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Abstract

This thesis presents numerical solutions of the amming problem for 2-D
sections entering calm water. The highly nonlinear water entry  roblem governed
by the Navier-Stokes equations was solved by a Constrained I polation Profile
(CIP)-based finite difference method on a fixed Cartestan grid. In the computation.
the CIP method was employed for the advection calculations and — pressured-based
algorithin was applied for non-advection calculations.  The free surfaces and the
body houndaries were captured using color functions. For the pre;  re caleulation. a
Poisson-type equation was solved at cach time step by the Conjugate Gradient (CG)
iterative method.

Validation studies have been carried out for wedges with various deadrise angles
and for a how flare section. Pressures, free surface elevations and hy — odynamic forces
were conipared with experimental results and numerical solutions by the boundary
element method (BEM), the volume of fluid (VOF) method, and the smoothed

particle hivdrodynamics (SPH) method.
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Chapter

Introduction

1.1 Background and Motivation

When a ship travels in heavy seas, large-amplitude ship motic  can result in
how-flare water impact. It will subsequently cause severe damages ) ship structures.
Bow-flare slamming occt for high relative speed of the bow- re to the water
surface, and the duration of  act takes a very short time, usui v lasting for less
than a second. Jets run up on hoth sides of the bow and move  ay from it. The
maxinum slamming pressure occurs near the spray roots on the ship hull before the
flow separates, which is much larger than other wave loads. Thercfore. it is essential
to predict the pressure distribution induced by the bow-flare water impact in the ship
design.

The prediction of slamming force can he achieved by solving the Laplace equation
with nonlinear free-surface boundary conditions or by solving the Navier-Stokes
equations. In the numerical simulation, the bow-flare water impact problem is
commonly simplified as an entry of a two-dimensional wedge int  calm water. see
Figure 1-1. and it is assumed that the velocity of the wedge ente 1g calm water is
equal to the relative velocity of the wedge and the moving free s ace. The major

difficulty in solving the slamming problem arises from their  remely complicated



JetFlow Jet Flow

Figure 1-1: Two-dimensional entry of a wedge into cal  water

hydrodynamic phenomena where the comipressibility of water, air cushions, air
bubbles, and hydro-elasticity may be revelent. It is necessary to deal with the highly
distorted or breaking free surfaces, and to treat large gradient of hysical quantities
at interfaces in the multiphase computational domain.

This thesis presents a numerical method based on solving the Navier-Stokes

equations Lo predict the slamming loads on 2-D sections.

1.2 Literature Review

The water-entry problem of a wedge has been extensively studied by many
researchers. The theoretical analysis of the similarity flow induced by the wedge
entry was first conducted by Wagner (1932). Armand and Cointe (1986), Cointe
(1991) and Howison et al. (1991) extended Wagner's theory to analyze the wedge
eutry problem using matched asymptotic expansions for wedges v h small deadrise.
Furthermore, Dobrovol’skaya (1969) developed an analytical sol on in terms of a
nonlinear singular integral equation for the problem of the symuetrical entry of a
wedge into calm water. Based on the work of Vinje and Brevig (1981), Greenhow
(1987) used Cauchy’s formula to solve the wedge entry problem. In his work, both
gravity and nonlinear free surface conditions were taken into account. Zhao and
Faltinsen (1993) studied the water entry of a wedge using boundary element method

with constant elements. The jet tip at the intersec n point of tI  body 1rface and




the free surface was cut and two small constant elements were distributed. There are
mumerical difficulties to trace the water particles in the intersection point. Lin ef al.
(1984) presented an approach to treat the difficulties. In their work. the boundary
integral equation derived from Cauchy’s formula was discretized u g linecar eleients
so that the intersection points can be used as the collocation points. Chuang ef
al. (20006) developed a boundary element method based on desingularized Cauchy's
formula. A numerical approach was also developed to remove the corner singularity
at the intersection point of body surface and free surface.

Although great progress has been made in solving the w r-entry problem
with potential-flow based methods, there are difficulties for these methods to treat
highly distorted or breaking fi  surface. These difficulties can be overcome by the
computational fluid dynamics (CFD) methods based on solving the Navier-Stokes
equations. One of the CFD methods is the volume of fluid (VOF) method. In
the VOF method, a VOF function, F'. is introduced with values between zero and
one, indicating the fractional volume of a cell that is filled with a certain fluid.
The piecewise constant reconstruction are commmonly used to reconstruct the VOF
function. Kleefsiman et al. (2005) have solved the 2-D slamniing pr e of symmetric
bodies hy the VOF method, and the finite volume discretizat 1+ with a cut-cell
method were applied on a fixed Cartesian grid.

Another method that is u | in the slammming computations is the smoothed
particle hydrodynamics (SPH) method. which is a meshless met . Particles are
distributied in the Aow  d every | icle carries s and velocity. A particle is
influenced by other particles that are within a certain distance fro.  .he particle. The
method can handle the large deformation of the fluid interface. Kim ef al. (2007) used
the SPH miethod to simulate the water entry of asymmetric bodies. A large number of
particles are distributed in the computational domain and the ghost particle approach
was used to treat the solid boundary.

In this thesis, a constrained interpolation profile (CIP) method which was



proposed by Xiao (1999) and further developed by Hu and Ko dwagi (2004) for
violent. {ree surface flow, is applied to solve the 2-D water entry  oblem. The CIP
method is based on a high-order upwind scheine and solves the advection terms in the
Navier-Stokes equations. Sub-cell resolution is obtained by using both the advection
function and its spatial derivati  at the grid points to estimate the function inside
the cell. The CIP method as an interface capturing method does not need an adaptive
grid system and therefore removes the problems of grid distortion caused by interface
breakup and topology change. The material surface can be captured by almost one
grid throughout the computation (Yabe et al.. 2001). Furthermore, the scheme can
treat multiple phases (Yabe ef al., 2000). A pressure-based algorithm coupled with
CIP. namely CIP combined and unified procedure (CCUP), has een proved to be
stable and robust in solving the slamming problem (Hu and Kashiwagi. 2004). Zhu
et al. (2005) studied the water entry and the exit of a horizontal circular cvlinder

using a linite-difference method based on the CIP algorithm.

1.3 Thesis Contents

In this work, the CIP-based finite difference method is emploved to compute
symmetric and asymmetric water entry of wedges with various deadrise angles and
the water entry of a bow flare section.

This thesis is organized as follows. Chapter 2 introdu  the governing equations
and boundary conditions for ~ two-dimensional water-entry problem. The CIP
method is explained. . .e fractional step approach and the presswr »  d method are
briefly described. The interface capturing scheme. the calculation for hydrodynamic
forces acting on a movi  solid body, and the computational procedure are
outlined. In Chapter 3. num  cal results of 2-D water entry problems are presented.
Computations were first carried out for symmetric water entry of w  ges with deadrise

angle of 30°, 40° and 60°. ... pressure distributions, free surface elevations and



hydrodynamic forces are presented. The [rce surface elevations of a wedge with
deadrise angle of 45° during asymmetric drop (tilt angle of 20°) were also computed.
Nunerical results were compared with experimental results and solutions by the BEN.
the VOF method and the SPH method. The water entry of a bc  flare section was

also computed. Conclusions are giv  in Chapter 4.

[}



Chapter 2

Mathematic.l Formulation

2.1 Governing Equation

The flow under consideration is assumed to be a two-dimensional flow.

differential equations governing the compressible and viscous fluid are given:

An ap .
+ Uy 77— = —¢f
ot or; or;

ou; N ou; 1 0a;; L
—_— Y j——— = = — i
ot ! O p Ox;

The

(2.1)

(2.2)

where t is the time; r; (i = 1,2) are the coordinates in a Cartesian coordinate system;

p is the mass density; u; are the velocity components; f; are due to the gravity force.

there 1 tl n a JS) for the = 7

water-entry problem is written as p = f(p). Applying the EC  to Eq. 2.1, the

pressure equation can be obtained as

op n Ip 20U
= U = —pCi—
ot ox; F *0r;

where, ¢ = 1/0p/0p is the sound speed, and p is the pressure.

For a Newtonian fluid, the total stress can be written as



0 = —poi; +2pS;; — 210; Sk /3

1,0u; Ou;

Sii = 2(81:]- oz,

)

where, u is the dynamic viscosity cor  ient and é;; is the Kronecker’s delta function.

2.2 Fractional Step Approach

By applying the fractional step approach, the numerical solution of governing

equations, Egs. 2.1 to 2.3, can be solved in three steps as follows.

1. Advection phase
Jdp dp

— i— =10
Ot tu 8‘1‘,-
0’114 n Ou,- 0
U —— = (
Ot J 0.1']'
op Op
et 4 et s
ot "o
2. Non-advection phase I
A 2 0 1
(S~ 26Sk) +
ot pO.Ej( 73 )
3. Non-ad I1
An PRI
o oz
o _1op
ot [)0.1’1
Op :,rr)n,»
a‘ - T axr;

The fractional steps in the ¢ ent numerical method are arra:

(2.9)

(2.10)

>d 1n the order of

advection phase, non-advecti  phase I, and non-advection phase II. The advection

=1



Figure 2-1: The principle of the CIP method

phase was computed by the CIP method. The non-advection I phase. which includes
a viscous term and a source term, was solved by the central finite difference method.

For the non-advection phase 11, a pressure-based a” rithm was employed.

2.3 CIP Method

2.3.1 The Princip of tt CIP Method

The CIP method scheme can be treated as a kind of semi-L. rangian method.
which traces back along the characteristics in time. An interpolation of the 1al
profile is required to determine the * ue at the upstream departure points.

The strategy of the CIP method can be explained as follows by  ing an advection
equation:

Af af

: 95 _p 2.11
Ut +U(‘)J’ ( )

When the velocity is constant, the solution of the equati  gives a simple
translation motion of waves with a velocity ». The initial profile (solid line of

Fig. 2-1(a)) moves like a dashed line in a continuous represental n. At this time,



fsg, fisg,

Figure 2-2: One-dimensional line element

the solution at grid points denoted by the filled circles is the same as the exact
solution. However, if the dashed line are eliminated as shown in ' 2-1(b), then the
information of the profile inside the grid cell is lost. Since it is difficult to imagine
the original profile, it is natural to imagine a profile like that shov by the solid line
in Fig. 2-1(c). Thus, numerical diffusion arises when we construct the profile by the
linear interpolation. The reason why this solution becomes worse is th  the behavior
of the solution inside grid cell is neglected. The profile can be approximated as below.
Differentiating Eq. 2.11 with respect to the spatial variable x. e can obtain
An dg Ju

U= ——
ot ox 8.179

(2.12)
where, g = 0f/0x stands for the s; ial derivative of f. In the simplest case where
the velocity u is constant, — 1. 2.12 coincides with Eq. 2.11 {1 represents the
propagation of spatial derivative with a velocity u. Using these equations. we can
trace the time evolution of f and ¢. If ¢ is predicted after propagation as shown by
the arrows in Tig. 2-1(d), the profile after one step is limited to a specific profile.
With this constraint of derivative ... 2.12), the solution becomes much closer to the
real solution. Most importantly, the solution can be kept consis  t with Eq. 2.11
even inside the grid cell.

If two values of f and g are given at two grid points as in Ilig. 2-2, the profile

between these points can be interpolated by a cubic polynonial,

F(z) ar*+b® +cr+d






The profile at the n 4 1 step can then be obtained by shifting the profile by uAf.

le.,

= Flr — uAt)

¢ = — uAl)/dr

— gi + Giup + 2(f7 - fiup)

@ D2 D3
R - f,-) Qa4 n..
bi = - =
1)« 1

finv+l — (1153 + bl£3 + gznf + fz'“
gt = 30,8 + 20,8 + gF

where, ¢ = —uAt. D= —-Ar,qup=i—1lforu>0: & =ulAt, D =Ar iup=1i+1 for
u < 0. Fig. 2-3 shows the sqi e wave propagation at several time instants with the
CIP method. Note that only two points for constructing interpolation approximations
are needed in one dimension. For calculating discontinuities or large gradients, a more
compact scheme by which one can construct interpolation functions of  gh accuracy
with fewer computational stencils is desirable. The CIP method seems to be attractive

in this sense.

2.3.2 CIP Formulation in Two " imensional Cases

In the CIP method. the first-order spatial derivatives of the int  Holation function
are treated as dependent variables. The governing equations for these derivatives in
multi-dimensions are derived by differentiating the advection equ ion with respect
to the spatial coordinates. With a special treatment of the first derivatives of the
interpolation function, the CIP method achieves a compact form that uses only one
mesh cell to construct the interpolation profile and provides sube  r  lution.

One of the n n eff in ¢ -L anglan methods is ¢ ruc the

11






interpolation function hased on grid values to determine the field v ue at a departure
point not coinciding with a grid point. Several forms of the multi-dimensional cubic
polynomial have been proposed. The simplest one proposed by Yabe ¢f al. (2001) is
given as

F(X.Y) = CyX® + Co XY + CoXY? 4 CpgY?

+C20X2 + Cn XY + C()QY2 4+ CpX +Co1Y + C

Fo 300X+ 200 XY + CY? + 200X + CnY + Cho
F, = Co X? + 201 XY +3C3Y? + Ci X + 2CY + Cy

where X =r—ux;andY  y—y; ( see Fig. 2-4). There are ten unknown coefficients,
Cpun. which will be determined as follows by the values of x", yJ. 1d xj; at grid
points (7,7), (¢ + 1,7), (z,7 + 1). and the value of x™ at the grid point (7 + 1. + 1).
where y denotes objective values on grid points, e.g., p, p, u or v in the Navier-Stokes
equations.

Coo = x"(2,J)
Cor = x;(2,J)
Cio = x3(i.7)

Coo  EOG(+1.7) + X0 5) = 20" (1 + 1) = \™(2.0))] /€7
Coo = [—E02G+ 1.7) + 23 ) + 36"+ 1,) =" ))/€°
Cos = [n(xp (1,7 + 1)+ x50, 3) = 20" g + 1) = X" (@)l /n?
Coo = [=n((. 7 + 1) + 20, ) + 3" (1.7 + 1) = X" (L )/
Cor = [X7 (6 + 1, +1) = X7+ 1.5) = X367 + 1) + X700 J)]/(26n)
Cro=[li+17+1) = x;(+1,7) —x, 0,5 + 1) + x;, (0. 5)]/(28n)
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Chi=N"({+17j+1)=x"((+1.7) = x"J+ )+ X"/ (€ = Cal—Cuy

where £ = —sign(u) A x, n = —sign(v) A y. Then the derivatives of F with respect

to { and 1. X7, X7, and x; can be obtained directly  follows:

X"(1,7) = F(§'.n)

o F(&r
X;(Z]) ((gf ]) |£=£"71=1]’

A )
Xy(Z»J): an |e=¢ m=n’

with ¢ = —uAtandn = —v At

As shown in Fig. 2-5, the sharpness of the large gradients on corner points in
the two-dimensional profile propagation could be maintained very well with the CIP
method. The CIP method is adopted to capture the interfaces between different

phases, such as the free surface and the solid boundary in this work.

2.3.3 The Computation of Spatial Derivatives

The CIP method was employed in the computation of the advection phase, where
not only the objective value f, but also its spatial derivatives, f, fy» have to be
updated at every time step. Egs. 2.4 to 2.6 can be written in a general form as

of ~of of

Differentiating it with respect to z gives

O f ouof o*f ovof 0% f -
otor T oror  “oa2 T oroy | Udroy

0 (2.14)

Denoting 2L as f, and & as , the above equation can bhe rev  tten as,
Or r dy y ]

of, Af. Of, An A

—(f 15
o " ox Oy (/: oz +f ox’ (2.15)
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The left hand side of this equation is a two-dimensional advection equation for f,.
The CIP method can be applied to solve it. The right hand side of this equation is a
source term, and this can be calculated simply by the central differential scheme.

Similarly, Eqs. 2.4 to 2.6 can be partially differentiated with respect to y, and we
can obtain

Ofy N of, ‘ ofy _ ot

L Jdv
7 —_ _— —_ 9 N

2.4 Pressure-Based Algorithm

In an ordinary compressible fluid, the density p is solve from the mass
conservation equation. After that, from the equation of state, sc matically shown
in Fig. 2-6 (Yabe et al., 2001), the pressure can be calculated. the low-density
side, p oc pT for the ideal fluid and the dependence on pT is relatively weak. but for
solid or liquid density, p steeply rises as the density rises. This means that extremely
high pressure is needed to compress solid or liquid. In other words. for solid or liquid.
the sound speed, c, = (Op/0p)'/?, is very large. A small amount of density error. for
example 10%, can lead to a large pressure pulse of 3-4 orders of magnitude.

Fortunately, if we rotate Fig. 2-6 by 90 degrees, the steep pressure curve becomes
a flat density curve. It means that if we could first solve the pressure and then
es ~ ate the density, the problem at large density would be elis ed.

. .0 pressure-based equation can be obtained as follows by ta: the divergence

of Eq. 2.9 and substituting du,;/0x; .0 Eq. 2.10,

17, ( 1 0;1)”'“ . p"“H — n* 1 Aur*
('hi

= — — : 217
p* Ox; JoVANS At ox; ( )

where the superscripts * and ** indicate the provisional values before and after the
calculation of non-advection phase 1. Eq. 2.17 shows that (Vp/p) is continuous at

sharp discontinuities. In 1"~ case, the density changes by several orders of magnitude

15
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Figure 2-6: An example of an equation of state

at the boundary, for example, between liquid and gas, and the pressure gradient must
be calculated accurately enough to ensure continuous change. T ¢ 1ation works
robustly even with a density ratio larger than 1000 and the multip  se computations
can be carried out.

For a perfect incompressible fluid, we can assume c, = o0, a simpler Poisson

equation can be obtained as below:

0 —1- apn-f—l
Ox; p* Or;

1 Our*

) (2.18)

This is a conventional Poisson equation for incompressible flows and it is valid
for liquid, gas and solid phases. The solution of Eq. 2.18 provides the pressure
distribution in the whole computation domain. The pressure distribution obtained
inside the solid body is a fictitious . -, which satisfies the diverg re free condition
of the velocity field (Hu and Kashiwagi, 2007). With this treatment, 1e boundary
condition for pressure at the interface between different phases is not required.

In this work the finite difference method is applied to solve Eq. 2.18. The central

difference formulas for the first order derivative on uniform grid are as follows:

16




3’7) . L — . .
( - _Pit1; 7 Pi (219)

(pz)ij = or iy = 2Azx
(’)p p:‘ 41 T 2 )
(py)ij = (E)_y)’j == (2.20)

The central difference formulas for the second derivatives arc

Fp. _per =205+ Py
(Dez )iy (ﬁ)i}' == ! Ar; - (2.21)

62]) N:cvr — Mz + Dij-1

(D) = (a—yQ)z‘j = Ay (2.22)

Applying Eqs. 2.19 to 2.22, linear equations, Ax = b, can be obtained from Eq.
2.18, in which x is an unknc 1 column vector of order n, b is a known vector of n
components, and A is a known, square, symmetric, positive-definite matrix and given

by the following square matrix:

g0~y 00000

g a 8 0~ 0 0 0 0

Jé] 30 v 000

¥ O a 0 v 0 0

A=10~v 0 g a 0~ 0

00~ 08 ap 0y

000~ 0B apo

0000~ O0P8alyg
(000005043 a

where «, 3 and « are known constant coefficients. On a uniform g1 ., a —K%(ﬁg +

A—ly-z), g = #(A_lrz). and pL(A#y?) where Az and Ay are the grid spacings in the

z and y directions, respectively. ..ie linear equations can be solve by the conjugate



Solid

Air _W—

Water

IFigure 2-7: Schematic view of a numerical simulation for w er entry.

gradient iterative method.
[Furthermore, the matrix A is symmetric on a uniform grid. T ha  band width
form can be used to reduce the storage. For the non-uniform grids. A is asymmetric

and the full band needs to be stored.

2.5 Boundary Conditions

There are two types of interface that need to be captured in the numerical
simulation: the interface between air and water, i1.e. the free surface; the interface
between solid and liquid or water, i.e. the body boundary. They are both

distinguished by a density function ¢,,, which can be solved by the advection equation.

b rf)//‘)“L
yu o0 (2.23)
ol o.r;

where m = 1,2,3 denote liquid, solid and air phases, respectively; ¢, 1 for liquid
and zero for the air and solid; ¢» = 1 for solid and zero for the air and liguid; and
o3 = 1 for air and zero for the air and liquid.

Solving Eq. 2.23 directly will produce numerical diffusion & | tend to smear
the initial sharpness of the interfaces. In this work, rather than ¢,, itself, its
transformation. F(¢,,), is calculated by the CIP method. If we ¢ «cifv F(¢,,) as a

function of ¢y, only, the new function F(¢,,) is also governed by Eq. 2.23. ...erefore.
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we have

IF (¢m) OF (ém)
i =0 2.24

ot u ()l‘i ( )

In this work, a tangent function is used for the transformation (Yabe et al., 2001),

le.,

F(¢y) =tan[(1 = O)m(on  1/2)] (2.25)
ém  tan"l F(6,,)/[(1 — 7] + 1/2 (2.26)

where ¢ is a small positive constant. The factor (1 —¢) enables us to get around —oo
for ¢,, = 0 and oo for ¢,, = 1, and to tune for desired steepne: of the transition
laver. The parameter ¢ needs to be chosen artificially before calculation. According
to the tangent function, a smaller ¢ results in a numerically sharper slope across the

transition layer.

2.5.1 Calculation Method for the Density F 1iction for a

Two-Dimensional Rigid Body

A direct Lagrangian computational method has been emplovc  to determine the
density function. ¢, for the solid phase. The basic ideca for this et d is to map
the geometry information of a moving body to a fixed Cartesian  id and to obtain
the solid body boundary positions accurately without any numerical diflusion. For a
two-dimensional wedge, the main scheme is as described below:

1. The coordinates for the end points of the wedge (P}, Ps, P3) are calculated by

a Lagrangian method at each t 2 step, as shown in Fig. 2-8.

Lpp = 1';:,,\, N TAY
ypr = yYpi + VAL
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Figure 2-10: The geometry of a real ship section

™~

Figure 2-11: A real ship section represented by line se ients

2. For each ¢ | 1tational cell, if there are more than two nodes intersected by
the body surface, the cell is considered one including the solid-b y boundary, and
the area of the solid body in this cell is computed to determine ¢,. as shown in Fig.

2-9.

9521']' = Aij/AIi/ij

For a more complex geometry body, e.g., a real ship section (F 2-10), the body
boundary is approximated by a series of straight line segments, as  >wn in Iig.
2-11. Steps 1 and 2 are applied for each straight line. Coordinates « the nodes of
line segments are calculated and the density function for each cor  1tational cell can

then be determined.
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2.6 Hydrodynamic Forces on the M : ing Solid
Body

The hydrodynamic force acting on the solid body, F;, can be calculated by

integraling the pressure and skin friction over the body surface:

FeEO A §

(—pbi)npd A + f 2uSinpdA (2.27)
Ja A

where E(P) represents the force due to the pressure, and Fl-(w represents the force due
to the friction, A denotes the surface of the solid body, and ny is t  Ath component
of the outward unit normal vector,

The forces can also be calculated by integration over the whole computation

domain. Applying Gauss’s theorem to Eq. 2.27, we obtain

y 13} ")(")Iui_
' Qa('i 0 ory

where €2 denotes the whole computation domain and ¢, is the density function of
solid. Note that for the slammii  probleni, the skin friction is relatively small and is

neglected in the computation, therefore,

Feed 440 (2.29)
JQ dr,

The advantage of Eq. 2.29 is that we do not need to know the exact position and

orientation of the boundary surface. Eq. 2.29 is adopted in this w k.

2.7 Summary of the Computation

The computational procedure for the water entry problem is ¢ marized in IMig.

2-12. The time integration of governing equations is based on the uler method and
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Chapter 3

Numerical R.sults and Niscussions

The symmetric and asymmetric water entry problemns of two dimensional sections
into calm water were solved by using the CIP-based finite difference method as
discussed in previous sections. Computations were first carried out for symmetric
water entry of wedges with deadrise angles of 30°, 40° and 60°. The pressure
distributions, free surface elevations and hydrodynamic forces a  presented. The
free surface elevations of a we » with deadrise angle of 45° during asymmetric drop
(tilt angle of 20°) were t. computed. Numerical results by the CIP method are
compared with experimental  ults and solutions by the BEM. the VOF method,
and the SPH method. The water entry of a bow flare section is also presented.

In the computations, the water density and viscosily arc given as puater

B LENO

|
)
'
)
'
)
'
'
'
)
'
'
|
f
'

J

Figure 3-1: Geometry of the wedge section in the drop test
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Figure 3-2: Velocities of the wedge with deadrise of 30° during the drop test

1000kg/m* and fiyarer = 0.001kgm~'s~!. respectively. Those of the r are set as

's71 respectively. Uniform grid spacing is nsed

paiv = 1hkg/m3 and g5 = 107 5hgm™
in the computations for water entry of wedges, and non-uniform 1 is employed in

the water entry of a bow flare section.

3.1 Symmetric Water Entry

Computations were first carried out for the symmetric water entry of a wedge
with deadrise angle of 30°. The geometry of the wedge is given 1. .g. 3-1. Note
that Zhao et al. (1996) conducted a drop test for such a wedge at MARINTEK and
computed the pressure and the hydrodvnamic force on the wedge using a boundary
element method. The breadth, B, of the test section is 0.5m and the maxinnnn drop

height is about 2.0m. The vertical velocities of the wedge are given in Fig. 3-2.

3.1.1 Convergence “‘udy

To investigate the convergence of the solution to the time step a | the grid spacing,
the hvdrodynamic forces during the water entry were computed by using various time
steps and grid spacings. First, a constant time step was set as 0.00 3255 and different

grid spacings were used. The results are given in Fig. 3-3. e smallest grid spacing
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8000 T

7000 +

6000

5000

(N)

4000

3000

2000

1une siep-u.wJ00325s

' Time step=0.0000411s -------
Time step=0.0000541s -----
Time step=0.0000812s

L 1

1000 L
0.005

Figure 3-4: Sensitivity of hydrodynamic force to the t

0.01 0.015 0.02
Time (s)

26

0.025

2 step






is 0.01 B, and the greatest one is 0.03 8. where B is the width of the wedge. A constant
grid spacing was then set as 0.018 and various time steps rangi ;. from 0.0000325
seconds to 0.0000812 seconds were used. As shown in Figs. 3-3 and 3-4, the numerical
solutions converge as the grid spacing and the time step decreased. 1 the following
computations, the grid spacii  and the time step were set as 0.0 3 and 0.0000325

second, respectively.

3.1.2 Pressure Distribution, Hydrodynamic Fc :es and Free

Surface Elevation

Figure 3-5 presents the pressure distribution on the wedge surface and the
computational domain at the time instant when the spray roots of the jets reach
the separation points. Fig. 3-6 shows the pressure distribution in the computational
domain after the flow separates. It can be shown from these figures that the maximum
pressure oceurs around the separation points before the flow separation occurs. aud
after flow separates the maximum pressure near the separation pc s drops fast and
maximum pressure moves to the keel of the wedge.

The pressure distribution on the wedge surface was then comyp  ed with the fully
nonlinear solution based on the boundary element method by Zl 1 et al. (1996) in
Fig. 3-7. They in general agree well. The discrepancies at the separation points are
because the separation point. predicted by the CIP method and the boundary element
method is slightly different.

The time series of the computed hydrodynamic forces are “en in Fig. 3-8
and compared with the experimental results (Zhao et al., 1996). the Iy nonlincar
sotution by Zhao et al. (1996) and the numerical solution by the volume of fluid
(VOF) method (Kleefsman et al.. 2005). In the fully nonlinear sol ion, the viscosity
and the compressibility of water are neglected, and the Laplace juation is solved
by the boundary element method. The VOF results are based on the finite volume

nicthod for solv’ Y S0 o0t ~the VOF wethod for captu
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Figure 3-7: Pressure distribution on the wedge with deadrise angle 30° when the spray
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the free surface. The numerical solution by the CIP method is in agreenment with the
experimental results and that by the VOF method. The fully onlinear solution
overestimates the hydrodynamic forces. Fig. 3-8 shows that the hydrodynamic
force increases at the early stage of the water entry and reduces quickly after flow
separation.

Figures 3-9 to 3-12 present the free surface deforniation dur  the water entry
of the wedge at several time instants. As we can see, after the wedge enters the free
surface. two jets are generated on both sides of the part of the wedge in the air.
At about t = 0.015s, the flow separation occurs, and after £ = 0.025s, the wedge is

immersed completely by the water.

3.2 Symmetric Water Entry for Wedges with
Various Dea _rise Angles

Pressure distributions on wedges with different deadrise angles were also
computed. The deadrise angles are 30°, 40° and 60°. respectively. These wedges
enter the water at a constant vertical velocity. Numerical results are shown in Figs.
3-13 to 3-15. All the results are compared with numerical solutions by the boundary
element method (Zhao and Faltinsen. 1993). The agreement is generally favorable.

From these figures, we can find that the sharp-peaked pres: e oceurs close to
the jet flow area for wedges with small deadrise angles. For the v 1ge with deadrise
angle of 60°, the maximum p  ure point tends to move to the keel of the  dge.
The value of maximum pressure drops quickly for wedges with larger deadrise.

The computed free surface elevations for wedges with 30° and 45° deadrise angles
were conipared with the test results by Greenhow and Lin (1987) and the numerical
solution by the VOF method (Kleefsman ef al., 2005) in Fig. 3-16. The visual
comparison indicates that the predicted free surface elevalion is in a good agreenment

with the VOF solution and the experimental results.
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Figure 3-15: Pressure distribution around wedge with deadrise angle 60°
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Figure 3-17: Geometry of the wedge section in the drop test
3.3 Asymmetric Water "ntry

The computation was extended to a wedge entering the calm water with a tilt
angle. This is the case of asymmetric water-entry of a wedge. In the real situation of
ship slamniing. the ship does not always experience symmetric wa - entry due to roll
motion and asymmetric waves with respect to ship. Such an asyn 1etric water-entry
can induce hydrodynamic impact which is significantly different from synunetrie cases.
A drop test was carried out by Kim et al. (2007) to observe the physical phenomena
of two-dimensional asymmetric water-entry of a wedge. The wedge is 0.2m wide with
a 45° deadrise angle and the tilt angle is 20°, as shown in Fig. 3-17. The drop velocity
was 2.42m/s.

Numerical results of * free surface elevation by the CIP method are compared
with the experimental data in Fig. 3-18. Comp: on was ¢ » made with the
numerical solution using the SPH method by Kim et al. (2007). In the SPH method. a
finite number of particles which have physical properties including mass, density and
pressure, are distributed in the fluid domain. The movement of these particles can be
obtained by solving the Euler equation and the continuity equat’ . The agrcement
between the CIP and the SPH methods is satisfactory. From these figures, we find

that the jets on the two sides of wedge are different due  the tilt angle.
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Figure 3-21: The geometry of a bow flare section

Figures 3-19 and 3-20 show the pressure distribution on the wedge surface and
the computational domain for the asymmetric water-entry case. T higher pressure
occurs on the side of the wedge with smaller deadrise angle. Fig. 3-19 presents the
pressure contours before the flow separation, and the maximum pressure is observed
on the separation point of the side with smaller deadrise angle. As shown in Fig.
3-20, after the flow separation, the maximum pressure moves to the keel of the wedge

and value of the maximum pressure drops quickly,

3.4 Water Entry of a Bow Flare Sectic

The numerical scheme based on the non-uniform discretization scheme has the
potential to decrease the computing time while maintaining the accuracy of solutions.

The computation program was extended to compute the water entry of a bow
flare section based on the non-uniformi _ d. A drop test for the bow flare section was
carried out by Zhao et al. (1996) at MARINTEK. The geometry of the bow flare was
given in Fig. 3-21. Fig. 3-22 presents the vertical velocity in the drop test. which s
also used in the numerical simulation.

The numerical grid, as illustrated in Fig. 3-23, varys in the com] tational domain.
Uniform grids with smallest spacings are used around the bow flare section. The

smallest non- " ensic are ~ :/B=0.01 " ;/B=00l Non-uniform
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Figure 3-22: Velocity of the bow flare section during the drop test

grids which follow cosine function distribution are used elsewhere.

The time series of the computed hydrodynamic forces are ¢ 1 in Fig. 3-24
and compared with the experimental results (Zhao et al., 1996). There is a good
agreement between numerical and experimental results in the earlier timme instants.
The discrepancy is larger at a later stage. Further investigation i+ 2eded.

Figure 3-25 shows the pressure distribution around the bow f e when the flow
separates. Similar to the wa  entry of wedges, the maximum pressure occurs near
the separation points.

The free surface elevations were also computed by the CIP 1 hod. Fig. 3-26
presents the free surface elevation when the flow separation occu  As we can see,

two jets are generated and the breaking wave occurs.
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Chapt r 4

Conclusions

The nonlinear water entry problem governed by the Navier-St es equations was
solved by a CIP based finite difference method on a fixed Cartesian grid. In the
computation, the CIP method was employed for the advection calculations and a
pressure-based algorithm was applied for the non-advection calculations. The free
surface and the body boundaries were captured using density functions. For the
pressure calculation, a Poisson-type equation was solved at each time step by the
Conjugate Gradient iteration method.

Validation studies have been carried out for symmetric and asymmetric water
entry of wedges with different deadrise angles and a bhow are :tion. Pressures.
free surface elevations and hydrodynamic forces were computed . 1 compared with
experimental results and numerical lutions by the boundary element method, the
VOF method and the SPH method. The solutions by the CIP m  10d are in a good
agreement with others. It has been demonstrated that the CIP method is able to
capture the highly distorted free surface elevation and to accurate predict pressures
and hydrodynamic forces on wedges entering the calm water.

For future work, studies will be carried out to extend the C  method to solve

the three-dimensional water entry problem of bodies of arbitrary geometry.
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