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ABSTRACT 

Experimental study of the hydrodynamics of an underwater vehicle requires state-of-the

art facilities, precise design of the experiment and careful analysis of the results. This 

thesis presents hydrodynamic observations resulting from experiments that were 

performed on a series of five bare-hull configurations of slender axisymmetric 

underwater vehicles and also reports a simulation code to predict the manoeuvring 

behaviour of a real underwater vehicle: MUN Explorer. The main aim is to find the 

correct form of the physically-based expressions for the hydrodynamic loads that are 

exerted on completely-submerged underwater vehicles during various manoeuvres and 

use this improved knowledge to obtain a better prediction of the manoeuvring of an 

underwater vehicle. 

Straight-ahead resistance tests and static-yaw runs up to 20 degrees yaw angle for the 

axisymmetric bare-hull configurations that were performed in the 90 metre towing tank at 

the Institute for Ocean Technology, National Research Council, Canada, provided 

empirical formulae for the drag force, side force and turning moment that are exerted on 

such axisymmetric torpedo-shaped hull forms. The empirical formulae were then 

embeded in a numerical code to simulate the constant-depth planar manoeuvres of the 

MUN Explorer AUV. The simulation code was first calibrated using the sea-trials data, 

and then was used to study the turning manoeuvres and compare the simulation results 

with theoretical formulae based on the linearized equations of motion. 

Dynamic captive-model tests including pure sway and pure yaw runs were the other part 

of the experiments on the five bare-hull configurations. The sway force that is exerted on 
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the bare-hull during lateral accelerations, according to the pure sway test data, was 

observed to have a variation over manoeuvring frequency and amplitude. Also, empirical 

formulae were proposed to estimate the magnitude and phase of the hydrodynamic loads: 

sway force and yawing moment that are exerted on the axisymmetric torpedo-shape bare

hull of an underwater vehicle during a rapid zigzag manoeuvre. 

Finally, in order to obtain further insight into the origin and distribution of the 

hydrodynamic loads during underwater manoeuvres, pressure measurement experiments 

were proposed and as an initial step towards the aim of performing such measurements 

over the surface of an underwater vehicle, a re-analysis of the old airship data was 

presented. The re-analysis of the airship pressure test results provided an estimate of the 

normal pressures that may be experienced by an underwater vehicle during manoeuvres. 
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CHAPTER 1 

INTRODUCTION 

1.1 General background 

Underwater vehicles are being used increasingly in a variety of applications such as: 

survey, exploration, inspection, maintenance and construction, search and rescue, 

environmental and biological monitoring, military, undersea mining, and recreation. 

Underwater vehicles fall into two major categories: manned and unmanned. The costs 

and risks for the manned underwater vehicles are high and in recent past decades there 

has been an obvious trend toward unmanned vehicles. However, for the scientists who 

may want direct observation of the undersea world and for the tourist industry, manned 

vehicles are of use. Allmendinger [1990] provides an extensive introduction to most of 

the design aspects of manned underwater vehicles. 

Unmanned underwater vehicles can be categorized as: towed, remotely operated (ROY) 

and autonomous (AUV). The towed and remotely operated vehicles are connected to the 

surface or a manned environment via a cable or tether. The towed vehicles are normally 

passive, i.e., they have no propellers and no active control systems. ROVs have thrusters 

and active control systems. They get energy supply, navigation commands, and they 

transfer data through the tethers. The high speed of communication allows real-time 

control ofthe vehicle. AUVs, instead, have no physical connection to the surface. Power 

supply, underwater communication, intelligent mission planning and control, underwater 

navigation and sensors are still challenging in the design and construction of an A UV. 



Three classes of AUVs namely: I) Research, 2) Industrial and 3) Military were 

introduced in the Code of Practice (CoP) edited by Dering [2000]. The major tasks of 

research and industrial AUVs are: I) Oceanic process studies, such as study of the ocean 

circulation, decay processes, turbulence over sand banks, etc. 2) Routine observations, 

such as the study of CTD (Conductivity, Temperature and Depth) profiles. In these 

applications the AUV more likely replaces a surface vessel. 3) Survey tasks, such as 

bathymetric and sidescan sonar topographic survey. 4) Intervention tasks, such as the 

applications of AUVs in cybernetics and as other tools. The critical technologies for the 

development of the AUYs are: power supply, hydrodynamic design, navigation, artificial 

intelligence and robotics, communication and sensors [Dering, 2000]. 

The importance of studying AUV hydrodynamics is also emphasized as follows: 

1- AUVs are the rapidly emerging class of underwater vehicles to explore the ocean. 

2- Vehicle geometry should be efficient so as to minimize the hydrodynamic forces. 

3- Stability and manoeuvrability of the AUV depend on its shape and the resulting 

hydrodynamic forces and moments. 

4- Modeling and simulation of AUV motion are accurate if the hydrodynamics of the 

vehicle are precisely known. An accurate simulation (prediction) of the AUV motion is 

necessary for mission planning and control, which also improves the manoeuvring of the 

vehicle. 

5- For obstacle avoidance, hovering and navigation m the restricted waters, AUVs 

perform manoeuvres with large angles of attack or high yaw and pitch rate of turns. 

6- Also a better model for AUV manoeuvring reduces the operational risks. 
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1.2 Objective of the thesis 

In this research, the main question is: what is the correct form of the physically-based 

expressions for the hydrodynamic loads that are exerted on completely-submerged 

underwater vehicles during various manoeuvres? Clearly, there are many parallels with 

the study of the aerodynamics of aircraft. However, for underwater veh icles, the vehicle 

weight is balanced by the buoyant force that is provided by the surrounding fluid, so in 

that sense underwater vehicles are more like airships than traditional winged aircraft. 

Also, the contribution of the hydrodynamic moment on the hull of an underwater vehicle 

is much greater than the contribution of the fuselage on a winged aircraft, so the 

traditional methods of computing the aerodynamic coefficients for aircraft do not 

immediately transfer to the computation of hydrodynamic coefficients for underwater 

vehicles [Nahan 1993, Jones et al. 2002). 

For high-amplitude, high-rate manoeuvres, first-order Taylor-series expansion is 

insufficient to capture the higher-order non-linear dependence of the loads on the flow 

angle and the vehicle turning rate. For example, [Mackay et al. 2002] show that the 

transverse force has a non-linear variation with angle-of-attack; above an angle-of-attack 

of I 0 degrees the stability-derivative-based prediction (slope through the data near the 

origin) underestimates the actual load by 50 percent or more. Therefore in the present 

research, employing mostly experimental methods, two extreme cases will be considered: 

(a) Large angles of attack encountered during hovering. 

(b) High-rate-of-turn manoeuvres encountered during obstacle-avoidance 

manoeuvres. 
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Two methods can be used for this study: 

1) Measurement of the overall hydrodynamic loads with an internal balance. 

2) Observations on the manoeuvring performance of a self-propelled vehicle. 

This research is focused on the first method while the second method is the subject of 

parallel studies at Memorial University. For the first method, again there are two different 

possibilities: 

I a) fixed-attitude (static) manoeuvres 

1 b) variable-attitude (dynamic) manoeuvres 

To perform type (b), one uses a towing tank and a forced-oscillation apparatus such as the 

NRC-JOT Planar Motion Mechanism (PMM) or Marine Dynamic Test Facility (MDTF) 

[Williams et al. 2002]. Test results from both types of experiments are presented in this 

thesis and a new empirical formulation to model the hydrodynamic loads that are exerted 

on the bare hull of a slender axisymmetric underwater vehicle is proposed. Next, a 

simulation code based on the empirical formulae for the hydrodynamics of the bare hull 

is developed to simulate manoeuvring of the MUN Explorer AUV including control 

surfaces and the propulsion system. 

In order to obtain further insight into the origin and distribution of the hydrodynamic 

loads during any manoeuvre, it is helpful to measure the distribution of pressures over the 

surface of the vehicle while these manoeuvres are taking place. The surface pressures can 

then be integrated and compared with the overall loads as measured simultaneously by 

the internal balance. Surface-pressure data exist from fixed-attitude experiments with an 

airship hull in a wind-tunnel [Freeman 1932b ], but few data exist for surface-pressure 

4 



data on underwater vehicles, especially during high-rate and high-amplitude manoeuvres 

in water. This thesis also presents a re-analysis of the existing airship data which is the 

first step in design of the pressure experiments for an underwater vehicle. 

1.3 Organization of the thesis 

To obtain an answer for the main question of this research, experiments to measure the 

hydrodynamic loads that are exerted on the bare hull of a slender torpedo-shaped 

underwater vehicle during manoeuvres with large angles of attack and large rates of turn 

were performed. The overall hydrodynamic loads were measured with an internal balance 

during: i) fixed-attitude (static) manoeuvres and ii) variable-attitude (dynamic) 

manoeuvres. Then, the experimental data were studied and analyzed as follows: 

I) Fixed-attitude tests: in chapter 2 empirical formulae are proposed for the drag, lift 

and moment coefficients of the bare hull of a slender axisymmetric underwater 

vehicle. Also, the concept of statistical design of experiment is introduced in 

chapter 2 and its possible application to design experiments for the study of 

underwater vehicle hydrodynamics is discussed. 

2) Variable-attitude tests: a) in chapter 3, pure sway test results are analyzed to 

model the sway force that is exerted on the bare hull of a slender underwater 

vehicle during lateral accelerations; b) in chapter 4, response surface models are 

constructed for the pure yaw test results and a sample application of these models 

to predict the required deflection angle of the control planes to perform a rapid 

zigzag manoeuvre with the MUN Explorer AUV is illustrated. 
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Next, in chapter 5, a simulation code to predict the manoeuvring behaviour of the MUN 

Explorer AUV is developed. The empirical formulae for the drag, lift and moment 

coefficients for the slender torpedo-shaped bare hull of an underwater vehicle that were 

obtained in chapter 2, are used in the simulation code. Stern-planes of MUN Explorer 

which are in an X-configuration, are modeled as the active actuators to navigate the 

vehicle in a constant-depth planar manoeuvre. The propeller thrust force is modeled using 

the test results from straight-line sea-trials. Simulation results for turning manoeuvres are 

presented with more details. 

Finally, in chapter 7, an initial step towards the aim of performing pressure measurement 

experiments over the surface of an underwater vehicle is presented. Re-analysis of the old 

airship data provides an estimate of the normal pressures that may be experienced by an 

underwater vehicle during manoeuvres. 

1.4 Literature Review 

Using both numerical simulations with a combination of the ANSYS and LS-DYNA 

finite element codes, and physical experiments with the Marine Dynamic Test Facility 

(MDTF), at the Institute for Ocean Technology, National Research Council, Canada 

(NRC-JOT), Curtis [2001] presented direct comparisons between numerical and 

experimental results in the study of underwater vehicle hydrodynamics. The focus of that 

study was more on the numerical simulation, and the experimental data were used to 

validate the numerical code. The bare hull of the DREA (Defense Research 

Establishment Atlantic) Standard Submarine was used for this purpose. Only the 
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numerical simulation of straight-ahead motion and its comparison to the experimental 

data was presented in that report [Curtis, 2001]. 

The Maritime Platforms Division within DSTO (Defence Science and Technology 

Organisation) of Australia was tasked with the development of models to determine the 

hydrodynamic coefficients of simple and complex submerged bodies as a function of 

their shape. The report by Jones et at. [2002] provides a discussion and evaluation of 

three methods for the calculation of these coefficients. Two of these methods were based 

on the techniques developed in the aeronautical industry: i) the U.S. Air Force DA TCOM 

method which was applied by Peterson [1980] to underwater vehicles and ii) the Roskam 

method as was modified by Brayshaw [1999] for underwater vehicles. The third method 

was based on methods applicable to the calculation of the coefficients of single screw 

submarines and was developed at University College, London. Many semi-empirical 

relations to calculate the hydrodynamic coefficients are presented in the report by Jones 

et at. [2002], but most of them are only applicable over a small range of incidence angles 

and the effect of rate of change of angle is completely absent. One of the few studies on 

large non-linear angles of attack has been done by Finck [1976] , which provides some 

additional techniques to use the DA TCOM method in a non-linear range of angles of 

attack (AOAs). 

A recent numerical study to predict hydrodynamic loads for underwater vehicles has been 

done by Boger and Dreyer [2006]. They added an overset mesh capability to the existing 

two and three-dimensional Reynolds-averaged Navier-Stokes (RANS) solvers, so as to 

enable the extension of traditional structured and unstructured solution methods in 
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computational fluid dynamics (CFD) to problems of greater geometric complexity, 

including better resolution of geometric details and the simulation of bodies in relative 

motion. The surface pressures and predicted forces and moments were shown to be in 

good agreement with measurements for the DARPA (Defence Advanced Research 

Projects Agency) SUBOFF and the ONR (Office of Naval Research) Body- I submarine 

model. For DARPA SUBOFF the numerical and experimental data for static pressure 

along the bare hull were shown. For three-dimensional ONR Body- I model, numerical 

and experimental results for hydrodynamic force and moment coefficients versus pitch 

angle were presented. Pitch angle varied from zero to 18 degrees [Boger and Dreyer, 

2006]. 
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CHAPTER2 

FIXED-ATTITUDE TESTS: 

RESISTANCE AND STATIC-YAW EXPERIMENTS 

2.1 Introduction 

As part of an underwater vehicle study at the Institute for Ocean Technology, National 

Research Council of Canada, the bare hull of an underwater vehicle named "Phoenix" 

was tested in the open water 90 m Ice Tank. The original bare hull of the underwater 

vehicle "Phoenix", shown in Fig. 2.1, had an overall length of 1.641 metre and a diameter 

of 0.203 metre, that is, the original length-to-diameter ratio (LDR) was about 8.5:1. In 

anticipation that there would be a requirement to lengthen the vehicle in order to 

accommodate an increased payload or increased battery capacity, extension pieces were 

designed and fabricated that would permit testing hulls of the same diameter, 203 mm, 

but with LDR 9.5, 10.5, 11.5 and 12.5. Thus, a set of experiments was proposed that 

would investigate the manoeuvring characteristics of the hull-forms of LDR 8.5 to 12.5 

[Williams et al. 2006]. Also the planar motion mechanism (PMM) in NRC-lOT was used 

to perform dynamic tests. The PMM was restricted to a maximum of 1.25 m sway 

amplitude, 0.65 [m/s] sway velocity and 60 [deg/s] yaw rate ofturn. 

In this chapter, test results for resistance and static yaw runs that were performed on the 

five bare hull configurations were analyzed and reported. In the resistance tests the model 

with zero heading (drift angle) is towed through the tank. In each run, the towing velocity 

goes from a stationary zero value to a constant value and then again back to zero. Having 
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the maximum acceleration is important so as to perform constant velocity towing through 

a longer distance. The second type of experiments analyzed was the static yaw tests. The 

vehicle, inclined with a yaw angle, was towed along the tank-x-axis. The yaw angle 

{3 was gradually increased through several runs to a maximum of20 degrees. 

Fig. 2.1 Bare hull model installed on the PMM using the two vertical struts 

2.2 The model and test conditions 

Three coordinate systems are used in this study: (i) Earth-fixed axis which is mainly used 

to indicate the heading of a free-running vehicle, (ii) body-fixed axis which is used to 

indicate the velocity, acceleration and force vectors of a free-running model, as well as 

the loads that are recorded with the internal balance for a captive model test, (iii) tank

fixed axis which may be used in the study of dynamic captive manoeuvring tests for 

example to describe the motions of the PMM mechanism. The Earth-fixed and body

fixed coordinates are shown in Fig. 2.2. Tank-fixed axis is defined with its x-axis along 
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the towing carriage and z-axis in vertical direction positive upward for testing surface 

vessels and positive downward for testing underwater vehicles. 

Global coordinates 

X 

fr Body-fixed 
coordinates x S R 11 ~urge, o 

Sway, P~ch + z 

Heave, Yaw 

Fig. 2.2 Global and body-fixed coordinate systems for an underwater vehicle 

Fig. 2.1 showed the model installed on the PMM using the supporting struts. The chord 

length of each fa ired strut was 176 mm and the maximum thickness of struts was 46 mm. 

Fig. 2.3 shows schematically the bare hull model mounted on the PMM: two vertical 

streamlined struts attach the internal balance to the PMM. Each strut passes through a 

hole in the skin of the upper surface of the mid-body section, thus there is no contact 

between either strut and the model itself. The distance between the free surface and the 

top of the upper surface of the bare hull was maintained at 1.09 m for all runs. The water 

depth was 2.18 m for all runs. So the ratio of the distance between the free surface and 

the top of the upper surface of the bare hull to the maximum hull diameter of 203 mm 

was almost 5.4. Similarly the ratio of the water depth to the maximum hull diameter was 

about 10.7. Within the interior of the model, the "ground" or "dead" portion of the 

balance is attached only to the two vertical struts. The "live" or "metric" portion of the 

balance is attached to two circular bulkheads within the mid-body section. With this 

attachment method the internal three-component balance measures only the 
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hydrodynamic loads (axial force, lateral force, yaw moment) which are exerted by the 

flow on the external surface of the model. Since neither strut is attached to the "live" 

portion of the balance, there is no load path from either strut to the model itself. The 

longitudinal spacing between the struts was 723 mm. Since there are two holes in the skin 

at the upper portion of the mid-body, the water which enters the model to fill the empty 

spaces within the model is referred to as the floodwater. During all lateral motions it is 

assumed that the floodwater moves as if it were a rigid body and that there is no empty 

space within the model for air to be trapped and thus no internal free surface where 

sloshing could occur. 

Ground portion of balance 

Foam 

Vertical 
mounting 

+-- struts ---+ 
toPMM 

Foam 

Live portion of balance 

Fig. 2.3 A simplified diagram of the fully-submerged, fully-flooded Phoenix model mounted below 

the PMM; side view 

In conclusion, due to the attachment method used in these experiments, the internal three-

component balance measures only the hydrodynamic loads which are exerted on the 

exterior surface of the model, and not any effect of (a) hydrodynamic loads on the 

mounting struts, (b) floodwater "sloshing" within the mid-body, or, (c) any free surface. 

Table 2.1 and 2.2 show the details of the five bare hulls. Each of the five models was 

weighed by suspending the dry, empty model in air, and those masses are the values in 
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column #6 of Table 2.1 [Hewitt and Waterman, 2005]. Next all the joints of each model 

were taped closed so that the model was water-tight, then each model was filled with 

water until it overflowed; the mass of each flooded model when suspended in air is given 

in column #7 in Table 2.1. By subtraction, the mass of floodwater can be found, and this 

value for each model is given in column #8 of Table 2.1. The last two columns in Table 

2.1 show respectively the dry and flooded moment of inertia of the five bare hulls. The 

yaw moment is reported about an axis through the centre of buoyancy (CB) [Hewitt and 

Waterman, 2005]. Table 2.2 shows the location of the CB for each model as both a 

distance from the nose [mm] and as a fraction of the overall length, reproduced from 

[Williams et al. 2006]. Also the wetted surface area and the volume of the hulls are 

presented in Table 2.2 

LDR 

8.5 

9.5 

10.5 

11.5 

12.5 

LDR 

8.5 

9.5 

10.5 

11.5 

12.5 

Table 2.1 Mass and moment of inertias of the five Phoenix models 

CG dry in CG flooded Mass when Mass of 
Dry 

Maximum Mass 
LOA moment 

diameter air [mm] in air [mm] when dry flooded in floodwater 
of inertia 

[mm] 
[mm] 

from nose from nose in air [kg] air [kg] [kg] 
[kg.m2] 

203 1724 734 847 24.3 49.2 24.9 3.52 

203 1927 815 939 25.6 55.3 29.7 4.49 

203 2130 912 1057 27.3 63.2 35.9 5.44 

203 2333 1011 1159 28.2 70.1 41.9 6.73 

203 2536 1118 1256 29.8 77.1 47.3 8.34 

Table 2.2 Particulars of the five configurations tested; MC is the moment centre 

at the origin, LCB indicates the centre of buoyancy 

Flooded 

moment 

of inertia 

[kg.m2] 

8.82 

13.25 

16.73 

2 1.84 

32.36 

LOA MC (nose) LCB (nose) Ratio MC Ratio LCB Wetted surface Enclosed 
[mm] [mm] [mm] to LOA to LOA area [m3

] volume [m3
] 

1724 736 815 0.427 0.473 0.95 0.044 

1927 838 915 0.435 0.475 1.08 0.051 

2130 940 1017 0.441 0.477 1.21 0.057 

2333 1041 1118 0.446 0.479 1.34 0.064 

2536 1143 1220 0.451 0.481 1.47 0.070 

13 



2.3 Resistance runs 

2.3.1 Modeling the axial force 

Straight-ahead resistance runs were performed for the five bare hulls at fixed forward 

speeds of 1, 2, 3 and 4 m/s. All the resistance runs were performed for zero drift angle, 

that is, with each model aligned with the direction of towing. The axial force recorded 

during the resistance tests was modeled as a function of the towing speed and the bare 

hull LDR. Table 2.3 shows the quadratic multiplier k for the curve fits to the resistance 

test data as shown in Fig. 2.4. The axial force in straight-ahead motion is then modeled 

as: 

Fx = k · U2
, where: k = 0.162 * LDR + 0.681 

which is valid in the range 8.5 < LDR < 12.5, i.e. not for LDR ~ 0. 

45 ~.===~==~~~----~--~--~----~--~ 
0 LDR= 8.5 

40 + LDR= 9.5 

X LDR= 10.5 

35 + LDR= 11 .5 

"' LDR= 12.5 

30 

15 

Value of k for F x = ku2 

k12.5= 2.71 

k11 .5= 2.55 

k10.5= 2.41 

k9.5= 2.13 

k8.5= 2.11 

Tow speed [m/s) 

(2-1) 

Fig. 2.4 Axial force versus tow speed for the five bare hulls; reproduced from )Williams et at. 20061 
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Table 2.3 Quadratic multiplier for the curve fits to the resistance test data; 

reproduced from !Williams et al. 2006) 

LDR 8.5 9.5 10.5 11.5 12.5 

k 2.11 2.13 2.41 2.55 2.71 

R-sq 0.996 0.994 0.994 0.995 0.995 

Although, this dimensional model captures the test data, it cannot be used to predict the 

resistance for the bare hull of another underwater vehicle of different size. If the non-

dimensional axial force is defined by dividing the axial force by the frontal area times the 

dynamic pressure ofthe free-stream as follows: 

(2-2) 

(2-3) 

with fresh-water density p = 1000 [kg/m3
], then the axial force coefficient for the 

Phoenix bare hulls in straight-ahead motions also has a linear variation over the bare hull 

LDR, as follows: 

Cx = 0.0117 * LDR + 0.038 (2-4) 

Note that (2-4) was derived for tow speeds of 1 to 4 m/s and LDRs of 8.5 to 12.5, 

however due to the relatively simple hydrodynamics of the straight-ahead towing the 

model may be useful for small extrapolations outside the above ranges. The axial force 

could be also non-dimensionalized using the wetted surface area (WSA) or the volume of 

the bare hulls that were presented in Table 2.2; the resulting non-dimensional axial force 

based on the WSA and volume to the two-third are respectively shown in Figs. 2.5 and 

2.6. Note that the quadratic multipliers k in Table 2.3 were used to calculate the values in 

Figs. 2.5 and 2.6, thus the data points are the same for all towing speeds under 4 m/s. 
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4.5 These results are valid for U ~ 4 m/s 
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Fig. 2.5 Non-dimensional axial force based on the wetted surface area 
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Fig. 2.6 Non-dimensional axial force based on the volume 

If equation (2-4) is used to predict the axial force on the bare hull of the C-SCOUT AUV 

which is 2.7 m long and 0.4 m in diameter [Curtis 2001], the axial force coefficient is 

estimated to be 0.119. Substituting this value of Cx in (2-2) for various speeds U produces 

the axial force as shown by solid line in Fig. 2.7. The predicted axial force for C-SCOUT 
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-------------------------------------------

for forward speeds lower than 2 m/s is closely comparable to the resistance test data as 

were reported by Thomas [2003]. For larger forward speeds, since the bare C-SCOUT 

was tested relatively close to the water surface (centreline depth 2.2 body diameter), there 

is a large effect of wave-makjng resistance in the C-SCOUT test data. 
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Fig. 2.7 Resistance force on bare C-SCOUT; eq. (2-4) compared to the test data 

2.3.2 Uncertainty in the resistance tests 

The uncertainty in the resistance tests data is characterized by measuring the mean value 

and the standard deviation of the axial force during the constant-speed portion of each 

run. The data were recorded at 50 Hz, thus e.g. if the constant speed was performed for 

20 seconds there were I 000 data points to be averaged. Note that the usable length of the 

towing tank is 78 m and the maximum acceleration of the carriage is 0.5 m/s2
• Table 2.4 

shows the mean value and the standard deviation for the axial force that were recorded 

for the bare hulls at different towing speeds. Number of samples for each run is also 
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shown in the last column in Table 2.4. The resistance curves are plotted including the 

error bars as shown in Fig. 2.8. The curve for LDR 8. 5 is placed on the correct velocity 

grids, then the curves for longer hulls were shifted sideways to the right by 0.05 m/s in 

order that the error-bars do not overlay each other. Note that the error-bars in Fig. 2.8 are 

of length equal to plus/minus one standard deviation. 

Table 2.4 Uncertainty in the recorded axial force during resistance tests; speed in lm/sl, force in INI 

LDR = 8.5 I 
u Fx mean SD Fx No. of samples 

I 2.49 3.56 696 

2 9.32 4.77 697 

3 20.02 7.66 574 

4 32.96 8.26 238 

LDR = 9.5 I 
u Fx mean SD Fx No. of samples 

1 2.49 4.51 2260 

2 9.61 5.43 967 

3 20.57 6.85 566 

4 32.97 10.87 267 

LDR = 10.5 I 
u Fx mean SD Fx No. of samples 

I 2.8 7.77 2510 

2 10.48 7.02 1210 

3 23.42 8.51 594 

4 37.26 15.91 261 

LDR = 11.5 I 
u Fx mean SD Fx No. of samples 

1 3.05 8.56 2405 

2 1 1.13 4.92 1042 

3 24.67 8.43 572 
4 39.56 12.61 286 

LDR = 12.5 I 
u Fx mean SD Fx No. of samples 

I 3.24 12.8 2415 

2 11.49 3.39 1012 

3 26.17 5.85 551 

4 42.06 I 0.47 295 
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Fig. 2.8 Resistance curves and the corresponding error bars 

2.4 Static yaw runs 

All the static yaw runs were performed using a fixed sequence of yaw (drift) angles {3 

from - 2 to +20 degrees in steps of two degrees. All runs were performed at a fixed speed 

of 2 m/s. Figs. 2.9 to 2.11 show the axial force, lateral force and yawing moment data 

versus yaw angle of attack. As mentioned, the yaw moment is reported about an axis 

through the centre of buoyancy CB that was reported in Table 2.2. For the purpose of 

curve-fitting and modeling the data, it is more useful to derive the drag and lift forces by 

projecting the axial and lateral forces along and perpendicular to the flow, i.e., to define 

the drag and lift forces as follows: 

D = Fx · cos({J) + Fy · sin({J) (2-5) 

L = Fy · cos({J) - Fx · sin(/3) (2-6) 

Then, the drag, lift and yaw moment coefficients were defined as follows: 

C0 = D/(q · A1) , (2-7) 
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CL = L/(q · A1), (2-8) 

c M = M I C q · Ar · l) (2-9) 

where q = YzpU 2 and Ar = rrd 2 /4, and U is the towing speed which was 2 m/s for all 

the static yaw runs. The resulting non-dimensional coefficients along with the curve fits 

are shown in Figs. 2.12 to 2.14. Due to the length parameter in the denominator (2-9), the 

yaw moment coefficient for all the bare hull configurations is about the same in Fig. 2.14; 

while the dimensional yaw moment in Fig. 2.11 was larger for the longer models. 
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Fig. 2.14 Moment coefficient about an axis through CB vs. yaw angle 

The drag coefficient data in Fig. 2.12 were fitted by quadratic polynomials which have no 

linear term, that is, an even second order polynomial of the form: 

(2-1 0) 

Note that k2 in (2-1 0) represents the drag force at zero yaw angle which is equal to the 

resistance force coefficient at the tow speed of2 m/s. For the lift and moment coefficients 

cubic (third order) odd polynomials were fitted, that is: 

(2-1 1) 

(2-1 2) 

Table 2.5 summarizes the curve-fit coefficients in (2-10) to (2-12) for drag, lift and 

moment coefficients for each configuration. 

The constant value for the drag coefficient, third column in Table 2.5 , is close to the axial 

force coefficient value that was modeled in equation (2-4) based on the resistance test 

results for tow speeds of I to 4 m/s instead of a single tow speed of 2 m/s. Thus, it is 
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beneficial to preserve the previous model for the constant value at zero yaw angle and 

add to that the quadratic term. Also, from second column in Table 2.5 and the curve fits 

in Fig. 2.1 2, the quadratic term for the drag coefficient can be averaged over the bare hull 

configurations. Therefore, the drag coefficient for the Phoenix hull can be modeled as: 

1000 * C0 = 1.88/12 + 11.7LDR + 38 (2-13) 

which is valid in the range 8.5 < LDR < 12.5, 1 < U < 4 m/s, and -20 < p < 20 deg. 

Yaw angle in (2-13) is in degrees . Note that in deriving (2-13) it is assumed that the 

effect of yaw angle on the drag coefficient is the same for all forward speeds as it is for 

the speed of 2 m/s. Within a reasonable range of variation for the yaw angle and forward 

speed the above assumption is approximately correct. If the static-yaw runs were 

performed at different towing speeds this interaction effect between the yaw angle and 

forward speed could be studied [Azarsina et al. 2006] . 

Table 2.5 Thousand times the curve-fit coefficients for drag, lift and moment coefficients 

for the bare hull configurations 

LDR IOOO*C0 IOOO*CL IOOO *CM 

kt k z k3 k4 ks k6 

8.5 1.63 134.1 0.06 52.9 -0.01 18.2 

9.5 1.68 139.5 0.09 48.3 -0.01 16.9 

10.5 2.03 152.3 0.09 66.6 -0.01 17.9 

11.5 1.95 153.4 0.10 61.7 -0.01 18.0 

12.5 2.13 164.6 0.10 70.5 -0.01 18.6 

For the Phoenix lift coefficient, the polynomial coefficients in Table 2.5 vary with length 

and can be approximated to have a closely linear increase for longer configurations. 

Thus, both the third order parameter k 3 and the linear parameter k4 for the lift 
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coefficient, fourth and fifth columns in Table 2 .5, are modeled by linear fits over LDR, as 

follows: 

1000 * CL = (0.007LDR + 0.011),83 + (4.87LDR + 8.85),8 (2-14) 

which is valid in the range 8.5 < LDR < 12.5, 1 < U < 4 m/s, and -20 < ,B < 20 deg. 

Yaw angle in (2-14) is in degrees. However, for the Phoenix yaw moment coefficient, 

the cubic and linear terms times I 000 in the last two columns Table 2 .5 are almost the 

same, hence on average over all the bare hull configurations it is possible to write: 

1000 *eM = -0.01,83 + 17.92,8 (2-15) 

The empirical formulae in (2-13) to (2-15) are valid over ranges ofthe factors: LDR, yaw 

angle and forward speed of respectively: 8.5 to 12.5, -20 to 20 degrees and 1 to 4 m/s. 

These are the formulations which will be embedded in the simulations in chapter 5. 

2.5 Design of experiments 

2.5.1 Introduction 

Statistical design of experiment (DOE) methodology was developed to make 

experimentation more efficient in terms of time and budget. First started in the 

agricultural sciences in the 1920s, DOE has gone through at least three industrial and 

academic eras and is now increasingly used in research and industry [Montgomery, 

2001]. Basically, DOE is a methodology for systematically applying statistics to 

experimentation. DOE lets experimenters develop a mathematical model that predicts 

how input variables interact to create output variables or responses in a process or 

system. This method allows a large number of factors to be investigated in few 
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experimental runs and it was further developed to include fractional factorial designs, 

orthogonal arrays and response surface methodology. 

Regular factorial design includes the following steps: 

a) Select the factors, i.e. decide which input variables are going to be studied; 

b) Determine the factor levels; that is, the range of values for each input 

variable. 

c) Identify the responses; what do we measure as the output? 

d) Perform the experiment with various combinations of factor levels to 

obtain the responses (outputs); 

e) Estimate the factor effects, i.e. perform the ANOVA (Analysis of 

Variance); 

f) Develop the model using important effects; 

g) Check if the model fits the responses well and if the assumptions of 

regression are valid; 

h) Analyze and interpret the results; and 

i) Use the model for prediction. 

From the results, we can also determine if we should add or drop factors, change factor 

levels, redefine the responses, etc. until a suitable model of the process will be obtained. 

A major engineering application of the DOE is in manufacturing science and industry and 

other fields are becoming aware of its potential effectiveness. Many articles on the 

application of DOE in manufacturing, chemical and food science and technology can be 

found in [Statease website, 2008]. Among the few, [Morelli and Deloach, 2003] and 
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[Sutulo and Soares, 2002] can be mentioned as application of DOE in respectively 

aerodynamics and hydrodynamics. According to the highly non-linear manoeuvring 

mechanics, both the above references utilize the concept of subspaces and D-optimal 

design to model the responses through the whole range of definition of the factors. 

Reference [Chung et al. 2005] illustrates the vital need to have a well-designed 

experiment so as to reduce the number of runs. 

A reverse design of experiment is applied using the available static-attitude test data and 

a response surface model is fitted to that portion of these data. It is desired to obtain 

answers for the following questions: 

I. Is it possible to combine the results of two sets of experiments, namely 

resistance and static yaw, and develop a model for the responses versus the 

important factors: velocity, length-to-diameter ratio and drift angle, as in 

(2-16) 

2. According to the performed experiments and available data, how should 

an experiment for the study of the hydrodynamics of an underwater vehicle be 

designed so as to conserve time and cost? 

2.5.2 Experiment factors 

For the resistance tests the two factors are: towing velocity, U, and model dimensions, 

LDR; for the static yaw tests the factors involved are: yaw (drift) angle, {3 , and LDR. 

Tables 2.6 and 2.7 define the factors and their treatment levels for the two types of 

experiments. Shown in Tables 2.6 and 2.7, the resistance and static yaw tests respectively 

contribute 4*4 = 16 and 5* 12 = 60 runs. 
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Table 2.6 Resistance tests: variables and factor levels 

Factors Levels 

A= LDR 9, 10, II and 12 

B = U [m/s] I, 2, 3 and 4 

Table 2.7) Static yaw tests: variables and factor levels 

Factors Levels 

A= LDR 8, 9, 10, II and 12 

B = {3 [deg] -2 to 20 with step 2 ' 

The experiments measured three responses: axial force, Fx , sway force, Fy , and yaw 

moment, Mz . It should be noted that: 

The variable LDR is common for both types of experiments. 

For the resistance test, the desired response is the axial force, Fx, and the two 

other responses (Fy and Mz) are expected to be zero . 

All treatment levels of the static yaw tests have been performed with the 

same forward velocity of 2 m/s. 

In addition to the factors and responses (the main concern of the experimenter), there are 

several constraints that dominate the experiment design. The constraints are due to the 

facilities, environmental conditions and the experimenters. For instance, randomization is 

a basic requirement in the theory of the experiment design so as to cancel out the steady 

errors caused by unknown variables, however, installing and aligning the model on the 

towing carriage is a lengthy task, therefore, randomization over the variable LDR is 

practically impossible. Although, the randomization problem due to the presence of hard

to-change factors, can be solved using split-plot designs ([Montgomery, 200 I] , 
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~~~~~~~ -------- -

[Kowalski and Potcner, 2003] and [Potcner and Kowalski 2004]), the data here are 

analyzed as if they were gathered randomly. 

2.5.3 Analysis of test data using a statistical approach 

The software "Design Expert™6.0.3" by Stat-Ease, Inc. was used to analyze the data. The 

A NOVA shows that in the resistance test, the velocity (U) is highly significant at the 10% 

significance level, whereas in the static yaw test, the yaw angle ({J) is highly significant at 

the 10% significance level. None of the experiments result in a significant interaction 

effect between the two factors. 

The zk factorial design is the special case of the general factorial design. In this case, 

there are k factors each used at two levels, usually called low level and high level, in 

order to make the combinations. As mentioned, ANOVA is used to test for the statistical 

significance. A factor that has a greater effect on the response is statistically more 

significant. The factor effect is defined as the change in the mean response when the 

factor is changed from low level to high level. For instance, if A and B are two factors in 

an experiment, the effect of A is evaluated as : 

Term Al = Estimate of effect of A at high B = a1 b1 - a0 b1 

Term A2 = Estimate of effect of A at low B = a1 b0 - a0 b0 

[A]= Estimate of the effect of A over all B (2-17) 

= (TermAl + TermA2) /2 

The effect of B is evaluated in the same way. [A] and [B] are the main effects. Indices ' 0' 

and ' 1' consequently indicate the low and high level for each factor, e.g. a 1 b1 is the 

response at the treatment combination in which both factors are in high level. There is 
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also an interaction effect between the two factors, which is named [AB]. Interaction is 

actually a form of curvature and describes the dependence of the effect of one factor on 

the level of the other factor. The interaction effect is calculated as: 

[AB] = Estimate of effect of Bon the effect of A 

=(Term Al- Term AZ) /2 

(2-18) 

It should be noted that in the presence of large interaction effects, the main effects might 

not be meaningful. 

Table 2.8 shows the sum of squares and contribution of the factors A, B and AB for the 

resistance experiments that is: model dimension (LDR), towing speed (U), and the 

interaction of them. Note that the sum of squares for any effect is directly proportional to 

the effect squared. Eliminating the interaction term AB, since it is the smallest 

contribution, and doing ANOV A for the factors A and B provides a significant model for 

the resistance test results as shown in Table 2.9. The significance level used was I 0%. 

Although, from Table 2.9, factor A appears to be statistically significant, according to 

Table 2.8, it contributes less than 2% to the model. This shows that the dominant effect is 

the resistance of the nose and tail sections since the length of the constant-diameter mid

body accounts for less than two percent of the resistance. 
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Table 2.8 Sum of squares and contribution of terms for the selected model 

Term Sum Square % Contribution 

A= LDR 40.8 1.40 

B=U 2840 97.8 

AB 23.2 0.80 

Table 2.9 ANOV A for the selected model for resistance test results 

Source Sum of squares DF Mean square F-value Prob > F 

Model 2881 6 480.3 185.9 < 0.0001 Significant 

A= LDR 40.8 3 13.6 5.26 0.023 

B=U 2840 3 947.0 366.6 < 0.0001 

Residual 23.25 9 2.58 

Figs. 2.15 and 2.16 show the model interaction graphs. In Fig. 2.15, factor B (velocity) is 

the x-axis and different curves are drawn for different length-to-diameter ratios. In Fig. 

2.16, factor A (length-to-diameter ratio) is the x-axis. For the resistance tests, as well as 

the static yaw tests, all regression assumptions were acceptable. 
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Fig. 2.15 Interaction graph for axial force; velocity on x-axis 

31 



45 rr=========o~----------,-----------11 
-e--- U= 1 [m/s[ : : : 

~. -- U= 2 [m/s] -.•. -- _l~ .. ~-~.~- ::__- _ .: ._-:. -=- =-~:· -...-·--= -~··:::-·:-.:-.: -:-_ ~: _ -·><······· U= 3 [m/s[ _ . __ -
·-•······· U= 4 [m/s[ __ L ___________ 1 ___________ J _ 

or···--- : factor B: U : : 

40 

35 

I I I I 
30 - T----------- r--- ---- --- -~- ------ - - - - "T-

z 
-; 25 

~ 

I I I I 
I I I .. J. 

- .l. - - - - - - - - - - - L - - - - - - - . - - ..,.. -~-- ...,.._ ..;: ~- - ~--~~:-._ .l -
I l - - I I 

I I I I 
I I I -r-----------r---------------------- , -iii 20 

~ 
15 - +---- - ------ .... ---- - - --- - - 1-- --------- ~-

I I I I 

10 - t : I _ _ _ ~ 
I I 
I I 

5 - T----------- r---------- - r-----------~-

'!' T 
O L-~9 ----------1~0 __________ J11~--------~1~2 ~ 

LOR 

Fig. 2.16 Interaction graph for axial force; LDR on x-axis 

2.5.4 Response surface models for the static yaw data 

A regression model for a response, which depends on two factors, is a surface in 3D 

space. The response surface may be represented graphically using a contour plot or a 3D 

plot; this type of graphical representation is possible only when there are two factors. In 

the contour plot, lines of constant response are drawn in the plane of the two factors. In a 

3D representation, the response is plotted in the third dimension. The Response Surface 

Model (RSM) can be a first-order model ifthe response is a linear function of the factors. 

If the response has curvature, then a higher order polynomial should be used. A second-

order (quadratic) model is often able to capture the curvature [Myers and Montgomery 

I 995]. The general form of a quadratic regression for the response z versus the factors x 

andy is written as: 

(2-19) 
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The available data for static yaw test included five levels for factor A (bare hull LD R) and 

12 levels for factor B (yaw angle). Some of the avai !able data can be used to develop a 

RSM. Central Composite Design (CCD) is a popular design to fit a response surface to 

the data [Montgomery, 2001]. A CCD was built in order to capture the static yaw 

experiment results. Fig. 2.17 shows the general scheme of design. The design points are 

shown as pairs of (LDR, {3) values. The data shown in Table 2.10 were used for this 

purpose. In Fig. 2.17 the center-point has coordinates (LDR, {3) of (1 0, 1 0) and axial-runs 

are the runs augmented in between the square two-level design; they have coordinates 

(8, 10), (12, 10), (10, 0) and (10, 20). 

{J [deg] 

(10, 20) 

(9, 16) (II , 16) 

(8, 10) (1 0, 10) LD R 

-
(12, 10) 

(9, 4) ( II , 4) 

(10, 0) 

Fig. 2.17 Test set levels for the Central Composite Design 

The process of fitting a RSM for sway force, axial force and yaw moment is similar. For 

the sway force data, the linear model was suggested; however, the quadratic terms were 

in the boundary of significance. The interaction term was negligible. Checking additional 

statistics for a second-order model revealed that including the quadratic terms will result 

in a more accurate but not redundant model. Table 2.11 shows the ANOY A for the 
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quadratic model. The model is significant but the interaction term AB and quadratic term 

A2 can be omitted. 

Table 2.10 Test data for the central composite design 

Run A= LDR 8 = {3 [deg] Fx [N] Fy [N] Mz [N.m] 

I 9 4 10.6 9.4 7.16 

2 II 4 11.7 15.0 12.8 

3 9 16 13.8 79.6 27.8 

4 II 16 14.5 98.6 38.3 

5 10 0 10.5 3.62 4.29 

6 10 20 15 .3 150.1 37.5 

7 8 10 11.8 35.1 17.1 

8 12 10 14.3 58.0 32.3 

9 10 10 13.3 54.0 26.3 

Table 2.11 ANOV A for the quadratic model for sway force during static yaw tests 

Source 
Sum of 

DF Mean Square F-value Prob > F 
Squares 

Model 17997 5 3599 41.4 0.006 Significant 

A 412.6 I 412.6 4.75 0.118 

8 16561 I 16561 190.4 0.001 
Az 3.9 I 3.90 0.04 0.85 
82 514.9 I 514.9 5.92 0.093 

A8 45.1 1 45.1 0.52 0.52 

Residual 260.9 3 87 

Correlation Total 18258 8 

Note that, in Table 2.1 0, the p-values (second last column) for AB and A2 are evidently 

larger than 0.1, that is: outside the 10 percent significance level. For A and 8 2 the p-

values are near 10% and thus those terms were included in the final model. The model 

equation, written for the actual factors, after omitting the terms AB and A2 is as follows: 

Fy = -54.51 + 5.86(LDR) + 1.25(,8) + 0.28(,8) 2 (2-20) 

where the yaw angle is in degrees. One can check if (2-20) fits the test data of Table 2.1 0. 

If the response surface captures the data with an acceptable accuracy, then the other 
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available data can be used to check for the predictive capability of the model. Fig. 2.18, 

showing sway force versus yaw angle for LD R equal to 8 and 12, is plotted to assess the 

predictive capability of the model. The asterisk and circle signs represent the 

experimental data, which are available for the yaw angle from -2 to 20 degrees, in steps 

of two degrees. The solid and dashed lines were fitted to the RSM generated data from 

(2-20) with the same step-size. There is a gap between the model prediction and test data 

at some yaw angles (e.g. at higher angles for the LDR 8 vehicle or lower angles for LDR 

12). 

As mentioned, the same procedure can be applied to the axial force and yaw moment. 

The models for the sway-force and yaw-moment include the quadratic term {3 2
, but the 

axial force model is a simple linear model. It is often convenient to convert the actual 

values of the test factors to coded levels. The coded factors are defined so that the low 

and high levels are minus one and plus one, respectively as defined in Table 2.12. The 

model equations written for the coded factors are: 

Fx = 12.58 + 0.55(A) + 1.47(8) 

Fy = 45.05 + 5.86(A) + 41.63(8) + 10.25(8)2 

Mz = 24.22 + 3.88(A) + 10.61(8)-1.51(8)2 

(2-21) 

(2-22) 

(2-23) 

where factor A is the bare hu II LD R and factor 8 is the yaw angle, f3. As was explained, 

equations (2-21) to (2-23) were derived by performing the analysis of variance over the 

static yaw test data for the axial force, lateral force and yawing moment and thus 

identifying the terms which have a significant effect on those responses. 
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Table 2.12 Actual and coded factors for the static yaw tests 

{3 [deg] 0 4 10 16 20 

A -I -0.6 0 0.6 I 

LDR3 8 9 10 II 12 

B -I -0.5 0 0.5 I 

Notice that (2-22) corresponds to (2-20); the former is written for the actual factors and 

the latter for the coded factors. With the coded factors one can exactly see which factor 

has a larger effect on the response because all factors have the same range of variation: 

- 1 to I. 

I I 
+ Exp., LOR: 8 1 1 1 1 1 1 

140 - 0 Exp., LOR:12 --;--~- --:---~--~---CDv-
--RSM, LOR: 8 I I I I I 

120 

100 

~ 
80 "' ~ ,., 
60 

~ 
(/) 

- -- RSM LOR: 12 - - L - - J - - - 1
- - - l - - - 1

- -/-- L -
L...,---,--'-' ...,..--,-' I I I I I / I 

-- ~-- -i--- ~-- ~-- - ~-- ~-- -i--- ~ -~-- ~--
--i ---:_ --~ --J- --~ -_l ___ :_ ~ _ _ I ___ t __ 

1 I I I I I ~ I t I 
I I I /, I 

I I I I 1 I I I I --:---:---:---:---:-x--:-- I---:---:--
40 -- ~-- _;_--~-- ~-A--~- -I---!--~---~--

20 

:::~I I:::: 
-- { =-=-=+-4-- {---I -- j_- _I_-- 7-- ~--- ~--

CD I 

0 -- ~-- -+-
-20 

-2 0 6 10 12 14 16 18 20 
Yaw angle (deg] 

Fig. 2.18 Comparison of the experimental and RSM generated data 

The RSM 3D demonstration for sway force Fy is shown in Fig. 2.19. Plot of contours of 

the sway force model is shown in Fig. 220. In fact, Fig. 2.20 is the bottom face of Fig. 

2.1 9. 

3 Note that the models were actually 8.5 to 12.5 in length-to-diameter ratio but this section about DOE 
mainly focuses on the introduction of the concept of a statistical analysis of the test data. 
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2.5.5 Further discussion; the two crucial questions 

As discussed in the previous sections, the general shape of the models for the magnitude 

of the hydrodynamic loads in resistance and static yaw tests respectively are given by the 

following equations: 

(Fx, Fy, Mz) = f1 (LDR, U) 

(Fx, Fy,Mz) = fz(LDR,fJ) 

(2-24) 

(2-25) 

The variability ofthe main response, axial force, in (2-24) versus velocity and dimension 

was shown in Figs. 2.15 and 2.16, and (2-25) is the compact expression for (2-21) to (2-

23), after re-writing them for the actual factors. It should be noted again that: 

a- The variable LDR is common for both experiments. 

b- For the resistance test, the desired response is the axial force and two other 

responses (Fy and M2 ) are expected to be zero. 

c- In the resistance test, factor B (towing speed) was completely dominant. 

The magnitude of its effect and its contribution in the model was 

significantly higher than factor A (bare hull LDR). 

d- In the static yaw test, factor B (yaw angle) was dominant. 

e- None of the experiments concluded either a statistically (small F-value) or 

practically significant (large contribution) interaction effect. 

f- From these experiments nothing can be concluded about the interaction of 

forward speed U and yaw angle f3 , because all the static yaw tests were 

performed with the same forward velocity of 2 m/s. 
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Therefore f1 and f2 have been already derived in (2-24) and (2-25), and there are some 

clues to answer the first question that was put before; equation (2-16) is repeated below: 

(2-26) 

The objective function is g. In other words, a response surface model in the four

dimensional space is desired. Ifthe three factors LDR, U and {3 are named consequently 

A, B and C, then the first-order (linear) regression equation for the objective function is 

ofthe form : 

g = a0 + a1 A + a2 B + a12A * B + a 3 C + a13A * C + 

a 23 B * C+a123A * B * C (2-27) 

Equation (2-27) includes all the terms (i.e. main effects, two-factor interaction effects and 

the three-factor interaction effect) in the model, but some terms may not have a 

significant effect on the response. In case of a two-level factorial design, the coefficients 

are calculated as: 

a0 = overall average, a 1 = [A]/2, a 2 = [B]/2, a 3 = [C]/2, a 12 = [AB]/2 , 

a 13 = [AC]/2, a 23 = [BC]/2, a 123 = [ABC]/2 , (2-28) 

In (2-28), [A] is the effect of factor A, [AC] is the interaction effect of factors A and C 

which represents the dependence ofthe effect of factor A on the level of factor C (or vice 

versa), and so on. Hence performing a 23 factorial design (two-levels for three factors), 

may give an appropriate approximation of the objective function. With the available data 

we have no information about a 23 (interaction of the factors towing speed U and yaw 

angle {3) and a123 (interaction of all three factors: bare hull LDR, towing speed and drift 

angle). 
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Now, an answer can be provided for the question: How an experiment (in the context of 

underwater vehicle hydrodynamics) should be designed in the future so as to conserve 

time and cost? To give an approximate quantity on the time and cost saving that could be 

made, noting the previous paragraph, with a 23 factorial design, performing only eight 

runs, we might obtain an approximation of the objective function g. Then, to check for 

the curvatures in the responses, the design could be augmented with axial runs to create a 

central composite design, which is a very effective design for fitting a second-order 

response surface model. 

The full CCD for three factors is 14 runs plus the center-point runs. The center-point for 

instance, has coordinates (LDR, {3) of (1 0, 1 0) in Fig. 2.17. Note that if we have 

performed the 23 design, only six axial runs plus the center-point runs should be 

augmented to it. Axial-runs have coordinates (8, 1 0), (12, 1 0), ( 10, 0) and (1 0, 20) in Fig. 

2.17. It is usual to replicate the center-point runs. With e.g. three replications for the 

center-point the design totals to 17 runs. The present data for the resistance and static yaw 

tests totalled 16 + 60 = 76 runs! The difference between the number of runs shows the 

time and cost saving. 

2.6 Summary 

In this chapter, experimental data for fixed-attitude manoeuvring experiments, i.e. 

resistance and static yaw tests, that were measured for a series of five axisymmetric bare 

hull models of the same diameter but of increasing length-to-diameter ratios of 8.5, 9.5, 

I 0.5, 11.5 and 12.5 were presented and analyzed. Empirical formulae to predict the drag, 
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lift and moment coefficients for the bare hull of an axisymmetric underwater vehicle 

were proposed. 

Next, from a statistical design of experiment (DOE) point of view, the effects of the main 

factors in each type of experiment were studied. Derivation of a unified response for the 

axial force, lateral force and turning moment that are exerted on the bare hull during 

fixed-attitude experiments was discussed. With a statistically designed experiment, the 

adequate regression equation, which gives the hydrodynamic loads versus the main factor 

effects and interaction effects, can be derived. Moreover, with a statistically designed 

experiment, the possible saving of time and cost in the experiments was suggested. As 

was illustrated for the present data, the number of runs for a statistically designed 

experiment is several times less than the regular one-factor-at-time experiment which 

means a great saving in time and cost. 
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CHAPTER3 

VARIABLE-ATTITUDE TESTS: PURE SWAY EXPERIMENTS 

3.1 Introduction 

Pure sway experiments on the five hull forms for an axisymmetric underwater vehicle 

were also performed in the 90 m towing tank at NRC-lOT in November 2005. These 

experiments used the towing carriage to move the vehicle along the tank x-axis, the PMM 

(Planar Motion Mechanism) to produce the oscillating lateral (sway) motions, and, an 

internal three-component balance to measure two hydrodynamic forces (axial, lateral) 

and the hydrodynamic yaw moment. 

As was introduced in the previous chapter, the original bare hull model had a length-to

diameter ratio (LDR) of about 8.5:1. Extension pieces were added to the parallel mid

body to test hulls of the same diameter, 203 mm, but with LDR 9.5, 1 0.5, 11.5 and 12.5. 

The carriage forward velocity for all the runs was 2 m/s; in the pure sway runs the sway 

velocity of the PMM had smooth sinusoidal variations with amplitudes of about 0.55 m/s 

for most of the runs. The maximum and minimum sway motion amplitudes for the pure 

sway runs were 1.25 and 0.32 m; the maximum and minimum periods of oscillation were 

respectively about 14.3 and 3.5 s for all the bare hull configurations. Although some parts 

of the pure sway test results that were performed on five axisymmetric bare hull models 

in November 2005 were published in an earlier report in September 2006 [Williams et al. 

2006], a more comprehensive analysis of the filtered data was necessary. Analysis of the 

resulting experimental data from the pure sway captive manoeuvring tests reveals a 

variation of the apparent mass with the oscillation amplitude and frequency. 
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3.2 Pure sway tests 

One way to study the time-varying hydrodynamic loads which are experienced by a fully

submerged underwater vehicle is to perform captive-model forced oscillations with a 

device such as a Planar Motion Mechanism (PMM). In practice it is convenient (for 

programming of the drive motions, smoothness of the loads imposed on the PMM, and, 

for data-analysis purposes) to use sinusoidal motions. In a spatial coordinate system, such 

as a towing tank, a sinusoidal trajectory can be defined by the width of one cycle of the 

trajectory (cycle-width) and the amount of length of towing tank required to execute one 

cycle, the cycle-length. In the context of the motions of the PMM and the towing 

carriage, the cycle width is equivalent to twice the amplitude of the lateral (sway) motion 

A, and the cycle-length is equivalent to the product T · Ucarriage where T is the period of 

the motion and Ucarriage is the constant carriage speed. 

In a pure sway manoeuvre, the CG of the vehicle is moved through a sinusoidal path 

while the longitudinal axis of the vehicle is held parallel to the towing carriage's forward 

direction that is: the vehicle's yaw angle remains at zero during all the pure sway runs. 

As a result, the sway force and yaw moment measured on the vehicle during pure sway 

runs are larger than the loads in pure yaw runs. In this study the purpose of the pure sway 

experiments was to measure the sway force and yaw moment as functions of PMM lateral 

velocity and acceleration. In pure sway runs the body-fixed and global coordinates are 

parallel to each other; positive x, y and z-axes are respectively defined forward , to 

starboard and downwards. Assuming that time starts when the model passes the towing 

tank centerline in the positive y direction, sway displacement and velocity of the PMM 
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are as follow: 

y =A sin(wt) 

v = v0 cos(wt) 

--- ------------

(3-1) 

(3-2) 

where A and v0 are the amplitude of the PMM sway displacement and velocity 

respectively, and v0 is given by A · w. 

Differentiating (3-2) results in the PMM's and thus the model ' s sway acceleration as: 

ay = ayo cos(wt + ~) (3-3) 

where ayo is the amplitude of the sway acceleration of the PMM given by A · w 2
. Also, 

from the tests it is concluded that the sway force can be represented in the form: 

Fy = Fyo cos(wt + <fJF) (3-4) 

where Fyo is the amplitude ofthe sway force measured by the internal balance and <fJF is 

the phase lag between the sinusoidal sway force and sinusoidal sway velocity motions, 

that is, <fJF is the amount by which the PMM sway velocity leads the measured sway 

force. See Table 3.1 on pages 74 and 75 at the end of this chapter for the pure sway 

manoeuvring data. The raw time-series were filtered using the "filtfilt" function in 

MATLAB™ which does not use a frequency band to filter the signal, but it calculates a 

smoothed value at each time-instant by averaging n data points in the vicinity; in this 

analysis n was 20. Since, this filter processes the data twice, once in the forward direction 

and once in the reverse direction, no phase shift is introduced into the signal, which is of 

particular interest in the present method of analyzing the data where the phase shift 

between the PMM motion and the measured loads is of primary interest. 
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------------------------ -------------------------

3.3 Data analysis 

3.3.1 Manoeuvring frequency and amplitude 

The manoeuvring amplitude versus frequency for all pure sway runs for the bare hull 

with LDR 8.5 is plotted in Fig. 3.1. For other bare hulls the amplitude and frequency are 

also the same as in Fig. 3.1. Since the tests were planned to have about the same sway 

velocity amplitude for most of the runs, v0 =A· w is constant at about 0.55 [m/s], hence 

there is an inverse relationship between the amplitude A and frequency w as can be seen 

in Fig. 3.1. However, as will be presented later, the sway frequency and amplitude are the 

two independent factors affecting the sway force amplitude and phase. There are two sets 

of runs with equal frequency but different amplitude. There is one single run of frequency 

about 0.44 rad/s and amplitude 0.7 m which has lower sway velocity amplitude that is 

about 0.3 m/s (Table 3.1 ). 
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Fig. 3.1 Sway amplitude versus frequency for all runs for the bare hull with LDR 8.5 
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3.3.2 The sway force amplitude 

It is simplest first to interpret the results for a single bare hull configuration, and then the 

effect of model size can be studied. Sway force amplitude versus sway frequency for 

LDR 8.5 is plotted in Fig. 3.2. It is clear that for the runs of equal frequency, the lower 

maximum sway velocity - that is the smaller manoeuvre amplitude - produces a smaller 

force. Next, the sway force amplitude is plotted against sway acceleration amplitude in 

Fig. 3.3. The run with the lowest maximum acceleration results in the smallest sway force 

amplitude. It is seen that the amplitude of the sway force increases with increasing 

amplitude ofthe sway acceleration. 
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Fig. 3.2 Sway force amplitude versus sway frequency for the bare hull with LDR 8.5 
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Fig. 3.3 Sway force amplitude versus sway acceleration 

amplitude for the bare hull with LDR 8.5 

3.3.3 Phase lag between the sway force and sway velocity signals 

The values of the phase lag between the sway force and sway velocity signals (minus 90 

degrees) as presented in Table 3.1 for the five bare hulls, are shown in Fig. 3.4. As the 

sway frequency, and thus the amplitude of the acceleration increase, the phase lag 

decreases. Also, the phase lag for longer bare hulls is smaller. As a result, one may 

anticipate that if this trend continues for higher frequencies that this phase lag will tend to 

zero. 
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Fig. 3.4 Phase lag between the sway force and sway velocity signals (minus 90 degrees) 

during pure sway runs 

3.3.4 The inertial and damping terms 

As was explained in chapter 2, it is assumed that the recorded hydrodynamic loads during 

these pure sway runs were not affected by any free-surface effect because of the large 

distance from the bare hull to the free surface. Also, it is assumed that the hydrodynamic 

loads due to the supporting struts did not affect the recorded signals (see Fig. 2.3). Thus, 

the recorded sway force signal is assumed to be solely due to the lateral accelerations of 

the bare hull models. As is shown in Table 3.1 on pages 74 and 75 and Fig. 3.4, the sway 

force signal has a phase lag of <pp , larger than rr/2, relative to the velocity signal. In Fig. 

3.5 the sway velocity is shown by a vector pointing to the right, the sway acceleration 

vector points upward, and the sway force vector is shown in the second quadrant. Since 

with increasing time these vectors rotate in the clockwise direction, the velocity vector 

leads the sway force vector by the angle <fJF· Projecting this sway force vector along the 

48 



real and imaginary axes respectively produces (i) the damping component of the force 

vector, named Fy,d which acts in phase with the velocity vector but in the opposite 

direction, and, (ii) the inertial component of the force vector, named Fy,i which is in 

phase with the acceleration vector. 

Im 

v Re 

Fig. 3.5 Velocity, acceleration and force vectors in the complex plane 

As shown in Fig. 3.5 the amplitude of the damping and inertial components of the sway 

force vector are derived as: 

(3-5) 

Fyo,i = Fyo cos ( <fJF- ~) (3-6) 

According to the experimental data in Table 3.1 , as the frequency increases (i) the 

magnitude of the sway force increases and (ii) the phase lag <fJF decreases, both of which 

result in a larger inertial component of the sway force. 

3.3.5 The apparent mass versus manoeuvring frequency and amplitude 

If the inertial component of the sway force vector in (3-6) is divided by the amplitude of 

the sway acceleration, the resulting parameter is the apparent mass of the system (the 
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flooded vehicle mass, reported in Table 2. I , plus the added mass of the surrounding water 

external to the vehicle), that is: 

Fyo,d ayo = mapparent [kg] (3-7) 

where ayo is given by A · w2 . The magnitude of the apparent mass from (3-7) is shown in 

Table 3. I for all pure sway runs for all the bare hulls. The apparent mass for the bare hull 

with LDR 8.5 is plotted in Fig. 3.6 versus the sway acceleration amplitude. The same data 

are plotted versus the sway frequency w and amplitude A in Figs. 3.7 and 3.8. The sway 

velocity amplitude for each data point is also shown in Figs. 3.6 to 3.8. 
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acceleration amplitude during pure sway runs 
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Clearly seen for the LDR 8.5 data, the apparent mass resulting from these lateral 

acceleration manoeuvres is variable. From Figs. 3.8 to 3.10 the following conclusions can 

be made: 

I. Fig. 3.6 shows that as the amplitude A· w 2 ofthe sway acceleration increases, 

the apparent mass decreases. 

2. Fig. 3.7 shows that as the frequency w of the sway motion mcreases, the 

apparent mass decreases. 

3. Fig. 3.8 shows that as the amplitude A of the sway motion increases, the 

apparent mass increases. 

4. According to Fig. 3.6, the lateral velocity and acceleration have independent 

effects on the magnitude of the apparent mass, because the data with different 

sway velocity amplitudes do not lie along a curve. Since the velocity and 

acceleration amplitudes are respectively: A · w and A· w2 , it can be concluded 

that the oscillation amplitude and frequency are in fact the two independent 

factors that are affecting the magnitude of the apparent mass besides the body 

geometry, that is: 

mapparent = f(A, w, geometry) (3-8) 

5. In Fig. 3.7 for the same sway velocity 0.55 mls, the three data-points which 

have frequencies higher than 1 rad/s result in almost the same apparent mass of 

about 85 kg. 

6. According to Fig. 3.8, for the same sway motion amplitude, a lower sway 

velocity amplitude A · w results in larger apparent mass. Note that one should 

52 



avoid concluding from the two smallest frequency data-points in Fig. 3.7 that 

for the same frequency a larger amplitude of the sway velocity results in a 

larger apparent mass, because then the next pair of data-points in Fig. 3.7, 

which also have the same frequency suggest the contrary. Thus, again it is 

emphasized that for equal motion amplitude, according to Fig. 3.8, a sway 

manoeuvre with a longer period results in a larger apparent mass. 

7. From Fig. 3.8 one should not conclude that the magnitude of the apparent mass 

will indefinitely increase as the amplitude of the sway motion increases. The 

apparent mass will reduce to the vehicle mass for large amplitudes. Because, 

for an arbitrary sway velocity amplitude, if the oscillation amplitude becomes 

too large, then the sway acceleration amplitude tends to zero. The reason is that 

the sway acceleration amplitude is as follows: 

w = v0 /A, and a0 =A· w 2 4 a0 = v 0
2 /A (3-9) 

Thus, for an arbitrary sway velocity if the sway motion amplitude becomes too 

large, then the sway acceleration becomes so small that the inertial effects 

notably vanish. 

8. The flooded vehicle mass for LDR 8.5 was measured to be about 49.2 kg 

(Table 2.1) by which amount the data in Figs. 3.6 to 3.8 should be shifted 

downward to show the added mass values; that is, the added mass for LDR 8.5 

varies between about 28.3 to 71.2 kg depending on the sway frequency and 

amplitude. 
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3.3.6 The apparent mass versus the bare hull size 

Next, Fig. 3.9 shows the apparent mass for the five bare hull configurations versus the 

sway frequency. The clear pattern is that for all configurations the magnitude of the 

apparent mass appears to tend asymptotically to a single value as the frequency increases. 

On the other hand, if the experimental data are plotted versus the bare hull LDR, as 

shown in Fig. 3.1 0, it is seen that there is effectively a linear increase in the magnitude of 

the apparent mass with increasing LDR, for all the combinations of sway frequency and 

amplitude shown. 
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amplitude during pure sway runs 

3.3.7 The damping factor 

Going back to Fig. 3.5 and equation (3-5), if the damping component of the sway force 

vector is divided by the sway velocity amplitude the resulting value is a damping factor 

which is often denoted by b, that is: 

!Fyo,d l!v0 = b [kg/s], (3-1 0) 

where: v0 = A · w. The magnitude of the damping factor from (3-1 0) is shown in column 

# 10 in Table 3.1 on pages 74 and 75 for all pure sway runs for all the bare hulls. Note that 

the damping force acts in the opposite direction of the velocity vector, but the damping 

factor is defined to be positive. The damping factor derived by (3-1 0) has the dimension 

of [kg/s] and the dimensional values are between about I 00 to 180 [kg/s]. Fig . 3.11 shows 

how the damping factor varies with the frequency of the sway motion. It is observed that 

the damping factor is largest for the longest model. 
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Fig. 3.11 Damping factor versus frequency of sway motion for all bare hulls 

during pure sway runs 

3.4 The sway force model 

Using the rotating vector representation in Fig. 3.5, the sway force tn a pure sway 

manoeuvre at time instant t = 0 can be modeled as follows: 

(3-1 1) 

where i is the imaginary unit vector. Equation (3-11) is rewritten as follows: 

(3-12) 

Then the amplitude ofthe sway force is found to be: 

[ 
2 ( )2] (

1
/2) 

Fyo = Aw b + mapparentW (3-13) 

and the amount by which the sway force lags the sway velocity is given by: 

(3-14) 
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In general, the magnitude of the apparent mass and the magnitude of the damping factor 

depend on the body geometry as well as the sway frequency and amplitude. The 

parameters for the sway force model in (3-13) and (3-14) can be obtained from the 

experimental data for each of the five models. The time variation of the sway force is 

obtained by substituting the force amplitude and phase lag from (3-13) and (3-14) into 

equation (3-4), that is: Fy = Fyo cos(wt + <pp) . 

3.5 Uncertainty in the test results 

The model that was constructed for the sway force during lateral acceleration manoeuvres 

can be checked for the uncertainty. The apparent mass was derived as the in-phase 

component ofthe sway force divided by the lateral acceleration ofthe PMM as follows: 

mapparent = cos ( <fJF- ~) • (Fyo/ Aw2
) (3-15) 

Equation (3-15) provides an explicit statement for the apparent mass versus the 

experimentally measured values: amplitude of the sway force Fy0 , and the phase lag 

between the sway force and sway velocity signals <pp, as well as the manoeuvring 

amplitude and frequency. Using (3-15), uncertainty in the prediction of apparent mass 

during the pure sway manoeuvres can be studied. There may be the following 

uncertainties in the pure sway experiments: 

(1) The planar motion mechanism (PMM) is uncertain in performing the required 

amplitude and frequency. Since the manoeuvring frequency and amplitude, during 

a pure sway manoeuvre, are independent parameters, thus the test facility also 

may have independent uncertainties. Therefore, the test facility is x1 o/o uncertain 
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in performing the required sway amplitude and x2 % uncertain in performing the 

required frequency. 

(2) The load cells are x3 % uncertain in measuring the magnitude of the sway 

force. 

(3) The phase difference between the sinusoidal curve fits to the recorded signal 

for the sway force and the sway velocity signal, that is: (/Jp, are read with x4 % 

uncertainty. 

Also if it is assumed that: the command signals that are sent to the test facility (carriage 

and PMM) are transferred with 100% certainty, and the measured load values are 

transferred with I 00% certainty through the recording channels, then the above three 

items are the main sources of uncertainty during the tests. Substituting those uncertainty 

sources into (3-15) results in: 

mapparent =cos ( x4 * (/Jp- ~) • (x3 * Fy0 )j[(x1 * A)(x2
2 * w2

)] (3-16) 

Assuming a confidence level of 98% for the PMM performance, i.e. x1 = 0.98 and 

x 2 = 0.98, and a confidence level of 95% for the data analysis in reading the magnitude 

of the sway force and its phase difference, i.e. x3 = 0.95 and x4 = 0.95, then the 

apparent mass versus manoeuvring frequency for the bare hull model of LDR 8.5 is 

plotted with the error intervals as shown in Fig. 3.12. According to (3-16), the lower bars 

are resulting if the PMM sway amplitude and frequency are both larger than the recorded 

values in Table 3.1 , and the amplitude ofthe sway force is smaller and its phase lag is 

larger than estimated in Table 3.1. The upper bars are resulting if the frequency and 

amplitude are smaller, the sway force is larger and the phase lag is smaller than their 
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values in Table 3.1 on pages 74 and 75. Note that there are two data points at frequencies 

0.44 and 0.66 rad/s. 
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Fig. 3.12 Apparent mass of the bare hull LDR 8.5 during pure sway manoeuvres 

including the error bars 

At this level of uncertainty for these parameters, still the trend of varying apparent mass 

versus the manoeuvring frequency does not lay within the uncertainty limits. The largest 

uncertainties in the data in Fig. 3.12 are about 40% lower and 50% upper limits which 

occur at the smallest frequency: the most rapid manoeuvre. However, the uncertainty in 

the test results for the apparent mass in Fig. 3.12 is rather large and is even larger if e.g. 

the uncertainty in reading the phase lag x4 has been larger than 95% which is quite 

possible. Thus, further PMM experiments are suggested to clarify the phenomenon. 

3.6 An improved design for future pure sway experiments 

Observation of the pure sway test data revealed that the sway force vector, in addition to 

the body geometry, is a function of two independent variables (i) the amplitude of the 
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sway velocity A · w, and, (ii) the amplitude of the sway acceleration A · w 2
, in a lateral 

harmonic manoeuvre. In other words, the sway motion amplitude A and frequency w 

should vary independently during the experiments so as to acquire data-points at different 

levels of both sway velocity and sway acceleration . With the present test data, since the 

sway amplitude and frequency had an inverse relation for most of the runs, it is only 

possible to observe the sway force variation versus lateral acceleration for a particular 

sway velocity amplitude of about 0.55 m/s. With a statistical design of experiment, using 

the concept of response surface models, the tests can be designed starting with a basic 

two-level factorial scheme which is then augmented with axial and centre-point runs so 

as to capture the variation of the response, sway force, over the two test factors: (i) the 

amplitude of the sway velocity A · w, and, (ii) the amplitude of the sway acceleration 

A ·w2
. 

Fig. 3.13 proposes an example test plan which covers a range of0.3 to 0.6 [m/s] for the 

sway velocity amplitude and a range of 0.1 to 0.8 [m/s2
] for the sway acceleration 

amplitude. In the figure the factor sway velocity varies horizontally, and the factor sway 

acceleration is along the vertical axis. The design has both axial runs which are outside 

the square-box, and face-centered runs which lie on the sides of the square. Such an 

experimental plan can capture the variation of the sway force over the manoeuvring 

frequency and amplitude. In Table 3.2 the proposed test runs are shown; for each run the 

manoeuvring frequency is obtained by dividing the acceleration amplitude by the velocity 

amplitude, and then the amplitude A ofthe sway displacement equals the amplitude of the 

sway velocity A · w divided by the sway frequency w. 
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Fig. 3.13 Test runs: pairs of factor levels for the sway velocity and 

sway acceleration amplitudes 

Table 3.2 Test-plan proposed for future pure sway tests in order to cover both the manoeuvring 

frequency and amplitude effects on the sway force response 

Run No. v0 [m/s] 
a yo w = a0 jv0 A= v0 fw 

[m/s2] [rad/s] [m] 

I 0.37 0.25 0.68 0.55 

2 0.53 0.25 0.47 1.1 2 

3 0.37 0.65 1.76 0.21 

4 0.53 0.65 1.23 0.43 

5 0.45 0.1 0.22 2.03 

6 0.45 0.8 1.78 0.25 

7 0.3 0.45 1.50 0.20 

8 0.6 0.45 0.75 0.80 

9 0.45 0.45 1.00 0.45 

10 0.45 0.25 0.56 0.81 

II 0.45 0.65 1.44 0.3 1 

12 0.37 0.45 1.22 0.30 

13 0.53 0.45 0.85 0.62 

The centre-point run number 9 has the velocity and acceleration amplitude pair of (0.45 

m/s, 0.45 m/s2
) which corresponds to a frequency and sway motion amplitude of (w, A) = 

(1 rad/s, 0.45 m) . This run could be replicated three times so as to provide a measure of 
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the experimental repeatability. For example, with three replications for the centre-point 

run, the design scheme in Fig. 3.13 totals to 15 runs; to this if a study of the effect of the 

bare hull geometry is added, e.g. with three different bare hulls the test set totals to 45 

runs which is equal number of runs as the present data. 

3. 7 Instantaneous lift and drag forces 

During pure sway manoeuvres due to the combination of forward towing speed and 

PMM sway velocity, there is an apparent drift angle which produces apparent lift and 

drag forces on the model. Fig. 3.14 illustrates the apparent drift angle. Since the 

maximum sway velocity occurs when the model passes the centre-line, the apparent drift 

angle is a maximum at that time instant which is calculated as follows : 

fJ = tan-1 (v/u) (3-17) 

Towing speed u was 2 m/s for all runs and maximum sway velocity of the PMM was 

about v = 0.56 m/s for most of the runs which results in a maximum apparent drift angle 

of about 16 deg. Since the sway velocity during pure sway runs varies sinusiodally, the 

apparent drift angle also has a harmonic sinusoidal variation. The apparent drag and lift 

forces that are exerted on the vehicle due to the apparent drift angle are calculated as 

follows : 

D = ipA1U2C0 , 

L = iPArU 2 CL 

(3-18) 

(3-19) 

where A1 = rrd 2 /4 and U2 = u 2 + v 2 . Drag and lift coefficients in the above formulae 

are functions of the apparent drift angle. 
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Fig. 3.14 Illustration of the apparent drift angle during pure sway manoeuvres and the resulting 

apparent drag and lift forces 

As was explained in chapter 2, static yaw test results were used to model the drag and lift 

coefficients versus drift angle and LDR of the five bare hull configurations. The 

following models were obtained (equations (2-13) and (2-14)): 

1000 * Cv = 1.88 {3 2 + 11.7 LDR + 38 (3-20) 

1000 * CL = (0.007 LDR + 0.011){33 + ( 4.87 LDR + 8.85){3 (3-21) 

where the drift angle in (3-20) and (3-21) is in degrees. Thus, e.g. for a maximum 

apparent drift angle of 16 deg which occurs at the towing tank centre-line, the maximum 

drag and lift coefficients are respectively: 0.62 and 1.08 which are then vary sinusoidally 

during a pure sway run. The minimum apparent drift angle is zero at the instant at which 

the sway motion displacement is maximum, for which the lift coefficient from (3-21) is 

zero and the drag coefficient from (3-20) for respectively shortest to longest bare hulls 

(LDR 8.5 and 12.5) is about 0.14 to 0.18. 

Hence, the apparent lift and drag forces which for each run vary sinusoidally with the 

same frequency as of the PMM, are maximum while the model passes the towing centre-

line. The apparent drag force has a non-zero minimum, while the apparent lift force is 

zero at the maximum sway displacements as was illustrated in Fig. 3.14. The maximum 
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and minimum apparent drag forces as well as the maximum apparent lift force are shown 

in Table 3.1 at the end of this chapter. 

Now, if the apparent drag and lift forces are projected along the towing x andy-axes, the 

axial and lateral forces due to these apparent drag and lift are calculated as follows: 

Fx,static = D · cos({J) - L · sin({J) 

Fy,static = L · cos({J) + D · sin({J) 

(3-22) 

(3-23) 

The resulting amounts for the axial force and sway force from (3-22) and (3-23) at the 

maximum apparent drift angle which occurs at the towing centre-line are also shown in 

Table 3.1. In (3-22) and (3-23) the index "static" was added to indicate that these axial 

and sway forces were calculated using the previously introduced models for the drag and 

lift coefficients during static-yaw tests. Fig. 3.15 com pares the sway force amplitude that 

is estimated using (3-23) to the sway force amplitude as was measured during pure sway 

tests at two extreme manoeuvring frequencies of 1.8 and 0.44 for the five bare hulls. 

As is observed in Fig. 3.15 and Table 3.1, the sway force amplitude due to the apparent 

lift and drag forces as is calculated by (3-23), does not vary notably versus the 

manoeuvring frequency, while the sway force amplitude that was measured during pure 

sway manoeuvres varies significantly from a small value at low frequency to a large 

value at high frequency. This effect is due to the added mass phenomena. It appears that 

the pure sway test data at low frequency w = 0.44 [rad/s], shown by red squares, are very 

close to the estimated value due to the apparent instantaneous drag and lift forces. 
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Fig. 3.15 Sway force amplitude at low and high frequencies for the five bare hulls: 

pure sway test data compared to the estimated value in (3-23) 

The axial force that was estimated by (3-22), as shown in Table 3.1, has a maximum 

value at the towing centre-line of about 20 N for the shortest model. However, at the 

sway motion amplitudes, where the apparent drift angle is zero, the estimated axial force 

which is equal to the minimum apparent drag force is about 10 N . The measured axial 

force signals during pure sway tests were not analyzed yet to verify such a sinusoidal 

variation in the axial force during pure sway manoeuvres due to the apparent drift angle. 

3.8 Deriving the conventional sway coefficients from PMM tests 

The application ofthe planar motion mechanism (PMM) to perform captive manoeuvring 

tests and the conventional approach to derive the hydrodynamic coefficients from those 

tests have been presented in sources such as [PNA, 1967], [Goodman, 1960] and [Bishop 

and Parkinson, 1970]. 
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In a static yaw test the towing speed U is the total speed of the model, thus sway velocity 

ofthe model is: 

v = -u sin(f3) (3-24) 

Therefore, slopes of plots of sway force and yaw moment curves versus drift angle give 

values for the derivatives Yv and Nv. The slopes of those curves for the Phoenix bare hull 

with LDR 8.5 (Figs. 2.10 and 2.11) are: Yv:::::: -110 N/(m/s) and Nv:::::: -58 N.m/(m/s). 

Non-dimensional derivatives are calculated for bare hull length: I= 1.73 m and towing 

speed: U= 2 m/s, dividing the force derivative by ipUl 2 and the moment derivative by 

i pU l 3 which results in Y; = -0.037 and N~ = -0.011. A negative value for the 

moment derivative Nv means that the effect of the bow dominates. In the same manner 

for all the five hulls with length-to-diameter ratios 8.5 to 12.5 the non-dimensional force 

and moment derivatives are calculated from the static yaw test results as follows: 

y; = -[0.037, 0.029, 0.024, 0.02, 0.017] 

N~ = -1o-3 * [11, s.1, 6.0, 4.5, 3.5] 

(3-25) 

(3-26) 

To derive the sway coefficients from the pure sway test results, the sway forces that are 

recorded by the fore and aft loadcells in the lateral direction respectively named F1 and 

F2 each are decomposed into in-phase and out-of-phase components relative to the sway 

displacement signal. Then it follows: 

Fin = (Fl)in + (Fz)in' Fout = (Fl)out + (Fz)out (3-27) 

The amplitudes of the in-phase and out-of-phase forces according to the illustration in 

Fig. 3.5 are respectively equivalent to the inertia and damping components, i.e.: IFin,o I = 

Fyo,i = Fyo cos(cpp- rr/2), and IFout,o I = Fyo,d = Fyo sin(cpp- rr/2). Then the 
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osci llatory derivatives of the sway force with respect to the sway acceleration and sway 

velocity are respectively defined as follows [Bishop and Parkinson, 1970, equation (68)]: 

(3-28) 

(3-29) 

where according to the prev10us sections, amplitudes of the lateral velocity and 

acceleration of the PMM during a pure sway run are v 0 = Aw and ayo = Aw2 . In fact, 

equations (3-28) and (3-29) are analogous to (3-7) and (3-1 0), i.e., the velocity derivative 

of the sway force Yv is equal to the damping factor b that was defined in section 3.3.7, 

and the acceleration derivative of the sway force Yv is the flooded mass of the vehicle m 

minus the apparent mass mapparent (the flooded mass ofthe vehicle plus the added mass 

of water) that was defined in section 3.3.5. Obviously, this definition for Yv is not quite 

straightforward for using in the equation of motion {see equation (66) in [Bishop and 

Parkinson, 1970]}. 

If (3-28) and (3-29) are multiplied by the sway motion frequency with some algebra the 

sway coefficients are calculated as follows: 

1 ~ 
(m- Yv)z =slope at the origin of (Fyo,d A)2 

plotted versus frequency as shown in Fig. 3.16 (3-30) 

Yv = slope at the origin of (Fyo,dl A) 

plotted versus frequency as shown in Fig. 3.17 (3-31) 

This approach was presented by van Leeuwen [1964) for a model of a surface vessel. Fig. 

3.16 as stated in equation (3-30) was plotted using the pure sway test data for the five 
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bare hull configurations and lines were fitted to the test data. The line slopes at the origin, 

i.e. w ~ 0, are larger for longer hulls. Then, rearranging (3-30) and substituting the line 

slopes from Fig. 3.16 and the flooded mass of the vehicle from Table 2.1 into it, the sway 

force derivative Yv is calculated for the five hulls. Those values divided by ~ pl3 result in 

the non-dimensional acceleration derivative ofthe sway force which is as follows for the 

bare hulls of LDR 8.5 to 12.5 respectively: 

Y~ = -1o- 3 * [6.9,4.5,4.6,4.0,3.4] (3-32) 

The non-dimensional mass of the underwater bare hulls of LDR 8.5 to 12.5 using the data 

in Table 2.1 are respectively m' = 10-3 * [19.2, 15.4, 13.1, 11, 9.4]. 
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Fig. 3.16 The plot based on equation (3-30) to find the acceleration derivative of the sway force Y 11 

So it may be concluded that for a slender underwater bare hull the non-dimensional 

acceleration derivative of the sway force during a lateral acceleration manoeuvre has 

about one-third of magnitude of its non-dimensional mass. In fact, Y~ is the no-

dimensional added mass ofthe vehicle with a minus sign. 
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Fig. 3.17 as stated in equation (3-31) was plotted to derive the velocity derivative of the 

sway force Yv. Then it is divided by ~pUl2 - at the towing speed of U = 2 mjs for all the 

runs- to conclude the non-dimensional sway force derivative with respect to the sway 

velocity for the five bare hulls of LDR 8.5 to 12.5 as follows : 

y; = -[0.046, 0.042, 0.035, 0.031, 0.028] (3-33) 

Compared to the previously derived values of Y; = -[0.037, 0.029, 0.024, 0.02, 

0.017] in (3-25) that was from the static yaw test results for the five bare hulls, the above 

values in (3-33), although are in rough agreement, show that the velocity derivative of the 

sway force during a dynamic test, i.e. pure sway, is larger than predicted during static 

tests. So this may make the validity of deriving Y; from static yaw tests doubtful. Also 

van Leeuwen (1964] using (3-31) reported a non-dimensional sway force derivative Y; of 

about -0.02 for the surface vessel model which was 2.258 m long with a maximum 

breadth of 0.323 m thus a length-to-breadth ratio of about seven. 
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Fig. 3.17 The plot based on equation (3-31) to find the velocity derivative of the sway force Yv 
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With the same approach as for the sway force, the yawmg moment derivatives are 

calculated as follows: 

Nv = Gin/ao, Nv = -Goutfvo 

Gin = -Mzo sin((/JM - rc), Gout = Mzo cos((/JM - rc) , 

(3-34) 

(3-35) 

where Mzo is the amplitude of the yawing moment that was recorded during pure sway 

tests, and (/JM is the phase lag between the sinusoidal signal ofthe yaw moment and the 

sinusoidal signal ofthe sway velocity. The tests data for Mzo and <fJMare reported in Table 

3.1 the last two columns on pages 74 and 75. The phase lag is very close to 180 degrees 

and the amplitude of the yaw moment is about 20 to 50 [N.m] for the five bare hulls (see 

Table 3.1 ). Using (3-34) and (3-35) the yaw moment derivatives Nv and Nv (also called 

oscillatory coefficients in aeronautics [Bishop and Parkinson, 1970]) are calculated which 

are then non-dimensionalized respectively by~ pl4 and~ pU l3 as are plotted in Figs. 3.18 

and 3.19. It is seen in Fig. 3.18 that the acceleration derivative of the yawing moment 

during a pure sway motion has a non-dimensional value N~ close to zero which becomes 

negative as the manoeuvring frequency increases. A sinusoidal fit of type: 

Curve fittoN~: a* sin(bx +c) = 0.6 * 10-3 * sin(1.9w + 8.26) , (3-36) 

was crossed through all the data points in Fig. 3.18 which has an intercept of about 

N~ ::::::: 0.5 * 10-3 at zero frequency. Van Leeuwen [1964] also reported a value of about 

10-3 for N~ with a similar variation versus manoeuvring frequency for the surface vessel 

model (see Fig. 9(b) in [Bishop and Parkinson, 1970]). 
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Fig. 3.18 Non-dimensional acceleration derivative of the yaw moment N~ during pure sway tests 

On the other hand, the velocity derivative of the yawing moment during a pure sway 

manoeuvre seems to be more significant. According to Fig. 3.19 the test data are about an 

average constant value for N~ which are shown by solid lines for each LDR ; it is seen that 

for longer hulls the non-dimensional derivative N~ is smaller. If the constant average 

value is extended tow ~ 0, then for the five bare hulls of LDR 8.5 to 12.5 it follows: 

N~ = -1o- 3 * [9.3, 7.7, 6.6, 5.7, 4.9] (3-37) 

Compared to the previously derived values of N~ = -10-3 * [11, 8.1, 6.0, 4.5, 3.5] in (3-

26) from the static yaw test results, the above values in (3-37) show that the velocity 

derivative of the yaw moment during a dynamic test, i.e. pure sway, is somewhat 

different than predicted using the static tests. 
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Fig. 3.19 Non-dimensional velocity derivative of the yaw moment N~ during pure sway tests 

Finally, it should be noted that although the values for hydrodynamic derivatives were 

derived in this section invariable with frequency, as suggested in previous sections ofthis 

chapter, there is a frequency effect on the amplitude and phase ofthe sway force and yaw 

moment during pure sway tests which should be studied more carefully with a better 

design of experiment as was roughly outlined in section 3.6. 

3.9 Summary 

This study presents test results that indicate how the sway force and yaw moment of the 

bare hull of an AUV varies during a lateral acceleration manoeuvre. In oscillating lateral 

motions such as the pure sway manoeuvres performed in these experiments, the value of 

the apparent mass depends on the manoeuvring frequency and amplitude as well as the 

body geometry. However, the presented results indicate that further experimental and 

analytical research is required to acquire an improved understanding ofthe apparent mass 

and damping phenomena in lateral acceleration manoeuvres. 
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The sway force that is exerted on the axisymmetric bare hull of an underwater vehicle 

during pure sway manoeuvres was modeled in the complex plane with its damping 

component in phase with sway velocity vector (but in the direction opposite to it), and its 

inertial component in phase with the sway acceleration vector. Then the amplitude and 

phase of the sway force were formulated versus the manoeuvring frequency and 

amplitude, the magnitude of the apparent mass and the magnitude of the damping factor 

of the system. As mentioned, it is shown that the magnitude of the apparent mass itself is 

a function ofthe body geometry, and the manoeuvring frequency and amplitude. 

Also, the conventional method of analyzing the PMM test data was used to calculate the 

sway force and yawing moment derivatives. It was shown that the derivatives that are 

calculated using the dynamic test resu lts compared to the same derivatives based on static 

yaw test results are rather different. Moreover, using the conventional method, still the 

frequency-dependency is observable in the test data during the dynamic manoeuvres. 

An improved test-plan for future experimental work was also proposed in section 3.6 so 

that to perform the pure sway tests in a way that both the manoeuvring frequency and 

amplitude effects on the response sway force are independent variables instead of their 

product A· w being effectively held constant as is shown in the fifth column of Table 3.1 

for the present experiments. 
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Table 3.1 Pure sway test results for the five bare hull series 

Run 
A [m] 

w Vo ao 
Fyo [N] 

(/JF - 90 mapparent b Dmax Dmin Fy,static Fx,static Mzo (/JM - 180 LDR L[N] 
No. [rad/s] [m/s] [m/s2

] [deg] [kg] [kg/s] [N] [N] [N] [N] [N.m] [deg] 

I 8.5 0.32 1.8 0.57 1.03 112.8 44.9 77.5 138 43.5 8.9 75.9 85.0 20.8 29.6 11.4 

2 8.5 0.36 1.53 0.55 0.85 101 46.3 82.5 132 40.7 8.9 71.2 79.4 20.3 28.3 9.1 

3 8.5 0.42 1.31 0.55 0.72 93.3 49.7 83.8 130 40.5 8.9 70.8 79.0 20.3 27.4 8.2 

4 8.5 0.5 1.1 0.55 0.61 87.5 53 .9 84.9 128 40.7 8.9 71.1 79.3 20.3 26.4 5.1 

5 8.5 0.65 0.89 0.58 0.51 91.8 59.4 91.8 137 43 .6 8.9 76.1 85 .1 20.8 26.8 4.3 

6 8.5 0.7 0.44 0.31 0.14 35.4 63.3 117.6 103 18.6 8.9 31.8 34.3 13.6 15.3 -5.0 

7 8.5 0.85 0.66 0.56 0.37 86.1 63.4 103.8 137 42.0 8.9 73.3 81.9 20.6 25 .9 1.3 
8 8.5 0.9 0.66 0.60 0.39 93.1 64.6 10 1.4 141 46.1 8.9 80.4 90.2 21.2 26.7 1.0 

9 8.5 1.25 0.44 0.55 0.24 77.6 68 120.4 131 40.4 8.9 70.7 78.8 20.3 24.9 - 1.0 

10 9.5 0.32 1.8 0.57 1.03 124.3 44.8 85.5 !52 44.3 9.7 83.3 92.3 19.6 34.1 11.8 

II 9.5 0.36 1.53 0.55 0.85 111.8 46.4 91.2 147 41.5 9.7 78.1 86.3 19.3 32.7 9.5 
12 9.5 0.42 1.31 0.55 0.72 100.9 49.4 91.3 139 41.3 9.7 77.7 85.8 19.2 31.5 6.4 

13 9.5 0.5 1.1 0.55 0.61 93.4 53 .2 92.1 136 41.5 9.7 78.0 86.2 19.3 30.2 6.8 

14 9.5 0.65 0.89 0.58 0.51 98.2 58 102.2 145 44.4 9.7 83 .5 92.5 19.6 30.6 4.7 

15 9.5 0.7 0.44 0.31 0.14 39.9 62.2 137.6 115 19.4 9.7 34.9 37.4 13.9 18.3 1.1 

16 9.5 0.85 0.66 0.56 0.37 92.5 62.9 113.5 146 42.8 9.7 80.5 89.0 19.4 29.8 2.4 

17 9.5 0.9 0.66 0.60 0.39 99.9 63.6 113 150 46.9 9.7 88.2 97.9 19.8 30.9 1.4 

18 9.5 1.25 0.44 0.55 0.24 91.2 67.4 145 153 41.2 9.7 77.5 85.7 19.2 29.7 0.5 
19 10.5 0.32 1.8 0.57 1.03 138.9 42.2 99.8 162 45.1 10.4 90.7 99.6 18.3 38.8 6.5 

20 10.5 0.36 1.53 0.55 0.85 125.1 42.8 108.7 154 42.3 10.4 85.0 93.2 18.2 37. 1 4.6 

21 10.5 0.42 1.31 0.55 0.72 112 46.8 106.6 148 42. 1 10.4 84.5 92.7 18.2 35 .8 3.9 

22 10.5 0.5 1.10 0.55 0.61 103.5 51.8 105.3 148 42.3 10.4 84.9 93. 1 18.2 34.3 3.2 

23 10.5 0.65 0.89 0.58 0.51 107.5 57.5 113.4 158 45 .2 I 0.4 90.9 99.8 18.3 35.2 1.2 

24 10.5 0.7 0.44 0.31 0.14 42.6 62.7 144.5 123 20.2 I 0.4 37.9 40.6 14.2 20.7 -2.1 

25 10.5 0.85 0.66 0.56 0.37 102.4 61.4 131 .6 160 43 .6 10.4 87.6 96.1 18.3 34.6 2.1 
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Table 3.1 contd. 

Run LDR A [m] 
w Vo ao Fyo 'fJF - 90 mapparent b Dmax Dmin L[N] 

Fy,stat ic Fx,static Mzo 'fJM - 180 
No. [rad/s] [m/s] [m/s2

] [N] [deg] [kg] [kg/s] [N] [N] [N] [N] [N.m] [deg] 

26 10.5 0.9 0.66 0.60 0.39 108.6 60.3 136.7 158 47.7 10.4 96.1 105.7 18.3 35.9 1.7 
27 10.5 1.25 0.44 0.55 0.24 95.1 65 166.2 157 42. 1 10.4 84.4 92.5 18.2 33.4 -0.3 

28 11.5 0.32 1.80 0.57 1.03 148.9 40.7 109.4 169 45.9 I 1.2 98.1 106.9 17.1 42.7 3.5 
29 I 1.5 0.36 !.53 0.55 0.85 132.7 42.7 115.4 163 43.2 11.2 91.9 100.1 17.2 42 3.8 
30 11.5 0.42 1.31 0.55 0.72 119.7 45 .9 115.7 156 42.9 I 1.2 91.4 99.5 17.2 40.7 4.4 
3 1 11.5 0.5 1.10 0.55 0.61 111 .3 52 112.8 159 43. 1 11.2 91.8 100.0 17.2 38.4 3.4 
32 I 1.5 0.65 0 .89 0.58 0.51 113.7 56.7 122.7 165 46.0 11.2 98.3 107.1 17.1 40.1 2.5 
33 11.5 0.7 0.44 0.31 0.14 44.4 61.7 155.9 127 2 1.0 I 1.2 41.0 43 .7 14.5 24.2 0.1 

34 11.5 0.85 0 .66 0.56 0.37 104.1 60.2 139 161 44.4 I 1.2 94.7 103.2 17. 1 39.1 -0.3 
35 11.5 0.9 0.66 0.60 0.39 112.7 58.7 148.6 162 48.5 11.2 103.9 113.4 16.9 41 -2.1 
36 11.5 1.25 0.44 0.55 0.24 99.1 67.4 157.4 167 42.9 I 1.2 91.3 99.4 17.2 38 -2.1 
37 12.5 0.32 1.80 0.57 1.03 160.7 39.6 120. 1 178 46.7 11.9 105.5 114.3 15.8 47.3 2.8 
38 12.5 0.36 1.53 0.55 0.85 144.8 40.8 129.6 172 44.0 11.9 98.9 107.0 16.1 45.5 1.9 
39 12.5 0.42 1.31 0.55 0.72 130 42.8 132.7 161 43.8 I 1.9 98.3 106.4 16.1 45 0.8 

40 12.5 0.5 1.10 0.55 0.61 116.6 50.5 122.1 163 43.9 I 1.9 98.7 106.8 16.1 43 2.8 
41 12.5 0.65 0.89 0.58 0.51 118 55.3 131 .9 169 46.8 11.9 105.7 114.5 15.8 44.8 1.5 
42 12.5 0.7 0.44 0.31 0.14 44.2 59.3 167 124 21.7 I 1.9 44.1 46.9 14.8 26.4 1.0 
43 12.5 0.85 0.66 0.56 0.37 121.3 58.2 172 183 45.2 11.9 101.9 110.3 16.0 45.6 0.1 
44 12.5 0 .9 0 .66 0.60 0.39 118.4 59.2 154 171 49.4 11.9 II 1.7 121.1 15.5 45.6 0.3 
45 12.5 1.25 0.44 0.55 0.24 103.8 64.1 188.1 170 43.7 I 1.9 98.1 106.2 16.1 43. 1 - 1.7 
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CHAPTER4 

VARIABLE-ATTITUDE TESTS: PURE YAW EXPERIMENTS 

4.1 Introduction 

Pure yaw tests are one of the most important and basic types of manoeuvring experiments 

to be performed on marine vessels. These manoeuvres are performed in captive model 

tests as a counterpart to zigzag manoeuvres which are performed in free running model 

tests, full-scale tests and also as validation checks for numerical manoeuvring codes. In 

the pure sway manoeuvre, the vehicle follows a sinusoidal path with a constant heading 

angle of zero, but in the pure yaw manoeuvre the vehicle's heading is always tangent to 

its path. In a zigzag manoeuvre compared to a pure yaw captive test, the vehicle has a 

small sway velocity which creates a small drift angle off its path. 

In the literature, extensive studies are available for the pure yaw and z•gzag tests 

especially for surface vessels. The recommendations of the ITTC for captive model tests 

cover most of the important requirements for the zigzag tests on surface vessels [241
h 

ITTC, 2005]. There are many reported results from either one of the mentioned 

experimental methods, that is: captive, free-running or full-scale tests, but also numerical 

codes are recently used to perform PMM tests. By Hochbaum [2006] a set of virtual 

PMM test results using a RANS code based on a finite volume technique to simulate the 

flow around a twin-screw ship was presented. 

A not very recent but valuable set of PMM tests were performed on the full-scale 

autonomous underwater vehicle MARJUS in the Danish Maritime Institute; some of the 

results were reported by Aage and Smitt [1994]. That paper utilizes SNAME standard 

76 



factors to define the non-dimensional parameters, and presents the test results in the form 

of hydrodynamic coefficients for surge, sway, heave, pitch and yaw directions . The AUV 

MARlUS is a flatfish type vehicle and therefore horizontal and vertical plane manoeuvres 

are different. A non-dimensional sway force coefficient Y~ of about 0.04 and a non

dimensional yaw moment N; of about 0.0 I were measured; however, it is not clear to 

which values of manoeuvring amplitudes and frequencies that the reported values 

correspond. The parameters Y~ and N; in the notation of this thesis are respectively F;0 

and M;0 , as will be introduced later. 

In this project, as a part of the underwater technology studies, the pure sway and pure 

yaw experiments on a series of five hull forms for an underwater vehicle were performed 

in the 90 m towing tank at NRC-lOT. These experiments used the towing carriage to 

move the vehicle along x-axis, the PMM (Planar Motion Mechanism) to produce the 

oscillating lateral (sway) plus angular (yaw) motions, and, an internal three-component 

balance to measure two hydrodynamic forces (axial, lateral) and the hydrodynamic yaw 

moment. 

It is desired to find the correct form of the physically-based expressions for the 

hydrodynamic forces and moments on a completely submerged underwater vehicle 

during high-amplitude, high-rate manoeuvres. It should be noted that the results of this 

research are valid for the planar manoeuvres for either horizontal or vertical planes, 

because these underwater bare hull series are bodies of revolution. Therefore, throughout 

this chapter sway and yaw motions are respectively equivalent to heave and pitch 

motions. 
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4.2 The experiment set up and the recorded data 

The original bare hull model, as was shown in chapter two Fig. 2.1 when installed on the 

PMM, had a length-to-diameter ratio (LDR) of about 8.5: I. Extension pieces were added 

to the parallel mid-body to test hulls ofthe same diameter, 203 mm, but with LDR of9.5, 

10.5, 11.5 and 12.5 . The centre of buoyancy (CB) ofthe model remained essentially the 

same distance aft of the origin of the internal balance. All the modules were free-flooding 

and no appendages were included in this hull-extension investigation. The carriage 

forward velocity for all the runs was 2 m/s; the PMM lateral velocity and yaw angle of 

the PMM had smooth sinusoidal variations with amplitudes of respectively about 0.5 

[m/s] and 14 deg for all the runs; maximum and minimum sway motion amplitudes were 

1.25 and 0.41 m; the maximum and minimum yaw rates were respectively about 17.4 

[deg/s] for the shortest model in its short-period pure yaw motion, and, about 5.5 [deg/s] 

for the longest model in its long-period pure yaw manoeuvre. See Table 4.1 at the end of 

this chapter page 124 for the details of the pure yaw manoeuvres. 

Fig. 4.1 shows the time period T for the pure yaw runs for the LDR 8.5 model, versus the 

ratio of the sway amplitude to vehicle diameter. Fig. 4.1 shows that the periods and 

amplitudes for the pure yaw runs were chosen such that the product of the amplitude and 

frequency was held the same for all runs. Note that in this study the purpose of the pure 

yaw experiments was to measure the sway force and yaw moment as functions of PMM 

angular velocity and acceleration. 

The data points in Fig. 4.1 were read from either the PMM lateral velocity or its yaw 

angle recorded for each run. Fig. 4.2 shows a sample yaw angle signal for LDR 8.5 and 
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input values of A= 0.51 m and T= 6.4 s. Clearly seen in Fig. 4.2, there is an initial set-

angle in the PMM yaw angle which has introduced a vertical shift to the recorded yaw 

angle, however, the yaw angle amplitude is 14 degrees as mentioned. As a result of this 

set-angle, the recorded loads have offsets as well, which were removed during the data 

analysis. The reason is that the model motion must begin from rest so the software 

computes an initial set-angle which corresponds to the distance that is required for the 

PMM to accelerate the model to begin a manoeuvre with zero yaw attitude and the 

correct angular velocity. 
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Fig. 4.1 Time period versus non-dimensional sway amplitude Ajd; pure yaw runs for LDR 8.5 
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Fig. 4.2 Yaw angle signal for LDR 8.5 and input values of A= 0.51 m and T= 6.4 s 

for a pure yaw manoeuvre 

The main outputs are the axial force, Fx , the sway force, Fy , and the yaw moment, Mz. 

Fig_ 4_3 shows the original and filtered sway force, yaw moment and axial force signals 

for a pure yaw manoeuvre with LDR 8.5, A= 0.51 m and T = 6.4 s. Fig_ 4A shows a 

close-up of the filtered sway force in Fig. 4.3. The three-component balance inside the 

bare hull model uses a single loadcell to measure the axial force and two loadcells to 

measure the lateral force; by summing the signals from the two lateral-force loadcells we 

obtain the total lateral force, and, by differencing the signals from the two lateral-force 

loadcells, we obtain the yaw moment The three loadcells selected for the internal balance 

must withstand many different loads: (i) the hydrodynamic loads during the manoeuvres, 

(ii) the weight of the model in air when flooded with water, (iii) the inertial loads during 

the acceleration and deceleration of the model, and, (iv) the inevitable bumps that occur 

during installation and removal of the modeL Thus the capacity of each loadcell is much 
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larger than that required to measure only the hydrodynamic loads. Also there are 

inevitable vibrations in the PMM due to flexibilities in the drive mechanism. Thus there 

is significant measurement noise on the loadcell signals as is indicated in Fig. 4.3. The 

raw time-series data were therefore filtered using the "filtfilt" function in MATLAB™7.1, 

since this filter does not introduce any phase shift into the signal. 

For a high-frequency manoeuvre as in Figs. 4.2 and 4.3 , there were one or two complete 

cycles in which several zero-crossing points, peaks and troughs are observable which are 

circled in Fig. 4.4, hence an average value for the maximum and minimum force and 

moment and the corresponding time period could be obtained from the data. However, 

for low-frequency (higher T) manoeuvres, hardly a complete cycle was performed due to 

the restricted length of the towing tank. For example, for LDR 10.5, A = 1.19 m and 

T = 14.3 s the data were captured for less than one complete cycle; this may affect the 

statistical reliability of the results. The approximate number of steady-state cycles for all 

pure yaw runs are shown in Table 4.1 column#8. 
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4.3 PMM motions during pure yaw tests 

During a sea-trial, an overhead view of a spatially-sinusoidal trajectory allows us to view 

the cycle width and cycle length; these are analogous to the PMM sway amplitude and 

cycle length T · Ucarriage in the towing tank. In designing the pure yaw manoeuvres, two 

constraints that had to be satisfied were due to physical limitations of the PMM (i) the 

maximum PMM lateral velocity cannot exceed 0.50 m/s, and, (ii) the maximum yaw rate 

cannot exceed 60 deg/s. The first of these requires that: 

A· w < 0.50 [m/s] (4-1) 

or, which is equivalent, that: 

T > 4n · A [sec] (4-2) 

A third constraint is the kinematic requirement that the longitud inal axis of the vehicle is 

everywhere tangent to the sinusoidal trajectory in the tank x-y coordinate system; this 

requires that 

(4-3) 

which is equivalent to 

Po = tan-1 [ 2rrA ] 
T·Ucarriage 

(4-4) 

In these experiments, a constant carriage speed of 2 m/s was used. Combining these 

kinematic and dynamic constraints, the result is that: 

(4-5) 

So the yaw amplitude will not exceed about 14 deg in any ofthese pure yaw manoeuvres. 

For small yaw amplitudes (4-4) can be approximated by: 
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flo = 2rcA/(T · Ucarriage) (4-6) 

or 

T = 2rcA/(flo · Ucarriage) = 2rcd · (A/d)/(flo · Ucarriage) (4-7) 

If the carriage speed Ucarriage and yaw amplitude flo are held constant at 2 m/s and 14 

deg respectively, then (4-7) provides a linear relation between the period T and the sway 

amplitude A or non-dimensional sway amplitude A/d. 

The time-series for the PMM sway and yaw motions were plotted as in Fig. 4.2, for one 

or more cycles of motion; smooth sinusoids were fitted to the constant-amplitude portions 

of the time-series and values for fl0 , T and A were extracted. These experimental values 

were plotted in Fig. 4.1 which confirmed the validity of the approximation ( 4-7). The 

relation in Fig. 4.1 can be represented by a straight line through the origin as follows: 

A/T ~ 0.08 [m/s] (4-8) 

or 

A· OJ~ 0.5 [m· rad/s] (4-9) 

which satisfies the requirement in ( 4-1) that the maximum PMM lateral velocity cannot 

exceed 0.50 m/s. 

4.4 Analysis of data 

4.4.1 PMM lateral velocity and yaw angle 

The planar motion mechanism is programmed with the desired time-series of sway 

displacement and yaw angle as inputs. A sample of the yaw angle time-series was shown 

in Fig. 4.2 . As mentioned, the desired values for the amplitude of the PMM lateral 
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velocity and its yaw angle were 0.5 m/s and 14 deg respectively. Hence the variables: 

PMM lateral velocity v and yaw angle {3 can be approximated as: 

v = v0 sin(wvt) 

{3 = {30 sin(wpt) 

( 4-1 0) 

( 4-11) 

with v0 = 0.5 m/s, and {30 = 14 deg. The frequencies ofthe two motions, sway and yaw, 

must be identical , thus w = Wv = Wp , and in phase with each other, i.e ., the vehicle in a 

pure yaw manoeuvre has the largest PMM lateral velocity and largest yaw angle as the 

vehicle crosses the centreline of the towing tank, and zero v and zero {3 at the extremes of 

the motion. Differentiating ( 4-1 0) and ( 4-11) gives the lateral acceleration of the PMM 

and yaw rate. Hence, the yaw rate of turning [deg/s] is: 

/3 = {30 w cos(wt) (4-12) 

The amplitude ofyaw rate ofturn resulting from (4-12) is plotted versus non-dimensional 

sway amplitude A/din Fig. 4.5 and also reported in column#7 ofTable 4.1 , page 124 for 

the five-hull series. As mentioned, the most abrupt manoeuvre /3 = 17 deg/s was 

performed with the shortest vehicle, LDR 8.5, with A = 0.41 m and T = 5.2 s, and the 

least abrupt manoeuvre /3 = 5.8 deg/s was performed with the longest vehicle, LDR 12.5, 

with A = 1.25 m and T = 15.6 s. 
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Fig. 4.5 Yaw rate of turn vs. sway amplitude Ajd during pure yaw manoeuvres 

4.4.2 Sway force and yaw moment amplitudes 

The main responses to be studied in the pure yaw experiments are the sway force and 

yaw moment. The primary results are the maximum and minimum values of the lateral 

force Fy and yaw moment Mz. There is an offset (vertical shift) in the time-series of both 

responses, which, when removed, gives the amplitude of force and moment sinusoidal 

signals, named Fyo and M zo . Figs. 4.6 and 4. 7 are the plots of the amplitude of sway force 

and yaw moment versus the yaw rate of tum during the pure yaw tests. Note that, as 

shown in Table 4.1 at the end of this chapter, all the pure yaw manoeuvres were 

performed with the same amplitude of the lateral velocity of PMM at 0.5 m/s and the 

same amplitude of yaw angle ofPMM at about 14.3 deg. 
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Similar graphs as in Figs. 4.6 and 4.7 are obtained if the amplitude of lateral acceleration 

of the PMM is on the x-axis instead of yaw rate of turn. Then, the amplitudes of sway 

force and yaw moment are non-dimensionalized as follows: 

(4-13) 
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( 4-14) 

where p is the water density, AP is the rectangular planform area of the vehicle defined 

as: 

Ap = l· d , (4-15) 

and U is the vehicle velocity evaluated as: 

U2 = U~arriage + V~ (4-16) 

where Ucarriage is the towing speed of the carriage which was 2 m/s for all the pure yaw 

runs, and v0 is the amplitude of PMM sinusoidally-varying lateral velocity equal to 0.5 

m/s for all runs, thus U in ( 4-16) is: .../22 + 0.52 = 2.06 m/s. 

In ( 4-13) the non-dimensional sway force amplitude was defined as force divided by the 

planform area. The vehicle is slender (8.5 < LDR < 12.5) and the hull series were 

produced by increasing the length of the parallel mid-body, therefore the non

dimensional sway force amplitude as defined in ( 4-13) gives an estimate of the maximum 

sway force per unit length for a slender underwater vehicle of diameter d. For the non

dimensional yaw moment amplitude in (4-14), planform area times length is in the 

denominator so as to account for the axial variation of location of centre of effort within 

the length of the vehicle (see Table 2.2). The centre of effort is the point which defines 

the vertical axis about which the yaw moment is zero at each yaw angle. Detailed 

definition of the centre of effort and curves of its variation versus static yaw angle for this 

hull series was presented by Williams et a l. [2006]. 

The amplitude of the non-dimensional sway force and yaw moment versus non

dimensional sway amplitude A/d during pure yaw runs are plotted in Figs. 4.8 and 4.9 
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and also shown in Table 4.1 at the end of this chapter. Although the data points do not all 

lie on smooth curves, the trend is clear. In both these figures the short-period small

amplitude manoeuvres are in the top left-hand corner of the figure and the long-period 

high-amplitude runs are in the bottom right-hand portion. 

The sway force per unit length (during pure yaw manoeuvres) is larger for the longer 

vehicles, but other than the large jump from the LDR 8.5 curve to the LDR 9.5, the 

difference between curves is less significant. Fig. 4.8 shows that as A/ d increases F;0 

decrease, i.e., a large amplitude slow manoeuvre sustains less lateral force . The point is 

that for abrupt manoeuvres, e.g. obstacle avoidance, a quick small-amplitude manoeuvre 

might be required, hence the large lateral forces are unavoidable. This has implications 

for size of control surfaces required to produce the yaw moment necessary to produce 

these turning rates. Fig. 4.9 shows the same trend for the yaw moment, that is, as Afd 

increases, M~0 decreases, and, the yaw moment per unit length (during pure yaw 

manoeuvres) is larger for the longer vehicles. Moreover, the manoeuvring frequencies for 

these pure yaw runs are readable on the top axis of Figs. 4.8 and 4 .9. Again, showing the 

same point that: at large frequencies the amplitudes of non-dimensional sway force and 

yaw moment are larger. 
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4.4.3 Phase difference between the hydrodynamic loads and the model motions 

Again it should be emphasized that for the pure yaw manoeuvres the input signals to the 

PMM are the time-series of PMM lateral displacement and model heading angle. These 

two state variables are in phase and have equal frequency. Also, measurements reveal 

that the frequency of the hydrodynamic loads is the same as frequency of the state 

variables. Therefore the sway force is of the form: 

f3 = {30 sin(wt) 

Fy = Fyo sin(wt- CfJF) 

(4-11) 

(4-17) 

Fig. 4.10 shows the magnitude of CfJF phase lag between the sway force and yaw angle 

signals, in radians, versus A/d for pure yaw manoeuvres with this hull-series. The 

sinusoidal sway force is delayed by about rr/2 radians relative to the sinusoidal yaw 

angle. Although, the data are scattered, there is a trend: the longer vehicle experiences a 

larger phase lag and for slower manoeuvres, larger Ajd, the phase lag is larger. It should 

be noted that rather than the magnitude of the phase lag, we are more interested to know 

how far the data points are from the potential flow phase lag of rr/2. In Fig. 4.10 a single 

curve indicates the trend for all hull lengths combined. The trend is closer to rr/2 for 

larger sway amplitudes. The information from Figs. 4.8 and 4.10 may be combined and 

portrayed with a polar plot as in Fig. 4.11. The radius of the data points is the non

dimensional amplitude of the sway force F;0 and the polar angle is the phase difference 

between the measured sway force and the yaw angle qJ F in ( 4-17). 
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Comparing Figs. 4.8 and 4.11 , it is concluded that pure yaw manoeuvres with smaller 

amplitude (short-period manoeuvres), which result in overall larger forces, makes the 

deviation of the phase difference (from the potential value of rr /2) larger. On the other 

hand, the phase difference for larger LDR is closer to the theoretical rr/2 value. 

The yaw moment Mz is computed from differencing the signals from the two lateral-force 

loadcells. Fig. 4.12 shows the phase lag between the yaw moment and yaw angular 

acceleration signals versus A/ d for the hull-series. These data are presented in the last 

column in Table 4.1 on page 124 in degrees. Again the trend is that the larger hull LDR 

results in a larger phase difference, and for long-period manoeuvres (larger A/ d) the 

phase lag is larger. 

'0 0.7 
~ 

-g 0.5 

"' c 
Q) 

E 0.4 
0 
E 

~ 
>- 0.3 

--0-..erall Trend __ 1 ____ '- ___ J ____ L __ ~ _ 1 ___ _ 

0 l/d=8.5 : : : : 
... l/d=9.5 

+ l/d=10.5 

I I I I I 
I I I I 

--T---- r ---,-~-r--
1 I I 

X l/d=11 .5 I X ~ I 
I I I 

"' l/d=12.5 
L,,--,---,~--7----~--- ---~--- ~- ---

I 

I"' 
1 I + I 
I I I I --- ~---- ~-- -x-:---- ~- --~--- ~---- ~--- -:----

I ~~ I I I I I 

I I I +: : I : : 
- - - -:- >*"' f'"--1:. -~- - - - I - - - - ~- - - - -;- - - - I -- - -~ - - --

(5 I X I I • I I I I I 

i 0.2 --~i-·--~----i----+0---~---~----~----i----
Q) I I I 
'!: ([) I 0 I I 
~ I I I I I I I I 

~ 0' 1 ~ -o~ -o -o~----o---7----~---~----~----:----
a.. I I I I I I I I 

I I I I I I I I 

02~-2~.~5-~3-~3~.5,--4L--~4.~5-~5-~5~.5,--6~-~6. 5 

Amplitude-to-diameter ratio 

Fig. 4.12 Phase difference of the yaw moment and yaw angular acceleration versus Afd 

during pure yaw manoeuvres 

To better observe the phenomena, the yaw angle time-series along with the filtered yaw 

moment and filtered signals from the fore and aft lateral-force loadcells for a pure yaw 
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manoeuvre with LDR 8.5, A= 0.51 m and T = 6.4 s are shown in Fig. 4.13. The black 

line is the yaw angle, the blue line is the pot1ion of Fy that is measured by the forward 

lateral-force loadcell the purple line is the portion of Fy that is measured at the aft lateral-

force loadcell and the red line is the yaw moment. The forward portion of the sway force 

lags the yaw angle by about 1.0 s or T /6 and the aft portion of the sway force lags the 

yaw angle by about 2.1 sec or T /3 . For this particular pure yaw run, shown in Fig. 4.13 , 

the phase difference between sway force and yaw angle <fJF is about 80 degrees and 

between yaw moment and yaw angular acceleration <fJM is about 8 degrees4
• This implies 

that in a rapid pure yaw manoeuvre with a relatively short vehicle the fore and aft 

components of the sway force have phase lags with respect to the yaw angle in such a 

way that the yaw moment tends to be nearly in phase with the yaw angular acceleration 

signal. According to Newton-Euler equation for a rigid body we know that: 

(4-18) 

where iJ is the yaw angular acceleration and !total is the sum of the hull moment of 

inertia and added moment of inertia of the surrounding fluid: 

I total = I hull + I added ( 4-19) 

The heading angle and the yaw angular acceleration are rr radians out of phase, hence ( 4-

18) proposes that in a potential flow yaw moment and yaw angular acceleration are in 

phase. Using the experiment results Fig. 4.14 shows a polar plot of the yaw moment. The 

4 The values for cpM in Table 4.1 were reported by Azarsina et al. [2007 b & c) as the phase lag between 
yaw moment and yaw angle signal, however, the values in Table 4.1 are actually the phase lags between the 
yaw moment and yaw angular acceleration. The values in Table 4.1 should be added to rr radians to result 
in the phase lag between the yaw moment and yaw angle signals. This is because the yaw angular 
acceleration has rr radians phase lag relative to the yaw angle. 
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radius of the data points is the non-dimensional amplitude of the yaw moment M;0 and 

the polar angle is the phase difference between the measured yaw moment and the yaw 

angular acceleration <fJM· 

/v . 
Bowsway I 

force 

Aft sway 
force 

--Yaw angle (de g) 
--Bow sway Ioree (N) 

--Aft sway Ioree (N) 

··········--··· Yaw moment (N.m) 

65 70 75 80 
t (s) 

··; 
I 

\ I 
I 
I 

,J 
85 90 95 

Fig. 4.13 Yaw angle, fore and aft lateral-force loadcell signals and yaw moment during a pure yaw 

manoeuvre with LDR 8. 5, A = 0. 51 m and T = 6. 4 s 
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4.4.4 Instantaneous variation of the hydrodynamic loads versus the model motions 

Interesting observations were made by plotting the hydrodynamic loads versus the PMM 

state variables: PMM lateral velocity and yaw angle. As discussed, referring to ( 4-1 0) and 

( 4-1 I), PMM lateral velocity and yaw angle theoretically have the same effect on the 

hydrodynamic loads in a pure yaw manoeuvre, and the experimental results, e.g. phase 

difference between the sway force and PMM lateral velocity compared to the phase 

difference between sway force and yaw angle, were only slightly different. Hence, the 

discussion is continued for the yaw angle. Figs. 4.15 and 4.16, for the vehicle with 

LDR 9.5, respectively show the instantaneous variation of sway force and yaw moment 

versus yaw angle. Different curves are the several runs with different sway motion 

amplitudes performed on the LDR 9.5 hull. These elliptical phase-plane trajectories with 

varying semi-axes length and orientation as shown in Figs. 4.15 and 4.16, represent the 

relations between the pure yaw manoeuvre input: yaw angle, and its outputs: 

hydrodynamic loads. Equation (4-11) for the yaw angle can be rewritten in the form : 

[ 1 = c1 sin(wt) , !1 = {3 , c1 =flo 

Then the hydrodynamic loads: sway force and yawing moment, would be: 

[ 2 = c2 sin(wt- ({J) 

(4-20) 

(4-2 1) 

where [ 2 is either Fy or Mz , c2 is either Fyo or Mz0 , and ({J is the phase difference between 

either sway force and yaw angle or yaw moment and yaw angular acceleration. In Figs. 

4.15 and 4.16, [ 2 was plotted against [1 . In the special case where ({J = 0°, then using ( 4-

2 1) it concludes: ({J = 0° ~ [ 2 = c2 sin(wt) = (c2 /c1)f1 ; therefore, if there is no phase 

lag between.fi and ./2 the phase-plane plot reduces to a line of slope czfc1 . For ({J = 180° 
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we have: (/J = 180° ~ / 2 = -c2 sin(wt) = -(czfc1 ) / 1 ; and for (/J = 90° it is: (/J = 

90° ~ [ 2 = c2 sin(wt- rr/2). After some algebra it reduces to (f1 /c1 )
2 + (f2 /c2 )

2 = 1 

which is the equation for an ellipse of semi-axes c1 and c2 and no tilt angle. 

In general, the phase lag (/J and variables c1 and c2 are affecting the size and orientation 

ofthe ellipses. The ellipse equation in the general form is: 

A fl + B fl + C fdz + D /1 + E fz + F = 0 ( 4-22) 

Ifthe major axis ofthe ellipse has a tilt angle of(} it is calculated as: 

sin(28) = -c jQ, (4-23) 

where: 

Q = .j(A- B)2 + C2 (4-24) 

Also there are formulae to calculate the radii ofthe tilted ellipse based on the coefficients 

in ( 4-22) [Van Drent, web page 2008] . With lengthy algebra on ( 4-20) and ( 4-21 ), one can 

find the ellipse coefficients in (4-22) based on / 1 , / 2 and (/J. 
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Fig. 4.16 Phase-plane plot of Mz vs. p for LDR 9. 5 during pure yaw manoeuvres 

Because the instantaneous yaw angle and PMM lateral velocity are in phase with each 

other, their derivatives are too. Thus the yaw rate of turning is in phase with the lateral 

acceleration of the PMM. Plotting the instantaneous variation of loads versus the yaw rate 

of turn, may further clarify the phenomena. In Figs. 4.17 to 4. 19, the legend is the same 

as for Figs. 4.15 and 4.16. Fig. 4.17, for the vehicle with LDR 9.5, shows the 

instantaneous variation of yaw moment versus yaw rate of turn jJ. Fig. 4.17 gives a more 

straightforward demonstration of the relation between yaw moment and manoeuvre 

characteristics. For a slow turn, e.g. A = 1.07 m and T = 13.5 s, the rate of turn is slow 

and therefore the yaw moment is small which results in the inner ellipse. Figs. 4.18 and 

4.19 both for the vehicle with LDR 9.5 show the instantaneous variation of yaw moment 

versus yaw angle squared {3 2 and yaw angle cubed {3 3 respectively. 
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4.5 Response surface models for the pure yaw test results 

As was demonstrated in chapter 2, section 2.4.4, a regression model for a response, which 

depends on two factors, is a surface in 30 space. The Response Surface Model (RSM) 

can be a first-order model if the response is a linear function of the factors. If the 

response has curvature, then a higher order polynomial should be used. A second-order 

(quadratic) model is often able to capture the curvature. 

4.5.1 The mathematical model 

A mathematical model for the experimental results of the pure yaw manoeuvres is 

desired. According to the previous section, the input signals for these pure yaw 

manoeuvres are the PMM lateral velocity and yaw angle, ( 4-1 0) and ( 4-11 ), repeated 

below: 

v = v0 sin(wvt) , {J = {30 sin(wpt) (4-25) 
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where the amplitude of the PMM lateral velocity v0 was 0.5 m/s, and the amplitude of 

yaw angle {30 was 14 deg. The frequencies of the two motions, sway and yaw, must be 

identical, thus w = Wv = Wp , and in phase with each other. On the other hand, 

measurements reveal that the frequency of the hydrodynamic loads is the same as 

frequency of the input signals. Therefore the sway force and yaw moment are of the 

form: 

( 4-26) 

(4-27) 

The measured response sway force Fy in a captive pure yaw manoeuvre in towing tank, 

for a range of different hull lengths, can be written as: 

(4-28) 

According to (4-25), for constant amplitudes of PMM lateral velocity and yaw angle, 

equation ( 4-28) reduces to: 

( 4-29) 

On the other hand, these tests were performed under the constraint of equation ( 4-8), that 

is: AfT = 0.08; which imposed a linear relation between the manoeuvring frequency and 

amplitude during these pure yaw tests as was shown in Fig. 4.1. Hence, (4-29) can be 

further simplified to: 

(4-30) 

These results show that in the steady portion of each pure yaw run, the complicated 

relation (4-28) reduces to the simpler relation (4-30) while the forward towing speed and 
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the amplitudes of the PMM lateral velocity and yaw angle are constant for all the runs. 

The same observation applies to the yaw moment Mz, thus: 

(4-31) 

Using ( 4-26) and ( 4-27), equations ( 4-30) and ( 4-31) decompose into the following set of 

equations which are time-independent: 

(4-32) 

Mzo = 91 (~, LDR), (/JM = 92 (~, LDR) (4-33) 

This gives a mathematical model for the pure yaw tests under study; smooth expressions 

for / 1 , / 2 , 9 1 and 9 2 are being sought. It should be noted that the mathematical model is 

constrained by equation (4-8), namely AfT:::::: 0.08 [m/s] or A· w :::::: 0.5 [m ·rad/s]. 

4.5.2 Regression model for the non-dimensional sway force amplitude 

For the non-dimensional sway force amplitude Fig. 4.20 shows quadratic curves fitted to 

the test data. The fitted curves are of the following quadratic regression form: 

(4-34) 

Table 4.2 shows the regression coefficients for the five hull models. The quadratic curves 

in Fig. 4 .20 have closely the same trend as each other, which means that there is only a 

small interaction effect in the response sway force amplitude between the two factors 

sway amplitude and vehicle length. That is, whether the vehicle length is large or small, 

the relationship between sway force amplitude and sway motion amplitude is almost the 

same only shifted vertically. Since the curves have approximately the same trend, an 

average quadratic curve is plotted with bold solid line in Fig. 4.20, the coefficients of 
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which are the average of the coefficients in Table 4.2 for the four longest models. The 

average curve is: 

(4-35) 

where 2 < Ajd < 6. Or if written versus frequency it is: 

1000F;0 = 4.25C~Y- 24 (:) + 44.9 (4-36) 

where 0.38 < w < 1.37 [rad/s]. Now if (4-34), with coefficients in Table 4.2, is used to 

make a new plot of the non-dimensional sway force amplitude in which length-to-

diameter ratio is on the x-axis, a plot as in Fig. 4.21 is obtained. Different markers 

represent different non-dimensional sway amplitude values from two to six. As can be 

observed the variation of the non-dimensional sway force amplitude versus length-to-

diameter ratio is almost linear for all sway amplitudes. The average linear variation of 

sway force amplitude versus length-to-diameter ratio is shown by the bold solid line in 

Fig. 4.21 , which has the following regression equation: 

1000F;0 = 0.73(LDR) + 10.45 (4-37) 

where 8.5 < LDR < 12.5. 

Table 4.2 Regression coefficients for the five hull series for the quadratic fit in equation (4-34) 

LDR P1 Pz P3 R-square 

8.5 2.29 -18.5 52.07 0.933 

9.5 0.61 -8.43 40.21 0.981 

10.5 0.89 -II 46.77 0.991 

11.5 0.76 -10.84 48.33 0.987 

12.5 0.54 -8.71 44.46 0.95 
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Fig. 4.20 Curve fits to the Non-dimensional sway force amplitude vs. A/d 

during pure yaw manoeuvres 

On the other hand, the lines in Fig. 4.21 are in closely the same trend, which again 

suggests that there is a small interaction effect on the response sway force amplitude 

between the factors sway amplitude and vehicle length. That is, whether the sway 

amplitude is large or small, the effect of vehicle length on the sway force amplitude is 

almost the same. For the sway force amplitude, combining (4-36) and (4-37), the 

following model is derived: 

1000F;0 = 0.7(~)2 - 9.75 (~) + 0.73(LDR) + C (4-38) 

where 2 < A/d < 6 and 8.5 < LDR < 12.5. Calibrating (4-38) with the experimental 

data in Table 4.1 at the end of this chapter results in a value of 36.80 for the intercept C. 

Note that the intercept value does not mean that the sway force for zero sway amplitude 

is non-zero; the RSM is not valid for extrapolation outside the range of variation of A / d 

as stated above. 
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Fig. 4.21 Curve fits to the non-dimensional sway force amplitude vs. LDR 

during pure yaw manoeuvres 

It is convenient to convert the actual values of the two factors to coded levels. The coded 

factors are defined so as the low and high levels are minus one and plus one, respectively . 

It is easier to work with the data if they are scaled to have zero mean. Hence, if the coded 

factors A/d and LDR are named respectively X andY varying from - 1 to 1, as shown in 

Table 4.3, then (4-38) changes to: 

1000F;0 = 2.8 X 2
- 8.3 X+ 1.46 Y + C (4-39) 

Note that the intercept C, in ( 4-38) and in ( 4-39) have different values; the intercept in 

( 4-39) has the value 16.66. The advantage of working with the coded factors is that one 

can directly compare the regression coefficients to see which factor has a more 

significant effect on the response. According to (4-39), factor X, the sway amplitude, has 

a linear effect of about six times larger than the factor Y, the vehicle length, on the 

response sway force amplitude. Moreover, factor X is the source of curvature in the 
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response surface. The response surface for the sway force amplitude when plotted versus 

the coded factors is shown in Fig. 4.22. Note that the centre-point in Fig. 4 .22, (X, Y) = 

(0, 0) corresponds to the actual values (Afd, LDR) = ( 4, 10.5). The largest force 

amplitude is at the corner: (X, Y) = (-1, 1) which corresponds to (Afd,LDR) = 

(2, 12.5), that is, the longest hull in its most rapid pure yaw manoeuvre experiences the 

largest force. 

Table 4.3 Actual and coded factors for the pure yaw tests 

A/d 2 3 4 5 6 

X -I -0.5 0 0.5 I 

LDR 8.5 9.5 10.5 11.5 12.5 
y -I -0.5 0 0.5 I 

I 

I -0.03 - - L I 

I --- I -I r-_ 
I 

0.025 

0.02 
- 0 
>. 
u. 

0.015 

0.01 

0.005 1 

Y: coded lid 
· 1 

X: coded N d 

Fig. 4.22 Response surface for the non-dimensional sway force amplitude in pure yaw manoeuvres 

4.5.3 Regression model for the non-dimensional yaw moment amplitude 

Next the yaw moment amplitude in equation (4-33) is modeled through the same process 

as for the sway force. Therefore, first a quadratic regression is performed over the 

factor PMM sway amplitude Ajd, which is followed by a linear regression over the 
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factor vehicle length-to-diameter ratio. The results are shown in Figs. 4.23 and 4.24. 

Again the average variation is shown with a bold solid line. The equations for the average 

quadratic curve in Fig. 4.23 and the average line in Fig. 4.24 are respectively: 

1000M;0 = 0.34(~) 2 - 3.86 (~) + 12.16, and 

1000M;0 = 0.22(LDR) + 0.43 

which results in the following regression model for the yaw moment amplitude: 

1000M;0 = 0.34(~)2 - 3.86 (~) + 0.22(LDR) + C 

(4-40) 

( 4-41 ) 

(4-42) 

The test data provide a value of 9.9 in ( 4-42) for the intercept C. Also for the regression 

model of the yaw moment amplitude, equation (4-42), there is no term for the interaction 

effect of the two factors: PMM sway amplitude and vehicle length, which is reasonable 

due to the almost similar-trend curves in both Figs. 4.23 and 4.24. Physically it means 

that no matter what is the vehicle LDR, the non-dimensional PMM sway motion 

amplitude has approximately the same effect on the non-dimensional yaw moment 

amplitude, and vice versa. The regression model in ( 4-42) can be rewritten for the coded 

factors X and Y, as defined before in Table 4.3, hence: 

1000M;0 = 1.36 X2 - 2.28 X+ 0.44 Y + C (4-43) 

The value for the intercept in the coded equation ( 4-43) is 2.21. As mentioned previously, 

the response model for the coded factors reveals the relative significance of the effect of 

each term. The linear effect ofthe PMM sway motion amplitude A/don the yaw moment 

amplitude is about five times the effect of hull length LDR also the sway amplitude is the 

source of curvature in the response surface. The RSM is shown in Fig. 4.25 . 
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4.5.4 The phase lag between manoeuvre inputs and hydrodynamic loads 

It is more difficult to model the phase lags. The sinusoidal sway force is delayed by a 

phase angle CfJF of about rr/2 radians relative to the sinusoidal yaw angle, and for the yaw 

moment the phase lag relative to the yaw angular acceleration CfJM is close to zero, though 

it gets as large as 0.7 radians for the long hulls in slow pure yaw manoeuvres. Figs. 4 _26 

and 4.27 show the experimental data for the hull-series for the sway force and yaw 

moment phase lags. Because of the scattered data the procedure that was used before to 

fit a response surface model does not work in this case. The curves fitted to the data only 

show the general trend for all hull series_ 
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The fitted curves m Figs. 4 .26 and 4.27 are the following quadratic equations 

respectively : 

-0.04(~) 2 + 0.41 (~) + 0.7 (4-44) 
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(/JM = -0.01(~) 2 + 0.19 (~)- 0.26 

Or written versus the manoeuvring frequency the two fitting curves are: 

(/Jp = -0.1(~-)Z + (;) + 0.7 

(/JM = -0.025(~-)Z + 0.47 (;)- 0.26 

( 4-45) 

(4-46) 

(4-47) 

The above assumption is not very realistic, because as can be seen from the experimental 

data the phase lag depends on the vehicle length-to-diameter ratio as well. 

4.6 The application of the response surface models 

4.6.1 The constraint 

It should be recalled that the mathematical model used in this study and the response 

surface models based on that, are subject to a very important constraint, that is, equation 

(4-8): AfT= 0.08 [m/s]. This constraint says that the pure yaw tests of this study, are of 

relatively short period and abrupt. A zigzag manoeuvre run that was performed by the 

MUN Explorer underwater vehicle is used in order to clarify the applicability of the 

RSMs that were developed in this chapter. The MUN Explorer is a survey-class 

autonomous underwater vehicle (AUV) owned by Memorial University. It is 4.5 m in 

length with a maximum diameter of 0.69 m and is designed to go as deep as 3000 m with 

cruising speeds between 0.5 and 2.5 m/s. 

In a series of free-running manoeuvring experiments that were performed by the MUN 

Explorer AUV in summer 2006 in the open ocean, there were some zigzag manoeuvres, 

both in horizontal and vertical planes. Reported by Issac et al. [2007a] is a horizontal 

zigzag manoeuvre, that is, a zigzag manoeuvre at a constant depth of about three metres 
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with commanded amplitude and cycle-length of20 m and 80 m respectively, at a forward 

speed of 1.5 m/s. An overshoot of about eight metres in amplitude was observed, 

therefore the parameters for this zigzag are: 

A = 28 [m], U = 1.5 [m/s], T = 80/1.5 = 53.3 [s], LDR = 6.5, Afd = 40.6 ( 4-48) 

which results in: 

AfT= 0.525 [m/s] (4-49) 

Note that the LDR ratio at about 6.5 for the MUN Explorer is outside the range of 

applicability 8.5 < LDR < 12.5 of our response model. Similarly the value of Afd of 

40.6 is outside the range of applicability of 2 < Afd < 6.1 used in this study. It is 

postulated that the linear effects of length-to-diameter ratio will permit an extrapolation 

to 6.5 based on the validated range of 8.5 to 12.5. However, the quadratic effect of sway 

amplitude prevents extrapolation to Afd of 40.6 which is well beyond the validated 

range of two to six. Due to these considerations, these RSMs are not suitable for 

estimating the sway force and yaw moment exerted on the MUN Explorer in the above 

zigzag manoeuvre. 

4.6.2 Sample application 

For a sample application of the RSMs, imagine a zigzag manoeuvring mission to be 

performed by the MUN Explorer AUV defined as follows: commanded amplitude and 

cycle-length for the zigzag equal to 4 m and 50 m respectively with a forward speed of 

1.0 m/s. Such an abrupt manoeuvre may occur, for example, during obstacle avoidance 

such as manoeuvring around a small iceberg. For this abrupt turn: 

A = 4 m, U = 1 m/s, T = 50/1 = 50s (4-50) 
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------~------ ---- - - ----------------- --- - - - ------ - - - ----------

In this case we have: AfT = 0.08 [m/s], which is the same as the mathematical model of 

this study. Converting the variables sway amplitude and vehicle length to their coded 

form , as was introduced in Table 4.3, result in: 

LDR = 6.5 --+ Y = -2, A/d = 5.8--+ X= 0.9 ( 4-51) 

The coded factor Y is out of the original range [ -1, 1 ], but because its effect is linear it 

should predict the response closely. Inserting X andY into (4-38) and (4-42) gives: 

( 4-52) 

For the MUN Explorer the non-dimensionalizing factor is found to be: 

::_ pU 2 AP = ::_ * 1025 * (1 2
) * 4.5 * 0.69 = 1591.1 [N] 

2 2 
(4-53) 

For the yaw moment, (4-53) should be multiplied by the length of the vehicle again. 

Therefore, the sway force and yaw moment amplitudes exerted on this AUV in such a 

manoeuvre are: 

Fyo = 13.5 [N] and Mzo = 2.84 [N.m] (4-54) 

The force and moment in ( 4-54) are estimates of the total hydrodynamic sway force and 

yaw moment that are exerted on the bare hull of this AUV in such a zigzag mission, 

considering that the bare hull of the MUN Explorer and the hull-series of this study are 

both streamlined and axisymmetric with similar shapes but different dimensions. 

The yaw angle amplitude for this zigzag manoeuvre is derived using the approximation 

(4-6) as follows: 

{30 = 2rrA/(T · U) = 0.503 [rad] = 28.8 [deg] (4-55) 

Hence, the maximum lateral speed, namely the amplitude of the PMM lateral velocity in 

the global coordinate system is: 
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v0 = U · sin(,B0) = 0.72 [m/s] (4-56) 

The phase lag between the yaw angle signal and hydrodynamic loads are estimated using 

(4-44) and (4-45) as follows: 

({Jp = 90.7 [deg], ({JM = 33.5 [deg] (4-57) 

The MUN Explorer AUV has two rudders with symmetric NACA 0024 profile, with 

chord, span and thickness of respectively: 

c = 0.35 m, b = 0.35 m, t = 0.24 * c = 0.084 m (4-58) 

The moment arm of the rudders (distance between centre of pressure of the rudders and 

centre of gravity of the vehicle) is about Xplanes = 1.36 m. The total turning moment 

provided by the two rudders5 is estimated to be given by 

M z,planes = 2 * (1/2)pU2 
• b · C · CL · Xplanes (4-59) 

Here the lift coefficient for NACA 0024 with an angle of attack relative to the local flow 

direction of a [deg] is approximately equal to6
: 

CL = 0.03a (4-60) 

Summarizing (4-58) to (4-60) it is estimated that: 

Mz,planes = 5.12a [N.m] (4-61) 

Using ( 4-54) and ( 4-61 ), assuming that ( 4-54) is the total moment opposing the turn, 

results in: 

I fj = 5.12a- 2.84 ( 4-62) 

5 The AUV's stern-planes are in X-configuration, but here they were assumed in upright, cruciform: +, 
configuration. 
6 Lift coefficient of the MUN Explorer planes are derived in Chapter 5, section 5.4.1; see Fig. 5.8. 
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where a is in degrees. The moment of inertia of the flooded vehicle, denoted by I , is 

estimated about 3300 [kg.m2
] , while the flooded vehicle, with the payload installed, 

weighs about 1450 kg7
. The yaw angular acceleration in (4-62) is calculated : 

jj = -p · w2 sin(wt) (4-63) 

Fig. 4.28 shows the yaw angular acceleration and the yaw moment signals for this zigzag 

manoeuvre with the MUN Explorer AUV with a commanded amplitude and cycle-length 

for the zigzag equal to 4 m and 50 m respectively; forward speed 1 m/s. 
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Fig. 4.28 Yaw moment and yaw angular acceleration signals for the zigzag manoeuvre 

with the MUN Explorer AUV 

According to Fig. 4.28 when the yaw moment signal is maximum at time tMz , which is 

calculated at the first positive peak to be 32.86 s, the yaw angular acceleration jj is below 

its maximum value; therefore, the angular acceleration that should be substituted into (4-

62) is read in Fig. 4.28 as follows: 

7 Derivation of the mass and moment of inertia of the MUN Explorer A UV is explained in more details in 
chapter 5, section 5.5. 
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/3 (at tMz = 32.86 s) = 6.63 * 10-3 [rad/s2
] 

Substituting ( 4-64) and the estimated moment of inertia into ( 4-62) results in: 

Jjj = 3300 * 6.63 * 10-3 = 5.12 0- 2.84 

(4-64) 

(4-65) 

This allows us to solve for the required deflection angle of the control planes 8 for this 

zigzag manoeuvre, which is about 4.8 deg. Note that there is some efficiency lower than 

100% for the rudders, and there is some extra opposing moment in addition to the bare 

hull moment evaluated by the RSMs here. In addition the assumption that the rudders are 

operating in a steady-flow regime, as would be experienced in a circular-arc turn at 

constant forward speed, during a zigzag manoeuvre where the instantaneous angle of 

attack and rudder deflection are changing continuously is not correct. Thus the deflection 

angle 8 in (4-65) should properly account for the true local angle of attack while turning 

which is beyond the scope ofthis example application here. 

4.7 Deriving the conventional yaw coefficients from PMM tests 

Similar to section 3.8 that was presented for the sway coefficients, now the pure yaw test 

results are used for the derivation of the yaw coefficients. Fig. 4.29 illustrates the sway 

force and yaw moment vectors along with the vector of the heading angle of the PMM 

and its first and second derivatives which are respectively the rate of turn and the angular 

acceleration, and also the vector of lateral velocity and lateral acceleration of the PMM. 

The vectors in Fig. 4.29 are shown at the start of the motion and they turn in the plane at 

manoeuvring frequency of w. The vector of sway force as was introduced before is (/JF 

radians behind the heading angle or the lateral velocity of the PMM, and the vector of 
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yawing moment as was introduced before is (/JM radians behind the angular acceleration 

of the PMM; the data for these phase angles are shown in Table 4.1 on page 124. 

Jm 

Fig. 4.29 Force and moment vectors illustrated along with the heading angle of the PMM 

According to Bishop and Parkinson [1970, pages 54 and 55], the oscillatory yaw 

coefficients during these pure yaw manoeuvres can be calculated as follows: 

(4-66) 

where the amplitudes of the rate of turn and angular acceleration of the PMM are 

respectively: Po = f30 w and Po = f30 w 2 . The damping and inertia components of the 

sway force and y~w moment in equation (4-66) were illustrated in Fig. 4.29 which are 

calculated as follows: 

Fyo,d = Fyo sin(cpp- rr/2) , Fyo,i = Fyo cos(cpp- rr/2), and (4-67) 

(4-68) 

where the force and moment amplitudes and their phase angles are reported for these pure 

yaw tests in Table 4.1 on page 124. As seen in Fig. 4.29, the inertia component of the 
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-----------------------------------------------------------------------------

sway force is in phase with the lateral acceleration of the PMM, and its damping 

component is along the lateral velocity of the PMM; note that this damping force for 

most test runs is acting against the velocity but for some runs where the phase lag CfJF is 

smaller than rr/2 it is acting in the same direction as the lateral velocity (see Table 4.1 on 

page 124). Also, the inertia component of the yaw moment is in phase with the angular 

acceleration of the PMM which is the same as the angular acceleration of the bare hull 

model, and the damping component of the yaw moment is in phase with the rate of turn 

acting in the negative direction. 

The flooded mass and moment of inertia of the bare hull configurations, m and lz m 

equation ( 4-66), were presented in Table 2.1, and the model speed tangent to its path 

during pure yaw manoeuvres is calculated as: U2 = U~arriage + v~ , then: U = 

.V2 2 + 0.52 = 2.06 m/s. The non-dimensional mass ofthe underwater bare hulls of LDR 

8.5 to 12.5 dividing the flooded mass data in Table 2.1 by~ pl3 are respectively: 

m' = 10-3 * [19.2, 15.4, 13.1, 11, 9.4]. (4-69) 

Similarly, the moment of inertia of the flooded hulls in Table 2.1 divided by~ pl5 resu lts 

in the non-dimensional moment of inertia as follows: 

I~= 10-4 * [11.5,9.9, 7.6,6.3,6.15] . (4-70) 

Conveniently, the sway force hydrodynamic derivatives Yr and Yr are non

dimensionalized respectively by~ pl4 and ~ pU l3 , and the yawing moment derivatives Nf 

and Nr are non-dimensionalized respectively by ~pl5 and ~pUl4 . 
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-- - ··- -------·- -------------------

Using (4-66) the non-dimensional derivative (m'- v:) is plotted against the 

manoeuvring frequency for the five hulls in Fig. 4.30. It is observed that the test data for 

each LDR are almost non-variant within the range of frequency 0.4 < w < 1.3 rad/s, thus 

a constant average value is drawn in Fig. 4.30 for each LDR. Then substituting the non-

dimensional mass values from (4-69) respectively result in the following values for the 

non-dimensional turning rate derivative of the sway force for LDR 8.5 to 12.5: 
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Fig. 4.30 Non-dimensional turning rate derivative of the sway force (m' - Y~) during pure yaw tests 

A positive value for v: means that the effect of stern is dominant, that is: when the 

vehicle turns in positive yaw direction a positive sway force is exerted on the stern and a 

negative sway force is exerted on the bow, sum of which gives the total sway force on the 

hull; thus positive v: means that the effect of stern dominates. Also, note that according 

to (4-66), v: - with a minus sign to show the opposing force- is in fact the non-

119 



dimensional form of the cross-coupled added mass of water which accelerates m the 

lateral direction while the vehicle turns in the positive yaw direction. 

Next, using (4-66) the non-dimensional derivative (/~ - Nf) is plotted against the 

manoeuvring frequency for the five hulls in Fig. 4.31. Again, the test data for each LDR 

are approximated non-variant within this range of frequency 0.4 < w < 1.3 rad/s, thus a 

constant average value is drawn in Fig. 4.31 for each LDR. Then substituting the non-

dimensional values of the flooded moment of inertia from ( 4-70) respectively result in the 

following values for the angular acceleration derivative of the yaw moment for LDR 8.5 

to 12.5: 
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Fig. 4.31 Non-dimensional angular acceleration derivative of the yaw moment(/~- N~) 

during pure yaw tests 

(4-72) 

Note that the term Mzo.dPo in (4-66) is in fact the apparent moment of inertia of the 

vehicle-plus-water system. Then, N; is the non-dimensional form of the added moment of 

120 



inertia of the water with a minus sign, therefore it is opposing the rotational acceleration 

motion ofthe vehicle during these pure yaw manoeuvres. Also it is interesting to observe 

that the non-dimensional moment of inertia of the flooded hulls in ( 4-70) and the non-

dimensional added moment of inertia in ( 4-72) are of about equal magnitude. 

The other two derivatives: Yr and Nr are less significant than the two above; because, as 

was illustrated in Fig. 4.29 and can be also followed in Table 4.1 , the sway force and the 

yaw moment have small damping components that were recorded during these pure yaw 

manoeuvres. Using (4-66) the non-dimensional angular acceleration derivative of the 

sway force Y; and the non-dimensional turning rate derivative of the yaw moment N; are 

plotted versus the manoeuvring frequency in Figs. 4.32 and 4.33 respectively. The data in 

Figs. 4.32 and 4.33 are scattered and just the general trends were fitted by curves of 

respectively the forms: a sin(bw +c) and aw +b. 
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Fig. 4.32 Non-dimensional angular acceleration derivative of the sway force Y~ during pure yaw tests 
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The data for v; in Fig. 4.32 are mostly scattered about zero, but the data for N; in Fig. 

4.33 have a small negative value which means that there is a moment opposing the turn 

due to the damping effects. 
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Fig. 4.33 Non-dimensional turning rate derivative of the yaw moment N~ during pure yaw tests 

Finally, it should be noted that the hydrodynamic yaw coefficients that were derived in 

this section using the conventional approach do not directly express the tests conditions. 

The approach that was used in the earlier sections of this chapter to analyze and model 

the test data was concerned with constructing a practical model to approximate the 

hydrodynamic loads that are exerted on the bare hull during zigzag manoeuvres for a 

free-running underwater vehicle, regarding that all the pure yaw runs in this study were 

subject to A/T :::::: 0.08 m/s. 

122 



4.8 Summary 

Results from towing tank experiments for pure yaw manoeuvres on the five axisymmetric 

hull forms for an underwater vehicle were reported. The coupled sway-yaw motion for 

pure yaw manoeuvres produced PMM sway amplitudes of up to about six diameters, 

maximum yaw angles of about 15 degrees, and, a maximum turning rate of 17 deg/s. Pure 

yaw manoeuvres with the small-sway-amplitudes and shorter periods and larger yaw 

rates produced larger non-dimensional hydrodynamic sway force and yaw moment. Next, 

the data from the pure yaw captive manoeuvring tests were used to develop regression 

equations in the form of Response Surface Models (RSMs) for the hydrodynamic loads 

versus manoeuvre inputs. A method was outlined for estimating the command signal 

required for the control surfaces in order to execute a zigzag manoeuvre by a self

propelled fully-submerged underwater vehicle. These set of pure yaw manoeuvres were 

of short period and abrupt, with a constant ratio of manoeuvre amplitude to its period 

A/T = 0.08 m/s. During a sample zigzag manoeuvre with the MUN Explorer AUV with 

commanded amplitude and cycle-length for the zigzag of respectively 4 m and 50 m with 

a forward speed of 1.0 m/s, the required rudder deflection angle was calculated to be 

about 4.8 degrees. In the last section of this chapter, the hydrodynamic yaw coefficients 

were also derived using the conventional approach to analyze the pure yaw test data. It 

was observed that the cross-coupled derivatives Yr and Nr are of a significant magnitude 

during a pure yaw manoeuvre. 
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Table 4.1 Pure yaw test results for the five bare hull series 
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"' 8.5 0.41 5.15 1.22 0.5 0.61 17.44 2.5 18.33 76.8 6.48 5.2 

8.5 0.51 6.41 0.98 0.5 0.49 14.02 2 16.06 80.2 5.10 8.0 

8.5 0.59 7.41 0.85 0.5 0.42 12.12 2 14.42 79.6 4.14 5.2 

8.5 0.72 9.05 0.69 0.5 0.35 9.93 1.5 12.07 91.1 2.85 4.6 

8.5 0.83 10.43 0.60 0.5 0.30 8.61 I 10.40 88.2 2.02 12.0 

9.5 0.48 6.03 1.04 0.5 0.52 14.90 2 17.23 81.4 7.19 13.8 

9.5 0.54 6.79 0.93 0.5 0.46 13.24 2 15.94 94.5 6.23 12.6 

9.5 0.62 7.79 0.81 0.5 0.40 11.53 2 14.35 96.8 5.09 17.8 

9.5 0.76 9.55 0.66 0.5 0.33 9.41 1.5 11.94 90.5 3.48 15.5 

9.5 1.07 13.45 0.47 0.5 0.23 6.68 I 8.26 97.4 1.65 34.4 

10.5 0.51 6.41 0.98 0.5 0.49 14.02 2 17.09 82.5 7.19 13.2 

10.5 0.57 7.16 0.88 0.5 0.44 12.54 2 15.84 77.9 6.23 17.2 

10.5 0.65 8.17 0.77 0.5 0.38 11.00 1.5 14.3 1 90.0 5.09 18.3 
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12.5 0.56 7.04 0.89 0.5 0.45 12.77 2 17.06 93.4 12.00 17.2 

12.5 0.62 7.79 0.81 0.5 0.40 11.53 2 15.89 94.5 10.54 20.6 

12.5 0.72 9.05 0.69 0.5 0.35 9.93 1.5 14.12 94.0 8.46 25 .2 

12.5 0.88 11 .06 0.57 0.5 0.28 8.13 I 11.78 92.8 6.03 30.9 

12.5 1.24 15.58 0.40 0.5 0.20 5.77 I 8.75 92.8 4.60 34.4 
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CHAPTERS 

MANOEUVRING SIMULATION OF THE MUN EXPLORER 

AUV BASED ON THE EMPIRICAL HYDRODYNAMICS 

OF AXISYMMETRIC BARE HULLS 

5.1 Introduction 

In a previous project that was reported by Azarsina et al. [2007a ], manoeuvring of an 

underwater vehicle was studied under the action of its dynamic control systems. The 

equations of motion were solved numerically in the original state without any 

linearization or other simplification. The underwater vehicle was assumed to be a rigid 

body with six DoF (Degrees of Freedom) moving in calm water. The computer code 

developed, using MA TLAB™7.1, could simulate various states of an underwater vehicle 

during manoeuvring. As an example, the turning manoeuvres were demonstrated in detail 

[Azarsina et al. 2007a]. Some major assumptions in that simulation code were: i) waves 

and underwater currents were not modeled; ii) the effects of internal moving masses, 

including ballast water with a free surface, were not modeled; iii) in the mass matrix 

calculation, mass and inertia of the hull were assumed to be dominant and the mass and 

inertia of the appendages were ignored; iv) the underwater vehicle was assumed to be 

neutrally buoyant with zero trim angle. More importantly, the hydrodynamics of that 

original code were fairly simple, since the main focus was to develop the motion 

simulation code and verify if it could properly respond to the manoeuvring mission, e.g. a 
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turning manoeuvre with a non-zero approach speed compared to a turning manoeuvre 

starting from a stationary state. 

The purpose of the present study was to improve the previous simulation code. For this 

purpose, the hydrodynamics of the bare hull were developed in chapter 2, based on test 

results from captive tests that were performed on a series of bare hulls; and the control 

surfaces and the propeller were modeled for the MUN Explorer AUV (Autonomous 

Underwater Vehicle). The resulting upgraded code is useful to simulate several 

manoeuvring missions for the MUN Explorer AUV which is owned by the Memorial 

University as an active and valuable tool in the underwater research. 

5.2 Dynamics of an underwater vehicle 

The dynamics model to be used in this simulation has been introduced by Abkowitz 

[1969] and Fossen [1994]. The coordinate system is the same as was shown in chapter 2 

shown again in Fig. 5.1: there is a global coordinate [X, Y, Z] in which the path and 

orientation of the vehicle was recorded, and a body-fixed coordinate system in which the 

velocities and forces were expressed. 

Global coordinates 

X 

Tr Body-fixed 

coordinates x Surge, Roll 

Sway, P~c~ 
Heave, Yaw 

Fig. 5.1 Global and body-fixed coordinate systems for an underwater vehicle 
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The centre of gravity (CG) for the MUN Explorer is 2.44 m from the nose and about 40 

mm below the longitudinal centreline; thus the CG is located about 20 em aft of the 

vehicle mid-length; see section 5 in this chapter for more details. The origin used in this 

study is at the CG of the vehicle. 

The dynamics of an underwater vehicle with six degrees of freedom can be represented 

by vectors: ij , v and i, where ij is the linear and angular displacement vector in global 

coordinates, v is the linear and angular velocity vector in body-fixed coordinates and i is 

the vector of forces and moments exerted on the underwater vehicle in the body-fixed 

coordinate system. Displacement, velocity and force vectors are defined as follow: 

(5-1) 

(5-2) 

-+ [-+ -+ ] T = Tv Tz (5-3) 

where the linear and angular displacement, velocity and force vectors respectively are: 

M=J. The captive tests on the bare hull series were performed in the x-y plane. The 

hydrodynamic forces and moments which act in the horizontal and vertical planes on a 

body-of-revolution are the same. However, the MUN Explorer AUV has bow-planes, 

therefore in diving or surfacing it has a different performance than in a lateral-plane 

manoeuvre at constant depth. The simulation code in this study is programmed for the 

horizontal plane manoeuvres in which the force vectors have three elements: surge and 

sway forces along x and y-axes and yawing moment around z-axis in the body-fixed 
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coordinate system (see Fig. 5.1 ). Jn the planar manoeuvre with surge, sway and yaw 

degrees of freedom, the kinematics of motion simplify to the three equations as follow: 

(5-4) 

(5-5) 

(5-6) 

Jn the above equations, mas will be explained later is the flooded mass ofthe underwater 

vehicle and lz is the moment of inertia of the vehicle in the flooded state. The vertical 

axis around which the moment of inertia is calculated indicates the origin of the body-

fixed coordinate system relative to which the centre of gravity may have non-zero offsets 

Xc and Yc· In this simulation, the origin of the body-fixed coordinate system is assumed 

to be at the mid-length of the vehicle. 

The forces and moments exerted on the underwater vehicle are expressed as a function of 

velocity and acceleration vectors of the underwater vehicle, thus i is a function of time 

because both velocity and acceleration are variables of time. The underwater vehicle ' s 

acceleration at any instant t is obtained as the inverse of the mass matrix times the vector 

of forces and moments, that is: 

(5-7) 

where M is the sum of the flooded vehicle mass matrix and the added mass matrix. 

Integration of the initial acceleration in the time interval ot gives the velocity vector at 

the next time-step. Integration of the initial velocity in the time interval 8t gives the 

position vector at the next time-step. Finally, the position vector is transferred to the 

global coordinate system via the axes rotation which is defined by the Euler angles 
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[<p,8,l/J] . ln order to make use ofthis procedure we must formulate i(t) and the method 

chosen was to measure i experimentally for a typical underwater vehicle shape. 

5.3 Bare hull hydrodynamics 

Manoeuvring experiments were performed with a series of five slender axisymmetric 

bare hulls in November 2005 in the 90 m long, 12 m wide towing tank at the National 

Research Council Canada, Institute for Ocean Technology (NRC-lOT). Each of the five 

hulls used the same nose and tail sections, and varied only in the length of the constant

diameter mid-body section. The five bodies were mounted on a Planar Motion 

Mechanism (PMM) and the experimental conditions included straight-line runs, static 

yaw runs, dynamic sway and dynamic yaw manoeuvres. The hydrodynamic loads were 

measured with an internal three-component balance to record the axial force, lateral force 

and yaw moment. The recorded data have been extracted and analyzed as were presented 

in chapters 2, 3 and 4 ofthis thesis. The focus of the simulation results that are presented 

here is on the turning manoeuvres of a full-scale vehicle, the hydrodynamics ofwhich are 

well-represented in a quasi-static sense for low yaw rates by measurements from static-

yaw runs. 

Using the fixed-attitude test results the following models for the drag, lift and moment 

coefficients were proposed in chapter 2: 

1000 * Cv = 1.88,82 + 11.7LDR + 38 

1000 * CL = (0.007LDR + 0.011),83 + (4.87LDR + 8.85),8 

1000 *eM = -0.01,83 + 17.92,8 
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- ------ ------------

The empirical formulae in (5-8) to (5-I 0) are valid over ranges of the factors : bare hull 

length-to-diameter ratio (LDR), yaw angle and forward speed of respectively: 8.5 to 12.5, 

-20 to 20 degrees and 1 to 4 m/s. Drag, lift and moment coefficients are substituted in the 

fo llowing relations to produce the drag and lift forces and the turning moment that are 

exerted on the bare hull of a torpedo-shape underwater vehicle: 

D = C0 • q · At 

L = CL. q. At 

M = CM · q ·At · l 

(5-11 ) 

(5-1 2) 

(5-13) 

where q = lfzpU 2 is the dynamic pressure of the flow, At = rrd 2 /4 is the frontal area of 

the bare hull , and l is the overall length of the bare hull also denoted by LOA in this 

chapter. Forward speed of the vehicle relative to the flow is: U2 = u 2 + v 2 where u and 

v as previously introduced are surge and sway velocity of the vehicle. If (5-8) to (5-1 0) 

are used to predict the drag and lift forces and the turning moment that are exerted on the 

bare hull of the MUN Explorer AUV, which is torpedo-shape with LDR 6.5, at various 

forward speeds within a range of -30 to 30 degrees of drift angle, the curves in Figs. 5.2 

to 5.4 are produced. These curves suggest that the empirical formulae (5-8) to (5-1 0) also 

produce smooth variation outside the range of applicability. 
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Fig. 5.2 Drag force exerted on the MUN Explorer AUV using empirical formulae (5-8) 
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Fig. 5.3 Lift force exerted on the MUN Explorer AUV using empirical formulae (5-9) 
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Fig. 5.4 Yaw turning moment exerted on the M UN Explorer AUV 

using empirical formulae (5-10) 

5.4. Dynamic control systems 

5.4.1 Control surfaces 

Fig. 5.5 shows the M UN Explorer AUV; its overall length is about 4.5 metres and it has a 

maximum diameter of about 0.69 m. A cylindrical main body is blended with an elliptical 

nose at its front and a tapered tail section at its rear. Manoeuvring of the vehicle is 

facilitated by four aft planes arranged in "X" configuration and two foreplanes which 

assist with precise depth and roll control. The vehicle yaw, pitch and ro ll motions can be 

independently controlled by the aft planes. With proper control of the vehicle pitch, the 

vehicle depth can also be controlled using only the aft planes. The planes have the 

symmetrical cross-section of NACA 0024. Each plane is controlled independently by a 

24 Volt brushless DC motor that res ides inside the plane body [Issac et al. 2007a]. MUN 
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Explorer's control planes are about 35 by 35 em in chord and span, that is an aspect ratio 

In this simulation, which is to simulate the horizontal plane manoeuvres of the MUN 

Explorer AUV, the tail-planes are the active controllers. The bow-planes were modeled 

with zero deflection angles only to contribute to the axial force. This, of course, 

introduces some error in the simulation prediction, since the real vehicle even in a 

constant-depth manoeuvre operates with deflected bow-planes, which should be corrected 

in a later study. As was reported by Issac et at. [2007b ], during a straight-ahead 

manoeuvre all six planes operate to bring the vehicle to a nose-up attitude, but the pitch 

attitude of the vehicle especially at lower forward speeds was observed to be negative; 

e.g. at I and 1.5 m/s forward speeds the vehicle had a negative pitch angle of respectively 

about 5 and 1.5 deg. This was explained by the fact that when the vehicle is at rest at the 

surface, it is normally trimmed to have the nose down trim so as to ensure that the 

antennas which are mounted on the communications mast on the vehicle tail are well out 

of the water thus providing a failsafe condition for communications. For the same reason 

the AUV has a positive buoyancy of about 8 kg. The bow-plane deflection angles that 

were recorded during some turning manoeuvres were reported by Issac et al. [2007b] 

which are reproduced later in this study. 

8 Each control plane consists of a stationary root-base of about 3 em span which fairs to the hull and a 
moving main part of35 em span. Here, the root-base was not included in the modeling. 
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Fig. 5.5 MU Explorer AUV I MERLIN 20091 

Numbering of the planes is compatible with the manufacturer' s manual where the two 

bow-planes are number I and 2 and the stern-planes are number 3 and 4 on port-side and 

5 and 6 on starboard-side. All planes have a positive deflection angle 8 when the leading 

edge turns upward. Thus the lift force of each plane is positive upward. As shown in Fig. 

5.5, the angle between the axis of rotation of each stern-plane and the horizontal, to be 

called the X-angle, was manufactured to be ( = 45 deg. 

The lift and drag coefficients for NACA 0024 planes are about the same as NACA 0025 

for which extensive experimental results were reported in the NACA report No. 708 by 

Sullivant [ 1940]. The lift and drag coefficients versus angle of attack from that report 

were reproduced. The maximum lift coefficient is about one and occurs at about 20 deg 

which corresponds to a drag coefficient of about 0.2. The pitching moment coefficient 

that was measured at an average Reynolds 3.2* 106 for NACA 0025 had a linear trend 

increasing from zero to about 0.05 at an AOA of 14 deg, and reducing back to zero at an 
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AOA of 24 deg. Fig. 5.6 shows the lift, drag and moment coefficients for NACA 0025 

section of aspect ratio six reproduced from the NACA report. 
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Fig. 5.6 Lift and drag coefficients for the control planes; 

NACA 0025 airfoils of aspect ratio (AR) of six 

The NACA tests were performed for airfoils of aspect ratio (AR) of six, while the MUN 

Explorer planes have an AR of one. For NACA 0015 profiles, in a study by Whicker and 

Fehlner [1958] the effect of aspect ratio was reported to be significant with higher lift-

coefficient for larger aspect ratio. The following formulae [von Mises 1959, pp. 148 to 

167] can be used to correct for the lift and drag coefficients of a 20 section to a 3D 

section: 

CL(3D) = CL(ZD) • (AR/(AR + 2)) (5-14) 

Cv(JD) = Cvczv) + CL(ZD) 
2
/(rr · AR) (5-15) 

Therefore: 

CL(AR= 6) = CL(ZD) • (6/8) and CL(AR= l) = CL(2D) · (1/3) (5-16) 
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CL(AR=1) = CL(AR=6). (8/6). (1/3) (5-17) 

Note that the drag coefficient resulting from (5-15) for the 30 section is larger than a 20 

section and it occurs at a higher actual angle of attack which is calculated as follows 

[Abbot and von Ooenhoff, 1959] : 

a3D = a 20 + CL(ZD)f(rr • AR) [rad] (5-18) 

The resulting drag and lift coefficients for NACA 0025 of AR = 1 were plotted versus 

the plane AOA in Fig. 5.7. According to (5-18), the curve of drag coefficient extends to 

larger AOAs. 
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Fig. 5.7 Lift and drag coefficients for the control planes; 

NACA 0025 airfoils corrected for AR = 1 

The pitching moment about an axis through the quarter-chord point which is the center of 

pressure of the plane, that is at c/ 4 distance from the leading edge, is not influenced by 

the aspect ratio because the lift and drag forces are assumed to act at that location. Thus, 
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the NACA reported values for the pitching moment coefficient at c /4 for AR 6 are used 

for the MUN Explorer planes. 

Fig. 5.8 is the view of stern-planes looking from behind while the vehicle has a surge 

velocity u, sway velocity v, and yaw rate of turn r. Also, the cut A-A in Fig. 5.8 is a top

view of plane number 3 while it is deflected by o deg, during such a horizontal plane 

manoeuvre, as shown in Fig. 5.9(a). The resultant lateral velocity ofthe planes relative to 

flow which is corrected for the X-angle is as follows9
: 

Vptane = (v- r · Xptane) sin(() (5-19) 

Then, the angle of incidence of the flow relative to plane number 3 as illustrated in Fig. 

5.9(b) is: 

/3' = tan-1
( -Vptanefu) 

Then, the actual AOA for planes number 3 and 6 is as follows: 

a3,6 = 63,6 + /3' 

(5-20) 

(5-21) 

where o is the controlled deflection angle of the plane relative to the hull which can reach 

a maximum of 25 degrees for the MUN Explorer AUV. Plane number 6 is the same as 

plane number 3 with the lower face facing the flow. For plane number 4 the angle of 

incidence of the flow relative to the plane is the same as (5-20) but is subtracted from the 

deflection angle ofthe plane, because in a positive starboard turn as illustrated in Fig. 5.8, 

the upper face of plane number 4 faces the flow. Therefore, the actual AOA of plane 

number 4 is: 

(5-22) 

9 All four stern planes were assumed at the same longitudinal distance in the vehicle coordinate system. 
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Plane number 5 is the same as number 4 with the upper face facing the flow during a 

positive turn . Drag, lift and moment coefficients are derived for the actual AOA that are 

calculated in (5-21) and (5-22). 

3 

r. Xpfane ,"" 

A-A~," 

r . Xplane 

4 Lower 

/{~:5° 
T~ 

....... ··············· ~z y 

.............. ··· z 

5 

Fig. 5.8 View of the tail planes looking from behind: Illustration of the flow velocity relative to the 

stern-planes during a horizontal-plane manoeuvre 

Fig. 5.9 Top view of plane 3 during a horizontal-plane manoeuvre: (a) the perpendicular cut A-A in 

Fig 5.8, (b) the resultant inflow velocity and drift angle 

138 



Note that the resultant lateral velocity was projected along the plane 's perpendicular in 

(5-19). If the planes were in upright position: ( = 90 deg for rudders and ( = 0 deg for 

horizontal planes, then for the rudders sin( 0 would reduce to unity and for the horizontal 

planes it would diminish. Also, note that the projected component of the resultant lateral 

velocity along the plane's parallel, which for ( = 45 deg has equal magnitude as of (5-

19), may introduce additional complexity into the hydrodynamic performance of the 

plane, however that effect is neglected here. 

Therefore, in summary the lift and drag forces on each stern plane are as fo llow: 

(5-23) 

where Ap is the planform area of each plane equal to chord-length, c, times span, b. The 

lift and drag coefficients in (5-23) are read from Fig. 5.7 at an actual angle of attack that 

is calculated by either (5-21) or (5-22) for planes number 3 to 6. 

As shown in Fig. 5.9(b), the drag and lift forces should be projected along the x and y 

axes of the vehicle coordinate system to conclude the net axial force and sway force that 

are produced by the control planes. Thus, the sway force that is produced by plane 

number 3, along its y3 axis that was shown in Fig. 5.8, is: 

Fy,plane3 = Lplane3 cos({J') + Dplane3 sin({J'), (5-24) 

Then the net sway force of the four stern planes is calculated using the sway force of each 

plane similar to (5-24) and correcting them for the X-angle as follows: 
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Fy,planes = (Fy ,plane3 - Fy,plane4- Fy,planes + Fy,plane6) ·sin(() 

= ( ( Lplane3 - Lplane4- Lplanes + Lplane6) • cos({J') 

+ (Dplane3- Dplane4--:- Dptanes + Dptane6) · sin({J')] ·sin(() 

= ipU2Ap[(cL.3- CL,4 - CL,s + CL,3 ) • cos({J') + (C0 ,3 - C0 ,4 - C0 ,5 + C0 ,3 ) • 

sin({J')] ·sin(() (5-25) 

Note that in (5-25), according to Fig. 5.8, the sway force of planes 3 and 6 are acting in 

the positive direction ofthe y-axis of the vehicle coordinate system, while the sway force 

of planes 4 and 5 are acting negative thus have a minus sign. The lift and drag 

coefficients for each plane depend on the actual AOA of that plane which itself is a 

variable of the vehicle velocity vector as was written in (5-19). During a simulation run, 

e.g. a turning manoeuvre, at the time instant t knowing the velocity vector of the vehicle, 

equation (5-25) is used to calculate for the net sway force of the stern-planes which is 

then added up with other forces that act in the sway direction, and the resultant force 

produces the sway acceleration vector at the next time instant. The sway acceleration 

vector is then integrated to produce the sway velocity vector from where the loop 

continues. 

To turn the vehicle in positive yaw direction, to create a starboard turn, the vehicle tail 

should move in the negative y direction (to the portside), thus the resultant sway force in 

(5-25) should be negative. For that purpose, planes number 3 and 6 should have a 

negative deflection angle (LE down), and planes 4 and 5 should have a positive 

deflection angle (LE up). The yawing moment equals the net sway force that is produced 
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by the stern planes times the longitudinal distance of the centre of pressure of the stern 

planes from the body-fixed origin at the vehicle's mid-length, which was estimated 

about: Xptane :::::; 1.36 m; so it follows: 

M z,planes (due to the net sway force of the planes) = Fy,planes · Xptane (5-26) 

On the other hand, the pitching moment about an axis through the quarter-chord point, 

which is the center of pressure of the plane, is a vector acting in the coordinate system of 

each stern-plane in Fig. 5.8 along Zi-axis for the plane numbers: i= 3 to 6. Therefore, the 

pitching moment on the stern planes should be decomposed along y and z axes of the 

vehicle's coordinate system to produce respectively the pitching and yawing moments 

about the quarter-chord axes of the planes that act on the vehicle, as fo llows: 

My,planes (due to pitching moment on the stern planes) = ( Mz,plane3 + Mz,plane4 + Mz,planeS + 

M z,plane6) ·cos(() (5-27) 

M z,planes (due to pitching moment on the stern planes) = ( M z,plane3 - M z,plane4 - M z,planeS + 

M z,plane6) . sin(O (5-28) 

The yawing moment m (5-26) should be added to the yawing moment m (5-28) to 

conclude the total yawing moment that is produced by the stern planes. On the other 

hand, a net non-zero pitching moment on the vehicle in this simulation is undesired since 

the bow planes were not modeled as active actuators. 

5.4.2 Propulsion 

The AUV is propelled by a dP = 0.65 m diameter high efficiency two-bladed propeller 

driven by a Hathaway 48 Volt DC brushless motor and can achieve a maximum speed of 

2.5 m/s. The propeller is blended into the tail cone to maintain attached flow for better 
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hydrodynamics [Issac et al. 2007a]. The thrust coefficient Kr for the two-bladed propeller 

of MUN Explorer is unknown. However, straight-ahead trials were performed with the 

vehicle to attain the curve of the vehicle speed versus the propeller rpm [Issac et al., 

2007b] 10
, as reproduced in Fig. 5.10 and Table 5.1. These data points were fitted with the 

following relation: 

n = 109 * U (5-29) 

where U is the forward speed of the vehicle and n is the propeller speed of revolution in 

rpm. On the other hand, in a straight-ahead run, the propeller should produce a thrust 

approximately equal to the resistance force R plus the thrust deduction oT, that is: 

T = R + oT. For MUN Explorer, propeller diameter to hull diameter ratio is about 

dp/d ~ 1, also referring to the test results reported for C-SCOUT by Thomas et al. 

[2003] thrust deduction fraction oT /T may be estimated about t * ~ 0.1. Also, the 

resistance force exerted on the vehicle R equals the bare hull resistance as was modeled 

by equation (5-8), plus the drag force on four stem-planes and two bow-planes all at zero 

deflection . Summing up the thrust force is as follows: 

where: Co,hull = 1.88,82 + 11.7 LDR + 38 and Co,ptanes ~0.01 (5-30) 

As mentioned before, it was also observed that the vehicle during a straight-line 

manoeuvre had non-zero pitch angles. To take that effect into account a pitch angle of 

about 5 deg is assumed for the vehicle and the control planes, and the drag coefficients in 

10 Those straight-ahead runs were performed in two phases: accelerating and decelerating as shown in 
Table 5. 1. Thus, a total of eight data points for the vehicle speed versus propeller rpm were recorded. The 
average of the two phases is used as a single set of data in Fig. 5 . I 0. 
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(5-30) were adjusted according to that11
• Then substituting the forward speed from (5-29) 

into (5-30) and using the drag coefficients of the hull and control planes, provides an 

estimate of the propeller thrust versus its rpm which is the solid curve plotted in Fig. 

5.11. Although, the test runs were performed over a range of I 09 to 287 rpm which 

corresponded to forward speeds of I to 2.5 m/s, the curves in Figs. 5.10 and 5.11 were 

extrapolated to the range 10 to 287 rpm assuming that the propeller has a similar 

performance. 

Acceleration 
phase 

deceleration 
phase 

Table 5.1 MUN Explorer's forward speed versus propeller rpm 

.., 
~ 

during straight line tests [Issac et al., 2007bl 

n [rpm] 109 155.8 210.8 263.2 

U [ml s] I 1.5 2 2.5 

n [rpm] 287 223.9 173.4 125.5 

U [rnls] 2.5 2 1.5 I 
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Fig. 5.10 MUN Explorer's forward speed vs. propeller rpm 

11 Note that fJ in equation (5-30) is the yaw angle of the vehicle in degrees as was modelled using the static 
yaw test results. However, it is used to estimate the effect of pitch angle, although the MUN Explorer AUV 
has axisymmetric appendages in pitch direction. 
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In another approach, the propeller thrust coefficient can be estimated using the 

Wageningen propeller series [Kuiper 1992]. The resulting curve is shown as dashed 

curve in Fig. 5.11 which is obtained as is explained next. 
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Fig. 5.11 Thrust vs. rpm for MUN Explorer's propeller 

Propeller pitch angle at 0.7 radius was measured by the author to be about 25 degrees 

which suggests a pitch P of about 0.69 m that is a propeller pitch-to-diameter ratio of: 

0.69/0.65 = 1.06. The advance ratio is defined as: 

(5-31) 

where N is the propeller speed in revolutions-per-second and Va is the flow speed through 

the propeller disc which is related to the vehicle forward speed by the following relation: 

Va = (1- w)U (5-32) 

where w is the wake coefficient which is assumed to be about 0.1 here [Allmendinger 

1990]. If the vehicle speed in (5-32) is substituted from (5-29), then the advance ratio in 

(5-31) - propeller speed in revolution per second - is calculated to be about 0. 72. On the 
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other hand, for a pitch-to-diameter ratio of P / dp :::::: 1 as was calculated above, thrust 

coefficient of B 2-30, that is a two-blades propeller with a blade area ratio (BAR) of 0.3, 

and thrust coefficient of B 2-38 were reproduced as are shown in Fig. 5.12 [Kuiper 1992]. 

For an advance ratio of0.72 either B 2-30 orB 2-38 has a thrust coefficient of0.13. 
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Fig. 5.12 Thrust coefficient for 8 2-30 and 8 2-38 for P/dp "" 1 reproduced from !Kuiper 1992) 

Then the propeller thrust is calculated using: 

(5-33) 

Equation (5-33), using the estimated value for the thrust coefficient for either B 2-30 orB 

2-38, results in the curve of thrust force versus propeller speed as was shown by dashed 

curve in Fig. 5.11; the two curves are in good agreement, however, the curve which was 

obtained by the test data was used as the thrust force model in this simulation . 
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5.5 Vehicle mass and the added mass of water 

5.5.1 The vehicle mass and moment of inertia 

The dry mass of the MUN Explorer AUV was reported by Issac et al. [2007a] as 630 kg, 

which is the same amount as reported by the manufacturer and is the value used in this 

simulation. At the recovery stage of a sea-trial, an immediate reading of the weight scale 

indicated a total mass of about 1400 kg; a later calculation concluded a flooded mass of 

1445 kg that is about 1445- 630 = 815 kg of floodwater mass. 

The centre of gravity (CG) for MUN Explorer in the dry state is at 2.44 m from the front 

end and about 0.04 m below the centerline, but positioned on the centerline in the lateral 

plane. Thus, the CG of the dry vehicle is about 0.2 m rearwards of the vehicle mid-length, 

since most of the internal structure is placed within the pressure hull which is located in 

the rear half of the vehicle. The moment of inertia for MUN Explorer about a vertical axis 

through its CG was estimated by the author to be about fcc = 2454 [kg.m2
]. However, 

the hydrodynamic forces which were modeled with the empirical formulae in this report 

used the test results that measured the yaw moment about a vertical axis located at the 

vehicle centre of buoyancy (CB) which can be assumed almost at the vehicle mid-length 

(see Table 2.2 for a comparison of the vehicle mid-length and longitudinal location of CB 

of the bare hull configurations). Hence, the moment of inertia for MUN Explorer should 

be shifted to the vertical axis through the origin of the body-fixed coordinate system at 

the vehicle mid-length, which results in a final value for the moment of inertia of the dry 

vehicle of 2475 [kg.m2
]. To this amount, the moment of inertia of the floodwater should 

be added. A rough estimate is to assume that the 815 kg of floodwater mass is evenly 
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distributed within an ellipsoid of the same length and diameter as the MUN Explorer12
, 

which results in a moment of inertia of 844 [kg.m2
] about the centre of volume of the 

ellipsoid, which is close enough to the vehicle mid-length. Thus, the moment of inertia of 

MUN Explorer in the flooded state to be used in this simulation code is estimated as 

/ 2 = 2475 + 844 = 3319 [kg.m2
]. Also the centre of gravity of the flooded vehicle is 

estimated as ifthe CG ofthe 815 kg floodwater is at the body-fixed origin (vehicle mid-

length on the longitudinal axis), which results in a flooded CG 2.33 m from the bow end 

and 0.02 m below the centerline that is: Xc = 2.25 - 2.33 = -0.08 aft of mid-length, 

with Yc = 0 and Zc = 0.02 m below the longitudinal centerline of the hull. 

5.5.2 Added mass and added moment of inertia 

Assuming potential flow for an ellipsoid with a length of l and maximum diameter d, the 

first three significant terms: translation in surge and sway directions and rotation in yaw 

direction, for the added mass effect were studied by Lamb and the curves as are 

reproduced in Fig. 5.13 were proposed [Lamb, 1932]. The axial and lateral coefficients, 

K1 and K2 , in Fig. 5.13 are respectively the ratio of the added mass of the ellipsoid in 

axial and lateral directions to its displaced mass, and the rotational coefficient, K' , is the 

ratio of the added moment of inertia of the ellipsoid to the moment of inertia of its 

displaced volume of water about an axis through its mid-length. 

For the forward acceleration state, the added mass according to the K1 curve in Fig. 5.13, 

for the MUN Explorer AUV with LDR 6.5 is about 0.05. However, additional amount of 

12 Note that the enclosed volume of such an ellipsoid is smaller than the enclosed volume of MUN 
Explorer. Also note that assuming an even distribution of 815 kg floodwater within such an ellipsoid means 
that a density of about 726 [kg/m3

] is assumed for the water. 
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added mass is expected since the vehicle compared to an ellipsoid is more blunt, also it 

includes appendages. Thus the axial added mass was assumed to be one-tenth of the 

vehicle ' s flooded mass, i.e ., one-tenth of 1445 kg. The lateral (sway) added mass and 

rotational (yaw) added moment of inertia coefficients for the ellipsoid of LDR 6.5 are 

respectively about: K2 = 0.92 and K' = 0.77, where the lateral added mass is K2 times 

the mass of the ellipsoid displaced volume and the added moment of inertia is K' times 

the moment of inertia of the displaced volume [Lamb 1932]. 
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Fig. 5.13 Added mass and added moment of inertia for an ellipsoid (Lamb, 19321 

Resulting values for an ellipsoid equivalent to the bare hull of MUN Explorer are about 

1057 kg for the added mass and 1191 [kg.m2
] for the added moment of inertia, derived 

for a sea-water density of 1025 [kg/m3
). To estimate the added mass effect for the control 

planes it was noted that: the added mass magnitude of a rectangular plate of span b and 

chord length c accelerating normal to its face is: 

Lateral added mass of rectangle= Kr rrpb(c 2 /4) (5-34) 
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where the coefficient Kr varies from 0.478 to one for span-to-chord ratios of one to 

infinity respectively [Brennen 1982]. Each of the four tail control planes of MUN 

Explorer are rectangles of equal span and chord length 35 by 35 em (the root-base is 

ignored), for which the span-to-chord ratio is one and thus the added mass coefficient Kr 

is 0.478. Substituting this into (5-34) results in an added mass value of about 17.3 kg for 

each plane for acceleration normal to plan form. Then, according to the orientation of the 

tail planes, ifthe deflection angle of the planes during a manoeuvre is ignored, each plane 

is accelerating 17.3 kg of surrounding water times the sine of the X -angle, ( = 45 deg, in 

the lateral direction. Therefore, in a constant depth manoeuvre, the total lateral added 

mass due to the four tail planes is predicted as: 4 * 17.3 * sin(rr/4) = 49 kg. 

Consequently, the added moment of inertia due to these stern planes is estimated as that 

amount of mass with the moment arm Xptanes of about 1.36 m, i.e. 49 * 1.362 = 90 

[kg.m2
] of added moment of inertia about the z-axis through the origin of the body-fixed 

coordinate system. 

5.6 Simulation results 

The simulation code was developed and its convergence was verified by performing 

straight-ahead manoeuvres. The MUN Explorer AUV with an input propeller speed of 

120 rpm starts to speed up under a thrust force of about 71 N and in about three minutes 

attains a steady forward speed of about 1.03 m/s. Changing the simulation time step 

slightly changes the response but it converges to about the same speed. For a larger 

simulation time-step, due to integration error, the distance travelled by the vehicle to 

reach a steady forward speed is shorter: e.g. at 120 rpm, simulation time-steps: 8t = 
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0.01 , 1 and 10 s respectively result in: 144.7, 143.2 and 130.8 m distance travelled until 

the vehicle reaches a steady speed of 1.03 m/s for all those time-steps. Figs. 5.14 and 5.15 

respectively show the time-history of surge velocity and surge acceleration during a 

straight-line run for the above time-steps. All turning manoeuvres were simulated with a 

time-step of 0.0 l s. 
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Fig. 5.14 Surge speed for the MUN Explorer AUV during a straight-line run at 120 rpm 
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Fig. 5.15 Surge acceleration for the MUN Explorer AUV during a straight-line run at 120 rpm 
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5.6.1 Turning manoeuvres: calibrating the simulation code with the 

free-running test results 

In August 2006, at Holyrood Harbour situated about 45 km south-west of St. John ' s, 

Newfoundland, a set of trials were performed with the MUN Explorer AUV, some of 

which were reported by Issac et al. (2007a] and Issac et al. [2007b]. Ten runs of turning 

circle manoeuvres with an approach speed of I m/s at a constant depth of 3 metres that 

were reported by Issac et al. (2007b] as are reproduced in Table 5.2 were used to evaluate 

and then calibrate the response of the simulation code. Note that to perform the turning 

manoeuvres with the AUV, the inputs to the software are the approach speed the radius 

of turn and the centre-point around which it turns. Then, the vehicle path, its rate of turn, 

propeller rpm, forward speed and the controlled deflection of the six control planes are 

some of the recorded signals during each run. Each run is made of a straight-ahead phase 

until the vehicle attains the desired approach speed and then the control planes are 

deflected so as to turn the vehicle with the desired radius around the specified centre

point. The resulting radius of turn and its centre, even in calm water, may have minor 

errors relative to the commanded values. 

The lower portion of Table 5.2 shows the reported results for the radius of turn, turning 

rate and forward speed for ten turning manoeuvre trials, indicated by "T" in parentheses, 

reproduced from [Issac et al., 2007b] 13
. Indicated by "S" in parentheses are the respective 

simulation results. Note that for the simulation code, the tail plane deflection angles were 

set to the reported average value for the recorded signal of each plane during the trial as 

13 Rate of turn in [Issac et al. 2007b] was mistakenly reported as [rad/s]; the values were in [deg/s] . 
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shown in Table 5.2: e.g. the first simulation run was performed with input deflections for 

the tail planes number 3 to 6 equal to -10.32, -0.1, -1.82, and -12.51 deg 14
. Note that for 

the approach speed of I m/s, the data from sea-trials as were shown in Table 5.2 are 

equivalent to an average deflection angle for the four planes calculated as: deflection (o) 

of plane number 3 plus that of number 6 minus the o of number 4 and 5; e.g. the average 

deflection angle for the first run is: o = (-10.32 -12.51- (-0.1)- (-1.82))/4 = 

-5.23 deg, which has about the same simulation result as a starboard turn of all four 

planes at 5.23 deg. This average o is shown as the average plane angles in Table 5.2. 

The simulation code operates the AUV straight-ahead under the thrust force at a propeller 

rpm of 120 until a steady forward speed of about 1 m/s is attained and the surge 

acceleration has been damped to zero, then at a rate of I deg/s the stern-planes are 

deflected up to the commanded values. The simulation time-step was 0.01 sec, therefore 

the deflection angles of the four control planes were changed by 0.01 deg during each 

computational loop, which means an effective rate of change of 1 deg/s. Relative errors 

for the radius of turn, if the test results are assumed to be the correct value, are defined as 

follows: 

eR = 100 * (R(S)- R(T))fR(T) (5-35) 

Relative error between the test and simulation results in the radius of turn and the rate of 

turn for these ten runs are shown in Table 5.2 respectively by eR and er which vary 

between I 0 to 35 percent of error. 

14 The planes' deflection angle (8) have different signs in [Issac et al. , 2007b]; here all the stern planes have 
positive 8 when the leading edge turns upward and thus provides upward lift force (also see Fig. 5.8). 
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Table 5.2 Simulation results for the turning manoeuvres at a constant depth with an approach speed 

of I m/s compared to trial results; T: tests, S: simulation 

Average of stern- Bow-plane 

Stern plane deflection angles [deg] plane deflection deflection ang les 

angles [ deg] (deg] 

Run 03 04 Os 06 8 ot Oz 
I - 10.32 -0.1 -1.82 -1 2.5 1 -5 .23 4. 17 4. 17 

2 -10.54 0.0 1 - 1.86 -1 2.52 -5.30 4.7 1 4.71 

3 -10.1 9 -0.34 -2.38 -1 2.18 -4.9 1 5.23 5.29 
4 -10.32 -0.39 -2.08 -1 2.26 -5 .03 5.04 5.06 

5 -10.17 -0.89 -2.43 -11.82 -4.67 5.12 5. 11 

6 -10.1 -0.97 -2.7 -11.54 -4.49 5.36 5.36 

7 -9.87 -1.23 -2.77 - 11.6 -4.37 5.28 5.28 

8 -9.76 -1.6 -2.83 - 11.3 1 -4. 16 4.94 4.96 

9 -9.66 -2.79 -3.53 - 10.5 1 -3.46 5.42 5.5 1 

10 -9.4 1 -2.77 -3.7 - I 0.34 -3.32 5.82 5.83 

Run R(T) R(S) r (T) r (S) eR% er% 

I 22.5 1 15.4 2.560 2.070 -3 1.6 - 19.1 

2 23 .8 15.3 2.413 2.090 -35.6 - 13.4 

3 25.02 16.9 2.304 1.960 -32.5 -14.9 

4 25.09 16.4 2.296 2.000 -34.6 -12.9 

5 26.58 18.2 2.180 1.880 -3 1.4 - 13.8 

6 27.97 19.3 2.053 1.82 -3 1.1 - 11 .3 

7 28.11 20.0 2.070 1.78 -28.9 - 14.0 

8 29.65 2 1.4 1.954 1.71 -27.8 - 12.5 

9 33 .44 27.0 1.695 1.45 -1 9.4 - 14.5 

10 37.54 28.3 1.53 1 1.4 1 -24.5 -7.9 

Defl ection angle of the two bow-planes as was reported by lssac et al. [2007b] is also 

show n in Table 5.2. Positive deflection angle means that the leading edge (LE) of the 

bow-planes turn upward during these starboard turns, thus they produce a net upward 

force, while the four stern-planes produce a net downward force. Therefore, the net 

vertical force is cancelled out, but a net positive pitching moment is produced. To find an 

explanation for this behaviour the 6 DOF equations of motion should be studied which is 

beyond the scope of this research. Again note that during a turning manoeuvre the radius 
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ofturn and the centre-point are the inputs to the mission planning software of the actual 

AUV; but, for the simulation code the inputs are the propeller speed and the deflection 

angles of the control planes. The comparison of the prediction with the fullscale 

measurements is given in terms of the diameter of the circle and the vehicle speed around 

the circle. 

Next, the simulation code was calibrated according to the test results so that the relative 

errors in the radius of turn and rate of turn were reduced. The simulation code results in 

smaller radius and also slower rate of turn. The reason is that: during the sea-trials, M UN 

Explorer was set on the autopilot thus the propeller speed was increased in order to keep 

the vehicle speed constant at I m/s. However, the simulation code operates at a constant 

propeller speed (120 rpm to reach an approach speed of 1.03 m/s), therefore there is a 

speed reduction within the steady phase of the turn, which means a slower rate of turn 

even though the radius ofturn is smaller than the test data. 

In section 5.1 the longitudinal location of CG was approximated: Xc = -0.08 m that is 8 

em rearward ofthe vehicle mid-length. For run numbers: 1, 6 and 10 in Table 5.2, where 

the average deflection angle of the stern-planes were respectively: 5.23, 4.49 and 3.32 

deg, simulation was performed by changing the longitudinal location of the CG from 

minus 0.12 m to plus 0.08 m at a step of 0.04 m, that is from 12 em aft of mid-length to 8 

em forward of mid-length. Variation of the relative error in the radius of turn as defined 

in (5-35) is plotted in Fig. 5.16 versus the longitudinal location of the CG for run 

numbers 1, 6 and I 0. Note that the other runs in Table 5.2 have average deflection angles 

close to either run numbers 1, 6 or 1 0; therefore, these three runs represent the others too. 
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Fig. 5.16 Relative error in the radius of turns vs. longitudinal location of the CG of the vehicle 

The trend is almost linear and if the centre of gravity for the simulation model coincides 

with the origin of the local coordinate system, as is seen in Fig 5.16, then the relative 

error in the radius of turn is less than 5 percent. Thus the model can be calibrated by 

moving the centre of gravity about 8 em forward. For the reason explained above (no 

speed reduction during the sea-trials), rate of turn was not a good criterion to use fo r 

calibrating the code; the best correlation was obtained by using the radius of turn. The 

results presented after this were obtained by the calibrated simulation code. Also see 

Appendix A at the end of thesis for an uncertainty study of the simulation code. 

5.6.2 Turning manoeuvres: radius of turn, turning rate, drift angle and speed 

reduction versus the stern-planes' deflection angle and the approach speed 

The simulation code is a useful tool to study the variation of the indicators of turning 

manoeuvres such as: radius and rate of turn, drift angle and speed reduction versus the 

input factors: stern-planes' deflection angle and the approach speed. In the following 

simulations, the average plane angles were used for all four stern-planes. That is: planes 
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number 3 and 6 use -8 and planes 4 and 5 use 8 to perform a starboard turn. Table 5.3 

shows the resulting radius of turn, rate of turn, drift angle and surge velocity of the MUN 

Explorer A UV after it maintains a steady turn at propeller speeds of: 120, 17 4, 232 and 

290 rpm which produce approach speeds of respectively: I, 1.5, 2 and 2.5 m/s. 

Table 5.3 Simulated radius of turn, turning rate, drift angle and surge velocity during a steady 

turning circle manoeuvre with MUN Explorer in constant depth 

vs. average deflection angle of the stern planes 

120 rpm: 1.03 m/s j 

0 
R [m] 

T Drift 
u [m/s] U/R Uturn 

[deg] [deg/s] f3 [deg] [deg/s] /Uapproach 
I 131.4 0.44 1.3 1.02 0.44 0.99 

2 64.8 0.88 2.6 1.00 0.88 0.97 

3 42.2 1.23 4.0 0.90 1.23 0.88 

4 30.6 1.56 5.3 0.83 1.56 0.81 

5 23.6 1.85 6.6 0.76 1.85 0.74 

6 18.8 2. 10 8.0 0.68 2.10 0.67 

7 15.1 2.31 9.4 0.60 2.31 0.59 

8 12.6 2.58 10.8 0.56 2.58 0.55 

9 10.54 2.74 12.2 0.49 2.74 0.49 

10 8.93 2.98 13.5 0.45 2.98 0.45 

II 7.83 3.09 14.9 0.41 3.09 0.41 

12 6.64 3.38 16.1 0.38 3.38 0.38 

13 5.83 3.54 17.3 0.34 3.54 0.35 

174 rpm: 1.5 m/s 

0 
R [m] 

T Drift 
u [m/s] U/R Uturn 

[deg] [deg/s] f3 [deg] [deg/s] /Uapproach 
I 13 1.4 0.65 1.3 1.48 0.65 0.99 

2 64.8 1.29 2.6 1.45 1.29 0.97 

3 42.2 1.79 4.0 1.32 1.79 0.88 

4 30.6 2.28 5.3 1.2 1 2.28 0.81 

5 23.6 2.69 6.6 1.10 2.69 0.74 

6 18.8 3.06 8.0 1.00 3.06 0.67 

7 15.1 3.36 9.4 0.87 3.36 0.59 

8 12.6 3.75 10.8 0.81 3.75 0.55 

9 10.5 4.00 12.2 0.72 4.00 0.49 

10 8.9 4.33 13.5 0.66 4.33 0.45 

11 7.8 4.50 14.9 0.59 4.50 0.41 

12 6.6 4.92 16.1 0.55 4.92 0.38 

13 5.8 5.16 17.3 0.50 5.16 0.35 
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14 5.2 5.47 18.5 0.47 5.47 0.33 

232 rpm: 2 m/s 

0 R [m] 
T Drift 

u [m/s] U/R Uturn 
[deg] [deg/s] {J [deg] [deg/s] /Uapproach 

I 131.4 0.86 1.3 1.98 0.86 0.99 
2 64.8 1.72 2.6 1.94 1.72 0.97 

3 42.2 2.39 4.0 1.76 2.39 0.88 

4 30.6 3.04 5.3 1.61 3.04 0.81 

5 23.6 3.59 6.6 1.47 3.59 0.74 

6 18.8 4.08 8.0 1.33 4.08 0.67 
7 15.1 4.48 9.4 1.16 4.48 0.59 

8 12.6 5.00 10.8 1.08 5.00 0.55 

9 10.5 5.33 12.2 0.96 5.33 0.49 

10 8.9 5.78 13.5 0.88 5.78 0.45 

II 7.8 6.00 14.9 0.79 6.00 0.41 

12 6.6 6.56 16.1 0.73 6.56 0.38 
13 5.8 6.88 17.3 0.67 6.88 0.35 

14 5.2 7.29 18.5 0.63 7.29 0.33 
15 4.7 7.63 19.5 0.58 7.63 0.31 

290 rpm: 2.5 m/s 

0 R [m] 
T Drift 

u [m/s] 
UjR Uturn 

[deg] [deg/s] {J [deg] [deg/s] /Uapproach 
I 131.4 1.08 1.3 2.47 1.08 0.99 

1.5 87.2 1.59 2.0 2.42 1.59 0.97 
2 64.8 2.09 2.6 2.36 2.09 0.94 

2.5 51.3 2.55 3.3 2.28 2.55 0.91 

3 42.2 2.99 4.0 2.20 2.99 0.88 

4 30.6 3.78 5.3 2.02 3.80 0.81 

5 23.6 4.47 6.6 1.83 4.47 0.74 

6 18.8 5.08 8.0 1.65 5.08 0.67 

6.5 16.9 5.37 8.7 1.56 5.35 0.63 

7 15.1 5.65 9.4 1.48 5.69 0.60 

8 12.6 6.18 10.8 1.34 6.20 0.55 

8.5 11.5 6.44 11.5 1.27 6.46 0.52 

9 10.5 6.70 12.2 1.20 6.67 0.49 
10 8.9 7.2 13.5 1.09 7.20 0.45 
II 7.8 7.69 14.9 0.99 7.49 0.41 

12 6.6 8.17 16.1 0.91 8.17 0.38 

13 5.8 8.63 17.3 0.84 8.65 0.35 

14 5.2 9.08 18.5 0.78 9.09 0.33 
15 4.7 9.52 19.5 0.73 9.53 0.31 

16 4.2 9.93 20.5 0.69 10.00 0.29 
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The control planes can deflect up to maximum 25 degrees, however at an approach speed 

of I m/s if the average deflection angle is set above about 13 deg, the actual AOA of the 

planes relative to flow as calculated by equations (5-20) to (5-22), will exceed 25 

degrees. Fig. 5.17 shows the time-history of the predicted AOA of plane number 3 during 

three turning manoeuvres at 290 rpm with commanded J of respectively - 7, - 10 and -15 

deg. After the vehicle obtains a steady forward speed, the plane starts to deflect at a rate 

of 1 deg/s, and the vehicle's tail turns in the positive yaw direction thus produces a 

negative sway velocity v and a positive r · Xplane velocity. 
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Fig. 5.17) Actual AOA of plane number 3 during turning manoeuvres at 290 rpm 

with commanded deflection angles of respectively -7,-10 and -15 deg 

As a result, the actual AOA of plane number 3, calculated by equation (5-21) becomes 

large positive as seen in Fig. 5.17. The actual AOA of plane number 6 has the same 

diagram as of Fig. 5.17, and the diagram of planes number 4 and 5 are mirrored 

vertically. According to Fig. 5.17 the actual AOA of the MUN Explorer' s planes, at an 
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approach speed of 2.5 m/s, will exceed 25 degrees for average deflection angles larger 

than about 16 deg. 

Drift angle {3 , which is defined as the inverse tangent of the ratio of sway velocity to 

surge velocity ofthe vehicle with a minus sign, that is: 

{3 = tan- 1 (-vfu), (5-36) 

was shown in the fourth column in Table 5.3. For a starboard turn at 120 rpm, drift angle 

is in the positive yaw direction which means that the vehicle heads inside the circle. Drift 

angle increases for larger plane deflection angles. According to the data in Table 5.3, for 

a turning manoeuvre at 120 rpm with an average o of about 4 degrees, the magnitude of 

drift angle is about 5.3 deg which is verified by the reported test results for the runs in 

Table 5.2 [Issac et al. 2007b, p. 7]. 

In Table 5.3, additional data-points were shown for the approach speed of 2.5 m/s (at 290 

rpm). At higher approach speeds the AOA does not exceed 25 deg until larger deflection 

angles; i.e. at 2.5 m/s the average deflection angle ofthe control planes can be as large as 

16 degrees which produces a minimum radius of turn about 4.2 m which is slightly 

smaller than the overall length of the vehicle 4.5 m. According the data in Table 5.3, 

radius of turn becomes smaller for larger deflection angles, but it does not depend on the 

approach speed. If the radius of turn is divided by the vehicle length to produce a non

dimensional radius ofturn as follows: 

(5-37) 
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where l is the overall length of the vehicle, then the non-dimensional radius of turn 

versus the average 8 of stern-planes for the MUN Explorer AUV is shown in Fig. 5.18. 

Simulation data were fitted with a rational curve as follows: 

R 

l 

28.4 

8 
(5-38) 

where 8 is the average deflection angle of the stern-planes in degrees. The rational curve 

is a good fit to the simulation data with an R-square value of about 0.99. 
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Fig. 5.18 Non-dimensional radius of turn; MUN Explorer simulation data compared to tbe data from 

tbe earlier version oftbe simulation code for a large submarine IAzarsina et al. 2007al 

The trend and also the magnitude of these data that were obtained for the MUN Explorer 

AUV are comparable to the simulation results for a large submarine of length 70 m and 

d iameter 12 m as was presented by Azarsina et al. [2007a, p. 70] which are shown by 

asterisks in Fig. 5.18. Note that the MUN Explorer AUV has stern-planes in an X-
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configuration, while the large submarine was modeled with two rudders and two 

horizontal planes in an upright configuration. 

While the propeller rpm was maintained to a constant during the turns, the vehicle surge 

velocity notably decreased during the turn. The vehicle's total speed is the surge speed 

divided by the cosine of the drift angle, that is: U = uj cos((3) . Rate of turn is equal to: 

the total speed of the vehicle after it maintains a steady speed during the turn, which is 

tangent to the vehicle path, divided by the steady radius of turn, that is: r = U JR. Rate of 

turn predicted by the simulation code is equal to the rate of turn that is calculated from 

the above formula as is shown in the second last column in Table 5.3. The data in Table 

5.3 for the rate of turn at different approach speeds is plotted in Fig. 5.19. 
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Fig. 5.19 Rate of turn versus stern-planes deflection angle for the MUN Explorer AUV 

at the approach speeds: 1, 1.5, 2 and 2.5 m/s 

Also the ratio of the steady speed of the vehicle during a turn to the approach speed was 

calculated and shown in the last column in Table 5.3. It is observed that this ratio has the 
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same variation versus the o of the stern-planes regardless of the magnitude of the 

approach speed. Variation of the ratio: steady-turning-speed to approach speed versus the 

ratio: turning diameter to vehicle length based on empirical relationships was studied by 

Davidson [1944] and Shiba [1960] [PNA 1967, p. 488]. For the simulation data in Table 

5.3 for MUN Explorer such a plot was produced as shown in Fig. 5.20. The trend is the 

same as of those empirical curves for ships; however, the simulation data for MUN 

Explorer demonstrate a rather large drop in the vehicle speed compared to the surface 

ships. 
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Fig. 5.20 Speed reduction as a function of non-dimensional turning diameter for 

the MUN Explorer AUV compared with surface ships 

Block coefficient for the surface ships is defined as the ratio of the submerged hull 

volume to the volume of a cube with dimensions: overall length by maximum breadth by 

ship draft. If block coefficient for an underwater vehicle in a similar way is defined as the 

ratio of the enclosed hull volume to a cube of volume: overall length times maximum 
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diameter squared, then for MUN Explorer it is: C8 = 0.66. Note that the curves by Shiba 

and Davidson were for ships with block coefficients C8 of respectively 0.8 and 0.7, and it 

can be concluded that a more slender body experiences a larger speed reduction during a 

turn. The abscissa in Fig. 5.20 for the Explorer data increases up to about 2 * ....!!.._ = 60 
LOA 

and reaches an asymptotic trend at higher values, however only a part of the data were 

shown so as to be in range with the data for the surface ships. 

5.6.3 Vehicle path, velocity and acceleration 

The X-Y path of the vehicle at a propeller speed of 290 rpm turning with the stern-planes 

average 8 of respectively -3, -6 and - 9 deg are shown by black, blue and red curves in 

Fig. 5.21. Note that a starboard turn requires a negative average deflection angle and the 

turn is clockwise (Z-axis into the page; into the water depth). Clearly, a larger average b 

produces a smaller radius of turn. At an average 8 of 3 deg, the black curve, the turn is a 

circle which is initiated tangent to the X-axis. However, at 6 deg, the blue curve, the 

vehicle turns around and crosses the X-axis. Then, at an average 8 of 9 deg, the red 

curve, the vehicle first turns in a smaller circle and then maintains a larger steady radius. 

Time-histories of the vehicle ' s position along X and Y axes are shown in Figs. 5.22 and 

5.23. During the same length of time, with a larger 8, and same approach speed, the 

vehicle performs a larger number of turns. 
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Fig. 5.21 Turning manoeuvres at 290 rpm with average AOAs of: 3, 6 

and 9 degrees for the stern-planes 
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Fig. 5.22 Position of the vehicle along X-axis (global coordinates) 
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Fig. 5.23 Position of the vehicle along Y -axis (global coordinates) 

Time-histories of the vehicle ' s surge and sway velocities are shown in Figs. 5.24 and 

5.25. Yaw rate of turn is shown in Fig. 5.26. With increasing o, nonlinear patterns occur. 

While the vehicle performs a starboard turn, it attains a steady sway velocity to the 

portside. In a starboard turn, the rate of turn is positive which is shown in rad/s in Fig. 

5.26. Time-histories of the vehicle' s surge and sway accelerations are shown in Figs. 5.27 

and 5.28. As is observed in these velocity and acceleration curves, first the vehicle speeds 

up under the thrust force of the propeller until the axial forces are balanced. Then the 

stern-planes start to deflect which causes the vehicle to turn and therefore creates 

impulsive axial and lateral forces and also an impulsive yaw moment. 
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Fig. 5.25 Sway velocity of the vehicle during turns to starboard 
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Fig. 5.26 Yaw rate of turn of the vehicle during turns to starboard 
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Fig. 5.27 Vehicle acceleration in the surge direction during turns to starboard 
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Fig. 5.28 Vehicle acceleration in the sway direction during turns to starboard 

The predicted AOA of plane number 3 varies during the turns as is shown in Figure 5.29. 

Although it is commanded to deflect respectively 3, 6 and 9 deg in the negative direction 

(leading edge downward) the steady actual AOA is respectively about plus 1.1, 2.6 and 

4.8 de g. As was shown in Fig. 5.21 the run with average deflection of 9 deg first turned in 

a smaller circle until it reached a steady radius. To check for the reason, the radius of 

curvature of the vehicle ' s path defined as the speed of the vehicle divided by its rate of 

turn, R = U /r, is plotted versus time during t =80 to 200 seconds of the 8 = -9 deg 

manoeuvre in Fig. 5.30. Obviously, the radius of curvature is changing during the 

transient portion until the vehicle speed (see Figs. 5.24 and 5.25) and its turning rate (Fig. 

5.26) reach to steady values and thus the radius of curvature reach a steady value of about 

10.5 m. Note that the turn at 8 = -9 deg and 290 rpm initiates at t = 73 s, and the radius 

of curvature of the vehicle's path is of course infinite before it starts to turn . 
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Fig. 5.29 Predicted AOA of plane number 3 during turns to starboard 
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Fig. 5.30 Radius of curvature of the vehicle's path at average li = -9 deg, 290 rpm 

The advantage of this simulation model is that the time histories of the force and moment 

vectors for the bare hull and control planes can be traced independently. T ime-histories of 

the net sway force and the net yawing moment that were produced by the stern-planes 

during these turns are shown in Figs. 5.31 and 5.32. To produce a starboard turn the 
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planes were deflected in order to produce a net sway force to portside (negative y-axis); 

the net sway force in the starting phase of turn with average o of 9 deg reaches to a 

maximum of about 40 N towards port. However, as was described before and shown in 

Fig. 5.29 the actual AOA of planes due to the relative flow velocity change and thus the 

net sway force of the stern-planes during the steady phase of the turns is to starboard 

(Fig. 5.31). The net yawing moment of the stern-planes has the same variation but in the 

opposite direction : for a starboard turn first positive moment is produced, however the 

steady turning moment becomes negative due to the change in the actual incidence angle 

ofthe flow. 
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Fig. 5.31 Net sway force that is produced by the stern-planes during turns to starboard 
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Fig. 5.32 Net yaw moment that is produced by the stern-planes during turns to starboard 

The axial force that is exerted on the bare hull is shown in Fig. 5.33. At the start of the 

turn there is an impulsive increase in the axial force on the bare hull , but it decreases and 

reaches a steady value during the turn. The time-history of the sway force and the yaw 

moment that are exerted on the bare hull are shown in Figs. 5.34 and 5.35. The 

magnitudes of the overshoot in the vehicle response to rudder change, for larger 8 are 

notable. According to Fig. 5.27, the time history of surge acceleration, at an average 8 of 

9 deg, at the start of the turn there is an impulsive deceleration which then causes a 

bounce back to acceleration; i.e. , after the negative acceleration between about 70 to 100 

s due to the rather large amount of deceleration the vehicle stores an inertia to bounce 

back to a forward acceleration phase (red curve in Fig. 5.27 between about II 0 to 150 s) 

which finally is balanced to zero. This process results in the large reduction in the surge 

velocity as was shown in Fig. 5.24. Similar responses are also observable in the sway and 

yaw directions. 
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Fig. 5.35 Yaw moment that is exerted on the bare hull during turns to starboard 

5.7 Verifying the simulation results with the theoretical formulae for 

turning manoeuvres 

Solving the linearized equations of motion for a vessel during the steady phase of a 

turning manoeuvre, Mandel [PNA, Chapter VIII, p. 484] presented the following 

equations for the steady radius of turn and the steady drift angle: 

(5-39) 

(5-40) 

Equations (5-39) and (5-40) have the following notation: 

R: steady radius oftum [m] 

{3: steady drift angle during the turn [rad] 

L: overall length ofthe vehicle [m]; in this thesis: l 

8: rudder deflection angle [rad] 
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V: vehicle speed [m/s]; in this report: U, where U2 = u 2 + v 2 

Y~ = Yv/(~pL2 V), where Yv = ay jav, i.e. rate of change of sway force that is 

exerted on the vehicle with change in the sway velocity. 

N; = Nr/(~pL4V), where Nr =aN ;ar, i.e. rate of change of yaw moment that is 

exerted on the vehicle with change in the yaw rate of turn. 

m' = mf(~ pL3
) , where m is the vehicle mass; m is the flooded mass for an 

underwater vehicle. 

xb = Xc/ L, where Xc is the longitudinal location of CG (longitudinal distance 

from the origin ofthe coordinate system). 

r; and N~ are the nondimensional form of derivatives: Yr = aY jar (change in 

sway force relative to yaw rate of turn) and Nv =aN ;av (change in yaw moment 

relative to sway velocity). 

Ys = Y0j(~pL2V2) , where Y0 = aYjao, i.e. rate of change of sway force that is 
2 

produced by the rudder with change in the rudder deflection angle o in radians. 

N8 = N0j(~pL3V2) where N0 = aN;ao, i.e. rate of change ofyaw moment that 
2 

is produced by the rudder with change in the rudder deflection angle o in radians. 

The contribution by the bare hull to the derivatives Yv and Nv was estimated using the 

static yaw test results that were shown in Figs. 2.10 and 2.11 for the bare hull 

configurations in section 3.8 in equations (3-25) and (3-26). For the Phoenix bare hull 

with LDR 8.5 (Figs. 2.10 and 2.11) it was approximated: Yv, = - 0.037 and N; = - 0.011. 

A negative value for the moment derivative Nv means that the effect of the bow 
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dominates. Converting the above non-dimensional derivatives to dimensional form for 

the MUN Explorer AUV with overall length l = 4.5 m at a forward speed U = 2.5 m/s, 

predicts: Yv::::::: -958 N/(m/s) and Nv ::::::: -1363 N.m/(m/s). 

In a steady motion, for small sway velocity and small rate of turn, the sway force and 

yaw moment equations are: 

Y = Yvv + Yrr 

N = Nvv + Nrr 

(5-41 ) 

(5-42) 

The derivatives: Yr and Nr are still unknown. Sway force and yaw moment values during 

a turning manoeuvre for the MUN Explorer AUV are the outputs of the present 

simulation code as were shown in plots of section 5.6.3. At a propeller speed of 290 rpm : 

approach speed 2.5 m/s, the simulation code was performed for the average stern-planes' 

8 of 1 to 9 deg and the steady values of sway force and yaw moment that are exerted on 

the bare hull were recorded as are shown in Table 5.4. Variations of sway force versus 

sway velocity and yaw moment versus yaw rate of turn are respectively shown in Figs. 

5.36 and 5.37 at approach speeds of 1, 1.5, 2 and 2.5 m/s. Also, in Table 5.4 values for 

the net steady sway force and yaw moment that were produced by the stern-planes during 

the steady phase of the turns at different 8 are presented. Figs. 5.38 and 5.39 are plots of 

those values versus the average 8 of stern planes at approach speeds of 1, 1.5, 2 and 2.5 

m/s. 
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Table 5.4 Simulation results for the steady values of sway force and yaw moment that are exerted on 

the bare hull and produced by the stern-planes for the MUN Explorer AUV at 290 rpm: 2.5 m/s 

approach speed 

8 [deg] u [mls] v [mls] r [rad/s] 
Fy,hull M z,hull Fy,planes M z,planes 

[N] [N.m] [N] [N.m] 

0 2.50 0 0 0 0 0 0 

I 2.47 -0.057 0.019 65.6 -123.7 8.3 -I 0.8 

2 2.36 -0.108 0.036 121.2 -225.6 15.49 -20. 16 

3 2.20 -0.152 0.052 161.6 -294.2 20.98 -27.29 

4 2.02 -0.187 0.066 186.7 -329.8 24.75 -32.21 

5 1.83 -0.213 0.078 199.5 -339.3 27.16 -35.34 

6 1.65 -0.232 0.089 204.0 -331.1 28.6 -37.22 

7 1.48 -0.246 0.099 203.1 -312.3 29.41 -38.29 

8 1.34 -0.254 0.108 199.2 -288.1 29.83 -38.85 

9 1.20 -0.26 0.117 193.7 -262.0 30.02 -39.12 

Table 5.4 contd. 

8 [deg] y~ * 103 N; * 103 y~ * 103 N/; * 103 

0 - - - -

I -44.4 -12.4 7.33 -2.12 
2 -42.0 -II. I 6.35 -1.84 

3 -35.3 -8.27 4.85 -1.4 
4 -27.6 -4.95 3.33 -0.97 
5 -19.1 -1.49 2.13 -0.61 
6 -9.03 1.46 1.27 -0.37 
7 2.34 3.61 0.72 -0.2 1 
8 18.9 4.91 0.37 -0.11 
9 35.0 5.52 0.17 -0.05 

In the second part of Table 5.4, the force and moment derivates were calculated using the 

following formulae : 

Yv = 8Fy,hullf8v, NT = 8Mz,hullf8r, Yo = 8Fy,planesf8o, Ns = aMz,planes/88 (5-43) 

where o is in radians. In (5-43) ao is 1 deg = rr/180 rad between successive rows, and 

all other parameters vary in part one of Table 5.4 between two successive rows. 

176 



250 1'---,--.---~~==~===c==~==r=~==~ 

~ 
~ 

u.:.; 100 

:; 
.s:: 50 
Q) 

£ 
c: 
0 

-g 
ai 
~ 
Q) 

~ 

0 

-50 

-100 

w -150 
C/) 

-200 

--e--- 290 rpm; approach speed: U= 2.5 m/s 

--+-- 232 rpm; approach speed: U= 2 m/s 

--+-- 174 rpm; approach speed: U= 1.5 m/s 

- 120 rpm; approach speed: U= 1 m/s 
I I I I I 

- - ,--- t--- r-- I---T--- ~--- I 

I I I 
I 

~---~--~---~---1---4---~--
1 I I I I I I 
I I I 

-1 - - - ~ - - -1- - - +- - - - I- - - -1 - - - ~ - - -1- -
I I 

-l - - - 1- - - ~- - - J,.. - - - I - - - ..J - - - ~ - - ~- - - ... - - -
I 1 I I I I 1 I I I 

-250 ~--~L_ __ L_ __ L_ __ L_ __ ~--~--~--~---L---L~ 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 
Sway ~elocity, v[m/s] 

Fig. 5.36 Steady sway force exerted on the bare hull of MUN Explorer 

during turning manoeuvres 

400r--:----:----:~==~====~==~====~~ 

300 

'E 
~ 
~ 200 

~
'3 
.r:; 

" 5 
:5 
il a; 
~ -100 

il 
~ -200 

~ 
>-

-300 

-e- 290 rpm: approach speed: U= 2.5 m/s 

-+- 232 rpm: approach speed: U= 2 m/s 
-+- 174 rpm: approach speed: U= 1.5 m/s 

U= 1 m/s 

---r----r----,----,--
1 I 
I 

I I I I -r----r----,---- ,- -
1 ............... __.. 

I W""'"" · ~-
1 

I I I 
--r----1----~-----~ 

I I 
I __ L ____ J __________ L __ 

I I I I 
I 

I I I I 
__ i ____ J ____ ~-----L-- --

1 I I I I 

-400L-~L---~L---~~----~----~~--~~--~~~ 
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 

Yaw rate oftum, r [rad/s] 

Fig. 5.37 Steady yaw moment exerted on the bare hull of MUN Explorer 

during turning manoeuvres 

177 



30 
--e-- 290 rpm; approach speed: U= 2.5 m/s 

-t- 232 rpm; approach speed: U= 2 m/s 

~ --+--174 rpm; approach speed: U= 1.5 m/s 

; ___,.__ 120 rpm; approach speed: 
~ 2o L~1~-~-~-~-~-~-=~ ~-~-~-~-~-~~~-~-~-~-~-~-~1 =-~-~-

I 
I 

~H-=t'~'f-'-.-=.;- ~-

u..::.;. I I 1 

~ .. 
15. 

~ 
~ 

;; 
z 

10 J- - ---- ~-- - -- ~----- ...j-

-10 

-20 

-3 

I I I I 

I 

I 
I 
I 
I 

'-
I 
I 

-15 

I I I 
I I 

-10 -5 

I 
I I I 
~----- ~------------ r 

I I 
I 
I 

- - ~----- ~--- - --~ -----~ 
I I I I 
I I I 
I I I 

I 

0 10 

Planes deftoction angle, o [deg] 

Fig. 5.38 Steady net sway force produced by the stern-planes of MUN Explorer during 

turning manoeuvres 

40~~~~~~~~~~=c====~======c=====~ 
--e-- 290 rpm; approach speed: U= 2.5 m/s 'E 

~ 
• 30 

i 
-:...; 20 

t 
15. 

~ 
£ 

-t- 232 rpm; approach speed: U= 2 m/s 

- --+-- 174 rpm; approach speed: U= 1.5 m/s 

------o-- 120 rpm; approach speed: U= 1 mls 

I I I 
-,--- -- ~----- ~---- - -

1 I 
I I 

.J----- ..J-- -- - ....J---- - _, 
I I 
I I 

I I - - - - - .., - - - - - ..., - - - - - _, 
I 

I ~o t-----+-----+-----~ 
I 
I 
I 
I 

l I 

~ ~0 '------ ~ -----~-----~-

~ 
E 
~ -30 r - - - - - T - - - - - .,. - - - - - , - - - - - .., - - - - - ..., - - - - - -, 

I I I 
Qj I 

z -40 !. -- -- _ J_--- _l_- - -- J- - -- - -1 -.---~-~&:l~Ht-e-fr.:e::$ 

-15 -10 -5 10 15 

Planes de~ection angle, 6 [deg) 

Fig. 5.39 Steady net yaw moment produced by the stern-planes of MUN Explorer during 

turning manoeuvres 

Hence, in the vicinity of zero 8 where the variation of forces and moments as shown in 

F igs. 5.36 to 5.39 are linear, if the first three values for the non-dimensional derivatives 
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in the second part of Table 5.4, i.e. at o of I, 2 and 3 deg, are averaged it indicates that: 

Y~ = -40.6 * 10-3
, N; = -10.6 * 10-3

, Y8 = 6.18 * 10-3
, NJs = -1.79 * 10-3

. Also it 

is reminded that using the data in Fig. 2.10 for the bare hull with LDR 8.5 it was 

estimated that: Y~ = -36.9 * 10-3 which is close to the value -40.6 * 10-3 that is 

derived above; the difference is because for the MUN Explorer AUV, the LDR is about 

6.5 that is a less slender hull thus has a non-dimensional derivative of about 1.1 times 

larger. Also using the static yaw test results for LD R 8.5 in Fig. 2. 11 it was previously 

estimated that: N~ = -11.7 * 10- 3 . If this derivative is also scaled by 1.1 then for the 

MUN Explorer it is N~ = -12.8 * 10-3 . The only remaining parameter to solve the 

radius of turn and drift angle in (5-39) and (5-40) is v;. 

According the experimental and theoretical data for the non-dimensional derivatives for 

the surface ships, with propellers and rudders and some without those, that were 

presented by Mandel [PNA, 1967, pp. 526-540], Y; has a positive sign (which means that 

the effect of stern is dominant, that is: when the vehicle turns in positive yaw direction a 

positive sway force is exerted on the stern and a negative sway force is exerted on the 

bow, sum of which gives the total sway force on the hull ; thus positive v; means that the 

effect of stern dominates) and its average magnitude varies about 4 to 7 times smaller 

than Y~. However, an underwater vehicle compared to a surface ship is more symmetrical 

about yz-plane therefore may have a smaller cross-coupled derivative v;. If v; is assumed 

between 7 to 10 times smaller than Y~ , and all the non-dimensional derivates as were 

calculated before are substituted in (5-39) and (5-40) the resulting curves compared to the 

simulation results for the radius of turn and drift angle are shown in Figs. 5.40 and 5.41 . 
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The values for derivatives are summarized within the plots; four different theoretical 

curves correspond to IY;;v;l = 7, 8, 9 and 10, with all other derivatives as were 

calculated above Y; = -40.6 * 10-3 , N; = -10.6 * 10-3
, N~ = -12.8 * 10-3

, Y8 = 

6.18 * 10-3 , N{s = -1.79 * 10-3 . The rational curve-fit in (5-38) is also shown in Fig. 

5.40. Note that the minus signs in (5-39) and (5-40) mean that the average plane 

deflection angles for a starboard turn should be negative (that is: leading edge deflects to 

port). In this simulation for a starboard turn, planes number 3 and 6 are negative and 

planes number 4 and 5 are positive (Fig. 5.8). There is a good agreement between the 

simulation results and the theoretical curves. Non-dimensional radius of turn at IY;;v;l = 

10, that is: v; = 4.1 * 10-3, is the closest to the simulation data. 

Finally, note that the numerator in brackets on the right hand side of (5-39) indicates the 

directional stability ofthe vehicle. According to PNA [1967, page 475, equation (13m)], 

the vehicle is directionally stable if: 

Y:'(N'- m'x')- N'(Y:'- m') > 0 v r G v r · (5-44) 

Substituting the above calculated values for the hydrodynamic derivatives v; = -40.6 * 

dimensional mass equal tom' = 0.031 and x~ = 0, it follows that: 

v;(N;- m'x~)- N~(Y;- m') = 8.6 *lo-s> 0. (5-45) 

Therefore the vehicle is directionally stable. 
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5.8 Summary 

In summary the following remarks are made: 

1- Regression models for the hydrodynamic coefficients of the bare hull of a 

torpedo-shaped underwater vehicle that were developed in chapter 2, using the 

fixed-attitude test results, were usefully embedded within a simulation code to 

predict the manoeuvring behaviour of the MUN Explorer AUV. 

2- Planar manoeuvres of the MUN Explorer A UV were studied; therefore, the stern

planes which are in an X-configuration were modeled to produce the required 

sway force and yawing moment for such constant-depth manoeuvres. 

3- The propeller thrust force was modeled using the test results from straight-line 

sea-trials. Using the Wageningen B-series curves for the thrust coefficient 

produced slightly larger thrust force compared to the thrust force model based on 

the test results, however the model based on the test results was chosen for 

propulsion. 

4- The simulation code could predict the full-scale experimental turning manoeuvres 

with a relative error of about 25% in the radius of turn compared to the test results 

for 1 0 turning circle sea-trials. 

5- The simulation code was then calibrated within 5% relative error in the radius of 

turn compared to the test results, by changing the longitudinal location of the 

center of gravity (CG). The initial estimate for the longitudinal location of the CG 

was about 8 em aft of the vehicle mid-length, which was then moved 8 em 

forward so that to predict the radius of turn within 5% relative error. 

182 



6- The calibrated simulation code was then used to simulate turning manoeuvres for 

various approach speeds and various deflection angles of the stern-planes. It was 

observed that: i) radius of turn, drift angle and the speed reduction ratio (ratio of 

the forward speed of the vehicle within a steady turn to its approach speed) are 

independent of the approach speed, ii) the radius of turn has an inverse relation to 

the planes' deflection angle, iii) rate of turn is faster at higher approach speeds 

and higher deflection angles, iv) drift angle during a starboard turn is positive 

which means that the vehicle heading is inside the circle while it is turning; drift 

angle is larger at larger deflection angles, v) speed reduction ratio increases 

asymptotically to unity at higher radius of turns, i.e.: smaller deflection angles, vi) 

speed reduction during a turn is larger for more slender bodies, that is: bodies of 

smaller block coefficient. 

7- The time-histories of path, velocity, acceleration and forces that are experienced 

by MUN Explorer during turning manoeuvres were also demonstrated. At larger 

deflection angles of stern-planes non-linear patterns in those signals are clearly 

observable. 

8- The simulation code was finally checked with theoretical formulae for the radius 

of turn and drift angle based on the linearized equations of motion. Using the 

steady values for the sway force and yaw moment that were recorded for the bare 

hull and the stern-planes during the turns, non-dimensional force and moment 

derivatives were calculated and it was observed that the theoretical formulae 
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produced similar results for the radius of turn and drift angle as the simulation 

code. 

The major restriction of the present simulation code is that it was modeled for the planar 

manoeuvres. To model the two bow-planes as active controllers which mainly affect the 

pitching and rolling behaviour of the vehicle, introduces a higher level of complexity into 

the simulation code. 
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CHAPTER6 

PRESSURE MEASUREMENT EXPERIMENTS ON AN 

UNDERWATER VEHICLE 

6.1 Introduction 

From 1929 to 1932, a series of very extensive and valuable experiments were performed 

in the wind tunnel ofthe U.S. National Advisory Committee for Aeronautics (NACA) on 

some airship models, including a 1/40-scale model ofthe U.S. Airship "Akron". One set 

of experiments, [Freeman 1932a], on the Akron airship was designed to determine the 

drag force, lift force and pitching moment on the bare hull and hull with appendages. In 

another set of experiments, [Freeman 1932b], a 1/40-scale model of the ZRS-4 airship 

was used to study pressure distributions. The Akron airship model had a length of 5.98 m 

(19.62 ft) and had a maximum diameter of 1 m (3.32 ft); therefore the model had a 

length-to-diameter ratio (LDR) of 5.9. Pressure data were recorded for a nominal air 

speed of 100 mph equivalent to 44.7 m/s in the 20-foot (6 metres) propeller-research 

wind tunnel of the National Advisory Committee for Aeronautics and were completed in 

July 1931 [Freeman 1932b]. 

This chapter is an introduction on how to use this re-analysis of the old experiment data 

to plan pressure-measurement experiments on an underwater vehicle. Up-to-date 

numerical methods and tools were used to re-analyze the data from the "Akron" pressure 

experiment. The data extracted from NACA report No. 443 included the geometrical 

shape of the bare hull and the variation of the pressures measured on the surface of the 
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bare hull at about 400 locations and at eight pitch angles. The geometric data includes the 

shape of the bare hull , that is, the variation of the hull radius over its length. The pressure 

data included the ratio pjq0 , where p is the dynamic pressure measured at each orifice, 

and q0 is the dynamic pressure ofthe free stream: 

qo = lfzpUz (6-1) 

where p is the air mass density and U is the free stream velocity. 

In this study, in order to integrate the measured normal pressures over the surface of the 

bare hull of the airship, it was meshed by panels. Normal pressure integration results in 

the pressure drag only, however about 80 percent of the drag force is due to the viscous 

effects. Viscous properties of the flow from another set of experiments on the I /40-scale 

model of the airship Akron were observed and reported [Freeman 1932c]. 

6.2 Fitting curves to the experimental data 

6.2.1 Airship geometry and arrangement of the orifices 

About 400 pressure orifices, distributed longitudinally over 26 transverse stations, on the 

port half of each station simultaneously recorded the local pressure on the airship hull 

both with and without control surfaces fitted to the model. Eight angles of pitch 8 of the 

bare hull of 0, 3, 6, 9, 12, 15, 18 and 20 degrees and two air speeds of about 70 and 100 

mph (31.3 and 44.7 m/s) were used. In these experiments the model angle of attack was 

restricted to variations of the pitch angle only; the effects of changes in yaw or roll 

attitude were not investigated. Table 6.1 and Fig. 6.1 show the location of stations along 

the airship model, and Fig. 6.2 shows the location of the orifices around each station. 
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Table 6.1 Measurement stations and their axial location 

Station No. I 2 3 4 5 6 7 8 9 

Axial location [ m] 0 0.035 0.087 0.143 0.22 1 0.306 0.454 0.662 0 .913 

xfl 0 0.006 0.015 0 .024 0.037 0.051 0.076 0.111 0.153 

Contd. 10 II 12 13 14 15 16 17 

1.189 1.480 1.838 2.244 2.704 3.211 3.719 4.232 

0.199 0.248 0.307 0.375 0.452 0.537 0.622 0.708 

Con! d. 18 19 20 21 22 23 24 25 26 

4.536 4.775 5.035 5.187 5.372 5.533 5.676 5.819 5.918 

0.759 0.798 0.842 0.867 0.898 0.925 0.949 0.973 0 .990 
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Fig. 6.2 Angular position of the orifices at different transverse stations; all views looking aftward (locations marked "X" are orifices to check 

the flow symmetry): (a) Stations 2, 3, 4, 6, 10, 14 and 16; (b) stations 5, 7, 9, 11 , 13, I 5 and 17; (c) stations 8 and 12; (d) Stations 18 to 21 

inclusive; (e) stations 22 to 26 inclusive !reproduced from Freeman 1932bl 
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The different front views shown in Fig. 6.2 are due to the different arrangement of the 

orifices at different stations. Some stations in each group include the orifices marked "X" 

so as to check for the equality of pressures on the port and starboard sides. The orifices 

were 0.8 mm (1 /32 inch) in diameter. 

6.2.2 Fitting curves to the data around each station 

As mentioned p / q0 the ratio of dynamic pressure measured at each orifice to the dynamic 

pressure of the free stream was the main measured data in the "Akron" tests. Fig. 6.3 (a) 

to (c) show the variation ofthe recorded data pfq0 versus angular position of the orifices, 

namely the azimuth angle w for stations number 8, 14 (mid-body), and 25 (in the stern). 

The azimuth angle varies from zero at the airship keel, to 180 degrees at the airship top

line. Measured data are marked according to the legend for different pitch angles. The 

curves fitted are all ofthe form: 

Fit= A+ B cos(w) + C [cos(w)]Z + D[cos(w)]3 (6-2) 

The fitted curves in Fig. 6.3(a) match the data very closely. The data in Fig. 6.3(b) show 

that at large pitch angles there are some discrepancies between the fitted curves and the 

experimental data. In Fig. 6.3(c) further back towards the stern where the level of flow 

turbulence is high, the fitted curves intersect each other and get somewhat disordered for 

larger pitch angles. However, this fitting equation has good correlation with the 

experimental data for all stations. Fig. 6.4 shows the average correlation coefficient for 

the fitted curves over eight pitch angles for stations 2 to 26. 
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Fig. 6.4 Average correlation coefficient for the fitted curves by equation (6-2) 

over eight pitch angles for each station 

Next the fitted curves were used to develop curves of the variation of pressure along 

generator lines along the surface of the hull. A generator line should be a smooth curve 
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along the hull showing the variation ofpjq0 . Having the coefficients of the fitted curves 

from equation (6-2) for stations 2 to 26 for eight pitch angles, fitted values of pI q0 could 

be calculated for any desired value of the circumferential angle. At this point, it had to be 

decided what angular increment Llw was desired. Fitted values of pfq0 for a pitch angle 

of 15 degrees and an azimuth angle of 180 degrees are shown in Fig. 6.5. Fitted values 

are marked by asterisks and experimental data by circles. 
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Fig. 6.5 Fitted values ofp/q0 along the hull compared to the 

Experimental data; 6 = 15° and w = 180° 

Experimental data were not available for every azimuth angle, e.g. for Llw = 5 deg and 

w = 45 deg no measurements were taken but still equation (6-2) fits values to pfq0 . 

Only for station number 1, that is at the airship nose, is the fitted value the same as the 

experimental data. Table 6.2 shows the experimental measurements at the airship nose, 

station number 1, for all pitch angles. The method of reporting the experimental data 

included subtraction of the static pressure which was measured at each station along the 
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centerline of the wind-tunnel without the model in the test section; see Fig. 6.6 and Table 

6.3. Thus the tabulated values for pfq0 were corrected for the effects of the longitud inal 

gradient of static pressure. The result is that the ratio pfq0 at the airship nose is unity at a 

pitch angle of zero as shown in Table 6.2. 

xjl 

Psfqo 

Table 6.2 Dynamic pressure measured at the airship nose for eight pitch angles 

Pitch angle [deg] 0 3 6 9 12 15 18 20 

pfqo 1.000 0.967 0.900 0.785 0.682 0.434 0.098 -0. 132 

Table 6.3 Static pressure distribution along the longitudinal centreline of the 

test section in the absence of the airship 
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Fig. 6.6 Variation of the static pressure in the test section 

without the model present 
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6.2.3 Fitting 9th order polynomials to the pressure data along the airship hull 

Now smooth generator curves can be fitted to the discrete fitted values that were obtained 

at each station by fitting equation (6-2) to the experiments data; these points are shown 

by asterisks in Fig. 6.5. Polynomials of 9th order were used to fit the values of pjq0 , 

which were themselves fitted values to the experimental data. The 9th order polynomial 

fit is the final pressure generator equation to be used for integration15
• The polynomial 

curve itself is a discrete series of values fitted over the longitudinal coordinate x by an 

increment of Llx. For example, the polynomial representation is shown in Fig. 6.7 for a 

pitch angle of zero and azimuth angle of 90 degrees, and in Fig. 6.8 for a pitch angle of 

15 degrees and azimuth angle 180 degrees. Note that due to the high order of the 

polynomial, care must be taken not to use this to predict pressures outside of the range of 

the input data. 
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Fig. 6.7 Polynomials of91
h order (solid line) fitted to the p j q0 values (asterisks) 

Fitted by equation (6-2); 8 = 0° and w = 90° 

15 These curve-fit coefficients are available from the author upon request. 
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Fig. 6.8 Polynomials of 91
h order (solid line) fitted to the p / q0 values (asterisks) 

Fitted by equation (6-2); (J = 15° and w = 180° 

6.2.4 Geometry of the panels 

The angular increment from which the generator curves were produced, determines the 

size of one side of the surface panels, and the increment Llx by which the polynomial 

curve was defined, determines the size of the other side of the panels. Thus one side is of 

dimension r · Llw, where r is the radius ofthe hull cross-section, and, the second side is of 

dimension Llxf cos(cp) , where cp is the angle between the tangent line to the surface of 

the hull and the longitudinal axis. The meshed surface obtained using the surface-panel 

method is shown in Fig. 6.9. A tangent to the meshed surface at the bow end should have 

a 90 degree slope, whereas a curve fitted to the as-constructed shape has a s lope of about 

0.9 radian (52°) at the bow end. Fig. 6.9 shows the 30 view of the meshed airship for 

longitudinal increment of 0.1 m and angular increment of 10°. In this study the x-axis is 

positive toward the stern, the y-axis is positive to starboard and the z-axis is positive 
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upward; these axes do not follow the SNAME convention for underwater vehicles 

[SNAME 1950). 

In summary, the area of each panel is derived as 

L1A = (L1xf cos(<p)) · (r · L1w) 

where <p = <p(x) and r = r(x) hence: 

L1A = L1A(x) 

(6-3) 

(6-4) 

According to equation (6-4) the panel size depends only on the longitudinal distance from 

the airship nose. In equation (6-3), the longitudinal side of each panel, L1x/ cos(<p) , is 

approximated as a straight line; hence, the error in calculating L1A increases as the 

incremental value of L1x increases, but the incremental value of L1w does not affect the 

surface area value, because r · L1w is the exact arc length of the lateral side of each panel. 

z[m] 

-0.5 0 

Fig. 6.9 Isometric view of the "Akron" airship hull meshed according to 

..1w = 10 deg and ..1x = 0. 1 m 
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-------------

6.3 Pressure surface illustration 

The pressure data can be illustrated by surfaces as in Figs. 6.10 and 6.11 on axes of 

azimuth angle w and the longitudinal distance from the airship nose x. Fig. 6.10 is the 

pressure surface for a pitch angle of nine degrees and Fig. 6.11 is the pressure surface for 

a pitch angle of20 deg. The magnitude of the maximum and minimum pressures for pitch 

angles nine and 20 degrees are shown within the plots. There is not a significant change 

in maximum pressure between these two pitch angles, however the minimum pressure is 

considerably lower (larger vacuum) for the larger pitch angle. 

In this re-analysis, the dry air density was assumed to be 1.168 kg/m3 for a tern perature of 

25 co and barometric pressure of I 00 kPa, hence for the air speed of I 00 mph the free 

stream dynamic pressure is: 

q0 = ~pU2 = ~ * 1.168 * (100 * 0.44704)2 = 1167 (6-5) 
2 2 

The maximum pressure for zero pitch angle is exactly equal to the dynamic pressure in 

equation (6-5) and for the other pitch angles it is close to that value. Table 6.4 shows the 

maximum and minimum pressures for the eight different pitch angles tested. The 

longitudinal location and azimuth angle of the minimum and maximum pressures are 

included in Table 6.4; however, the pressure surface interpolation is not accurate up to 

three decimals as is shown for the maximum pressure location. Pressure contours give a 

better illustration of the pressure variation along and around the airship hull. Fig. 6.12(a) 

shows the pressure contours on axes of azimuth angle and the longitudinal distance from 

the airship nose for a pitch angle of 15 degrees. 
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Fig. 6.10 Pressure distribution over the bare hull of 

The "Akron" airship for a pitch angle of 9 deg 

Fig. 6.11 Pressure distribution over the bare hull of 

The "Akron" airship for a pitch angle of20 deg 
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Table 6.4 Maximum and minimum pressures for different pitch angles for the Akron model at a 

windspeed of 44.7 m/s 

Pitch angle [deg] 0 3 6 9 12 15 18 20 

Max pressure [N/m2
] 1167 11 29 1109 1127 1132 11 38 1132 1136 

w for max [ deg] - 0 0 0 0 0 0 0 

xfl for max 0 0.004 0.005 0.006 0.007 0.008 0.01 0.013 

Min pressure [N/m2
] -187 -247 -291 -351 -387 -451 -559 -637 

w for min [deg] - 170 160 150 140 130 120 115 

xfl for min 0.12 0.12 0.12 0.11 0.11 0.11 0.1 0.1 
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Fig. 6.12(a) Pressure contours over the bare hull of the Akron airship for a pitch angle of 15 deg 

In Fig. 6.12(a), the high-pressure zone at the airship nose is magnified and shown in Fig. 

6.12(b ). The highest-pressure contour, shown in the zoom-in, is 1120 Pa, and the 

maximum pressure for the pitch angle of 15 degrees, according to Table 6.4, is 1138 Pa 

which should be a point inside the contour of 1120 Pa. 
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Fig. 6.12(b) Magnified region near the nose for a pitch angle of 15 deg 

The pressure distribution over the bare hull of an underwater vehicle should have the 

same pattern and same variation with pitch or yaw angle as for the airship for the same 

hull shape (if it is a body of revolution the effect of pitch and yaw attitude changes are the 

same). The pressures for an underwater vehicle that is towed at a speed of 3 m/s in fresh 

water are scaled relative to the "Akron" airship surface pressures according to: 

Underwater vehicle normal stresses/ Airship normal stresses= 

Therefore the maximum and minimum pressures occurring on the surface of the hull of 

an underwater vehicle (which has the same shape as the "Akron" airship) at a towing 

speed of 3 m/s are roughly four times the values in Table 6.4. 

6.4 Pressure integration over the 3D meshed model 

The fitted pressures were integrated over the meshed surface of the hull. For an arbitrary 

circumferential angle along the airship the differential normal force on each panel is : 
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LlF(x,w) = (p/q0 ) · LlA(x) · q0 (6-7) 

The first term in parentheses on the RHS of equation (6-7) is read from the polynomials 

of 91
h order. The elemental force resulting from equation (6-7) is perpendicular to the 

panel and should be projected in the directions parallel and perpendicular to the 

longitudinal axis of the hull. This is illustrated in Fig. 6.13(a); therefore, the radial and 

axial components ofthe differential force are as follows: 

LlFx = LlF · sin(cp) (6-8) 

LlFr = LlF · cos(cp) (6-9) 

The component of force in the radial direction LlFr should be projected into the lateral and 

vertical directions, as illustrated in Fig. 6.13(b). Hence, using equation (6-9) results in: 

LlFy = LlFr · sin(w) = LlF(x,w) · cos(cp) · sin(w) 

LlFz = LlFr · cos(w) = LlF(x, w) · cos(cp) · cos(w) 

LlF\ LlF.r -_cp z 

X 

CB 

(b) 

(6-1 0) 

(6-11) 

Fig. 6.13 Arbitrary elemental forces illustrated in: (a) side-view and (b) front view looking 

aftward (x-axis goes into the sheet) 
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Equation (6-8) gives the elemental axial force; the integration of L1Fx(x, w) over both L1x 

and L1w will give the total axial force acting on the hull, which is expected to be zero for 

a pitch angle of zero. Equation (6-1 0) gives the elemental lateral force; the integration of 

L1Fy(x, w) over both L1x and L1w will give the total lateral force acting on the hull , which 

is expected to be zero for any pitch angle as long as the yaw angle is zero, since the flow 

is assumed to be symmetric on the port and starboard sides. Equation (6-11) gives the 

elemental normal force; the integration of L1Fz(X, w) over both L1x and L1w will give the 

total normal force acting on the hull, which is expected to be zero for a pitch angle of 

zero. 

As illustrated in Fig. 6.14, relations between the axial and normal forces which give the 

drag and lift forces for a pitch angle of(} are: 

D = Fx ·cos((})+ f'z · sin(8) 

L = Fz ·cos((}) - Fx · sin(8) 

(6-12) 

(6- 13) 

The pitching moment was calculated about the centre of buoyancy (CB). The differential 

force on each panel creates a moment; the axial component of the differential force has a 

moment arm equal to: 

dx = r · cos(w) 

and the vertical component ofthe differential force has a moment arm equal to: 

dz =Xes- x 

(6-14) 

(6- 15) 

where the longitudinal location of the CB, according to [Freeman 1932b] 1s: Xes = 

0.464 * l = 2.77 m. The differential moment due to one panel is: 

(6- 16) 
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Note that the directions of the positive axes are required to interpret the minus sign in 

(6-16). The circumferential angle w is zero at the keel and positive counterclockwise in a 

front view when looking aftward. 

Fig. 6.14 Axial and normal forces and drag and lift forces illustrated 

Figs. 6.15 to 6.19, respectively, show the axial force Fx (positive aftward), normal force 

(positive away from the keel), drag force (positive downwind), lift force (positive 

upward), and pitching moment (positive nose upward). Each figure has been plotted for 

several mesh-sizes with the smallest and largest increments for Llx and Llw of 

respectively: 0.01 and 0.2 m, and 1 and 30 degrees. The mesh-size (Llx, Llw) of (0.0 1 m, 

1 deg) is an extremely fine mesh for a hull which is almost 6 m long. For the axial force, 

normal force and pitching moment the reported results from [Freeman 1932b] are also 

shown with square markers. For the axial force Fx the NACA reported result found from 

a 20 integration has large errors compared to the 3D panel method used here. In the 

NACA report, no values were reported for pitch angles of 18 and 20 degrees; interpolated 

results are now available for these two pitch angles. The integrated values for the axial 

force with fine mesh sizes for a zero pitch angle converge to a value of 6.5 [N]. This axial 

force is the pressure-drag as can be observed in Fig. 6.17 for pitch angle of zero. Up to a 
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pitch angle of 15 deg the axial force is about the same value; however, decreases from 

there to negative values for the larger pitch angles. For the pitch angle of 20 degrees the 

integrated axial force is about-16.5 [N]. 

Except for the axial force results, the other forces resulting from the 3D fine mesh size 

integration approach the reported NACA results, even though the latter used the 

relatively simple 20 integration methods. As can be observed, there are large differences 

between the computed forces and moments for the fine mesh size with (L1x, L1w) of 

[0.01 m, 1 deg], and for the coarse mesh size with (L1x,L1w) of[0.2 m, 30 deg]. 
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6.5 Pressure measurements on a manoeuvring underwater vehicle 

In this study of the hydrodynamics of Autonomous Underwater Vehicles (AUVs), 

employing mostly experimental methods, a method to extract the dependence of the 

hydrodynamic loads on the vehicle characteristics and the manoeuvring parameters is 
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desired. In addition to the fixed-attitude manoeuvres as in the "Akron" experiments, 

variable-attitude manoeuvres with underwater vehicles including high-amplitude, high

rate manoeuvres, such as those which occur during obstacle avoidance, have to be 

performed. Measurements of the overall hydrodynamic loads with an internal balance 

have already been performed. and some results were presented in chapters: two to four. 

The main motivations for pressure measurements are: 

1) To know the pressure distribution over the underwater vehicle. Pressure 

distribution information will result in knowledge ofthe locations ofthe maximum 

and minimum pressures, the pressure gradients, and locations of flow separation. 

2) To evaluate the hydrodynamic loads by integrating the pressures. Pressure 

transducers only measure the normal pressure; therefore, the viscous effect that 

results from the shearing stresses is not taken into account in the integration. The 

differences between the hydrodynamic loads resulting from direct load 

measurement and from pressure tests will clarify the contribution of viscous 

shearing effects. Note that there is a viscous pressure axial force as was shown in 

Fig. 6.15. 

The first stages in these measurements are the straight-line towing and static yaw tests, 

which are very similar to the "Akron" tests. One major difference is that the airship was 

tested in a wind tunnel with the fluid passing over it; however, in these tests it will be 

necessary to tow the vehicle through stationary fluid. 
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6.6 Summary 

For the study of AUVs (Autonomous Underwater Vehicles) at the NRC-lOT (Institute for 

Ocean Technology, National Research Council, Canada) pressure measurements over the 

bare hull of an AUV model towed with a variable attitude apparatus (Planar Motion 

Mechanism) in the calm towing tank water is recommended . To approximate the 

distribution and magnitude of pressures over the bare hull of an AUV and the resulting 

forces and moment, the best available resource is the pressure data from the US airship 

"Akron" tested by the NACA in 1932. 

A re-analys is ofthe Akron pressure data utiliz ing modern numerical tools concluded: 

a- Plots of pressure distribution versus the azimuth angle and the longitudinal 

distance from the airship nose. Hence, one can know where the maximum and 

minimum pressures occur for each pitch angle. Also these data will be useful 

for those people who wish to validate their CFD predictions using 

experimental results. 

b- Drag and lift forces and pitching moment show nonlinear variations versus 

pitch angle resulting from the measured normal stresses. This can be 

compared to the total forces and moment including shear stresses. 

With this basic knowledge the design of the pressure-measurement experiments for an 

AUV is recommended. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

In this research, the main goal was to find the correct form of the physically-based 

expressions for the hydrodynamic loads that are exerted on completely-submerged 

underwater vehicles during various manoeuvres. It was noted that for high-amplitude, 

high-rate manoeuvres, first-order Taylor-series expansion is insufficient to capture the 

higher-order non-linear dependence of the loads on the flow angle and the vehicle turning 

rate. Therefore, experiments to measure the hydrodynamic loads that are exerted on the 

bare hull of a slender torpedo-shaped underwater vehicle during manoeuvres with large 

angles of attack and large rates of turn were performed. 

The fixed-attitude (resistance and static yaw) test results were analyzed and regression 

models for drag, lift and moment coefficients of the bare hull were obtained versus the 

experiment factors: bare hull length-to-diameter ratio (LDR), forward speed and yaw 

angle. These regression models were later embedded within a simulation code to predict 

the manoeuvring behaviour of the MUN Explorer AUV. Also, the concept of statistical 

design of experiment was introduced and its possible application to design experiments 

for the study of underwater vehicle hydrodynamics was discussed. 

The variable-attitude pure sway tests were also performed on the five bare hull 

configurations. To model the sway force that is exerted on the bare hull of a slender 

underwater vehicle during lateral accelerations, the recorded test data were decomposed 

into an inertial and a damping force component. Study of the inertial force component, 

revealed that the apparent mass of the submerged body depends on the manoeuvring 
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frequency and amplitude; although, the magnitude of the apparent mass during lateral 

acceleration manoeuvres is conventionally, in a potential flow, assumed to depend only 

on the body geometry. Moreover, a study of the apparent drift angle and the resulting 

apparent drag and lift forces, that are exerted on the bare hull models during these pure 

sway manoeuvres, revealed that the resultant lateral force due to the apparent drag and 

lift forces does not notably vary with the manoeuvring frequency; hence, the variation of 

the recorded sway force over manoeuvring frequency is due to the added mass 

phenomena. Eventually, using the conventional approach to find the hydrodynamic 

derivatives showed that again there is a difference between the resulting values for the 

same derivatives obtained from the static and dynamic tests. 

Pure yaw tests were also performed on the same bare hull configurations and the test 

results, which all had sway amplitude to cycle period ratio of AfT ~ 0.08 [m/s], thus 

fulfilled the requirement of rapid turning manoeuvres, were reported. First, observations 

on the magnitude and phase of the hydrodynamic loads: sway force and yaw moment as 

well as their instantaneous variation during these pure yaw manoeuvres were reported, 

and then response surface models were constructed to capture the test results. A sample 

application of these models to predict the required deflection angle of the control planes 

to perform a zigzag manoeuvre with the MUN Explorer AUV was illustrated. Finally, the 

conventional hydrodynamic yaw coefficients were obtained using these test results . It 

was observed that the lateral force derivative with respect to the rate of turn and the yaw 

moment derivative with respect to the angular acceleration of the model are significantly 

large during a pure yaw manoeuvre. 
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Next, a simulation code to predict the manoeuvring behaviour of the MUN Explorer 

AUV was developed. The empirical formulae for the drag, lift and moment coefficients 

for the slender torpedo-shaped bare hull of an underwater vehicle, were used in the 

simulation code. Stern-planes of MUN Explorer which are in an X-configuration were 

modeled as the active actuators to navigate the vehicle in a constant-depth planar 

manoeuvre. The propeller thrust force was modeled using the test results from straight

line sea-trials. Simulation results for turning manoeuvres clearly proved that at higher 

stern-plane deflection angles which result in higher sway velocity and higher rate of turn, 

the hydrodynamic loads have non-linear variation. 

Finally, an initial step towards the aim of performing pressure measurement experiments 

over the surface of an underwater vehicle was presented. The integration code that was 

developed to predict the axial and normal forces and the turning moment due to the 

normal pressures can be used for future test data from underwater pressure measurement 

experiments. Also, this re-analysis of the old airship data provided an estimate of the 

magnitude of the normal pressures that may be experienced by an underwater vehicle 

during manoeuvres; therefore, the required test apparatus can be either designed or 

purchased. 
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In summary, the following items are recommended for future research: 

I. To perform a statistically designed set of tests for lateral acceleration manoeuvres 

(as was proposed in Table 3.2 on page 61 ). 

2. To develop a numerical simulation code with its bare hull hydrodynamics based 

on the empirical formulae for high-amplitude high-rate-of-turn manoeuvres, 

which is then capable of simulating abrupt high-rate-of-turn manoeuvres. 

3. To measure the pressure distribution on the bare hull of an axisymmetric 

underwater vehicle during both static and dynamic captive tests. The pressure test 

results will provide new information for the hydrodynamics of underwater 

vehicles. 
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Appendix A: Uncertainty study for the simulation code 

A.l Introduction 

The sources of uncertainty in a numerical simulation were named as follow by Barth 

[2008] : 

1. Geometric uncertainty: to check if the geometry is exactly known. 

2. Initial and boundary data uncertainty: to check if the initial or boundary 

conditions are precisely known. 

3. Structural uncertainty: to check if the physics is modeled correctly with the 

equations, e.g. in: turbulence models, combustion models or in the present study 

the equations of motion. 

4. Parametric uncertainty: to check ifthe parameters ofthe model were measured or 

estimated accurately, e.g. in the present study: the mass and moment of inertia of 

the underwater vehicle. 

The first two sources are not applicable to the present study; those are in fact more related 

to CFD (Computational Fluid Dynamics) studies where the fluid field geometry should 

be defined and meshed and initial/ boundary conditions should be set. The third source is 

assumed to be I 00% certain in the present study; that is, the equations of motion were 

written in their original form which provides the exact state of the vehicle ' s motion in the 

x-y plane. Therefore, the only source of uncertainty is the uncertainty in the model 

parameters. In the following, a study of the effect of uncertainty in the model parameters 

on the simulation response is presented. The approach was to vary the model parameters: 

the mass and moment of inertia of the vehicle within a confidence interval e.g. ± l 0% and 
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run the simulation code for turning manoeuvres at several deflection angles of the stern

planes to observe the variation in the manoeuvre outputs such as: radius of turn, drift 

angle, speed reduction and the steady values of the loads. Thus, the presented uncertainty 

study is only for the turning manoeuvres which were all preformed at a propeller speed of 

290 rpm: 2.5 m/s approach speed and at average stern-plane deflection angles of I, 3, 6, 

9, 12, 14 and 16 degrees. 

A.2 Uncertainty in the model mass 

In chapter 5, the vehicle mass (dry mass of the vehicle plus floodwater mass) was 

estimated 1445 kg. If this value is ±I 0% uncertain then the resulting uncertainty for the 

radius of turn, drift angle, speed reduction ratio and sway force and yaw moment that are 

exerted on the bare hull are presented in Table A.1. The uncertainty is defined as the 

relative error in the simulation response if the vehicle mass is ±l 0% uncertain; e.g. the 

uncertainty in the radius ofturn is: 

UR,{m}±lO% = 100 * (R- R{m}.±lo%)/R (A-I) 

Similarly, the uncertainty in the simulation response for e.g. the steady drift angle during 

a turn due to uncertainty in the vehicle mass is denoted by 

Up,{m}±lO%• and so on. Comparing the second and third parts of Table A .l it is observed 

that the effect of± 10% uncertainty in the vehicle mass is not symmetric on the simulation 

response. In either case: mass underestimated or overestimated, the errors in simulation 

response are mostly within a I 0% range. 
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Table A.1 Uncertainty in the steady values of turning manoeuvres due to ±10% uncertainty in the 

mass of the vehicle; approach speed 2.5 m/s 

Simulation response for the 
originally estimated vehicle 
mass of 1445 kg: 

If the vehicle mass 
was originally 10% 
overestimated then 
the percentage 
errors are: 

If the vehicle mass 
was originally 10% 
underestimated then 
the percentage 
errors are: 

/j 

[deg] 

1 

3 

6 

9 

12 

14 

16 

/j 

[deg] 

1 

3 

6 

9 

12 
14 
16 

/j 

[deg] 
R [m] 

I 131.1 

3 42.26 

6 18.79 

9 10.50 

12 6.64 

14 5.19 

16 4.25 

UR,(m }-10% Up,(m}-10% 

4.9 3.1 

4.9 4.3 

3.4 4.8 

0.6 5.5 

-1.0 5.9 

-1.7 5.9 
-1.2 5.8 

UR,[m)+lO% Up,[m)+lO% 

-5.5 -4.6 

-4.6 -3.8 

-3.2 -5.0 

-1.0 -5.2 

1.6 -6.0 

2.2 -5.7 

2.8 -5.5 

{J Uturn/ Fy,hull 

[deg] Uapproach [N] 

1.3 0.99 65.6 

4.0 0.88 161.6 

8.0 0.67 204.0 

12.2 0.49 193.7 

16.1 0.38 176.1 

18.5 0.33 166.6 

20.5 0.30 159.1 

U speed reduction, 
U Fy.[m )-10% 

(m )-10% 

-0.2 3.9 

-0.9 3.0 

-1.5 1.3 

-1.8 0.1 

-1.3 -0.6 

-0.9 -0.7 

1.0 -0.6 

U speed reduction, 
UFy .[m )+lO% 

(m)+10% 

-0.2 -3.5 

1.1 -2.6 

3.9 -1.0 

5.5 0.1 

9.2 0.7 

11.2 0.8 

11.9 0.8 

M z,hull 

[N.m] 

-123.7 

-294.2 

-331.1 

-262.0 

-191.0 

-156.0 

-129.8 

U Mz,(m}-10% 

3.9 

2.7 

0.0 

-3.3 

-6.4 

-7.9 

-8.9 

U Mz,(m)+10% 

-3.4 

-2.3 

0.3 

3.5 

6.3 
7.5 
8.2 

Fig. A. I is the plot of radius of turn versus stern-planes average deflection angle with 

error-bars according to the data in Table A.l about the original simulation results. In 

order that the error-bars are observable only data above 6 deg deflection angle were 

shown in Fig. A. I 
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Fig. A.l Radius of turn with error-bars according to the data in Table A.l 

A.3 Uncertainty in the model moment of inertia 

Next, if the estimated value for the moment of inertia of the vehicle (moment of inertia of 

the dry vehicle plus that of the floodwater about an axis through the mid-length of the 

vehicle) which was 3319 kg.m2 has an uncertainty of ±I 0%, the uncertainty in simulation 

outputs during turning manoeuvres were studied. It was observed that the I 0% level 

uncertainty in the moment of inertia does not have an observable effect on the steady 

simulation response during the turning manoeuvres. However, the time-history of the 

response in sway and yaw directions are slightly different if the moment of inertia is 

± 10% uncertain. Fig. A.2 is the plot of time-history of the sway force that is produced by 

the stern-planes at an average deflection angle of 12 deg; it is observed that although the 

steady value of the force does not vary due to this level of uncertainty in the moment of 

inertia, the maximum and minimum values are different (see the peak region en larged in 

Fig. A.2). Table A.2 shows the uncertainty in the peak values of the sway force and 
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yawing moment that are exerted on the bare hull and produced by the stern-planes during 

turning manoeuvres due to ±I 0% uncertainty in the moment of inertia of the vehicle. 

These uncertainties are within 5% calculated by the same notation as in equation (A-I) 

and is denoted by Utoads,{Iz}±lO% 

80 

60 

40 

~ 20 
~ 

~ 
i 
"' 0 u. 

·20 

-40 

-60 
0 

. --Moment of inertia plus 10% uncertain 

{

', Moment of inertia originally 

- estimated 3319 [kg.m2] 
······ Moment of inertia minus 10% uncertain 

I --- - -- ·- -- ...... . 

150 
t(s] 

200 250 300 

Fig. A.2 Net sway force that is produced by the stern-planes during turning manoeuvres at an 

average deflection angle of 8 = 1Z deg; studying the effect of uncertainty in the moment of inertia 

Table A.2 Uncertainty in the peak values of hydrodynamic loads due to uncertainty in the moment of 

inertia of the vehicle 

Peak value 
lz -10% lz 1: +10% Uloads.(lz)+ 10% Uloads,(lz)-10% 

of: 

Fy.hull 478.9 [N] 474.8 [N] 470.6 [N] -0.9 0.9 

M z,hull -657.8 [N.m] -654.8 [N.m] -651.5 [N.m] -0.5 0.5 

Fy,planes -40.79 [N] -42.84 [N) -44.85 [N] 4.8 -4.7 

M z,planes 52.96 [N.m] 55 .64 [N.m] 58.24 [N.m] 4.8 -4.7 
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Appendix B: Contribution of the skin friction and form drag 

. h 1 . fi 16 m t e tota resistance orce 

From Allmendinger [1990, page 253], first equation 64 from the JTTC for the skin 

friction coefficient is: 

C1 = 0.075j{[log10(RN)- 2]2} 

And then equation 65 from Hoerner for the total resistance coefficient is stated as: 

Then the resistance force on the bare hull of the underwater vehicle is: 

R = ~p(WSA) · U2 
• Cc 

2 

(8-1) 

(8-2) 

(B-3) 

where WSA is the wetted surface area of the hull. For the five bare hull configurations 

the wetted surface areas were reported in Table 2.2 that were: 

WSA = [0.9511 1.0806 1.2100 1.3395 1.4690] m2
. (B-4) 

Then at forward speeds U of 1 to 4 m/s, using (B-1) to (B-4) in a water density of 1 000 

kg/m3
, the values in Table B. I are obtained for the five bare hull configurations. 

It is inferred from (8-2) that the contribution of the skin friction in the total resistance is 

measured by c1 , and the expression in brackets in (B-2) is the contribution of the form 

drag to the total resistance coefficient. Note that these two contributions are not additive 

but rather are multiplicative. The contribution of the skin friction in the total resistance is 

calculated as (C1/Cc)% which is shown in the second last column in Table B.l ; the rest 

16 This appendix was created mainly on the basis of an email sent by Dr. Chris Williams to the author. 
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of it is obviously the contribution of the form drag as shown in the last column in Table 

B. I. It is observed that more than 90% ofthe resistance force is due to the skin friction. 

Table B.l Resistance force calculated by the skin friction and form drag method 

u 
LDR RN * 10-6 c, Ct R [N] 

Skin Form 

[m/s] frict ion% drag% 

I 8.5 1.726 0.0042 0.0045 2. 13 93.3 6.7 

I 9.5 1.929 0.0041 0.0043 2.34 94.4 5.6 

I 10.5 2. 132 0.0040 0.0042 2.54 95.2 4.8 

I 11.5 2.335 0.0039 0.0041 2.75 95.9 4.1 

I 12.5 2.538 0.0039 0.0040 2.95 96.4 3.6 

2 8.5 3.451 0.0036 0.0039 7.43 93.3 6.7 

2 9.5 3.857 0.0036 0.0038 8.16 94.4 5.6 

2 10.5 4.263 0.0035 0.0037 8.89 95 .2 4.8 

2 11.5 4.669 0.0034 0.0036 9.61 95.9 4. 1 

2 12.5 5.075 0.0034 0.0035 10.33 96.4 3.6 

3 8.5 5.177 0.0034 0.0036 15.48 93.3 6.7 

3 9.5 5.786 0.0033 0.0035 17.04 94.4 5.6 

3 10.5 6.395 0.0032 0.0034 18.57 95.2 4.8 

3 11.5 7.004 0.0032 0.0033 20.09 95.9 4.1 

3 12.5 7.613 0.003 1 0.0033 21 .59 96.4 3.6 

4 8.5 6.902 0.0032 0.0034 26.12 93.3 6.7 

4 9.5 7.7 14 0.003 1 0.0033 28.76 94.4 5.6 

4 10.5 8.526 0.0031 0.0032 31.36 95.2 4.8 

4 11.5 9.338 0.0030 0.0032 33.94 95.9 4.1 

4 12.5 10.150 0.0030 0.0031 36.48 96.4 3.6 

The curves of resistance force for the five bare hulls are plotted in Fig. B.l using the 

calculated values in Table B.l column#8 based on the skin friction and form drag 

contributions. Also the measured test data for the axial force during the resistance runs 

are shown in Fig. B.l. It is observed that the estimated values using the skin friction and 

form drag in equation (B-3) are in closer agreement with the test data at lower forward 
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speeds, however at larger speeds the measured test data for the resistance force is larger 

than the estimated values by (B-3). 
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U = 3 m/s, test data 

'1 U = 4 m/s, test data 

Fig. 8.1 Comparison of the resistance force estimated using the skin friction and form drag with the 

test data for the five bare hull configurations at forward speeds of 1 to 4 m/s 

For the MUN Explorer with length 4.5 m and diameter 69 em, the LDR is 6.5 so using 

(B-2) it is concluded that the skin friction contributes c lose to 90% of the total resistance 

and the form drag contributes I 0%. Of course those estimates are valid only for: 

(i) the same Reynolds Number based on length, 

(ii) the same surface roughness on the Explorer as on the Phoenix models, and, 

(iii) it assumes that the Explorer has the same axisymmetric shape of the Phoenix 

models. 

So this prediction method for any other full-scale bare-hull axisymmetric shape can be 

used by: 
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(i) scaling the results by the ratio of the constants in equation (B-1) to represent 

the surface roughness on the vehicle, 

(ii) scaling to a longer or shorter vehicle using the appropriate WSA, and, 

(iii) scaling to a different LDR via the expression in the square brackets in (B-2). 

Also if the forward speed is different the Reynolds Numbers will be different at model

scale and full-scale so that scaling should be performed by using ratio of RN factors in 

(B-1). 
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