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Abstract

One of the major of current ically-based speech i is

that their v with noise. The focus of this thesis
is to develop a computer system that performs speech recognition based on visual
information of the speaker. The system automatically extracts visual speech fea-
tures through image processing techniques that operate on facial images taken in a
normally-illuminated environment. To cope with the dynamic nature of change in
speech patterns with respect to time as well as the spatial variatiouns in the individ-
ual patterns, the recognition scheme proposed in this work uses a recurrent neural
network architecture. By specifying a certain behavior when the network is pre-
sented with exemplar sequences. the recurrent network is trained with no more than

feed-forward complexity. The network’s desired behavior is based on characterizing a

given word by well-defined Adaptive ion is employed to segment

the training sequences of a given class. This technique iterates the execution of two

steps. First, the are idually. Then, a fized version
of dynamic time warping is used to align the segments of all sequences. At each

iteration. the weights of the distance functions used in the two steps are updated

in a way that minimizes a segmentation error. The system has been implemented
and tested on a few words and the results are satisfactory. [n particular, the system
has been able to distinguish between words with common segments. Moreover, it

tolerates, to a great extent, variable-duration words of the same class.



Acknowledgements

I wish to express my thanks to my supervisor Dr. Siwei Lu for his insightful
guidance. constant encouragement and support. Without his contribution. it would
have been impossible to give this thesis its current quality.

I would like to thank the systems support staff. and in particular Nolan White.
for providing help and assistance during my research.

Special thanks are due to the staff of the Division of Educational Technology who
assisted me in obtaining the data necessary for my experiments.

I am also very grateful to the administrative staff. especially Elaine Boone. who
have helped in the preparation of this thesis.

I would like to acknowledge the financial support received from the School of
Graduate Studies and the Department of Computer Science.

1 would also like to thank my fellow graduate students and dear friends for the

continuous encouragement and support.



This thesis is dedicated to my parents
for their encouragement and support

throughout the course of my education.



Contents

-

Introduction
L1 Overview of the System . . -« 5 o v i wi e diemsions &

1.2 Organization of the Thesis . . . .. ... ................

2 Survey

2.1 Methods to Locate the Mouth . . .

Methods to Extract Mouth Features . .. ..........
2.3 Methods to Model the Mouth . . . . ........... 2
2.3.1  Active Contour Models (Snakes) . . . .. .. ..........
232 Active Shape'MOdels . . » « ¢ & smmmenmm s s
233 Deformable Templates - . . . . ... ..............
2.4 Previous Speechreading Systems . . . . . .. ... ... ........
2.5 Nenral Networks: oisic i % 5 5 5 5 o oo el v 45 88 ¥ 8

2.5.1  Multi-Layer Feed-Forward Neural Networks . . ... ...

The Hopfield Network

2.5.3 The Time Delay Neural Network (TDNN) . ... .......




4 Recurrent Neural Networks 30
3 Locating the Mouth 33
3.1 Preprocessing:

Edge Detection and Thresholding . . . . . ... ............ 33

3.2 Locating the Eves . . . . . . . ... ... ................ 35

3.3 Determining the Region of Interest (ROI). . . . .. .......... 39

4 Extracting Mouth Features 41
4.1 Locating the Central Row

and Cornersiof the Mouth . . v covovomimicn o movmies © 4 sommimres 42

1.2 Locating the Upper and Lower Lips . . . . ... ... ......... H

4.3 Improving the Mouth Corners . . . . ... ... ............ 45

4.4 Improving the Lower Lip . . . .. ... ................ AT

4.5 Experimentation . ... ...... ... ... ... 48

5 Mouth Deformable Template 51

5.1 Geomietric Model ....cmsmcmoiommi v 5 5 5 5 s 65 6085065400 s 51

5.1.1 Geometric Primitives . . . ... ................. 52

9,10 Paratietersi wn wn s pn s s s e e R s R E RS RE R K E B PR E 33

5.2 Energy Function 54

5.2.1 Minimizing the Energy Function. . . .. .. .......... 37

Method 1 (Greedy Method) . . .. ............... 57




@

~

)

523 Powell's Method . ... .. ... ... ... ...... ..
5.3 Dividing the Minimization Process into Two Phases . . . . . . . .

S “Tracking The BIPE © « = o « « sovvmei ot wmmemswms & 8 5 55 5 o =

Visual Speech Segmentation

6.1 Introduction . . .. ....... s I R 0 8

6.2 Maximum Distance Method . . . . .. ... ... ........

6.3 XHGHIENE « = o & v 5 5 v & o womie w0 v

6.4 Adaptive Segmentation . . . . .. ... ... ... A5 DSl
6.4.1 Weights for Individual Segmentation Distance . . . .. . .

6.4.2 Weights for DTW Distance . . . ... ... ........

Visual Speech Recognition

7.1 Neural Network Architecture.. . . . . . ...............

7.1.2  Desired Activity on State Vector . . .. ... ...

7.2.1 Training Data for the Embedded Feed-Forward Network

73 Noise HandlfE = = o ¢ o+ & srseearimsrsmint 4 5 6 & & & 5 & &

T4, ExCemal QUEINL - . - s ¢ o cineters weeRiE s 8 B w5 B 8 8

Experiments, Results and Conclusion

T.1.1 Neural Network Computation . . . . . ... ........

Obtaining frames for the undefined state s, . . . . . . ..

88

88

89

90



8.

8.3

1

Experimentsand Results . . . ... .. ................. 105

Contributions

Directions for Future Work . - . . . .. ... . ... .. ... ... 113
8.3.1 Use of Other Articulators . . . . ................ 113
8.32 Clustering Segments . . . . . ... .. ... ... ... 113
8.3.3 Nonlinear Classifiers for Segmentation . . ... ........ 111
834 Extension to Multi-Speakers . . . . ... ........ « <RI

viii



List of Figures

®
i

Overview of the visual speech recognition system. . o

Overview of the process for training the recognition system.

Original image. and its binary edge image produced using the Lapla-
cian operator of Equation (3.1). . ... .. ... ........... .
Histogram used for locating the eves. The maximum peak occurs at

tha Jodation ol EhEOWIE.. & oovvnivin i mn s s m 6 e w B g B

Motth MEASUreMentS. . . . s coce v v e oo v mn s s
Histogram used for locating the central row of the mouth. The maxi-
mum peak corresponds to the centralrow. . . . .. ... ... ....
Left height and right height of apeak. . . . .............

Histogram used for locating the mouth corners. First. the peaks with
the maximum left and right heights (p;, and p,) are identified. then

the corners (c, and ¢,) are computed according to (4.1) and (4.2) (see

ix

o



8.

-

Histogram used for locating the upper and lower lips. A search for the

two peaks surrounding the central row is performed. . . . . . . . ..

Mouth deformable template. . . ... ... .. ...
Transforming the template to the image coordinate system. . . . . . .
Downbhill direction defined by a and b. Search for a third point in the
direction indicated by the arrow. . .. .. ... ... .. ..

Triplet [a. b. c] bracket a minimum of E(P;_, + Aw). . . .. .. ...

Modified mouth model for the first phase. . .. .. .. .. ... ...

Graphical representation of a sequence of feature vectors correspond-
ing to a person’s mouth during speech. . . . .. ... .........

Individual ion by M Distance method. . . .. ..

Calculating the optimum warpingpath . . . ... ... ........

Alignment between segments in samples of the same word. . . . .. .

Recurrent neural network for visual speech recognition. . . . . . ...
Obtaining the feed-forward neural network embedded in the RNN. . .
Noise handling in the recurrent networks used for visual speech recog-
nition.
Computation of the external output in the recurrent networks used for

visual speech recognition. . . . . ... ... ... .. ... ... ...

Deformable template applied to images. . . . . . ... . .. ......

60

61




List of Tables

8.

o

Error of the estimated mouth measurements obtained by applying our

algorithms to 29 facial image samples . . . . . . .. ..

Average and i errors of each

obtained by analyzing the samples of Table 4.1. . . . . . .

Results of implementing the visual speech recognition system to rec-
ognize 5 word classes (adaptive segmentation was used in this imple-

mentation) . . .

Results of implementing the visual speech recognition system to rec-

ognize 5 word classes (adaptive segmentation was not used in this

TSR ERBIBE) v missss & 3¢ 5 % % % & % % B & B F W R D B B E BB s

49

109



Chapter 1

Introduction

In recent vears. there has been a growing interest in automatic speech recognition.
The benefits that could be brought by systems capable of understanding spoken
language are great as people would be able to interface with sophisticated machines

in a natural way without the hassle of pressing complicated sequences of buttons

or typing ds. However. the p of current speech recognizers is far
below human ability to perceive speech. One of the major drawbacks of acoustic
systems is that their performance deteriorates drastically with noise. Also. there is
the problem of speaker isolation which occurs when several people talk at the same
time. and it is required to identify the intended speaker. Moreover. the fact that some
phonemes are very difficult to distinguish by analyzing the acoustic signal alone poses
additional limitations to current approaches.

It is known that hearing-impaired people use lipreading successfully to perceive
speech in the absence of acoustic information. Surprisingly, even normal hearing

people utilize visual information of the speaker’s face for speech perception [12]. It



has been demonstrated. through what is called the cocktail party effect. that with a
high background noise it is easier for humans to understand speech when they watch

the lips of the speaker.

The of hi: in speech ition could improve. too. by pro-

cessing visual information. This would be particularly useful in the presence of high
background noise or in the case of crosstalk. It is worth mentioning, in this context.
that acoustic and visual information complement each other in speech characteri-
zation. That is, similar phonemes are often easy to distinguish visually. whereas
utterances which look very similar visually can sound quite different.

The focus of this thesis is to develop a computer system that performs speech
recognition based on visual information of the speaker. A speech recognition system
which uses visual information alone would. probably. have limited applications since
several groups of phonemes appear similar visually. Nevertheless, there is no doubt
that combining such a system with an acoustic speech recognizer would result in

an i izer which many of the existing problems in acoustic

systems. such as the low performance in noisy environments.

Neurocomputing is an attractive choice for visual speech recognition (VSR). It
leads to systems that autonomously develop operational capabilities in adaptive re-
sponse to an information environment that is notoriously difficult to model using
conventional methods. The difficulty of VSR can be viewed in light of two main

aspects of VSR which I would like to refer to as the static aspect and the dynamic



aspect of VSR.

1. There is a variety of speakers with different physical characteristics including
the shape of lips. jaws and so on. The lips of a certain person are subject to a

variety of changes in shape as well.

2. There are a lot of dialects. and there are different ways of uttering a certain

word, even by the same person, on different occasions.

Artificial neural networks possess an attractive property which makes them suitable
for dealing with the implications of the static aspect of VSR. This property is the
ability to learn a classification task by observing only a limited number of examples.
Neural networks can also discover distinguishing features in the training patterns
while making weaker assumptions about the shapes of underlying distributions than
those made by traditional statistical classifiers. This is particularly important if we

keep in mind the lack of a theory of li Furthermore. neu-

ral networks are known to be excellent at noise tol which is an indi

requirement for any practical system. The motivation for exploring recurrent ar-
chitectures is their potential for dealing with the temporal behavior implied by the

dynamic aspect of VSR.

While some previous at required human inter-

vention in obtaining the visual speech signal or making the speaker wear reflective

markers on his face, our system automatically extracts visual speech features through



image processing techniques that operate on facial images taken in a normally illu-
minated environment and without any need for reflective substances.

To properly handle the dynamic nature of change in speech patterns with respect
to time as well as the spatial variations in the individual patterns. the recognition
scheme proposed in this work uses recurrent neural networks. Input to the networks
are sequences of low-dimensional patterns rather than matrices of pixels. This leads

to a smaller architecture in size. and a shorter time for training.
1.1 Overview of the System

Figure 1.1 shows an overview of the system in operation. As in most connectionist
approaches. the system needs to be trained on exemplar sequences. Given a set of
image sequences corresponding to some word class. the system is trained as shown

in Figure 1.2.
1.2 Organization of the Thesis

Chapter 2 surveys methods for locating the mouth in digital images, methods for

extracting mouth features. tech for mouth deling, previous li ding sys-

tems. and neural networks. Chapter 3 presents the method by which the speaker’s
mouth is automatically located in the input images. Chapter 4 describes the algo-
rithms developed to estimate the mouth characteristics that are used to initialize a
mouth deformable template. Chapter 5 is devoted to the application of deformable
templates in extracting the shape of the mouth and tracking its movement during

4
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Figure 1.1: Overview of the visual speech recognition system.



Apply the visual feature extraction
subsystem to transform the image
sequences to visual feature sequences

Apply adaptive segmentation
10 the resulting sequences

Generate static samples
from the final segmentation

Train the feed-forward network embedded
in the recurrent neural architecture

Figure 1.2: Overview of the process for training the recognition system.



speech. Chapter 6 contains a method to segment a visual speech signal. representing
a word instance. into visual speech units. A technique to refine the resulting seg-
mentation by aligning instances of the same word is described. Then. the idea of
adaptive segmentation is introduced with a proposed implementation for the case of
linear distance functions. In Chapter 7. a recurrent neural network for word recogni-
tion is presented. An efficient way for training the recurrent network based on visual
word segmentation is proposed. Chapter 8 contains the main conclusions. simulation

results and directions for future research.



Chapter 2
Survey

2.1 Methods to Locate the Mouth

Locating the mouth automatically has been a concern in the areas of lipreading.

face recognition. and speech-assisted video i In general. a c sys-

tem designed for this purpose consists of two main steps. First. an input image is

d and a new ion is obtained. The preprocessing step not only

aims at reducing the amount of information involved in subsequent operations. but
also. and perhaps more importantly. directs the search toward interesting regions of
the image. The second step. basically. identifies the region containing the mouth by

with it. The ch istics could be

for some c
particular to the appearance of the mouth only. or could be derived from knowledge
about the face context as well. Thus, the search may involve other facial features in
addition. or instead of. the mouth.

One of the first attempts to locate facial features automatically was documented

by Baron [2]. He proposed locating facial features by correlation. To locate a feature.



a set of feature masks stored in a database were correlated against each subimage
of the input. and the desired location was selected at the subimage with the highest
correlation. Although the reported results were good, the system is expected to have
been highly sensitive to lighting conditions. This is mainly due to the fact that
raw grey scale pixels were used instead of some representation that tolerates slight
changes in intensity. In addition. the method is computationally expensive due to
its exhaustive nature, and sensitive to scaling and rotation.

Prasad et al. [53] [72] implemented a system which detects a region of interest

containing the mouth. They proposed two approaches: the first starts by obraining

a binary edge image, and is followed by blob d i The blobs
to the eyes and mouth can be found. next. by locating three blobs whose centroids
form a triangle on which certain constraints apply. In the second approach. temporal
coherence between consecutive image frames is used. This alternative approach.
however. assumes that the only change in the image frames is in the lips positions.
If this is not the case, then the approach is expected to fail.

Craw. Ellis and Lishman [18] described software that makes facial feature mea-

s. Their ing is based on ing edge information. In addition

to calculating edge magnitudes by a Sobel filter. edge directions are obtained by the
same way described by Kelly [35]. After preprocessing, the basic search technique
used is line following. At each pixel in a central vertical line, a search for outlines

of the upper and lower lips is carried on. A lip is detected if the vertical separation



between the upper and lower lips is within a reasonable range. and the extracted
lip combination fits into a long thin box. One drawback of this method is that the
criteria selected to identify a lip contour could be. possibly. matched by contours
near to the lips such as a mustache and wrinkles. Also. this method does not make
use of the relative magnitude of edges associated with the different lines in the search
space.

Huang and Chen [31] employ thresholding for the ing. A scale space

filter (SSF) is used to determine the zero-crossings of the intensity histogram at

different scales. and a set of thresholds is d ined dingly. After holdi

a rough contour estimation routine (RCER) operates on the image. The location of
the mouth comes after a sequence of estimations in which a particular feature is
estimated based on a previous one.

Morphological operations {42] can also be used for preprocessing. Chow and Li
[15] apply a morphological opening residue operation to extract all intensity valleys
using a circle mask. Similarly. Chen. Graf and Wang [14] 23] perform a morphological
operation to pick out areas with strong variations in intensity. The detected pixels
in the result are assembled into distinct regions which are, in turn, grouped into
plausible face contexts. Then. an evaluation measure is used to rank the possible
face contexts. Chow and Li proposed a control strategy in which the face context
with the highest rank would be verified in a later stage. However. they did not

provide a good qualitative measure to indicate failure of hypothesized contexts.

10



Kanade [33] incorporated an interesting control strategy in his system which seeks
extraction of facial features. There is a similarity between his approach and that used
by Chow and Li in the concept of feedback. However, no attempt is made by Kanade
to evaluate full face contexts within a single level. instead. the final face context is
reached by a sequence of operations in separate levels. In each level. a procedure
locates a set of features. and these are used in a subsequent level to specify the
search space for another set of features. At the end of each block. its performance is
evaluated and accordingly a decision is made whether to proceed to the next block
or to backtrack if a failure occurs. Preprocessing consists of applying a Laplacian

operator followed by thresholdsi: The fund: hni used to conduct the

actual search is the integral projection technique.

Inspired by the intuitive notion of symmetry. Reisfeld. Wolfson. and Yeshurun
[57] proposed a low-level operator that performs local processing on the edges of an
image. and assigns a continuous symmetry measure. copsisting of magnitude and

arientation, to every point. [n a receat work by Intrator. Reisfeld. and Yeshurun

[ this symmetry operator is used to preprocess the image of a human face. The
candidates for the eves and mouth are obtained from the highest peaks of the radial
symmetry map.

Yacoob and David [74] locate the mouth as part of their comprehensive approach

to labeling human face components. The input to their system is range data which

has the advantage of reflecting topographic features of faces, and is, to a great extent,

11



to i inati itions and projective transformations. To cope with

the nonrigidity of faces. Yacoob and David propose a preprocessing stage which
employs a multistage diffusion procedure. The diffusion procedure simulates the
propagation of a number of particles among object voxels. The output is an image
in which larger values correspond to more convex surface points. The connected

in this ion are identil Then, context-based ing. in

the form of a consistency operator, is used to label the components.
2.2 Methods to Extract Mouth Features

Prasad et al. [53] [72] examine two grey scale profiles within a region of interest
(ROI) containing the mouth: the first protile is along a vertical central line and the
position of the lowest valley in this profile is used to estimate the vertical position of
the mouth centroid. The grey level value of the same valley is used to indicate the
presence or absence of the tongue. The peaks adjacent to the mouth centroid valley
correspond to the upper and lower lips and their linear separation is used to estimate
the height of the mouth opening. Presence of teeth is indicated by the grey level
value of the peaks. From the second grey level profile, which is along a horizontal
central line, the width of the mouth opening is estimated from the linear separation
between the peaks adjacent to the lowest valley in this profile.

In their procedures, Prasad et al. assume that the central horizontal and vertical

lines always intersect with the mouth. While this assumption is reasonable for the



vertical line as the width of the mouth is about 80% of the width of the ROI (so an
exact centralization is not necessary for the intersection to occur), this may not be
the case for the horizontal line. Vertically. the mouth extension is less than 25% of
the ROL. and since there is no guarantee that the mouth will be exactly centered in
the ROL there is a chance that the intersection will not occur. In this case or even
when the line intersects exclusively with one of the lips, the estimated value obtained
for the width of the mouth opening is not reliable.

Coianiz. Terrasani, and Caprile [16] use chrominance analysis to locate a set of
feature points acting as constraints on the shape of the mouth. The input to their
system is a fixed lower part of a person’s face image. The original image is. first.
preprocessed by filtering the hue component with a weight function that emphasizes
red dominant regions and this is followed by thresholding with a value that can
be determined empirically. Then. the spatial distribution of the pixels is analyzed
to determine the center of the distribution. and its horizontal and vertical standard
deviations. These measurements are used to bound the mouth in a rectangular region.
Within this rectangle. the mouth vertices (corners) are localized by obtaining a binary
gradient image from grey level information. The binary gradient image is projected
on the horizontal axis. and the z-coordinates of the vertices are defined as the most
external non-null points in this projection. The y-coordinate of a vertex is determined
by examining the projection of a vertical stripe around the vertex onto the vertical

axis. The distribution center of the projection is taken as the y-coordinate.

13



Once the vertices are determined. the mouth vertical symmetry axis can be cor-
rectly localized. The hue-filtered values in a thin box around this axis are projected
onto the vertical axis by adding the values at each row. By analyzing this distibu-
tion. the apices, which are the points where the external and internal boundaries of
the upper and lower lips intersect the vertical symmetry axis. can be determined. If
the distribution has a single peak. the mouth is considered closed and the internal
points merge in a single point lying on the segment joining the two corners. The
external points are located at the rows having 70% of the peak value. If the mouth
is open. two peaks which correspond to the upper and lower lips are expected. and
the four points are obtained by cutting each peak at 70% of its value.

This color-based system has the advantage of being less sensitive to shadows than
are grey level-based methods. However. there are cases that may pose a challenge
to this approach. For example. existence of reddish facial hair such as a beard or
mustache will. likely. confuse the system by emphasizing other facial parts in addition
to the lips. In other cases, the appearance of the lips’ natural color may be modified
through the use of lipsticks with different colors such as pink or beige.

Chen. Graf and. Wang [14] (23] attempt to find the same features that Coianiz
et al. extract, but their approach is different. First. the inner part of the mouth
is marked using connected component analysis. The resulting connected blob is
compared with a library of prototypes to make a qualitative judgement about the

shape of the mouth. Possible shapes include open mouth, closed mouth, and visible

14



teeth. The width-to-height ratio of the blob, as well as the number of transitions
from black to white in a central vertical cross section, are used in the comparison.
From the previous information. the center of the mouth is estimated and several
vertical cross sections through the lips are analyzed to measure the types of intensity

d i ities are compared

variations that are present across the lips. The
with 15 prototypes which are distinguished on the basis of the number of maxima
and their relative positions. and the closest prototype is selected. Each prototype is
associated with a strategy for finding the edges of the lips. The strategies were made
different to handle different cases of illumination and contrast between the lips and
the surrounding skin.

Rao and Mersereau [56] search for a set of points lying on the top of the upper lip
and the lower lip. The vertical position of the center of the mouth is determined by
examining the sum of intensity values in each row and selecting the row which has
the minimum value of the distribution. The pixels in the previously selected row are
analyzed to find out the horizontal extremities of the mouth. For this purpose. the
average of the maximum and minimum values in this row is selected as a threshold
and the leftmost and rightmost pixels with values under this threshold are defined to
be the corners. Finally, three intermediate equally distanced columns are analyzed
and two points in each column are identified by peak picking, one on the top of the

upper lip and the other in the middle of the lower lip.



2.3 Methods to Model the Mouth
2.3.1 Active Contour Models (Snakes)

A snake [43] is 2 model to represent contours in images. [t consists of a set of labeled
points and an energy function designed to take minimum values when the points
match some object’s boundary. [n general, there are three terms that contribute to
the energy of a snake: internal energy. image energy, and constraints.

Properties particular to the shape of the spline obtained by linking consecutive
points are controlled by the internal energy. These properties include continuity and
curvature. and are usually controlled by the first and second derivatives at each point.
On the other hand. the image energy attracts the snake toward features like lines and
edges. The constraints represent the energy of a spring connected between a point
on the contour and some point in the plane.

Kass et al. [43] have proposed minimizing the energy function by means of vari-
ational calculus techniques. Although the computational requirements of this ap-
proach are linear. some related problems. as pointed out by Amini et al. [1], are
instability and a tendency for points to bunch up on strong portions of an edge.
To overcome these problems. Amini et al. [1] have proposed a time-delayed discrete

dynamic i lgorith This provides necessary and sufficient

conditions for the optimality of the solution and has the advantage that hard con-



straints, in addition to the soft constraints inherited in the original formulation. can
be included. However. the method is relatively slow. Williams and Shah [70] suggest
a greedy algorithm which is much faster. Their approach. however. does not guar-
antee a global minimum. but Williams et al. argue that the results obtained by the
greedy algorithm are comparable to those of the dynamic programming algorithm.
The original model developed by Kass et al. [43] can be described as knowledge-
free. Bregler et al. [6] 7] [8] report that this kind of snake model sometimes relaxes
on undesirable features. In their investigation. they show a lip-snake relaxing on
the contour of the nostrils region. To improve the model. they propose analyzing a
large set of possible snake shapes. The process. called surface learning [7]. induces

a low-di ional sub from the high-di ional data. The internal energy.

in this case, can be replaced by the nearest distance to the learned surface of legal
shapes. This modified model can be categorized as a link between the active contour

model and the active shape model.
2.3.2 Active Shape Models
Active shape models (ASMs)(17] are statistically-based flexible models which repre-

sent objects by sets of labeled points. Though similar to the snakes of Kass et al.

ASMs make no heuristic assumptions about legal shape deformation. Instead. legal

deformation is obtained by applying principal analysis on a
training set. The purpose is to derive a point distribution model which describes the
average shape and the main modes of variation. Another important difference is that,

17



rather than assuming the points should lie on strong edges and searching for such
in an image. the ASM approach assumes that grey level patterns about a particular
point in images of different examples will often be similar. Accordingly. principal
components analysis is used to produce a statistical model of the allowable variation
in one-dimensional profiles normal to the curve at each point. Luettin. Thacker. and
Beet [41] modified this by concatenating the profiles of all model points to produce
a global profile for each training image.

Cootes, Hill. Taylor, and Haslam [17] propose an iterative method to guide the
search in ASMSs. At each iteration, a region around every point is examined and the
displacement required to move the point to a better location is calculated. Next. the
model parameters are updated according to the previous displacements. but limits
on the parameters are enforced to ensure that the shape remains similar to that of

the training set.
2.3.3 Deformable Templates

A deformable template {77) [76] is a geometric model associated with an energy func-
tion that measures how well the model matches a particular object in an image.
The template is made up of geometric primitives linked in a certain manner. A
geometric primitive could be any curve described by a mathematical formula. This
has the advantage of a compact representation in terms of the parameters of the
curves involved, and gives the model the flexibility of deformation to a wide variety

of shapes by changing the values. Undesirabls confj jon:

18



can be discouraged by adding penalty terms to the energy function. To account for
the rotation the object to be extracted may undergo. it is sometimes useful to have
a parameter for the orientation of the model. in addition to the origin of the model’s
coordinate system.

The energy function can be thought of as the link between the geometric model
and the image. as it enables the necessary interaction to attract the template to
salient features of the image. such as edges. peaks. and valleys of the intensity.
Typically. the contribution of each curve to the energy is expressed as the integral of
an image potential field along the curve. Sometimes, properties of pixels in a closed
region are reflected by the inregral of the image field as it relates to that property
over the closed region.

Finding the best parameter values that would make the template fit into the
image is equivalent to optimizing the energy function. Numerical optimization tech-
niques which don’t guarantee a global optimum solution are the most commonly used
for this task. They have the advantage that a good solution is generally obtained
with considerably less computational and storage requirements than those of a more
exhaustive method. Yuille et al. (77] have used steepest descent of the energy function
in parameter space. At each iteration. every parameter is updated by the negative
of the partial derivative of the function with respect to that parameter. However.
the calculation of partial derivatives at every point is an exhaustive task. Simulated

annealing can also be used in a similar way to that reported in [19]. It is based on
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random sampling and no partial derivatives are involved. However. a relatively large
sample size is needed. Chow and Li [15] have adapted the downhill simplez method
proposed by Nelder and Mead [47] with some modifications which include randomiz-
ing the initial simplex configuration to ensure that a good sample is achieved over the
entire search space. Coianiz et al. [16] have used a stochastic optimization algorithm
described by Caprile and Girosi [13]. Xie et al. 73] have employed the L-M method
of Lavenberg and Marquardt [61].

Regarding the selection of the coefficients for the energy function terms. experi-
mentation is usually used. In the absence of a solid theoretical basis that explains the
different interactions, heuristics seem to provide a practical mechanism for assigning
initial values. Then. fine tuning is done by adjusting certain coefficients individually
while fixing the others. The extent to which the selection of suitable coefficients may
affect general performance is not well known. This issue is further complicated by
uncertainties concerning other design decisions involved in the deformable template
model. such as the image potential fields used. the energy function terms chosen. and

the optimization technique employed.
2.4 Previous Speechreading Systems

Yuhas, Goldstein. Sejnowski and Jenkins [75] trained a multi-layer feedforward neural
network on static images of mouth shapes for vowel recognition. The neural network

was not trained to classify the images directly, but rather to estimate the short-



term spectral amplitude envelope (STSAE) of the acoustic signal. The estimated
STSAE was combined with the power spectrum of the noise-degraded audio signal.
and the result was presented to another neural network classifier. Several strategies
for combining the two signals were explored including the average. weighted average.
and o-m neural networks. It is clear that the applicability of this system was very
limited because it was not designed to deal with temporally changing patterns.
Mase and Pentland [34] employed optical flow methods to estimate mouth opening
and elongation velocities. A standard minimum distance classifier was used to match
test utterances with previously-stored templates. after applying linear time warping.
Stark. Wolff and Levine (64] used a time delay neural network to recognize ten
consonants from sequences of visual features. These features were detected automati-
cally. but required that the speaker wears reflective markers around his or her mouth.

Wolff. Prasad, Stork and Hennecke (72| built upon this recognizer. and replaced the

of the reflecti b by p: ing algorithms that extracted
features from grey level images.

Petajan (51] extracted mouth opening features from each image in a sequence

of images using a simple then ved linear time warping
to match the extracted sequence with exemplar sequences. The linear time warping
algorithm allowed only for simple dilation and contraction of time, which do not

account for all natural speech variations [62]. Brooke and Petajan [10]. in a different

work. modified the previous system by using dynamic time warping for matching. In
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both systems, there was a problem in the method used to isolate the mouth opening.
It is unlikely that the threshold that worked for a particular speaker would work for
others. especially with variations in skin darkness and presence or absence of facial
hair.

Goldschen. Garcia and Petajan {22] described an optical speech recognizer that
used information from the oral cavity shadow of a speaker’s mauth. They did not
mention. however, how they located and extracted the oral cavity region. During
training, principal component analysis was performed on seven static oral-cavity

features (area. width. height. ing, peri number of regions in a

component frame. and number of regions in a binary image frame). their first and
second derivatives with respect to time. and the magnitude of those derivatives. This

resulted in thirteen features to be idered. In ion. the ing started

by converting a sequence of oral cavity regions to a sequence of the thirteen features.
This latter sequence was. in turn. transformed to a sequence of codevectors using the
Euclidean distance. Recognition was done. next, by hidden Markov modeling.

In his visual speech recognizer, Movellan [44] took the approach of preserving the
original images and letting the recognition engine discover relevant features. He used
sequences of processed mouth images. These were composites of portions from dif-

o

ferent representations obtained by symmetry temporal

and logistic holdi These images were modeled as mixtures of

independent Gaussian distributions and the temporal dependencies were captured
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with standard hidden Markov models. An obvious disadvantage in such a recognizer
is the size of the input data; 300 pixels for each image in the input sequence.
Li. Dettmer and Shah [38] proposed eigensequences for lipreading. They used

the t | eigen it in which the set of eigenvectors spans the

space of all possible sequences. Gray level values of all the pixels in all frames
representing a spoken letter were put in one vector. Several of those training vectors
that corresponded to a certain class were used to compute the eigenvectors of that
class. Recognition was performed by computing the energy ratio when the sequence
to be recognized was projected on the model eigenspace for each class. In such a
scenario. a certain class was supposed to have a high energy ratio when presented
with a correct instance.

Kirby. Weisser and Dangelmayr [36] coded a mouth image into a vector of @
coefficients computed with respect to the set of Q eigen images determined during
training as the basis for the space of mouth images. A certain word of P images was.
accordingly. represented by a @ x P matrix. A template-matching technique based
on the Euclidean distance was used to identify the words.

Bregler and Konig [8] combined both acoustic and visual data. The visual data
consisted of the first ten principal components of a grey level matrix centered around
the lips (eigenlips). The data was fed to a multi-layer feedforward neural network in
order to estimate the probability of a certain phone. given the acoustic and visual

data at each time instance. The probabilities were used by an HMM-based system to
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recognize German letters. The grey level matrix coding was invariant against shifting
and scaling, but not lighting. Bregler and Konig found that the first principal grey
level axis represented variations in lighting. In general, there is no guarantee :hat
the first ten principal components correspond to the ten most relevant features of
visual speech dynamics.

Finn and Montgomery [21] investigated optical recognition of English consonants
in a vowel-consonant-vowel (VCV) context. Twelve reflective dots were placed around
the talker’s mouth. and fourteen distance measurements were manually derived from
the dot positions in each frame recorded at the rate of thirty per second. The resulting
sequence of measurements was matched against training sequences using a weighted
Euclidean distance metric.

Silsbee [62] developed a visual processor which used a modified form of vector
quantization. Each mouth image of a sequence was mapped into the codevector which
minimized a “distance” measure. The distance was computed by first finding a best
alignment between the codevector and the image to be classified. then calculating the
total absolute pixel-by-pixel difference between the two. However, this is not a true
distance in the mathematical sense. The triangle inequality. for example. does not
necessarily hold for this quantity. One of the consequences of this property was that
standard vector quantization training techniques would not have been appropriate

to generate the ically. So, the were chosen by hand

from the training data. The last phase of Silsbee’s lipreading system was based on
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hidden Markov models. The major drawback of this system was its inherent speaker
dependence due to the fact that it was based on a direct match between images rather
than higher level representations.

Many of the systems described here were not fully automatic. Any practical
system should avoid human intervention as much as possible. Putting a reflective
material on the user’s face. and extracting visual features from images by hand are
both clear violations of this principle.

A great deal of attention should be directed toward time handling. In many
past systems. time duration was fixed and the individual frames in speech events
were concatenated and the result was simply viewed as static patterns. However.
lipreading is far more complex than static pattern recognition due to the fact that
time plays a crucial role in speech realization. If time and space are treated equally.
the operation will not be accurately represented. The dynamic nature of change
in patterns with respect to time. which is the main characterization of lipreading.

should be heavily emphasized.
2.5 Neural Networks

An artificial neural network is a collection of parallel processors connected together in
the form of a directed graph, organized such that the network structure lends itself to
the problem being considered [20]. Historically. much of the inspiration for the field

came from the desire to produce artificial systems capable of intelligent computations



similar to those performed by the human brain.
Artificial neural networks have a great potential for parallelism. since the com-

of the are largely ind dent of each other. Besides the high

computation rates provided by the massive parallelism. neural networks can provide
a greater degree of robustness than do traditional sequential computers. One of the
most attractive features of neural networks is generalization. This enables a model
to function competently throughout the pattern space, even though it has learned

from observing only a limited body of examples.
2.5.1 Multi-Layer Feed-Forward Neural Networks

A multi-layer feed-forward network can be viewed as a structure of several layers on
top of each other. At the lowest level. there is an input layer. Then. there may be one
or more hidden layers and. at the highest level, an output layer. The only connection
allowed is the feed-forward connection from one layer to the layer immediately on

1op of it. This kind of architecture is especially useful for static classification tasks

since it has the bility of imating not only any conti map arbitrarily

closely. but also the derivatives of such a map.

The basic operation of each hidden or output node is to map the weighted sum
of outputs from the previous layer. according to an activation function such as the
logistic or Gaussian function. The importance of activation functions is that they
introduce nonlinearity into the network, without which the network would not be
any more powerful than a plain perceptron (linear classifier).
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Typically, the backpropagation algorithm [58] (generalized d-rule) is used to train
feed-forward networks. According to this algorithm. the network is initialized with
small random weights. then all training data is presented repeatedly to the network.
Weights are adjusted after every trial. in order to minimize a function of the error
between the actual output produced by the network and a desired output.

One of the main problems concerning feed-forward networks trained by backprop-
agation is the slow convergence during training. Another problem is the lack of a
solid theory to guide the user in determining the size of the network (number of

hidden layers and number of nodes in each hidden layer) for a specific application.
2.5.2 The Hopfield Network

In this architecture. the nodes are organized as a fully-connected layer where every
node receives stimulus from all others. The weight matrix is symmetric. meaning
that the weights on the connections between two nodes are equal in both directions.
The nodes also receive an external input. The values of the nodes at any given time
define the state of the network and this state changes until a stable configuration is
reached. The current state is calculated from the previous one asynchronously. That
is. a node is picked randomly and its value is updated.

The convergence of the neuronal state of the Hopfield model ta its stable states
is based on the existence of an energy function (Liapunov function) which directs
the flow in state space. Such a function depends on the current state as well as
the weight matrix. To guarantee convergence, the weights must be designed such
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that any update in the network’s state will decrease the energy or at least keep it

dd bl

unchanged. In cases where the network is d to act as a tent-
memory, the weight matrix is calculated by taking the outer product of each vector
to be stored in the network with itself. Then. all the resulting outer products are
superimposed on one other.

The original Hopfield model was binary [28] but has been extended to a continuous
model by incorporating some results from neurobiology [29]. The continuous Hopfield
model can be applied to optimization problems which are NP-complete [30]. In
such cases. a suitable representation for the problem that corresponds to a Hopfield
network should be found. Then. the network's energy function is designed in a

way which reflects the constraints of the optimization problem so that the network

stabilizes on a class of good st on its initial

In practice, the Hopfield network has several limitations. The associative memory
has a limited capacity. uneven recall ability and recall of spurious states. For opti-
mization problems. the approach tends to work on examples from a limited domain.
Nevertheless. the Hopfield model provides an excellent demonstration of how practi-
cal problems that are tremendously difficult can be attacked by neural networks. In
particular, it can be used to model some temporal phenomena. Tank and Hopfield

[65] discuss tasks similar to those of recognition of words in a continuous stream of

speech.



2.5.3 The Time Delay Neural Network (TDNN)

This architecture is a modification of the standard multi-layer feed-forward network
developed to deal with patterns that are presented in parts over a period of time [67]
[37). The basic unit in the TDNN is modified by introducing time delays. The inputs
to such a unit are multiplied by several sets of weights. one for each delayed input and
one for the undelayed input. To train the TDNN. the backpropagation procedure is
applied to patterns that are stepped through time. Each collection of TDNN units
is duplicated for each one frame shift in time. The weights of the corresponding
connections in the time shifted copies are constrained to be the same. This way. the
network is forced to apply the same set of feature detectors to every slice of the input.
which makes the abstractions learned by the network invariant under translation in
time. However. the TDNN architecture is not capable of madeling words that consist
of multiple phonemes.

A multi-state time delay neural network (MS-TDNN) [27] [24] has been proposed
to extend the TDNN model to a word-level classifier. The MS-TDNN incorporates
dynamic programming into its training, so that the embedded time alignment allows
training with word-level external supervision. Another interesting extension of the
TDNN is the Meta-Pi network [25], which has been designed to improve the TDNN's

performance in the context of multi-speaker phoneme iti The Meta-Pi archi~

tecture comprises a number of TDNNs trained independently on particular speakers.
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When the speech of an unknown speaker is presented. the Meta-Pi network computes

its global output using a combination of the outputs of the individual sub-networks.
2.5.4 Recurrent Neural Networks

A recurrent neural network contains at least one unit with the special property that
its current input depends on the unit's output at an earlier time. This property
allows the network to keep information about past inputs for an amount of time that
is not fixed a priori. but rather depends on its weights and the input {3]. Recurrent
networks have not been used as extensively as feed-forward networks because they
seem more difficult to analyze and train optimally. Nevertheless. they have important
capabilities not found in feed-forward networks, including attractor dynamics and the
ability to deal with temporal behavior through their own natural operation.

Several algorithms have been proposed for training recurrent networks. In the
backpropagation-through-time algorithm [58] [68] [69]. the recurrent network to be
trained is unfolded into a multi-layer feed-forward network that grows by one layer
on each time instance. Then. the backpropagation procedure is applied in its usual
form except that the corresponding weights at each layer (or time instance) are
constrained to be equal. The advantage of this algorithm is its generality in dealing
with recurrent networks of any form. A major problem, however. is its growing
memory requirements when given an arbitrarily long training sequence.

Another algorithm (71}, called forward propagation, has been derived to train
unconstrained neural networks in a temporal supervised learning task. which means
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that certain of the units’ output values are to match specified target values at specified
times. The algorithm avoids storing the complete sequence of network activations
by computing recursively and keeping in memory. during a regular forward pass.
partial derivatives which indicate how each weight of the network influences each
unit’s activation. The strong point of this method is that it can be applied in an
on-line fashion since all the computations involved can be carried out forward in
time. However. it is computationally expensive. A variant of this method has been
experimented with. by Williams and Zipser (71]. which incorporates a technique called
teacher-forced learning. According to this technique. the actual output of a unit is
replaced by the teacher signal whenever such a value exists. Williams and Zipser [71]
report that teacher-forced learning reduced radically training time for their recurrent
networks.

Other training algorithms have been described [52] 3] [45] [46] (6], some of which
are constrained forms of the backpropagation-through-time or forward propagation
algorithms. In particular. the recurrent backpropagation algorithm [52] is a special
case of the backpropagation-through-time when the network’s input is held constant
over time and the network is assumed to relax on a stable fizpoint [50]. The back-
propagation for sequences (BPS) algorithm [3], also called focused backpropagation
[43], is somewhat related to the forward propagation when the recurrent architec-
ture is constrained to have units with a single feedback to themselves and incoming

connections from the input layer.
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The methods mentioned above are based on computing the gradient of an error

function with respect to the weights of the network. In a recent study. Bengio et al.

conclude that training recurrent networks with such methods becomes increasingly

when the span of the d to be learned increases.
Obviously, the existing algorithms to directly train recurrent networks suffer

mainly from two ! First. the ational lexity i with

them is usually much higher than that of feed-forward training algorithms. Second.
there has not been sufficient evidence. from a theoretical point of view. that a fully
recurrent network benefits from any of the recurrent algorithms. It is possible that
the recurrent methods make the network settle on sub-optimal solutions that take
into account short-term rather than long-term dependencies as pointed out in [4].
Olurotimi [48] presents a general framework for training recurrent networks which
avoids both problems to a great extent. His framework. emphasizes the importance
of retrieving the state variables of the system being modeled. If these state vari-
ables are not retrievable from the output observations, there is simply not enough
information to model the system by any technique. On the other hand, if a reason-
able state representation can be constructed. the weights of a fully recurrent network

can be learned using an exact t ion that reveals an i feed-forward

structure in the recurrent architecture.



Chapter 3
Locating the Mouth

In this chapter. a method for automatically locating a speaker’s mouth is presented.
The method consists of three main steps: preprocessing. locating the eyes. and locat-
ing the mouth. The input to the system is a grey-level image of a person’s face. The
computations involved do not aim to find the exact pixels pertaining to the mouth.
Instead. a rectangular region. containing the mouth and possibly part of the nose
and chin. is found.

3.1 Preprocessing:
Edge Detection and Thresholding

Preprocessing is employed to convert the grey-level image to an edge representation.
When compared to raw grey levels, edges are far less sensitive to lighting; also, they
convey valuable information about boundaries between different regions.

The required task is specific to face processing, and a special-purpose detector
that can be implemented efficiently is used. The following operator, basically a

Laplacian operator, has been reported, in the li [33], to work y in
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line extraction from human faces.
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mask m(k.l), -4 < k1< 4

The original grey-level image g(i. j) is convolved with the above mask m(k.!).
—4 < k.l < 1. and an edge image e(i. j) is produced. where each pixel in the new
representation is calculated as

14
e(i.j)= > 3 gli+lj+k)m(k.l) 3.1)
k=—at=—t

The effectiveness of the operator is illustrated by Figure 3.1. The binary image it
produced from the original identifies the eves well, and it seems to not be particularly

sensitive to facial hair affecting outlining of the mouth segment. This operator has

many advantages [33]:

LIt bines diffe ial ion with ing in a single step.

2. It highlights basic features of the human face such as the head outline, eyes
and mouth.
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Figure 3.1: Original image. and its binary edge image produced using the Laplacian
operator of Equation (3.1).

3. It eliminates most irrelevant details and noise.

The purpose is to produce a binary image on which a search for the location of the
eves is performed. The strategy pursued for determining the threshold value relies
on experimentation. Experiments have shown that a value of 200 for the threshold
produces a binary edge image b(i. j) that successfully suits the method of locating

the eyes.
3.2 Locating the Eyes

Although not relevant to speech processing, the eyes are located so that they can
be used as a reference point to locate the mouth. This process has been somewhat
problematic. Kanade [33] was able to locate facial features through his pioneering
work in the field. The fundamental technique used in his system was the integral
projection technique. By placing a slit, be it horizontal or vertical, and analyzing
the distribution of pixels along either direction, Kanade was able to locate the top of
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the head. then the sides of the face. This was followed by locating the nose. mouth.
chin. chin contour, cheeks, and finally the eyes. In my approach, however. there is
no need to locate facial features other than the eyes.

The method used here is derived from an interesting property of the binary edge
image b(i.j). 0 < i £ N — 1.0 < j < M — 1. where .V is the number of rows
and M is the number of columns in the input image. This property allows for the
simplification of the method used by Kanade. Instead of analyzing the distribution
of pixels in a slit. a simple computation that maps the slit to a quantity relevant to
locating the eyes is performed.

Let 4 be a value approximately equal to the height of the eyes and the evebrows.
This value can be determined using a prior: knowledge of the speaker’s head size.
The approach taken here is to fix an index representing the ratio between the height
of the eyes region and the height of the head. at a value that has proven to give good
approximations when applied to a variety of people. If the height of the head in
the input is expected to be highly variable due to a wide range of allowed distances
between the user and the camera, k can be calculated by multiplying the fixed index
by the height of the head. Alternatively. if the expected variation in the user’s
distance from the camera lies within a reasonable range. 4 can be assigned a fixed
value.

Define edgeness,(r) as the number of foreground pixels in a horizontal slit with

width W and height h starting at row r. Since b(i, ) is a binary edge image,
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edgeness,, (r)
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Figure Histogram used for locating the eyes. The maximum peak occurs at the
location of the eyes.

edgeness, (r) can be calculated as follows:
edgeness(r) = 3 3 b(i.j)

Now. consider moving the slit down from the top of the image.

It is observed that edgeness,(r) reaches maximum values when the eves and the
evebrows are contained in the slit starting at r. as Figure 3.2 shows. This is so because
the eyes region is associated with a strong variation in intensity values, making the slit
of eyes distinguished from the slits of other portions. Thus, a possible approach for
identifying the eves could be accomplished by calculating edgeness,(r) for each row
7 in the image. then searching for the maximum value in the resulting distribution.
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However. the ional i for such an h are rather high.

A simplification of the process can be derived from another property. The starting
row of the optimal slit lies within a range of rows corresponding to slits that are
also distinguished (i.e.. they map to globally high values of edgeness,). even though
they cover the eyes partially. This suggests that a subsampling technique results in

an i histogram. the i value in which lies within a sufficiently-

small neighborhood of the original maximum. Therefore, the original histogram is

subsampled at 0.k/2.h.3k/2.---. That is. two consecutive samples overlap in h/2.

o« h/2;maz «0; s 0, k0
while k < N/o
sum(k) « 0
fori=o-ktoo-k+h
for j=0to M
sum(k) « sum(k) + b(i. j)
end for
end for
if sum(k) > maz then
maz < sum(k)
sk
end if
ke—k+1
end while

Algorithm to locate the eyes
Note that the new histogram always contains a slit covering at least 75% of the eyes
region, and not 50% as the overlapping factor might wrongly indicate. To show this.
assume the contrary, that is, assume that the slit starting at row [ is the sample
with maximum coverage of the eyes region. covering e < 0.75 which corresponds to
a lower part of the eyes region (a similar argument applies in the case of an upper
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part). If @ < 0.25. the slit starting at [ — h. which is also sampled. covers

—(-(1—a)h)=(1—-a)h

which is obviously more than 75% of the upper part. If 0.25 < a < 0.5. the slit

starting at row [ — h/2 covers
I+ah—(l—h/2) = (@+0.5)h
which is also more than 75% of the lower part. Finally. if 0.5 < a < 0.75. then the
coverage by the slit starting at [ — h/2 is
L+h/2—(=(1-a)h)=(L5~a)h
which is at least 75% as well (upper part). In all three cases. a slit which covers

at least T5% of the target region was found. contradicting the assumption that the

maximum coverage is less than 75%.

The computati ion achieved by is by 2/h. For a typical
value of A = 30, it requires only 6.67% of the computation thar the exhaustive
approach would take.

3.3 Determining the Region of Interest (ROI)

The organization of the human face, in terms of the basic components. is fixed.

Moreover, the relative di between these follow a certain pattern.
Using this information, and given the approximate location of the eyes obtained in
the previous step, the following can be estimated:
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© Dimensions of the ROL
The size of the region of interest is made larger than the expected size in order
to account for personal variations. that may cause some deviation from the

d and the imation made in locating the eves due

to subsampling. Consequently. the height and width of the ROI are both set

to 4h.

Position of the ROI:

The left-top corner of the region of interest is positioned at

where r is the starting row of the slit containing the eyes.

Note that both estimates are expressed in terms of the height of eyes region. making
the system invariant to scaling. The expressions have been selected as such after
experiments had shown their effectiveness in bounding the mouth entirely even when
it is wide open.

By determining the ROL. the focus of attention becomes restricted to a much
smaller region than the whole input image. in which more elaborate techniques can
be empioyed to seek accurate measurements for the mouth.

This chapter has addressed automatic location of a speaker's mouth. In the next

chapter we address the problem of extracting features of the mouth.
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Chapter 4

Extracting Mouth Features

In this chapter. methods for extracting particular mouth features are described. The
features include the center. width and height of the lips. The search space is restricted
to the region of interest extracted in the previous chapter. Figure 4.1 shows the main

mouth characteristics that the algorithms presented in this chapter estimate.

yc

c2

Figure 4.1: Mouth measurements.



4.1 Locating the Central Row

and Corners of the Mouth
The central row of the mouth, i.e.. the row where the upper and lower lips meet: has
a strong edge presence. Accordingly. the sum of edge values along this row. within
the ROL. is expected to have a maximum value. The method to locate the central
row of the mouth uses the edge image e(i.j) obtained by applying the Laplacian
operator described in the previous chapter. An example is shown in Figure 4.2.

M[2+2h .
o (i)

| -

%i: row number

Figure 4.2: Histogram used for locating the central row of the mouth. The maximum
peak corresponds to the central row.

Locating the left and right corners of the mouth enables the estimation of two
important features: the central column and the width of the mouth. In this section.
a method for obtaining initial estimates of the corners is described. The method
assumes that the central row of the mouth has been appropriately determined.

First, the distribution of the absolute vertical gradient at each column in the
central row of the mouth is analyzed. Figure 4.4 is an example of this distribution.
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Let y. denote the central row of the mouth. The vertical gradient of the pixel at
column J, row y., denoted gradient(j). is obtained by applying the following mask.
which emphasizes horizontal edges. to pixel (.. j).

[0] 0] 0]
1

The corners occur near two peaks in the corresponding histogram (see Figure 1.4).

These peaks are distinguished by the following characteristics:
o Define left-height(j). the left height at column j. as
left-height(j) = |gradient(j)| — |gradient(v, )|
where v is the valley immediately preceding j. Let p, be such that
left-height(p;) is maximum. The left corner c; is set at the minimum value .
vy < 1 < p,. satisfving

lgradient(v)| “wn

lgradient(z)] > smd‘ent(pxllf‘)-
® Define right-height(j). the right height at column j, as

right-height(j) = |gradient(j)| — [gradient(x,)|

where v, is the valley immediately following j. Let p, be such that
right-height(p,) is maximum. The right corner c; is set at the maximum value

Y. p2 < y < o, satisfying

S y)lzIgmﬁent(pz)lg\gmdiem(w)l @)
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Figure 4.3 shows a peak with its right and lefc heights.

;

right-height

left-height

Figure 4.3: Left height and right height of a peak.

Now. initial estimates for the central column of the mouth z. and its width w can

be determined by

w=c—c
4.2 Locating the Upper and Lower Lips

The rows where the external borders of the upper and lower lips intersect with the
vertical axis. denoted u and ! respectively. can be identified using the previously

d A hi is used to sum up each row’s grey levels for

columns between the corners. Only rows in a small neighborhood around the center
of the mouth need to be considered. It is expected that a change in intensity will

oceur at the maximum extremities of the lower and upper lips and this should be seen
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|gradient (j)|
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Figure 4.4: Histogram used for locating the mouth corners. First. the peaks with the
maximum left and right heights (p; and py) are identified, then the corners (c; and
¢) are computed according to (4.1) and (4.2) (see text).

in the histogram. An example is illustrated in Figure 4.5. In fact. experiments have
shown that the peak located immediately before the center of the mouth corresponds
to the highest point on the upper lip and the peak after it corresponds to the lowest
point on the lower lip. This estimate seems to be very good for the upper lip.
However. there are cases where a peak occurs before the external outline of the lower
lip because of a bright spot in the lower lip region. A method to correct this will be

discussed in section 4.4.
4.3 Improving the Mouth Corners

The idea is to search for the best fit of two curves (corresponding to the external
outline of the left half of the mouth) drawn from the left corner to the central column.
The search is implemented by moving the left corner to the left until a local optimum
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Figure 4.5: Histogram used for locating the upper and lower lips. A search for the

two peaks surrounding the central row is performed.

is found for the function left-fit(z., y., [. u.c,). This function gives a measure of fitness

between the left curves and the edge image. and is defined as follows:

0
left-fit(ze. ye. L)) = 3 vertgrad(ye + y(z). zc + 7)
<
= Z vertgrad(y. + y2(z). 2. + z),

where y(z) and yo(z) are the quartics given by

. 12
)G e T T
zt F

@e—a)'  (@-a)?

0@ == - =

yie) = (e —ye)(1 - ) —6( )

(ze —er)?

A similar definition applies for the right corner.
-z
right-fit(ze, e, Lu,c)) = Y vertgrad(ye + v1(z), zc + )
=
e
— Y vertgrad(ye + ¥2(z). 2. + 7)
=
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In the definitions above, the summations have opposite signs. This is justified
by the following. When applied to grey levels. vertgrad(i. j) (which is the result of
applying the same mask mentioned in section 4.1 to pixel (i, j)) emphasizes two kinds

of edges:

. Negative edges. the grey levels above which are lower than those below them.

The edges on the external outline of the lower lip are of this kind.

Positive edges. the grey levels above which are higher than those below them.
The edges on the external outline of the upper lip are of this kind.
A lower value for left-fit or right-fit means a better match between the curves and

the lips.

while left-fit(zc. ye. L. u.ci) > left-fit(ze, ye, L. u.cy — 1)
cpec—1

end while

while Tight-6t(zc, ye, L. . c2) > right-Bt(zc. yo, L w.cz + 1)
e+l

end while

Algorithm to improve the upper and lower lips

4.4 Improving the Lower Lip

As mentioned earlier, the estimate for the lower lip might not be accurate. The
method used to correct this resembles the one applied to the mouth corners. but
here the search is implemented by moving the lower lip down while keeping all other
parameters fixed. Now, suppose that the initial estimate is accurate, then this tech-
nique will probably identify the lower lip in the wrong place. Thus, to ensure that
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good initial estimates do not get corrupted. the change is not made if it goes beyond

certain ranges controlled by the upper lip.

while left-fit(zc. ye. . u. ;) + right-Bt(zc. ye. L u. cz) <
lefe-fit(zc. ye. ! + L. u.c;) + right-fit(zc. ye, [ + L. u. )
lel+1
end while
while left-fit(zc, ye. l. . ¢;) + right-fit(z,, ye. [ u. ca) >
left-fit(zc, ye, ! + L. u.c;) + right-fit(ze, ye. L + L. u.c3)
lel+1
end while

Algorithm to improve the lower lip
4.5 Experimentation

In this section. results of the application of the various algorithms described previ-

ously are The esti 4 mouth are d to the actual
measurements in order to qualify the accuracy of the methods. Table 4.1 contains the
error of the estimated measurements when applying the algorithms to 29 facial image
samples. The absolute error is calculated as the absolute difference in pixels between
the estimated measurement and the actual measurement. Each row in the table sum-
marizes the results of an individual sample. For example, the first row indicates that
when the algorithms were applied to the first image sample, the estimated central
row and column of the mouth and the lower lip extremity were accurate (error was
0); the estimated upper lip extremity was 2 pixels away from the actual point; and
each of the estimated corners had a difference of 1 pixel from the exact value. As can

be seen from Table 4.1, the accuracy of the methods is very good. In particular. the
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column labeled “y.” shows that the estimated central row has been accurate at all
samples. Furthermore. 93.7% (163/174) of the estimated measurements have been
within a range of 4 pixels from the exact ones.

Table 4.1: Error of the estimated mouth measurements obtained by applying our
algorithms to 29 facial image samples

Sample | Absolute Error (in pixels)
Ye

]l Ju]ale
T _Jo o |olz]T 1
2 [0 fo [2]3]4 |4
3 o f1f1f2(3 o
4 [1 o |2f2)1 |1
5 |02 |of2]8 |4
6 o2 f1]2f7 ]2
7 oo |11 ]1
8 |of2 [7|26 |2
9 fof2 [2(1|1 |2
10 [0 o [2]|1]3]4
1 oo |2]|tf2]2
12 0|1 |2]|0f1 |0
13 |0 |2 [2]{1|3 1
14 o |1 f1]3f1|3
15 |0 |1 ]o]3[2]s
16 |00 |7]|4f4]s
17 o jo f1]3f1]2
18 oo [of4f1 1
19 |0 |2 |2]3]6 1L
20 [0 |o [7[8]0 |0
21 fo |1 |of1]4]o
2 |12 |1f8]2]|2
23 |1 o 2[4]3 |3
24 [0 o |1|2]3]3
25 1|1 1|97 |4
26 [ofo [tf1]2]2

oo f1{2f1f1

1o |1|t]1]1

oo fif2f1 1

The average and maximum errors of each estimated feature are obtained by an-
alyzing the columns of Table 4.1, and are listed in Table 4.2. This latter table helps
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in ranking the estimated variables in terms of accuracy. For example. it can be seen
from Table 4.2 that the central row estimate is the most accurate one. Moreover. it
is evident that all estimates are quite accurate on the average (the average error is
less than 3 pixels for all estimates).

Table 4.2: Average and maximum errors of each estimated mouth measurement

obtained by analyzing the samples of Table 4.1
ent | Average Error (in pixels) i Error (in pixels)

Ve 0.1724 T
. 0.6896 2
l 7
u 9
o 8
o 5

This chapter has described algorithms that estimate mouth characteristics. In the
next chapter. we use these characteristics to initialize a mouth deformable template

which extracts the shape of the mouth and tracks its movement during speech.



Chapter 5

Mouth Deformable Template

5.1 Geometric Model

wil

Figure 5.1: Mouth deformable template.

w2

y

yl



5.1.1 Geometric Primitives

The deformable template for the mouth consists of the following geometric primitives
(see Figure 5.1):

1. The external outline of the lower lip is modeled as a quartic.

Vo ! I
=h(l-=)+du(—~-—=5).—unn <z <
n(z) =Mh( wf)+ m(w{ TS TS n

2. The internal outline of the lower lip is modeled as a parabola.

r?
Ya(x) = ha(1 i B
2

3. The external outline of the upper lip is modeled as a quartic.

(=l —a)?
(wr —a)?

(z|=a)* _(z|-a)?

(w1 —a)* (w1 -a)?

ys(x) = —hs(1 — )+ daa( )omw <y

4. The internal outline of the upper lip is modeled as a parabola.

<z,

2
wlz) = —hy(1-
wy

The points on the curves above are in reference to a coordinate system centered
at (0.0). To transform the template to the image coordinate system, every point on
each curve is rotated by 6, which is the angle of mouth inclination in the image. then
translated by (ye.z.)!. which is the center of the mouth in the image. Figure 5.2

shows a transformed mouth template.

'In this thesis, a pixel in row y and column z is denoted (y, z). To avoid any confusion, the
point in the zy-plane that corresponds to pixel (y, z) is denoted (y, z) as well.
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2

Transforming the template to the image coordinate system.

Figure 5.

5.1.2 Parameters

The previous modeling scheme results in the following parameters:

L

o

o

hy: height of the external outline of the lower lip.

hy: height of the internal outline of the lower lip.

hs: height of the external outline of the upper lip.

hy: height of the internal outline of the upper lip.

. wy: width of the external region.

a: offset of the center of the upper quartic from the ordinate.
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7. wy: width of the internal region.
8. qi: parameter to control how far the lower quartic deviates from a parabola.
9. qp: parameter to control how far the upper quartic deviates from a parabola.
10. z.: z-coordinate of the center of the mouth.

1L. y: y-coordinate of the center of the external lips.

12. ¢: the angle of inclination.

5.2 Energy Function

The L plate is iated with an energy function £ which gives a

measure of fitness between the geometric model and the image. Consider the set
I={(y.2): (y.z) is a lip border pixel}

The goal. at this point. is to characterize the set /. The deformable template approach
attempts to model the set /[ in terms of the parametrized curves contained in the
geometric model. In other words. it seeks to approzimate the set I by a set M such
that

M = CiuCuC3UC,, where

C = {2y =nlz) v Sz <w},

C o= {(4.2):y =1a(z). —wr < T < wy},



Cs = {(y.7):y=wu(@).~wy Sz <w}
and i = {(y.2) 1y = yu(z). ~w2 < = < wa}.
(y'. ') is the result of transforming (y. ) to the image coordinate system.
I =z.+7z-cosf—y-sinf
Y =Y+ z-sinf+y-cosb
Obviously, M depends on the parameters (hy. by hg. hy. wy. a. wa, 1. 2. Zc. ye. ).
and so the problem of finding the set .M/ of pixels is reduced to the problem of finding
the model’s parameters that would make M “match” /.
Since the set / is not known in advance. it is natural to exploit one of its known
properties. which is that the pixels contained in this set have strong edge magnitudes.

Consider the following quantity

ki . ks ks . ks e
1o i, eelts - @/C? @.(Z)ds ~ TC?/;J @c(F)ds ~ 120 /C‘ . (7)ds

where @, is an edge measure and |C;| is the length of curve y; [26]. This quantity is
supposed to have a minimum value when M/ matches /.
To define the edge value at pixel (i.j). a 3 x 3 kernel v(l.m). =1 < lL.m < L. is

used.

[N
edge(i.j) = Y 3 gli+!,j+m(l,m)
1="1m=-1
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When the pixel (i.}) is on the border of the lower lip. this makes edge(i. j) high
in magnitude. but negative in sign. On the other hand. if (i. ;) is on the upper lip
border. edge(i. j) will have a positive high value.

Given particular values for the parameters of the model. the terms of the energy

function can be calculated.

g, w1
term; = T‘:/l > ¥ Z g(iy + L ji + m)e(l.m)
1

s = m=—
A_z wa 1 1
term, = —= > Z glis + L. j; + m)u(l.m)
W2 i g 1=t m:
:enn;,_—— Z Z Z 9(@ + L. j3 + m)u(l.m)
|]v»w, l==1m=
-
termy = 5. Y z gy + L ji + m)e(l.m)
W2 ) =T iment

where

ig = Ye+J - sind + ya(j) - cosd

Ja= T+ j-cos8 — ya(j) - sin

d=1.23.4

The summations are divided by w; or w, in order to normalize the quantities. The
summation in terms and term, is preceded by a minus sign because the horizontal
edges on the borders of the upper lip are positive. In addition, there are penalty
terms to ensure that the mouth template does not deform to illegal mouth shapes.

terms = ks(hy = hy = kr)?
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termg = kg(hs — hy — ks)?

term; ensures that y; is always below y». and termg ensures that y; is always above

Ya. ki Ky, ks, ks ks, ks. kr. ks are gative that can be determined em-

pirically.
5.2.1 Minimizing the Energy Function

Finding the template that best matches the mouth in an image is equivalent to

minimizing the energy function. Two methods have been investigated in this work.

5.2.2 Method 1 (Greedy Method)

while not stop-criteria
for each parameter p;
Ap; «+update(p;)
end for
for each parameter p;
pi & pi+ Ap;
end for
end while

At each iteration, every template parameter p; is updated by one of three values:
+step;. —step;. or 0.

If pi € {1, ha, hs. hs, w1.a. wa. Zc. ye}. then step; = L. This is so because these
parameters are related to pixels which should have integer values. Otherwise (p; €
{q1.2.0}). it is preferable to assign a decimal value, such as 0.1, to step; since these

variables can take real values, and it is desirable to have a value for step; that changes

the shape of the template dually during the minimization process. A value of 1

for step; when p; € {q:.¢2,0} could make the template change its shape drastically
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in a single step. Note that § is measured in radians rather than degrees.

f < E(p1.p2: Ps, ... pi + Step;; .. pi2) — E(p1. p2: Ps. -
b E(p.p2.pa. wupr2) — E(pr.p2. P o pi
if f < 0 then

update « step;
else if b > 0 then

update + —step;
else

update « 0
end if

In practice. the method yields acceptable results. However. theory shows that it
has the potential to give erroneous results [54]. The method tries to minimize the

function along the unit vectors

e = (0.0.0.0.---,0.1)

in turn. Theoretically. minimizing along a particular direction could be spoiled by

the minimization along another di

5.2.3 Powell’s Method

Powell’s method [9] is attractive because it to minimize an
function without the need to explicitly compute the function's gradient. Comput-
ing the gradient requires the computation of the function’s partial derivatives with
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respect to each variable; a task that is not straightforward in our case because the
basic terms of the energy function are not expressed analytically. Furthermore. Pow-
ell's method overcomes the potential for error in the greedy method. It consists of a
mechanism for updating the set of directions (which can be the unit vectors at the
beginning) as the method proceeds. attempting to devise with a non-interfering set

of directions. These di i are called L directions. and have the special

property that minimization along one direction is not spoiled by subsequent mini-
mization along another.

The basic procedure is as follows:

L. Initialize the set of directions u; to the basis vectors.

u=e

Note that the number of such directions is equal to the number of parameters

of the mouth template.

Repeat the following sequence of steps until the energy function stops decreas-
ing:
© Save the starting position as Pg.

e Fori = 1Ll.... n. move P,_ to the minimum along direction w; This
involves finding a value Apg, for A at which the function E(P,_, + Au;)

is minimum. Since the vectors P;_; and u; are fixed, E(P;_, + Aw;) is
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E(Pi-y + Aui) E(Pi-y +Aw)

a b a b

Figure 5.3: Downhill direction defined by a and b. Search for a third point in the
direction indicated by the arrow.

a function in one variable and can be minimized using a i ional

method. After that. set
P, « Pi_y + Apint
AL & E(Py) - E(Pi)

The method by which the i ional function is minimized consists

basically of two steps:

(a) Given initial values a = 0 and b = L. find new poimts a. b. and ¢
that bracket a minimum of the function, by searching in the downhill
direction defined by the function at the initial points [34] (see Figure
5.3).

By definition, a,b, ¢ are values for A that bracket a minimum of the
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E(Pi-y + Aw)

E(Pi-y +au) ——
E(P;iy +cu)
E(Piy + bui)

a b c

Figure 5.4: Triplet [a.b.c| bracket a minimum of E(P;_; + Aw;).
function E(P;_, + Aw;) if b is between a and c. and E(P,_, + bu,) is
less than both £(P;- + aw;) and E(P;_, + cu;) (see Figure 5.4).
(b) Use Brent’s method (9] to minimize the function on the triplet [a.b. c].
e Fori=1..... n— L. set ; & .
® Set u, — P, ~P,y.
* Move P, to the minimum along direction u,, and call this point Po. That
is. find a value Ap;, for A that minimizes the function £(P, + Au,). Set

Po < Pn+Apinu.

The basic procedure must not be used in the form given above because it tends
to produce sets of directions that become linearly dependent. When this happens.

the cedure finds the mini only over a sub: of the full n-di ional case.

The approach taken to fix up this problem is similar to the one reported in reference
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[54]- It makes use of a heuristic scheme which tries to find a few good directions
along narrow valleys instead of n necessarily conjugate directions. The change to the
basic procedure is the following: at each iteration. discard the old direction along
which the function made its largest decrease. That is. u; is discarded (substituted

by the new direction P, — Py which is the average direction moved after trving all n

5.3 Dividing the Minimization Process into Two
Phases

The general method of deformable templates implies that all the curves making up the

model are fit at the same time. However. it has been found, through experimentartion.

that a two-phase minimization process gives better results than those obtained by

some single phase techniques. This indicates that the interaction of w, with the rest

of the model does not help the template to converge. Therefore. the minimization

process is divided into two phases:

L In the first phase. the external curves are fit. The original geometric model is
modified. The internal width w, is replaced by w;, and the internal heights.
ha and hy. are replaced by hj and k). This simpler template has been able to

capture the external borders ly. and to give bl i for

hy and A (up to 3 pixels away from the actual internal heights). In this phase,



the function

E\, = term; + term, + term; + termy + terms + terms

is minimized using Powell’s method.

Figure 5.5: Modified mouth model for the first phase.

2. In the second phase. hs. h;. and w, are fine-tuned by minimizing the function

E, = term, + term; + ky tan(%j—’) + kro(ha — hy)? + ki (hy — £)?
2

term; and term, attracts the internal curves to strong horizontal edges in the
image. The term ko tan(322) encourages wj to be less than wy. The last two

terms ensure that h, and Ay stay relatively close to k5 and A respectively.

5.4 Tracking the Lips

Given a digitized movie of a person’s face. the deformable template technique is used

to model the mouth shape in each image frame.

1. A region of interest containing the mouth is located in the first frame. Then.

image processing techniques are applied to roughly estimate several mouth
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features such as center. width and height. These estimates are used as initial

values for the deformable template parameters in the first frame.

Having the initial values. the can be itioned initially

near the mouth. The energy of the template is minimized. and this leads to an

optimum match.

.

Since there is a relatively small change between two consecutive frames. the
initial values for a particular frame i. i > 2. are set to the parameter values of
frame i— 1. This has the advantage of saving the time that would be. otherwise.

needed to apply the initial operations to every single frame.

This chapter has ad the lication of defc bl it in extracting
the shape of the mouth and tracking its movement during speech. In the next chapter.

we address the problem of segmenting a word into visual speech units.

64



Chapter 6

Visual Speech Segmentation

6.1 Introduction

In this chapter. the problem of visual speech segmentation is addressed. The method
described here is applied to the training data of the speech recognizer.

The problem of visual speech segmentation is formulated as follows. Let

"
(Wl = vovi Vot

be a given sequence of vectors. representing a word visually. where v; is a vectar of
m features characterizing the mouth shape of a speaker, saying a word w. at time
i/r. where r is the sampling rate and assuming that the speech starts at time 0. It is
required to find a natural number ! < n, and indices ki, &, .. .. ki for {v:}3~" such
that

O=ko<hki<hky<---<k_<n-1



T

VoVttt V) — Vo
T,
Vi V-1 Vigmr — W)
T,
Vi Ve-t Vet = Voo

. Vi are visual speech units such that

where T is a transformation. and V. V. .

Vo is distinct from V),

V) s distinct from V),

Vi-2 is distinet from V.

[ is the number of segments. and k;, i =0.1,.... [ — 1 is the index of the first frame
in segment i.

The procedures presented in this chapter operate on sequences of feature vectors
derived from the parameters of the mouth deformable template. Let W' be the mouth
external width (w) in the first frame (at time 0) of the sequence. Each frame in the

sequence in mapped to a vector of the following features.
1 hy/W
2. hy/W

3. hy/W
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1 hyW
5wy /W
6. wy/W
T a/W
The purpose of dividing the parameters by I} is:
1. to make the system scale invariant.

2. and to provide a suitable (normalized) representation for the neural network

that will process the data in a later stage.

An example is represented graphically in Fig. 6.1. In this figure. each horizontal
line represents a feature. The lengths of the lines are proportional to the values of
the features. The graph has been built by applying the mouth deformable template
of the previous chapter to a sequence of facial images of a person during speech
(sampled at the rate of 30 frames per second). then mapping the resulting mouth
template of each image into the seven features listed above. Note that each row of

horizontal lines corresponds to the shape of the mouth at a certain time.

6.2 Maximum Distance Method

The proposed solution to the problem posed in the previous section is based on

identifying dissimilarities within the sequence to be segmented. Let f,f’, f1.f2 be
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h/W  ha/W hs/W bW w /W wo/W a/W

L.,

LU

L

L Ll

Figure 6.1: Graphical representation of a sequence of feature vectors corresponding
to a person’s mouth during speech.
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feature vectors. Define

dist(f. £) =

dist2(f. f1. £2) = min(dist(f. f1). dist(f. £2))
dist(f. f') measures the distance between frames f and f'. If f = f'. obviously
dist(f.f') = 0. dist2(f.fl1.f2) measures how far frame f is from both frames f1
and f2. If dist2(f. f1. £2) = d. that means that f has a distance of at least d from f1
and 2.
Given a frame f and a set of frames F. it is possible to identify the most distant

frame in F from f by finding fmax € F according to

dist(f. fmax) = maxpepdist(f. £)

Similarly. given two frames fl1 and f2. the most distant frame in £ from both f1 and

2 is the frame fiax € F such that

dist2(fmax. f1. £2) = maxee pdist2(f. f1. £2)

Upon segmenting a sequence of frames. there are two cases that have to be dis-

tinguished.

e The sequence consists of more than one segment.
In this case. a good candidate for a segmentation point is the frame that has
the maximum distance from the starting frame. The value of the maximum

distance a de

measure. The higher the value
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of the maximum distance. the higher the confidence that this point is a real

boundary.

The sequence consists of only one segment.

For this to happen. all the frames in the sequence should be “close” to each

other. This situation can be i 1 by ining the i distance
between the first frame and the rest of the frames. If this distance is very
small. it follows that all the frames are sufficiently close to each other.

Claim: In a sequence of frames v,v,_;---Vs-n_1. Suppose that k € V" =

{s+Ls+2....s+n— 1} is such that
dist(v,. vi) = max;ep-dist(v,.v,) = d.

Then. for any p.q€

dist(vy. v,) < 2d.

Proof: The assumption implies that
dist(vy.v,) < d
dist(v,.v) <@
Equivalently.
(ve0 = 90)* + Vet = p)* + -+ F (Vamet = Vpm1)® <

(a0 = 10l + (V1 = v)2 + oo+ (Wmot = Vgmt)? S
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Adding both inequalities yields

((ens = tpa)? + (ves = 10)?) < 24 (6.1)
=

e e g (6.2)

0

T

\]z(u,,.—u,m < o (6.3)

=
16.4)

That is,

dist(v,.v,) < 2d (6.3)

Inequality (6.2) follows from

<(@-b0F+@=cf

where a. b and c are any real numbers.O
Hence. if the segmentation confidence measure is less than a threshold 6. it is
guaranteed that no two frames in the sequence are at a distance greater than
24.

Consider the following algorithm that takes as input a sequence of n vectors

VVsoitt Venote

find & from the set V = {s+ 1.s+2,....5 4+ n— 1} such that
dist(vy, vi) = maxievdist(v,. vi)




This algorithm segments the sequence v,v,_; - - - V,_,_, into two subsequences h (in-

ternal subsequence) and ¢ such that

B

sVs—1 "t Vieo|

E= ViVier s Vaosot

To complete the process of finding all the segments in the given sequence. the same
algorithm can be applied recursively to . It can also be applied to . But since vj_;
and vy are two consecutive visual speech frames and. thus. very close to each other.
there is a high probability that applying the algorithm on h will result in segmenting
the subsequence at its last frame (k — 1). To avoid this situation. a slightly different
algorithm is proposed. The algorithm takes as input an internal sequence of n frames

VsVso1+++V,_n_y and the starting frame of the next subsequence v,_,.

find k from theset V'={s+1.s+2...., s+n— 1} such that
dist2(Vk, Vs, Vo-n) = maXievdist2(vi, Vs, Vson)

Now. two recursive versions of the previous algorithms can be defined.

Algorithm segment(v,v,_;---
find £ from the set V" = {s+ L.s +2.

dist(v,. vi) = max;ey-dist(v,. v;)
if dist(v,. vi) > &

.s+n— 1} such that

output k&

segment2(V,Vy. |- Vi_y, Vi)

segment(Vi Vi -n-t)
end if

~
%)



Algorithm segment2(v,v,_1 - Vs-n-1- Vs-n)

find k from the set V" = {s+ L.s+2.....5+n — 1} such that
dist2(Vie, Vs, V,_n) = maxierdist2(vi, v,, Vo)

if dist2(vi. vy, Voon) >0

output &

segment2(V,v,_; - - Vg_y.Vg)

Segment2(Vi Vi1 Vs-n-1. Vs-n)
end if

Algorithm segment finds all segment boundaries with confidence greater than the
threshold 4 in the given sequence. segment2 does the same thing but has as input an
internal subsequence. Given a sequence of frames vov, - - v, representing a word.
all the segment boundaries (k’s in the problem definition) with confidence greater

than the threshold ¢ can be found by simply calling
segment(voVy -+ Va_y)

The number of segments is equal to the number of segment boundaries plus one.
Figure 6.2 is a graphical representation of applying the Maximum Distance method
to a word. In this figure. each feature is represented by a rectangle. The intensity of
the rectangles is proportional to the value of the corresponding features. The partial
results of applying the method recursively are shown at the left of the sequence (these
results evolve as we go to the left direction). The final results are shown at the right

of the sequence.
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Figure 6.2: Individual segmentation by Maximum Distance method.



6.3 Alignment

Let z. y and = be three different samples of the same word. If these sequences are

segmented individually. the resuit will be:

X0t Xy Xk Xk,
ST T O e
Yoy Y s Y gy 7
LA L L et L T
Zo Bk Bk oo Zha,
A~

The problem is that the number of segments in z. y and = might be different.
Thus, alignment aims to find a segmentation for z. y and = such that the number
of segments in all the sequences is equal. Moreover. and more importantly. the i-th
segment in any of the sequences should correspond to the i-th segment in the others.

Given two sequences. it is possible to find such a segmentation using dynamic
time warping (DTW) [59). A DTW algorithm takes two sequences of frames a =
298, -~ a,_; and b = bgb, - - - b,,_; as input. and outputs the optimum warping path
between them according to some distance measurement. The cost of the optimum
warping path is also produced as an output. The algorithm measures how well the
two sequences can be aligned to each other based on the distance function used.

The DTW algorithm operates by calculating a matrix g(i,j), 1 <i<n, 1< j <

m. The interpretation of g is that

(e}



g(i.j) is the cost of the optimum warping path
between 203, ---a;_; and bgby --b;

Therefore, the required output will be stored in g(n.m). To calculate g(i. j). there

are two cases:
L. i=1and j =1 (initial case)
g(L.1) = 2dist(ag. b) (6.6)

2 iFlorj#AL
In calculating g(i. j) in general. there are three subpaths to consider:
(a) The subpath formed by linking the optimum warping path between
2ga; ---a;_; and byby - b;_5 to the alignment of frames a;_; and b; .
(b) The subpath formed by linking the optimum warping path between
aga; -+ -a;_; and byb; - - b;_; to the alignment of frames a, | and b;_;
(¢) The subpath formed by linking the optimum warping path between
aa, -+ -@;-z and bgb, -+~ b, to the alignment of frames a;_, and b, _;.
Figure 6.3 illustrates this situation. It shows the three options available at

a certain point while constructing the warping path between two sequences.

Clearly. the optimum cost in this case is the cost of the subpath that has the
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minimum cost among the three subpaths.

g(i.j — 1) + dist(ai-1, bj1)
g(i,j) =min{ g(i - L.j — 1) +2dist(a;_1, b;_1) (6.7
9(i — L.J) + disw(ai-1. bj1)

g(i—1.j~1) g(i—1J)

|
3

9ii=1) H}. )

Figure 6.3: Calculating the optimum warping path

The coefficients of dist() in (6.5) and (6.6) are called the weighting coefficients.
The specific values given to these coefficients make the algorithm symmetric. This
implies that the result of aligning a to b will be the same as that of aligning b to a.

When calculating the first row of g (g(1.j). L < j < m). the elements in the 0-th
row are used. Since there are no real subpaths coming from such elements that need
to be considered. they should be initialized to a large value in order to prevent them

from being selected as the optimum choice. A similar argument applies to the 0-th

column.
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The DTW algorithm uses a parameter r called the window length. This parameter
limits the optimum path to not go beyond a region around the diagonal of matrix g.
Therefore. only the elements in this region of g need to be calculated. The limited

region can be expressed by
9(i.J). l<j<mand j—r<i<j+T

The purpose of such a constraint is to prevent an excessive timing difference between
the frames of the two sequences. In order for the constrained set of points to include

g(n.m). it is necessary that

is satisfied.
The optimum warping path can be obtained by recording the choice made at each
calculation, then tracing the sequence of choices from the final output g(n.m) back

to the initial point g(1.1).
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forj=1tom
9(0.)) « 0
end for
fori=1lton
9(i.0) «
end for
g(L.1) « 2dist(ag. bo))
forj=1tom
for i=max(l.j — r) to min(n.j+7)
figlorj#1L
9(i. j) + min(
g(i.g — 1) + dist(a;_1. bj_4).
gli — L. — 1) +2dist(ai_;. b; ).
g(i — 1.j) +dist(a;_1, b))

cost +— g{n.m)

The alignment problem can make use of DTW. However. the usual DTW al-

gorithm peeds to be modified to suit this problem. In the modified version. the

algorithm takes as input the segment boundaries in two . The

warping path is used to derive a unified segmentation scheme for both sequences.

To convert the path produced by the algorithm to a unified segmentation:

1. A vector of ordered pairs, called the correspondence vector. is obtained by
following the warping path. The first component in an ordered pair represents
a frame in sequence a. and the second component is the corresponding frame

in b.

2. Starting from the end of the correspondence vector, which represents the last



frames in both a and b. the following is repeated until the beginning of the

correspondence vector is reached.

(a) If the two adjacent pairs, at the current point. are different in both com-

ponents; record a segmentation boundary.

(b) Decrement the current point index.

The problem. now. is how to generalize this alignment method to more than two
sequences. A possible way to generalize the method could be to select a reference
sequence and align it to all other sequences. But even then. this might lead to a
different segmentation for the reference sequence in every alignment. To obtain a

unique ion. the following is d

select a reference sequence r
segment r
for each sequence s # z

segment s

align s to

update the ions of r and s

to the result of the previous alignment

end for
for each sequence s # &

align s to x {this time the segmentation of z is fized}
end for

Now, two questions arise. First, how to select the reference sequence r? Second.
in which order should the other sequences be aligned to z? In all probability, such
decisions will affect the final alignments. Hence. there is a need to rank the sequences

according to some criteria. The criteria selected for ranking a certain sequence is
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based on how well the sequence aligns to the rest of the sequences. Recall that the
DTW algorithm returns the minimum cost at which sequences z and s can be aligned
to each other cost(z. s). To get an overall cost for a particular sequence z. the average
cost over all other sequences is taken

g2z COSL(Z. S)
N-—

rank(x) = = ;

where V is the number of sequences. Figure 6.4 shows the result of aligning 4

instances of the same word using the method described above.
6.4 Adaptive Segmentation

Two distance functions have been used in the segmentation method described above.
First. the distance function for individual segmentation and second. the distance
function for dynamic time warping. The Euclidean distance was selected for both
purpases.

There is no reason why the Euclidean distance is better than a weighted distance.
Using a weighted distance could not have been possible before because there was no
a priori knowledge about the segments of a particular word. But now that there is

d

a s ion (initial ion), this can be used to derive proper

weights.

This principle leads to an iterative method that starts by segmentation and align-
ment using the Euclidean distance, which is equivalent to a weighted distance with
equal weights. At each iteration, an error is computed based on the previous seg-
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Figure 6.4: Alignment between segments in samples of the same word.
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mentation. The weights are adjusted in such a way that reduces the error. Then.
segmentation and alignment are repeated using the new weighted distances.

6.4.1 Weights for Individual Segmentation Distance

Let w be the set of weights of the distance function used in the individual segmen-
tation. Two tables are formed.

o Similarity table for w:

Each entry is a vector computed as
we(x—y)

where x and y are two frames belonging to the same segment. and = denotes
“multiplication” of vectars element by element. For each segment containing
more than one frame. x is selected as the first frame. and y as the most distant

frame from x in the same segment.

e Difference table for w:

Each entry is a vector computed as
w(x'—y')

where x’ and y’ are two frames belonging to adjacent segments. For each two
adjacent segments, X’ is selected as the first frame in the first segment. and y’

as the first frame in the second segment.
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The average entry a = (@ @, @;---@p_,] in the similarity table is computed.

then the average element A in that entry is taken

The error derived from the similarity table is expressed as
=
error; = = 3 (4 -a)
L=
where

_Ja a<o0
““"{ 0. otherwise

and d is the number of elements in a that are greater than A. The weight updates

based on this error are as follows.
Aw, =nl(A - a)

In other words. the weights of the features that have a large (greater than A) con-
tribution to the total distance in frames of the same sequence are reduced by their
deviation from the average contribution. The justification is that such features are
not 5o relevant in segmentation given the fact that they recorded a large contribution
for frames in the same sequence.

Similarly, the average entry b = [by b b+ -bm_y] in the difference table is

computed, as well as the average element B in that entry

3
1

B=

Ells
i



The error derived from the difference table is expressed as
pm-t
errory = = g r*(b; — B)
where e is the number of elements in b that are less than B. The weight updates
based on this error are:
Auw; = —ql'(b — B)

That is. the weights of the features that have a small contribution to the total distance
in frames of distinct segments are enforced. The purpose is to emphasize the relevance

of such features in distinguishing between frames of different segments.
6.4.2 Weights for DTW Distance

To adjust the weights of the DTW distance z. similarity and difference tables are

formed.

© Similarity table for z:

Each entry is a vector computed as
zx(x—y)

where x is the starting frame in a segment belonging to the reference sample.

and y is the starting frame in the corresponding segment of another sample.

o Difference table for z:
Each entry is a vector computed as
z+ (¥ -y')
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where X’ is the starting frame in a segment belonging to the reference sample.

and y’ is the starting frame in a segment adjacent to the corresponding segment
of another sample.

The error derived from the similarity table for z is calculated as

pmet
errory =~ > I*(C - c;)
Pis

where ¢ =[cg ¢; ¢;--cm-] is the average entry in the similarity table for z.

=_Zg

=0
and p is the number of elements in ¢ that are greater than C. The weight updates
according to this error are

Az =q0(C - )

The error derived from the difference table for z is calculated as

pm=l

error, = - Z (fi- F)

where f =[fy fi f2+ fm-1] is the average entry in the difference table for z.

and q is the number of elements in f that are less than F. The weight updates

according to this error are
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The overall error is calculated as

€ITOr| + eITOr; + €ITOr; + eITor;

In this chapter. we have addressed the problem of segmenting a word into visual
speech units. The next chapter addresses the problem of visual word recognition

using recurrent neural networks.
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Chapter 7

Visual Speech Recognition

7.1 Neural Network Architecture

——] Time [

Delay n

Hidden Layer

&J |

Extemal Output

Frame at Time t

Figure 7.1: Recurrent neural network for visual speech recognition.
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7.1.1 Neural Network Computation

The input frames are presented to the input layer sequentially. one at a time. The
input frame at time ¢ is denoted v(¢). and the k-th unit in the input layer is denoted
e(t).

The units of the hidden layer are computed according to

hi(t) = f (Z Tav(t) + Y risi(t — 1))
k J

where s(t — 1) is the time-delayed state vector, z;; is the weight on the connection
from the k-th input unit to the i-th hidden unit. r,; is the weight on the connection
from the j-th unit in the time-delayed state vector to the i-th hidden unit. and f is
a sigmoidal function.
1
Heay=iro

The connections from the time-delayed state laver to the hidden layer are called
recurrent connections. These connections make the nerwork different from an ordi-
pary multi-layer feed-forward neural network. The purpose of such connections is to
provide a context for each input pattern so that the network can capture not only
the spatial characteristics of the individual patterns, but also the dynamic change
of patterns with time. Before presenting the first input frame to the network. the
time-delayed state vector is assumed to have no activity, that is, all units in that

layer are zero.
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To compute the current state vector s(t). the following is used

5(t) = f (Z w,.h.(t))

where wj; is the weight on the connection from the i-th hidden unit to the j-th state
unit.
The external output is considered only when all input frames have been presented

to the network. and is calculated as

o=f <Z y,sj(t))
7
where y; is the weight on the connection from the j-th state unit to the external

output unit. The recurrent neural network is shown is Figure 7.1.
7.1.2 Desired Activity on State Vector
Given a correct sequence of frames

VoVIV2©Vaoy

which can be segmented at &y, ky. k3. ... ki_y. the desired activity on the state vector

is formulated as follows:

The frames belonging to the same segment should cause
the network to form the same pattern on the state vector.

That is. when presenting the frames of the first segment (segment 0). the state
should be at each time the same. call it 5;. When presenting the frames of the
second segment. the state should be s, and so on. After presenting all the frames
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to the network. the external output is inspected. It is designed to recognize the last
state which corresponds to the last segment.

In general. 5; and s;. where i < j. should be different from each other. Otherwise.
the order segment i — 1 preceding segment j — 1 could never be enforced. That is
because s; and s, would correspond to frames of both segments. Even if the two

segments are spatially identical. it should be hasized that the di

states must be made different. The correspondence between segments and states is
not based on the spatial characteristics of the segments alone. It is also based on the

order of the segments. This results in state s; being characterized by:

e The spatial characteristics of the individual components corresponding to that

state.

e The context provided by the recurrent connections (preceded by state s;_;).
There is an obvious recursion in the previous characterization. the main purpose of
which is to ensure that the segments follow the specific order dictated by the nature
of the word to be recognized.

State Encoding

The following encoding scheme will be used for the states:
sg — 000---00
8 — 100---00
sp — 010---00
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s — 000--- I

S — 000---01

The staze variable contains at least [+ 1 bits (any number of trailing zeros should
not make a difference). s, encodes the initial state, and s., encodes an undefined
state which indicates failure to recognize the sequence. In this scheme. each unit
on the state layer corresponds to a particular state. Note that. from a theoretical

viewpoint. one set of state variables is as good as any other.
7.2 Training

Two types of training are commonly seen: supervised and unsupervised. In supervised

who “tells” the network what the correct output for a

training. there is a “teacher”
certain input is. In unsupervised training, the network is autonomous. It finds out
about some of the properties of the data set, and learns to reflect these properties
in its output. For the network used in this thesis. we chose supervised training since
we knew the correct output for each training sequence.

Suppose the recurrent neural network (RNN) described previously has trained to

recognize a word w of the form

Yovi- L¥k Vi1 V-1 Ve Ve =L Vit

segment 0 segment | segment [ — 1
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then, on a new instance w' (of the same class of w)

7 ' i ; - '
VoV V-t VEVE-1 " Vig-1 Vg Vi —1" V-
segment 0 segment 1 segment [ — 1
where
VouVie o Ve Vo Vi Vi € Vo
Vi Viotee e Vil Vi Vi< e
Vi Vi g Givos v,.,,.v“q.v'ym. Vet € Vi
and

Vo is distinct from VW

Vi s distinct from  Vp

Vi-2 is distinct from Vi,
it is required that the RNN behaves as follows:

o Just before taking the first input, the current state is in initial configuration

S0
® On inputs Vo, vy..... V'g; 1. the RNN should have s, on the state layer.

® On inputs Vi, v - V't (frames of the segment 1), the state should be
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e Oninputs V. Vg —1:---+ V'w-1, the state should be s;.

1
'

@ When all the frames are presented and the state vector is in s;, the external

output which is connected to the state layer by feed-forward connections must

have a high value indicating that «’ is recognized.

Therefore. the RNN needs to learn from the sample word w the following transfor-

mation:
R:(v(t).s(t— 1)) — s(t)
such that
R(vq, s0) =s1 [ R(vi,.51) =35 R(vi_,.510) =5t
R(vy.s) =5 | Rvi-1.9) =5 | Rk -19) ==
Rvig-i.:1) =351 | R(Vig-1.32) =3 R(Vn-1.51) =8

Mare generally.

L4l
Ryvs)={

Soc

The last line is to ensure that the RNN does not recognize wrong sequences.

that it is not necessary for

ifi=0andve,
ifi<0<l/andveVi,
ifi<O<landveV
otherwise

(7.1)

Note



to hold. This makes the system tolerant to variable-length segments. which enables it
to handle realistic situations where the time taken to speak a certain word varies from
instance to instance even by the same speaker. Furthermore. it is almost impossible
to have the duration of a certain segment exactly the same in different instances of
a given word.
In summary.
1. A dynamical (abstract) system with time-varying input and state is strongly
believed to have the potential to handle important aspects of word recognition.

The behavior of the system can be described by

z(t) = y(z(¢ — 1).input(t)). to<t<ty

There are time-delayed samples (to be used as training data) of the system
which include state variables expected to appear during the system's operation
Input | State

input(t,) | z(t:)
input(ty) | z(t2)

i-npu't('/J I(i/)
These are obtained by specifying a desired behavior, where the specification
is based on characterizing a word by certain segments appearing in a specific
order.
Given points 1 and 2. and according to a proposition by Olurotimi [48], if an RNN
is to learn the dynamics of the system z(t) using the available training data, it does
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not need more than feed-forward complexity. That is, it is only required to train

the feed-forward network in the i by ional

methods (back-propagation). The RNN will learn its required dynamic behavior as
much as the feed-forward network learns its static task. namely. the transformation
R:V x 8 — 8. where V is the set of input patterns and S is the set of states.
The feed-forward neural network embedded in the recurrent architecture is ob-
tained by the following steps:
1. Remove the external output unit and its connections since this part of the
network performs only a static pattern classification task that can be left out

at this stage without affecting the training of other parts.
2. Remove the time-delay connections.

3. Consider the time-delayed state vector as part of the input in the embedded

network.
4. Consider the state vector as the output layer in the embedded architecture.

Figure 7.2 demonstrates the process.

7.2.1 Training Data for the Embedded Feed-Forward Net-
work

Equation (7.1) is used as the basis for obtaining the training samples for the em-
bedded network. Given training sequences for the RNN containing instances of the
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Figure 7.2: Obtaining the feed-forward neural network embedded in the RNN.
word w that is supposed to be recognized by the network as well as instances of
other words. an algorithm has been designed to generate the training samples for the
embedded feed-forward network.

Each sample generated by the algorithm is an input-output pair. The input has
twe parts: state and (speech) frame. The generated samples contain all possible
states. That is. there are samples containing sq in their state part. others containing
51. and so on.

e For samples containing sy as part of the input. there are two possible static

outputs:
L. s,: if the frame part of the sample belongs to segment 0 of word w.
2. Seo: Otherwise.
Therefore. there should be samples of the form
input = sg,u
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output = s

where u is a frame belonging to segment 0 of w. The pseudo code used to

produce such samples is

for each sample sequence s belonging to word w
for each frame u in segment 0 of s
output(sg, W, 1)
end for
end for

Also. there should be samples of the form
input = $o.Vv

output = sy
where v is a frame belonging to a segment that is spatially different from
segment 0 of w. The issue of obtaining such frames will be discussed later.
e For samples containing ;. k = 1.2.3..... [—1, there are three possible outputs:
1. s;: if the associated frame belongs to segment k — 1 of word w.
2. sk if the associated frame belongs to segment k of word w.
3. sx: otherwise.
e For samples containing s; in the input part. there are two possible outputs:
1. s;: if the associated frame belongs to segment { — 1 of word w.

2. Seot Otherwise.
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e Finally, for samples containing s... there is only one possible output which is
s
7.2.2 Obtaining frames for the undefined state s,
As shown earlier. the embedded network should be trained to produce sy if the
frame present in the input is not consistent with the input state. This includes the
following cases:
1. The state is sq and the frame belongs to a segment that is spatially different
from segment 0.
2. The state is s;. k=1.2.3...../ — L. and the frame belongs to a segment that
is spatially different from segments & and & — 1.
3. The state is s; and the frame belongs to a segment that is spatially different
from segment { — 1.
It is very important to identify such spatially different segments as failure to do so

could probably lead to problems in training. For example. if a certain segment i was

assumed wrongly to be spatially different from segment 0, the static sample

input = sg.v

output = se
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where v belongs to segment i; could be included in the training set. However. the

training set contains. as well. samples of the form

input = sq.u

output = s

where u belongs to segment 0. Since the inputs of the two samples are practically of
the same class while the outputs s, and s, are different. this situation violates the
definition of a mapping. and if allowed will certainly confuse the training process.
Even if the spatial characteristics of segment i are slightly different from those
of segment 0. the frames of segment i should not be used to generate samples that
have sq in the input state and s., in the output. Those frames should not be used
because. after training. unseen frames that supposedly belong to segment 0 will be
possibly viewed by the network to be close to both segments 0 and i. If the training

set included such samples. this would increase the chance that the network enters

i state ions for that are bly close to those used
in training. Therefore. when generating the static samples that contain a particular
input state and map to S, it is necessary to select the most distant segments from
the one that corresponds to that state. One way to achieve this is by developing
a difference measurement between segments. and selecting the segments with the

highest diffe values. To i such diffe some of the

concepts discussed in the previous chapter will be employed.
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Assume that there are n samples of segment a taken from words belonging to
class c;. and m samples of segment b taken from words belonging to class c». Let
dist; be the weighted distance function used for aligning the segments of the words
belonging to class ¢;. and dist, be the weighted distance function used for aligning
the segments of the words belonging to class ¢,. First. each segment is mapped to
a representative frame by averaging all the frames in the segment. This results in
two sets of frames L’ and | containing the representative frames for sample segments
of kinds @ and b respectively. Second. a new distance function. dist. is derived by
averaging the weights of the two distance functions dist, and dist,. Accordingly. for
any two frames u € U and v € 1. the distance between them (and also between the

two segment samples being represented) is calculated as

dist(u. v

dist; (u. v) + disty(u. v)
)

To get an overall difference measurement between the two kinds of segments. the
distance between ail possible nm frame pairs u € L and v € 1", is calculated. Then

the average of the pairwise distances is taken

L5 3 sy

T Gl vel
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Time

if current state is wrong
and counter <= noise
tolerance parameter. the
current state is not delayed

1o detect wrong states

State at Time t-1 State at Time t

Figure 7.3: Noise handling in the recurrent networks used for visual speech recogni-
tion.

7.3 Noise Handling

In the original model described in subsection 7.L.1. if a correct sequence contains

some noise. this will cause the state to become s, when the network reads the first

noisy frame, and stay sy, until the end of the This si ion is not desirabl;
since it does not tolerate any noise. What makes the model intolerant to noise is the
fact that the current state is delayed every time to be part of the input to the hidden
layer in the next time instance.

To make the model noise-tolerant, a mechanism to monitor the current state
is incorporated by having a control unit that indicates whether the current state

will cause the sequence to be rejected when time-delayed. If this is the case, the
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current state is ignored and an internal counter is incremented. The same scenario
is allowed to happen for subsequent frames as long as the value of the counter does

not exceed the value of a parameter called the noise tolerance parameter. If the

network recovers from the wrong ion before ing the noise
parameter. the counter is reset and the current state is time-delayed. Otherwise. the
sequence contains more noise than what can be tolerated and is considered wrong.

Figure 7.3 demonstrates the mechanism for noise handling. Note that the noise

is the i number of ive noisy frames that are

allowed to exist in a correct sequence. If this parameter is set to zero. not a single
noisy frame will be allowed to occur in a correct sequence, and the network will be

noise-intolerant.
7.4 External Output

The external output unit indicates whether the sequence is correct or not. To deter-
mine this. the output unit is inspected after all the input frames have been fed to the
network. To calculate the external output. the state layer is copied into a Maximum
Detection Subnetwork (MDS) which makes the maximum unit one and the rest of
the units zero. This can be implemented by a Hopfield network performing a winner-
take-all competition in which every unit enforces itself and inhibits the others. The
final state unit in the MDS is, then. copied into the external output unit. This way.

any sequence causing the network to have a maximum output on the final state unit.
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causing a

at the end. will be ized as a correct

output on any other state will be i d wrong. The ion of the external

output is illustrated in Figure 7.4.

1]

0O

S N
Extemal Output

1T
|

State Vector
Competenve Layer o
Detect the Maximum

Figure 7.4: Computation of the external output in the recurrent networks used for
visual speech recognition.
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Chapter 8

Experiments, Results and
Conclusion

8.1 Experiments and Results

In this thesis. a computer system for visual speech recognition has been presented.
The input to the system is a sequence of digital images containing the face of a person
during speech. In the first phase of the system’s operation, time-varying visual speech
patterns are obtained from the sequence of images. Through a number of algorithms,
that have been developed. main characteristics of the mouth are estimated. These
estimates are used to initialize a deformable template model. An energy function
has been designed to measure how well the template’s geometric primitives match
the lips’ outlines in the image. Due to the relatively high dimensionality of the
energy function. seeking an exact solution for its minimization problem is not prac-
tical. Using a numerical optimization technique. a good soiution is obtained with

considerably less i and storage i than that of an exhaus-

tive method. Taking advantage of the relatively small change between consecutive



frames. the system sets as initial position of each subsequent frame the best fit of
the preceding one. thus. eliminating the need to apply the initial operations to every
single frame. A recurrent neural network architecture has been proposed to classify
the spatio-temporal pattern obtained in the first phase. In this network. recurrent
connections are made between the hidden layer and the state layer so that a context
can be combined with the input patterns which are fed to the network one at a time.
Training the recurrent network is accomplished by training the feed-forward network
embedded in the recurrent architecture. To derive static training samples for the
feed-forward network. a certain behavior is specified when the network is presented

with sample The specification is based on ch izing a given word by a

sequence of segments appearing in a certain order. where each segment is a variable-
length set of frames that represent a visual speech cue. Adaptive segmentation is
employed to segment the training sequences of a given class. This method iterates

the execution of two steps. First. the sample are ¥

by an algorithm that has been developed. Then, a generalized version of dynamic

time warping is used to align the of all belonging to the same

class. At each iteration. the weights of the distance functions used in the previous

two steps are updated ively in a way that minimizes a s ion error.

The system has been implemented using the C language and simulated on a Sun
Sparc workstation under the Unix operating system. To test the performance of the

mouth extraction subsystem. the technique has been applied to 15 people. Figure
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8.1 shows the result of some samples.

Figure 8.1: Deformable template applied to images.

As can be seen, the method tolerates some rotation and facial tilt. The grey
scale values of the pixels in the lips region varied from person to person, and the
program was still able to get a good match. Also, the presence of facial hair did not
seem to have affected the performance of the program. It should be noted that when
matching natural curves with parametrized curves, slight details might be missed.
However, the final parameter values are, to a great extent, accurate. This is suitable
for the task of visual speech recognition, since the task uses only the dynamic change
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of those parameters over time. Because the method of locating the mouth depends
on locating the eyes, the system is limited to cases where the speaker’s eyes can be
seen. If the speaker’s eyes are obscured by wearing a pair of sunglasses. for example.
the system will not be expected to locate the mouth appropriately because it will
probably fail in locating the eyes.

To test the complete system. experiments have been carried out to recognize 5
words: yes. no. down. right, left. A person was recorded while uttering each word
6 times using an 8 mm Sony Handycam. The recordings were copied to a Beta
format tape, then digitized and sampled at the rate of 30 frames per second in one
of two methods. In the first method. the Beta tape was played back one frame at a
time using a Beta ACE editor. The ACE editor produced an NTSC signal that was
captured and saved to disk by a Sun Videopix capture board. In the second method.

the Beta tape was played by a Beta ACE editor and the output was sent to a personal

d

animation recorder. This recorder of two iali: hard cards that
were put in a Pentium computer system. One of the cards was a Live Video card with
a time base corrector. The Live Video card sent its output to a PAR board (video
compression board) that stored the video on a hard drive in compressed format.
The personal animation recorder system had software to retrieve the video and store
it as a sequence of individual frames in jpg format. A training data set consisting

of 4 instances of each word class was used to train 5 recurrent units corresponding

to the 5 word classes. The training sequences were segmented using the adaptive
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Table 8.1: Results of implementing the visual speech recognition system to recognize
5 word classes (adaptive segmentation was used in this implementation)

[Word | Training | Static C T Pe
Samples | error iteration | on Training Set | on Test Set
yes 1 198 | 0.0273 at 1000 19/20 10/10
no 4 376 | 00100 at 726 20/20 10/10
down 1 654 00099 at 842 20/20 10/10
right 4 570 | 0.0095 at 614 20/20 10/10
left 4 532 |0.0240 at 1000 20/20 10/10

segmentation technique proposed in chapter 6. Accordingly. static samples were
generated to train the feed-forward networks corresponding to the recurrent units

as described in chapter 7. Each feed-forward network was trained independently for

1000 iterations using the k ion algorithm described in ion 2.5.1.
Training was stopped in any of the networks whenever the system error for that
network was reduced to 0.01. After training, the system was tested on a data set
consisting of the sequences that were not used for training (2 instances for each
word). Table 8.1 summarizes the training process and the classification results for
the system. There was only one case where a misclassification happened. One of the
‘right” instances was confused to be ‘ves'. which caused the performance of the ‘yes’
unit on the training set to be 19/20. Due to the relatively small size of the training
data, the ‘yes’ unit was not able to capture all the differences between the two words.
There were no other kinds of confusions. In particular. the recognition scheme was
able to distinguish between ‘down’ and ‘right’ even though they have common starting

parts (/da/ /ra/). Also, ‘down’ and ‘no’ were distinguishable despite the fact that
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Table 8.2: Results of implementing the visual speech recognition system to recognize
5 word classes (adaptive segmentation was not used in this implementation)

Word | Training | Static C P P
Sequences | Samples | error iteration | on Training Set | on Test Set
yes 4 554 0.3924 at 1000 16/20 8/10
no 4 444 0.0153 at 1000 20/20 10/10
down 1 694 0.0117 at 1000 20/20 8/10
Tight 4 646 1.4941 at 1000 16/20 8/10
left 4 628 0.0170 at 1000 18/20 9/10

most segments in ‘no’ do exist in ‘down’.

To show the effect of the adaptive segmentation technique proposed in this thesis.
another system was built in exactly the same way as the first one. except that the
adaptive segmentation of chapter 6 was not used. The results are summarized in
Table 8.2.

The convergence of the second system was generally slower than before. indicating
that adaptive segmentation provides an easier task to learn. Furthermore. the classi-

fication results were much better in the first system that used adaptive segmentation.

It is worth ioning here that the ional time required to train the tasks of
the first system. which used adaptive segmentation, was less than the time required
by the tasks of the second system. These results demonstrate that segmentation plays
a crucial role in visual speech recognition, and the method of adaptive segmentation

when applied to the training sequences leads to a better system.
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8.2 Contributions

1. Knowledge about the spatial organization of the human face has been used to
develop a heuristic that limits the search space of the mouth location effectively.
The heuristic is based on characterizing the mouth by its relative location with
respect to the eyes rather than local details of the human mouth which are very

sensitive to distance. ori ion and illumination; furth these can vary

from person to person. The eyes are located by applying a simple version of

slit analysis to the Laplacian of the facial image.

Several algorithms proposed here have been applied to estimate local measure-
ments of the mouth. including the center. left and right corners. and upper and
lower lips. These algorithms analyze the relative magnitude of the grey levels
associated with horizontal and vertical lines in the region of interest. The algo-
rithms provide a robust means of positioning an initial mouth template prior

to the application of the d bl 1 This is known to be crucial for

the technique to succeed in extracting the shape of the mouth.

@

The two-ph: inimization algorithm d in this thesis. which uses a
modified version of Powell’s method, has been shown to be suitable for min-
imizing the energy function of the mouth deformable template, so that the
system is able to track the speaker’s mouth during speech.
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The approach taken to model the mouth in terms of key parameters not only
enables the extraction of its shape, but also provides a compact description of

it for classification.

The fact that there is a relatively small change in the visual speech signal

makes the task of visual word segmentation difficult. This thesis presents a

ial fid d

robust method to identify for segment b

. In the project, the dynamic time warping algorithm has been generalized to take

several sequences as input instead of two. The generalized algorithm selects the
segment boundaries for words of the same class by finding warping paths that

minimize a weighted distance measure.

. The idea of adaptive segmentation has been introduced. Given an initial seg-

mentation of a set of words belonging to a certain class, properties of the seg-
ments are learned and reflected in the weights of the distance functions used for
segmentation and alignment such that a better segmentation will be produced

if the adjusted distance functions are used.

A recurrent neural network architecture has been proposed for visual word

The ions between the state and the hidden layers

provide a context with each speech pattern so that the network is capable of
capturing not only the spatial characteristics of the individual patterns. but

also the dynamic change of the patterns with time.
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9. The proposed architecture for recognition allows for a natural way of handling
variable-length words by taking the input patterns one at a time. This elimi-

nates the need to alter the input sequences to make them of a fixed length.

10. By specifving a desired behavior based on word segmentation. the recurrent
network is trained with no more than feed-forward complexity. Theoretically.

this approach guarantees that the dynamical behavior is learned as long as

there is an i training set ing the state variables of the

system in the form of static samples.

8.3 Directions for Future Work

8.3.1 Use of Other Articulators

In this thesis. the shape of the lips has been used for speech recognition. Perhaps
the movement of the lips is the most valuable source of information. but it is not
the only one. For example. the appearance of the teeth and tongue may assist
in automatic lipreading as it is believed to do in human lipreading. A system that
would incorporate those articulators should contain a subsystem which automatically
analyzes the interior of the mouth, searching for such objects as the teeth and tongue.

A suitable modeling technique for the teeth and tongue would also be necessary.
8.3.2 Clustering Segments

When static samples for training are being generated. determining the most distant

from a p segment is significant in preserving the network’s ability
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to tolerate spatial variations in unseen sequences. Our system uses a linear distance

function for the task. This might not be the best way to do it. Clustering all

the based on li to d ine the di beiween

segments might provide an improved system. for example.

8.3.3 Nonlinear Classifiers for Seg tion

The idea of adaptive segmentation is implemented using linear functions. In general.
linear functions have limited classification capabilities. Therefore. it is believed that
the adaptive segmentation technique will improve if it uses nonlinear functions. A

suitable way to implement this could be by neural network classifiers.
8.3.4 Extension to Multi-Speakers

It is desirable to extend the system to handle multiple speakers. We believe that this
will add a new dimension to the problem. For example, because people are different in
the physical characteristics of their mouths. it is possible that the geometric features
representing mouth shapes of two different speakers at the same viseme be different.
To handle this properly. it might be necessary to incorporate additional features
characterizing the speaker with each frame. Another implication of having multiple
speakers is the alignment between training sequences of different speakers. The
distance function used for that would have to be designed in a way that accounts
for the differences between different speech cues but not for the differences emerging

from the physical characteristics of the speakers.
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