








Numerical Solution of 2-D Slamming Problem 

with a CIP Method 

by 

©Qingyong Yang 
St. John's, Newfoundland, Canada 

B.Eng. , Dalian University of Technology, China (2003) 
M.Eng. Dalian University of Technology China (2005) 

A thesi submitted to the 
School of Graduate Studies 
in partial fulfillment of the 

requirements for the degree of 
Mast r of Engineering 

Faculty of Engin ering and Applied Sci nee 
Memorial University of Newfoundland 

December 2007 



Abstract 

This thesi presents numerical solutions of the slamming problem for 2-D 

sections entering calm water. The highly nonlinear water entry problem governed 

by the avi r-Stokes equation was solv d by a Constrained Interpolation Profile 

(CIP)-bas d finite difference method on a fixed Cartesian grid. In Lh amputation, 

the CIP m Lhod was employed for the advection calculations and a pressured-based 

algorithm was applied for non-advection calculations. The free surfaces and the 

body boundaries were captured using color functions. For the pressur calculation, a 

Poisson-typ equation was solved at each time step by the ConjugaL Gradient (CG) 

iterative method. 

Validation studies have been carried out for wedges with variou d adrise angle 

and for a bow flare section. Pressures, free surface elevations and hydrodynamic forces 

were compared with experimental results and numerical solutions by the boundary 

element method (BEM), the volume of fluid (VOF) method and Lhe smoothed 

particle hydrodynamics (SPH) method. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

When a ship travels in heavy seas, large-amplitude ship motion can result in 

bow-flare water impact. It will subsequently cause severe damages to ship structures. 

Bow-flare slamming occurs for high rela tive speed of the bow-flare to the water 

surface, and the duration of impact takes a very short time, usually lasting for less 

than a second. Jets run up on both side· of the bow and move away from it. The 

maximum slamming pressure occurs near the spray roots on the ship hull before the 

flow separat , which is much larger than other wave loads. Therefore, it i essential 

to predict the pressure distribution induced by the bow-flare water impact in the ship 

design. 

The prediction of slamming force can be achieved by solving the Laplace equation 

with nonlinear free-surface boundary conditions or by solving the Navier-Stokes 

equations. In the numerical simulation, the bow-flare water impact problem is 

commonly simplified as an entry of a two-dimensional wedge into calm water, see 

Figure 1-1, and it is assumed that the velocity of the wedge entering calm water is 

equal to the relative velocity of the wedge and the moving free surface. T he major 

difficulty in solving the slamming problem arises from their extremely complicated 
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Figure 1-1: Two-dimensional entry of a wedge into calm water 

hydrodynamic phenomena where the compressibility of water, air cushions, air 

bubbles, and hydro-elasticity may be revelent. It is necessary to deal with the highly 

distorted or breaking free surfaces, and to treat large gradient of physical quantities 

at interfaces in the multiphase computational domain. 

This thesis presents a numerical method based on solving the Navier-Stokes 

equations to predict the slamming loads on 2-D sections. 

1.2 Literature Review 

The water-entry problem of a wedge has been extensively studied by many 

researchers. The theoretical analysis of the similarity flow induced by the wedge 

entry was first conducted by Wagner (1932). Armand and Cointe (1986) , CoinLe 

(1991) and Howison et al. (1991) extended Wagner's theory to analyze the wedge 

entry problem using matched asymptotic expansions for wedges with mall deadrise. 

Furthermore, Dobrovol'skaya (1969) developed an analytical solution in terms of a 

nonlinear singular integral equation for the problem of the symmetrical entry of a 

wedge into calm water. Based on the work of Vinje and Brevig (1981), Greenhaw 

(1987) used Cauchy's formula to solve the wedge entry problem. In his work, both 

gravity and nonlinear free surface conditions were taken into account. Zhao and 

Faltinsen (1993) studied the water entry of a wedge using boundary element method 

with constant elements. The jet tip at the intersection point of the body surface and 
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the free surface was cut and two small constant elements were distributed. There are 

numerical difficulties to trace the water particles in the intersection point. Lin et al. 

(1984) presented an approach to treat the difficulties. In their work, the boundary 

integral equation derived from Cauchy's formula was discretized using linear elements 

so that the intersection points can be used as the collocation points. Chuang et 

al. (2006) developed a boundary element method based on de ingularized Cauchy's 

formula . A numerical approach was also developed to remove the corner singularity 

at the intersection point of body surface and free surface. 

Although great progress has been made in solving the water-entry problem 

with potential-flow based methods, there are difficulties for these methods to treaL 

highly distorted or breaking free surface. These difficulties can be overcome by the 

computational fluid dynamics (CFD) methods based on solving the Navier-Stokes 

equations. One of the CFD methods is the volume of fluid (VOF) method. In 

the VOF method, a VOF function , F, is introduced with values between zero and 

one, indicating the fractional volume of a cell that is filled with a certain fluid. 

The piecewise constant reconstruction are commonly used to reconstruct the VOF 

function. Kleefsman et al. (2005) have solved the 2-D slamming problem of symmetric 

bodies by the VOF method, and the finite volume discretization with a cut-cell 

method wer applied on a fixed Cartesian grid. 

Another method that is used in the slamming computations is the smoothed 

particle hydrodynamics (SPH) method, which is a meshless method. Particles are 

distributied in the flow and every particle carries mass and velocity. A particle is 

influenced by other particles that are within a certain distance from the particle. The 

method can handle the large deformation of the fluid interface. Kim et al. (2007) used 

the SPH method to simulate the water entry of asymmetric bodie . A large number of 

particles are distributed in the computational domain and the ghost particle approach 

was used to treat the solid boundary. 

In t his thesis a constrained interpolation profile (CIP) method which was 
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proposed by Xiao (1999) and further developed by Hu and Kashiwagi (2004) for 

violent free surface flow, is applied to solve the 2-D water entry problem. The CIP 

method is based on a high-order upwind scheme and solves the advection terms in the 

N a vier-Stokes equations. Sub-cell resolution is obtained by using both the advection 

function and its spatial derivatives at the grid points to estimate the function inside 

the cell. The CIP method as an interface capturing method does not need an adaptive 

grid system and therefore removes the problems of grid distortion caus d by interface 

breakup and topology change. The material surface can be captured by almost one 

grid throughout the computation (Yabe et al., 2001). Furthermore, the scheme can 

treat multiple phases (Yabe et al. 2000). A pressure-based algorithm coupled with 

CIP, namely CIP combined and unified procedure (CCUP), has been proved to be 

stable and robust in solving the slamming problem (Hu and Kashiwagi , 2004). Zhu 

et al. (2005) studied the water entry and the exit of a horizontal circular cylinder 

using a finite-difference method based on the CIP algorithm. 

1.3 Thesis Contents 

In this work, the CIP-based finite difference method is employed to compute 

symmetric and asymmetric water entry of wedges with various deadrise angles and 

the water entry of a bow flare section. 

This thesis is organized as follows. Chapter 2 introduces the governing equations 

and boundary conditions for the two-dimensional water-entry problem. The CIP 

method is explained. The fractional step approach and the pressure-based method are 

briefly described. The interface capturing scheme, the calculation for hydrodynamic 

forces acting on a moving solid body, and the computational procedure are 

outlined. In Chapter 3, numerical results of 2-D water entry problems are presented. 

Computations were first carried out for symmetric water entry of wedges with deadrise 

angle of 30°, 40° and 60°. The pressure distributions, free surface elevations and 
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hydrodynamic forces are presented. The free surface elevations of a wedge with 

deadrise angle of 45° during asymmetric drop (tilt angle of 20°) were also computed. 

umerical results were compared with experimental results and solut ions by the BEl\1, 

the VOF method and the SPH method. The water entry of a bow flare section was 

also computed. Conclusions are given in Chapter 4. 
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Chapter 2 

Mathematical Formulation 

2.1 Governing Equation 

The flow under consideration is assumed to be a two-dimensional flow. The 

differential equations governing the compressible and viscous fluid are given: 

ap ap aui 
-+ui-=-p
at axi axi 

aui + Uj aui = -~ aaij + j ; 
at axj p axj . 

(2.1) 

(2.2) 

where tis the time; Xi (i = 1, 2) are the coordinates in a Cartesian coordinate system; 

p is the mass density; ui are the velocity components; ]i are due to the gravity force. 

As there is no temperature variation, the equation of state (EOS) for the 2-D 

water-entry problem is written as p = f(p). Applying the EOS to Eq. 2.1 , the 

pressure equation can be obtained as 

ap ap 2aui 
-+ui- = -pc 
at axi s axi 

where, Cs = Japjap is the sound speed, and p is the pressure. 

For a Newtonian fluid, the total stress can be written as 
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a;1 = -po;,1 + 2p,Si1 - 2J..L0;,1Skk / 3 

S; . = ~ ( aui + auj ) 
,] 2 axj axi 

where, J..t is the dynamic viscosity coefficient and Oij is the Kronecker's delta function. 

2.2 Fractional Step Approach 

By applying t he fractional step approach, the numerical solution of governing 

equations, Eqs. 2.1 to 2.3, can be solved in three steps as follows. 

1. Advection phase 
ap ap 
- +ui- = 0 
at axi 

(2.4) 

aui + u . aui = 0 
at 1 axj 

(2.5) 

ap ap 
- +ui- =0 
at axi 

(2.6) 

2. Non-advection phase I 

(2.7) 

3. Non-advection phase II 

(2. ) 

(2.9) 

(2.10) 

The fractional steps in the present numerical method are arranged in the order of 

advection phase, non-advection phase I, and non-advection phas II. The advection 
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Figure 2-1: The principle of t he CIP method 

phase was computed by the CIP method. The non-advection I phase, which includes 

a viscous term and a source term, was solved by the central finite difference method. 

For the non-advection phase II, a pressure-based algorithm was employed. 

2.3 CIP Method 

2.3.1 The Principle of the CIP Method 

The CIP method scheme can be treated as a kind of semi-Lagrangian method, 

which traces back along the characteristics in time. An interpolation of the ini tial 

profile is required to determine the value at the upstream departure points. 

The strategy of the CIP method can be explained as follows by using an advection 

equation: 

(2. 11) 

When the velocity is constant , the solution of the equation gives a simple 

translation motion of waves with a velocity u. The initial profile (solid line of 

Fig. 2-1 (a)) moves like a dashed line in a continuous representation. At this t ime, 
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Figure 2-2: One-dimensional line element 

the solution at grid points denoted by the filled circles is the same as the exact 

solution. However, if the dashed line are eliminated as shown in Fig. 2-1(b), then the 

information of the profile inside the grid cell is lost. Since it is difficult to imagine 

the original profile, it is natural to imagine a profile like that shown by the solid line 

in Fig. 2-1 (c) . Thus, numerical diffusion arises when we construct the profile by the 

linear interpolation. The reason why this solution becomes worse i that the behavior 

of the solut ion inside grid cell is neglect ed. The profile can be approximated as below. 

Different ia ting Eq. 2.11 with respect to the spatial variable x, we can obtain 

ag ag au 
- +u- = --g 
at ax ax 

(2.12) 

where, g = a f I ax stands for the spatial derivative of f. In the simplest case where 

the velocity u is constant, Eq. 2.12 coincides with Eq. 2.11 and represents the 

propagation of spatial derivative with a velocity u. Using these quations, we can 

trace the time evolution off and g. If g is predicted after propagation as shown by 

the arrows in Fig. 2-l(d), the profile after one step is limited to a specific profile. 

With this constraint of derivative (Eq. 2.12), the solution becomes much closer to the 

real solut ion. Most important ly, the solution can be kept consistent with Eq. 2.11 

even inside the grid cell. 

If two values of f and g are given at two grid points as in Fig. 2-2, the profile 

between these points can be interpolated by a cubic polynomial, 

F (x ) = ax3 + bx2 +ex + d 
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The profile at the n + 1 step can then be obtained by shift ing the profile by ub.t, 

i.e., 

r+l = F (x- ub.t) 

gn+l = dF (x - ub.t)jdx 

. _ 9i + 9iup + 2(fi - fiup) 
at- D2 D3 

b· = 3(fiup - Ji) _ 2gi + 9iup 
t D 2 D 

where, ( = - ub.t , D = -b.x, iup = i - 1 for u > 0; ( = ub.t, D = b.x , iup = i+ 1 for 

u < 0. Fig. 2-3 shows the square wave propagation at several t ime instants with the 

CIP method. Note that only two points for constructing interpolation approximations 

are needed in one dimension. For calculating discontinui ties or larg gradients, a more 

compact scheme by which one can construct interpolation functions of high accuracy 

with fewer computational stencils is desirable. The CIP method seems to be attractive 

in this sense. 

2.3.2 CIP Formulation in Two Dimensional Cases 

In the CIP method, the first-order spatial derivatives of the interpolation function 

are treated as dependent variables. The governing equations for these derivatives in 

multi-dimensions are derived by differentiating the advection equation with respect 

to the spatial coordinates. With a special treatment of the first derivatives of the 

interpolation function, the CIP method achieves a compact form that uses only one 

mesh cell to construct the interpolation profile and provides subcell re olution. 

One of the main efforts in semi-Lagrangian methods is constructing the 
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Figure 2-4: Model of spatial advection of x in the case of u < 0 and v < 0 

Figure 2-5: Two-dimensional profile propagation with the CIP 
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interpolation function based on grid values to determine the field value at a departure 

point not coinciding with a grid point. Several forms of the multi-dimensional cubic 

polynomial have been proposed. The simplest one proposed by Yabe et al. (2001) is 

given as 

where X = x- xi and Y = y- Yi ( see Fig. 2-4). There are ten unknown coefficients, 

Cmn, which will be determined as follows by the values of x'\ x~, and X~ at grid 

points (i,j), (i + 1, j) , (i,j + 1) , and the value of xn at the grid point (i + 1, j + 1), 

where X denotes objective values on grid points, e.g., p, p, u or v in the Navier-Stokes 

equations. 

C n(. ") ot =X11 2,] 

Cw = x~(i, j) 

C3o = [~(x~(i + 1,j) + x~(i,j))- 2(xn(i + 1,j)- xn(i,j))l/e 

C2o = [-~(x~(i + 1,j) + 2x~(i,j)) + 3(xn(i + 1,j)- X11(i,j))J/e 

Co3 = [ry(x~(i,j + 1) + x~(i,j))- 2(xn(i,j + 1) - X11 (i,j))]/ry3 

Co2= [-ry(x~(i,j + 1) + 2x~(i,j)) + 3(xn(i,j + 1)- xn(i,j))]jry2 

C21 = [x~(i + 1,j + 1)- x~(i + 1,j) - x~(i,j + 1) + x~(i,j)]/(2~77) 

C12 = [x~(i + 1, j + 1)- x~(i + 1,j)- x~(i,j + 1) + x~(i,j)]/(2~77) 
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where ~ = -sign(u) 6. x, rt = -sign(v) 6. y. Then the derivatives ofF with respect 

to~ and TJ , x*, x;, and x~ can be obtained directly as follows: 

x*(i,j) = F(( ,rt') 

*( .. ) F(~,rt)l 
Xx ~, J = 0~ €=t;' ,TJ=TJ' 

*(. ") F(~, rt) I 
Xy ~,J = OTJ €=e,11=,7' 

with e = -u 6. t and rt' = -v 6. t . 

As shown in Fig. 2-5, the sharpness of the large gradients on corner points in 

the two-dimensional profile propagation could be maintained very well with the CIP 

method. The CIP method is adopted to capture the interfaces between different 

phases, such as the free surface and the solid boundary in this work. 

2.3.3 The Computation of Spatial Derivatives 

The CIP method was employed in the computation of the advection phase, where 

not only the objective value f , but also its spatial derivatives, fx and /y, have to be 

updated at every time step. Eqs. 2.4 to 2.6 can be written in a general form as 

of of of - +u- +v- = 0 at ax ay (2.13) 

Differentiating it with respect to x gives 

a2 f + au a f + u a2 J + av a f + v o
2 
f = 0 otox ox ox ox2 ox oy oxoy 

(2.14) 

Denoting ~ as fx and ~ as fy , the above equation can be rewritten as, 

(2.15) 
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The left hand side of this equation is a two-dimensional advection equation for f x · 

The CIP method can be applied to solve it. The right hand side of this equation is a 

source term, and this can be calculated simply by the central differential scheme. 

Similarly, Eqs. 2.4 to 2.6 can be partially differentiated with respect to y , and we 

can obtain 

ajy. ajy ajy _ -(! 8u f 8v) 
at + U ax + V ay - X [)y + y [)y . (2.16) 

2.4 Pressure-Based Algorithm 

In an ordinary compressible fluid , the density p is solved from the mass 

conservation equation. After that , from the equation of state, schematically shown 

in Fig. 2-6 (Yabe et al., 2001), the pressure can be calculated. At the low-density 

side, p ex pT for the ideal fluid and the dependence on pT is relatively weak, but for 

solid or liquid density, p steeply rises as the density rises. This means that extremely 

high pressure is needed to compress solid or liquid. In other words, for solid or liquid, 

the sound speed, Cs = (apjap) 112 , is very large. A small amount of density error, for 

example 10%, can lead to a large pressure pulse of 3-4 orders of magnitude. 

Fortunately, if we rotate Fig. 2-6 by 90 degrees, the steep pressure curve becomes 

a flat density curve. It means that if we could first solve the pressure and then 

estimate the density, the problem at large density would be eliminated. 

The pressure-based equation can be obtained as follows by taking the divergence 

of Eq. 2.9 and substituting audaxi into Eq. 2.10, 

(2.17) 

where the superscripts * and ** indicate the provisional values before and after the 

calculation of non-advection phase I. Eq. 2.17 shows that (''Vp/ p) is continuous at 

sharp discontinuities. In this case, the density changes by several orders of magnitude 
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Figure 2-6: An example of an equation of state 

at the boundary, for example, between liquid and gas, and the pressure gradient must 

be calculated accurately enough to ensure continuous change. The equation works 

robustly even with a density ratio larger than 1000 and the multiphase computations 

can be carried out. 

For a perfect incompressible fluid , we can assume c8 = oo, a simpler Poisson 

equation can be obtained as below: 

(2.18) 

This i a conventional Poisson equation for incompressible flows and it is valid 

for liquid, gas and olid phases. The solution of Eq. 2.1 provides the pressure 

distribution in the whole computation domain. The pressure distribution obtained 

inside the solid body is a fictitious one, which satisfies the divergence free condition 

of the velocity field (Hu and Kashiwagi, 2007) . With this treatment, the boundary 

condition for pressure at the interface between different phases is not required. 

In this work the finite difference method is applied to solve Eq. 2.18. The central 

difference formulas for the first order derivative on uniform grid are as follows: 
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Pi+l,j - Pi- l,j 

26x 

Pi,J+l - Pi,j-1 

26y 

The central difference formulas for the second derivatives are 

( ) .. = (82
p)· · = Pi+l,j- 2pi,j + Pi-1,1 

Pxx tJ - ox2 tJ 6x2 

Pi,j+l - 2Pi,j + Pi.j-1 

6y2 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Applying Eqs. 2.19 to 2.22, linear equations, Ax = b , can be obtained from Eq. 

2.18, in which x is an unknown column vector of order n, b is a known vector of n 

components, and A is a known, square, symmetric, positive-definite matrix and given 

by the following square matrix: 

a {3 0 "( 0 0 0 0 0 

{3 a {3 0 "( 0 0 0 0 

0 {3 a {3 0 "( 0 0 0 

"( 0 {3 a {3 0 "( 0 0 

A = 0 "( 0 {3 a {3 0 "( 0 

0 0 "( 0 {3 a {3 0 "( 

0 0 0 "( 0 {3 a {3 0 

0 0 0 0 "( 0 {3 a {3 

0 0 0 0 0 "( 0 {3 a 

where a, {3 and "( are known constant coefficients. On a uniform grid, a = -:. ( LJ.~2 + 
" 1

2 ), {3 = ~( "1
2 ), and 'Y =~(~),where 6x and 6y are the grid spacings in the 

~...>1/ p ~...>X p ._.y 

x and y directions, respectively. The linear equations can be solved by the conjugate 
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Figure 2-7: Schematic view of a numerical simulation for water entry. 

gradient iterative method. 

Furthermore, the matrix A is symmetric on a uniform grid. The half band width 

form can be used to reduce the storage. For the non-uniform grids, A is asymmetric 

and the full band needs to be stored. 

2.5 Boundary Condit ions 

There are two types of interface that need to be captured in the numerical 

simulation: the interface between air and water , i.e. the free surface; the interfac 

between solid and liquid or water, i.e. the body boundary. They are both 

distinguished by a density function ¢m, which can be solved by the advection equation. 

(2.23) 

where m = 1, 2, 3 denote liquid, solid and air phases, respectively; ¢ 1 = 1 for liquid 

and zero for the air and solid; ¢2 = 1 for solid and zero for the air and liquid; and 

¢3 = 1 for air and zero for the air and liquid. 

Solving Eq. 2.23 directly will produce numerical diffusion and tend to smear 

the initial sharpness of the interfaces. In this work, rather than ¢m itself, its 

transformation, F(¢111 ) , is calculated by the CIP method. If we specify F(¢m) as a 

function of ¢m only, the new function F( ¢m) is also governed by Eq. 2.23. Therefore, 
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we have 

8F(¢m) . 8F (¢m ) _ O 
at + u, axi - (2.24) 

In this work, a tangent function is used for the t ransformation (Yabe et al. , 2001), 

I.e. ' 

F(¢k) = tan[(1 - f.)7r(¢m- 1/2)] (2.25) 

cPm = tan- 1 F (¢m)/[(1 - f.)7r] + 1/2 (2.26) 

where f. is a small posit ive constant. The factor (1 - E) enables us to get around -

for ¢m = 0 and oo for ¢m = 1, and to tune for desired steepness of the transition 

layer. The parameter f. needs to be chosen artificially before calculation. According 

to the tangent function , a smaller f. results in a numerically sha rper slope across the 

t ransition layer . 

2.5.1 Calculat ion Method for the Density Function for a 

Two-Dimensional Rigid Body 

A direct Lagrangian compu tational method has been employed to determine the 

density function , ¢2 , for the solid phase. The basic idea for this method is to map 

the geometry information of a moving body to a fixed Cartesian grid and to obtain 

t he solid body boundary posit ions accurately without any numerical diffusion. For a 

two-dimensional wedge, the main scheme is as described below: 

1. T he coordinates for the end points of the wedge (P1 , P2 , P3 ) are calculated by 

a Lagrangian method at each t ime step, as shown in Fig. 2-8. 

x Pk = x~k + u!:lt 
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Figure 2-9: Density function for a boundary cell 
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Figure 2-10: The geometry of a real ship section 

Figure 2-11: A real ship section represented by line segments 

2. For each computational cell, if there are more than two nodes intersected by 

the body surface, the cell is considered one including the solid-body boundary, and 

the area of the solid body in this cell is computed to determine ¢2 , as shown in Fig. 

2-9. 

¢2ij = A ij / /j.xd f'j.yi 

For a more complex geometry body, e.g., a real ship section (Fig. 2-10), the body 

boundary is approximated by a series of straight line segments, as shown in Fig. 

2-11. Steps 1 and 2 are applied for each straight line. Coordinates of the nodes of 

line segments are calculated and the density function for each computational cell can 

then be determined. 
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2.6 Hydrodynamic Forces on the Moving Solid 

Body 

The hydrodynamic force acting on the solid body, Fi , can be calculated by 

integrating the pressure and skin friction over the body surface: 

(2.27) 

where Ft) represents the force due to the pressure, and Ft) represents the force due 

to the friction, A denotes the surface of the solid body, and nk is the kth component 

of the outward unit normal vector. 

The forces can also be calculated by integration over the whole computation 

domain. Applying Gauss's theorem to Eq. 2.27, we obtain 

Fi = Ft) + Ft) = - 1 Bp ¢2dD + 1 B(2J.Lsik) ¢2dD 
In axi In axk 

(2.28) 

where n denotes the whole computation domain and ¢2 is the density function of 

solid. Note that for the slamming problem, the skin friction is relatively small and is 

neglected in the computation, therefore, 

i 8p 
Fi = - -(hdD 

n axi 
(2.29) 

The advantage of Eq. 2.29 is that we do not need to know the exact position and 

orientation of the boundary surface. Eq. 2.29 is adopted in this work. 

2. 7 Summary of the Computation 

The computational procedure for the water entry problem is summarized in Fig. 

2-12. The time integration of governing equations is based on the Euler method and 
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Figure 2-12: Computational procedure of two-dimensional flow 

a fractional step method. For the advection equations, the finite difference method 

is employed. For non-advection phases, a Poisson equation for the pressure is solved 

by the Conjugate Gradient iterative solver. Boundary conditions including the free 

surface boundary and the solid boundary are determined from the density function. 

When the pressure distribution and velocity are obtained, the hydrodynamic force 

can be calculated. 
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Chapter 3 

Numerical Results and Discussions 

The symmetric and asymmetric water ntry problems of two dim nsional sections 

into calm water were solved by using the CIP-based finit difference method as 

discussed in previous sections. Computations were first carried out for symmetric 

water entry of wedges with deadrise angles of 30°, 40° and 60°. The pressure 

distribution , free surface elevations and hydrodynamic forces are presented. The 

free surface elevations of a wedge with deadri e angle of 45° during asymmetric drop 

(tilt angle of 20°) were then computed. umerical results by th CIP method are 

compared with experimental results and solutions by the BEM, the VOF method, 

and the SPH method. The water ntry of a bow flare section is al o presented. 

In the computations, the water density and viscosity are given as Pwater = 

B=SOOmm 

8 
El 

0 
0\ 
('.! 

II 
::r: 

Figure 3-1 : Geometry of the wedge section in the drop te t 
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Figure 3-2: Velocities of the wedge with deadrise of 30° during the drop test 

1000kgjm3 and 1-twater = O.OOlkgm-1 s-1
, respectively. Those of the air are set as 

Pai>· = 1kgjm3 and !-Lair = 10- 5 kgm- 1 s- 1
, respectively. Uniform grid spacing is used 

in the computations for water entry of wedges, and non-uniform grid is employ d in 

the water entry of a bow flare section. 

3.1 Symmetric Water Entry 

Computations were first carried out for the symmetric water entry of a wedge 

with deadrise angle of 30°. The geometry of the wedge is given in Fig. 3-1. Note 

that Zhao et al . (1996) conducted a drop test for such a wedge at MARINTEK and 

computed the pressure and the hydrodynamic force on the wedge using a boundary 

element method. The breadth, B , of the test section is O.Sm and the maximum drop 

height is about 2.0m. The vertical velocities of the wedge are given in Fig. 3-2. 

3.1.1 Convergence Study 

To investigate the convergence of the solution to the time step and the grid spacing, 

the hydrodynamic forces during the water entry were computed by using various time 

steps and grid spacings. First, a constant time step was set as 0.0000325s and different 

grid spacings were used. The results are given in Fig. 3-3. The smallest grid spacing 

25 



8000.------.---------.---------,---------.---------. 
Grid spacing=0.01B -

Grid spacing=0.015B -------
Grid spacing=O .029 

7000 

6000 

5000 

4000 

3000 

2000 

0.005 0.01 0.015 

Time (s) 

Grid spacing=0.03B 

0.02 0.025 

Figure 3-3: Sensitivity of hydrodynamic force to the grid spacing 
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Figure 3-4: Sensitivity of hydrodynamic force to the time step 
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Figure 3-5: Pressure distribution on the wedge with a deadrise angle 30° before the 
flow separates 
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Figure 3-6: Pressure distribubon on the wedge v.ri th a cleadrise angle 30° after the 
f-low separates 
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is 0.01B, and the greatest one is 0.03B where B is the width of t h wedge. A constant 

grid spacing was then set as 0.01B and various time steps ranging from 0.0000325 

seconds to 0.0000812 seconds were used. As shown in Figs. 3-3 and 3-4, the numerical 

solutions converge as the grid spacing and the time step decreased. In the following 

computations, the grid spacing and the time step were set as 0.01B and 0.0000325 

second, respectively. 

3.1.2 Pressure Distribution, Hydrodynamic Forces and Free 

Surface Elevation 

Figure 3-5 presents the pressure distribution on the wedge surface and the 

computational domain at the time instant when the spray roots of the jets reach 

the separation points. Fig. 3-6 shows the pressure distribution in the computational 

domain after the flow separates. It can be shown from these figures that the maximum 

pressure occurs around the separation points before the flow separation occurs and 

after flow separates the maximum pressure near the separation points drops fast and 

maximum pressure moves to the keel of the wedge. 

The pressure distribution on the wedge surface was then compared with the fully 

nonlinear solution based on the boundary element method by Zhao et al. (1996) in 

Fig. 3-7. They in general agree well. The discrepancies at the separation points are 

because the separation point predicted by the CIP method and the boundary element 

method is slightly different. 

The time series of the computed hydrodynamic forces are given in Fig. 3-8 

and compared with the experimental results (Zhao et al., 1996), the fully nonlinear 

solution by Zhao et al. (1996) and the numerical solution by the volume of fluid 

(VOF) method (Kleefsman et al ., 2005). In the fully nonlinear solution, the viscosity 

and the compressibility of water are neglected, and the Laplace equation is solved 

by the boundary element method. The VOF results are based on the finite volume 

method for solving the Navier-Stokes equation and the VOF method for capturing 
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Figure 3-7: Pressure distribution on the wedge with deadrise angle 30° when the spray 
roots of the jets reach the separation points 
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------------------------------------------------------------------------------

the free surface. The numerical solution by the CIP method is in agreement with th 

experimental results and that by the VOF method. The fully nonlinear solution 

overestimates the hydrodynamic forces. Fig. 3-8 hows that the hydrodynamic 

force increases at the early stage of the water entry and reduces quickly after flow 

separation. 

Figures 3-9 to 3-12 present the free surface deformation during the water entry 

of the wedge at several time instants. As we can see, after the wedge enters the free 

surface, two jets are generated on both sides of the part of the wedge in the air. 

At about t = 0.015s, the flow separation occurs, and after t = 0.025s, the wedge i 

immersed completely by the water. 

3.2 Symmetric Water Entry for Wedges w ith 

Various Deadrise Angles 

Pressure distributions on wedges with different deadrise angles were al o 

computed. The deadrise angles are 30°, 40° and 60° , respectively. These wedges 

enter the water at a constant vertical velocity. Numerical results are shown in Figs. 

3-13 to 3-15. All the results are compared with numerical solutions by the boundary 

element method (Zhao and Faltinsen, 1993). The agreement is generally favorable. 

From these figures , we can find that the sharp-peaked pressure occurs close Lo 

the jet flow area for wedges with small deadrise angles. For the wedge with deadri 

angle of 60° , the maximum pressure point tends to move to the keel of the wedge. 

Th value of maximum pressure drops quickly for wedges with larger deadrise. 

The computed free surface elevations for wedges with 30° and 45° deadrise angl s 

were compared with the test results by Greenhaw and Lin (1987) and the numerical 

solution by the VOF method (Kleefsman et al., 2005) in Fig. 3-16. The visual 

comparison indicates that the predicted free surface elevation i in a good agreement 

with the VOF solution and the experimental results. 
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Figure 3-9: Free surface elevation during the water en try of a wedge with dea.drise 
angle 30°, t = 0.005s 

Figure 3-10: Free surface elevation during the wa.Ler ent.ry of a wedge with deadrise 
angle 30°, f.= 0.01 5s 

F igure 3-11: h ee surface elevation during the water entry of a wedge with deadrise 
angle 30°, t = 0.02s 

Figure 3-12: Free surface elevation during the water entry of a wedge with deadrise 
angle 30°, t = 0.025s 
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Figure 3-13: Pressure distribution around wedge with deadrise angle 30° 
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Figure 3-14: Pressure distribution around wedge with deadrise angle 40° 
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Figure 3-15: Pressure distribution around wedge with deadrise angle 60° 
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(a) Experimental (Greenhow and Lin, 1983) 

(b) VOF (Kleefsman et aL, 2005) 

(c) CIP 

Figure 3-16: Snapshots of wedge entry with deadrises angle 30° (left) and 45° (right) 
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Figure 3-17: Geometry of the wedge section in the drop test 

3.3 Asymmetric Water Entry 

The computation was extended to a wedge entering the calm water with a tilt 

angle. This is the case of asymmetric water-entry of a wedge. In the real situation of 

ship slamming, the ship does not always experience symmetric water entry due to roll 

motion and asymmetric waves with respect to hip. Such an asymmetric water-entry 

can induce hydrodynamic impact which is significantly different from symmetric cases. 

A drop test was carried out by Kim et al. (2007) to observe the physical phenomena 

of two-dimensional asymmetric water-entry of a wedge. The wedge is 0.2m wide with 

a 45° deadrise angle and the tilt angle is 20°, as shown in Fig. 3-17. The drop velocity 

was 2.42m/ s. 

umerical results of the free surface elevation by the CIP method are compared 

with the experimental data in Fig. 3-18. Comparison was also made with the 

numerical solution using the SPH method by Kim et al. (2007). In the SPH method, a 

finite number of particles which have physical properties including mass, den ity and 

pressure, are distributed in the fluid domain. The movement of these particles can be 

obtained by solving the Euler equation and the continuity equation. The agreement 

between the CIP and the SPH methods is satisfactory. From these figures , we find 

that the jet on the two sides of wedge are different due to the tilt angle. 
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(a) E~eriment (Kim et al. , 2007) 

(b) SPH (Kim et al. , 2 0 07) 

(c) CIP 

Figure 3-18: Free surface evolut ion during asymmetric drop: deadrise angle 45°; Lilt 
20°; velocity 2.42m/ sec 
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Figure 3-20: Pressure dj stribution on the wedge wiLh a tilt angle 20° after the Row 
separ ates 

36 



e 
e 
~ 

310rnm 

Figure 3-21: The geometry of a bow flare section 

Figures 3-19 and 3-20 show the pressure distribution on the wedge surface and 

the computational domain for the asymmetric water-entry case. The higher pressure 

occurs on the side of the wedge with smaller deadrise angle. Fig. 3-19 presents the 

pressure contours before the flow separation, and the maximum pressure is observed 

on the separation point of the side with smaller deadrise angle. As shown in Fig. 

3-20, after the flow separation, the maximum pressure moves to the keel of the wedge 

and value of the maximum pressure drops quickly, 

3.4 Water Entry of a Bow Flare Section 

The numerical scheme based on the non-uniform discretization scheme has the 

potential to decrease the computing time while maintaining the accuracy of solutions. 

The computation program was extended to compute the water entry of a bow 

flare section based on the non-uniform grid. A drop test for the bow flare section was 

carried out by Zhao et al. (1996) at MARINTEK. The geometry of the bow flare was 

given in Fig. 3-21. Fig. 3-22 presents the vertical velocity in the drop test, which is 

also used in the numerical simulation. 

The numerical grid, as illustrated in Fig. 3-23, varys in the computational domain. 

Uniform grids with smallest spacings are used around the bow flare section. The 

smallest non-dimensional lengths are 6 x / B = 0.01 and 6 y/ B = 0.01. Non-uniform 
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Figure 3-22: Velocity of the bow flare section during the drop test 

grids which follow cosine function distribution are used elsewhere. 

The time series of the computed hydrodynamic forces are given m Fig. 3-24 

and compared with the experimental results (Zhao et al. , 1996). There is a good 

agreement between numerical and experimental results in the earlier time instants. 

The discrepancy is larger at a later stage. Further investigation is needed. 

Figure 3-25 shows the pressure distribution around the bow flare when the flow 

separates. Similar to the water entry of wedges, the maximum pressure occurs near 

the separation points. 

The free surface elevations were also computed by the CIP method. Fig. 3-26 

presents the free surface elevation when the flow separation occur . As we can see, 

two jets are generated and the breaking wave occurs. 
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Figure 3-23: Grid distribution of the bow flare section 
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Figure 3-24: Hydrodynamic force on a bow fta.re section 

39 



Pressure(Pa) 

14000 

13000 

12000 

11000 

10000 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

Figure 3-25: Pressure distribution around the bow flare when the flow separates 

Figure 3-26: Free surface elevation when the flow separates 
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Chapter 4 

Conclusions 

The nonlinear water entry problem governed by the Navier-Stokes equations was 

solved by a CIP based finite difference method on a fixed Cartesian grid. In the 

computation, the CIP method was employed for the advection calculations and a 

pressure-based algorithm was applied for the non-advection calculations. The free 

surface and the body boundaries were captured using density functions. For the 

pressure calculation, a Poisson-type equation was solved at each time step by the 

Conjugate Gradient iteration method. 

Validation studies have been carried out for symmetric and asymmetric water 

entry of wedges with different deadrise angles and a bow flare section. Pressures, 

free surface elevations and hydrodynamic forces were computed and compared with 

experimental results and numerical solutions by the boundary element method, the 

VOF method and the SPH method. The solut ions by the CIP met hod are in a good 

agreement with others. It has been demonstrated that the CIP method is able to 

capture the highly distorted free surface elevation and to accurately predict pressures 

and hydrodynamic forces on wedges entering the calm water. 

For future work, studies will be carried out to extend the CIP method to solve 

the three-dimensional water entry problem of bodies of arbitrary geometry. 
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