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Abstract 

Marine reserves provide a means of implementing the precautionary principle in support 

of sustainability objectives. Many reserves have been established for several 

commercially significant species of spiny lobster, but are less frequently employed for 

Homarid lobsters. In 1997, two small reserves for American lobster, Homarus 

americanus, were established in Bonavista Bay, Newfoundland- one at Round Island, 

and one at Duck Islands. They were designated as Marine Protected Areas (MPAs) in 

2005. Relatively short-term studies, employing 3 to 5 years of data, revealed significant 

differences in lobster density and/or mean size between populations within the reserves 

and similar reference locations, but did not examine differences in reproductive output. 

Using over ten years of data, I investigated differences in density, population structure 

(i.e. size; sex ratios), and reproductive potential between protected and unprotected 

populations of American lobster at both study sites. At the Round Island site, lobster 

density inside the reserve was greater than that of the adjacent reference area. Observed 

sex ratios in reserve and reference locations differed at both sites, with a greater bias 

towards females in reference locations. At Round Island and Duck Islands study sites, 

both male and female lobsters were significantly larger in protected populations, and 

mean sizes continued to increase over time. The increased female size in protected 

populations led to consistently greater reproductive potential inside these reserves, 

though the difference between protected and unprotected populations was small, 

averaging 10 % for Round Island and 14 % for Duck Islands. The results of this study 
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provide further evidence that the Eastport MP As promote sustainability of the resource 

through increased density, mean size and reproductive potential oflobsters. 
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Chapter 1: Introduction 

1.1 The precautionary principle and marine reserves in fisheries management 

Many exploited populations in coastal habitats have declined precipitously as a 

consequence of overfishing (Dayton et a/. 1995). In most cases, the declines were 

associated with traditional fisheries management methods, involving control of effort or 

catch (Stefansson and Rosenberg 2005). The large degree of uncertainty associated with 

fisheries stock assessments and the study of marine ecosystems, combined with the 

uncontrollability of catches and incidental mortality, necessitates a more precautionary 

approach to fisheries management, to safeguard against these uncertainties and mitigate 

the possibility of a stock collapse (Ludwig eta/. 1993; Lauck eta/. 1998). The 

precautionary principle stresses the importance of caution and careful consideration in 

fisheries management where scientific infonnation is uncertain, unreliable, or inadequate. 

It asserts the importance of accounting for environmental fluctuations and excessive, 

unreported fishing mortality in the design and implementation of fisheries management 

strategies (Lauck eta/. 1998). Application of the precautionary principle, or 

precautionary approach, has typically been achieved through the use of harvest control 

rules, which adjust catch quotas or effort levels in response to reference points based on 

estimates of biomass and/or rates of fishing mortality (Hilborn eta/. 200 I). Such control 

rules are best applied to fisheries characterized by data-rich stock assessments, but many 

stock assessments lack sufficient information or certainty to derive necessary control 

rules and associated reference points (Cadrin and Pastoors 2008). Establishment of 



marine no-take reserves is another method of implementing the precautionary principle in 

fisheries management (Lauck eta!. 1998). More effective management and, thus, greater 

sustainability of fisheries can be achieved through the use of marine reserves as a 

complement to traditional fisheries management practices, which sometimes fail to 

prevent overexploitation, or even collapse, ofharvestable stocks (Davis 1989; Bohnsack 

1993; Agardy 1994; Guenette et al. 1998; Lauck et al. 1998; Roberts eta!. 2005; 

Stefansson and Rosenberg 2005). 

Reserves have the potential to benefit target species and ecosystems in a number 

of ways. Targeted species can benefit from the establishment of such refugia as 

abundance, mean individual size (and age), and reproductive output can be increased 

(Dugan and Davis 1993). Recruitment both inside and outside the refugia can be 

enhanced, as can fishery yields in adjacent harvested grounds (Dugan and Davis 1993). 

Additionally, the genetic diversity and population structure (sex ratio and size structure) 

of stocks can be maintained as a consequence of protecting a portion of the stock within a 

reserve (Bohnsack 1992; Dugan and Davis 1993; Bohnsack 1998). 

Although marine reserves have the potential to conserve exploited populations 

through a variety of general effects on ecosystems and targeted species, specific and 

direct benefits to the fishery can be achieved in two principal ways. First, reserves may 

act as sources of recruitment to regional fishery stocks, ex potting larvae to areas that are 

open to commercial harvesting (Robet1s and Polunin 1991; Rowley 1994). This is often 

viewed as the primary benefit of reserves in the context of fisheries management, as they 

may provide " insurance" against poor recruitment seasons (Roberts and Polunin 1991 ; 
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DeMartini 1993; Dugan and Davis 1993). Recruitment benefits from the protected 

spawning stock within reserves can also aid in the rehabilitation of the stock following a 

collapse due to unfavorable environmental conditions or recruitment overfishing (Roberts 

and Polunin 1991; Can· and Reed 1992; Rowley 1994; Russ and Alcala 1996). Secondly, 

marine reserves may enhance local catches via the "spillover" effect, as harvestable 

biomass contained within the reserve disperses and enters adjacent harvesting grounds 

(Rowley 1994; Russ and Alcala 1996). This "spillover" may increase yield and 

counteract the effects of growth overfishing, replenishing exploited stocks through the 

movement of older life stages across reserve boundaries (Polacheck 1990; Roberts and 

Polunin 1991; Rowley 1994; Russ and Alcala 1996). 

Design and implementation of such harvest refuges requires careful consideration 

and dedicated research and evaluation. Reserves that are poorly designed and/or do not 

contribute to the enhancement of a fishery will serve as inefficient use of resources, and 

unnecessarily restrict the range of the fishery (Carr and Reed 1992). Therefore, it is 

important that the effectiveness of such reserves be evaluated and monitored, to ensure 

that resources and effort are optimally expended, and the fishery is not compromised. 

Marine reserves have been implemented for a variety of species in response to the 

realization that traditional fisheries management approaches are characterized by a 

considerable, and often iiTeducible, degree of uncertainty (Guenette et a /. 1998; Lauck et 

al. 1998). Multiple studies involving marine reserves of varying sizes and locations have 

demonstrated that the abundance/density, mean size, and fecundity of heavily fished 

resident species tend to be greater within reserve boundaries, as compared to nearby 
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reference areas (Roberts and Polunin 1991 ; Dugan and Davis 1993; Rowley 1994; 

Halpern and Warner 2002). Many of these studies have focused on the impacts of 

protection for a number of populations of commercially significant species of spiny 

lobster. Increases in abundance and/or mean size of populations in reserves have been 

demonstrated for Jasus edwardsii (Cole et al. 1990; Kelly eta!. 2000; Davidson et al. 

2002; Barrett et al. 2009), Panulirus argus (Acosta and Robertson 2003; Cox and Hunt 

2005), and Palinurus elephas (Goni eta!. 2001 ). Additionally, increased reproductive 

potential has been reported for protected populations of Jasus edwardsii in New Zealand 

(Kelly et al. 2000; Davidson et al. 2002), Panulirus argus in Florida (Bertelson and 

Matthews 2001 ), Panulirus cygnus in Western Australia (Babcock eta/. 2007), and 

Palinurus elephas in the western Mediterranean, off the coast of Spain (Goni eta/. 2003). 

In contrast, fewer reserves exist for populations of clawed lobsters such as the American 

lobster, Homarus americanus, despite its commercial significance. In Canada, the 

commercial fishery for the American lobster is valued at approximately one billion 

dollars annually. 

1.2 American lobster (Homarus americanus) biology 

The American lobster (Homarus americanus) is distributed along the continental 

shelf and upper slope of the n011hwestem Atlantic, ranging from the Straits of Belle Isle 

to Cape Hatteras (Lawton and Lavalli 1995). It is a decapod crustacean characterized by 

a complex life cycle, which is dominated by a benthic period that may continue for more 

than 30 years (Lawton and Lavalli 1995). Growth is achieved through molting, and 
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frequency of molting depends on the age of the animal. Adolescent and juvenile lobsters 

may molt 15 to 20 times before reaching reproductive maturity (Wilder 1953). Older 

animals, however, molt less frequently and the interval between molts increases with the 

size of the lobster (Cobb 1995). 

Mating in this species occurs in the months of July to September, immediately 

after the summer molt, and the female extrudes eggs roughly one year subsequent to 

mating (Waddy et al. 1995). The eggs are carried in clutches on the underside of the 

female's abdomen, and the ovigerous (egg-bearing) animal protects and maintains the 

eggs for a period of 9-12 months (Ennis 1995). Thus, female lobsters are characterized 

by an alternate year molt/lay sequence (i. e. biennial molt-reproductive cycle), though 

mature female lobsters at the lower end of the size range sometimes molt and spawn 

within the same summer (Ennis 1984). As is the case with many species of fish and 

marine invertebrates, fecundity of females increases logarithmically with size (and age), 

and eggs from larger lobsters tend to contain more energy per unit weight than those of 

smaller females (Aiken and Waddy 1980a, 1980b; Waddy and Aiken 1986; Attard and 

Hudon 1987; Estrella and Cadrin 1995). This suggests that larvae hatched from eggs of 

larger animals are better equipped to deal with, and survive, adverse conditions. Larger 

ovigerous females also undertake migrations to expose their developing eggs to less 

extreme and variable temperatures, which may affect timing of hatching, larval release 

and, therefore, postlarval settlement (Cowan et al. 2007). This may have implications 

for survival of offspring. 
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Hatching occurs during a four month period extending from late May through 

most of September, and newly hatched prelarvae undergo an initial molt to Stage I before 

being released by the ovigerous female (Ennis 1995). Once released, larvae swim 

upward and undergo a series of three molts during a 6-8 week pelagic phase, during 

which most mortality is thought to occur (Scarratt 1964; Ennis 1995). With the third 

molt, a metamorphosis occurs and the newly developed postlarvae (Stage IV) make the 

transition from pelagic to benthic existence. 

Newly-settled lobster postlarvae progress through three juvenile stages and an 

adolescent phase before reaching adulthood (Lawton and Lavalli 1995). The adult 

lobster is thought to have few natural predators; commercial harvesting accounts for the 

greater proportion of adult mortality (Fogarty 1995). The American lobster is believed to 

be one of the most heavily exploited marine species in the world (Cobb 1995). 

1.3 Management of the American lobster (Homarus american us) fishery 

The Canadian lobster fishery is closely regulated, and is based largely on input 

controls, rather than quotas. These include regulatory measures such as minimum and 

maximum size limits, limited entry, restrictions on trap numbers, and the prohibition 

against landing of ovigerous females. In November of 1995, the Fisheries Resource 

Conservation Council (FRCC) published a report to the Minister of Fisheries and Oceans 

Canada entitled, "A Conservation Framework for Atlantic lobster" . In this report, the 

FRCC expressed concerns about the future viabi lity of Atlantic Canada ' s lobster stocks, 

suggesting that high exploitation rates, combined with the considerable harvesting of 
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immature animals, could result in decreased egg production and recruitment failure in 

periods characterized by adverse environmental conditions (FRCC 1995). Exploitation 

rates were estimated to be as high as 85%, and estimates of egg production stood at about 

1-2% of what would be expected in an unfished population (FRCC 1995). The FRCC 

concluded that the lobster fishery was operating under a very high-risk management 

regime and recommended that steps be taken to both enhance egg production and 

decrease exploitation rates. 

The FRCC suggested numerous conservation measures aimed at increasing egg 

production, reducing exploitation rates and effective fishing effort, improving stock 

structure, and minimizing waste. One such suggestion was the establishment of no-take 

reserves -protected areas where lobsters would be allowed to live and breed naturally in 

the absence of commercial harvesting. The FRCC also recommended other measures, 

such as an increase in the minimum legal carapace size required for retention, and 

proposed the implementation ofV-notching programs. V-notching involves the cutting 

of a shallow notch in the endopodite of the right uropod of ovigerous lobsters. It is illegal 

to land V -notched lobsters and, since the mark is typically retained through two or more 

molts (DeAngelis et al. 201 0), the practice allows females to attain larger sizes, and 

greater fecundity (Daniel eta/. 1989). The FRCC strongly recommended that a 

precautionary approach be adopted as a required element oflobster conservation plans, to 

increase the level of egg production while reducing exploitation rates and effective 

fishing effort (FRCC 1995). 
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1.4 Eastport Peninsula lobster conservation initiatives 

The Eastport Peninsula is located on the northeast coast ofNewfoundland, in the 

centre ofBonavista Bay (48.65°N, 53.70°W). The waters surrounding the peninsula have 

traditionally served as lobster fishing grounds for harvesters from seven small 

communities in the area (Burnside, Eastport, Happy Adventure, Salvage, Sandringham, 

Sandy Cove and St. Chad's). The Eastport Peninsula Lobster Protection Committee was 

formed in 1995, in response to concerns raised by the FRCC report. The committee, 

comprised of local lobster harvesters, was established to implement some of the 

conservation practices outlined in the FRCC report, in an attempt to increase egg 

production and reduce exploitation rates. In 1996, approximately 1500 ovigerous 

females were V -notched and released in the area (Rowe 2000). In 1997, the Eastpmi 

Peninsula Lobster Management Area was fonned, and two small marine reserves were 

established in Bonavista Bay, around the Duck Islands and in the waters surrounding 

Round Island (see Figure 1 in Chapter 2). The committee fom1ed a partnership with 

Fisheries and Oceans Canada, Memorial University ofNewfoundland, and Parks Canada, 

in order to integrate scientific and traditional ecological knowledge and evaluate the 

effectiveness of these areas. 

After the reserves had been established, tagging studies commenced in the fall of 

1997, using uniquely numbered polyethylene streamer tags to mark individual animals. 

With data obtained during the first three years following establishment of the reserves, 

various aspects of the lobster populations, and movement of animals between the 

commercially harvested and reserve areas, were quantified. The data revealed 
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significant differences in mean size and lobster density between reserve and 

commercially exploited populations (Rowe 2002). Janes (2009) compared data from the 

first year of reserve establishment to later years, 2004-2007, and reported that males and 

females at the Duck Islands site, and males at the Round Island site, were significantly 

larger inside the reserves. Overall, these relatively short-term studies suggest that the 

implementation of the precautionary principle, through the establishment of marine 

reserves in Eastport, could potentially offer considerable benefits to the local fishery, 

and facilitate increased survival of lobsters in the area. However, further research, 

employing a longer time series of data, is necessary in order to determine if these shm1-

term results carry through to longer term impacts on density and population structure. 

Given that a major benefit of reserve establishment is the production and export of 

larvae, fecundity and reproductive potential of females within the reserve should also be 

investigated. 

Hypotheses 

The hypotheses of this study are as follows: 

1) Lobster density will be greater inside each of the reserves, as compared to reference 

areas. In addition, density inside the reserves will increase over time. 

2) Sex ratios inside and outside the reserves will differ significantly. Since ovigerous 

and V -notched females are protected from commercial harvesting, there should be a 

biased sex ratio, towards females, in the reference area. 
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3) The mean size oflobsters will be significantly greater inside the reserves, as opposed 

to that of reference areas, and will increase over time. 

4) Reproductive potential will be greater inside the reserves due to increased mean size 

of females, and will increase over time. 

Chapter 2 will address hypotheses 1, 2, and 3. Chapter 3 will address hypothesis 4. 

Chapter 4 will summarize key conclusions and directions for future research. 
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Chapter 2: Population structure and density of American lobster (Homarus 

americanus) in protected and unprotected populations in Bonavista Bay, 

Newfoundland. 

2.1 Introduction 

A number of exploited populations in coastal habitats have declined precipitously 

as a consequence of overfishing (Dayton et al. 1995). The large degree of uncertainty 

associated with fisheries stock assessments and the study of marine ecosystems, 

combined with the uncontrollability of catches and incidental mortality, necessitates a 

more precautionary approach to fisheries management, to safeguard against these 

uncertainties and mitigate the possibility of a stock collapse (Ludwig eta/. 1993; Lauck 

et al. 1998). The establishment of marine no-take reserves is one method of 

implementing the precautionary principle in fisheries management (Lauck et a/. 1998). 

Over the past 30 years, marine reserves and fishery refugia have gained popularity as an 

alternative, or complement, to conventional fisheries management practices, which 

sometimes fail to prevent overexploitation, or even collapse, ofharvestab1e stocks (Davis 

1989; Bohnsack 1993; Agardy 1994; Guenette eta!. 1998; Lauck et al. 1998; Roberts et 

al. 2005; Stefansson and Rosenberg 2005). Interest in the use of reserves as a fishery 

management tool is focused on two potential direct benefits to the fishery: 1) the 

production and export of1arvae from the protected area, and; 2) the direct emigration of 

harvestable biomass from reserves, commonly refened to as "spillover" (Rowley 1994). 
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Both larval export and "spillover' ' can be difficult to demonstrate. Attempts to 

quantify the efficacy of marine reserves (and, in turn, the effects of fishing) have often 

focused on comparisons between protected and commercially exploited populations, and 

changes in these populations over time, using measures of abundance and/or density, 

mean sizes, size structure, and sex ratios. A number of these studies have focused on 

commercially significant species of spiny lobster, including Jasus edwardsii, Panufirus 

argus, Panulirus cygnus and Palinurus efephas. Reserves for these highly exploited 

species of spiny lobster have been established since the mid 1970s. Studies of these 

reserves have demonstrated increased abundance and/or density of spiny lobsters within 

protected areas compared to exploited areas (Cole et af. 1990; Kelly et af. 2000; Gofii et 

af. 2001 ; Davidson et af. 2002; Babcock eta/. 2007; Barrett eta!. 2009), increases in 

mean size and shifts in population structure to favour larger, more fecund, individuals 

(Cole eta!. 1990; Kelly eta/. 2000; Bertelsen and Matthews 2001 ; Davidson eta/. 2002), 

and changes in population sex ratios (Gofii eta/. 2001; Davidson eta/. 2002). 

By comparison, fewer reserves have been established for the protection of clawed 

lobsters, such as the American lobster, Hamar us americanus. In 1997, two small marine 

reserves for the American lobster were established in Bonavista Bay, Newfoundland. 

Tag-recapture studies from 1997-1999 revealed significant differences in lobster 

population parameters (mean size and density) between protected and unprotected 

populations, but no differences in sex ratios (Rowe 2002). Janes (2009) compared data 

from the first year of reserve establishment to later years, 2004-2007, and reported 

significant differences in size between protected and unprotected populations. This study 
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addresses changes in population structure and lobster density over the long-term, by 

including data from 2000-2002, as well as recent data from 2008 mark-recapture 

sampling. 

Hypotheses 

The hypotheses of this study are as follows: 

1) The mean size of lobsters will be significantly greater inside the reserves, as opposed 

to that of reference areas, and will increase over time. 

2) Sex ratios inside and outside the reserves will differ significantly. Since ovigerous 

and V -notched females are protected from commercial harvesting, there should be a 

biased sex ratio, towards females, in the reference area. 

3) Lobster density will be greater inside each of the reserves, as compared to reference 

areas. In addition, density inside the reserves will increase over time. 

2.2 Materials and methods 

2.2.1 Study areas 

The Eastport Peninsula Lobster Management Area, located in the waters 

surrounding the Eastport Peninsula in Bonavista Bay, Newfoundland (48.65° N. 53.70° 

W), contains two marine reserves, one at Round Island, and one at Duck Islands. 

Through harvester initiative, the reserves were established in 1997 for the protection of 

the American lobster, and were designated as Marine Protected Areas (MPAs) by 

Fisheries and Oceans Canada in 2005. 
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2.2.2 Sampling design 

Data were assembled for 1997-2008. During September 18 - September 28 of 

2000, mark-recapture research tagging oflobsters took place at both the Round Island and 

Duck Islands study sites. Sampling was conducted inside the reserves and in the adjacent 

reference areas, which were open to commercial harvesting. These areas are identified in 

Figure 1. Participating harvesters were asked to spread traps out within each reserve and 

reference location, and set them at commercially fished depths. A total of25 wood-lath 

parlour traps were set in each of the reserves, and 25 traps were set in each nearby 

reference area. Traps were hauled daily, except in circumstances of inclement weather, 

and baited using fresh or salted herring (Clupea harengus), mackerel (Scomber 

scombrus), winter flounder (Pseudopleuronectes americanus) or cod (Gadus spp.). 

For each new lobster captured during the research tagging periods, the following 

information was recorded: date of capture, location of capture, sex, and carapace length 

(CL). Carapace length was defined as the length of the cephalothorax, from the base of 

the right eye-socket to the end of the carapace, and was measured in millimeters (mm) 

using vernier calipers. Females were also examined in order to determine reproductive 

condition (i.e. ovigerous or not). New captures were marked with uniquely numbered 

polyethylene streamer tags. Each tag was inserted, with the aid of an attached embroidery 

needle, into the thoraco-abdominal membrane and abdominal muscle on one side, and 

threaded over the dorsal at1ery and through the abdominal muscle on the opposite side, as 

described by Moriyasu eta/. (1995). In the case of larger animals, circa I 00 mm or 
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larger, the tag was inserted through one muscle band only. With the tag properly inse1ted, 

the needle was detached and discarded. Once tagged, lobsters were released immediately. 

Often, lobsters tagged in previous years were recaptured, in which case the 

original tag number was recorded, along with the aforementioned infonnation. This 

protocol was repeated during Fall of2001 (23 September - 5 October) and Fall of2002 (2 

October - 10 October). Similar protocols were used in Fall (September/October) of 1997-

1999, and 2004-2008. Sampling was not conducted at either site in 2003, and no data 

were available. 

2.2.3 1997-1999 data 

Because data from the 1997-1999 study were not available, it was necessary to 

make use of values from figures and tables published in Rowe (2002). Estimates of 

population size, and associated confidence limits, were obtained from taking 

measurements of figures published in Rowe (2002). Estimates of annual mean sizes of 

males and females in both protected and unprotected populations, at each study site, were 

obtained in a similar fashion. However, published confidence limits were not consistent 

with results of ANCOV A and other regression analyses in the publication, which 

revealed significant differences in mean sizes between protected and unprotected 

populations (e.g. males at Duck Islands), and increases over time (e.g. females in Round 

Island reserve), in some cases. Confidence limits for means estimated from 2000-2002 

and 2004-2008 data were on the order of several mm, as opposed to ten or twenty mm. 
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Therefore, values for confidence limits from 1997-1999 data were not used to back 

calculate standard errors or variances. 

2.2.4 Population structure 

Recaptures occurred frequently during each sampling period, but each lobster 

was counted only once per year for the analyses. Due to differences in growth rates 

between the sexes (Waddy eta/. 1988; Ennis et al. 1989; Comeau and Savoie 2001 ), 

data from males and females were analyzed separately. When mean carapace lengths for 

males and females were plotted against year, no consistent observable trends were 

evident. ANOVA was used to compare mean sizes between reserve and reference 

locations for males and females at both study sites. The tolerance for Type I eiTor was 

set at 5%. Residuals were checked for independence, nonnality and homogeneity. 

Because data from the 1997-1999 study were unavailable, the 2000-2002 and 2004-2008 

data were pooled to obtain a MS eiTor. The MS error was then used to estimate F ratios 

based on main effects from means weighted by associated sample sizes, using data from 

1997-1999, 2000-2002, and 2004-2008. Appendix A shows computational flow. When 

interpreting multifactor ANOV A results, interaction terms were examined first, before 

main effects. 

The proportion of each sex inside reserve and reference areas, for both study 

sites, was calculated for each year of the study. The proportions were statistically 

analyzed using binary logistic regression with a logit link function to determine if the 

differences in sex ratios between protected and unprotected populations, at each study 
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site, were significant. 

2.2.5 Population size and density 

Estimates of lobster population size within the reserves and in adjacent reference 

areas were carried out using the Schumacher and Eschmeyer (1943) method, a multiple 

markings and recaptures method. To obtain accurate estimates of population size using 

this method, five assumptions must hold: (i) The population must be closed, (ii) all 

animals must have an equal chance of being caught in the first sample, (iii) the marking 

of individuals does not affect their catchability, (iv) animals do not lose marks between 

sampling periods, and (v) all marks are reported upon discovery in the second sample 

(Krebs 1999). Rowe (2000) reviewed the extent to which these assumptions were met in 

the 1997-1999 study, and concluded that adjustments could be made to limit the effects 

of the potential violations. Rowe (2000) also concluded that the assumptions that could 

not be tested directly did not introduce serious bias. Because the same sampling methods 

were employed in subsequent years, the conclusions were adopted (with one exception). 

The method was used to estimate population size for data from 2000-2002 and 2004-

2008. 

The assumption of a closed population was not met during the 2000-2002 and 

2004-2008 studies. A total of 5 animals crossed the reserve boundary at the Round Island 

study site, and a total of 8 moved across the boundary at the Duck Islands site. These 

animals were removed from all analyses. 
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For each sampling period, a regression plot of the proportion of marked animals 

on the number previously marked was used to test for violations of the assumptions. A 

linear plot indicated that assumptions of the method were fulfilled, while a curvilinear 

plot indicated that the assumptions were violated, in that catchability was not constant, or 

the population was not closed (Krebs 1999). Data from protected and unprotected 

sampling areas for both Round Island and Duck Islands were plotted in this fashion for 5 

ofthe 8 years of available data (Appendix B). Ofthe 20 plots, curvilinearity was evident 

in 5. An additional 2 plots showed slight curvilinearity. The method was used to obtain 

population size estimates. 

To estimate density, the population size estimates obtained by the Schumacher 

and Eschmeyer method (1943) were divided by the estimated size of each reserve and 

reference location in the two study sites. Rowe (2002) employed both a Global 

Positioning System and a Geographic Infom1ation System, combined with the local 

ecological knowledge of Eastport Peninsula lobster harvesters, to estimate the size of 

each reserve and reference location in the two study sites. More detailed maps published 

in Janes (2009) suggested that the sizes of the study areas were underestimated by Rowe 

(2002), and that the sizes of the reference areas had changed over time at both Duck 

Islands and Round Island study sites. It was necessary to reexamine the size of protected 

and reference areas at both study sites, and assess any temporal changes. To achieve 

this, a grid of 1OOm x 1OOm (1 ha) squares was overlaid on the maps published in Janes 

(2009). Using the shoreline as the inner boundary of the study area, and the edge of the 

1Om depth contour as the outer boundary, the number of squares contained within the 

23 



boundaries of the protected and reference areas for both Duck and Round Islands was 

summed. Using maps from 1997-1999 (Rowe 2002) and 2000-2002 (Figure 1) studies, 

the procedure was repeated to estimate the size of each reference area used for these 

earlier investigations. This procedure was repeated three times to obtain an average. 

Since the boundaries for the reserves remained fixed from 1997-2008, it was not 

necessary to evaluate the size of the protected areas for each of the three study periods. 

2.3 Results 

2.3.1 Population structure 

For females at the Round Island study site, the interaction term was not 

significant (ANOV A; Protection x Year: F 10, 1600 = 1.49, p = 0.136). Female lobsters 

inside the reserve (91 mm CL) were significantly larger (ANOVA; Protection: F 1. 16oo = 

30.61 , p <0.00 1) than those in the reference area (88 mm CL). In addition, there were 

significant differences across years (ANOVA; Year: F 10, 1600 =23 .55, p <0.001). Mean 

size of female lobsters at the Round Island reserve increased over time (Figure 2). 

For females at the Duck Islands site, the interaction term was not significant 

(ANOV A; Protection x Year: F 10, 1274 = 1.16, p = 0.311 ). Female lobsters inside the 

reserve (94 ml CL) were significantly larger (ANOVA; Protection: F 1. 1274 = 35.13, p 

<0.001) than those of the adjacent reference area (90 111111 CL). There were also 

significant differences across years (ANOVA; Year: F 10. 1274 =16.51 , p <0.001). Mean 

size offe111ale lobsters at the Duck Islands reserve increased over time (Figure 3). 

24 



For males at Round Island, the interaction tenn was significant (ANOV A; 

Protection x Year: F 10, 1508 = 3.02, p <0.001). This was due to an increase in the 

magnitude of difference between mean sizes of reserve and reference populations over 

time (Figure 4). From 1997 to 2008, the percent difference in mean size (reserve relative 

to reference) increased from 1.9% to 15.4%. Male lobsters in the reserve (97 mm CL) 

were significantly larger (ANOYA; Protection: F 1, 1508 = 95.72, p <0.001) than those of 

the adjacent reference area (91 mm CL). In addition, there were significant differences 

across years (ANOYA; Year: F 10• 1508 = 14.88, p <0.001). Mean size ofmale lobsters at 

the Round Island reserve increased over time (Figure 4). 

For males at Duck Islands, the interaction term was significant (ANOV A; 

Protection x Year: F 10, 1927 = 2.16, p = 0.0 18). This was due to an increase in the 

magnitude of difference between mean sizes of reserve and reference populations 

(Figure 5). From 1997 to 2008, the percent difference in mean size (reserve relative to 

reference) increased from 3.7% to 15.7%. Male lobsters in the reserve (99 mm CL) 

were significantly larger (ANOYA; Protection: F 1• 1927 = 226.04, p <0.001) than those of 

the adjacent reference area (89 mm CL). In addition, there were significant differences 

across years (ANOYA; Year: F 10• 1927 = 13.69, p <0.001 . Mean size ofmale lobsters at 

the Duck Islands reserve increased over time (Figure 5). 

Observed sex ratios for lobsters captured during 1997-1999, 2000-2002 and 

2004-2008 are presented in Table I. There were significant differences in sex ratios 

between reserve and reference areas at both study sites, with a bias toward females in the 

reference locations (Table 2). 
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2.3.2 Population size and density 

At the Round Island site, population size in the reference area was greater than 

that of the reserve in 1997, but decreased in 1998 (Figure 6). The reserve population 

was larger than the reference population in 2004. An average population size for the 

entire time series, from 1997 to 2008, was 4 73 lobsters in the reserve, and 506 lobsters in 

the reference area. At the Duck Islands site, population sizes for the reserve and 

reference areas varied without trend (Figure 7). Protected populations were larger than 

those of the reference area in 1999, 2004, 2006, and 2007. An average population size 

for the entire time series, from 1997 to 2008, was 844 lobsters in the reserve, and 486 

lobsters in the reference area. Estimates of population size do not account for changes in 

the size of the study areas over time. Estimates of size of the reserve and reference areas 

for both Round Island and Duck Islands are presented in Table 3. At Round Island, the 

size of the reference area decreased between study periods. At Duck Islands, the size of 

the reference area increased between each of the three study periods. 

At the Round Island site, lobster density was consistently greater inside the 

reserve from 1998 to 2008 (Figure 8). An average density for the entire time series was 

17 lobsters/ha in the reserve, and 5 lobsters/ha in the reference area. At the Duck Islands 

site, no differences in lobster density were observed between reserve and reference areas 

(Figure 9). From 1997-2008, the reserve averaged 10 lobsters/ha and the reference area 

averaged 9 lobsters/ha, for each year of the study. At both study sites, lobster densities 

did not increase over time. At the Duck Islands site, from 1997-2002, estimated 
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densities were typically higher in the reference area but, from 2004-2008, reserve 

densities were consistently higher than those of the reference area. 

2.4 Discussion 

The population structure and density of American lobsters (Homarus 

americanus) from two marine reserves and adjacent reference locations, from 1997 to 

2008, were compared. As predicted, mean sizes of males and females were greater 

inside the reserves, as compared to adjacent reference areas. Mean size of males and 

females in both Round Island and Duck Islands reserves increased over time, but the 

most pronounced response to protection occurred for males at both study sites. 

Observed sex ratios in reserve and reference locations differed at both sites, with a 

greater bias towards females in the reference areas. Lobster densities at the Duck Islands 

site were similar for reserve and reference locations, while densities at the Round Island 

site were greater inside the reserve, as compared to the adjacent reference area. Contrary 

to predictions, estimated densities of lobsters at each reserve did not increase over time. 

The presence of larger lobsters in the reserves at both Round Island and Duck 

Islands is consistent with previous studies of lobsters in the Eastport reserves. Rowe 

(2002) reported that, during the first three years of reserve establishment, males and 

females inside each reserve were larger than those of the adjacent reference areas. 

Using data from 1997 and 2004-2007, Janes (2009) reported that males and females at 

the Duck Islands site, and males at the Round Island site, were significantly larger inside 

the reserves. 
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Between 1997 and 2008, increases in mean size were observed for both sexes in 

protected populations at both study sites. Using AN COY A, Rowe (2002) reported that 

increases in mean size of lobsters during the first three years of reserve establishment 

depended upon sex, presence of protection, and the study site. The mean size of males 

increased over a three year period, from 1997 to 1999, in both the reserve and reference 

areas of the Round Islands site, and the reserve at Duck Islands (Rowe 2002). For 

females, mean size increased in the reserve population at Round Island, but remained 

unchanged for populations in the Round Island reference area and at the Duck Islands 

site (Rowe 2002). The change in size over time in the present study, in contrast to 

Rowe (2002), may have been a consequence of different analytical approaches (AN OVA 

vs. ANCOVA), or a difference in the duration of the studies. ANCOVA was not used in 

the present study, as the data did not warrant an assumption of a straight line increase. 

From 1997-2008, the greatest response to protection, with respect to size, was 

associated with males at both reserves. This may be due to a number of factors . Males 

typically grow faster than females (Waddy eta/. 1988), especially after the onset of 

sexual maturity, as the female allocates more energy to reproductive demands and 

assumes a biennial molt-reproductive cycle (Templeman 1933; Aiken and Waddy 

1980a, 1980b ). In Newfoundland, females may be subject to a lower rate of exploitation 

in the commercial fishery (DFO 2009), possibly due to the prohibition against landing 

ovigerous (egg-bearing) lobster. Ovigerous females must be immediately released upon 

capture and thus are afforded an additional opportunity to molt before becoming 

vulnerable to harvest in a subsequent fishing season. Additionally, the implementation 
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of a comprehensive V -notching program in Eastport in 1996 resulted in increases in the 

mean size of females in commercially harvested areas (Whiffen 201 0). The practice of 

V -notching involves cutting a shallow mark in the endopodite of the right uropod of the 

female 's tail , which is then typically retained for two or more molts (DeAngelis et al. 

201 0). This enhances egg production by rendering the female ineligible for harvest, 

even when not brooding eggs externally, allowing her to attain larger sizes and greater 

fecundity (Daniel et al. 1989). Given that approximately 1500 ovigerous females in the 

Eastport area were V -notched in 1996 (Rowe 2000), and that V -notched lobster were 

caught at both study sites during fall sampling, in multiple years; the less pronounced 

difference in female size between protected and unprotected populations may have been 

the result of females in the reference areas attaining larger sizes over time as a 

consequence of this conservation measure. 

Given that male lobsters are generally more catchable than females (Miller 1989, 

1990, 1995; Tremblay and Smith 2001; Tremblay eta/. 2006), and that females are 

afforded additional protection in the commercial fishery when bearing eggs or V

notched, and that mortality appears to be higher for males in Newfoundland lobster 

populations (DFO 2009), it was expected that the observed sex ratio in reference areas, 

which are subject to commercial harvesting, would be skewed in favour of females. The 

results of the present study support this hypothesis. Observed sex ratios in reserve and 

reference locations differed at both sites, with a bias towards females in reference 

locations. These results are inconsistent with those of Rowe (2002), who rep01ied no 

difference in sex ratios between reserve and reference populations after the first three 
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years of reserve establishment. The difference between the results of the present study 

and those of Rowe (2002) may be due to different analytical approache , or differences 

in the duration of the studies. 

In the absence of commercial harvesting, it was expected that densities of 

lobsters would be greater inside the reserve. Studies of numerous marine reserves, 

established for a variety of species, have repeatedly demonstrated greater average 

population densities when compared to those of reference sites, regardless of reserve size 

(Halpern 2003). At the Round Island ite, reserve densities were much higher than tho e 

of the adjacent reference area. However at the Duck Islands site densities of lobsters in 

protected and unprotected populations were comparable. These longer term results are 

consistent with those from an earlier short tenn study of these two reserves. Rowe 

(2002) reported that differences in density were pronounced at the Round Island study 

site during the fir t three years of reserve establishment, with an average of 165 

lobsters/ha in the reserve, as opposed to 42 lobsters/ha in the reference area. At the 

Duck Islands study site, lobster densities in reserve and reference locations were similar. 

The Duck Island re erve contained an average of 68 lobsters/ha, while the reference 

area contained an average of 85 lobsters/ha (Rowe 2002). These density estimates were 

much greater than those obtained in the pre ent study, due to substantial differences in 

estimates of the size of reserve and reference areas at each study site, but the observed 

trends were similar. 

Population response to protection, in tenn of density, appeared to be contingent 

upon the study site. While there were differences in density between re erve and 

30 



reference areas at Round Island, there were no detectable differences at the Duck Islands 

site, despite the substantial sampling effort over 11 years. Differences in topography and 

substrate between the two study sites may result in differences in suitable habitat, or 

shelter availability (Rowe 2000). Lobsters compete for shelters, in which they spend 

much of their time (O'Neill and Cobb 1979; Karnofsky et a/. 1989). Shelter availability 

may limit local carrying capacity (Cobb 1971; Atema and Cobb 1980; Steneck 2006), 

and the availability of suitable shelters is ofpa1ticular importance during molting and 

mating periods (Karnofsky eta!. 1989; Lawton and Lavalli 1995). Additionally, there is 

some indication that exploitation rates were lower around the Duck Islands reserve 

(Rowe 2001). lfthe amount of suitable lobster habitat is similar in reserve and reference 

locations at the Duck Islands site and/or exploitation rates in this area are lower, then 

reserve density may not differ greatly from that of the adjacent commercially fished 

area. 

Contrary to predictions, lobster densities did not increase over time at either 

reserve location. Rowe (2002) found that, during the first three years of reserve 

establishment, population density remained stable in the Round Island reserve, but 

increased between 1997 and 1998 in the Duck Islands reserve. Halpern and Warner 

(2002) reviewed 112 independent measurements of 80 reserves, and found that species 

density was significantly higher inside the reserves relative to the reference areas, but 

there was no indication of changes in density over time. The data suggest that response 

to protection can occur rapidly, within 1-3 years ofreserve establishment (Halpern and 

Warner 2002). This may be patticularly true for species which are heavily targeted and 
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subject to high rates of exploitation, as fishing would be the primary factor limiting 

population size and structure (Polacheck 1990; Carr and Reed 1993; Rowley 1994; 

Halpern and Warner 2002). Given that no baseline data were collected prior to reserve 

establishment, it is possible that population response to protection occurred within the 

first year of protection at Round Island, and that carrying capacity of this relatively small 

area was reached quickly. Although there were no overall increases in density at the 

Duck Islands reserve, there was an increase between 1997 and 1998, and a decrease after 

2002. It may have taken slightly longer for the larger Duck Islands reserve to reach 

carrying capacity. The decrease in density that occurred after 2002 may have been the 

result of movement of lobsters from the reserve. Although both Rowe (2001) and Janes 

(2009) reported low rates of movement from both reserves, it is possible that undetected 

spillover into the adjacent reference area has been taking place, particularly in recent 

years. Janes (2009) assessed movement based on annual fall sampling at each of the 

study sites. Spring sampling was conducted in only one year (2004). Given the 

bathymetry at both study sites, exchange between reserve and reference locations seems 

likely, but especially for the Duck Islands site, as the extent of contact of the reserve 

perimeter with that of the reference area is greater. Since the commercial fishery is 

prosecuted during the spring and summer, before the fall mark-recapture sampling, 

animals crossing reserve boundaties into commercially harvested areas may have been 

captured in the commercial fishery and gone unreported to the researchers. 

Inferences about size structure, sex ratio and density from studies that rely on 

trap sampling should be judicious in nature, as certain components of the population can 
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be underrepresented due to differences in catchability. Catchability of Homarus 

americanus is influenced by a number of factors, including sex and size of the animal, as 

well as agonistic encounters in and around traps (Richards et al. 1983; Kamofsky and 

Price 1989; Miller 1990; Jury et al. 200 I). It has been repeatedly demonstrated that 

females are less vulnerable to traps than males (Miller 1989, 1995; Tremblay and Smith 

2001 ; Tremblay et al. 2006). Generally, smaller lobsters are underrepresented in trap 

catches (Smith 1944; Ennis 1978; Miller 1989, 1995; Tremblay and Smith 2001 ; 

Tremblay et al. 2006). Miller (1990) suggested that, for decapod crustaceans, a logistic 

curve best describes the relationship between catchability in traps and size, with the 

possibility that animals at very large sizes are characterized by decreased catchability 

due to potential mechanical difficulties associated with entering the trap. Using parlour 

traps, Pezzack and Duggan (1995) reported a decline in Homarus americanus 

catchability at sizes above 120 mm in carapace length. Using direct observation of 

behavioural responses to traps, Karnofsky and Price (1989) determined that wood lath 

traps were very inefficient at capturing lobster. Approximately 40% of the legal-sized 

lobsters in their study were never caught, and 30% of the lobsters that approached a trap, 

without entering, left in response to agonistic interactions with conspecifics outside the 

trap. There is evidence to suggest that trap saturation occurs as a consequence of lobster 

behaviour in and around traps, and the presence of lobsters in traps can reduce the catch 

of other lobsters (Richards et at. 1983; Kamofsky and Price 1989; Jury et a/. 2001 ). 

Larger lobsters in traps have been shown to prevent entry by smaller conspecifics (Jury 

et al. 200 I). Agonistic encounters, which affect the rate of entry into traps, and the 
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saturation effect can influence the catch and, thus, estimates of density and size, as well 

as observed sex ratios. However, if these biases in catchability are consistent across 

reserve and reference locations, then differences between protected and unprotected 

populations can be interpreted free of the bias. 

It is also possible that depth oftrap placement may have biased the sex ratio 

estimates by targeting males. For inshore lobster populations, adult females appear to 

undertake movements to deeper water earlier in the fall , before adult males (Campbell 

and Stasko 1986; Robichaud and Campbell 1991; Roddick and Miller 1992). 

Templeman (1939) reported that in the fall , immediately following the molt, males 

predominated in trap catches at depths of 8-10 m, and females predominated at 15-22 m. 

Since the depth at which traps were set was not standardized within or across years, but 

appeared to be 10m or less (Janes 2009), then it is possible that traps were not set at 

sufficient depths during the study periods to effectively target female lobsters. However, 

if these trap biases are consistent across reserve and reference locations, then differences 

between protected and unprotected populations can be interpreted free of the bias. 

Issues with trap sampling, catchability of lobsters, and trap saturation, may 

warrant the use of alternate census techniques, as biases may have influenced the catch, 

as well as observed sizes and sex ratios. If trap sampling is to be used in future studies, 

an attempt should be made to set traps at a broader range of depths, if possible, to 

determine if female lobsters are being adequately sampled. 

Habitat heterogeneity, and changes in the size of the reference areas at both study 

sites, may have influenced the results. Suitable habitat may not be unifonnly distributed 
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in either of the reference areas, and changes in the boundaries of the reference areas may 

have influenced the outcome of the study, by affecting the sizes, and numbers, of 

animals caught due to habitat heterogeneity. The boundaries of the reference areas 

should remain constant in further studies of the reserves. It would also be beneficial to 

quantify differences in habitat quality and shelter availability between reserve and 

reference locations at both sites, as these may have biased the results. 

Additional conservation measures that were implemented around the same time 

as the establishment of the reserves may have influenced the structure and abundance of 

animals in the reference areas. In 1996, approximately 1500 ovigerous female lobster 

were V -notched on commercial fishing grounds in the Eastport area (Rowe 2000). Since 

it is illegal to retain a V-notched lobster, and the notch persists through the molt, these 

females were afforded an additional degree of protection from fishing mortality for 

many years. This resulted in an accumulation of larger females in the reference area that 

likely would not have been present had an intensive V-notching program not been 

carried out (Whiffen 201 0). In addition, partway through the 1998 fishing season, a 1.5 

mm increase in the minimum legal size was imposed for all Newfoundland Lobster 

Fishing Areas (LFAs), thus reducing mortality on animals in the commercially exploited 

areas outside the reserves and increasing average size of lobsters in the reference 

populations. Hence, additional conservation measures that were implemented in the 

Eastport area may have confounded the study. 

Any substantial exchange of lobsters between reserve and reference areas could 

have influenced the estimates of size and observed sex ratios, as well as the density 
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estimates. Although movement of lobsters in Bonavista Bay appears to be relatively 

restricted (Ennis 1984a, 1984b), and previous studies of the reserves have demonstrated 

low rates of exchange (Rowe 2001; Janes 2009), undetected movement across reserve 

boundaries may be taking place. Any unreported tag return information associated with 

commercial fishing activities in the spring may result in an underestimation of spillover. 

Since spillover is an expected result of marine reserve establishment, and may provide 

the most localized benefits for stakeholders, the issue deserves further investigation if 

reserve effects are to be accurately quantified. 

As is the case with many studies involving marine reserves, the lack of baseline 

data limits the strength of the conclusions one can make about the effectiveness of 

protection for commercially exploited species. Given that no baseline data were 

collected prior to reserve establishment, it is also possible that any population 

differences between reserve and reference areas were pre-existing. It is also possible 

that establishment of reserves erased pre-existing differences between the study areas. 

Increased size as a consequence of protection is one of the expected benefits of 

marine reserves, and this response has been demonstrated for a variety of marine fish 

and invertebrates (Halpern and Warner 2002). In the absence of commercial 

exploitation, animals will live longer and attain larger sizes. This is of pm1icular 

significance for a heavily exploited species such as Homarus americanus, for which the 

fishery in Newfoundland depends heavily on incoming recruitment (DFO 2009). 

Commercial fishery data from Newfoundland suggests a truncated size structure, with a 

relative lack oflarge animals in the population (DFO 2009). Numerous studies have 
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examined the implications of truncated age/size structures for exploited species, and 

determined that the lack of large mature animals renders a population more vulnerable to 

environmental variability, resulting in an increased risk of recruitment failure due to 

associated fluctuations in recruitment levels and population size (Birkeland and Dayton 

2005; Hseieh eta/. 2006; Anderson eta/. 2008). 

Many efforts aimed at improving size structure and promoting growth to larger 

sizes have focused on the importance of females, specifically. Egg production increases 

logarithmically with increasing female size (Aiken and Waddy 1980a, 1980b; Waddy 

and Aiken 1986; Estrella and Cadrin 1995), and larger females produce eggs that contain 

more energy per unit of weight, which may confer survival advantages to their offspring 

(Attard and Hudon 1987). Additionally, while females less than 120 mm in CLare 

characterized by a biennial molt-reproductive cycle, larger females often spawn twice 

between intervening molts (consecutive spawning), thus enabling them to make a greater 

relative contribution to population egg production through more frequent spawning 

(Waddy and Aiken 1986). Explicit protection for males is generally not emphasized in 

conventional management regimes for American lobster, which can result in skewed sex 

ratios in commercially harvested areas (Campbell 1992; Gendron and Savard 2000). 

When the sex ratio is biased toward females, dominance hierarchies form between males 

(Lawton and Lavalli 1995), and females will stagger their molts to mate with larger, 

dominant males (Cowan and Atema 1990). A scarcity of suitable males could limit 

reproductive potential through a reduction in mating success or sperm availability 

(Gosselin eta/. 2003, 2005). Larger males typically transfer more ejaculate than smaller 
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ones, and appear to allocate more ejaculate to larger females (Go elin eta/. 2003). 

Large females in particular, may be susceptible to sperm limitation if the number of 

large males i in ufficient to mate with all females, or these male deplete their perm 

through successive matings with multiple females (Gosselin eta/. 2003). Also larger 

males tend to cohabit with pre- and postmolt females for longer periods, which may 

provide additional protection for the females, and minimize risks of molt-related 

mortality (Gosselin et ai. 2003). Conventional management measures emphasize the 

importance of protecting reproducti e capacity of females, including the prohibition 

against landing ovigerous females and the use of the V -notch. Marine reserves appear 

to provide additional protection for both male and female lobster, and may potentially 

safeguard, or enhance, reproductive potential. The attainment of large sizes for males 

and more balanced sex ratios may be among the most important effects of such reserve . 

The length of the time-series of available data forti fie the conclusions of this 

study, as the available data spanned more than a decade. The findings concur with tho e 

of numerous other studies of reserve impacts, involving a variety of pecie , in that 

population re ponse to protection arose rapidly and/or persisted over time. Overall the 

results ofthi study indicate that these re erves promote sustainability of there ource 

through increa ed density and mean size of lobsters, as well as more balanced sex ratio . 

This should positively influence recruitment through increased reproductive succe , 

larger clutch size and, consequently, greater overall egg production. 

38 



-----------------------------------------------------------------------------------------

2.5 References 

Agardy, M.T. 1994. Advances in marine conservation: the role of marine protected 
areas. Trends Ecol. Evol. 9: 267-270. 

Aiken, D.E., and Waddy, S.L. 1980a. Maturity and reproduction in the American 
Lobster. In Proceedings of the Canada- U.S. Workshop on Status of Assessment Science 
for N.W. Atlantic Lobster (Homarus americanus) Stocks, St. Andrews, New Brunswick, 
24-26 October 1978. Edited by V.C. Anthony and J .F. Caddy. Can. Tech. Rep. Fish. 
Aquat. Sci. No. 932. pp. 59-71. 

Aiken, D.E., and Waddy, S.L. 1980b. Reproductive biology. in The Biology and 
Management of Lobsters. Vol. I. Physiology and Behavior. Edited by J.S. Cobb and B.F. 
Phillips. Academic Press, New York. pp. 215-276. 

Anderson, C.N.K., Hsieh, C.-H., Sandin, S.A., Hewitt, R. , Hollowed, A., Beddington, J., 
May, R.M., and Sugihara, G. 2008. Why fishing magnifies fluctuations in fish 
abundance. Nature, 452: 835-839. 

Atema, J., and Cobb, J.S . 1980. Social behavior. In The Biology and Management of 
Lobsters. Vol. I. Physiology and Behavior. Edited by J .S. Cobb and B.F. Phillips. 
Academic Press, New York. pp. 409-450. 

Attard, J. , and Hudon, C. 1987. Embryonic development and energetic investment in egg 
production in relation to size of female lobster (Homarus americanus). Can. J. Fish. 
Aquat. Sci. 44: 1157-1164. 

Babcock, R.C., Phillips, J.C., Lourey M., and Clapin, G. 2007. Increased density, 
biomasss and egg production in an unfished population of Western Rock Lobster 
(Panulirus cygnus) at Rottnest Island, Western Australia. Mar. Freshw. Res. 58: 286-292 

BatTett, N.S., Buxton, C.D., and Edgar, G.J. 2009. Changes in invertebrate and 
macroalgal populations in Tasmanian marine reserves in the decade following 
protection. J. Exp. Mar. Bioi. Ecol. 370: 104-119. 

Bertelson, R.D., and Matthews, T.R. 2001. Fecundity dynan1ics of female spiny lobster 
(Panulirus argus) in a south Florida fishery and Dry Tortugas National Park lobster 
sanctuary. Mar. Freshw. Res. 52: 1559-1565. 

Birkeland, C. , and P.K. Dayton. 2005. The importance in fishery management ofleaving 
the big ones. Trends Ecol. Evol. 20: 356-358. 

Bohnsack, J .A. 1993. Marine reserves: they enhance fisheries, reduce conflicts and 
protect resources. Oceanus, 36: 63-71. 

39 



Campbell, A. 1992. Characteristics of the American lobster fishery of Grand Manan, 
New Brunswick, Canada. North. Am. J. Fish. Manage. 12: 139-150. 

Campbell, A., and Stasko, A.B. 1986. Movements of lobsters (Homarus americanus) 
tagged in the Bay of Fundy, Canada. Mar. Bioi. 92: 393-404. 

Carr, M.H., and Reed, D.C. 1993. Conceptual issues relevant to marine harvest refuges: 
examples from temperate reef fishes. Can. J. Fish. Aquat. Sci. 50: 2019-2028. 

Cobb, J.S. 1971. The shelter-related behavior ofthe lobster, Homarus americanus. 
Ecology, 52: 108-115. 

Cole, R.G., Ayling, T.M., and Creese, R.G. 1990. Effects of marine reserve protection at 
Goat Island, northern New Zealand. N. Z. J. Mar. Freshwat. Res. 24: 197-210. 

Comeau, M., and Savoie, F. 2001 . Growth increment and molt frequency of the 
American lobster (Homarus americanus) in the southwestern Gulf of St. Lawrence. J. 
Crustacean Bioi. 21: 923-936. 

Cowan, D.F, and Atema, J. 1990. Moult staggering and serial monogamy in American 
lobsters, Homarus americanus . Anim. Behav. 39: 1199-1206. 

Daniel, P.C., Bayer, R.C. , and Waltz, C. 1989. Egg production ofV-notched American 
lobsters (Homarus americanus) along coastal Maine. J. Crustacean Bioi. 9: 77-82. 

Davidson, R.J. , Villouta, E., Cole, R.G., and Barrier, R.G.F. 2002. Effects of marine 
reserve protection on spiny lobster (Jasus edwardsii) abundance and size at Tonga Island 
Marine Reserve, New Zealand. Aquat. Cons. Mar. Freshwater Ecosyst. 12:213-227. 

Davis, G.E. 1989. Designated harvest refugia: the next stage of marine fishery 
management in California. Calif. Coop. Oceanic Fish. Invest. Rep. 30: 53-58. 

Dayton, P.K., Thrush, S.F., Agardy, M.T., and Hofman, R.J. 1995. Environmental 
effects of marine fishing. Aquat. Cons. Mar. Freshwater Ecosyst. 5: 205-232. 

DeAngelis, B.M., Cooper, R. , Clancy, M., Cooper, C., Angell , T. , Olszewski, S., 
Colburn,W., and Catena, J. 2010.lmpacts ofV-notching the American lobster. J. 
Shellfish Res. 29: 489-496. 

DFO. 2009. Assessment of American lobster in Newfoundland. DFO Can. Sci. Advis. 
Sec. Sci. Advis. Rep. 2009/026. 

40 



.----------------------------------·------ -

Ennis, G.P. 1978. Growth curves for Newfoundland lobsters from data on molt 
increment and proportion molting. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 78/29: 
11 p. 

Ennis, G.P. 1984a. TeiTitorial behaviour ofthe American lobster Homarus americanus. 
Trans. Am. Fish. Soc. 113: 330-335. 

Ennis, G.P. 1984b. Small-scale seasonal movements of the American lobster Homarus 
americanus. Trans. Am. Fish. Soc. 113: 336-338. 

Ennis, G.P., Collins, P.W., and Dawe, G. 1989. Fisheries and population biology of 
lobsters (Homarus americanus) at St. Chad' s- Bumside, Newfoundland. Can. Tech. Rep. 
Fish. Aquat. Sci. No. 1651. 

Estrella, B.T., and Cadrin, S.X. 1995. Fecundity of the American lobster (Homarus 
americanus) in Massachusetts coastal waters. ICES Mar. Sci. Symp. 199: 61-72. 

Gendron, L., and Savard, G. 2000. Etat des stocks de homard des eaux cotieres du 
Quebec en 1999 et suivi des impacts de ]' augmentation de Ia taille minimale de capture. 
Can. Stock. Assess. Seer. Res. Doc. 2000/115. 

Gofii, R. , Refiones, 0 ., and Quetglas, A. 2001. Dynamics of a protected Western 
Mediterranean population of European spiny lobster Palinurus elephas (Fabricius, 1787) 
assessed by trap surveys. Mar. Freshw. Res. 52: 1577-1587. 

Gosselin, T., Sainte-Marie B., and Bernatchez, L. 2003. Patterns of sexual cohabitation 
and female ejaculate storage in the American lobster (Homarus americanus). Behav. 
Ecol. Sociobiol. 55: 151-160. 

Gosselin, T. , Sainte-Marie B., and Bernatchez, L. 2005. Geographic variation of multiple 
paternity in the American lobster, Homarus americanus. Mol. Ecol. 14: 1517-1525. 

Guenette, S., Lauck, T., and Clark, C. 1998. Marine reserves: from Beverton and Holt to 
the present. Rev. Fish Bioi. Fish. 8: 251-272. 

Halpern, B.S., and Warner, R.R. 2002. Marine reserves have rapid and lasting effects. 
Ecol. Lett. 5: 361-366. 

Halpern, B.S. 2003 . The impact of marine reserves: do reserves work and does reserve 
size matter? Ecol. Appl. 13 (suppl.): S 117-S 137. 

Hsieh, C.-H., Reiss, C.S., Hunter, J.R., Beddington, J.R., May, R.M., and Sugihara, G. 
2006. Fishing elevates variability in the abundance of exploited species. Nature, 443: 
859-862. 

41 



Janes, J.M. 2009. Assessing Marine Protected Areas as a conservation tool: a decade 
later, are we continuing to enhance lobster populations at Eastport, Newfoundland? Can. 
Tech. Rep. Fish. Aquat. Sci. No. 2832. 

Jury, S.H. , Howell, H., O' Grady, D.F., and Watson, W.H. 2001 . Lobster trap video: in 
situ video surveillance of the behaviour of Homarus americanus in and around traps. 
Mar. Freshw. Res. 52: 1125-1132. 

Karnofsky, E.B., and Price, H.J. 1989. Behavioural response of the lobster Homarus 
americanus to traps. Can. J. Fish. Aquat. Sci. 46: 1625-1632. 

Karnofsky, E. B., Atema, J. , and Elgin, R.H. 1989. Field observations of social behavior, 
shelter use, and foraging in lobster, Homarus americanus. Bioi. Bull. 176: 239-246. 

Kelly, S., Scott, D., MacDiarmid, A.B., and Babcock, R.C. 2000. Spiny lobster, Jasus 
edwardsii, recovery in New Zealand marine reserves. Bioi. Conserv. 92: 359-369. 

Krebs, C.J. 1999. Ecological Methodology. Second Edition. Benjamin/Cummings, 
Menlo Park, California. 

Lauck, T., Clark, C.W., Mangel, M., and Munro, G.R. 1998. Implementing the 
precautionary principle in fisheries management through marine reserves. Ecol. Appl. 8 
(suppl.): S72-S78. 

Lawton, P ., and Lavalli, K.L. 1995. Postlarval, juvenile, adolescent, and adult ecology. 
In Biology of the Lobster Homarus americanus. Edited by J.R. Factor. Academic Press, 
San Diego, Calif. pp. 47-88. 

Ludwig, D., Hilborn, R. , and Walters, C. 1993. Uncertainty, resource exploitation, and 
conservation: lessons from history. Science, 260: 17-18. 

Miller, R.J. 1989. Catchability of American lobsters (Homarus americanus) and rock 
crabs (Cancer irroratus) by traps. Can. J. Fish. Aquat. Sci. 46: 1652-1657. 

Miller, R.J. 1990. Effectiveness of crab and lobster traps. Can. J. Fish. Aquat. Sci. 47: 
1228-1251. 

Miller R.J. 1995. Catchability coefficients for American lobster (Homarus americanus). 
ICES Mar. Sci. Symp. 199: 349-356. 

Moriyasu, M., Landsburg, W., and Conan, G.Y. 1995. Sphyrion tag shedding and tag
induced mortality of the American lobster, Homarus americanus H. Mine Edwards 1937 
(Decapoda, Nephropidae). Crustaceana, 68: 184-192. 

42 



O'Neill, D.J., and Cobb, J.S. 1979. Some factors influencing the outcome of shelter 
competition in lobsters (Homarus americanus). Mar. Behav. Physiol. 6: 33-45. 

Pezzack, D. S. , and Duggan, D.R. 1995. Offshore lobster (Homarus americanus) trap
caught size frequencies and population size structure. ICES Mar. Sci. Symp. 199: 129-
138. 

Polacheck, T. 1990. Year around closed areas as a management tool. Nat. Resour. 
Model. 4: 327-354. 

Richards, R. A., Cobb, J.S. , and Fogarty, M.J. 1983. Effects ofbehavioural interactions 
on the catchability of American lobster, Homarus americanus, and two species of 
Cancer crab. Fish. Bull. 81: 51-60. 

Roberts, C.M., Hawkins, J.P., and Gell, F.R. 2005. The role of marine reserves in 
achieving sustainable fisheries. Phil. Trans. R. Soc. B, 360: 123-132. 

Robichaud, D.A., and Campbell, A. 1991. Annual and seasonal size-frequency changes 
of trap-caught lobsters (Homarus americanus) in the Bay ofFundy. J. Northw. Atl. Fish. 
Sci. 11: 29-37. 

Roddick, D.L., and Miller, R.J. 1992. Spatial and temporal overlap of American lobster 
(Homarus americanus) and sea scallop (Placopecten magellanicus) as related to the 
impact of inshore scallop dragging. Can. J. Fish. Aquat. Sci. 49: 1486-1492. 

Rowe, S. 2000. Size, structure, movement and survival of American lobster, Homarus 
americanus, populations in areas with and without commercial harvesting. MSc Thesis. 
Memorial University ofNewfoundland, St. John ' s, NL 

Rowe, S. 2001 . Movement and harvesting mortality of American lobsters (Homarus 
americanus) tagged inside and outside no-take reserves in Bonavista Bay, 
Newfoundland. Can. J. Fish. Aquat. Sci. 58: 1336-1346. 

Rowe, S. 2002. Population parameters of American lobster inside and outside no-take 
reserves in Bonavista Bay, Newfoundland. Fish. Res. 56: 167-175. 

Rowley, R.J. 1994. Marine reserves in fisheries management. Aquat. Cons. Mar. 
Freshwater Ecosyst. 4: 233-254. 

Schumacher, F.X., and Eschmeyer, R.W. 1943. The estimation offish populations in 
lakes and ponds. J. Tenn. Acad. Sci. 18: 228-249. 

Smith, G.F.M. 1944. The catchability oflobsters. J. Fish. Res. Board. Can. 6: 291-301. 

43 



Stefansson, G., and Rosenberg, A.A. 2005. Combining control measures for more 
effective management of fisheries under uncertainty: quotas, effort limitation and 
protected areas. Phil. Trans. R. Soc. B, 360: 133-146. 

Steneck, R.S. 2006. Possible demographic consequences of intraspecific shelter 
competition among American lobsters. J. Crustacean Bioi. 26: 628-638. 

Templeman, W. 1933. Female lobsters handicapped in growth by spawning. Bioi. Board. 
Can., Prog. Rep. At!. Bioi. Stn. 6: 5-6. 

Templeman, W. 1939. Investigations into the life history of the lobster (Homarus 
americanus) on the west coast of Newfoundland, 1938. Nfld. Dept. Nat. Resour. Res. 
Bull. 7: 1-52. 

Tremblay, M.J., and Smith, S.J. 2001. Lobster (Homarus americanus) catchability in 
different habitats in late spring and early fall. Mar. Freshw. Res. 52: 1321-1331 . 

Tremblay, M.J., Smith, S.J., Robichaud, D.A., and Lawton, P. 2006. The catchability of 
large American lobsters (Homarus americanus) from diving and trapping studies off 
Grand Manan Island, Canadian Maritimes. Can. J. Fish. Aquat. Sci. 63: 1925-1933. 

Waddy, S.L., and Aiken, D.E. 1986. Multiple fertilization and consecutive spawning in 
large American lobsters, Homarus americanus. Can. J. Fish. Aquat. Sci. 43: 2291-2294. 

Waddy, S.L., Aiken, D.E., and Eagles, M.D. 1988. Growth of cultured American 
lobsters and effect of culling on growth rates. Bull. Aquacult. Assoc. Can. 88: 66-68. 

Whiffen, C. 2010. The reproductive potential of V -notched American lobsters (Homarus 
americanus) in Newfoundland: does V-notching work? BSc Thesis. Memorial 
University ofNewfoundland, St. John's, NL 

44 



Table 2.1 : Observed sex ratios for lobsters captured at Round Island and Duck Islands 
study sites during 1997-1999, 2000-2002 and 2004-2008. 

Reserve Reference 

n %female n %female 

Round Island 

1997 231 0.44 241 0.53 
1998 234 0.51 158 0.51 

1999 255 0.50 182 0.47 
2000 234 0.50 190 0.61 
2001 193 0.50 124 0.69 
2002 186 0.46 122 0.52 
2003 
2004 271 0.54 101 0.45 
2005 265 0.55 120 0.53 

2006 270 0.50 179 0.46 
2007 251 0.44 190 0.40 
2008 229 0.41 163 0.62 

Duck Islands 

1997 141 0.45 78 0.55 
1998 218 0.44 154 0.49 
1999 335 0.41 193 0.50 

2000 280 0.36 238 0.44 
2001 175 0.40 134 0.47 
2002 160 0.40 124 0.48 
2003 
2004 219 0.35 138 0.36 
2005 185 0.37 82 0.41 
2006 328 0.44 190 0.45 
2007 366 0.36 226 0.45 
2008 230 0.34 160 0.36 
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Table 2.2: Dependence of sex ratio on protection where sex ratio is analyzed as odds 
(female), Odds = o/ofemale/(1-o/ofemale). Odds ratio is change in odds due to each source 
of variation. The value ofp is based upon normal approximation using a Z score. 

N N %female Odds Odds z p 
Total female Ratio 

Round Island 
Reserve 2619 1279 0.49 0.95 0.87 -2.19 0.029 

Reference 1770 924 0.52 1.09 

Duck Islands 

Reserve 2637 1032 0.39 0.64 0.79 -3.77 <0.001 

Reference 1717 771 0.45 0.81 
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Table 2.3: Estimates of size, in hectares (ha), of reserve and reference areas for Round 
Island and Duck Islands study sites from 1997-1999; 2000-2002; and 2004-2008. 

Round Island Duck Islands 

Reserve Reference Reserve Reference 

1997-1999 28 114 87 45 

2000-2002 28 102 87 51 

2004-2008 28 89 87 62 
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Figure 2.1: Study areas within reserve and reference locations at Round Island (a) and 
Duck Islands (b) study sites in Bonavista Bay, Newfoundland. 
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Figure 2.2: Size (mean± 95% confidence limits) of female lobsters in reserve (• ) and 
reference ( o) locations at Round Island, Bonavista Bay, Newfoundland, 1997-2008. 
Sample sizes provided above estimates. 
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Figure 2.4: Size (mean ± 95% confidence limits) of male lobsters in reserve (• ) and 
reference (o) locations at Round Island, Bonavista Bay, Newfoundland, 1997-2008. 
Sample sizes provided above estimates. 
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Figure 2.5: Size (mean ± 95% confidence limits) of male lobsters in reserve ( • ) and 
reference (o) locations at Duck Islands, Bonavista Bay, Newfoundland, 1997-2008. 
Sample sizes provided above estimates. 
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Figure 2.6: Population estimates(± 95% confidence limits) for lobsters in reserve ( •) 
and reference ( o) locations at Round Island, Bonavista Bay, Newfoundland, 1997-2008. 
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Figure 2.7: Population estimates(± 95% confidence limits) for lobsters in reserve (• ) 
and reference (o) locations at Duck Islands, Bonavista Bay, Newfoundland, 1997-2008. 
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Figure 2.8: Estimates oflobster density(± 95% confidence limits) in reserve ( • ) and 
reference (o) locations at Round Island, Bonavista Bay, Newfoundland, 1997-2008. 
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Figure 2.9: Estimates of lobster density(± 95% confidence limits) in reserve ( •) and 
reference (o) locations at Duck Islands, Bonavista Bay, Newfoundland, 1997-2008. 
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Appendix A: Analyses of Variance (ANOV As) on carapace length for males and 
females at Round Island and Duck Islands study sites. 

Table AI. Analysis of variance (ANOVA) on carapace length for females at Round 
Island study site, for years with complete datasets (2000-2002 and 2004-2008). 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 3649.7 3332.6 3332.6 26.32 <.001 

Year 7 9546.2 9656.7 1379.5 10.90 <.001 

Year x Protection 7 1250.7 1250.7 178.7 1.41 0.196 

Error 1600 202563.3 243383.3 126.6 

Total 1615 217009.9 

Table A2. Analysis of variance (ANOVA) on carapace length for females at Round 
Island study site, for all years (1997-1999; 2000-2002; and 2004-2008). Adjusted MS 
Error from Table A 1. 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 5528 3874.6 3874.6 30.605 <.001 

Year 10 30009.8 29816.1 2981.6 23.551 <.001 

Year x Protection 10 1888.3 1888.3 188.8 1.491 0.136 

Error 1600 * * 126.6 

Total 
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Table A3. Analysis of variance (ANOVA) on carapace length for males at Round Island 
study site, for years with complete datasets (2000-2002 and 2004-2008). 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 19298.4 17982.2 17982.2 100.02 <.001 

Year 7 9062.3 6500.9 928.7 5.17 <.001 

Year x Protection 7 2395.4 2395.4 342.2 1.90 0.065 

Error 1508 271115.5 271115.5 179.8 

Total 1523 301871.6 

Table A4. Analysis of variance (ANOV A) on carapace length for males at Round Island 
study site, for all years (1997-1999; 2000-2002; and 2004-2008). Adjusted MS Error 
from Table A3. 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 20089.9 17211 17211 95.72 <.001 

Year 10 32767.7 26750.7 2675.1 14.88 <.001 

Year x Protection 10 5429.8 5429.8 543 3.02 <.001 

Error 1508 * * 179.8 

Total 
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Table AS. Analysis of variance (ANOVA) on carapace length for females at Duck 
Islands study site, for years with complete datasets (2000-2002 and 2004-2008). 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 8287.2 6368.6 6368.6 33.34 <.001 

Year 7 13661.2 12811.5 1830.2 9.58 <.001 

Year x Protection 7 11 19.2 1119.2 159.9 0.84 0.557 

Error 1274 243383.3 243383.3 191 

Total 1289 266450.9 

Table A6. Analysis of variance (ANOVA) on carapace length for females at Duck 
Islands study site, for all years (1997-1999; 2000-2002; and 2004-2008). Adjusted MS 
Error from Table AS. 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 8163.3 6709.3 6709.3 35.13 <.001 

Year 10 34722.1 31533.2 3153.3 16.51 <.001 

Year x Protection 10 2224 2224 222.4 1.16 0.311 

Error 1274 * * 191 

Total 
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Table A 7. Analysis of variance (ANOV A) on carapace length for males at Duck Islands 
study site, for years with complete datasets (2000-2002 and 2004-2008). 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 48201.4 44049.5 44049.5 228.66 <.001 

Year 7 12831.5 11290.1 1612.9 8.37 <.001 

Year x Protection 7 2075.1 2075.1 296.4 1.54 0.15 

Error 1927 371213.8 371213.8 192.6 

Total 1942 434321.9 

Table A8. Analysis of variance (ANOVA) on carapace length for males at Duck Islands 
study site, for all years (1997 -1999; 2000-2002; and 2004-2008). Adjusted MS En·or 
from Table A 7. 

Source of df Seq.SS Adj. SS Adj. MS F p 

Variation 

Protection (yes, no) 53402.8 43535.7 43535.7 226.04 <.001 

Year 10 32550.2 26370.7 2637.1 13.69 <.001 

Year x Protection 10 4157.7 4157.7 415.8 2.16 0.018 

Error 1927 * * 192.6 

Total 89110.7 
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Appendix B: Graphical evaluation of assumptions of the Schumacher-Eschmeyer 
(1943) method. Assumptions violated if plot is curvilinear. 
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Chapter 3: Reproductive potential of American lobster (Homarus americanus) in 

protected and unprotected populations in Bonavista Bay, Newfoundland. 

3.1 Introduction 

A more precautionary approach to fisheries management is increasingly being 

advocated as a safeguard against uncertainty in fisheries stock assessments (Ludwig et 

a/. 1993; Lauck et al. 1998). Overfishing has resulted in precipitous declines in many 

exploited populations in coastal habitats, and conventional fishery regulations may not 

provide adequate protection to ensure sustainability (Bohnsack 1993; Dayton eta/. 1995; 

Lauck et al. 1998). Marine reserves can serve as powerful tools for promoting recovery 

and sustainability of world ' s fisheries (Agardy 1994; Allison eta/. 1998; Guenette et a!. 

1998; Roberts et al. 2005). 

Marine reserves have the potential to provide direct benefits to the fishery in at 

least two major ways (Rowley 1994). Firstly, "spillover" may occur as harvestable 

biomass disperses from reserves into commercially exploited areas. Secondly, reserves 

may act as sources of recruitment, exporting larvae to areas that are open to commercial 

harvesting. In the context of fisheries management, larval export is viewed as the 

primary benefit of marine reserves as it may provide " insurance" against poor recruitment 

periods (Roberts and Polunin 1991 ; DeMartini 1993; Dugan and Davis 1993). Larval 

export can be extremely difficult to demonstrate, however, and the time from hatching to 

recruitment to the fishery can take a decade or more. For these reasons, many attempts to 

assess the efficacy of marine reserves have focused on changes in the structure of the 
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population contained in the reserves, with the knowledge that greater numbers of larger 

animals (which are generally more fecund) have the potential to greatly enhance 

population egg production. Multiple studies involving marine reserves of varying sizes 

and locations have demonstrated that the abundance, density, and mean size of 

commercially exploited species tend to be greater within reserve boundaries, as compared 

to nearby reference areas (Roberts and Polunin 1991; Dugan and Davis 1993; Rowley 

1994; Halpern and Warner 2002). Many of these studies have focused on commercially 

significant species of spiny lobster, including Jasus edwardsii, Panulirus argus, 

Panulirus cygnus and Palinurus elephas. Reserves for highly exploited species of spiny 

lobster have been established since the mid 1970s. Studies of these reserves have 

demonstrated increased size, abundance and/or density of spiny lobsters within protected 

areas as compared to exploited areas (Cole et al. 1990; Kelly eta/. 2000; Goiii eta/. 

2001; Davidson eta/. 2002; Babcock et al. 2007; Barrett eta/. 2009), as well as changes 

in population sex ratios (Go iii et al. 2001; Davidson et al. 2002). 

Fewer studies have directly examined changes in lobster fecundity and/or 

reproductive potential as a consequence of protection. In addition to increases in mean 

density and mean size, Kelly et al. (2000) rep011ed an increase in egg production for 

spiny lobster, Jasus edwardsii, in four different reserves in New Zealand, but no time

series data were available for three of the reserves, and temporal patterns were infen·ed 

from reserve ages (ranging from 3-21 years). At the Tonga Island reserve in New 

Zealand, a two-year study revealed a ninefold increase in size-specific fecundity for 

Jasus edwardsii (Davidson eta/. 2002). In a three-year study of fecundity dynamics of 

72 



,------------------------------------

female spiny lobster, Bertelsen and Matthews (2001) reported larger clutch sizes in a 

protected population of Panulirus argus, as compared to an exploited population. 

Bertelsen eta/. (2004) reexamined data from various monitoring projects carried out in 

Florida reserves for Panulirus argus. These data were collected for discrete periods 

between 1973 and 2002 and, in most cases, revealed greater fecundity in reserve 

locations, as compared to reference locations (Bertelsen et al. 2004). Gofii eta!. (2003) 

found that size-specific fecundity in a protected population of Palinurus elephas from 

the Western Mediterranean was greater than that of exploited populations in the region 

over a three-year period. In a two-year study, Babcock et al. (2007) reported that egg 

production for an unfished population of Panulirus cygnus in Western Australia was 

significantly higher than in adjacent fished areas. 

Although reserves have been established for clawed lobster species, Homarus 

americanus and Homarus gammarus, they have not been evaluated for their potential to 

contribute to population egg production. Previous studies on marine reserves for 

American lobster (Homarus americanus) have examined changes in population 

structure, abundance/density, mean size and sex ratios (Rowe 2002; Janes 2009), but 

have not examined the effect of protection on reproductive output. Hence, long-tenn 

effects of reserve protection on egg production are largely unknown for this 

commercially significant species. This study quantifies the effect of 11 years of 

protection on the reproductive potential of a population of American lobster. 
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Hypothesis 

The hypothesis ofthis study is as follows: 

1) Reproductive potential will be greater inside the reserves due to increased size of 

female lobsters, and will increase over time. 

3.2 Materials and methods 

3.2.1 Study areas 

The Eastport Peninsula Lobster Management Area, located in the waters 

sunounding the Eastport Peninsula in Bonavista Bay, Newfoundland (48.65° N. 53.70° 

W), contains two marine reserves, one at Round Island, and one at Duck Islands. The 

reserves were established in 1 997 for the protection of the American lobster, and were 

designated as Marine Protected Areas (MPAs) by Fisheries and Oceans Canada in 2005. 

3.2.2 Sampling design 

Data were assembled for 1997-2008. During September 18 - September 28 of 

2000, mark-recapture research tagging of lobsters took place at both the Round Island 

and Duck Islands study sites. Sampling was conducted both inside the reserves and in the 

adjacent reference areas, which were open to commercial harvesting. These areas are 

identified in Figure 1. Participating harvesters were asked to spread traps out within each 

reserve and reference location, and set them at commercially fished depths. A total of25 

wood-lath parlour traps were set in each of the reserves, and 25 traps were set in each 
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nearby reference area. Traps were hauled daily, except in circumstances of inclement 

weather, and baited using fresh or salted herring (Clupea harengus), mackerel (Scomber 

scombrus), winter flounder (Pseudopleuronectes americanus) or cod (Gadus spp.). 

For each new lobster captured during the research tagging periods, the following 

infonnation was recorded: date of capture, location of capture, sex, and carapace length 

(CL). Carapace length was defined as the length of the cephalothorax, from the base of 

the right eye-socket to the end of the carapace, and was measured in millimeters (mm) 

using vernier calipers. Females were also examined in order to detennine reproductive 

condition (i. e. ovigerous or not). New captures were marked with an individually 

numbered polyethylene streamer tag. The tag was inserted, with the aid of an attached 

embroidery needle, into the thoraco-abdominal membrane and abdominal muscle on one 

side, and threaded over the dorsal artery and through the abdominal muscle on the 

opposite side, as described by Moriyasu eta/. (1995). In the case of larger animals, circa 

I 00 mm or larger, the tag was inserted through one muscle band only. With the tag 

properly inserted, the needle was detached and discarded. Once tagged, lobsters were 

released immediately. 

Often, lobsters tagged in previous years were recaptured, in which case the 

original tag number was recorded, along with the aforementioned information. This 

protocol was repeated during Fall of2001 (23 September - 5 October) and Fall of2002 (2 

October - 10 October). Similar protocols were used in Fall (September/October) of 1997-

1999, and 2004-2008. Sampling was not conducted at either site in 2003, and no data were 

available. 
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3.2.3 Length-fecundity relationships 

Reproductive potential was evaluated using a power law as follows, Eggs = 

a(CLl Because no length-fecundity relationship has been developed for Bonavista Bay 

lobster, reproductive potential was evaluated using relationships derived for other areas 

ofNewfoundland. Due to relative proximity to Bonavista Bay, size and egg count data 

from Leading Tickles, in Notre Dame Bay (Ings, unpublished data), were used to derive 

two length-fecundity relationships, one using all available data (LTI ), and one with two 

outliers removed (LT2). Carapace length and fecundity estimates were In transfonned 

and subjected to regression analysis. The linearized version of the power curve was 

fitted to the set. The relationship was then applied to datasets collected from the 

research fishing at both study sites. Due to the potential for geographic variability in 

fecundity, reproductive potential was also evaluated using published length-fecundity 

relationships for Paradise in Placentia Bay, NL and the Northwest Coast of 

Newfoundland (Ennis 1981 ). 

3.2.4 Reproductive potential 

Recaptures occmTed frequently dming each sampling pe1iod, but each lobster 

was counted only once per year for the analyses. Data collected from 2000-2002 was 

combined with data from 1997-1999 and from 2004-2008 to examine changes in 

reproductive potential over time. For the majority of these years, full datasets were 

available. In these circumstances, estimates of reproductive potential were calculated by 

applying the Leading Tickles length-fecundity relationship to each female in the dataset. 
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An average number of eggs per individual was then determined by summing these 

values and dividing by the total number of females in the dataset (Method 1). 

In the absence of complete datasets for 1997-1999, reproductive potential was 

evaluated by obtaining mean carapace lengths for females from figures published in 

Rowe (2002), which were then used to estimate the annual reproductive potential for an 

average female in reserve and reference locations at the two study sites for these three 

years (Method 2). This method of evaluating reproductive potential was also applied to 

data from 2000-2002, to assess the extent to which estimates of reproductive potential 

differed between each of the two methods. This would then determine whether the 

estimates from 1997-1999 could be included in the overall analyses. 

3.3 Results 

For the 2000-2002 data from the Round Island study site, estimates of annual 

reproductive potential from Method 1 and Method 2 were sufficiently similar to warrant 

inclusion of 1997-1999 data in the overall analyses (Table 1 ). Results from the Duck 

Islands site were similar to those from Round Island site. In all cases, the percent 

difference between the two estimates of reproductive potential for 2000-2002 data lay 

within the 95% confidence limits associated with annual mean reproductive potential for 

those years (Method 1 ). 

Table 2 presents estimates of parameters for two length-fecundity relationships 

derived from Leading Tickles data, as well as those from Paradise, in Placentia Bay, and 

the Northwest Coast, originally published in Ennis (1981). Explained variance ranged 
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from 36% to 88%, depending on source of data. Estimates of~ varied, depending on 

location of data collection (e.g. Paradise vs. Northwest Coast). They also depended on 

whether outliers were included in the regression analysis (i. e. LT1 vs. LT2). 

These differences in parameter estimates did not result in large differences in 

estimates of reproductive potential (Table 3). For LTl , percent differences in 

reproductive potential between reserve and reference locations ranged from 0% to 24% 

for the Round Island study site, and from -3% to 30% for the Duck Islands study site. 

Percent differences obtained from the other three relationships, ranged from 0% to 23% 

for Round Island, and from -3% to 30% for Duck Islands. 

At both Round Island and Duck Islands study sites, reproductive potential was 

generally greater in the reserves, and increased over time in both reserves (Figure 2; 

Figure 3). At the Round Island site, differences in reproductive potential averaged 10% 

from 1997-2008, with values ranging from 0% to 24% (Table 3). At the Duck Islands 

site, differences in reproductive potential averaged 14% from 1997-2008, with values 

ranging from -3% to 30% (Table 3). 

3.4 Discussion 

Estimated annual reproductive potential was generally greater in the reserves at 

both study sites, and increased over time for protected populations at both study sites. 

This supports the hypothesis that the benefits of marine reserves, with respect to larval 

production and export, will increase annually as larger animals accumulate inside the 
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reserve boundaries. It appears that these reserves have a cumulative effect over time, as 

greater numbers of eggs are generally produced inside the reserve each year. 

Often, the development of size-fecundity relationships for American lobster has 

involved the use of logarithmic transfom1ation to linearize size and fecundity data, thus 

facilitating the estimation of parameters for a power function in the form , Eggs = a(CL)~ 

(e.g. Ennis 1981 ). However, the use of logarithmic transfom1ations to linearize the data 

results in biased estimates of parameters a and B (Smith 1984, 1993; Packard 2009). 

Sprugel (1983) proposed the use of a correction factor to address this bias, which was 

applied to more recent fecundity studies of American lobster (Estrella and Cadrin 1995). 

In this study, this bias was consistent in that the same parameter estimates were used for 

both reserve and reference areas. Table 3.3 shows that percent differences in 

reproductive potential between reserve and reference populations were very imilar 

despite differences in the parameters used. 

Issues with the use, and placement, of traps may have bia ed the results of the 

study. Lobster catchability can be affected by the size, sex, and reproductive condition 

of the animal (Miller 1990). Smaller lobsters are often underrepresented in trap catches 

(Smith 1944; Ennis 1978; Miller 1989, 1995; Tremblay and Smith 2001 ; Tremblay et a/. 

2006), but catchability may decrease at very large sizes, as well. Using parlour traps, 

Pezzack and Duggan (1995) repmied a decline in Homarus americanus catchability at 

sizes above 120 mm in carapace length. Miller ( 1990) suggested that, for decapod 

crustaceans, a logistic curve best describes the relationship between catchability in traps 

and size, with the possibility that animals at very large sizes are less catchable as they 
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may be physically incapable of entering the trap. Females are generally less vulnerable 

to traps than males (Miller 1989, 1995; Tremblay and Smith 2001; Tremblay eta/. 

2006), and ovigerous females may be less catchable than males and non-ovigerous 

females (Templeman and Tibbo 1945; Miller 1990). Given that females larger than 120 

mm in carapace length tend to spawn more frequently than smaller females (Waddy and 

Aiken 1986), it is possible that these large females were underrepresented, as they 

allocate more time and energy to reproduction through consecutive spawning, and may 

be less catchable while brooding eggs externally. In addition, behavioural interactions 

can strongly influence observed catch. Agonistic encounters between lobsters outside of 

traps can affect the rate of entry into traps, and the presence of lobsters in traps can 

reduce the catch of other lobsters (Richards eta!. 1983; Kamofsky and Price 1989; Jury 

et al. 2001 ). Due to seasonal movements and sex segregation by depth, placement of 

traps may have also influenced the results of the study. Ennis (1984) found that lobster 

in Bonavista Bay undergo seasonal movements to deeper water in the fall , presumably in 

response to increased turbulence associated with inclement weather and the breakdown 

of the them10cline. There is evidence that, for inshore lobster populations, adult females 

move to deeper water earlier in the fall than their male counterparts (Campbell and 

Stasko 1986; Robichaud and Campbell 1991; Roddick and Miller 1992). Templeman 

(1939) reported that in the fall , immediately following the molt, males predominated in 

trap catches at 8-10 m, and females predominated at 15-22 m. Since the depth at which 

traps were set was not standardized within or across years, but appeared to be I 0 m or 

less (Janes 2009), then it is possible that some traps were set too shallowly during the 
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study period to effectively target female lobsters. However, if the bia es associated with 

use and placement of traps are consistent across reserve and reference locations, then 

differences between protected and unprotected populations can be interpreted free of the 

biases. 

Changes in the size of the reference area at both study site may have affected 

the results. A small expansion of the reference area at the Duck Islands study site 

occurred between 1997-1999 and 2000-2002. The size of reference area at the Duck 

Islands study site increased further for 2004-2008, while the size of the Round Island 

reference area decreased between 1997-1999 and 2000-2002, and again between 2000-

2002 and 2004-2008. Suitable habitat may not be uniformly distributed in either of the 

reference areas. Lobsters spend the majority of their time individually occupying 

shelters, and shelter size is often related to the ize of the animal (Cobb 1971; Kamof ky 

eta!. 1989). Male and female lobsters cohabit during molting and mating periods, and 

the protection afforded by shelters i of particular importance during this time 

(Kamofsky eta/. 1989; Lawton and Lavalli 1995). Therefore, change in the boundarie 

of the reference areas may have influenced the outcome of the study, by affecting the 

sizes, and numbers, of animals caught due to habitat heterogeneity and spatial 

differences in shelter availability. 

Additional conservation measures that were implemented around the same time 

as the establishment of the reserves may have enhanced the reproductive potential of the 

unprotected population. This would have served to reduce any observed effect of 

protection on reproductive potential, as the magnitude of difference between reserve and 
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reference populations with respect to size and, thus, reproductive potential , would have 

been reduced. In 1996, approximately 1500 ovigerous female lobster were V -notched 

on commercial fishing grounds in the Eastport area (Rowe 2000). It is illegal to retain 

V -notched lobsters, and the notch is typically retained through two or more molts 

(DeAngelis eta/. 201 0). Therefore, these females were rendered ineligible for 

commercial harvest for a number of years, and attained larger sizes as a consequence 

(Whiffen 201 0). This would have resulted in greater reproductive potential of lobsters in 

the reference locations. In addition, during the 1998 fishing season, an increase in the 

minimum legal size, from 81 mm CL to 82.5 mm CL, was imposed for the 

Newfoundland lobster fishery. This would have increased survival and mean size of 

females in the commercially exploited areas outside the reserves. Hence, the additional 

conservation measures that were implemented in the Eastport area may have confounded 

the study, by increasing the average size, and thus reproductive potential, of females in 

reference locations. 

In addition to observed increases in reproductive potential, it is possible that 

some unquantified benefits of protection may be occurring in the reserves. Given the 

long brooding interval for American lobster, egg loss is common and anywhere from 30-

50% of a clutch will typically be lost between extrusion and hatching (Perkins 1971 ; 

Campbell and Brattey 1986). Capture in traps, handling, and subsequent release of 

berried females may contribute to significant clutch attJition (Herrick 1909). It has been 

estimated that natural attrition of up to 36% can be attributed to nonnal activity, capture 

and release from traps, and similar factors (Perkins 1971 ). Since lobster in commercially 
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exploited regions can be subject to capture in traps for up to 10 weeks during the 

Newfoundland lobster fishing season, this may represent a significant source of egg loss. 

Female lobsters in reserves would not be subject to the same intensive fishing pressure, 

and thus may be less prone to clutch attrition over the brooding period. Consequently, 

they may produce a greater number oflarvae from a given clutch. In addition, females 

in reserves may be benefiting from the presence of larger males in the protected 

populations. Due to differences in catchability, and commercial fishery regulations 

prohibiting the landing of ovigerous or V -notched females, males may be subject to 

greater rates of fishing mortality and a more truncated size-structure (Miller 1990; 

Campbell 1992; Gendron and Savard 2000). Since larger males tend to transfer more 

ejaculate than smaller ones, and appear to tailor ejaculate proportionately to female size, 

it is possible that spenn limitation may occur in populations if there are insufficient 

numbers of large, dominant males to mate with females, or if the available males deplete 

their sperm reserves through repeated matings (Gosselin eta!. 2003). Larger females 

may be particularly susceptible to such spenn limitation (Gosselin eta!. 2003). Large 

males also spend a greater period oftime cohabitating with females during the molting 

and mating period, which may reduce the risk of molt-related mortality for those animals 

that mate with larger males (Gosselin et al. 2003). Thus, although reproductive potential 

is generally greater inside the reserves due to increased female size, it is also possible 

that other factors are contributing to increased reproductive output in protected 

populations. 
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Several studies have demonstrated increased egg production as a consequence of 

reserve protection for commercially significant spiny lobster species (Kelly et al. 2000; 

Bertelsen and Matthews 2001 ; Davidson et al. 2002; Gofii eta!. 2003 ; Bertelsen et al. 

2004; Babcock et al. 2007). In a study of the effects of protection on Jasus edwardsii, 

Davidson et al. (2002) estimated that almost nine times more eggs were produced in the 

reserve, as compared to reference areas. Bertelsen and Matthews (200 1) reported an 

average clutch size of0.8 million eggs in a protected population of Panulirus argus, 

while females in a fished population averaged 0.3 million eggs per clutch. While the 

present study revealed that reproductive potential of American lobster was generally 

greater in reserve locations, differences between reserve and reference populations were 

small, by comparison. This is likely related to differences in species fecundity. The 

fecundity of both Jasus edwardsii and Palinurus elephas ranges from tens of thousands 

to hundreds of thousands of eggs (MacDiarmid 1989; Gofii et al. 2003). The fecundity 

of Panulirus argus is measured in the hundreds of thousands of eggs (Fonseca-Larios 

and Briones-Fourzan 1998) while size-fecundity relationships for Panulirus cygnus 

estimate 800 000 eggs at 95 mm CL, the size at 50% maturity (Hall and Chubb 2001 ; 

Babcock et al. 2007). The fecundity of the American lobster is low relative to these 

other species, and ranges from a few thousand eggs in a young (smaller) female, to 

several tens of thousands in older (larger) individuals (Aiken and Waddy 1980a, 1980b). 

Therefore, any absolute difference in egg production between protected and unprotected 

populations would be expected to be smaller in Homarus americanus. Given the low 

fecundity of Homarus americanus, relative to other crustacean species, it is possible that 
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even a small increase in egg production that results from protection may be biologically 

significant, and may have an appreciable impact on recruitment. 

This study has several implications for future research on the effects of marine 

reserves. Like a number of other studies on reserve effects, this study was conducted 

without the collection of baseline data regarding the abundance and population structure 

of lobster in the areas designated for protection. Given that population characteristics 

may have differed between the reserve and reference populations prior to the 

establishment of the closure, future studies should ensure that baseline data is collected 

prior to the establishment of the reserve. 

A lack of consistency in the research design may have introduced a bias, since 

the greater reproductive potential observed for reserve populations may have been 

related to minor changes in research protocol and not the effects of protection. The lack 

of standardization in the size of the study areas may have influenced the results of the 

study. Efforts should be made to set traps at consistent and appropriate depths, where 

possible. In addition, the boundaries of the reference areas for both research sites should 

be standardized, and the amount of available habitat in each should be quantified. 

The implementation of additional conservation measures immediately before, 

and during, the course of the study also may have biased the results. The introduction of 

a broad-scale V -notching program and changes to commercial fishery regulations would 

have impacted reproductive potential in commercially exploited populations, and thus 

influenced the observed differences between protected and unprotected populations. 
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Where possible, the implementation of additional conservation measures should be 

delayed until the effects of the reserve can be quantified. 

The length of the time-series of available data strengthens the conclusions of this 

study. Previous studies of reserve effects on reproductive potential in spiny lobster 

populations have generally been shOii-term in nature, or have lacked continuous time

series data. The available data for this study spanned more than a decade. This study 

has established that differences in reproductive potential of Homarus americanus 

between reserve and reference areas were quick to arise, and that these differences 

persisted over time. This provides evidence for the potential of reserves to promote the 

sustainability of commercially exploited lobster populations through sustained increased 

reproductive output. 
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Table 3.1 : Comparison of two methods for estimating annual reproductive potential (RP) 
for female lobsters at the Round Island study site, from 1997-2002. Mean sizes for 
1997-1999 from Rowe (2002). Percent difference calculated as (Method 2-Method 
1 )/Method 2. 

Mean 
Carapace 

Year RP: Confidence Length RP: 0/o 
Method 1 Limit N (mm) Method 2 difference 

Reserve 

1997 102 83 11364 

1998 120 87 13246 

1999 127 88 13445 

2000 14391 ± 911 116 88 13831 -4.1 

2001 16210 ± 917 97 92 15785 -2.7 

2002 16188 ± 1185 84 92 15580 -3.9 

Reference 

1997 127 83 11364 

1998 81 86 12660 

1999 85 83 11364 

2000 13067 ± 783 115 86 12679 -3.1 

2001 13387 ± 835 85 87 13047 -2.6 

2002 14244 ± 1209 63 88 13781 -3.4 
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Table 3.2: Estimated parameters for power law equations relating fecundity to female 
carapace size, Eggs = a(CL/. 

Parameters 

Source Size Range 
N (mm) p a 

Leading Tickles 1 30 74-1 13 3.17 Exp(-4.67) .55 

(lngs, unpublished data) 

Leading Tickles 2 28 74-113 2.52 Exp(-1 .7) .63 

(Ings, unpublished data) 

Paradise, NL 72 75-139 3.10 Exp(-4.37) .88 

(Ennis 1981) 

Northwest Coast, NL 63 70-107 2.32 Exp(-0.92) .36 

(Ennis 1981) 
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Table 3.3: Differences in annual reproductive potential between reserve and reference 
areas at Round Island and Duck Islands study sites, for four different length-fecundity 
relationships. See text for explanation of sources of estimates. 

% difference 
Reproductive Potential (Reserve- Reference)/Reference) 

(based on LTl) 
Year 

Reserve Reference LTl LT2 Paradise NW Coast 

Round 

1997 11364 11364 0.0% 0.0% 0.0% 0.0% 

1998 13246 12660 4.6% 3.7% 4.5% 3.4% 

1999 13445 11364 18.3% 14.3% 17.9% 13.1 % 

2000 14391 13067 10.1 % 7.8% 9.9% 7. 1% 

2001 16210 13387 21.1 % 16.4% 20.6% 15.0% 

2002 16188 14244 13.7% 10.6% 13.3% 9.7% 

2003 

2004 17066 15407 11.0% 8.0% 10.0% 7.0% 

2005 17283 17090 1.1 % 0.9% 1.1 % 0.9% 

2006 17421 16546 5.3% 4.9% 5.3% 4.7% 

2007 19262 15545 23.9% 18.7% 23.3% 17.1 % 

2008 19497 19003 3.0% 3.0% 3.0% 3.0% 

Duck 
1997 14054 12093 16.0% 13.0% 16.0% 12.0% 

1998 12469 12853 -3.0% -2.4% -2.9% -2.2% 

1999 14471 12469 16.1% 12.6% 15.7% I 1.5% 

2000 15664 14995 4.5% 4.0% 4.4% 3.8% 

2001 16610 14587 13.9% 11.0% 13.5% 10.0% 

2002 21420 19000 12.7% 10.7% 12.5% 10.0% 

2003 

2004 20247 18434 10.0% 7.9% 9.6% 7.3% 

2005 22990 18854 21.9% 17.1% 21.4% 15.6% 

2006 22015 18514 18.9% 16.1 % 18.6% 15.1 % 

2007 17998 15524 15.9% 12.7% 15.6% 11.6% 

2008 22651 17365 30.0% 23.0% 30.0% 21.0% 
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Figure 3.1: Study areas within reserve and reference locations at Round Island (a) and 
Duck Islands (b) study sites in Bonavista Bay, Newfoundland. 
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Figure 3.2: Reproductive potential (mean ± 95% confidence limits) of female lobsters in 
reserve ( • ) and reference ( o) locations at Round Island, Bona vista Bay, Newfoundland, 
1997-2008. 
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Figure 3.3: Reproductive potential (mean ± 95% confidence limits) of female lobsters in 
reserve ( • ) and reference ( o) locations at Duck Islands, Bona vista Bay, Newfoundland, 
1997-2008. 
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Chapter 4: Summary, Conclusions and Future Work 

The results of this study provide further evidence that the Eastport Marine 

Protected Areas (MP As) have the potential to promote sustainability of the resource 

through increased density, mean size and reproductive potential of lobsters. At the 

Round Island site, lobster density inside the reserve was greater than that of the adjacent 

reference area. Observed sex ratios in reserve and reference locations differed at both 

sites, with a bias towards females in reference locations. At Round Island and Duck 

Islands study sites, both male and female lobsters were significantly larger in protected 

populations, and mean sizes continued to increase over time. The increased female size 

in protected populations led to consistently greater reproductive potential inside these 

reserves, though the difference between protected and unprotected populations was 

small. 

Previous studies of the Eastport MPAs have demonstrated differences in density 

and mean size of lobsters between reserve and reference locations (Rowe 2002; Janes 

2009), but were relatively short-tenn in nature. Moreover, they did not directly examine 

changes in reproductive potential, which is a key indicator of a reserve ' s ability to 

enhance recruitment. Measures of reproductive potential are important because 

recruitment as a consequence of protection is difficult to quantify. The protracted 

pelagic larval period for American lobster increases the potential for considerable 

dispersal. Newly-settled postlarvae, and juveniles, are cryptic in nature, and hence 

difficult to census. Additionally, it can take 8 years or more for a lobster to recruit to the 
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fishery (DFO 2009). Survival and recruitment are unpredictable because they are 

heavily influenced by environmental conditions (Caddy 1979; Ennis 1986). 

These results have considerable implications for the management of American 

lobster (Homarus americanus) populations. Many of the concerns that were raised by 

the Fisheries Resource Conservation Council (FRCC) in 1995 (FRCC 1995), regarding 

the sustainability of lobster stocks in Atlantic Canada, are still relevant today. In 2007, 

the FRCC reiterated their concerns regarding impact ofhigh exploitation rates on 

population egg production and the size structure of the lobster resource in Atlantic 

Canada, and suggested that a "network of reasonably sized and spaced reserves" be 

developed to enhance the sustainability of the resource (FRCC 2007). In 2008, DFO 

published a document outlining a conservation rationale and biological basis for the 

protection of large lobsters, both male and female, citing concerns about the potential 

impacts of a truncated size structure on reproductive success and population egg 

production, where truncation could lead to recruitment failure in periods associated with 

adverse environmental conditions (DFO 2008). The document also recommended the 

establishment of MP As as a potential means of ali owing male and female lobster to 

attain larger sizes (DFO 2008). 

The conclusions of this study would have been strengthened had baseline data 

been available prior to reserve establishment. Pre-existing differences between reserve 

and reference populations may have influenced the results, but the time series of 

available data lends support to the hypothesis that observed differences were influenced 

by the presence of protection. The implementation of other conservation measures just 
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prior to, and shortly after, reserve establishment presented a confounding factor that 

likely influenced the results. These measures would have served to increase the 

abundance, and mean size, of lobsters in commercially exploited areas, and thus reduce 

the ability to detect differences between reserve and reference locations. Because 

baseline data were not collected and because other conservation measures were 

implemented, it would be difficult to attribute increases in catch to any one conservation 

measure. 

This study supports the hypothesis that American lobster populations can benefit 

from the establishment of marine reserves. However, further work is required to 

strengthen the conclusions. Changes in the size of both reference areas over time 

introduced a degree ofbias that was controlled by some degree by standardizing density 

estimates by area. However, changes in the boundaries of the reference areas may have 

influenced the outcome of the study, by affecting the sizes, and numbers, of animals 

caught due to habitat heterogeneity. The boundaries of these reference areas at both 

study sites should be standardized for further research. Additionally, since there is some 

evidence for sex segregation by depth in the fall (Templeman 1939; Can1pbell and 

Stasko 1986; Robichaud and Campbell 1991; Roddick and Miller 1992), it is possible 

that traps were set too shallowly to effectively sample female lobsters. In future, traps 

should be set at appropriate depths to target both male and female components of the 

population, so that sex ratios, and size of female lobsters, can be examined more 

appropriately. Once the boundaries of the study sites have been standardized by lateral 
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extent and depth, further research will be required to identify the amount of available 

lobster habitat in both reserve and reference locations. 

Lobster catchability is influenced by many factors , including size, sex, and 

agonistic encounters both in, and around, traps (Richards et al. 1983; Karnofsky and 

Price 1989; Miller 1990, 1995; Jury et al. 2001 ). Additionally, some lobsters never enter 

traps (Karnofsky and Price 1989). The use of alternate census techniques may be 

warranted to cross-check estimates of abundance and density. 

The contiguous nature of the boundaries of reserve and reference locations at 

both study sites indicates the potential for spillover. Thus far, studies to quantify the 

degree of exchange between reserves and commercially harvested locations have 

reported low rates of movement (Rowe 2001; Janes 2009), but have been limited by 

either a relatively short time-series of data, or limited and inconsistent rates of tag 

reporting during the commercial fishery (Janes, pers. comm.). Since spillover is an 

expected result of protection, and may provide localized benefits to stakeholders, further 

efforts should be made to obtain tag return infonnation from the commercial fishery, to 

quantify movement of lobster across reserve boundaries. This will provide both a direct 

quantification of spillover, and a measure of lobster retention in the reserve, which can 

indirectly provide a means to further assess the reserves ' potential to enhance 

recruitment. 

The 1995 FRCC report contained explicit considerations of the precautionary 

approach as it pertains to Atlantic lobster populations. In 200 I, the United Nations 

Agreement on Straddling and Highly Migratory Fish Stocks (UNF A) came into effect, 
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thus committing Canada to employ a precautionary approach in managing both domestic 

and straddling stocks. In 2009, the Sustainable Fisheries Framework for Fisheries and 

Oceans Canada renewed this commitment though a specific policy for the development 

of a fishery decision-based framework incorporating the precautionary approach. The 

conservation and sustainable use of resources are of paramount importance in the 

management of current fisheries, as well as in the development of future ones. The 

establishment of marine reserves represents a promising approach to the implementation 

of the precautionary approach for American lobster. 
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