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methodology for modeling a large scale riser that has been developed using first principal
calculations and a Riser Dynamics Code from the Institute for Ocean Technology. A
detailed description of the parts of the model as well as the assembly process is given
along with the testing procedure and the resulting data. Finally, a summary of
conclusions and recommendations have been included with regard to improving every

aspect of the project, from design to assem y and t¢ ng.



















































the available small scale model VIV prediction tools, then it may be possible to

extrapolate to the real life case. However, if the large scale results are quite different
from the small scale model, then any « rapolation using the small scale model predic
tools may not be correct for the real life situation and further work can be done on the

prediction tools to correct any discrepancice









that the model diameter would become impractically small. The model would to be too
small to instrument and the Reynolds num! r would be very low.

Conducting the tests outside in a field situation allows the riser to be designed at a much
larger scale. However, since the Prototype-DCR is extremely long, when it is scaled to a
realistic model length, 130m in this cz it will yield an outer diameter of only 0.014m.
Instrumentation in this small a diameter riser may be possible, but it is ve , impractical
and would be costly. As well, if testing was conducted at 1.0m/s, the Reynolds number
would be only 1.2 x 10*, which is below the “acceptable” minimum value of 2.0 x 10,
This “acceptable” value was ¢ ermined by consultii  industry leaders in the field of
VIV research and other members « the Memorial University VIV Research Team.

In order to remedy this, a distorted model ¢ 1 be designed that uses different scaling
factors for the lengthand d 1 er. In the paper, “Multi-modal Vortex luced Vibration
Tests on a Flexible Model Riser” [8], Li discuss the important parameters for multi-
modal VIV 1d develop a similarity theory to show that a riser model and its prototype

are s 1ilar. These parameters were used h : to help develop similarity between the

Prototype-DCR and the LS-Model Riser.

3.2.1 Weight per Unit Length and Current Speed

The first two non-dimensional parameters to determine the weight per unit length and

current speed for the L.S-Model Riser were as follows:
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bending stiffness, length, and current speed but also by the railway wheel that was hung
from of the end of the model to ensure the e remained as close as possible to vertical
while it was being towed (See Section 6.3 for an explanation of the test setup). This
complicates the design and the :1 ic non-dimensional parameters may not be a good
indication of the tension the model will actually experience. The non-dimensional
parameters are based on a “perfect” system, where the bend stiffness, current profile and
tension alo;  the riser are constant. In field conditions, it can be assumed that this will
not be the ¢ e and there will  variation in all of the model parameters. Therefore, a
riser analysis program, developed at the In tute for Ocean Technology (I0T) was used
to obtain an estimate of the tension for the LS-Model Riser. This is explained in detail in
Section 3.4 of this thesis

This leaves only the bending stiffness to be determined for the LS-Model Riser. Li also

developed a non-dimensional parameter for this as follows:

e T [k T 5)
pgD’ | | pgD’

k, 1" [407x107]"
[ (0.053 (0.324)
k™ = 4700 Nm?

Where: k,™ =1 ding stiffness of the model (N m*)
k,® =1 ding stiffness of the prototype (N m*)

The actual bending stiffness of the LS — M lel Riser was obtained by completing a
common bending stiffness test where a sec n of the pipe was treated as a cantilever

beam fixed at one end with a force applied to the free end. The deflection was measured
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as the “profile” of the riser. As before, representative graphs for the current speed 1.5m/s
are included in the discussion here with the remaining graphs for the other current speeds
included in Appendix E.

As with the nsion and tensile stress, the position of each segment can also be shown as
a function of time. The profile is determined by the x and z positions of each segment.

The x position for a number of segments can be seen in Figure 10.
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Figure 10: X Position vs. Time Along the Model Length
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Appendix C

Appendix C

Natural Frequency Calculations

This Apper x contains the complete « culations of natural frequency from first
principals. ..is includes two  culations, one including bending stiffness and one
without bending stiffness. The % error for all variations in calculations has also been
included.

Lastly, a comparison of the la : change in :nding stiffness has been included.















Appendix D

Appendix D

IOT Riser Dynamics Code Input Files
This Appen x contains a sample of the input files used in the IOT Riser Dynamics Code.
Three speeds were tested, however, only the input cc ~ - for the top speed w  be included

here, as the only difference in coding would be the current speed.
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Appendix D

%Unit vector n0 in inertial coordinates

% May need to be defined as a function of time.

n0=P0Q0/P0Q0mod;

for k=1:n-1
q0(3*k-2)=alphal PO+k*bbt _.10(1);
q0(3*k-1)=alpha2P0+k*bb0*n0(2);
q0(3*k)=alpha3P0+k*bb0*n0(3  k/2)*( 2*aa0+(k-1)*dd0 );

end

u0=zeros(1,mprime);

for  :mprime
x0(r)=q0(r);
xO(mprin  )=u0(r);

end
%*******************************************************************

% PlOt Of ltlal proﬁle**************************************************

xriserO(1)=alphalPO;
yriser0(1)=alpha2P0;
zriser0(1)=alpha3P0;

for k=1:n-1
xriser0(1+k)=q0(3*k-2);
yriser(Q(1+k)=q0(3*k-1);
zriserQ(1+k)=q0(3*k);

end

xriserO(n+1)=betal Pn;

yriserO(n+1)=beta2Pn;

zriserO(n+1)=beta3Pn;

%plot3(xriser0,yriser0,zriser0),...
%title('Initial Profile"),...
%xlabel('x-axis'),...
%ylabel('y-axis'),...
%zlabel('z-axis'),...

%grid

%**********************’ ¢ 3k ok ok ok ok 3k %k %k %k 3k ok ok ok ok 3k % 3k ok ok ok ok 3k ok ok 3k 3k 3k ok ok ok ok ok ok % %k ok ok A ok ok k sk ok %k



P0.m file

% Position of Point PO
function point0=PO(t)
point0(1)=5;
point0(2)=0;
point0(3)=0;

Pn.m file

% Position of Point Pn (Top End of Riser)
function poi n=Pn(t)

pointn(1)=0;

pointn(2)=0;

pointn(3)=150;

POdot.m file

% Velocity of Point PO
function VP0=P0dot(t)
VPO(1)=0;
VPO(2)=0;
VPO(3)=0;

Pndot.m file

% Velocity of Point Pn (Top End of R 1)
function VPn=Pndot(t)

VPn(1)=0;

VPn(2)=0;

VPn(3)=0;
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Appendix G

Appendix G

Instrumentation Product Data Sheets
This Appendix contains product data sheets for some of the major parts of the

accelerometer and full modules.


















Appendix H

Appendix H

UNIVIS BIO 40 Product Data Sheet
This Appendix contains the product data sheet for the hydraulic oil, UNIVIS BIO 40,

which was used to fill the LS — Model Riser.




























