Typel := Exp (2.1)

10

where Name is a string that contains letters, digits and underlines and starts with

a letter, used to represent the name of the object. Exp is a compile time constant

expression that is assignable to the type of this variable.

To be compile time constant means the value of such variable or expression can

be determined at compile time. The constantness of expressions is determined by the

following rule:

• Literals are constant. Literals are piece of data that are taken literally as a

value, such as 10, 12. 5, fals e.

• Variables defined by keyword const are constant. As shown in (2.1), instead of

using obj keyword, the user can use const keyword to indicate the variable is

constant thus can not be assigned to once initiated.

• Expressions formed by constant variables and expressions only are also constant,

since their value can be computed from their constant sub-expressions.

The type information in (2.1) can be omitted. In this case, the type of the variable

is the primitive type with smallest precision that can take the value. For example,

for integers, we have following rules:

{-128, ... ,+127} E int8

{-215
, ... ,+215 -1} E intl6

{ -231
, ... , +231

- 1} E int32

As a result, the initiation expression

obj length ·- 512

11

(2.2)

causes variable length to have type int16, because according to the integer typing

rule, int16 is the integer with the smallest precision that can take value 512.

Furthermore, a primitive type with lower precision is subtype of primitive type

with higher precisions shown in (2.3), the < : operation indicates the former type is a

subtype of later. Subtyping is transitive and reflexive, but not commutative.

int8 <: int16

real16 <: real32

int16 <: int32

real32 <: int64 (2.3)

This rule means a primitive type with lower precision can be assigned to those with

higher precision, but not the opposite. When a binary operator involves operands

with a different precision, the lower one must be widened to be the same with the

other operand. This fact effectively means the outcome of an expression is determined

by the operand with the highest precision.

2.2.2 Array

Arrays are lists of objects which can be declared in following form:

obj Name 1: Typel := (for Name: Bounds do lnitExp lforl) (2 .4)

• Bounds is a compile time constant integer expression.

• lnitExp can be a simple expression, an array initial expression, or a new object

creation (discussed in section 2. 2.4).

Multi-dimensional array can be declared by nested array initial expressions. The

following example defines a 10*10 array.

obj array2D := (for i: 10 do (for j : 10 do i * 10 + j for) for)

12

Array items can be accessed by Name[Index], where Index is an integer expression

with value less than Bounds of the array. The type of the array items acquired this

way is the type of its InitExp, and can only be assigned by values with type being

subtype of JnitExp if it is assignable (being primitive type).

2.2.3 Interface

An interface is the definition of an abstract class without implementation. An inter

face can be defined in following form:

(interface Name GParam/ iextends Type+l iintMemberl*

!interface lNameli) (2.5)

• GParams are parameters used for generic expansion, which will be discussed in

section 2.4.

• Type is the interface this interface extends. An interface can only extend other

interfaces.

• IntMember is the member of the interface, which can be either a field or a

method declaration.

A field is an object member declared inside a class or interface. A field declaration

is an object declaration plus an access keyword specifying that it is a public or private

field.

Access obj Namel : Typel := JnitExp

Access -4 private I public

13

(2.6)

A method declaration is a declaration of method parameters without its imple

mentation. The implementation should be inside a thread structure of each class that

implements this interface. Thread and method implementation will be discussed in

section 2.2.4.

Access proc Name(i_Direction lName: l Typet')

Direction __. in I out

keyword in declares input parameter while out declares output.

(2.7)

For example, the following code block declares an interface with two public meth

ods:

(interface Queue

public proc deposit(in va lue : int)

public proc fetch(out va lue : int)

interface)

2.2.4 Class

A class is a user defined structure that specifies a family of types. A class can be

defined in following form:

(class Name GParam/ iimplements Type+l constructor(CPar+')

l ClassMembert lclass lNameli) (2.8)

14

• ClassMember is the content of the class. In addition to method and field already

discussed in section 2.2.3, it can also contain thread component. Thread will

be discussed in section 2.3.

• GParams are parameters used in generic expansion. Generic classes will be

discussed in section 2.4.

• Each Type is an interface this class implements. A class must implement all

methods from all interfaces it implements.

• CPar are the constructor parameters the class. A constructor parameter can

be either a constant or an object.

obj Name : Type I in Name : Type (2.9)

in parameters are treated as constant value in class body, so the corresponding

argument must also be compile time constant. Object parameters are objects

connected to new object of this class in initialization. It will be known inside

class body as Name.

A new object of a class can hence be declared as:

obj Name l: Typel := Type(CArg+·) (2.10)

CArg is the argument corresponding to CPar in class definition.

15

2.2.5 Conditional Initiation

In addition to initialization statement for primitive, array and object, HARPO /L also

contains a special form of conditional initialization.

obj Name 1: Typel := (if Exp then InitExp ielse if Exp InitExpl* else InitExp lifl)
(2.11)

• Exp must be a compile time constant boolean expression.

• InitExp can be initiation expression for any type. Multiple InitExp in a same

conditional initiation do not have to be the same type.

2.3 Statement

Statements are the basic elements of executable code. Statements must be embedded

within a thread in HARPO /L grammar.

2.3.1 Thread

A thread is the executable part of class. A class may contain zero or more threads;

all threads are executed concurrently. Parallelism can be achieved by having multiple

threads in a class.

(thread Block !thread!) (2.12)

where the Block is just a sequence of statements:

(Statement I ;) * (2.13)
- -

16

2.3.2 Variation of statements

• Local variable declaration

Local variable declaration is exactly the same as global variables discussed in

last section, except the scope of the variable is the block it is declared.

• Assignment

Objectld (, Object!d)* := Expression (, Expression)* (2.14)
- - - -

The number of Objectld must be the same as the Expression, the type of Objec-

tid can only be primitive. The Expressions are assigned to their corresponding

Object! ds according to the order they appear in the sequence.

The Objectld can be either a variable, an array index , or a field reference.

N arne I Object! d[ExpressionJI Object! d.N arne (2.15)

• Sequential control flow

(if Expression then Block l else if Expression Block r l else Block i lifl)

(wh Expression do Block Iwhl)

(for Name: Bounds do Block 1forl) (2.16)

Sequential control flow in HARPO /L is the same as in typical high level Ian-

guages.

17

• Parallelism

(co Block ill Blockl* lcol)

I (co Name : Bounds do Block Icol) (2.17)

As discussed in chapter 1, HARP0/1 utilizes co statement to support explicit

parallelism. The compiler will execute code blocks within co structure con-

currently. Ensuring the code blocks can be executed safely in parallel without

shared variable conflict or synchronization problem is the responsibility of the

programmer. The former form is used for blocks with distinct content, the lat-

ter form is for parallel execution of loop iterations such as for loop in typical

high level language.

• Sequential consistency

(atomic Block latomicl) (2.18)

The block inside atomic structure must be executed as if atomically. That

means, it can only be either fully executed or not executed at all in other thread's

point of view, but not partly executed. This property requires the system to

employ some special mechanism for sequential consistency, which may seriously

affect the system performance if not implemented carefully. Detailed discussion

about techniques involved in this problem will be discussed in chapter 4.

18

• Method implementation.

(accept Methodlmp {I Methodlmpt lacceptl)

Methodlmp---+ Name({Direction Name: Typet') lGuardl Blocko lthen Block1l

Guard ---+ w hen Expression

The method parameters must match the declaration in class body.

Guard is a boolean expression.

(2.19)

The block after keyword t hen will be executed after the called thread

returns output parameters to the calling thread.

Each method can only be implemented once in class body.

Although the syntax is similar, method implementation in HARPO/L is very

different from that of typical high level languages. While threads can call meth

ods of other threads at any time, the method call will not be handled unless

the sequential execution flow of the called thread reaches the corresponding ac

cep t structure. A thread which reaches an accept statement will wait until

the method is called and Guard expression is true. The thread will then select

one call to one of the method and serve it.

The special behavior of HARPO /L method implementation is to imitate the

behavior of hardware, where a thread is a concrete block of devices, which can

only serve one request at a time. This fact introduces some special property of

HARPO /L method call that should be noticed:

A thread can not call a method implemented by itself, as this will inevitably

cause a deadlock.

19

The number of method calls and services will be balanced, unless the

system deadlocks, each call will be matched by one execution of an accept

statement.

As the servicing thread will only accept calls when Guard expression is

true, failing to meet this requirement may also cause the calling thread to

wait indefinitely.

• Method call

Objectld.Name(Args) I Name(Args) (2.20)

A method call can be a call to method of an object it knows, as in the former

form; or a call to method of the same object as in the latter. As discussed in

method implementation, a call of the latter form must call a method that is

implemented in a different thread of this class.

2.4 Genericity

HARPO /1 employes a generic approach to archive polymorphism. A generic pa

rameter(the GParams discussed in 2.2.3 and 2.2.4) should be written in following

form:

itype Name !extends '!Ypelt' (2.21)

• When generic argument(a specific type) is passed in, this type will be known

inside the generic class or interface body as Name.

• The Type after keyword extends is the bound of this generic parameter, the

argument passed in when creating specialized class must extend this 7Ype.

20

The object inheritance rule is:

• Each interface is a subtype of the interface it extends (as in section 2.2.3).

• Each class is a subtype of the interface it extends (as in section 2.2.4).

• Each primitive type has its own inheritance rule as discussed in section 2.2.1.

• Subtyping is transitive and reflexive.

2.5 Example

An example of HARPO /L code is shown as follows:

(class FI FO { type T extends primitive}

constructor(in capacity : int)

public proc deposit(in value : T)

public proc fetch(out value : T)

private obj a : T(capacity)

private obj front := 0

private obj size := 0

(thread

(wh true

21

class)

wh)

thread)

(accept

deposit(in value : T) when size < capacity

a[(front + size] % capacity) := value

size := size + 1

fetch(out value : T) when size > 0

value := a[front]

accept)

front := (front+ 1) %capacity

size := size - 1

This is a HARPO /1 class that represents a bounded FIFO queue. It has a generic

parameter (type T bounded by primitive), and a constructor parameter (variable

capacity of type int). It also has two methods deposit and fetch, and a thread to

implements both of the threads. When executing, the FIFO will loop serving fetch

and deposit calls coming from other classes.

Detailed documentation of language design[8] and semantics [9] will be included

in the appendix.

22

Chapter 3

Colored Petri N et representation

ofHARPO/L

3.1 Motivation

After defining the language, a behavioral model of the language is also developed.

The major reasons for developing such a model are listed as follows [5]:

• The behavioral model is a formal description of the language. In addition to the

languages semantics, the model can be used as both a specification to specify

the behavior of the system corresponding to the code written in HARPO /1,

and a representation to show t he meaning of the code. With this model, we can

investigate the system to sec if it satisfies our goal, and discover design flaws in

the language before actually constructing the compiler.

• This behavioral model can be analyzed by either simulation tools or formal

analysis methods t o see if it satisfies certain properties , so the programmer can

23

ensure the system under development will work as intended.

• A similar behavioral model can also be developed for the products of the com

piler, such as intermediate representation or hardware configuration, to see if

models of these products still satisfy properties of the initial model. This pro

cess can be used to make sure the meaning of the language remains the same

after a number of conversions.

• Constructing such a model will dramatically improve our understanding of the

language itself. We can intuitively see the effect of different language compo

nents and examine if they behave according to our intention.

Among various types of behavioral models, we chose Colored Petri Nets (CPNs) to

be the modeling tool. Colored Petri Nets fit our requirement extremely well because:

• CPNs are graphically represented. This feature makes it very intuitive to un

derstand. They resemble the flow graphs that arc commonly used to analyze

computer programs.

• CPNs have well defined semantics that describes the behavior of the system

without ambiguity. This fact makes it possible to develop simulation and formal

analysis tools for it.

• CPNs are state and action oriented at the same time. We can examine both

the state of the system, and the actions taken in this system when necessary.

• CPNs are built on concurrency, instead of interleaving. This fact makes it

suitable for describing the concurrent behavior of HARPO /1 program.

24

• CPNs offer hierarchical descriptions; we can construct large and complex nets

by connecting smaller nets together. This characteristic is very similar to classes

and subroutines in high-level programming.

3.2 Introduction to Colored Petri Net

3.2.1 Pet ri Net

Petri Nets [11] are among the most popular formal mathematical representations for

discrete distributed systems. They graphically depict the structure of distributed

systems. Petri Nets are also known as place/transition nets because they are formed

by a set of places and a set of transitions. An example of a simple Petri Net is shown

in Figure 3.1 :

Figure 3.1: A simple petri net.

A Petri Net contains the following information:

• Places, represented by circles in diagrams. Places are locations used to hold

tokens.

• Transitions, represented by rectangles. Transitions are used to indicate the

25

possible actions in the system.

• Arcs, represented by directed arrows. Arcs are used to connect places and

transitions, to indicate the flow of tokens in the system. Arcs can only connect

a place with a transition or a transition with a place, but not two nodes with a

same type.

• Arc weights, represented by the number on arcs. Arc weights denote the number

of tokens consumed from a place or produced to a place by a transition. Arc

weights which are identical to 1 are omitted from the diagrams.

• Tokens, represented by solid black dots. Tokens are used to represent the re

sources or control flows of the system. A distribution of tokens among the places

of the system is called a marking. The initial distribution of the tokens is called

initial marking.

A place with a direct arc to a transition is called an input place to that transition.

If in a marking, all input places of a transition have sufficient tokens (number of

tokens required according to arc weights, which will be 1 in all nets in this chapter)

in them, this transition is said to be enabled in this marking. In Figure 3.1, transition

Tl is enabled because the input place Pl has 1 token in it; but T2 is not enabled

because P2 does not contain tokens to be consumed.

When a transition is enabled, it may fire at any t ime. The effect of a firing of a

transition is that tokens are removed from the input places and put into the output

places (places that this transition has directed arc pointed to). The number of tokens

added/removed is specified by the arc weight.

26

It should be noticed that the execution of Petri Net is nondeterministic; multi

ple transitions enabled in a marking can be fired in any order, or not fired at all.

This behavior makes Petri Net very suitable for modeling the concurrent behavior of

distributed system.

3 .2.2 Colored Petri Nets

Colored Petri Nets (CPNs) [6] are extension to ordinary Petri Nets with the addition

of token colors. In standard Petri Net, tokens are indistinguishable. CPN associates

tokens with an attached data value. This value can be a predefined, arbitrarily

complex type. Places in CPNs can only contain tokens of the same type.

CPN adds a number features into the ordinary Petri Nets, which includes:

• CPN includes a declaration part that contains the declaration of the color set.

A color declaration contains the name of the color, and the data type that this

color is based on. So for example,

color ctrl = int

declares a color named ctrl based on integer type, so the color can have value

of any integer.

• The places in CPN is a multi-set of its corresponding color. Because the tokens

in a place is no longer identical to each other. The use of multi-set instead of

set is to permit multiple token of same value being added into the place.

• Instead of arc weight, arcs in CPN can now have arc expressions, which can be

a fixed token value, a mathematical expression, or an if-else expression.

27

Other than these differences, CPN preserves all t he characteristics and notations of

the ordinary Petri nets.

This characteristic of CPN is exactly the same as the use of types in programming

language. CPN combines the strength of ordinary Petri Nets with the strength of

high-level programming languages, hence it is very suitable for modeling a language

that emphasizes the utilization of concurrent execution of distributed systems, such

as HARPO/L.

3.3 Basic elements of the CPN representation of

HARPO/L

This section will introduce a number of basic elements of the CPN representation of

HARPO /L, which include a token color set , and a set of basic trasitions.

3.3.1 Token color sets for the representation

The token colors involved in this representation are shown as follows:

• A set of primitive colors:

- color int = int

- color real = real

- color bool = bool

• Each thread will have a ctrl token with a unique value corresponding to thread

ID:

28

- color ctrl = int

• Each method call will also have a specific token type consisting of a ctrl token

and tokens for all in parameters:

color call = record ctrl : ctrl * N ame1 : Type1 * N ame2 : Typ~ * . . . *

N amen : Typen

The keyword record means that the color declared is an ordered list of {name,

color } pair. The returning token of a method call is also of the same form, with

a ctrl token and tokens for all out parameters.

• Classes do not have a specific t oken color associated wit h them, since in HARPO / 1 ,

objects can not be assigned to each other.

3.3.2 B asic t ransition typ es

The CPN representation consists of several different types of transition, each with

its specific usage. A ~pecific program can then be converted to a number of different

places and such transitions linked together. Most transitions can be controlled by

ctrl token , with a ctrl token passed in from the output place of last t ransition and

put a ctrl token into the input place of the next transition. The arc consuming and

producing the ctrl token is omitted from the graphs in this section for simplicity. The

lis t of t ransition types involved in the CPN representation of HARPO / 1 is shown as

follows:

• Switch transition

29

A switch transition takes one token A of any type and an int token i as input,

and distributes token A to an output according to the value of i.

A

Figure 3.2: Switch transition

Specially, a token of bool type can also be used as i. In this case, the switch will

have two outgoing arcs, one corresponding to i = true and one corresponding

to i = false. Moreover, a ctrl token can also be used as i, since it is also int

based.

• Copy transition

A copy transition reads in a token A of any type and distributes a copy of that

token into all its output places.

• Merge transition

A merge transition is the opposite to a copy transition, it takes a token A (which

must be with same type and value) from all its input places and produces only

one A token on the outgoing arc.

• Product transition

30

A

Copy

A A A

Figure 3.3: Copy transition

A A A

Merge

A

Figure 3.4: Merge transition

A product transition takes a sequence of tokens of any type and combines them

to a record containing all the tokens as its fields; for example, group one ctrl

token and tokens representing the parameters into a call token.

Figure 3.5: Product transition

• Split transition

31

A split transition is the opposite of a Product transition, it takes a record token

as input, separates it, and distribute the parts on different outgoing arcs. For

instance, it can be used to break down the returning token of a method call into

several corresponding tokens of various types.

Figure 3.6: Split transition

• Operator transition

An operator transition reads in two operands A and B, and produces C = A op

B on the outgoing arc. It is used to represent operations such as add or multiply.

Moreover, this transition may have only one input arc for unary operators.

A 8

Operator

Aop B

Figure 3.7: Operator transition

32

• Read t ransition

A read transition is a transition that is used specifically for variable reading. It

is the same as a two output arc copy transition, only with a different name for

readability.

• Write transit ion

A write transition is slightly different from a merge transition, it has two input

arcs, an Aotd and an Anew· The output value of this transition will be the same

as Anew· Details about variable reading and writing will be discussed in later

sections.

Figure 3.8: Write transition

We can construct a CPN for any HARPO /1 program by a combination of these

simple transitions.

3.4 Control flow of CPN representat ion of HARPO /L

The control flow of CPN is determined by the ctrl token. When a thread is initialized,

a ctrl token is created; the ctrl will be passed through the statements, and destroyed

if and when the thread terminates.

33

3 .4.1 Sequential control flow

The sequential order of statements is ensured by passing a ctrl token from one state

ments to the next, which is illustrated as the following graph:

Figure 3.9: Sequential execution of statements

Each thread will have one and only one ctrl token, the firing of all transitions

within the thread is controlled by this ctTl token. This fact makes sure each thread

has only one statement under execution at any given time. The transition in figure

3.9 may be of various types, and will consume other tokens in addition to ctrl.

3.4.2 Branch control flow

Implementing the branch control flow in HARPO /L, the if statement, is quite straight

forward. We first evaluate the guard expression and store the result for the expression

into a temp variable, and then distribute the incoming ctrl token according to the

value of the temp variable using Switch transition.

For example, for HARPO /L statement: "(if a > bthenXelse Yif)", we have fol-

34

lowing representation:

Figure 3.10: Branch control flow

The operator transition is used to evaluate the guard expression into a bool token;

this token is then used as the input token of switch transition to distribute then ctrl

token to the corresponding branch. The ctrl token is used in operator transition to

control the firing of this transition to make sure the expression is only evaluated once

before the switch transition is fired.

3.4.3 Loop control flow

A while loop can be implemented by an if statement following by the loop body

block, and feed the ctrl token back to the if statement after the loop body is finished,

35

shown as figure 3.11 . The single operator transition in this figure can be replaced by

an arbitrarily complex combination of transitions to represent a more complex guard

expression.

Figure 3.11: Loop control flow

A for loop can be rewritten as a while loop, and represented in a same way as

the if loop structure. For example, the statement (for Name:Bounds Block for) can

be rewritten as:

obj Name := 0

obj B := Bounds

(while Name < B

Block

36

Name := Name + 1

while)

3.4.4 Parallelism

co statement can be implemented by producing multiple ctrl tokens using a Copy

transition, and distributing one token to each of the parallel block. At the end of co

statement, a Merge transition can be used to merge all finished ctrl tokens back to

one thread ctrl token. This is shown in Figure 3.12.

Figure 3.12: Parallel control flow

3.5 Variable operation

A program needs to access variables to perform either reads or writes. Based on the

scope and usage, one variable operation can be handled in one of the several following

37

ways.

3.5.1 Temp variable

Temp variables that are written and read by only one transition respectively can be

represented by a single place. For instance, the CPN representation of the expression

a+ b + c is shown as in figure 3.13. Multiple temp variables of a same type can be

Figure 3.13: Example of using a temp variable in expression a+ b + c

combined into a single place, providing they will not be accessed at a same time.

3.5.2 Local variable

Local variables are variables that are local to a particular thread. Because each

thread will only have one executing statement at any given time, there will not be

any simultaneous accesses to the the variable. A local variable can be represented as

38

a subpage shown as in Figure 3.14.

A A' A A

Figure 3.14: Local variable subpage

The local variable subpage has two input ports and two output ports. A read

action puts a ctrl token in the read-ctrl port, and waits on the value-out port for the

value, while a write action puts a ctrl token in the write-ctrl port, as well as a A

token in the value-in port, and waits for the ctrl token being returned from ctrl-out

port.

An example of read and write action as the statement C := A+ B is shown as

Figure 3.15.

When an operator transition with local variable as incoming arc is reached, we

also insert a copy transition before it, which distributes one ctrl token to the ctrl arc

39

Figure 3.15: An example of local variable read and write action

of the operator transition, and the read-ctrl port of all local variables it needs to read.

The operator transition waits on the value-out ports of the local variable, and output

the ctrl and value tokens to the write-ctrl and value-in ports of the local variable

it needs to read. Instead of waiting for ctrl token from the operator transition, the

next transition following it will wait for ctrl token from the ctrl-out port of the local

variable subpage.

3.5.3 Shared variable

A shared variable is a variable that may be accessed by more than one thread, for

instance, global variables. Representing such a variable is much more complex than

local variable, because sequential consistency is required.

For variable reading, it is the same as local variable reading, since the exact order

of continuous read sequence docs not make much difference. However, for variable

40

writing, the appropriate ordering is important to make the execution result of the

program correct.

The special requirement of shared variable write comes from the requirement of

sequencia! consistency, where the execution of all thread should be the same as if

all operations are executed in some sequencia! order, in which operations from all

threads preserve the sequencial order of the program.

This requirements requires that when returning a ctrl token to a thread, the ctrl

out port needs to return it correctly to the thread which provides the value that has

just been written. Otherwise the thread incorrectly received the token will assume

the writing has finished while in fact it did not, and break the sequential consistency

requirement.

Figure 3.16 shows the representation for the writing of shared variable(variable

side):

Figure 3.16: Writing of shared variable

41

Instead of taking the values and ctrl tokens separately, the shared variable writing

requires them to be united into a record token, so the writing process will not associate

the value and ctrl tokens from different threads. The writing process also has its local

ctrl token that provides mutual exclusion between write from different threads. After

finishing the writing, the writing process returns the incoming ctrl token to its original

thread according to its ctrl ID.

The local part of the shared variable writing is shown as the following graph:

Figure 3.17: Local part of the shared variable writing

Because there may be multiple places in a thread that access a same shared

variable, and the ctrl token is returned only based on the thread ID of ctrl token,

the shared variable will not be able to return the ctrl to exactly the same line that

performs the write. Hence a local copy of ctrl in a thread is needed to indicate which

part of the thread is performing the writing. The Merge transition having the local

ctrl token will wait for the shared variable to return the sent ctrl token and merge

42

them to a single token. Because each thread can wait for only one return at any given

t ime, each thread needs only one return place that all returning ctrl token will be

put into this place.

3.5.4 Array variable

Array variables are represented by a group of variables organized by index, an example

of local variable reading is shown as follows:

Figure 3.18: Reading of local array

The Switch transition distributes the ctrl token based on the index number, the

Read t ransition getting the ctrl token will perform the reading, and put the value

token into the output port. Because only one Read transition can get the ctrl token

43

at one reading, only one value token will be put into the output port, with the value

corresponding to the index value.

The writing procedure will be quite similar to the reading procedure, which will

switch the incoming value and ctrl token, and collect the returning ctrl token at a

single output port.

This mechanism works for local array because there will be only one read operation

on local variable at any given time, so an local array can be represented as a sequence

of local variables grouped together. However, for shared array, we have to ensure that

the ctrl token and value token are consumed correctly in pair. Moreover, because the

access to different items of an array will not conflict with each other, we will only

need to ensure the sequential consistency of each item of the array.

3 .6 Method calls

Method call can be represented by passing the ctrl token between the calling thread

and called thread. For example, on called thread side, an accept statement:

(accept put(in value:int) guard Block- get() Block accept)

can be represented by Figure 3.19.

When the control flow reaches this accept statement (indicated in diagram by

putting a local ctrl token into the ctrl-in place), the thread waits for either of the

place for method parameter received an input. It will remove the token from the

input place and test it against the guard. If the guard is not satisfied, the local ctrl

token and call parameter will be returned back to their original place; otherwise the

call parameter is passed into the call body for execution. After the call is finished,

44

Figure 3.19: Called thread part of method call

the remote ctrl token is returned to the calling thread according to the ctrl ID, and

local ctrl token is passed on to the next statement of the thread.

The calling thread part of the method call is in fact quite similar to the local part

of shared variable writing (Figure 3.17). The thread will have only one return place

for one kind of method call. When the call is performed, the calling thread copies

the ctrl token, passing one to the called thread, and use the other to wait and merge

with the returned ctrl token to determine the place where the thread will continue

execution.

45

3. 7 Atomic blocks

A special mechanism is needed in the CPN representation to implement atomic blocks.

An extra place is added to the graph to hold a token that represents exclusive access.

In CPN representation for HARPO /1 code that contains atomic block, in addition

to the ctrl token, we will add an arc consuming or producing an atomic token to both

input and output respectively. So any transition will require the atomic token to

fire, and put the token back after firing. An atomic block, on the other hand, will

consume the atomic token at the beginning, and only put the token back when the

whole block finished execution.

A example for the code block:

(thread

(co

II

co)

thread)

(atomic

X

y

atomic)

m

n

46

can be shown as figure 3.20

ctrl

Figure 3.20: CPN representation for atomic block

Initially, the atomic place contains one token, so only one atomic section can

possess atomic token and eligible for firing at a same time.

This implementation requires atomic sections to be mutually exclusive with each

other, which makes the concurrent system to become interleaving-based. We will

report on better implementations for atomic block in Chapter 4.

47

Chapter 4

safety of fission

4.1 Motivation

When compiling a HARPO /1 program, we sometimes wish to determine if a block

of code may be atomic to other blocks. The atomicity property is useful in code

optimization. If this property is true, we can perform sequential code optimization

techniques that otherwise would not be valid to the code block. Moreover, when im

plementing the atomic keyword, atomicity check may greatly improve the efficiency

of configuration generated.

Being atomic means a certain block of code can only be either not executed at

all, or fully executed in other threads' point of view. We use a () pair or (atomic)

block to indicate that the enclosed code block is atomic. For example:

(thread

obj a := 0

48

obj b := 0

(co

II

co)

thread)

(atomic

a:= 5

a := 10

atomic)

b := a

b := 15

Because the two assignments to a is enclosed in an atomic structure, according

to the definition of atomicity, after the thread has finished execution, the value of

variable b can either be 0 (statement b := a executed before the atomic block) or 10

(b := a executed after the atomic block), but never 5 (b := a executed after a := 5

but before a := 10).

While true atomicity can not be achieved without hardware support, in imple

mentation, we can make the block appear to be atomic by the use of semaphores.

Pseudo-code for the implementation of the above example using semaphore is shown

as follows:

obj a := 0

obj b := 0

49

semaphores := 1

thread 0 {

}

P(s)

a:= 5

a := 10

V(s)

thread 1 {

P(s)

}

b := a

V(s)

P(s)

b := 15

V(s)

This method requires us to enclose every single statement in thread 1 by a pair of

P() and V() operation. For longer code blocks, this method can be very costly as it

adds two extra semaphore operations to every statement of thread 1. Alternatively,

we can enclose the thread 1 in a single P() and V() pair, but using this method means

the concurrency of the co structure is completely lost.

This method is based on the assumption that all statements in atomic block must

be executed together without interleaving with any statement from other threads.

However, this is usually not true. Shown as follows:

50

F (a := 5; b := c;)

F' (atomic a := 5; b .- c; atomic)

G (b := 10; a := c;)

A careful examination of the code blocks shows that any interleaving of block

F' and G will produce a result that is same as some interleaving ofF and G. The

implementation may satisfy the atomicity requirement even if no special mechanism

is employed to ensure it. If we can identify such situation in more complex code

blocks, we can partition the atomic blocks into smaller atomic blocks that can be

implemented without complex synchronization method such as semaphore. We can

continue this process until we identify the minimum blocks of statements that will

interfere with the atomicity property, then we can only implement code flow control

for only these blocks, and thus achieve a much more efficient implementation.

In this section, we will develop a method to determine if an atomic block code

can be safely partitioned into separate parts and to identify the portion of code that

makes the partition not valid if this operation can not be performed safely.

4 .2 Introduction to trace theory

In order to describe the behavior of different interleaving of multiple thread blocks,

we employ trace theory [13] as the mathematical tool.

We can view a block of code as a sequence of different operations. Because we are

only interested in how different threads access shared variables, we divide different

51

operations into three categories: operations that read from a shared variable, oper

ations that write to a shared variable and operations that do not perform variable

access.

We use identifier W to represent a write operation and R to represent a read;

moreover, a superscript is used to indicate the name of the shared variable and a

subscript is used to specify the thread this operation belongs to. Hence, RT is a read

for shared variable a from thread T; w& is a write to variable b from thread U; 0r

is an operation in T that does not perform shared variable access.

Each of t hese identifiers of an operation is called a symbol. An alphabet is then a

finite set of symbols . Because of the nature of threads, we define that an alphabet

representing a thread T should contain access to all shared variables from this thread

plus the symbol for no shared variable access 0r. An alphabet of a thread T is

denoted by gT.

A trace is a finite-length sequence of symbols from some alphabet. In our case, a

trace is the sequence of operations corresponding to a possible execution of a thread.

A trace set is a set of traces. The trace set of thread Tis denoted by !!.T. The thread

Tis then denoted by a trace structure, which is the pair (gT, !!.T). We will write such

a trace structure as T for simplicity for the remaining part of the thesis.

4.2.1 Projection

We define the projection of a trace t to an alphabet A to be the result of removing

all symbols in this trace that does not belong to the alphabet, and keep the rest of

the symbols in the original order.

52

A projection operation can be written as:

t l A

where t is a trace and A is an alphabet.

A simple example of projection is shown as follows:

t aXbYcdZe

A {a, b, c, d, e}

t l A= abcde (4.1)

In the remaining part of the thesis, upper case identifiers such as T and U will be

used to represent threads or trace structures, and lower case identifier such as t and

u will be used to represent traces, unless otherwise specified.

4.2.2 Weaving

With the definition of projection, we can formally define the weave function to be

[13]:

TwU = ({x E (gT U gU)* ix l gT E f.T A x l gU E t.U}, gT U gU) (4.2)

The definition means that the result of weaving two trace structure T and U is a

trace structure such that:

• The alphabet of this resulted trace structure is the union of the alphabet of the

two trace structures U and T.

• A trace in the trace set of the resulted trace structure must be a sequence of

the symbols from the new alphabet.

53

• All traces in the resulted set project to the alphabet of T (gT) must be in the

trace set of T (t.T) .

• All traces in the resulted set project to the alphabet of U must be in the trace

set ofT.

For our case, because the symbol sets of trace structures representing two different

threads are always disjoint (which is intuitive because the symbol set of a thread only

contains operations from this thread itself) , the trace set of the weaving of two trace

structure t.(TwU) is in fact all possible interleaving of all pairs of traces < t, u >

where t is from !;_T and u is from t_U.

A simple example of weaving is shown as follows:

t_T = {Wf~} gT = {~, w;, R!;., Wf, 0r}

t_U = {W~Rb} gU = {Ru, W~, Rb, Wt, 0u}

t.(TwU) = {Wf~W~Rb , WfW~~Rb, WfW~Rb~,

W~Wf~Rb, W~WfRb~, W~RbWf~}

g(TwU) = {~, w;, RJ;,, w;, 0r, R0, w~ , Rb, wt, 0u} (4.3)

In this example, two threads T and U accesses two shared variables a and b. The

trace sets of the two trace structures both contain only one trace, each with two

symbols. The result trace set t_(TwU) contains six traces. This trace set may seems

complicated at the first glance; however, a careful inspection of the subscripts will

reveal that it is just interleaving the symbols from the two traces in an arbitrary

order. For example, a trace with subscript in order TUUT (WfWc!RbRT) means

first execute one operation in thread T, followed by the two operation of U, then

54

execute the other operation ofT.

As the number of traces in each trace set and the number of symbols in each trace

grows, the size of result trace set will grow exponentially. But the rule of weaving

remains the same. Deriving the result of weaving two trace structures representing

two threads together will be a trivial task given enough time and patience.

4.2.3 Equivalence of traces

In this section, we will define equivalent relationship between traces. In common

sense, two traces are equivalent only if they are equal, which means they are formed

by the same set of symbols with the same order. However, because we are only

interested in using traces to represent the execution of threads, we will say traces

that produce the same execution result are equivalent (represented by :=) to each

other. For example:

W a paRa wa _ waRa pa wa
r~ vr u u = T u ~ vr u (4.4)

because although the order of the two reads, RT and R[;, are different in the two

traces, they all return the same value (the value written by Wy) . Hence the program

execution result can not reflect this difference, the two execution orders are the same

in the view point of the user of the program.

As a result, we define the equivalence relationship between two traces by definition-

use chain.

55

4.2.4 Definition-use chain

We describe the relationship between a read R and a write W as a definition-use

relationship, so that a write wa is a definition to the variable a, and a read Ra is a

use of the variable. We say a definition reaches a use of a if this read Ra returns the

value written by t he definition wa.

Intuitively, a definition can reach a use only if it appears before t he use, and there

is no other definition between the definition and use that overrides the value. We

define Dt(Ra) to be the definition affecting this particular Ra in trace t.

Because we are only interested in the interleaving between operations from two

threads, all resulted trace sets we are considering will contain the same set of opera

tions and all operations from same thread will always follow a same sequential order.

As a result, we can label the read and write operations by the order they appear in

the respective trace. For instance, ROr is the first read to variable a in thread T, and

Wn(, is then+ lth write operation to a in U.

We define two traces t and u from TwU to be equivalent if

(4.5)

This equation means a trace t is equivalent to a trace u only if all uses in t are

determined by the same definition as they arc in thread u.

4.2.5 Equivalence relationship between two symbol traces

Determining if two traces arc equivalent can be achieved by performing a definition

use check for all uses of the traces. As the length of the source trace increases, the

56

trace set of weaving result grows dramatically. In order to efficiently analyze the

equivalence relationship between large number of traces, we need to develop methods

that are more efficient than simply performing definition-use check to all uses.

We can break down the equivalence checks between two trace sets into a series of

equivalence checks of two symbol trace, Detailed discussion about this method will

be provided in later sections. In this section, we develop a rule for the equivalence

relationship between all two symbol traces.

1. R~R~ = R~R~ , as we discussed before, read does not have a particular order,

since a read will neither establish nor block a definition-use chain.

2. w: R~ =/= R~ w:, because the write will reach the read in left side, and will not

reach the read in the right side, these two traces are not equivalent.

3. w:~: = w;w: if there is no read operation to a immediately following the

trace. If there is a read operation R~ following these two symbols, then on the

left side, D(R~) = w;, and on the right side, D(R~) = w:, the two traces are

not equivalent. On the other hand, if there is no read or another write to a that

follows these two symbols, the interchange would not affect the equivalence of

the two traces.

4. O~Ot = oto~, where 0 can be either read or write. Operations to different

variables would not interfere with each other, since no definition-use chain is

established between operations on different variables.

5. 00a = oa0. Intuitively, operations without shared variable access would not

affect the definition-use chain of shared variables.

57

4.2.6 Equivalence of trace sets

We define the refinement relationship between trace sets to be:

t_T C t_U {::} Vu E t_U · 3t E t_T · t =: u (4.6)

We say a trace set t_U refines another trace set t_T if for any trace u in t_U, we

can find a trace t in t_T so that u is equivalent to t. This statement also implies an

simplicity restriction that

(4.7)

because a trace t can not be equivalent to other traces that has symbols that do not

exist in t. For the rest part of the paper, we will not consider this restriction because

the trace structures we are examining will always have the same alphabet.

An example of refinement relationship of trace structures will be shown as follows:

t_T {WbWaRbRa, wawbRbRa}

t_U = {WbWaRaRb, waRbRaWb}

T c U (4.8)

Trace structure T is refined by U because, according to the definition of equiva

lence of traces, Wbwa Rb Ra = wawb Rb Ra = Wbwa Ra Rb since both uses in these

three traces are affected by the same definition. According to 4.6, for both of the

traces in t_T, there exists a trace Wbwa Ra Rb in t_U that is equivalent to them.

However, we should note that U is not refined by T, because there is a trace

wa Rb Rawb in t_U that is not equivalent to either of the two traces in t_T. If this trace

is removed from t_U, then the new trace structure U' will be refined by T. The two

58

trace structures will be equivalent to each other.

T = U' {:} (~T !;;;;; ~U') 1\ (~U' !;;;;; ~T) (4.9)

4.3 safety of fission

4.3.1 Fission and fusion

We introduce two transformations, fusion and fission [15], to help deal with the

problem introduced in Section 4.1.

A transformation in concurrent program being safe means this transformation

can not introduce new behaviors that will not occur in the original program. Sup

pose we use trace structures to represent all possible execution paths of a concurrent

program, so that T represents the original program and T' represents the program

after transformation; a transformation is safe if:

TwU!;;;;; T'wU (4.10)

where U is an arbitrary trace structure. This equation means a transformation is safe

if, when both trace structures before and after the transformation are weaved with

another trace structure, the resulting trace structure after the transformation should

always be refined by the resulting trace structure before the transformation.

Note that the safety of a transformation does not require the trace structure after

the transformation to be equal to the one before the transformation. The transfor

mation can eliminate some possible traces, but should not add new ones. Eliminating

traces is safe because being safe means the trace set after transformation should not

contain any trace that is not equivalent to some existing traces in the original result

59

trace set, and removing traces from the original trace set clearly would not affect this

property.

A fusion is a transformation that converts two atomic blocks into a single atomic

block:

(p); (q) (p; q) (4.11)

Fusion reduces the nondeterminism in parallel program. That means, if we de

scribe the threads of parallel program by trace structures, and the concurrent execu

tion of them by weaving, fusion will reduce the size of the trace set of the resulted

trace structure, illustrated by the following example:

t.T = {(w;)(~)}

t.T' = { (w;,~,)}

t.U = {Wr/Rt}

t.(TwU) = {(W;)(~)Wr/Rt, (W;)Wr/(~)Rt, (W;)Wr/Rt(~),

Wr/(W;)(~)Rt, Wr/(W;)Rt(~), Wr/Rt(w;)(~)}

t.(T'wU) = {(W;,~,)Wr/Rt, Wr/(W;,~,)Rt, Wr/Rt(w;~)}

t.(TwU) ~ t.(T'wU) (4.12)

We can see that fusion will only reduce the number of possible interleaving traces

in concurrent execution but not introduce new traces. So fusion is always safe.

In the rest of the thesis , we will omit the atomic sign "()" from atomic block that

has only one symbol, since a single symbol is always atomic.

A fission is the opposite of fusion , which splits one atomic block into two separate

60

.------------------- -

blocks:

(p; q) (p); (q) (4.13)

Fission will increase the nondeterminism in the concurrent program by increasing

number of possible interleaving traces in the resulting trace structure.

Strictly speaking, a fission is never safe as long as both p and q contain at least one

shared variable access. As for any fission transformation, we can always find a trace

set tU that when weaves with the original trace set and the one after transformation,

will cause:

However, we are interested in a special case of safety, that is, if the fission is safe

in a certain context. For instance, in the case of Example 4.12, if U represents all

threads that are executing in parallel with T , then a fission

is safe because the three new traces introduced by fission:

are all equivalent to the trace

in the original trace set.

If we modify the thread U by just changing the order of the two symbols in its

trace, so that U becomes:

61

The fission

(p; q) (p); (q)

is not safe anymore under this new context. Illustrated as follows:

tT = { (WfRT)}

tT' = {Wf,RT,}

tU = {RtW[J}

t(TwU) = {(WfRT)RtWc), Rt(WfRT)Wc) , RtWc)(WfRT)}

t(T'wU) = {Wf,flT,RtWc), RtWf,flT,Wc), RtWc)Wf,flT,

Wf,Rt Wc)flT,, Wf, RtRT, Wc), Rt Wf, Wc)RT,}

This fission is not safe because there is a trace

(4.14)

in the new result trace set that is not equivalent to any of the three traces in the

original result trace set.

As a result , we will only consider the safety of fission with respect to the context of

the concurrent program. We use M as the context, which is the trace structure rep

resenting all threads that are executing in parallel with the target thread undergoing

fission transformation.

We introduce a new operator:

T i;;;;M U <=> T w M I;: U w M (4.15)

to mean the transformation from trace structure T to U is safe under context M.

62

.--------------------------------

So instead of Equation 4.10, we use

{(p;q)} ~M {(p);(q)} ¢:? ({(p;q)}w M) ~ ({(p);(q)}w M) (4.16)

to represent the fission is safe under context M .

4.3.2 safety

The context M is the trace structure representing all other threads executed in par

allel with the thread under fission transformation, hence it may contain many trace

structures representing different threads. However, this context can be split to a

number of different subsets. So if

then

T ~M U ¢:? (T ~Mo U) 1\ (T ~M1 U) 1\ .. . 1\ (T ~M .. U) (4.17)

This property will be proved in later section, in this section, we will only consider

M to contain trace set for a single thread, as traces from multiple threads only require

us to repeat the equivalence analysis multiple times.

Although trace set representing a single thread may also contain multiple traces

because of branch and loop structure, we can develop methods to merge traces intro

duced by these structures into a single trace (detail discussed in later sections). As a

result, we will only deal with the case that t,M contain only one trace: m.

Because a trace m is just a sequence of different operations, we can label the

operations by a symbol mi corresponding to the order of presence in m. So the trace

63

m is a symbol sequence m0m 1m 2 · · · mn_1 . According to our definition, { (p; q) }w{m}

is the set of all possible interleaving of the two traces:

This is a set of n + 1 traces with pq being placed before mo to mn_1 , or after mn_1.

Because (p; q) is atomic, no symbol can be placed in between of p and q. On the other

hand, the trace of {(p); (q)}w{m} contains not only all traces in {(p;q)}w{m}, but

2
also traces that have a subset of m placed between p and q. There are ; such traces.

We can label each trace by the number of operations before p and the number of

operations after q. Define the result trace set {(p) ; (q)}w{m} to be I , where Ixy is

the trace that has x operations before p and y operations after q, namely the trace

(4.18)

Intuitively, { (p; q) }w{ m} only contains I xy that does not have operations between

p and q, hence x+y = n, while {(p) ; (q)}w{m} contains all possible interleaving. So:

Ixy E {(p;q)}w{m}

Ixy E {(p); (q)}w{m}

x+y=n

x+y:Sn

(4.19)

(4.20)

Hence the proof of equivalence is to prove the two sets are equivalent, so for every

trace Wxy that x + y < n, there is a trace with x + y = n that is equivalent to it.

{(p;q)} :!M {(p); (q)} {::} V(Iij li + j < n) · 3(Ixylx + y = n) · Iij = Ixy (4.21)

4.3.3 Proof of equivalence of traces

Given two traces from the interleaving set Ixy and Iij, we can prove whether Ixy = Iij
by the equivalence rule of two symbol traces discussed in Section 4.2.5. In this section,

64

we only consider the case that p, q and m contains access to only one shared variable

for simplicity. The method for dealing with multiple variables will be discussed in

later sections.

From the definition, fxy is the trace

(4.22)

Each mi is either a R, W or 0 symbol. Because p and q may be multiple operations

grouped together, they may contain both reads and writes. However, if there is a

write operation before the first read operation in p or q, the use of the shared variable

in them will always be determined by this write. Hence, read operations in this case

will always satisfy the equivalent requirement in any interleaving.

W R = W in (p) or (q) (4.23)

If this is not the case, there is a read before the first write to the shared variable,

then p or q must be treated as both read and write, and have the constraint of both

operations. Hence, p and q are each either R, W , 0 or RW.

Suppose x > i in fxy and fiji to prove Ixy = Iij, we can first prove Ix- 1,y = fxy·

We can see that Ix- 1,y is the trace

mo · · · mx-2Pmx-1 · · · mn-yQmn-y+1 · · · mn- 1 (4.24)

Compare this trace with the trace 4.22, we can see that

fx - 1,y = fxy mx- 1P = pmx- 1 (4.25)

We can judge whether this equivalent relationship is valid or not by the rule of the

equivalence of two symbol traces developed in Section 4.2.5.

65

Following this method, we can further judge whether Ix- 2,y = I x- l,y by examining

if mx-2P = pmx- 2· If this is also true, we can say that Ix-2,y = Ix-l,y = l xy·

Repeating k times until x- k = i, we can prove l xy = I iy; moreover, the equivalence

chain also contains any Ia,y where x ::; a ::; i. Performing the same operation to q, we

can establish an equivalence chain that shows Wxy = Wiy = Wij .

Failing to establish this equivalence chain will not always mean the two traces are

not equivalent. Because a read-write pair can be moved together even if they can

not be moved individually. For example RuWrRrWu = RuWuWrRr even though

RuWrRrWu =I= RuWrWuRr =I= RuWuWrRr.

However, this also means that there will be at least one trace in the chain that is

not equivalent to the target trace. Because we are interested in the resulting trace set

as a whole instead of the starting trace itself, this problem will not affect the result

of our analysis.

4.3.4 Equivalence of result sets

As discussed earlier, if we want to prove

{ (p; q)} ={m} { (p) ; (q)}

we have to prove

Given an arbitrary trace Iij with i + j < n, we need to find a trace lxy with

x + y = n that is equivalent to it. From the analysis in trace equivalence, we can see

the way to prove this is to increment i and j until the sum of i and j is equal to n.

This increment is achieved by repeatedly performing the stepwise equivalence check.

66

We can see that the equivalence check is independent of each other and will not be

affected by the order they arc performed. If we can prove l ij = I xy, we can prove that

any trace Wab with i ::; a ::; x and j ::; b ::; y is also equivalent to Wij by changing

the order of equivalence check.

Generally, if we can prove 100 is equivalent to some l xy with x + y = n, then every

trace lab with 0 ::; a ::; x and 0 ::; b ::; y will also be equivalent to this l xy .

This is achieved by first performing equivalence checks to the front of the trace

to increment i, until we meet some check that is not valid thus can not increase i

anymore. After that, we switch to performing equivalence check to the end of the trace

to increment j, until i + j = n or another nonequivalent increment is encountered.

(4.26)

where

For the case that a> i, following the same set of equivalence checks, we can easily

prove that lab = la,n-a by performing the appropriate equivalence check to back of

trace only, Obviously this la,n-a also belongs to { (p; q)}w{ m}. Same holds for the

situation b > j. By summing up all these three cases, we have proved that

(4.27)

and hence

{(p;q)} :=M {(p) ; (q)} (4.28)

67

4.3.5 Proof of decomposability of the context

In this section, we will prove the theorem mentioned in section 4.3.2, that the context

can be considered one thread at a time.

Suppose we have two traces:

and context:

then

T = (p; q)

T' = (p); (q)

T ~M T' <= (T ~MoT') 1\ (T ~M1 T') 1\ .. . 1\ (T ~M .. T') (4.29)

Since we have

Because weaving is associative, the right hand side of above equation is equivalent

to

If

T ~MoT'

which means

(p; q) w M0 ~ (p) ; (q) w Mo (4.32)

68

from our analysis in previous sections, Equation 4.32 is equivalent to:

Vt' E (p) ; (q) w M 0 · 3t E (p; q) w M 0 · t := t'

So every trace in

(p); (q) w Mo

can be transformed into a form:

According to section 4.2.5, symbols that come before p will not affect the safety

of fission of this trace and any other trace, since the equivalence check is not affected

by symbols before the two exchanged symbols. Similarly, although we do take the

symbols that come after q into consideration in the moving write across write case;

having a read of a variable immediate following q basically means q does not have

write access to that variable, otherwise the read will not be able to move across q.

So the resulted trace set of weaving

where the right side of equation is the equivalent to

Continue this precess for all M 71 , we can then prove that

if

(T ~Mo T') 1\ (T ~M1 T') 1\ ... 1\ (T ~M .. T') (4.33)

The context of fission is associative.

69

4.4 Applying the method

When applying this result to general computer programs, we need to consider a

number of more complex situations. Solution for these problems is discussed in this

section.

4.4.1 Multiple variables

The discussion in earlier sections is based on single shared variables for simplicity. In

real application, this is usually not the case; however, our method can be extended

to deal with this problem without too much modification.

Although (p) and (q) may access multiple variables, for a single variable, it can

still be only R, W , 0 or RW. Hence, we can derive a reading variable set R, writing

set W , and read/write set RW for (p) and (q) respectively. Moreover, each operation

mi in m also has such a set of access variables. When performing the equivalence

check described above, instead of checking equivalence relationship against a single

variable, we should check the set of accessed variables.

For the same variable, it follows the rule of single variable analysis; for different

variables, because o~ot = oto~, they can be interchanged without any interference.

We can extend the rule for single variable equivalence to multiple variables:

ut =I= tu if (W t n Ru =I= 0) V (Rt n W u =I= 0)

ut =/= tu if (Wt nWu =/= 0) !\ (3R · D(R) E Wt n Wu)

(4.34)

where t and u are atomic blocks, which can be either p, q or mi .

70

Other than these two cases, exchanges of symbols with multiple shared variable

access will be equivalent.

4.4.2 Loop and branch structure

We have only considered cases for sequential code block in previous discussion. For

cases with other control flows such as branch and loop, the analysis is slightly different.

For a loop structure, the loop must be able to be moved as a whole in order for

fission to be safe. For example see Figure 4.4.2:

Figure 4.1: Example for loop structure that is not safe for fission.

Although the loop body can be divided into two separate parts, loop head and

loop tail, and moved out of the (p) and (q) pair respectively, if we unroll the loops

into different iterations, heads and tails from different iterations will block each other.

Hence, this loop is not safe for fission in general.

In order to make the loop safe for fission , the loop body must be able to move to

one direction as a whole, as in the example in Figure 4.4.2:

When unrolled, all the iterations of the loop can be moved toward the front of the

trace, making the block safe for fission.

For branch flow, the code block within this structure can be divided into different

71

Figure 4.2: Example for loop structure that is safe for fission.

branches, the execution flow can take any of these branches. Because all branches

can be chosen at an execution, we need to ensure none of the branches will interfere

with the atomic block, as shown in Figure 4.4.2.

Figure 4.3: Example for branch structure that is safe for fission.

The branches in this cases are examined individually because only one of the

branches will be chosen at any time. If all branches are safe for fission individually,

the whole branch structure is safe for fission. The only thing that is should be noticed

about branch structure is: if any one of the branches needs to be moved toward the

end of the trace, all codes after the branch structure must be also move toward the

end of the code; as this branch, if taken, prevents the code block after it from moving

toward the head of the trace.

72

4.4.3 Mutual exclusion

We will extend the analysis to deal with flow control structures such as semaphore

and wait statement. For example, if the atomic block is implemented by a semaphore,

we wish to examine if the implementation correctly provides atomicity.

We divide the t hread into different parts according to the position of semaphores,

each part is then a block leading by either a P() or V() operation.

r ------ ~
thread 1 1

1 block1 1 !
I
I
I
I
I
I

~:
t:Ji ______ J

r- ihr;ad2- -I
I I : §() :
I I
I block4 I
I I
I I

~~0 1
I I
I I
I blockS I
I I
I I 18 1 I blockS I
I I
I I
L------J

Figure 4.4: Example or thread divided by semaphores

When examining these two threads, we will find that block 2 and block 4 are

mutually exclusive, hence they will not be executed at the same time with each

other. As a result , we need only to examine the safety of fission between parts that

can be executed concurrently, codes in blocks 2 and 4 will not cause any problem

even if they may interfere with each other.

73

Chapter 5

Implementation of the compiler

front-end

5.1 Structure of the compiler front-end

As we discussed in the first chapter, the HARPO /1 compiler consists of a front-end

and a number of back-ends targeting different platforms. The front-end takes the

plain-text HARP0 /1 source code as input, and produces a platform-independent

intermediate representation (Object graph) as the output. The HARP0/1 front-end

consists of several major steps: syntax analysis, type checking, and specialization/

instantiation. Shown as Figure 5.1.

5.1.1 Syntax analyzer

The syntax analyzer checks the grammar of the source code and converts the plain

text source code into an abstract syntax tree (AST) reflecting the structure of the

74

Soun::e coda

Abstract Syntax Tree

I Typo~k" I
Typed Abstract Synta• Tree

Object Graph

Figure 5.1: Structure of HARPO/L compiler front-end

program.

The abstract syntax tree built for statement a := a + 1 is shown as Figure 5.2.

The syntax analyzer first breaks the statement string into five tokens (a,:=, a,+, 1)

a

a

Figure 5.2: Abstract Syntax Tree for a :=a+ 1

according to the language definition, and then organize the five tokens into a tree

structure according to the priority of the operators.

The syntax analyzer utilizes standard techniques.

75

5.1.2 Type checker

The AST derived by the syntax analyzer is not typed; the type checker checks the

program for type errors and adds type information to each node. A typed abstract

syntax tree for the example in Figure 5.2 is shown as Figure 5.3.

int16

a

comm

·niB

Figure 5.3: Typed Abstract Syntax Tree for a := a+ 1

In this example, we assume variable a has been previously defined as an int 16,

which is an integer represented by a 16-bit word. According to the semantic rules of

the language [9], t he type of constant 1 is the shortest integer type that can hold its

value, which is int8. The type of the expression combined by the + operator is the

shortest super-type of both its operands, int16. The assignment command requires

a check that the right operand can be assigned to the left operand. The type comm

basically means the command is correctly typed; if an error had been found , the type

of the statement will be set to err to reflect this fact.

The typing of generic classes is similar to that in Java [10] . Within generic classes,

the types of nodes may be represented by 'type variables' . Bounds information on

type variables is used to determine the correctness of operations.

For example, within the generic class defined by

76

(class G {type T extends A } ...)

a declaration

obj x : T := new T()

requires that type A supports a constructor with no parameters and a call

x.m()

requires that A exports a method m with no parameters.

Outside of G, a declaration

obj y := new G{U}()

requires type U to be a subtype of type A.

5.1.3 Specia lization / instantiation

HARPO /L uses generic classes to provide polymorphism. Specialization creates those

specializations of generic classes that are needed for the given program.

Instantiation creates the objects from classes. Instantiation serves to connect ob

jects together, by means of object references that are passed as constructor arguments.

For example a consumer and a producer can be instantiated and connected together

via the declarations

obj p new Producer(c)

obj c ·- new Consumer(p) (5.1)

Detailed explanation about specialization and instantiation will be discussed in

later sections.

77

5.2 Type system

The type checker is used to assign proper types to expressions and statements. In

order to decide the type of variables used in expressions, the type checker must contain

a symbol table that stores the type information for all the identifiers. All entities share

the same name space; for example, to avoid ambiguity, once an identifier List is used

as the name of a class, no object in the same scope can be named as List too. As

a result, the symbol table contains not only types for objects, but also information

about classes, interfaces, fields, methods, and generic parameters.

Figure 5.4: Example of symbol table hierarchy

The HARPO /L compiler uses a standard approach to organize its symbol table,

an example shown as Figure 5.4. The symbol table is organized in a tree hierarchy,

with each table being a hash table containing the (name, type) pair corresponding

to all entries within it. A global symbol table is at the root of the tree, and all local

symbol tables are descendants of the global table. When the compiler needs to find

78

the type of a specific identifier, it first check the current local table; if the entry can

not be found, it then recursively checks the ancestral tables of the local table for that

name, until it reaches the global table. If the name still can not be found in the

global table, the type of the identifier will be set to err to indicate an error in the

type checking.

Because the HARP0/1 grammar allows use before declaration (as seen in 5.1,

where consumer c is used as the constructor arguments before its declared), the type

information of objects may not in the symbol table yet when it is used under this

situation. Hence, the compiler should not query object types before the symbol table

is fully filled, to avoid type error caused by missing entries in symbol table.

5.2.1 Types and expressions

There are various types in the HARPO /1 language, each with different properties.

As discussed in Chapter 2, type includes primitive type, class type, object type, array

type, and special types such as Err.

Array
Type

Type

Method
Type

Figure 5.5: Different types in the type system

In the implementation, all classes representing specific types arc extended from a

79

base class Type. This class provides functionalities common to all classes. Specific

type classes may add new functions to the basic Type class, or override some of the

functions to reflect unique behaviors for the specific type.

For example, Array Type is a type class that is used to describe any array. The

array type must be based on some other type to reflect the content of the array.

Each Array Type object consists of reference to a Type object item that corre

sponds to the content of the array, and an integer size for the size of the array. In

order to provide required functionalities for array operation, the basic Type class con

tains a getArray method to create an Array TI.jpe based on the Type called; and Array

Type contains a method getltem to get the original array content type back. Hence,

when the type checker sees a declaration like int8[10], it first creates a Primitive Type

of int8, then calls the getArray method to get a proper Array Type object.

Figure 5.6: Structure of an Array Type

In addition to basic types, Figure 5.2.1 also contains a special type: Expression

Type, this type is used to deal with a problem in the compiling process.

As discussed in Chapter 2, HARP0/ 1 permits the type information of an object

to be omitted from declaration when the type can be inferred from its initiation

expression . However, the compiler may not always be able to figure out the type of

an initiation expression when it reaches a variable declaration, see as the following

80

example:

obj a := new B()

obj c := a.d

obj e := c

(class B

public obj d := 1

class)

In this example, because the type is omitted in the declaration, the type of c

is decided by the initiation expression. However, because its initiation expression

contains a field d of class B, which is not yet declared, there is no way to decide the

type of c at this point. In the next declaration, the type of e can not be decided

either.

To deal with this problem, the HARPO / 1 compiler adopted a two-pass mech

anism. The first pass fills in the symbol table with only variable names and their

initial expressions, and type information for the variables that have an explicit type

declaration. The second pass resolves initiation expressions for variables to decide

their types.

For the first pass, the entries in symbol table for variable a will be a pair of

its name and an Object Type B. However, the compiler will not try to collect any

information about the type B, no matter whether it is available at this stage or not.

Similarly, the compiler will create an Expression Type corresponding to expression

a .d , but treat a and d only as two names, without concerning if they exist in the

81

symbol table. The compiler also records Class Type B to be a class with an int8 field

d equal to one in the first pass.

The second pass will evaluate all the Expression Types and decide the actual type

of the variable. It will link the type B with its declaration, so when the compiler is

trying to evaluate expression a.d, the information about field d will be available at

this time.

Figure 5.7: Expression type for a.d

For the above expression, the compiler will look up in the symbol table and find

the left operand a to have type B, and then look up the field table of class B for the

right operand d to decide the final type of the dot expression is int8. After the type

of variable c is filled into the symbol table as int8, it can be used to determine the

types of other variables such as e.

5.2.2 Type dependence

The example in the last section shows that the type of a variable may be decided

by the type of other variables. In this case, we say that there is a type dependency

relationship between these two variables. Furthermore, the example also shows that

82

the dependency relationship can run backwards in the source code, meaning that a

variable may depend on another variable that has not been declared yet. For example,

a field of a class is effective throughout the entire class, irrespective of in which part of

the class it is defined. One may define fields of a class at the end of the class definition

but use them earlier in the code to form initiation expressions of other local variables.

In the example from last section, this does not cause any complication because

the type of class a and field d can be decided immediately at the first pass, so the

type information is already available to the compiler in second pass. However, this

situation may not always be true, see as the following example:

obj a:= b

obj b := c

obj c := 10

Figure 5.8: A simple example of type dependence

In this example, the type of a depends on type of b, and type of b further depends

on type of c. When the compiler is trying to figure out the type of a, it needs to know

the type of b, but the type information is not available in the symbol table because

the initiation expression for b has not been evaluated yet . As a result, in order to

correctly type this block of code, we must evaluate the variables in reversed order of

their apparency in program. In actual programming, this order can be arbitrary so

the situation may be even more complex.

One possible way to solve this problem is to perform a topological sort of the

variables prior to t he type checking. Variables that do not depend on any other vari-

83

able are evaluated first ; variables that depend on available variables will be evaluated

after. Repeat this step until no more variables can be evaluated. The variables that

remain untyped after this is the set of variables that have non-satisfiable dependence

requirement hence will all be typed as err.

This approach introduces a complex problem into the compiler ; a good algorithm

is needed in order to achieve both efficiency and correctness. In our implementation,

we decided to employ a different approach .

Figure 5.9: Symbol table entries and dependence relationship

We implement a method getType for the Type class. When this method is called,

the Type class returns its own type if it is a normal Type, or evaluate itself to get its

type if it is an Expression Type. So for the example in 5.2.2, the compiler performs

type checking from top to bottom at the beginning, when it checks a, it will find it

is an expression type that depends on variable b. The compiler then evaluates this

expression by calling the getType method on the expression type (c) returned by the

symbol table. The compiler further calls getType on this expression and it returns

the type of c: int8. This type information is used to determine the type of b to be

int8; type of b further determines the type of a to be also int8. If a variable depends

on another variable that does not exist or have type err, this variable will be typed

84

as err.

This also introduces a new problem, cyclic dependency, as shown in Figure 5.2.2.

This is a slightly modified version of the code block in last example. This time, the

type of c is not a Primitive Type int8, but an Expression type that depends on the

type of a.

obja:=b~

(objb:=c<

"" obj c := a ~

Figure 5.10: An example of cyclic dependence

Cyclic dependence will not cause any problem in topological sort approach because

none of the dependence requirement of these three variable will be satisfied in the

type checking process, so the compiler will never try to determine the type of these

three variables. After the type checking finishes , these three variables that remain

untyped will be all be typed as err.

However, in the recursive approach, this block of code will cause an infinite loop.

When the compiler is type checking this block of code, it performs the same operation

as the last example until it is trying to decide the type of c. As we discussed above, it

will call getType on the Expression Type (a), and this expression calls back the same

method for band the whole process starts over again and again.

In order to avoid this infinite loop problem and spot the cyclic dependency error,

the compiler includes a stack to record all the identifiers involved in deciding the type

of a single variable. The stack records the name and scope of a variable when it is

85

pulled from the symbol table, and pops it when the type of the variable is decided.

The content of the stack when the compiler spots the cyclic dependency for this

example is shown as Figure 5.2.2.

i'r
a Global Symbol Table

c Global Symbol Table

b Global Symbol Table

a Global Symbol Table

Figure 5.11: Symbol dependency stack for the cyclic dependency example

The stack contains two entries of symbol a from the global scope, this means the

variable a depends on the type of itself, which clearly indicates a cyclic dependency.

The compiler will output an error message and type the variable a as err. Conse

quently, all other variables in the stack will also be typed as error type because they

depend on a variable that can not be correctly typed.

5.3 Specialization & Instantiation

The generic approach in HARPO /L makes it possible to write classes that can perform

same operation to a number of different types. When writing such a class, fields and

local variables can be typed as a Generic Class Type, so the actual type can be

specified when an object of this class is defined.

An example of generic class is shown as follows:

86

(class List{type T extends int}

public proc add (in value: T)

class)

In this example, the generic type T is bounded by the type int, which means

it only accepts subtype of int (int8, int16, int32) as generic parameter. In order

to implement this kind of bounded polymorphism, the compiler must be able to first

verify the type parameter used in the declaration, and then fill in the type information

required to replace the generic types.

Two possible methods can be used to implement the generic approach. One

is to create a separate type for each different specialization of the Generic Class

Type; the generic parameters are fi lled into the Generic Class Type, so generic classes

that have different generic parameters are represented by two completely different

Class Type objects. This approach requires a separate Class Type for every different

specialization, but most information in the Class Types created this way will be

duplicated, if the number or size of generic classes is large, this can be a great waste

of system memory resource.

We use another approach to represent generic classes. This approach shares the

common information between different specialization of a Generic Class Type; only

the different parameters for each separate declaration are recorded.

As shown in figure 5.3, the data structure the compiler uses for a specialized class

contains the Generic Class Type it is based on, and a table of generic parameters

87

Figure 5.12: Structure for Specialized Class Type

used in declaration. In fact, the Generic Parameter Table is just a special form of

symbol table that maps generic type variables to t heir actual defined types. When

the compiler is trying to get information about the specialized class, the Specialized

Class Type will redirect the method calls so the inquiry about common information

goes into the Generic Class Type, only information about generic parameters specific

to the specialized class is returned from the Generic Parameter Table.

Figure 5.13: Symbol tables of generic and specialized table

In this way, different declarations of a same generic class will behave like two

different classes; for example, they return different types for a same named field , and

their methods also accept and return different types of the parameter, even though

most of the information about them is from a same Generic Class Type.

88

This behavior is achieved by linking the symbol table of the generic and specialized

class together, while the symbol table of generic class is the parent node, and generic

parameter table of all declarations of specialized class is a child table linked to it. So

when the compiler tries to get the information about the type ofT in List{ int32} ,

it will look up T in its generic table, which is int32, hence all occurrence of T in

List{ int32} will become int32 instead. Because the generic table of List{ int32} only

contains entry for generic parameter T, all other table look up call will be passed

to its parent table as the default behavior of the symbol table. On the other hand,

List{ int16} will have exactly the same behavior except the generic type T being

replaced by int16 instead.

5.4 Implementation

We choose Java as the platform for the programming of the compiler front-end. In

this section, we will discuss details of the actual coding of the compiler, including its

structure, classes involved in the implementation, and interactions between classes.

5.4.1 Parsing

Parsing is used to convert the plain-text source code into a tree structure representing

the meaning of the program.

We use JavaCC (Java Compiler Compiler) to implement the parser. Parsing a

program using JavaCC contains two major steps, the first step is to break the source

into a set of tokens, the second step is to organize these tokens into a tree structure.

When a string is read in from a source file, it is broken down into a number of

89

substrings divided by a set of divider strings, which include blank space, tab character,

end oflinc character, and comments (comments in HARPO/L arc defined as in Java).

The substring set is then all substrings of the original string that are enclosed by two

divider strings.

As a result, a string

obj intExample := 10 + 2 * (4 + 1) (5.2)

is broken into four substrings: obj, intExample, :=, 10 + 2 * (4 + 1) after this step.

The parser then checks the definition of different tokens to convert these substrings

into tokens.

Token definitions involved in parsing 5.2 is shown as follows:

< OBJ> f-t obj

<ASSIGN> f-t -

<ADDITIVE> f-t (+ I -)
- - -

<MULTIPLICATIVE> f-t (* I I I %) - - - -

< LP> f-t (

< RP> f-t)

<#DIGIT> f-t [0- 9]

<#LETTER> f-t [a - z Jl [A - Z]

<INTEGER> f-t f <DIGIT > t
< IDENTIFIER > f-t < LETTER > (< LETTER > l < DIGIT> l- t

These definitions are in fact quite straight forward, we defined keyword obj, several

operators, and two categories of tokens: integer and identifier. Token definitions that

90

start with # sign are macros, they are used to form other token definitions, but are

not token types by themselves. As we can see from the definition, integer is defined

as a sequence of digit, and identifier is defined as a letter followed by an arbitrary

sequence of numbers, letters, and underscores.

We should note that token definitions are evaluated from top to bottom, so the

substring obj will be converted into a < OBJ > token, even though it also satisfies

the definition of< IDENTIFER > token.

When converting the substrings to tokens, the parser will try to include as many

characters as possible into a token, until it encounters a character that can not be

included into correct tokens according to the token definition. It will then combine

all characters before this stop point into a token, and perform a new token check

starting at the character where the previous check stopped. So for example, string

intExample will be converted into a single token and 1 + 2 will be three tokens 1, +

and 2.

As a result, the string in 5.2 will be broken into a sequence of 12 tokens: < OBJ >,

< IDENTIFER >, < ASSGINMENT >, < INTEGER >, < ADDITIVE >, <

INTEGER> , < MULTIPILCATIVE >, < LP >, <INTEGER>, <ADDITIVE>,

< INTEGER>, < RP >.

After converting the source into sequences of tokens, we need to define a parse

tree to organize the tokens into a correct tree structure according to its meaning. The

parse tree is derived from the language definition. A small portion of the parse tree

is shown in Figure 5.14.

In this graph, tokens are represented by circles or eclipses, with tokens that will

accept only a same sequence of characters (for example, < OBJ > can only be

91

I (I o.o •• "'" Ill 8 objectDeclaration JIJ interfaceDeclarallon J) *
t
I

((G) I8)~(QEJf01 I)I .. initExpresslon

t
I

I ExPression II .. .
t
I

I ComparaliveExpression II ...
f
I --

I Additive Expression I (COMPARATIVE I AdditiveExpression I)*
t
I

(C3J I MultlplicativeExpression I MultlpllcallveExpression I)*
t
I

I Terminal I (MULTIPLICATIVE I Terminal I)*
t
I

(G) I Expression IG))I~IB I···

Figure 5.14: An example of parse tree

92

formed by string "obj") represented by a circle labeled by that string for simplicity.

Rectangles are used to represent branches that can be expanded into subtrees. A

subtree may contain many branches, only branches that are involved in parsing (5.2)

are included in the graph.

When the parser is trying to organize the tokens into a tree, it will perform a tree

traversal. Starting at the root node, when a token is inputed, the parser will walk

down into the branch that starts with the token, and consume tokens as specified

by each tree node. The parser will return to the parent of a node when the token

requirement of that node is satisfied. If the requirement for the root node is satisfied

as the last token is consumed, the parsing is successful.

We will not list the detailed tree walking steps for (5.2), just to point out several

important issues in this procedure.

• An Abstract Syntax Tree (AST) is generated in the tree walking procedure,

when the parser returns from a parsing tree node, it will create a node in AST

according to the parsing tree node, and attach this AST node to the AST node

generated by the parent node in parsing tree.

• The priority of operators is determined by the depth of the node in the tree.

Nodes close to the tree leaf will be evaluated earlier in the next step in compi

lation, so will have a higher priority. For example, multiplicative expression is

the branch node of additive expression, hence the operator (*, /, %) will have

higher priority than additive operators.

• Parenthesis can be used to change the priority of expressions, as any expression

enclosed by parenthesis will become a terminal and be brought back to the leaf

93

of the parse tree.

When the parsing is finished, we can guarantee that the syntax of the source code

is correct. After this, we will check the Abstract Syntax Tree against the language

semantics to produce typed AST.

5.4.2 Representing types

As discussed earlier, the HARPO /1 compiler front-end uses a number of different

classes to represent types, all of them extend from a root class Type. The symbol

table is a tree of hash tables of (String, Type) pair.

The Type class is a base class of all types with a number of methods providing

basic services, as shown in Figure 5.15:

type::Type

+Type(in base Type : Base Type)
+getType() : Type
+getBaseType() : Base Type
+equals(in other : Type) : bool
+castTo(in other : Type): bool
+extend(in other : Type) : bool
+getllne() : lnt
+getArray(ln size : lnt) : ArrayType
+isConstant() : bool
+toString() : string
+detail() : string
+getExpressionType(): Expression Type
+getCiassType() : Class Type
+getPrimitiveType(): PrimitiveType
+getObjectType() : ObjectType
+getSpeciallzedType(): SpeclallzedCiassType
+getArrayType() : ArrayType

Figure 5.15: Class diagram for class Type

• Constructor Type(BaseType) can only be used to define Type object with for

type error or type that can not be decided. All other types should be defined

94

as a specific type extending Type.

• GetType() are used to get the real type of the type object, as discussed earlier.

So for an ExpressionType, calling getType() method will cause the compiler to

evaluate the expression and return the resulted type of the expression. Other

wise the type called will return itself.

• equals(Type), castTo(TI.Jpe) and extend(Type) method are used to compare be

tween types. For example, an expression can only be assigned to a type that it

can be casted to; generic parameters can only accept generic arguments with a

type that extends it; an accept statement is only valid if there is a method in

the class with all types of parameters equals to its own parameters.

• getLine() returns the line number in source code that this particular variable is

defined. It can be used to sort the order of declarations and error messages for

nicer output.

• isConstant() returns whether this type is compile time constant. Only Ex

pressionType and Primitive Type can be constant. Expression for values such

as array bounds and constructor arguments must evaluate to a type that is

compile time constant.

• toString() and detail() provides two different ways of outputting a Type object.

taSting() provides the basic information about this type and detail() lists details

such as initial expression of this type.

• getBaseType() returns an enumerate type corresponding to the actual type of

this object. Enumerator BaseType will be discussed later.

95

• Get specific type methods such as getPrimitiveType() or getObjectType(} is used

to cast a Type object into a object of another type. It will return a specific type

if its initiate expression can be eventually evaluated to that type or null if

otherwise, irrespective of the actual type of the called type originally.

There are a number of different specific types that extend this Type class, each

with a set of additional functionality according to that type. As a result, when we

look up the table for a name and get a Type object, we would like to know to which

specific type it belongs, and then convert the type object to the correct class.

An enumeration class BaseType is used to represent different types:

<<enumeration>>
type: :BaseType

+I NT
+REAL
+BOOL
+PRIMITIVE
+CLASS
+SPECIALIZED
+OBJECT
+ARRAY
+INTERFACE
+METHOD
+GENERIC
+VOID
+ERROR

Figure 5.16: Class diagram for class BaseType

• !NT, REAL, BOOL and PRIMITIVE are the set of primitives. Primitives are

the only types that can be assigned with a value. They are represented by class

Primitive Type.

• CLASS and INTERFACE are represented by class ClassType, they are the

same except ClassType with base type INTERFACE do not have fields for

96

constructor parameters and threads.

• SPECIALIZED are used for SpecializedClassType, it is the class type with

generic argument filled in.

• OBJECT are used for ObjectType, representing instantiated objects.

• ARRAY are used for ArrayType, as discussed earlier.

• METHOD are used for MethodType, a MethodType can only be contained in

the field table of a class. A method is also a type because it shares the same

name space with other types. Once a method is declared, no fields with the

same name can be defined in this scope.

• GENERIC are used for GParamType, which are used for generic parameters.

It also shares a same name space with other fields of the class, hence prevents

any field with the same name from being defined. This type will not be seen

by any field reference because any correct instantiation of a generic class should

have a field with same name in the field table of the corresponding Specialized

Class Type, which will shade this type from the descendant tables.

• ERROR and VOID is used only for types with errors in type checking.

5 .4.3 Ex pressions

Among all specific types, we would like to discuss ExpressionType in detail as it is

significantly different from other specific types, as shown in Figure 5.17.

In addition to all the standard methods of Type, expression type has several meth

ods and fields of its own.

97

type::ExpresslonType

-expression : Expression
-expectType : Type
-constant : bool

+getScope() : subTable
+setConstant(in constant : bool)
+getValue() : Value

Figure 5.17: Class diagram for ExpressionType

The use of the three fields is demonstrated by the following example:

const intExample int32 .- 20

• The keyword const affects t he constant field of the Expression Type. The mean-

ing of an Expression Type type being constant is different than an expression be-

ing constant. An expression can be constant if all operands of it are constant.

However, an ExpressionType can only be constant if explicitly declared. Hence,

code line

obj intExample : int32 := 20

declares a object with the same name but not constant.

• The int32 part goes into the expectType field. So this ExpressionType will

evaluate the type specified by this field instead of the one returned by the

initiation expression, as long as the type from initiation expression can be casted

to this expectType.

• The initiation expression 20 will be recorded by the Expression field, the func-

tionality of Expression class will be discussed later.

98

The three access methods of the ExpressionType are based on the expression it

contains, so they will be discussed as we discuss class Expression.

The Expression class is used to represent the expressions in the program, as shown

in Figure 5.18.

e;.cpresslon::Expresslon <<enumeration»

-left : Expression
-right : Expresston
-operator : Operator
-value : Value

expresslon::OperatorType
+MATH
+COMPARATIVE
+EQUALITY

·type : Type
-sub Table : sub Table

+REFERENCE
+IDENTIFIER

+getScope() : sub Table
+ge!Type() : Type
+checkType() : bool
+getValuo() : Value
+istConstant() : bool

+ARRAY
+INDEX
+NEGATIVE
+LITERAL
+VOID

+gelline() : int
+loS Iring() : string

e)(pressk>n::Operator

-operatorType : Operator
~perator . Token
+Operator(ln operatorType : Operator, In token : Token)
+geiType(ln left : Expression. In right : Expression) : Type

Figure 5.18: Class diagram for Expression, Operator and OperatorType

An Expression will consist of a Type or Value object if it represents the leaf node

of the expression tree, or two Expression objects if it is the branch node of the tree.

Either way, an Expression object will also contain an Operator object which specifies

the operation taken in this expression. Note that the operators are categorized by

resulted types instead of priorities in this step. For example, although "+" and

"*" operators have different priorities and are treated differently in the parsing step,

they will result in a same type for any expression pair hence are both categorized as

MATH operators. On the other hand, although ">" and "==" have same priority,

they are not same in type checking (for example, boolean == boolean is correct but

boolean > boolean does not make sense), so they are categorized as COMPARATIVE

99

and EQUALITY operators respectively.

In addition to the methods that are same with Type classes and are used to serve

the same named method of Expression Type, Expression also contains several unique

methods and fields for evaluating expressions.

• get Value() will return a Value object that represents the result value of the

expression, only constant expression can have values.

• SubTable field is used to record the scope the expression is defined in, as ex

pressions that contain identifiers will have different meaning in different scope.

• getScope() method is used mainly to deal with cyclic dependence problem.

• checkType() checks if the semantics of the expression is correct, it will return

false and type the expression as ERROR if the expression is not valid.

5.5 Working examples

A number of working examples will be shown in this section. The first example will

be the sample code shown at the end of Chapter 2, namely the following block of

code:

(class FIFO {type T extends primitive}

constructor(in capacity : int)

public proc deposit (in val ue : T)

100

class)

public proc fetch(out value : T)

private obj a : T(capacity)

private obj front := 0

private obj size := 0

(thread

(wh true

(accept

deposit(in value : T) when size < capacity

a[(front + size] %capacity) := value

size := size + 1

fetch(out value : T) when size > 0

value := a[front]

front := (front + 1) % capacity

size := size - 1

accept)

wh)

thread)

obj producer := new FIFO{int32}(40)

101

The above code block creates a FIFO object using generic parameter (int32) and

constructor parameter (40). The execution result is shown as follows:

Detailed field list:

FIFO : FIFO = FIFO generic <: primitive construct (in int8: capacity)

producer : (FIFOint32 obj) = (< (FIFOint32 obj)> new FIFOint32(< int8> 40))

Field dump for object (FIFOint32 obj) :

new FIFOint32(< int8> 40)

{

private T : int32 = int32

private const capacity : const int8 = (< const int8> 40)

public deposit(in int32: value)

public fetch(in int32: value)

private a : int32[40] = (< int8[40] > (< int8> 0)(< const int8> capacity))

private front : int8 = (< int8> 0)

private size : int8 = (< int8> 0)

(thread

(wh (< bool > true)

(accept

deposit(in int32: value) when (< bool> (< int8> size) < (< const int8> capacity))

(< int32> (< int32[40]> a)[(< int8> (< int8> (< int8> front) + (< int8> size))%(< const

int8> capacity))]) := (< int32> value)

102

(< int8> size) := (<int8> (< int8> size)+ (<int8> 1))

fetch(out int32: value) when (< bool> (< int8> size)>(< int8> 0))

(< int32 > value) := (< int32> (< int32[40] > a)[(< int8> front)])

(< int8> front) := (< int8> (< int8> (< int8> front)+ (<int8> 1))%(< const int8> ca

pacity))

(<int8> size) := (<int8> (< int8> size)-(< int8 > 1))

accept)

wh)

thread)

}

The output is just a plain string representation of the information and structure

of the typed AST obtained by the compiler front-end. Each section enclosed by

parenthesis is a node expression of the typed AST, while the type enclosed by <>

is the type of the node. Combining with operators, node expressions can form high

level expressions. This composition continues until a statement is formed.

From this example we can see the compiler correctly types the generic argument

T to int32 and makes constructor argument a constant number of 40 as intended,

and also correctly types other variables based on this information (for example, a :

T(capacity) in the source code is correctly typed as int32[40] in the typed AST for

object FIFO{ int32}[40]).

The following example shows functionality of symbol table as well as error report-

103

ing of the compiler front-end:

obj int1 := 5

obj intl := 10

(class testCiass1 constructor()

public obj rea11 := 10.6

public obj intl: int32 := 20

private obj int2 := 10

public const int3 := 15

private obj int4 := int3

(thread

int3 := 10

int4 := 10

obj object1 := new testCiass1()

obj real1 := objectl.rea11

obj error1 := objectl.int2

obj error2 := objectl.int7

obj int2 := int1

obj int3 := objectl.intl

104

obj eyelid := cyelic2

obj cyelic2 := cyelic3

obj cyelic3 := eyelid

The output for this example is:

Detailed field list :

intl : int8 = (<int8> 5) testCiass1 : testCiassl = testCiassl

objectl : (testCiassl obj) = (< (testCiassl obj)> new testCiass1)

reall : real16 = (< real16> (< (testCiass1 obj)> objectl) .reall)

error1 : error = (< error> (< (testCiass1 obj)> objectl) .int2)

error2 : error = (< error> (< (testCiass1 obj)> objectl) .int7)

int2 : int8 = (< int8> inti)

int3 : int32 = (< int32> (< (testCiass1 obj) > object1) .intl)

eyelid : error = (< error> cyelic2)

cyelic2 : error = (< error> cyelic3)

cyelic3 : error = (< error> eyelid)

Field dump for object (testCiass1 obj) :

new testCiass1

{

public rea11 : rea116 = (< real16> 10.6)

public int1 : int32 = (< int8> 20)

private int2 : int8 = (< int8> 10)

105

public canst int3 : canst int8 = (< canst int8> 15)

private int4 : canst int8 = (< canst int8> int3)

(thread

< error> (< canst int8> int3) := (< int8> 10)

(< canst int8> int4) := (< int8> 10)

thread)

}

Line 2: Multiple declaration of identifier intl in same scope.

Line 11: Can not assign value to constant variable (< canst int8> int3)

Line 18: Can not access private field int2 of (< (testCiass1 obj) > object1)

Line 19: Error getting field , int7 is not a field of (< (testCiass1 obj)> object1)

Line 23: Cyclic dependency for identifier cyclic2

Line 24: Cyclic dependency for identifier cyclic3

Line 25: Cyclic dependency for identifier cyclicl

This example shows how symbol table and scope rule works for the compiler,

it also shows that the compiler correctly identifies program errors such as overlap

declaration, assign to constant variable, and cyclic dependence.

Although a number of other sample programs have been used to test the correct

ness of t he program, a formal and thorough test is still needed to find and remove

potential errors within the program and improve the quality of the compiler front-end.

106

Chapter 6

Conclusion and future work

6.1 Thesis summary

In this thesis, we have addressed a number of technical issues involved in designing a

language, HARP0/1, that can be compiled into CGRA configurations and executed

in hardware, and developed a front end for the language compiler.

Firstly, we did a brief discussion on the difference between using software and

hardware methods in solving problems, and then introduced rcconfigurable architec

tures, especially CGRA, as a third solution to combine some of the advantages of

software and hardware.

Then we introduced the overall structure of the HARPO /1 project, which contains

compiler front-end , software back-end and hardware back-end. In this thesis, we have

mainly concentrated on the compiler front-end.

We have discussed the language design in the second chapter. HAROP /1 is similar

to common high-level programming languages except the following characteristics:

107

• HARPO /L allows explicit declaration of parallel execution, which allows the

output hardware configuration to benefit more from the parallel nature of hard-

ware.

• HARPO /L uses a generic system and implicit type inferrence to make the

reusing of code segments easier.

• The method calling is HARPO /L is different from typical high-level program

ming languages to reflect the nature of hardware.

• HARPO/L has explicit declaration of atomic block to allow easier parallel pro

gramming.

In chapter 3, we have developed a Colored Petri Net representation of the HARPO /L,

that serves as a formal mathematical representation of the language, to allow various

analysis. The CPN representation uses places to represent different states of the sys

tem, and uses the motion of control tokens to represent the flow of execution in the

different threads of the program.

Chapter 4 introduced two operations, fission and fusion, to help simplify the im

plementation of atomic block, and the code optimization in parallel environment. We

utilized trace theory to develop a method to determine if a particular fission is safe

under certain context, or to identify the section of code that makes the fission not

safe.

Chapter 5 discussed issues involved in developing the HARPO /L compiler front

end, and we have addressed a number of issues that makes the implementation of it

different than typical compiler front end.

108

6.2 Thesis Contribution

HARPO/L is a language that is designed to compile into CGRA configuration. The

purpose of this thesis is to develop a front end for the compiler, and to solve various

problems arising in the development. The main contribution of this thesis is listed as

follows:

• We developed a Colored Petri Net representation for the HARPO /L language.

Source code written in HARPO /L can then be converted to this formal math

ematical representation. Given many analysis tools available for CPN, we can

formally examine the behavior and property, such as safety and liveness, for the

source code.

• We developed a method to determine the safeness of the fission operation. Be

cause the result is determined by other threads running in parallel with the

thread under analysis , the problem can grow overly complicated, even for com

puter analysis, when the length or number of other threads grows. Our method

is based on analyzing the interleaving of shared variable access operations us

ing trace theory. It simplifies the problem into a number of small and simple

analyses, to greatly reduces the complexity of the analysis.

• We coded the compiler front end using Java. This front end takes HARPO/L

source code as input, performs syntax analysis and type checking for the code,

and produce a typed abstract syntax tree as output.

109

,---

6.3 Open issues for future work

Future work to continue the research done in this thesis could include:

• Colored Petri Net representation for intermediate representation

A CPN representation for intermediate representation can also be developed, in

comparing the CPN representation for source code and intermediate represen

tation, one can analyze if the intermediate representation derived from source

code preserves its various properties.

• A thorough test of the compiler front end

Although the compiler front end works correctly against a number of test cases

we have done so far, it may still contain unknown problems. A thorough test

should be performed to discover and remove potential problems and improve

the quality of the front end.

• Software and hardware back end

Back ends can be developed to convert the result obtained by the front end

into software code or hardware configurations, to complete the compiler devel

opment.

110

Appendix A

Language Design for CGRA

project. Design 5 [Draft].

Theodore S Norvell

Electrical and Computer Engineering

Memorial U ni versi ty

111

Meta notation

N----+E Nonterminal N can be an E

{E2 Grouping

E* Zero or more

E*F Zero or more separated by Fs

E+ One or more

E+F One or more separated by Fs

E ? Zero or one

!El Zero or one

ElF Choice

A.l Classes and Objects

A.l.l Programs

A program is a set of classes, interfaces, and objects.

Program----+ {ClassDecl I IntDecll ObjectDecl I ConstDecll; r

A.1.2 Types

Types come in several categories.

• Primitive types: Primitive types represent sets of value. As such they have no

mutators. However objects of primitive types may be assigned to, to change

their values. Primitive types represent such things as numbers. They include

- int8, int16, int32, int64, int

112

- reall6, real32, real64, real

- bool

• Classes: Classes represent sets of objects. As such they support methods that

may change the object's state.

• f s. Interfaces are like classes, but without the implementation.

• Arrays: Arrays may be arrays of primitives or arrays of objects.

• Generic types. Generic types are not really types at all, but rather functions

from some domain to types. In order to be used, generic types must be instan

tiated.

Types are either names of classes, array types or specializations of generic types

Type--+ Name I Name GArgs I Type[Bounds]

Arrays are 1 dimensional and indexed from 0 so the bounds are simply one number

Bounds--+ ConstlntExp

A.1.3 Objects

Objects are named instances of types.

ObjectDecl--+ obj Name l: Typel := InitExp

The Type may not be generic.

Initialization of an object can be an expression or an array initialization

113

InitExp---.. Exp I Arrayfnit I new Type(CArg+')

I (if Exp then InitExp ielse if Exp InitExpt else I nitExp lifl)

Arrayfnit---.. (for Name: Bounds do I nitExp lforl)

CArg---.. Exp

• If the object to be initialized is of a primitive type (such as int32 or real64),

the initExp should be a compile-time constant expression of a type assignable

to the type of the object.

• If the object to be initialized is an array, then the InitExp should be an Ar

rayinitExp.

• If the object to be initialized is an object of non-primitive type, then the InitExp

should be of the form new Type(Args) where the Type is a non-generic class

type.

• Constructor arguments must either represent objects or compile time values,

depending on whether the corresponding parameter is obj or in.

• In any case, the InitExp can be an if-else structure in which the expression is a

compile-time constant assignable to bool.

• The InitExp must have a type that is a subtype of the Type.

114

A.1.4 Constants

A constant is simply a named constant expression

ConstDecl---+ const Name 1: Typel := ConstExp

The type, if present must be primitive. Constant expressions are always primitive.

A.1.5 Classes and interfaces

Each class declaration defines a family of types. Classes may be generic or nongeneric.

A generic class has one or more generic parameters

ClassDecl ---+ (class Name GParams7 i implements Type+l constructor(CPar+•) iClassMe1

• The Name is the name of the class.

• The GParams is only present for generic classes, which will be presented in a

later section.

• The Types are the interfaces that the class implements.

An interface defines a type. Interfaces may be generic or nongeneric. A generic

interfaces has one or more generic parameters

IntDecl---+ (interface Name GParam / i extends Type+l ifntMembert !interface lNamell)

• The Name is the name of the class.

115

• The GParams will be presented in a later section.

• The Types are the interfaces that the interface extends.

Constructor parameters represent objects to which this object is connected.

C Par -t obj Name : Type I in Name : Type

• Object parameters represent named connections to other objects. So for exam

ple if we have

(class B constructor(obj x : A) .. .

obj a := (for i : 10 do new A())

obj b := (fori : 10 do new B(aO))

Then object b[O] knows object a[O] by the name of x.

• In parameters are compile time constants and the corresponding argument must

be such.

A.1.6 Class Members

Class members can be fields, methods, and threads. [Nested classes and interfaces

are a possibili ty for the future.]

C lassM ember -t Field I Method I Thread I ConstDecl I ;

Fields are objects t hat are within objects. Field declarations therefore define the

116

part/whole hierarchy.

Field-+ Access obj Namel: Typel := InitExp

Access -+ private I public

Method declarations declare them thad, but not its implementation. The imple

mentation of each must be embedded within a thread.

Method-+ Access proc Name({DiTection !Name: 1 Typef')l

DiTection -+ in I out

The types of parameters must be primitive.

Recommended order of declarations is

• public methods and fields , followed by

• private methods and fields , followed by

• threads.

There is no 'declaration before u e rule'. Name lookup works from inside out.

A.l. 7 Interface Members

Interfaces members can be fields and methods. [Nested classes and interfaces are a

possibility for the future.]

IntMembeT-+ Field I Method I ConstDecLI ;

117

A.2 Threads

Threads are blocks executed in response to object creation.

Thread--+ (thread Block [thread])
- -

Each object contains within it zero or more threads. Coordination between the

threads within the same object are the responsibility of the programmer. All concur-

rency within an object arises from the existence of multiple threads in its class. Thus

you can write a monitor (essentially) by having only one thread in a class.

A.2.1 Statements and Blocks

A block is simply a sequence of statements and semicolons

Block--+ (Statement I ; r
- -

Statements as follow

• Assignment statements

Statement --+ Object! ds := Expressions

Object! ds --+ Object! d (, Object! d)*

Expressions--+ Expression f, Expression)*

Objectld--+ Name I Objectld[Expression]l Objectld.Name

The type of the Objectld must admit assignment, which means it should be a

primitive type, like int32 or real64.

118

• Local variable declaration

Statement----+ obj Namel : Typel := InitExp Block

Same restrictions as fields. The type may be omitted, in which case it is inferred

from the initialization expression. The block part contains as many statements

as possible. The scope of a local variable name is the block that follows it.

• Constant Declarations

Statement----+ ConstDecl Block

The block part contains as many statements as possible. The scope of a local

constant name is the block that follows it.

• Method call statements

Statement----+ Objectld.Name(Args)

I Name(Args)

• Sequential control flow

Statement----+ (if Expression then Block ielse if Expression Blockl*ielse Blockl7 lifl)

(wh Expression do Block lwhl)

(for Name: Bounds do Block lforl)

• Parallelism

Statement----+ (co Block ill Blockl* lcol)

I (co Name : Bounds do Block lcol)

In the second case, the Bounds must be compile-time constant.

119

• Method implementation.

Statement---+ (accept Methodlmp {I Methodlmpt !acceptl)

Methodlmp---+ Name({Direction Name: Typet') lGuardl Blocko !then Block1l

Guard ---+ when Expression

Restrictions

* The directions and types must match the declaration.

* The guard expression must be boolean.

* Each method may only be implemented once per class

Possible restrictions:

* The guard may not refer to any parameters.

* The guard may refer only to the in parameters.

Semantics: A thread that reaches an accept statement must wait until there

is a call to one of the methods it implements and the corresponding guard

is true. Once there is at least one method the accept can execute, one is

selected. Input parameters are passed in, Block0 is executed and finally

the output parameters are copied back to the calling thread. If there is a

Block1 it is executed next.

• Sequential consistency

Statement---+ (atomic Block Iatomicl)

120

The block is executed as-if atomically. That is, any two atomic statements

within the same object can not execute at the same time unless they can not

interfere with each other.

A.3 Expressions

[[To Be Completed]]

A.4 Genericity

Classes and interfaces can be parameterized by "generic parameters". The effect is

a little like that of Java's generic classes or C++'s template classes. Classes and

interfaces may be parameterized, in general, by other classes and interfaces, values of

primitive types, for example integers, and objects.

Programs using generics can be expanded to programs that do not use generics

at all. For example a program

(class K . . . class)

{class G{ type T} ... T. .. class)

obj g : G{K} := ...

Expands to

{class K ... class)

121

obj k : K

(class GO ... T ... class)

obj g : GO := .. .

Generic parameters may be one of the following

• N ongeneric Types

• Nongeneric Classes

GParams---+ { GParam+' }

GParam ---+ type Name !extends Typel

G Args ---+ {Type+,}

A.5 Examples

(class FIFO {type T extends primitive}

constructor(in capacity : int)

public proc deposit(in val ue : T)

public proc fetch(out value : T)

122

class)

private obj a : T(capacity)

private obj front := 0

private obj size := 0

(thread

(wh true

(accept

wh)

thread)

deposit(in value : T) when size < capacity

a[(front + size] % capacity) := value

size := size + 1

fetch(out value : T) when size > 0

value := a(front]

accept)

front := (front + 1) %capacity

size := size - 1

A.6 Lexical issues

123

~--- -

Appendix B

The Static Semantics of HARPO /L

Theodore S Norvell

Electrical and Computer Engineering

Memorial University

B.l Abstract Syntax

We present the abstract syntax of the language as a phrase structured (context-free

grammar) .

B.2 Types

B.2.1 Typing relation

Each well-formed phrase of the language is associated with some phrase type. A

context is a mapping from identifiers to phrase types. If E is a phrase of the abstract

124

syntax, t is a phrase type, and r is a context, we write

ff-E:t

to mean that phrase E has type t in context r.

For example

r f- 1 = 2 : bool

This typing relation is specified by a set of inference rules written

assumptions
conclusion

The domain of the context is always a finite set of identifiers.

The typing relation is intended to define a partial function from contexts and

phrases to types

Types and objects

Objects 0

Types t,u,v p I array(t) I a boundedby k I k

Prim. types p,q bool I int8 I int16 I int32 I float16 I float32 I float64

Class and interface types k c (a)

Type variables a,{J

Generic arguments a,b .. - t

Read/Write Mode rw .. - r I w

Values v

Class identifiers c,d

125

Context

Context r X 1---+ o, r I X 1---+ m , r I X 1---+ c, r I X 1---+ (a bounded by k) 'r I c

Methods m [TED]

Class environment. A class environment is a partial function from class identifiers

to symbol table entries for classes and interfaces. A class or interface symbol table

entry records the declarations of the class, the set of interfaces it extends (empty for

classes) and the set of interfaces it implements (empty for interfaces).

Class Environment e c 1---+ cid, e 1 c

Class and interface declarations cid .. - Xg · clintci(6., t, u)

Class or interface Ct · ·- class I interface ..

Generic parameter 9 .. - X<: t

Member Declarations b. ·· - TBC ..

B.3 Building a class environment

We can analyse each cla.css and interface in two passes. The first pass builds a class

environment. The second pass does type checking and inference.

In the first pass, we record information about each class and inteface in the class

environment (8) . Since this is done before type checking, all that can be done is to

record information in a raw form. For each class declaration

(class x implem ents I D)

we add an entry

c ~----+ >.c · clintclass (b. , c , u)

126

to the class environment, where c is the fully qualified name for the class, b. is derived

from D , and u is derived from t. Similarly for each interface declaration

(interface x extends t D)

we add an entry

C ~---+ At: · clintclass (b., t, C:)

to the class environment, where c is the fnlly qnalified name for the interface, b. is

derived from D, and tis derived from t.

When there are generic parameters,

we create new type variables ai and add constraints ai <: ti to between the A and the

·. Each ti is d rived from each Ei by replacing identifiers representing classes with the

corresponding class identifier, replacing braces with angle brackets, replacing each xi

with the coorsponding ai and so on. [To do: Formalize this.]

Deriving b. from the sequence of declarations D is done by a similar process.

The type expressions used in field declarations, method declarations, and constructor

arguments are turned into types t using a superficial analysis. [To do: Formalize this.]

After the first pass is completed for the whole program, we can do full type

checking on the whole program.

127

B.4 Types of expressions

B.4.1 Identifiers are looked up in the context

The type of an identifier can be looked up in the context. This is the only rule for

identifiers, so an identifier not in the current context results in a type error.

E is an identifier E E dom(r)
r f- E: r(E)

B.4.2 Constants

For constants of the language we have

E is an integer constant in { -128, ... , +127}

r f- E : objr(i nt8)

E is an integer constant in {-215 , ... , + 215 - 1}

r f- E: objr(int16)

E is an integer constant in {- 231, ... , + 231
- 1}

r f- E : objr(int32)

[TBD: Similar for float]

B.4.3 Arithmetic expressions

(LOOKUP)

Generally, unary expressions leave the type alone, while binary expressions require

the operands to have the same type and produce the same result type. When the

operand types are different , there must be a widening conversion from one to the

other.

Subtypes are given by the following rules: [[Does this make sense?]]

128

int8 <: int16 int16 <: int32

float16 <: float32 float32 <: float64

Furthermore, subtyping is transitive and reflexive

t <: u u <: v
t <: v

t <: t

All primitive types are subtypes of the built-in interface primitive.

p <: primitive()

The following two rules illustrate the typing rules for the binary arithmetic op-

erations on integers. The rules show that either operand may be widened, but not

both.

r 1- E: obj(p) f 1- F: obj(q) p <: q p, q E {int8, int16, int32} EB E { +, -, *, div, mod

r 1- E: obj(p) f 1- F: obj(q) q <: p p, q E {int8, int16, int32} EB E { +, -, *, div, mod

[Arithmetic expressions to be completed.]

B .4.4 Arrays

Arrays can be indexed by integers

f 1- E : objx(array(t)) f 1- F : obj(p) p E {int8, int16, int32}

r 1- E[F] : objx(t)

129

B.4.5 Inheritence

Classes can implement interfaces, while interfaces can extend other interfaces. In the

future we may allow classes to extend classes, so these rules are written with that in

mind.

Extension and implementation induce a subtype relation on classes and interfaces

as follows

• Inheritence by extension

8(c) = Xg · clintci(6, t, u)

3t E t . d (b) = t[:g := a]

c (a) < : d (b)

• Inheritence by implementation

8(c) = >.g · clintci(6, t, u)

3u E u · d (b) E u[g :=a]

c (a) <: d (b)

Furthermore, a type variable is a subtype of its bound

(a boundedby k) <: k

As noted earlier, subtyping is reflexive and transitive.

B.4.6 Fields and methods

A field can be found in au object that implements an interface or class that declares

the field. The same rule serves for method lookup. Fields and methods may also

130

be inherited. Rules on consistancy of inheritence (see section [[TBD]]) ensure that a

field or method can only be inherited from one supertype and that there is no conflict

between the declarations of a type and any of its supertypes.

r f- E : objrw(t)

t <: x (a)

8(x) = >.g · clintci(6, u, v)

6(i) =(public, om)

r f- E.i : om[g := a]

B.4. 7 Initialization Expressions

A new object can be created from a concrete class

r f-- E: c (a)

[Matching constructor arguments is To Be Done.]

r f- new E(Fo, F1, ... , Fn- t) : objw(c (a))

A new array can be created using a for loop.

r f-- E: obj(t) t < : int () ri+--obj,(q) f- F: obj(t)
r f-- (for i: E do F) : objw(array(t))

It is required that E be a compile t ime constant, evaluable after generic specialization.

This requirement is not captured formally by this rule.

A choice of initializations is given by an 'if' expression

r f- E: obj (bool) r f-- F: obj(t) r f-- G: obj(t)

r f- (if E then F else G) : objw(t)

Other initializations are simply expressions and are typed the same as other ex-

pressions.

131

B.5 Type checking types

Some of the phrases in a program represent types.

B.5.1 Primitives

Each primitive type is typed to itself

p E {boo! , int8, int16, int32, float16 , float32, float64}

ff-p:p

B.5.2 Class and interfaces

In the abstract syntax, class names are followed by 0 or more generic arguments in

braces. (In the concrete syntax, the baces are omitted in the 0 argument case.)

Calculating the type of a phrase x {Eo, E 1 , ... En- d is done in several steps

• Look up identifier x in the context. It should map to a class identifier, c.

• Look up that class identifier in the class environment. This gives a lambda

expression, which should have n generic parameters.

• Calculate the type of each phrase Ei giving a type ai·

• Check that each argument type ai matches the coresponding generic argument.

132

• The resulting class type is c(ao , al, .. . ,an- 1)·

r(x) = c

G(c) = Xa <: t · clintci(~, u, v)

ai <: ti[a := a], for all i

r f- x { E} : c (a)

B.5.3 Array types

Phrases representing array types include a bound. This bound must be a compile

time constant calculable after generic expansion. Our rule here does not capture that

requirement, as it can only be determined at or after specialization

ff-E:t ff-F:obj(u) u<: int ()

r f- E[F] : array(t)

B.5.4 Generic parameters

Inside a generic class or interface the parameters' identifiers will be bound - in the

context- to generic parameters of the form

a bounded by k

B.6 Type checking of commands

For statements, I'll use judgements of the form

f f- E

where E is a ommand, to mean that E is well typed. We can think of this as an

abbreviation for r f- E : comm, where comm is the type of commands.

133

B. 6.1 Assignments

Assignments are permitted only for primitive variables. Thus the rule is

r f- F: obj(u) u <: t t <: primitive()

r f- E := F

B.6.2 Local variable declaration

Local variables may be of any object type

ff-E:t r f- F : obj(u) u <: t
r f- obj i : E := F S

For local variables, the type, if omitted, is inferred from the type of the expression.

r f- F: obj(t) fi.-obiw(tl f- S

r f- obj i := F S

B.6.3 Blocks

A block i a sequence of 0 or more statements.

f f- Si , for all i E {0, 1, ... ,n -1}

r f- So St ... Sn-1

B.6.4 Method calls

TBD

B.6.5 Sequential control flow

r f- E : obj(bool) r f- S r f- T
r f- (if E then S else T)

r f- E: obj(bool) r f- S
r f- (wh E do S)

134

r I-E: obj(t) t <: int () ri~obj.(tl I-S

B.6.6 Parallelism

r I- (for i : E do S)

r I- Si, for all i E { 0, 1, ... , n - 1}

r I- (co So II sl II ... II Sn-1)

r I-E : obj (t) t <: int () ri~obj.(t) I-S

r I- (co i : E do S)

B.6.7 Method Implementation

TBD

B.6.8 Atomicity

r1-s
r I- (atomic S)

B. 7 Type Checking Declarations

B.7.1 Class declarations

B. 7. 2 Interface declarations

B.7.3 Global object and field declarations

B.7.4 Method declarations

135

Bibliography

[1] K. Compton and S. Hauck. Reconfigurable computing: a survey of systems and

software. ACM Comput. Surv. , 34(2):171- 210, 2002.

[2] S. A. Edwards. The challenges of hardware synthesis from C-like languages. In

DATE '05: Proceedings of the Conference on Design, Automation and Test in

Europe, pages 66- 67, Washington, DC, USA, 2005. IEEE Computer Society.

[3] S. Guccione, D. Levi, and P. Sundararajan. Jbits: A Java-based interface for

reconfigurable computing. X Inc, 1999.

[4] R. Hartenstein. Coarse grain reconfigurable architecture (embedded tutorial). In

ASP-DA C '01: Proceedings of the 2001 conference on Asia South Pacific design

automation, pages 564- 570, New York, NY, USA, 2001. ACM.

[5] K. Jensen. An introduction to the theoretical aspects of coloured petri nets. In A

Decade of Conctwrency, Refl ections and PeTspectives, REX School/Symposium,

pages 230- 272, London, UK, 1994. Springer-Verlag.

[6] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use . Volume 1, Basic Concepts. Springer-Verlag, 1997.

136

[7] T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Ohnishi, A. Kay, P . Boca,

V. Zammit, and T. Nomura. A c-based synthesis system, bach, and its ap

plication (invited talk). In ASP-DAC '01: Proceedings of the 2001 conference

on Asia South Pacific design automation, pages 151- 155, New York, NY, USA,

2001. ACM.

[8] T. S. Norvell. Language design for CGRA project. design 5. [unpublished draft].

2008.

[9] T. S. Norvell. The static semantics of HARP0/ 1 [unpublished draft]. 2008.

[10] M. Odersky and P. Wadler. Pizza into Java: translating theory into practice.

In POPL '97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 146- 159, New York, NY, USA, 1997.

ACM.

[11] J. L. Peterson. Petri Nets. ACM Comput. Surv., 9(3):223- 252, 1977.

[12] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of Field

Programmable Gate Arrays. PROCEEDINGS- IEEE, Volume: 81, Issue:

7:1013- 1029, 1993.

[13] J . L. A. van de Snepscheut. Trace Theory and VLSI design. PhD Thesis, De

partment of Computer Science, Eindhoven University of Technology, Eindhoven,

The Netherlands, 1983.

137

[14] K. Wakabayashi. C-based synthesis experiences with a behavior synthesizer,

"Cyber" . In DATE '99: Proceedings of the conference on Design, automation

and test in Europe, pages 390- 393, New York, NY, USA, 1999. ACM.

[15] D. Zhang. Intermediate representation for parallel languages on CGRAs. Mas

ter's thesis, Memorial Univercity of Newfoundland, December 2007.

138

