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Abstract

Support Vector Machine (SVM) based classifiers are most popular models for data

classification in machine learning. To obtain high classification accuracy, parameter

tuning methods such as cross-validation are often applied, which is however time-

consuming. To address this problem, a simple, efficient and parameter-free algorithm

is presented in this thesis. The algorithm is especially useful when dealing with

datasets in the presence of label noise. Grown out of one-class SVM, the presented

algorithm enjoys several distinct features: First, its decision boundary is learned based

on both positive and negative examples, whereas the original one-class SVM training

is only based on positive examples; Second, the internal parameters are self-tuned,

which makes the algorithm handy to use even for first-time users. Compared with the

benchmark method LIBSVM, the presented algorithm achieves comparable accuracy,

while consuming only a fraction of the processing time. Applications in computer

vision are presented to demonstrate the effectiveness of the algorithm.
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Chapter 1

Introduction

Data classification is a fundamental problem in machine learning and has been exten-

sively studied (e.g. [38], [53]). The problem is to identify which of a set of categories

a new observed example belongs to, based on a training set of data containing ex-

amples whose category membership is known. A data example is represented using

a feature vector which depicts the quantifiable properties of the example. Different

from testing data, a training example contains an extra class label. An algorithm for

data classification is known as a classifier, which maps testing data to a class.

Data classification can be thought of different problems across different terminolo-

gies. In the term of the class number, classification can be divided into two separate

problems - binary classification and multiclass classification. In binary classification,

only two classes are involved, whereas multiclass classification contains more than

two classes. Many efficient classification methods have been proposed for binary and

multiclass classification (e.g. [15], [20], [49], [40], [16], [52], [25]). In some methods,

multiclass classification is solved by combining multiple binary classifiers (e.g. [49],
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[40]).

In the term of machine learning, classification can be considered as an instance of

supervised learning, i.e. analyzing the completely labeled training data and producing

an inferred classifier, which can be used for mapping testing examples. An opposite

situation is the problem of unsupervised learning, where the examples given to the

learner are unlabeled and the learner is trying to find hidden structure in unlabeled

data. It is also known as clustering in machine learning. Semi-supervised learning

falls between supervised learning and unsupervised learning, where labeled data and

unlabeled data are both used for training - typically a small amount of labeled data

with a large amount of unlabeled data. The labeling process for generating train-

ing data is often expensive and time-consuming, requiring skilled human agents or

physical experiments, whereas obtaining unlabeled data is relatively inexpensive and

convenient. In such situations, semi-supervised learning is very useful and practical

and researchers in machine learning also found that unlabled data can greatly help

improve learning accuracy in some cases. Data classification may be solved in a semi-

supervised learning manner [10], where the classifier is trained with both labeled and

unlabeled data.

The algorithm presented in this thesis touch both supervised learning and semi-

supervised learning. First, the algorithm is applied to solve supervised learning based

multiclass classification in Chapter 4, where training examples are completely labeled.

Second, a computer vision application is developed in Chapter 5, which follows semi-

supervised learning. The algorithm is used for foreground segmentation and boundary

matting for live videos. Initially, sparse strokes are provided by users to indicate the

two classes: foreground and background. Then, the classifiers trained based on the
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strokes are used to label unlabeled neighboring pixels. These unlabeled pixels become

labeled ones, which is used for training with the labeled pixels in the next iterations.

Hence, the final labeling uses information of both labeled and unlabeled pixels.

The most widely used classifiers for data classification includes: support vector

machines, naive bayes classifier, multi-layer neural network, random decision trees,

etc. This thesis is based on support vector machine (SVM) classifier. SVM was first

introduced by Cortes and Vapnik [15] and has been a very popular and powerful

method for both regression and classification. One of the important reasons that

SVMs can become a standard tool for data classification is that it has high gen-

eralization performance without requiring priori knowledge in the particular fields.

SVMs have delivered state-of-art performance in real-world applications such as text

recognition, image classification, bioinformatics, etc [18].

Data classification problems exit in many areas, such as speech recognition, in-

ternet search engines, computer vision, hand-written character recognition, etc. A

simple instance in computer vision is face detection, which is a binary classification

problem. The classifier is trained using labeled face and non-face images and then is

used to predict whether a newly observed image contains human faces.

1.1 One-class Support Vector Machine for Classi-

fication

One-Class Support Vector Machine (often referred as 1SVM or OSVM or OCSVM)

is firstly introduced by Schölkopf et al. through extending the SVM methodology
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[54], and is applied to novelty detection [55]. Suppose we are given one class of

data, we would like to predict whether a newly observed data is a member of the

class. To cope with the problem, One-class SVM is used to model the distributions of

data in the class. If a testing data is too different, according to some measurement,

from the 1SVM model, it is labeled as novelty. The problem is also known as one-

class classification problem in machine learning (The training data is from one class).

1SVM has been successfully applied in many areas such as document classification

[45], data density estimation [46], recommendation tasks [62], etc. More background

about 1SVM can be found in Section 2.2 and 2.3.

Besides handling one-class classification problems, 1SVM model achieves high

performance on binary/multiclass classification problems. The key idea is to train

and maintain multiple 1SVMs which model training data distributions from different

classes. Each 1SVM may label a testing example as inlier or outlier, and then these

1SVM models competitively determine the label of the example. This thesis applies

the same idea to solve binary and multiclass classification problems. Compared with

the SVM model specially designed for data classification, modeling different classes

separately using multiple 1SVMs produces decison boundaries that enclose training

examples more tightly in some cases. One example is the presented computer vision

application, as illustrated in Figure 5.1.

Similar to other methods designed for data classification, 1SVM algorithm includes

many tuning parameters, such as parameters in kernel functions, that are application-

dependent and are often non-intuitive to machine learning practitioners. This issue

is particularly pronounced with large-scale applications [26], where even moderate

amount of tuning parameters might be computationally too expensive. Besides, hu-
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man annotations tend to be error-prone especially when working with problems of

large-scale and many classes [23]. This motivate us to consider a novel data classifica-

tion approach that is parameter-free, efficient, and capable of dealing with noisy data.

To achieve this, a Self-Tuning One-Class SVM algorithm (or STOCS) is developed,

which should be able to automatically determine training parameters and perform

well on noisy training data. The key insight of our approach is to train each 1SVM

model using both positive (data from the same class with the 1SVM) and negative

(data from other classes) examples. This allows us to adaptively choose the optimal

parameter settings for different datasets. In contrast, the conventional methods train

each 1SVM using positive examples only.

1.2 Contributions

In this thesis, we present a novel 1SVM model to solve data classification problems,

which is applicable to binary and multiclass classification. We also demonstrate the

ability of handling different level label noise and working on large-scale and dynamic

data processing. In summary, the presented algorithm bears the following character-

istics:

Parameter self-tuning: Our approach is parameter-free, which is handy to use

even for first-time users. Based on the conventional online 1SVM learning framework

introduced in Chapter 2, all parameters in our training algorithm are successfully

removed or adaptively tuned step by step in Chapter 3. In addition, we use posi-

tive and negative examples for self-tuning parameters, resulting in that the decision

boundary of our approach is learned from both positive and negative examples. In
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comparison, the conventional 1SVM training is only based on positive examples. By

enjoying these distinct features, our approach is shown to performs almost as well as

optimal parameter settings tuned for individual datasets of the benchmark method,

while consuming only a fraction of training time.

Robustness to label noise: Most real-world datasets used in supervised ma-

chine learning application are labeled by human annotations or physical experiments,

where some labels may be corrupted by some reasons. Training with noisy labels

may produce many potential negative consequences [23]: the accuracy of predictions

may decrease, the complexity of training models and the training time may increase.

Hence, designing data classification systems that can handle datasets with noisy la-

bels is a problem of practical importance. In Section 3.4, by allowing different support

vectors with different cut-off values, our approach adaptively limits the effects of noisy

data, which can both simplify the final model (decrease support vector numbers) and

reduce the effects on prediction accuracy. In contrast, the conventional 1SVM train-

ing cannot balance the two objectives well by applying a constant cut-off value for

all support vectors. A lower cut-off value may over-limit the effects of other exam-

ples, producing more support vectors, whereas a larger cut-off cannot limit the effects

of outliers, decreasing classification accuracy. Our approach can not only improve

classification accuracy, but also makes the performance of classier more stable with

increasing label noises.

Real-time computer vision application: Different from the original SVM and

1SVM learning which both use batch learning, our approach utilizes online learning,

which allow us process dynamic and large-scale datasets. In Chapter 5, we demon-

strate this feature with the developed application on dynamic video data processing.
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The algorithm is used for developing a real-time computer vision application: in-

tegrated foreground segmentation and boundary matting for live videos. By utilizing

the proposed STOCS training model, the thesis develops a unified framework for fore-

ground segmentation and boundary matting for live videos. Foreground segmentation

is a binary classification problem: classify a pixel as foreground or background, and

boundary matting aims to get the opacity along foreground boundary. The ability of

our proposed online 1SVM to train separate classifiers for foreground and background

not only allows more robust labeling of pixels, but also facilitates the matting opera-

tion along object boundaries. This leads to an integrated solution for both foreground

segmentation and boundary matting problems. Compared to state-of-art methods,

our approach performs competitively under a variety of challenge scenarios such as

fuzzy object boundaries, camera motion, topology changes and low fore/background

color contrast as shown in Figure 5.4. This is usually achieved with minimal user

interactions: users are only asked to annotate foreground and background of the first

frame with few key strokes. The sparse strokes and unlabeled pixels are both used

in our final training model under a semi-supervised learning manner. Furthermore,

by designing independent execution at individual pixel locations, our implementa-

tion utilizes the graphics processing unit (GPU) for parallel computing, achieving

real-time processing speed for VGA-sized videos.

In summary, the thesis is solving the problem of data classification, including both

binary and multiclass cases, using a simple, efficient, and parameter-free online one-

class SVM approach. The rest of the thesis is organized as follows. Background and

related works are reviewed in Chapter 2. Chapter 3 discusses the details of our self-

tuning one-class SVM training algorithm. Evaluations on multiclass classification and

7



computer vision applications are provided in Chapter 4 and 5, respectively. Finally,

Chapter 6 concludes the thesis and suggests future research directions.
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Chapter 2

Background and Related Work

Before presenting the main content of this thesis, we provide some background on

SVM training and some related work. This chapter begins with a review of conven-

tional SVM and 1SVM training framework. The online learning model used in this

thesis is then described, followed by an introduction to batch and online learning.

Finally, the chapter gives some related work on parameter tuning methods and label

noise handling.

2.1 Support Vector Machine

This section introduces the basic idea and mathematical model of SVM training,

by taking binary classification as an example. As shown in Figure 2.1 1, suppose

we have a set of data Ω = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where xi ∈ Rd is the ith

d−dimensional training data point (d = 2 in Figure 2.1), yi ∈ {−1, 1} is the label

of xi. To split the two classes, we may have many available linear classifiers shown

1http://www.autonlab.org/tutorials/svm15.pdf
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in Figure 2.1(a). SVM selects the one with the maximum margin in Figure 2.1(b),

where the margin of a linear classifier is defined as the width that the boundary could

be increased by before hitting a data point. The classifier boundary is known as

hyperplane. In Figure 2.1(b), we have two hyperplanes (the boundary of the yellow

part), and they are mathematically represented as: plus-plane= {w · x + b = +1},

minus-plane= {w · x + b = −1}, with w ∈ R2 in Figure 2.1 and b ∈ R. Then we can

get the margin of the linear classifier as M = 2/
√
w · w. Since SVM is looking for the

classifier with the maximal margin, the problem may be converted to the following

optimization problem:

min
||w||2

2

subject to yi(w · xi + b) ≥ 1, i = 1, · · ·n.
(2.1)

To better handling noisy data in SVM training, Cortes and Vapnik [15] create the

soft margin method if there exists no hyperplane that can split the two classes. The

key idea is that it tries to select hyperplanes that splits data points as cleanly as

possible, while minimizing distance of error points to their correct class. To achieve

this, the new method introduces slack variables ξi, which measure the degree of mis-

classification of xi. The new objective function becomes:

min
||w||2

2
+ C

n∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , n.

(2.2)

SVM can also create a nonlinear decision boundary when data points are not

linearly separable as shown in Figure 2.2 2. By projecting data points through a

nonlinear operator ϕ from their original space R2 to a new feature space F , data

2http://cdn.intechopen.com/pdfs-wm/11772.pdf
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(a) binary dataset example (b) SVM solution

Figure 2.1: Given two classes of data points shown in (a), there are many possible

linear classifiers. SVM training tries to find the one with the maximum margin (the

one with the maximum width of the yellow part in (b)).

points which cannot be split by a liner line in R2 are separable by hyperplanes in F .

Then, the objective function for nonlinear case can be written as:

min
||w||2

2
+ C

n∑
i=1

ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , n.

(2.3)

Equation 2.3 can be solved by Lagrange multipliers, and the output decision function

rule for a testing data point x becomes:

f(x) = sign

(
n∑
i=1

ωiyiϕ(x)Tϕ(xi) + b

)
, (2.4)

where ωi ≥ 0 are the Lagrange multipliers. The decision function is supported by the

data points with ωi > 0. We call a data point with ωi > 0 support vector, hence,

we have the name Support Vector Machine. In Figure 2.1(b), the points hitting the

hyperplanes are support vectors. Notice that the number of support vectors is much

smaller than the number of data points. According to Equation 2.4, the results of
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the decision function only replies on the dot product of x and xi. Hence, it is not

necessary to define such a ϕ to explicitly project data points to the space F , as long

as we can have a function k(x, xi) = ϕ(x)Tϕ(xi). The method of defining such a K

is known as kernel trick, and k is known as kernel functions. Some common kernels

include:

� Linear kernel: k(xi, xj) = xi · xj

� Polynomial kernel: k(xi, xj) = (xi · xj + c)d, c > 0

� Gaussian radial basis function: k(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0

Finally, the decision function of SVM becomes:

f(x) = sign

(
n∑
i=1

ωiyik(x, xi) + b

)
. (2.5)

Figure 2.2: After applying a nonlinear function ϕ, data points which is not linearly

inseparable in their original input space can be split by a linear hyperplane in feature

space.
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2.2 One-Class SVM

Given one class of data points, Schölkopf et al. [55] extend the above SVM algorithm

to solve 1SVM classification problem. The key idea is that they assume the origin

is another one class (The class contains only one point). The modified algorithm is

trying to separate all data points from the origin in the feature space F and maximizes

the distance from the hyperplane to the origin. The objective function is similar to

the one of SVM algorithm, and details about it are omitted here since this thesis is

not based on the 1SVM model in [55].

Our training method is similar to the one proposed by Tax and Duin [59]. They

propose to use a spherical, instead of planar, to surround the one-class data points.

Points inside the hypersphere are inliers and points outside the hypersphere are out-

liers. Hence, we need to minimize the volume of the hypersphere while at the same

time include as many inliers as possible. Denote the radius and the center of the hy-

persphere as r and a, respectively. The minimization function can be changed from

Equation 2.2 to:

min
r,a

||r||2

2
+ C

n∑
i=1

ξi

subject to ‖xi − a‖2 ≤ r2 + ξi, ξi ≥ 0, i = 1, · · · , n,

(2.6)

where C is the penalty parameter. After solving it by using Lagrange multipliers ωi,

we can compute the distance of a testing data point x to the center as:

‖x− a‖2 = (x · x)− 2
n∑
i

ωi(x · xi) +
n∑
i,j

ωiωj(xi · xj). (2.7)

A testing data x is considered in-class when ‖x− a‖2 ≤ r2. By applying the idea of

kernel trick (replacing dot products with kernel functions), we often define a score
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function as:

f(x) =
n∑
i

ωik(x, xi) ≥
1

2

(
k(x, x) +

n∑
i,j

ωiωjk(xi, xj)− r2

)
, (2.8)

to determine whether x is an inlier. When Gaussian kernel is used, the score function

becomes f(x) =
∑n

i=1 ωi exp(−γ ‖x− xi‖2) ≥ Cr − r2/2, where Cr depends only

on support vectors xi and not on testing point x. Notice that the thesis is solving

binary/multiclass classification problems, so our classification criteria is that a testing

data belongs to the class with the maximum score.

2.3 Online One-Class SVM

Training a SVM or 1SVM model using a set of examples is a classical batch learning

problem, the solution of which is obtained through minimizing a objective function

such as Equation 2.3 and 2.6. Before introducing the online 1SVM model used in this

thesis, we review the concept of batch and online learning.

2.3.1 Scaling up: Batch vs. Online Learning

In batch learning, examples for training are inputted to batch learner at the same

time, whereas in online learning, examples are observed by the learner one by one in

a time sequence. When an new example is observed, the online learner is updated

according to its current model and the new example. The conventional SVM and

1SVM models are both based on batch learning, because all training examples are

shown to a quadratic objective functions at the same time, where the solutions of

which are found through minimizing the objective functions. Previous studies [5]
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have shown that a similar or even better generalization performance can be achieved

using online learning with a much less computational cost, by showing all examples

repetitively to an online learner, when comparing to that of batch learning. The

presented self-tuning algorithm is based an online one-class SVM model [30], which

is presented in the next subsection.

2.3.2 Online Learning Model

The online learner we use follows the one proposed by [12] and [11]. Let ft(·) be a

score function of examples at time t, k(·, ·) be a kernel function, and ωt be a non-

negative weight of example of time t. When a new example xt arrives, the score

function becomes:

ft(xt) =
t−1∑
i=1

ωik(xi, xt), (2.9)

which is similar to Equation 2.8, and the update rule for weights is:

ωt = clamp
(
γ−(1−τ)ft(xt)

k(xt,xt)
, 0, (1− τ)χ

)
,

ωi ← (1− τ)ωi ∀i = 1, . . . , t− 1, (2.10)

where γ := 1 is the margin, τ ∈ (0, 1) the decay parameter, and χ > 0 the cut-off

value (cut-off is used to handle noisy training data, which is similar to ξi in Equation

2.2 and 2.6). clamp(·, A,B) is an identical function of the first argument bounded by

A and B. Intuitively, the underlying idea is that when a new example is observed, we

first compute its score function using the current support vectors from the same class.

Then we use the score function to update weights of support vectors. If the score is

large enough, it means that the new example can be predicted well using the current

model and it is not necessary to incorporate the new example as a support vector,
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otherwise the new example should be added into the corresponding support vector

list with a certain weight to make the learner support the new example. For each

class, we train and maintain one online 1SVM model, i.e. store one support vector

list. Training examples are repetitively shown to the learner in a time sequence,

and training process converges until there are no changes for all support vector lists.

Notice that a support vector is the example whose weight is greater than zero, so it

can be represented as (xi, ωi).

Compared to the conventional SVM and 1SVM algorithms, the online 1SVM

that we follow can work on large-scale data, where we only need to compute score

functions and update weights at each iteration. The operations during training are

very simple and it does not involve any complex data structures. Moreover, the online

learner can handle dynamic data such as video data. When a new example (or a new

frame in video data) is observed, the objective functions in the conventional SVM

and 1SVM are both changed, and they should be solved again to obtain the new

solution. If we are processing a large-scale dataset, solving a minimization problem

is quite time-consuming. However, in online 1SVM model, we only need to compute

the score function of the new example and update weights, which is very simple and

efficient. Cheng et al. [11] have shown the online 1SVM works well with large-scale

and dynamic data.

So far, the thesis has introduced the online learning model that is used in our

approach for data classification. Before presenting our efficient and parameter-free

approach, we review some related work.
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2.4 Related Work

The thesis is solving data classification using an online 1SVM model. Related work on

online learning is reviewed. We are mainly improving the training model on parameter

tuning and the ability of working on noisy training data. Hence, previous research

done on these two topics are also presented in this section.

2.4.1 Batch vs. Online Learning

Batch learning has been the standard methods for data classification such as [20], [52],

[16], [25], etc. When employing batch learning for large-scale datasets, one often has

to fight with a number of bottlenecks such as memory issue and computational costs.

One notable exception is [4], where a scalable batch learning methods is proposed.

Nevertheless, it requires complex speeding-up techniques such as disk swapping and

chunking, which unfortunately introduce quite a few tuning parameters. This is in

sharp contrast to online learning methods, such as [42] and [11], that are usually very

simple and efficient.

2.4.2 Parameter Tuning

Parameter tuning is also known as estimation of internal parameters or adaptive

bandwidth. Cross-validation [17], [32], [57], is probably the most widely used method

for estimating the internal parameters. [37] empirically compares cross-validation

with bootstrap [32] and finds that the latter one tends to introduce extremely large

bias sometimes, while the former often performs significantly better. A typical cross-

validation strategy is to perform coarse grid search over the space of internal pa-
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rameters, which is however often time-consuming. [34] proposes efficient algebraic

methods aiming at its speedup. In [43], the initial cross-validated parameter values

are further refined by coordinate descent on induced objective functions. Despite

of its popularity and usefulness, cross-validation also possesses several major issues

and limitations, as discussed in [61] and [50]. Empirical results in [50] show that the

final models for large-scale problems selected by cross-validation may easily become

over-fitting and the performance on testing data may would be worse than expected.

Cross-validation on large-scale problems is also time-consuming. Further, when train-

ing data contains label noises, noisy data would be used to validate models, causing

the selected models being overfit to the noisy data and leading to poor classification

accuracy. In contrast, by utilizing online learning and adaptive cut-off parameter

setting, our approach can handle both large-scale training issue and label noises well.

More details on our approach can be found in the following chapters.

Meanwhile other methods have also been studies: From the view of Bayesian

evidence maximization, [28] instead considers a hybrid Monte Carlo approach based

on the evidence gradients. [65] presents a adaptive Lasso method to adjust coefficient

shrinkage for individual variables for regression related problems. The method of

[58] is based on variable selection stability and is dedicated to problems involving

penalized regression models.

The idea of adaptive or variable bandwidth has also been studied for density esti-

mation [36], regression [33], and classification [19] problems. Existing works usually

focus on being adaptive in term of only locality and is agnostic to different class labels,

while the variable bandwidth considered in our approach is sensitive to its location,

as well as adversary classes from its spatial vicinities. Furthermore, unlike existing

18



approaches that try to pick the same set of parameters for all support vectors, we

allow different support vectors having different parameters. Our parameter tuning

method is based on the following two observations: 1) allowing support vectors that

are far away from the decision boundaries having larger influence area can effectively

reduce the number of support vectors needed; and 2) assigning small influence areas

to support vectors that are close to the decision boundaries help to reduce the level

of confusion. Details on that are discussed in Chapter 3.

2.4.3 Label Noise

In real-life applications it is of great importance to make reliable predictions even in

the present of noisy labels (known as Label Noise in machine learning). The problem

has been studied by numerous research efforts, starting from the early works [1], [64]

with theoretical analysis [7]. A kernel based Linear Discriminant Analysis (LDA)

method is considered in [39], while [21] focuses on exploiting the positive instances.

Following that of [7], various noise-resistant variants of the perceptron method are

also proposed [35], [8]. Very recently, there are several attempts (e.g. [56], [47]) to

provide a more rigorous account of the theoretical understanding and analysis of this

problem. Interested readers may refer to review articles [48], [23] for further details.

Our approach tries to address the label noise problem through adaptively select-

ing cut-off parameters for individual support vectors. We notice that outliers are

often sparsely distributed and surrounded by correctly labeled examples. By assign-

ing low cut-off values to the support vectors that correspond to these outliers, we

can effectively limit their impact to the final decision. Please note that our sparse
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distribution assumption on outliers is different from the optimization based sparse

learning strategy such as the L1−norm methods in [44] and [63] that are designed

for dealing with label noises. First, our approach utilize online learning, which does

not involve optimization; Second, the sparse learning strategy such as the one in [44]

utilizes the sparsity in the weight vector of the final decision induced by the L1−norm

optimization, which is different from our spare distribution assumptions of outliers.

By converting a data classification problem to a L1−norm optimization problem, the

sparse learning approaches result in a sparse solution which is not sensitive to label

noise and are thus able to deal with noises to some extent. More details about our

label noise handling method can be found in Section 3.4.

In summary, we have reviewed the basic ideas in data classification using SVM

and one-class SVM. Then, we present online 1SVM model. Compared to batch SVM

and 1SVM model, online 1SVM model has more power to work on large-scale and

dynamic data, which is the key reason that we choose online 1SVM as our training

model. In the next section, we are aiming to improve online 1SVM model and make

it more handy to use for common users.
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Chapter 3

Self-Tuning One-Class SVM

One important challenge in one-class SVM training is parameter tuning. It is impos-

sible to generalize a good parameter setting for all datasets from different sources.

Over the years there have been significant amount of efforts on this topic. However,

those parameter tuning algorithms are generally time-consuming and often sensitive

to noise. To cope with the problem, we propose a novel Self-Tuning One-Class SVM

(STOCS) for data classification.

Unlike the conventional one-class SVM, which uses only positive examples from

a given class to train a model, STOCS makes use of both positive and negative

examples, which helps STOCS capture the structure of training data and then improve

classification accuracy. According to the updating rules of online 1SVM model in

Equation 2.10

ωt = clamp
(
γ−(1−τ)ft(xt)

k(xt,xt)
, 0, (1− τ)χ

)
,

ωi ← (1− τ)ωi ∀i = 1, . . . , t− 1, (3.1)

three parameters are involved in the training process: decay parameter τ , kernel
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bandwidth σ, and cut-off value χ. The decay parameter is used to limit the effects

of support vectors obtained in the early training stage, which should be gradually

reduced throughout the iteration process. Kernel bandwidth controls the value of

kernel function, and cut-off is used to limit the effects of outliers. Considering σ and

χ are associated with each support vector, STOCS adaptively sets kernel bandwidth

σ and cut-off value χ for each support vector individually. Notice that original 1SVM

algorithm sets them as the same constants for all support vectors. Hence, at each

support vector, we not only store its weight ω, but also the corresponding parameters,

forming a quadruple (x, ω, σ, χ). In the following section, before presenting the pa-

rameter self-tuning method of STOCS, we discuss the requirement of kernel functions

used in STOCS.

3.1 Adjustable Kernel Functions

In this section, we provide guidelines and requirements for selecting kernels for STOCS.

The kernel function k(u, v) used in Equation 2.9 computes the dot product of two

high-dimensional vectors to which examples u and v are mapped. It determines how

much one example, if chosen as support vector, will provide support to the other

example. A good kernel function should output high values when applied to two

similar examples, and low values for dissimilar ones. Here we call a kernel function a

normalized kernel if it satisfies the following property:
k(xt, xt) = 1, ∀xt

0 ≤ k(xt, xs) ≤ 1, ∀xt, xs.
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By definition, the Gaussian kernel, k(u, v) = exp(−‖u− v‖2/σ2), is a normalized

kernel. When applied to normalized histogram vectors, the histogram intersection

kernel, k(u, v) =
∑n

i=1 min(ui, vi), is also normalized. The linear kernel, k(u, v) = u·v,

is not normalized in general, but it becomes normalized if the input vectors are both

nonnegative and normalized, i.e., ui ≥ 0 and and ‖ui‖ = 1, ∀ui.

We further call a normalized kernel k(u, v, σ) with parameter σ adjustable, if and

only if it possesses the following two properties:

i) ∃σ, we can always satisfy k(xt, xs, σ) ≤ T, T ∈ (0, 1) for all xt, xs, xt 6= xs;

ii) if k(xt, xs) ≥ k(xt, xl), then k(xt, xs, σ) ≥ k(xt, xl, σ) holds regardless σ value.

Gaussian kernel is adjustable since setting σ =
√
−‖xt − xs‖2/ log T would satisfy

the first requirement and adjusting σ does not alter the overall shape of the Gaussian

either. For any normalized kernel function k(u, v) that is not inherently adjustable,

we can define an adjustable version as:

k(u, v, σ) = max

(
1− (1− T )

1− k(u, v)

1− σ
, 0

)
(3.2)

As shown in Figure 3.1, for a given σ, k(u, v, σ) is a monotonically-increasing

piecewise-linear function with respect to k(u, v). By definition, setting σ = k(xt, xs)

allows k(xt, xs, σ) ≤ T , regardless how the original kernel function k(u, v) is defined.

Furthermore, since k(u, v, σ) is a monotonic function, it does not change the score

ordering among examples defined by k(u, v, σ).

In conclusion, STOCS requires kernel functions normalized. Making a kernel

adjustable also allows us to control the support of an example can provide on others.

We evaluate both Gaussian and linear kernels in our experiments. Notice that linear

kernel doe not have an explicit σ, but we can use Equation 3.2 to make it adjustable.
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Figure 3.1: Define an adjustable kernel k(u, v, σ) based on a normalized kernel k(u, v).

3.2 Removal of Decay Parameter τ

When using the online learning model presented in Section 2.3.2, the parameter τ

needs to be carefully adjusted throughout the iterative process. This is because at

the beginning of the training, the active set is empty and the score function of any

input data will be zero. Consequently, the first group of support vectors added into

the active set tend to have large ω values, which needs to be lowered to their proper

values in the later iteration. As shown in Equation 2.10, once a support vector (xt, ωt)

is added to the active set, over the time its weight ωt is only affected by the decay

parameter τ . Hence, the initial value for τ needs to be large to effectively reduce

the weights of existing support vectors. On the other hand, the iterative training

process cannot converge unless τ ≈ 0. As a result, τ needs to be gradually reduced

throughout the iterative process. Conventionally, the decay parameter is set based

on an exponential function: τ = exp(− t
ξ
), where parameter ξ controls how fast the

decay parameter τ decreases.
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In STOCS, τ is eliminated through an explicitly reweighting scheme. That is, if

a training example xt arrives and it turns out identical to the example in an existing

support vector (xi, ωi), this support vector is taken out before computing the score

function and then replaced with (xt, ωt) that carries the newly obtained weight. Also

considering that we always have k(xt, xt) = 1 for normalized kernels, the new score

function and the update rule become:

ft(xt) =
t−1∑
i=1

ωiδ(xi 6= xt)k(xi, xt, σi),

ωt = clamp (γ − ft(xt), 0, χt) , (3.3)

where δ(·) is an indicator function with δ(true) = 1 and δ(false) = 0.

Intuitively, this modified online learning method resets the weight component of

a particular support vector (xt, ωt), based on how well the separating hyperplane

defined by the remaining support vectors is able to classify example xt. If the score

function ft(xt) computed based on the remaining support vectors is large, it means

that xt can be supported well by the remaining support vectors. As a result, a small

value should be assigned to ωt, and vice versa. Hence, this reweighting process can

either increase or decrease the weight ωt according to how much the current model

can support xt. Namely, the weights of all support vectors can be automatically and

adaptively adjusted during the training process. Hence, decay is not necessary any

more.
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(a) σ = 0.1, χ = 0.5,

# of SVs: 443
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(b) σ = 0.25, χ = 0.5,

# of SVs: 144
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(c) σ = 0.5, χ = 0.5,

# of SVs: 91
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(d) adaptive σ, χ = 0.5,

# of SVs: 180

Figure 3.2: Visualization of the classification results for the “threeclass” dataset. Top

row shows the selected support vectors with the corresponding σ values illustrated

using circles. Bottom row shows the decision maps, which encode the output scores

from the three one-class SVMs using red, green, and blue channels respectively. Both

black color in (a-b) and orange/cyan/magenta colors in (b-c) indicate regions with

ambiguities.

3.3 Adaptive Kernel Bandwidth σ

As mentioned above, the adjustable kernel function used in STOCS contains a pa-

rameter σ. We now discuss how to tune σi automatically and individually for each

support vector (xi, ωi, σi, χi). The core idea here is that a support vector should

not provide strong supports to negative examples, i.e., given a support vector xi,

we require k(xi, xn, σi) ≤ T for any negative example xn, where T is a constant

threshold. Using this constraint, we can easily compute σi based on the definition
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of the adjustable kernel function. That is, as soon as we meet a negative example

xn that yields k(xi, xn, σi) > T during the online learning, we update σi to ensure

k(xi, xn, σi) ≤ T . Since adjusting σ does not affect the score ordering among ex-

amples, the supports to previously seen negative examples can only decrease, which

ensures the training process converges. It is also worth noting that for static datasets,

σi can be precomputed for each example xi using the negative example xn that yields

the largest k(xi, xn, σi) value.

Without losing generality, here we use the Gaussian kernel to illustrate the idea.

For Gaussian kernel, the kernel bandwidth σ is the standard deviation of the Gaussian

function and controls the radius of the influence area of each support vector. As shown

in Figure 3.2(a), when σ is too small, the obtained classifier can only recognize data

that are close to one of the provided training examples, resulting over-fitting. On the

other hand, large σ value causes fuzzy decision boundaries among different classes;

see Figure 3.2(c). Hence, to ensure a proper σ value is used, previous approaches

often rely on cross validation.

As shown in Figure 3.2(d), through automatically selecting different Gaussian

support for different support vectors, the classifier obtained provides a sharp decision

boundaries between the three training classes. which also output relatively few sup-

port vectors. Demonstration of the effectiveness of self-tuning σ will be presented in

Section 4.3.
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(a) σ = 0.25, χ = 0.1,

# of SVs: 398
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(b) σ = 0.25, χ = 0.25,

# of SVs: 236
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(c) σ = 0.25, χ = 0.5,

# of SVs: 205
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(d) σ = 0.25, adaptive

χ, # of SVs: 168
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(e) adaptive σ, χ = 0.1,

# of SVs: 748
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(f) adaptive σ, χ = 0.25,

# of SVs: 521
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(g) adaptive σ, χ = 0.5,

# of SVs: 422
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(h) adaptive σ, adaptive

χ, # of SVs: 385

Figure 3.3: Visualization of the classification results when the dataset is corrupted

with label noise, i.e., 5% of the random data have their labels changed. Under both

fixed (a-d) and adaptive (e-h) Gaussian support situations, using adaptive cut-off

values helps to limit the impacts of outliers.
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3.4 Adaptive Cut-off Value χ

The last standing parameter is the cut-off value χ, which is used to limit the effects

of label noises (or outliers). When a training example (assuming it is mistakenly

labeled) is observed, it may become a support vector with a large weight, yielding

strong effect on final decision, resulting in that testing examples close to the outlier

would be mislabeled. The cut-off χ is introduced to clamp weights of outliers and

then limit their impact to classification. A large cut-off value cannot limit the effects

of label noises, however, a small one may influence other correctly labeled support

vectors. In STOCS, we adaptively select a cut-off value for each individual support

vector.

Following the idea of tuning parameters for individual support vectors, here we also

adaptively determine a proper χ value for each support vector. The key idea is that

a support vector should have a higher χ if there are many positive examples within

its support region and a smaller χ if there are many negative examples surrounding

it. Hence we set:

χt = 0.5 +
h+ (xt)− h− (xt)

2(h+ (xt) + h− (xt))
(3.4)

where h+ (xt) and h− (xt) are the numbers of positive and negative examples that

satisfy k(xt, xi, σt) ≥ 0.6T , respectively. When h+ (xt) > h− (xt), xt is surrounded

by more positive examples, thus xt is not an outlier and should have a large cut-off

value. When h+ (xt) < h− (xt), xt is surrounded by more negative examples, thus xt

is possibly an outlier and can have a small cut-off value, which limits the effects of

xt on the decision function. Note that h− (xt) ≥ 1 due to the way σt is calculated,

ensuring the denominator being a non-zero value. Comparison between Figure 3.2(b)

29



and Figure 3.3(c), which are generated using the same set of parameters, suggests

that the presents of label noises can severely distort the decision boundaries. Using

a smaller χ values helps to reduce the impact of outliers, but at the expense of using

more support vectors; see Figure 3.3(a-b). The use of adaptive σ also helps to limit

the impact of outliers to their own neighborhoods; see Figure 3.3(e-g). Nevertheless,

it does not fully address the problem.

As shown in Figure 3.3(d & h), using adaptive χ values can effectively limit the

impacts of outliers. Note that, similar to σ, the χ values for different examples can

also be precomputed when the dataset is static.

In summary, by assuming each support vector may have individual parameter

settings, the three parameters, τ , σ, and χ, are successfully removed or adaptively

tuned in online 1SVM training. Different from the original 1SVM training, our online

1SVM model of one class is trained using both positive and negative examples. We

also achieve sharper decision boundary when training data contains label noise. In

the next chapter, evaluations on our parameter self-tuning method are presented and

comparisons with a benchmark method is also given.
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Chapter 4

Experiments on Multiclass

Classification

Evaluations and experiments on multiclass classification are presented in this chapter

to demonstrate the effectiveness of STOCS. We first evaluate the effectiveness of

reweighting and parameter self-tuning by comparing STOCS with the conventional

online 1SVM training technique [11]. Comparisons with the benchmark approach, the

LIBSVM [9], for multiclass classification in terms of classification accuracy, support

vector number, and training time, are then reported.

4.1 Datasets

Table 4.1 summarizes information of datasets used in this chapter. All datasets can be

downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Here we give some details of several popular datasets. The “letter” dataset is created

with gray images displaying the 26 capital letters in English alphabet, which is used
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Dataset Classes Training Examples Testing Examples Features

letter 26 15000 5000 16

usps 10 7291 2007 256

satimage 6 4435 2000 36

pendigits 10 7494 3498 16

vowel 11 528 462 10

svmguide4 6 300 312 10

shuttle 7 43500 14500 9

Table 4.1: Datasets used for multiclass classification

for letter recognition in machine learning. The “usps” and “pendigits” datasets are

both created for handwritten digit recognition, which contain 10 numeric characters

(from 0 to 9). The “shuttle” dataset contains 7 classes, in which approximately

80% of the data belongs to the first class. So the “shuttle” dataset can be used

to demonstrate the effectiveness of classification algorithms when the distribution of

training examples is distorted.

4.2 Effectiveness of Reweighting

Figure 4.1 compares the convergence speed between the reweighting scheme (decay

parameter is removed) and the conventional training approach under different decay

rate settings. For the input dataset shown in Figure 4.1(a), we first generate a one-

class SVM classifier using Equation (2.9) and (2.10) under fixed parameters (σ = 0.25;

χ = 0.5) and a very slow decay change rate (ξ = 100). This classifier is then used
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Figure 4.1: Convergence of the conventional approach and the reweighting scheme.

For a given set of examples (a), the decision map (b) obtained using the conventional

approach under a very small decay rate is used as the ground truth. Comparing the

decision maps generated after different iterations with the ground truth shows the

convergence speeds of different approaches (c).

to generate a decision map (see Figure 4.1(b)), which is used as the ground truth.

The decision maps obtained after different iterations and under different settings are

compared with the ground truth. The results shown in Figure 4.1(c) suggest that the

conventional approach generally converges after 10ξ iterations, i.e., τ < exp(−10).

Furthermore, when a faster decay change rate is used, the final decision map defers

from the ground truth, indicating a premature convergence. The classifier obtained

using reweighting with the constant σ and χ setting yields almost identical decision

map as Figure 4.1(b), but it converges much faster than the conventional approach
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under ξ = 100.

4.3 Effectiveness of Parameter Self-tuning

0.05 0.1 0.15
40

60

80

100

sigma

ac
cu

ra
cy

(%
)

letter

0.05 0.1 0.15
40

60

80

100

sigma

ac
cu

ra
cy

(%
)

usps

0.05 0.1 0.15
40

60

80

100

sigma
ac

cu
ra

cy
(%

)

satimage

0.05 0.1 0.15
40

60

80

100

sigma

ac
cu

ra
cy

(%
)

pendigits

0.05 0.1 0.15
40

60

80

100

sigma

ac
cu

ra
cy

(%
)

vowel

0.05 0.1 0.15
40

60

80

100

sigma

ac
cu

ra
cy

(%
)

svmguide4

0.05 0.1 0.15
40

60

80

100

sigma

ac
cu

ra
cy

(%
)

shuttle

Figure 4.2: The effectiveness of self-tuning σ. Classification accuracy comparisons

between self-tuned σ (red) and one-class SVM (blue) trained under different σ values

are plotted.

We now evaluate the presented self-tuning scheme by comparing it with the con-

ventional online one-class SVMs trained using fixed parameters. Datasets listed in

Table 4.1 are used.

First we test the effectiveness of self-tuning σ using a Gaussian kernel and under

a fixed cut-off value (χ = 0.5). Both STOCS and the conventional one-class SVM are

trained using the training data and the classification accuracy on test data are mea-

sured. To determine the proper σ range for these datasets when using the traditional

one-class SVM, we preform a coarse-to-fine grid search. Figure 4.2 plots the classi-
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Figure 4.3: The effectiveness of self-tuning χ. Classification accuracy of self-tuned χ

(red), fixed χ = 0.1 (green), and fixed χ = 0.5 (blue) under increasing label noise is

compared.

fication accuracy of the traditional one-class SVMs when σ varies within the proper

range found. As expected, the performance highly depends on the σ value and there

is no single σ value that works well for all datasets. STOCS adaptively selects σ for

each support vector based on a fixed threshold value T = 0.25. Its performance is

close to the traditional one-class SVM under optimal settings in all cases, and even

outperforms the latter in the “svmguide4” and “shuttle” datasets. We attribute such

performance gain to adjusting kernel bandwidth for support vectors individual, rather

than using the same tuned parameters for all.

Next, we evaluated the effectiveness of self-tuning χ on datasets corrupted with

label noises. For each dataset, we randomly and incrementally select training ex-

amples as outliers and alter their labels. These outlier examples with their original

labels are then used as testing data to evaluate whether the classifiers can correct
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labeling errors. The test is repeated 10 times for each dataset to compute the average

accuracy. The results of self-tuning χ and fixed χ are plotted in Figure 4.3, where σ

is self-tuned in all tests. The comparison clearly shows that the performance of con-

ventional one-class SVM drops as the more label noise is introduced. Using self-tuned

χ values not only improves the accuracy, but also makes the performance of classifier

more stable.

4.4 Comparisons with LIBSVM

Finally we compare the performances of STOCS with a benchmark approach, the

LIBSVM [9] using the one-vs-all approach, under both Gaussian and Linear kernels.

We note in the passing that it is widely accepted (e.g. [52]) that for multiclass classifi-

cation, one-vs-all is one of the simplest methods that almost always delivers the best

performance. It is thus preferable to more complex methods including output coding

schemes [20], [25] or single machine schemes [16]. This observation motivate us to

concentrate on the following comparisons with the LIBSVM implementation of the

on-vs-all approach, which is arguably the most widely used multiclass classification

method in practice.

4.4.1 Gaussian Kernel

We start with comparing the performances of STOCS and LIBSVM on the afore-

mentioned seven datasets under Gaussian kernel. For LIBSVM, both default and

cross-validated parameter settings are tested. Note that here LIBSVM is tuned for

each dataset individually, resulting different parameter settings for different datasets.
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STOCS, on the other hand, uses the same self-tuning procedure with the threshold

T = 0.25 for all datasets.

60

80

100

si
fic
at
io
n 
Ac

cu
ra
cy

LIBSVM 
(default)
LIBSVM 
(cross‐valid.)
STOCS

20

40

letter usps satimage pendigits vowel svmguide4 shuttle

Cl
as
s STOCS

40

60

80

100

m
pl
es
 s
el
ec
te
d 
as
 S
Vs

LIBSVM 
(default)
LIBSVM 
(cross‐valid.)
STOCS

0

20

letter usps satimage pendigits vowel svmguide4 shuttle

%
 o
f e

xa STOCS

Method Process letter usps satimage pendigits vowel svmguide4 shuttle
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LIBSVM(cross-valid.)
Tuning 11390.21 17130.30 1112.91 2101.55 25.42 15.54 29074.35
Training 11.59 18.61 1.64 1.10 0.08 0.13 3.97

STOCS Training 2.50 3.26 0.72 0.52 0.02 0.02 16.02

Figure 4.4: Comparison between STOCS and LIBSVM under Gaussian kernel. Top

left shows the classification accuracy, top right shows the number of support vectors

used, and bottom row gives the processing time needed.

Figure 4.4 shows that STOCS is more accurate than the LIBSVM under default

settings in six out of the seven datasets. While LIBSVM with parameters tuned

through cross-validation outperforms STOCS, the performance difference is less than

4% in six datasets. To achieve this performance gain, LIBSVM requires much longer

processing time for parameter tuning. Furthermore, for most datasets, STOCS uses

fewer support vectors than LIBSVM with both default and tuned parameters, allowing

faster labeling of incoming examples.

4.4.2 Linear Kernel

To evaluate whether the presented approach works well for kernel functions that are

not inherently adjustable, here we also compare STOCS with LIBSVM under linear
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Figure 4.5: Comparison between STOCS and LIBSVM under linear kernel.

kernel. To satisfy the nonnegative and normalized conditions that makes linear kernel

normalized, we first map all examples feature-wise to range [0,1] and then normalize

individual example vector to unit length. The same normalized datasets are used to

train both LIBSVM and STOCS. However, LIBSVM uses the original linear kernel,

whereas STOCS uses its adjustable version; see Equation 3.2. The same threshold

value T = 0.25 is used here for STOCS.

From Figure 4.5 we observe that, not only STOCS outperforms LIBSVM under

the default parameter setting in all cases, it also outperforms LIBSVM with tuned

parameters for two datasets and performs on par for two other datasets. This is

remarkable since LIBSVM uses the best parameters specifically tuned for the given

datasets.

4.4.3 Label Noise Handling

When the training data contains label noises, parameter tuning through cross-validation

may cause the parameters being overfit to the corrupted data, leading to poor clas-

sification accuracy. This is evidenced by Figure 4.6, where the LIBSVM with tuned
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parameters is outperformed by the default parameters for “usps” and “satimage”

datasets. Our approach, on the other hand, is robust against label noises and per-

forms consistently. It outperforms LIBSVM with tuned parameters in four of the

seven datasets.
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Figure 4.6: Comparison with LIBSVM on training data corrupted by 10% label noises.

In summary, we have solved multiclass classification problems with STOCS. We

evaluate and demonstrate the effectiveness of our proposed parameter self-tuning

method step by step. Compared to the benchmark method LIBSVM, STOCS output

shorter training time and fewer support vectors, while achieving comparable clas-

sification accuracy with LIBSVM’s optimal parameter settings tuned for individual

datasets. In the next chapter, online 1SVM learning is applied to solve binary classi-

fication problems in computer vision to demonstrate its real-world application ability.
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Chapter 5

Computer Vision Application

In the last chapter, we demonstrate the usefulness of applying STOCS to solve mul-

ticlass classification problem. Here we show an application in computer vision, where

STOCS is used to solve foreground segmentation and boundary matting for live

videos. Foreground segmentation, a.k.a, video cutout, studies how to extract ob-

jects of interest from input videos. It is a fundamental problem in computer vision

and often serves as a pre-processing step for other video analysis tasks such as surveil-

lance, teleconferencing, action recognition and retrieval. In the terminology of ma-

chine learning, it belongs to binary classification problems. Given a frame of a video,

foreground segmentation aims to determine a pixel belongs to the class of foreground

object or background. Boundary matting aims for recovering the transparency and

corresponding color along foreground objects [60]. It is one of the key techniques

in film production applications, especially handling scenarios such as fuzzy object

boundaries (e.g. hair) and motion blur. Over the years a significant amount of re-

lated techniques have been proposed in both computer vision and machine learning

40



communities. However, some of them are limited to sequences captured by stationary

cameras, while others require significant amount of training examples or cumbersome

user interactions. Furthermore, most existing algorithms are rather complicated and

computationally too demanding to be operated in real-time. As a result, there still

lacks an efficient and powerful algorithm capable of processing challenging live video

scenes with minimum user interactions.

   

(a) a separable case

   

(b) an inseparable case

Figure 5.1: Comparison between a binary SVM and two 1SVMs under two situa-

tions. White circles and black dots represent the foreground and background training

instances, respectively, while red dot denotes an unseen example. The straight line

indicates the decision boundary of the binary SVM, whereas the ellipsoids show the

boundaries of the two 1SVMs. In (a), binary SVM classifies the test example as fore-

ground, whereas the 1SVMs labels it as unknown, since neither of the 1SVMs accepts

it as inlier. In (b), binary SVM cannot confidently classify the test example since it is

too close to the decision boundary, whereas 1SVMs is able to label it as background

with confidence since only background 1SVM accepts it as inliner.
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(a) input frame 0 (b) input stroke (c) after 1 itera-

tion

(d) after 2 itera-

tions

(e) after 3 itera-

tions

(f) matting pixels

(g) after conver-

gence

(h) matting pixels (i) binary segmen-

tation

(j) composite (k) input frame 1 (l) initial label

(m) alpha matte (n) composite (o) input frame

104

(p) initial label (q) alpha matte (r) composite

Figure 5.2: Handling the “kim” sequence [14], which is challenging due to fuzzy object

boundaries and camera motions. The user is only required to label the first frame (a)

using strokes (b). Local classifiers are trained at each pixel location and then used

to relabel the center pixel (c). Iterative training and relabeling leads to convergence

(d, e, & g), even though ambiguous (grey) areas still exist. At each iteration, pixels

along fore/background boundaries (non-cyan pixels in f & h) are detected, for which

matting is performed. The final binary segmentation is computed through graph-

cut optimization (i). Combining binary segmentation (i) with boundary matte (h)

produces the full alpha matte, which is used to generate a blue screen composite (j).

When new frames (k & o) arrive, they are initially labeled (l & p) using the classifiers

trained by previous frames, before the same train-relabel-matting procedure takes

place to produce the alpha mattes (m & q) and composites (n & r).
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To fill that niche, this chapter applies the STOCS learning model introduced

in Chapter 3 to solve the binary classification problem. Compared to the conven-

tional binary SVMs, STOCS uses two online 1SVMs, which learn foreground and

background distributions separately. We hypothesize that better performance can be

achieved using two 1SVMs in the application. Here are the reasons: First, foreground

and background may not be well separable in the color feature space. For example,

the black sweater and the dark background shown in Figure 5.2(a) share a similar ap-

pearance. As a result, it is not proper to deal with this scenario by means of training

a global binary SVM and use it to classify the entire image. Second, trying to train

local binary SVMs at each pixel location is problematic as well since in most cases

merely one of the two (foreground or background) types of observations is locally

available. In fact, even in areas that both foreground and background examples are

available, modeling the two sets separately using two 1SVMs produces two hyper-

planes that enclose the training examples more tightly. As illustrated in Figure 5.1,

this helps toward better detecting and handling of ambiguous cases.

The presented approach solves video foreground segmentation and boundary mat-

ting in an integrated manner. As shown in Figure 5.2, with only a few strokes from

user on the first frame of the video (users do not need to provide any interface in the

remaining frames), the algorithm is able to propagate labeling information to neigh-

boring pixels through a simple train-relabel-matting procedure, resulting in a proper

segmentation of the frame. This same procedure is used to further propagate labeling

information across adjacent frames, regardless of the foreground or background mo-

tions. Furthermore, by exploiting the parallel structure of the proposed algorithm,

real-time processing speed of 14 frames per second (FPS) is achieved for VGA-sized
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videos when matting is not applied, with the frame rate dropping to 8 FPS when mat-

ting over large fuzzy areas is needed. Details of the train-relabel-matting procedure

used for each frame is discussed in the following sections.

5.1 Foreground Segmentation

In this section, the method of applying STOCS for foreground segmentation is pre-

sented. Followed by the idea of data classification with one-class SVM (see Section

1.1), the key insight of our approach is to train and maintain two one-class SVM

models at every pixel location. The two 1SVMs capture the local foreground and

background color densities separately, but determine a proper label for the pixel

jointly. By iterating between training local 1SVMs and applying them to label the

pixels, the algorithm effectively propagates initial user labeling to the entire image,

as well as to consecutive frames.

As shown in Figure 5.2 and Algorithm 1, the core of our approach is a train-

relabel-matting procedure: Based on the online 1SVM model introduced in Chapter

2 and 3, two STOCS models (Fp for foreground and Bp for background) are trained

locally for each pixel p using known foreground and background colors within the local

window Ωp. Once trained, Fp and Bp are used to jointly label p as either foreground,

background, or unknown. Please note that p becomes a labeled pixel and is used

for training in the later train-relabel-matting iterations, allowing STOCS works in

a semi-supervised learning manner. Pixels along the boundary between foreground

and background regions are then detected and form a matting pixel set M , on which

matting operation is performed (Details about matting operation is discussed in the
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Algorithm 1 Foreground segmentation from user strokes

for each input frame It do

if t == 0 then

Initialize the label map L0 based on input stroke;

Initialize the matting pixel set M to empty;

else

Train F & B using It−1 & Gt−1 for p /∈M (Eq. 3.3);

Label It using F & B to obtain Lt (Eq. 3.3);

Apply temporal decay to all support vectors in F & B;

Reset the matting pixel set M to empty;

end if

repeat

Train F & B using It & Lt for p /∈M and using αt, F t, & Bt for p ∈M (Eq. 3.3);

Relabel It using F & B and update Lt (Eq. 3.3);

if matting is needed then

Update the matting pixel set M ;

Estimate αt, F t, & Bt for p ∈M ;

end if

until there are no more changes in Lt

Find optimal binary segmentation Gt using graph cuts;

end for

next section). The train-relabel-matting operation at each pixel is independent, which

runs in parallel on GPUs in our experiments.

Since the knowledge learned from neighboring pixels in Ωp is considered in label-

ing p, the above procedure effectively propagates known foreground and background
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information to its neighborhood. As a result, based on only a few initial strokes, the

algorithm can segment the whole image and perform matting along object boundaries

(see Figure 5.2(a-i)).

The same train-relabel-matting procedure is employed for handling temporal changes

as well. When a new frame t+ 1 arrives, the label Lt+1(p) is initialized automatically

using the existing Fp and Bp from the last frames. The initial labels, together with

newly observed colors, are then utilized to conduct the train-relabel-matting process.

Since Fp and Bp are trained using all pixels within Ωp of frame t, if any of those

pixels in Ωp moves to p, Fp and Bp are able to classify it properly. Consequently, the

algorithm can cope with arbitrary foreground and background movement without a

prior motion information, as long as the amount of movement is less than the radius

of neighboring window Ω. For the setting of Ω value in our implementation, the same

subgrouping approach in [30] is used in this thesis.

Finally, under ideal situations, where the appearance distributions of foreground

and background pixels are locally separable, the above baseline procedure is sufficient.

However, since users provide foreground and background examples using only a few

strokes, there may be pixels in the frame with colors that are not recognized by either

foreground or background 1SVMs. Similar situation also occurs when pixels with new

foreground or background colors show up in the frame due to motions. These pixels

are labeled as unknown at the end of the train-relabel-matting process as shown in

Figure 5.2(g). To label these unknown pixels, as well as pixels along fore/background

boundaries so that a clean binary segmentation can be generated, our final step is

to compute the globally consistent and smooth solution G based on Graph Cut [6].

In practice, we use a GPU version of the push-relabel algorithm to compute the min
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cuts [29], and limit the number of push-relabel steps to 20, which is found sufficient

throughout our experiments.

5.2 Boundary Matting

Both motion blur and fuzzy foreground objects such as hair strands may cause pixels

near foreground boundary having a mixture of foreground and background colors. In

the foreground segmentation problem, it is classified as foreground or background by

enforcing smoothness of segmentation. Here we decompose the observed colors for

these pixels into fore/background values and the alpha mattes, directly producing a

soft segmentation for the foreground, which is known as image matting in computer

vision.

It is well-known that matting is an ill-posed problem with possibly multiple solu-

tions. At each pixel, the unknowns on the right side of the following image composit-

ing equation need to be estimated using the known observed color I:

I = αF + (1− α)B, (5.1)

where α ∈ [0, 1] is the alpha matte; F and B are the real foreground and background

colors for the pixel, respectively.

To solve the problem, we add a further constrain that F and B should fit the local

foreground and background 1SVMs (Fp and Bp) as much as possible. That is, the

scores fFp(F ) and fBp(B) should be high. Consequently, we optimize the following

the energy function at each pixel:
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arg max
F,B,α

e−(αF+(1−α)B−I)2/2σ2
c + fFp(F ) + fBp(B), (5.2)

where parameter σc controls the support of the Gaussian and σc = 5 in our experi-

ments. fFp(·) and fBp(·) are foreground and background scores, which are computed

based on the Equation 3.3. When differentiable kernels such as Gaussian kernel are

used for 1SVMs, Equation 5.2 is differentiable, which allows us to use gradient-based

approaches to search for the optimal F , B and α values.

In practice, the matting module starts with determining the matting pixel set M .

We treat a pixel p as a matting pixel iff. sufficient number of examples are used to

train both the foreground and the background 1SVMs, Fp and Bp. Here we require

the numbers of both foreground and background examples within the 33 × 33 local

window to be greater than 50. Once the matting pixels are determined, a nonlinear

conjugate gradient technique is applied to these pixels in parallel. The initial F and

B values are set to the mean colors of foreground and background training examples

within the local 33×33 window, respectively. The initial α is set to the local mean of

the label map L for the first train-relabel-matting pass and to the mean of previously

estimated alpha matte for the following passes. During the optimization, we explicitly

enforce F , B to remain in range [0, 255] and α to remain in range [0, 1]. Please note

that, after optimizing the Equation 5.2, the training examples in the next iteration

would be the estimated fore/background colors of matting pixels; see Figure 5.3(a &

b).

It is worth noting that, even though the matting is performed for different pixels

in parallel without explicitly enforcing the smoothness, the estimated alpha matte is
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(a) F examples (b) B examples (c) alpha matte

Figure 5.3: Alpha matte estimation. Cyan color in (a) and (b) indicates no foreground

or background training examples are available for the corresponding pixels. Cyan in

(c) indicates non-matting pixels, where the number of foreground or background

examples within the local neighborhoods is insufficient.

still smooth due to the coherence among neighboring 1SVMs that models foreground

and background colors. In a similar manner, the temporal coherence among the alpha

mattes of adjacent frames is also enforced implicitly.

5.3 Results

To exploit the inherit parallel structure of the proposed algorithm, we implement it

on GPU using DirectCompute, which is proposed by Microsoft as an alternative to

CUDA and is included in the Direct3D11 API. For the VGA-sized “kim” sequence

with large fuzzy area, our current implementation runs at 14 FPS without matting

and 8 FPS with matting on a Lenovo ThinkStation S20 with nVidia GeForce GTX

480 GPU. Besides, Gaussian kernel is used as the kernel function in the application.

Comparison with existing approaches: Figures 5.2 and 5.4 show the results

of our algorithm for several sequences used by previous video matting papers [14, 2,
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(a) first frame with

user strokes

(b) test frame (c) alpha matte (d) composite (e) other approaches

Figure 5.4: Results on testbed sequences referred to as (from top to bottom) “wind”,

“class” [2], “ball”, and “broom” [27]. The results show that our algorithm can prop-

erly handle background motions (in “class” & “ball”) and strong motion blur (in

“ball” & “broom”). The results of geodesic matting [2] (for “wind” & “class”) and

shared matting [27] (for “ball” & “broom”) are generated by the authors (e). For

better comparison, matching background colors are used in our composites (d). Areas

with suboptimal matte results are highlighted with red boxes.

31, 27, 13]. Visual inspection suggests that the alpha mattes estimated are smooth

and rich in details. Available results generated by authors of existing approaches are

also shown in Figures 5.4 and 5.5 for comparison. They suggest that the performance

of our algorithm is on par with existing approaches, which often require additional

steps to compute dense trimaps [27, 31] or background colors [14] for each frame.
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Some of these approaches also require long computational time [14, 13] or process

all frames in a batch manner [2], making them hard to be applied to real-time video

processing. In comparison, our approach only requires user to provide few key strokes

and is designed for parallel execution on GPUs, which is simple and efficient.

(a) test frame (b) our result (c) Bayesian mat-

ting [14]

(d) multi-chan. Pois-

son [31]

(e) non-local mat-

ting [13]

Figure 5.5: Comparison on alpha mattes generated by different approaches. Areas

with suboptimal matte results are highlighted with red boxes.

Robustness w.r.t. input stroke variations: To evaluate the impact of the

users’ input stroke variations on the matting results, here we also test our algorithm

under different input settings. As shown in Figure 5.6, changing input stroke locations

affects how the labeling information is propagated across the image, but has very little

impact on the final alpha matte generated. This suggests that our program is robust

against users’ input variations.

Evaluation on temporal coherence: Unlike some existing video matting ap-

proaches [41, 3, 13], our approach does not explicitly enforce the temporal coherence

among adjacent frames. Instead, it relies on the local fore/background classifiers

trained at each pixel location, F and B, being stable across multiple frames. As

a result, for pixels from different frames but with similar observed colors, the op-

timal alpha values found by maximizing Equation 5.2 will be similar. To evaluate
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(a) first frame w/

strokes

(b) after 10 iterations (c) after convergence (d) labeling for test

frame

(e) alpha matte for

test frame

Figure 5.6: Matting results obtained under different stroke inputs than the one shown

in Figure 5.4(a). Under different stroke inputs (a), labeling information is propagated

differently across the image (b), but the final per-pixel labeling results (c) are similar.

The impact of the stroke variations on the first frame is even less noticeable in the per-

pixel labeling results for the test frame (d). As a result, the alpha mattes generated

for the test frame (e) are nearly identical to the one shown in Figure 5.4(c).

the effectiveness of this strategy, Figure 5.7 shows the matting results for six nearby

frames of the “kim” dataset, which contains a large and detailed fuzzy area. The

results demonstrate that our approach is able to generate coherent alpha mattes for

the foreground object even in front of a changing background.

Please note that our approach is mainly designed for extracting alpha mattes

along the boundaries of fuzzy objects, whereas it cannot be used to handle large

semi-transparent regions since the matting relies on locally trained foreground and

background classifiers. For highly transparent object such as the ones used for image

matting evaluation [51], a more global classifier trained using non-local examples

would be needed.
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(a) frame 86 (b) frame 89 (c) frame 92 (d) frame 95 (e) frame 98 (f) frame 101

Figure 5.7: Alpha mattes (middle row) and composites (bottom row) generated for

adjacent frames. Despite that the background behind the fuzzy hair changes from

bright window to brown building then to green leaves, our approach extracts temporal

coherent alpha mattes. Please note that although artifacts show up in the estimated

alpha mattes (highlighted with red boxes), they are hardly noticeable in the final

composites.

In summary, STOCS is successfully applied to solve foreground segmentation and

boundary matting in an integrated manner. Finally, our algorithm is shown to be

particularly competent at processing a wide range of videos with complex backgrounds

from freely moving cameras. This is usually achieved with minimum user interactions.

Near real-time processing speed is achieved for VGA-sized videos.
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Chapter 6

Conclusions

The thesis proposes a novel data classification approach, STOCS, that is parameter-

free, efficient, and capable of dealing with label noise. Different from the conventional

method of 1SVM model for data classification, which is trained only based on positive

examples, the decision boundary of STOCS is learned from both positive and negative

examples. Three parameters, including the decay parameter, the kernel bandwidth

and the cut-off value, are either removed or adaptively selected. Self-tuning cut-off

values for different support vectors also helps us better handling label noise in training

data. We also improve the original online learning method by removing the decay

parameter, which makes STOCS achieve faster convergence. By further exploiting

the online learning framework, STOCS has the ability to work well on dynamic and

large-scale data.

Our empirical study demonstrate STOCS’s effectiveness of improving convergence

speed, parameter self-tuning and robustness to label noise. Compared with LIBSVM,

arguably the most widely-used data classification system, STOCS almost always out-
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performs the LIBSVM under the default parameter settings, while uses much fewer

support vectors at the same time. Its performance is also very close to LIBSVM’s

optimal results obtained by cross-validation for individual datasets, but uses only a

fraction of the processing time.

Besides working on multiclass classification, a binary classification application in

computer vision is presented. A novel video segmentation and matting solution is

proposed that is able to efficiently and effectively deal with live videos. The solution

is easy to implement, simple to use, and capable of handling a variety of difficult

scenarios, such as dynamic background, camera motion, topology changes, and fuzzy

objects. For fuzzy objects, the integrated boundary matting step can effectively pull

the matte along object boundary, allowing seamless composites over new backgrounds.

Furthermore, by introducing novel acceleration techniques and by exploiting the par-

allel structure of the algorithm, near real-time processing speed (14 FPS without mat-

ting and 8 FPS with matting on a mid-range PC & GPU) is achieved for VGA-sized

videos. Finally, with the assistance of the STOCS training framework, experiments

on standard testbed videos demonstrate that our solution possesses comparable or

superior performance comparing to the state-of-the-art approaches [14, 31].

6.1 Future Works

Supervised learning requires completely labeled data. However, the labeling processes

always require human annotations, which is boring and may require experts, or physi-

cal experiments, which may require special devices. The cost associated with labeling

makes acquisition of a sufficient labeled dataset hard and even infeasible, whereas
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getting unlabeled data is relatively inexpensive. To cope with this problem, semi-

supervised learning [10] is proposed, which makes use of unlabeled data for training

- typically a small amount of labeled data with a large amount of unlabeled data. In

the presented application, large scale dynamic video data classification is successfully

solved in a semi-supervised manner. However, extending the current approach to

general semi-supervised learning based classification problems requires further study.

In the future, we plan to apply STOCS to solve general semi-supervised problems.

The possible route is to first train 1SVM models using labeled data, and then use the

1SVMs to label the data that we have the most confidence on. The above process

will be repeated until all data are labeled.

Large-scale and high-dimensional data classification such as document classifica-

tion is useful in many applications, but training large quantities of data remains an

important research issue. The most popular big data classification solver is LIBLIN-

EAR [22], whereas it cannot handle large data that does not fit into memory well.

Unlike LIBLINEAR that uses batch learning, STOCS uses online learning, where

training examples are shown to the learner one by one. STOCS only needs to store

support vectors without loading all training examples into memory, which motivates

us to plan to apply STOCS to handle big data classification. The possible solution is

that examples are randomly shown to the learner until the classifier can label a ran-

dom data collection correctly. Hence, it is possible that the training model achieves

convergence with loading a fraction of examples only. Furthermore, to avoid support

vectors cannot fit into memory and accelerate training speed, only the dominant sup-

port vectors are kept. This strategy is also used in the presented application for the

purpose of real-time processing.
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Our current approach can learn an online 1SVM model for each class, which

secures a compact area belonging to this class with high confidence. There is still a

large area in-between different classes that cannot be labeled with confidence. Figure

5.1(a) illustrates the simplest case, i.e. binary classification, where the two online

1SVMs cannot confidently classify data points between the two ellipsoids. To make

STOCS more powerful especially on reducing ambiguities on labeling the in-between

areas, we plan to further improve our current approach in the future. A possible route

is to incorporate STOCS as weak classifiers into the AdaBoost [24] learning scheme.

By applying AdaBoost, we can combine multiple weak classifiers, i.e. STOCS in our

case, into a single strong classifier, which integrates information of STOCS learned

from different training sets in different stages and may label the ambiguous areas with

confidence.
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