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Abstract

An unsteady numerical method. called the quasi-vortex-lattice method (QVLAL).

to calculate ic forces on oscillati

wings is investigated and applied to
the problem of oscillating foil propulsion. It is based on the vortex-lattice-method

(VLM). The method was fc lated for prediction of d ical characteristics

of a non-planar wing with arbitrary shape in unsteady harmonic motion. Based
on three dimensional (3 — D) unsteady lifting surface theory, the method has been
designed to handle irregular wing shapes of both planar and non-planar wings and
10 work with low aspect ratio foils. A computer program was written for the pre-

diction of features of a b ically oscillating hydrofoil. This computer

program was checked by comparing present results with existing published results
for some given planforms. The computer program is capable of solving unsteady

three di pl rigid foil ion problems.

Convergence of the QVLM implemented computer program and CPU time are
discussed. The advantages and disadvantages of the unsteady QVLM method, and

thei of the ical imation in the i ion of the unsteady

kernel function were investigated.

Propulsive features of three fast swimming animals were i d. Three

cetacean’s flukes were studied by use of calculations of the propulsive efficiency

and mean total thrust coefficient. These three fast swi were: fin whale (Bal-
aenoptera physalus); white-sided dolphin (Lagenorhynchus acutus); and white whale
(Delphinapterus leucas). Fin whale's flukes have the highest aspect ratio (6.1) and
moderate sweep angle (31°); white-sided dolphin’s flukes have the highest leading

edge sweep angle (47°) and lowest aspect ratio (2.72); and white whale’s flukes have



moderate aspect ratio (3.25) and the lowest sweep angle (28.3°).
Calculation and comparisons were made for three cases: predictions of propul-

sive efficiency and thrust coefficient of the planfc of three versus an

advanc- ratio, J; the effects of changes in pitching axis positions and in phase angle
(pitch leading heave) on those predictions; relations between the leading edge thrust
cocfficient and mean total thrust coefficient of the flukes.

It was found that fin whale’s flukes had the highest propulsive efficiency in all
cases, when the heave amplitude h was taken as the corresponding to these flukes’
root chord length. The propulsive efficiency from white-sided dolphin’s flukes was
higher than that from white whale's, though the planform of the white-sided dolphin
had a lower aspect ratio. Over the complete range of the phase angle from 0° to
360°, only the fin whale's flukes predicted positive thrust. The flukes of white-
sided dolphin and white whale produced negative thrust for phaze angle between
190° ~ 270° and 140° ~ 340° at the reduced frequency k = 0.75 respectively; and
175% ~ 340° at the reduced frequency k = 0.15 only for the flukes of white-side
dolphin. When the root chord length was to be taken as reference length and the
reduced frequency & was small, it was found that the variations of the efficiency and
thrust were small. It was also found that the best propulsive efficiency and smallest
thrust coefficient occurred at about same phase angle position, and vice versa. The
best propulsive efficiency was found when the pitching axis was placed at 0.6, 0.7,0.8
root chord position for the flukes of white whale, fin whale and white-sided dolphin

respectively.

The ded shape of d illating propeller in marine engineering

applications was also discussed.
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Chapter 1

Introduction

1.1 The Motive and Origin of Oscillating Propul-
sion

As a main implement of propulsion of nautical vehicles, the propell=t has over a two

hundred year history. With the of the technology, propulsive efficiency
has gradually improved. However, the efficiency of many propellers is around fifty
Lo sixty percent and few propellers can achieve an efficiency as high as seventy
percent. Since 1974, in which year the first crude oil crisis started, energy prices

hiave become a concern. People have been trying to find ways to retard energy

in the perfc of an ordinary propeller is not a

que solution to this problem any more, because propulsive efficiency will not

increase greatly without changing the mode of propulsion. Therefore, the study of
flying and swimming in nature has attracted people’s attention.
Hydrodynamically, the study of the swimming motion of large aquatic animals

is of interest. Newman and Wu (1974) described their interest in fish and cetacean

ing as “Their impressive p is too difficult for human beings to



emulate, either with c..c bodies or with our machines, and we can only marvel at
the ability of these creatures in the sea to attain high maximum speeds, efficiency of

transportation, or special ing capabilities”. Theoretically, study of aquatic

animal propulsion is divided into two parts: the drag of a streamlined body caused
by viscous shear stresses in the thin boundary layer; and the propulsive efficiency
and thrust found from ideal potential flow analyses without the effect of the bound-
ary layer. The objective of this thesis is to find the propulsive efficiency and the
thrust forces of an oscillating foil of arbitrary planform, which is employed to sim-
ulate aquatic animal propulsion as a prelude to the design of man-made oscillating

propellers.

1.2 Definition of the Problem

Studies in bio-mechanical engineering (Hertel (1963)) show that fish propulsion is
accomplished by body and tail fin “strokes”, defined as “active stroke”, “natural
stroke” and “passive stroke”. In the active mode, a fish does work to generate the

thrust which is equivalent to the resi: it at its forward velocity. In

the natural mode, the surface of the fish body and fin is tangential to the flow,
the angle of incidence is zero; no lift is cicated or thrust force is generated, but
a drag force exists. In the passive mode, the tail stroke is driven by a current or
wave; energy is transferred to the movements by the flow in such a way that the
fish extracts energy and transfers it into thrust. Many fast swimming animals are

cetaceans, such as whales and dolphins (Newman and Wu (1974), Bose and Lien



(1989)).

Hertel (1963) studied the propulsive features of whales and dolphins. His results
revealed that these animals have a high (side view) and narrow (top view) tail which
carries a fin. The height is for providing powerful muscles to power the tail-fin stroke.
Measurements of a sei whale are tabulated in table 1.1. The propulsion of swimming
mammals was concluded to be made up of three combined oscillations: a vertical
stroke with special use of the tail fin; the horizontal sweep (side slip) using the
high lateral surface of the tail, and the twisting (rotating) about the longitudinal
axis for manoeuvre. The study showed that the vertical fin stroke is active and the

coupled up-and-down stroke is by a twisting oscillation (pitching and

heaving) of the fin around a transverse axis and shifted in phase by 90° (pitching

leads heaving).

area m? | lever arm m | moment m®
flukes 3.3 5.8 19
tail column 4.5 1.9 8.5
top view 7.8 27.5
side view 9.5 2.9 21.5

Table 1.1: A comparison of striking areas and moments of the sei whale, by H. Hertel
(1963)

Engineering simulation of a tail fin might be done by an oscillating foil, which
could be either a rigid or elastic wing. Unsteady two-dimensional theory is well
developed for large aspect ratio tail fins (Lighthill (1970)). However, this theory

is not appropriate to estimate the hydrodynamics of lowcr aspect ratio wings and

wings with a large sweep angle, such as the lunate tails possessed by most fast



swimming animals, such as whales. dolphins, sailfish and swordfish. Therefore, the
objective of this thesis is to simulate cetacean propulsion by employing unsteady

3-D thin wing or lifting-surface theory.

1.3 Proposed Method

Numerical methods in 3-D unsteady thin wing Lheory are roughly divided into two

families: lifting-line theory and lifting-surface theory. Ni ical simulations based

on lifting-line theory are accurate for larger aspect ratio wings. For low aspect ratio
wings, lifting-surface theory is a better choice. Analytical solutions for unsteady
lifting surface theory are limited to a few wing shapes such as elliptical,circular
and rectangular wings. Solutions for arbitrary wing shapes are obtained by nu-
merical methods. The main numerical methods to solve lifting-surface problems
are the vortex-lattice-method (VLM) (DeYong, 1976); the kernel-function method
of Multhopp (1950) or some methods based on the kernel-function method such as
Davies' (1963); the doublet-lattice method (DLM) developed by Albano and Rodden
(1969); quasi-vortex-lattice method (QVLM) developed by Lan (1974 and 1979).
The VLM is common in engineering applications because of its simplicity and
accuracy. However, many studies have shown that the VLM is accurate only to get
overall loading coefficients (Lan (1974)). Its shortcomings are unrealistic pressure
distributions (too high at the trailing-edge and too low at the leading-edge); low
predicted distributions of the leading-edge suction; and slow convergence (large mesh

number is required for an accurate solution). Hence the VLM is not a good choice for



oscillating propulsion problems where the leading-edge suction force is important.
The kernel-function method, such as Davies’ (1965) derivation, is difficult to
apply to general configurations and as for the VLM the prediction of the leading
edge suction is not reliable. The latter, especially, varies with the number and
arrangement of the collocation points in the discretization as evidenced by Lan and
Lamar (1977). The DLM can be applied to general configurations (arbitrary shape),
but again the predicted unsteady leading-edge suction is not accurate (Lan (1979);
Kélman et al. (1970)). Lan (1974) developed the QVLM based on the VLM and first

dynamic ck of several pl in steady

applied it to predict all
flow. The results show that the QVLM was as easy to use as the VLM, but that

it could predict the loading i ly, especially the lift distribution on
the leading-edge and hence the leading-edge suction. Further, Lan (1979) extended
the steady QVLM to the unsteady case and showed that the method was easily
applied to general configurations such as low aspect ratio, swept wings with good
accuracy.

In the present work, the QVLM, both for the steady and unsteady cases, is

investigated and applied to simulate the propulsion of lunate planform foils (see

chapter 4 for details). These foils are used by fast-swimmi and
and could be used for oscillating propellers. Computations were made to verify that
the QVLM in its present form was in accordance with that developed by Lan. The
program was checked by the calculation of the lift distribution of a circular wing
in pure pitching motion, It was then used to predict the propulsive efficiency and
thrust coefficient of the Al and B2 wings defined in Chopra and Kambe’s study

(1977) and these results were compared with those found by Chopra and Kambe




(1977). Then the method was applied to compute the propulsion of three species of
cetaceans’ flukes in terms of their propulsive efficiency and thrust coefficient with
respect to changes in pitching axis positions and phase angle values (pitch leading

heave).



Chapter 2

Literature Survey

2.1 Unsteady Two-dimensional Aerofoil Propul-
sion

By the 1920s, the study of two dimensional wing theory was well developed. How-
ever, the variable motion of an acrofoil existed in practical applications; in unsteady

lation and dy i istics of a moving foil change from

flow the ci

instant to instant. In predicting the aerodynamics of a wing in unsteady motion,

d taialesad

ics needed to be

the theory of unsteady

The initiation of unsteady thin wing theory may be traced back as far as the
1920s. The pioneers in this field include von Kérman and Burgers (1935), Theodorsen
(1935), von Karman and Sears (1938), Bisplinchoff et al.(1955)). Initially, the prob-
lem of an aerofoil in non-uniform motion arose in practical situations such as wing
flutter and flying in gusts. In determining the boundary condition for an unsteady
aerofoil, the downwash velocity w can be derived from the Navier-Stokes equations

with constant dessity p in an ideal flow after neglecting the nonlinear terms (Bis-



plinghoff et al. (1953)), as
d= 3z
at Vo e (2.1

w.

Applying Kutta’s condition, i.e. finite, continuous velocity and pressure at the
trailing edge, Eq. 2.1 can be used to solve Laplace’s equation of the local disturbance

velocity potential strength on the wing surface
v =0, (2:2)

to obtain the relation between

and circulation. The conditions for the Fq.
2.2 are based on small-disturbance theoty. @' is defined as the disturbance velocity
potential; w,,w, and w, are the disturbance velocities in the three coordinates.

The aerodynamical forces can be found by solving Eq. 2.2. Theodorsen (1935)

solved the i jon for the two di ional case Iytically. Theod 's
method was based on Joukowski's confc | ion and Kutta’s hypothe-
sis. Since three di i unsteady oscillating foil ion is the objective of

the present study, of which a detailed formulation is given in Chapter 4, derivation
of Theodorsen’s theory, the solution to the two dimensional oscillating foil problem,
is not given in detail.

Following Theodorsen, Bisplinghoff et al. (1955) proposed a differeni method
to find the downwash w, in figure 2.1. They considered a chordwise rigid acrofoil
with a flap hinged at ¢ = be. In the motion, the acrofoil moved up and down
with an amplitude of (t)(heave) and rotated about an axis z = ba through an
angular amplitude a(t)(pitch); the flap part of the wing flapped with an angular
displacement §(¢) relative to the chordline of the foil. The positive directions were

as shown in figure 2.1. Camber effects were neglected because of the assumptions of



~/Q
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Figure 2.1: A Schemati ion of a 2-D Oscillating Foil with Flap
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a thin wing and linear-small amplitude oscillations. In the motion, the foil rotates
around its pitching axis and vibrates up-and-down at the same radian speed w. The
eguation governing the motion superposes these two motions, therefore the constant
initial angle of attack was also omitted. Let z(z,t) be the chordwise instantancous
small displacement which can be described as

z(z,t)={ —h — a(z — ba); for -b <& < be (2)

~h —afa — ba) - B(z — be); for be < £ < b.
Substituting the above equations into Eq. 2.1, w,(,¢) can be written as

o) = { :Z - Kz - Zg : :Z;;~ VB~ Bz ~ be); ;:: ;cbssfssnl,m 24
where the dot denotes the derivative with respect to time t. From the downwash
velocity w.(z, t), the lift and moment were found in a similar way to that used by
Theodorsen (1935).

Probably, the study of Garrick (1936) was the first published proposal for the
application of unsteady thin wing theory to oscillating propulsion, With the devel-

opment of computing technology and ical methods, ical modulling of

the oscillating wing problem has been possible since the early 1950s. Several papers
were published in this period (see the last section of this chapter). Bio-mechanical

studies on

pulsion were started in the 1960s, such as those
of Bainbrige (1958), Brett (1964), and Lighthill (1969). Wu (1971) proposed a 2-D
flexible plate propulsion at variable speed in an inviscid fluid. In his study, Fourier
synthesis was used to obtain linear effects such as pressure, iiit and moment, and

therefore of the thrust, kinetic energy and input power. The Fourier synthesis can



be presented by two functions:
g(z,t) = Re[Y ga(z)e™"), (2.5)
n
S(z,t) = Re[ 3 fulz)e™), (2.6)
where Re denotes the real part, the time average of gf is
7= im & [ ote, 02,00t = SRS an(e) oo, 1) @0
= Jim = | o(=.0f(= FRAE n() (),
where Re denotes the real part and f, is the complex conjugate of f.

Lighthill (1969 and 1970) studied the hydromechanical « Ticiency of aquatic an-

imal propulsion. These studies were conducted by use of 2-D analysis. Again,

Lighthill (1970) analysed the swimmis Ision of the i mode of fish

or lunate-tail prop

In iform swimming most of the animal’s
locomotion is created by its tail rather than its body; most of these oscillating tails
are lunate-shaped. In Lighthill's (1970) 2-D formulation, the propulsive efficiency
and thrust coefficient of an oscillating foil with infinite span was computed for dif-
ferent pitching axis positions; this led to the conclusion that the pitching axis of an
oscillating foil should be set near to the trailing-edge for both the best thrust and
clfficiency considerations.

lats Isi

Some ical methods on were published in the 1970s,

including those of Chopra (1974), Chopra and Kambe (1977), and Lan (1979). The

cfficiency and thrust jon for an actual swimming animal’s tail was de-

scribed by Bose and Lien (1989). They measured the fluke’s geometry of an imma-
ture fin whale, proposed a finite-span correction based on the results from Chopra
and Kambe's (1977) calculations, and then used the correction method to find the

propulsive efficiency and thrust coefficient of the flukes of the fin whale.
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Practically, the use of two dimensional unsteady theory in predicting the propul-
sion of a 3-D oscillating foil with low aspect ratio is limited to a qualitative analysis.
In order to predict realistic thrust coefficient and propulsive efficiency of a low as-
pect ratio, irregular shaped hydrofoil with perhaps large sweep angle, the use of 3-D

unsteady thin wing theory is necessary.

2.2 Steady 3-D Thin Wing Aerodynamics

Flow past a finite span aerofoil is different from that of an infinite span wing. In
the establishment of 3-D thin wing theory, a vortex system is assumed to model the
thin wing. This is called the Lanchester-Prandt] theory and it was cstablished by

Lanchester and sut ly developed by Prandtl in the carly part of this century

(see von Karméan and Burgers (1935) and Houghton and Brock (1960)). This theory
is perhaps a milestone in the history of aeronautical science. The establishment
of the Lanchester-Prandtl vortex theory made the prediction of the acrodynamic
characteristics of a wing of arbitrary planform possible.

In Lanchester’s vortex theory, a system of vortices replaces the lifting foil. The
vortex system is divided into three parts: the bound vortex (parallel to the span
direction and bound to the wing), the starting vortex (left at the position of the
wing when the motion started), and the trailing vortices (these trail behind the foil
and connect the bound vortex to the starting vortex, in steady flow they effectively
trail downstream to infinity). The bound vortex and trailing vortex systems form a
complete vortex ring called a horseshoe vortex (shown in figure 2.2 a).

For a finite span wing, the magnitude of circulation at midspan is maximum and

at the tips is zero. Hence the spanwise circulation distribution for a 3-D wing is
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Figure 2.2: a. The h hoe voriex jon. b. Vortex di ion intu vortex
sheet
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not constant. Therefore, between any sections, the circulation I'; and 14y, have
a difference of strength of I'; — Tiyy. As the circulation changes along the span, a
trailing vortex sheet is formed and extends downstream from the foil. Mcanwhile,
the sheet will roll up at a certain distance downstream. A trailing vortex sheet and
its distortion of a steady foil is shown in figure 2.2 b.

A law that relates the intensity of magnetic field gencrated by a conductor
through which an electric current flows, was introduced to aerodynamics to de-
termine the downwash due to a vortex filament. The law is called the Biot-Savart
law. From figure 2.3, it is noted that the induced velocity at point P due to the

vortex element of length §s and with strength T is

r . ;
fo= ppsin06s, (2.8)

where §v is normal to the plane APB. Taking the limits of the integration as

oy = ~(5-a)

b5 = (%—0), (2.9)

the induced velocity  at P by vortex AB becomes
(-8 T
& 1= /<g_, T cos(@)de

L, =
—(sin{ = —
et

= erleos(e) + cos(B)], @10)

B)+ sin(Z - a)]

as described by Houghton and Brock (1960).
Solutions to the 3-D steady aerodynamics of an aerofoil vary with the vortex

filament arrangement chosen to represent the wing. A rectangular wing replaced by
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3

Figure 2.3: Induced velocity by an element vortex filament, Biot-Savart law
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Figure 2.4: Lifting line approach of a vortex system replaces a rectangular wing
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lifting lines is shown in figure 2.4 after von Kérmén and Burgers (1935). The lifting
line theory assumes that the dimensions of chord ¢ are small compared with the
span B = 2b. Therefore, in calculation, one or a number of vortex lines will replace

the airfoil. The downwash w; at (z,y) by all vortices on the wing is defined as

1+ ﬂt
Al ap+ | 2"(1 5)"‘]' (@11)

where I is the circulation or the force per unit area, because the pressure difference
Ap on the wing surface per unit area has a relation of Ap = 2I'* (see Lan 1974). I, is
the spanwise sectional [ift, and £ and 5 are dummy variables of z and y respectively.

A lifting surface arrangement is shown in figure 2.5 also after von Kdrmédn and
Burgers (1935). Figure 2.5 shows one of a number of lifting surfaces that replace
the foil planform. For small aspect ratio wings, the downwash velocity at any point

(,) on the wing is contributed by the points in the boxes on the wing in the form

L W =r—2 -9z -’ +(y~n)? dedn
i o e /F r—{(r 4::”.;(,{_’; = y—n)? 0 (212)

where " is also the force per unit span; z is the doublet position in z direction;
= aT+ y? + 22, the distance of the doublet to the origin; (£, 7), doublet location;
and p and V,, are the fluid density and undisturbed velocity respectively.

The analytical solutions for the equations based on lifting line theory and lifting
surface theory are limited to special cases such as elliptical and circular wings, and
these exact solution only available in the case that an orthorganal coordinate system
was placed on a foil ( Kiessener (1953), Harry, et al. (1957)). For arbitraty wing
configurations, the aerodynamic loads have to be obtained by numerical methods.

In 1925, Blenk (von Kirman and Burgers (1935)) proposed a theory based on

lifting surface theory which was applied to a rectangular foil of respect ratio 6
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Figure 2.5: An irregular shaped planform replaced by lifting surfaces
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and the system of equations was solved analytically. His later studies also concen-
trated on parallelogram wings and swept wings, but the values were not reliable.
Falkner (1943) summarized Prandtl, Betz, Munk and others (1918-1919) spanwise
continuous loading methods, and in the aerodynamic computation, he chose the
one-quarter chord point as the loading point and three-quarter chord point as the
downwash point. This was called the 1/4 — 3/4 rule, a concept which was put for-
ward by Pistolesi in 1937 (Deyong (1976)). Falkner (1943) was probably the first to
use the term vortex-lattice theory to describe a method to treat wings of arbitrary

shapes. Later in 1947 (Deyong (1976)), he conducted an intensive study on the

tex-lattice method to d ine its y; its use in the of delta
wings; the loading of pointed tips and determination of the slope of the loading
curves.

The vortex-lattice-method (VLM) has been used extensively for aerodynamic

ions. A variety of hers have improved the VLM in terms of lattice

wing ies and better ical modeling of the flow. There

are also some new methods developed based on the VLM, such as the doublet-lattice-
method (DLM) and the quasi-vortex-lattice-method (QVLM) as mentioned in the

introduction in the foregoing chapter.

2.3 Unsteady 3-D Lifting Surface and Propul-
sion Problems

The study of wings with finite span in unsteady motion was started in the late 1930s.
A variety of proposals were put forward in this period. The studies of Jones (1940)

were bascd on an ‘operational’ method to predict the lift of a 3-D wing undergoing
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a change in angle of attack; a sharp edged gust and a continuous oscillation. The
operational method provides correction factors for the aerodynamic inertia and the
angle of attack of an aerofoil with infinite span in order to obtain the results for a
finite span aerofoil.

A study by Dengler and Goland (1952) obtained the lift distribution for an os-
cillating rectangular wing with aspect ratio 5. However, this lift distribution was
found for only pure pitching or pure heaving motions, instead of for the combined
motion. Hence it is not applicable to propulsion problems. Morcover, the lifting
line techniques used in their method are limited to large aspect ratio acrofoils. An
analytically based method by Kiiessner (1953) attempted to solve lifting problems
involving arbitrary geometry and downwash distribution. The lifting surface in this
method had to be defined as a number of orthogonal surfaces on orthogonal coordi-
nates. This definition is not good for a tapered wing, also the orthogonal coordinates
made the computation complicated. To obtain a solution by this method, a numeri-
cal method had to be applied. In this study, there was no discussion of the accuracy
of the method nor were there any comparisons with previous results.

Meanwhile, a numerical method to solve the aerodynamical problems of oscil-
lating low aspect ratio wings was proposed by Lawrence and Gerber (1952). The

studied ies were and tri wings. Based on lifting surface

theory, the integral equation of d was i d as a single-variabls

integral equation. The results were believed reliable, but these results were good
only when the trailing-edge of the wings were straight and the aspect ratios less
than 4. A similar method was also developed by Merbt and Landahl (1953). In

this method, the wings were defined to have very low aspect ratios, 0.5 or 1.0. The
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z-derivatives (referred to the chordwise direction) were neglected in the linearized
potential equation which thus led to the 2-D wave equation. The flow was assumed
2-D in cross-sections perpendicular to the free stream direction. The solution in-
volved the use of Mathieu functions. The method is only suitable for application to
very low aspect ratio wings. A summary of many of these methods has been given
by Bisplinghoff et al.(1955).

Falkner's (1943) concept of lifting-surface theory, the initial form of the VLM,
and Multhopp’s (1950) kernel function method made great contributions to compu-
tational aerodynamics. Many authors extended Multhopp's kernel function method
to the unsteady case. Among others, Richardson (1955) derived an integral equation
in terms of the velocity potential (and hence the downwash) and lift by using the
doublet method. One part of this integral equation was called the unsteady ker-
nel K. In solving the equation, both the loading function (under the integral sign)
and the downwash were expressed as a finite series as Multhopp had done before.
Richardson's method was able to deal with wings of any planform in both unsteady
subsonic and supersonic cases.

A mathematical study of the kernel function was made by Watkins, et al. (1955).
The scheme they applied to treat yo = y — n = 0 (where 7 is the doublet position
in the y direction and y is the downwash position in the y direction), in which
situation the kernel function becomes singular, was to utilize polar coordinates and
the expansion of infinite series. In this method, the forms of the kernel function under
the integral sign were given in the sonic case, steady case and incompressible case
respectively. Also the first four terms of an infinite series were chosen to represent the

kernel function K(o, o) and it was believed that the error of the results was within



two percent. Runyan and Woolston (1957), Watkins, et al.(1959), Davies (1963)
also studied the use of the kernel function. Most of these authors used and revised
Multhopp’s kernel function theory. In Multhopp's derivation of the solution to the
kernel function, he compromised the accuracy and the labour of the calculation,
because at that time all the calculations had to be done by hand. Therefore the
results were not good in accuracy. In the past two decades, equipped with higher
speed computers, many authors have revised Multhopp's pro +dure to search for
highly accurate solutions.

A formulation of the kernel function in the non-planar case was done bv Yates
(1966), and then by Landahl (1966). Landahl’s derivation gave a simple form.
However, the kernel function could not be expressed in terms of known functions
and it needed to be evaluated numerically.

The solution to the kernel function is one of the most difficult problems in 3-D
oscillating lifting surface theory. The treatments for its solution are divided into
two parts: first, utilizing mathematical manipulation to separate the integral and
expanding the downwash function and loading function into series; second, scarching
for an optimized I surfz to reduce the singularities. The authors

involved in this study include Watkins, et al.(1955), Richardson (1955), Hsu (1957),

Davies (1963), Ashley (1968), and Albano and Rodden (1969).

There are many numerical methods available to solve unsteady 3-D lifting surface
problems. Perhaps the VLM is the most popular. The collocation of the downwash
and loading points are chosen by the 1/4 — 3/4 rule. This chordwise rule is applied
to each panel on the chord of a wing. In the early 1950s, the accuracy of the results

from the VLM was doubtful because of the capacity of computers. In the 1970s, the
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Chopra (1976) extended the 2-D theory of lunate tail propulsion to motions of arbi-
trary and finite amplitude. Unsteady 3-D wing theory utilized in animal propulsion
was first done by Chopra and Kambe (1977). They used Davies' (1963) computer
program, the model which was similar to Multhopp's kernel method of the lifting
surface theory. Chopra's and Kambe’s (1977) results for propulsive efficiency tended
to be unrealistically high compared with those for the 2-D case and the thrust coef-
ficient disagreed with that found by Lan (1979) for a rectangular wing in the high
reduced frequency range. As there are neither experimental results nor analytical
solutions available for propulsive efficiency and thrust coefficient, it is difficult to
judge which method is more accurate.

An asymptotic theory based on lifting line theory was developed by Cheng and
Murillo (1984). The sectional lift distribution was compared with that from Albano
and Rodden’s DLM. The agreement was good. However, no comparisons were made
between the propulsive efficiency and thrust coefficient from the two mecthods.

Some i on oscillating foil Ision were done by Lai et 2l (1989).

Their study was concerned with the simulation of a foil propeller driven by a flexible
bar. The structural dynamics of the flexible bar were also studied.

In order to verify numerical simulatious, the theory of unsteady 3-D oscillating

needs further devel in both ical i and exper-

imental practice. The theoretical study in this field has continued over a whole
century, but some problems such as the accurate intcgration of the kernel function,
still remain. A reliable, accurate, simple, CPU economical, numerical model is still

required.
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application of this r.ethod reached its peak. The high demand for accurate results
and realistic loading distributions, meant that the VLM received much improvement

and

both llocati These imp: included the math-
emalical interpretation of the kernel function and numerous lattice arrangement
suggestions .

A doublet-lattice method (DLM) presented by Albano and Rodden (1969) im-
proved the loading distribution compared with the VLM. However, the DLM cannot
predict the leading edge suction accurately. In Albano’s and Rodden’s study, the
integration of f5° mdl was expressed by a four-term series, hence the acc.racy
is not as good as the expression of Jordan’s (1976).

A quasi continuous method or quasi-vortex-lattice method developed by Lan

(1974) idered all singularities such as the sqt t and Cauchy si

in the i jon. These singularities were not idered in the develop: of

the VLM. Lan (1979) extended the QVLM to unsteady flow and utilized the QVLM

1o study animal carangiform propulsion problems. The integration involved in the

d :

kernel were as parabolic equations and then i
analytically.

‘The use of unsteady aerofoil theory for the oscillating propulsion problem was
initiated around 1970. The study was lead by Lighthill (1969, 1970), Wu (1971) etc.
Most of Lighthill’s studies were two dimensional analyses as mentioned in the sec-
ond section of this chapter. Chopra (1974) used a correction method based on two
dimensional unsteady lifting line theory and computed a solution for an oscillating
foil with aspect ratio 4 and 6. The efficiency trends of these wings with changing

pitching axis position agreed qualitatively with Lighthill's (1970) 2-D study. Again,




Chapter 3

Numerical Solutions for Steady
Three Dimensional Thin Wing
Problems

3.1 Background to the Methods

In about a century’s development of aerodynamical calculations, large amounts of

research wotk have been done on the of theory and ical model-
ing. The theory to solve aerodynamical force problems can be mainly divided into
lifting line theory and lifting surface theory. Lifting line theory is suitable for the
calculation of large aspect ratio planforms, over an aspect ratio of about 6. One
advantage of lifting line theory is the reduced amount of calculation labour needed.
However, at the present time, the amount of computing labour is no longer the
main problem; accuracy of the results after long numerical calculations is required.

Therefore, many ions for aerodynamical ch istics employ lifting sur-

face theory. The vortex-lattice method (VLM) is one of the most popular methods
in the application of lifting sutface theory. In the VLM method, the liting surface

is divided into a number of panels, or vortex lattices. One arrangement of a vortex

25
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lattice is shown in figure 3.1.
In the subsonic VLM method, the loading point is set at the quarter-chord of each
panel and the downwash point or control point is set at the three-quarter chord point

of each panel. This quarter-chord and three-quarter-chord is known

as ‘quarter-and-three-quarter’ rule. This rule can be proved and extended from the
subsonic case to the supersonic case (Richardson (1955)). At the control point, the
downwash induced by the vortices includes both the self-induced downwash from
the vortex in the element corresponding to the control point and that from all other
vortices on the lifting surface, as well as their trailing vortices. These downwash's
are located in their panels at the quarter-chord positions. Both density of lift and
downwash values are constant at this point (may be a complex constant in the
unsteady case). The expressions for the downwash form a linear system of cquations
in terms of the distribution of circulation. The unknown density of nondimensional
circulation 7(z,y) at each panel is obtained by solving the linear system of cquations
simultaneously. The advantages of the VLM are: it gives an accurate calculation of
overall aerodynamic characteristics; it can be applied to arbitrary planforms; and it
is easy to use. However, the VLM is not accurate in calculating the distribution of lift.
and the leading-edge suction (Lan (1974)). The accurate prediction of leading-cdge
suction is important for the calculation of propulsive efficiency and thrust coefficient,

for an oscillating wing,

3.2 The QVLM for Lifting Surface Theory

As mentioned in foregoing chapters, the development of the quasi-vortex-lattice

method (QVLM) was based on the VLM. Lan (1974) reviewed the VLM method
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Figure 3.1: A vortex lattice arrangement of the vortex-lattice method, according to
the "one-quarter and three-quarter rule”. s, loading point; o, control point.
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Figure 3.2: Lay out of the locations of the circulation and downwash for a two

dimensional thin wing
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and improved the accuracy of the results from the VLM by solving the singularitics

problem in the ions for the i ion of ds |

Consider the induced velocity w(z) at a point z on a two dimensional wing
(Glauert (1926),p.88) in figure 3.2, from the circulation at a density of (') located

at 7',
1 y(a)de’

v = ey

(3.1)
where the integration limits 0 and 1 denote the leading edge and trailing edge re-
spectively. From Lan (1974, equation (4)), when w(z) = 1.0,

1(z) =21 - x)bat. (3.2)

When z = 2, a Cauchy singularity appears in the d i of the int 1 at

2 =1and ¢ =0 (at the trailing edge and leading edge), a squarc-root singularity
occurs at z = 0 in the numerator of the integrand. In the VLM method, the integral

is described by (Lan 1974, equations (2) and (3))
(3.3)

where

i=1,2,,NC;

§=12000, NS;

where NC, NS are the number of chordwise and spanwise control points respec-
tively. Tn Eq. 33, aij & =22, the matrix of calculation coefficients. The i and

J stand for the ith control point and the jth loading point, or vortex location re-

spectively. As z; — z; # 0 and @ # 0 on any panel on the wing, Cauchy and
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square-root singularities do not appear in the approximate integration. The effects
of the singularities on the result of the integration are neglected.

In order to evaluate the integral accurately, Lan (1974) considered both singu-
larities in the QVLM. In the QVLM, the lifting surface is divided into a number of

control points and d h points ding to a semi-circk The
from the finate (0 < z < 1) to a f-coordinate (0 < 0 < 7) is

done by the relation
z = (1 - cosf)/2. (3.4)
"T'herefore, Eq. 3.1 can be writlen as

w(t)= — L [F10)sin0 0

27 Jo cosf —cosf’ @5)

In order to eliminate both singularities, in Lan’s (1974) derivation, a function

9(60) = 7(8)sin0 (3.6)
was i duced. The sqr t singularity is then elimi d because of the factor
of sind. When 0’ =0,

(0) df’
/ cosh—cosl S

Therefore, the Cauchysingulmty is also eliminated. Lan did not give full derivations
of many of his equations. For completeness and to help readers and future users,

are given in dices; the derivation of Eq. 3.7 is given in Appendix

A.
By applying the mid-point trapezoidal rule (see full derivations in Appendix B),

Eq. 3.5 can be written as

w(6) = _%/ Mag

cos — cos '



A0 X gl(2k—1)A0'/2] - 9(6)
T2 £ cos0 — cos|(2k — 1)A072]
=1 ﬁ’: 9((2k —1).-/2N)
T 3N & [cosf — cos|(2k — )x/(2N)]
_ 9(0)
cos 0 — cos[(2k — 1)7/(2N)]

which is similar to Eq. (10) in Lan (1974). For computational convenience, Lan

(38)

eliminated the last term of Eq. 3.8 by employing Chebychev polynomials (the full
derivation is given in Appendix C). From the results of Appendix C , the variables
Ae and ); in the Chebychev polynomials are found to be

A = cos Oy = cos[(2k — 1)x/(2N)], K = 1,2,..N (3.9)
and

Ai=cosh; =

[in/@N)), K = 1,2,..N = 1. (3.10)

Eq. 3.9 and 3.10 define the positions of the control points and loading points. The
arrangement of downwash and loading point  of the QVLM is shown in figure 3.3.
As the unknown function 7(0), the density of circulation of cach vortex lattice,

has a sq t singularity at 0 = 0,2 C is st where

7(0) =C(1 -2}tz
instead of

7(0) =21 —z)}z~}
in the exact solution, and then take the limit

m(0) = Jim(0)sin0

limC(1~ oot 2zb(1 - 2)b

= 2C. (3.11)
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where 2z1/%(1 - z)"/2 is equivalent to sin 0 under the -coordinate (see equation 3.4).

point. In two di ional thin wing

‘The parameter C is defined at the si
theory, the velocily in the z direction is u(z) = ¥(z)/2 on the surface of the wing
(Newman (1977), p.180). It follows that the leading edge suction parameter C, is
found by

G, = lim u(z)zt = lim H(z)zi/2

limC(1- izt p=c). (3.12)

"I'herefore, when C'is known, C, is known. As

N

' 1 B
9 My pmpee gy oy M ): T A.
- ( )
= lim T:(A) =N, @13
as a result, Bq. 38 can be weilten 83
R A

where NC is the number of chrodwise control point. In the two dimensional case, the
numerical results from the QVLM are the same as the exact solution (Lan (1974)).

As the difference between the QVLM and the VLM is only in the weighting
scheme in the integration of Eq. 3.1 and the vortex strip and control point arrange-
ment, Lan extended it to the three dimensional case in a similar manner. Consider
a vortex segment as shown in figure 3.4. According to the Biot-Savart law, the influ-
ence of a free vortex line with strength I' parallel to the direction of the undisturbed

velocity (or trailing vortex) in linearized compressible flow was given by Ward (1955)




Figure 3.3: The collocation arrangement of the QVLM. s, loading point; o, control
point.

7(s)ds
—\ (R.2.22)

(xlyl.2l) (x', y' 2')

(xy.2)

Figure 3.4: Schematic diagram of a vortex segment
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in the form

W) ﬂ’[‘/(m - R)x dl (3.15)

In the three dimensional case, in which T is not constant along the span, the above

cequation becomes
s _ B (B—R)yxdl
Ry R e @.16)

‘The influence of a bound vortex can be defined by Eq. 3.16 after some mathematical
manipulations (see Lan (1974)). From results for the induced velocity from the

bound and trailing vortices (see Appendix D), the induced downwash at a point

Plyn for a steady 3-D tiin wing in ible flow can then be d as
dz W
(%) -om -
(=2l 182 ) )
“Uiea-e+8 (a1 (ean==0)van-ui)~( Yonw—si)l

(Zan =21 ) (k=i ) 407 (3m = v10) (Yo =)
[E1k=2 482 (rr =1 [zam20) (k=)= (e2w=10) (n—3i)]

e s |
el ) T e
. i PRl

(1= s} (0 sin(0h)

(3.17)

When ! = j,m = k, the above equation is a linear system of (j x k) x (j x k)th
order for 7 x k unknown ;, the distribution of circulation at each loading point.
The suction parameter C, in the three dimensional case can be obtained in a
similar way as in the two dimensional case described above. Once 7(z,y)is known
at each point, the lift and moment of a three dimensional wing are obtained by

chordwise numerical integration for the sectional loading and then by the spanwise
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numerical integration for total loading. In the present investigation, a program
incorporating the QVLM was written and its results were verified against Lan’s
(1974) for, firstly, an infinite span aerofoil with 30% flap and 30° flap deflection;
secondly, a rectangular wing with aspect ratio 2 at Mach number Mo, = 0; and
thirdly, a Warren 12 planform with aspect ratio 2(2)¥ at My = 0. All results in the
present investigation were the same as Lan’s (1974).

As can be seen in the next chapter, the computer program incorporating the
QVLM in the steady case is important in the extension from the the steady case
to the unsteady case. The program for the unsteady case which was framed by Eq.
4,10 consists of a steady part and an unsteady part; when the oscillating frequency
w is zero, the program reduces to the steady case of computation. The theoretical

analysis of the forces on the unsteady lifting-surface is discussed in Chapter 4.



Chapter 4

Numerical Method for a Three
Dimensional Lifting Surface in
Harmonic Motion

"The method introduced in this chapter is the quasi-vortex-lattice method (QVLM);
it is applied to the calculation of aerodynamic forces on an unsteady lifting-surface.
From the wing flow tangency condition, the downwash of the lifting-su: face is ob-
tained. From the geometry conditions and flow .onditions of the lifting surface, the
non-dimensional velocity potential on a doublet is determined by the QVLM formu-
lation. The downwash at one point induced by all oscillating vortices on the lifting
surface can be obtained by differentiating the doublet velocity potential. There-
fore, the downwash can be canceled and a system of linear equations is formed. By
solving the system of linear equations simultaneously, the loading distribution of
the unsteady lifting surface is obtained. Then the loading distribution is used to
find the aerodynamic forces such as pitching moment coefficient, lift coefficient and

induced drag.
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4.1 Boundary Condition

For a three dimensional wing without a flap, the positive z axis is taken as lying
along the root chord and points downstream, and the positive y axis points to the
right and lies on the pitching axis as is shown in figure 4.1, When the foil heaves
with a vertical displacement h(y, t) and pitches with an angular displacement a(y, ¢)
about the position z = 4, the combined vertical displacement z(z, y, t) at any point

on the planform without flapping can be derived from Eq. 2.3

_ | =h—a(z - ba); for =b <z < be
Hzt)= { b — oz — ba) — Bz — be); forbeS £ < b, L]
which is

2{z,y,t) = ~h(y,t) — &y, t)(z — za). (4.2)

Differentiating Eq. 4.1 with respect to ¢, the non-dimensional downwash is given by

B(z,y,t) = 1Dz 19z 0z
b TN TR VAN TR
g 1: _ ’
SR GRS (1.3)

which is Eq. 2.2 in Lan (1979). As the foil has a harmonic time variation of

oscillation, the downwash can be written in another form
@(z,y,t) = Relu(z, y)e™] (1.4)

where Re denotes the real part, and w denotes the oscillating frequency. Assuming

% = Re[we*], @ = Re[ae™!], and h = Re[he!], the downwash can be shown (see

Eq. E.6 in Appendix E) as

w(z,y) = —if,w—h(v) ~aly) - (4.5)




7

Figure 4.1: Coordinate system for an oscillating foil
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A reduced frequency, &, is introduced where
wB,
k=
Vo (1.6)
where B, is a reference length referred to the chord length and, Vi, is the freestream
velocity. Substituting Eq. 4.5 into Eq. 44 and considering a phase angle ® (pitch

leading heave), it follows that

wle,y) = —igho) — a0 — i Ne — ), (07)

which is Eq. 2.3 in Lan (1979). When the wing is rigid, k, and a are constant along

the span. The boundary condition of an oscillating surface is obtained from Eq. 4.7.
4.2 Mathematical Model of the Kernel Function

Hatioo b ol b

When a lifting surface is osci ina ible subsonic flow at

Mach number M, the non-dimensional velocity potential can be determined as in

Lan (1979) after Richardson (1955) in the form

o) = = Ac,(c,v){(ri, + ol Ve
. ivim:—':e“""’"’/v” /.. ‘:"[1 - “—Jr';-,ﬁ]rwﬂ/‘@dx} dedy, (4.8)
where
1. s, wing area,

2. A, intermediate variable,

3. z=a=¢,
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4oyo=y-n

bozp=z-(

6. (£,1,¢) are the coordinates of an element doublet,
7.rt= (g + ),

8. R =af+ (1 - ML)+ =3),

9. wry = (—zo+ MR)/(1 — M2), and

10. AC, is the dimensionless pressure difference across the wing surface, which

will be the unknown values in the system of linear equations.

When the flow is incompressible, M = 0. The relation between downwash and Eq.
1.8 can be identified after integration and then differentiation to obtain w(z, y) = 4.
In Lan's (1979) discretization, the lift distribution is assumed stepwise constant
along span (in the 7 direction). Therefore, the integration of Eq. 4.8 is first done in
the spanwise direction. Then the relation between downwash and 4 can be found
by differentiation of Eq. 4.8 with respect to z. Finally, the equation is integrated by
the mid-point trapezoidal rule in the z direction. Some manipulations are necessary
in the integration of
[+ i, 9
where L is the vertex strip on which the lift is distributed stepwise. A complete
solution for Eq. 4.9 is given in Appendix E. By using the results from Appendix E,

the integrand, without AC, of Eq. 4.8 which is denoted @, can be expressed as

b = O+,
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It is noted that the first term @, in Eq. 4.10 is a steady term and @ is an unsteady
term. In the steady case, when w = 0, only the ®; term exists, and this will lead
to the solution in the steady case. After differentiating @, with respect Lo z, the
result is the same as the expression of the downwash derived from the Biot-Savart
law when mach number M, = 0 (see the result of Appendix D). For the unsteady

terms, differentiating these terms with respect to = (see Appendix F), leads to

0% _ w1 -y n-y_,
9z VoS (y2-y)+22° ( EET
= aman(”’ y)% — arctan(%= %—’j +Wot Wal, (A1)
where
=Ti(z,y,21,1), (4.12)
Iy = Ti(z,,22,92), (4.13)
and
P o P W O FERPR VI ’
n=[" [1 (r,urg)m] et Vo (1.14)

The last two terms W, and W in Eq. 4.11 contain singularities when y = 7 at
=0. Therefore, the integration of W; and W3 needs to be treated scparately.

Consider

" -y
W= [ ot “,h(yz w)dr, (4.15)
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where 2 from the result of Appendix G becomes

o _ 0ldn  910m

On G dy " Oz 0n
ne-n+z)Ve gy,

Al = 7

L w E2Y Uy
wmon o w
i e T

-z
~ v-l' (4.16)
‘There is no singularity term in Eq. 4.16. However, the integrand of Eq. 4.15 has
a singularity when y —» = 0 if z = 0. To deal with this problem, Lan (1979 and
1990) used a scheme the same as that of Albano and Rodden (1969): the non-
singular part 3£ was approximated by a quadratic function of , then Eq. 4.15 was
integrated analytically. The solution to W; was done in a similar way. Approximated
integrations of W, and Wj are described in Appendix H. Although the error of
the parabolic approximation is normally small (Albano and Rodden (1969)), the
curves al boundaries (7 = 0, and r = 1.0) have larger differences. In the present
study, parabolic functions is used in the approximation. For more accurate results,
appropriate higher order polynomials are required.

Another problem is the treatment of the integral
A -
/_" eSOty (@.17)

Albano and Rodden (1969) used the expression (Watkin et al. (1959))
A\ ” g 2901 ;
[Esoid 1.0—0.101¢™%92) —0,899¢ "% _0,09480933¢ 2% sin(xA), (4.18)

and Lan (1979) used a more accurate expression by Jordan (1976) as

A o ~cnd
ot 2‘ ane™o, (4.19)
b



an Cn n an Cn
.002907843 | 0.0625 | 6 | 0.5556069 | 2.0
0.002591528 | 0.125 |[ 7 0.748426 3.0
8

9

0.02667074 | 0.25 -0.7769790 [ 4.0
0.070971 0.5 0.07004561 | 8.0
0.347837 1.0 0 { -0.004557519 | 16.0

Table 4.1: The coefficient of Jordan approximation

where a, and ¢, are listed in table 4.1. However, both these expressions are only valid

when A > 0. Otherwise, the solution does not converge. This can be avoided by the

b ical iul

in the i ion (see Lan(1979)). This manipulation
was to change the integration limit u, form negative to positive, by utilizing the odel
and even function characteristics of the sine and cosine functions. These functions
were used to express exp {—iwAry/Vio }.

Once %2 is obtained, the spanwise sectional downwash can be identified as

= [ acuen G + St 1.20)

where 2% is the steady part of the integrand, ie. Eq. F.I. Eq. 4.20 can be

d by the mid-point idal rule; the coll ion points are positioned
in a similar way was in the steady theory (see Chapter 3). Once the lift coefficient
Cy at each point is obtained, the moment coefficicnt Cy, leading-edge suction C',
etc. can be obtained in a similar way as for a foil in steady flow. Applying Eq. 2.7
(see Appendix J), thrust coefficient and propulsive efficiency can be obtained.

Numerical interpretations of some terms in Eq. 4.8 in the program, are listed in
Appendix 1. The results of some terms were checked by using Macsyma, a package

for analytical math derivation.
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‘This method was assembled into a computer program written in FORTRAN.

‘The procedure is described in the next chapter.



Chapter 5

Computing Procedure

5.1 Introduction

For ional i the ions of the ial function terms

in Eq. 4.8 were interpreted by sine and cosine functions (see Appendix I). The
computing formulation in the program was based on the results in Appendix L. After
all initial values were input, matrices of all elementsin terms of the coefficients of the
pressure differcnces at each element on the lifting surface were obtained. ‘Then these
matrices were arranged into one matrix according to the locations of the clements.

The loading distribution was obtained after solving a system of linear equations

formed by the matrix. Meanwhile, the suction coefficient was obtained by consider-

ing only the elements of the first row (leading-edge) along the span. Pitching moment

coefficient was obtained from the loading distribution. The thrust coefficient and

propulsive efficiency were d ined last.

44
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5.2 Input Data of Initial Values

T'here are two kinds of initial values in the input procedure: the wing motions and
the geometric values of the planform. For the foil motion, the given values are
reduced frequency k, pitching axis z,, reference length B;, pitching amplitude o

and heaving amplitude h. From these, the velocity ratio

w _k
i (5.1)
the feathering parameter
0 = aVe/(hw), (5.2)

and the wing flow condition w(z,y,z) are found. The wing shape values are given
in terms of the number of stations from the wing offsets record. A; is used to
denote the number of the intervals of the interpolation points. The program is
designed Lo treat an asymmetric planform. For a symmetrical foil, input data is
required only for the left half span. The number of chordwise vortex strips N and
the number of spanwise vortex strips N, can be selected in accordance with the
demands of accuracy. Once the N, Vs, N; and wing shape curves are defined, these
values are sent to a subroutine GEOR. The locations of vortex strip points, the
downwash control points, sectional sweep angles, aspect ratio, foil area, and wing
curve properties (first and second derivatives of the curves) are obtained by the

interpolation of spline functions.
5.3 Matrix Computation

All the elements of matrix [22] are complex values. These elements are obtained

from Eq, 4.20 corresponding to the loading and control locations. For simplicity,
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a planar planform discretized as N, = 3, N, = 3 is given as an example (see figure
5.1). In this case, IJ = JJ = N, = 3, where 1] and JJ are the number of
the chordwise and spanwise control point respectively. The clement matrices are
defined by AA(I1,JJ, K1,KJ) and are shown in table 5.1,

In the calculation of the values in AA(IT,JJ, K1, KJ), the following programmed

complex functions were used:

DPHI a function that summarizes all functions, including both steady and un-

steady terms.
DPHI1 downwash induced by steady vortices, determined by Eq. F.1.
DPHI?2 downwash induced by unsteady vortices, determined by Eq. I.2.
T1E the integration of Ty, Eq. 1.4 or Eq. 1.13 depending on u; < 0.0 or uy > 0.0.
T2 the integration of T3, Eq. 1.7 or Eq. 1.18 depending on u; < 0.0 or u; > 0.0.
T3E the integration of Ty, Eq. 1.10 or Eq. [.23 depending on u; < 0.0 or u; > 0.0.
PW?2 the parabolic approximation of 81/dn , Eq. H.6.
W2 the integration of Wy, Eq. H.9.
W3 the integration of Wj, Eq. H.18.
G1 the parabolic approximation of the last two terms of 9//87dz, Eq. 11.13.
G2 ihe parabolic approximation of the first term of 82//dndz of Eq. H.12.

T11 numerical value of I = I(z,y,1,31) of Eq. 4.12
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b

Figure 5.1: Computational matrix from a rectangular wing. e, loading point; o,
control point.

i=1 I=1J7=2 TT=1jj=3
M I KI\KJ 1 1 IN|KNKJ T I
2 3 T L2 38 T 12 3
5 6 I s 5 6| I 45 6
8 9| m 7.8 9| m «38 9
=1 17=2JJ=2 T=2%j7=3
T [ KNKJ [ T I KNKJ [ I I
D) I 12 3 T 12 3
5 6| M 4+ 6 I 435 6
8 9| m 78 9| m 7 s 9

T=3,j;=1 17=3,JJ =2 1T=3,j;=3
M M KN\KJ I I M[KNKJ 1 I 10
2 * T 12 3 I 12 3
5 6 II 45 «| I 435 §
8 9| m 78 9| m 78 =

where *’ is self-induced element

Table 5.1: Matrices formed at each downwash point by all vortices on the wing



T12 numerical value of I = I(z, y, 22, y2) of Eq. 4.13

T31 numerical value of 81,/8z = Ta(x,y,z1,y1)

T32 numerical value of 81,/8z = Ty(z,y, 2, y2)

ATOX the numerical integration of the integral [{arctan(8)/8}dg of Eq. 11.20.

In the steady case, only DPHI1 is to be used in the program.
Summarizing the downwash contributed by all elemental vortex strips to each
vortex lattice, a linear system of equations with IDth or ICth order is formed by

summarizing the downwash from all vortex lattices as shown in Table 5.2. A lin-

TC\ID [T 11 1T IV_V_VI VIl VIl IX] _w(z.g)
T [» 2 3 4 5 6 7 8 9| wil)
m o[t s 3 45 6 7 8 9
1 1 2 = 4 5 6 7 8 ]

v [t 23 x5 6 7 8 9
v [L2 3 4«6 7 8 9
VI |12 3 4 5 %« 7 8 9

vit {12 3 4 5 6 * 8 9
Vil |12 3 4 5 6 7 * 9
X {12 8 4 5 6 7 8 =«
where IC = I1+(JJ = 1) # N, ID = KI + (K.

and A(IC, ID) = AA(IL,JJ, K1, KJ), AUC, N, + No) = w(i, J)

Table 5.2: Loading Matrix Formulation

ear system solver will solve the complex matrix directly and give the circulation
distribution on the lifting surface.

By solving the linear system of complex equations, the complex loading is known.

By using the resulting lift di sectional leading-edge suction ficient Cu
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and mean total thrust coefficient C,, pitching moment coefficient C\n (complex)
about the y axis (y = 0 being set to be pitching axis for computational conve-
nience), and finally the thrust coefficient are obtained. The equations to calculate
the leading-edge suction coefficient, total mean thrust coefficient, and propulsive
efficiency are given in Appendix J.

A computer program of the propulsion problem for a 3-D lifting surface in har-
onical oscillation (input data are for a rectangular wing) is given in Appendix

K.



Chapter 6

Resuits and Discussion

6.1 Verification of the Computer Program

Prior to calculations of practical wing planforms, the computer program was checked
in the following cases: the chordwise pressure distribution compared with the pub-
lished results of a special planform, a circular wing from both numerical and ana-
Iytical solutions; propulsive efficiency and thrust coefficient of a rectangular wing of
aspect ratio 8; propulsive efficiency and thrust coefficient of a swept leading-edge,
lunate-tail wing of aspect ratio 8 (B2 wing). These Lhree planforms are shown in
figure 6.1.

The pressure distribution of the circular wing from this program was compared
with that from the numerical solution by Lan (1979) and an analytical solution
by van Spiegle (Lan(1979)). The comparison of pressure distribution was at mid-
semispan of the circular wing (see figure 6.2). The circular wing was assumed to be
in pure pitching motion at a reduced frequency k = 0.8; the reference length B, used
is the half chord at mid-semispan. Curve C; denotes the real part and C; denotes

the imaginary part of the pressure distribution function. The number of spanwise

50
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Figure 6.1: Planforms used in the computation for the computer program verifica-
tion. Ciccular planform, rectangular foil, and lunate-tail wing (B2 wing).
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control points on the half wing was NS = 7, and the number of chordwise control
points was NC = 8. When the wing was in pure pitching motion, the amplitude of
heave h was zero, the feathering parameter § = aVe,/wh = co. Figure 6.2 shows
that the QVLM implemented in the present program has good agreement with the
analytical solution and the results of Lan (1979).

Analytical solutions to oscillating surfaces are only possible for the calculation of
circular and elliptic planforms (Kiiessner (1953), Harry et al. (1957 Predictions
of thrust coefficient and propulsive efficiency, versus reduced frequency, k, for a
rectangular wing of aspect ratio 8 are shown in figures 6.3 and 6.4. A comparison
is shown between the present results and the method of Chopra and Kambe (1977).
Results are presented for a feathering parameter § = Vioa,/(wh) of 0.0, 0.4, and
0.8; reference length B, = ¢, (the chord length); phase angle (pitch leading heave)
@y, = /2 and for a pitching axis at the quarter chord position. Zero feathering
parameter means that the angular amplitude of the pitch a, is zero. In this case,
the wing is in pure heave motion. The computation mesh was takenas NC x N§ =
10 x 17. The comparison of the thrust coefficient C; and propulsive efficiency 1 in
figures 6.3 and 6.4 show good agrcement between the methods, although there are
dilferences between the thrust coefficient predictions at high reduced frequency and
feathering parameter.

Figures 6.5 and 6.6 show the results for the B2 wing by using the present method
with two approaches: firstly, by only including the effect of steady wake vorticity in
the computation of the leading-edge suction; and secondly, by including both steady
and unsteady compenents of the wake vorticity in the computation of leading edge

suction. In the first approach, good agreement can be seen between the wethods for
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propulsive efficiency when 0 < 0.4. For thrust coceflicient. discrepancies occur when

k is large (k > 1.5). When the reduced frequency & and the feathering parameter

0 are both large, agreement between results of efficiency is loss good. Tn reality, in
this situation, the angular amplitude of pitching may also be larges for example,
when k = 15,0 = 0.8,h/B, = 1,0 = 0- kh/B, = 1.2rad = 68.7°. Small amplitude
theory becomes inapplicable for high values of 4/B,. In the second approach, when

the unsteady wake terms are included, efficiency and thrust coefficients of a pL

wing are reduced from those found previously. These unsteady components were
included in all the calculations which follow for the three cetacean flikes as it was

felt that these terms should be included in a rigorous solution.

6.2 Discussion of the QVLM Method

From the foregoing section, the QVLM computer program was proved to be ac-
curate and reliable in predicting the loading distribution for a circular planform
configuration. Predictions of the leading-edge suction, the mean total thrust coel-
ficient and the propulsive efficiency, for a rectawgular wing, were also shown Lo he
dependable, including either the unsteady terms or steady terms in the wake, based
on the comparisons with the results of Lan (1979) and Chopra and Kambe (1977).
However, as there are no comparable exact solutions or experimental data available,

the reason for the diffe d with the predictions from other methods

for swept wings, especially, for the curved trailing edge wings, cannot be explained.

In the calculation of the leading-edge suction it is belicved that all un-
steady wake terms should be taken into account, as Lan (1979) did, because the

computed upwash at each control point along the leading-cdge has contributions
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from all vortices on the lifting surface including self-induced vortices.

A theoretical deficiency in the QVLM development also exists: the Cauchy sin-
gularity problem is only solved in the chordwise direction, but a Cauchy singularity
also exists in the spanwise direction. The tip singularity has the same importance
as that at the leading-edge (Guermond, (1988)).

Collocationally, the vortex strip locations suggested by Lan (1974) cannot be
accepted for certain wing shape configurations: for a circular wing, the first control
point and the last control point of the vortex strips at wing tips are outside of the
wing surface (CGuermond (1988)).

Numerically, Lan’s (1979) unsteady QVLM formulation consists of three ap-

the Jordan's imation (Eq. 4.19); the integration of W; (Eq.

4.15); and when a pl wing is idered, the i ion of W3 (Eq. G.12).

Jordan's approximation can be accepted in engineering applications because of its
accuracy. In the approximation for Wa, it was found that the parabolic functions

found from three points on the curve over the range of the integration used to ap-

the i d at the two b daries of the curve at 7 = 0 and 7 =

where 7 = 0 and 7 = 1 are the integration limits along the doublet line from (z1,31)
to (r2,y2), had larger discrepancies compared with the curves calculated from a
numerical integration that used using much closer interval spacings over the range
of the integration. Plots showed that it was more appropriate to approximate the
curves by higher even order polynomials such as fourth or sixth order functions for
better accuracy. The quadratic function approximations lead to a limit in choosing
the ratio of V,/N, (Albano and Rodden (1969)): to obtain best results, they sug-

gosted that the values of 2N, /N, should be taken as the same as the wing’s aspect
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ratio. For a pl: wing, analytical i ion needs to be done: the integrand

can be approximated by a fourth order polynomial (the non-singular part); and the
singular term.

Convergence of the results was rapid for the rectangular wing, as was also found
by Lan (1979): for a rectangular wing, when N x N, was taken as 48 and 8C, the
predicted propulsive efficiency had a difference of about 3% in the two cases (V. is
the number of the chordwise control points and N, is the number of the spanwise
control points on the half span). Hewever, for wings with higher sweep angles or
sharp tips, the number of the control points nceds to be increased. The convergence
of a method can be determined by the ratio of a ncar field induced drag to a far field
induced drag of the same wing in the steady case (Lan (1974)). However, in the
case of a wing in harmonic motion, the near field drag cannot be obtained because
the value of angle of attack is not applicable.

The CPU time required for running the program was long: when N, and N, were

taken as 10 x 16, the CPU time was about 30 minutes for a result at one reduced

and one featk when the calcul was done in a VAX

8530 computer; the CPU time was about 15 minutes in a DEC 3100 workstation,

but the latter case is a single user system.

6.3 Propulsion of Three Cetaceans’ Flukes

In the calculation and ison for the thrust ient C, and propulsive effi-
ciency 7 of the flukes of three cetaceans, a parameter J, called the advance ratio,

was used. This parameter was introduced by Bose and Lien (1989) and was defined



as

J =1Ve/(wh) = 7B [(k- k) =0]a. (6.1)
For constant h and a, this advance ratio, J, increases when k decreases and increases
when 0 increases. In the following calculation of the flukes of three cetaceans, all
computing mesh sizes were taken as N x N, = 7 x 16. Figures 6.7 and 6.8 show the
predictions for the B2 wing and a fin whale’s flukes (Balaenoptera physalus) by using
the present approach alongside a two-dimensional strip theory and the same strip
theory with a 3D correction; the latter two results were presented b; Bose and Lien

(1989). The litions are for a heave of h = 1.5m; a pitch amplitude

« = 20° the pitching axis is at the trailing edge of the root chord and the phase angle
@, = 7/2. Results from the QVLM which models the three-dimensional effects of
the flow show reduced levels of efficiency and thrust. The differences mainly due to
the differences in aspect ratio, and at the lower values of advance ratio, i.e. below
about 4, the practical angle of attack is large enough that separation would occur
(Bose and Lien (1989)).

‘The geometric values for the three cetaceans’ flukes were taken from measure-
ments recorded by Bose and Lien (1989). The span of the planform is § = 3.0m,
and the aspect ratio is 6.1. The oscillating parameters are h = 1.5, ®,4 = 7/2, and

a=20°

C i of the predictions of propulsive efficiency 7 and thrust coefficient
C' versus advance ratio J, for the three cetaceans’ flukes are shown in figures 6.9 and
6.10. The geometric values of the white whale’s ( Delphinapterus leucas) and white-
sided dolphin's (Lagenorhynchus acutus) flukes were taken from Bose et al. (1990).

‘The flukes of three cetaceans are shown in figure 6.11, and several parameters of
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Figure 6.11: Three of the lunate-tails of cet: FW, WSD, and WW
stand for fin whale, white-sided dolphin and white whale respectively.




Span | Aspect ratio | Wing arca | Root chord | Sweep angle
s A 5. Vedl A
W 3.0m 6.10 1.485m? 0.870m 31.2
WSD || 0.25m 2.72 0.023m? | _0.12Tm 170
WW [ 0.758m |___3.25 0.17im?_|_0.362m 283

‘Table Main geometric parameters of three cetaceans’ flukes. FW, WSD, and
WW denote fin whale, white-sided dolphin, and white whale respectively.

these flukes used in calculation are listed in table 6.1.

“The propulsive efficiency and thrust coefficient vary with the different heave
amplitude h. This makes the comparison of these three planforms difficult. Two
ways were considered for choosing / to give a comparable basis: set h as the root
chord; or to an averaged chord length.

In the calculation of the predictions in figures 6.9 and 6.10, the amplitude of
hieave was taken as the root chord C, (given in table 6.1). All phase angles were
® = /2, and all angular amplitudes of pitch were a = 20°.

As the aspect ratio of the fin whale’s flukes is largest and is about twice that
of the white-sided dolphin’s and white whale’s, the propulsive efficiency and thrust
coefficient from this animal's flukes are much higher than those from the others over
most of the range of advance ratio, J. The aspect ratio of the white-sided dolphin’s
flukes is less than that of the white whale's, however, the propulsive efficiency from
the flukes of the white-sided dolphin’s is noticeable higher. The thrust coefficient of
the fin whale’s flukes is also much higher than those of others. This is partially due
to the choice of the amplitude of heave k (h is chosen as the root chord length C.);

the value of k/B (B is the length of span) of the fin whale’s flukes was small, hence



higher thrust cocfficient appears (sce Eq. (79), Lighthill (1970)).
Further investigations were done on the effects of changes in pitching axis posi-
tions and on the phase angle valucs (pitch leading heave) on the propulsive efficiency

and thrust coefficient. In all calenlations related to changes in pitching axis, the

phase angle was taken as ®,4 = 7/2; the amplitude of heave, b = €, (where (' is
the oot chord length); reference length B, = Cy; and feathering parameter 0 = 0.8

(higher values of feathering parameter lead to higher efficiency). The prediction of

propulsive cfficiency 1. thrust coefficient €, and leading-edge thrust coeflicient, Cy

against the changes in the pitching axis positions over the range from —0.5C) to

C',, where C, is the root chord length, for the reduced frequencies, k = 0.15 and

0.75 are plotted in figure 6.12 through fignre 6.15. These figures show that the max-
fimum propulsive cfficiency occurs at the pitching axis position By = 0.7C,0.8C',
and 0.6C; for the flukes of fin whale, white-sided dolphin and white whale respec-
tively. The mean thrust coefficient C: is minimum at By = 0.6C, (figures 6.1 and
6.15). Figures 6.12 and 6.14 show that when k = 0.15, the variation of the propul-
sive efficiency  and the total mean thrust coefficient C; is small: over this range
in pitching axis position the variations in efficiency are 0.066, 0.061, 0.115 and in
thrust coefficient are 0.0014, 0.0006, 0.0007 for fin whale, white-sided dolphin and

white whale respectively.

The results ior reduced frequency & = 0.75 arc shown in figures 6.14 and 6.15.

Here the maximum efficiency 7 occurs at about the same position as in the case

k = 0.15. The minimum thrust cocfficient C'; occurs at the same position as that
of fJmas- The variation of the efficiency 7 was larger at this higher value of reduced

frequency; over this range of pitching axis position the variations in the propulsive
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efficiency 7 are 0.301, 0.330, and 0.323 for the fin whale’s, white-sided dolphin’s and
white whale’s flukes respectively. From —0.5C; to 2.5C,, the changes of the mean
total thrust coefficient C, are also different at this higher value of reduced frequency;
the variations are 0.648, 0.320, and 0.298 for the three kinds of flukes. The difference
between total mean thrust coefficient C; and leading edge thrust coefficient Cy over
the range of pitching axis locations is almost constant (this result was also found at
other reduced frequencies) for the fin whale’s flukes and tends to zero at By = 2.5 |
for the other two sets of flukes (sce figure 6.15). For the fin whale's flukes, this means
that the increase of total mean thrust coefficient comes mainly from the increase in
the leading-edge suction, whiwe the lift contribution to the total thrust is constant
throughout the range. For the other two sets of flukes, this means that the lift
2.5C,

contribution Lo the total mean thrust is about z-ro at B = i.e. the leading-

edge suction is the total thrust when the pitching axis position is at Bo = 2.5C.

Figure 6.16 through figure 6.19 show the effects of changing phase angle between
heave and pitch on the propulsive efficiency 7, mean total thrust coefficient C; and
leading-edge thrust coefficient Cy at the reduced frequencies k = 0.15 and & = 0.75.
‘The maximum efficiency 7 occurs at the phase angle in a range of ®,5 = 90° ~ 110°
when both k = 0.15 and k = 0.75 (see figures 6.16 and 6.18). It is also seen that the
positions of maximum efficiency tend to move to higher phi.e angle values when the
reduced frequency k is increased. From figures 6.17 and 6.19, for all these three kinds
of the flukes, it is seen that the minimum thrust coefficient Cy occurs at &, = 100°
for k= 0.15 and &, = 135° for k = 0.75 and the maximum thrust coefficient C is
at by, = 275 for k = 0.15 and at P, = 280° for k = 0.75.

When 60° < &, < 125° at k = 0.15 and 75° < @, < 130° at k = 0.75, the total
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Figure 6.13: Leading-edge thrust ard total mean thrust coeflicient vs location of
pitching axis for the three cetaceans’ flukes for reduced frequency k = 0.15, feath-
ering parameter 0 = 0.8.
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Figure 6.15: Leading-edge thrust and total mean thrust coefficient vs location of

pitching axis for three cetaceans’ flukes for reduced frequency k = 0.75, feathering
parameter ¢ = 0.8.



thrust cocfficient is greater than the leading-edge thrust coeflici

that at about ®,4 = 100°, the lift component La of the total thrust is a positive

contribution. while at ®,, = 270°, the lift component La leads to maximum drag.

This is why the maximum efficiency fima occurs at about ®, = 100° and minimum

cfficiency fmin occurs at about @, = 270°. Figure 6.16 through 6.19 also reveal
that the highest efficiency and the lowest thrust appear at about the same value of
phase angle between pitch and heave and vice versa. In addition, the fin whale's
flukes can roduce positive thrust at any phase angle value. In contrast, when the

reduced frequency k = 0.15. white whale's flukes produce negative thrust (drag) at

150° < @

330°, and when k = 0.75, both white whal

wd dolphin’s flukes

produce negative thrust around ®,, = 250°, and the range of the phase angle of the

production of negative Lthrust from white whale's flukes is wider. This showed that

swept wings with relatively high aspect ratio produce high thrust forces.

6.4 Restrictions on Dimensions of an Oscillating
Foil Propeller in Marine Applications

In practical engineering design, questions arise about the size of a real oscillating
propeller at the stern of the ship, and its restrictions in terms of pitching and
heaving amplitudes. A multiflex cargo ship of length L = 133.3m and displacement
A = 17930 ¢ is given below as an example (Harvald (1983), page 314). The resistance
of the ship varies with speed and is listed in table 6.2. Results of performance of
the fin whale's flukes are used to obtain dimensions of an oscillating propeller. As
the breadth of the ship is 20.5m, the maximum span of the oscillating foil should not

exceed 20.5m. Assuming that the span of the oscillating propeller is Bn = 20.5m,
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Figure 6.17: Leading-edge thrust and total mean thrust coefficient vs changes in
phase angle between heave and pitch motions for three cetaceans’ flukes for reduced
k =0.15, i 6=038.
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Figure 6.19: Leading-edge thrust and total mean thrust coefficient vs changes in
phase angle between heave and pitch motions for the three cetaceans’ flukes for
reduced frequency k = 0.75, feathering parameter 0 = 0.8.
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® advance ratio J = 2.95;
o oscillating frequency w = 7Vio/(Jh) = 2.66rad/s;
® propulsive efficiency 5 = 0.71;

o reduced frequency k = 1.064 (because the reference length is taken as B, =
hp =4.0m;

o wing area § = ;- = 22.92m?;

o the span of the man-made propeller is tien B, = 11.80m.

Under the ictions above on heave litude h, the i efficiency that can
be achieved is 0.71, and the wing’s span is 11.80m. Restrictions on the amplitude

of the pitch reduced the propulsive efficiency from 0.82 to 0.71. The propulsive

efficiency can be improved by increasing the aspect ratio of the wing while keeping
the amplitude of pitch at the maximum possible value.

Table 6.4 shows powering predictions when the example ship is fitted with an
oscillating propeller. -Variations of the required input power with the changes in
speed of the ship are given (drag effects of the propeller are not taken accourt).

If a higher aspect ratio wing is used, the input power may be reduced. An

of an oscillationg foil, and its heaving and pitching amplitudes,
should be considered carefully when designing an oscillating propeller. Usually,
higher angular pitching amplitude & produces higher thrust coefficient. However,
the theory is based on the small amplitude assumption which is not applicable when

a is too big.
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it can be shown that the wing area is § = 69.34m% and the root chord length is
5.95m. By using figures 6.9 and 6.10, and taking the service speed Vi, = 10m/sec,
the reference length B, = C, = h (where C, is the root chord length, and A is
heave amplitude), the results for the oscillating prop.iler were obtained and these
are listed table 6.3.

For the man-made oscillating propeller, relative parameters were obtained after
interpolation: J = 4.86, n = 0.82, C; = 0.308, w = 0.74 rad/sec and k = 0.45.

It is noted that the average chord length of the fin whale’s flukes is

Cu = Su/B = 1.485/3.0 = 0.495m

and the ratio of root chord to average chord is
C/Ca = 0.87/0.495 = 1.77.
Therefore, the average chord of the man-made propeller s
Cum = Bu/A = 20.5m/6.1 = 3.36m,
and the heave amplitude of the propeller is
b = Com = 1.77Cym = 5.95m.

However, the draft of the ship is T = 9.10m. As the draft should be T > 2hy, =
11.90m, the amplitude hy, is impractical for this ship.

Restrictions on draft lead to a value of heave amplitude of the propeller &, <
(T/2) = 4.0m. The corresponding heave amplitude h of the fin whale’s flukes is then
h=4.08£= = 0.55. Let h = 0.5m, then the thrust coefficient is C, = 0.308%8%; =

0.933. From Ct, other corresponding values were obtained as:
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6.5 Comments on the Planform Configuration of
Man-made Oscillating Propellers

It is well known that the higher % aspect ratio of a foil, the higher the propulsive
efficiency. That the fin whale's flukes had maximum propuisive fficiency was mainly

due to its flukes aspect ratio. In addition, the thrust coefficient was related to

heave amplitude: when the heave litude h d d, the thrust flicient '
increased. At fixed phase angle values, the sweep angle of a wing at the leading
edge affected the thrust coefficient (figures 6.17 and 6.19); wings with higher sweep
angles produced higher thrust coefficient. However, the propulsive efficiency for the
swept back wings had a sharp drop at larger reduced frequencies (k > 1, when the
reference length B, was taken as the root chord length C\); while at small reduced
frequencies (k ~ 0.2), the swept back wings had higher propulsive efficiency than
that for a rectangular foil. Over a wide range of reduced frequency k (0.5 ~ 1.0), fin
whale’s flukes were the best planform studied for both maximum propulsive efficiency

and thrust coeffici In engineeri licati the shape of an oscillating foil

may be difficult to manufacture in the form of a fin whale’s flukes because of the
limitations in manufacturing methods. However, a compromise shape between that
of a rectangular wing and a fin whale’s flukes might be a possible choice.

The propulsive efficiency and thrust coefficient from a flexible, finite span, os-
cillating foil is relevant to the study of practical oscillating propellers. Generally,
oscillating propellers in nature have both spanwise and chordwise flexibility (Bose
and Lien, (1989)); this flexibility has been neglected in this work. Further study in

arroelasti ion problems is ded in the i igation of
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Voo (meter/sec) || 10.00
Voo(knots) || 19.44

R(KN) [ 1095 | 585.L |
P,(kW) || 11000 | 5300

Table 6.2: Resistance versus speed of an example ship. R is resistance, and P, is
effective power.

£ 0.4 u8 12 6
w(radfsed) | 067 134 2.02 2.69

J 736 3.93 262 1.96

0 0.90 0.76 0.67 0.60

(e 0.05 | 0587 | 1.337 | 2.870
S(m?) || 427.60 | 3643 | 1600 | 7.5
575, 288 25 11 5
(5/S,)7" || _17.98 | 4.95 3.28 2.21
Ba(m) || 53.9¢ | 14.85 | 984 672

Table 6.3: Calculation of the dimensions of an oscillating foil propeller. § is required
wing area at correspending speed; By, is the span of the man-made oscillating pro-
peller; S, is the area of the fin whale’s flukes.

Veolmeter/sec) || 10.00 | 9.00 | 8.00
Voo(knots) || 19.44 | 17.50 | 1555
P,(kW) || 11000 | 5300 | 3100
T.P(kW) || 1600 | 7500 | 4400

Table 6.4: Input power versus speed of an example ship. P, is effective power, and
L.P. is input power.



Chapter 7

Conclusion

Lifting-surface theory for three dimensional, unsteady wings was investigated. A
computer program incorporating an unsteady quasi-vortex-lattice method, a nu-
merical method based on the vortex-lattice method, was written. This computer

program was checked by comparing its output with the published results from three

From those isons, it was seen that the program was reliable,

Rapid convergence was found between predicted results and number of vortex lat-
tice clements for rectangular wings; for wings of arbitrary planforms, a larger number
of elements were required for similar accuracy. The advantages and disadvantages
of the QVLM method were discussed.

In the analysis of fast swimming animal’s propulsion, the computer program

was used to predict the propulsi fc of the three cet ? flukes. The
variations of propnlsive efficiency and thrust coefficient with changes in pitching
axis and phase angle between pitch and heave were analysed. An example of the fin
whale as a marine oscillating propeller was given based on a rough calculation, The
dimensions of a practical oscillating propeller and its restrictions in operation were

discussed. The qualitative analysis of the shape of an oscillating propeller was also

84



discussed. This shed some light on practical marine oscillating propeller design.

7.1 Verification of the Computer Program

In the verification of the p program, the predictions for three planf

were checked with previous results. The lift distribution of a circular wing obtained
by the present computer program showed accurate predictions compared with an-
alytical results. The predictions of propulsive efficiency and thrust coefficient from
a rectangular wing agreed well ith the results calculated by Chopra and Kambe
(1977). Propulsive efficiency and mean total thrust cocfficient of an idealised lunate-
shaped wing (B2 wing) had reduced values in comparison with a rectangular wing
of the same aspect ratio. The resuits for this lunate-shaped (B2) wing had reduced
values compared with the results from Chopra and Kambe (1977), especially, at
higher reduced frequency. As there were not any experimental or analytical results

available for the planform, the reason for these discrepancies is unknown.

7.2 Numerical Model

The unsteady quasi-vortex-lattice method (QVLM) is reliable and accurate in pre-
dicting the loading distribution for the circular planform. For a rectangular wing,
the predictions of the leading-edge suction, the mean total thrust coefficient and

the propulsive efficiency are also reliable. The dependability and reliability of the

QVLM in predicting the propulsi fc for sharp tip wings, or wings with
high sweep angle, cannot be determined. Experimental data are important in the
further development of the method.

The Cauchy singularity problem was only solved in the chordwise direction in
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the development of QVLM. A singularity in the spanwise direction exists and this
singularity may become important at the sharp variations in the loading function
at wing tips.

In the integrations of W, and Wa, Lan (1979) followed Albano and Rodden’s
(1969) approach, employing parabolic functions to approximate the non-singular
parts in the integrand of W, and Wj. The plots from these non-singular parts have
discrepancies compared with the parabolic functions, and the differences vary with
the locations of the vortex strips, and the sweep angle of the vortex strips. The
accuracy of the results may be improved by using approximating functions with
higher orders (the order number should be an even integer). Higher order functions

increase the difficulties to integrate the i exactly.

C: gence of the ion is rapid for a lar wing. Mesk: size should
be increased when calculating for a wing with higher sweep angle, or sharp tips. An
appropriate ratio of chordwise control points to spanwise control points can improve
the convergence in terms of program accuracy versus mesh size.

The CPU time of the program is long. Further work on reducing the CPU time,
might be accomplished by a rearrangement of the matrix. This rearrangement is

only possible when the wing is symmetrical.

7.3 Three Cetaceans’ Flukes as an Oscillating
Propeller

Among the three planforms studied (fin whale, white whale, and white-sided dol-
phin), fin whale's flukes produced much higher thrust coefficient and propulsive

efficiency. High aspect ratio and an appropriate sweep angle are the main attributes
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of a good propulsive performance.

Different planform shapes have a different pitching axis position for the best
propulsive efficiency. This position is around the three quarter chord position. The
rate of variation in propulsive efficiency with changes in pitching axis is related to
the reduced frequency k. When the reduced frequency k is small, the variation is
small; when the reduced frequency is large, the variation is large. This indicates that
in practical operations, the pitching axis position for the best propulsive efficiency
should be placed in accordance with the largest possible operating reduced frequency.

The maximum propulsive efficiency and the smallest thrust cocflicient occurred
at about the same pitching axis position. This indicates that under low hydrody-
namic loading conditions, the foil can achieve a high efficicncy. However, if the

wing area is limited, some portion of the cfficiency has to be sacrificed to create the

cequired thrust to sustain the speed of a matine vehicle.

At the reduced frequency k = 0.75, the dilference between total mean thrust

flicient C, and the leading-cdge thrust coefficient Cy over the range of pitching
axis position is constant for a fin whale's flukes. In another words, with the increase
of the pitching axis distance (from the mid-chord towards the trailing edge), the
leading-edge thrust portion increases. Especially, for the low aspect ratio planforms
studied, when the pitching axis is far behind the mid-chord, the leading-edge thrust
increases sharply. Large leading-edge thrust can result in leading-edge separation,
reducing the propulsive efficiency in practice. This should be avoided.

For any planform, the phase angle effects on the propulsive efficiency and thrust
coefficient were very important. Best phase angle values are around 90° ~ 100°

(pitch leading heave). Tn particular, for a low aspect ratio wing , the range of the
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best phase angle values is narrow. At certain phase angle values, a low aspect ratio
wing with low sweep angle may produce drag rather then thrust. Therefore, in
practical operations, the phase angle of the oscillating foil needs to be controlled
precisely to achieve the highest possible efficiency.

‘The maximum propulsive efficiency and the minimum thrust coefficient ovcurred
at about the same phase angle values. ‘The point of low thrust and high efficiency is
suitable for an oscillating foil working at high speed, low load operating conditions.
Under heavy loading conditions, the propulsive efficiency has to be reduced to obtain

high thrust.

7.4 Oscillating Propeller Design

Iligher aspect. ratio foils can produce higher efficiency and thrust. An oscillating foil
with highest possible aspect ratio in a given situation, can achieve the highest possi-
ble efficiency. However, the span for an oscillating foil at the stern of a ship cannot.
be too long. The control of a ship in harbour confines the span of an oscillating
foil. Also the draught confines the oscillating foil’s heave amplitude; the solution of
using higher  to increase 7 is not possible. These factors reduce the possibility of
the highest propulsive efficiency that it is possible to achieve in practice.

The pitching angle amplitude a also affects the efficiency and thrust: the larger
the a, the higher the thrust. When the dimension of an oscillating foil is limited,
a solution of using higher a to increase thrust is possible. However, when a is too
large at a given advance ratio, and especially, when the ratio of w/V, is also too big,
stall and separation will occur. In addition, small amplitude theory is not applicable

at large .
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Wings with higher sweep angle produce higher thrust but reduce the propulsive
efficiency. A wing of very high sweep back with high aspect ratio adds to the
difficulties in manufacture.

If the friction and flexibility of an oscillating propeller are taken into account,
the propulsive efficiency will reduce. A precise estimate of this reduction is diflicult
to obtain. Studies on the [rictional drag of a three dimensional oscillating foil and

the propulsive performance of a three dimensional flexible fin propeller are necessary

for the further

P of
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Appendix A
Integration of Eq. 3.7

The integral part of Eq. 3.7 is the Glauert integral of fy (Gilavert, (1926), p.93).

When 0' # 0, it can be integrated as follows

0 _ / do
/ cos0 —cos0  J Zsin[(0+0)/2]sin((0 - 0)/2)

2sin?[(6-6")/2]
S0 0Y/2) sl (0 =)/ Kt

/ et

i{sin[(ﬂ+0’)/2}}
a0 \sinl(0-0)/2]

Leos[(0+0')/2]
sin(0—0)/2]
L A5inl(0 +0)/2)cosl(0 ~ 0)/2]
sin?[(0—0)/2]

cos[(0 + 0')/2] sin[(0 — 0')/2]
2sin?((0 — 0')/2]
sin[(0 + 0')/2) cos[(0 — 0')/2]
T a0 - 0)/2
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sing

= T-n L

one has

' L (sin[(0+0)/2]
T -0y " e (sin[(a - o')/z}) z ()

and hence

] dg’ _1_ [ (dlsin[(6 +6')/2)/ sin[(8 — 8"3/2])
cos0 —cosd  sin0J sin[(0+0)/2)/sin[(0-0)/2]

1 sin|(0 + 6)/2)
ol Se=n7a" (A4)

As there is a singularity when 0’ = 0, a limit integral is used as

[ ™ @ W
o cos0' —cosO ~ 0o cosf —cosf ' Jote cos® —cosO'

_— sm[(9 +6-¢)/2
B5ing | " [sinl@-0+ /2|
i Isin[(ﬂ +0)/2]]
Snl(6-0)/2)
sin[(0 +7)/2)
- Ilinl((i 5l
sin[(6+0+¢)/2)
=il Isin[(ﬂ —0-0/2) }

= lIns ,.na

sinfo — ¢/2]| _
sm[0+c/2]|| 0. (A5)




Appendix B

Use of the Midpoint Trapezoidal
Rule in the Integration of Eq. 3.7

Referring to Burden (1984), let f € C?[a,b], with & = (b~ a)/(2m +2) and z; =
@+ (j+ 1)h for each j = —1,0,--+,2m + 1, the con:posite midpoint rule for

m + 1 intervals is

b i, —a)h? .
[ 1@tz =283 sy + = ), ®)
a =
for some u € (a,b).
From Eq. 3.7, let
1= [F 90 =90) 4 (B2)

o cos0= cost’
a=0,b=rmh=r/@m+2), 3 =a+(+1)h=0+(+r/(2m+2),
@25 = (2] + 1)7/(2m +2). Therefore,

Lo [0 =9l0)

o cos — cos '

_ o 9(025) = 9(0) | wh? g(u) —g(6)
= 2 ot —costy; * 6 tcosd — cosfu)
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th 9(02) —

24500 - cos n,,

14

ZM
(2,,, +2) /5 cos 0 — cos((2] + 1)n/(2m + 2))

]

- Z 9((2) + D)7/ (2(m + 1)) - 9(6)
(m +1) j=5 cos 8 — cos((27 + 1)x/(2(m + 1))

T T g((2 = D/ (2(m + 1)) - 9(9)
{(m+1) & cosf ~ ros((2j = Dn/(2m + 1))

_ 78 _g((25 = 1)n/(2N)) - g(0) (B.3)
N {Z{ cos0 = cos((2j - 1)7/(2N)) i
which is in Eq. 3.8.
‘This numerical integration has an error

"hz[M]“ (B.4)

= et —cos(u)



Appendix C

Application of Chebychev
Polynomials to Eq. 3.8

Consider Chebychev polynomials of the first kind,

(cos(n)arccos A), |\ <1

L= { coth(ncoth™ (A)), N> 1

(€1

where A = cos 0, and A < 1 in this case. Then Eq. C.1 when |A] < L can be written

as

T.(\)

I

i

where n is positive integer.

cosnl = %(e"" Feminty

%[(cosﬂ +isin)" + (cosl — isin0)"]
3O+ VTR + (T
%[()\ FVETI 4+ (A - iR

. Expanding the first part of Eq. C.2, one has

A = N4 VEST 42 ]))\n -2(/FTT)
s 1)(" —2)/\"_3(\/5‘7—):
n(n-l) (n-k+1)/\"_,((‘/x,—~),(
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and the second part after expansion will be
B = Aot VAT T 4 M Dy
n(n SIELI \/l\,——),
+(—1)"————( ) K‘," il U,\"-“(\/»Tl)"' +
Therefore,
L) = 3A+B)
TS Y
s 1)(:-4!— CIUET S,
JELET T TS\ [
K!
where K is an even integer. Further, Ty(}) can be written as
Ta(A) = CRA™ + CIA™2 4+ CaA™™ -+

From Eq. C.6 one has

To(cosb) = 1
T(cosf) = cos

Ty(cos8) = cos 20
Ty(cos6) = cos 30
Ty(cos6) = cos 40
Ts(/\) = 16X5 — 20X° 4 5) Ti(cos8) = cos 50
To(A) = 3208 —48M 4 18)2 —1 To(cos6) = cos 60
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(C4)

(C5)

©9)

(7

Eq. C.6 only has n-number roots. For T,(A) = 0, therefore, there must be n-numbers

of Ns, i:e. Aty Az, Agy Ay ++ A, Therefore,

Tu(N) = 0= K(A = M)A = M)A = ds)+ (A= Ar)

(c8)



Tu(N) = K[ - M)A =)o+ (A= A)
+ A= A)A=Ag) (A= As)

o A= M)A =) (A= Ag) o (A= A (€.9)
Hence
T _ L L L&
TV VS Wl v v pey wia D puy vy (€10

Since A = cos 0 and Tu(cos 8) = cos(n0), and for Ta(cos 0) =0, cos(n0) = 0,
nl = % =(2k — )72,k =1,2,- N.

Substituting A = cos 6, 0 = (2k — 1)7/(2N) into Eq. C.10, it follows that

T
TN

- T @)
which is the same as Eq. 11.a in Lan (1979).

Since it is hoped that
dT,(A) d0 _ deos(nd) do

TN = = DT a0 dest

i

- in(nf)) _ nsin(nd)

~end " sm0 ez
sin(n) must be zero. It follows that n6; must be i, i.e.
A =cosf; = cos(in/N),i =1,2,3,--- N = L. (€.13)
Theuefore,
Ty = ns‘:n"” i) g, = in/N. (C.14)



Since

sin(nf) = ncos™ Osind — C3cos™ > Osin6®

+ Clcos™S0sing® -, (C15)

one has

nsin(nd)

= n?cos™! 0sin® 0 — nC3 cos™ Osin’ 0
sin

+ nCPcos™*fsin' G-
= n?cos™! Osin® 0 — n?C2_, cos" Osin? 0

4 nICi_, cos™ S Osint 0., (C.16)

wheren =3 =(n—1)-2,n-5=(n—1)—4. Assuming n —1 = m, it follows that

() _ 2 om g — n3C2 cos™ 2 Gsin?0
sin0
+ n?Chcos™Osin'0— .-, (can)
Since
cos(mf;) = cos™0; — CZ cos™*0; sin® ;
+Ch cos™ ™ O;sin*0; — -, (C.18)
one has
nsin(nb) _ o omg oo ;
g = e li=ntcosl(n—1)0)
= n2cos|(n — 1)ir/n]. (C.19)
Fori= N,

Tr(Mi) = N?cos((N — 1)) = —N? cos(Nr). (C.20)



Therefore,

Ty
T

w(A)

)=

—N?cos(N7)

cos(N7)

=-N.



Appendix D

Mathematical Formulation of a
Vorticity Field

A vorticity field of a vortex line parallel to V.o with strength I' is given by Ward

(1955, pp.42 —43) as

oo _ BT (B — R) x dl
e = /,—Rf, 3 (D.1)
Let
@ = (n-2i+m-y)i+(an-2k
@ = (@ -2)i+ B8 — )i +B(a - )k
b= (m-2)i+@-yi+ -9k
¥ = (z2-2)i+ Bl —v)i + Blaa— 2k,
then

RB-R = d+rli, (D.2)
where 0 < 7 < 1. The modulus of £ — B will be
Ry — Rl =d+l|
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= lai+ ha, + vl ap + 7l
= (0} + 2raili + 73) + (a} + 270, L, + 7°02)
+ (a4 2randy + TR

= @+ =Va + 20 T+ rb, (D.3)

Considering the factor 7, it follows that

(B Bxd) = (@+h) x d(rl)

= @xd(rl) + T x d(r])
= @xd(rl) = @ x ldr. (D.4)
On the other hand,
Ry =d+1l, (D.5)

and
|Rg) = @+ 70| = V@ +2ra" - T 4 720 (.6)
Let A=, B=24",and (' = &*, Eq. D.1 can be written as

- 2, =
V(R) = %{a x 1)/1[217 m dr (0.7)

Br+C)i
When integrating Eq. C.7, the value of 5% —4AC should be identified. Expanding
B? — 4AC it follows that

B —4AC = 4@ - PR -4 @)

4(ails + ajl + arli)? = (I + & 4 1})(a? + a} + af))
~4[(al)? + (ailk)? + (547 + (ajle)* + (arli)? + (arl;)?

— 2a;aplily - 20;4l;14]

—dla’ x TP # 0. (D.8)
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Therefore, Eq. D.8 has a unique solution and can be obtained as

2(24 + B)

7ry = Bl x 28 —
)= @ amen ~ Fmoiaca+ sroypm (09
which is Eq. (A3) of Lan (1974).
"Transforming
24+ B =2l Ty +2(a- Ty =2(a + ). T = 2(F - ) (D.10)
and
A+ B+C=(F-Ty+2a F)+a-a=|(d+T) =Fp (D.11)

and substituting Eq. D.10 and D.9, into Eq. 3.16, for a variable vortex distribution

I" along the span, Eq. D.9 can be written as

B Exr[i_
& x 1]

4 2 e &
V(H)=f—” [ asiz R (D.12)

which is Eq.(29) of Lan (1974).
By using Eq. 3.16 and Eq. D.12, and noticing

@xl = BE{(z-2)g— ) = (32~ 2)w1 - ¥)}
Fxl = (z3-21)(@2-2) + s — 1)(v2 — v)

@xT = (s-a)(@1 =)+ B~ )w — ), (D.13)

where B = (1 — M2)"/?, the portion of the downwash by bound vortices can be

written as
Wy = q-F

A e (=) X
dm Sy (@1 = 2)(v2 = 11) = (22 — =) (1 —¥)
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»
{(-l'z = 2)(z2 = 2) + B2y = ) (w2 —y)
(2 = 2 + B2(y2 = p)|'72
= r)m = 2) + 82— )~ .'/)}',r,_
{(z1 = 22 + 321 = y)J1/2 '

(D.14)

the portion of the downwash by the trailing vortex starting from the point (xy, ;)
as
Ty 3
Wi, s ok / A=)
drJa -y

Ty~

| d; D.15
[ e =27 + PP — gy (Rt}
aid {lievportion of the downwaik By-the trailing-vorlex-slarting from thepioitit

(22,42 as

L le)
Wy = -—

! 47 /;, -y
T3—x

" T B =] Him

[
Total downwash due to a whole horseshoe vortex is

W, = Wi + W, + Wa. (D7)



Appendix E

Boundary Condition for an
Oscillating Wing and Integration
of the Steady and Unsteady
Doublet Velocity Potentials

(A) Boundary Condition When the wing is in harmonic motion, the following
relations are assumed:
B(zy) = Reluwe™),

az,y) = Re(ae™),

R(z.y) = Re(he'). (E.1)
Therefore,

h = hwsin(wt),

& = awsin(wt),

& = acos(wt). (E.2)
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Hence

(a,y) = —phsinut) - acos(wl) = p-asin(et)s - £.)
= Acos(ut) + Bsin(wt), (£.3)

where

(1.1)

Let w= A'+iB’, it follows that
W(z,y) = Re(we™)= Re((A'+iB')c™)
= Re[(A" +iB')(cos(wt) + i sin(wt))]
= Re[(A’ cosluwt) — B'sin(wt)) + i( A’ sin(wt) + B’ cos(wt))]
= A'cos(wl)— B'sin(wt). (15.5)
Therefore,
A = A=-a,
-B = B= vim’”' Vima(x—.t,)
w o= A+iB =-a- %h— ;:a(z«:.,). (E.6)
(B) Integration of Eq. 4.9

The integrand of Eq. 4.9 contains two parts. The first part of the equation is

oy =fb;'—jdn. (E.7)
and the second part is
@y, = [ 20204, (E.8)

L Rr?
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To integrate Eq. E.7, the integration variable needs to be changed. Referring to

Lan (1979), 7 can be written as

SO Lt | B (€9)
B=hn -n
hence
(y2=y1)z dr
T s E.L0
" 8 /l-{(y—yn)-f(yz-y-)l“r:«? 10

After a simple mathematical manipulation and looking up integration tables (Wang,

et al. (1977), p.262) the first part of the Eq. 4.9 can be written as

1 2at + b
by = = arclan(m). (E.11)
where a = (y2 — )%, and b= 2(p2 - y1)(y = 01)-

Yo integrate Eq. E.8, assume

v=(p-yp)r -y —pn)=n-y, dy=dv, (E.12)

and
Q = (m-z)y-un)-(@E-2)2—n),
A= (@-z)f 42—
B = =(@—a)(e2— o)+ (¥ —un)v2 —wl,
C = (e-z)l+y-wn)l+ (E.13)

which is Eq. 2.17 in Lan (1979). Substituting Eq. E.13 into Eq. E.8, we have

_1 re—z-(—y)(z—2)/(y2 — )
=g [ ey odv, (E.14)
where
R =AYy ] 1z, ;
) +B(yz—y-)+cl E15)
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To change 7 to v, it follows that

y=un 1
A 0!+ (24 ——+ B——
(((yz y)“) ; (B2-n) yz—yn)”
+ I B vy, (E.16)
where
A = A

28" = [2A4(y =)= ) + Bz -y,

C' = (y—u)*+Bly—v)a—u)+Clya—n) (E.17)

Substituting Eq. E.16 and E.17 into Eq. E.14, the integration can be written as

/ [=Q = (z2 —z\)v]dv

¥ =57 |, T ) v 4 2B+ O

2 (E18)

Finally, Eq. E.18 can be written as the form suggested by Lan (1989),

dv

by = ﬁfi
1 8r Ji (v + )[Av? + 2B + C]'72

Qzo(z2 — 1) vdv i
o, T vy N G
Eq. E.19 can be solved by reference o Woodward, ct al. (1967), and be written as

1 Qo= (2= 21)23
iz =~y arclan (z.,(y, AT Br+C)R)

(C) Integration of the Unsteady Doublet Velocity Potential

(E.20)

In order to obtain the second term of Eq. 4.8, which is

P —//A {w 20 -.m/v,,/ - 1+/)\a)|/zl“_w'”v"’u} dedn,
(E21)
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integrate the second term of Eq. 4.8 in the 7 direction first, it follows that

. ) 20 iwzofVeor, [ — A —iwri A Vao
, svm”//AC,{r;c AL Al dedy

_ —iw 2o —iwzefVe [Ty — A —iwri A/ Voo,
Vor ACP{/r}["‘ [u Tpayle ™ ddldn  dé

—iw 20 —iwzofVeo [P A —iwri A Voo
= e {1 o [T g

5y B o A )
_/L%d"la_n["”_m"/vm A i m]e-m,x/vmd’\]} &

2aT+b | 2ar+b QI
M- ; oL,

b=, ya =)z 01 ’}dﬁ'

(E.22)

i
= i o R ([
Wor °’{ B —me

where
= premwn/Veo (1] A iwrsA/Vea =
I=re /u‘ - e dA. (E23)



Appendix F

Differentiation of the Steady and
Unsteady Doublet Velocity
Potentials

Differentiating the steady term @, in Eq. 4.10, which is the summation of Eq. E.11
and Eq. E.20, it follows that

80, _ 09,400,
o: = 7 o=

L{ i - L @
st (n—ylP+2? (=& +(n-y)+ 27
(=0 =) , H(E=)z2=m) + (1= w1)(n = y)]=
(e T @+ e — o)+ 2~ )] i)’
(F.1)

where Q = (23 — 21(y — ¥1) — (= — 1)(y2 — t1). Differentiating the unsteady term
@, in Eq. 4.10, it follows that

a9. —i
] Acya,{(g)m w= <a)~dn}

s;ii/ACy{lazhr]II[L az/(g)al }
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- o W/Ac,{u )+ 02,

- G 0+ oplin e, F2)

Let

where g = arctan Tlvz:y:):

azy
n-wn
a« = (-n)

T =

b= =2y -y)va—n)

2ar+b = 2y —p)(n-41) =22 — n)y ~n), (F.3)

one has

2r+b _n-y

Wmwe ()
Further, let
oo [,2 ran[ 20T +0 1 =(i ¢ m~v.) __Itn—y)
9z 2 -7 ), 9z SR S I A T
o= (arctan[u]ﬂ) 3
2 0z),
o = _feg -y
¢ = /3 azarctan[ = Jdn,
&= - /L arctan] (F.5)
‘The unsteady downwash can be written as
9%, _ —i
2= SV::;' Jaca +8 +e + ). (F-6)



11

It is noted that dy = (y2 ~ y1)dr, where 0 < 7 <. Further, ¢* and d* can be written

as
n—

191 [ @
prom _/o g—"{zarctan[ — y]}(yz - p)dr,

and
=y

" or
&= _/D gz el v = e,

which are W and Wj in Eq. 4.11.

(1.7)

(1".8)



Appendix G

Formulation of the Non-singular
Term in the Integration of W, and
W3

In evaluating 81/, Eq. 4.14 is used, which is

= = ° . —1‘
1=1= [ [l CETIE

Differentiating / with respect to r; and noting that

] e—iw(rﬁxu]/‘/mdr]. (G.1)

wry = =20 = —=(z—§)
, which is not a function of ry, one gets

al LA 8 ks
i —iw(ntzo)/Veo I_ |7 _ T8
an, [ 2l i e r})m] dn

- Py | giwlnidzo) Ve gy
e i =

and by differentiating ry with respect to 7, the differentiation of I with respect to

o is
o _ 0 / 2 4 22
o7 B (y—n)?+4
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= Hw- 0+ A= (=)
£=4

= L (G.3)
Therefore,
al ary —iw(ri +50)/ Vo
P =y H)/ [ W] NS (G.4)
When obtaining £L, it is noted that 2o = ~uyry and let uiry = b(xo), then wry
is a function of Zo. From the mathematical definition:
50) db(t
dl/ fz,t)dz _/ Sitw e+ F100. 0= ( )‘ (G.5)
one has
o d_ o
B = ol f(‘ﬂ.ra)dn
Y it i +0)/ Voo
- Lo {[l “ A an
T N g ¥ R e VL
L &)
= i [P o | emiwtntmliVes
= - -l o
wry
- T + 7P 7k (G.6)
Since
w0 = z—z—1(ts—11)
y=n = y-n-11r-n)

=y = t(¥2-u) (G.7)
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one has
zZ=z-m v_y!/“(-ﬁz—zl), -
and
(G9)
Hence,
L R e R e
dzo 0 Um. [ (2 +r?)1/1] € dry
o |l ___[ P21
T+u)2) o
P S B} _ uy 2
B V”Iyz - [l a +—‘u;)n/z] o] (G.10)
Finally, the non-singular terms of W, become
o _ ol 0l ox
9 = Oridn " 0z 0y
o= Voo,
= -/ m (420} Voo g7,
Lol o k. u Ty — 1y
ddly o m :
- - ]
(G.11)

which is Eq. 4.14.
differentiating 8L with respect to z and noting that 42 = Z, 228l can be

written as
partialll _ (8 oI 37‘1
9:0n \dnon

-2 e—iwlnizo)/Veo
= { (y— v) i T +r|)’/’ dry



L5

il Emn N
e w 5
3(y v)z w A n-n
=1
+1V»r16r,y,_h
T2 To¥ ¥
T+ utyr = G.12
+“+")°”y¢—y|(r|) (G.12)

where

=2 [T T mistnda)/Veo g, s
f=n /“|n GG Iy (@13)



Appendix H

Numerical Approximations in the
Integration of W, and Wy

A. gration of W, In the ical imation of W5, a parabolic function
Ar*+Br+C

is used Lo substitute fr Eq. 4.16. Consider Eq. 4.16,

o1 _ dldm  810m

B = Bnon T omoy

~(y-nTs
Tk S TR St (1)

+i—1T
Vo' 12— (+ud)y—-n’

where
itz Ve
=" Hemer o, (H2)

hun (77 + 1)

a_ .,
gy AT BreC, (H.3)

116




Eq. 4.15 can be written as

1
Wy [ (104 Br 4] A, ()

Tyl + 22

where ya1 = y2 — 11, Wi — y. The coefficient A, B, and C for ecach element of

the induced downwash matrices can be obtained from

al al al
=20 [5;(1) ~25.0/2) + %(o)] i

ar al al
B = 45,2 - (1) = 3500,

Q
]

al
5;(0)-

(11.5)
To change the variable of the integral, let 8 = yai7 = yui, hence 7 = &t dr = 44,
the upper and lower it of the integtal then are i = yis and fi'= yai respoctively;

where y3; = yz — . Therefore, the approximation terms are written as

Ar' 4+ Br+C = i;ﬂ’+(£~2—’4,;"—“'>ﬁ
Yn yn In
2. .
+(%+C—%). (L6)
vh ¥
Let
R=A
Yn
5 = 22w
Un In
2 .
7= Ak, o Bu
vh v

(H.7)



W, can be written as

b A
Wz [* b (R84 58+ Thep.

The result of this integration is then

Wy = A[;—fi]na
- 21

2 2
+ [A# —BY oo i’—]
Y Yn v3 21

1 22+y2») B 24y,
=1 71 O (e .l
i (z’ +uk *\m 3

Yn

{arctan B arctan y“]

A. Integration of W;
From the results of Appendix G,
PI_ (9 dI\on
9207 ~ \@rog) 0z

T —iw(m+20)/Veo,
{ (y- TI)/‘l e r’)“/’e dry
LW Ty — Uy T2 —Iy z
il B
Ve 1/2'-!11 [ (H-&)"‘] yz—y:} ry

- 3(y—ﬂ):1.1+iiiﬂzz—z:

Voo 7101 Y2 = Y1
k2 —1'1(1'9:)
(l -M?)”2 n-un 1
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where
—p2 [T T iu(ri+re)/Ves
Ty=r} / Emel dr. (11
Let
Gi=3T2 (1L12)
= i L nln-n 3
G = [leTn+(l+uf)3/7r:" o= (1L13)
The non-singular part of the integrand W3 becomes
(H.14)
W3 can then be written as
' ; .
Wa —ynz [ arctan (y—“—’-ﬂ'—) (G, - waz) dr. (H.15)
o = [
Let
G = A+ BiT+Cy,
Gy = Asr*+ Bar 40y,
(H.16)
The boli i jon of the i ion of Wj is formed as

_ 1 !/2|T+1m)

W; = y;,z/u arctan (—z
. [Arr’+ L +c,)] dr. (H1T)

1

After separated the variables in the integrand and changing the limits of the integral,

the result of the approximation is

Az {—Ey;’,» arctan (!;11) - 2y3; arctan (yf)

"= aa



where ATOX is an approximate integration of

/"” arctan(f)

[ g b (11.19)

The integrand of this equation can expanded as an infinite series (scc page 81,
Abramonitz, et al. (1964))

arctan(8) -

2-4-6 2 \*
+3-5-7(l{7ﬁ) +} (H.20)

where 3 # —1. Taking the first ten terms of this infinite series, the integral is then

solved analytically.



2+
= (3 + 20mmi) - 2l r ;‘}

By  2Awn
+:( Lo

v vh ) { y"""“( ) +¥i;acctan (yh)
o~ Horetan (22) - st (22)}

oo (Aly|.+c B

) {-pusctan (E2) 4 psctn (22)
vh yn
= [22 493
= ot ]
infd
Az
+L

(st (2) st (2)

+iyn -2 [arcun hi

() -arean ()]}

: ("y’:" +Ca— B’”") [ATox (”") — ATOX (”7")]
+z (ﬁ—: - 2—';;;1'—') { Yai a.wtan( ) + yy; arctan (y,‘)
gln::—:%},

(H18)



Appendix I

Numerical Results of the
Integrals in the Unsteady
Downwash Equation

There are three kinds of integrals in Eq. 4.8, which cannot be integrated exactly.

These integrals are: Eq. 4.14,

- [T - T —iw(ri+20)/ Voo
1y /{1 (r;+r3)-/z]° dn

—ivzo/Veo [* |7 _ A —iwr M Voo 7).
rieTiom /ux [1 —(1+A2),/2}e" ax

(L1)
Eq. H.11, v
T, = [:‘:‘ We“”‘"“‘“/"“dﬁ
- e"‘“::/"” /: We.m)nwﬂ“
(L2)
and Eq. H.12,
Ty o= ::. Wc—m(nmwvﬂdﬁ
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emiwzo/Ves oo \gmiwmi\/Ves

e G

(1.3)

In the case of u; > 0.0, these equations are integrated by parts first, and then
Jordan's (1976) approximation is applied to Eq. 4.17. The approximate solutions

for these integrals are as follows:

T = T #iT (1.4)
where
0
T = n ) (ancee™) / (ch + (w/ Vo)),
=
(1.5)
(1.6)
Ty = Ty tils, (L7)
where
T o= 1 __1_(%),'2" ancae™™M (L3)
T (TR T 3 Ve G (wfVae)r ’
I = -2 (1-
E 178 (1+a3)2)”
Lﬂ-’! 10 anz—:nux .
5 L T T v (19
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Ty = To +iTy, (L10)
where
1 u 18 anepeem
B= 5 (1 T +u*)‘/') oL T+ W
18 guemtnm wri wriy,
e 2 T o (e = )
2o + 1)}, (L11)
pe _ wry dnGAC"“‘ Jo dncuc"u‘
o= R et S A
[P+ e 0@ =GR @)

When % < 0.0, the power of the exponential in Jordan's (1976) approxima-
tion becomes positive, hence the integrations involved in Tj, T3, T5 will diverge.
‘Therefore, further treatment of the formulation of these integrals is necessary. This
treatment is to change the limits of the integrals (see Lan (1979)). Numerical results

of these integrals in the case of u; < 0.0 are listed as follows:

Ty = T +il, (L13)
where
Ty = i {cos(wry/Vaotty)  Tiri = sin (wry/Viotts) « Thii} (L14)
Tii = ri{sin(wri/Veowr) Tiri + cos (wri/Veot1) - This}, (L.15)
u,.c,.e""l
Tiri = cos(wri/Veo Iml)EWusm(m/v foltt]) /(@r1 Vo)
ape=colul

—(wr1/Vio) sin (wr1,/ Vo |ta]) E AT VO

(L16)



w©
T = =2en/Ve) Yo ey + 201 = cos(m/Valua)
0 g ecnlnl
+wri/ Vi) cos (wri/ Vialm]) E T @y
10 gcae=cll
+sin(wn/leunl)§‘ 4 (Ve
(L17)
Ty = Totily (-18)
where
T = %(m(uy‘/lfmu,)ﬂ‘h-sin(wr./Vmux)'T'n)v (1.19)
1
Ty = %(cos(ur:/vm'l\)'Tn+!il‘(“"’l/vm“l)‘T‘h)' (120)
il
P
Toa = cos(wri/Vao|t]) [“+un)zn (wr/Veo)? Zc'm
e=enlul
+sin (wri/Vie |u||)[(WT1/V ? Em
~(wri/Var) (x + (Tﬁz)T’)]
(L.21)

10 a
Ty = 2wr/Veo) [(wrx/ V.)’§ oy ey 1]
B 10 g emcnlul
—cos w1/ Violur]) [(wr-/ Vol & a oV

—(wre/Ver) (1 + “+—"u‘g).—,,)]

+ sin (wr1 / Vi |us]) [

1 10 g, ceemenlul ]
T~ (w./v,,)’"); Tt twr V)

(1.22)
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Fo = To il 2

Ty = 2 feos (Vo) - T = s (s Vo) (T = 257 B)}, (120

Ty = ;17 {sin (wri/Vaor) + Taa + cos (wr/ Vo)) (Tﬂb - 2%5")}1 =)

N =il
B = o (wr|/Vee|“I|){|“‘| ( (l+uz)1/2) +§ 2+ (wri/ Vot
+(wr Vo )? Z

e~enlur]
enur|
— Z(J"W} fenfjson il
10 apecnlul
{[Z T+ e iy (- i)
pY (Eg_+(m,/vw)’J’

(1.26)
T = dn (wr./Vm|“'“{|"’| (l - (—ﬁ':‘?)ﬁ) .gx C":‘C(:'-‘/ I:l)z
o/ Vao)? Z %
—2(wri/Veo)? ;I %}
oV osor Vel {1 + ) 35

Be = Ko(wri/Veo), 05
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the modified Bessel function of zero order (see Lan(1979). D'y reference to Abramowitz
et al. (1970,pp.378 — 379), the result of this function c.~ be obtained by the use of

polynomial approximations.



Appendix J

Mathematical Formulation of the
Leading-edge Suction Force,
Mean Total Thrust Coefficient
and Propulsive Efficiency

A: Equations for calculating leading-edge suction force
Similar to the equations in the two dimensional case, Lan (1979) defined a
leading-edge singularity parameter C, as
C, = zl!_.n;, 2u(z)|(z — 1)/ /2, J.1)

where z; is the location of leading-edge vortex strip, u(z) is the velocity on the wing

in x-direction. The singularity term in the d h formula is W, in Appendix D

because W, has a Cauchy singularity when 8 = ¢'. Let
i 2(=)D(6)

L N er e ey e

3:2)
and note

(@ —2)/(y2—y) = (za—zu)/(y2— 1) =tan Ay

(@i —an)/(yi—p) = (z2—2zn)/(2—p) =tan A

128
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where the subscript ! denotes the values at leading edge, A, is the leading edge sweep
angle, the value of D(0)/(y2 — y1) when 0 tends to zero is

lim D(6)/(y2 ~ y1) = 2ftan® Ay + 1] (J:3)
It follows that the leading-edge suction parameter C, can be obtained by solving
the following equation:

NCyftan A+ 1]2 = T T AC, [% + %] = W(aym). (J.4)
“ Hawm)

Since the wing is in harmonic motion, the mean sectional suction parameter Cyp

should be the real part of C,e™" after the time average as
G = 5(CL +C3), 5)

where C,, and Cy; are the real and imaginary parts of C, respectively. The mean
sectional leading-edge thrust coefficient therefore is C; = 7Cym(2cos A;). Once C, is

known, the total mean leading-edge thrust coefficient Cy is known (see Lan (1974)).

B: Mean total thrust coefficient calculation and p i fici

formulation
The thrust coefficient is contributed by two parts: the mean leading-edge thrust
coefficient Cyy and the lift vector, L& (Lan (1979)). The sectional lift vector compo-

nent can be calculated by following Lan (1979) as

- geR.[Ci, Je*'| Rela(y)e®m e dy, (1.6)
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where q is dynamic pressure, ¢ is local chord length, Re is the real part, C is sectional
complex lifting coefficient. Applying Eq. 2.7, the mean value of Eq. J.6 over one

cycle can be written as
~qc} {Ci(y) Relaly)e =)
Cii()Inla(y)e =]} dy, [t&)

where Ciy(y) and Ci(y) are the real part and imaginary part of the complex sectional

lifting coefficient. Therefo:., the mean total thrust is

T = CySu
9 S.,,q{(:'n - 55 [ [C Raty)et®nr)
+ Culy)Inla(y)e @] c(y)dy} - (38)

Similarly, the input power consisting of —Lh (k is positive downward), the lift

production, and M&, the moment production, can be written as
IP = Lh-M&
43 iwt) 3 it
0 [ G Refitshly)ely)dy

=4 f:; Re[Ca(y)e™] Reliwa(y)ee "] (y)dy. 39

Applying Fourier synthesis in Eq. 2.7, the mean value of Eq. J.9 can be determined

s
P = L [" hwc
1P = 4o [ h)Cicty)dy

/:/7 [Cails) Relal)e =] = Cone (1) ey} ®]| () ey,
(3.10)
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which is Eq. 2.31 of Lan (1979).
The propulsive efficiency is determined by

n=T-Vye/IP. (J.11)



Appendix K
The Program Listing

‘The program for a rectangular wmﬁ of aspect ratio eight in unsteady motion is listed
as forows 1t is quite easy to use this program: choose the oscillating parameters as
indicated in Chapter 5; set appropriate N; and N,; determine N;, wExch is from the
wing's offsets record. For symmetrical wing, only (Ni/2 4 1) points of each curve
(on the leading edge and the trailing edge) need to be input. The input geometrical
values in the following program are of a rectangula- wing. If the curves of the wing
cannot be expressed by one or two simple functions, but it is symetrical, delete the
‘doloop’ 255 and input the values of the two curves at (NV;/2+ 1) points; if the wing
is asymmetrical,delete both doloops 255 and 256, and input the values at all points
on the curves; if the wing is non-pl anar, delete the doloop 257, and input the z value
at each control point. When running the program at larger N, and N,, long CPU
times are expected.

T

A
Al
C

E
COTR(M2) THE CHORD LENGTH AT CONTROL POINTS
CSTRIP(M2) THE CHORD LENGTH AT VORTEX STRIPS

A \VER, CHORD

ey o HEOH

XLCOTR(M2) THE DISTANCE FROM Y-AXIS TO THE LEADING EDGE
XLSTRIP(M2) THE DISTANCE FROM Y-AXIS TO THE LEADING EDGE
DELTP(NC HZ) NDNDIHENSIDHAL VORTEX DENSITY REFERRED TO LOCAL
CHORD TREAM_VELOC:

AND _F!
GLOtHa) " SECTTONAL, LIFTING  COBFFICIENT
CL(M2M1) TOTAL LIFTING COEF
GHLH2)” SECTEONAL PY1CHING OMENT COEFFICIENT
CH(M2M1) TOTAL PITCHING MOMENT COEFFICIENT
CIL(#2)" SECTIONAL LEADLIG-EDGE THRUST COEFFICIENT
CT(M2)" TOTAL LEADING-EDGE THRUST COEFFICI
THETKN(NC ‘CHORDWISE LOCATION OF THE VORTICES
THETKI (NG, ORDWISE (X-COORDINATE) LOCATION OF CONTROL POINT
THETMJ (M2, SPANWISE (Y-COORDINATE) LOCATIONS OF VORTEX STRIPS

EEE R KR AR A RN AR R RIS X HNRNE
*

132
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THETMI (M2, SPANWISE (Y-COORDINATE) LOCATIONS OF CONTROL POINTS
ﬂ:FﬂiRm o L B AHAC H RiSHE

*
*
*
*
* CLS(M2) SBCTIDIAL LEABI G EDGE SUCT!

* CTS(M2) SECTIONAL LEADING EDGE SVCTION THRU?I’ COEFFICIENT
: NI NUMBER OF GIVEN GEO

*

*

NIP1 NUMBER OF GIVEN G} INTERPDLATIDN

3 AIRECTA. F35, EROGRA 50" qabu HELERRES A5PORMAMEG SARACTRRIST IS

IMPLICIT REAL*8(A-H,0-Z)
PARAMETER (NC=3 ,MI=5,MII=5,M2=MI+MII NI=40)
PARAMETER (M2M1=42-1,NIP1=NI+1,NID2=NI/2,NID2P1=NID2+1)
PARAHETER (N=NC#M2M1 ,NP1=N+1,NCP1=NC#+1)
TER (NID2P2=NID2+2)
Dxm-:usmu ccu'm(nz) CSTRIP(M2) ,XLCOTR(M2) ,XLSTP(2) ,
ETKN m:) 'mmu(nc JXIK(NC) ,XI (NCP1,M2) ,PHI (M2)
DIMEISIIJ)I X1K(NC,M2) , X2K(NC ,M2) , YI(M2) , YT (M2) , DSINKN(NC} ,
nsmnnnz) ALPHAS(H2)
mm:xsmu THETMJ (M2) , THETHI (M2) ,C (nz) CTSA (M2) ,CTA(H2)
DIMENSION YII(M2), u(mm) BI(M3M1,3),22(NC,M2),
M1), LPHSE(HC
Dxnsusmn w(nxm) xxx(um), 2(NIP1),
1), H(um) DY(NIP1) ,E(NIPL)
DIHBISIDN Y(NIP1) T(H!) F(H2),
9 XI1(M2) xn(nz) xn(uz) uz(m) .S (NIP1)

CDHPLEK'B T1iE,T2,T3E,PW2,61, G?.Iﬂ, 3,T1 1, EPS,
T32 DPHIZ DP’HI WXY(NCP1,M2) ,. DZLTP(HC 42),V.
l AA(IC M2, )IC Hls A(H, NPls SUHI(H2 NC HZ) CLS(HZ)
13 CLL (M3, NC) ,CHL(M2 IPH,
l CDI (M2),CDII, CDCL CDCD

CTS (M2) ,CT (M2) ,CL (M2) ,CM(M2)

zxmu TiE,T2,T3E PH2, 61,62 W23 T T, T,
mn’t Dbiiss, DPHEL  DPHT
opal(mm'-7 qu-:s'vuuv air’ s‘m'us ummw )
* INPUT DATA: THE VALUES OF WING SHAPE CURVES
B=6.0
B0=0. 75‘§§;§ 75250
PI=3.141 2
=B/2.0

nst-n/nunn(m)
DO 49 IMM=1,NIP1
Yv(:m)=(xm-1).nun-am
pd” 2§E'ﬂ¥" ,NID2P1

Col TIHUE
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DO 256 KIJ=NID2P2,NIP1

22(1,1)=0.0
257 CONTINUE
CR=DABS (XX1 (NID2P1)-XX2 (NID2P1))

CALL GEOR(NC, ML MIL, N2 M2Ki PLNINIPL, VY XKL X
¥ RIP,XLCOTR, XLSTP, V], YI NID2, Ninzpi, B,CCOTR,
b ALPEAS ‘S5.H DY, THETH)  THETHI | SPLINEF, 1,7, T,
# F2,XI1, XIZ XJl XJ2,S, SHI. SW2)

SW=SW2-SW1
CA=SW/B

D2=B/2.0
SR=SW/(CA*CA)

CALCULATION OF CHORDWISE ANGLER CONTROL POINTS AND VORTEX LOCATIONS

0 20
'{HE‘EK (lé) (2 D‘DIELUAT(K) 1)?}*?1/(2 .0*xDFLOAT(NC))
THETKI(K)‘DFLUAT(K)!PI/DFLDAT(NC)

* CHORDWISE CONTROL PDINTS XI(NC,M2) ,VORTEX LOCATIONS
. XlK()lC H2) ,X2K (NC,42)

1130 I=1,NC
DD 1130 J-i M2M1

)‘{I(I J3)=XLCOTR(J) +CCOTR (J)*(1.0-DCOS (THETKI(I)))/2.0
X1K(L ,3)=XLSTP(J) +CSTRIP (J)*XIK(I)
§2K(I,J)=XLSTP(J+1)4CSTR1P(JM)nxn((r)
DXDYE=(X2K(T,)-X1K(I, 3))/(Y3(1+1)-YI(1))

ALPHSE(I, 1) =DATAN (DXDYE)

088810 1-NIRVE

XI(NCP1,I)=XLCOTR(I)

3210 CONTINUE
PHIPH=PI/2.0

WRITE(7,290) NC,M2M1,B,ASR,SW,CA,BR,B0,CR,HEAV , PHIPH

290 'FORMAT(SX,’NUMBER OF CHORDWISE CONTROL POINT NC=?,14,//,
sX,’ OF SPANWISE cuN‘muL POINT Ns=,14,//,

56X, THE LENGTH OF THE SPAN F R

s e
o
=
=32
msH
]
=
@0
S2
)
o

ENCE L GTH !,F9
5X 'PITCHING AXIS PUSITIDH BO".FS s,//,



» X, ’ROOT_CHORD LENGTH CR=’,F9.5,//,
: 5X, AMPLITUDE OF WING HEAV=’,F!
5X, 'PHASE ANGLE (PITCH LEADS HEAVE) PHIPH=’,F9.5,//)
mTE(7 5820)
5azo'mm'r(x ’RED-FRE k~ ,x,’PR-EF eta’,x,’PR~THR Ct’,

t
’ABC‘CLlClI’ )( 'FEAT-F theta )

azz==a==
D0 1 LFE=1,2
FEATHP=(DFLOAT(LFE)-1.0)*0.4
DO 2 LRFK=1,10
RFK=DFLOAT (LRFK)*0.2
OMOV=RFK/BR
ALPHAR=HEAV*OMOVX*FEATHP
* MATRIX CALCULATION: II,JJ, DELTP(II,JJ)’S LOCATIONS IN X AND Y
* DIRECTIONS.KI,KJ THE VORTEX STRIP LOCATIONS IN X AND Y DIRECTIONS

ANGL=PHIPH-PI
VAB=(DCUSRANGL)+(O .0,1.0) *DSIN(ANGL))

il )=

WY (II, J.v)-—(o 0,1.0)*OMOVSHEAV-VAR=(0.0,1.0)*VAR
# *0OMOV* (XI(11,J3))

541 CONTINUE

DO 80 Ki=t, M2kl

D0
Do 80 .U=1 MZHl
DU 80 KI=1,N(

xzx1=x2K(KI KJ) X1K(KI,KJ)
52x1=xzx(x1 KJ)-XI(II,3J)
KIXI=X1K(KI,KI)-XI(II,13)
T2Y1=YI(KI+1) =Y (KI)
Y2YI=YI(KI+1)-YI(JT)
VIYI=YJ(KI)-YI(J])
2=22(11,33)

IFEOHGV‘LE.LOE-N)THEN
AA(II,1],KI,K])=DPHI1(Z,X2K1,X2XT ,X1XI,Y2Y1,Y2YT, Y1YI,PI)
# *CCOTR(KJ) *DSIN(THETKN(KT) 3/ (16 OXDFLOAT (HC))

ELSE
AA(IT, 33, KT, KD=DPHL(Z, K2XL XIXI X2XI, Y2Y1,Y2YI, YY1, OMOV, P,
a f 1-: T2,T3E,PH2,W2,W3,61,62,T11,T12,731,

ATOX, DPHI1,DPHI2)
s ‘CCDTR(KJ)tDSIll(THErKN(KU)/ (16.0*DFLOAT (NC))

NI
EBB iF CONTINUE

DO 901 II=1i,NC
D0 901 JJ=1,M2M1
D0 901 KI=1,NC
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DO 901 KJ=1,M2M1

IC —II+(JJ 1) *NC
ID=KI+(KJ-1)*NC
A(IC ID)-AA(II JJ KI,KJ)

DO 542 I- N
DO 542 J=1M2M1

KIJ=I+(J-1)#NC

* KIJ=J+(I=1)*M2M1
ACKIY NPi)‘HXY(I ]
542 CON’

CALL G.\USS(N.“Pi,A,EPS)
DO 33 I=1,NC

DO 33 J= 1 H2H1
KM—I+§

DELTP(I, J) A(KH NP1)

‘SECTIUNAL LEADING EDGE THRUST COEFFICIENT (CTS) COMPUTATION

DO 85 KJ=1,M2M1
DO 85 Ji-1iMaki
D0 85 KI=1,NC
§2x1—x2K(KI KJ)-X1K(KI,KJ)
X2XI=X2K(KI,KJ)-XLCOTR(JJ)
X1XI=X1K (KI,K3)-XLCOTR(3J)
Y2Y1=YJ(KI+1)-YI(KJ)
Y2YI=YJ(RI+1)-YI(I)
YIYI=YI(KD)-YIQID)
2=22(1,1)
SUMI(JJ,KI, KJ)=DELTP(KI KI)*
(z xzx1 XIXIX2XL Yoyt Y2V, YlYI OMOV,PI,
.61,62,T11,T13,T

T32 ATUX Dkt DPHIZ)
GCOTR (k1) #DSIN(THETKN(KI) ) / (16 . O¥DFLOAT (NC))
85 CONTINUE

DO 86 JJ=1,M2M1
Dl] 87 KJ=1, H?Hl
87 KI=2

SUHI(JJ I(I KJ)=SUHI(JJ KI-1,KJ)+SUMI(JJ,KI,KJ)

wunn

DD 88 KJ=1 H2H1

SUHI(JJ NC,KJ)=SUMI(JJ,NC,KJ-1)+SUMI(JJ,NC,KJ)
8 ' CONTINUE



‘BS CONTINUE

DO 190 JJ=1,M2M1
CLS(3J)=(SUMI (11 ,NC,M2M1) -WXY (NCP1,1J))/
# (DFLOAT(NC) * ((DTAN(ALPHAS (33)))%#2.0+1.0)%%0.5)
190 CONTINUE o0 oo o
0 550 33=1,HoMt
CLSRE=] REAL(CLS(JJ)
CLSIH-AIHAG(CL 1)
é SRE*CLSRE#CLSIH*CLSIH)/Z o
590 ‘&S

DO 81 JJ=1,M2M1
CTSA(JJ)=PI*C2‘SJ(JJ)/(2A0*DCOS(ALPHAS ann

b330t s =1, M2M
CTS(JJ)=PI*(CLS(JJ)*CLS(JJ))/(2.0+DCOS(ALPHAS(1J)))
391 CONTINUE

*SECTIONAL PITCHING MOMENT AND LIFT COEFFICIENTS COMPUTATION
DO 41 I=1,M2M1

DSINKN(l)-DSINETHE’rKN(I))
CLL(I,1)=DELTP(1,I)*DSINKN(1)*PI/(DFLOAT(NC)*2,0)
CML(I,1)=-DELTP(i,I) *DSIN(THETKN(1) ) * (XLCOTR(T

56 31 !t +ccu'm(1)~x1x(1))wPI/(DFLuAT(nc)tcmz 0)

5 K=2,
SINKN(K)HDSI“(THETKN(K )
CLL(T,K)=CLL(I,K-1)+DELTP(K,I)*DSINKN(K)*PI/(DFLOAT(NC)*2.0)
CML(I K)-<DELTP(K I)tDSIN(THﬁKN(K))*(XLCDTﬂ( )
+CCOTR(I)*XIK(K))*PI/(DFLOAT(NC)*CA*2.0)+CML(I ,K-1)
T COVTHUEE

*TOTAL P NG MOMENT (CM), LEADING EDGE THRUST (CT) AND LIFT (CL)
*CUEFFICINTS CUHPUTATIE

DO 78 J.Y=1,IIC

CM(KK)=0.0
CT KK; =0.0
CL{KK)=0.0
CONTINUE

DSINMIEI)—DSIN(THEA‘MI(I

L(1)=(PI*B*CLL (1 nc)*ccumu)‘osmm
CT(1)=(PI*B*CTS(1}*CCOTR(1)*DSINMI(1)
CTA(1)= (PI‘B*CTSA(I)*CCUTB(1)*DSINH 1(
cn(i, (PI*B¥CML (1,NC) *CCOTR (1) *DSINMI

(2 0+SWHDFLOAT (M2) )

(1))/(2.0%SW*DFLOAT(M2))

)/ (2, 0%SW+DFLOAT (M2) )

1);/5 . O*SW*DFLOAT (M2))

1)

Bo 135 I

DSINH:{EI) Dsm('mmu 1))

CL(I)* (PI*Bxcr.é&Ing:ccum(r)wsmm(x))/(2.o‘sw:nFLuAT(m)))
+CL(1-

CT(I)= (PI*B*CTS(I)*CCOTR(I)*DSINMI(I))/(2.0%SH+DFLOAT(M2))
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* 001'21-1)
CTA(I)=(PItBtCTSA E)tCCDTR(I)tDSINMI(I))/(Z.0:5H~DFLOAT(M2))

CM(I) cn(r 1)4(PItB*CML(I HC)*CCUTR(I)‘DSINHI(I))/
(2. 0*SWADFLOAT (M2))

CONTINUE

EIPH DCBS(A}({GL)‘(D .0,1.0)*DSIN(ANGL)
EIPH)
EIPHIH—AIHA&(EIPH)

CLLRE=REAL(CLL(I,NC))

CLLIM=AIMAG (CLL(I NC))

CMLRE=REAL (CML (I NC) )

CMLIM=AIMAG (CHL(I NC))

PT=PT+ (ALPHAR‘PIEB/ (4. gtDFLDAT (HZ) ) thDTl)i(I )*DSIN(THETMI(I))

# *(
PP=] PP+0HOV¢((B:PI/(4 OeDFLOAT Hi%)
EAVHCLLIwCC TR(I) *DSIN(THETMI(I))
P1/(4.0*DFLOAT (M2)) ) *ALPHAR*CCOTR (1) *CCOTR(I)
* cMLImEIPH RE-CMLRE*EIPHIM)*DSIN(THETMI(I)))
739 EonTruE
0Q/SW

8
5

g'ﬁ

2

* HRH‘E(G 160) CL(M2M1) ,CM(M2M1) ,CTA(M2M1) ,CT(M2M1)
* 160 RMAT(///, 2)( 'CL(TUTAL)"' 2F14.9,’i’,/
2 (TUTAL)",ZFH 9,’1‘ /
S 22X, CTA( O0TAL)=’,F14.9,
# /,2X, ’CT(TOTAL)—' 21-‘14 9 ’1',//))

*
*
X
« WRITE(6,771) PT,PP,10Q,PQV,PROE,

* 771 FORMAT (4X, 'THE LIFT VECT(]R CUHPOIIEIIT PT(LA)",F14 9,/,
* * PP=’,F14.7,/,
*
*
*

¥ ’ PROPULSIVE THRUST TDQ— ,F14.9,/,
# ' INPUT POWER PQV=
# *  PROPULSIVE EFFICIEIIC‘{ PRUE(ZEI'A)—’ Fi4.9,
* # ' __CCIT =’,F14.9)
CTOK2=CCTT/ (RFK'RFK;
cuas=cms(c1.<uzm)
CTL=CTA!
cuxz-m./(m«m)
XA=BSTAR¥CO

WRITE(7,582) RFK,PROE,CCTT,CTL,CLABS,FEATHP



582 FORMAT(x,F9. SxFQS);FQ .5,X,F9.5,X,
3 GONTINGE

CLDSE (UNIT=7)

B
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*SUBROUTINE GAUSS IS LINEAR SYSTEM SOLVER

SUE‘DUTINE GAUSS(N, Nl A EPS)
IMPLICIT REAL*8(A-H,0:
SUMPLEX*E A(N,N1),T

DQ B0 k=18

BE*E50:2

IF(BMAX-CABS(A(I K))) 10, 20, 20
o EMAX-CAHS(A(I K))

coN
F Eamx o EPS) STP 7777
L-EQK) G
T= A(L,J)
A(L,3)=A(K, 1)

25 A(K,J)=T
| T=LO/AKK)
J=K1,N1

A(I 1)=A(T,1)-A(T,K)*A(K, J)
50 CQKT£NUE
DO 60

ég!éu

0 J=I1,N
60 A(I,N1)=A(1,N1)-A(I,J)tA(J,Ni)
BRFURN

*SUBROUTINE LAQ IS USED FOR THE 3-POINT PARABOLIC INTERPOLATION

§UBRUUTINE LAQ(N,L,X,A,B,YA)
MPLICIT REAL*8(A-H,0-2)
DIMENSION A(N),B(N,L),YA(L)

610

IF(X LE A(I+1)) GO TO 20

F(I EQ.1) GO TO 30
IF(X A(I) .GE.A(I+1)-X) GO TO 30

30 At=A(D)
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Azgt(x ~A3)/((A1-A2)*(A1-A3))
v=§x AL Ex Aa;/ AZ-MglEAZ-AS))
We (AL % (X-A2 7({A3-A1)#(A3-A2))

4OU}Y‘G(J);U‘E(I,J)HI‘B(IA,J)+H'B(l+2,.|)

SUBROUTINE GEOR(NC MI,MII,M2,M2M1,PI,NI,NIP1,YY,XX1,XX2,
# IP XLCOTR XLSTP YJ YI NID2 NIDZPI.#E CCUTR.

CSTH
#  ALPHAS,S2,H,DY,E, THETMJ, THETNT, SPLINE, F,F1,Y,T,
#  F2,XI1,XI2,XJ1,XJ2,8, sm SH2)
IMPLICIT REAL*B(A-H,0-2)
DIMENSION CCOTR(M2),CSTRIP(M2),XLCOTR(H2), XLs'rP(m)
DIHENSIDN YI(M2), u(uz) Y‘{(NIP!) xxz(nm). 2(NIP1),
HAS (M2) ,S2(NIP1) ,H(NIP1), DY(NIPi) E(NIPi)

DIHENSIUN THETHJ(MZ) THETHI(MZ) Y(NIPL),T(M2) F(M2) ,F1(M2

2) ,XI1(M2) ;K12 (M2) ;X 31 (3) , XI2(M2) , S (NIP1)
X GEOHETR‘{ PARAMETERS

* SPANHISE VORTEX STRIP LOCATION THETMJ(M2) AND YJ(M2),
ED 20 35 H}“OL FUINTS THETMI(M2),YI(M2)

THETMI(Y DFLOAT(J)*P1/DFLOAT(MI)
THETMI (J AT(D)-1. o)wI/;z Q+DFLOAT(MI))
YIEJ)=

=(2, 0*#DFL
302343 0-DC0S CTUETHT 5 ;g;
YI(3)= nge 159-DCOS(THETMI (1)) /2. 0502
nﬂ 50 JJ=
J=1J4MI
THETMI(J)=] m-‘LuAT(JJ)w:/m-‘x.un(mx}
1(1=C2, oawﬁongu) 1. 0):?1;(2 . 0+DFLOAT(MII))

=(BD2,
=(BD2)*(1.0-DCOS:
CONTINUE

THETHJE gg)/! 0

1 ITINUE
CALL SPLN("IPI M2,0,YY,Y,T,F,Fi,F2,SUM,S2,H,DY,E,S)
XIi(I)'F%I)

sht-SHi- V"

DO 53 I=1,NIP1
Y(I)=xx2(1)

53 CONTINUE
CALL SPLN(NIPi M2,0,YY,Y,T,F,F1,F2,SUM,S2,H,DY,E,S)
XIZ(I)-F(I)




X

DO 55 I=1,42
T(D=Y3(1}
85’ CONTINUE
D0 56 I=1,NIPL
Y{D=xx ()
6 CONTINUE
GALL SPLN(NIP1,M2,0,YY,Y,T,F,F1,F2,50M,52,H,DY,,E,S)
D0 521 I=1,M2

XJl (I)=F(I)
SRTSsOR e

ED 57 I=1,NIP1

'{él)'XXZﬁI{LE

CALL SPLN(NIP1,M2,0,YY,Y,T,F,F1,F2,SUM,S2,H,DY,E,S)
DO 58 I=1,M2

X.ﬂ(l =F(I)
TR

DD 60 I=1,M2
;Lcm(r)-xn(z)
XLSTP(I)=XJ1(1)
CCOTR(I)=XI2(1)-XI1(D)
CSTRIP(I)=XJ2(I)-XJ1(I)
60 CONTINUE

*
Dﬂ 411 I=1,M2M1

nmn-sxn(xu) x.‘l(l))/(”(lﬂ)-YJ(l))
ALPHAS(I)=DATAN(D;

ONTINUE

SUBROUTINE SPLN(N,M, K!I X,Y,T,F,F1,F2,SUM,S2,H,DY,E,S)
IMPLICIT REAL#8(A-
DIMENSION X0 ,Y(), 52(") JH(N) ,DY(N) ,E(N) ,S(N),

i * T(M) ,F(M) ,F1(M) ,F2(M)
I,
1o Evfn 2 v mm

S!H-O



20
20 52 I)=s o~(n‘{(I) -DY(I-1))
2=0, 5/E (1) H(2))

EEI =52 2 ;IZ
z-x o/(zsot(H(}!{)*H(Iﬂ))m(l)-s(x 1))
30 E(D) (83 (141 U HE(T-1)) %2
gan=Ewz)
2,n2
‘40 sz(I)-S(I -1)#52(1+)4E(T-1)
DO 50 I
so S(I) (52(I+1) $2(1))/H(T)

1
§5 ¥t Lex@) coro 58

=141

070 55

58 H1=T(J)-X(K)
e 2T XD
H éxgmus(x)
%?(52 I +52(K)4H4§/6.0
IF (KN, :-: .1.0R.KN.EQ.3) GOTO 60
Fx(.l;-nv K)+2 (H1+H2) +H3+S (K) /6.0
2(J)=H4

60 CONTINUE

IFCK.EQ. L. OR. KN EQ. 2) GOTO 80

D0 70 I=1,N1

70 suH-sUHoo 5:(H(I)*(‘I(I)+‘IEI»1B)
-H(I)#*3%(52(1)+52(1+1))/24.0

*80 RETUEND
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FUNCTIDN DPHI(Z, X2X1 XlXI X2XI1,Y2Y1,Y2YI,Y1YI,OMOV,PI,
T3E PW2, H2 HS G1, GZ T11 Ti2 1'31,
T32 ATDX DPHIl DPHI?)
IHPLICIT REAL*8(A-H,0-2)
EXTERNAL T1E,T2,T3E, Pg% géﬁGg gi ,W3,T11,T12,
CDHPLEX!E T1E,T2, TSETgHQ ,G1, GZ VZ HS T11,T12,

2, bPHI , DPHT:
IF, (anv LE.1.0E-3)TH]
DPHI=DPHI1(Z, xzxx xzxt X1XI,Y2Y1,Y2YI,Y1YI,PI)

DPHI'DPHII(Z X2X1,X2XI,X1XI,Y2Y1,Y2YI,Y1YI,PI)
DPHIZ(Z XZXi XlXI XZXI Y2Y1 ‘{2‘{1 Y1YI,OMOV,PI,
EE? ﬂ‘; TIiE, T2 T3E,PH2, H2 W3,G1, 62 Ti1,T12, T31 82 ,ATOX)
Ul




END
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Fuucrmu DPHI2(Z,X2X1,X1XI,X2XI,Y2Y1,Y2YI, Y1YI,QMOV,PT

u:.'rz T3E,PH2,W2,W3,G1,02,T11,T12,T31,T32,ATOX)
INPLICIT REALSS(ALH. 0-7)
COMPLEX+8 T1E,T2, T3, PH2,G1,G2,W2, W3, T11,T12,T31,T32, DPHI2,

P00,POS PiO PWO G105 G110, 6200 5205 0210

AP, BP,CP,AGH,BG1,CG1,AG2,BG2, 662
EXTERN AL ‘hE PR RN 62 W3,W3,T11,T12,T31,T32
XY=X2X1/
X000=: 3)(
xoos=-x1x: xzxx/z 0

{Bifest e,

IF(DABS(YETAOS) LE. 1 OE-08) THEN

e

Y1YI-Y2Y1
RIODB ABS (YETAOO)

Poo-yuzgamo uxou OMOV, YETAOO, XY, T1E, T3E)
6100=G1(R100,U100,0MOV, YETAOO, XY, T3E, X000)
6200=G2(R100,U100,0MOV, YETAQO, XY ,
P05=PW2(R105,U105,0MOV, YETAO5, XY, T1E, T3E)
6105=G1(R105,U105,0MOV, YETAOS, XY, TSE X005)
6205=G2(R105,U105,0MOV, YETAO5, XY
P10=PW2(R110,U110,0MOV, YETA10, XY, ms T3E)
6110=G1(R110,U110,0M0V, YETA10, XY, T3E, X010)
6210=G2(R110,U110,0MOV JYETA10,XY,T2)
AP=2 0%(P10-2, 0¥PO5+P00)
LQ¥P05-P10-3. 0%P00

.0%(G110-2,0%G105+G100)

+G105-G110-3.0%G100

401 G210-2.0%G205+G200)
1%G205-G210-3.0%G200

IF(DABSEZ) .LE.1,0E-10) THE!
0.0,1.0)*0MOV*(-~ (Y2‘{1»v1‘1 *

DPHI2=- 1)
T12(X2XI,Y2YI,0MOV, T1E) / ((Y2Y14Y1YI) #%2.0)
n +Y1YI#T1 (X1XT,Y1Y1,0M0V, TAE) / (YAYT#Y1YI)
# +W2(Z,Y2Y1,Y2Y1,Y1YT, AP, BP ,CP))

ELSE
DPHI2=-(0.0,1. 0)*0HDV¢( (Y2Y1+Y1YI) *

T12(X2XI,Y2YI,0MOV,T1E) / ((Y2Y1+4Y1YI)*%2.0+Z*Z)
+Y1YI!T11(X1XI YiVI OMOV, T1E)/ (Y1YI#Y1YI+Z4Z)
+DATAN( (YT{HYIYI)/Z) 'Z‘TSZ(XZXI ,Y2YI,0MOV, T3E)
~DATAN(Y1YI/Z)*Z*T31(X1XI,Y1YI,OMOV,T3E)

wmun



* +W2(Z,Y2Y1,Y2YI,Y1YI,AP,BP,CP)
+W3(Z,Y2Y1,Y1YI,Y2YI, AGi BG]. CG1,AG2,BG2,CG2,ATOX))

#xx
FUNCTION W2(Z,Y2Y1,Y2YI,Y1YI,AP,BP,CP)

IMPLICIT REAL*8(A-H,0-Z)

COMPLEX+8 W2, AP, EP,CP

IF(2.LE.1.0E- 103 THEN

W2=APA (0. 8-YIYI/ Y213 BP APAYAYTAVIYL/ (Y2Y14Y2Y1)

# DLDG((YZYI*YT{I)/(YiYI*YIYI))

ELS!
W2=AP* (0. 5-Y1YI/Y2‘{1)4BP*(AP‘Y1‘{D‘{1‘{ /(Y2Y1%Y2Y1)
1YI/Y2Y1+4CP-AP*Z*Z/ (Y ‘{hYZYO *0.5%
# DLUG((Z‘2+Y2YI“{2YI) (Z*Z+Y1YI*Y1YT )
# 2% (BP/Y2Y1-2. 0%AP: Yl‘{l’/j‘{ Y1xY2Y1) ) *
# (DATAN(YZYI/Z)-DATAN(‘{iYI )

ol

Hx
FUNCTION W3(Z,Y2Y1, mz Y2YI,AGL,BG1,CG1,AG2,BG2,CG2 , ATOX)
IMPLICIT REAL¥8(A-

LEX*8 W3,AG1, sm cm AG2,BG2,062
EXTERIML ATOX
IE (2 LE1. 0E-10) THEN

2747,

Y E'ézv *Y2Y.
2y Ty Te
THEHE,
BI=Y1Y1/Z
B2=(Y2YD)/2
2
Hfhn
AB1=DATAN (B1
AB2=DATAN (B2
RLOG=DLOG EZZ#WZ)/(ZZ#YIYIZ))
Wa=(AG142/ (6.00Y2Y12)) (-2 0¥1Y3xAB242. Os 1Y T31AB
22 (Y2V1242. 0aY2VIAYIYT) -Z34RLOG)
+(z/2. o)-(sm/nvl 2. 0%AGI*Y1YT/Y2Y:
YY2+AB2+Y1V12#AB1+Z#Y2Y1-Z2+ (AB2-AB1))
+za(AG1:v1v12/¥2v1z+cc1—Bcnnvx/m
5 YY*AB2+Y1YI*#AB1+(Z/2.0) *RLI
+(AG2#2/ (2. oavmz))t(-mqszwmzusuzwm

AB2-AB1))
+2%(BG2/Y2Y1-2. oqoz«nn/vmz;
~YY*AB2+Y1YT#AB1+(2/2. 0) *RLO g
+z:(AG2tY1Y12/Y2Y12+cc2~aczavm/v2v1

*(ATOX (B1)-ATOX(B2))

#prom




FUNCTION T11(X1XI,Y1YI,OMOV,T1E)
IMPLICIT REAL:B(A- ,0-2)
cnﬁwx sT'r

Yl‘{I)
Ui1=-X01/R11
T11=T1E(Ru U11,0M0V)
Eﬂm

FUNCTION T12(X2XI, yzvx OMOV, T1E)
IMPLICIT REAL*8(A“H,0-2)
cgngﬁx:a Ti2,TiE

R12=DABS(Y2YI)
U12=:

-X02/R12
T12=T1E(R12,U12,0M0V)

ERp

FU]ICTIDN T31(X1XI, YiYI OMOV, T3E)
IMPLICIT REAL‘B(A‘ Z)
CUHPLEX*E T31 T3E

ABS Yl‘{I)
X01/R11
'31=T3E(R11,U11,0MOV)
5

Fkok

=
o=

FUNCTION T32(X2XI YZ‘{I OMOV, T3E)
PLICIT REAL B A-H Z)

COMP] 2, T:
ER

ABS (Y2YI)

X02/R12
T32=T3E(R12,U12,0M0V)
g

FUNCTIDN PW2(R1,U1, DHUV YETA,XY,T1iE,T3E)
IMPLICIT REAL* B(A )

pwz-—vr—:r.m-slz(m U1 uHuV)«(o 0,1.0) *OMOV*XY+T1E(R1, U1, OMOV)
Eﬂm -(1.6-U1/(1.0+UisU1) #x0.5) xxY

FH]ICTIUN G1(R1,U1, DHDV YETA, XY, T3E,X0)
IHPL’I.CIT REAL B(A ,0-2)

EXTERNAL
A=X0*XY/ (R1*R1*R1*(1.0+U1*U1)*x1,5)
G1=A+(0.0,1.0)*OMOV*XY*T3E(R1, U1, 0MOV)
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B

FUIICTION G2(R1,U1,0MOV, YETA,XY,T2)
IMPLICIT REAL*E(AAH 0-2)
COMPLEX*8 T2,G2

EXTERNAL T2

G2=3$‘T2(R1,U1,DHDV)

12
FUNCTION TIE(R1, U1, 0HOV)
IMPLICIT REAL*8(A-H,0
DIMENSTON A(10), c(10), cz(:o)
COMPLEX*8
DATA A/0. oozsovaqs 0.002591528,0.02667074

0.070971,0. 347837 0.5556069,0.7048426,

-0. 7759790 0.07004561,-0.004557519/
DATA /0. 0625,0.125,0.25,0.5,

3.0,4.0,8.0,16.0/
o,

# i.0,2.0,
DATA C2/O 00390625,0.015626,0.0625,0.25,1.0,4.
9.0,16.0,64.0,256.0/
CPCﬂ(O 0, 1 0

gvgéagé Bzl

0.0) GO TO 555

6 (1’6 I=1, 10
CU1=C(I)U:
L(out.GE. Vo 0)THEN

ELSE IF CUl GE.0.0.AND.CU1.LT.1.0E-20) THEN

ECUI!DFJ(P(—CUX)
=C2(I

CHR:
ACE-ACE*A(I) *C(I) ‘ECUi/CHR
Ali‘.=AE*A(I

L.80
= *R 1%,
ié 5 Eé? ory
AUt-DABS (U1)
QVRAU1

cou-ncussnvnug
SOU=DS TN (OVRU!
ACE=0,0
AED-

0T 1 10
cu1-c(
TE(CUL. 35 40. 0)THEN
ELSE ¥ (CU1.GE.0.0.AND.CUL.LT. 1.0E-20) THEN



cuL=1.0
ECUi=DEXP(-CU1)

ACE: ACE*A(I)*C(I)*ECUX/CHR
AE=AE+A I;*ECUI
AS‘AéalAl I)/CWR
T1RI=COU*ACE-OVR*SOU*AE+2.0*SQU/OVR

Tlgl—-Z 0*0¥R¥AS+2 -0%(1.0-COU) /OVR+QVR*COU*AE+SOU*ACE
CGU].=DCDS$0VRU1;

S0U1=DSIN(OVRU1,

T1R=R11ECDHItTlRI-SOUKfl‘ﬂI)
T1I=R1*(SOU1*T1RI+COU1*T1II)

e

FUNCTIDH T2(R1,U1 DMDV)
IMPLICIT REAL*: B(A
DIMENSION A(io) C(lO) C2(10)
COMPLEX*8 T2,C!
DATA A/O 002907543 0. 002591528 0.02667074,
070971,0. 347537 0.5556069,0.7048426,
-D 7769790 0. 07004561 -0. 004557519/
DATA C/O 0625,0.1256,0.25,0. 5,
0,3.0,4.0,8.0,16.0/

1.
DATA 02/0 00390625,0.015625,0. 0625 0. 25,1.0,4.0,
# 9.

0,16.0,64.0,256.0/
CPC=(0.0,1.0)

e
]
3908y
IF(U1.LT.0.0) GO TO 555
feER0y0
DO 16 I=1,10
CUL=C(1)*01
IF(CUi GE.40.0) THEN
ELSE IF CU1.GE.0.0.AND.CU1,LT.1.0E-20) THEN

ECU1=DEXP(-CU1)
END IF
CWR=C2(I)+0VR2
ACE=ACE+A

E: +A (I)*C(I)*ECU1/CWR
AE=AE+A(I)*ECU1/CWR
10 CONTINUI
T2R=1. /g LO*R1*(1,0+4U1%U1)**1.5)-0VR2*ACE/ (3.0*R1)
T2I=(U1/(1.0+U1*U1)%*0.5-1.0)*0MOV/3.0+0VR3*AE/ (3.0*R1)




LE(cUL .GE.40.0) THEN
=0.
ELSE_IF (CU1.GE.0.0. AND. CUL.LT. 1.0E-20) THEN
=1.
ECU1=DEXP(-CU1)
END IF
CHR=C2(D)$0VR2
ACE=ACE+A (1) #C(T) #ECU1/ (CWR*R1)
AE=AE+A(I)*]
l:mmo(umvatmaun(cz(l)-nvnzg-z onc(x)
*R1x(C(I)*U1+1.0))* A(I;
Am-mzzo(z mc(l)tgm:m»(c(x)tvm ) ~(cz(1)-uvnz))

10 JITI
IF(U1.GE.1.0E08) THEN
U1H=0.5/U1

ELSE

%",’%’“ .0-U1/(1.04U1#U1)*%0.5)
T3R=U1H/R1+ACE+AEL
T3I=-0MOV*(AE+AE2)

* a Iﬁ FUNCTION

0 1=1,10
CU1=C(I)*AU1
IF(CU1.GE.40.0) THEN

1=0.
ELSE {FgCUl.GE.O‘O.AHD.CUI.LT.1.0E—2°)THHI
=1.

ECU1=DEXP(-CU1)

CHR=C2(1)40VR2

KCESACESA (1)C (1) ¥ECUL/ (CHR#R1)
ACEZ-ACEZM(I)‘C(I)‘ECUIICHRZ
AE=AE+A(I)*ECU1/CWR
cuE-AcwzﬁaéI)t(czu) OVR2) *ECU1/ (CWR2)

TECAU1GE 1. 0E08) THEN

uu-xEo 5/AU:

uiﬂ-AUh(:.o-AUi/(i.ouunwx)no.s)
\UT=0VR4U1

cou1-ncus§uvnu1

TT=0VR/3.75

9
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QVRU=0VR*AUL
CﬂU=DCUSiﬂVI\Ug
SOU=DSIN(OVRU,
ACE=0,0

A _§.
8 Ist10

CUL=C(T)*A

IF(cut GE. . 0ymHEn

ECU1L
ELSE {Fgcul .GE.0.0.AND.CU1,LT.1.0E~20) THEN

ECU1=DEXP(-CU1)

END

CWR=(

ACE=ACI

AE=AE+,
+

Rt

LA e 1)

+0VR2
1)#C(I)*ECU1/CWR
*ECU1/CWR

ol
S

UE

LO+AUL*AU1)*%1 .5

1/ (1.0+AUL*AUL) #%0.5

23-0VR2*ACE) +50U* (OVR3#AE-OVRU1H)

tnvnc(umqs 1.0)-COU (OVR3+AE-OVR*U1H)
Ux (U23-0VR2*ACE)

T2A=CO!

1=0

1-DCDS§OVRUI
S0U1=DSIN
T2R=(COU1+T2A-SOU1*T2B)/ 3 O‘R!.
T2I= CDUI‘T§§§SDU“T2A /(3.0%R1

g

#=a
FUNCTION T3E(R1,U1,0MOV)
IMPLICIT REAL*8 ( H 0-2)
DI:EHSIDH A(lo) 0(10) c2(10)
DATA A/O 002907543 0. 00259152& 0.02667074,

070971 0. 347837 0.5556069,0.7048426,

=0. 7759790 0. 01004581 -0.0045575 19/
DATA C/O 0625,0.125,0.26,0.5,
0,3.0,4.0,8.0,16.0/

1.0,2.
DATA CZ/O 00390625 0.015625,0. 0625 9. 25,1.0 4.0,
,16.0,64.0,256.0/

CPG-(D 1 0)

éEé TDO)GDTGESS
110

CUl-C(!) tUl



BIX-l.o+3.51§6%gtI§nzg §85853§§‘;§“

i : 5TA o 1ang, o

. T 80007 68+ LT 416040 200456139 Txx12.0

TT=0YR/3.75

BLIS(0. 3385422840, 01326592° TTo# (-1.0)10.00225915xTTe (-2.0)
: -g.o TT#* 0..00! 16251!11‘«% 4.0,

0 +0 02635537*T T
# =0.01647633+TT**(~7.0)+0.00392377+TT**
/ (OVR**0 . 5+DEXP (-OVR)

6.0,
-8.0))

I
IF(0V] 0) THEN
BK--DLDG(DVR/2. )*BIX-0.57721566+0.42278420% (OVR/2.0)**2.0
+0.2306 Ianvggg/lO;**LO*O‘OSQSSQO'EUVR/2.0g”G,O

Pon /2.094+80+0.00010750% (OVR/2 .0} ##10.0
#  +0.00000740%(QVR/2.0)%*12

ELSE
BK=(1,25311414-0.07832358%(2.0/0VR)

# +0.02189568%(2.0/0VR)**2.0-0.01062446%(2.0/0VR) **3.0
# +0.00587872%(2.0/0VR)**4.0-0.00251540% (2.0/0VR) #+5.0
# +0. 2.0/0VR)**6.0)
# / (OVR*x0 , 5+DEXP (OVR) )

END IF

TSB=CUU*(U1H/R1+ACE -AU1*OMDV2¥R1*AE-2. 0*x0MOV2*R1*ACE2) -OMOV
# * (AE+AU1*ACE*R1+ACWE)

TSC“SOU*(UlH/Rl+ACE-AU':OMOVQtRhAE 2. 0*0MOV2+R1*ACE2) +OMOV
# *COU* (AE+AU1*ACE*R1+ACHE

T3R=éCUU1‘T3B-SOU1‘§TBC-24OtOHDVtBK)

T3I=(SQU1*T3B+COU1*(T3C-2.0*0MOV*BK) )

i

UNCTIDN DPHI1(Z,X2X1,X2XI,X1XI,Y2Y1,Y2YI,Y1YI,PI)
PLICIT REAL*8(A-H,0-2)
=- 2x1x~¥1¥1+x1x1:v2n

=YaYTHyaY
S
At

% 8*%

2=~ Y2Yx/(v2v12+22)+(1 0/DSQRT (X2XI24Y2Y12+22))
2‘{1txsz/(Y2Y12+22)+u*(x2xr*x7x1w2¥1tv2‘{1)/

( 2422+ (X2X12+Y2Y12)))

uu:-nvr/(v1v12+zz)+(1 0/DSQRT (X1XI2+Y1Y12+72))
*(YLYIRX1XI/ (Y1YI2+22) +Q* (X1XT#X2X1+Y2Y1%Y1YT) /
(Q2+22% (X2X12+Y2Y12)))

Eggn (W12-W11)

2N

FUNLTIUN ATOX(X)
IMPLICIT REAL*4(A-H,0-2)
A=78157368240. /36106!04126880
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B=859731050640./36108704126880.
25. ./36108704126880.
5759600 /36108704126880.
15 0. /: 704126880 .
4 0. /! 704126880 .
5! ./36 4126880 .
21 ./36 4126880
5546707 ./36108704126880.
19 ./36108704126880.
047815470, /36108704126880 .
975535380 . /36108704126880 .
./36108704126880 .
192! 2./36108704126880.
07615987 . /36108704126880.
/36 04126880.
1. . /361 4126880,
27025./36: 04126880
75./3f 704126880 .
3 75. /. 8704126880 .
59591 : /36 870412 880 .
651918250, /31 126880 .
352685550 /351067041 6880 .
S LT 2.0) THEN

BoOARCoRS 1 2=
N A IR

X226th20+CtX!80DtX16+E*X14+FUX120FtX10#EtXB¢D*XG
C+X4+B*X2+A) *ATAN (X) -G¥X21-H#X19-0#X17-P*X 15-0*X13
-n‘xu S#X9-THX7-UX5-V*X3-W*X)/
(A1#X22+B1#X204+C14X18+D1#X164E1#X14+F 1#X12+F 1 ¥X10+E1#X8
# +D1#X6+C1#X4+B1#X2+A1)
LSE IF(XABS.GE.30000.AND.X.LT.0.0)THEN
TOX=-3,4938319221
LSE IF(XABS.GE,30000.AND.X.GT.0.0)THEN
T0X=3 4938319721




N

O OBROTBLANO H I |

OO

T o-ovororareracerarairy T4

RPNV PP A TP rp b

0000

o]
b

thrust e
coefficient |Ci, and the i thering parameter . The range of the calculation was
0.2~ 2.0, in a steps of 0.2, 6 = 0.0 and 6 = 0.4.

1

1

Pt ey AL

DA ERERE A I NE IR

35

152

B*X2+C*X4+D*X6+E*X J+F*X10+F*X12+E*X14+D*X16

+C*X18+B¥X20+A%X22) *ATAN (1.0/X) -G#X-H¥X3-0*X5-P*X7-Q*X9

-R¥X11-S#X13-THX15-UsX17-V#X19-W¥X21
(A1%X22+B1%X20+C1¥X18+D1#X16+E1#K14+F 1xX12+F 1 xX10+E1%X8
+D1*X6+C1*X4+B1*X2+A1)

An output called “UNQV.OUT" is listed below. Several input data were given
in the output: the number of chordwise control points N, the number of spanwise
control points N, (i.e. MI+ MII - 1), The root chord length C,, the pitching axis
position Bo, phase angle ® = 90°, the amplitude of heave h. The output data listed
in columns are: ll'tl:g reduc‘eddfrequelncy k, the propulsive efficiency 7, the mean total

suction coefficient C'y, The modulus of the lift

NUMBER OF CHORDWISE CONTROL POINT NC= 3
NUMBER OF SPANWISE CONTROL POINT NS= 9
THE LENGTH OF THE SPAN B= 6.000000
ASPECT RATIO ASR= 8.000000

WING AREA SW= 4.500000

AVERAGE CHORD LENGTH CA= 0.750000
REFERENCE LENGTH BR= 0.750000

PITCHING

AXIS POSITION BO= 0.562500

ROOT CHORD LENGTH CR= 0.750000
AMPLITUDE OF WING HEAV= 0.750000
PHASE ANGLE (PITCH LEADS HEAVE) PHIPH= 1.570796

Wl

ABC:

o VR T
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