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Abstract

A natural question when dealing with problems that are computationally hard to solve

is whether it is possible to compute a solution which is close enough to the optimal

solution for practical purposes. The usual notion of "closeness" is that the value of the

solution is not far from the optimal value. In this M.Sc thesis, we will focus on the

generalization of this notion where closeness is defined with respect to a given distance

function. This framework, named "Structure approximation", was introduced in 2007

paper by Hamilton, Müller, van Rooij and Wareham [HMvRW07], who posed the

question of complexity of approximation of NP-hard optimization problems in this

setting.

In this thesis, we will survey what is known about the complexity of structure approx-

imation, in particular recasting results on Hamming approximation of NP witnesses in

the Hamilton/Müller/van Rooij/Wareham framework. Specifically, the lower bounds

in the NP witness setting imply that at least for some natural choices of the distance

function any non-trivial structure approximation is as hard to compute as an exact

solution to the original problem. In particular, results of Sheldon and Young (2013)

state, in the language of structure approximation, that it is not possible to compute

more than n/2 + nε bits of an optimal solution correctly in polynomial time with-

out being able to solve the original problem in polynomial time. Moreover, for some

problems and solution representations, even a polynomial-time algorithm for finding
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n/2−O(
√
n lnn) bits of an optimal solution can be used to solve the problem exactly

in polynomial time.

In addition to the lower bounds results, we will discuss algorithms and design tech-

niques that can be used to achieve some degree of structure approximation for several

well-known problems, and look at some traditional approximation algorithms to see

whether the approximate solution they provide is also a structure approximation.

We make a number of observations throughout the thesis, in particular extending

Hamming approximation lower bounds to edit distance approximation with the same

n/2 + nε parameters for several problems.

Finally, we apply these techniques to analyse the structure approximation complex-

ity of the Phrase Alignment problem in linguistics, in particular Weighted Sentence

Alignment (WSA) problem of DeNero and Klein [DK08]. We discuss several ways

of defining a natural witness for this problem and their implications for its structure

approximability. In a search of the most compact natural witness representation, we

define a still NP-hard restriction of the WSA, a Partition Weighted Sentence Align-

ment, and show that the n/2 + nε lower bounds for the Hamming distance and edit

distance apply in this case; this implies structure inapproximability of the WSA itself

with somewhat weaker parameters.
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Chapter 1

Introduction

1.1 Motivation

A computational problem is in the complexity class P when it is, colloquially speaking,

computationally easy. That is it has a worst case deterministic polynomial time algo-

rithm. A problem is in NP whenever, though it might be hard to find a solution, once

found it can be verified in polynomial time. Whether every computational problem

in NP can be solved in polynomial time, known as “P versus NP” problem, is a major

unresolved problem in theoretical computer science. The Clay Mathematics Institute

in Cambridge, MA, has named P versus NP one of its Millennium problems, and offers

$1 million to anyone who provides a verified proof. The class NP contains decision

versions of many important optimization problems occurring in practice. Some of

them are NP-complete, meaning they are as hard as anything else in NP.

For example, suppose an advertising company on Facebook is trying to determine the

biggest group of people who are friends with each other. To do that they need to solve

a well known NP-hard problem called Clique (a problem is NP-hard whenever it is as

hard as anything else in NP, but not necessarily in NP). Another beautiful problem
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is called Knapsack: there, we are given a set of items and we have to choose the

most profitable ones within a certain weight bound. This problem naturally occurs

in transportation. Sending a spaceship to space needs a calculated decision of which

items to take within a certain weight and size bound. It is not known how to solve

these problems efficiently in the worst case, and it is believed to be hard since they

are NP-hard. Sometimes the instances of problems occurring in practice are in some

respect bounded, making them amenable to parameterized complexity techniques, or

have enough structure for heuristics to work reasonably well. However, if we consider

the non-restricted, general worst-case setting for these problems, we cannot rely on

parameterized and heuristic methods for obtaining an exact solution. In this case,

we may still be able to reliably compute a solution that is close to an optimal; an

approximate solution.

What does it mean to find a solution close to the optimal one? There are many ways

of looking at it. The standard way is to find something that would be almost as

good as an optimal solution, when we are looking for a maximum clique in a graph

we may be content with a clique that has a number of nodes not much smaller than

the maximum. Standard notion of approximation is to get a solution that has value

almost as good as the optimal. But sometimes these approximation algorithms are

not exactly what we want.

A motivation from [HMvRW07, vRW12] was from cognitive psychology, where a nat-

ural task is to approximate belief systems. There, they do want approximated beliefs

to share as many commonalities as possible with the actual beliefs in an optimal so-

lution. In another paper [SY13], there was a beautiful example of the structure seen

on a tomogram. A radiograph (x-ray) of a selected layer of the body is made by

tomography. A tomogram is a two-dimensional image representing a slice or section

through a three-dimensional object. We are interested in reconstructing the three-
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dimensional structure of the object. Though given many x-ray images, the internal

structure can be determined, it is NP hard to compute. But we are not interested in

just something that resembles it superficially, we want to know what the structure

of the solution is as much as possible. That is, we would like to construct an object

with internal structure similar to that of the original object, as opposed to creating

an object which produces similar two-dimensional images. Therefore, a different no-

tion of approximation is needed here. This kind of approximation was introduced

by Hamilton, van Rooij, Müller and Wareham [HMvRW07], who named it Structure

approximation. Here, rather than focusing on the value of the solution, what we

really want to know is the structure of the solution. More precisely, they define the

notion of approximation in which there is an additional parameter, called the distance

function. Rather than comparing the value of a candidate solution to the value of a

optimal solution, they are looking at the distance between the two solutions according

to that distance function. The notion of approximation then becomes finding the clos-

est solution according the distance function. From the computer science perspective,

the most natural function to consider is the Hamming distance between solutions as

represented by binary strings. Most of the results we discuss concern the Hamming

distance setting.

1.2 Previous work

Many results in [HMvRW07] and the follow-up paper [vRW12] are stated and proven

for arbitrary distance functions or follow from the standard approximation results for

distance metrics correlated with solution values. In particular, they show that there

are no NP-hard problems with a structure analogue of FPTAS for an arbitrary func-

tion. Additionally, they state and prove a number of results with the distance function
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chosen to be the Hamming distance. This is a very natural metric for comparing how

"close" two solutions are, giving a sense of similarity of solutions. For example, in

the Hamming approximation for Max-3SAT a solution close to the optimal would be

considered a solution that differs from an optimal in few variable assignments, even

if these variable assignments dramatically decrease the number of satisfied clauses.

Considering only the Hamming distance metric, there have been several other results,

mainly providing lower bounds for such structure approximability of NP witnesses.

The reconstruction of a partially specified witness, considered in the 1997 paper by

Gal, Halevi, Lipton and Petrank [GHLP99], is probably the first result along these

lines. There, they show that it is possible to reconstruct a satisfying assignment to

a formula from N1/2+ε bits of a witness to a related (though larger) formula. Their

main proof technique relies on erasure codes, and in addition to SAT they consider

Graph Isomorphism, Shortest Lattice Vector and Clique/Vertex Cover/Independent

Set. In 1999, Kumar and Sivakumar [KS99] showed that for any NP problem there

is a verifier with respect to which all solutions are far from each other with respect

to Hamming distance: make the witnesses to be encodings of natural witnesses to

the original problem by some error-correcting code, the verifier decodes the witness

and then checks it using the original verifier. Then, list-decoding allows one to find a

correct codeword for the witness from a string that is within n/2 + n4/5+γ Hamming

distance from it. Following this, Feige, Langberg and Nissim [FLN00] show that

some natural verifiers (e.g., binary strings directly encoding satisfying assignments

for variants of SAT, encoding sequences of vertices for Clique/Vertex Cover, etc) are

often hard to approximate to within Hamming distance n/2−nε for some ε dependent

on the underlying error-correcting code. Guruswami and Rudra [GR08] improve this

ε to 2/3 + γ, but on the negative side argue that methods based on error-correcting

codes can only give bounds up to n/2−O(
√
n log n).



5

The recent paper of Sheldon and Young [SY13] settles much of the Hamming distance

approximation question, providing the lower bounds of n/2 − nε for any ε for many

of the problems considered in [FLN00], improving on upper bounds of n/2 for several

natural problems including Vertex Cover, and giving a surprising n/2 + O(
√
n log n)

lower bound for the universal NP-complete language. The latter result they extend

to existence of such very hard to approximate verifiers for all paddable (in Berman-

Hartmanis [BH77] sense) NP languages, improving on [KS99]. Their proof techniques

avoid error-correcting codes altogether, relying instead on search-to-decision (Turing)

reductions. For example, the n/2 − nε bound for SAT is achieved by showing how

to determine the value of the first variable correctly assuming the existence of such

approximation algorithm: add enough copies xi of the first variable x, together with

clauses xi = x, to overwhelm the nε factor, and recover the correct value for x from

the approximate solution by taking majority over xi’s. The proof of the better-than-

n/2 bound for the universal language relies on downwards self-reducibility as well,

though the algorithm is somewhat more involved. Most of the lower bounds results of

[SY13] have a slight generalization to randomized algorithms with good parameters.

We describe these results in more detail in chapter 3.

1.3 Our results

In this thesis, we summarize existing results about structure approximation, in partic-

ular recasting NP witness results in the structure approximation framework, as well as

make a number of observations. In particular, we generalize some Hamming distance

approximation results to the edit distance function, where edit distance dE(y, z) be-

tween strings y and z is the number of insert, replace and delete a symbol operations

needed to convert y into z. We also discuss upper bounds for structure approxima-
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tion, in particular noting that rounding-based Linear Programming algorithms such

as the famous linear programming algorithm for Weighted MinVertexCover do provide

a structurally close approximation with respect to Hamming distance. This suggests

Linear Programming framework as a potential toolbox for designing structure approx-

imation algorithms.

Additionally, we consider one problem from an applied area, linguistics, and analyse

its structure approximation complexity. The problem we have studied is the phrase

alignment (or, more precisely, weighted sentence alignment, WSA) problem. As ap-

proximating the structure of a witness depends on witness representation, we look at

the various ways to represent a solution to the weighted sentence alignment problem.

We define a restricted (albeit still NP-hard) version of WSA, which has a compact

solution representation, and show that n/2− nε lower bounds for Hamming distance

and edit distance of SAT translate into the same lower bounds for this problem. For

WSA itself this gives us somewhat weaker bounds of n/3−nε. A paper based on these

results together with the edit distance structure approximation has been accepted for

presentation at the CiE’2014 conference.

The organization of the chapters are as follows. Chapter 2 cover preliminaries and

value approximation framework, lower bounds for structure approximation are pre-

sented in chapter 3, upper bounds in chapter 4, and the application to the phrase

alignment problem in chapter 5. The concluding chapter contains discussions and

future directions.



Chapter 2

Various approaches to

approximation

There are many important combinatorial problems for which no efficient algorithm

for computing the optimal solution is known. Many of these problems are NP-hard,

and thus no polynomial-time algorithm can solve them optimally unless P=NP .

Definition 1. The class P of polynomial-time decidable languages is P = ⋃
k≥1 Time(nk),

k is a constant.

Here, if f : N→ N is a function, then Time(f(n)) = {L|there exists a Turing machine

M which decides if x ∈ L in at most f(n) for n = |x| steps for every possible input

x}. So f(n) bounds worst-case running time of these Turing machines over all inputs

of size n.

P is known to contain many natural problems, including the decision versions of

linear programming, calculating the greatest common divisor, and finding a maximum

matching.

Definition 2. Let L ⊆ Σ∗. We say L ∈ NP if there is a two-place predicate R ⊆

7
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Σ∗×Σ∗ such that R is computable in polynomial time, and such that for some c, d ∈ N

we have for all x ∈ Σ∗, x ∈ L⇔ ∃y ∈ Σ∗, |y| ≤ c|x|d and R(x, y).

Definition 3. [AB09] We say a language A ⊆ {0, 1}∗ is a polynomial-time (Karp)

or many-one reducible to a language B ⊆ {0, 1}∗, denoted by A ≤p B, if there is a

polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈

{0, 1}∗, x ∈ A if and only if f(x) ∈ B. We say that B is NP-hard if A ≤p B for every

A ∈ NP. We say that B is NP-complete if B is NP-hard and B ∈ NP.

It is easy to see that P ⊆ NP, since R(x, y) can ignore y and just run the polynomial-

time algorithm to check if x is in the language .

Definition 4. Decision problems are a class of computational problems with yes/no

answer, or, equivalently the class of languages over a given alphabet.

Both P and NP are classes of decision problems. For example, determining whether

a graph is complete is in P (given an undirected graph, determine if every edge is

present: O(n2) algorithm achieves that). However, a problem of determining if there

is a subgraph of size k, which is a complete graph, -also called the Clique problem

(such a subgraph is called a clique)-is NP-complete. Here, the inputs are an undirected

graph G and a size parameter k. In both of these cases, the output of the algorithm

is either a Yes or a No.

Definition 5. In an NP search problem, given an input x ∈ {0, 1}∗ the goal is to

compute an answer y ∈ {0, 1}∗ such that R(x, y) from the definition of the language

holds, if such a y exists.

For example, the Clique search problem would be to return a set of vertices of size k

that form a clique in the input graph.
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Definition 6. An optimization problem (either maximization or minimization) is a

variant of a search problem in which there is an additional requirement that the y

returned by the algorithm not only has to satisfy R(x, y) (be a candidate solution),

but also has to be optimal (minimal or maximal as stated in the problem definition)

according to some value function val(x, y).

Maximum Clique problem (Max-Clique) could be a common example of an NP-hard

optimization problem: given a group of vertices some of which have edges between

them, the maximum clique is the largest subset of vertices in which each point is

directly connected to every other vertex in the subset. In the decision version of the

problem, Clique, given a parameter k, we are asking if there is a clique with ≥ k

vertices. By contrast, in the optimization version of this problem, Max-Clique, we are

given a graph and asked to output the actual set of vertices comprising the largest-size

clique. Given such a set, we can check that it is a clique in polynomial time by the

same algorithm that checks if a graph is complete; however, we don’t know how to

check that this is a largest such subset. Max-Clique is a maximization problem; every

clique in the graph is a candidate solution, and the value function is the number of

vertices in the clique.

When we want to solve a problem in “real life” we are usually interested in finding a

solution, not just knowing if one exists. Yet for the definitions of complexity classes

we have always formulated problems in terms of decision, meaning we pose a question

and want to know whether the answer is “yes” or “no”. In fact, for every NP problem

we consider, there is a corresponding search problem. However, if P = NP then any

NP search problem can be solved in polynomial time, and for most problems there

are polynomial-time search-to-decision reductions (that is, a search problem can be

solved with polynomially many calls to the decision problem solver).
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2.1 Approximation algorithms

A heuristic model is a computational method that uses trial and error methods to

approximate a solution for computationally difficult problems. Heuristics usually do

not provide a guarantee that a computed answer is close to an optimal solution, or

that they will finish running in polynomial time, however they are typically simple

and can be empirically useful.

This method can be useful for problems we don’t care about the optimality of the

solution, rather we only care about the speed at which the solution is produced.

At this instant the question that arises is; what should we do when difficult problems

come along, for which we don’t expect to find polynomial-time algorithms, and yet

want some guarantee of the accuracy of the solution? Algorithms that have exponen-

tial running time are not effective, if the input size is not really small. As a result,

we need to look for an approximate solution, since the optimal solution is not within

our reach. Moreover, we would like to have a guarantee of being close to it. As an

example, we can have an algorithm for Euclidean TSP that always develops a tour

whose length is at most a factor ρ times the minimum length of a tour, for a small

value of ρ. An algorithm that produces a solution, which is ensured to be within some

factor of the optimum, is called an approximation algorithm. See the formal definition

in the next section.

Historically, approximation algorithms were first discovered even before the notion

of NP-completeness came up. Vazirani [Vaz01] credits Vizing [Viz64] (minimum edge

coloring problem), Graham [Gra66] (minimum makespan problem), and Erdös (MAX-

CUT problem) for being the first to come up with the concept of approximation

algorithms, though the first approximation algorithm is often credited to Graham

[Gra66]. The notion of an approximation algorithm was formally introduced by Garey,

Graham, and Ullman [MGU72] and Johnson [Joh73].
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As mentioned earlier, NP-hard problems have no polynomial time algorithms unless

P = NP and, to find a solution to those problems one possible way is to use an

approximation algorithm that will return a solution within some factor of the optimum

or exact solution. Approximation algorithms allow finding solutions to some NP-hard

industrial problems fast and with some guarantee of closeness to the optimal.

So, the performance of an approximation algorithm is an important issue. While it

is assumed that every approximation algorithm is polynomial-time, there exist a lot

of polynomial algorithms that can be inefficient and impractical. So, in order to get

a better approximation bound one can invest more running time to the algorithm.

From this trade-off between approximation result and running time the notion of

approximation schemes arise[Hoc97].

PTAS (polynomial time approximation schemes) and FPTAS (fully polynomial time

approximation schemes ) are common types of those approximation schemes. As we

may guess the better the approximation, the larger may be the running time. A

problem has a PTAS if the running time is polynomial in the size of the input and a

problem has a FPTAS if the running time is polynomial both in size of the input and

the inverse of the performance ratio (1/ε) [ACG+99]. So, the classes of problems that

have FPTAS are contained in classes of problems that have PTAS, with the FPTAS

being the best possible type of an approximation algorithm.

The classical notion of approximation is that of finding a solution with a value close

to the optimal. Many problems have such algorithms, though some cannot be ap-

proximated that well in this context. More precisely, we define value-approximation

as follows, following [HMvRW07].

Definition 7 (Value-approximation algorithm). If the value of a solution produced by

an algorithm A on input x, val(x,A(x)), is always within some predefined absolute or

relative factor of the optimal solution value on input x, optval(x), then we refer to A
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as value-approximation algorithm. More formally, a value-approximation problem π

consists of a 4-tuple: the set of valid inputs (instances) I, a set of candidate solutions

cansol, a value function val(x, y) and a “goal”, specifying whether the value function

has to be minimized or maximized.

Some variants of value-approximation are defined as follows:

Definition 8 (Additive value-approximation (v-a-approx) algorithm). Given an op-

timization problem π and a non-decreasing function h : N → N , an algorithm A is

a polynomial time h(|x|) additive value-approximation (v-a-approx) algorithm for π

if for every instance x of π, |optval(x)− val(x,A(x))|) ≤ h(|x|) and A runs in time

polynomial in |x|.

Definition 9 (Ratio value-approximation (v-r-approx)algorithm). Given an opti-

mization problem π and a non-decreasing function h : N → N , an algorithm A is

a polynomial time h(|x|) ratio value-approximation (v-r-approx)algorithm for π if for

every instance x, R(x,A(x)) ≤ h(|x|), where R(x,A(x)) = optval(x)
val(x,A(x)) (if π is a maxi-

mization problem) or val(x,A(x))
optval(x) (if π is a minimization problem), and A runs in time

polynomial in |x|.

2.2 Complexity of value approximation

How good can an approximation algorithm be? Different problems have different

approximation ratios (some have PTAS while others have constant-fraction lower

bounds). For example, MAX-3SAT cannot have better than 7/8-approximation un-

less P = NP, whereas Knapsack can be approximated arbitrarily well. The types of

techniques that have been successful for developing approximation algorithms include

greedy algorithms, dynamic programming and linear/semidefinite programming.
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2.3 Representative problems

In this section, we will list the definitions of the problems that will be used throughout

the rest of this thesis. The lower and upper bounds shown here are cited from the com-

pendium of NP optimization problems (http://www.nada.kth.se/∼viggo/problemlist/)

and [ACG+99].

Problem 1 (Clique and Max-Clique). A clique in an undirected graph G = (V,E) is

a subset of the vertex set C ⊆ V , such that for every two vertices in C, there exists an

edge connecting the two. The Clique decision problem Clique(G, k) is, given a graph

G and an integer k, to find if G contains a clique of size at least k. The optimization

problem Max−Clique(G) is to find a clique in G with maximum number of vertices.

Max-Clique is approximable within O(|V |/(log|V |)2) but not approximable within |V |1/2−ε

for any ε > 0.

Problem 2 (Independent set and Max-IndependentSet). An independent set in a

graph G is a set I ⊆ V of vertices of G such that for all u, v ∈ I, (u, v) /∈ E. The

decision problem IndependentSet(G, k) is to check whether G contains an independent

set with at least k vertices; the optimization problem Max− IndependentSet(G) asks

to return an independent set with the maximum number of vertices.

As Clique and IndependentSet are closely related (a clique in a graph is an independent

set in its complement), the approximation ratio of Max-IndependentSet is the same

as for Max-Clique.

Problem 3 (Vertex cover and Min-VertexCover). Given an undirected graph G =

(V,E), a subset A ⊆ V is a vertex cover of G if every edge in G has at least one

endpoint in A. Finding whether graph G has a vertex cover of size at most k is the

VertexCover decision problem; finding a vertex cover of minimum size is the opti-

mization problem Min-VertexCover. VertexCover is closely related to both Clique and
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IndependentSet problem.

Minimum vertex cover is approximable within 2− loglog|V |2log|V | and 2−2lnln|V |
ln|V |

(1−o(1)).

Problem 4 (Ham-Path and LongestPath). A Hamiltonian path is a path that passes

once and exactly once through every vertex of graph G. Determining whether a Hamil-

tonian path exists in undirected (sometimes directed) graph G is called the Ham-Path

problem.

The related optimization problem is the longest path problem, that is the problem of

finding a simple path of maximum length in a given graph. A path is called simple if

it does not have any repeated vertices; the length of a path may either be measured by

its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

Problem 5 (Max-Cut and Weighted Max-Cut). In graph theory, a cut is a partition

of the vertices of a graph into two disjoint subsets. A size of a cut is the number of

edges between vertices in different subsets; in a weighted graph, sum of weights of these

edges. The Max-Cut optimization problem (respectively, Weighted Max-Cut) asks to

return a cut with the maximum number of edges (respectively, with the maximum sum

of weights of edges) crossing the cut. The decision version asks for the existence of a

cut of size (weight) at least k for a given parameter k.

Max-cut is approximable within 1.1383.

Problem 6 (Knapsack). Given a set of items, each with a weight and a value, deter-

mining whether or not to include each item in a collection so that the total weight is

less than or equal to a given limit and the total value is as large as possible is called

a knapsack problem. That is given {(w1, p1)....(wn, pn)}, B, find S ⊂ {1, ..n} such

that
∑

i∈S
wi ≤ B and

∑
i∈S

Pi is maximized; the decision version is testing for an

existence of a solution with the value at least a given parameter.

Knapsack has an FPTAS. Note, a problem has FPTAS if the running time is polyno-

mial both in size of the input and the inverse of the performance ration(1/ε).[ACG+99].
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Problem 7 (SAT, 3-SAT, MAX 3-SAT; NAE-SAT, NAE-3SAT). A propositional

formula (that is, a formula where all the variables have values true or false) is in

CNF(Conjunctive normal form) if it is a conjunction (AND) of disjunctions, called

clauses, of literals (variables or their negations). SAT is the problem of deciding if a

propositional formula has a satisfying assignment (an assignment of true/false values

to variables that makes the formula true).

The version of the SAT problem in which every clause has 3 literals is called 3-SAT.

3-SAT is called a MAX 3-SAT if given a 3-CNF formula φ (i.e. with at most 3

variables per clause), the task is to find an assignment that satisfies the largest number

of clauses.

In NAE-SAT, a satisfying assignment requires to have a special condition, namely

that for every clause not only one variable is set to be true by this assignment, but

also one variable per clause is set to false. NAE-3SAT is the special case of NAE-SAT

where each clause has exactly 3 variables.

Problem 8 (Weighted sentence alignment (WSA) and Max-WSA). A sentence e

is represented by a set {eij} of spans from between-word positions i to j in e; f is

represented by {fkl} in the same fashion. A link is an aligned pair of phrases (eij, fkl).

In a weighted setting, there is an additional function φ : {(eij, fkl)} → R assigning a

weight to each link. A total weight of an alignment is a product of the weights of its

links. Given (e, f, φ), the WSA problem is to decide if there is an alignment a with

φ(a) ≥ 1. The optimization Max-WSA problem is to find a highest weight alignment.
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2.4 Techniques for proving value inapproximabil-

ity

While it is not easy to design approximation algorithms for most of the NP-hard opti-

mization problems, it is a difficult job to show that computing approximate solutions

is also hard. The PCP theorem, which was discovered in 1992 by Arora, Safra [AS92]

and Arora, Lund, Motwani, Sudan and Szegedy [ALM+92], gave a new definition of

NP and is useful for proving hardness of approximation results. In particular, it shows

that for many NP-hard optimization problems, computing an approximate solution is

as hard as computing the exact solution(unless P = NP). [AB09]

The PCP theorem has two views. The first one characterizes the NP problems by

defining the PCP class in terms of prover-verifier games and the second one deals with

the hardness of different NP-hard optimization problems. We will briefly talk about

these two views in the following.

Recall how NP was defined in Definition 2 on page 7. Arora and Safra [AS92] used a

generalization of the definition of NP to define the class PCP, consisting of languages

that have witnesses that can be checked by a probabilistic verifier that has oracle

access to the membership proof, is allowed to use r random bits, and allowed to query

q bits from the oracle.

Definition 10. A verifier V is an (r, q)-restricted verifier if for any input x, witness

w, and random string π of length O(r), the decision whether V w(x, π) = ”yes” is

based on at most O(q) bits from the witness w.

Now we will give the definition of the PCP class.

Definition 11. A language L belongs to the class PCPc,s[r, q, d] if there exists an

(r, q, d)-restricted verifier V with the properties that
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1. For x ∈ L, Prρ[V π accepts (x, ρ)] ≥ c for some π.

2. For x /∈ L, Prρ[V π accepts (x, ρ)] < s for all π.

where π is the random string of length r. Here, d is the alphabet size of the input.

If we only consider binary string then d = 2. When d is omitted, assume binary

alphabet.

We call c the completeness and s the soundness of the verifier. When c = 1, we say

that the verifier has perfect completeness.

The following relation of NP with PCP is from [ALM+92]. It proves that membership

for NP-languages can be probabilistically checked by a verifier which uses logarithmic

amount of randomness. It always accepts a correct proof (c = 1) and rejects incorrect

proofs with probability at least 1/2 (s = 1/2).

Theorem 1. [ALM+92][AS92]

NP = PCP[O(log n), O(1)].

Another view of the PCP theorem, which deals with the hardness of approximation

shows that for many NP hard problems finding a good approximate solution (where

the notion of “good” is different for different problems) is as hard as finding an exact

solution. Here, we will show an example for Max-3SAT (see Section 2.2 for definition),

for which until 1992 it was not known whether it has a polynomial time approximation

algorithm or not. The PCP theorem shows that it does not have such algorithm (unless

P = NP). [AB09] state this as follows:

Theorem 2. (PCP theorem: Hardness of Approximation view)[AB09]

There exists ρ < 1 such that for every L ∈ NP there is a polynomial-time function f

mapping strings to (representations of) 3CNF formulae such that:

1. x ∈ L⇒ val(f(x)) = 1
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2. x /∈ L⇒ val(f(x)) < ρ .

The above theorem implies a corollary that says that if for some constant ρ < 1 there

exists a polynomial time approximation algorithm for Max-3SAT, then P = NP.

This motivates the notion of gap problems.

Definition 12. Let ρ ∈ (0, 1). The ρ-GAP 3SAT problem is to determine, given a

3CNF formula π, whether:

1. π is satisfiable, in which case we say π is a YES instance of ρ-GAP 3SAT.

2. val(π) ≤ ρ, in which case we say π is a NO instance of ρ-GAP 3SAT.

An algorithm A is said to solve ρ-GAP 3SAT if A(π) = 1 if π is a YES instance of

ρ-GAP 3SAT and A(π) = 0 if π is a NO instance.

The PCP theorem implies hardness of approximation results for many more problems,

in particular Max-IndependentSet and Min-VertexCover:

Theorem 3. There is some γ < 1 such that computing a γ-approximation to Min-

VertexCover is NP-hard. For every constant ρ < 1, computing a ρ-approximation to

Independent set is NP-hard.

A proof of a weaker version of the PCP theorem showing that every NP statement has

an exponentially-long proof that can be locally tested by only looking at a constant

number of bits can be done using error correcting codes such as Walsh-Hadamard

code.

2.5 Structure Approximation

Though the standard notion of approximation is the value-approximation, where a

solution is defined as a good one if it is close enough to an optimal solution in its value,
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this notion is not the only way to define approximation. Indeed, for some applications,

as discussed in the introduction, a different notion is more appropriate. A general such

notion, called “structure approximation", was introduced by Hamilton, Müller, van

Rooij and Wareham in their paper "Approximating solution structure" [HMvRW07].

There, they allow an arbitrary function, given as part of the description of a problem,

to denote the distance between candidate solutions. For example, a solution can be

considered a good approximation if it is within a small Hamming distance of some

optimal solution, or has a small Euclidean distance to an optimal solution when

solutions are represented as a point in space. Note that value-approximation is a

special case of structure approximation, with the distance function being the ratio

between solution values. Naturally, for different distance functions the complexity of

structure approximation could be quite different.

The following definitions are due to [HMvRW07]. Note that in this definition the

distance function is required to be integer-valued.

Definition 13 (Solution distance(sd) function). A solution distance function (sd-

function) is a function d : Σ∗ × Σ∗ → N associated with an optimization problem Π

such that for an instance x of Π and candidate solutions y, y′ ∈ cansol(x), d(y, y′) is

the distance between these solutions.

We assume, following [HMvRW07], that the sd-function d is a always a metric. That

is, it has the following four properties:

1. For all y, d(y, y) = 0

2. For all distinct y and y′, d(y, y′) > 0

3. For all y and y′, d(y, y′) = d(y′, y) (symmetry)

4. For all y, y′ and y′′, d(y, y′) ≤ d(y, y′′) + d(y′′, y′) (triangle inequality)
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Definition 14 (Structure-approximation algorithm). Given an optimization problem

Π, a sd-function d, and a non-decreasing function h : N → N, an algorithm A is

a polynomial-time h(|x|)/d structure-approximation(s-approx) algorithm if for every

instance x of Π, d(A(x), optsol(x)) ≤ h(|x|) and A runs in time polynomial in |x|.

Most of the results presented in [HMvRW07, vRW12] concern Hamming distance as a

distance function in the structure approximation setting. To our knowledge, this is the

only sd-function that has been studied in other literature, albeit in a different context

and in the following section we will survey the known results about the complexity

of Hamming distance approximation. However, [HMvRW07] also considered several

other functions (in particular, edit distance, characteristic function with 1 on the

optimal solution and 0 on all others, and several constructed examples), and proved

a number of results about the general setting. We will discuss their results in the

corresponding sections of the next two chapters.

Definition 15 (Hamming distance). The Hamming distance between two strings of

equal length is the number of positions at which the corresponding symbols are different.

[HMvRW07, vRW12] asks for actual solutions, as opposed to strings close to the

optimal. So inapproximability results for strings or codes still hold, but positive

results might not. In [HMvRW07, vRW12] settings, an algorithm must return a

valid (though not necessarily optimal) solution, and most NP-witness papers allow

arbitrary strings. Although this does not matter for some problems (e.g., SAT), it

makes a difference for problems like Max-Clique, where to be a candidate solution a

set of vertices must form a clique, rather than just be a set.

[HMvRW07] also define analogues of value-approximation and a notion of structure

approximability preserving reduction that can be used to compare languages by hard-

ness of structure approximability.



21

In the next section we will show an example of a problem with a good value-approximation

algorithm, which however fails to achieve any significant structure approximation.

2.6 Example: Knapsack

Let us look at a specific example of the Knapsack problem, defined on on page 14 .

We will show that existing value approximation algorithms for this problem do not

give a good structure approximation.

Example 1. Let us consider a scenario where a burglar is trying to steal something

from a jewelery shop. The burglar has a Knapsack and that can carry a certain weight,

B=12.

The jewelery shop has some expensive items for the burglar to choose from. Each item

is associated with a certain weight and profit.
Weight and profit breakdown for each item

Weight Profit

Item A 5 2

Item B 2 3

Item C 3 4

Item D 6 5

The following dynamic programming algorithm determines the value of the best so-

lution to the Knapsack problem:

• Let MaxP = profit of most valuable item; in the example above 5 (item D).

• Set n∗MaxP = upper bound on the profit that can be achieved by any solution.

• For each i ∈ 1, ...., n and p ∈ 1, ...., nP , let Si,p denote a subset of 1, ...., i whose
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total profit is exactly p and whose total weight (that is, sum of weights of

elements of Si,p) is minimized.

• Let A(i, p) denote the weight of the set Si,p (A(i, p) =∞ if no such set exists).

A(i+ 1, p) =


min{A(i, p), wi+1 + A(i, p− pi+1)}, ifpi+1 ≤ p

A(i+ 1, p) = A(i, p) otherwise

See the resulting solution table for the problem in the example 1 below.

Item# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 ∞ 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 ∞ 5 2 ∞ 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 ∞ 5 2 3 7 8 5 ∞ 10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ 5 2 3 6 8 5 8 9 13 14 11 ∞ 16 ∞ ∞ ∞ ∞ ∞ ∞

Table 2.1: Knapsack: solution table

As the burglar could carry items with weight less or equal to 12, the solution table

shows that the burglar can take the items weighing up to 11, will be most profitable

for him. To find this number, scan the last line of the table backwards from n×maxP

until a cell with the value smaller than the capacity is found. To find the actual set,

use the algorithm below:

Let A[i, P ] be the maximum value of items that can be placed in the Knapsack.

Let n = i and m = P

S = ∅

for n = i downto 1

if A[n,m] 6= A[n− 1,m] then

S = S ∪ An

m = m− wi

return S
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Coming back to our example, it is easy to see that the items that can be placed in

the Knapsack with maximum profit achieved are items B, C and D.

It can easily be seen that if the profits of objects were small numbers that is polyno-

mial in n, the algorithm above is a polynomial algorithm. However, if the profits are

exponentially large, in that case the running time of the algorithm will be exponen-

tially big making it infeasible. However, this algorithm can be turned into an FPTAS

for Knapsack; we will follow [Vaz01] in the description of the algorithm below.

The idea of the FPTAS is to use rounding to make the profits of the objects smaller

than the original so that the modified profits can be viewed as numbers bounded by

a polynomial in n and 1/ε. This will also ensure the profit is at least within (1-ε) of

the optimum solution. The FPTAS algorithm for KNAPSACK is given below:

• Given ε > 0 , let K = εMaxP

n

• For each object i, define p′i =
⌊
pi
K

⌋

• Using these as profits of objects, apply dynamic programming algorithm above

to find the most profitable set, S ′.

• Output S ′.

Example 2. Suppose 4 items are given each with a profit and weight given below,

and B = 12. Suppose also that we want to find a solution within 0.5 of the optimum

solution. So, ε = 0.5.
Weight and profit breakdown for each item

Weight Profit

Item A 3 500

Item B 6 750

Item C 4 450

Item D 2 1000
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Here,

MaxP=1000 K = 0.5×1000
4 = 125

With this K we will modify the actual profit.
Weight and Modified profit

Weight Profit

Item A 3 4

Item B 6 6

Item C 4 3

Item D 2 8
Now using the above breakdown for each item, using the dynamic programming will

give us the approximate solution for this KNAPSACK problem.
Item# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 .. 32

1 ∞ ∞ ∞ 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ 3 ∞ 6 ∞ ∞ ∞ 9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 ∞ ∞ 4 3 ∞ 6 7 ∞ 10 9 ∞ ∞ 13 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ 4 3 ∞ 6 7 2 10 9 6 5 13 8 ∞ ∞ 12 11 ∞ ∞ 15 ∞ ∞

Table 2.2: Knapsack: solution table for the newly obtained profits

From this solution table it can easily be seen that the maximum modified profit one

can get while staying within weight bound B=12 is 18. So, by using the algorithm

shown in the previous example, we get that the optimal solution consists of items A,

B and D.

The algorithm described above gives a very good approximation of the value of the

optimal solution. However, would it translate into the structure of the solution being

similar, that is, would the set computed by the FPTAS algorithm have a large overlap

with the optimal solution set? Below we present a counterexample showing that such

approximate solution can be completely disjoint from the optimal solution.

Example 3. Consider an instance of Knapsack consisting of 2n elements {a1, a2, ..., an}

and {b1, b2, ..., bn} with weights w(ai) = w(bi) = 2i; let the capacity be B = 2n+1 − 1.
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Thus, an optimal solution would contain exactly one of ai or bi for any i. Now, set

ais to have profit pai = 22n−i and bis to have profit pbi = 22n−i + 1.

So, the optimal solution is {b1, b2, ..., bn}, but since K = εMaxP

n
, an approxima-

tion algorithm will round according to p′i =
⌊
pi
K

⌋
formula which for K ≥ 2 makes

p′ai =
⌊
pbi
K

⌋
=
⌊
pai
K

⌋
= pbi. But in this case the algorithm can not differentiate be-

tween returning {b1, b2, ..., bn} and returning {a1, a2, ..., an} after rounding, and may

therefore return a solution {a1, ...an}, which has no elements in common with the

optimal solution.

That is, the Hamming distance between a binary string encoding the optimal solution

and a binary string encoding the approximate solution for this input is the maximal

possible, 2n.



Chapter 3

Lower Bounds/ Inapproximibility

results

There are several papers that analyze the complexity of structure approximation

with respect to Hamming distance, in particular in the context of NP witnesses

[GHLP99, KS99, FLN00, SY13]. The majority of them present inapproximability

results. Structure approximation with respect to an arbitrary distance function, to

our knowledge, has been considered only by Hamilton, van Rooij, Müller and Ware-

ham [HMvRW07] and in the follow-up paper by van Rooij and Wareham [vRW12].

In addition to the results in the general setting, [HMvRW07, vRW12] present several

results on value-related distance functions, as well as Hamming and edit distances.

The following two sections cover some of the general inapproximability results from

[HMvRW07, vRW12]. After that we proceed surveying the body of work on Hamming

distance approximation. We will finish the chapter with some of our results concerning

edit distance function.

26
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3.1 Basic distance functions

Depending on a specific problem and a chosen distance function, a solution which is

close to an optimal solution in structure may or may not be as close to an optimal so-

lution in value. For example, in MaxClique with Hamming distance function between

vectors indicating whether a vertex is in a clique, a solution structurally close to an

optimal one agrees with the optimal on a large number of vertices. As a subset of a

clique also forms a clique, and since the value of a solution is the number of vertices

in a clique, a large subset of a clique is a large clique, giving closeness in value. But

consider an instance of SAT where every clause contains the same variable y together

with another variable xi (so φ = ∧m
i=1(xi ∨ y). Now, an assignment that sets y = true

and all xi = false satisfies this formula. However, there is an assignment with Ham-

ming distance 1 from the optimal, setting y = false, which would falsify every clause.

Also, already for MaxClique closeness in value does not imply closeness in structure.

[HMvRW07, vRW12] present other examples where two notions are uncorrelated for

the Max-Cut and TSP problem.

3.1.1 “Characteristic” distance functions

Structure approximation framework generalizes notions of solving decision and op-

timization problems, as well as traditional value approximation. Indeed a decision

problem can be viewed as a structure approximation problem with distance function

d(y, optsol) = 1 if y is not a correct witness for x and d(y, optsol) = 0 otherwise.

For example, in the Knapsack problem, dx(y, z) can be designed as follows: Let

x = 〈(w1, p1), ..(wn, pn), B, P 〉 be an instance of decision version of Knapsack. Let

dx(y, z) = 0 if y, z ∈ cansol and either both y and z have profits greater than the

threshold P or both have profit less than P . Let dx(y, z) = 1 otherwise. Now, any
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approximation within d(y, optsol) < 1 has to have y as a witness. When there are no

assumptions about d(y, z) being efficiently computable, optimizations problems can

be similarly recast as structure approximation with the distance between two optimal

or two non-optimal solutions being 0, and 1 otherwise.

To define an optimization problem in this context, use a (not efficiently computable

unless P = NP ) distance function such that dx(y, z) = 0 iff y and z are both optimal

solutions or y = z, and dx(y, z) = 1 otherwise. Note that here we allow the distance

between distinct solutions to be 0; if this presents a problem with the definition of a

distance function as a metric, choose it to be a very small ε instead. Alternatively,

[HMvRW07] use dx(y, z) = 0 iff z = y and dx(y, z) = 1 otherwise.

Note that for all these functions NP-hardness of structure approximation follows triv-

ially from NP-hardness of the original problem for any parameter smaller than (arbi-

trary defined) the distance between optimal and non-optimal solutions, and is trivially

approximable for a value larger than this parameter.

3.1.2 Value-related distance functions

In general, we can not have the notion of structure approximation where closeness in

value implies closeness in structure or vice versa. However in some cases the distance

function is closely enough correlated with the value difference, so that approxima-

bility and inapproximability in these contexts become related. The following lemma

(Lemma 14 for the lower bound and Lemma 17 for the upper bound in [HMvRW07])

outlines this correspondence.

Call a function f : Σ∗×N→ N non-decreasing if it becomes a non-decreasing function

N→ N when its first argument is fixed.

Lemma 3.1.1. [HMvRW07] Let f : Σ∗ × N → N be non-decreasing and Π an opti-

mization problem; let d be an arbitary distance function. Then
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• If ∀x and ∀y ∈ cansol(x), the value difference between y and the nearest op-

timal solution is bounded by a (non-decreasing function of) the distance, that

is, |optval(x) − val(x, y)| ≤ f(x, d(y, optsol(x))), then for any function h(|x|),

a h(|x|)/d-s-approximation algorithm for Π produces a value within f(x, h(|x|))

additive factor and within 1 + f(x, h(|x|)) ratio of the optimal. Thus, a lower

bound on value approximation for Π implies a lower bound for the structure

approximation with respect to such d.

• If ∀x and ∀y ∈ cansol(x), the distance between y and an optimal solution is

bounded by a (non-decreasing function of) the value, that is, d(y, optsol(x)) ≤

f(x, |optval(x)− val(x, y)|), then value-approximating Π within an additive (re-

spectively, multiplicative) factor of h(|x|) gives an f(x, h(|x|))/d s-approximation

(respectively, f(x, optval(x) · (h(|x|) − 1))/d s-approx ) algorithm for Π. That

is, an upper bound on the value approximation gives an upper bound on the

structure approximation of Π.

The proofs follow by direct calculations.

The following corollary gives an immediate structure inapproximability for Max-

Clique with respect to the Hamming distance function dH from the |V |1/2−ε lower

bound on the value-approximation of Max-Clique, based on the PCP theorem.

Corollary 1. Max-Clique is not |x|1/c/dH s-approximable for any c ≥ 6 unless P = NP.

Note that even in case when the value is defined in a non-standard way, Lemma 3.1.1

gives inapproximability.

Corollary 2. Consider a version of the Max-Clique problem where sd-function is

standard, but value function val(x, y) is 5 if y is a maximum clique, 4 if y is an empty

set and 0 otherwise. This version of Max-Clique is not |x|1/c/dH s-approximable for

any c ≥ 10 unless P = NP.
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3.2 General distance functions

The following results apply to any positive integer-valued metric distance function.

3.2.1 Self paddablity

One technique that was used by [HMvRW07, vRW12] to prove inapproximibility for

general functions is self-paddability. Here the original instance x of Π is augmented

with a polynomial amount of padding, so that the result is another instance x′ of

the same optimization problem Π. A candidate solution to this new instance x′ can

be interpreted as a tuple 〈y1, . . . , yh(|x|)〉 of h(|x|) candidate solutions to the original

instance. The solution is optimal if each candidate solution in the tuple is optimal.

Otherwise the distance of the solution to the optimal is the sum of distances of each

candidate solution yi to an optimal solution of x. To avoid trivial cases, computation

of a padded instance x′ from x and h(|x|), as well as decoding of the solution to the

original instance must be in polynomial time.

The following theorem uses this idea to give a “list-decoding” algorithm for computing

an optimal solution to x given an algorithm that computes a close enough solution to

the padded instance. For the chosen parameters below, at least one solution in the

tuple of the answers to the padded instance will be optimal for the original instance.

Just like in the list decoding setting, it is enough to go through the (sufficiently short,

i.e. polynomially long) list of possibilities to find a solution that works.

Theorem 4. [HMvRW07, vRW12] Let Π be an NP-optimization problem that is h(|x|)-

self-paddable (described in previous paragraph), where h is polynomially bounded. Let

d be an integer valued sd-function, and let c : N → N be such that c(|x′|) < h(|x|),

where x′ is the padded instance. If Π is c(|x|)/d-s-approximable and the decision

version ΠD of Π is NP-hard, then P = NP.
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We interpret the decision problem as an optimization problem; all solutions of the

decision problem will be in optsol(x). For example, if ΠD is the Knapsack problem,

then all candidate solutions to x of value less than the profit bound are in optsol(x),

when x is interpreted as an instance of the corresponding optimization version of the

Knapsack problem.

Suppose there exists an algorithm A that gives c(|x|)/d-s-approximation for Π. Let x′

be the padded instance. Compute y = A(x′) and decompose y into {y1, y2, ...., yh(|x|)}.

Now since both c and d are positive integer valued and c(|x′|) < h(|x|), at least one

yi has distance 0 from an optimal solution, and thus is optimal. Now to find this

yi compute the value of every solution in {y1, y2, ...., yh(|x|)} and take the best one.

Since |x′| is polynomial in |x|, and A runs in time polynomial in |x′|, A finds y in

time polynomial in |x|. As decoding y and evaluating val(yi) takes polynomial time,

and there are h(|x|) (polynomially) many of yis, finding the optimal yi also takes

polynomial time. Thus, using A one can decide Π in polynomial time, contradicting

the assumption that ΠD is NP-hard (unless P = NP).

Lemma 3.2.1. [vRW12] Let Π be an NP-hard problem, and d an arbitrary integer-

valued distance function. Suppose that for an α ∈ N, α ≥ 1, the problem Π is nα-

self-paddable, where n is the length of the instance. Suppose also that the padding is

compact, that is, the size of the padded instance padsize(x, nα) ∈ O(nα+r) for some

constant r. Then for any ε, 0 < ε ≤ 1, an n1−ε/d s-approximation for Π can be used

to recover an optimal solution to Π for some α.

Proof. The idea of the proof is to use theorem 4 with g(x) = n1−ε and h(x) = nα; if

we can show that the padding is small enough that is g(padsize(x, nα) < nα, then by

Theorem 4, a g(x)/d s-approximation algorithm can be used to recover an optimal

solution to Π. The calculation below is used to define α as a function of ε, r and the

constant hidden in the O-notation. For the latter, let us state the limit on padding
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size as padsize(x, nα) ≤ cnα+r for some c ≥ 1 and r ≥ 0. Now, applying g to the

padsize and bounding by h, we obtain the following:

(cnα+r)1−ε < nα

(1− ε) log(cnα+r) < α log n

(1− ε) log c+ (1− ε)(α + r) log n < α log n

log c+ (1− ε)(α + r) log n < α log n (since c ≥ 1)

log c/ log n+ (α + r − εα− εr) < α

log c/ log n+ r − ε(α + r) < 0

log c/ log n+ r < ε(α + r)

Setting α = (c+ r)/ε, the right side of the inequality becomes ε(α+ r) = ε((c+ r)/ε+

r) = c+ r(1 + ε). Now, for the left side, log c/ log n+ r < log c+ r < c+ r, which in

turn is less than c+ r(1 + ε), completing the proof.

3.2.2 Relation between s-FPTAS and structure approxima-

tion for NP-hard problems

In [HMvRW07] it was shown that no NP-hard problem has s-FPTAS. That means any

NP-hard problem is hard to structure-approximate if structure-approximation implies

having a s-FPTAS. In particular, Knapsack is an NP-hard problem that it easy to

value-approximate, but hard to structure-approximate.
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3.2.3 Structure inapproximabilty in parameterized complex-

ity setting

In their original paper [HMvRW07], parameterized setting is already considered. They

define a 〈p〉-fixed-parameter s-approximation algorithm as an analog of s-approximation

algorithm, where the running time of the algorithm is f(p)|x|α for some function f

and constant α > 0. With that definition they prove the following results.

Suppose that the distance function is such that, for any string y and constant c, there

are O(|y|c) strings within distance c from y. For example, Hamming distance satis-

fies this property for any integer constant c, but in characteristic distance functions

described in Section 3.1.1, any solution is distance 1 from the optimal. For such a

function, existence of 〈p〉-fixed-parameter s-approximation algorithm implies decision

problem is an FPT. Thus, if 〈p〉-ΠD is W [1]-hard, Π is not c/d s-〈p〉-fp-approximable

unless FPT = W [1], for any integer constant c and distance function d satisfying the

above property.

In particular, edit distance satisfies the property: number of strings within edit dis-

tance c of a given one is bounded by 2
(
n+c+1

c

)
∈ O(nc+1). Here, n+c+1 is the largest

number of possible insertion locations and a replacement can be modeled by a pair

of one insert and one delete. Now since, 〈m〉-LCSD is W [t]-hard, LCS is not c/dE

s-〈m〉- or s-〈m, |∑ |〉-fp-approximable unless FPT = W [t], t ≥ 1.

3.3 Hamming distance inapproximability via NP-

witnesses

Lemma 3.2.1 already gives Hamming distance s-approximation lower bounds for a

number of NP-hard problems. For example, a padded instance for diverse problems
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such as Max-IndependentSet, Min-VertexCover, Max-Cut and Chromatic number

consist of |x|α+1 disconnected copies of the original graph. One can verify the op-

timal Independent set in the new graph G′ is the union of the optimal Independent

sets in each copy of G. Similarly, the optimal cut is the union of cuts in the copies and

optimal colouring of G′ induces an optimal colouring in each copy of G. By Lemma

3.2.1 above, these problems are not |x|α/dH-s-approximable. Similarly, a padded in-

stance for SAT and related problems can be constructed by taking a conjunction of

|x|α+1 copies of formula with variables having distinct names in each copy. This gives

|x|α/dH-s-inapproximability results for SAT, 3SAT, etc. For Hamiltonian path and

indirect Hamiltonian path add dedicated start and end vertices and connect them to

form a chain. Clique can be reduced to Independent set and Set cover by disjoint

copies of the input sets.

Note that in the “NP witness” setting such as [KS99, FLN00, SY13] that we will discuss

below an approximation algorithm is allowed to return a string which is not necessarily

a feasible solution, however in the [HMvRW07] setting it must return a solution that

is feasible. So in the Max-IndependentSet example above, for the [HMvRW07] setting

the approximation algorithm has to return an independent set, albeit of a suboptimal

size, whereas in the NP witness setting it can return any string encoding a set of

vertices, not necessarily independent. This makes upper bounds for the [HMvRW07]

setting harder, but lower bounds, easier respectively. Most of the papers that give

lower bounds use the concept of error correcting codes, however the recent results of

[SY13] supersede the previous results using only search to decision reductions.

3.3.1 Error correcting codes

Error correcting codes have been an important tool in complexity theory. While

these were used to prove PCP theorem, papers like [FLN00, GHLP99, KS99] use
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error correcting codes as a tool to show structure (in)approximability with respect to

Hamming distace for some of the NP-hard problems. We give some definitions of error

correcting codes, following [FLN00] presentation for the first two definitions.

Definition 16. (Error correcting code)

Let Σ be an alphabet of size q. An [n, k, d]q error correcting code is a function C : Σk →

Σn with the property that for every a, b ∈ Σk we have a dist(C(a), C(b)) is greater

than or equal to d.

Here, dist(x, y) is the normalized Hamming distance between the two vectors x and

y of equal length, i.e., the fraction of characters that differ in x and y. Also 0 ≤

dist(x, y) ≤ 1.

List decoding is an alternative decoding method of error-correcting codes for large

error rates. It allows the decoder to output a list of all codewords that differs from

the received word in a certain number of positions. So, the possibility of handling

larger number of errors increases with the use of this method.

Definition 17. (List decodable codes)

Let Σ be an alphabet of size q. An [n, k, d]q error correcting code C is δ list decodable

if there exists a Turing Machine D(the list decoder) that on input c ∈ Σk outputs in

poly(n) time a list containing all words a ∈ Σk that satisfy dist(C(a), C(b)) ≤ δ.

Another type of error correcting codes is called erasure code, where we know the

positions of the corrupted or affected bits without knowing the values stored in those.

An important question for structure approximation is the number of candidate solu-

tions within a given distance d from a fixed solution, in particular from the optimal

solution. If there are no solutions within distance d of the optimal, then a d-s-approx

algorithm must return the exact solution. If there are polynomially many such solu-

tions, then it still might be possible to compute the optimal from a d-approximation,
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if one can enumerate all solutions with distance d from the one returned by the algo-

rithm (list-decoding regime), and check each of them.

In the error correcting codes setting, the distance d is a property of a code such that

no two codewords are within d from each other. Then the question becomes, given

this code distance d, how many codewords are within distance e ≥ d from a given

codeword. The answer to that is given by Johnson bound. Here, we will state it only

for binary codes.

Lemma 3.3.1 (Johnson bound). Let J(n, d, e) be the maximum number of codewords

within a Hamming distance of e of any codeword. Then, if e/n < 1/2(1 −
√

2d/n),

then J(n, d, e) ≤ 2nd.

3.3.2 Gal, Halevi, Lipton and Petrank: partial and approxi-

mate NP-witnesses

In 1999, Gal, Halevi, Lipton and Petrank [GHLP99] considered a problem of recover-

ing a solution of an NP-hard problem where only a part of the solution is known (with

omissions chosen adversarially). In that context they analyzed 3SAT, Graph Isomor-

phism, the Shortest Lattice Vector problem, Graph 3-Colorability, Vertex Cover and

Clique.

The main conclusion is that the solution to the original instance can be recovered

from a partial solution to a suitably constructed larger instance. Suppose we look at

the problem Graph Isomorphism. Their result [GHLP99] implies that finding a small

part of the isomorphism is enough to recover the whole isomorphism if it is encoded in

a specific way. So, if we can find a way to construct a small part of the isomorphism,

with their technique we can easily build the whole isomorphism.

One more thing that should be considered with their technique is the issue of fault
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tolerance. That means if a solution is sent to us through a communication channel

which omits a part of it, can we still recover the full solution? Again the answer is

“yes” if solution is encoded in a specific way.

Their work is also motivated by cryptographic applications where a question is the

relation between retrieving partial information about a secret and computing the

whole secret.

The main problems [GHLP99] studied are SAT and Graph Isomorphism.

Theorem 5. [GHLP99] For any ε > 0, given a CNF formula over n variables it is

possible to construct in probabilistic polynomial time another formula Φ′ over N =

nO(1) variables (with |Φ′ | = |Φ| + nO(1)), such that with probability almost 1, given

any N1/2+ε bits from a satisfying assignment to Φ′, one can efficiently construct a

satisfying assignment to Φ.

Let Graph Isomorphism be the following problem:

Definition 18 (Graph Isomorphism). Let G(V,E) and G′(V ′, E ′) be two graphs. They

are isomorphic if there exist bijections f : V → V ′ and g : E → E ′ that preserve the

endpoint relations of G and G′ (that is if u ∈ V is an endpoint of e ∈ E then f(u) ∈ V ′

is an endpoint to g(e) ∈ E ′ ). Given two graphs G and G′, Graph Isomorphism

problem is to determine whether they are isomorphic.

Theorem 6. There is a (deterministic) polynomial time procedure that on a given pair

of graphs (G,H) constructs adaptively l = poly(n) oracle queries (G1, H1), ...., (Gl, Hl)

such that if on each query the oracle answers with a map on only O(log n) of the

variables (which is a part of isomorphism between the two graphs in this query), then

procedure finds an isomorphism between G and H. [GHLP99]

In this paper they also show results for some more NP-complete problems such as the

Shortest Lattice Vector problem and Graph 3-Colorability. They mention that they
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have obtained the results for Vertex Cover and Clique, with construction for Clique

using the standard reduction without padding.

3.3.3 Kumar and Sivakumar: hard-to-approximate witnesses

for all NP languages

Motivated by [GHLP99] as well as the then-recent PCP theorem, Kumar and Sivaku-

mar [KS99] set out to generalize the results of [GHLP99] to all of NP problems. They

presented several constructions based on list-decodable codes (in fact, now their pa-

per is most cited for their code constructions). There, [KS99] considered both the

erasure setting of [GHLP99] (where only a subset of bits is known, but known bits

are all correct), and a “noisy proof system” setting much more akin to the structure

approximation with respect to Hamming distance: a witness was guaranteed to agree

with some correct witness on at least a given fraction of bits. Their main idea can be

described as follows (following the notation in [FLN00]).

Definition 19. Let L be a language in NP. Then by definition there is a polynomial-

time computable relation RL(x, y) such that x ∈ L iff ∃y, |y| ≤ |x|c∧RL(x, y), where c

is a constant. Now, consider a different relation R̂L(x,w), with |w| ≤ |x|d, defined as

R̂L(x,w) ≡ ∃y(w = Code(y) ∧ RL(x, y)). Here, Code(y) is an error-correcting code

(more on it later).

Thus, if there is a polynomial time algorithm that decodes w = Code(y) to obtain y,

then the relation R̂L is a polynomial-time relation.

Now, assume that for some specific code such a decoding algorithm exists. Also

assume that this code can recover a string with 1/2− ε fraction of errors (possibly in

the list-decoding regime). Then to decide L it is enough to find a 1/2+ε approximation

of w. That is, approximating w to within 1/2 + ε is as hard as solving the original
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problem; in particular, if L is NP-complete, then such approximation is NP-hard.

Note that information-theoretically this is not an optimal witness: w can be signifi-

cantly larger than y, so half the bits of w could be longer than all of y. This is one of

the issues addressed by [FLN00].

Theorem 7 ([KS99]). Given an approximation w1 to a binary string w, it is possible

to recover w if w1 agrees with w on at least 1/2+ε fraction of bits, where ε ≥ 1/|w|1/5.

Another way to state it is that there is a way to recover a witness given a string

that agrees with it on at least |w|/2 + |w|4/5+ε′ bits, for ε′ > 0. The proof of this

claim follows from the constructions for erasure codes in the main body of the paper,

together with the Johnson’s bound.

More specifically, the paper provides three constructions of erasure codes. All three

constructions consist of the Reed-Solomon code as an outer code, with three different

inner codes. That is, a string y is first viewed as a sequence of evaluations of a

polynomial py(u) = Σjyju
j over u ∈ Fq for a chosen field Fq with q elements. Treating

this as a binary string, each of the q terms is log q bits in length; these log q bit blocks

are each encoded by an “inner code”. The choice of the inner code determines the

final parameters.

Theorem 8 ([KS99]). For every language L ∈ NP, every witness predicate RL(x, y),

and every ε > 0 there exists a witness predicate R̂L(x,w) as defined above that given N δ

bits of w, recovers y satisfying RL(x, y) in polynomial time. The three constructions

give the following parameters:

1. Using Hadamard inner code: δ = 3/4 + ε and |w| = q2, where q, the field size,

is a power of two ≥ (4n)1/3ε.

2. Using a probabilistic construction for the inner code: δ = 1/2+ε, and |w| = q1+α,
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for 1/2−ε
1/2+ε < α < 1/2+ε

1/2−ε . However, to construct such an R̂L an algorithm with a

slightly superpolynomial running time (O(2(log q)3) is needed.

3. Using l-wise δ-biased sample space δ = 2/3 + ε, and |w| = q1+α, for 1/3−ε
2/3+ε < α <

1/6+ε+γ
1/3−ε , where 0 < γ < ε is a very small constant.

Those are the parameters on which [FLN00] is based. We omit the technical code-

theoretic details of the constructions, since we are using the codes in the black-box

fashion.

Relatively recently a better construction of such codes appeared due to Guruswami

and Rudra [GR08], (journal version [GR11]). They produce explicit codes list-decodable

up to 1/2 + ε fraction of errors. Moreover, their codes produce |w| = O(n3/ε3+γ) for

a small constant γ (or Õ(n/ε5+γ); note that the optimal non-constructive bounds are

O(n/ε2)). Thus, where the codes of Kumar and Sivakumar can recover a witness

string w from |w|/2 + |w|4/5+ε′ bits, for ε′ > 0, codes of Guruswami and Rudra can

recover w given |w|/2 + |w|2/3+ε′ bits.

So what is the relevance of Kumar and Sivakumar work to the structure approximation

setting? Intuitively, their result (as improved by Guruswami and Rudra) states that

for every language in NP, there exists a witness predicate, with respect to which it is

as hard to structure-approximate a witness w to within Hamming distance |w|/2 +

|w|2/3+ε′ as it is so solve the original problem. Thus, for an NP-complete L, such

witness is NP-hard to approximate much better than by taking a random string (note

that a random string with high probability agrees with a satisfying assignment on

|w|/2 + |w|1/2 bits. ) And therefore for such a predicate, with distance function being

the Hamming distance, the “structure approximation by dumb luck” of [HMvRW07]

is the best possible.



41

Problem Hamming distance
3SAT 1/2− nε
Max-Clique 1/2− nε
Chromatic Number 2/3− nε
Independent Set 1/2− nε
Vertex Cover 1/2− nε
Feedback Edge Set 1/2− nε (not tight)
Directed Hamiltonian Cycle 1/2− nε
Hamiltonian Cycle 2/5− nε(not tight)

Table 3.1: [FLN00] results

3.3.4 Feige, Langberg and Nissim: Inapproximability for nat-

ural witnesses

Whereas [KS99] construct a witness in a special form, [FLN00] consider natural wit-

nesses. The witness for a problem is not universal, but different problems have dif-

ferent natural witnesses. For the SAT problem a satisfying assignment is a witness.

Similarly a characteristic vector of a set of elements in a Knapsack is the witness for

a Knapsack problem. If we consider the Clique problem, the set of the vertices in

a clique is a witness. Alternatively, the edges can be marked as 0 and 1 where the

edges marked with 1 would form a clique. This can be another witness for the clique

problem.

In [FLN00], Feige, Langberg and Nissim take some of the problems from Karp’s list

of 21 NP-complete decision problems [Kar72] and analyze their witness approximation

(Hamming distance) complexity. Table 3.1 shows their results for the problems they

mention in the paper.

Below, we will present an outline of their proof of structure inapproximability of SAT.

Based on [KS99], they show that given a satisfiable Boolean formula φ, it is NP-hard to

find an assignment to the n variables of φ which is of Hamming distance significantly

less than n/2 to some satisfying assignment of φ.
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Claim 1. [FLN00] Unless P = NP, there is no polynomial time (n/2−nε)/dH s-approx

algorithm for 3SAT for some ε > 0 (which depends on code construction).

Proof. The main idea of the proof is finding the ’core’ of the problem and ’amplifying’

it. The ’core’ of the problem consists of those variables which are hard to approximate.

Amplification involves copying the core multiple times.

Let R = {(w, φ0)|∃a s.t w = C(a) and φ0(a) is true}, where φ0 is a SAT formula and

the size of the witness w is n.

At first, using any standard reduction such as Cook’s theorem, R is transformed into

a 3SAT formula φ1. A part of that formula encodes a satisfying assignment to φ0; call

these variables w1, w2, ....., wn, and the rest z1, z2, ....., z`. The variables w1, w2, ....., wn

form the core.

Then comes the amplification step where a 3CSP formula φ2 is constructed by dupli-

cating the variables w1, w2, ....., wn a poly(n) = m times so that the number of aux-

iliary variables z1, z2, ....., z` is small compared to the total number of variables. So,

φ2 becomes φ2(w1, w2, ....., wn;w1
1, w

2
2, ....., w

m
n ; z1, z2, ....., z`) and it can be defined as

φ2 = φ1(w1, w2, ....., wn; z1, z2, ....., z`) ∧
∧n
i=1(wi ↔ w1

i ) ∧
∧n
i=1

∧m−1
j=1 (wji ↔ wj+1

i ). The

number of variables (and thus the length of the witness) of φ2 is N = mn+ `.

Now, suppose there is a polynomial-time algorithm that can find an assignment x

which approximates a satisfying assignment for φ2 within Hamming distanceN/2−N ε.

For j = 1, . . . ,m let xj be the restriction of x over the variables wj1, ....., wjn. As x is

within Hamming distance N/2 − N ε of a satisfying assignment to φ2, we can say by

the definition of φ2 that there exists some j such that xj is within Hamming distance

n/2 − nε from C(a) where a is an satisfying assignment of φ0. This contradicts the

witness approximability of the relation R from theorem 7 and concludes the proof.

Given that result, and using a s-approximation preserving reduction, a similar inap-
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Figure 3.1: (a) Reduction for φ = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x3 ∨ x̄4)

proximability result for the Clique problem follows.

Claim 2. [FLN00] Unless P = NP, there is no polynomial time (n/2−nε)/dH s-approx

algorithm for Clique for some ε > 0. Here, the natural witness is the indicator vector

for the vertices in clique.

Proof. Similar to Claim 1, the basic idea here is also to find the core of instance H

of the problem and then do amplification. Let φ be one of a class of 3SAT formulas

from claim 1 which are NP-hard to (n/2− nε)/dH s-approximate.

Now, consider a reduction 3SAT ≤ pClique that works as follows (see Figure 3.1):

1. For each clause (l1i∨ l2i∨ l3i) introduce vertices V1i, ...V7i, corresponding to their

assignments satisfying the formula.

2. Add an edge for every pair of consistent vertices. Now a clique in this graph

encodes a satisfying assignment if its size is at least the number of clauses in

the original formula.

Now, for amplification add 2h vertices for each variable xj of φ. Call them tj,1.....tj,h

and fj,1.....fj,h. Now, connect each tj,i to all tj,i′ and to all vertices V consistent with

xj = T (that is, vertices corresponding to either assignments where xj = T or clauses
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Figure 3.2: (b) Reduction for φ = (x1 ∨ x̄2 ∨ x3)∧ (x̄1 ∨ x3 ∨ x̄4). Let h = 5 here. Not
all edges from ti,j and fk,l to V ’s are shown

without xj). Similarly, connect each fj,i to all fj,i′ and to all vertices V consistent

with xj = F . The total number of vertices for φ with n vertices and m clauses will

become N = 7m+ 2hn. Figure 3.2 illustrates the resulting graph, only showing some

of the edges between the new vertices and vertices Vi,j.

Now, every clique of the original graph receives 3h+ 2h× (n− 3) additional vertices.

Now, suppose there is an (N/2−N ε)/dH s-approx algorithm for the Clique problem.

Note that for a correct witness clique in the instances obtained from the reduction

above, either all tj variables or all fj variables are present in a clique for any given

j, but not both. When h(ε) is large enough, it will get majority of each tj,1.....tj,h,

fj,1, . . . , fj,h correct. Then, taking majorities of variables corresponding to each xj

with an appropriate sign, a truth assignment to the original φ can be recovered.
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They also presented results for problems listed in the Table 3.1. For the rest of

Karp’s problems they state that the reductions can be adapted to achieve similar

results, and state that these proofs will appear in the future version of the paper.

However, it seems that these proofs never appeared and possibly were not written

(Feige, personal communication).

3.3.5 Sheldon and Young: Hamming Approximation via search-

to-decision reductions

Guruswami and Rudra briefly mention an unpublished manuscript of Sheldon and

Young [SY03] that achieves hardness of structure approximation for SAT which is

|w|/2 + |w|ε for any ε. We have contacted Prof. Young to ask about the manuscript;

he has sent us an expanded version that appeared on arXiv a few days later as [SY12].

Then, in 2013, a version with several more generalizations was published [SY13]. Here,

we present their results following their journal version [SY13].

Sheldon and Young were motivated by Feige, Langberg and Nissim’s work [FLN00]

and set to strengthen their hardness result. Indeed, they improve [FLN00] results

for SAT, HamPath and Clique family of problems from ∃ε to ∀ε. Additionally,

they show that for the universal NP-complete language, no deterministic polynomial-

time algorithm can achieve Hamming distance n/2 +O(
√
n log n) (unless P = NP).

Note that in particular it cannot even achieve n/2 s-approximation. Also, no ran-

domized polynomial-time algorithm can achieve n/2 + O(
√
n log n) with probabil-

ity 1 − 1/nO(1)(unless RP=NP). They later extend it to all paddable (in Berman-

Hartmanis’s sense) NP languages. However, this is in the settings more similar to

[KS99], rather than natural witnesses. This result is shown in the following theorem.

Theorem 9. [SY13] Let universal NP-complete language be U = 〈V, x, 1t〉, where V
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is the encoding of any verifier, x is a string and 1t is a “padding” string of t ones,

such that, for some witness w of length at most t, V (x,w) accepts within t steps. Let

Vu(〈V, x, 1t〉, u) be a verifier for U which runs V (x, u) and accepts if V (x, u) accepted in

t steps. Fix any α > 0. Then, there is no n/2 +O(
√
αn log n)/dH s-approx algorithm

for U unless P = NP.

They also consider ’natural’ verifiers for various well known NP complete problems

such as 3SAT, Vertex Cover and Hamiltonian cycle, and prove both upper and lower

bounds for them. Though apart from [HMvRW07, vRW12], other papers summarized

in this chapter rely on error correcting codes, [SY13] uses search-to-decision reductions

and amplification to achieve their lower bounds.

Main results from [SY13] are:

• The NP language U is not n/2 +O(
√
n log n)/dH s-approximable.

• For some NP languages, the natural witness can be approximated to within n/2.

• For some NP languages, it is hard to (n/2 − nε)/dH s-approximate the natural

witness, ∀ε > 0.

Here we will describe some of the results from [SY13]

Lemma 3.3.2. [SY03, SY12, SY13] Suppose that, for SAT (with the natural witness

relation), there exists ε > 0 such that some polynomial-time algorithm A achieves

Hamming distance n/2− nε. Then P = NP.

Proof. They prove the lemma by describing a polynomial time algorithm A′ that

solves SAT in polynomial time using a search-to-decision reduction to A. Given a

SAT instance I it creates new instance I ′ from I by duplicating an arbitrarily chosen

variable x, k times where k =
⌈
1 + (n/2)1/ε − n

⌉
. That means A′ adds to I new

variables x1, x2, ...xk and adds new clauses (x = x1) ∧ (x1 = x2) ∧ ... ∧ (xk−1 = xk).
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Algorithm A′ runs on the instance I ′ of A to achieve Hamming distance (k + n)/2−

(k+n)ε. We assume b to be a true or false value which is assigned to at least k/2 + 1

copies of the variable x in I ′. We set x = b and substitute b for x in I ′ and simplify

the resulting formula to get a new formula I ′′ and use recursion on I ′′ thus assigning

values to all the variables remaining.

Example 4. Suppose we have a SAT formula, (x∨y)∧(x̄∨ z̄)∧(ȳ∨ ū) and we assume

ε = 1/3. Here, n will be 4. As we know from the lemma k =
⌈
1 + (n/2)1/ε − n

⌉
so, k

= d1 + (4/2)3 − 4e = 5 here.

Amplifying y, obtain I ′ = (x ∨ y) ∧ (x̄ ∨ z̄) ∧ (ȳ ∨ ū) ∧ (y ∨ ȳ1) ∧ (y1 ∨ ȳ) ∧ (y1 ∨ ȳ2) ∧

(y2 ∨ ȳ1) ∧ (y2 ∨ ȳ3) ∧ (y3 ∨ ȳ2) ∧ (y4 ∨ ȳ3) ∧ (y3 ∨ ȳ4) ∧ (y4 ∨ ȳ5) ∧ (y5 ∨ ȳ4).

Now, suppose A computes an assignment within n/2−nε = 9/2−91/3 < 4.5−2 < 2.5.

So, it will make at most 2 errors. Even if both errors are on yis, most of yi are correct.

Corollary 3. If that verifier mentioned in theorem 3.3.2 has a randomized (n/2−nε)-

Hamming-approximation algorithm A working with probability 1/2+1/nc, then RP=NP.

We omit the proof.

A proof of Theorem 9, on structure inapproximability of the universal language to

within (n/2 +
√
αn lnn)/dH , is more involved.

Suppose there is an algorithm AU that gives (n/2 +
√
αn lnn)/dH s-approximation of

U . Now, to find a witness for U , do the following steps repeatedly:

1. Run AU to find a string u approximating a witness S.

2. Throw out all strings that are far from w, that is, distance more than (n/2 +
√
αn lnn). If there are polynomially many strings left, brute-force check them

to find a witness S.
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3. Map all remaining string to a set of strings of smaller S(U); hence the verifier

to “undo” this mapping before verifying; this will be the verifier for the next

iteration.

3.4 Edit distance

3.4.1 Lower bound

Consider dE(y, z) to be the edit distance between strings y and z, that is, the number

of insert, replace and delete a symbol operations needed to convert y into z. This

function, even though in some respect related to Hamming distance, nevertheless has

a very different behavior. For example, a string 01010101 and a string 10101010

have the maximal Hamming distance of n = 8, however their edit distance is just 2,

corresponding to deleting a 0 in front and inserting it in the back of the string. For

Hamming distance, a random string is expected to be within n/2 from any string,

but it is not clear what expected edit distance between two random strings is. If

two strings are far in the edit distance though, then in particular they are far in the

Hamming distance, since replacement is an edit distance operation. So, lower bounds

on edit distance approximability imply lower bounds for the Hamming distance, but

the reverse is not immediate.

However, in case when one of the strings is a string consisting of all 0s or all 1s then

the two notions coincide, as long as the length of the approximating string is the

same. Indeed, even edit distance with transpositions to a string of all 1s from any

given string is equivalent to Hamming distance.

Lemma 3.4.1. For any string x of length n, its Hamming distance to a string of n

1s is equal to the edit distance.
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Proof. The Hamming distance between x and the string consisting of n 1s is the

number of 0s in x, call it k. Now, since replacements are one of the operations

counted in edit distance, the edit distance is no greater than the Hamming distance

k. Suppose that edit distance is k′ < k. Consider the corresponding sequence of k′

operations converting the string of all 1s into x. Since k′ < k, one of the operations is

not replacement. Suppose that the first such operation in the sequence is a deletion.

Then, as we assumed that x = n, there will be a corresponding insertion later in

the sequence. It can be seen that the deletion removed a 1, and insertion introduced

a 0. Now, modifying indices of the symbols after the deletion point, it is possible

to simulate this pair of operations with one replacement. A similar argument holds

for the first operation being an insertion. (Alternatively, it is sufficient to say that

there are only two operations that increase the number of 0s in a string of all 1s:

a replacement and an insertion. As insertion has to have a corresponding deletion,

the most efficient way to obtain a string with k 0s out of a string of all 1s is k

replacements).

Now, consider Sheldon-Young proof that a natural witness for SAT cannot be Hamming-

distance-approximated to within n/2−nε unless P = NP. Their proof [SY13] proceeds

as follows. First, note that it is enough to have an algorithm determining the value of

one variable; the rest can be computed by applying the same algorithm on the reduced

formula. Now, the proof proceeds by amplifying an (arbitrary, say the first) variable

zi n
1/ε times, that is introducing n1/ε new variables and adding clauses stating that

they are equivalent to zi. Now, if there is an algorithm that is guaranteed to return

a witness within n/2− nε Hamming distance of a satisfying assignment, then such a

string will be correct on majority of copies of zi. Taking the majority thus gives the

correct value of this variable, and repeating the process n times each time reducing

the formula with computed variables results in a correct satisfying assignment.
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Theorem 10. Unless P = NP, no algorithm can approximate the natural witness to

SAT to within edit distance n/2− nε.

Proof. Note that a natural witness for this problem consists of either n1/ε 0s or n1/ε

ones, together with n − 1 symbols of arbitrary values for the rest of the variables;

moreover, we can assume that all values of the copies of zi are together, for example

forming the first n1/ε positions of the string. Now, suppose there is an algorithm that

approximates the satisfying assignment above, with n1/ε copies of zi, to within edit

distance N/2 − N ε rather than Hamming distance, where N = n + n1/ε. Let y′ be

a string returned by the approximation algorithm and y the corresponding optimal

solution. Consider only the first n1/ε positions in y′, ones corresponding to the copies

ofzi. Without loss of generality, assume that zi = 1 in y. These positions can be

changed to 0 (to obtain y′) by either a replacement or an insertion/deletion pair

moving values of the remaining n − 1 variables into the first n1/ε positions. But as

discussed above, in this case the number of insert/delete pairs is at least as large

as the number of replacements. Therefore, the same argument as for the Hamming

distance applies, and bounding the edit distance between y and y′ by N −N ε means

that majority of the copies of zi in y′ have a correct value.

Note that to adapt the [SY13] proof of inapproximability of VertexCover to the edit

distance setting an extra trick is required. A natural witness to VertexCover is a

binary string of length n, where a bit corresponding to a vertex is 1 iff that vertex

is in the cover. In the [SY13] construction of a new graph, a copy of a vertex is

made and a long even-length path (on n1/ε vertices) is added between a vertex and

its copy. Then the argument proceeds by showing a majority of the vertices on the

path will have a correct value. Then, having more even vertices from that path in
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the approximate cover corresponds to the original copied vertex being in the minimal

cover, and otherwise the original vertex is not in the minimum cover.

Theorem 11. Unless P = NP, no algorithm can approximate the natural witness to

VertexCover to within edit distance n/2− nε.

Proof. Consider the [SY13] construction described above, but with a different naming

convention for the variables in the witness. Let variables v1 . . . vn be the original

variables, v′ a copy of a selected variable e.g. of v1, u1 . . . un1/ε be even variables on

the path from v to v′ and w1 . . . wn1/ε be the odd variables on that pass. Now, in the

witness the first n1/ε positions will correspond to the ui variables, followed by vis, in

turn followed by the wis.

Now, the same kind of argument as before applies. A minimal cover will be encoded

by either a string of n1/ε 0s followed by some string of length n+1 followed by n1/ε 1s,

or a similar string with 0s at the beginning and 1s at the end. Now, similarly to the

SAT construction, we would like to argue that a sequence of N/2 − N ε of arbitrary

edit operations (inserts, deletes, replacements) would not result in any string that

is further than the Hamming distance from the original, if the inner n variables are

ignored.

Consider a pair of insert/delete operations needed to convert a string encoding an

optimal cover to an approximate string. Suppose, without loss of generality, that

the optimal string starts with 1s and ends with 0s. Consider deleting a value from

the u part of the string and inserting it into the w part. Now, the middle part of

the string, corresponding to the v variables, could become maximally far from the

minimal vertex cover at that point (i.e., if it was of the form 01010101), however we

are only concerned with the u and w parts as we are trying to determine the value of

the copied variable. The pair of insert-delete operations then introduces at most one

0 into the u part (by shifting the v part into it), and at most one 1 into the w part by
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insertion. Therefore, the “damage done” to these parts of the string is no more than

from doing two replacements.

Therefore, if there exists a structure approximation algorithm for vertex cover that

can consistently return a string within edit distance n/2− nε from an optimal cover,

then this algorithm can be used to determine exactly whether any given variable is

in the optimal cover. By Turing/search-to-decision reduction, from there the actual

cover can be computed. In this reduction, if a vertex was determined to be in the

cover, then recurse on a graph without this vertex, and otherwise recurse on a graph

without this vertex and all of its neighbours.

So far, we have discussed the complexity of approximating an NP witness, however

for the majority of practical problems it is approximating an optimal solution which

is of interest. But since lower bounds on decision problems imply lower bounds on

optimization problems, the results above give inapproximability of the optimization

version of this problem, in particular MaxSAT and MinVertexCover.



Chapter 4

Algorithms design for Structure

approximation

One of the main open question posed in [HMvRW07] was to develop an algorithm de-

sign toolkit for structure approximation algorithms. This question remains valid even

despite strong lower bounds presented in the previous chapter: are there algorithms

giving matching upper bounds to these lower bounds? In this chapter we will look at

some examples of algorithm design techniques applicable in structure approximation

settings.

4.1 Symmetric Problems

A number of NP complete problems have the following property: for any solution

its complement is a solution of the same value. Thus a complement of an optimal

solution is an optimal solution. Moreover, for some such problems a complement of

a binary string encoding in an optimal solution itself encodes an optimal solution.

As any binary string is within Hamming distance n/2 to any given binary string or

53
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it’s complement, any binary string gives n/2 approximation to an optimal solution of

such problems.

In particular, for any instance of not-all-equal 3SAT (NAE-3SAT), for any satisfying

assignment, complementing all the variables also gives a satisfying assignment. Thus

any string is Hamming distance n/2 from a satisfying assignment if there exists one.

Observation 1. The n/2− nε lower boung proof for SAT also applies to NAE-SAT.

Proof. The new clauses zi ↔ zi+1 become (z̄i ∨ zi+1) ∧ (zi ∨ z̄i+1). An assignment

that gets all z variables to the same value satisfies one and falsifies another variable

in these clauses.

Therefore, the lower bound for NAE-SAT is almost tight with only a nε difference

between upper and lower bound.

Weighted max cut is another example where [HMvRW07] were able to give n/2 ap-

proximation algorithm. The minimum cut can be solved by network flows, but the

maximum cut is NP-hard. Now, if we want to encode this solution into binary string

we will have a string of 0s and 1s where for example 0 corresponds to the vertices

being on the right side of the partition and 1 on the left side. Notice if we switch 0s

with 1s we will still get an solution with the same value as we have only flipped the

sides by switching 0s and 1s.

Figure 4.1: Structure approximability by dumb luck: Max Cut
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Now, any string is within n/2 from either an optimal solution or its complement,

in particular string 00...0 or a random string. In [HMvRW07], this is referred to as

“structure approximation by dumb luck”. For example, in the graph on figure 4.1 the

optimal cut is illustrated by the first picture, and a cut which is distance one from

the optimal by the second picture.

4.2 Subset encoding problems

A number of NP decision problems have solutions encoding subsets of elements of the

same weights. For example, in Clique or Vertex cover (unweighted) the solutions

encode the sets of vertices where all the vertices have the same weight. As they are

decision problems, solution value is the size of the subsets and a solution is accepted

if that size is above or below a given threshold k. In this case an empty set solution

gets at least half of the elements right whenever k < n/2 and solution containing all

elements gets at least half of elements right if k ≥ n/2. Thus, an all-zero string gives a

Hamming approximation of n/2 when k < n/2 and string of all-ones gives a Hamming

approximation of n/2 when k ≥ n/2. Therefore, a simple algorithm that compares

k to n/2 and outputs either string of all-zeros or string of all-ones respectively gives

n/2 approximation for such subset encoding problems [SY13]. In particular this gives

an almost tight upper bound for cligue, independent set and vertex cover.

4.3 Structure approximation from value approxi-

mation algorithms

Sometimes an existing value approximation algorithm gives us a structure approxi-

mation of particular problem. The following Vertex cover 2-approximation algorithm
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does so. We follow [HP13] for the proof below. Let ApproxV ertexCover be an al-

gorithm that chooses an edge from G, adds both endpoints to the vertex cover, and

removes the two vertices and all the edges adjacent to these two vertices from G. This

process is repeated till G has no edges. Clearly, the resulting set of vertices is a vertex

cover, since the algorithm removes an edge only if it is being covered by the generated

cover.

Theorem 12. ApproxV ertexCover is a 2-approximation algorithm forMin−V ertexCover

that runs in O(n2) time.

Proof. Every edge picked by the algorithm contains at least one vertex of the optimal

solution. As such, the cover generated is at most twice larger than the optimal.

Observation 2. This algorithm gives k-approximation with respect to Hamming dis-

tance.

Proof. Consider an encoding of the solution by a string of length n with 1 for vertices

in the cover. Then, every vertex which is 1 in the optimal solution is also an 1 in the

approximate solution. Now, the approximate solution has at most k extra 1s, giving

the Hamming distance k.

4.4 Structure approximation algorithms from lin-

ear programming

Linear programs are a common framework for representation of NP optimization prob-

lems. There, constraints are represented as linear inequalities; there is a linear goal

function to be minimized or maximized. Candidate solutions are all sets of values

that satisfy the constraints; the value of the solution is the value of the goal function.
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More precisely, a linear program in the canonical form is (following presentation in

[Vaz01]):

Minimize f(x̄) = Σn
j=1cjxj

Subject to Σn
j=1aijxj ≥ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

There are polynomial-time algorithms to find an optimal solution to a linear program

such as interior point methods. However, when an additional type of constraint

is allowed, specifying that all variables have to assume integer (or 0-1) values, the

resulting class of integer linear programs allows to represent NP-hard programs. To

see that ILP is NP-hard [Kar72], consider encoding a SAT formula by a system of

linear inequalities stating that sum of the literals in every clause is at least 1 (here,

representing negated literals xi as 1− xi), and empty goal function.

4.4.1 Linear programming algorithms providing structure ap-

proximation

Consider a classic linear programming approximation algorithm for the Vertex Cover

problem. To construct a corresponding integer linear program, use variables x1 . . . xn

corresponding to the vertices. Now, a condition xi + xj ≥ 1 for every edge (i, j) in

the graph, together with a requirement that xi are integers, states that at least one

vertex is in the cover. And the goal function to minimize is Σn
i=1wixi (that is, the

total weight of vertices in the cover is minimized; for the unweighed case, set each

wi = 1).
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Minimize f(x̄) = Σn
i=1wixi

Subject to xi + xj ≥ 1, ∀i, j E(vi, vj)

A famous 2-approximation algorithm for the (weighted) vertex cover program solves

the linear problem above without the requirement that xi have to be integers, then

rounds the resulting values of xi so that if xi ≥ 1 then it becomes a 1 (and thus the

corresponding vertex is placed into the cover), otherwise it is set to 0 (so the vertex

is not in the cover). This algorithm gives a vertex cover of cost at most twice the

optimal even for the weighted vertex cover case.

Note (and [SY13] also make this observation) that the resulting cover will not only

have the cost at most twice the optimal, but also contain the optimal cover. Thus,

a binary string encoding this approximate cover will differ from a string encoding

an optimal cover in at most 2k places, where k is the size of the cover. Therefore,

these approximate solution is within Hamming distance k from the optimal. As edit

distance is always bounded by the Hamming distance, it is also at most k edit distance

from the optimal solution.



Chapter 5

Structure approximating Phrase

Alignment problem with Hamming

distance and edit distance metrics

The phrase alignment problem arises in the context of machine translation and nat-

ural language inference [MGM08]. It is a common task in these areas to determine

whether one sentence can be converted into another by replacing blocks of text with

semantically equivalent blocks, and possibly changing the order of the blocks. For

example, a sentence “The president of the USA spoke on New Year’s day” and the

sentence “On January 1st, Obama gave a talk” convey the same information; we

can convert the former into the latter by replacing “the president of the USA” with

“Obama”, “on New Year’s day” with “on January 1st” and “spoke” with “gave a talk”.

In a more general statement of the problem, in particular in the natural language in-

ference setting, the original sentence can contain much more information than the

resulting sentence; however, here we consider the setting when the alignment must be

bijective, that is, each word of the first and each word of the second sentence occur
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in exactly one linked pair. Following the setting of DeNero and Klein [DK08], we call

the two sequences of words to be aligned “sentences”, a consecutive block of words a

“phrase”, and an aligned pair a “link”. A set of links such that each word (in either

sentence) occurs in exactly one link is called an alignment of the sentences. So in the

example above, an alignment will be {(the president of the USA, Obama), (spoke,

gave a talk), (on New Year’s day, on January 1st)}. In practice though, there can be

various degrees of how good a certain link is: there is a better correspondence between

“Obama” and “the president of the USA”, than with “Obama” and “the president”,

for example; “spoke” and “gave a talk” might not be as close semantically as the

other two links. But either of them would be better than aligning “the president of

the USA” with the “New Year’s day”. Thus, an additional parameter is needed to

fully specify the problem, that is a scoring function assigning a weight to each poten-

tial link. The weighted phrase alignment problem is defined then as finding a phrase

alignment with the best weight.

Now, following DeNero and Klein [DK08], we formally define a weighted sentence

alignment (WSA) problem as follows. Let e and f be sentences. The phrases in e

are represented by a set {eij}, where eij is a sequence of words from in-between-word

position i to j in e; f is represented by {fkl} in the same fashion. A link is an aligned

pair of phrases (eij, fkl). An alignment is a set of links such that every word (token),

in either sentence, occurs in exactly one link (here, we treat each occurrence of a word

as a separate word). A weight function φ : {(eij, fkl)} → R assigns a weight to each

link. A total weight of an alignment a, denoted φ(a), is a product of weights of its

links. Now, an optimization version of the weighted sentence alignment problem asks,

given (e, f, φ), to find the alignment with the maximum weight. A decision version of

this problem can be stated as finding an alignment a of weight φ(a) ≥ 1.

Theorem 13. [DK08] The decision version of the WSA problem is NP-complete.
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Proof. DeNero and Klein in [DK08] show NP-hardness of WSA by the following reduc-

tion from 3SAT. Let F be a formula with n variables and m clauses. The construction

will produce an instance I of WSA consisting of sentences e and f , and a function

φ such that there is an alignment of weight (at least) 1 in I if and only if F is sat-

isfiable. For that, let sentence e consist of blocks of words as follows, with one word

for each occurrence of a literal: x1
i . . . x

pi
1 x̄

1
i . . . x̄

qi
i , where pi and qi are the number of

positive and negative occurrences of xi inF , respectively. Thus, the length of e will

be ≤ 3m, with equality if every clause in F contains exactly 3 literals. Now, sentence

f will contain two types of words. The first m words, c1 . . . cm, will correspond to the

clauses of F . They will be followed by “slack words” s1 . . . sn, one for each variable in

F . Finally, the function φ will only have values 0 and 1, and it will have the value 1

in two cases. First, if the link is of the form (ci, lk), where literal lk occurs positively

in clause ci (for all occurrences of lk). This will be used to align each clause with a

literal that makes it true. Second, each slack variable si corresponding to a variable

i will be aligned with all possible substrings of x1
i . . . x

pi
1 x̄

1
i . . . x̄

qi
i in which either all

positive or all negative copies of the variable (or both) are present. For example, if

there is one positive occurrence of xi and two negative occurrences of xi, then the

links with φ(ei,j, fk,l) = 1 will be for fk,l = si and ei,j either xix̄ix̄i, or x̄ix̄i, or xix̄i, or

xi. The first one covers both positive and negative, the second covers all negative, and

the last two all positive occurrences of the literal. These slack variables are needed

to ensure that either only positive or only negative literals are left unmatched to be

aligned with clause words.

To see that this reduction works, note that a satisfying assignment becomes an align-

ment in which every clause word is matched with one literal that makes it true (start-

ing from the front of the block for positive and end of the block for negative), and

slack variables cover the literals that remain unmatched to clauses. For the other
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direction, note that there is exactly one link for each slack variable: if it is matched

with a block that contains all positive occurrences of the corresponding variable in F ,

the corresponding variable can be set to false, otherwise it can be set to true (if it is

matched with the block containing all occurrences, then either assignment works).

Assuming that F has exactly 3 variables per clause, |e| = 3m, |f | = m + n, and

|φ| ≤ (3m)2(m + n)2, therefore the resulting instance is polynomial size, and the

reduction runs in polynomial time.

Therefore, WSA is NP-hard. As an alignment can be checked for validity (by asserting

that each word appears exactly once) and the weight of the alignment can be computed

in polynomial time, the decision version of WSA is NP-complete.

Alternatively, NP-hardness of WSA can be shown by a reduction from the VertexCover

problem. There, we are given an undirected graph G = (V,E) with n vertices and m

edges, and asked whether there exists a subset of k vertices called a cover such that

every edge has as its endpoint at least one vertex in the cover. In an optimization

version, a minimum-size such cover is sought. To show V ertexCover ≤p WSA,

construct the instance as follows. The words of e will be blocks of copies of each

vertex vi, where the length of each such block is the degree of vi, denoted deg(vi),

plus 1, so |e| = 2m + n. The words of f will be of three types. The first m words

c1 . . . cm will correspond to edges of G; the next n words are the “slack variables”

s1 . . . sn covering leftover copies of vertices, with one extra copy always covered by

si, and the final n − k words t1 . . . tn−k in f will ensure that the size of the cover is

at most k. Thus, |f | = m + n + (n − k) = m + 2n − k. With this intuition, define

φ so that φ(vi,j, cl) = 1 if edge cl has vi as its endpoint (for each copy vi,j of vi),

then φ(vi,j . . . vi,vi)+1, si) = 1 for each i and all j, 1 ≤ j ≤ deg(vi). Finally, each tl

can cover a block of the same vertices for every vertex (except for the last copy), so
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φ(vi,1 . . . vi,deg(vi), tl) = 1 for every tl and every vi.

If there is a vertex cover of size k in G, then an alignment in the constructed instance

will link all vertices other than the k vertices in the cover with t-variables, will link each

edge with a copy of a vertex in the cover (in order starting from vi,1), and variables si

will be linked with a block of remaining copies of the corresponding vertices (consisting

of at least one special copy, more if some edges have both endpoints in the cover). For

the other direction, variables tl denote vertices not in the cover, so the cover consists

of the remaining vertices. If there is a cover of size smaller than k, then some si

variables link to the whole block corresponding to such extra vi, but this is allowed

by our definition of φ.

5.1 Defining a natural witness for WSA

Before we can talk about structure approximation of WSA, we need to define what

is meant by the witness (or feasible solution) to the WSA problem. Here, we will

consider an alignment of any weight to be a feasible solution; the question remains

how to represent an alignment. In DeNiro and Klein [DK08], an alignment is visualized

as a matrix with words of e as columns, words of f as rows and a cell (i, k) highlighted

(say, set to 1) if the block with the ith word of e is linked to the block with the kth

word of f . Each link thus becomes a rectangular all-ones block in the matrix. This

representation is not the most efficient in terms of space, although it is convenient

for visualization of the solution. In particular, for the instances coming from the

3SAT ≤p WSA reduction above, any feasible solution will only have 3m cells out of

3m× (m+ n) = N possible cells highlighted. In this case, it is trivial to approximate

the witness to an instance of WSA produced from this 3SAT reduction: an all-zero

matrix already gives a N − (m+ n) Hamming distance approximation.
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Now, notice that the reduction above proves NP-hardness for a special case of the

problem: that where all phrases in f are single words. For this restricted problem,

a Hamming distance (and therefore an edit distance) approximation by an all-zero

matrix is |e| ∗ |f |− |f | close to any solution. One may object that an all-zero matrix is

not a valid alignment: here, we can construct an alignment by matching first |f | − 1

words of e with words of f , and all the remaining words of e as one phrase to the last

word of f . This gives us a |e| ∗ |f | − 2|f | Hamming approximation for the alignment

represented as |e| × |f | matrix.

As we are looking for natural (and compact) witnesses, we will use a different rep-

resentation of the solution. For that, notice that finding a solution to WSA involves

solving two problems: first, we need to determine how to break each sentence into

phrases, and second, to determine an optimal alignment using only links involving

these phrases. So a feasible solution can consist of two components: the first compo-

nent with two binary strings of lengh |e| − 1 and |f | − 1, with 1 in between-phrase

positions and 0 otherwise. The second component can list the order of phrases in

f mapping to phrases in e; if there are n phrases in each, then the length of that

component is n log n.

What part of computing this witness, and thus of solving the WSA problem, is the

hardest? Consider again the set of instances of WSA resulting from the reduction. We

would like to define a special case of WSA for which we could use as small a witness

as possible, and still have the NP-hardness reduction above work. As noted above,

one special property of this reduction is that it always produces a partition of f where

every phrase is exactly one word. The information encoded in the second part of the

witness described in the previous paragraph, the string of |f | − 1 bits denoting the

phrase boundaries in f , is therefore redundant.

Secondly, φ involved in the reduction has a special property that it can only take values
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0 and 1. In that case, after solving the first part of the problem (finding splitting points

between phrases in e and f), the second part can be computed in polynomial time

by the standard network flow algorithm for bipartite perfect matching, with phrases

of e and f forming the vertices of the bipartite graph, and an edge connecting two

vertices v and u iff φ(v, u) = 1. Thus, in this case it is enough to compute a witness

that contains only the binary strings denoting splitting points between phrases, as

described above.

Now, combining the two restrictions we will define a problem PWSA, which is a

special case of WSA satisfying the properties above.

Definition 20 (PWSA). The PWSA (for “partition” WSA) problem is defined as

follows. Given as input (e, f, φ) where φ : {(eij, fkl)} → {0, 1}, find a partition of e

into phrases such that there is an alignment of weight 1 of phrases in this partition

with words of f .

A natural witness w for PWSA is a binary string w1 . . . w|e|−1 such that if eij is a

phrase in the optimal alignment, then wi = wj = 1, or wj = 1 and i = 0, or wi = 1

and j = |e|; and ∀k, i < k < j, wk = 0. Note that w has to have |f | − 1 1s for any

valid alignment.

Here, the NP-hardness follows by the same SAT ≤p WSA reduction as in theorem

13, where the satisfying assignment is recovered from w by running the network flow

algorithm and determining, as before, the values of the variables of F from the links

with slack variables si. Moreover, for variables with more than two positive and two

negative occurrences the value can be determined directly from w. Suppose a slack

variable covers all positive occurrences of a variable v, and leaves out some negative

occurrences. Then, there will be no splitting points within the block denoting the

positive literals, but there will be as many splitting points for the negative literals

as there are clauses which use them. From that, already, it can be inferred that the
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negative occurrences were used to satisfy the clauses, thus the variable needs to be

set to false. So if a substring wij of w corresponding to a block of encoding a literal

v (without the endpoints) is of the form 1111....0000, then we can immediately infer

that v = true, otherwise if it is of the form 000....1111, v = false. It would not work

if there is exactly one positive or negative occurrence of a variable; but this can be

resolved by modifying the reduction so that there is always an extra “viv̄i” (or a single

dummy variable) in the middle of each block, and φ(x . . . x) = φ(x̄ . . . x̄) = 0.

5.2 Hamming and edit distance inapproximability

of PWSA

In this section we will show that PWSA cannot be Hamming or edit distance struc-

ture approximated to within n/2 − nε, with respect to the witness defined above.

From there, structure inapproximability of WSA can be derived, albeit with weaker

parameters.

Theorem 14 (Hamming inapproximability of PWSA). Let (e, f, φ) be a valid input

to PWSA. If there is a polynomial-time algorithm A(e, f, φ) computing a string w

which is within Hamming distance n/2− nε of a witness, then P=NP.

Proof. We will show how to use such a structure approximation algorithm A for

PWSA to compute the exact value of the first variable in F , in a manner similar to

the proof of Hamming inapproximability of SAT.

Let F be a formula on n variables and m clauses. Let (e, f, φ) be an instance of

PWSA constructed from F by the reduction in theorem 13. Now, we will amplify the

part of (e, f, φ) with respect to the first variable v in F as follows. Choose k such

that nk > 1.5m. Imagine that F is augmented with nk/ε copies of the dummy clause
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(v ∨ v̄). If the reduction is applied to this extended formula, it will have an effect of

introducing nk/ε copies of the literal v and nk/ε copies of the literal v̄ as words of e

(that is, the first nk/ε + p words of e will be copies of v, and the following nk/ε + q

words of e will be copies of v̄, where p and q are the numbers of positive and negative

occurrences of v in the original F .) The clauses (v ∨ v̄) will become nk/ε new words

in f (say first nk/ε words of f). Finally, φ(eij, fkl) can be defined as before. This

amplification preserves the correctness of the reduction, as the link (eij, s1) forces

only copies of v or only copies of v̄ to be used to satisfy the dummy clauses. Now, if

w is a correct witness (of length N = 3m + 2nk/ε − 1) to this instance, the value of

v can be determined immediately: if w starts with a string of at least nk/ε 1s, then

v = true, and if w starts with at least nk/ε 0s, then v = false.

Suppose that there is an algorithm A that returns a “corrupted” string w′ that agrees

with w on at least N/2 + N ε bits. Here, we are not even concerned whether w′ is a

valid alignment (i.e., has |f | − 1 ones); any such w′ will work. That is, w′ agrees with

w on (3m + 2nk/ε − 1)/2 + (3m + 2nk/ε − 1)ε ≥ (3m + 2nk/ε − 1)/2 + nk locations.

Now, suppose that all the errors lie within the 2nk/ε positions corresponding to extra

copies of v and v̄. Since we chose k such that nk > 1.5m, and ignoring −1/2, there

are at nk/ε + nk − 1.5m > nk/ε correct bits in that block, that is more than half of

copies of v and v̄ are computed correctly. Taking majority now gives us the correct

value of v.

Now, this result can be extended to show edit distance inapproximability in much the

same way as we have done for VertexCover.

Corollary 4. PWSA cannot be approximated in polynomial time to within edit dis-

tance n− nε unless P = NP .

Proof. We will use the same class of instances as in theorem 14. Note that the
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substring of w that we are interested in is w1 . . . wr, where r = 2nk/ε + p + q, which

is the block corresponding to the first variable v in F . In a correct witness, this

substring is either of the form 1111....000000 or 000....11111, with the number of 0s

and 1s at least nk/ε each. Now, suppose an approximation algorithm A produces

a string w′ which is edit distance N/2 − N ε of w; that is, w′ can be converted to

w with at most N/2 + N ε insertion, deletion and replacement operations. Consider

a substring w′1 . . . w′r in w′. As for the case of VertexCover, we can argue that the

Hamming distance between w1 . . . wr and w′1 . . . w
′
r is at most N/2 − N ε. Indeed,

suppose for the sake of contradiction that the Hamming distance between w1 . . . wr

and w′1 . . . w′r is greater than the edit distance between these two substrings. As they

have the same size, the number of insertions is the same as the number of deletions.

Now, it is sufficient to say that the pair insertion/deletion can introduce at most one

0 in the “1111...1” part, and at most one 1 in the “0000..000”, by the same argument

as in theorem 11. Therefore, the Hamming distance inapproximability implies edit

distance inapproximability with the same parameters.

In the proofs above, we have shown inapproximability results for the problem PWSA,

in which the second sentence is assumed to be partitioned as one word per phrase. A

more realistic scenario would be to assume that the witness consists of the partition

strings for both e and f (here, we are still assuming that φ takes values in {0, 1}).

The corollary below shows that for a weaker bound, there is still an inapproximability.

The weakening here comes from the fact that our block becomes a smaller fraction

of the total length of the witness, since f contains nk/ε words corresponding to the

dummy clauses.

Corollary 5. WSA with φ ∈ {0, 1} cannot be approximated to within Hamming

distance or edit distance 2n/3 + nε.
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Proof. Consider the same reduction as before, but now our witness consists of both

the string encoding the splitting points of e and a string encoding the splitting points

of f . Thus, the total length N of the witness becomes, ignoring “-1”s, N = (3m +

2nk/ε) + (nk/ε + m + n) = 4m + 3nk/ε + n. If the calculation above is done with this

value of N , then we end up with only 0.5nk/ε guaranteed correct positions in our 2nk/ε

block of interest. We need c, 0 < c < 1, such that N ∗ c + N ε − (N − 2nk/ε) > nk/ε.

Such c can be determined from the following calculation:

N ∗ c+N ε − (N − 2nk/ε) = (4m+ 3nk/ε + n) ∗ c+ (4m+ 3nk/ε + n)ε − (4m+ nk/ε + n)

> (4m+ 3nk/ε + n) ∗ c+ nk − (4m+ nk/ε + n)

= (3c− 1)nk/ε + nk − 4(1− c)m− (1− c)n

> (3c− 1)nk/ε (when k chosen so that nk > 4m+ n)

= nk/ε (for c = 2/3)



Chapter 6

Conclusion and future work

In this thesis, we considered the complexity of approximating solution structure of de-

cision and optimization NP problems in the [HMvRW07, vRW12] sense. Most of known

results in this setting apply to Hamming distance function, with Sheldon and Young

[SY13] giving the strongest such results. In particular, any paddable NP-hard problem

has witnesses not approximable to within n/2 +
√
n log n and the same bound holds

for the universal NP problem. Furthermore, for natural witnesses to many NP-hard

problems such as SAT and Vertex cover, it is possible to achieve n/2 approximation,

yet NP-hard to do better than n/2− nε for any ε.

To the best of our knowledge, distance functions other than Hamming distance were

not considered by anybody other than [HMvRW07, vRW12]. In particular, they give

a number of inapproximation results for self-paddable functions. In this thesis, we

also extend some Hamming distance inapproximability results to edit distance (note

that, large Hamming distance does not necessarily imply large edit distance). We also

make a number of observations, in particular concerning usability of existing value

approximation algorithms for structure approximation.

The lower bounds are pessimistic though, and imply quite strong inapproximabil-

70
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ity for these problems. Is there any way to get around these bounds in practice?

In fact, many practical problems have strong (constant) restrictions on some of the

parameters, leading to efficient parameterized algorithms. Already [HMvRW07] in-

troduced the notion of parameterized structure approximation setting, and proved, in

particular, a lower bound on parameterized complexity of Longest Common Subse-

quence with respect to edit distance metric. This would be an interesting direction to

investigate with respect to problems and metrics occurring in practical applications.

Another question concerns upper bounds. Even though, as we note here, some of

the classical linear programming relaxation algorithms can be recast in the structure

approximation framework, it is not clear how to make a general statement of this

form. Here, as well, a parameterized framework can be useful.

For the more theoretical direction, it would be interesting to see if there is a generic

way to build a lattice of hardness implications for various metrics. We conjecture ,

in particular, that any metric with a certain “locality property” (that is, one “unit

of change” only affects a small, though not necessarily constant) number of positions

should be inapproximable by generalizing Hamming distance results. Alternatively,

one wonders if there is a non-trivial, practically interesting metric for which there

is, indeed, a fast approximation algorithm for any NP-hard problem. In that respect,

considering various metrics and their interrelation w.r.t. computational problems is a

promising area with a possibility for new approaches to problems from a wide variety

of computational fields.
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