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Abstract 

It is estimated in 2009 that 2500 Canadian women were diagnosed and 1750 women lost 

their lives to epithelial ovarian cancer. This malignancy has a high m01tality rate because 

the majority of women are diagnosed in late stage disease where the 5 year survival rate 

is only 20%. Late diagnosis is a result of the lack of an effective screening marker. 

Cun·ently, CA125 is the only marker that is used for ovarian cancer patients and it is used 

primatily to monitor disease recurrence after treatment. Unfortunately, CA125 lacks the 

sensitivity and specificity to be used for early detection of ovarian cancer. Recently, a 

new group of genes, the human kallikrein-related peptidase (KLK) family, has been 

implicated in ovarian cancer and are being investigated as potential new biomarkers for 

the malignancy. In particular, KLK13 has been shown to have increased expression in 

ovarian cancer. KLK13 has increased expression in the ovatian cancer cell lines CAOV-

3, OVCAR-3, and SKOV-3 when compared to the lOSE cell line and is involved in cell 

motility. Increased KLK13 expression increases migration in the epithelial cell lines 

lOSE and MvlLu. Also, when KLK13 expression was decreased in the ovarian cancer 

cell line SKOV-3, which has high endogenous KLK13 expression levels, there was a 

decrease in cellular migration. Increased KLK13 expression in lOSE cells increased 

cellular invasion through the basement membrane. These data together suggest KLK13 

plays a role in ovru·ian carcinogenesis and may be a potential therapeutic target. In order 

to see if KLK expression had any prognostic significance in ovru·ian cancer patients, 

paraffin embedded ovarian cancer samples were analyzed for KLK6 and KLK13 mRNA 

expression. High expression levels of both KLK6 and KLK13 were associated with 
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invasive ovarian cancer. Also, high KLK6 expression was associated with late stage 

ovarian cancer and serous histological type. Both KLK6 and KLK13 were also shown to 

be markers of poor prognosis as patients with high kallikrein expression were more likely 

to have a recurrence than patients with low KLK expression. When KLK6, KLK13 and 

Muc16 were assessed for the ability to detect ovarian cancer, the genes detected 56%, 

50%, and 56%, respectively, early stage (Stage I and II) ovarian cancer patients. When 

all three markers were used in combination, the sensitivity of the test improved to 84%. 

There was no significant change in the specificity or positive predictive value, but the 

negative predictive value increased from 33% using the individual markers to 58% when 

all three markers were combined. These data together suggest KLK6 and KLK13 are 

involved in ovarian cancer tumorigenesis. Both KLK6 and KLK13 are potential new 

markers and possible therapeutic targets for ovarian carcinoma. 
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Chapter 1 The Current Understanding of Ovarian 
Cancer and Kallikrein-Related Peptidases 



Introduction 

1.1 Ovarian surface epithelium 

The ovarian surface epithelium (OSE), also referred to as the ovarian mesothelium or the 

normal ovarian epithelium (NOE), is a single layer of flat-to-cuboidal epithelial cells 

covering the ovary (Bast, Jr. et al., 1998b;Nicosia et al., 1997). The OSE is separated 

from the ovarian stroma by a basement membrane that overlies a collagenous connective 

tissue layer, the tunica albuginea (Wong and Auersperg, 2002). The OSE originally 

ruises from the coelomic epithelium (Auersperg et al., 2001). Between ten and twenty 

weeks of gestation, the human fetal OSE changes from a simple epithelium with a 

fragmentary basement membrane to a multistratified, papillru·y epithelium on a well 

defined basement membrane. It reverts to a monolayer by term, overlaying the now, 

elongated, lobular ovary (Choi and Auersperg, 2003). The OSE is of great interest in 

gynaecological oncology because it is thought that approximately 90% of epithelial 

ovarian cancers ruise from this layer of cells (Katabuchi and Okamura, 2003). 

The OSE has few distinguishing features. The monolayer of cells is characterized by 

apical microvilli (Okamura, 1997), a basal lamina, and expression of types 7, 8, 18, and 

19 keratin, typical of simple epithelium (Choi and Auersperg, 2003). The OSE can be 

distinguished from the extraovarian mesothelium by its characteristic protein expression 

pattern. While the OSE expresses mucin, 17~-hydroxysteroid dehydrogenase and cilia 

(van Niekerk et al. , 1991), it lacks cancer antigen 125 (CA125) expression (Kabawat et 

al., 1983). Interestingly, CA125 is expressed by the endometrial and endocervical 
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epithelial, as well as by the pleura, pericardium and peritoneum of adult women (Jacobs 

and Bast, Jr., 1989). The OSE is the only coelomic epithelial derivative lacking CA125 

express JOn. 

Cell to cell adhesion in the OSE is maintained by simple desmosomes, incomplete tight 

junctions, N-cadherin, and integrins (Auersperg et al., 2001). N-cadherin is a cell surface 

glycoprotein that functions as a calcium-dependant cell-cell adhesion protein and is 

normally expressed in mesodermally derived tissues. It is the most abundantly expressed 

cadherin in OSE. In contrast to the rat OSE, which expresses both N-cadherin and E

cadherin, the human OSE expresses E-cadherin only in regions where the cells assume a 

columnar shape characteristic of metaplastic epithelium (Maines-Bandiera and 

Auersperg, 1997). E-cadherin is a marker of differentiation for normal MUllerian 

epithelium and has been shown to coiTespond with epithelial differentiation (Marrs and 

Nelson, 1996). P-cadherin expression is also absent in the OSE, but is present in the 

epithelium of MUllerian duct derivatives and in ovarian adenocarcinoma cell lines (Wong 

et al., 1999), indicating P-cadherin expression changes in association with tissue-specific 

morphogenetic events and pathological processes (Auersperg et al. , 2001). 

With age, the human ovary assumes increasingly irregular contours and forms OSE-Iined 

surface invaginations called clefts and epithelial inclusion cysts in the ovarian cortex 

(Wong and Auersperg, 2002). Inclusion cysts are thought to arise from either OSE 

fragments that are trapped in ruptured follicles at the time of ovulation, or through 

inflammatory adhesions of OSE at sites of surface invaginations (Scully, 1995). Within 
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clefs and inclusions, OSE cells have an increased tendency to undergo metaplastic 

changes, i.e., to take on phenotypic characteristics of MUllerian epithelium, including 

columnar cell shape and expression of several markers typically found in ovarian cancers, 

including CA125 and E-cadherin (Choi and Auersperg, 2003). 

Epithelial inclusion cysts are thought to be more at risk for neoplastic progression for two 

mam reasons. The first is that the OSE in inclusion cysts is not separated from 

underlying stroma by the tunica albuginea and therefore has more access to stroma

deiived and blood-borne growth factors and cytokines that may promote neoplastic 

progression (Choi and Auersperg, 2003). This hypothesis is supported by the fact that 

metaplastic and dysplastic changes tend to be more apparent on the side near the stroma 

rather than the side adjacent to the tunica albuginea (Scully, 1995). Secondly, the lumen 

of the inclusion cyst is a secluded site in which the accumulation of tumor-promoting 

environmental factors may promote neoplastic progression through OSE-derived 

cytokines and hormones since these agents could accumulate to bioactive levels in this 

confined site where normally they diffuse into the pelvic cavity when secreted by OSE on 

the ovarian surface (Choi and Auersperg, 2003). 

1.2 Ovarian cancer 

1.2.1 Etiology 

The initiating events of epithelial ovarian cancer are poorly understood. Currently, there 

are numerous hypotheses surrounding the origin of ovarian carcinoma. The two theories 

1-4 



that have the most supporting evidence are the incessant ovulation hypothesis and the 

gonadtropin hypothesis. Other less well supported the01ies include the inflammation 

hypothesis and the hormonal theory. 

1.2.1.1 The incessant ovulation hypothesis 

The "incessant ovulation" hypothesis was first put forward by Fathalla in 1971 proposing 

ovarian cancer may be caused by the trauma of ovulation (Fathalla, 1971). The ovarian 

surface is ruptured by the ovulating follicle, damaging the OSE which then requires 

immediate repair. Over time, this process of repeated damage and OSE proliferation to 

repair the wound places strain on the OSE, increasing the chances of error during 

replication where genetic instability would predispose the cell layer to tumorigenesis (Ho, 

2003;Riman et al., 1998;Savage et al., 1998). 

Supporting this hypothesis are studies demonstrating that the use of oral contraceptives 

(Narod et al., 1998), parity [number of live births; (Risch et al., 1994)] , and prolonged 

breast feeding (Whittemore et al. , 1992), all significantly reduce the risk of ovatian 

cancer. Duting oral contraceptive use, ovulation is suppressed by stable estrogen (E) and 

progesterone (P4) levels which in tum inhibit the gonadtropins and their ability to 

stimulate ovulation. Interestingly, it has been shown that the use of oral contraceptives 

may even reduce the risk of ovarian cancer in women with mutations in the breast cancer 

susceptibility gene 1 (BRCAJ) and breast cancer susceptibility gene 2 (BRCA2) which are 

known to cause familial ovarian cancer (Narod et al., 1998). Also, during pregnancy and 

breast feeding, ovulation is suppressed. The use of oral contraceptives, parity, and breast 
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feeding all reduce the overall number of ovulations in a woman's lifetime, supporting the 

incessant ovulation hypothesis. However since these factors provide a reduction in Iisk 

for two to three decades after their cessation, they must prevent the triggering biological 

events that would clinically manifest as cancer years later (Risch, 1998). 

There is also evidence that conflicts with the incessant ovulation theory. For example, if 

ovarian cancer risk is based on a woman ' s total lifetime ovulations, then women who are 

infertile should have a very low risk of ovarian cancer. On the contrary, women who 

have polycystic ovarian syndrome are at an increased risk of developing epithelial 

ova1ian cancer despite the fact they are anovulatory (Schildkraut et al. , 1996). Also, 

women who have never been pregnant because of infertility, have a 40% higher rate of 

developing epithelial ovarian cancer than women who have never attempted (Rodriguez 

et al., 1998). Although the incessant ovulation hypothesis is supported by a large number 

of studies, it does not account for all the risk factors associated with developing epithelial 

ovanan cancer. 

1.2.1.2 The gonadotropin theory 

Stadel et al. , put forth the "gonadotropin theory" to account for the development of 

ovarian carcinoma (Stadel, 1975). This hypothesis predicts high levels of pituitary 

gonadotropins, related to the surge occuning during ovulation, increases estrogenic 

stimulation of the OSE, which in tum increases the likelihood of malignancy. 

Gonadotropins can act either directly on the OSE, enhancing transformation, or indirectly 

by stimulating E production (Mahle et al. , 1985). 

1-6 



Supporting this · hypothesis is the fact that gonadotropin levels are increased during 

perimenopause and remain elevated postmenopause, consistent with the median age 

range for epithelial ovarian cancer of 50-59 years old with 70% of these patients being 

postmenopausal (Heintz et al., 2003). Also, it has been documented that women with 

polycystic ovarian syndrome, who hyper-secrete LH, are at a higher tisk of developing 

ovarian cancer (Schildkraut et al., 1996). In addition, pregnancy and oral contraceptive 

use, which have been shown to reduce the risk of ovarian cancer, suppress circulating 

levels of both LH and FSH (Risch, 1998). 

There also exists evidence contradictory to the gonadotropin theory. For example, 

lactating women have increased levels of circulating FSH, yet breast-feeding appears to 

be protective against developing epithelial ovarian cancer (Harris et al., 1992). Also, 

some ovarian cancer patients have been shown to have lower levels of gonadotropins 

when compared to their non-cancer counterparts (Ness and Cottreau, 1999;Risch, 1998). 

1.2.1.3 Other theories 

The development of all ovarian cancers is not accounted for by the previously described 

theories. The inflammation hypothesis and the hormonal theory have also been 

suggested as the cause of ovarian cancer. The inflammation hypothesis was suggested 

based on the increasing incidence of epithelial ovarian cancer among women with pelvic 

inflammatory disease (Ness and Cottreau, 1999). Also, patients with endometriosis, an 

inflammatory condition, have been linked to endometrioid and clear cell epithelial 

ovarian cancers (Sainz et al., 1996;Stern et al., 2001). Also supporting this hypothesis is 
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the fact that hysterectomy and tubal ligation, which decrease the risk of inflammation, 

reduce the risk of ovarian cancer (Ness and Cottreau, 1999). 

Finally, the h01monal theory was proposed as a cause for epithelial ovarian cancer as 

growing evidence suggests hotmones such as androgen, E, and P4, have a role in ovatian 

carcinogenesis. Androgens are produced in the ovary at a higher rate than estrogens and 

are the principle sex steroids present in the ovary by the developing follicles (McNatty et 

al., 1979). Although androgens can stimulate proliferation in inclusion cysts and OSE of 

guinea pigs, they have shown no proliferative effect on human OSE in culture (Bai et al., 

2000;Karlan et al., 1995;Silva et al., 1997). However, patients with polycystic ovarian 

syndrome, who have higher circulating levels of androgens, have an increased risk of 

epithelial ovatian cancer while patients taking oral contraceptives, which suppress 

ovarian testosterone production, are protected against ovarian cancer (Schildkraut et al., 

1996). 

Estrogens have been suspected as etiologic factors of ovarian cancer for some time (Ho, 

2003). Ovarian tissue and follicular fluid have much higher E levels than blood and it is 

likely the OSE and inclusion cysts are exposed to this high E (Lindgren et al. , 2002). 

Also, estrogen has been shown to be genotoxic in breast cancer cells (Yager, 2000). 

Increased cell proliferation in breast cancer cells caused by E, through E receptor

mediated signalling, is accompanied by an increased probability for mutations to occur 

during DNA synthesis. Since E has been shown to have a mitogenic effect on both 
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normal and malignant OSE cells in vitro (Syed et al., 2001), this may be reflective of 

what is occulTing with the OSE in vivo. 

Progesterone, on the other hand, has a protective effect against ovarian cancer. Oral 

contraceptives, which reduce ovarian cancer risk, contain high levels of P4. It has been 

hypothesized that the long-term exposure to P4 may be the cause for the reduction in 

ovarian cancer risk (Ho, 2003). Interestingly, the low dose progestin-only pill, which 

does not suppress ovulation, still decreases the risk of developing ovarian cancer to a 

level similar to the combination pill (Rosenberg et al., 1994). Also, during pregnancy, 

protective against ovarian cancer, P4 levels are high while androgen levels are low. 

According to the hormonal theory, the protective effect from pregnancy is due to the high 

levels of circulating P4 rather than the lack of ovulation (Risch, 1998). 

There are numerous theories suggesting the etiology of ovarian cancer. Although each 

theory has much supporting evidence, there are also facts that disagree, and support other 

theOiies. It is therefore more likely that a combination of these the01ies harbours the true 

cause of ovarian cancer. 

1.2.2 Risk factors 

Ovarian carcinoma, known as "the disease that whispers," or, "the silent killer," is the 

most lethal of all the gynaecological malignancies. In 2009, it was estimated that 2500 

new cases of ovarian cancer would occur in Canada while approximately 1750 women 

would succumb to the disease (Canadian Cancer Society's Steering Committee, 2009). 
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Ovarian cancer is therefore highly lethal and represents a great clinical challenge in 

gynaecological oncology because most patients remain asymptomatic until the disease is 

well advanced. About 75% of patients are diagnosed in late stage disease with a five year 

survival rate of less than 20%. Reasons for late diagnosis include the anatomical location 

of the malignancy and the absence of signs and symptoms associated with the early 

stages of ova1ian carcinoma. The disease is treatable and in most cases curable, if 

diagnosed in the early stages, but still causes the death of more North American women 

than all other gynaecological malignancies combined. 

There are few known risk factors for ovarian cancer. The search for underlying causes of 

ovarian cancer such as diet ancl/or lifestyle choices, in order to decrease the incidence of 

ovarian cancer, is currently a large part of prevention research. The use of oral 

contraceptives (Narod et al., 1998), parity (Risch et al. , 1994), and prolonged breast 

feeding (Whittemore et al., 1992), significantly reduces the risk of ovarian cancer. 

These results are consistent with the incessant ovulation hypothesis in that these factors 

reduce the number of total lifetime ovulations. There seems to be no significant 

con·elations between dietary patterns (Chang et al. , 2007;Chang et al., 2008) or alcohol 

intake (Tworoger et al., 2008) with the occuJTence of ovarian cancer. 

On the other hand, early menarche (Booth et al. , 1989), late menopause (Franceschi et 

al. , 1991), and interestingly, increasing height (Schouten et al. , 2003), have been shown 

to be associated with a increased risk of ovarian cancer. Cigarette smoking has been 

shown to increase the risk of only mucinous epithelial ovarian cancer (Tworoger et al. , 
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2008). Age, as with many other cancers, appears to be a risk factor for ovarian cancer. 

The incidence of ovarian cancer climbs dramatically in women during the peri

menopausal period, from less than four in 100,000 women of 30-35 years of age to 

almost 40 in 100,000 women aged 60-64 years (Public Health Agency of Canada, 2010). 

Also, Yang et al. (Yang et al. , 2008) , found among women with early stage disease 

(Stage I and II), there was some indication that being overweight in young adulthood, as 

well as in later years, increased the risk of developing ovarian cancer. The use of 

hormone replacement therapy (HRT) also increases the risk of ovarian cancer (Riman et 

al., 2002). Lacey et al. (Lacey, Jr. et al., 2002), observed a significant positive 

association between estrogen replacement therapy and ovarian cancer among women who 

used E only therapy for ten years or more. There was no significant association with 

ovarian cancer and women who used estrogen-progestin for a short period of time. These 

data support the hormonal theory for the origin of epithelial ovarian cancer. Although all 

these factors do contribute to ovarian carcinogenesis, the most significant risk factor for 

ovarian cancer has consistently proven to be family history or genetics (Pharoah and 

Ponder, 2002). 

1.2.3 Familial ovarian cancer syndromes 

About 5% to 10% of ovarian cancers are familial while the remaining are sporadic (Boyd 

and Rubin, 1997). In the general population, the lifetime risk for developing ovarian 

cancer is 1.6%. Women with one first-degree relative with ovarian cancer have an 

approximately 5% risk, while women with two first-degree relatives with ovarian cancer 
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have a 7% 1isk (Pharoah and Ponder, 2002;Wemess and Eltabbakh, 2001). In the United 

States, 10% to 20% of breast and ovarian cancer patients have a first or second-degree 

relative with one of these diseases (Madigan et al., 1995). There are three classifications 

of inherited ovarian cancer: hereditary breast and ovarian cancer syndrome, site-specific 

ovarian cancer syndrome, and hereditary non-polyposis colorectal cancer (HNPCC), also 

known as Lynch II Syndrome. 

1.2.3.1 The breast/ovarian cancer syndrome 

The hereditary breast/ovarian cancer syndrome predisposes women to both breast and 

ovarian cancer. Features of this syndrome include pre-menopausal breast cancer (<50 

years), ovarian cancer at any age, bilateral breast cancer, breast and ovarian cancer in the 

same woman, and male breast cancer (Marshall and Solomon, 2007). This syndrome is 

linked to germline mutations in both BRCAJ and BRCA2 tumor suppressor genes. The 

frequencies of mutations throughout both genes are relatively uncommon in the general 

population. In specific ethnic populations, such as the Ashkenazi (Eastern Europe) 

Jewish population, the frequency of mutation is higher (Roa et al., 1996). The three 

founder mutations identified in Ashkenazi family ancestry are: 185de!AG and 5382insC 

in BRCAJ; and 6174deiT in BRCA2. These mutations are caJTied by approximately 2.5% 

of the Ashkenazi Jewish population (Roa et al., 1996). Founder mutations are common 

in women with ovarian cancer, even without a family history of breast/ovarian cancer. 

BRCAI was originally identified by positional cloning (Miki et al., 1994). BRCAI has 

been identified as a tumor suppressor gene and is composed of 22 exons distributed over 
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100kb of genomic DNA. When it was noted that approximately 45% familial breast 

cancer showed evidence of linkage to BRCAJ, there was a search for another cancer 

susceptibility gene. The breast cancer susceptibility gene 2 (BRCA2), also a tumor 

suppressor gene, was discovered shortly afterwards (Wooster et al., 1995). This gene is 

also quite large, as it has 26 coding exons distributed over approximately 70kb of 

genomic DNA. 

Both genes display characte1istics of a tumor suppressor such as, inheritance within 

affected families, autosomal dominant pattern of inheritance and loss of heterozygosity 

(LOH) at the relevant gene locus in familial tumors (Scully, 2000). Both proteins play a 

significant role in DNA repair, transcriptional response to DNA damage, and regulation 

of cell-cycle checkpoints. When DNA suffers a double strand break, BRCA1 is 

phosphorylated by ataxia telangiectasia mutated (ATM) protein (Cortez et al., 1999). 

BRCA1 and BRCA2 then co-localize with Rad51 to form complexes that repair double 

strand breaks and initiate homologous recombination (Scully et al., 1997b). 

BRCA1 is thought to play a role in the transcriptional response to DNA damage while the 

function of BRCA2 as a transcriptional regulator is still unknown. BRCA1 complexes 

with RNA polymerase II holoenzyme through RNA helicase (Scully et al., 1997a). 

BRCA1 binds to a large number of transcriptional factors and may mediate signals to 

RNA polymerase II. BRCA1 also interacts with p53 and may function to stimulate p53 

pathways (Buck, 2008). 
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BRCA1 has also been shown to play a role in regulating cell-cycle checkpoints in 

response to DNA damage. Cells defective in different DNA damage-responsive proteins 

have shown that both BRCA1 and ataxia telangiectasia mutated (ATM) are required for 

effective response to the 02/M checkpoint arrest (Yoshida and Miki, 2004). Expression 

of BRCA1 variants defective for ATM-mediated phosphorylation were associated with a 

defect in the 02/M arrest, suggesting that BRCA1 phosphorylation by ATM is required 

for the 02/M checkpoint response to DNA damage. Although some studies have 

suggested a role of BRAC2 in cell cycle regulation or checkpoint functions, it remains 

unclear whether the protein participates. 

1.2.3.2 The site-specific ovarian syndrome 

The second hereditary syndrome is the site-specific ovarian cancer syndrome that 

predisposes women to ovarian cancer. A family that has three or more cases of invasive 

epithelial ovarian cancer at any age and no case of breast cancer diagnosed before age 50 

qualifies as a site-specific ovarian cancer family (Lynch and Lynch, 1992). Most of these 

cancers are caused by a germline mutation in the tumor suppressor gene BRCAJ and less 

frequently in the BRCA2 gene (Antoniou et al., 2000). Hereditary site-specific ovarian 

cancer syndrome is considered as the same spectrum of disease as the hereditary 

breast/ovarian cancer syndrome, in which early-onset breast cancer has not yet appeared 

(Steichen-Oersdorf et al., 1994 ). 
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1.2.3.3 The hereditary non-polyposis colorectal cancer syndrome 

The third hereditary predisposition to ovarian cancer IS hereditary non-polyposis 

colorectal cancer (HNPCC) syndrome or Lynch II syndrome. HNPCC is characterized 

by autosomal dominant inheritance, early age at onset of colorectal carcinoma, right

sided predominance, and increased incidence of synchronous and metachronous 

colorectal cancers (Fitzgibbons et al., 1987). It is associated with germline mutations in 

several DNA mismatch repair genes: MSH2, MLHJ, PMSJ, PMS2 and MSH6 (Lynch and 

de Ia Chapelle, 1999), although 90% of all HNPCC cases are caused by mutations in the 

MSH2 and MLHJ genes (Lynch and de Ia Chapelle, 2003). 

Germline mutations in HNPCC-related genes confer risks for colorectal, endometrial, and 

ovarian cancer of up to 90%, 60%, and 13%, respectively (Lynch et al., 1998). To date, 

the single most common MSH2 mutation is a point mutation (A~T nt943+3) in the 3' 

splice site of exon 5, resulting in deletion of this exon and a truncated protein. Male 

carriers of this mutation have a significantly higher risk of colorectal cancer than females 

(63% versus 30% and 84% versus 44%, at age 50 and 60 years, respectively) , while 

female caniers have a higher risk of endometrial (50% at age 60 years) and pre

menopausal ovarian cancer [20% at 50 years; (Froggatt et al., 1999)]. 

Recently, a single nucleotide polymorphism (SNP) in the promoter region (G---+A nt93) 

of MLHJ has been associated with a modest, but highly significant risk of ovarian cancer 

(Harley et al., 2008). This SNP has also been associated with a 1.5-fold increased risk of 
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developing endometrial cancer (Beiner et al., 2006) and an increased risk of colorectal 

cancer (Raptis et al., 2007). 

The level of ovarian cancer risk associated with HPNCC has not been widely appreciated. 

The clinical criteria, Amsterdam and modified Amsterdam c1iteria, for the diagnosis of 

HPNCC does not include ovarian cancer, but does include stomach cancer that carries 

essentially the same level of risk as ovarian cancer (Aamio et al., 1999). Women who 

have relatives with colon, endomet1ial , ovarian, breast, or stomach cancer may be at a 

higher risk for developing ovarian malignancy and should therefore be tested for the 

presence of a germline mutation in the BRCAJ, BRCA2, or one of the mismatch repair 

genes. 

1.2.4 Histological classification of ovarian tumors 

Human ovarian tumors are divided into three major categories based on the histogenesis 

of the normal ovary. The histological classification categorizes ovarian neoplasms with 

regard to their derivation from the coelomic surface epithelium, germ cells, and 

mesenchymal cells, into epithelial tumors, germ cell tumors, and sex-cord stromal 

tumors, respectively (Kaku et al. , 2003). The aggressiveness of ovarian tumors is 

assessed by tumor stage and grade. Staging for primary carcinoma of the ovary was 

defined by The International Federation of Gynecology and Oncology (International 

Federation of Gynecology and Oncology, 1986). Stage I ptimary ovarian carcinoma is 

diagnosed if tumor growth is limited to the ovaries. Stage II ovarian cancer is defined as 

growth that is involved with one or both ovaries with pelvic extension. Stage ill ovarian 
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cancer is diagnosed as tumor involving one or both ovanes with peritoneal implants 

outside the pelvis and/or positive retroperitoneal or inguinal nodes. In the case of Stage 

III ova1ian cancer, the tumor is limited to the true pelvis but with histologically proven 

malignant extension to the small bowel or omentum. Finally, stage IV ovarian cancer is 

defined as a tumor growth that involves one or both ovaries with distant metastasis. If 

pleural effusion is present, there must be positive cytology to classify a patient as stage 

IV ovarian cancer. Patients with parenchymal liver metastasis are diagnosed with stage 

IV (International Federation of Gynecology and Oncology, 1986). 

The aggressiveness of ovarian tumors is also assessed by tumor grade. The grading 

system for ovarian cancer is based on assigned points for three components; architecture 

(glandular, papillary, or solid), degree of nuclear atypia, and mitotic index (Silverberg, 

1999). The points for each component are added resulting in a total score which 

determines the tumor grade. Ovarian tumors are called Grade 1, or well differentiated if 

they represent cells that are more normal looking. These tumors are usually less 

aggressive. Grade 3, or a poorly differentiated tumor, looks very abnormal , almost 

unrecognizable, and are the most aggressive. Grade 2, moderately differentiated tumors, 

are in between the two. Ovarian tumors can also be classified as "borderline" or " low 

malignant potential." These tumors are early stage and usually do not grow back, or 

grow back very slowly (Silverberg, 1999). 
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1.2.4.1 Epithelial ovarian cancer 

Epithelial ovarian tumors make up approximately 90% of all ovarian malignancies 

(Fleming et al., 2006). Neoplasms of the ovarian surface epithelium are classified as 

serous, mucinous, endometrioid, clear cell, and transitional cell types. These tumors are 

then subdivided into benign, borderline and malignant categories (Christie and Oehler, 

2006). Only the first four types of epithelial ovarian cancer will be discussed as the true 

prevalence of transitional cell ovarian carcinoma is impossible to ascertain (Saslow, 

2008). The malignancy is not diagnosed reproducibly and the genetic changes in 

transitional cell ovarian carcinomas remain largely unknown. 

1.2.4.1.1 Serous ovarian tumors 

Approximately 80% to 85% of all ovanan carcinomas diagnosed in Western, 

industrialized countries are Stage III or Stage IV serous carcinoma (Seidman et al., 

2004). It is uncommon to see a Stage I serous carcinoma (Saslow, 2008). Serous ovarian 

tumors typically differentiate into cells resembling cells of the fallopian tube (Scully, 

1987). More recently, studies suggest that a proportion of high-grade serous tumors may 

originate from the fallopian tube (Yang et al., 2009). Low and high-grade serous tumors 

appear to arise by mutations through different signalling pathways. Low-grade serous 

tumors are likely to progress from an adenoma to a borderline tumor to a malignant 

carcinoma progression via alteration of the RAS-RAF signalling pathway due to 

mutations in KRAS and BRAF (Bell , 2005). KRAS mutations have been found at a higher 

rate in serous borderline tumors (27-36%) than in high grade serous tumors [0-12%; 
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(Sieben et al., 2004;Teneriello et al., 1993)], indicating there may be separate genetic 

pathways leading to the development of the malignancy. KRAS is a member of the RAS 

family of genes. It encodes a GTPase protein which is involved in the RAS/RAF/MAP 

kinase growth pathway (Mitin et al., 2005). Mutations in KRAS result in constitutive 

activation of the protein, leading to increased growth signals (Tsukuda et al., 2000). 

High-grade serous carcmomas, on the other hand, appear to arise from the OSE or 

inclusion cysts. Approximately 60% of high-grade tumors have mutations or 

overexpression of p53, an uncommon feature among borderline tumors (Chan et al., 

2000). p53 is a tumor suppressor gene involved in cell cycle regulation and DNA repair. 

High grade serous ovarian tumors are also known to exhibit loss of BRCAl. Press eta!. 

studied 38 high grade ovarian tumors and found that high grade serous carcinomas can be 

divided into three groups, BRCAl loss (genetic), BRCAl loss (epigenetic) and no 

BRCAl loss (Press et al., 2008). Tumors with BRCAl mutations were characterized by 

decreased phosphatase and tension homolog (PTEN) mRNA levels, while those with 

epigenetic loss of BRCAl had copy number gain of phosphotidylinositol-3 kinase 

(PI3K). PTEN is a lipid phosphatase that negatively regulates the PI3K signalling 

pathway (Stambolic et al., 1998). 

1.2.4.1.2 Mucinous ovarian tumors 

Mucinous ovarian carcinomas are very uncommon, being less than 3% of all ovarian 

carcinomas (Seidman et al. , 2004). Approximately 50-66% of mucinous tumors 

diagnosed in industrialized, Western countries are Stage I. Mucinous ova1ian tumor cells 
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resemble cells of the endocervix (Scully, 1987). Approximately 80% of these carcinomas 

have areas of benign and/or borderline mucinous tumor suggesting they atise via an 

adenoma to borderline tumor to malignant carcinoma progression (Riopel et al., 1999). 

These tumors have the highest rate of KRAS mutations (Gemignani et al., 2003). 

Cuatrecasas et al., studied KRAS in benign, borderline, and malignant mucinous tumors 

and found they were 56%, 73%, and 85%, respectively, positive for KRAS mutations 

(Cuatrecasas et al. , 1997). The increasing frequency of these mutations supports the 

progressive pathway. 

1.2.4.1.3 Endometrioid ovarian tumors 

Endometrioid ovarian tumors resemble cells of the endometrium and endometriosis is 

thought to be a precursor for this tumor type (Scully, 1987). This tumor type accounts for 

approximately 10% of all ovatian carcinomas diagnosed at Stage I or II (Leitao, Jr. et al., 

2004). Interestingly, patients with endometrioid cancers have a better overall survival 

than patients with serous cancers (Einhorn et al., 1985). This has been attributed to the 

fact that patients with endometrioid cancer usually have early stage disease (Tomos et al. , 

1994). Recently, one study compared a sequential set of patients who were treated for 

endometrioid or serous adenocarcinoma of the ovary and found that even with Stage III 

or poorly differentiated tumors, despite similar platinum-based chemotherapy, 

endornetrioid histology was still associated with a better survival when compared to 

serous cancer (Storey et al., 2008). Mutations in PTEN are found in approximately 15% 

of endometrioid cancers, most being low grade (Obata et al., 1998). Interestingly, PTEN 
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mutations are unique to ovarian endometrioid cancers when compared to other ova1ian 

cancers, suggesting an exclusive pathway for the development of this malignancy. 

Another protein that appears to be commonly mutated (up to 30%) in endometrioid type 

cancers, is the CTNNBI gene, encoding P-catenin (Mareno-Bueno et al., 2001). P

catenin is involved in embryonic development and cell proliferation. It binds to aT-cell 

factor (TCF), stimulating cell proliferation. P-catenin is normally degraded by the 

adenomatosis polyposis coli (APC) protein , but mutant forms are resistant to degradation 

and accumulate in the nucleus, thereby leading to uncontrolled cell proliferation. 

Endometrioid cancers are frequently associated with endometriosis (Stem et al., 2001) 

and occasionally show a spectrum of changes from typical endometriosis, to 

endometriosis with atypical hyperplasia, to endometrioid ovarian carcinoma, similar to 

that seen in carcinomas of the endometrium (Sainz et al., 1996). This stepwise 

progression model is also supported by the fact that endometrioid cancers frequently have 

areas of borderline endometrioid tumor (Bell and Kurman, 2000) and borderline tumors 

often show mutations in the CTNNBJ gene (Palacios and Gamallo, 1998). High grade 

endometrioid ovarian carcinomas, on the other hand, have similar changes to the high 

grade serous carcinomas. 

1.2.4.1.4 Clear cell ovarian tumors 

Clear cell carcinoma is the third most common ovarian carcinoma in North America, and 

accounts for approximately 5% of all ovarian tumors. Similar to the detection of 

endomettioid carcinomas, most women are diagnosed with clear cell ovarian carcinoma 
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in Stages I and II (Seidman et al., 2004). Clear cell ovarian tumors are composed of cells 

resembling endometrial epithelium during pregnancy (Scully, 1987). Like endometrioid 

ova1ian cancer, clear cell tumors have been associated with endometriosis (Stem et al., 

2001) and have microsatellite instability in approximately 15% of carcinomas (Gras et 

al., 2001;Moreno-Bueno et al. , 2001). Unlike any other ovarian cancer type, clear cell 

tumors display distinct genetic changes. Gene expression profiling has shown the 

transcription factor, hepatocyte nuclear factor-! p (HNF-lp), is over expressed in clear 

cell carcinomas and may be involved in the pathogenesis of this tumor type (Tsuchiya et 

al., 2003). Immunohistochemistry has shown HNF-lP is overexpressed in benign, 

borderline and malignant clear cell tumors, but rarely in other ovarian tumors (Kato et al. , 

2006). Also, clear cell carcinomas contain mutations in transforming growth factor-P 

receptor 2 (TGFPR2), which is rarely seen in other ovarian tumors (Francis-Thickpenny 

et al. , 2001). 

1.2.4.2 Sex cord-stromal ovarian cancer 

The second type of ovarian cancer, sex cord-stromal ova1ian cancer is a diverse group of 

tumors that accounts for approximately 7% of all primary ovarian malignancies 

(Koonings et al. , 1989). These tumors are de1ived from the sex cord and stromal 

components of the developing gonad (Scully, 1987). The most common tumor in this 

category is the thecoma-fibroma, followed by the ovarian granulosa cell tumor (GCT). 

GCT tumors account for approximately 2-5% of all ovarian tumors (Schumer and 

Cannistra, 2003). There are both juvenile (Scully, 1988) and adult forms of the 
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malignancy, charactetized by age of onset and morphological features (Savage et al., 

1998). 

A much rarer sex-cord stromal tumor is the Sertoli-L9eydig cell tumor comprising only 

0.5% of all ovarian tumors. It is pathologically characterized by the biphasic 

proliferation of sertoli and Ieydig cells in varying degrees of differentiation (Young and 

Scully, 1988). Approximately 75% of these tumors are encountered during the second to 

third decade of life (Young and Scully, 1985). 

1.2.4.3 Germ cell tumors 

The final category of ovarian tumors are classified as germ cell tumors and are most 

commonly found as benign mature cystic teratomas or dermoid cysts (Scully, 1987). 

These growths rarely undergo malignant transformation, but when it does occur, 

squamous cell carcinoma is primarily the result (Bal et al., 2007). Their components 

derive from all three germ layers: ectoderm, endoderm, and mesoderm, and interestingly 

have been reported to contain teeth and hair (Devoize et al., 2008). 

1.2.5 Ovarian cancer models 

1.2.5.1 Celllines 

In order to analyze the onset and progression of ovarian cancer, suitable models for both 

in vitro and in vivo studies are required. The capacity to study early events in ovarian 

carcinogenesis was limited for many years due to the lack of normal ovarian surface 
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epithelial (OSE) cells in culture. The ability to isolate and culture pure OSE cells from 

human (Auersperg et a/., 1984) and mouse (Kido and Shibuya, 1998), has given 

investigators the opportunity to systematically modify the genetics of normal cells to 

define the requirements for tumorigenic transformation (Garson eta/., 2005). Although 

CUITently, normal OSE cells in culture are the best in vitro model we have, one must be 

aware that genetic changes observed in culture may not properly represent changes in the 

ovarian surface epithelium in vivo. Human ovarian surface epithelium (HOSE) cells are 

structurally and physiologically different from murine OSE (Auersperg et a/., 2001), 

making the HOSE advantageous when one wants to avoid species differences. Also, the 

HOSE are more resistant to malignant transformation than murine cells (Hahn and 

Weinberg, 2002). Inactivation of p53 is sufficient to transform mouse embryo 

fibroblasts, while human counterparts require inactivation of p53, the retinoblastoma 

gene (Rb), and the activation of telomerase in order to bypass senescence (Garson eta/., 

2005). 

Ovarian cancer cell lines have also proven to be quite useful when studying ovarian 

carcinogenesis. The largest resource for cell lines is the American Type Culture 

Collection (ATCC) repository. Cancer cell lines require little resources and man power 

for daily maintenance and are relatively simple models when testing hypotheses. They 

are a controlled system where the effect of alterations in hormones, growth factors, or 

further genetic manipulations of these malignant cells can be accurately measured. 

Ovarian cancer cell lines originate from tumor or ascites from patients and histologically, 

they are similar to the patients' original tumor. Cell lines that have been developed after 
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primary chemotherapy treatment are useful for investigating the significance of novel 

treatments and the mechanisms of drug resistance in ovarian cancer. The OVCAR-3, for 

example, was established from the malignant ascites of a patient with ovarian 

adenocarcinoma after chemotherapy with cyclophosphamide, adrimycin and cisplatin 

(Hamilton et al., 1983). Because cell lines exist in such a controlled environment, results 

and findings may be specific to that particular cell line. It is important that before these 

findings are generalized, similar experiments are tested in more than one cell line. 

The cells models used for this work were the immortalized ovarian SUJface epithelial 

(IOSE)-398 cells and the ovarian cancer cell lines, CAOV-3, OVCAR-3, and SKOV-3. 

The lOSE cells were a kind gift from Dr. Nelly Auerspreg and the Canadian Ovarian 

Tissue Bank. These cells are derived from ovarian surface epithelial cells (Auersperg et 

al., 1984). Although they are immortalized with Simian virus 40, they are not truly 

immortal and will senesce at approximately passage 20. The ovarian cancer cell lines 

CAOV-3, OVCAR-3, and SKOV-3 were purchased from ATCC. Both the CAOV-3 and 

OVCAR-3 cell lines were derived from ovarian adenocarcinomas and are adherent cells. 

The OVCAR-3 cell line was established in 1982 from malignant ascites if a patient with 

progressive adenocarcinoma of the ovary (Hamilton et al. , 1983). When these cells are 

injected into nude mice tumors develop within 21 days with 100% frequency. The cell 

model is an appropriate cell model to study drug resistance and other biological processes 

in ovarian cancer. The SKOV-3 cell line was derived from the ascites of a metastatic 

ovatian adenocarcinoma. When injected into mice, these cells form moderately to well 

differentiated adenocarcinomas that are consistent with p1imary ovarian cancers. The 
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SKOV -3 cell line is resistant to tumor necrosis factor and to several cytotoxic drugs 

including diphtheria toxin, cisplatinum, and adrimycin (Blagosklonny et al., 1997). The 

cell line is also know to be migratory and invasive (Whitley et al., 2007). Similar 

information for the CAOV-3 cell line is not currently available. 

1.2.5.2 Xenografts 

Xenografts have proven useful for ovarian cancer research, as they are detived from 

naturally occurring malignancies, are quite representative of specific tumor types, and are 

reproducible with a genetically defined tumor (Shaw et al., 2004). Xenografts are usually 

injected into immune-deficient mice under the bursa membrane surrounding the ovary. 

The bursa provides a microenvironment that has been identified to influence cancer cell 

behaviour (Shaw et al., 2004). The bursa provides a good environment to study early 

ovarian cancer, but the inability of cells to disseminate outside the bursa limits its use as a 

model of late stage metastatic ovarian cancer. 

1.2.5.3 Animal models 

Animal models are a large part of cancer research and have historically complemented 

the discovery of disease etiology and progression by making it possible to examine 

events that are difficult to study in humans (Stammer et al., 2008). Ovarian cancer 

research has largely been impeded by the limitations of a suitable model of spontaneous 

ovmian cancer. 
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One animal model used to study ovarian cancer is the rhesus monkey, Macaque mulatta. 

The rhesus monkey has a reproductive physiology similar to humans, including cycle 

length, hormone profiles, and ovarian structure (Stouffer et al. , 1993). Interestingly, 

among mammals, only primates develop epithelial ovarian cancer (Moore et al., 2003). 

Wright et al., using the rhesus monkey model, examined the OSE at different stages of 

the ovarian cycle and found that the primate OSE, similar to the human OSE, undergoes a 

proliferative repair process and may therefore contribute to the etiology of epithelial 

cancer (Wright et al., 2008). Although similar to humans, this model has not been widely 

used as many research institutions do not have the proper facilities to house and care for 

these animals. 

Two other well known models for ovarian cancer are the laying hen and the mouse. The 

laying hen is the only other spontaneous model of ovatian cancer. The occutTence of 

epithelial ovarian cancer is rare in most animals. The mouse is the most widely used 

model for ovarian cancer as genetic manipulations are attainable and housing and care are 

available at most institutions. 

1.2.5.3.1 Laying hen 

Gallus do1nesticus, the laying hen, has significant similarities to human ovarian cancer 

making it a functional model to study the malignancy. The incidence of ovarian cancer is 

high in hens (up to 40% by age 6) and similar to ovarian malignancy in humans, in that it 

is age dependant (Fredrickson, 1987). Also, hormone cycles, hormone regulation, and 

ovulation in hens are similar to women. Hens ovulate approximately 250 eggs a year, 
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which is approximately 20 years of ovulating in humans, given the relative lifespans 

(Lewis and Long, 1992). In addition, the common histological subtypes seen in humans, 

such as serous, endometrioid, mucinous, and clear cell ovarian cancers, are represented in 

hens (Barua et al., 2007). On a molecular level, the hen is similar to humans as they have 

similar markers expressed in both organisms, including CA125 (Jackson et al., 2007), 

p27, proliferating cell nuclear antigen and erbB-2 (Rodriguez-Burford et al., 2001). 

Recently, hen models have vetified that the expression of selenium-binding protein 1 

mRNA is decreased in ovarian cancer tissues when compared to normal ovarian smface 

epithelium (Stammer et al., 2008). The same expression pattern is found in humans 

(Huang et al., 2006). Furthermore, Urick et al. have used the laying hen model to 

identify COX-1 as a potential target for ovarian cancer treatment and prevention (Urick 

and Johnson, 2006). 

1.2.5.3.2 Mouse 

Mice have been successfully used as models in many different diseases. Because mice 

do not normally spontaneously form epithelial ovarian tumors, they can be used to study 

genetic differences when a tumor is induced. There have been two main systems used to 

induce carcinogenesis in mouse OSE. First, Flesken-Nikitin et al. used an intra-bursal 

adenovirus delivery and Cre-loxP mediated gene inactivation to render OSE cells 

deficient in p53 and retinoblastoma (Rbl ), two key tumor suppressor genes (Fiesken

Nikitin et al., 2003). They showed that concutTent inactivation of both genes is sufficient 

for reproducible induction of epithelial ovarian carcinoma in mice. The tumors were 

1-28 



similar to tumor development in humans as they formed ascites and metastasized to the 

lung and liver. These results identified a genetically defined immunocompetent mouse 

model of sporadic epithelial ovarian cancer (Flesken-Nikitin et al., 2003). 

Dinulescu et al. used a similar method to study both endometriosis and endometrioid 

cancer (Dinulescu et al., 2005). They delivered a recombinant adenovirus expressing Cre 

recombinase into the bursal cavity that encloses the ovary. They used two separate 

surgical techniques; first the needle was introduced into the uterine tubal junction, and 

secondly, into the oviduct. Both methods were equally effective in infecting the OSE 

cells. They found that Cre-mediated activation of oncogenic K-ras in the uterine tubal 

junction and the oviduct induced endometriosis but in order to induce invasive and 

metastatic endometrioid adenocarcinoma, they had to activate K-ras and inactivate ?TEN 

in the mouse OSE (Dinulescu et al., 2005). This is the first reported model for 

endometriosis, indicating it can arise from the epithelial cells in the uterus or fallopian 

tubes, while endomettioid ovarian carcinoma may arise from the OSE induced by the 

expression of oncogenic K-ras and deletion of ?TEN. 

Another interesting avenue to gain insight in ovarian cancer pathogenesis, in particular 

familial ovarian cancer, is using mouse models to knock out expression of BRCAI since 

it plays such an important role in hereditary breast and ovarian cancer pathogenesis. 

Several different BRCAI and BRCA2 knockout mouse lines have been developed with 

mutations in different portions in the genes. Unfortunately, none showed a strong tumor 

predisposing phenotype in a heterozygous setting as is found in humans (Evers and 
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Jonkers, 2006). When bred to homozygosity, most BRCAJ and BRCA2 mouse mutants 

displayed severe embryonic lethal phenotypes. When BRCAI was inactivated in the 

murine OSE, using the conditional and site-directed adenoviral delivery of Cre 

recombinase bearing loxP sites in introns 4 and 13 of the BRCAJ gene, preneoplastic 

changes such as hyperplasia, epithelial invaginations, and inclusion cysts arose earlier 

than in control ovaries (Clark-Knowles et al., 2007). Interestingly, these changes 

resemble premalignant lesions reported in human prophylactic oophorectomy specimens 

from women with germline mutations in BRCAI (Clark-Knowles et al., 2007). 

Furthermore, Connolly et al. developed the first transgenic model of epithelial ovarian 

cancer using the promoter region of the MUllerian inhibitory substance type II receptor 

(MISR!l) gene to drive tissue-specific expression (Connolly et al., 2003a). MISRII is a 

single transmembrane serine/threonine kinase in the TGF-P receptor superfamily (di 

Clemente et al., 1994). Connolly et al. used the 5' upstream regulatory sequences of the 

mouse MISRII gene to target expression of the SV40 TAg specifically to the epithelium of 

the female mouse reproductive tract including the OSE (Connolly et al., 2003b). The 

transgenic mice developed bilateral ovarian tumors in approximately 50% cases and 

resembled poorly differentiated carcinomas with occasional cysts and papillary structures 

present at the surface of the ovary. These tumors invaded the omentum and formed 

ascites similar to human ovarian tumors. This model demonstrated the successful 

application of the MISRII promoter to induce ovarian carcinoma in a transgenic mouse 

model and may serve as a useful tool for detection and treatment strategies (Connolly et 

al. , 2003b). 
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1.2.6 Serum biomarkers 

1.2.6.1 CA125 

Presently, there is no effective screening test for ovarian cancer, such as the PAP smear 

for cervical cancer or the mammogram for breast cancer. Cun·ently, cancer antigen 125 

(CA125) is the only validated marker for use in ovarian carcinoma. CA125 is a large 

glycoprotein of unknown function that is normally expressed in several reproductive 

tissues such as the endometrium and endocervix. CA125 was first identified by Bast et 

a!. (Bast, Jr. et al., 1981), by isolating a monoclonal antibody (OC125) developed by 

immunizing mice with an ovarian cancer cell line. The unique antigen expressed by the 

cells was identified as CA125. Unfortunately, CA125 lacks the sensitivity and specificity 

to detect early disease in ovarian cancer. Forty to fifty percent of Stage I and Stage II 

ovarian cancer patients are CA125 negative (Jacobs and Bast, Jr., 1989). High serum 

CA125 is also seen in many cases of benign gynaecologic disease (Buamah and Skillen, 

1994) and other types of non-ovarian cancer. Elevated serum CA125 levels have been 

seen during menstration (Kafali et a!., 2004;Kan et al., 1992;Koninckx et al. , 

1996;Nonogaki et al., 1991) and early pregnancy (Brumsted et al., 1990). CA125 is 

cutTently used to monitor recurrent ovarian cancer post chemotherapy. 

1.2.6.2 Other potential serum markers 

Many potential serum markers for ovarian cancer have been evaluated. Ovarian cancer is 

relatively uncommon, thus any useful screening method must be highly specific. In the 
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United States, the annual incidence of epithelial ovanan cancer m postmenopausal 

women is 40-50 per 100,000. Therefore, for a screening strategy, in order to achieve a 

positive predictive value of 10%, i.e. 10 operations for each case of ovarian cancer 

detected a sensitivity of 75% and a specificity of 99.6% would be required (Bast, Jr. et 

a!., 1998a). 

Serum inhibin levels have been evaluated either alone or in combination with CA125. 

Inhibin is produced by the gonads and inhibits the secretion of follicle-stimulating 

hormone (FSH) by the anterior pituitary gland. Inhibin has been found to be elevated in 

7-41% of non-ovarian cancers (Healy et al., 1993;Robertson et al. , 1999) and 28% of 

benign gynaecological disease (Burger et al., 1996;Healy et al., 1993). Elevated levels 

have also been found in the serum of all patients with granulosa cell tumors of the ovary, 

70-87% of ovarian mucinous tumors, and between 15-35% of other ovarian epithelial 

tumor types (Lambert-Messerlian, 2000). Unfortunately, inhibin is not reliable to test all 

types of tumors, which precludes its use as an effective prognostic marker for ovarian 

cancer. 

OVX-1 and macrophage-colony stimulating factor (M-CSF) have also been evaluated as 

ovarian cancer serum tumor markers. The OVX-1 assay measures a modified Lewis X 

determinant on mucin recognized by a murine monoclonal antibody (Xu et al. , 1991). 

Only 22% of patients with invasive Stage I carcinoma have elevated OVX-1 levels, while 

M-CSF is elevated in only 31% of the same patients (van Haaften-Day et al., 2001). The 

sensitivity of detection of these markers is too low to be accepted as a screening tool. 
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Other tumor-associated antigens such as carbohydrate antigen 19-9 (CA19-9) have also 

been studied for their potential use as ovarian cancer biomarkers. CA19-9 is a 

carbohydrate determinant that was originally developed against a human colon carcinoma 

cell line (Koprowski et al., 1979). Elevated CA19-9levels have been found in 17-36% of 

ovarian cancer patients with a false positive rate of 18.9% (Bast, Jr. et al., 1984;Gadducci 

et al., 1992), potentially creating a high number of unnecessary surgical procedures. 

Interestingly, when the mucinous ovarian cancers of this group were analyzed, 83% 

patients had high CA19-9 expression. The combination of CA19-9 and CA125 is now 

being explored as a biomarker for mucinous ovarian cancer (Dong et al., 2008). 

A promising family of proteins that have been implicated in ovarian carcinogenesis and 

are currently being studied for their potential use as ovarian cancer biomarkers is the 

human kallikrein family. The kallikrein family consists of 15 genes, named KLKJ 

through to KLK15. Of these genes, 12 are upregulated in ovarian cancer (Borgono and 

Diamandis, 2004). The human kallikrein family will be discussed in more detail in a 

later section. 

1.2.6.3 Urinary biomarkers 

Recently, biomarkers in the urine have been evaluated for ovarian cancer diagnostics. Ye 

et al. found two potential markers in the urine, a specific glycosylated form of eosinophil

derived neurotoxin (EDN) and several COOH-terrninal osteopontin fragments (Ye et al., 

2006). Both of these markers were elevated in ovarian cancer. When used in 

combination, the sensitivity was 72% and the specificity was 95% compared to 47% and 
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63% specificity for osteopontin fragments or glycosylated EDN, respectively, when each 

was tested alone. EDN has also been shown to be elevated in various eosinophilic 

conditions (Inamura et al., 2003), allergic reactions (Tsunoda et al., 2003) and can 

fluctuate with pregnancy (Matsumoto et al., 2003). Osteopontin, has also been found to 

be associated with inflammatory conditions and has been elevated in other tumor types 

such as metastatic breast cancer (Singhal et al., 1997) and bladder cancer (Ang et al., 

2005). 

1.2.6.4 MicroRNA 

The discovery of microRNAs (mjRNAs) has evoked interest as their potential use as 

possible biomarkers for ovarian cancer. MiRNAs are an abundant class of RNA 

regulatory genes and have been found to be involved in a novel mechanism of genetic 

regulation. Active, mature mjRNAs are highly conserved RNAs that silence gene 

expression by binillng to target mRNA. They are -22 nucleotides long and their 5' end 

binds to target complementary sequences in the 3' untranslated region of mRNAs. 

Depending on the degree of complementarity, mjRNA binding appears to result in 

translational repression, or in some cases, cleavage of mRNA, causing partial or full 

silencing of the respective protein coding genes (Lee et al., 1993). MiRNAs have been 

shown to play a role in various biological processes including, cell illfferentiation, cell 

proliferation, apoptosis, stress resistance, and fat metabolism (Ambros, 2003). In human 

cancer, miRNAs can function as oncogenes or tumor suppressor genes depending on their 

target. Increasing evidence indicates miRNAs are dysregulated in human cancer 
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(Esquela-Kerscher and Slack, 2006). Unique miRNA expression profiles indicate some 

miRNAs may be used as diagnostic and prognostic markers. They have been found in 

several cancers, including chronic lymphocytic leukemia (Calin et al., 2005), breast 

cancer (Iorio et al., 2005), pancreatic cancer (Roldo et al., 2006), lung cancer (Yanaihara 

et al., 2006), and kidney cancer (White et al., 2010a). The miRNA expression profile in 

serous ovarian cancer has recently been evaluated (Nam et al., 2008). This study found a 

number of miRNAs were differentially expressed in serous ovarian carcinomas when 

compared to normal ovarian tissue. High expression of miR-200, miR-141, miR-18a, 

miR-93, and rniR-429, and low expression of miR-199a and let-7b were significantly 

associated with poor prognosis (Nam et al., 2008). Also, ectopic expression of let-7f, 

rniR-224, and rruR-516a have been shown to decrease kallikrein 10 expression and cell 

proliferation in ovarian cancer cells (White et al., 2010b). 

Other groups have also found differential expression of rniRNAs in ovarian cancer when 

compared to normal ovaries and suggest the usefulness of rniRNAs as potential ovarian 

carcinoma biomarkers (Laios et al., 2008;Zhang et al., 2008). 

1.3 Kallikrein-related peptidases 

1.3.1 Definition and nomenclature 

Kallikrein-related peptidases (KLKs) are a family of secreted serine proteases that were 

first described for their kininogenase activity and ability to generate the vasoactive 

peptide bradykinin from kininogens. Werle first described this enzymatic activity in the 
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pancreas and then named the enzyme responsible for the activity "kallikrein," which 

originates from the Greek term for pancreas, kallikreas (Werle, 1934). 

There are two classes of kallikrein-related peptidases in humans; plasma kallikrein and 

tissue kallikrein. Plasma kallikrein, KLKBJ, is a single gene located on chromosome 

4q35. It is a complex serine protease and has other functional domains other than the 

proteolytic catalytic domain . Plasma kallikrein is exclusively expressed by liver cells and 

functions in blood clotting, fibrinolysis (Asakai et al., 1987), the regulation of vascular 

tone and inflammatory reactions (Bhoola et al., 1992). The remainder of this dissertation 

will focus on the other class of kallikreins, the tissue kallikrein-related peptidases. 

The human kallikrein-related peptidase gene family is a group of 15 serine protease genes 

located on chromosome 19q13. This is the largest continuous cluster of serine proteases 

in the human genome and accounts for 32% of all serine proteases in the human genome 

(Paliouras et al. , 2007). All genes in the family are transcribed telomere to centromere 

with the exception of KLK2 and KLK3 that are transcribed centromere to telomere 

(Yousef et al., 2000b). The gene family spans approximately 300 kb and includes a 

pseudogene, 'JIKLKJ (Yousef et al., 2004a). As is characteristic of a pseudogene, 

'JIKLKJ, is structurally similar to other members in the gene family, but is defective in its 

function as a serine protease. All possible reading frames encode predicted truncated 

proteins that lack the aspartate and serine of the catalytic triad. 

Until recently, the kallikrein genes were named KLKJ thorough KLK15 while the 

kallikrein proteins were named hKl through hK15. Because this nomenclature was 
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created for kallikrein expresswn m humans and not all kallikrein proteins have been 

shown to display kininogenase activity, the kallikrein family was re-named based on their 

homology to tissue kalli kreins (Lund wall et al., 2006). There is no name change for 

kallikrein 1 (KLKJ). Because KLKJ displays kininogenase activity, it will continue to be 

called human kallikrein 1. The other kallikreins have not been shown to display 

kininogenase activity and therefore calling them kallikreins may be misleading. The rest 

of the kallikrein family has been re-named kallikrein-related peptidase 2 through 

kallikrein-related peptidase 15 [KLK2-15;(Lundwall et al., 2006)]. In order to distinguish 

between the gene and the protein, the name of the gene is italicized (eg. KLK2), while the 

protein name is written in standard font (eg. KLK2). 

nomenclature for the KLK family is shown in Table 1.1. 

1.3.2 Characteristics 

The previous and current 

All genes in the human kallikrein-related peptidase family share significant homology at 

both the gene and protein level. All the human kallikrein-related peptidase genes range 

in size from approximately 4-lOKb, with most differences attributed to intron length. All 

genes in the family have five coding exons and most have one or more 5' untranslated 

exons. Also, the methionine start codon is always in the first exon, 37-88 basepairs from 

the 3 ' end of the exon. The stop codon is always between 150 and 156 basepairs from 

the 5' end of the last exon, with the exception of KLK13 which is 189 basepairs from the 

start of the codon. As well, the sizes of the exons are very similar or identical and the 

intron phases are conserved in all genes. The pattern of the intron phases is I-II-I-0. 
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Table 1.1 The official and additional gene and protein names for the human kallikrein-

related peptidase family. 

Official Official 
Other Names/Symbols References 

Gene Protein 

KLKJ KLKl Pancreatic/renal kallikrein, hPRK 
(Fukushima et al., 
1985;Schedlich et al., 1987) 

KLK2 KLK2 
Human glandular kallikrein 1, 

(Lovgren et al., 1999b) 
hGK-1 

(Lundwall, 1989;Riegman et 
KLK3 KLK3 Prostate-specific antigen, PSA, APS al., 1988;Riegman et al., 

1989;Sutherland et al., 1988) 
(Hu et al., 2000;Korkmaz et 

KLK4 KLK4 
Prostase, KLK-Ll, EMSPl, al., 2001;Nelson et al., 
PRSS17, ARM1 1999;Stephenson et al., 

1999;Yousef et al., 1999b) 
(Brattsand and Egelrud, 

KLK5 KLK5 KLK-L2, HSCTE 1999; Yousef and Diamandis, 
1999) 
(Anisowicz et al., 

KLK6 KLK6 
Zyme, Protease M, Neurosin, 1996;Little et al., 
PRSS9 1997;Yamashiro et al., 

1997;Yousef et al., 1999a) 

KLK7 KLK7 HSCCE, PRSS6 
(Hansson et al., 1994;Yousef 
et at., 2000e) 

KLK8 KLK8 
Neuropsin; Ovasin; TADG-14, (Underwood et al., 
PRSS19, HNP 1999;Yoshida et al., 1998a) 

KLK9 KLK9 KLK-L3 protein 
(Y ousef and Diamandis, 
2000) 

KLKJO KLKlO NESl, PSSSL1 
(Goyal et al., 1998;Liu et al., 
1996a;Luo et al., 1998) 
(Mitsui et al., 2000;Yoshida 

KLKll KLKll TLSP/Hippostasin, PRSS20 et al., 1998b;Yousef et al., 
2000d) 

KLK12 KLK12 KLK-L5 protein (Y ousef et al., 2000c) 

KLK13 KLK13 KLK-L4 protein (Yousef et al., 2000a) 

KLK14 KLK14 KLK-L6 protein (Yousef et al., 200la) 

KLK/5 KLK15 Prostinogen, HSRNASPH 
(Takayama et al., 
200la;Yousef et at., 200lb) 
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Among the 15 genes, the relative position of the residues of the catalytic triad unique to 

serine proteases, histidine, aspartate, and serine, are conserved. The histidine is always 

located near the 5' end of the second coding exon, while the aspartate is constantly in the 

middle of the third exon and the serine is near the start of the last exon. 

Kallikrein-related peptidases are produced as pre-pro-peptides with a signal peptide of 

approxi mately 17-20 amino acids at the amino terminus. The signal peptide aJiows for 

secretion of the KLK as an inactive protein. KLKs are activated from the secreted 

zymogen form to the enzymatically active fmm by cleavage of the activation peptide 

which is 4-9 amino acids in length. The mature KLK protein is 223 to 252 amino acids 

in length (Yousef and Diamandis, 2003). A schematic of the activation of KLKs can be 

seen in Figure 1.1. Eleven of the kallikrein-related peptidases (KLKl, 2, 4-6, 8, 10-14), 

have an aspartic acid in their substrate-binding pocket, indicating trypsin-like specificity. 

The four remaining enzymes, KLK3 (has serine), KLK7 (has asparagine), KLK9 (has 

glycine), and KLK15 (has glutamic acid), are expected to have chymotrypsin-like or 

some other specific enzymatic activity. All KLK proteins have 10-12 cysteine residues 

that form 5, (in the case of KLK1, KLK2, KLK3 and KLK13), or 6 (in all other KLK 

proteins) disulphide bonds. Finally, classical or variant polyadenylation signals have been 

found 10-20 bases from the poly-A tail of all kallikrein-related peptidase mRNAs 

(Borgono et al., 2004;Yousef and Diamandis, 2003;Yousef and Diarnandis, 200l;Yousef 

et al., 2005). 
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Figure 1.1. A schematic KLK processing from a pre-pro-peptide to an active KLK. 
KLKs are synthesized as pre-pro-peptides. Cleavage of the signal peptide (white box) 
allows for secretion outside the cell. The KLK now exists as an inactive, zymogen form. 
Once the activation peptide (hatched box) is cleaved, the KLK is enzymatically active 
(black box). 
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1.3.3 Regulation 

1.3.3.1 Transcriptional regulation 

Kallikrein-related peptidases are regulated at the transcriptional and post-translational 

levels. Transcriptional control of many kallikrein-related peptidases has been shown to 

be responsive to sex-steroid hormones. For example, KLK2 and KLK3 are up regulated 

in response to androgen (Riegman et al., 1991). Androgen response elements (AREs) 

have been identified in the proximal promoter and enhancer regions of both genes. 

Likewise, KLK4 (Myers and Clements, 2001), KLK5 (Yousef and Diamandis, 1999), 

and KLK6 (Yousef et al., 1999a), have been shown to be upregulated by estrogen. Many 

kallikrein-related peptidases are under sex steroid hormone control and have tissue

specific co-expression, suggesting there is a cis-acting locus control region. Locus 

control regions, as in this case, are operationally defined by their ability to enhance the 

expression of linked genes in a tissue-specific manner at ectopic chromatin sites (Li et al. , 

2002). 

Although steroid hormone regulation is thought to be the primary regulatory mechanism 

for kallikreins, alternative splicing may also be an important mechanism. Alternative 

pre-mRNA, transcriptional start sites and polyadenylation signals are common among 

members of the kallikrein-related peptidase gene family (Borgono et al., 2004). All 

kallikrein-related peptidases, with the exception of KLK14, have at least one alternative 

transcript (Kurlender et al., 2005). Many of these variants encode for truncated proteins 

that have not been proven to be functional. KLK13 has the most alternative transcripts 
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among the gene family with eight splice variants. Interestingly, five KLK13 splice 

variants were found to be expressed exclusively in the normal, but not in cancerous testis 

(Chang et al., 2001). The physiological relevance of this differential expression is not yet 

known. Alternative splicing has been implicated in many physiological processes and 

15% of mutations in the mammalian genome that cause disease are associated with 

problems in RNA splicing signals (Krawczak et al., 1992). Alternative splicing among 

kallikrein-related peptidases may prove to be important in other cancers as this 

phenomenon is studied further. 

KLK expression has also been shown to be regulated epigenetically by DNA 

methylation. In particular, KLKJO has been shown to be down regulated due to CpG 

hypermethylation in breast, prostate, ovarian, and gasllic cancer (Huang et al., 2007;Li et 

al., 200l;Sidiropoulos et al., 2005). More recently, KLK6 expression has been proven to 

be under transcriptional control by DNA methylation as protein expression was restored 

in breast cancer cells when treated with the DNA demethylating agent 5-aza-2'

deoxycytidine (Lundwall and Brattsand, 2008). 

1.3.3.2 Post-translation regulation 

Since protease digestion is irreversible, kallikrein-related peptidases are tightly regulated 

post-translationally. There are several post-translational mechanisms controlling KLK 

activity including zymogen activation, endogenous inhibition, inactivation through 

internal cleavage, and allosteric regulation. KLKs are all secreted as zymogens (pro

enzymes), or inactive enzymes. They require cleavage at a specific site to be activated 
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either through the action of another KLK, or another protease. Zymogens are then 

activated by cleavage of the 4-9 amino acid propeptide. This is thought to induce a 

conformational change in both the active site and substrate-specificity pocket, rendering 

the KLK active (Borgono and Diamandis, 2004). 

Once activated, KLK activity is controlled by endogenous inhibitors including serpins 

and a 2-macrogloblin (a2M), as many KLKs form complexes with these plasma proteins. 

Serpins are a superfamily of serine protease inhibitors that fold into a conserved structure 

and employ a unique substrate-like inhibitory mechanism (Silverman et al., 2001). KLKs 

interact with serpins through one of two pathways; the inhibitory pathway, or the 

substrate pathway. In the inhibitory pathway, KLKs form a covalent complex with the 

serpin, resulting in the deformation and irreversible inactivation of the protease, as has 

been shown with KLK3 and a 1-antichymotrypsin [aACT, (Christensson et al., 1990)], 

and KLK5 with a2-antiplasmin (a2AP) and a 1-antithrombin [ATill, (Michael et al., 

2005)]. Alternatively, KLKs are inhibited through the substrate pathway in which the 

serpin is cleaved by the protease, but does not leave the binding pocket, leaving the KLK 

enzymatically active, but unavailable. This regulatory mechanism is seen with KLK6 

and antithrombin ill or a 2-antiplasmin (Magklara et al., 2003), as well as KLK2 and a2M 

(Heeb and Espana, 1998), but this same interaction with KLK5 only partially inhibits 

activity (Michael et al., 2005). In general, KLKs bind to an exposed peptide in the "bait" 

region of a2M and cleave it, resulting in a conformational change and non-covalent 

complex which prevents the KLK from interacting with other substrates (Borgono and 

Diamandis, 2004). 
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KLKs can also become inactivated through internal cleavage, followed by degradation 

that may be autolytic or initiated by another protease. Interestingly, there is evidence that 

both KLK6 and KLK13 can be autolytic (Magklara et al., 2003;Sotiropoulou et al., 

2003). Although the enzyme responsible for the inactivation of KLK3 is unknown, 

fragmented forms of the protein found in prostate tissue have determined KLK3 has a 

major cleavage site between K 145-K146 and two minor cleavage sites at R85-F86 and K182-

S1 83 (Borgono et al., 2004). 

Allosteric regulation has also been noted to inhibit KLK activity. Zinc has been shown to 

reversibly inhibit the activity of both KLK2 and KLK3 in the prostate (Lovgren et al., 

1999a;Malm et al., 2000). Interestingly, the prostate has high levels of zinc, while in the 

seminal plasma, where KLK2 and KLK3 are known to be actively involved in seminal 

liquefaction, zinc levels are markedly lower (Kavanagh, 1985). 

1.3.4 Normal physiological kallikrein-related peptidase cascades 

1.3.4.1 Semen liquefaction 

Human semen is a mhture of secretions from the seminal vesicle, accounting for almost 

two thirds of the total ejaculated volume, while the remaining third comes from the 

prostate, spermatozoa and epididymal fluid [5%; (Lundwall and Brattsand, 2008)]. 

Seminogelin I (Sgi) and semenogelin II (Sgii) represent the major proteins secreted by 

the seminal vesicles. After ejaculation, Sgi and Sgii aggregate with fibronectin to form a 

gelatinous mass trapping the spermatozoa within the vaginal canal. In 5-20 minutes, the 
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mass is liquefied, resulting from Sgl and Sgll degradation, releasing trapped spermatozoa 

(Pampalakis and Sotiropoulou, 2007). Liquefaction is a proteolytic cascade that is highly 

regulated. Before ejaculation, the prostate fluid contains several KLKs (Yousef and 

Diamandis, 2001) and a high concentration of zinc (Zn2+) ions. These KLKs, including 

KLK2 (Lovgren et al., 1999a), KLK3 (Maim et al., 2000), KLK4 (Debe Ia et al., 2006), 

KLK5 (Michael et al., 2006), KLK8 (Kishi et al., 2006), KLK12 (Memari et al., 2007), 

and KLK14 (Bcirgono et al., 2007), are allosterically inhibited by reversible binding of 

Zn2
+. After ejaculation, the Zn2

+ is redistributed to the Sgs and KLKs are reactivated, 

initiating a proteolytic cascade resulting in semen liquefaction. 

A major player in the semen liquefaction process is kallikrein-related peptidase 3 

(KLK3), also known as prostate specific antigen (PSA), and is mainly responsible for the 

degradation of Sgs (Robert et al., 1997). There are a number of KLKs capable of 

activating pro-KLK3 to the active KLK3, including KLK2 (Lovgren et al., 1997), KLK4 

(Takayama et 4l., 2001b), KLK5 (Michael et al., 2006), KLK15 (Takayama et al., 

200la), and more recently, KLK14 (Emami et al., 2008) has also been identified. KLK5 

plays a major role in semen liquefaction as it can not only activate KLK3, but also 

autoactivates and can degrade Sgl, Sgll, and fibronectin (Brattsand et al., 2005). 

Semen liquefaction is also regulated by internal cleavage of the participant proteases 

resulting in the complete inhibition of their enzymatic activity (Pampalakis and 

Sotiropoulou, 2007). KLKs are inactivated by autolysis, in the case of KLK5 and 

KLK14 (Borgono et al. , 2007), or by other KLKs. For example, KLK5 can cleave and 
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inactivate both KLK3 and KLK2 (Michael et al., 2006). Interestingly, KLK5 has been 

the only protease identified to inactivate KLK3 by cleavage in semen. The biological 

roles of KLK8, KLKll, and KLK12 in seminal liquefaction are still under investigation. 

1.3.4.2 Skin desquamation 

Skin desquamation is the process whereby the outermost corneocytes are shed from the 

epidermal surface as a result of proteolytic degradation of corneodesmosomes by 

epidermal proteases (Kishibe et al., 2007). Corneodesmosomes are cellular junctions 

located within the stratum corneum that provide strong inter-comeocyte cohesion 

(Chapman et al., 1991). Several stratum corneum proteases are involved in 

desquamation as they provide proteolytic cleavage of the extracellular part of these cell

cell adhesive structures (Zeeuwen, 2004). Three proteins identified as components of the 

extracellular part of the corneodesmosomes are two desmosomal cadherins, desmoglein 

1 (DSG1) and desmocolin 1 (DSC1), which associate in a calcium dependant manner, 

and corneodesmosin (CDSN), a glycoprotein secreted by granular keratinocytes, then 

incorporated into desmosomes (Serre et al., 1991). KLK5, previously known as stratum 

corneum tryptic enzyme, has been shown to degrade DSG1, DSC1, and CDSN. KLK7, 

previously known as human corneum chymotryptic enzyme, has also been shown to be 

able to cleave DSC1 and CDSN (Caubet et al., 2004). More recently, KLK14, 

expression in the skin has been identified and is also thought to participate in the skin 

desquamation proteolytic cascade with KLK5 and KLK7 (Brattsand et al., 2005). 
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The proteolytic cascade begins when pro-KLK5 is autoactivated. This in tum activates 

both pro-KLK7 and pro-KLK14 (Brattsand et al., 2005). Active KLK14 can further 

activate pro-KLK5, increasing its total enzymatic activity. Active KLK5 and KLK7 can 

cleave components of the extracellular domain of comeodesmosomes. KLK8 has also 

been recently implicated in skin desquamation as hyperkeratosis was observed in a 

KLK8(-/-) mouse, suggesting a role for KLK8 in skin shedding (Kishibe et al., 2007). 

1.3.5 Kallikrein-related peptidases in cancer 

Emerging evidence indicates kallikrein-related peptidases are involved in a number of 

different cancers. All 15 KLKs have been reported to have dysregulated expression at 

the mRNA and/or protein levels in a number of cancers including ovarian, prostate, 

breast, testicular, and lung (Chang et al., 2001;Petraki et al., 2003a;Planque et al., 

2005;Yousef et al., 2003d;Yousef et al., 2002c;Yousef et al., 2003f). There is increasing 

evidence these KLKs may serve as potential biomarkers for these cancers. 

1.3.5.1 Prostate cancer 

Prostate cancer is the most frequently occurring cancer m Ametican males, with a 

lifetime risk of one in six (Jemal et al., 2005). KLK3, also known as prostate specific 

antigen (PSA), is currently the most widely used marker for prostate cancer diagnosis and 

disease monitoring. PSA is a major protein in seminal fluid and its physiological 

substrates are Sgl and Sgll (Lilja et al., 1987). PSA levels are high in the circulation of 

early prostate cancer patients due to a characteristic disruption of the basal cell layer 
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(Bostwick, 1994). This loss of normal glandular architecture allows PSA direct access to 

the peripheral circulation. Although it is the best screening tool used today, the PSA test 

is not without problems, particularly with regard to its sensitivity and specificity 

(Abrahamsson et al., 1997). Because PSA is expressed in normal, cancerous and 

hyperplastic tissue, it suffers from poor specificity in discriminating cancer from benign 

prostate hyperplasia, which also results in increased release of PSA. The specificity of 

PSA is most problematic in the 2-15ng/mL range resulting in a negative biopsy rate of 

70-80% (Hugosson et al., 2004 ). There have been many different diagnostic parameters 

explored with regards to prostate cancer screening including age specific PSA, PSA 

velocity, volume adjusted PSA density, free-to-total PSA ratio, aACT bound PSA, a 2-M 

bound PSA, a 1-protease inhibitor bound PSA and KLK2 (Karazanashvili and 

Abrahamsson, 2003). KLK2 can also cleave Sgl, Sgii, and fibronectin (Deperthes et al., 

1996) and has been shown to cleave pro-PSA to generate enzymatically active PSA, 

suggesting KLK2 may play a physiological role in the biological activity of PSA 

(Takayama et al., 1997). In addition to PSA, KLK2 appears able to discriminate between 

benign and malignant prostate disease, as well as organ-confined disease (Haese et al., 

2001). 

More recently, KLK4 has been related to the progression of prostate cancer. When 

KLK2, KLK3, and KLK4 were separately transfected into the PC-3 prostate cancer cell 

line, KLK3 and KLK4, but not KLK2, induced a 2.4 fold and 1.7 fold, respectively, 

increase in cellular migration, but not invasion, through Matrigel , a synthetic extracellular 

matrix (Veveris-Lowe et al., 2005). When expression levels of E-cadherin and vimentin 
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were examined, E-cadherin protein was lost and mRNA levels were significantly 

decreased in the PC-3 cells expressing KLK4 and KLK3, while the expression of 

vimentin was increased in these same cells. The loss of E-cadhe1in and the increase of 

vimentin are indicative of epithelial to mesenchymal transition, a crucial event in the 

progression of cancer to an invasive phenotype. 

1.3.5.2 Other cancers 

Besides ovarian and prostate cancer, dysregulated kallikrein-related peptidase expression 

has been noted in other steroid hormone related cancers including breast and testicular 

cancer. More recently, differential expression of KLKs has been detected in steroid 

hormone-independent cancers such as lung cancer. 

Interestingly, while most KLKs show increased expressiOn m ovanan cancer, many 

reports indicate KLKs are downregulated in breast cancer. KLK3 (Yu et al., 1996), 

KLK5 (Yousef et al., 2004b), KLK6 (Yousef et al., 2004b), KLK8 (Yousef et al., 

2004b), KLKlO (Liu et al., 1996b), KLK12 (Yousef et al., 2000c), KLK13 (Yousef et 

al., 2000a), and KLK14 (Yousef et al., 2001a), have all been reported to have decreased 

expression in malignant breast tumors when compared to normal counterparts. KLK12 

was found to be downregulated in breast cancer tissues when compared to normal breast 

tissue by quantitative real time polymerase chain reaction (qRT-PCR) (Yousef et al., 

2000c). KLK5 expression in breast cancer has also been explored. One study examined 

KLK5 expression by quantitative RT-PCR and found that high KLK5 expression is 

associated with node-positive and estrogen receptor-negative breast cancer patients 
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(Yousef et al., 2002b). Also, high KLK5 expression is associated with a shorter RFS and 

OS in the subgroup of patients with grade I and II tumors. 

A few KLKs have been shown to be associated with testicular cancer, including KLK5, 

KLK10, and KLK13. In normal tissue, KLK5 shows highest expression in the mammary 

gland and testis, but is decreased when compared to testicular cancers (Yousef et al., 

2002a). This study found low KLK5 expression associated with seminoma tumor type, 

and late stage (IIIIII) cancer. When 14 normal testis were compared to cancerous 

counterparts, KLK10 expression was also found to be decreased (Luo et al., 2001c). 

Interestingly, one group discovered five new KLK13 alternative transcripts expressed 

exclusively in the testis, with all being decreased in testicular cancer (Chang et al., 2001). 

Recently, KLK expression has been examined in lung cancer. When analyzed by qRT

PCR, KLK5 expression is significantly higher in squamous cell carcinomas, while KLK7 

expression was decreased in lung adenocarcinomas, when compared to normal tissue 

(Pianque et al., 2005). When KLK5, KLK6, KLK7, and KLK8 protein expression was 

examined in lung cancers by immunohistochemistry, 40-90% of malignant cells showed 

positive cytoplasmic labelling in squamous cell carcinoma, small cell carcinoma, and 

carcinoid tumors (Singh et al., 2008). Interestingly, although the lung adenocarcinoma 

samples lacked cytoplasmic staining, 20% of the tumor nuclei were positive for KLK5, 

KLK7, and KLK8. 
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1.3.5.3 Ovarian cancer 

Interestingly, 12 of the 15 kallikrein-related peptidases, specifically KLK2, KLK3 (PSA), 

KLK4, KLK5, KLK6, KLK7, KLK8, KLKlO, KLKll, KLK13, KLK14, and KLK15, 

have increased expression of mRNA and/or protein in ovarian cancer (Borgono et al., 

2004). Although KLK2 and KLK3 have been shown to be increased at the rnRNA level 

in ovarian cancer by microarray (Adib et al., 2004), the clinical relevance has yet to be 

exarrtined. Increased expression of several kallikrein-related peptidases has been 

associated with unfavourable patient prognosis. Although detection of KLK5 in nmmal 

serum is quite low, higher concentrations were found in 69% of ovarian cancer patients 

(Yousef et al. , 2003c). High KLK5 expression has also been associated with more 

aggressive forms of ovru·ian cancer as there is a strong correlation between high KLK5 

expression and late stage (Stage IWIV) and Grade 3 tumors (Diamandis et al. , 2003). 

Also, patients who were classified as having high KLK5 expression have a significantly 

shorter regression free survival (RFS) and overall survival (OS) (Diamandis et al., 2003). 

Increased KLK6 expression is also associated with a poor patient prognosis and has 

drawn attention for its potential as a new biomarker for ovarian cancer (Diamandis et al., 

2000b;Hoffman et al., 2002). In a recent study, increased KLK6 expression was 

associated with ·an increased risk of recurrence in ovarian cancer patients [Chapter 3, 

(White et al., 2009)]. KLK7 has been shown to be increased in ovarian cancer patients at 

the rnRNA level and is associated with advanced stage disease, high tumor grade, 

suboptimal debulking, and serous type tumor (Yousef et al., 2003a). High KLK7 serum 
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protein levels, . as assessed by enzyme-linked irnmunoabsorbent assay (ELISA), 

significantly predicted a shorter RFS and OS (Shan et al., 2006). 

The expression of KLKIO has also been assessed in ovarian cancer. Ovarian cancer 

patients had elevated KLKIO serum concentrations (Luo et al., 200la) and mRNA levels 

(Shvartsman et al., 2003) when compared to normal counterpatts. High KLKIO 

expression was significantly associated with advanced stage disease, serous type cancer, 

suboptimal debulking, and a large residual tumor (Luo et al., 200lb). When the subgroup 

of ovarian cancer patients with Stage III and IV disease was examined, patients with high 

KLKIO expression were more likely to have a shorter RFS and OS than patients with low 

KLKIO expression (Luo et al. , 2003;Luo et al., 200lb). KLK15 has also been shown to 

be an independent predictor of poor prognosis in ovarian cancer patients (Yousef et al., 

2003e). When 168 tumors were assessed by quantitative RT-PCR, KLK15 

overexpression was significantly associated with a decreased RFS and OS. The 

overexpression of so many kallikrein-related peptidases and the fact they are predictors of 

poor prognosis in ovarian cancer patients, suggests they play a role in some enzymatic 

cascade in which they may contribute to ovarian cancer progression. 

Conversely, increased expression of some kallikrein-related peptidases predicts a 

favourable prognosis for ovalian cancer patients. For example, KLK8 has been shown to 

be overexpressed at both the gene (Underwood et al., 1999) and protein (Borgono et al., 

2006) levels in some ovarian cancer patients. Interestingly, high KLK8 expression has 

been associated with early clinical stage (Shigemasa et al., 2004), and a longer RFS and 
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OS, than patients with KLK8 negative tumors (Borgono et al., 2006). Also, KLKll has 

been shown to be elevated in serum of 70% of ovarian cancer patients when compared to 

normal serum (Diamandis et al., 2002). High KLKll expression is associated with early 

stage (Stage 1/II) disease (Borgono et al., 2003a;Diamandis et al., 2002). When the 

prognostic significance of KLKll expression in ovarian cancer was assessed, patients 

with KLKll positive tumors have a significantly decreased risk of relapse and death, and 

a longer RFS and OS (Diamandis et al., 2002). These results are not surprising as early 

stage ovarian cancer is associated with good patient prognosis. KLK14 has also been 

shown to be a new potential marker for ovarian cancer (Borgono et al., 2003b). Elevated 

KLK14 levels were found in 40% of ovarian cancer tissues and in the serum of 65% 

ovarian cancer patients when compared to normal counterparts. 

There are also conflicting reports concerning KLK expression in ovarian cancer. For 

example, Scorilas et al. showed that KLK13 positive ovarian cancer tumors were most 

often associated with early stage disease, no residual tumor after surgery and optimal 

debulking (Scorilas et al. , 2004). They also concluded that patients with KLK13 positive 

tumors had a longer RFS and OS than patients with KLK13 negative tumors. Contrary to 

this report, White et al. and Chapter 3 of this dissertation, recently showed high KLK13 

expression was associated with a significant increased risk of recurrence in ovruian 

cancer patients (White et al., 2009). Contradiction of these reports may lie in the design 

of the study. Sc01ilas et al. studied protein expression in ovarian tumor cytosols and 

found high KLK13 expression was associated with early stage disease, no residual tumor 

after surgery and optimal debulking success which are all indicators of good prognosis. 
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White et al. studied mRNA expression in ovarian tumors and found that high KLK13 

expression was associated with invasive ovarian cancer. 

Although the expression of some kallikrein-related peptidases indicates a poor prognosis 

and others tend to point toward a favourable prognosis, the essential characteristic is that 

they are all overexpressed and may be functioning in some pathway in a variety of 

potential combinations to contribute to the pathogenesis of ovarian cancer. If this is the 

case, the discovery of regulatory mechanisms controlling the proposed kallikrein-related 

peptidase enzymatic cascade pathway and any other key players may lead to new 

therapeutic treatments for ovarian cancer patients. 

The work of this thesis focuses main ly on KLK6 and KLK13. The final sections of this 

introduction chapter will describe these KLKs in detail. 

1.3.6 Kallikrein-related peptidase 6 

Kallikrein-related peptidase 6 (KLK6) was originally identified by its downregulation in 

metastatic breast and ovmian tumors when compared to corresponding primary tumors 

(Anisowicz et al., 1996). The full-length eDNA encoding a 244 amino acid protein was 

named protease M. Two other groups discovered the same gene independently. Little et 

al. used polymerase chain reaction (PCR) of Alzheimer disease brain tissue to clone the 

gene and named it zyme (Little et al. , 1997), while Yamashiro et al. cloned eDNA 

prepared from a colon adenocarcinoma cell line, calling it neurosin (Yamashiro et al., 

1997). With the discovery of the extended kallikrein family, protease M/zyme/neurosin 
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was renamed KLK6. KLK6 is a trypsin-like senne protease with high levels of 

expression m n01mal breast, kidney, spinal cord, and brain (Yousef et al., 1999a). 

Sandwich-type enzyme-linked immunosorbent assay (ELISA) assays have also 

confirmed KLK6 expression in biological fluids including milk, nipple aspirate fluid, 

normal male and female serum, cerebrospinal fluid, and aminotic fluid (Diamandis et al., 

2000a). 

KLK6 has been found to be expressed mainly as a proenzyme in milk and cerebrospinal 

fluid, while it has been recovered in two forms in milk and ascites; a free form with a 

molecular mass of -25KDa and another form with a higher molecular mass in which 

KLK6 is bound to the serine protease inhibitor a.ACT (Hutchinson et al., 2003). The 

physiological mechanism of activation of pro-KLK6 to active KLK6 is still in unknown. 

Magklara et al. first suggested KLK6 was able to both autoactivate and autoinactivate 

itself while enzymatic activity can be inhibited by serpins, such as ATITI (Magklara et al., 

2003). Bayes et al. later created site-directed mutants of KLK6 and suggested 

autoactivation occurs through a two-step mechanism. Initially is a proteolytic cut after 

Q19
, however, the enzyme is not activated until the protein is cleaved a second time at 

K21 (Bayes et al., 2004). Recent publications have suggested that it is unlikely KLK6 can 

autoactivate. Angelo et al. found no evidence of the KLK6 maturation site, K21 being 

hydrolyzed (Angelo et al., 2006). Also, Blaber et al. suggested the KLK6 autolytic 

mechanism is a negative feedback inhibition as the protein can cleave internally resulting 

in protein inactivation (Blaber et al., 2007). KLK6 can autoinactivate in vitro by 

autolysis between residues R76 -R 77 (Magklara et al., 2003). The ability of KLK6 to 
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autoactivate is improbable. Activation of pro-K.LK6 requires hydrolysis after a lysine 

residue and the fact that mature KLK6 exhibits two orders of magnitude reduced affinity 

for hydrolysis after a lysine versus an arginine, makes autoactivation of K.LK6 an 

unlikely event. The activation of pro-K.LK6 is likely accomplished through the action of 

a separate protease (Biaber et al., 2007). In order to examine regulation of K.LK6, Shan 

et al. examined KLK6 transcript expression and found it in concordance with KLK6 

protein expression, suggesting KLK6 protein levels are under transcriptional control 

(Shan et al., 2007). 

K.LK6 has increased expression in ovarian cancer at both the gene and protein levels. 

K.LK6 is increased in the serum of ovarian cancer patients when compared to normal 

patients and has been identified as a potential biomarker for ovru.ian cancer (Diamandis et 

al., 2000c;Ni et al., 2004). K.LK6 protein levels were elevated in ascites fluid of ovarian 

cancer patients (Luo et al., 2006), while mRNA (KLK6) has been found to be 

overexpressed in ovarian cancer tumors (Tanimoto et al., 2001). Hoffman et al. found 

tumor KLK6 was significantly associated with late stage disease, serous type ovarian 

cancer, residual tumor > lcm, and suboptimal debulking (Hoffman et al., 2002). This 

study also analyzed survival data and concluded that KLK6 is an unfavourable prognostic 

marker in ovarian cancer. 

In order to elucidate the role of KLK6 in ovarian cancer, its function in proliferation, 

migration, and invasion, has been examined. K.LK6 can degrade components of the 

extracellular matrix , including fibronectin, fibrinogen, laminin, vitronectin, and collagen 
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(Ghosh et al., 2004;Magklara et al., 2003). Also, the use of a neutralizing anti-K.LK6 

antibody decreased migration of ovarian cancer cells in a Boyden chamber assay (Ghosh 

et al., 2004). Together, these data highly suggest K.LK6 is involved in the migration 

and/or invasion of cancer cells and may offer potential future therapeutic target. 

KLK6 has been reported as being overexpressed in uterine serous papillary cancer 

(Santin et al., 2005) and lung carcinoma (Singh et al., 2008). Elevated KLK6 expression 

was significantly associated with lymphatic invasion and a poor survival rate in a set of 

human gastric cancer patients (Nagahara et al., 2005). In colorectal cancer, KLK6 is 

overexpressed when compared to normal tissue and is significantly associated with 

serosal invasion, liver metastasis, advanced stage, and poor prognosis (Ogawa et al., 

2005). Interestingly, K.LK6 is down regulated in salivary gland tumors when compared 

to normal glands (Darling et al., 2006). Overall, K.LK6 has been shown to be 

differentially expressed in a number of different cancers and its role as a potential 

biomarker for these malignancies warrants further investigation. KLK6 is also presently 

being investigated for its role in Alzheimer's disease (Yousef et al., 2003b). 

1.3.7 Kallikrein-related peptidase 13 

Like KLK6, the normal function of kallikrein-related peptidase 13 (KLK13) remains 

unknown. Kallikrein-related peptidase 13 (KLK13) was cloned using the positional 

candidate gene approach and was found down regulated in breast cancer cell lines and 

tissues when compared to normal counterparts (Yousef et al., 2000a). K.LK13 is a 

glycosylated, secreted serine protease with trypsin-like activity. 
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Although the normal function of KLK13 is unknown, extensive studies regarding the 

normal pattern of expression and regulation have been carried out. KLK13 has highest 

expression in normal tissue extracts of the esophagus and tonsil , followed by salivary 

gland, prostate, kidney, skin, trachea, testis, breast, lung, and thyroid (Kapadia et al., 

2003). Protein expression was also assessed by immunohistochemistry, and similar to 

KLK6, KLK13 was expressed in a variety of tissues, mainly the glandular epithelial 

(Petraki et al., 2003b). KLK13 had intense immunohistochemical expression in the 

thyroid gland and the pancreatic endocrine cells. An ELISA detected KLK13 in the 

seminal plasma, amniotic fluid, breast milk, and follicular fluid, but levels were below 

the detectable limit in both healthy male and female serum (Kapadia et al., 2003). Low 

detection levels result from the interaction between KLK13 and serum protease 

inhibitors, including a2M, aACT, and a2AP (Kapadia et al., 2004b). KLK13 expression 

is up regulated by progestins and androgens and to a lesser extent by estrogens in the 

hormonally regulated breast cancer cell line BT-474 (Yousef et al., 2000a). 

KLK13 has been shown to have considerable posttranslational glycosylation 

(Sotiropoulou et al., 2003). Sotiropoulou eta!. produced recombinant KLK13 in Pichis 

pastoris yeast expression system and when analyzed by denaturing SDS-PAGE gel, it 

was detected at a higher molecular mass than what is expected from the primary sequence 

[28.8 kDa, (Sotiropoulou et al., 2003)]. In order to determine if the increase in 

molecular mass was due to glycosylation, the recombinant KLK13 was incubated with 
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peptide: N-glycosidase F (PNGaseF) resulting in a band on the gel at the expected 

molecular mass predicted from the primary sequence (Sotiropoulou et al., 2003). 

PNGaseF is an amidase that removes N-linked oligosaccharides from glycoproteins by 

cleaving the N-glycosidic bond between Asn and the first hexosamine. The resulting 

decrease in apparent molecular mass confirmed KLK13 was N-linked glycosylated in this 

organism. Kapadia et al. found simnar results as they also saw a decrease in molecular 

mass when native KLK13 was treated with PNGaseF (Kapadia et al., 2003). Although 

the function of KLK13 glycosylation is unknown, like some other proteins, its level of 

glycosylation may be altered in cancers. The function of KLK13 glycosylation warrants 

further investigation. 

Pre-pro-KLK13 consists of 277 amino acids containing a predicted signal peptide, M 1
-

S 16
, and an activation peptide of 5 amino acids, Q21 -K25 (Yousef et al. , 2000a). There is a 

predicted cleavage site between K25
- V26 which was confirmed by Sotiropoulou et al. 

(Sotiropoulou et al., 2003) This group also purified KLK13 and detected another peptide 

of KLK13 displaying an internal fragment verified by N-terminal sequencing to be S 115
-

Q277 . KLK13 . bl . . . . b "d R 114 S 115 , suggestmg IS a e to automacttvate zn vttro etween rest ues -

(Sotiropoulou et al., 2003). This process is thought to be autoinactivation because none 

of the resulting fragments retain all residues of the catalytic traid. 

Recently, the use of KLK13 as a potential ovarian cancer biomarker has been evaluated. 

KLK13 is expressed at low to undetectable levels in normal ovaries, but has been shown 

to have increased expression in 50% of malignant ovaries when compared to normal 
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counterparts (Kapadia et al., 2003). My recent study found KLK13 is a marker of poor 

prognosis for ova1ian cancer (White et al., 2009). Patients with high KLK13 expression 

were significantly predicted to have a shorter RFS than patient with low KLK13 

expressing tumors. Furthermore, the potential function of KLK13 in tumor progression 

and metastasis has been examined. KLK13 can degrade maJor components of the 

extracellular matrix (ECM) including collagen, fibronectin, and laminin (Kapadia et al., 

2004a). Also, cells secreting KLK13 treated with a KLK13 neutralizing antibody 

migrated less than untreated cells. These data suggest KLK13 may function in tissue 

remodelling and/or tumor invasion and metastasis. 

1.4 Summary 

Ovarian cancer is the most lethal of all the gynaecological malignancies. Approximately 

90% of ovarian cancers diagnosed are of the epithelial type. There is currently no 

biomarker for the diagnosis of ovarian cancer. The lack of signs and symptoms 

associated with the malignancy in addition to the anatomical location, result in late 

diagnosis in which patients have a poor survival rate. Recently, a family of serine 

proteases, the human kallikrein-related peptidase (KLK) family, have been implicated in 

the pathogenesis of ovarian cancer and are currently being explored as potential 

biomarkers for this malignancy. Many KLKs have shown to have increased expression 

in ovarian cancer and have shown to be prognostic marker for this malignancy. Also, 

some KLKs have been shown to be involved in cellular processes that contribute to 

cancer. In particular, KLK6 and KLK13 have been shown to be able to degrade 
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components of the extracellular matrix and play a role in ovarian cancer cell migration. 

This thesis examines the role of KLK13 in ovarian cancer cell migration and invasion and 

investigates the clinical utility of KLK6 and KLK13 as diagnostic and prognostic makers 

for ovarian cancer patients. 

1.5 Hypotheses 

Given that (1) KLKs have been shown to be overexpressed in ovarian cancer; (2) KLK6 

and KLK13 have been shown to be involved in extracellular matrix degradation and 

cellular migration; (3) KLKs have been shown to have prognostic value for ovarian 

cancer patients: I hypothesize that KLK6 and KLK13 are involved in ovarian cancer 

pathogenesis and may be potential diagnostic and prognostic markers for ovarian cancer 

patients. 

The specific hypotheses examined in this thesis include: 

1. KLK13 plays a role in cellular migration and invasion in ovarian cancer cells 

2. KLK6 and KLK13 can be used as prognostic markers for ovarian cancer patients 

3. A combination of markers including KLK6, KLK13 and CA125, is a more 

sensitive test for ovarian cancer than one marker alone 
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Chapter 2 Human Kallikrein-Related Peptidase 13 (KLK13) is 
Involved in Cellular Migration and Invasion 

A version of this chapter is currently being prepared as a manuscript. 



2.1 Introduction 

The lethality of ovarian cancer is partially credited to it being relatively asymptomatic in 

the early stages and its rapid metastatic spread intraperitoneally (Scarberry et al. , 2010). 

The presence of malignant cells in ascites is often an indicator of poor prognosis for the 

majority of patients (Curtin et al. , 1997;Griffiths et al. , 1979). Malignant cells with 

metastatic potential can metastasize to distant sites and form new tumors. Survival rates 

for women with metastatic ovarian cancer are estimated at 15-20% over five years 

(Schink, 1999). 

A cunent working model for the metastatic process of ovarian carcinoma suggests that 

cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the 

layer of mesothelial cells that line the inner surface of the peritoneum (Sawada et al., 

2007). Cancer cells invade the superficial layers of abdominal organs and may then 

spread to retroperitoneal lymph nodes and the pleural cavity (Auersperg et al., 

2001;Cannistra et al., 1993). The invasiveness of cells depends in part on their ability to 

degrade basement membrane extracellular matrix (ECM), which presumably depends on 

the cellular production of proteolytic enzymes. 

Proteolytic enzymes are involved in tumorigenesis as they can facilitate migratory, 

invasive and tissue remodelling events (Pepper, 2001;Tarui et al., 2002). Serine 

proteases of the plasminogen/plasmin family, for example, have been shown to play an 

active role in these processes (Mignatti and Rifkin, 1993). Identifying the key proteases 

and their roles in the metastatic process may contribute to a better understanding of the 

2-89 



mechanisms involved and the development of novel diagnostic and therapeutic 

approaches (Xu et al., 2009). 

Recently, a family of serine proteases, the human kallikrein-related peptidase (KLK) 

family, has been implicated in tumorigenesis and metastasis of ovarian cancer (Emami 

and Diamandis, 2008). This family of genes consists of 15 members, of which prostate 

specific antigen, (PSA/KLK3), is best known, as it is widely used as a marker for prostate 

cancer (Stephan et al., 2007). Recent data point to an important role of specific KLKs in 

several other malignancies, including those of the gastrointestinal tract, lung, brain, and 

head and neck cancers (Emami and Diamandis, 2008). In addition to their role as 

potential biomarkers for malignancy, KLKs have been shown to be involved m 

carcinogenesis on a molecular level. KLK3 and KLK4 have been shown to promote cell 

migration of a prostate cancer cell line while inducing epithelial to mesenchymal 

transition (EMT)-like effects such as loss of E-cadherin expression and increased 

vimentin expression (Veveris-Lowe et al., 2005). Additionally, KLK6 has also been 

shown to be involved in the migration and invasion of skin and colon cancer cells as well 

as degrade components of the ECM (Ghosh et al. , 2004;Henkhaus et al., 2008;Klucky et 

al., 2007). 

Another member of the family, KLK13, has recently been implicated in carcinogenesis 

(Yousef et al., 2000), in addition to its increased expression in breast (Chang et al., 

2002), lung (Plan que et al., 2008), and salivary gland cancers (Darling et al., 2006). 

KLK13 shows increased expression in ovarian cancer patients (Kapadia et al., 
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2003;Scorilas et al., 2004) and is capable of degrading components of the extracellular 

matrix in vitro, including collagen, fibronectin, and laminin (Kapadia et al. , 2004). Also, 

migration of cells through a Boyden chamber assay was decreased when cells were 

treated with an anti-KLK13 antibody. These data together, like KLK6, suggests KLK13 

may be involved in tumor cell migration and invasion. 

Interestingly, the mature KLK13 protein has considerable N-linked glycosylation. When 

treated with peptide:N-glycosidase-F (PNGaseF), an amidase that removes N-linked 

oligosacchruides, a decrease in KLK13 molecular weight was observed following sodium 

dodecyl sulfate polyacrylamide gel electrophoresis [SDS-PAGE; (Sotiropoulou et al., 

2003)]. Many tumor markers used in clinics are serum glycoproteins and detection of 

altered glycans in serum tumor glycoproteins may be useful to increase speci ficity in 

tumor detection (Peracaula et al. , 2008). Aberrant glycosylation has been detected in the 

secreted proteins present in serum, including PSA/KLK3 (Peracaula et al. , 2003), 

although there has been no reported biological significance related to KLK13 

glycosylation. 

The current study hypothesized the involvement of KLK13 in ovarian epithelial cell 

cellular migration and invasion. Using an ovarian cell model that has low endogenous 

KLK13 expression, mutant forms of KLK13 were introduced to elucidate the role of 

KLK13 on cellular migration and invasion. Infection of the immortalized ovarian surface 

epithelial cell (lOSE) model with a KLK13-wild type virus increased both cellular 

migration and invasion. A similar effect was seen in another epithelial cell line, MvlLu. 
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Conversely, when the expression of KLK13 was decreased in a cell line with high 

endogenous KLK13 expression, the SKOV-3 cell line, cellular migration was decreased. 

These data together implicate KLK13 may play a role in ovarian cancer pathogenesis. 

2.2 Materials and methods 

2.2.1. Cell culture 

Immortalized ovruian surface epithelial cells (IOSE-398) were a kind gift from Dr. Nelly 

Auersperg (Canadian Ovarian Tissue Bank, Vancouver, BC) and were maintained in 1:1 

of 199:MCDB105 media with 5% fetal calf serum (FCS) and 50f..Lg/mL gentamicin. 

Ovru·ian cancer cell lines, CAOV-3, OVCAR-3, and SKOV-3, as well as the Mv1Lu cell 

line were purchased from the American Type Culture Collection (ATCC; Manassas, 

VA). CAOV-3, OVCAR-3, and SKOV-3 cell lines were maintained in Dulbecco's 

Modified Eagle's Medium (DMEM) supplemented with 10% FCS, RPMI 1640 

supplemented with 20% FCS and 0.01 mg/mL bovine insulin, or McCoy's Sa medium 

supplemented with 10% FCS, respectively. The MvlLu cell line was maintained in 

DMEM supplemented with 10% FCS and IX non-essential amino acids (NEAA). The 

GP2-293 packaging cell line (Clontech, Mountain View, CA) was maintained in DMEM 

supplemented with 10% FCS in DMEM. All cells were incubated in 5% C02 at 3rC. 

2.2.2. Northern blot 

Total RNA was extracted from IOSE-398, CAOV-3, OVCAR-3 and SKOV-3 ovarian 

cancer cell lines using Trizol (Invitrogen, Carlsband, CA), according to the manufacture's 

protocol. Total RNA concentration was determjned spectrophotometrically at 260nm and 

samples were stored at -80°C. Total RNA (50f..Lg) was precipitated by adding two 
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equivalent volumes of ethanol and 1.5M potassium acetate to 2%. Samples were 

centrifuged for 15 minutes at 12,000g at 4°C. Samples were then re-suspended in sample 

buffer [50% (v/v) formamide, 10% (v/v) formaldehyde, IX 3-(N-morpholino) 

propanesulfonic acid (MOPS), pH 8.0] and separated on a denaturing formaldehyde gel, 

transferred to a nylon membrane (Hybond-XL, Amersham Biosciences, Piscataway, NJ) 

and crosslinked by ultra violet in·adiation (Ultraviolet Crosslinker, UltraLum Claremont, 

CA). The membrane was washed in a pre-hybridization solution [10% formarnide, 1X 

SSPE (150mM NaCl, lOmM NaH2P04-H20, and 10mM Na2EDTA), 0.1% (w/v) sodium 

dodecyl sulphate (SDS), 5X Demhardt's, 1f.lg/f.LL single stranded, sheared, salmon sperm 

DNA] for 4 hours at 42°C. 

A 128bp probe, specific to KLK13, recognizing all eight KLK13 splice variants, was 

synthesized by polymerase chain reaction (PCR). The reaction was set as follows: 1X 

buffer, 200f.LM each of dNTP, 25f.LM of KLK13-Forward primer 5'- act tee cat gtg ggc 

aac ct- 3', 25f.LM of KLK13-Reverse primer 5'- tta ttg tgg gee ctt caa cc- 3', and 2.5U 

HotStar Taq (Qiagen, Mississauga, ON), with lOOng KLK13 eDNA in the 

pcDNA ™3.1D/V5-His-TOPO® cloning vector. The PCR cycling conditions were as 

follows: 95°C for 15 minutes, followed by 40 cycles of 94°C for 30 seconds, 55°C for 30 

seconds, and 72°C for one minute, followed by a final 10 minute extension step at 72°C. 

In order to confirm the KLK13 generated probe was the KLK13 sequence, it was run on 

an agarose gel. The only template DNA in the reaction was KLK13 and the displayed 

band was the expected fragment size of 128bp, confirming the probe was in fact KLK13. 
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Reaction products were separated on a 1% Nuseive (Lanza, Rockland, ME) agarose gel. 

The gel portion containing the DNA band was excised and ethanol precipitated. 

This purified PCR product was then used to create the radioactive-labelled probe in a 

separate PCR reaction. The reaction was set up as follows: 1X buffer, 200f.!M each of 

dATP, dTIP, dGTP, 200f.!M of a-32P-dCTP, 25f.!M of KLK13-forward primer, 25f.!M of 

KLK13-reverse ptimer, and 2.5U HotStar Taq (Qiagen, Valencia, CA), with 200ng of 

template DNA. The PCR cycling conditions were as fo1lows: 95°C for 15 minutes, 

followed by 40 cycles of 94 oc for 30 seconds, 60°C for 30 seconds, and 72°C for one 

minute, followed by a final 10 minute extension step at 72°C. The radioactive-labeled 

probe was then purified through a Micro Bio-Spin 6 Exclusion Column (Bio-Rad, 

Hercules, CA). The amount of radioactivity incorporated into the probe was determined 

using the Beckman-Coulter LS 6500 Multi-Purpose Scintillation Counter (Beckman

Coulter, Fullerton, CA) and 6 x 106 cpm/mL of probe was added to hybridization solution 

(same as pre-hybridization) and hybtidized to the membrane in a rotisserie overnight at 

42°C. 

The next day, the membrane was subjected to washes with increasing stringency; washed 

twice in 5X SSPE/0.1 % SDS at 42°C for 5 min, followed by one wash in 1X SSPE/0.1% 

SDS at 42°C, and 2 washes in 0.2X SSPE/0.1% SDS at 65°C. Autoradiographs were 

obtained by exposing Kodak AR5 Film (GE Healthcare, Baie d'Urfe, Quebec) at -80°C 

using a Cronex intensifying screen. 
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2.2.3. Quantitative real time PCR 

Total RNA was extracted and quantified as described previously. CDNA was 

synthesized using 6~g total RNA with the High Capacity eDNA Archive Kit (Applied 

Biosystems, Foster City, CA) using random hexamers. Quantitative polymerase chain 

reaction was performed using I~l of eDNA with the ABI Prism 7000 (Applied 

Biosystems, Foster City, CA). Primer/probe sets were purchased as pre-made TaqMan 

Assays on Demand for KLK13 and GAPDH (glyceraldehyde 3-phosphate 

dehydrogenase). Target gene expression was normalized to endogenous GAPDH and the 

lOSE cell line. Thermal cycling conditions were according to the manufacture's protocol 

and all samples were analyzed in triplicate. Relative quantification, the amount of target, 

normalized to an endogenous control , was determjned using the /1/1 threshold cycle (CT) 

method (Pfaffl, 200I). 

2.2.4. Western blot 

Cells were lysed using RIPA Buffer [IX PBS (phosphate-buffered saline), I% w/v Triton 

X-IOO, O.I % (w/v) SDS, 50mM sodium fluoride, 50mM glycerol phosphate, 50mM 

Tris-HCL (pH 7.6), 0.5% (w/v) deoxycholate, IX protease inhibitor (complete 

ethylenediaminetetraacetic acid (EDT A)-free protease inhibitor cocktail tablets (Roche 

Applied Science, Laval , QC), SmM EDTA (pH 7.6), SO~M orthovanadate, and 50 ng/mL 

phenylmethylsulphonyl fluoride (PMSF)] and cleared by centrifugation at 2I ,OOO x g for 

10 minutes at 4°C. Protein concentration was determined with the BCA (bicinchoninic 

acid) Protein Assay Reagent (Pierce Biotechnology, Rockford, IL) using bovine serum 

albumin as a standard. 5 X sample buffer (5% SDS, IO% glycerol, 5% ~-
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mercaptoethanol, 0.15M Tris-HCl pH6.8, and 0.01% bromophenol blue) was diluted in 

total protein to a final concentration of IX and then incubated l00°C for five minutes. 

Total protein was separated on a 10% SDS-PAGE gel and transferred to a polyvinylidine 

difluoride (PVDF) membrane for western blot analysis of KLK13, or nitrocellulose 

membrane for the detection of V5 (Millipore Corporation, Bedford, MA). Fifty 

micrograms per Jane were used to determine KLK13 expression, while 75~g total protein 

per gel Jane were used to determine V5 expression. The membranes were then blocked 

with 5% non-fat milk in TBST [150mM NaCJ, lOmM Tris-HCI pH 8.0, and 0.1 % (v/v) 

Tween 20] and incubated with anti-KLK13 primary antibody (1 ~g/mL, R&D Systems, 

Minneapolis, MN), or anti-V5 antibody (1:5000, Invitrogen, Carlsband, CA) diluted in 

blocking solution and incubated overnight at 4°C with shaking. Membranes were then 

washed with four changes of TBST for 10 minutes each followed by incubating with anti

mouse horseradish peroxidase-conjugated secondary antibody diluted in blocking 

solution for one hour, and washed with four changes of TBST for 10 minutes. Immune 

complexes were visualized using enhanced chemiluminescence (ECL; Pierce Company, 

Rockford, IL) and exposing to Hyper Film (GE Healthcare, Piscataway, NJ) for 10 

minutes and film development in an automatk film processor (Mini Medical Series, AFP 

Imaging, Elmsford, NY). In order to re-probe the membranes, they were incubated in 

stripping buffer [6mM Tris-HCl, pH 6.8, 2% (v/v) SDS, and 0.01 % (v/v) P

mercaptoethanol] at 50°C for 10 minutes. Membranes were then blocked and washed as 

described above and re-probed for a-tubulin (1: 1000, Cell Signalling Technology Inc, 

Danvers, MA) as a loading control. 
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2.2.5. De-glycosylation of KLK13 

In order to confirm KLK13 was in fact glycosylated, we incubated l0011g of total cell 

lysate with PNGaseF (New England Biolabs, Ipswich, MA) as per the manufacture 's 

instructions. PNGase F is an amidase that cleaves between the innermost N

acetylglucosarnine and asparagine residues of high mannose, hybrid, and complex 

oligosaccharides from N-linked glycoproteins. Briefly, total protein was incubated in 1X 

denaturing buffer at 100°C for 10 minutes. Once denatured, the protein was then 

incubated with 1X 07 reaction buffer and 10% NP-40 at 37°C for one hour. In order to 

see a decrease in molecular weight and to confirm KLK13 is glycosylated, we loaded 

10011g total protein on an SDS-PAGE gel and western blotted for KLK13. 

2.2.6. Vector constructs and site-directed mutagenesis 

In order to look more closely at the specific role KLK13 plays in ovarian cancer, we 

created several site-specific mutant KLK13 proteins. The KLK13 gene was in the 

pcDNATM3.1D/V5-His-TOPO® cloning vector with a V5 tag. The five described mutant 

KLK13 genes were created using site-directed mutagenesis. In a 50~-LL site-directed 

mutagenesis reaction was; 1 U Phusion High-Fidelity DNA polymerase (Finnzymes, 

Espoo, Finland), 25~-LM forward primer, 25~-LM reverse primer, 1X HF Buffer (Finnzymes, 

Espoo, Finland), lOOng pcKLK13 template DNA. Site-directed mutagenesis primer 

sequences are shown in Table 2.1 and a schematic of the site-directed mutagenesis 

protocol is seen in Figure 2.1. In order to create the double glycosylation mutant, 

KLK13-N30Q+N225Q, we took the pc-KLK13-N30Q as the template and mutated the 

second glycosylation site. Reactions were cycled through 98°C for one minute, 55°C for 
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Table 2.1 Primer sequences for KLK13 site-directed mutagenesis. 

Mutation Primer 
Forward 
Reverse 

Forward 
Reverse 

Forward 
Reverse 

Sequence 
5' - ggt gac get ggg ggc ccc ctg gtc tgt aac aga a - 3' 
5' - gee ccc age gtc ace etc aca gga gtc ttt gee - 3' 

5' - tct tee cag gtt etc aac ace aat ggg ace agt g - 3' 
5' - cct cca cag agg gtc etc aga agg gtc caa gag - 3' 

5' - aac ace caa ggg ace agt ggg ttt etc cca - 3' 
5 ' - ggt ccc ttg ggt gtt gag aac ctt gga aga ct - 3 ' 

N225Q4 Forward 5'- gtc tgt caa aga aca ctg tat ggc ate gtc t- 3' 
Reverse 5' - tgt tct ttg aca gac cag ggg gee ccc -3' 

Site-directed mutations are balded. 
1. Serine (tct) was mutated to alanine (get) 
2. Lysine (aag) was mutated to glutamine (cag) 
3. Asparagine (aat) was mutated to glutamine (caa) 
4. Asparagine (aac) was mutated to glutamine (caa) 
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r-~--------------------------------------------------------------~~~~~ 

1. Mutant strand synthesis. 
Thermal cycling will: 

- denature DNA template 
- anneal metagenic primers 

containing the desired mutation 
- extend and incorporate primers 

with high fidelity polymerase 

2. Dpnl digestion of template 
Parental methylated DNA will 
be digested 

3. Transformation 
Transform mutated plasmid into 
competent cells 

Figure 2.1 Schematic of the site-directed mutagenesis protocol. The mutant plasmid 
is created by thermal cycling with mutagenic primers. After the PCR, parental 
methylated and hemimethylated DNA is digested with Dpnl. The plasmid harbouring the 
desired mutation is then transformed into competent cells for nick repair and 
amplification. 
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one minute, and ten minutes at 72°C, for 18 cycles. Reactions were then incubated for 

one hour at 37°C with Dpn 1. Dpn 1 is a nuclease that cleaves methylated DNA, ensuring 

that the parental template DNA produced in bacteria was digested and only the PCR 

product, the mutant DNA, was still intact. These mutants were cloned into the viral 

vector pLNCX2 and corresponding virons were produced using the GP2-293 packaging 

cell line and the VSV -G coat protein. 

Figure 2.2A is a schematic of the KLK13 protein. The first domain, separated by a black 

line, is the signal/secretion peptide, followed by the activation peptide and finally the 

mature enzyme. The S denotes the active serine of the catalytic triad at position 218 

[S218; (Yousef et al., 2000)]. The red triangles denotes the two putative N-linked 

glycosylation sites at asparagine 30 (N30) and asparagine 225 (N225). These 

glycosylation sites were determined by in-silica analysis using the KLK13 Ref Seq 

NM_015596.1 ~nd the Center for Biological Sequence Analysis NetNGlyc Prediction 

software (Gupta et al., 2004;Gupta et al., 2010). The results of this analysis can be seen 

in Appendix A. 

Figure 2.2B describes the KLK13 site-directed mutants. The KLK13 wild type protein is 

first displayed with the amino acid sequence (tct) of S218 highlighted. The first mutant 

was KLK13-S218A, in which the active serine at position 218 was replaced with an 

alanine by mutating the tct (S) to get (A), creating a potential enzymatically dead KLK13. 

We also mutated the activation site of the serine protease, the lysine (aag) at position 25 

(K25), to a glutamine (cag, Q25), creating a pro-enzyme that potentially cannot be 
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A KLK13 

B KLK13 Wild type 

Enzymatically dead S218A 

aag ... 
Zymogen!Inactivatable K25Q 

cag 

Unable to Glycosylate N30Q 

Unable to Glycosylate 225Q 

Unable to Glycosylate 30Q + 225Q 

N30 ... 

aat ... 
caa 

aat ... 
caa 

S218 

tct 

• get 
-vs 

-vs 

-vs 

aac ... 
-vs 

caa 

aac ... 
-vs 

caa 

Figure 2.2 Schematic of KLK13 wild type and mutants. (A) Schematic of the KLK13 protein. 

KLK13 is produced as a pre-propeptide. The signal peptide allows for secretion outside the cell, 

and once cleaved off, leaves only the propeptide/zymogen form of the protein. Cleavage of the 

activation peptide at K25 is required for enzyme activation. The active serine of this serine 

protease is S218. There are two putative glycosylation sites at N30 and N225. (B) KLK13-WT 

and mutants created by site-directed mutagenesis. The enzymatically active serine at position 218 

was mutated to an alanine to create an enzymatically dead KLK13, KLK13-S218A. The lysine at 

the cleavage site of the activation peptide was mutated to a glutamine to create a KLK13 mutant 

that cannot be activated, KLK13-K25Q. We also created three glycosylation mutants by 

mutating asparagine to glutamine at the first (N30Q), second (N225Q), and both (N30Q + 

N225Q), putative glycosylation sites to create KLK13-N30Q, KLK13-N225Q, and KLK13-

N30Q+N225Q, respectively. 
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activated beyond its zymogen state, KLK13-K25Q. In order to further explore the role of 

glycosylation on the biological function of KLK13, the two putative glycosylation sites, 

N30 and N225 we modified to create three mutants with differential N-linked 

glycosylation. The first was KLK13-N30Q, in which we mutated aat (N30) to caa (Q30) 

in which the protein could possibly only be glycosylated on the second site, N225. The 

second was KLK13-N225Q, where the aac (N225) was mutated to caa (Q225) in which 

the protein could only be glycosylated on the first site, N30. The final mutant was 

KLK13-N30Q+N225Q, in which we mutated both the N30 and N225 to Q30 and Q225, 

respectively, in which there could be noN-linked glycosylation at either of these sites. 

2.2. 7. Site-directed mutant validation 

In order to prepare DNA for sequencing, we transformed 5).!g of each plasmid, pc-

KLK13-S218A, pc-KLK13-K25Q, pc-KLK13-N30Q, pc-KLK13-N225Q, and pc

KLK13-N30Q+N225Q DNA into 50).!L of DH5a Competent E. Coli Cells (New England 

Biolabs, Ipswich, MA) in separate reactions. DNA and competent cells were gently 

mixed and incubated on ice for 30 minutes. Cells were heat shocked at 42°C for exactly 

50 seconds and placed on ice for two minutes. Cells were allowed to recover in 900).!L 

SOC (New England Biolabs, Ipswich, MA) growth media at 37°C for 60 minutes with 

shaking (250 rpm). One hundred mkroliters of the mixture were cells were spread on 

Luria-Bertani (LB)/ Ampicillin (lOO).!g/mL) bacterial plates and allowed to grow at 37°C 

overnight. The next morning, clones were chosen for DNA extraction and sequencing. 

Clones selected from overnight plates were grown up in 2mL LB/ Amp broth (lOO).!g/mL 

ampici llin) overnight at 37°C with shaking (250 rpm). The following morning, plasmid 
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DNA was extracted using the Qiagen MiniPrep Kit as described by the manufacturer 

(Qiagen, Valencia, CA). DNA concentration was determined spectrophotometrically at 

260nm and was stored at 4°C until required for DNA sequencing. 

In order to ensure we had the desired mutations, all clones were sequenced. Sequencing 

was performed on the ABI Prism 3730 (Applied Biosystems, Foster City, CA) using the 

following reaction mix: 13.5~-tL H20, lX sequencing buffer, 0.5~-tL sequencing mix, 

3.8~-tM forward primer, 3.8~-tM reverse primer, and SOOng DNA. Sequencing primers are 

detailed in Table 2.2. The reaction was heated to 96°C for 6 minutes, then 25 cycles of 

96°C for 10 seconds, 50°C for 5 seconds, and 60°C for 4 minutes. DNA was then 

precipitated overnight at 4°C with 125nM ethylene diaminetetraacetic acid (EDTA) and 

95% ethanol. The following day, Hi-Di formamide was added to each sample and the 

samples were denatured at 96°C for 4 minutes. Samples were then loaded on the 

sequencer and clones with the desired confirmed mutations were selected. A 

representative sample of DNA sequencing results can be seen in Appendix B. 

2.2.8. Plasmid construction 

The wild-type and mutated KLK13 clones were sub-cloned into the pLNCX2 retroviral 

vector (Clontech, Mountain View, CA) in order to create virus. We chose the pLNCX2 

retroviral vector due to its ability to produce retrovirus when in the presence of the coat 

protein VSV-G, its cytomegalovirus (CMV) promoter, and its eukaryotic antibiotic 

selection gene, neomycin. 
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Table 2.2.Primer sequences used to sequence KLK13 mutants. 

Mutation 
S218A 

K25Q 

N30Q, 
N225Q, and 
N30Q+N225Q 

Primer 
Forward 
Reverse 
Forward 
Reverse 
Forward 
Reverse 

Sequence 
5' - cag ccc cca ggt gaa tta- 3' 
5'- gga ttg ttt cac gga tee ac- 3' 
5' - get ggt tta gtg aac cgt cag- 3' 
5' - ttg age ccc tee ttt aga ca- 3' 
5'- caa cat cca act tcg etc ag- 3' 
5' - ttc aac cat ttt tgc tgc tg -3' 

2-104 



KLK13 was cut from pc-KLK13 at the Hindiii and Pmel sites. The pLNCX2 vector was 

prepared to insert KLK13 mutants by cutting at Hindlll and Not!. All vector and KLK13 

insert products were separated on a 1% Nusieve low melting point agarose gel and 

precipitated with ethanol. The following equation was used to determine the KLK13 

insert mass for ligation reactions: 

Insert mass (ng) = 3 x (Insert Length/Vector Length) x Vector Mass (ng) 

We used 30ng of vector for each reaction and the appropriate amount of insert required 

was calculated. The empty pLNCX2 vector and KLK13, along with each KLK13 mutant 

were ligated in separate reactions using 400 units T4 ligase, IX ligase buffer, and 30ng of 

cut pLNCX2 overnight at 4°C. We isolated and designated the resultant sub-clones as; 

pLN-KLK13, pLN-KLK13-S2I8A, pLN-KLKI3-L25Q, pLN-KLKI3-N30Q, pLN

KLK13-N225Q, pLN-KLK13-N30Q+N225Q. The empty vector control was the 

pLNCX2 containing no KLK13 gene. 

The GP2-293 packaging cell line was transfected using Lipofectarnine 2000 (Invitrogen, 

Carlsband, CA) with one of each KLK13 retroviral plasrnids and the plasmid containing 

the VSV -G coat protein gene to produce retrovirus as follows. GP2-293 cells were plated 

at 2.5 x I05 cells/well in a 6-well plate. The fol lowing day, the media was replaced with 

serum-free DMEM and cells were co-transfected with 0.75J..!.g of pLN-KLK13-X DNA 

and 0.75J..!.g of VSV-G DNA using 4.5J..!.L of Lipofectarnine in IOOJ..!.L IX Opti-MEM® 

Reduced Serum Medium. The following day, the media was replaced with normal 

growth media. The cells were allowed to recover for 24 hours and were then allowed to 
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produce virus for two days. The media containing virus was then collected and filtered 

through a 0.45lJ.m syringe filter (Pall, Mississauga, ON). 

Viral titre was determined using the Mv lLu cell line. We prepared six ten-fold serial 

dilutions by first adding 150!1L virus to 1.35mL media. We then transferred 150lJ.L of the 

viral stock to the next tube with 1.35mL media and continued the serial dilutions in this 

manner. We infected the cells with 1mL virus containing media and a final concentration 

of 5lJ.g/mL polybrene (hexadimethrine bromide, Sigma-Aldrich, Oakville, ON) in 

DMEM. Cells were infected overnight and the media was replaced the following day to 

allow cells to recover for 24 hours. The next ten days, the cells were grown in 900lJ.g/mL 

0418 sulfate (geneticin , Invitrogen Carlsband, CA) in order to select for infected cells. 

After antibiotic selection, the viral titre was calculated as the number of colonies present 

at the highest dilution, multiplied by the dilution factor. For example, the presence of 8 

colonies at the 105 dilution factor would represent a titre of 8 colony forming units (cfu) x 

105 = 8 x 105 cfu/mL. 

2.2.9. Viral infection 

Both lOSE and Mv lLu cell lines were plated at 5.0 X 104 cells/well in each well of a 6-

well plate and allowed to attach overnight. The next day, cells were infected at a 

multiplicity of infection (MOl) of 10:1, or 5.0 X 105 cfu/cell, with a final concentration of 

5lJ.g/mL polybrene in DMEM and left to infect overnight. The next day, the virus 

containing media was replaced with normal growth media allowing cells to recover. 

lOSE cells were then re-plated for migration and invasion assays. Mv1Lu cells on the 

other hand, were subjected to antibiotic selection in 900lJ.g/mL 0418 sulfate (Invitrogen, 
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Carslband, CA) in DMEM supplemented with 10% FCS for ten days, resulting in a 

"pool" of selected cells, in which aJJ cells stably carry the selected KLK13 mutant gene. 

2.2.10. Wound healing assay 

The ability of cells to migrate, or their migratory capacity, was measured by a wound 

healing assay. Cellular migration of the JOSE infected cells and the Mv1Lu cells that 

expressed KLK13 wild type or mutant proteins, was measured. The JOSE cells were 

plated in 6-well plates at 5.0 x 104 cells/well and infected as described above. The 

following day, cells were trypsinized, diluted 2 fold andre-plated in 12-well plates. They 

were serum depleted with 2% FCS in JOSE media (the lowest FCS concentration that the 

cells could survive in) in order to reduce proliferation effects on the assay although cell 

proliferation was not tested. The monolayer of cells was wounded with a 200~-tL pipette 

tip, photomicrographs were taken. The rate of migration is displayed as the percent of 

cell covered area. The percent of cell area covered was determined as (100- percent cell

free area) where percent cell-free area is defined as [(cell-free area24hrsfcell-free areaohrs) x 

100]. Area was measured using the Image J Software (National Institutes of Health, 

Bethesda, ME, http://rsbweb.nih .gov/ij/). The cell-free area was selected with the free

hand tool and area was determined by selecting the option "analyze." Cells were infected 

with each virus in three separate infections and each was analyzed in tliplicate. There 

were six images taken per "wound." Cell-free area was measured at time "0" (time of 

the wound) and "24 hours later. MvlLu cells were plated at 2.0 x 105 cells/well in a 12-

well plate. Cells were serum depleted with 0.5% FCS in DMEM and the same procedure 
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was carried out. To ensure photomicrographs were being taken at the exact same place 

each time, a gridded coverslip was attached to the bottom of each well. 

2.2.11. Antisense KLK13 vector construct 

In order to assess if a decrease in KLK13 expression would inhibit migration, we created 

an expression vector to knock down KLK13 expression. In order to create a KLK13-WT 

Antisense vector, we first digested the pc-KLK13 clone with Spei and blunted the ends 

with DNA polymerase I, Large Klenow (New England Biolabs, Ipswich, MA). The 

plasmid was then cut with Hindiii. This created a 200bp KLK13 fragment, with one 

sticky and one blunt end, which included approximately 30bp of the multiple cloning site 

of the original cloning vector and the unique KLK13 sequence, including the atg start 

site. 

The KLK13 fragment was then cloned into the pLNCX2 retroviral vector. In order to 

ensure the KLK13 insert would be inserted in the antisense direction, we first cut the 

pLNCX2 vector with Xhoi and blunted the ends with DNA polymerase I, Large Klenow 

(New England Biolabs, Ipswich, MA). The DNA was then precipitated, digested with 

Hindiii, and incubated with phosphatase (New England Biolabs, Ipswich, MA), 

removing 5' phosphate groups, ensuring the ends of the vector didn't re-ligate. This 

vector, similar to the KLK13 insert, has a sticky and blunt end, so that the KLK13 insert 

would be ligated in the reverse direction, creating an anti-sense KLK13. 

In order to create a control sense KLK13 control vector, we designed the vector so the 

sticky and blunt ends would ligate in the sense orientation. We digested the pLNCX2 
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vector with Not! and blunted the ends with Klenow fragment. The DNA product was 

precipitated and· then digested with Hindiii and the 5' phosphate groups were removed 

with phosphatase. 

Products were ligated as described previously and the orientations of the KLK13 inserts 

confirmed by restriction endonuclease digestion. SKOV-3 cells were transfected with 

l!lg KLK13 Antisense or Sense DNA with 3!-lL Lipofectamine 2000 in 100!-lL IX Opti

MEM® Reduced Serum Medium (Invitrogen, Carlsband, CA). Cells were co-transfected 

with the pLNCX2 vector containing the green fluorescent protein sequence to ensure 

suitable transfection efficiency. To ensure KLK13 expression was in fact decreased, cells 

were lysed and immunoblotted for KLK13. In order to ensure there was no antiviral 

response, cells were lysed and imrnunoblotted for oligoadenylate synthase (OAS). 

2.2.12. Invasion assay 

lOSE cells were infected as described previously for the wound assays with KLK13 wild 

type (KLK13-WT), KLK13-S218A, KLK13-K25Q, KLK13-N30Q, KLK13-N225Q, 

KLK13-N30Q+N225Q, and pLNCX2 virus containing media. Ten thousand cells were 

plated in triplicate in the upper chamber of the CytoselecfrM 96-well Cell Invasion Assay 

plate (Cell Biolabs, San Diego, CA) in 2% FCS lOSE media. Normal lOSE media, 5% 

FCS, was placed in the bottom chamber as a chemoattractant. Cells were allowed to 

invade through the basement membrane for 24 hours at 37°C in 5% C02. Following this 

incubation, cells were dissociated from the underside of the membrane into a clean 

harvesting tray, by incubating in 150!-lL of cell detachment buffer at 37°C for 30 minutes. 

Cells were then lyzed in a 1:75 mixture of CyQuant®GR Dye: 4X Lysis Buffer for 20 
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minutes at room temperature. 150!J.L of the mixture was transfen·ed to a 96-well plate 

suitable for fluorescence measurement and fluorescence was read at an excitation of 

480nm and emission of 520nm. The extent of cellular invasion was measured in relative 

fluorescence units (RFU). This assay was performed in triplicate using three separate 

viral infections. 

2.2.13. Statistical analysis 

All statistical analyses were performed with GraphPad Prism 4 Software (La Jolla, CA). 

One-way ANOVA and post-hoc multiple comparisons (Tukey's) were used to compare 

differences in mRNA expression, wound healing, and invasion assays. A p-value less 

than 0.05 was considered significant. 

2.3 Results 

2.3.1. KLK13 mRNA is increased in ovarian cancer cell lines 

Since there had been several KLK13 transcripts described via in-silico analysis and 

transcripts for KLK13 had been shown to differ between testicular cancer and normal 

tissue (Chang et al., 2001), the KLKIJ mRNA transctipt was examined in ovmian cancer. 

KLKJJ mRNA expression was examined in the lOSE ce11 line, as well as three ovarian 

cancer cell lines, CAOV-3, OVCAR-3, and CAOV-3 by northern blot analysis (Figure 

2.3A). A 128bp KLK13-specific probe that could detect all eight splice variants of 

KLK13 while excluding other KLKs was used for detection. There was one major 

KLKJJ transcript identified at 1.8Kb. The lOSE cells appeared to have less KLK13 

mRNA expression when compm·ed to the ovarian cancer cell lines. The ovarian cancer 

cell lines, CAOV-3, OVCAR-3, and SKOV-3, had comparable levels of KLKJJ 

2-110 



A Marker 
kb 

1 2 3 4 
2.37 

1.8Kb 
1.35-

B 
** 

5 

Q) 4 
C) 
c: * cu 

3 .r:. 
0 
"C 

2 -0 
l1. 

1 

0 ill 
lOSE CAOV-3 OVCAR-3 SKOV-3 

Figure 2.3 KLK13 mRNA expression in lOSE and ovarian cancer cell lines. (A) 

Northern blot of KLK13 mRNA expression in lOSE and ovarian cancer cell lines. 50jlg 

total RNA in Lane 1 (lOSE), Lane 2 (CAOV-3), lane 3 (OVCAR-3), and lane 4 (SKOV-3) 

was run on an agarose gel and transferred to a nylon membrane. The blot was probed with 

a KLK13-specific 128bp radioactively labelled probe. The KLK13 mRNA transcript was 

located at approximately 1.8Kb (arrow). (B) Relative KLK13 mRNA expression in lOSE 

and ovarian cancer cell lines measured by qRT-PCR. CAOV-3 and SKOV-3 cell lines had 

a 2-fold increase, while OVCAR-3 had a 4-fold increase in KLK13 mRNA expression 

when compared to lOSE cells. *, p<O.Ol; **, p<0.05. 
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expression. Differential expression of KLK13 mRNA was confirmed by qRT-PCR 

(Figure 2.3B). When analyzed by qRT-PCR, the lOSE cells did express the least amount 

of KLK13 transcript, while the CAOV-3 (p<O.Ol) and SKOV-3 cell lines had a 2-fold 

increase in expression, and the OVCAR-3 cell line (p<0.05) had a 4-fold increase in 

KLK13 mRNA expression when compared to lOSE cells. 

2.3.2. KLK13 exhibits differential glycosylation between ovarian cancer cell lines 

KLK13 protein expression in total cell lysates of lOSE, CAOV-3, OVCAR-3, and 

SKOV-3 cells was analyzed by immunoblotting (Figure 2.4A). KLK13 showed 

differential expression patterns among the cell lines. There were two observed bands that 

migrated to approximately 48K and 36K for KLK13 in the CAOV-3 and OVCAR-3 cell 

lysate. Interestingly, there were three KLK13 bands in the SKOV-3 cell lysate and two 

were similar to those found in CAOV-3 and OVCAR-3. The two common KLK13 bands 

were at approximately 48K and 36K, while the unique protein was found at 28K. This 

likely represents an unglycosylated form of KLK13. The lOSE cells also had two forms 

of KLK13 present at 48K and 36K. The predicted molecular weight, based on amino 

acid sequence, of KLK13 is 28K. It is unlikely any of these bands are indicative of a 

product that results from auto-inactivation as the molecular weight would be less than 

28K (Sotiropoulou et al., 2003). It is also unlikely that these bands represent different 

transcripts of KLK13 as the protein product is predicted to be less than 28K in all cases. 

All four cell lines examined had KLK13 expression that was larger than 28K. In order to 

determine if the high molecular weight band was due to protein glycosylation, the 
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Figure 2.4 Differential expression of KLK13 between ovarian cancer cell lines. (A) 

The relative mobility of the molecular weight marker (in kilodaltons) is indicated in the 

first Jane, on the left side of the blot (Marker). KLK13 expression was observed in 50!lg 

total protein from ovarian cancer cell lines. Both CAOV-3 and OVCAR-3 showed two 

bands expressing KLK13, while SKOV-3 had three bands with KLK13 expression. (B) 

lOO)lg ofSKOV-3 total protein was untreated(-) or treated(+) with PNGaseF. A decrease 

in the high molecular weight band at 48K and an increase in the low molecular weight 

band at 36K was seen after treatment. 
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SKOV-3 total cell lysate was incubated with PNGaseF (Figure 2.4B). After the amidase 

treatment, a clear decrease in the intensity of the KLK13 band at 48K and an increase in 

band intensity at approximately 36K was seen. There was also a slight increase in the 

intensity of the band at 28K. To ensure this was not an effect of prutial protein digestion, 

the protein was treated with PNGaseF for an additional one and two hours and the same 

results were obtained (data not shown). These results confirmed that the KLK13 protein 

is at least partially N-linked glycosylated with high mannose, hybtid, or complex 

oligosaccharides. Since there was not a complete decrease in the band at 36K, KLK13 

may be partially resistant to PNGaseF by being protected in some way which limits the 

action of the deglycosidase. It is also important to note that KLK13 may have other post

translational modifications that are resistant to PNGaseF, including 0-linked 

glycosylation, which was not examined in this study. 

2.3.3. KLK mutant production 

Viral infection and production of the mutant KLK13 proteins m Mv lLu cells was 

confirmed by immunoblotting for the V5 tag (Figure 2.5). A schematic of the expected 

KLK13 protein structures are depicted in Figure 2.5A. When total cell lysates of infec ted 

cells were immunoblotted for V5, the KLK13-WT, KLK13-S218A, and KLK13-K25Q 

proteins all had a signal covering a range of polypeptides at approximately 36K (Figure 

2.5B). The KLK13-WT and KLK13-S218A lanes also have a slight band at 

approximately 48K. These bands likely represent variations in glycosylation of the 

KLK13 protein in the MvlLu cells, similar to what was observed in the ovarian cancer 

cell lines. 
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Figure 2.5 Western blot confirmation of the expression of KLK13-WT and KLK13 
mutants in MvlLu cells with a VS immunoblot in total cell lysate. (A) A schematic of 
the expected KLK13 protein produced in the cell. (B) There was no expression in the 

uninfected cells (Negative). The KLK13-WT, KLK13-S218A, and KLK13-K25Q, all 

migrated approximately to 36K. The KLK13-N30Q and KLK13-N225Q migrated to 

approximately 32k and 31, respectively. The double glycosylation mutant, KLK13-

N30Q+N225Q, migrated to approximately 31 K. 
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The KLK13-N30Q migrated to approximately 32K and also had a slight band at 

approximately 36K. The KLK13-N225Q migrated to approximately 31K. The KLK13-

N30Q+N225Q, with no available N-linked glycosylation sites, also had a molecular 

weight of approximately 31K, similar to what was seen in the KLK13-N225Q. The fact 

that there is no band at 36K in the KLK13-N225Q and that KLK13-N30Q is a lower 

molecular mass than the KLK13-WT, yet higher than the double glycosylation mutant, 

suggests that there may be a sequential order in which KLK13 is glycosylated. In this 

case, the N30 would have to be glycosylated before the N225. These data together 

confirm first; that the KLK13 constructs are being produced, as seen with expression of 

the V5 tag, and secondly, these data further support the fact the predicted N30 and N225 

glycosylation sites are in fact true KLK13 N-linked glycosylation sites. A further 

confirmation of KLK13 glycosylation would have been to deglycosylate the KLK13 

mutants with PNGaseF, but this was not performed in this study. 

2.3.4. Increased KLK13 expression increased migratory capacity 

Each virus-containing media, KLK13-WT, KLK13-S218A, KLK13-K25Q, KLK13-

N30Q, KLK13-N225Q, KLK13-N30Q+N225Q, and the empty vector virion, pLNCX2, 

was used to infect lOSE cells and cellular migration was assayed (Figure 2.6). The lOSE 

cells were chosen because of the low KLK13 expression and non-migratory characteristic 

(Auersperg et al., 1984) Cellular migration was measured by creating a wound in the 

monolayer of cells and measuring the percent of cell covered areas desc1ibed in the 

Methods (Section 2.2.10) at Ohrs and 24hrs post-wounding. A representative sample of 

the assay is displayed in Figure 2.6A. Cells infected with the empty vector control, 
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Figure 2.6 lOSE cells infected with KLK13-WT and KLK13 mutants show 
differential rates of cellular migration. Cellular migration of infected lOSE cells was 

measured with a wound healing assay. (A) Representative micrographs of the uninfected 

control JOSE cells and JOSE cells infected with the KLK 13-WT and KLK 13-S218A virus. 

The migration of cells was assayed by measuring the cell covered area at the time of 

wounding (Ohrs) and 24 hours later (24hrs). (B) lOSE cells infected with KLK 13-WT 

migrated significantly faster than the uninfected control and empty vector control, 

pLNCX2. lOSE cells were infected with each virus in three separate infections and each 

was analyzed in triplicate. *, p<0.05; **, p<0.05. 
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pLNCX2, and uninfected cells showed no significant difference in cellular migration 

after 24 hours (data not shown). Cells infected with the KLK13-WT virus migrated 

faster than cells infected with the empty vector pLNCX2 (94% vs. 74% cell covered area, 

respectively, p<0.05). lOSE cells infected with the enzymatically dead protein, KLK13-

S218A, on the other hand, migrated significantly slower than the control cells (43% vs. 

74% cell covered area, p<O.Ol), suggesting KLK13 enzymatic activity is required for 

cellular migration. The migration rate of the cells infected with the KLK13-K25Q, 

KLK13-N30Q, KLK13-N225Q, and KLK13-N30Q+N225Q, showed no significant 

change in the rate of migration from the control cells (64%, 60%, 59%, and 64% vs. 74% 

cell covered area, respectively). The KLK13-K25Q mutant is constructed so that it will 

never progress beyond its zymogen to its active state and therefore should have no effect 

on the level of active KLK13 in the cell model. The cells infected with the glycosylation 

mutants, KLK13-N30Q, KLK13-N225Q, and KLK13-N30Q+N225Q, showed no 

significant change in rate of migration when compared to the control cells. Proper 

glycosylation is required for the proper folding and hence proper function of KLKs. 

Mutations that interfered with KLK13 protein glycosylation sites were not able to 

increase cellular migration similar to the KLK13-WT. The absence of KLK13 

glycosylation in the glycosylation mutants appears to have no effect on cellular migration 

(either in a positive or negative manner), and suggests effective KLK13 glycosylation is 

not required for cellular migration. 
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2.3.5. Decreased KLK13 expression decreased migratory capacity 

lOSE cells, cells that have low endogenous KLK13, infected with KLK13-WT were 

shown to migrate faster than control cells (Figure 2.6). Based on these findings, when 

KLK13 expression is decreased in a cell line that has high KLK13 expression, a decrease 

in cellular migration should be observed. In order to select an appropriate cell model, the 

CAOV-3, OVCAR-3 and SKOV-3 cell lines, which have high KLK13 expression (Figure 

2.3), were tested for migratory capacity by a wound healing assay. When compared to 

the OVCAR-3 and CAOV -3 cells, SKOV -3 cells had the fastest rate of migration. 

OYCAR-3 and CAOV-3 cells needed more than 48 hours to close a wound while the 

SKOV-3 cells took approximately 12 hours (data not shown). This agreed with another 

study that found SKOV-3 cells to be migratory (Whitley et al. , 2007). SKOV-3 cells 

were transfected with vectors containing the antisense KLK13, sense KLK13, and empty 

vector control (pLNCX2), and immunoblotted for KLK13 (Figure 2.7 A). The cells 

transfected with the antisense KLK13 vector showed a marked decrease in KLK13 

protein expression of all three forms of KLK13 at 48K, 36K, and 28K. The cells 

transfected with the KLK13 sense vector also showed a slight decrease in KLK13 

expression but there was also a corresponding decrease in total protein loaded as shown 

by the a-tubulin immunoblot. The western blot also shows an immunoblot for 

oligoadenylate synthase (OAS). OAS is increased in the cell upon anti-viral response. 

These cells were immunoblotted for OAS in order to account for any non-specific effects 

of the anti-sense RNA. There was no increased OAS expression which confirmed the 

transfection had not initiated an anti-viral response in the cells. The cells were then 
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Figure 2.7 Decreased expression of KLK13 in SKOV-3 cells decreased cellular 
migration. (A) Decreased KLK13 expression in SKOV -3 cells was confirmed by 
immunoblot and a-tubulin was used as a loading control. To account for non-specific 
effects of the Antisense RNA, cellular lysates were assayed for oligoadenylate synthase 
(OAS). (B) SKOV-3 cells were transfected with an Antisense or Sense KLK13. Cell 
were grown to a confluent monolayer and wounded with a pipette tip. 12hrs later, cellular 
migration was assessed by measuring the percent of cell covered area. SKOV-3 cells 
transfected with the antisense KLKI3 migrated slower than the uninfected and empty 
vector control, pLNCX2, cells. There was no significant difference in the rate of cellular 
migration of cells transfected with the Sense KLK13 and control cells. SKOV -3 cells 
were infected with each vector in three separate transfections and each was analyzed in 
triplicate. *, p<O.OO 1. 
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subjected to a wound healing assay. SKOV -3 cells transfected with the KLK13 antisense 

vector showed a significant decreased in cellular migration when compared to the 

untransfected control (p<O.OOl), the sense KLK13 (p<O.OOl), and empty vector (p<O.OOl; 

26% vs. 89% vs. 89% vs. 80% cell covered area, respectively; Figure 2.7B). There was 

no significant difference in cellular migration between the cells transfected with the sense 

KLK13 and controls. A decrease in KLK13 protein expression in the SKOV-3 cell line 

had a negative effect on cellular migration, supporting previous results suggesting 

KLK13 is required for ovarian cellular migration. These results also suggest the use of an 

anti-KLK13 therapy may potentially be used as therapeutic treatment to decrease tumor 

metastasis. 

2.3.6. Increased KLK13 expression increased cell migration of MvlLu Cells 

In order to investigate if the involvement of KLK13 expression in cellular migration was 

a true phenomena or a cell-specific effect, the effect of KLK13 on cellular migration was 

examined in another epithelial cell line, the MvlLu cell line (Figure 2.8). Although the 

endogenous KLK13 expression in MvlLu cells was not measured, a wound healing assay 

showed KLK13 was involved in cellular migration in this epithelial cell line. Similar to 

what was seen with the lOSE cells, the MvlLu cells that were stably infected with the 

KLK13-WT migrated faster than the empty vector control cells infected with the 

pLNCX2 virus (95% vs. 66% cell covered area; p<O.OOl). Also, the cells infected with 

the enzymatically dead, KLK13-S218A, virus migrated slower than the control cells 

(39% vs. 66% cell covered area; p<O.OOl). These results are similar to what was 

observed when lOSE cells were infected with KLK13-WT and KLK13-S218A. MvlLu 
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Figure 2.8 MvlLu cells infected with KLK13-WT and KLK13 mutants show 
differential rates of cellular migration. MvlLu cells infected with the KLK13-WT, 
KLK13-S218A, and KLK13-K25Q virus and were subjected to the wound healing assay. 
Cells infected with the KLK13-WT virus migrated faster than the empty vector control 
(pLNCX2) cells. Also, the cells infected with the KLK13-S218A virus migrated slower 
than the cells infected with pLNCX2. Cells infected with KLK13-K25Q migrated slower 
than the control cells. MvlLu cells were infected with each virus in three separate 
infections and each was analyzed in triplicate. *, p<O.OOl; **, p<O.Ol. 
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cells infected with the KLK13-K25Q virus also migrated slower than control cell (45% 

vs. 66% cell covered area, respectively). This effect on migration was not observed in 

the lOSE cells. It would be interesting to further investigate this differential effect. The 

results regarding the three glycosylation mutants were not consistent between replicates 

and were not included in the graph. 

2.3.7. Increased KLK13 expression increased the invasiveness of lOSE cells 

Since KLK13 was clearly shown to have a significant effect on cellular migration, its 

effect on cellular invasion was assayed. lOSE cells were infected with KLK13-WT, 

KLK13-S218A, KLK13-K25Q, KLK13-N30Q, KLK13-N225Q, KLK13-N30Q+N225Q, 

or the empty vector, pLNCX2 virus. Cells were plated in the upper chamber of a well

insert in 2% FCS in lOSE media on a matri-gel basement membrane. The bottom 

chamber of the well had 5% FCS in lOSE media as a chemoattractant. Invasions assays 

were conducted through the matri-gel basement membrane for 24 hours. After 24 hours, 

the cells that had invaded through the basement membrane were dissociated from the 

bottom of the membrane and lysed in lysis buffer containing CyQuant®GR Dye (see 

Materials and Methods section for more detail). Invasion was determined by measuring 

the relative fluorescent units (RFU) in each cell lysate as the CyQuant®GR fluorescent 

dye binds to nucleic acids of the cells that have invaded thorough the basement 

membrane. The lOSE cells infected with the KLK13-WT virus invaded significantly 

more than the cells infected with the empty vector control (20,000 RFU vs. 16,000 RFU, 

respectively, p<0.05), suggesting KLK13 is involved in cellular invasion (Figure 2.9). 

The lOSE cells infected with the enzymatically dead KLK13-S218A 
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Figure 2.9 lOSE cells infected with KLK13-WT and KLK13 mutants show 
differential cellular invasion. lOSE cells were infected with the KLK13-WT and each 

KLK13 mutant virus and subjected to invasion assays for 24 hours and cellular invasion 

was measured by relative fluorescence units (RFU). The cells infected with the KLK13-

WT virus invaded faster than the cells infected with the empty vector control, pLNCX2. 

Also the cells infected with the KLK13-S218A virus invaded slower than empty vector 

control cells (pLNCX2). The cells infected with the double glycosylation mutant, 

KLK13-N30Q+N225Q, invaded slower than the cells infected with the empty vector 

control (pLNCX2). lOSE cells were infected with each virus in three separate infections 

and each was analyzed in triplicate. *, p<0.05; **, p<O.Ol. 
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(12,500RFU), invaded significantly Jess than the cells infected with the empty vector 

control (p<O.Ol), supporting the previous finding that KLK13 plays a role in cellular 

migration. There was no significant difference in cellular invasion between the cells 

infected with the inactivatable KLK13-K25Q (19,500RFU), and the cells infected with 

the empty vector. Also, there was no significant difference detected between cells 

infected with the single glycosylation mutants (KLK13-N30Q and KLK13-N225Q; 

19,500RFU and 15,500RFU, respectively) and cells infected with the empty vector 

control cells. Conversely, cells infected with the double glycosylation mutant, KLK13-

N30Q+N225Q (13,000RFU) invaded significantly less than the cells infected with the 

empty vector control (p<O.Ol), suggesting that a KLK13 glycosylation on both sites is 

required for cellular invasion, but not migration. 

2.4 Discussion 

Metastasis is a complex process involving degradation of the basement membrane, 

invasion of the stroma, adhesion, angiogenesis, cell proliferation, and migration (Yoshida 

et al., 2000). Considerable evidence supports the concept that each discrete step of 

metastasis is regulated by different proteins (Fidler and Radinsky, 1990). Extracellular 

proteolytic enzymes, including serine proteases, such as urokinase plasminogen activator 

(uP A) have been reported to be associated with destruction of the ECM and the basement 

membrane, both involved in the process of invasion and metastasis of cancer cells 

(Iwamoto et al., 2005). UPA is secreted as a single chain zymogen, pro-uP A that must be 

activated to its two-chain serine protease active form. UPA activates plasminogen from 

an inactive state to active plasmin, which has been shown to accelerate localized 
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degradation of ECM, which in tum facilitates tumor cell migration and invasion (Sharma 

and Sharma, 2007). Another group of serine proteases known to be involved in cancer is 

the KLK family. Interestingly, KLK2 (Frenette et al., 1997), KLK4 (Takayama et al., 

2001b), and KLK15 (Takayama et al., 2001a) have been shown to activate pro-uPA to 

uPA, resulting in plasmin activation and ECM degradation, suggesting these KLKs may 

also play a role in invasion and metastasis. The current study set out to determine if 

KLK13, a KLK which has been documented as being upregulated in ovarian cancer 

(Scorilas et al., 2004), contributes to cellular migration and invasion in ovarian epithelial 

cells. 

In order to examine the role of KLK13 in cellular migration and invasion, a suitable cell 

model had to be chosen. This required a cell line that had low endogenous levels of 

KLK13 and was not known to be highly migratory was required. The lOSE cell line was 

the closest to a normal ovarian surface epithelial that was available at the time of the 

study. To determine the level of KLK13 expression in this cell line, the expression of 

KLK13 mRNA by was examined by qRT-PCR. KLK13 mRNA was increased in ovarian 

cancer cell lines when compared to the lOSE cell line (Fig. 2.2B). These findings agreed 

with previous studies that found increased expression of KLK13 in ovarian cancer 

(Scorilas et al., 2004;White et al., 2009) and low KLK13 in normal ovaries (Kapadia et 

al., 2003;White et al., 2009). 

When KLK13 protein expression was examined in the ovarian cancer cell lines CAOV-3, 

OVCAR-3, and SKOV -3, different expression patterns were found (Figure 2.3). While 
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the first two cell lines, CAOV-3 and OVCAR-3, had two KLK13 bands at 48K and 36K, 

the SKOV -3 cell line showed an additional band at 28K. This 28K band is suggestive of 

the pre-glycosylated form of KLK13. It is interesting to note that this band does not 

appear in the other ovarian cancer cell lines studied, suggesting there may be different 

KLK13 protein processing and production in different forms of ovarian cancer. Another 

contributing factor may be the cell line migin . The CAOV-3 and OVCAR-3 cell lines 

were derived from ovarian adenocarcinomas, while the SKOV-3 cell line was de1ived 

from the ascites of a metastatic ovarian adenocarcinoma, which contributes to its 

metastatic phenotype. 

The difference in molecular weight may be explained as a result of N-linked 

glycosylation . N-linked glycosylation is required for proper protein folding and is 

especially important for kallikrein-related peptidases as they require the formation of the 

substrate binding pocket for activity. In order to confirm KLK13 glycosylation, SKOV-3 

total cell lysate was incubated with PNGaseF. There was a decrease in the protein at 48K 

(shown as a less intense band), and an increase in the lower molecular weight protein at 

36K (increased band intensity; Figure 2.4B), but no increase at the band at 28K (data not 

shown). This suggests that there may be other post-translational modifications other than 

N-linked glycosylation that increases the molecular weight of KLK13 in ovarian cancer. 

The role of KLK13 in cellular migration and invasion was also examined. lOSE cells 

infected with the KLK13-WT virus migrated significantly faster than control cells 

(Figure 2.6). Interestingly, when lOSE cells were infected with the putative 
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enzymatically dead protein, KLK13-S218A, the opposite effect on migration over the 

same period of time was observed, as these cells migrated much slower than the control 

cells. 

In order to verify if the involvement of KLK13 with migration was a cell-specific or 

common effect, migration assays were performed on mink lung epithelial cells, Mv lLu 

cells. These cells were chosen assuming epithelial cells should behave similarly to the 

lOSE cells when overexpressing KLK13. Additionally, KLK13 has also been shown to 

be overexpressed in lung cancer (P1anque et al., 2008), suggesting a similarity in 

metastatic mechanism. Similar to what was observed in the lOSE cells, the MvlLu cells 

infected with the KLK13-WT virus showed increased migration while the cells infected 

with the enzymatically dead KLK13, KLK13-S218A, showed decreased cellular 

migration when compared to control cells (95% vs. 39% vs. 66% cell covered area, 

respectively; Figure 2.8). 

The effect of increased cellular migration with increasing KLK13 expression may be 

explained in terms of a KLK enzymatic cascade, as KLKs have been shown to be 

involved in tumor promoting enzymatic cascades (Borgono and Diamandis, 2004). 

Besides KLK2, KLK4, and KLK15 being involved in the uPA activation cascade, 

KLKl, KLK2, and KLK3 can degrade insulin-like growth factor binding proteins 

(IGFBP 2, 3, 4, and 5) in prostate cancer, increasing insulin-like growth factor (IGF) 

availability and subsequently inducing cell proliferation and preventing apoptosis (Cohen 

et al., 1992). There may be a tumor promoting enzymatic cascade in which KLK13 is 
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involved in this cell model. The enzymatically active wild type KLK13 can bind, cleave, 

and release its cleavage products. On the other hand, the enzymatically dead protein, 

KLK13-S218A, can effectively sequester its substrates, but because it has no protease 

activity, the substrate stays bound to the inactive KLK13. This has a negative effect on 

KLK13 targets such as ECM proteins, including fibronectin and larninin, as they cannot 

be cleaved and therefore may inhibit cellular migration, suggesting an anti-KLK13 

therapy may be a useful therapeutic option. 

The potential of KLK13 as a therapeutic target for ovarian cancer was futther supported 

when a decreased rate of migration in SKOV-3 cells upon a decrease in KLK13 

expression was observed (Fig. 2.7). This may be a direct result of decreased protease 

activity, resulting in a decreased in ECM degradation. Kapadia et al. found similar 

results as they observed a decrease in the number of cells that migrated through a Boyden 

chamber assay when treated with a neutralizing KLK13 antibody (Kapadia et al., 2004). 

These data suggest KLK13 expression levels are directly related to cellular migration, a 

critical step in cancer metastasis. Potenti al anti-metastatic therapy may target proteins 

involved in cellular migration such as KLK13, thereby decreasing the chances of tumor 

metastasis. 

The involvement of KLK13 in cellular migration also supports the finding that increased 

KLK13 expression increases the invasive capacity of lOSE cells (Figure 2.9). Metastatic 

tumor cells invade host tissues through a series of steps, one or more of which requires 

proteolytic enzymes for invasion (Mignatti and Rifkin , 1993). KLK13 has been 
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previously shown to be able to degrade collagen, fibronectin and laminin (Kapadia et al., 

2004), thereby giving cancer cells the means to invade through the basement membrane. 

Interestingly, similar to what was seen in the migration assay, the cells infected with the 

KLK13-WT virus invaded significantly more than the control cells while the cells 

infected with the enzymatically dead KLK13, KLK13-S218A, showed significantly less 

cellular invasion, suggesting KLK13 may also be involved in tumor metastasis (Figure 

2.9). Increased KLK13 expression may increase the degradation of ECM proteins, which 

is critical for cellular invasion, and thereby aiding the cells in this process. Also, a 

reduction in migratory capacity of lOSE cells was seen when the cells were infected with 

the enzymatically dead KLK13, suggesting the inhibition of KLK13 activity decreases 

cellular invasion and that KLK13 is directly involved in tumor invasion. Interestingly, 

the cells infected with the double glycosylation mutant, KLK13-N30Q+N225Q, showed 

decreased cellular invasion (Figure 2.9) but no significant change in cellular migration. 

This may be explained by the activation of specific molecular pathways required for each 

biological process. In order for cells to migrate, they must activate pathways that are 

involved in cell-cell adhesion and cell movement. On the other hand, cell invasion 

largely depends on the degradation of components of the ECM. KLK13 has been 

previously shown to be able to degrade collagen, laminin , and fibronectin (Kapadia et al., 

2004) and may contribute directly to cellular invasion by its action on these components 

of the ECM. Therefore, KLK13 may play a more direct role in cellular invasion than 

migration. These results suggest proper KLK13 glycosylation is required for cellular 

invasion but not migration. 
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These data show that KLK13 is involved in cellular migration and invasion. Although 

much of these data analyzes cellular migration and invasion based on the potential 

enzymatic activity of the KLK13 mutants, enzymatic activity assays on these mutant 

proteins was not performed. KLK13 is a secreted protein and the purification of KLK13 

in cell media proved to be quite problematic. The concentration of KLK13 in the media 

was low and below the limits of detection by immunoblotting. Although enzyme-linked 

immunosorbent assay (ELISA) offers a more sensitive detection method, there were no 

commercially available tests for KLK13. Due to these limitations, enzymatic assays were 

not performed for KLK13 and the mutant proteins. The immunoblot analysis for the V5 

tag, confirms the KLK13 mutants were being processed as expected (Figure 2.5) and 

based on the findings regarding cellular migration and invasion, it appears that the 

KLK13 mutants are displaying the expected enzymatic activity, but the exact mechanism 

in which KLK13 has this effect is unknown. Other KLKs that have been shown to be 

involved in cellular migration are KLK6, where the presence of an anti-KLK6 antibody 

resulted in decreased cell migration and ECM degradation in-vitro (Ghosh et al. , 2004). 

Furthermore, KLK6 has been shown to be involved with colon cancer cell migration in a 

K-RAS dependant manner (Henkhaus et al., 2008). The involvement of KLKs in 

prostate cancer migration and invasion is also evident. Currently, the most widely used 

marker for prostate cancer is KLK3/PSA. When studied immunohistochemically, PSA 

staining is decreased in prostate carcinoma, while serum levels of the protein are 

increased. The elevation of serum PSA is due to the disruption of the basal cell layer and 

basement membrane, and this loss of the normal glandular architecture appears to allow 
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PSA increased access to the circulation (Bostwick, 1994). This leakage likely increases 

the exposure of the basement membrane and ECM to the proteolytic effects of PSA, 

contributing to invasion and cancer progression (Whitbread et al., 2006). 

These data show in-vitro that KLK13 is directly involved in cellular migration and 

invasion. Increased KLK13 expression in the poorly-migratory cell line, lOSE, increased 

both cellular migration and invasion. Supporting these findings, when KLK13 

expression was decreased in a cancer cell line that is known to be migratory, SKOV-3, 

cellular migration was significantly decreased. These findings support a role of KLK13 

in tumor metastasis and may have impm1ant implications in the development of novel 

diagnostic and therapeutic approaches for metastatic ovarian cancer. 
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Chapter 3 Human Kallikrein-Related Peptidases 6 and 13 
Predict Tumor Recurrence in Ovarian Cancer Patients 

A version of this chapter has been published in the British Journal of Cancer 2009:101 

(7):1107-13. 



3.1 Introduction 

Ovarian carcinoma is the most lethal of all the gynaecological malignancies and is 

considered a great clinical challenge as it is often diagnosed in the late stages due to its 

anatomical location and relative asymptomatic occurrence (Holschneider and Berek, 

2000). Approximately 75% of patients are diagnosed in late stage disease (Stage lliiiV) 

and have a five year survival rate of only 15-20%, compared to a 80-90% five year 

survival rate when diagnosed in the early stages [Stage IIII; (Schink, 1999)]. The disease 

is treatable and in most cases curable if diagnosed in the early stages. 

Recently, a family of serine proteases has been identified on human chromosome 19ql3 

and named the human kallikrein-related peptidase (KLK) family (Yousef and Diamandis, 

2003). The family consists of 15 genes, of which 12 (KLK2, KLK3, KLK4, KLK5, KLK6, 

KLK7, KLK8, KLKJO, KLKJJ, KLKJ3, KLK14, and KLK15) appear to be overexpressed 

in ovarian cancer. As been shown for prostate specific antigen (PSAIKLK3) in prostate 

cancer, these proteins may represent potential novel biomarkers for ovatian carcinoma 

(Borgono and Diamandis, 2004). This study examines the expression and prognostic 

significance of KLK6 and KLKJ3 in ovarian cancer. 

Kallikrein-related peptidase 6 (KLK6) was initially identified by three different groups 

who named it protease Min breast cancer (Anisowicz et al., 1996), zyme in Alzheimer's 

disease (Little et al., 1997) and neurosin in colon adenocarcinoma (Yamashiro et al., 

1997). KLK6 is reported to have differential expression in ovarian, breast, uterine, and 

colon cancers (Anisowicz et al., 1996;Hoffman et al., 2002;0gawa et al., 2005;Santin et 
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al., 2005;Tanimoto et al., 2001). Overexpression of KLK6 has been reported at both the 

gene and protein levels in ovarian cancer and has been associated with poor patient 

prognosis (Diamandis et al., 2000a;Kountourakis et al., 2008;Tanimoto et al., 2001). 

Recently, KLK6 has been implicated in the loss of cell-cell contact and promotion of cell 

proliferation, migration and invasion in keratinocytes (Kiucky et al., 2007). With the 

involvement in these biological functions, the overexpression of KLK6 in ovarian cancer 

suggests it may play a role promoting cancer invasion and metastasis. In vitro assays 

have shown recombinant KLK6 proteins are capable of extracellular matrix (ECM) 

protein digestion and neutralizing KLK6 antibodies can decrease the rate of migration of 

ovarian cancer cell lines, further supporting this hypothesis (Ghosh et al., 2004). 

Kallikrein-related peptidase 13 (KLK13) was first identified as being downregulated in 

breast cancer tissues and cell lines (Yousef et al., 2000). However, 50% of malignant 

ovarian tissues had increased KLK13 expression relative to nearly undetectable levels in 

normal or benign tissue (Kapadia et al., 2003). Additionally, Scorilas et al., found high 

levels of KLK13 in early stage cancers and consequently, associated high KLK13 

expression with a better prognosis (Scorilas et al., 2004). Similar to KLK6, KLK13 can 

degrade major components of the ECM and when treated with an anti-KLK13 antibody, 

an ovarian cancer cell line demonstrated decreased migratory capacity (Kapadia et al., 

2004). When KLK13 was overexpressed in the immortalized ovarian surface epithelial 

(lOSE) cell line, cellular migration (Figure 2.4) and invasive capacity (Figure 2.6) was 

increased. Also, when KLK13 expression was decreased in the SKOV-3 ovarian cancer 
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cell line, cellular migration was decreased (Figure 2.5), suggesting KLK13 plays a direct 

role in ovarian cellular migration. 

Based on the effects KLK6 and KLK13 have on ovarian cancer cells, the aim of this study 

was to evaluate the prognostic significance of KLK6 and KLKJ3 in epithelial ovarian 

cancer by quantifying gene expression levels and correlating them with clinical variables 

and patient survival data. 

3.2 Materials and methods 

3.2.1. Ovarian cancer samples 

The study analyzed formalin fixed, paraffin embedded (FFPE) tissues from 106 cases of 

sporadic ovarian carcinoma diagnosed in the Province of Newfoundland and Labrador, 

Canada, between 1983 and 2002. Eight normal ovary samples were also obtained for 

comparison. Tissues were collected from pathology archives and selected based on 

haematoxylin and eosin stains reviewed by a pathologist. Samples containing at least 

80% tumor cells were selected for the study. Clinical staging was performed using the 

standard International Federation of Gynaecology and Obstettics (FIGO) staging, with 

tumors graded as borderline, well differentiated (Grade I), moderately differentiated 

(Grade II), or poorly differentiated (Grade ill). Clinical history was obtained by review 

of patients' medical records in accordance with Memorial University's Human 

Investigation Committee protocol. 
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3.2.2. Immunohistochemistry 

Sections were cut 4!-lm thick and dried on glass slides overnight. Sections were 

deparaffinized in two changes of xylene (five minutes each) and rehydrated through 

decreasing graded alcohols of 100%, 95%, and 70% ethanol. The sections were then 

rinsed in running water for five minutes. Endogenous peroxidises were inhibited by 

incubating in 3% hydrogen peroxidase for ten minutes and rinsed in running water for 

five minutes. Antigen retrieval utilized a pressure cooker for 10 minutes in citrate buffer 

(pH 6.0). Slides were then rinsed in phosphate buffered saline (PBS, pH 7.4) and 

blocked with normal goat serum for 20 minutes. Slides were then incubated overnight in 

primary antibody. The antibody dilution for the KLK6 rabbit polyclonal antibody 

(Diamandis et al., 2000b) was 1:500 and the KLK13 mouse monoclonal antibody, clone 

33.1 (Kapadia et al., 2003) was 1:1000. The following day, slides were then washed 

twice with PBS (pH 7.4). Detection of KLK6 immunocomplex utilized Envision (Dako, 

Mississauga, ON) for 30 minutes, while localization of KLK13 immunocomplex utilized 

the LSAB+, Link and Strepavadin reagents (Dako, Mississauga, ON) for 15 minutes 

each. Slides were then washed twice with PBS (pH 7.4). Immune complexes were 

visualized by incubating with diaminobenzidine (DAB) for one minute. Slides were then 

rinsed in PBS (pH 7.4) and water. Sections were counterstained with hematoxylin for 

three minutes and rinsed in water. Sections were blued in Scott's tap water (1: 1 mix of 

83mM sodium bicarbonate and 332mM magnesium sulphate) for one minute and rinsed 

in water. Sections were then dehydrated though decreasing alcohols, 70%, 95%, and 

100% ethanol. Finally, sections were cleared in two changes of xylene and mounted. 
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3.2.3. RNA extraction 

Five lOJlm sections were cut from each FFPE tissue for nucleic acid isolation. Total RNA 

was extracted using the High Pure RNA Paraffin l(jt (Roche, Inctianapolis, IN) which has 

been optimized for nucleic acid extraction from paraffin embedded tissue. Samples were 

first deparaffinized by mixing 800flL xylene to each sample. Next, 400flL ethanol was 

added foiJowed by a two minute centrifugation at 17,000 x g. The supernatant was 

discarded and lmL of ethanol was added to the sample and vortexed. Again, the samples 

were spun for two minutes at 17,000 x g, the supernatant was discarded, and the tissue 

pellet was dried for 10 minutes at 55°C. 

From each ovarian tumor sample, RNA was isolated by first adding lOOflL tissue lysis 

buffer (supplied by the manufacturer), 1.2% sodium dodecyl sulphate (SDS) and 2mg/mL 

Proteinase K. Samples were vortexed briefly and incubated overnight at 55°C. The 

following day, 325flL binding buffer (supplied by the manufacturer) and 325flL ethanol 

was added to the samples, mixed, and pi petted into the upper chamber of High Pure filter 

tube. Samples · were spun for 30 seconds at 10,000 x g and the flow-through was 

discarded. The spin was repeated in order to dry the filter fleece completely. Samples 

were then washed three times with wash buffer (supplied by the manufacturer) and spun 

each time to discard the flow-through. The High Pure Filter was then spun for two 

minutes at maximum speed before eluting nucleic acid in 90flL elution buffer. One unit 

of DNase in DNase Incubation Buffer was added to the eluate and incubated for 45 

minutes at 3rC. Tissue lysis buffer with a final concentration of 3.6% SDS and 2mg/rnL 

Proteinase K was added to the samples and incubated for one hour at 55°C. 
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After the incubation, 325!-!-L Binding Buffer (supplied by the manufacturer) and 325!-!-L 

100% ethanol was added to the samples and pipetted into a fresh High Pure filter tube. 

Samples were spun for 30 seconds at 10,000 x g and the flow through was discarded, 

repeated by a second spin to dry the filter fleece completely. Samples were washed three 

times with wash buffer and spun each time to discard the flow through. The High Pure 

Filter was then spun for two minutes at maximum speed before finally eluting the RNA 

in 50J.!L elution buffer. 

Total RNA concentration was determined spectrophotometrically at 260 nm (NanoDrop 

1000 Spectrophotometer, NanoDrop Technologies Inc., Wilmington, DE) and samples 

were stored at -80°C. The presence of high molecular weight total RNA was determined 

using a bioanalyzer (Agilent Technologies, Bio-Rad, Hercules, CA) and ethidium 

bromide staining of samples using formaldehyde gel electrophoresis. Samples that did 

not have an A26o/A280 ratio greater than or equal to 1.8 were not included in the study. 

3.2.4. Reverse transcription 

CDNA was synthesized using 2!-tg total RNA and SuperscriptTM First-Strand Synthesis 

System for RT-PCR (Invitrogen, Carslband, CA) with random hexamers to ensure 

representation of all mRNA independent of polyadenylated tail. We first mixed 2J.lg total 

RNA, SOng random hexamers, l!!L dNTP mix (lOmM each of dCTP, dATP, dTTP, 

dGTP), and added RNAse-free water up to 10!-!-L. The contents of the tube were heated 

for five minutes at 65°C followed by a chill on ice. The products were collected by 

centrifugation, and to a final volume of 20!-!-L, lX RT Buffer (lOX stock), 20mM 

dithiothreitol (DTT), lOmM MgC]z, and 40 units of RNAse™ Out was added. The 
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reaction mix was incubated for two minutes at 25°C before adding 200 units 

Superscript™ RT, followed by a ten minute incubation at 25°C and a 50 minute 

incubation at 42°C. The enzyme was inactivated by incubating the reaction mix at 70°C 

for 15 minutes. 

3.2.5. Quantitative real time PCR 

Five J.!L eDNA was used for quantitative real time polymerase chain reaction (qRT-PCR). 

Reactions were performed using the ABI Prism 7000 (Applied Biosystems, Foster City, 

CA) with 96-well optical reaction plates (Applied Biosystems, Foster City, CA). 

Primer/probe sets were purchased as pre-made TaqMan Assays on Demand for KLKJ3, 

KLK6, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The details for each 

probe are described in Table 3.1. SOOng eDNA was added to TaqMan PCR Reaction Mix, 

TaqMan Probe, and water to 20J.!L total reaction volume. Thermal cycling was carried 

out as detai led by the manufacturer in the following conditions: 50°C for 2 minutes, 

95°C for 10 minutes, 40 cycles of 95°C for 15 seconds and 60°C for one minute. All 

samples were analyzed in triplicate for each target gene. 

The expression of each probe was measured by relative quantification, defined as the 

amount of the specific rnRNA normalized to normal ovary as determined using the !':::..!':::.. 

cycle threshold (CT) method (Pfaff!, 2001). In order to effectively use the !:::..!:::..CTmethod, 

it is recommended by the manufacture that a validation experiment of the target and 

control genes' amplification efficiency is required. This test ensures that the efficiency of 

the target gene and the reference gene amplification are approximately equal. This 

validation experiment is carried out by examining how !:::..CT varies with template dilution. 
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Table 3.1 TaqMan Probes used for qRT-PCR analysis. 

Probe Target Accession Transcript mRNAs Amplicon 
Number Variants Detected Length 

Detected 
Hs00160519_ml KLK6 1 NM_002774.3 Transcript 13 119bp 

NM_001012964.1 Variant A 
NM_001012965.1 Transcript 

Variant B 
Transcript 
Variant C 

HsO 1087307 _m 1 KLK132 NM_Ol5596.1 Splice Variant 1 10 82bp 
Splice Variant 2 
Splice Variant 3 
Splice Variant 4 
Splice Variant 5 
Splice Variant 6 
Splice Variant 7 
Splice Variant 8 

Hs99999905 m1 GAPDH3 NM 002046.3 N/A 121 122bp 
1. Human kallikrein-related peptidase 6 

2. Human kallikrein-related peptidase 13 
3. Glyceraldehyde 3-phosphate dehydrogenase 
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The absolute value of the slope of log input amount vs. L\CT should be less than 0.1. The 

absolute slopes of our validation experiments were 0.076 and 0.024 for KLK6 and 

KLK13, respectively. A summary of the validation experiment for KLK6 can been seen 

in Figure 3.1. 

The relative target gene expression was defined as r~t.cr, where L\L\CT = L\CT normal ovary 

L\CT ovarian cancer· A representative normal ovarian sample having the median level of 

expression was chosen as the calibrator sample (ie., target gene expression = 1). L\CT is 

defined as CT target - CT GAPDH, where the target genes were KLK13 and KLK6. Relative 

to the calibrator sample, target gene relative expression (RE) was classified as being low 

or high kallikrein expression. The expression level for determining high expressing 

samples was defined as one standard deviation above the mean value for normal ovarian 

RE, for a target gene. Samples with aRE equal to or above this value were classified as 

high expression, while samples below the cut-off were classified as having low 

expression. One standard deviation above the mean was chosen as the cut-off in order to 

account for inherent va1iation of each target gene. The cut-off for KLK6 was determined 

to be 5.211 RE and KLK13 was 0.981 RE. 

3.2.6. Statistical analysis 

All statistical analysis was performed with the Statistical Package for Social Sciences 

(SPSS; version 13.0, Chicago, IL, USA). The relationships between KLK6 and KLK13 

mRNA expression and patient clinical characteristics were analyzed with the x2 test. For 

survival analysis, two endpoints were examjned; cancer recurrence (defined as either a 
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Figure 3.1 Validation experiment for the amplification of KLK6 and GAPDH by 
qRT-PCR. The validity of the efficiency of KLK6 and GAPDH amplification was 
assessed by plotting log input amount versus t..CT. The absolute slope is 0.0764, 

indicating the t..t..CT calculation is valid. 
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local recurrence or metastasis) and death. These endpoints were used to calculate the 

recurrence-free survival (RFS) and overall survival (OS), respectively. RFS is defined as 

the time from first diagnosis to the 6me of first detected recurrence or metastasis. OS is 

defined as the time from initial diagnosis to the time of death. Two survival models, the 

Kaplan-Meier and the Cox Hazard Regression Model, were used for analysis. The 

Kaplan-Meier model was used to examine survival between the patients expressing 

kallikreins at low or high levels, while significance was measured with the log-rank test. 

The Cox Hazard Regression Model, using both univariate and multivariate models, was 

used to determine the hazard ratio (HR). 

3.3 Results 

3.3.1. Immunohistochemical localization of KLK6 and KLK13 in ovarian 
carcinoma 

Figure 3.2 illustrates KLK6 and KLK13 localization in ovmian surface epithelium (OSE) 

and epithelial ovarian cm·cinoma. Both KLK6 and KLK13 were localized in the 

cytoplasm of the normal ovarian surface epithelium (Figure 3.2 A & B). Negative 

control sections were stained with non-immune rabbit serum and there was no positive 

KLK6 or KLK13 staining (data not shown). Also, both KLK6 and KLK13 showed 

staining in all types of ovarian adenocarcinoma. Both KLK6 and KLK13 displayed 

strong staining in serous adenocarcinoma (Figure 3.2 C & D), while KLK6 was 

expressed in a mucinous adenocarcinoma (Figure 3.2 E), and KLK13 was expressed in 

clear cell tumor (Figure 3.2 F). In all cases, staining was most prominent in epithelial 
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OSE 

Non
Serous 

KLK6 KLK13 

Figure 3.2 KLK6 and KLK13 expression in normal ovarian surface epithelium (OSE) 
and epithelial ovarian cancer as determined by immunohistochemistry. The normal 
OSE stained positive for both KLK6 (A) and KLK13 (B) in the cytoplasm. Serous 
epithelial cancers expressed KLK6 (C) and KLK13 (D) in the cytoplasm. In a mucinous 
ovarian tumor, KLK6 showed strong cytoplasmic and some nuclear expression (E). 
KLK13 is positively expressed in a clear cell ovarian tumor (F). All photomicrographs 
were taken at 400X magnification. 
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cells, whether they were normal surface epithelium or carcinoma. Immunohistochemical 

evaluation of protein levels resulted in no significant associations with clinical 

characteristics (data not shown). This may be due to the fact that the intensity of staining 

in each section may not be a true representation of kallikrein expression levels in the 

sample, but may be confounded by variations in the fixing and embedding procedures 

used during the processing of tissues. Therefore, in this case, immunohistochemistry 

analysis specified KLK protein localization in normal ovary and ovarian cancer. KLK 

gene expression in ovarian cancer was assessed by qRT-PCR. 

3.3.2. Association between kallikrein-related peptidase gene expression and 
clinical variables 

The relationship between KLK6 and KLK13 expression levels and clinical characteristics 

is summarized in Table 3.2. Patient ages range from 20 to 89 years old with a mean age 

of 60 years. Compared to patients with low KLK6 expressing tumors, a significantly 

larger proportion of patients with high KLK6 expression had invasive (p=0.002) and late 

stage cancers (p=O.OOl). Compared to patients with low KLKJ3 expression, a larger 

proportion of patients with high KLK13 expression had invasive cancer (p=0.039). 

Unlike KLK6, KLK13 was not associated with clinical stage. At diagnosis, 65% of all 

patient samples had serous ovarian cancer. In supplementary analysis, when we 

compared serous to non-serous ovarian cancers (mucinous, endometrioid, clear cell and 

unknown), high KLK6 expression was associated with serous carcinomas (p=O.OOl; data 

not shown). Interestingly, all endometrioid ovarian cancers had high KLK13 expression 
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Table 3.2 Association between KLK6 and KLK13 mRNA expression with clinical data 

for 106 ovarian carcinoma patients and 8 normal ovaries. 

No. of Patients (%) No. of Patients(%) 

Variable n KLK6 KLK6 p- KLKJ3 KLKJ3 p-

Low High value Low High value 

Age 

<50 24 8 (33.3) 16 (19.5) 0.155 9 (18.8) 15 (25.9) 0.384 

2: 50 82 16 (66.7) 66 (80.5) 39 (81.2) 43 (74.1) 

Status 

Normal 8 6 (20.0) 2 (2.4) 0.002 7 (12.7) 1 (1.7) 0.039 

Borderline 6 3 (10.0) 3 (3.6) 4(7.3) 2 (3.4) 

Invasive 100 21 (70.0) 79 (94.0) 44 (80.0) 56 (94.9) 

Histological 

Serous 69 10 (41.6) 59 (72.0) 0.073 33 (68.8) 36(62.1) 0.082 

Mucinous 15 6 (25.0) 9 (11.0) 5 (10.4) 10 (17.2) 

Endometrioid 6 3 (12.5) 3 (3.6) 0 6 (10.3) 

Clear Cell 4 1 (4.2) 3 (3.6) 2 (4.2) 2 (3.4) 

Unknown 12 4 (16.7) 8 (9.8) 8 (16.6) 4 (7.0) 

Clinical Stage 

Early (III!) 32 14 (58.3) 18 (22.0) 0.001 16 (33.3) 16(27.6) 0.521 

Late (III/IV) 74 10 (41.7) 64 (78.0) 32 (66.7) 42 (72.4) 

Tumor Grade 

GB/G1 21 6 (25.0) 15 (18.3) 0.468 12 (25.0) 9 (15.5) 0.223 

G2/G3 85 18 (75.0) 67 (81.7) 36 (75.0) 49 (84.5) 
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relative to normal ovaries, but the small sample size was unable to provide sufficient 

power for a conclusive association. 

3.3.3. High KLK6 expression is associated with recurrence and patient survival 

Kaplan-Meier survival curves indicated patients with high KLK6 expression were more 

likely to have a shorter RFS (p=0.002, Figure 3.3A), and OS (p=O.Oll , Figure 3.3B), 

when compared to patients who had low KLK6 expressing tumors. These data are 

further supported by the Cox Regression analysis presented in Table 3.3. In univariate 

analysis, patients with high KLK6 expression had a greater risk of recurrence (p=0.004) 

than patients with low KLK6 expressing tumors (Table 3.3). As expected, clinical stage 

(p<O.OOl), tumor grade (p=0.012), and histological type (p=0.024), were all significant 

predictors of recurrence. In the multivariate model (Table 3.4), high KLK6 expression 

remains a significant predictor of recurrence (p=0.040), indicating these patients were 

approximately three times more likely to have a recurrence than patients with low KLK6 

expression. Overall, late clinical stage (Stage IWIV) was the strongest predictor of 

recurrence (p=O.OOl). 

When OS was examined in a Cox univariate model (Table 3.3), high KLK6 expression 

was significantly associated with a shorter OS (p=0.013). As expected, clinical stage 

(p<O.OOl), tumor grade (p<O.OOl), and histological type (p=0.037), were all associated 

with a shorter OS. Interestingly, patients 50 years of age or older, at the time of 

diagnosis, also had a significantly shorter OS (p=0.045) than patients under the age of 50. 

When these factors were included in a multivariate analysis (Table 3.4), clinical stage 

was the strongest predictor of OS as patients with late stage (Stage III/IV) cancers had a 
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Figure 3.3 Kaplan-Meier survival curves show the prognostic significance of KLK6 
mRNA expression in terms of RFS and OS in ovarian cancer patients. (A) Patients 
who have high KLK6 expressing tumors have a shorter recun·ence free survival (RFS) 
than patients with low KLK6 expressing tumors (p=0.002). (B) Patients who have high 
KLK6 expressing tumors have a shorter overall survival (OS) than patients with low 
KLK6 expressing tumors (p=O.Oll). Patients whose tumors have low KLK6 expression 
are represented with the broken line, while patients with high KLK6 expression are 
represented by the solid line. n, number of patients 
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Table 3.3 Univariate Cox Regression Analysis of KLK6 and KLK13 expression in ovarian 
cancer patients. 

Variable RFS OS 

HRI 95% cr2 p-value HRI 95% cr2 p-value 

Univariate Analysis 

KLK6 
Low 1.00 1.00 
High 4.59 1.61-13.08 0.004 2.06 1.16-3.63 0.013 

KLK13 

Low 1.00 1.00 
High 2.19 1.08-4.46 0.030 1.33 0.83-2.19 0.231 

Clinical Stage3 11.89 3.61-39.15 <0.001 5.91 2.82-12.35 <0.001 

Tumor Grade4 3.42 1.31-8.94 0.012 3.83 1.82-8.07 <0.001 
Histological Type5 2.31 1.12-4.78 0.024 1.67 1.03-2.71 0.037 

Age6 (ordinal) 2.76 0.97-7.87 0.057 1.98 1.02-3.87 0.045 

1. HR, Hazard Ratio; 
2. 95% CI, 95% Confidence Interval 
3. Clinical Stage, late vs. early Stage 
4. Tumor Grade, poor vs. well differentiated 
5. Histological Type, serous vs. non-serous 
6. Age, ~50 vs. <50 
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Table 3.4 Multivariate Cox Regression Analysis of KLK6 expression in ovarian cancer 

patients .. 

Variable 
RFS OS 

HRI 95% CI2 p-value HRI 95% CI2 p-value 

Multivariate 

KLK6 
Low 1.00 1.00 

High 3.03 1.05-8.74 0.040 1.45 0.81-2.60 0.215 

Clinical Stage3 (ordinal) 8.57 2.45-30.05 0.001 3.73 1.70-8. 18 0.001 

Tumor Grade4 (ordinal) 1.48 0.52-4.16 0.457 2.08 0.94-4.63 0.073 

Histological Type5 1.92 0.91-4.04 0.087 1.25 0.77-2.04 0.367 

Age6 (ordinal) 2.19 0.72-6.67 0.167 1.47 0.74-2.94 0.271 

1. HR., Hazard Ratio; 
2. 95% CI, 95% Confidence Interval 
3. Clinical Stage, late vs. early Stage 
4. Tumor Grade, poor vs. well differentiated 
5. Histological Type, serous vs. non-serous 
6. Age, ~50 vs. <50 
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four fold increased likelihood of a shorter OS (p=O.OOl) than patients having early stage 

(Stage IIII) cancer. Other clinical characteristics lost their prognostic ability to predict 

OS when subjected to multivariate analysis, including high KLK6 expression (p=0.215). 

3.3.4. High KLK13 expression in ovarian tumors is associated with poor prognosis 

When KLK13 expression was analyzed with the Kaplan-Meier model, patients with high 

KLK13 expression had a shorter RFS than patients with low KLK13 expression (p=0.027, 

Figure 3.4A). The strength of association between KLKJ3 high expressing tumors and 

survival outcome is presented in both univariate and multivariate Cox regression models 

(Table 3.3 & 3.5, respectively). Univariate analysis showed high KLKJ3 was a 

significant predictor of recun-ence (p=0.030), indicating a 2.2 fold increased probability 

of recunence compared to patients with low KLKJ3 expression (Table 3.3). When 

KLK13 expression was examined in a multivariate model, it retained the ability to 

significantly predict a shorter RFS (p=0.047; Table 3.4). Late clinical stage and serous 

type cancer also significantly predicted a shorter RFS (p=O.OOl and p=0.024, 

respectively). When we examined KLK13 expression along with other clinical 

parameters in a multivariate model, late clinical stage was the strongest predictor of OS 

(p<O.OOl). 
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Figure 3.4 Kaplan-Meier survival curves show the prognostic significance of KLK13 
mRNA expression in terms of RFS and OS in ovarian cancer patients. (A) Patients 
who have high KLK13 expressing tumors have a shorter recurrence free survival (RFS) 
than patients with low KLK13 expressing tumors (p=0.027). (B) Although there is a 
trend suggesting patients who have high KLK13 expressing tumors have a shorter overall 
survival (OS) than patients with low KLK13 expressing tumors, the finding was not 
significant (p=0.229). Patients whose tumors have low KLK13 expression are 
represented with the broken line, while patients with high KLK13 expression are 
represented by the solid line. n, number of patients. 
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Table 3.5 Multivariate Cox Regression Analysis of KLK13 expression in ovarian cancer 

patients. 

Variable RFS OS 
HR.' 95% cr2 p-value HR.' 95% cr2 p-value 

Multivariate Analysis 

KLK13 

Low 1.00 1.00 
High 2.20 1.01-4.78 0.047 1.00 0.61-1.61 0.988 

Clinical Stage3 (ordinal) 9.08 2.61-31.65 0.001 4.00 1.84-8.70 <0.001 
Tumor Grade4 (ordinal) 1.22 0.42-3.55 0.717 2.14 0.95-4.81 0.065 
Histological Type5 (ordinal) 2.43 1.13-5.24 0.024 1.29 0.79-2.10 0.308 
Age6 (ordinal) 2.49 0.82-7.54 0.108 1.46 0.73-2.91 0.286 

1. HR, Hazard Ratio; 
2. 95% CI, 95% Confidence Interval 
3. Clinical Stage, late vs. early Stage 
4. Tumor Grade, poor vs. well differentiated 
5. Histological Type, serous vs. non-serous 
6. Age, ~50 vs. <50 
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3.4 Discussion 

Unlike other reproductive malignancies, such as prostate cancer, ovarian cancer lacks a 

biomarker that may be used for general population screening. Currently, CA125, the 

only marker used in ovarian cancer patients, is reliable for monitoring response to 

treatment and disease recurrence (Rustin et al., 2004). The identification of early and 

novel biomarkers for the diagnosis and prognosis of ovarian cancer may lead to novel 

therapeutic applications and potential screening tests, thus decreasing the mortality of this 

deadly malignancy. The aim of this study was to examine the expression of KLK6 and 

KLK13 in ovarian cancer to determine their diagnostic and/or prognostic value. This is 

the first report to examine KLK13 mRNA expression in ovarian cancer and the largest set 

of specimens in which KLK6 mRNA expression has been analyzed. 

QRT-PCR was used to assess KLK6 and KLK13 mRNA expression in FFPE ovarian 

cancer tissues. Recent advances in biotechnology have lead to studies that have yielded 

high quality data from FFPE tissues, data that is reproducible, precise, and comparable to 

data obtained f1'om frozen specimens (Specht et al., 2001). These advances can be 

attributed to the determination of optimized reagent conditions. In order to extract total 

RNA from archival tissues, the High Pure RNA Pru·affin Kit (Roche, Indianapolis, IN) 

was used. This kit is specifically optimized for the isolation of RNA from FFPE tissues. 

In order to ensure RNA was suitable to use for qRT-PCR, RNA concentration and pmity 

was measured on a spectrophotometer and bioanaylzer. Also, RNA samples were run on 

a denaturing formaldehyde gel and stained with ethidium bromide to ensure high 

molecular weight RNA. Recently, the expression of a number of genes has been 

3-159 



examined by extracting mRNA from FFPE tissues in esophageal (Tanaka et al., 2009), 

pancreatic (Ikenaga et al., 2009), and breast and ovarian cancer (Berger et al., 20 10) as 

well as Barrett's esophagus (Botelho et al., 2010). 

The quality of RNA in FFPE samples was considered when performing the reverse 

transcription reactions. Rather than the traditional oligo(dT) used to prime RNA, random 

hexamers were used. In some cases, due to the increased susceptibility of RNA 

degradation, the poly-A tail may be lost and the use of random hexamers facilitates 

increased successful eDNA production from multiple points along an RNA molecule. 

Another consequence of RNA degradation is the Jack of ability to produce long 

amplicons via PCR. In order to avoid a misrepresentation of gene expression, a short 

amplicon of less than 200bp is recommended for qRT-PCR. The amplicon lengths were 

119bp, 82bp, and 122 bp, for KLK13, KLK6, and GAPDH, respectively. Together, the 

use of random hexamers to prime the reverse transcription and the shmt amplicon length 

allowed a high tolerance for obtaining quality data. Also, when choosing probes for the 

successful detection of mRNA, it is recommended that the probe targets more than two 

exons of the mRNA (Bustin et al., 2009). The TaqMan probe used for KLK13 targeted 

all five coding exons and detected all eight splice variants, while the KLK6 probe targeted 

four of the five coding exons, detecting all splice variants. The probe for GAPDH 

targeted three of the nine coding exons and detected 121 reported mRNA sequences. 

One limitation that comes with the use of FFPE tissues that must be acknowledged is the 

fact that the detection of mRNA in this tissue source is dependent on the state of 
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degradation of the mRNA. In order to determine the maximum length of mRNA, a series 

of primers, with increasing amplicon lengths, can be designed in order to identify the 

largest detectable RNA. In the absence of this test, one must be aware that variations in 

gene expression may be due to sample variation and detection. In order to account for 

these concerns, RNA samples were subjected to a bioanalyzer, which measured RNA 

concentration, 260/280 ratio, and RNA integrity, as well as agarose gels to ensure high 

molecular weight RNA. Samples that were not suitable were not used in the study. 

Supporting these findings is the fact that the cunent results agree with previously 

reported findings. KLK6 is well documented to be a poor prognostic indicator in ovarian 

cancer (Anisowicz et al., 1996;Diamandis et al., 2000a;Kountourakis et al., 2008;Luo et 

al., 2006;Ni et al., 2004;0ikonomopoulou et al., 2006;Shan et al., 2007;Tanimoto et al., 

2001;Yousef et al., 2004). As well, previously published findings support results that 

KLK13 has increased expression in ovarian cancer (Kapadia et al., 2003) and is a poor 

prognostic indicator for this malignancy. 

Although there are many considerations when using FFPE specimens, the advances in 

technology and careful considerations made by investigators when using this tissue 

source ensure reliable results. FFPE tissue also comes with a major advantage. Because 

the tissue is usually stored for long periods of time, patient clinical outcome is known. 

This greatly facilitates retrospective studies, especially those examining prognostic 

variables, as we have the information available to correlate gene expression with tumor 

and patient characteristics, as well as clinical outcome. 
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When tissues were examined for KLK expression, high KLK6 mRNA expression was 

associated with serous ovarian cancer and late stage disease (Table 3.2). These results 

are similar to previous studies that found increased KLK6 expression in ovarian cancers 

when compared to normal ovarian tissue (Anisowicz et al., 1996;Ni et al., 

2004;Tanimoto et al., 2001). Consistent with the current study (Table 3.2), previous 

studies have also associated high KLK6 levels with advanced ovarian cancer (Stage III

IV) and serous tumor histology (Hoffman et al., 2002;Shan et al., 2007). Ovarian serous 

tumors of borderline and low grade are thought to arise from a step-wise progression 

from adenoma to borderline tumor to carcinoma via the Ras-Raf signalling pathway 

(Bell, 2005). Recently, KLK6 expression and secretion has been shown to be Ras

dependant in a colon carcinoma cell line (Henkhaus et al., 2008). Constitutively active 

mutant K-Ras resulted in enhanced colon cancer cell invasion through both laminin and 

Matrigel matrixes. Together, these data suggest that Ras-Rafmutations may increase the 

invasive potential of these borderline tumors through increased expression of KLK6. 

This may also hold true for ovarian cancer as high KLK6 expression is associated with 

later stage, more invasive, cancers. 

This study is the first to report KLK13 mRNA expression in normal ovary and ovarian 

cancer patients. The expression of KLK13 mRNA in normal OSE was extremely low, 

while 55% of ovarian cancers examined had high KLK13 expression (Table 3.2). These 

findings support Kapadia et al., who found serum levels of KLK13 were below levels of 

detection in healthy individuals, yet 50% of ovarian cancer patients were positive for 

KLK13 (Kapadia et al., 2003). It also corroborates previous data as the lOSE cell line as 
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an appropriate cell model as it also had low KLK13 expresswn (Figure 2.1). 

Interestingly, 100% of ovarian endometrioid cancer samples were high grade and 

expressed KLK13 at a high level (Table 3.2). Although the sample size is small (6 cases), 

this expression pattern wan·ants further investigation. Low-grade endometrioid 

carcinomas have been suggested to arise from endometriosis or borderline endometrioid 

tumors (Obata et al., 1998), while high-grade endometrioid carcinomas have changes 

similar to high-grade serous carcinomas (Bell, 2005;Giordano et al., 2008;Press et al., 

2008) suggesting endometrioid cancers may represent two separate malignancies. This 

characteristic expression pattern of KLK13 may represent not only a novel marker to 

distinguish between high and low grade endometrioid cancers, but a unique pathway in 

which KLK13 may be involved in ovarian carcinogenesis. 

When the clinical utility of KLK6 and KLK13 was assessed in terms of RFS and OS, both 

KLKs were associated with poor prognosis in ovarian cancer patients (White et al., 

2009). Previous studies have repmted similar results (Anisowicz et al., 1996;Diamandis 

et al., 2000a;Hoffman et al., 2002;Kountourakis et al., 2008 ;Ni et al., 2004;Prezas et al., 

2006;Scorilas et al., 2004). Additionally, KLK6 has been shown to have increased 

expression in uterine and pancreatic cancers (Ruckett et al., 2008;Santin et al., 2005) and 

has been shown to be a poor prognostic marker in colon, gastric, and lung cancers 

(Nagahara et al., 2005;Nathalie et al., 2009;0gawa et al., 2005). KLK13 has been shown 

to have increased expression in lung and salivary gland tumors (Darling et al., 

2006a;Planque et al., 2008). The increased expression of both KLK6 and KLK13 over a 

number of different cancers, in addition to their ability to cleave ECM (Ghosh et al., 
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2004;Kapadia et al., 2004) strongly suggests they may play a role in cancer pathogenesis 

and may have use as potential diagnostic and prognostic markers. 

Kallikrein protein expressiOn was examined immunohistochemically in order to 

determine protein localization (Figure 3.2). When the prognostic significance of these 

sections was analyzed, no significant associations were determined. These findings are 

similar to previous reports examining the expression of KLK6 in primary pancreatic 

ductal adenocarcinoma (Ruckert et al. , 2008) and salivary gland tumors (Darling et al., 

2006b), finding no significant associations with patient survival. Although the OSE 

showed positive KLK protein expression, KLK mRNA expression in the ovary was very 

low or had no expression. This discordance may be explained by the fact that kallikreins 

take extended time to be secreted. Although the mRNA signal is low in the cell, there is 

a build up of protein while they are held in the cytoplasm and this may be reflected in the 

immunostains. There may also be variations in fixing and embedding procedures used 

during the processing of tissues which may be reflected in the staining. The use of 

negative controls for OSE sections indicated KLK protein expression was true and not an 

artifact that could be caused by the edge effect of immunohistochemistry. 

Among both the normal ovary and ovarian cancers, there was cytoplasmic expression of 

both human KLK6 and KLK13 (Figure 3.4). There was also some nuclear KLK6 

expression seen in a mucinous adenocarcinoma of the ovary. Both KLK6 and KLK13 

are expressed in normal epithelium (Petraki et al., 2003;Petraki et al., 2001), including 

the OSE as shown here. Ovarian cancer is thought to arise from either OSE or OSE cells 
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bordering inclusion cysts (Kaku et al., 2003), therefore it is expected that ovarian cancer 

cells would express a basal level of kallikrein expression. Given the semi-quantitative 

nature of immunohistochemistry and the fact that KLKs are secreted proteins, to see a 

significant difference in the cellular levels between normal OSE and ovarian cancer 

would require not only changes in KLK protein production, but also a significant change 

in the rate of kallikrein exocytosis. 

Epithelial ovarian cancer has the worst prognosis among the gynaecological 

malignancies, mainly due to the fact that most women are diagnosed in the later stages. 

Thus, there is an essential need for diagnostic and prognostic markers for this 

malignancy. Although there have been many candidates, none can fulfill the sensitivity 

and specificity requirements for a general population screening. Expression of the KLK 

family in ovarian cancer has been studied extensively and many KLKs have proven to be 

potential diagnostic and prognostic markers (Borgono et al., 2003a;Borgono et al., 

2003b;Borgono et al., 2006;Diamandis et al., 2003;Diamandis et al., 2000a;Dong et al., 

2003;Dong et al., 200l;Kim et al., 200l;Kountourakis et al., 2008;Kurlender et al., 

2004;Kyiiakopoulou et al., 2003;Luo et al., 200l;Magklara et al., 200l;Shigemasa et al., 

2004a;Shigemasa et al., 2004b;Shvartsman et al., 2003;Sidiropoulos et al., 2005;Yousef 

et al., 2003). 

Our study has confirmed that both KLK6 and KLK13 are overexpressed in ovarian 

cancer and are independent predictors of poor prognosis in ovarian cancer patients (White 

et al., 2009). We have shown that patients with high expression of KLK6 (Table 3.4) or 
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KLK13 (Table 3.5) are more likely to have a tumor recurrence than patients with low 

kallikrein expressing tumors. This study is the first to report increased expression of 

KLK13 mRNA in ovarian cancer patients and indicated that KLK13 may represent a 

specific biomarker for endometrioid carcinoma. These findings support the potential role 

of KLK6 and KLK13 as novel ovarian cancer biomarkers and may, in the future, offer 

targets for therapeutic applications. 

3.5 Authors Contributions 

A version of the chapter was published in the British Journal of Cancer as: 

KLK6 and KLK13 predict tumor recurrence in epithelial ovarian carcinoma 

British Journal of Cancer 2009:101 (7):1107-13. 

The folJowing outlines the authors' contributions to this study: 

Nicole White 

• Conception and design of the study, collection, analysis and interpretation of data, 

collection and assembly of data, writing the manusctipt 

Maria Mathews 

• Assistance in analysis and interpretation of data 

George Yousef 

• Consultation for the conception and design of the study, selection of patient 

samples 

Amrah Prizada 

• Assistance in the collection of the data 

Cathy Popadiuk 

• Recruitment of patient samples and editorial input during manuscript preparation 

3-166 



Jules Dore 

• Consultation for the conception and design of the study, interpretation of data, 

editorial revision of the article manuscript 

3-167 



3.6 References 

Anisowicz,A., Sotiropoulou,G., Stenman,G., Mok,S.C., and Sager,R. (1996). A novel protease 
homolog differentially expressed in breast and ovarian cancer. Mol. Med. 2, 624-636. 

Bell,D.A. (2005). Origins and molecular pathology of ovarian cancer. Mod. Pathol. 18, Sl9-S32. 

Berger,R., Fiegi,H., Goebel,G., Obexer,P., Ausserlechner,M., Doppler,W., Hauser
Kronberger,C., Reitsamer,R. , Egle,D., Reimer,D., Muller-Holzner,E., Jones,A., and 
Widschwendter,M. (2010). Toll-like receptor 9 expression in breast and ovarian cancer is 
associated with poorly differentiated tumors. Cancer Sci. 101, 1059-1066. 

Borgono,C.A. and Diamandis,E.P. (2004). The emerging roles of human tissue kallikreins in 
cancer. Nat. Rev. Cancer 4, 876-890. 

Borgono,C.A., Fracchioli,S., Yousef,G.M., Rigault De La Longrais IA, Luo,L.Y., Soosaipillai,A., 
Puopolo,M., Grass,L., Scorilas,A., Diamandis,E.P., and Katsaros,D. (2003a). Favorable 
prognostic value of tissue human kallikrein 11 (hKll) in patients with ovarian carcinoma. Int. J. 
Cancer 106, 605-610. 

Borgono,C.A., Grass,L., Soosaipillai,A., Yousef,G.M., Petraki,C.D., Howarth,D.H., Fracchioli,S., 
Katsaros,D., and Diarnandis,E.P. (2003b). Human kallikrein 14: a new potential biomarker for 
ovarian and breast cancer. Cancer Res. 63, 9032-41. 

Borgono,C.A., Kishi,T., Scorilas,A., Harbeck,N., Dorn,J., Schmalfeldt,B., Schmitt,M., and 
Diamandis,E.P. (2006). Human kallikrein 8 protein is a favorable prognostic marker in ovarian 
cancer. Clin. Cancer Res. 12, 1487-1493. 

Botelho,N.K., Schneiders,F.I., Lord,S.J., Freernan,A.K., Tyagi,S., Nancarrow,D.J., 
Hayward,N.K., Whiteman,D.C., and Lord,R.V. (2010). Gene expression alterations in formalin
fixed, paraffin-embedded Barrett's esophagus and esophageal adenocarcinoma tissues. Cancer 
Bioi. Ther. 10. 

Bustin,S.A., Benes,V., Garson,J.A., Hellemans,J. , Huggett,J., Kubista,M., Mueller,R., Nolan,T., 
Pfaffl,M.W., Shipley,G.L., Vandesompele,J., and Wittwer,C.T. (2009). The MIQE guidelines: 
minimum information for publication of quantitative real-time PCR experiments. Clin. Chern. 55, 
611-622. 

Darling,M.R., Jackson-Boeters,L., Daley,T.D. , and Diamandis,E.P. (2006a). Human kallikrein 13 
expression in salivary gland tumors. Int. J. Bioi. Markers 21, 106-110. 

Darling,M.R. , Jackson-Boeters,L., Daley,T.D., and Diamandis,E.P. (2006b). Human kallikrein 6 
expression in salivary gland tumors. J. Histochem. Cytochem. 54, 337-342. 

Diamandis,E.P., Borgono,C.A., Scorilas,A., Yousef,G.M., Harbeck,N. , Dorn,J., Schmalfeldt,B., 
and Schrnitt,M. (2003). Immunofluorometric quantification of human kallikrein 5 expression in 
ovarian cancer cytosols and its association with unfavorable patient prognosis. Tumour Bioi. 24, 
299-309. 

3-168 



Diamandis,E.P., Yousef,G.M., Soosaipillai,A.R., and Bunting,P. (2000a). Human kallikrein 6 
(zyme/protease Mlneurosin): a new serum biomarker of ovarian carcinoma. Clin. Biochem. 33, 
579-583. 

Diamandis,E.P., Yousef,G.M., Soosaipillai,A.R., Grass,L., Potter,A., Little,S ., and 
Sotiropoulou,G. (2000b). Immunofluorometric assay of human kallikrein 6 (zyme/protease 
Mlneurosin) and preliminary clinical applications. Clin. Biochem. 33, 369-375. 

Dong,Y., Kaushal,A., Brattsand,M., Nicklin,J., and Clements,J.A. (2003). Differential splicing of 
KLK5 and KLK7 in epithelial ovarian cancer produces novel variants with potential as cancer 
biomarkers. Clin. Cancer Res. 9, 1710-20. 

Dong,Y., Kaushai,A., Bui ,L., Chu,S., Fuller,P.J., Nicklin,J., Samaratunga,H., and Clements,J.A. 
(2001). Human kallikrein 4 (KLK4) is highly expressed in serous ovarian carcinomas. Clin. 
Cancer Res. 7, 2363-2371. 

Ghosh,M.C., Grass,L., Soosaipillai,A., Sotiropoulou,G., and Diamandis,E.P. (2004). Human 
kallikrein 6 degrades extracellular matrix proteins and may enhance the metastatic potential of 
tumour cells. Tumour Bioi. 25, 193-199. 

Giordano,G., Azzoni,C., D'Adda,T., Rocco,A., Gnetti,L., Froio,E., Merisio,C., and 
Melpignano,M. (2008). Human papilloma virus (HPV) status, pl6(INK4a), and p53 
overexpression in epithelial malignant and borderline ovarian neoplasms. Pathol. Res. Pract. 204, 
163-174. 

Henkhaus,R.S., Gerner,E.W., and Ignatenko,N.A. (2008). Kallikrein 6 is a mediator of K-RAS
dependent migration of colon carcinoma cells. Bioi. Chern. 389, 757-764. 

Hoffman,B.R., Katsaros,D., Scorilas,A., Diamandis,P., Fracchioli,S., Rigault de Ia Longrais,I.A., 
Colgan,T., Puopolo,M., Giardina,G., Massobrio,M., and Diarnandis,E.P. (2002). 
Immunofluorometric quantitation and histochemical localisation of kallikrein 6 protein in ovarian 
cancer tissue: a new independent unfavourable prognostic biomarker. Br. J. Cancer 87, 763-771. 

Holschneider,C.H. and Berek,J.S. (2000). Ovarian cancer: epidemiology, biology, and prognostic 
factors. Semin. Surg. Oneal. 19, 3-10. 

Ikenaga,N., Ohuchida,K., Mizumoto,K., Yu,J., Fujita,H., Nakata,K., Ueda,J., Sato,N., Nagai,E., 
and Tanaka,M. (2009). S100A4 mRNA is a diagnostic and prognostic marker in pancreatic 
carcinoma. J. Gastrointest. Surg. 13, 1852-1858. 

Kaku,T., Ogawa,S., Kawano,Y., Ohishi,Y. , Kobayashi,H., Hirakawa,T., and Nakano,H. (2003). 
Histological classification of ovarian cancer. Med. Electron Microsc. 36, 9-17. 

Kapadia,C., Chang,A., Sotiropoulou,G., Yousef,G.M., Grass,L., Soosaipillai,A., Xing,X., 
Howarth,D.H., and Diamandis,E.P. (2003). Human kallikrein 13: production and purification of 
recombinant protein and monoclonal and polyclonal antibodies, and development of a sensitive 
and specific immunofluorometric assay. Clin. Chern. 49, 77-86. 

3-169 



Kapadia,C., Ghosh,M.C., Grass,L., and Diamandis,E.P. (2004). Human kallikrein 13 involvement 
in extracellular matrix degradation. Biochem. Biophys. Res. Commun. 323, 1084-1090. 

Kim,H., Scorilas,A., Katsaros,D., Yousef,G.M., Massobrio,M., Fracchioli,S., Piccinno,R., 
Gordini,G., and Diamandis,E.P. (2001). Human kallikrein gene 5 (KLK5) expression is an 
indicator of poor prognosis in ovarian cancer. Br. J. Cancer 84, 643-50. 

Klucky,B., Mueller,R., Vogt,I., Teurich,S., Hartenstein,B., Breuhahn,K., Flechtenmacher,C., 
Angel,P., and Hess,J. (2007). Kallikrein 6 induces E-cadherin shedding and promotes cell 
proliferation, migration, and invasion. Cancer Res. 67, 8198-8206. 

Kountouralds,P., PsyiTi,A., Scorilas,A., Camp,R., Markalds,S., Kowalsld,D., Diamandis,E.P., and 
Dimopoulos,M.A. (2008). Prognostic value of kallikrein-related peptidase 6 protein expression 
levels in advanced ovarian cancer evaluated by automated quantitative analysis (AQUA). Cancer 
Sci . 99, 2224-2229. 

Kurlender,L., Yousef,G.M., Memari,N., Robb,J.D., Michael,I.P., Borgono,C., Katsaros,D., 
Stephan,C., Jung,K., and Diamandis,E.P. (2004). Differential expression of a human kallikrein 5 
(KLK5) splice variant in ovarian and prostate cancer. Tumour Bioi. 25, 149-56. 

Kyriakopoulou,L.G., Yousef,G.M., Scorilas,A., Katsaros,D., Massobrio,M., Fracchioli,S., and 
Diamandis,E.P. (2003). Prognostic value of quantitatively assessed KLK7 expression in ovarian 
cancer. Clin. Biochem. 36, 135-43. 

Little,S.P., Dixon,E.P. , Norris,F., Buckley,W., Becker,G.W., Johnson,M., Dobbins,J.R., 
Wyrick,T., Miller,J.R., MacKellar,W. , Hepbum,D., Corvalan,J. , McClure,D., Liu,X., 
Stephenson,D., Clemens,J., and Johnstone,E.M. (1997). Zyme, a novel and potentially 
amyloidogenic enzyme eDNA isolated from Alzheimer's disease brain. J. Bioi. Chern. 272, 
25135-25142. 

Luo,L.Y., Bunting,P., Scorilas,A., and Diamandis,E.P. (2001). Human kallikrein 10: a novel 
tumor marker for ovarian carcinoma? Clin. Chim. Acta 306, 111-8. 

Luo,L.Y., Soosaipillai,A., Grass,L., and Diamandis,E.P. (2006). Characterization of human 
kallikreins 6 and 10 in ascites fluid from ovarian cancer patients. Tumour Bioi. 27, 227-234. 

Magklara,A., Scorilas,A., Katsaros,D., Massobrio,M., Yousef,G.M., Fracchioli,S., Danese,S., and 
Diamandis,E.P. (2001). The human KLK8 (neuropsin/ovasin) gene: identification of two novel 
splice variants and its prognostic value in ovarian cancer. Clin. Cancer Res. 7, 806-11. 

Nagahara,H., Mirilori,K., Utsunomiya,T., Barnard,G.F., Ohira,M., Hirakawa,K., and Mori ,M. 
(2005). Clinicopathologic and biological significance of kallikrein 6 overexpression in human 
gastric cancer. Clin. Cancer Res. 11, 6800-6806. 

Nathalie,H.V., Chris,P., Serge,G., Catherine,C., Benjarnin,B., Claire,B., Christelle,P., 
Briollais,L., Pascale,R., Marie-Lise,J. , and Yves,C. (2009). High kallikrein-related peptidase 6 in 
non-small cell lung cancer cells: an indicator of tumor proliferation and poor prognosis. J. Cell 
Mol. Med. 13, 4014-4022. 

3-170 



Ni,X., Zhang,W., ·Huang,K.C., Wang,Y., Ng,S.K., Mok,S.C., Berkowitz,R.S., and Ng,S.W. 
(2004). Characterisation of human kallikrein 6/protease M expression in ovarian cancer. Br. J. 
Cancer. 91,725-731. 

Obata,K., Morland,S.J., Watson,R.H., Hitchcock,A., Chenevix-Trench,G., Thomas,E.J. , and 
Campbeli,I.G. (1998). Frequent PTEN/MMAC mutations in endometrioid but not serous or 
mucinous epithelial ovarian tumors. Cancer Res. 58, 2095-2097. 

Ogawa,K., Utsunomiya,T., Mimori,K., Tanaka,F., Inoue,H., Nagahara,H., Murayama,S., and 
Mori,M. (2005). Clinical significance of human kallikrein gene 6 messenger RNA expression in 
colorectal cancer. Clin. Cancer Res. 11, 2889-2893. 

Oikonomopoulou,K., Scorilas,A., Michael,I.P., Grass,L. , Soosaipillai,A., Rosen,B. , Murphy,J., 
and Diamandis,E.P. (2006). Kallikreins as markers of disseminated tumour cells in ovarian 
cancer-- a pilot study. Tumour Bioi. 27, 104-114. 

Petraki,C.D., Karavana,V.N., and Diamandis,E.P. (2003). Human kallikrein 13 expression in 
normal tissues: an immunohistochemical study. J. Histochem. Cytochem. 51, 493-501. 

Petraki,C.D., Karavana,V.N., Skoufogiannis,P.T., Little,S.P., Howarth,D.J., Yousef,G.M. , and 
Diamandis,E.P. (2001). The spectrum of human kallikrein 6 (zyme/protease M/neurosin) 
expression in human tissues as assessed by immunohistochemistry. J. Histochem. Cytochem. 49, 
1431-1441. 

Pfaffl,M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. 
Nucleic Acids Res. 29, e45-e50. 

Planque,C., Blechet,C., Ayadi-Kaddour,A., Heuze-Vourc'h,N., Dumont,P., Guyetant,S., 
Diamandis,E.P., El Mezni,F. , and Courty,Y. (2008). Quantitative RT-PCR analysis and 
immunohistochemical localization of the kallikrein-related peptidases 13 and 14 in lung. Bioi. 
Chern. 389, 781-786. 

Press,J.Z., De Luca,A., Boyd,N., Young,S. , Troussard,A., Ridge,Y., Kaurah,P., Kalloger,S.E., 
Blood,K.A., Smith,M., Spellman,P.T., Wang,Y., Miller,D.M., Horsman,D., Faham,M., 
Gilks,C.B., Gray,J., and Huntsman,D.G. (2008). Ovarian carcinomas with genetic and epigenetic 
BRCAl loss have distinct molecular abnormalities. BMC. Cancer 8, 17-29. 

Prezas,P., Arlt,M.J., Viktorov,P., Soosaipillai,A., Holzscheiter,L., Schrnitt,M., Talieri,M., 
Diamandis,E.P., Kruger,A., and Magdolen,V. (2006). Overexpression of the human tissue 
kallikrein genes KLK4, 5, 6, and 7 increases the malignant phenotype of ovarian cancer cells. 
Bioi. Chern. 387,807-811. 

Ruckert,F., Hennig,M., Petraki,C.D., Wehrum,D., Distler,M., Denz,A. , Schroder,M. , 
Dawelbait,G., Kalthoff,H. , Saeger,H.D., Diamandis,E.P., Pilarsky,C., and Grutzmann,R. (2008). 
Co-expression of KLK6 and KLK 10 as prognostic factors for survival in pancreatic ductal 
adenocarcinoma. Br. J. Cancer 99, 1484-1492. 

3-171 



Rustin,G.J., Quinn,M., Thigpen,T., du,B.A., Pujade-Lauraine,E., Jakobsen,A., Eisenhauer,E., 
Sagae,S., Greven,K., Vergote,I. , Cervantes,A. , and Vermorken,J. (2004). Re: New guidelines to 
evaluate the response to treatment in solid tumors (ovarian cancer). J. Nat!. Cancer Inst. 96, 487-
488. 

Santin,A.D., Diamandis,E.P., Bellone,S., Soosaipillai,A., Cane,S., Palmieri,M., Bumett,A., 
Roman,J.J., and Pecorelli,S. (2005). Human kallikrein 6: a new potential serum biomarker for 
uterine serous papillary cancer. Clin. Cancer Res. 11, 3320-3325. 

Schink,J.C. (1999). Current initial therapy of stage III and IV ovarian cancer: challenges for 
managed care. Semin. On col. 26, 2-7. 

Scorilas,A., Borgono,C.A., Harbeck,N., Dom,J., Schmalfeldt,B., Schmitt,M., and Diamandis,E.P. 
(2004). Human kallikrein 13 protein in ovarian cancer cytosols: a new favorable prognostic 
marker. J . Clin. Oneal. 22, 678-685. 

Shan,S.J., Scorilas,A., Katsaros,D., and Diamandis,E.P. (2007). Transcriptional upregulation of 
human tissue kallikrein 6 in ovarian cancer: clinical and mechanistic aspects. Br. J. Cancer. 96, 
362-372. 

Shigemasa,K., Gu,L., Tanimoto,H., O'Brien,T.J., and Ohama,K. (2004a). Human kallikrein gene 
11 (KLK11) mRNA overexpression is associated with poor prognosis in patients with epithelial 
ovarian cancer. Clin. Cancer Res. 10, 2766-2770. 

Shigemasa,K., Tian,X., Gu,L., Tanimoto,H., Underwood,L.J., O'Brien,T.J., and Ohama,K. 
(2004b). Human kallikrein 8 (hK8!f ADG-14) expression is associated with an early clinical stage 
and favorable prognosis in ovarian cancer. Oneal. Rep. 11, 1153-9. 

Shvartsman,H.S., Lu,K.H., Lee,J., Lillie,J., Deavers,M.T., Clifford,S., Wolf,J.K., Mills,G.B., 
Bast,R.C., Jr., Gershenson,D.M., and Schmandt,R. (2003). Overexpression of kallikrein 10 in 
epithelial ovarian carcinomas. Gynecol. Oneal. 90, 44-50. 

Sidiropoulos,M., Pampalakis,G., Sotiropoulou,G., Katsaros,D., and Diamandis,E.P. (2005). 
Downregulation of human kallikrein 10 (KLKlO/NESl) by CpG island hypermethylation in 
breast, ovarian and prostate cancers. Tumour Bioi. 26, 324-336. 

Specht,K., Richter,T., Muller,U., Walch,A., Wemer,M., and Hofler,H. (2001). Quantitative gene 
expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor 
tissue. Am. J Pathol. 158, 419-429. 

Tanaka,K., Otake;K., Mohri,Y., Ohi,M., Yokoe,T., Toiyama,Y., Miki,C., Tonouchi,H., and 
Kusunoki,M. (2009). Clinical significance of the gene expression profile in residual tumor cells 
after neoadjuvant chemo-radiotherapy for esophageal cancer. Oneal. Rep. 21, 1489-1494. 

Tanimoto,H., Underwood,L.J., Shigemasa,K., Parmley,T.H., and O'Brien,T.J. (2001). Increased 
expression of protease Min ovarian tumors. Tumour Bioi. 22, 11-18. 

3-172 



White,N.M., Mathews,M., Yousef,G.M., Prizada,A., Popadiuk,C., and Dore,J.J. (2009). KLK6 
and KLK13 predict tumor recurrence in epithelial ovarian carcinoma. Br. J. Cancer 101, 1107-

1113. 

Yamashiro,K., Tsuruoka,N., Kodama,S. , Tsujimoto,M., Yamamura,Y., Tanaka,T., Nakazato,H., 
and Yamaguchi,N. (1997). Molecular cloning of a novel trypsin-like serine protease (neurosin) 
preferentially expressed in brain. Biochim. Biophys. Acta 1350, 11-14. 

Yousef,G. and Diamandis,E.P. (2003). Human Kallikreins: Common Structural features , 
Sequence Analysis and Evolution. Current Genomics 4, 147-165. 

Yousef,G.M., Borgono,C.A., White,N.M., Robb,J.D. , Michael,I.P., Oikonomopoulou,K., 
Khan,S., and Diamandis,E.P. (2004). In silico analysis of the human kallikrein gene 6. Tumour 
Bioi. 25, 282-289. 

Yousef,G.M. , Chang,A., and Diamandis,E.P. (2000). Identification and characterization of KLK
L4, a new kallikrein-like gene that appears to be down-regulated in breast cancer tissues. J. Bioi. 

Chern. 275, 11891-11898. 

Yousef,G.M., Polymeris,M.E., Grass,L., Soosaipillai ,A. , Chan,P .C., Scorilas,A., Borgono,C., 
Harbeck,N., Schmalfeldt,B., Dom,J., Schmitt,M., and Diamandis,E.P. (2003). Human kallikrein 
5: a potential novel serum biomarker for breast and ovarian cancer. Cancer Res. 63, 3958-65. 

3-173 



Chapter 4 The Combination of Kallikrein-Related Peptidase 6 
(KLK6), Kallikrein-Related Peptidase 13 (KLK13) and MUC16 

Increases Sensitivity in the Detection of Ovarian Cancer 

A version of this chapter is has been published in Cancer Biomarkers 2009:5(6):279-287. 



4.1 Introduction 

Ovarian carcinoma is the most lethal of all the gynaecological malignancies. About 75% 

of patients are diagnosed in late stage disease (Stage III/IV) with a five year survival rate 

of only 15-20%, compared to a 80-90% when women are diagnosed in the early stages 

(Stage IIII) (Schink, 1999). Presently, ovarian cancer is diagnosed using high resolution 

computed tomography (CT) scans combined with serum tests for elevated CA125 levels 

(Kim et al., 2009). Although CA125 is used as a marker of recurrence in ovarian cancer 

patients following primary treatment (Rustin et al., 2004), it is not useful in general 

population screening as it lacks the sensitivity and specificity required for a diagnostic 

biomarker. Forty to fifty percent of Stage IIII ovarian cancers are CA125 negative 

(Jacobs and Bast, Jr., 1989) and almost 6% of women without cancer have elevated 

serum CA125 levels (Fields and Chevlen, 2006). A number of groups have looked at 

improving the sensitivity and specificity of CA125 by combining it with other markers. 

For example, macrophage colony stimulating factor has been shown to have 96-98% 

specificity in detecting ovarian cancer when used in combination with CA125, but only 

had 20% sensitivity (Suzuki et al., 1993). More recently, interleukin 18 and fibroblast 

growth factor 2 combined with CA125 showed similarly poor characteristics (LePage et 

al., 2006). Similar to CA125, other single markers such as lysophosphatidic acid (Xu et 

al., 1998), inhibin (Robertson et al., 2004), and osteopontin (Nakae et al., 2006), have 

been examined but have all lacked the sensitivity and specificity requirements to be 

validated as a biomarker for early stage ovarian cancer. Ovarian cancer is relatively 

uncommon, thus any useful screening method must be highly specific. It is estimated 
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that a specificity of 99.7% is needed to achieve a positive predictive value of 10%, with a 

sensitivity of 67% in postmenopausal women (Bast, Jr. et al., 1998). 

CA125 was first identified by a monoclonal antibody, OC125, that had been developed in 

mice immunized with an ovarian cancer cell line (Bast, Jr. et al., 1981). CA125 is a high 

molecular mass glycoprotein (Lloyd et al., 1997) and despite the current clinical utility of 

CA125, the normal biological function of the protein remains unknown. The gene for 

CA125 has been cloned and named MUCINI6 (MUCI6), and has been suggested to play 

a biological role in metastasis of ovarian cancer (Yin and Lloyd, 2001). MUC16 has 

been shown to bind specifically to mesothelin in advanced grade ovarian adenocarcinoma 

(Rump et al., 2004). This novel binding may contribute to the metastasis of cancer from 

the ovary to the peritoneum by initiating cell attachment to the mesothelial epithelium via 

binding to mesothelin (Rump et al., 2004). A more complete examination of the biology 

of MUC16 is required as it may lead to a more complete understanding of ovarian 

oncogenesis. 

Recently, the kallikrein-related peptidase (KLK) family has shown promise as potential 

markers for ovarian carcinoma (White et al., 2009;Yousef and Diamandis, 2003). The 

family consists of 15 secreted serine proteases that have been implicated in a number of 

different cancers. Interestingly, 12 KLKs have been shown to be overexpressed in 

ovarian cancer at the mRNA and/or protein level (Borgono and Diamandis, 2004). In 

particular, kall ikrein-related peptidase 6 (KLK6) has been implicated in ovruian 

carcinogenesis. KLK6 was cloned by three separate groups as protease M (Anisowicz et 

4-176 



al., 1996), zyme (Little et al., 1997), and neurosin (Yamashiro et al., 1997). With the 

discovery of the extended KLK family, this gene was renamed KLK6. KLK6 has been 

found to have increased expression in ovarian cancer patients at both the gene and protein 

levels. One study found KLK6 elevated in 30 of 32 ovarian carcinomas (Tanimoto et al., 

2001). Protein expression of KLK6 was also examined in several studies. Using a 

KLK6-specific imrnunoflourometric assay, KLK6 was found to be increased in the serum 

of ovarian cancer patients when compared to normal patients (Diamandis et al., 2000b;Ni 

et al., 2004), and was also found in the ascites fluid of ovarian cancer patients (Luo et al., 

2006). Hoffman et al., concluded KLK6 expression was an unfavourable prognostic 

marker as KLK6 was significantly associated with late stage disease, serous histological 

type, residual tumor, and suboptimal debulking in ovarian cancer patients (Hoffman et 

al., 2002). 

Similar to KLK6, kallikrein-related peptidase 13 (KLK13), has been shown to be 

associated with a number of endocrine related malignancies, including ovarian cancer 

(Yousef et al., 2000). KLK13 was cloned using the positional candidate gene approach 

and was found to be downregulated in breast cancer cell lines and tissues when compared 

to nmmal counterparts (Yousef et al., 2000). Recently, the use of KLK13 as a potential 

ovarian cancer biomarker has been evaluated (Kapadia et al., 2003;White et al., 2009). 

KLK13 is expressed at low to undetectable levels in normal ovaries, but has been shown 

to have increased expression in 50% of malignant ovaries when compared normal 

counterparts (Kapadia et al. , 2003). Also, KLK13 has been shown to be a mru·ker of poor 

prognosis for ovarian cancer patients (White et al., 2009). 
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Since ovarian cancer has been described as a spectrum of cancers of differing originating 

mechanisms, it is unlikely a single marker will provide the desired infotmation for 

diagnosis, prognosis and determination of treatment strategies. However, a simple 

detection method using a panel of markers in which ovarian cancer has a specific 

signature may allow for early detection and offer treatment options where none presently 

exist (Urban, 2003). The current study uses a unique approach to investigate the 

sensitivity and specificity of three genes, MUC16, KLK6 and KLK13, alone and in 

combination, to detect ovarian cancer. 

4.2 Materials and methods 

4.2.1 Patient samples 

Formalin fixed paraffin embedded ovarian cancer tissues were collected from 106 cases 

of sporadic ovarian carcinoma diagnosed in St. John ' s, Newfoundland, Canada, between 

1983 and 2002. Patients varied from 20 to 81 years of age with a mean age of 60 years. 

Eight normal ovary samples were also collected for comparison. Cases were selected 

from the pathology archives at the Health Sciences Centre, St. John's, Newfoundland, 

Canada, based on pathological review of hematoxylin and eosin stained tissue sections. 

Samples containing at least 80% tumor cells were selected for the study. Clinical staging 

was performed using the International Federation of Gynecology and Obstetrics (FIGO) 

criteria. Tumors were graded as borderline, well differentiated (Grade I), moderately 

differentiated (Grade II), or poorly differentiated (Grade III). Clinical data was obtained 

by review of patients' records in accordance with the Memorial University Human 

Investigation Committee protocol. This sample set was also utilized in Chapter 3. 
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4.2.2 Total RNA extraction 

Five sections of lOJlm each were cut from paraffin embedded tissues for nucleic acid 

isolation. Total RNA was extracted using the High Pure RNA Paraffin Kit (Roche, 

Indianapolis, IN) according to the manufacture's protocol. A detailed protocol for total 

RNA extraction can be found in Section 3.2.3. Total RNA concentration was determined 

spectrophotometrically at 260nm and samples were stored at -so·c. CDNA was 

synthesized using 2J.1g total RNA and the Superscript First-Strand Synthesis System for 

RT-PCR (Invitrogen, Carslband, CA) with random hexamers. 

4.2.3 Quantitative real time PCR 

QRT-PCR was performed using the ABI Prism 7000 (Applied Biosystems, Foster City, 

CA) to carry out a retrospective screening of 106 ovarian cancers and 8 normal ovaries. 

TaqMan Assays on Demand were purchased for KLK13, KLK6, MUC16 and GAPDH 

(Applied Biosystems, Foster City, CA). The MUC16 probe (Hs01065178_ml) was 

designed using Accession number NM_024690.2 (Kolwijck et al., 2009), utilized six 

coding exons to detect mRNA expression, and produced an amplicon of 72bp. The 

details of the probes used for KLK6, KLK13, and GAPDH can be found in Table 3.1. 

Target gene expression was normalized to endogenous GAPDH and gene expression in 

normal ovaries. Thermal cycling conditions were according to the manufacture's protocol 

and all reactions for each sample were performed in triplicate. A detailed account of the 

reverse transcription and qRT-PCR protocol can be found in Section 3.2.4. 
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Relative quantification, the amount of target normalized to endogenous control, was 

performed with the 6 /J. cycle threshold (CT) method (Pfaff!, 2001). In order to 

effectively use the 6/J.CT method, a validation experiment of the amplification efficiency 

of the target and control genes is required to ensure the efficiency of the target 

amplification and the efficiency of the reference amplification are approximately equal. 

The absolute value of the slope of log input amount vs. !J.CT should be less than 0.1. The 

slope of our validation experiment for MUC16 was 0.073 as shown in Figure 4.1. The 

slopes for KLK6 and KLK13 were 0.076 and 0.024, respectively. 

Patients were classified as having low or high gene expression based on qRT-PCR 

results. Patients who had high expression were classified as being "positive" for that 

gene. One standard deviation above the mean value of the normal ovary gene expression 

was used as the cut-off point. The cut off values for KLK6, KLK13, and MUC16 were 

5.21 , 0.98, and 1.19, respectively. In the combined groups, patients having either gene 

expressed at a high level were classified as "positive" gene expression. These values 

were used to determine sensitivity, specificity, positive and negative predictive values. 

4.2.4 Statistical analysis 

Statistical analysis was performed with Statistical Package for the Social Sciences (SPSS) 

13.0 (Chicago, IT..,, USA). Differences in gene expression was analyzed with a one way 

ANOVA and a value was considered significant if p<0.05. 
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Validation Experiment 
Mucin 16 vs. GAPDH 
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Figure 4.1 Validation experiment for the amplification of MUCIN16 and GAPDH by 
qRT-PCR. The validity of the MUCINJ6 and GAPDH probes were assessed by plotting 

Jog input amount versus t-.CT. The absolute slope of 0 .0733 indicates the t-.t-.CT 

calculation is valid. 
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4.3 Results 

4.3.1 Patient characteristics 

The clinical characteristics of 106 ovarian cancer patients are summarized in Table 4.1. 

The majority ofpatients were older than 50 years of age (77%). Similar to the frequency 

seen in a clinical setting, a small number of cases were classified as borderline ovarian 

cancer (5%), while the majority of cases were diagnosed as late stage cancer (70%; Stage 

ITI and IV). Among the 106 ovarian cancers, 65% of cases were serous type ovarian 

cancers, and 42% tumors were poorly differentiated. Eight normal ovaries were also 

analyzed. 

4.3.2 MRNA expression 

When KLK6 mRNA expression levels were examined in normal ovary and ovarian 

cancer tissues, 25% of normal ovaries were classified as positive for KLK6 expression, 

compared to borderline tumors where 50% had high KLK6 expression (Figure 4.2). 

When we examined the subset of invasive ovarian cancers, 79% were classified as having 

high KLK6 expression (p<0.05; Figure 4.2). 

The expression of KLKJ3 mRNA was significantly increased in invasive ovarian cancers 

when compared to that of normal ovary (p<0.001; Figure 4.2). Only 12.5% of normal 

ovaries were positive for KLK13 expression, while 33.3% of borderline cases and 56% of 

invasive ovariari cancers tested positive for KLK13 (Figure 4.2). In four of the eight 

normal ovaries examined, KLKJ3 expression was below the limit of detection. 
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Table 4.1 Clinical characteristics of 106 ovarian cancer patients and 8 norma] ovaries. 

Variable Characteristic No. of patients (%) 

Age <50 24 (22.6) 

~50 82 (77.4) 

Sample Normal 8 (7.0) 

Borderline 6 (5.3) 

Invasive 100 (87.7) 

Histological Type Serous 69 (65.1) 

Mucinous 15 (14.2) 

Endometrioid 6 (5.7) 

Clear Cell 4 (3.8) 

Unknown 12 (11.3) 

Clinical Stage I 24 (22.6) 

II 8 (7.5) 

III 64 (60.4) 

IV 10 (9.4) 

Tumor Grade GB 6 (5.7) 

G1 16 (15.1) 

G2 40 (37.7) 

G3 44 (41.5) 
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Ovarian cancers are thought to be derived from the ovarian surface epithelium (OSE) and 

comprise a large proportion of the cell content in an ovarian tumor (Figure 3.2). On the 

other hand, normal ovaries have only a small fraction of epithelial cells relative to stroma 

tissue. When KLK13 protein expression was examined in the normal ovary, the OSE 

was positive for KLK13 expression. This created the possibility that epithelial cell 

number accounted for the increased levels of KLK13 mRNA in the cancer tissues rather 

than a true upregulation of gene expression in each cell. To address this, total RNA from 

normal OSE and stroma was isolated separately and analyzed for KLK13 expression. 

Although KLKJ3 expression is quite low in both areas of the ovary, it was approximately 

two times greater in the epithelium than stromal cells. When the expression of KLK13 

was compared between the normal OSE and cancer epithelium, the ovarian cancer cells 

had higher KLK13 expression confirming that the cancerous epithelium truly does up 

regulate KLK13 expression (data not shown). 

MUCJ6 showed a significant increase in mRNA expression in invasive cancer relative to 

normal expression levels (p<O.OOl; Figure 4.2). Approximately 12.5% of normal ovaries 

were positive for MUCJ6 expression, while 50% of borderline cases and 84% of invasive 

ovarian carcinoma were MUCJ6 positive. It should be noted that these samples were 

primary tumors and not obtained as recurrences following primary treatment, as CA125 

levels are usually used for screening. 
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Figure 4.2. Positive KLK6, KLK13 and MUC16 expression in 106 ovarian 
carcinomas and 8 normal ovaries. KLK6 expression was positive in 25%, 50%, and 
79% of normal ovary, borderline (BL) and invasive ovarian cancers, respectively. 
KLK13 expression was positive in 12.5%, 33.3%, and 56% of normal ovary, borderline 
and invasive ovarian cancers. MUC16 expression was positive in 12.5%, 50%, and 84% 
of normal ovary, borderline and invasive ovarian cancers, respectively. *, p<0.05, ** 
p<O.OOl. 
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4.3.3 Sensitivity and specificity 

The sensitivity of KLK13, KLK6 and MUC16 to detect ovarian cancer is displayed in 

Figure 4.3. The sensitivity of KLK13 alone to detect ovarian cancer was 55%, while 

KLK6 showed a sensitivity level comparable to MUCJ6 (77% vs. 82%, respectively). 

The sensitivity to detect ovarian cancer improved to 90% when MUC16 and KLK6 were 

used in combination and was further enhanced to 93% when all three genes were 

examined simultaneously. When analyzed in combination, samples were considered 

positive if they displayed high expression of either marker. 

When only the early stage (Stage I and II) cancers are examined (n=32), a similar trend 

was found in sensitivity. MUC16 alone detected 56% of cancers while KLK6 and KLK13 

detected 56% and 50%, respectively (Figure 4.3). When KLK6 and MUC16 were 

examined concurrently, 72% of the early stage cancers were detected and when KLK13 

was added to the analysis, the sensitivity increased to 84% for detecting early stage 

ovarian cancers. 

Table 4.2 shows the sensitivity, specificity, positive and negative predictive values (PPV 

and NPV, respectively) for KLK13, KLK6 and MUCJ6 alone and in combination. When 

all ovarian cancers were analyzed, the specificity of the test remained the same as when 

MUC16 was tested alone. The PPV also remained the same, 87.5%, when the tests were 

combined. On the other hand, the NPV increased from 27% with MUCJ6 alone to 50% 

when KLK13, KLK6, and MUCJ6 were used in combination . 
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Figure 4.3 Sensitivity of KLK6, KLK13 and MUC16 for the detection all stage (Stage 
I-IV) and early stage (Stage I and II) ovarian cancers. The sensitivity of detection in 
all stages of ovarian cancer was 77%, 55%, 82%, 90%, and 93% for KLK6, KLK13, 
MUCJ6, KLK6 and MUC16, and KLK6 and MUC16 and KLK13, respectively. The 
sensitivity of detection in early stage cancers was 56%, 50%, 56%, 72%, and 84% with 
KLK6, KLK13, MUCJ6, KLK6 and MUCJ6, and KLK6 and MUCJ6 and KLK13, 

respectively. 
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Table 4.2 Sensitivity, specificity, positive and negative predictive values of all cancers 
and early stage cancers. 

All Cancers 
(n=106) 

Early Stage Cancers 
(n=32) 

Sensitivity Specificity PPVa NPVb Sensitivity Specificity PPVa NPVb 

KLK6 77.4% 75% 97.6% 20% 56.3% 75% 90% 30% 

KLK13 54.7% 87.5% 98.3% 12.7% 50% 87.5% 94.1 % 30.4% 

MUC16 82.1% 87.5% 98.9% 26.9% 56.3% 87.5% 94.7% 33.3% 

MUC16 
OR 89.6% 75% 97.9% 33.3% 71.9% 75% 92% 40% 

KLK6 
MUC16 

OR 
KLK6 93.4% 87.5% 99% 50% 84.4% 87.5% 96.4% 58.3% 

OR 
KLK13 

a, PPV; positive predictive value 
b' NPV; negative predictive value 
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More interesting, are the results examining the early stage cancers (n=32; Table 4.2). 

The specificity of the test remained 87.5% when MUC16 was tested alone, compared to 

all three markers in combination. On the other hand, the PPV increased slightly from 

95% when MUCJ6 was tested alone to 96% when all three markers were used in 

combination. However, the NPV dramatically increased from 30-33% for each gene 

individually, to 58% for the combined analysis (Table 4.2). 

4.4 Discussion 

Ovarian cancer is often diagnosed in late stage disease and the death rates for this 

malignancy are the highest among all the gynaecological cancers (Badgwell and Bast, Jr., 

2007). Cunently, there are no biomarkers approved for general population screening for 

ovarian cancer. It is essential to identify a biomarker for ovarian cancer that is able to 

detect disease in the early stages. This marker will drastically improve ovaJian cancer 

survival rates as the disease is treatable and often curable when diagnosed in the early 

stages (Stage I and II). 

Kallikrein-related peptidases have been suggested to be novel potential markers for 

ovarian cancer diagnosis, prognosis, and disease monitoring. This study examines the 

usefulness of combining expression levels of two members of this family, KLK6 and 

KLK13, along with the most used clinical marker for ovaJian cancer, CAl25/MUC16, in 

an attempt to improve sensitivity and specificity. Unlike many previous studies that 

examined protein expression (Bast, Jr. et al., 1984;Buamah and Skillen, 1994;Diamandis 

et al., 2000a;Kapadia et al., 2003;Kountourakis et al., 2008;Scorilas et al., 2004), we 
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examined mRNA expression of KLK6, KLK13, and MUC16 in ovarian cancer tumors. 

Our approach, to quantify expression levels of three genes by qRT-PCR, is much more 

sensitive than serum protein testing as PCR can detect minute amounts of transcript and 

is not subject to dilution or metabolic breakdown. A recent study found ovarian cancer 

cells reach peripheral circulation more often than one would expect (Marth et al., 2002). 

In early stage ovarian cancer, approximately 23% of patients had detectable levels of 

ovarian cancer cells in the blood. These data suggest a blood test analyzing gene 

expression of nucleated cells (such as a buffy coat from a simple centrifugation), may be 

a novel early diagnostic tool for ovarian cancer that may be superior to cmTent serum 

protein based clinical diagnostic strategies. 

Our results show increased levels of KLK13 mRNA in over half of the invasive ovruian 

tumors in the study and very low levels in normal ovaries. These results are similar to 

Kapadia et al., who using an immunofluorometric assay, showed KLK13 protein was 

below detectable limits in normal serum, but elevated in 50% of ovarian cancer patients 

(Kapadia et al., 2003). Although we did detect high KLK13 mRNA in one of eight 

normal tissue samples, gene expression overall was extremely low. This may be 

attributed to our ability to detect minute levels of transcripts and the fact that we directly 

assayed tumor tissue, rather than the secreted protein diluted into the blood. 

Similar to other studies, we found KLK6 mRNA expression levels were elevated in 

ovarian cancers when compared to normal ovarian tissue (Anisowicz et al., 1996;Ni et 

al., 2004;Tanimoto et al., 2001). With high serum levels of KLK6, patients have 
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previously been shown to be more likely to have advanced disease (Stage III-IV), serous 

tumor histology and more residual tumor (Hoffman et al., 2002). Similarly, our study 

shows high KLK6 mRNA levels in 86% of tumors of patients with late stage disease, with 

73% of these patients having serous type tumors. Stage of disease is the most reliable 

prognostic marker for ovarian cancer and the fact that KLK6 expression is elevated in the 

majority of late stage ovarian cancers consistently, over a number of studies, suggests it 

may be involved in the progression of ovarian cancer. This hypothesis is further 

supported by the fact that KLK6 has been shown to cleave extracellular matrix proteins 

and the use of an KLK6 antibody can decrease migration of ovarian cancer cells (Ghosh 

et al., 2004). 

Recently, a multiparametric analysis found the combination of KLK7, KLKlO, KLK13, 

B7-H4, and CA125 was superior to CA125 alone in distinguishing between non

pathological tissues and metastatic tumors (Zheng et al., 2007). B7-H4 has been reported 

to have increased expression in invasive ovarian cancer when compared to benign lesions 

(Tringler et al., 2005). Also, in another study, the combination of KLK5, KLK6, KLK7, 

KLK8, KLKlO, KLKll, KLK12, KLK13, and KLK14 were capable of distinguishing 

primary tumors from normal tissue (Shih et al., 2007). In our study, by combining KLK6 

and KLK13 with MUC16, an additional nine early stage ovarian cancer patients were 

coiTectly detected, increasing the sensitivity from 56% to 84% (Table 4.2). 

Unfortunately, we did not see an increase in the specificity, as it remained at 88%. There 

was a slight increase in the PPV as it increased from 94% when MUC16 was tested alone 

to 96% when the combined test was applied. Interestingly, the combined assay resulted 
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m a dramatic increase in NPV, from 30-33% with each gene individually, to 58%, 

demonstrating this test is more accurate in detecting truly negative patients. For example, 

in a patient cohort of 100 individuals, testing for each individual gene would detect only 

33 people as true negatives, while the combined test would detect 58 patients. This 

drastic increase in the early stage sensitivity and the ability to sort truly negative 

individuals in our study warrants further examination as using the kallikrein-related 

peptidases as early markers for ovarian carcinoma. Our study supports the concept that a 

panel of markers may be a more sensitive test to detect early stage ovarian cancer and 

adds to the growing evidence that KLKs can be considered potential biomarkers for this 

malignancy which may provide a novel method of widespread screening for this 

clinically difficult problem. 

4.5 Authors contributions 
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Chapter 5 General Conclusions and Future Directions 



5.1 KLK13 is involved in cellular motility 

Epitheli al ovarian cancer is the most deadly gynaecological disease. This year in Canada 

there are predicted to be approximately 2500 new cases and over 1700 deaths due to the 

malignancy (Canadian Cancer Society's Steering Committee, 2009). The high mortality 

rate is due to the fact that approximately 75% of women are diagnosed in late stage 

(Stage ill or IV) disease. The failure to detect localized ovarian tumors when they are in 

early stage is due to the insidious nature of the disease, the unreliability of clinical 

examination, and the lack of an effective screening technique (Sherbet and Patil , 2003). 

Stage I and II ovarian cancer involves tumor that is limited to one or both ovaries with 

pelvic extension, while Stage III epithelial ovarian cancer is classified as a tumor that 

involves one or both ovaries with microscopically confirmed petitonea1 metastasis 

outside the pelvis and/or regional lymph node metastasis (Tavassoli and Devilee, 2004). 

Patients who have any distant, metastasis outside the peritoneum, are classified as Stage 

IV (Tavassoli and Devilee, 2004). Ovarian cancer tumor stage, characterized by the level 

of tumor metastasis, is the most significant prognostic predictor of this malignancy 

[Table 3.4 and 3.5; (Einhorn et al., 1985)]. 

The metastatic cascade is simply characterized by a sequence of basic steps - local 

invasion, intravasation, survival in the circulation, extravastion, and colonization 

(Nguyen et al., 2009). In order to physically invade into the blood vessels, proteolytic 

degradation is required. Proteolytic enzymes such as matrix metalloproteinases (Egeblad 

and Werb, 2002), cysteine proteases (Mohamed and Sloane, 2006), and serine proteases 
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(Laufs et al., 2006), are often produced by cancer cells. These pro teases can promote 

cancer cell invasion through several mechanisms: cleavage of cell adhesion proteins, such 

as E-cadherin; processing and activation of cytokines and growth factors; and 

degradation and turnover of extracellular matrix (ECM) proteins (Joyce and Pollard, 

2009). 

Tumor cells require interaction with the ECM at several stages during metastasis. First, 

the cells must breech the underlying basement membrane, followed by traversing into the 

interstitial connective tissue, and finally gaining access to the circulation by penetrating 

the vascular basement membrane. In order to create a new metastatic site, this cycle must 

be repeated as the cells have to leave the circulation by invading through the vascular 

basement membrane and the ECM. 

Invasion of the ECM is an active process that requires detachment of the tumor cells from 

each other, attachment to the ECM, degradation of the ECM, and the migration of tumor 

cells. Once the cells are attached to the ECM, tumor cells must create passageways for 

migration. Invasion of the matrix requires active enzymatic degradation of ECM 

components, usually by secretion of proteolytic enzymes (Price et al., 1997). 

The experiments described in Chapter 2 of this thesis focus on the secreted senne 

protease, KLK13, and how it promotes cellular migration and invasion, as a model of 

cancer metastasis. KLK13 was shown to have increased expression in the ovarian cancer 

cell lines, CAOV-3, OVCAR-3, and SKOV-3, when compared to the lOSE cell line 

(Figure 2.1). When lOSE cells were infected with KLK13 and migratory capacity was 
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assessed by a wound healing assay, the cells infected with the KLK13 wild type 

sequence, which codes for KLK13-WT protein, migrated faster than control cells (Figure 

2.4). Also, the cells infected with the KLK13-S218A virus, the putative enzymatically 

dead KLK13, migrated slower than uninfected control cells. Although KLK13-S218A 

has an enzymatic pocket in which substrates can bind, it should not be able to perform its 

proteolytic action on the substrates, as its active site is mutated. This situation decreases 

the overall effect of KLK13 proteolytic activity as substrates remain bound to KLK13 

and it does not perform its proteolytic activity. Further supporting the role of KLK13 in 

cellular migration is the fact that there was no significant change in cellular migration 

when the lOSE cells were infected with the inactivatable KLK13. This may be attributed 

to the fact that increased expression of the inactivatable KLK13 protein increased the 

pro-KLK13 levels in the cells, but due to a mutation in the activation site, the protein 

could likely not be processed beyond its zymogen form. Since the protein is inactive in 

its zymogen form, there was no overall effect of KLK13 activity in the cells. These data 

together suppmt a role of KLK13 in cellular migration. These results are further 

supported by a wound healing assay with another epithelial cell type, the MvlLu cell line 

(Figure 2.7). When both the lOSE and MvlLu cells were infected with the KLK13-WT 

virus, cells migrated faster than the control cells, while the cells infected with the 

enzymatically dead KLK13, KLK13-S218A, migrated significantly slower than the 

control cells, indicating KLK13 can play a role in the migration of not only lOSE cells, 

but other epithelial cells. 
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The role of KLK13 in cellular migration was further assessed in the SKOV-3 cell line 

which has high KLK13 expression (Figure 2.2). When the expression of KLK13 was 

decreased in the migratory SKOV-3 cells, there was a significant decrease in the rate of 

cellular migration (Figure 2.5). This has important potential therapeutic applications for 

ovarian cancer patients. The inhibition of KLK13 activity in ovarian tumors may 

potentially inhibit ovarian cancer tumor progression and metastasis in patients. 

These data together support a role of KLK13 in epithelial cell migration. The role of 

KLK13 in cellular invasion was also examined. When lOSE cells were infected with the 

KLK13-WT virus, there was a significant increase in cellular invasion; while the cells 

expressing the enzymatically dead KLK13 invaded less that the control cells (Figure 2.6). 

Increased cellular invasion was due to the increased active KLK13 protein and 

proteolytic nature of KLK13. Recently, KLK13 has been shown to cleave components of 

the ECM (Kapadia et al., 2004), a process necessary for cellular invasion. Increased 

KLK13 expression in lOSE cells increased the invasion of these poorly-invasive cells, 

supporting the involvement of KLK13 in cellular invasion. 

These results indicate KLK13 affects epithelial cellular migration and invasion, two 

processes critical for ovarian cancer metastasis. Ovarian cancer patients who have 

metastasis outside the pelvic region are diagnosed with late stage, Stage III/IV, ovarian 

cancer are a given a poor prognosis (Einhorn et al., 1985). A number of genes known to 

be involved in the metastatic process have been shown to be significant predictors of 

survival. Since these results showed KLK13 may be involved in ovarian cancer 

5-202 



metastasis and KLK13 is increased in ovarian cancer patients, the prognostic value of 

KLK13 and KLK6 was assessed for ovarian cancer patients. 

5.2 KLK6 and KLK13 are potential biomarkers for ovarian cancer 

Numerous reports indicate abenant protease expression is often associated with a poor 

prognosis in ovarian cancer patients (Ghosh et al., 2002;Konecny et al., 2001;Lengyel et 

al., 2001). The prognostic relevance of protease inhibitors has also proved important in 

the development of new treatments targeted to metastasis (Coussens et al., 2002;Dunbar 

et al., 2000;Harbeck et al. , 2002;Hidalgo and Eckhardt, 2001). The study that comprised 

Chapter 3 in this thesis, examined the prognostic significance of two serine proteases, 

KLK6 and KLK13, in ovarian cancer patients by measuring the expression of the genes by 

qRT-PCR. High KLK6 and KLK13 expression were associated with invasive ovarian 

cancer when compared to normal ovaries (p<0.05, Table 3.2). Also, high KLK6 

expression in ovarian cancer patients was associated with late stage (Stage TII/IV) ovarian 

cancers (p=O.OOl). 

When the prognostic significance of KLK6 in ovarian cancer patients was assessed by 

Kaplan-Meier analysis, patients with high KLK6 expressing tumors were more likely to 

have a recunence (p=0.002) and die eru·Jier (p=O.Oll) than patients with low KLK6 

expressing tumors (Figure 3.2). When the prognostic value of KLK6 expression was 

assessed by univariate Cox-regression analysis, although clinical stage, tumor grade, and 

histological type of tumor were strong predictors of recunence, high KLK6 expression 

was still a significant predictor of tumor recunence and death (p<0.05; Table 3.3). 
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In order to see if KLK6 expression was still significant in predicting recurrence or death 

even when all other prognostic factors were taken into consideration, KLK6 expression 

was analyzed by multivariate analysis. Although clinical stage, tumor grade, and type of 

tumor, were considered, KLK6 was still able to predict recurrence in ovarian cancer 

patients (Table 3.4). More specifically, patients who have high KLK6 expressing tumors 

were three times more likely to have a recurrence than patients who had low KLK6 

expressing tumors (Table 3.4). 

A similar analysis was carried out for KLK13 expression. When KLK13 expression was 

assessed by Kaplan-Meier analysis, patients who had high KLK13 expression were more 

likely to have a recurrence than patients with low KLK13 expressing tumors (Figure 3.3). 

When analyzed by univariate Cox-regression analysis, similar results were found. 

Patients with high KLK13 tumors were more likely to have a recurrence than patients 

who had low KLK13 expressing tumors (Table 3.3). When stage of disease, histological 

type of tumor, and tumor grade were taken into consideration, patients who had high 

KLK13 expressing tumors were still approximately two times more likely to have a 

recurrence than patients with low KLK13 expressing tumors (Table 3.5). These data 

together indicate KLK6 and KLK13 are indicators of poor prognosis in ovarian cancer 

patients. These data agreed with previously published results (Kapadia et al., 

2003;Kountourakis et al., 2008;White et al., 2009). 

Many biomarkers are now being examined for their diagnostic ability to detect early 

disease. Recently, much research has been focused on identifying a panel of biomarkers, 
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or a "biomarker signature" for early ova1ian cancer detection. This was recently been 

explored by Oikonomopoulou et al. who found the combination of CA125, KLKs 5, 6, 

10, 11, B7-H4, and Spondin 2 correlated with a worse progression free survival in 

ovarian cancer patients (Oikonomopoulou et al. , 2008). Also, Zheng et al. found the 

combination of CA125, B7-H4, KLK7, 10, 11, and 13 were accurate in distinguishing 

between primary tumors and healthy ovarian tissue (Zheng et al., 2007). Given that 

KLK6 and KLK13 have been shown to be increased in ovarian cancer and CA125 has 

been show to have low sensitivity in detecting early stage ovarian cancers, the utility of 

the combination of CA125, KLK6 and KLK13 was assessed for its increased sensitivity 

to detect ovarian cancer when compared to either marker alone. 

The ability of KLK6, KLK13, and MUCJ6 to detect ovarian cancer was assessed by qRT

PCR. Expression of all three genes significantly increased from the normal ovary to 

borderline to invasive ovarian cancers (Figure 4.2). Also, when sensitivity, specificity, 

PPV, and NPV, was analyzed, a combination of these three markers was superior in 

detecting ovarian cancer relative to either gene alone (Table 4.2). 

These findings were especially true for the early stage ovarian cancers. When only the 

early stage cancers (n=32) were examined, MUC16 alone detected 56% of cancers. 

When all three markers were combined, the sensitivity of the test increased to 84%, 

detecting an additional nine early stage ovarian cancers (Table 4.2). Although there was 

no significant change in the specificity or PPV, 88% and 96%, respectively, there was a 
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dramatic increase in the NPV, as it increased from 30-33% for individual genes to 58% 

when combining the markers. 

These findings are important because early detection is the best defence against ovarian 

cancer. An increase in the sensitivity of the test increases the number of patients that will 

test positive for ovarian cancer in early stage disease. Since many women are diagnosed 

in late stage disease, prognosis is dismal. Early detection, through a combination of 

markers, could drastically improve the survival rate of ovarian cancer. 

There was also an increase in the NPV using the panel of markers which resulted in a 

decrease in the number of false negatives detected. This has important implications to 

both the patient and the healthcare system. Women who are incorrectly diagnosed deal 

with much mental stress and burden and have to go on to have further testing to validate 

the primary screen. This also creates unnecessary financial burden on the healthcare 

system. This study (Chapter 4) validated that a combination of markers is a more 

sensitive test for early stage ovarian cancer than either marker alone. These results 

wanant further investigation potentially using a larger panel of markers. 

Another route to early detection is to gam an understanding of ovarian cancer 

carcinogenesis on a molecular level. The identification of the molecular players in 

ovarian cancer would enable the development of effective novel therapeutic applications. 

This thesis has shown that KLK13 is a potential therapeutic target for the management of 

ovarian cancer metastasis as ovarian cancer cells displayed decreased migration and 

invasion when KLK13 activity was decreased. This wanants further investigation. 
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5.3 Future directions 

The evidence presented herein strongly suggests that KLK13 plays a direct role in 

epithelial cellular migration and invasion. These results also suggest the invasive 

capacity of cells is dependent on KLK13 glycosylation. A detailed analysis of the effect 

of glycosylation on the enzymatic activity of KLK13 is required to confirm this 

relationship. In particular, the isolation and purification of KLK13-WT and mutant 

proteins, KLK13-S218A, KLK13-K25Q, KLK13-N30Q, KLK13-N225Q, and KLK13-

N30Q+N225Q, would shed light on how these mutations effect KLK13 activity. In-vitro 

assays measuring the degradation of a suitable trypsin-like synthetic substrate, such as the 

fluorescent Val-Pro-Arg-AMC substrate, that has been used successfully in a previous 

report (Kapadia et al., 2004), would provide an accurate assessment of how the 

introduced mutations effect KLK13 enzymatic activity. 

Another important aspect to consider in order to truly appreciate the function of KLK13, 

is to understand the mechanism of KLK13 interaction with other KLKs. KLK6 and 

KLK13 have increased expression in ovarian cancer when compared to normal ovaries 

(Table 3.2). Other studies have shown that 12 of the 15 KLKs have increased expression 

in ovarian cancer patients when compared to normal counterparts (Borgono and 

Diamandis, 2004). There have been two proposed mechanisms which may control the 

coordinated expression of kallikreins. Kallikrein expression may be regulated through an 

enzymatic cascade in which certain KLKs activate other KLKs or through a cis-acting 

locus control region. These regions can regulate the expression of linked genes over a 
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distance as long as 100 kb or more in a tissue and copy number specific manner in a wide 

spectrum of mammalian families (Borgono and Diamandis, 2004). It would be 

interesting to explore the existence of a KLK cascade in ovarian carcinoma. 

The prognostic and/or diagnostic capabilities of certain genes and proteins are very useful 

when clinicians make patient treatment decisions. KLK6 and KLKJ3 can predict 

recurrence in ovarian cancer patients (Table 3.4 and 3.5, respectively). This study 

included 106 ovarian cancer patients of all histological types. It has been shown that 

subtypes of epithelial ovarian cancer are associated with different molecular events 

dming oncogenesis (Christie and Oehler, 2006). Oncologists have also noted that the 

subtypes of ovarian carcinoma respond differently to chemotherapy. Taking these facts 

into consideration, it is umealistic to expect a single marker will be accurate for the 

prognostic and diagnostic requirements for each subtype of ovarian cancer. In order to 

circumvent this issue, it would be useful to analyze each ovarian cancer subtype 

independently which has recently proven successful (Kobel et al., 2008). 

A number of KLKs have been shown to be potential biomarkers for ovarian cancer. It 

would be interesting to collect serum from ovarian cancer patients, pre- and post

treatment, in order to measure their CA125 and KLK levels and determine the potential 

biomarker utility of a combination of markers. Through statistical analysis, the ideal 

combination of a panel of biomarkers, providing a "biomarker signature" for each 

subtype of ovarian cancer, both pre- and post-treatment could be accurately assessed. 

This retrospective approach, in which all clinical data on the patient, including survival 
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data is available, would be helpful in determining the ideal combinations for prognostic 

markers in ovarian cancer. It would also be interesting to extend this study to other 

cancers such as breast, prostate, and colon cancers in which KLKs have recently been 

implicated (Emami and Diamandis, 2008). 
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