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The purpose\af"thls thesis is to set forth ‘some fixed p01nt theorems . ,

N

- -

in metric, and Banach spaces for _single- valued and multl-valued mapplngs
\ , \ R .

- N -~ ’
.

' of "a'contractive type. . _ S :

' In Chapter I, we discuss the Banach Contractlon Prtﬁélple and 1ts
. T .

-generallzatlons in metr1c spaces 1nc1udlng the major known’resuits for «

»

N

COntractlon and contractive mappnngs. We also con51der recent develop--

.
I}

ments in the study of fixed p01nts “for multl—valued mappings of th1§
! i

’ - P
. L - R . . 2 e
-

. i

. * e . - ¢ ' ) ! ‘ © .
‘Chapter. 11 is'devoted to'fixed poinx'théoréms for nopexpansive, . 7

mapp;ngs and for mapplngs characterazed by the property that they do not
1ncrease the "méaspre of non compactness"'of bounded non precompact sets. y

—Agaln, we mention results for both the single and mu1t1-valued case.
. : o : : C .
vy B z;n;cgapfér ITI; wé facus our attention on jthose fixed pointf;&eorems,
a o B ’ v} . N . . ' .'4_03
fhat'have,ﬁeen obtaihed.by imposing a,convexity bonditiun on the mapping.

s T o

nWe ilsa prov1de some generallzatlons of these results as well as a theorem
for commutatlve famllles of mapplngs. Repent exten51ons of the convexity

concept énd related'results,for.multi—valued mappidgs are also given. -
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,least one p01nt x e€X Such that T(x) T X, Brouwer s classical

o . Lo
. * .

' INTRODUCTION

. Fixed point theorems play an 1mportant role in many parts of

;aﬁaly51s and topology, and have many appllcatmns in smeas as. -

dlfferentlal and mtegral equatlons.
 The first investigations of fixed points. were made from a

topological point of \'iien w1th major results be1ng obta1ned by

Brouwer, Schauder and Tychonoff for contlnuous funct1ons.

A topolog1cal space -X is said ’eo have the fiXed' point prop_erty'

(f.p. m) 1f for every.. contlnuous functlon T X > X there exists at
pof .

'theorem, proved in 1912 [8], states that the closed unit sphere ]

in Euchdean n—space has t~he £.p.p- *Clearly, the theorem remains true

if 5 is replaced by any¢opolog1ca1 space homeormorphlc to S . Con-

vexity. arguments were used in extendmg Brouwer S theorem to compact

convex subsets of 11near spa'ces. - In 1930 Schauder. [63] proved .that a

compact; convex subset of a Banach space has the f.p.p. and he also

P '“

‘showed that a convex, weakly compact subset of a separable Banachgspace

tu

‘has the® f p p. for weakly continuous functlons. In 1935 Tychonoff

»
a

. [72] extended Brouwer's result to convex, compact subs_ets of locally

convex topological spaces. Further -results_ along these lines were

- v

obtalned by Leray,Schauder, Lefschetz, Browder, Birkhoff and Alexander.

(see Van der Walt §73] for.a survey of such results)

. Since 1941 ‘some mathematiciar‘xs have turned their attenti’on to

ce

f1xed po1nt theorems for mu1t1-va1ued or set-valued mapplngs. Such a-y, -

o

~paa

mapplng F is sa1d to have a f1xed pomt if there exlsts some point . % '



i

~". the D1r1ch1et problem. - Ky Fan [27] generalized Kakutani*s theorem to

‘one fixed‘point. Th1s theorem has been used to prove ’Che Hahn-Banach

R .

in the ‘domain‘ such-that x €'F(x).
N s . DO )

‘Kakutani [40] has extended_ Brouwer's ltheorem"in the following 'way:

If M is a co'ripacfj, convéx subset of E_n‘ and T : M> P(M), the family

. of non-empty subsets of M, is upperéemi‘tontinvouS' and such that °T(3()'_ .

-

. ig nonempty, closed and convex for each «x é M, then T has at least

. theorem and to prove-: the ex1stence of a Haar measure on any compact

gr‘oup.‘ Kakutani's work has applications also'to _ergodic_theor.y and fo. . oo

ki

the case where E' is replaced by, any Hausdorff Jocally convex 11near,

s

topologlcal Space. Hls work, too has wide apphcatmng in such areas as

L m1n1max problems," game theory and approx1mat10n theory

«We shall surve) some of the main extensions of thlS result Chaptgr Iis

5 P -

Our 1nterest is 1n con51der1ng flxed pomt theorems for certaln

o '7

other classes of mappmgs Le g, contract1on nonexpanswe den51fy1ng) for

smgle valued as well as for multi-valued mappings. Our starting'point is .
aed map A

the famous contractlon pr1n<:1p1e of Banach [4] formulated in 1922 "A

© contraction mapplng on a complete metrl'c spa,ce has a uruque flxed pomt"

devoted to known .results for contractlon and contra.ctLve mapplngs. In o

L4

results along these lines.

.

|
Chapter II, we coln51der fixed pomts of non-expans:Lve mapplngs and.of C 0

mappings charactenzed by the property that they do not 1ncrease the ) '

S

‘measure of non-c mpactness of non-precompact sets.- VIn Chapter III we'-

examine closely the résults that have been. obtained by‘ 1mp051ng conve:uty,

»

condltlons on the mapping, and we provide some extensmns of the known

S ' SR
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. . . B o .
- On.Contraction, Contractive Mappings.and Fixed Points -

g v Y < : N '8 - ) ‘. - ‘ -~
1.1 - Preliminaries: ' (. ’ : ‘

Definition T.1.1. * A metric or d;,st,’ance functlon on a space X is

& mapping - d : X b X - R (posnﬂ?élreals) satisfying the followmg

-~

-conditions:

B e - B
{ 5 2

(1) - ’;l(x,y) >0 for a}M@x y é X, T .

-, '\(‘“ ., . .y

- (ii) . ..c‘l(x,y) = 0' if and only 1f X =Yy,

311y ’ d(x,y) ‘= d(y,x) o | - "-a, .
(iv) - dfx,2) < d(x,y) + d(y 2) R L

'If condition (ii) is replaced by 'd(x,‘y)’= 0 if x =y, we call -

“d a pseudo metric.’ :
, iy

Definition 1.1.2 .- A metrPe space.is a set X together with a
‘metric d. We denote it (X,d) or, if no ~confusion can arise,
‘simply as X.. o s
‘\" P . . _‘_
Definition 1,1.3. A sequence {x } ' of points in a metric space X

"is cdlled Cauchy if, _for given ¢ >7 0, there ex1sts a p051t1ve
integer N = N(e)' such that. d(x ,x ) < ¢, whenever myn > N. )

-

P

Definition 1.1'.'4. ‘A sequence {x } is said’to converge to x,.'if

. . . ’ . {\ ) - N M ¢
for givenr € > 0, there exists a positive integer N = N(e) such
‘ T, /o N .- ) '

A(that d(xn,x) < ¢, whenever n_>_l\1. . :

-
N .

Definition 1.1.5. A metric space X-is called complete if every

e , :

Cauchy sequence in X converges to a point in X..
L% T e
l' - : .
\ , [RET
’ , - ) ' . 3 0
/ g

. o
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* A
Yo

. - 4.
M N {, . oo
’ 4
"1.2- Fixed Point Theorems for Single-Valued Contraction Mappings_. o .
T : v v . . Ja
" Definition 1.2.1. A mapplng TYX > X is said to satisfy a o
L1psch:,tz condltlon 1f there exlsts a real number k 'sp_ch that \
©L AT, TY)) < kd(x,y) for all x,y e(x. If 0<kel; the = . )
- T. is_'c'alled a contraction mapping.
i ) [ X i
Exa!i!EleSi - N ) iq ’ e x‘. ‘ . .\',_ ' B
(i) If X = R with the usual metrlc d(x,y) |x -yl and. : N
T :'X+x is defined by T(x) I= —x+5 then T isa - ' ? oo e
: contractionn om X. .~ ' . S . S
(11) Let ‘X = Cla, b], the space of'continuous réa; valued funct- -
ions on “[a,b] with metric d(f,g) = max {1 - g%
- : . xe[a,b]. vy .
‘and let T : X> X be defmed by T(f) = . ' ) .
. b ‘ - !
R " where . h(x) = k,( K(x,y)f(y)dy + p(x) and }K(x,y)] <M _ S
Then T , is a cof hctlon on X prov1ded l}\l WI;L—_?)- “ '

and unlqueness of SOlUthHS to d1fferent1a1 and integral equatlons..

Refark. . Any mapplng which ,pbeys -a Llpschltz condltlon is contmuous

[}

(If we choose . = E:/k we have |x - y| <8 1mp11es T ~
. 1n ' } ) ‘ . %
, 1T - T e | . [
- ~In 1922, Banach [4 ] formulated his famous Contractlon Pr1nc1p1e ’

¥

’ wh1ch not only’ prov1des for the existence of & fixed pomt but also ' ; -

guarantees its unlqueness. Moreover,' it indicates a method by\’ o o
whlch the fixed pomt may be founid, namely as the limit o ‘a sequence'

S

of 1terates The theorem is w1de1y used in proving the ex:Lstence ' o

We :mclude its proof for completeness.

© g



. T(x) X has a un1que solutlon. ' v ' L

S b ' o,
] : y 2 ‘ N : ) )
‘Theorem 1.2.2. A contraction mapping T .of a complete metric

) Lo . . Lo 4 .
"_space X to-dtself has a ;unique fixed point,”i.e. the equation
: ] - L /‘ . - N , " -

LN
-

Proof. Let X5 be any' point of X and consider the sequence of

N, . . ot .
_images of X, under repeated applications of T, i.e. let
“Xx; = T(xg, xy = T(x;) = Tz(xo), sy ="T(xr'1-1'-) = T’:(xo)“. : R
Then for m< n, we ha\:/e . ' oo . e
) d(x,x)—d(T(x)T(x)) : © s
S d™x ), ™ x )) s a(™Lx ), T"‘"Z('x ) ¢
' = o Lo .t o’
' L : e a™ o1 (x)) -
=A@, ™)) ¢ A )1 (xl))+
s - - . -r -
- (¢ (xo), ™ 4 (x1))
R S < k d(x ,xl) + kT d(x',xlj o+ kn—}d(xo,xl)
. ) r o r 7 f . ‘ -
‘ -kd(x xl)[1+k+k2+...fkn-m- 1 :
. ¢ ) "' "’ .' _ .km T ) -. . ) - 1 '
. ) = -1-‘—_—k-c.l(xo,x1\). JE ./' .
Tt : a oo K" Lo . . T
But k < 1, therefore T—:-]—(~+'0 a§ m+ = , ie. 'd(‘xm,xn) +°0. )
t{"h‘:‘ E Ths {x } is .J':t Cauchy sequence and since X 'is .complete, {x'n‘}- |
\,,‘(;«} converges to a unique 1i x E X,
& Lt
- Byigon_tinuity of T, we have T(x§ T(11m X ) = lim T(xn) =
< . @ - : =11n‘1xn+1=x,'
i.e. x is a fixed point of T.- ' ST .
Unlqueness. Suppose y € X, (-;uch that Ty Y. and x,+ y."
" K Then d(x,Y) = d(T(x),T(y)) < kd(x,y). -
. Since ‘d{x,Yy) =|r 0, we get 1< k, contradicting k < 1.
N . q'b' ‘ ’ - -
. ’ ’.\
T T



¥

%

.( .
LA AN . - : ¢ :
and since, d 1is a mettic, we get x = y. o
: :. . / . ’ ) S v .
. . e L ) ‘_ . . \

' Remarks: ‘ S . '
'1.° If X isa pseudo metric. space, the mapping has a fixeldf
point, but it need not be uﬁique since d(x,y) = 0 does not . -

. 'imp"ly = Y. ' - ' C e
i > . . T £ . - '

2 Both conditions of the theorem are nef:,essar&, as shown by
. . ’ '
vthe following examples: , . "
(1) T : (0, 1) +> gO 1) deflned by T(x) = -l—x is a contraction,
) bﬁt has no,ﬂixed point, since’ -.(0,1)' is not complete.
i * ' . . -
(11) A tra.nslatl,on T(x) = x + a on.'y complete metric space is’
A “rnot a contractlon and has no flx point. - SR )
/ : )
3. * The proof of the theorem is constructive: The, fixed point
Q of* T will be the limit of hhe sequence of itera;es“'o'f any ¢
1 . T o
arbltrarlly chosen point of X. o : ) ,‘
" ©. . v s
~evg. T:R>R defined by T(&) 5 has fixed point
5, and lim T"}(x) = 5 for any xé€& R. s S
C n>o - . - ) L

1
-

-

-y .
7
2

i ~

_Tljerefore d(k,yj = b,. .

!

e . ' e

The following generalizations of the Banach Contraction

- Pr“'inciple have beén given by Chu and Diaz. | } - )
' @ ' . b . '8 . : ~ .

E Theof®m 1.2. 3. . [isL Let T:S + S be a mapplng deflned on a

. nonempty set” S, Let K: 5+ 5 be su\ch that« KK o (the

' - o

‘/u - . . to ‘ §

' 1dent1ty functlon on S) Then T- has a unique fixed ‘point if o

and oﬁly 1f K 1Tl( has a unique fix@ﬂ_’tﬂ* .. «

s



]
%

o

” B

Pfoof. (i) Suppose K_lTk has unique fixed point x|, Themn ., -
e S . v ’ .

' (ﬁ:lfx)(x) = X, aéd operafing K we get .
AN L o
LR () @ TR = KK e e ,
"Therefore'  Jis a.fixed point for T. l:
. % . . \ . . N } J
s . % , . I
(ii) - Suppose T ‘has a unique fixed point -x.

Then Tx =.Xx, aqg opérating KAI‘ we get.'Kd;T(k) = K_{(x)i

. ¢

which may be written as (K TKK™)) (x) = K™ (%), ‘showing

N .- that Kfl(x) is a fii%d:péint of k-lTK. . ;..
Uniqueness follows easily by c:ontrhat‘d_ict.:'Lon.ﬂ‘° o g

.o : o . :

The following corollary is obvious. - ' : T

Corollary 1.2.4. If X 1is a complete metric space and T :;X‘+ X,

K : X:+‘X are such tha K—ITK.‘ig a contraction on X, then T . , :
hgs a uniqhe fixed\poi t. o, " o r“/)/(

¢ T ; s ) - |
Theorem 1.2.5. (Chu and Diaz [16]) If X is a complete metric

space and T : X X is such that T is.a cgntrdétion for some
positive integer ‘A, th%ﬁ‘ T has a unique fixed point.-

3 AR .
-, Proof. By«%he Banach Contyaction Principle, ‘Tn has a unique fixed’
'.pgints say x. T i
Then TN (T(X)) =_T(Tn(x)) = T(x), i.e. T(x) is a fixed point of
Tn, and by unidueness T(x) éfx,' éivingAa fixed point of T.

4

Remark’  For a ing £ XX, if £% has a unique fixed point .
mar. K or any mapping XX, i i as a un qge 1#e point .

. > - . : .
for some positive integer’ .n, then.so does f. .



e

1 if x is rationalp

]

Tt
-

Example. Define T : R+ R by T(x)
’ " =0 if x is-{Trational.
. . _ : e
".T “is not a hont%acinn, but. T2 is, since T2(x) = 1 for all X.

The unique fixéd point of T and Tzc‘is ‘1.

. This result of 'Chu and Diaz has been made more general by

\ASehgal aﬁ&lﬂokmes in the foiloﬁing theorems, which we state. without
5 - L - 13
proof. e . v

]

%heorem 1,2.6. (éehgal'[64]) Let " X be é/compléte‘metric space
"and T : X>X be a'continuous mapping sétisfying the-condiFion .
that tﬁere exists é number k < 1' suéh that for each ’x e X,
there iS a positive iﬂteger n = n{(x) such that

d(Tn(x),Tn(y)) < kd(x,y) | all y g»X. Then T 'has a unique

~

fixed point 2z and Tn x) - z™ for each "x € X,

p ! Ct
“ .
3

Theorem 1.2.7. (Holmes [38]) If T : X=X is continuous on a’

comple;é metric space X, and if for each x,y € X there exists
. ’ . ) \li . N .
n-= n(x,y) such that d(Tn(x)!Tn(y))'f_kd(x,y), thenn T has a

hﬁique-fixed point.

[

' . - . * i } ’
Some writers; such as-Rakotch [60], Browder [12], Boyd and
Wong [ 7], Meir and'Keélér [5F] have attempted to generalize

Banach's theorem by replacing the Lipschitz constant k by‘gBme' -

b}
real valued function whose values are less than 1.

: . ' . t
-We.mention some of thege results without proof.

4 o

. ) . .
Rakotch defined a family F of functions a(x,y) where

y ] C ' . ) ‘ _ ' .

a(x,y) = a(d(x,y)) , 0<a(d) <1 for d>0 and a(d) is a



(=3

_then T : X+ X Has a unique fixed point. .

monotoﬁically:decreasing function of d. He. then gave the following

-

result. o -

Theorem 1.2.8. [60] If. d(T(x),T(¥)) < a(x,¥)d(x,y) for all

x,y € X where X is a complete metric space and a(x,y) € F;
| - . - -

“

In a similar vein, Browdgr has given the following theofgm.-

Theorem '1.2.9. tlZ] “Let -(X,d) be a cqmﬁleté metric spéce, and .

T : X - X a mapping such that d(T(x),T(y)) i_f(d(x+ji), X,y € X,
where £ : R_+R_ is a right continuous, nondecreasihg function

such that f(t) <t for t ~ 0. Then T has a unique fixed

point. ’ L Y

Boyd and Wong reduced the conditions on their mapping and
T ° v, @ :
A :

obtained the following result.

LS W
°

Theorem 1.2.10. _ [ 7j Let’ (X,d) be a completé metric space. Let
A T
T:X>X be such, that dCT(x),T(y)) < f(d(x,y)) where

£: P> [0, is uppersemicontinuous from the right on P, the

u

.closure of the. range of &, and f(t) < tz,for’all' te P - {0} .

’

Then T has‘a(unique fixed point’ z, .and Tn(x)_AAz for all - x € X.

! t
L o

'Remark; If f(t) = a(t).t, we get Rakotch's result as a corollary. -

)

- o . 2 .
Meir and Keeler [52] state that T "is a weakly uniformly

strict contraction"if, for given ¢ > 0, there exists 6 > 0 such

PR |

that ¢ é_d(x,y) < e +6 implies d(f(x),f(y)) < e. .They then ‘

‘
P

hé&q the following result.

-



=

_ the following result.

is such that - d(T(x},T{y)) f_k[d(x,T(f)) + d(y,T(y))] for all

10,

» ~

.

" Theorem 1.2.11.; If X is-é complete metric space and ‘T : X+ X
', 'is a weakly uniformly strict contraction, then T has a uﬁique .

fixed point z and Tn(x) + 2z for all x € X.

S

Remark. The results of Rakotch and Boyd and Wong follow easily "

3

from thistheorem. .

-

In a somewhat different direction, Kanhap [41] has given

i

- [3

Theorem 1.2.12. Let T, Té .be mappings from(%“complete'metric
. . s £ - .

space X to itself. »Suppose-/gjfl(x),Tz(y)) f_k[d(x,Tlx)) +. N o
| “ d(y,T2(y))]  for

all', x,y € X, and 0 < k <<%» Then Ty and, T, have a unique
- common fixed point. R ,
If Ty =T, =T, e get the following o o o i)'

Corollary 1.2.13. If T : X=X (X a complete metric space) _

x,y € X, where ,0 < k < %-, then T has.a unique fixég point.- -

A generalization of this corollary in the light of Chu and " 4 '_égyi

Diaz has been given by Singh [65].

Theorem 1.2.14. If T is a map of the complete metric space: X

into itself, and if for some positivefinteger ﬁ,.'Tn -satisfies
the condition d(T"(x),T°(y))-< ald(x,T"(x)) + d(y,T"(y))] for
all x,y€X and 0 <a < %:;_theﬁ T has a unique fixed point.

Edelstein [ 24 has :given a fixed point theorem for locally -~

‘contractive mappings.-

A



/é Defiﬁitipn 1.2.15. A mapping T: X» X is éalled°}qpqliy

1.

"X =Y d(Xi;X. ) < e s

3

13

[4 v

contractive if for every x € X, there exist € and. A - -

(¢>0 ‘and 0< A< 1) such that d(T(p),T(q)) < M(p,q)

A}

‘whenever p,q'é\S(x%e).' If ¢ “and » dbd not depend on x,

. ’ N - Q.
T 1is called (e,r) - uniformly locally contractive. -

Definition 1.2.16. A metric sﬁace X is called e-chainable if

and‘only if, for x,y € X, thefe exists an e-chain from X to:

y, i.e. a fipite set of Points XgsX1seees X such .that xo = X,
h

1+1% "_q ~

!

n

Theprem 1.2.17. If T-: X + X is ’(e,xj - uniformly locally -

contractive on-a complete e-chainable metric space - X, then T

has a unique fixed point.

Fixeéd Point Theorems for Single-Valued Contractive MaﬁpiﬁgQ.

~—

Definition 1.3.1. A mapping T : X »- X \fs'called contiacfive if

d(T(x),T(y)) < d(x,y) ﬁor‘all x,y‘e.X; x¥y.

" A contractivé mapping is clearly continuous. Such mappings are more

)

general than contra§tion mappings. Completeness of. the spdce is

not enough to ensure the existence.of a fixed ppinf, as.is illustrat—|
ed'by'the'foilowing,example.

' 1.
4
-

Ex?gglé. Let T : R+ R be defined by T(xJ = Xt+ %-— éfctgn #. T

i$ contractive, R is complete, but T has no fixed point, since
arctan x #vg-_ for any «x.

" N
.3 e . - e .

¢

P “' ' , .' g»_
. L . o . . .

A

.',) b
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l‘ B
J 0y . * - . [

- Fixed point theorems for contractive mappings, therefore,

require further restrictions on ‘the .space .or extra conditions on '’
. ; h i

.

-
-

L : the mapping or on its range.~. _ . :

-

- - Remarks If-a contractive mapping has a fixed point, it is unique.
. L . \ S _ .

Otherwise if x and y ﬂtx + y) are two distinct fixed points of .

. T we would have d(x,y) = d(T(0),T()) < d(x,y), acontradiction:

1 »
i

Edelstem [ 25] has shown .that compactness of X Wwill

v ’

s ' . " gyarantee a unlque f1xed point for a contrdctive mapplng on X. ThlS

"follows as a corollary to the fpllow1ng theorem of Edelstein, to.
-~ which we include a proof patterned after that of Gheney and Gold-’
.-, - ", stein [14]. |

.
~ ' /4

I '~ Theorem 1.3.2. Let -T  be a contractive self mapping on a metric

space X and let x € X be such that the sequence of 1¢erates
3 - L {Tn(x)} has a subsequen;:e {T (x)} which converges to.a point

C .. z€X. Then z is the unique fixed point of: T.

’

] ) Proof" Since ,T is coutractlve we have
N d(Tn(x) P*lcx)) <A 0, @) < ... 4(x, T(x))

Therefore the sequence. {d(T"(x) .].n+1 (x))} is a sequence of real

numbers, monotone decreasmg, bounded below by zero, and hence it .
| Loe ) o, ‘ L \
has a limit in R. ©
N . n..' . ’ ' ’ ‘- . ,‘ ) . +
Now T (x) >z , z€X (Given) L
. n,+1 2o ' o .
) . Therefore T = (x) > Tz , since: T 1is continuous
, ’ - L n,+2 ‘ '
) and T ", (x) > T2z. ot
. : A ,



ut-

*.Corollary 1:3.4.

"Theorem.1,3.5. If T :

Now for z # T(z), .d(z',T'(i))

-~
o,
e g

‘But T 1s contractlve, [{s) 1f 'z 4 T(z), we have

dcz Tcz)) > d(T(2) ,T2(2))

'Therefore z = Tz._

k]

9

s&bsequence, the follOW1ng corol laries _are ‘obvious. .

Corollary 1.3.3.

has a unlque flxed p01nt

I£-T -

compact subspace of . X,

Various eXténsions of the main result of Edelstein have been

5

L]

space X , and if, there exists - n@n(x,y) with

AR, T Y)) < dx,y)

point,

. - +

The following theorem'iéf

s
L

>
[N

. "
4
.

1l

= lim d(T

o

!

X+ Y .is contractive and Y. is a |

then - T _has a unique fixed point.

'glven, frequently along the same lines as for contracti
* For example, Bailey [ 2] proves the follow1ng result

_'to‘Holmes' result in Theorem 1.2.%.

.

for x %y, then T has a unique fixed

. proved consequence of Edelstéin's theorem. . . o

: . M. n
lim d(T(T (x)),” T2(T

L

‘n.a ‘n +1
11m d(T (xk T?!

1+co

(x))
n,+l1 n.+2

tm,rt

i

joe

4@ ,T2(2))

Id

L)

¢

)

£y

h

(Bailey's map is' called weakly contractive).

o easily

¢

(£),

{

*

r

L),

Since in-a compact space, every sequence has a convefgent

)

A contract1ve mapplng on a compact metric space

én mapplngs

- 13.

comparab1¢ .

X * X» is continuous on the compact metric

I3



—

. Theorem 1.3.6. If X isa complete metrlc  space and T : X.+ X

is contractlve and if the sequence of 1terates (m (x)} is
Cauchy for all x € X, then T - has a unique fixed point =z .and

Tn(x) +2z for all x € X.
& . . ' % ,._/k\-
Several authors have obtained more general results by

- replac1ng the metric d\\by some real valued functlon with a

13

‘cont1nu1ty cond1t10n. The follow1ng very general result is due to

'Singh and Zorzitto [70]."

Theorem 1.3.7. Let "X be g Hausdorff space’'and T : X + X 4 °
continuous ‘function. Lat jF X x X~ [0,=) be a_continuous
mapping $uch that 'F(T(x),Té&)) < F(x,y) for-all x,y€ X and

whenever x } Y, there is some n ='n(x,y) such ‘that
) L ' i
F(Tn(x) 'I'n(y)) < F(x,y). If there exists X€E X 'such that

{Tn(x)} has a convergent subsequence, then T ‘has a.unique fixed

point. '

<

¥ ‘ ' ) . . ‘
Proof. The sequence {F(Tn(x),Tn+1(x)} is a monotone non-increas-.

"ing sequence ‘of non-negative real numbers which must converge along

. with all its subsequences to some o« € R:

n

The %ubSequence {T k(x)} in X canverges to some z in X:

Also, for some -m = n(z T(z)) if z + T(i)then, g o '

1

F(T“(z),T"”(z))<Fcz,Tcz)) ‘ - -
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- _— S
. v . . "I . - K /1 N . \:.
‘ [ -0 . R " .

t

S ' n, . - Dp+l
But we also have F(z,Te))= F(lim T "(x), lim T (x)) - .
. o R n, +1s .
| e © = R0, Ty
[ : — . )
‘ o T =a
- N . :
= lim F(T 0,1 ¥ 0)
. - .k : ' : N
- . .o 'S
| = F(I'(2),T (2)) D
- giving a contradiction, _ .
Therefore, z = Tz.. . : - . RN X
' To‘pfove uniqueness, let "y be a fixed point of T *

o

g

different from z. ' Then Fly,2) < F(im(y);Tm(z)j for some

m.= m(y,z); ‘But this is -impossible, since Ty =y = me and
T(z) = 2 = TV(z). o SR S
Corollary 1.3.8. "If X is compact, and T. and F are as.in the
‘theorem, then for\eagh x €X, {T"(x)} .has a convergent/sﬁbéei‘
‘quence and T always has‘a.umiqﬁe fixed point. ’
Wong [74] genéralizes this result slightly in the following o
wa);-' 3 '. A ’ a “ ‘ ) ‘ i .(
Theorem 1.3.9. Let, X be a compact Hausdorff'spacé and T :AX >X
:! éontinuqus mapping. ‘Suppose F,: X x X = [0,») is lower semi-,’
) . " a k .
continuous such that F(x,y) =0 implies x =7y ang
F(Tn(x),Tn(y)) < F(x,y) for some n = n(x,y) whenever x % Y.
! ) ;. N “ ’ : ’ : ‘
Then T 'has a fixed point in’ X.’ A a @
Remark.: Clehrly, both theorens remain true if F i3 répiacgd by'
. _ the metric d. . ’ L T L . o
- A, )
o= L
\ ° ‘f’.j
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such authors as Nadler Jr., Fraser, Jr., Covitz, Danes, Furi and

Among the corollaries to these:general results are.the

theorems of Edelstein and Bailey. (Theorems 1.3.3 and 1.3.5).

oy
»

IC

Fixed Point Theorems. for Multi-Valqed Contraction and Contractive

Mappings. . . ' .

Fixed point theorems for multi-valued or point-to-set mappings

have ﬁ%en studied in the past 30 years. In'194l, kakutani [40]
generalized the classical Brouwer theorem to multi-valued uppersemi-

'continuous mappings of a compact convex subset K of Eﬂ, into the’

’

family of closed convex nonempty subsets of K ‘In 1952, ﬁan‘[27l

extended this result to Hausdorff Iocally convex linear topolog1ca1

spaces. Both results have w1de _applications. Kakutanl s theoremg

can be applied to problems of 1nvar1ant‘measure and;Haar_neasure,

érgodic theory‘and dynanical systems, while Fan}s,resdit has been |
applied to minimax problems; approximetion theory, potential theory
and'monotone atore.  More recently, in 1972 Himmelberé [34] has -

shown that an uppersemicontinuous .multi-valued function defined on a

nonempty convex subset T of a separated locally convex space X

o

into the fam11y of closed,convex subsets of T, such that F(T) is -

. contained in some compact subset of T, has a flxed point. leed

'polnt theorems for more restricted mapplngs have been developed by .
(o

Ny

Martelli,,Himmelberg, Porter and VanWleck.

,' The concept ‘of multi-valued contractlon mapplngs is due to

Nadlbr Jr. [54] and is a comblnatlon of the- 1deas of set-valued

s - )

" mappings and L1psch1tz mappings. The fixed p01nt theorems place‘no

. 1
.

.severe restrictions on the images of points and in general, the N

§
-~
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space is simply required to-be complete metric.

- . We give first some preliminary definitions and n

. y R "
Notation. - 2x - family of non-empty closed subsets éf X
. . . { , v v

‘ CB(X)™- family of non-empty closed) boynded s
. ’ .

-~

otation.

ubsets of X

f X

K(X) —.fémily of non-gmpty compact subsets o
_P(&)'- family of all non-empty subsets of X.
N(A,e) = {x'€ X : d(x,y) < ¢ for some 'y & A;

Definition 1.4.1,- A multi—valued mapping F : X + Y

upper (lower) semicontinuous if and only if {x.e X

is closed (open) for each closed (open) set B in- Y.

JIf Y isa compact Hausdorff gpace and F(k) i

N . . . \\' " .
each x €X, then F 1is-uppersemicontinuoys if and o

haé a closed graph.

“Ae CB(X)'}

is called

: F(x)N B $ ¢}

s closed for

nly if F

Definition 1.4.2. A multi-valued mapping P : X > P(X) has a

v

Definition 1.4.3. Let (X,d) be a metric space and 1

A,B € CB(X). Then |H(A,B) = inf {e : AC N(B,e) and
is a &Ftric called the Hausdorff metric.

The Hausdorff metric depehds on the metric'd for X.

E: X CB(X) is said to be a multi-valued Lipschitz

and only if H(F(x),F(y)) < Kd(x,y) for all x,y € X,

K>0 is a fixed real number. (the ‘Lipschitz constant).

- fixed polnt 1f there exlsts some p01nt X e X such that' x € F(x).

t
et

BEN(A,c}

. Definition 1.4.4. Let (X,d) be a metric space. A function

mapping if
‘where
JIf K < 1,.

by



u

(}"

1

*’“Exaggle Let X = [0,1] with the usual metric. .
2T o . ' R
B : ed | ’
'
«'

. o .

F o is cdlled a multi-valued contraction mapping fm.v.c.m/).

-

» “ ) - . ’ . " /

Such mappings are continuous. , -

~

—

Let f : X+ X be defingd by f(x) = §-+ x - x2. _
L]

Let F': X~ X \be def1ned by F(x) = {0} Ll{f(x)}

o “Then F is am.v.c.m. Jts flxed points are Oz’and &

‘The following main® theorem due to Nadler Jr. [54] is worth
. . [ 4 3y R o
'mentibning“

-

’ S

Theorem 1.4.5. . Let " (X,d) be a complete metric space and

F : X CB(X) .a m.v.c.m. Then " F nas a fixed pointQ

a

Proof. Let K< I be a Lipéchitz constant for F. Let ‘p“ e'x '

and bl € F(po). Since F(p')” and F(p;) are closed and boundeg

and p; € F(p ), there ex1sts a po1nt p2<: F(pl) such that

)

.d(pl,pz) < H(F(p ) F(pl)) + K (by def1n1t1on of the Hausdorff ~

metric. If F(pl) were compact, ‘we cpuld take K = 0). Again,

since F(p;) and: F(p%z)é (f]_acx) and i:'ze F(p;), fhere,e‘xists
.‘n-pofnt p3 € F(p2)- énch that' Q(pz,p3) izHngl,sz) + K2, :

.Continuing, we get a seduence {pi} of'points pf . X sucn fhat R

P;,; € Fp) and 40;.py,) SHE (L) F(py)) + K- for,

i=1,2,3, ... o . | |

’
T 3

- 18,



. 19,
" Now, d(p., ) H(F P + k - o . ..
/ (p; pm/ 1 (B 1) F ;) _ .
T ) ‘ '_ C< kd(pi 1,p’.) + k s :siglce Fis f mov.c.m.. o :
. ' . ‘. <k[H(F(p 2) F(p1 1)‘2\1 1]+k ‘ . ]
- V - ' 2} i ' e
Do o . <k a(p; - 2,p 1) Y . o o .
/.\ | _:” : | | i ) . - .' . .' ‘ R
o f_kd(po,pl) ik™. , “for 411 i > 1. .
Hence, d(p ’p1+3) <. d(p; ’p1+1) d(pi+1’p.i+2)+"'+ d(pi-l~j--,1’pi+‘j)ﬁ. « .

3
|'A

K'd(p 1) + ik + .o+ K hap L p) e (i -id L E
i+ i+j-1 - '
i 3: k d(p ,pl) + % nk" for i,j > 1., '

n=1 _ n=1 ) ’

. . 14
Since’ k < 1, {pi} is a* Ca/uchy sequence, and since (X,d) is
complete, {pi}ﬁ converges to some point x € X.

. By the contimuity of F, ({F (p;)} converges to F(x'o); : _Since'
-~ Y ~ * - ’ - L . hd

_pié. F(pi_l') for all i > 1, we get 'x9€~ F(xo?,‘ i.e. X 1s' B

‘ a fixed point of F. ; o _ , .
’ £ . ' : ‘ ] ’ i ' . . , ’ - ‘
Remark . "The method of proof is 51m11ar to Banach's, Uniqueness of :

P . N

the fixed point is no‘t’:" guaranteed (see example follow1ng Def. 1 4.4).

-
. The following .extension of the.theorem has bgeén given by Dube
~and Singh [22). .
. ‘ Theorem 1 4 6. Le1_: .(X,d): be a complete meijic space and let

. F s X+ CB(X) be such that

H(Fg,Fy) < a[D(x Fx) + D(y,Fy)] for all x,y€X, 0 <‘a < =,

o
/o . T 27~

-Then F has a fixed p'01nt. ‘

*  D(x,F(x) = inf {d(x,y) : y € F(X)}
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l~ K] - , Iy ( _i N

- Further generalizations aldng these lines have been.given by~ °
s . , . 4

Ivimey [39]. ' L

. . ’ P » Q . @ . ’ \. = T b.‘.

clg . Nadler Jr. and'Fra)ser Jr. [28] have obtained fixed point

< P
. ?

v theorems for contractive muylti-valued mappings. W e
' f ) D o : * . "‘ - '?.17\;

A T . . -
Definition 1.4.7. A mappigg F : X » CB(X) is called contractive .’

Kt

BT Rt

L 1 : o
C if H(F(x),F(y)) < d(x,y) for all x,y€ X (x % ¥). e &
# “ N . W : .
! \‘ . “ e - .,

P . & -
. oy, B

Remarks.. 1. If y; € F(x;), then there exist$ an el_'ement> s
4. IR

?
~

ys € E(xp) such that d(y;,ys) < d(x,Xp).
' 2. If F 1is contractive and F(x) is compact for each o
. ' R : . ! ~ : ' ' .‘ s ) '.‘ . ) v e
x € X, thed F is uppe;‘semidontipuous.‘ ¢ - IR . ‘
C ~ . - 9% ; - g \.
Lo ' ) i - » o .
* Definition 1.4.8. Let F-: X » K(X) be a continuous' mapping. If .

»

- A is compact, then U{F(a) : a€& A} is compact.’ The function ° S

B LK) > K(X) defined by “F(A) = U{F(a) : a € A}- for each” . . ..

A€ K(X) is'_éalie& the function induced by F. TIf. F .is continuous

s A . . N : . .
(contractioﬁ, contractive) then so is F. ' 3 LY .
[ . ;

The followingtheorem -due to Nadler Jr. and Fraser.‘h]. e)otepcis

M v

* Nadler's main result. R co0 Lo .
. e - N L ’
"

Theorem 1.4.9. Let (X,d)/ be a metric space and let 'F : X K(X)
be a multi-valued contractiveumapping. Supposé there exists a , -
. subset A € K(X) such that a subsequence of the"sequence {?n(;A)} PO

. A M « .'u .
- of iterates of F at A converges to a mémber of , K(¥). Then

F has a fixed point.- . ' 1. S R



f,f’., .

~__"'

‘e

- glz) <-g(b). But F(B)'= » .S0 2z € B. Therefdjijwe have a

vl

Sor

-Proof. Let JF : X+ K(X) _ be. contractive. Let A & K(X)‘ be such
that (F 1(A)}® conVerges to’ Be& K(X). Then B is a fixed point
v P

‘of;f%) i.e. F(B) =B (by Bdelstelnls result in [25] )
oo W

¢

A R i -

\\//Defane a- real valued cont1nUOUS function g on B by

. g(x) =-inf {d(x,y) : y € F(X)} ' for each x& B. Since B is
! l\! ’ k] 'u. .
¢ " . . N ) * ” .
.compatt, g assumes its minimum r at some point b €.B.

4 . I
. Suppose T > 0. - P

. . . .
. . , . A F— ' Fal

_,Since _F(b) is bompaét,'there existgya point z e F(b) _such

that g(b) = d(b, 99'0 Bééausé gb) =r >0, b + z. Also, since

Lz eF(b), g(z) - < H(F(b), F(2)).

It follows that g(z) < H(F(b) F(z)) < d(b, z) = g(b), i.e.

3

. oy . :
contradiction of the minimality of g -at b.

- Therefore r =0 and 'b €F(b).

T
-
.

. f # .
-Remarks: 1. The sequence ’f%(A)} converges to B.
- o .

2. Every fixed point of F is in B.

3. 'The'theprem’does not hold if the images are not
¢ ] : o
e ; compact sets. '

Smlthson [71] has obta1ned a s1m11ar result, us1ng the not1on

of the regular orbit. : , _
,' . ™ ’_’—-—-

. ~
- 4

Defiﬁition.1ﬂ4.10. An orbit 0(x) of the'multi—valued mapping - F

e T b
at x is a sequence {x : x €.F(x 1)} where X, = X. An orbit
is called regular if and only if . d(xn+1,x +é) __d(xn,xn+1)'.and -

N °

. S ! , :
- . . * R N
, B . . ) - . .
. - o, . .- : . . /\ .
’ N ' . v,



L]

N o C -
; - d(x n+1-))' f L

nel**ned) 2 ﬂ(F(xn) F(x

- -
[

|

multi-valued contractive mapping. If there is a regular orbit

Theorem 1.4.11. Let X be

W
a metric space and F : X » CB(X) a-
o <

O0(x) for F which cqnta*'ins a converéent subsequence x o> yp
. i -
such that x_ ", +.ay1 , -then y; = Yo * .ci.e. F. has a fixed point.
: i , . .

~

- 1

Nadler and Frasér's theorem then follows as a corollary, as .,

. does the Ffollowing.

o

.~

.

Corollary 1.4.12. If F : X+ CB(X) is a contractive rﬁulti-valued

mapping on g corﬂf)act metric space X, then F has & fixed point ‘

'(cf‘:'.A }delstein 1.3.3). ¢ N ' T
1 .o o -

. ' These results also f£olfow from a more easily proved theorem of

. Himmelberg, Porter and Van Vlejck. I':35‘]'.~

Theorem 1.4.13. Let (X,d) be a compact metric space and

F: X~ Zx a muli:i-v:ilued mapping with clos\e\d graph, which, for some

o >0, B>0,. a+pB =1 satisfies the condition

3

D(Y,F#)) < ad(x,y) + BD(x,F(x)) whemeyer ye€ F(xY, x4y, = .-
; A x+ F(x), y¢F(y)_. Then. F has a fixed,pok\.' -

2

A

Proof. Suppose F has no fixed point. E
Since the graph of F 1is a compact set, there exist points
_ o ‘ '
' xpe Xo: Yo € F(xo) such that ' ‘ '
Ld(x,y,) = infld(x,y) 1y € F(x), x€&x}.
Since y T X, we have g

\



P ‘ o ) .
- ; /’-\ ‘ 23
: - J
N . o D(}’O,F(}’D)) < &d(xo,yo) + BD(xo’F(xo)) - o
. . . .‘_w Y ' . ‘
. = d(Xo,yo) |
‘ . L . : .
' But this contradicts the def¥fhition of (xo’yo)' . - .

" Ariother of Edelstein's single-valued mapping resuits has been

) parallele& by Nadler [5%].

<
a

Definition 1.4.14. A mapping F : X + CB(X) is said to be
(e,2) .- uniformly locally contractive\if, for x,y € X and

. d(x;yj < e, it follows that H(F(x),F(&)) < aM(x,y), where

' -y
» 2ams

s e>0,0 < A <1, . S v oo . N
Theorem'1,4.15. - [54] Let.(x,d); be a complete e-chainable metric
space. If F.: X+ K(X) is .(e,A) - uniformly locally <ontractive,
then F has a fixed point. (cf. 1.2:17). ! IR .
' v
I" .
] ’ )
<
r f*" ‘. ii;‘;
.:;;'"
[ g ,r
. #
‘i"’?s\*' i '
- ‘ , '\_/.\ R .
\\ P el
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CHAPTER II ’ R

Nonexpansive and Densifying Maps and . their Fixed Points

>

P

2.1 Preliminaries:

Definition 2.1.1. A mapping T of a metric space X into itself is

said to be rionexpansive if d(T(xj,T(y)) < d(x,y) fér‘all -’.‘"Y € X.

Nonexpansive 'mapping is c'lj'arly more general than contractive.

-~

. Some of the useful characteristics of contractive mappings do not

carry over td the nonexpansive case. The existence of a fixed point

does not assure its uniqueness (for example, the identity map on a
. metric space has every point fixed). The sequence of iterates need
. not converge to a fixed point, even in a compact space. Nor does °

. n . .
nonexpansiveness of .T = for some integer n guarantee that T

has a fixed point, even if T" does have..

LI

L - Cheney _anél Goldstein [14] have given the foilgwing result for.
a nqneﬁ)ansive mapping in a general mgtric'space.' We state it with- -
" out proof. . e ot

<y
.

Theoxze;n 2.i'.2. Let X ‘be.'a)metric spacé and T: X >X a mapping ,

such that (i) T is nqnexpﬁnsive,: ‘\> ‘

- (ii)’l if T(x) +,x,_ then d(T(x).,TZ(‘x))‘<_4(x,T(x)),,
(ii‘i)‘ fo1r each x¢€ X, . {T" (x)’} l{a-s a él_uster point.

Then\for eaf:b X € X, .{Tn(x)} converges t:o a fixed point of T.

*  Most fixed point theorems, for rionexpansive mappings require
‘some special conditions on the domain. We next give some definitions

that will he needed in the sequel,

AN : | B I



4 -

.

RS

I3
i
’

¢
i
.

'Definitiori-Z 1 3. A linéar space, X overa field F is.called a -

'normed space 1f for each x € X there corresponds a non- negatlve

- N v}
real nl{mber Hx” the nérm of x, osuch that
.9 ) v ' E
(@) |Ix]] =0 ifan‘d‘or_lly‘if x = 0. - L
el = Bl [Ixl]- forall x€x, aeF. |
L tes % ' . R . o
Qi) dlx + vl < x|+ [lyl]-. T

A

Every norm induces a metric on X, namely, d(x,y), = H'x'- vl

¥

'for“| x,y € X. ' o
. . : . L ' T i
. ot ' * ’ - \. ’
Definition 2.1:4. A complete normed linear space is-called a:
. - . t &, ’
Banach space. T .
. i . ({. -

. ,'éxamgles :

PR vt
y

S @)y R W1th the usual norm, i.e.: Hxl[ |xl

L (i1)  €[o0,1], w'it_h [1£]] = sup {|£(t)| : t € [0,1]}
",.j(iii) X Q'I.’ , 1 P «, the space of sequencc,as'gP such‘uthat’.‘
v S : T 1
I lxg® <o swith [[2]] = ( ] [x P P
o : ' n=1 g

\

n;l

u oL

Definition 2.1.5. A 591:‘_‘" C in a normed linear space X-is callqd.

convex if ax'+ (I - a)y € C ‘whenever x,y€ C and 0 <a < 1.
- . 5. ) P 3

-

Definition 2.1.6.' ‘A Bariach space X is called uniformly convex if,

*

for any ‘e > 0, there exists &, depending on ¢, such that if

i
PIxI] = [yIl =1 and ||x - y[] 2 ¢, then ICIX—%J-I‘I <l-8.
’ S 2 : : 4

@

. Examples: : A Lo i

°
o

(1) v.'}z,p ;1<p<m, is uniformly convex, but 2; is not.



4

s

- 'for | x,y )X .and’ [Ix+yl] = []x]] + |1y||,~.it follows that-

Definition 2.1.10. Let C be a bounded, convex set of diameter p -

“if sup {||x - y|]] : ye C}.= P . ' . »

a . . » o [ ' Lo
(ii) C[0,1] with sup norm is not uniformly convex. 2 T -

3 - . +

Definition 2.1.7. A Banééh space' X 1is called strictly ;onvextifi

x =21y, (> 0. T

R R

\

Examples: S, '
T 4, . ’ N D. - -

T e ' 1
- (1) Every uniformly convex' Banach space is strfictly convex,
but not conversely. ' . o o

(ii) 2, and ¢ _ are not strictly convex. R ; o

+

Definition 2.1,8. Let - X** , denote the second dual space of the

Banach space X, i.e,, the space of continuous ;;%g?r functionals - .

on X* , . If the canonical mapping 1 : X -+ X** /is"onto, then X \
. is called reflexive. . - )

Exaggles: s ' , ' é -, |

(1) Aﬁf finite dimensional Banach space is reflexive.

“(ii) & , 1 < p <o, is reflexive but &, is not.
‘ p . ; 1. 18 :

Definition 2.1.9. - If A is g bounded subset of a metric spice X, - . ]

the diameter of A, denoted 6(A) = sup {d(x,y) : x,y'e_Af.

e

[y

in a Banach spacg X. A point x €X is called diametral for 'C

' Definition 2.1.11.- A convex set ‘K in a‘Banach space X has normal

4

St?ucture, if for each bounded, convex subset C of K whidh contains

‘

l’ . . . \L -



~Rémark: [Ix]lz = (x,x). R . -t

/it is called a Hilbert space. ' . -

3

~ .0 °
i oo " B f
more than one ‘point, there exists a point x € C which is not™ -~ .
diametral, * a , _ ) SN,
[} Y . ’ . .
Examples: : . - . . iy -
. ' y ' S . :

R . J i I . N
(i) Every convex, compact subset of a Banach space has normal
structure.

(ii) Every uniformly convex Banach space has normal structure.

»

“(iii)‘ The ;ﬁace’.C[O,l] with sup norm does not’ have normal

structure, since the cohvex, bounded set o _
C={fec[o,]] : 0<£(t) <1, £(0)'=0,f(1) =1}y is
such that all its points are diametral. o > ‘

< R
f

Dope aos . . . . ’
Definition 2.1.12. An inner product on & linear space X is a mapp-

@ »

ing from X x X into the scalar field F such that

.
v '

1) (x,y) = (¥,x) , the compléx conjugate, , C. C .

)

. " 1

(i1) (ax + By, 2).= a(x,2) + 8(yjz); where a, BEF, and'

x,y,z €. X.

(iii) " (x,x) i 0 for all g'e X, and (x,x) = 0 if and only if .
x = 0. o ' . S A

/

Definition 2.1.13. A linear space X,'tbgefébr with an’ inner product;.
A co T - T '
is.called an inner product space. If such a space is complete; then -

~——

«

.Remark: Hilbert épa;e => * ﬁniformly convex Banach space = st@ictly

[N

33 B . [

* the symbol- = is used for "implies", : . o

‘n



<

convex Banach space => reflexive Banach space.

¢

u - .

2.2 Fixed Point Theorems for. Nonexpansive Mappings in Banach Spaces.

S ‘The importance of fixed point theorems for non-expansive

-

mappings :‘in the applications (see Browder [9 ], for example), has.

ﬂpromptgd many mathematicians to investigate this topic. Some

Y

interesting results have been obtained in the setting of Banach

spaces by imposing additional conditions on the domain, or on'the .
. mapping itself. . = . 2o
Taking as domain a closed, bounded, convex subset C ofa - -

s'paée X, Browder [.10] proved that a nonexpansi-v'e mapping of¥ C

to itself has a fixed pointk if X is a Hilbert sI'Jace;,.He Iater

/ extended this theorem.to the case where X is a uniformly convex

)

- Banach épace [lli]. A _furthér generalizatioﬁ-of this result for a

reflexive Banach space with a normal strycture condition wdas given

by kirk [42].
oo : .
o The ﬁl’lbwing well-known result is due to Kirk.. We include
‘ " its proof for completeness. p

¢+

" Theorem 2.2.1. Let X bea reflexive Banach space and C a élqsed;,

.+ .“ ! ‘bounded, convex subset of X, _having normal structure. If T :C-—>C

hd pd 4 ’ . X3 .
is nonexpansive, then T has a fixed point.

Proof: Let ¢ =-{C'c C : T(C') & C' , C!' is nonémpfy, closed and
R . . q_l .

" LT ) . convex}.

‘Since C &€ © , ~¢ is nonempty; ¢ can be partially ordered by set

. . . L , X R - . .

e ’

inclusion. B -

N



LI

.Let ‘v be a chain in 6, i.e. V¥ consists of sets

"

F €26 >.., > Lyoeene ' Since each C, ™5 closed and convex, it

F

» is therefore weakly closed, and the. chaln Y has f1n1te 1ntersect10n '

property.

Now, as a bounded, cld§ed, convex set in a reflexive Banach °
. 1 ' . - .

$pace, C is weakly compact. ‘fr'herefore the fémily ¥ of weakly S

/-

‘closed subsets of ¢ has non- empty 1ntersect10n, 1. e.

C* = chJ _ +¢ Moreover, C* is clodgd, convex ar_xd invariant

_under T (1 e., T(C*) ¢ C*) Thenefore C*¢ ¢ is a- lower bound

" for Y .- Then, by Zorn's Lemma, ¢ has a minimal element, say .Co"

If ¢, is a singleton {xo} our proof is complete, since [ .

‘T_(CO) C Co “would then imply "I‘(xo) =X, We now show that thls is
the case.

Le’c co(T(C )) denote the closed convex hull of T(C )y, i. e.,,
.the smallest closed, convex set contamlng T(C ). Slnce T(Co) c Co’

.

"we have co (T(C )< C and the minimality of C, in ¢ dimplies

that‘ Co = CO(T(CO))J

1S

Now assume that Co Ah&*more 5han.‘one element, i.e., let
| i
* .

6(%) d >.0. By notmal structure of C, there exists a p'oinlo X, € Co
Wthh is not diametral, i.e. there exists B(xo,dl) such that d; < d
’ 1 ! . s - ’ AN

cand C & B(x_,d)). " ‘ ’ ) )

‘Let C; = {x G-Co :‘COC B(x,dl)} C ﬂ{ ﬂ B(y,d;)} . \
. Co
The_n" ciec,. G :f= Cy> since‘, dy < ds Cl is closed and convex.
i

. Also' €, 1is invariant under T, for if x€. c; < C and y € C o)  We
1 ‘1 ,

have, by nonexpans1veness of T, ||T(x) - T(y) || <lx - y|| < dl:



~

" by

.4 . . - . .

~so that T(C,) € B(T(x),d;). But-then B(T(x),d;) is a closed,

onvex set containing T(C,), so C, = E(T(co)") € B(T(x),d;) and .

e definitign of C;, we have T(x)€ Cy.
] Thus C, . is a closed, convex, invariant, proper subset of Co,
/\0 . . n - . ) . »
contradicting the minimality of C0 .in ¢ . Therefore C0 contains

. - «

just one point,

Remark. The theorem lgolds if X 1is any Banach space’and C “is a
O o . N W -

convex, weakly compact subset having normal structure.

-

Corollary 2.2.2.(Browder [11]) Let X be a uniformly convex Banach
’ ! ¥

space and C a‘nonempty, bounded, closed, convex subset of - X. If

T: C-+C is nonexpansive, then T has a fixed point.

L ) ° li

Proof: Every uniformly convex Bflach space has normal structure.

As Browder points out, his result is a consequence of the
: ‘ ' St

Schauder fixed point theorem if C is .compact, and a special case’

_of the Tychonoff fixed‘p.oint theorem if:-‘ T is weakly continuous.

The following useful result on the set of fixed points of

" none)'cpansive’mappi:ng is given without proof [56].

vt

.

Proposition 2.2.3.. If C 1is a closed, convex subset of a strictly
v - ' ) .

éqrive,x Banach space and T : C + C is’ nonexpansive, then F(T), the °

set of fixed p(ﬂnts of T, is closed and convex. o

r
v

Edelstein [26 ] has given a.fixed point theorem for strictly
convex Banach space, °ej‘ct“ending a result of krasnoselskii given for

uniformly .convex Banach spaces. We state it without proof, <

-

(1Y
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- : .

' Theorem 2.2.4. Let X be a strictly convex Banach space and C a

.closed, convex set in X.” Let T : C - C be nonexpansive such’ that

T(C) is a. rellatively campact set in. C. Let T = Al + (1 - )T,

0 <X <1. Then for each ‘N, the sequence {(T}‘)n(x)}' converges

to a fixed point of _T. ’
- - - L] _s
) "~ ’ ]
Remark - Browder has made use of the. mapping T in investigating the
3 : Ce
possibility of finding the f:ix'ed!points‘ of nonexpansive mappings

. (when they are known to exist) by using sequences of iterates. We

* -/
.- state without proof two theorems which indicate the direction of his

Vo . —

iresults, . ]
v . ' .

Theorem 2.2.5.. Let X be a Banach space and C a closed, convex

subset of X. Let T :C > C- be no‘n(e\x‘pansive.~ For 0 < A < 1,
.. . ., . . , ; 8 . ‘ y
x'€C, define, T'(x) = (1 - Mx + AT(x), and define

'I_‘)‘(x) = (1 - A')x'o + A'f‘(x), -where 5@0 is a given, point of C. + Then

for each A with 0 < A< 1, [ -
(1) T)‘ : C+C is a contraction and has a unique fixed point
x, in C. | ‘
C (1) ™ C + C_ is nonexpansive and has the same fixed points

4 . v
as T, . .

(iii) If X is uniformly convex and C is bounded, and if we

o . n - ; :
define x'n =(’I‘>‘) (x,), then (1 - Tx 0 as n=+ .

[

Theorem 2.2.6. “Lét ~ X be.a wniformly convex Banach space a’nd; C a -

closed, bounded,convex subset of, X.. Let T : C - C be*nonexpansive

such that (1 - T) is a closed mapping of C into X. Thén for

-

VY
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bl . . .* + . B . -
.

each yo’ eC,' '(T)‘)r'l(yo) converges strongly to a fixed point of . T. # E
B < "

-

~

Other ‘resiilts for nonexpansive appings in Banach spaces have -

_been obtained by imposiﬂg the -additional condition of .:'a.symptotic '

regularity on the mapping. ‘

3

"Definition 2.2.7. let X be a metric space. A mapping ‘T : X + X '

. L ’ 2 L.

is called asymptotically regular if lim d(Tn(x),Tn"'1 (x)) = 0. for
' X T : -

all x. € X. S C '

Browder and Petryshyn [ 13] have shown that strong conclusions
may be drawn concerning convergence of sequences of iterates of such

mappings to fixed points. We quote some re_sul't,s' without proof. °

L]

_Theorem 2.2.8. Let X be a Banach space and. T : X +X a non-

-

-‘exj:a'nsi\'}e and asymptotically regular mqpping. If, for some’ Xy € X,

- the‘seQuence {jrn(xo)} has a subsequence convergirig to a point

zle'x, then z is-a fixed point.of T and {Tn(xo)} converges ‘to

- ' a
zZ.

g e

Theorem 2.2.9. Let X be a Banach space and T: X +X a nonexpansive

. Remark This result generalizes Theorem 2.2.6.

and asymptotically regular mapping. If F(T) 4 ¢. and (1 - T)

. maps bounded, ‘closed sets to cldsed sets,-then each iterative sequence

‘.'{Tn'(xo)} ‘ convergnes to a point of F(T).

0

. We mention in brief some results on commuting families of ¢
mappings and their common fixed points.

/ o -9

—
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° Definition 2.2.10. A family F, of nappings from a set ~ X to

itself is called commutative if T,T, = T.T, for all y, X€A. -

‘Theorem 2.2.11., (Browder-[11]). Let X be a uniformly %\onvex

a commutative family of nonexpansive self-
R 3 . . . . .

\ mappings on af.closed, Bounde_d, convex subset C .of X. ' Then (TA} }

Banach space and {T)\}
—~ / l ! ’

has a common fixed point in. C.
"~ " ' The following result of Belluce and Kirk [5 ] is stated without 7

" proof. . - . : S
‘compact, convex subset - b -

' Theorem 2.2.12. Let-C be a nonempty, we'akly
1. .structure.

of a Banach space ~X, and let C' have normab\
finite famil); of commuting nonexpansive self-;nappings of C has a

«

Then any

common fixed point.

"o

e ' Remarks: .
1. C could be taken as a:closed, bounded, cdnve;c'sgt in a

' 1

i
Nt rneanmm
¢ B
¢

. reflexive Banach space.
2, If X is strict’ly convex, the theorem Rolds for infinite

A"

i

B NP

- ’ - eqs 5 Y
B families. i .
]

R 2.3.Measurg of Non-compactness and Related eLre_ms.
A Lo . ‘

In this section, we shall escamine a class of operators. whose, . o

properties are intermediate between those of contracting and completely

continuous mappings. Such operators were first considered by
f

Krasnoselskii [45] and.Darbo [21]. Our interest is in measures of

»

. . - . . o . Y . . R . . «
noncompactness of a’ set (i.e. fung¢tions which are invariant under




- »

3.

o

. D e
) ¢ . H

- s A 2

e A : _ % -
transition to the closed convex hull of the set), and operators .
L . ’ . Ly R .

which decrease the measure of non'compac,tness of.any set whose

1 . o

closureo‘is not compact. 'The -theory .of ndncompactness and condens-

ing\operatoré has applications in general topology and the theory -

of differential equations. A detailed _stﬁd,y of this 'subjject has beei

g1ven by Sadovsku [51], who also proudes an up- to date comprehenswe

b1b110graphy o o

The most widely used ieasures of .noncompactness on metric spaces:

.

'are the a—meaisure introduced by Kuratowskii',and used by Darbo, Furi

‘ and Vignoli and Nussbaum and the X-mea'sure employed by Gol'denshteln,

‘ XX(A) ‘=_ t1’1"nf'{e: >0.: A has a finite e-set}

3 , \
Gokhb’erg, Markus, and Sadovskii. - Co

Definition 2.3.1. [21] Let, A, be a bounded set in a metric spaee'ﬁ X,

oa(A) = inf Ie >0 : A admits a partitioning into'finitely many sub-

sets of diameter < e} Y, ey

[
i

° .
) . X

°

» - - ’ s s
. Nussbaum [55] and Petryshyn [57] have pointed out that these ',

two nieasures of noncompactness are slightiy different: In pa{r}:icular;

Definition 2.3.2. [62] .Let A be a bounded set in a metric space k.,

L

;xx(A) does not dépend 1ntr1n51ca11y.,on the bounded set’ A. They do, .

e
however have many propertles in common, Indeed they are equ1va1ent

I

in the sense that there exists C > 0, such that for all bounded
.- L " . o . -

q_.subset's A :in X, Cxy(A) ia(A) iCX)'((A)-

r I

The fol lowmg theorems give some easily proved propertles- of

I

a. (They are also true for® X, measure) .o

X

’
)

&5

%

/

et



: C bounded subs.ei's..'- Then

1

-

. . . . . v . \

Theorem 2.3.3. (Nussbaum [55]) Let X be a metric spa,ce and A,

. (1) a(A) < 8(A), the diameter of A, - .
(ii)) AC-B implies a(A) < a(B), i.e. monotonic,

°_(iii)r a(ﬂ) = a(A), i.e. invariant with respéct to closure ,
(iv) a(AU B) = max {a(A), a(B)} i.e. semiadditive.

If X is a Banach space, we have the following further results.

. [l
ry

due to ‘Darbo.[21].- °

> L . .

Theorem 2.3.4. If A,B are bounded subsets of a Banach space- X,

“«

then é}i) a(A.+ B) i‘a(A)j a(B). where A+ B={a+b:aeAbe B},

(1) o(ER(A)) =-a(N): o LT

¢ P

Remarks:

. s i hd

1. A is totaily bounded if and only if a(A) = 0,

-
)

, 2. Ina c:;?gete metric space, A has compact closure (i.e. -

A s precohpact) if and only if a(A) = 0. -

]

- Definition 2.3.5. Let X &g'a metric space and T : X+ X- a

. + . oL .
continuous mapping: Then T is called a k-set-contraction on X, .-.

4

i

Y Yoo .
.. if the following conditions are satjsfied: ’ T

(i) “If A € X is bounded, then T(A) -is’ bounded.

“(ii)‘ &(T(A)) < ka(A), Where 0 < k < 1.

Y

NOTE: N ‘ ' .

. 1. If k=1, wecall. T a l-set-contraction or a—nohexpansive.

.2. If (ii) is replaced by the condition.that o(T(A)) < a(A)
. M “ , [J 0 »

for all bounded,sets.”A: suchk® that a(A) > 0, then T is

called a densifying mapping.

°

g

3
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Remarks : -
1. Densjf&iqg maﬁs were introduced by_Furi,and Vignoli [30j.

Using x-measure of.non-compactness, Sadovskii calls such

mappings cpndensing,'while Danes [17} uses the term -

[y
3

concentrative. -

. .
N

|- . 2. Kuratowskii [47] generalized the Cantor Intersection Theorem
- A ’ 3 ' )

’ by proving that a-decreasing sequence of non-empty closed
sets in 4 cofiplete metric space whose measures of non-

compactness approaph'zero, has non-empty compact intersection.
* Our interest is.in fixed point theorems for mappings of this
N a . ’
-tyRé but first we see how they are related to each other and to the
“ ‘ " . ‘
" mappings we have already considered. ¢

4
= ~

Proposition 2.3.6 [55] Any contraction mqpping' T of a metric space

X to itself is a k-set-contraction.

- -

~

' Proof: Let A be a boundea set in X and let «(A) = p > b.'aThen,

. n . - .
for given ¢ > 0, we may write A ='(_j Ai’ where 6(Ai) <p+e,
’ n i=1. ‘ ’

for 1 = 1,2, .%. n. Then TfA)lél_)T(A.); Let X,y € A, for some
’ ' i=1 1 - 1

fixed i. Then since T is a contraction mapping, we have

d0,TOH)) <KW, 0<k<1 L L

< k8 (A))

..q ;‘ “‘ ik(p-q, e)' ‘ " ’ ! . c :
"_éince' e is arbitrary, o (T(A)) <kp = ka(Aj[
i.e. T is a k-set-contractidn. :

- J . :
- Remarks: )

;1. "Every k-set-contraction is densifying, but not conversely.

! Nussbahm [55] gives the following example of a densifying

<

- . o . P



’ )

" map which is not a k-set-contractionifor"any k < 1.

' -

Let p : [0,1] + R be a strictly decreasing nh-

negative furction such that d(d) = 1. Let B be the

- unit ball about the origin in any infinite dimensional

" Banach space X. Then f : B+ B definéd‘by f£(x) = p(x).x

is- the required mapping. -

o . ot . ,
A \

“ ‘2:;”ihﬁa manner similar to that of Proposition 3.3.6, it can be
shown that a contractive mapping is ‘densifying (condensing)-
and a nonexpansive mapping is a-nonexpansive (l-set-contract-

- ion). - Hence, we have

v

contraction ::;> -contractive ::ﬁ} , nonexpansive

.~ + k-set-contratfion = densifying ==%> ‘.a-noﬁexpanﬁive
. v '

]

3, Completely continuous mappings (i.e. continuous mappings
f{ B which take bounded sets"to precompact "sets) and contractions
. . .
and their sums are densifying.
The following fixed point theorems fér mappings involving
(o . . . " :
measure of noncompactness areéworth mentioning. ‘The first of

- these, for k-set—contraétions, is'due to Darbo [21].

Theorem 2.3.7. ‘Let X be-a Banach space and C‘ a.bounded, closed,
convex subset of X. Let T : C +~C be a k-sgt;contraction.' Then T

has a fixei point in C.

A more gengrél versien of this résplt was given by Nussbaum [55].

A [}

nS,

1

i
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’

Theorem 2.3.8. Let X be a Banach space and C a closed, bounded,

convex-subsét of X. Let T : C~ C be continuous. Let .°

~ o
C, = co (T(C)), C, = EE'(T(Cn_l)) for n > 1, and assume that
¢

3

«a(C)) + 0. Then T has a fixed point in C.

.y ‘
[y

Proof. Each 'dﬁﬁtis closed, :bounded, convex and nonempty and

4

Cn;D Cﬁ+1, for n > 1. Therefore, by Kuratowskii's generalization

A1

of the Cantor Infersection,Theorem (sec Remark 2 after 2.3.6),

cx = (M) c is nonempty and compact. Also C* is convex, and by
n>1

the construction, T : C. »C, Therefore, by Schauder's fixed

+1°

point theorem, the continuous mapping T : C* -~ C* has a fixed point.

Darbo's theoren [21] then follows as a corollary, since

a(CI;) gk"n,'a(C) > 0 as n>w,

L] )

We next consider some fixed point fheorems for densifying;
(c;ndénsing) ﬁaﬁpings. .The main theorem here was givén independently
by Furigand:Vignqli [31] and Nussbaum [55],nand also by Sadovskii [62T
for x-measure. The_proof follows as-an eagy consequence of two results

+

(Corollary 2.3.13, Prop. 2.3.14) in the sequel. - - ’

Theorem 2.3.9. Let X be a Banach space and C a nonembty, bounded

closed, convex set of X. Let T : C+ C be densifying (dondenéing}h‘

Then. T has at least one fixed point in C.
. RN .-

Remark: The conclusion of the above theorem does not hold if condens-

~

-

+ing .is replaced by l-set-contraction, even if X isa . -

" Hilbert space.

. . , .

. . .o H Y Co- -~
° “ A . . 1 '
p \ .

4 . e



a nohempty, closed, bounded, convex subset of X. Let T C +C be
- . s .- g :

" We shgw that A , the closure of . A, is compact. Suppese

o .t
. . .
( - ’
. K B
8 N : 4

The folloﬁing tﬁeorem‘of Pétryshyn [58T generalizes Edelstein's

" result’ (Theorem 2.2.4), We state it without proof.

N » s
b - " :
o . . ,

Theorem 2.3.10. Let X:be a strictly convex Banacﬁ_space and C

“
@

. ¢ .
densifying and nonexpansive. For 0 < ) &1, let ™ = AL + (1 - A)T.
B ) . < n N "
Then . for each x € C,; " the sequence {(TA) (x)} converges to a fixed

pointof T in 'C.

L3

Remark: . Singh .[66] has impfoked ;hié_;esdlt for a déns?%ying mapping‘
T:CaC, whéne X is a general Banach space, by

.'reqﬁiriné ™ to be éuqh tha%i JWTA(x)V- | < ||x - pl] |
for 411 p € F(TY “and all’ x €C - F(TY. -

a
A

A further genéral‘?esult has been given by Singh and

Yadav [69] in the light of Kirk [43]. - .

We give next a theorem of Furi and Vignoli [30]...

. b

Theorem 2.3.11. Let X be a’homplete metric space,ahd: T: X->X.

0 .
a densifying mapping. Let 'F be a .real-valued lo@pr semicontinuous

function defined on X x X suth that B(T(X),T(y)) < F(x,y) for‘all

X,y €%, x 1y (i.e. T is F-cdntractive). If for some x, € X,‘

"the sequence of iterates {xn} = {Tn(xo)}‘ is'boundea, then .T hgs;

a_uhique fixed point in X.

3

. ' ® - h b L. .® "n. _
‘P?oof: Let A,=.é;% T (x)). Then T(A) = UT (x,)) € A..

. n=1
Therefore T : A+ A, and_ A = T(A) U {x }..

14}

" a(R) = a(A) > 0. Then,since T is densifying

P

o . \
' . -
»
5

4
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LU 'a(T(A)) < a(A). But alh) QT U x,h) ~ o .

Lo o max {a(T(A)), a({x 1)}

o - max {a(T(A)), 0}

a(T(A)), a contradiction .

-
B

Therefore a(A).= 0 = a(A) and singe X is complete, this implies " -

-
a

that A -is compact.

By continuity of T, we have T(A) c (A) < A
Therefore T : A ~ A 'satisfies all the condmtlons of Theorem 1.3.7,

- and so has a fixed point in A

Q

. Uniqueness followa by contradiction from the fdct that

CF(T(x),T(Y)) < F(x,y) ‘for x4'y. :

Remarks :
1.” Singh and Zor-zitt'o[=70] generali'zed this result by'requiring '
T to be densifying and such that for ,some integer n,

F(T“(x)eT (y)) < F(x,y)

f

2. "With P = d,,’ the metric. on . X, we get the nfoll’dwing | [1

 result: If T £ XX is contractive and den§if§ing on a g

cémplete metric space x,\' and {Th(xo)} '.is bounded for h
: \

.some - X_ € Xy, then T has a unique fixed point.

3. . Since a contraction.mapping is demsifying and contractive
and such that every sequence of. iterates is bounded, the-

ﬁanach Contraction Principle is a'corollary to this theorem.

’I‘he followmg result of Fur1 and V1gn011 [32] 1nvolv1ng

%swnpt—et-}c-:r_egularlty, is stated without proof
s Y
<£



metric space X. Let T ¥ X~ X .be densifying and asymptotically

‘are fixed points of T. ; // *

P

[

Theorem 2.3.12. Let {xA} be a bounded sequence in a complete

3

regular on '{xn}. Then {xr;} is compact and all its limit pom%?
° * x‘

Corollary 2.3.13. Let X be a bounded complete metric space and

T : X+ X a mapping such that inf (d(x,T(x)) : x € X} =0. If T

l

'15 dens1fy1ng, for if T is completely continuousj, then T has a

»

-— L]
fixe‘d point ‘in X,

For a-nonexpansive mappings, Furi ‘and Vignoli [31] have given

Y

the following result.

Proposition 2.3.14. Let: T : C'»'C_ 'be.a-nonexpansive on a closed,
bounded, convex subset C of'a Banach space X. - Then

inf {|[x.- TX)|| : x €C} = 0. C .

Pr(oof. Let x €. C a‘l define T,: > C by

T (x)-=.(1 - A)x + AT(x), where -0 < x < 1. Then T is'a A-set-

) contractlon, for if AC. C, we have T Ay =. (1 - A)x +IAT(A), and -

, a(TA(A).) = a[(l - A)x + AT(A)] < (1 - A)a({x }) + Aa(T(A)) ')“a(T‘X(A))

L4
°

| < aa(A).
Thei'efore . A' has a fi.xed point X, in C '(i)y Theorem 2..3.8)’.,‘
Also T (x) converges to T(x) uoiforml)‘r o:n 'C as A > 1.
IIx -T(x)ll'llTA(xA) T(x)ll’II(T -TJXI|+0

Therefork - 1nf {lx - T[] : x&c} = '

Remark: The mapping T of Theorem 2.3.9 satisfies the conditions of -

* » 'il.. ] » - ) . ° I L3 ’
the proposition, since a densifying map is wa-nonexpansive.

4;-

Y I
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Therefore inf {||x - T(x)|| : x €C} = 0. - ///7
. R ’ L e . v : .
F: Then, by Corollary 2.3.13, T has a fixed point.

The notion of densifying has been applied by Bakhtin [3 ] to

“families of mappfhgs. - We state the following results, generalizing

. _Theorems 2.2.10 4nd 2.2.11.

v

Theorem 2.3.15. Let "F be a commutative family of nonexpansive

*

. opefators defined on a closed, bounded, convex subset C of a

Banach spacé X. Let T(C)c C for each Tg F. Let F contain
- . : v
at least one condensing operator. -Then the family .F has a common’
. y, . .
fixed point in- C.

"~ An extension of Bakhtin'é result has been given by Singh and -

Holden [68}@ - . - .o

\

.. . ° . Q.‘
Theorem 2.3.16. Let F be as in the preceding theorem. If one of

the mappings in F is démi-compact, the family has a common fixed ’
. . ' - ‘ ~ e A

point. tA'continuous mapping T is demi-compact if, whenever {xn}fj

is bounded and {xn - T(xn)} is strongly convergent in X, then

'{xn} ‘has a Strongly-convergeht subsequence.)

-
<

Generalized contractive mappings have been introduced and '

investigatéd by Lifsic and-Sadovskii {49], and Danes [18].

Definition 2.3.17. (Lifsic and Sadovskii). Let X be a locally

v

convex topological space.and C a subset of " X.- A continuous mapping'

T: C+X is-called generalized concentrative if it-satisfies the

following condition : M €C such.that T(M)<€ M and. M - co (T(M)) -,

is compact => M is compact.



. ioms.- : A -

" 2.4

‘Remark: Danes gives an even more general definition of o-generalized

Danes [18] has given the following aefinition.

] - 'S

Definition 2.3.18. Let X- be a topological space arid.3 C a sqbset.”

of X. A continuous mapping T : C > X is called genergil_ized ‘

concentrative if it satisfies the following conditions:
\ :

(i) McC and M= ET)LT(M) => M 1is compact

—

(i1) Mc C' such that *'T(MM) € M and card (M - T(M) < 1
- = M is compact.

.
¢, - .

1
"

* concentrative mappings'o’n a topological space X, where «

is an extensive (M < a(M)), idempotent (aa-= a) and '

monbtone set-to-set mapping on the famiiy of subsets of X.
Clearly co' is suych a mapping. -

. © . . .
Thé "following theorem holds under either of the above definit-

te

w

-

Theorem 2.3.19. Let X be a locally convex Hausdorff linear topological

space and C_.a noﬁempty, closed, convex subset of X, If T:C»>C

is a generalized concentrative mdpping, then T has a fixed point in ~

C . . ' .
L3 L s : o

Multi-Valusd i\dap@gs. N " ‘ ' o - : ' \

[

Remark™ We use the same notation as in Chapter I for the various

i
{

families of subsets of a space'. X. In additioh; we denote .
. by CK(X) the family of convex, compact subsets. )
. FAR \' . . - P

N
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rincludcd here without prcofs.

u Definition 2.4.1. A multi-valued mappin‘g. F (X~ CB(X) .is called '

»

nonexpansive if H(F(x),F(y)) < d(x,y) for all X,y € X.

A few interesting fixed point theorems have been given for

multi-valued nohexpan,sive mappings. The closely related woi'k of

Markin [51], D6 20 (48] and Assad and Kirk [ 1] en this topic_is

. : A T
In 1968, Markin gave the fqllowing theorem.,

o

-
>

Théorem 2.4.2.. Let X be a real Hilbert space and B its closed

. ’ -
N ce - N »

;unit ball. Let F : X+ CK(X) be nonexpansive. If F(x) < B for

each x € B, then F 'has a_fixed point in B.

‘This result ‘was ge‘nera‘liz_ed by E.-Lami Dozo in 13\70. He,
describes the following condition as Opial's conditionm.

"If. the sequence {x } converges weakdy to ' x ," and if

X #x,, then.. liminf ||x - x|| > 1lim inf Hxn - xoll":."

-ﬂ.p . spaces' (1 < p <,») among others.

n-+ o n-—+o

' Opial's condition 4s satis"fied by Hilbert spaces and by the.

’ ’ .‘ 0.

Vv, . N

Theorem 2.4.3. [48] Let X be a Banach’_;pace satisfying Opial's

condition. Let C be a norempty, weakly compact convex subset of X.

Let F : C~+ K(C)  be none;(pansive. Then F has a f1xed point in C.

o

. ; ®
, ~I/r| 1972, Assad and-Kirk [1 ] gave*the following'generalization.

5 . e ’ .

.Theorem 2.4.4." Let X bea Ba:nach space sdatisfying Opiai's condit-;

‘.ien: . Let_ H’ be a closed, canvex subset of X and C anonempty

e

weakly compact convex Subset .of H. Let F : C -+ K(H) be non-
f -

[



. ' l T : ' o
. ' 24
T  expansive and suppose F(x) c C whenever x € GH(C), the boundary

2 r

of C relative to -H. Then F has a fixed point in C.

& . " We now turn our attention to multi-valued mappings involving

' v, mgasure of non-compactness. Contributions to this topic havr been

.

made by Danes, Lifsic and Sadovskii, Furi and Martelli and Himmel-

o berg, Porter and Val Vleck. o

- - b

The following' definitions and theorems are due to Himmelberg,

Porter and Van Vleck .[36]. - .

Definition 2.4.5. -Let X be a locally convex. linear space and B

‘a basis of néighbourﬁoods of 0 composéd of convex sets. If "M C X,
-, ! i ’ -
'\ define Q(M) to be the collection of all B € B such that

‘. é + B2M for some Iﬁfecompact subset S of X. The set QM) is -

i

-

"L 'a measure of the pfecompactness of M, i.e. the larger Q(M) is,

o

--the more nearly precompact is M. \ . ’

Proposition 2.4.6. (i) - M is precompact if and only if QM) = B,

(1ii) Q(M)_ = Q(co M), where co(M] = convex hgll

. . . ) of M.

-

i~ .- Definition 2.4.7. Let H be a subset of a locally convex space X.

Lo A multi-valued. mapping F : H +"P(X),' is called condensing if and only

. ) if for some ghgicé of bas S "B of convex 'neighbo_ixrhoods of 0, .we-: -
have Q(F(M)) $ Q(M) fpr every bounded, non-precompact subset M of

<. ' . L]

. He ' u - ;
N Remarks : . ' : ' .

—MM‘—-M.__,_.__,___I» “If X ii a Banach space and B "the collection of spherical

. , neighbourhoods 'of/zf then this definition of condensing is-
MY . - .

o *
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e [ 0

. . ’ .

implied by Sadovskii [62]. SR
2. If X .is locally convex and HC X,..then a multi-valued

"

mappiﬂg F .is :condensing when either %Ii) "H is compact,

L or (ii) F .takes bounded sets to precompact sets.

Theorem 2.4.8[36]Let C be a nonempty, complete,‘confex,subset of a
separated locally convex space X. Let f 1 C > P(C) be cgndensing

with convex values, closed graph, a?d bounded range. Then F has.a

¥

fixed point;

Remérks:

1. If X . is non-separated, the theorem remains true if we

-require C to be closed.
2. The fixed point theorems of Schauder and ‘Tychonoff: are

contained in this theoren.

< . Himmelberg and Van Vlieck [37] later X;fined two notions ‘of °

"semi-condensing'" and thence obtained theorlms'which yield:hs

Danes. The definitions are as follows.

. ] . .

cprollaries some results of.Sado%skif,‘Lifsic'and Sadovskii, and I
-

T °

il '

Definition 2.4.9. Let A be a non-empty;,cbnvex subset of a separated -

locall;“convqx space X. Let 'F : A + P(A).
' (ij F iiﬁéailéd “semi-conde;sing"'if an& only if ': . '
~{x} v {ﬁ(x)}Ul {I-;Zl(x)} V) . has éompa?ct closure “for
:sbm; x €A, - T . |
(ii) F ig cérléd "sémi-condeﬁgiﬁg modiclosed convex éets" if

\ ¢ ’

- and only if éach closed, convex set ‘N C A such that

[

—4
- \

S .EE'F(M)»; M, is compact,
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- " : o .
With these definitions, Himmelberg and Van Vleck give the

following fiked ‘point theorems. We omit the proofs. .,

- . ’ -

., Theorem 2.4.10. Let A be a non-empty convex subset of a separate&

’

locally convex space X. uéﬁﬁ'F : - P(As have convex values and

cldsed graph. Let F - be both~semi;conden§ing and semi-condensing
. ' Y

mod closed convex sets. Then F has a fixed point.

~ . -

. 1

Remark:,‘since the generalized concentrative .mappings of Dangf'aﬁ34

Sédovsk11 obey both parts of Def1n1t1on 2.4.9, we have
.+ ' Theorenm 2.3, 20 as a corpllary te the above theorem -The

nplti-valued analogue is the following:
. ' . . ' .
Corollary 2.4.11. Let” F': A+ P(A), (with A as in the. theorem) -

. be a genera11zed condens1ng mu1t1va1ued mapp1ng W1th ‘convex values

" and closed graph 'Then F has a fixed p01nt. &

.

: Theorem'2:1.12 Let A be a nonempty, convex, . weakly compact subset L

. of, X and let F : A > P(A) "have convex values and closed graph and

. 'be semi-condensing mod closed convex sets. Theo F has a fixed point.

d ) . ¢ N N
Remark: Results for single-valued mappings (and families) simllar

to those of K1rk [42] and Browder [11] can be - obta1ned by

using the Ysemi- conden51ng mod closed convex sets” c0nd1t—

ion in place of the neormality condition on X. . . .
The following theorens due to Himmélberg and Van Vleck
geﬂeraliie Theorem 2.3: 11.

LY

Theorem 2.4.13." Let ¢ be a feal-valued lower semi- contlnuous mapk

on X x X, where X is a metr1c space Let T : X+ X be a semi-

Rl

. . f . '
3 e f [N « . .
-~ . N - .
> . B . « \a - - B
. . . | . X ' . '

B //-‘K

.
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‘".condensing, contract%ve nnpp;ng. Then F has a f1xed point,

i A

’ -t ¢
condens1ng, cont1nuous mapp1ng, such that .

¢(T(x),T(y)) <.¢.(x,y) for 'x,y € X, x {y % T 'has:a'fi':x'edg.

3
~ - i

point. “ . ‘

o -

Thcorén 2.4.14. ‘Let " X be a metr1c space and F ¢ X *fzx é sémi- .

. , @

S, .
Apparently independently of Himmelberg and Van:Vleck, Furi

’ : \ . [
~and.Martelli [29] have developed fixed point c?go;ems for what they

'_. - k.
call co-compact mapplngs.

[

- .
v . e -

Deflnltlon 2.4.15. Le Q be a closed, comvex subset of a locally '

convex Hausdorff space -x; A‘happlng F : > P(Q) 1s called cor -
- - v .
compact Af A c Q and To F(A) DA implies that. A is. compact.

a £, ¢ .

- € ' - s !

Prqpos1t10n 2.4, 16. F is Eolcompacﬁ if and only if . co F(A) =

“ . . c .
v o ow . . .
| . . . s

1mpl;es A is compact i ' . s ° o,
o

Remarks: . : . " . 4 °

-t . . [ .

1. The,definition.and proposition hold for singléévaiued'

L. e . : o L
‘mappings.. - B .
. o ’ & ’ .
— : | ,
2, co-compact is the same as "semi-condensing mod closed .
. . . . M ',l -

o .

. convex sets''. i ; .

ua ‘ L P . o . E

CL Lt M ST . S
© Furi and Martelli point out ﬁhe generality of their definition

@ r.

‘ by g1v1ng "examples’ of co- compact mapplngs Among.them are k-set— '

contractlons and densrfy1ng mapplngs on a closed “bounded , convexj
e L . - <

~subset of a Banachvspace, genera11zed concentratlve self-mappings

of a closed convex subset of a 1oca11y convex Hausdorff space,

conden51ng mapplngs of a convex, complete subset, hav1ng bounded

Pl . o :' -

e

. f . '
. . . . ) .
_ - .

-
o.‘
.
e
n.?-'
()
2
v ' ';
”
2
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Then F has a fixed ppint.

st

&
49.
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;o T " . - . - .
& Y /

.range. . Hence, thelr theorems 1nc1ude _some other results for SR ‘

: S
s;,ngle and mu1t1 valued mappmgs as spec1a1 carses, The . follow:.ng

'resuits are a b1t more general tHan that of Hlmmelberg and =Van

Vleck_ in Theorem 2.4.12. Again, we omit the proofs. .

\

.Theorem 2.4.17 [29]. Let Q .be a.cloa;ed, convex subset of a

'

. ~ . AP I N
locally -convex Hausdorff space~ X. Let' F : Q » P(Q) .be ca-‘compact "

¢

. with convex values.and closed graphs. Assume that there exists a

weakly. compact subset K of Q such that F(X) € K. Thén F has
a"fixed,point; ’ . ' , - T

' [

" Theorem 2.4.18° [29]. Let Q be as»above. . Let F : Q > P(Q) be

i .
co~compact with convex values and ,closed graph . Assume 'that there .

..exllstsl.a weakly compact subset M of Q such that MNC4{p for.

s - ©

: A . . . g
- ,,all eonvex, closed subsets 'C. of 'Q which are 1nvar1ant ‘under F.

[ . s v

- v

s T Lo 2

'Remark: The theorem holds if Q 1is a closed, bounded convex

.
.8

subset of a reflexive Banach space. -
;e - \ . © . :

g

Some furuher work on this- top1c has been done by Ma o] ahd

: \

',Petryshyn and F1tzpatr1ck [59]. RN

? - y ot
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- CHAPTER III

. ﬁ- .
leed'P01nt Theorems for Mapplngs with a Convex1ty Condltlon(/\\’

Convexity of the domaﬁn of a mapping is° frequently requifed

in obtaining fixed point theorems, particularly for nonexpansive,
J ' “ . .
or more generally, for continuous mappings’. / Certain mathematicians

notably Belluce and Kirk, Montagnana and Vignoli, Singh and Holden,
Danes and Ko, have obtained fixed point theorems by imposing a
convexity condition on the mapping,‘whieh.enabled them to weaken !

the conditions on the space For example, Xirk's theorem (Theoreh

»

2.2. 1) for nonexpan51ve mappings holds if, normal structure of C
is replaced by convexity of 1 = .T. In this chapter we examlne
known nesults-whi¢h invoke cenve;it&, and generalize some of thése
g results. We aiso give a theorem‘for commutative family of mappings.
° }

i
s i

_3.1 Single-valued Mappings.and-Fixed Points. - i° ,
( - |

Definition 3.1.1. A real-valued function f on R is called °

convex if £ Y ) i% (£(x) + E(y)) forall x,y €R.

Remark: [46] If f is.also EOnfinuous then it satlsfles the._
stronger condition of Jensen s Inequallty, namely,

EOx + (1 - A)y) <AL + (1 - M) for all
X,y €ER, 0 <A <1. .

:
.

‘The notion of convekxity has been extended to mappings from a.
,éanach space to itself as; follows: )

.

i ..



Definition 3.1.2. An operator T : K+ K defined on a nonempty,

¢

.convex subset K. of a Banach space X is called convex if

HTESD1 1< 31Tl + 1ITo ) for ai1 x,ye X If strict

inequality holds whenever x # y, and T(x) and T(?) are not
both 0, .we say that, T is strictly convex.

1.

Remark: ,Every linear mapping is convei,'bot not conversely. -Also,

+if £ is linear, 1 - £ is convex. -
Examples.

‘ r
1. Let X=7R, K=(0,1). Define f(x) = x2 . Then f.is

o

«©

'

strictly convex. .

Let X = C[0,1]}, thefspace of continuous functiops. on

-

o

‘[0,£] with sup norm. . :

’ Lg_t K=1{fe C[o,1j : 0 < f‘(x)' _<_'.1, £(0) = 0, f"(l) \=\1'}‘ .
Define ¢ : K+ K by ¢(£(x)) = 'xf(x)_ where £¢€ K, . -
x & [0,1]. o o |

~ Then ¢ 1is.a convex mapping on the convex set . K.
. « ‘ . - &

Definition 3.1.3. Let. K bé a nonempty, convex subset of a Banach

space X. A mapping T : K-+ K is called quaéi-convexién- K if.n

v

HEEGDI) < max (HTeall, 1ITO)]]) forall: xy e K.

If strict inequalify:holds whenévgr' X + y and T(x)" and

T[y) are not both zero, we say T is strictly quasi-convex.

- Quasi-convex.is cleardy more general than convex. - L
‘ r : . DN ' L



Example: [44]
Let- X = (0, ») and let f(x) = Vx. R -

v ! d ' ’ ' ; ' ) g’
' Then- f is not convex. For e),cample, if x=1,y =4, we
, * . have fE5Y) = f(%') = V7.5, while é—(fcx) + £(y)) = 1.5 < /2.5,

But f is'quasi-convex because it is increasing, so that for
c- x <y, we have £(X29) < £(y) = max (£(0,£()) .-

- ' Indeed, f is strictly quasi-convex.

H\ , ‘u‘ﬁIn'thg sequel, we shall fréc\]uentlyyrequire convexity or quasi-
. convexity. of the function 1 - T or the functional J 'défi,ne;l by

J(x) = || @@ -Tx]]. ) \ | P

o

We shall also make use of the fol lowing well-known results.

1. A real valued function f on a set X i (weakly) low%r
semi- contmuous 1@1,for any 'real number ‘r the set

{x e;x : f(x) < r} is (weakly)Ac_losed.
. s - . /7

2. A convex, continuous, real-valued function on a Banach space

'3: A (weakly) lower-semi-continuous map on a (weakly) compact o
set attains its infimum.

Taking as domain .a nonempty,. convex, weakly compact subset K

of a Banach-space, Belluce and Kirk- [6 ] proved the existence of a

is weakly lower semi-continuous. - . o

S lflxed pOlnt for a contlnuous mapplni T : K+ K satisfying the °
'condltlons that. >1 - T is convex op K and
inf {||x - T’x)ll : x'e K} = 0. Danes [19] iimproved this result '~ =
A ' ‘ ‘ ' ‘ :

'sightly byim’éq'uiring démi-continuity.insfead of continuity of T.
.- N . . . 1

(A mapping T : X.» X is called &emi;cohtinuous if, for any séqﬁence

- {xn} in X such-‘:‘.h'at‘ x, = x;) strongly,- we have T(x ), > T(x )

X3



“weakly). ~ In a different direction, Montagnana and ‘Vigﬁol'i_ [53]
improved Belluce and Kirk's result by replacing convexity of o
1 - T. by quasi-convexity. They also showed that if the quasi-

convexity is strict, then the fixed point is unique.
o . \

{ . ,
Using the methods of Danes and of Montagnana and Vignoli, we

give the following theorem. . N

[
h

“

Theorem 3.1.4. .‘Let T: K+ K be'a demi-continuous mapping defined

.on ‘a nonempty, convex, weakly compact subset of a Banach space X.

Suppose 'l - T is quasi-convex on K, .and inf {||x - T(x)||: x & K} "= 0.
- ] v 1
L~ . ‘ .
Then T has a fixed point in K. Moreover, if 1 - T 1is strictly '
. " ‘ " -t ‘ ’ .l - . ’
quasi-econvex or strictly convex on K, then T has a unique fizcéd

a LY

H g . s
point.in K. ' - , . : ’

Proof. Since T is demi-continuous, so is 1 - T. Since norm is

b

weakly lower semi—cont'inuous (l.s.c.), the‘functional : S e
'-;J‘(x) = :]|x - T(x)ll is 1.s.c. and so the sets H_ = {x €K : J(x) :_<_r,'

r € R} are closed. These sets are also convex, foi‘ if a,be Hr '

and c = Aa + El B, A)b, 0 <A <1, we’hav'e, by the quasi-c‘onvexity

of 1-T, that Jm) = || - Tim||’< max{||@ - Dal[, [}1 - Db[]|} < r. 1
Théfefore', the sets Hr are weakly closed and the functional J is

weakly l.s.c. on the weakly compact set K. Therefore J attains its -
infimum on K, i.e. there exists some.point x_ € K such that.

J(x )= inf {J(x) : xe K} , ile. ||x; - T(x))]||= inf {]|x - T(x) = x € K}‘,g‘:\g,

Therefore "xo = T(x), i.e. x  is a fixed point of " T.
. \ . L8

| The second part of the theorem follows by contradictiod from the

" strict quasi-convexity of 1 -'T. For if x,y are fixed points of T

Y
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KRS S

“in K, with x§ y; we have - -

[l - 25 < max [ - Dx|]|, [Ja-Dy[p Fo. . L
’ N q .
AThleollowing known results can be obtained as corollaries.

.
t ¢
. -~ .

D

» Corollary 3.1,}. (Danes [19]) If T : K~ K is ; demiicéntinuous. .
ma'piﬁg o lé nonempty, convex weakly compact subset of a Banich spape;j
such~That 1-T is convex ony K “and’ inf {||x - f(x)fj.: x € K} = 0,
then Tr'has.a fixed point in K. -

%

Corolléry 3,1.6. (Belluce and Kirk [6 ]). Let K. be as in the
§ .. \ .

—’1 theoremJ“ Let T-: K+.-K .be continuous, such that 1 - T 1is convex

and inf {]x - T(xJJI : x €K} = 0. Then T has a fixed point in K.

Corollary 3.1.7.. (Montagnana and Vignoli [53]). Let K be as in the
: . . a ! L -

theorem. Let T : K+ K be continudus, such that 1 - T is quasi-

convex on K and inf {||x - T(x)|[]| s x € K} = 0. Then T has a-

fixed point in K (which is unique if 1 - T .is, strictly quasi—convéx_

.

on 'K). ‘

-

Remark: The theorem and corollaries cleérly hold if K is a closed,

boundéd, convex subset of a reflexive Banach space, since
o such a set is also weakly compact.

\

The following examples, indlcate'that the various conditions of

[}

- . . . . .

.the thé%rem’are essential. These examples have. been given by Belluce F
. . ,. _\ . h ‘e .

.and Kirk [6 ] and Ko [44]. . :

Examples: . T . ' . RN

" -1. Weak.compactness of K. (Belluce and Kirk [ 1)

J

Let X = C[0,1], K= {f€ X : 0 < £f(x) < 1, .£(0) = 0, £(1) = 1}.



55,

_K' is convex, nonempty, but not weakly Compact. Define

. N ‘.‘ . . l - R . ’

¢t K+ K by ¢(£(x)) = x£f(x),, for fek xe€ [0,1],.'
:.¢ 1is nonexpansive (hence continuous). ¢ is asymptotically

régular on K; so inf{||f - ¢(:E)” ‘:'fwe K} = 0. Also -

‘1 - ¢ is convex on K, But' ¢. has no fixed peint in YK,

7.

let” X'= g2, , K= {x e L, : Hxl] <1}. X /is nonempty and

’ L] [}
(the zero function is not a member -of K).

Quasi-convexity of 1-T (Ko [44]).

eonvex, and is also weakly compact since X is reflexive.

Deflne T by T(x) - x|, X1y -:.:) where

).(- (xl,xz .+v..). Then _||T(x)|} ii: so. Te¢ K>K. T

is contihuous, If we \consider the points x(n). where ' .
xi(n) = hl_ for i <n?, xf.n) =0 for i >-n? we see that

||x(n)|| ;'/Z_/n-m, so inf{]|x - T(X)|]| : x €K} =

But 1 - T is not quasi-convex. For example; if we take

L@l 111 o
X "(2)2! 2:2)0, ~--) and )

X - (- 2) 2) s = 2, 0 “ e ),' we get " A .

=1l = [ly - Toll= 25 « 1, while

X

4
[

lla - n*5F|[ = [l - T)o|| = 1. T has no fixed point

»

in K, for if f(x) = x; for some x € K, -we would require’

T X —‘xz- cee TXT L ‘and ) |in2 <'m; so /xi= 0

1 .
for all m But then f(O 0, .,.) = (1,0,0, ...) ¥ (0,0,...).
Clearly inf{| }x —.T(x)ll :xX€ K}-— is 'required if T is
’to have a fixed point. Belluce and Kirk [¢ ] and Ko [44] show

that thlS condition is not implied by the others
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-~

Lét X be a reflexlve Banach space whose closed unit

ball S s not compact: Let C = {xGX: ||x|]

6‘r’ = : 0

-and let " ($ : S >C be a contlnuous map with no flxed

) point (see Dugundji [23]). Let S, = 'x€X: ||x[| < 2},

S, "is weakly compact, but not \compact Then there exists

a continupus mapping ¢ : S, - S, such that y= ¢ onm §,.

and ¢ has no fixed point. Now define T by

T(x) = xu+ ﬂTp_(Elc')TxTT . ‘(4;()() - x)\fc:r X € SZ Then T

is well-defined, T(S;) €.S;, T is continuous on S; and

-

1 -T isconvexon S, . But since [1x - Tx)|] =1 - T J\\

for any x € S, , inf {[|x - . T(X)|| :.x€ S,|| $ 0 and T

%has no fixed point.

d

" Remark E53j.'

MY

& (i)

'. inf {||x - T()|| : x€C} =0 and

‘The existence of fixéd poirits for a mapping T :-C~+ C

. ‘ ey S
is a consequence of two conditions: ;

t

T(x) = Hx - T(x)|| -attains its infimum on c.'

‘Thus ,=for example, if T is ‘weakly continuous and c -

'is weakly c.ompac‘t,' condition (i) will insure the existence

of a fixed point. .Furi .and Vignoli [31] have given a

resun; which insures that candition (i) is satisfied’

(Prop051t10n 2.3.14)., It gives rise to further corollari '

¢ L f L3

ies to Theorem 3. l 4,

N

-

" Corollary 3.1.8 [53]. . T: K=+ K is an a—nonexpanswe mappmg

defined on a nonempty,convex weakly éompact subset of a Banach space

X,” and if 1 - T is qua51-convex,on K,\]then T has a fixed point :



. lCoxo‘llgry 3.1.9. Let K be a closed, bounded, convéx subset Qf.é

®

_continuous*and B is nonexpansive, If 1 - T 1is quasi-conveéx on

in K (unique if 1 -T is strictly quasi-convex); .

Proof. By Proposition 2.3.14, iftf {lx~T@|[] :x €K = 0.

By Corollary 3.1.7, the result follows.‘

0 -
\

2

i ¥ ) B ' 4
Remark: Belluce and Kirk [6 ] give a similar result, but require -
: T to be nonexpansive and 1 - T convex. Clearly, this

result follows immediate l-.y from Corollary3.1.8,

. The following result is due to Singh and Holden [68]. T

U
- - P

v

feflexive Banach space. Let T = A + B where A -is strongly : J
: ) . o :

L

K, then T his a «Fixed point in XK. , K
' Proof. 'Since A' is densifying and; B .is nonexpansive, therefore T s

t

is a-nonexpansive. Also K is weakly compact, ‘so the result is a

consequence of Corollary 3.1.8.
2

Remark: A similar theorem’ for 1-set Icon'tractiOn with .1 2 T convex~ .
" has been given by Singh [67].
In the 'light of Chu and Diaz [16], we give the following - D

N

ggnefalization of 'Uledrem 3.1.4. o e ,

3

" Theorem 3.1.10. Let K be a nonempty, convex; weakly compact subset

- of a Banach space X. Let T ¢ K + X be such that for somé positive

integer n, T" is demi-continuous, 1 - ™ is stri.ctl){ quasi- -, . .
.convex on ‘K, -and inf {}]x - T"(x)]] : x € K} =-0.
H R . R

Then T has aunique fixed point in K.

EY a2 . N - ,

*A ~is cafled strongly continuous if X, * x wegkly implies Ax. -+ Ax" E

- strongly. . o ‘ ' ] R ' o



. “Remark: Generalizations of this type depend on the uniqueness_of o

-

o -

’
-

!

Proof. By Theorem 3.1.4, the mapping ™ : K+ K has a unique *

fixed pbint in K, i.e. Th(z) = 2z for some z & kK - Then

T (T(z)) = T(T (z)) = T(z)‘;v o T(2) is a fixed point of T,

By uniquem'ess,."l‘(z) =2z, so 2z is a fixed point of T.

[ . , -

-

the fixed point of ™., Such uniqueness is a consequence 7/

,of the condition that 1 - T is strictly quasi-convex

.

i (or strictly convex), or the condition that the mapping T

,Js strictly nonexpansive (i.e. contrdctive). We therefore

N - 7

S ¢ .
have tpew{(ﬁpmn‘g results, ‘ . /

.Theorem 3.1.11.:If K 1is a nonempty, convex, weakly compact ,subsét

of'a Banach space . X, and T : K-+ K is such that for some positive
integer n, ™ is a-nonexpansive and I -T is strictly quasi- v

convex, then T. has a unique fixed point in K.

t Ly

Theorem 3.1.12. Let T be a nonempty, convex, weakly compact ‘subset,

of a, Banach space X. Let T : K+ K 'be such that for some n, .T"

is contractive and 1 - T' is convex., Then T has a unique fixed

point in K. : ' . . - -
B . + d

.- We now wisH to 'give a theorem for commyting familieé of mappinﬁs

and’ their common fixed points. The approach here is similar to that °
At;lsédl by Browder [13] in‘'extending his main theorem for nonexpansive

mappirigs (see Corollary 2.2.2) to families of such mappings (see

Theorem 2.2.11). We: fix:slt need a lemma. : ‘
. “ [} ' 4 : s

L

“Lemma 3.1.13. Let C be a cfosed, convex subset of a Banach space X,

‘and let T : C+C be a continuous mapping such that 1 - T is quaéi-

“ . .



% : - . -

e . . ) I .
convex on C. Then the,set of fixed points' F(T)_ is closed and
] . .

conveXx.

) - .‘

[}

Proof. . Let X be a sequence of points in F(T) and let X, > X.

Then, sincé@ T  is continuous and since x; = T(xi) for all i > 1,

4

we have | 3
‘ T(x) = T(lim Xﬁ) ='11m T(xn). = lim X, =X )
:‘*w.,of' Therefore x € F(T), so F(T) is closed. '; ‘

Let x,y € F(T) € C, andlet m= ax + (1 - Ay,

- fal v ' v ; ’ o

where: 0 < A < 1. Since C .is convex, mé& C. Since 1 - T -is
' ' \

(g

- continuous and quasi-convex on C, we ha;re
e Tm|] <max (] -"Tx||"; ||~ Ty|]} = 0. Therefore,
T T~ :

mékm) , i.e. me F’(T), so F(T) is convex. .
. , 3 . . .

Theoret 3.1.14. let C. be.a closed, bounded, convex subset of a
reflexive Banach space X and let: {’If,’\} be a commutative "family of °

- a-nonexpansive mappings of .C to itself, such that 1 - 'I‘>\ is

quasi-cohvex for each TA in .the family. Then the family {TA} has
a commbn_fisxed'point in C. i

Proof. Foz\leach TA , the f§Xed point se;: F)\‘ is closed' and com@x
‘ (by,.lc'ema),\’ and is 1z—;.l_so bc;uﬁded, since C is bmx_r?de'd. Also, by
Corollary 3_.1.8, each F, | is non-emp"c’y. |

h .,. ] T ~ Let x € F i.,e.. X = T (x) Then, for'any uw€ A, we have
T, ) = T (T (0) = T(x). Therefore T (€ F, , and ‘é.o the
-nonexpanswe mapplng T maps the fon- empty, closed bounded

.
. H .

i~ - . . . . N - N . .
—\ N . I . . . ’ :
. . . . . . . . .
. . . . - v, .
s \ !
P - j

P , . o ‘ N

.convex set F}' to 1tse1f. Hence_ by CorollaE.S.l.S, Tp‘ has a



—

!propert_y. But the sets

fh - .
- 13 . '
- ° N Co T
Al - B . ! N '

fixed point in F_ ,.i.e. Fu ﬁ'FA +p.. If we consider the finite

A
m-1
sequence Ay,Ap, ... A , and themap T, : (") _F)\ > ﬂ F, (where
) - ' m i=

. a
k]

~this intersection’is assumed non-empty), then T has a fixed point

Am

g N ¢ v . . )
o i e . N co-
. and {’;] F}\Q t g Thus the family {FA} has finite intersection

t

FA , as closéd, bounded subsets of the
© ¥ - )

- -

reflexive space X, are weakly compact. Therefore, they ha¥e non-

empt'y intersection and ﬂ F is the set of common fixed points. of
A€M’ )

the family {T, 3

Remarks:

LI

t ’ &

1. The theorem clearly holds if the maps T are simply non-

-

expan51ve instead of a- nonexpanswe

2. The quas1 convex1ty of 1-T r_eplaces the condition of

uanorm convex_lty of the space as required By Browder.

Montagnana and Vignoli [53] have used asymptotlc regularlty along

’ €

with convexity to arrive at flxed point ‘theorems. They give the follow- ‘

€
ing theorem which improves an earlier-result of Belluce and Kirk [6 ]

v

-which required convexit)-r of 1 - T and nonexpansiveness of T.

)

. - . 4 - % . . : . )
Theorem 3:1.15 [53]. Let T : K-+ K be acontinjous mapping defined

on a.nonempty, weakly compact, convex subset . K }of.a Banagh space X.

Suppose 1 - T is quasi—convei on.K. JIf T is asymptotically
N . n .

regular in K, then there exists a subsequence {T k(:rc)} - of {ln(x) ¥

which converges weakly to a fixed point of-'T in K. Furthermore,

" the linit of évery weakly convergent subsequence of - {Tn(x)} is a

fixed point for T in K.

&

N



If 1 -T is strictly quasi-conyex_' on K, then the whole

;‘-”"y'sequence ‘{Tpf(x)} cdnverges lweakly to the unique fixed point of

-

T.4n K. ’ : o

4
a .

‘ Proof.

‘et J(x) = ||x - T(x)||’. By asymptotic regularity of T, . e

we have ”:J_(Tn(x)) = HTn(x) —'Tn+1(x)|] 0 as no o, so

inf {J({x) : x€ K} = 0,. o ‘e : " . . ,' L

o Since K is wegkly compact,:‘the sequence {T“(x)} in 'K has

/ o ny , .

a subs'equen'c'e {T "(x)} which converges weakly to some point’ z,e K.

Then since - J is weakly 1l.s.c. (see 3.1.4), we have -
..ﬂ ’ -~ ’ £l - nk : nk ) ) .
0 <J(z) <« 1lim J(T " (x)) = Llim J(T "(x)) =0, so .z is a
. o N~ ' ‘n-+oo - R
' fixed point of T. ' A , “ -7

"

.t If. 1 - T is strictly quasi-convex, then J has a unique

, ' . : n ‘

minimum point p € K. Suppose ‘{Tn(x)} has a subsequence "{T.k(x)} : é

0 “which d;)es not converge weakly to p. By weak compactness. of K, '
n, : n, . . ' '

{T k'(x)} has a subsequence ‘{T 7 (x)} converging weakly to some-

‘point q & K with q $p. But %his'ﬁradicts the uniqueness of

/ minimum point for J in K, ~
. ) )

-

s Danes [20] has given the following general theorem which gives

7

—

~

“rise to corollaries involving.convexity. '
. . . . iy

o ‘ ) ~ : . WF
. . . . RPN
< a

Theorem 3.1.16¢, ‘Let X' be a compact éﬂace and d a ndﬁ-negative

1 o
’

I

real-valued symmetric function on_Xx X such that.

. d(x,y) =0 => x =y (for‘ x,y € X). Let T),T; be self-mappings E
. 3 . ' ] -
~on X such that

°

(1) A, T00) < $UETE) + 40 5T whenever

™

"Tl'(x) =x=y =Ty(y) 1is not true ' . .

3 > 19 g - .
. . -, * . L .

’
»
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(ii) ‘the functional - f(x,y) = d(x, Ty x)+ d(¥,Ta(y)) is ‘.
‘u l.s.c.t oo C ’ SRR
. Then Ty,T, ,:‘!ha;vg a common fixed point which is the unique
‘ . 3 - ”, 0 ad . R s \ - -
fixed point. of eaCh. . ) e
. : oL . .. - ' . . : ; 4
Proof. Since f 1is 1,s.c. on the compact space X x X, theré
o . — . . N "J -
exists a point (z,wlj. ‘at which f attains its infimum. If .

-

T(T, W) = To(w) 2w or if z= T,(z) = Ta(Ti () is true; then

w or =z is a common fixed point-of T, and, T,..  Suppose neither ;

is true. Thén

. - - . .

R M), T () = AT (0, Ty (T2 () + (T (23, T2 (1(2)))

I M0, To0) A ()T ) -
B <.§_[;(T2(wj,Tl'(Tz'(w)').)rl d(w,T5(W)), .+ ci(Zf{; ).+
P T iam @ m@ K

° s Lz s £ @Y T L L

i.e. . £(Ty (W) ;Tl(i)) < £6z,w), c_c?nfrédic?ci_ﬁg the"minimali't;y of TE

at (z,w). ' ) . ' ) .

5 . , } . ) l . - . ’ . .

‘Uniqueness follows by contradiction. oY : . -
' . . ’ T G_ ’ ) -' - - . @, . '
.- - Taking d ‘as a metric’on X, Danes gives the followiig,
corollaries. N

‘Corollary '3.1.17.° l;et K- .be a’nohempty,' ’convex,. weakly compaet‘

-

subset of .a normed linear space X. Let, T;,T, be demi-contlinuo_us

mzi;ipingg from K to K satisfying ,boﬁditiorf 1) gf,the theorem.

Let f be cénvex_oﬁ' K x K. Then. thé conclusion of the-theorem /

reRains valid.

0D -
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. " " 3.2 Multi-Valued Mappings and Fixed Points.’

Proof. Since Ty,T, :aré demi-c'ontinuous, ‘the functional =~ - .

_ f(x,:y) = d(x T1 (x)) + d(y, ;1‘2(3')) is 1.s.c.. Slnce £ is aiéd'convex

compact set | K x Kg . e .
9. ~ ' ' . . o . ° G -

v . - ‘ .

-~

Corollaf&,S.lfls. ,Let 'K,. T;,T, and 'd be’as-in’ the precediﬁg
. " \ . .. . - . ~ a N '

o

corollary, If 1°- T}~ and 1 - T, ware convex, the conclusion of

-the theorem remains-valid. . N . S v
) - - , " ‘c
Remark In both'corollarles convex1ty can- Eﬁf\ﬂeakened to qua51—
. ' . . ~
convexlty. e e . ) S .

v
. v

) . LY . ! ‘ . Some ’

Motivated'by Belldceyand Kirk's use of convexity to prove.

oh k, f 1& weakly 1.5, .G and so attalns 1ts 1nf1mum on the weakly

C
flxed point theorems for single-valued mapplngs Xo [44] has fxtknded'.

the notlon of convexlty to multi- valued mappings and hence arrlved

_rat resu;ts which allow: the weakening'of the compactnességf the domain

. fequiyed in the theorems of Kakutani, Fan and Markin.
8 - - . - - . -
Remark: Notation for various families of subsets of the metric.space

.';;-'A X .is .as in Chapters Ixahd'II.

.-Definifion 3.2.1_{44].‘ A multi-valued mapping~F X +'2X 'is=cailed
) ‘_ ; ’ ) .0 N
convex if for any x,y e X ‘and m = Ax + (1 - A)y with 0 <X < 1,

-

.and any x; € F(x),y1 é:F(y), there exists m e F(m) such that

'Hmm < mxln va- mlyrl

e s - . . iy
v i -~ . . . .

-Definition 3:2,2.” F :-X - 2& is,calledxquasi-convex if for any

o



X,y €X, m'=‘AxF+ (1 -"2)y where -0 < <1, and for any x, €.F(x),

1.

Y1 € Fy(y)‘, the‘ré' exists’ m, & F(m) such that f

oyl | < max €l sl |nl)? -

‘Note: If strict inequality holds, where F(x) and F(y) do not
both ¢ontain 0, we say that the mapping is strictly éonvex
B : ‘o 'L s . \ B * . .
5,) . - Jlor §Er1ct1y quasi-convex).
- The fol'loft’ying propositions andgdefinitions [44] are useful in
l the sequel. o ]

r

Proposition 3,2.3. Denote 'D(x,F(x)) = inf {d(x,y) : y € F(x)} ,-

~and - rl9\(3<)‘= {x-y: Y€ F(x)} . - o . .

' oo ~If~ F: X=+2" is a mapping such that- 1 - F is convex
- . (quasi-convex), then for any . x,y € X and -m = Ax-+ (1 - A)y,

0<Ac<}], we have

T DmEm) < AGGEE) 4 (1S MDELFG)) e SRV
D(mE(m) < max (D(x,F(x)), Dy, F(y))) e om
. .7 . " If F. has compact imiges and satisfafs‘oondition (A) (B), then

A
-,

r H N .
+ . "the mappihg 1 - F 1s convex (quasi-conyexﬁ.}\
. . 3

S
.,
"

B
: . ¢ 3

i

1

Remark : An easily prbved consequence of Proppsitic\ih, 3.2.3 is thdt
if .1 - F 1is quasi-convex.on X, theﬁ the set

“{x € X D(x,F(x)) <r , r’eR} is convex.
4 ' v ’ e . g ;

-

< .- Definition 3.2.4. A mapping F : X ~ X is calléd uppexj. semi-

tinuous (u.s.c.) at x'~ if for any open set. U containing F(x ),
. 1 Xo - A P . o

'ther_e exists a neighbourhood V "jof X, such that F:(){),Cy‘ for

~)

any )"-e V. (Thié definition is equivalent -to Definition,1.4.1). -

. E . .
L. . . .



-Definition 3.2.5. A mapping ‘F : X 4'CB(X)4miS\ca11ed,coptinuoﬁs
. e a ) . . )
if it is continuous from the metric topology of X to_the
¥ , oL, . " " o

Hausdorff metric topology of CB(X).

’

;Préposition 3.2,6." If a mapping; F : X.+.K(X) is continuouis then

it is u.s.c.

' . . 4 * * ' ... ‘.
‘Remark: Compactness of the images is a necessary condition for the

proposition.

Pnop051t10n 3 2.7. If F: X » 2x 4is u.s.c.,. then the real-valued -

functlon J deflned by J(x) D(x,F(x)) is 1l.s.c. . ‘
’ ’ . . . ‘ '.— Q
‘Ko's main theorem [44] extends the results of Belluce and Kirk

[6 ] and Montagnana and Vignoli [53] to the mu1t1-va1ued case.. We

glve a sllghtly different proof, patterned after that of Montagnana

N N . [ 3 N
: and.Vlgnoll. ' ) ) r

aB . . -

+ subset.of a Banach space X. Let F.: K » 2§ be u.s.c..andlsuch
. / ‘ .

that 1 -'F is quasi—coﬂvexApn K;.‘and in? {D(x,F(x)):i x € K} =

”

Then F has a fixed'point'in K.

Proof. Let J(x) D(x, F(x)) Since F is u:s.c. 6n. K, the
fgncfional J 1s,1.sfc. and so the se@i {XL: K2 J(x) < r} is

closed for any real r. It is also coﬁﬁex, since 1 -F is quasi-
conve&), and is therefore weakly closed. Therefore J " is Qeakly
'3 . " - '

i.s.c. on the weakly Epmpact set K and so-attéins\its,infimum on
K. © But iﬁf (I xEK 2 inf {D(6,F(X) © X €K} = 0. Hence,
’ o0

. there ex1sts some p01nt x. € K such that D(x F(x )) _and'

. a

since F(x ) 1s$a closed set, xo é'F(xO), i.e. F has a fixed

v

-Theorem 3.2.8. Let K be a nonempty, weékly\pompact, closed, convex



point in k.~‘ : f o S ot
Y . . Ko. extends the not1on of asymptotic regulaﬁ%ty to mu1t1-

valued mapplngs 1n the- follow1ng way. -
o

P "

"‘Definition 3.2.9. A mapping F's X+ 2, is called asymptot1ca11y

regular at exo, if there exists a sequence of points x; such that

' ) xé € F(x_ ;) and J}xn - % 41l +0 as n- o

The following result is then an easy consequence of Theorem

3.2.8, and extends the analogous result for single-valued mappings.

-

Corollary-3.2.10. If F : K-+.2K is u:s.c. in K- and asymptotically_

* 2

) . - _ - . IS .
regular at some point x € K, where K is a nonempty, closed, c¢onvex, .
weakly compacc set.in a Banach space X, and if .1 - F is/quasi-

convex, then F “has a fixed point-in K.

BN

b / _' Proof. By-asymptotic regularity; D(x,,Fx )) < [lxn+1 ~x ||\+ 0, *
/ so- inf {D(x,F(x)) : x€ K} = 0. .~ ¢ ° e '

oo Ko’ [44] has given the following useful lemma, extending a~

result of Godhe [33] for single-valued mappings.

}.Lemma 3.2.11, Let K be a nonempty, bounHed closed,, convex subset
P -

~‘of a Banach space X. If- F: K-+ CB(K} is nonexpansive, theh

inf {D(x,F(x)) : x € K} = 0. ' / : Co

Proof. Let. X, €.K. Let Ko_=‘{x - X, X € K} . Then ‘Ko is -

. . . . . [ ’ . .
a closed, bounded, convex subset of X and contains 0. Let .

_.O-g-l'< 1 “and define FA' on K0 'by FA(X - xo) f.A(F(x) —;;o).

Thea Fﬂ(x.- xo) CIKO, i.e. FA : K°:+ Ko. ‘slnce‘-ﬁ is non-

H




K

- \ -

expansive, F. 1is a contraction and by Theorem 1.4.5 F. has a

A A
fixed‘point' ina; Ko. That is,‘there exists XXE‘ K such that
X - Xy € E}(xk - xq) f A(F(xx) - xo)x_ Thus, ther? exists

- yA.G F(xk) suchdthat Xy - Xy = AC&A - xo).

Now . D(x; ,F(x,)) = inf (d(x,.y) @ ¥ € F(x)))
i"ilx):')'}\ll ='on +)‘(y>\?‘x6)'-_.y)\|.| ) Co "

SRS

-

So 0 < inf {b(‘x,F(x))} < inf {n(xx,F(xA))'} <inf (1 - A)on - 'yA| [.=0
xeK' _ 0<A<l: - 0<A<1 . -0 -

- .since the set ({]|x, —.yA]].: 0 <A <1} is bounded. Hence . e

.

_inf {D(x,F(x)3 T X éIK} = 0.

The following theorem is then easily proved.

» .-

. Theorem 3.2.12 [44]. Let K *be a ﬁonempfy, weakly compact, convex

,sSubset of a Banach sﬁ&%e X. If F : K - K(K), .(the'fgmily of

" compact subsets of K) is nonexpansive and 1 - F is quasi-convex

-
5

on "X, then F has a fixed point-in K& :.'..

- ‘ - .

" Broof. Since F is nonexpansive, it is also continuous. Since the '

~ images are compact sets, F is also u.s.c.'(by Prbposition 3.2.6).

By Lemma 3.2.11, inf {D(x,F(x) : x &€ K} ='0. The résult-then

follows from Theorem 3.2.8.

Remarks. - -
1. In fhé pfeceding theorém; Ko [44] requires the images
. N R . ' - [y . . . .,
- F be convex and compact. However, convexity ﬁf F(x)_

. . . . H \
"

"seems to be a superfluous condition.
. ) S '



5

. - -element. This is not true for multi—§alued mappings.

=3,
/
<
'

" 2. [44] 'In the case of single-vélued mappings, the~set of

., fixed points of a contractive map contains at most one

.

Nor is the set ‘of fixed.points necessarily convex for a .

o
‘multi-valued nonexpansive mapping in a strictly convex
Banach spaceTf But the fixed point set of F is convex if .

1. - F is convex or duasi-convex.

e
C e
N

N f

3, Ko's results represent extensiohs of the results of Fan and

-

Kakutani to weakly compact sets, obtained by strengthening
+ conditions on the mapping, as opposed to the method of °

Markin and Lami Dozo who impose extra conditions on the

" »

o
'

Spa‘ce.' ) ' ' R . , . ' -
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