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Abstract 

One of the major d r a a r u  of -nt amusricallg-based speech mognizen is 

that rheir performance deteriorate. drasrically wirh noise. The focw of this thesis 

b to dewlap a computer system chat perfornu speech recognition b d  on visual 

idormarion of the speaker. The system automatieall? Ilrracr. visual speech fea- 

t- rhmugh image processing techniques chat operate on f d  image talien m a  

normally-illuminated envimnmeef. To cope with the dynamic narure of change in 

speech partern. -uirh respen to rime as we l l s  the sparial variati- in the iodidiid- 

~tal parcem. the recognition scheme propmed ~n this nork we. a recurrenr neural 

nerrvork arbtetture. By sppeihing a certain behavior when the ne-k is pre- 

senced with exemplar sequences. che reeurwt  network is trained wirh no mom than 

feed-fowanl eompiedtr The nermrk's desired behavior is based an characreririvg a 

dvrn word by well-dehed se-ems. Mapriw segmentation is empioved to segment 

the rraining sequences of a given clars. This t h q u e  icerates the execuriou of trvo 

%reps f h r ,  the sequences are -eaed individnaliy. Then. a generS~zed version 

of d.pamie time warping is used ro align the regmeus of all sequences .At each 

ireration. the areighrs of the distance functions used in the two scepa are updated 

in a wa). chat minimizes a segmentation ermr. The system has been impiemenred 

and mred on a few words and the d t s  are satisfactory. In particular. rhe wrem 

has been able to distinguirh between mrds with common s-enrs. Slorwver. it 

tolerates, to a grear extent. variable-duration words of the same elm. 
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Chapter 1 

Introduction 

lu recent wars. there ha. been a gro- interst in automatic speech recaglurlon. 

The benefits char could be braughr by qzrema capable of undersranding spoken 

laoguage are great as people would be able to intedace with  sophkrieared machines 

in a natural way without rhe hassle of pressing complicated sequences of buttons 

or w i n g  commands Hmver.  the perfarmam of m e n c  speech recogmzers is far 

below human abilit). ra perceive speech. One of rhe major drawback of acorntie 

,?-terns is char rheir performance dereriorares drastically rvirh n o k .  .&. rhere is 

the problem of speaker isolation which occurs when several people talk at the same 

rime. and it is required to identify the intended speaker. L l o m .  the faut that same 

phonemes are ver). di5culr ro disnnguish by analyzing the acousric signal a lne  poses 

additional Limitatiolls to w e n t  approaches. 

It is hown char hearing-impalred people use Lipreading succesfully w perceive 

speech in the absence of amustie infamation. Surpzkhgly. even normal hearing 

people tltilize visual information of the speaker's fam far s p e d  perception (121. It 



has been demoartrared. through what is called rLe &all party effect. rhar with a 

high background noise it is easier for hum- to undemtand speech when rhe? watch 

the lips of the speaker. 

The performance of machines m s p e d  rffognition could improw. coo. by pro- 

cessing virud information. This would be particularly & in the p-nee of high 

background noise or in the esre of r-calk. It is wonh mentioning. in this conrerr. 

char aeotsric and vimd information complement each other in speech characceri- 

ration. That is. Eimilar phonemes are often easy ro distinguish visually. where* 

utterances which look very rimilar visually can round quite different. 

The focus of this thesis is to dewlop a computer char performs speech 

recognition based on vislld information of the r p e d r .  .I speech recognition -stem 

which use vlsual iniormarion done would. pmbablc have limited applications -re 

sewral gmups of phonemes appear s d a r  visually. Neverrhels. there is no doubt 

that combining such a srjrem with an acoustic speech rem@er d d  rerulr in 

an improved recognizer which awrcomes man? of the eJdsting problems in acoustic 

systems. mch as the low performance in now environments. 

Xwocomputing is an arrraetive choice for visual s p e d  r-gnicion (VSR). It 

leads to systems that autonomotsly develop operational capabilities in adapciw R- 

spome to an information environment rhar is nororiously m e u l t  to model using 

mnventional methods. The di5culty of VSR can be viewed in light of two main 

aspects of VSR which I would Wae to refer to as the rtotic osprct and the dynamic 



ospect of YSR. 

I. There is a variev of waken with &rent physical characteristics including 

the shape of lip. jaws and so on. The l i p  of a certain person am subject ro a 

variety of change; in shape as weU. 

2. There are a lor of dialers. and there are &rent .aa?s of uttering a c e r c ~  

mrd. even by the same p-n, on diferent occasions. 

.hrScial neural networks posers an at t raniw property whch maLes rhem suitable 

for dealing with the implications of rhe ~raric aspect of VSR. ThL properr). is the 

ability to learn a elasif,cation task bp o h -  only a limited number of exampla. 

Neural nemrks eao also dircwer distinguishing features in the training patterns 

while maldng weaker awmptions about the shapes of underlying disdisrriburions than 

those made by traditional statistical chif iers .  ThL is particularly imporrant if we 

keep in mind the lack of a eomprehear~w rheop of lipreading. Funhermare. neu- 

ral nenvorks am known to be excellent at noise tolerance. which is an indispensable 

requirement for any practical --stem. The motiwition far erploMg reeurrenr ar- 

chitect- is their potential for dealing with the temporal behavior implied by the 

d!mamic aspect of VSR. 

While some previou astempts st automatic lipreading required human inter- 

wncion in obtaining the visual speech signal or making the speaker wear reeeetive 

markers on his face, our system au toma t idy  extraets vbual speech feat- though 



image promsing techniques chat aperare on fadal i m a e  taloen m a normall? illu- 

m a r e d  envMnmenr aod without any need for reReerive substance. 

To properly handle the dymamic nature ofchange in ape& ptterns d r h  r q r t  

ra rime as well as the npatial rariaaons in rhe individual parre-. the recognition 

scheme proposed in chis work uses reetlmnr neural nernmrks. Inpur to the networks 

are sequences of low-dimensional patterns racher than macrice of pixels. This leads 

ro a d v  arehireerlue in size. and a shorter rime for training. 

1.1 Overview of the System 

Figwe 1.1 shws an overview of the s ~ e m  in operation. .& in most mnnmio- 

approaches. the system needs to be rramcd an exemplar sequences. Giwn a set of 

imng rerpenees correponding to some word c i s .  the %.-tern is rained as shonm 

in Figure I.?. 

1.2 Organization of the Thesis 

Chapter 2 -.ys methods for locating the mouth in digital images. methods for 

extracting mouth Feature. techniques Far mouth modeling, previous lipreadmg s y ,  

rems. and neural meworks. Chaprer 3 presents the method br which the speaker's 

mouth is automatieaUy located in the input images. Chapter 4 describes the algo- 

rithms developed to estimate the mouth rharaeterirtie that are used co imtialize a 

mouth defonnnbh template Chapter 6 is dwoted to the application of deformable 

templates in extracting the shape of the mouth and tracking ~ t s  mwemem during 

4 



Figm 1.1: Owrview of rhe visual speech remgmtion sytem. 



Apply me visual f e w  ex-*" 

mb%JyJtcm to mnsform Ihe :mas 

Trvn Ihe feed-fonuard oclvmrk r m w  

Figure 1.2: OvpNicw of the process far trainins the recognition -tern 



+. Chapcer 6 contains a merhod to sepenc s v h d  speech Jignal. reprenting 

a wrd  instance. into vMlal speech units -4 technique to &e the resultins reg- 

mentacion aligning instan- of the vune word is described. Then. the idea of 

=daptive a~gmentotion is introduced ssith a prop& implementation for rhe caw of 

linear distance functions. In Chapcer 7. a munent neural network for word remgni- 

tion b praented. .An efficient way far training the recurrent nerarork bared on risual 

word segmencarion is proposed. Chaprer 8 contains the main eonciurions. simlllation 

rr~~drs and directions for furwe research. 



Chapter 2 

Survey 

2.1 Methods to Locate the Mouth 

Locating the mourh automaticalh h a  been a concern in the area of lipteading. 

face rerugninii~on. and speech-assisted video pm-ing. Ln general. u cornpurer q% 

rem dkgned for this polpase consists of two main steps. First. an input image is 

preprocezred and a near reprenenrar~on u obtained. The prepmcersing step nor only 

aims at reducing the amount of lnfarmarion involved in rubequent operarlom. bur 

dm. and perhap more imporranzl?. &ecw the search toward lnrerriring reeons of 

the mag.. The sand step. basicallc idenrses the region eonraining the mourh by 

searching far some characteristin assotiaced with ir. The eharane*tic~ muld be 

particular to the appearance of the mouth only. or muld be derived from howledge 

about the face mnteyt a well. Thus, the search may invalve other facial features in 

addition. or instead of. rhe mouth. 

One of rhe k t  nrrempw to locate f a d  feat- automaticab vas documented 

by Baron 121. He pmpaaed Locating facial features beorrelation. To locate a feature. 



a set of feat- mask stored in a databsJe were correlated against each subimap 

of the input. and the dRMd loeation aas selected at rhe subimage with the highest 

cornlation. .Uthough the reported r d t s  were good, che system is expected ro ha<* 

been highly sensitive ro lighting conditions. This is mainly due m the fan thar 

raw gny scale phek were used instead of mme representation that tolerates slight 

changes in intensirp. Lo addition. rhe method is cam put at ion all^ expensive due to 

irr erhaustive nature. and rensirive ro sealing and mrarion 

Prasad et 01. [53] [72] implemented a -=em which det- a region of interest 

containing the mouth. They proposed tm approaches: the 6m staris by obtaining 

a bin- edge image. and is foUowed by blob detection. The biobs eo-onding 

ro the eyes and mouth can be found. next. bv locating three blabs whaae eenrmids 

form a triangle on which certain eonsrraintr appl?-. In the seeond approach. remporal 

coherence between cansecurive image irames is used. This alternative appmseh. 

however. assume char the only change in rhe image kames is in che lips positions. 

If this is nor the e%e. rhen the approach is emected co fail. 

Craw. Ellis and Lishman [I81 described m f m e  that makes facial feature me=- 

nvements. Their preprocessing is based on enra~ling edge mlormarion. In addition 

ro calculating edge magnitudes by s Sobel Slrer. edge directions are obtained bj- the 

same way described by Kelly [36]. After prepro-ing, the basic search technique 

used is line following. At each pixel in a central vertical line. a search far outlines 

of the upper and lower lips is carried on. A lip is detected if the vertical separation 



between rhe upper and 1-r lip. is within a re-nable range. and the e a r m e d  

lip combination fits into a long thin box. One drawback of this method is char the 

criteria selected to identify a lip mncour could be. ~ a d b l y .  matched by contour; 

near ro rhe lip. such as a mwrache and &es. .Also. this method d o e  nor make 

use of the relarive magnirude of edges -ciared with the Berent lines in the search 

emace. 

Huang and Chen (311 employ thresholdii far the preprorrssing. .A rcsk space 

pter (SSF) is used ro determine the zero-uossmgs of 'he intensity histogram at 

Uerenr scales. snd a set d thresholds is determined accordingly. .liter rhresholding. 

a mugh contour wtsrnotzon mutine (RCER) operates an the image. The location of 

ihc mourh comes after a sequence of elrimations in which a particular feature is 

esrunared based on a prwrous one. 

.\lorphological operations it21 can also be r w d  far preproeesing. Char and Li 

[la apply a rnorpholo~col opening residua operation ra mran all inrensiv valleys 

usinga circle mak. S ~ L ~ ,  Chen. Crafand Wang (14 (231 perfarm amorpbological 

operation to pick out areas with strong variations in intensity. The detected pixels 

in the m111t are assembled into distinct r e e n s  which are, in turn. grouped into 

plausible face conrexu. Then. an evaluation me-e is used to rank the padble 

face contexts. Chow and Li proposed a cootml strategy in which rhe face concett 

with the highest rank would be versed in a later stage. However. they did not 

provide a good qualitative m-e to indicate failure of hpothesized contexts. 



Kanade [331 incorporated an interning control strate@ in his mtem which neb 

errraerion of facial feanues. There is a similarity between his approach and thar used 

by Chow and Li in the concept of feedback. However, no attempt is made by Kaade 

ro evaluate full face contexts within a single level. b r ead .  the b a l  face eontat is 

reached by a sequence of oprarions m separate Iwels. In each lerel. a p m d m  

locare a set of feature. and rhese are used in a subrquent level to spec* the 

search space for anorher set of features. Ar rhe end of each black. irr perfonnanee is 

evaluated and accordingly a deisioo is made vhecher to proceed to the n a t  block 

or co backtrack if a fail- o c m .  Prepmeeuing mnsistr of applymg a Laplaciao 

operator followed b thesholding. The Kmdmencal technique used to conduct the 

actlzal sea& is the rntcgml pmjechon technique. 

Inspired by the inrllitive nation of s:mmetr)i. Reisfeld. %Lon. and Seshurun 

[ 5 i ]  propared a low-level operator that performs local processing on the edges of an 

unage. and @ a continuous qmmerry me-. consisting of magnitude and 

atieetati~n. to ever). poior. In a meat w r k  by h a t a r .  Reisfeld. and Seshmn 

[:r2]. chis rymmecr). operator is used ro prepram the image of a htunan h. The 

cadidates far the e ) e  and mouth are obtained fmm the W e s t  peaks of the mdial 

s p m e h y  mop. 

Y-ob and David [id] locate rhe mouth as part of their comprehensive approach 

co labeling human face components. The input to their system is range data which 

has the advantage of d e n i n g  topographic features of faces, and is, to a great =tent. 



iosensitive to illuminatiou mndiriam and projective rdormacians.  To cope wich 

rhe nomigidi?. of faces. Yacuob and Davld propose a preprocessing sage whi& 

employs a multutoge du%ion procedure. The diEusion procedure simulates rhe 

propagation of a number of partkle among object meis.  The output is an image 

in which larger values mrrespond to more convex surface poinrs. The mnnected 

components in chis representation are idenrsed. Then. mnrea-based reasoning. in 

the form of a consistenq operator. is used to label the mmp0nenL.r. 

2.2 Methods to Extract Mouth Features 

Prasad et oL [53j 1721 eramine rw p y  scale protile within a region of interest 

(ROI) mntainiog the mouth: rhc Grst protile is along a venieal central line and the 

position of the lower valley in chis profie is used to estimate the vertical posirion of 

rhe month centroid The grey level value of the same valley is used to mdtcaeate the 

p-nce or absence of rhe tongue. The peak adjacent to rhe mouth centroid d e y  

correspond to the upper and lower l ip  aod rheir linear separation is used ro estimare 

the height of the mauth opening. Presence of teeth is indicated by the grey level 

value of the peaks. From the semnd p y  level protile, which is along a horizontal 

~.enrral line. the nidrh of the mauth opening is estimated from the linear separation 

benveen rhe peaks adjacent ro che 1o-r de). in this profie. 

In their procedures. Prassd et 01. asume that the central horizontal and vertical 

line alway int-t with the mouth. While this a m p t i o n  is reasonable for the 



Wica l  line as the width of the mouth is about 80% of the width of the ROI (x, an 

exact centralization is not nerrsan. for the intersection to oeeur). this may nor be 

the care for the horizontal line. Vertically. rhe mouth extension is las than 25% of 

rhe ROI. and since rhere ls no guarantee char the mourh wi l l  be etaetiy enrered in 

the ROI. rhere is a dance char the inre-rian will nor occur. In this case or even 

when rhe line int-cts exclusiwly wirh one of the l ip.  the estimated value obtained 

for the width of che mouth opening is not reliable. 

Coianiz. Terrasani, and Caprile [I61 use chrominance anal- to locate a ser of 

fearure points acting as constraints on the shape of the mouth. The input to their 

system is a 6.4 lower pan of a person's face image. The original image is. h 1 .  

p r e p m r d  by Ptering the hue component with a weight h c t i o n  that emphasizes 

red dominant regions and this w foUmd by thshold& wirh a value chat can 

be derermined empirieallp Then. rhe spatial distribution of the piyeis is analyxed 

so derermine the rc-nrer of rhe dkriburion. and ira horimnral and vertical standard 

deviations. These mearuremenrs are used to bound the mouth in a rectangular regon. 

Within this rectangle. the mouth vertices (mmem) are loealired by obraininga binary 

gradient image kom v y  levei information. The b m w  gradient image is pmjecred 

on the horizontal a*. and the rcoordinafes of the vertices are d&ed as the most 

e~ temal  non-nuU points in Ihis projection. The y-mordinate of avenet is determined 

by examining rhe projenlon d n vertical stripe around the venex onto the vertical 

a*. The distribution center of the projetion is taken as the y-eoonlinate. 



Once the pertic- are determined. the mourh wrtieal s)mmerr). a .  can be mr- 

recrly l o c a .  The hur6lrered values in a thin box around chis axis are p ro j~ t ed  

onto rhe penical b .  by adding the value ar each row. By snalyzmg chis disi~ibu- 

tion. the .pic=. which are the poincs where the external a d  lnternal boundaries of 

the upper and lower lip intersect the pertical m e t r y  bdr. can he detemuned. Lf 

the discriburion har a single peak. the mouth is considered d m d  and rhe internal 

poinrs merge in a single paint 1)ing on the segment joining the nm cornem. The 

external paints are located at  the r w  having 70% of the pea* value. If rhe mourh 

is open. mo pesk. which mrre~pond ro the upper and l o w  l i p  are expected. and 

the four points are obtained by cucting each peak at 70% of its value. 

This color-b-d system has the advantage of being less rensitive to shadows than 

are grey led-b-d merhods. Horvewr. rhere are cares char may pose a challenge 

to this approach. For exampie. edscence of reddish facial hair such as a beard or 

mustache d. &I?. confuse the -em by emphadringother fadal pans m addirion 

ro rhe Ups. In other ear-. the appearance of the Up' natural color may be modSed 

rhmugh the use of Lipsticks with dierent miars ruch ar pink or beige. 

Chen. Gnf and. W a g  1141 123) arrempt to b d  the same features that Coiaair 

st ol. extract. bur their approach is different. E'mt. the i m r  part of the mouth 

s marked t- connected component anal-. The resulting connected blob is 

compared withe U b r q  of p'ototypes to make a qualitative judgement about the 

shape of the mouth. Possible s h a p s  include open mouth, closed mouth, and vlsible 



reeth. The width-to-height ratio of the blob. well sr the number of tr-iriom 

fmm black to white in a central w n i d  crars senion. are used in the eomparisan. 

Fmm the previous information. the cenrer of the mouth is estimated and several 

verrical cmss reetiom through the lips are analyzed to me- the r)ipes of inremiry 

I.ariarions that are present acrorr the tips. The n e d  intensicier are compared 

with IS pmcorlpc. which are distinguished on the basis of rhe number of ma-a 

and rheir relative positions. and the el-t p r o t o w  is selected. Each pmtorlpe is 

asvleiated with s ntrategy for hding the edges of the tips The strategies were made 

different to handle Uerent eases of illumirmtion and contracr bemen the lips and 

the sunaunding skin. 

Rao and .Clemereau [SS] search far a set of points lying on rhe cop of the upper hp 

and the lower tip. The vertical paeition of rhe eencer of the mouth is determined 

examining the nuo of intensity values in each mw and selming the mw which has 

the minim~lm value of the discriburion. The pivels in the previously selected row are 

ao4vred to find our the horizontal excremiries of the mouth. For this purpose. the 

average of the madmum and miaimurn values in this mw is seleered ar a rhreshold 

and the leftmar and rightmat pixels with values under this threshold are de6ned to 

he the mmes. Finally. three inrermediare equally distanced columns are anal.vzed 

and rwo points in each column are idedentifred by peak picking, one on rhe top of the 

upper lip and the other in the middle d the l a m  lip. 



2.3 Methods to Model the Mouth 

2.3.1 Active Contour Models (Snakes) 

-4 snake 1431 is a model to represent mnrours m images. It eoosists of a set of labrled 

points and an e n w  hn ion  designed to rake minimum d u e s  when the poinrs 

match some abject's b a r n d m  In general. there are t k  ternus thac contribute to 

the energy of a make: internal energy. image energv, and musrraints. 

Properties panindar to the shape of rhe spline obtained by liahing m m u t i $ ?  

points are controlled by the internal energy T h e  properties inelu6e mnfinuin- and 

otxrraiure. and are usually controlled by the Erst and mond deri~riws at each pomt. 

On rhe other hand. the image energ). attracts the maLe toward features like lines and 

edger. The constraints represent the energ). of s spring m n n ~ t e d  bem.een a pomr 

on the contour and some point in the plane. 

Kwr et o l  14331 have proposed minimiring the enere- function k mesas of m a  

rtional ealndus reehniques. Although the mmpuracional requirrmenrs of this a p  

prluch are linear. some related problems. as poinced out hy .Amini et 01. [I]. are 

hrability and a tendency for points to bunch up on strong potions of an edge. 

To overcome these problems. .hini ct ol. [Ij haw proposed a timedelayed discrete 

d.mamic programming algorithm. This approach provides necessary and d c i e n r  

renditions for the optimalit? of the sointian and has the advancage that hard mn- 



srraints. in addicion to rhe soft consrrainss inherited in the original formulation. can 

be included. However. the method is relatively slow. Williams and Shah 1701 suggest 

a greedy algorithm which is mnch faster. T h i r  appmaeh. however. does not guar- 

antee a global minimum. bur Williams et ol argue that the d t s  obtained rhe 

peed? aigomhm are comparable ra rhmc of the dynamic programrmng algorithm. 

The original madel developed by t i a s  et ol. 1431 can be described as knowledge- 

&. Bregler d d .  [6] [TI 181 report char chis ldnd of make model sometimes relaye 

on vndesLable features. In the* iuwstigatian. t h v  $haw a lip-snalre relaving an 

the eontour of the nmrik region. To improve the model. the? propose analyzing a 

large set of possible aake shape. The process. called surfow Ieornmg 171. induces 

a lm-dimensional subspace from the high-dunensional data. The internal enera. 

in chis case, can be replaced by the nearesr distance to the learned surfsurf of legal 

shapes. This madSed model can be categorized as a link between the an iw contour 

model and the aetlve shape model. 

2.3.2 Active Shape Models 

Aehve shape models (ASbls)[l7] are aatisticallpbased flexible models which rep= 

renr objects by sets of labeled points. Though similar to the m&s of tias et of. 

ASLk make no heuristic assumption. abouc legal shap  deformation. Lnstead. legal 

deformation is obtained by appl$ng princzpd m m p o n m t r  omlysu on a normalized 

crainiop set. The purpose is to derive a paint distribution model whieh describes the 

average shape and the main made  of variation. Another important difierence is that. 
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rather than d g  the pomu should lie on strong edges and reaching for orsuch 

in an imsge. the .ASM approach m e s  thar grey level patterns abom a parrieular 

poinr in images of di5eeenr examples d l  often be simih. .imrdinglp principnl 

mmponenrs anal- is is to produce a statisrieal model of the allowable variation 

in onedmensional profiles normal to the e w e  at each point. Luerrin. Thacker. and 

Beer [41] m d e d  this by mneatenaring the pm6les of all model points to produce 

a global profile for each training image. 

Cooce. Hill. Twlor. and Haslam [I71 propme an iterative method ro guide the 

search in .AS;Ms. At each iteration. a redon amund ewry point is e-ed and the 

displacemenr required to mow the point to a better locarion is calculated. Ye\-r. the 

model parameten are updated according ro the previous displacements. bur limirs 

on the parameters are enforced ro e m  that the shape re& sirmlax ro rhar of 

rhe tr-g ser. 

2.3.3 Deformable Templates 

A defarmabk template [i7] 1761 is a gwmetrie model w e i a t e d  with an energ? func- 

rion rhar m e m r  how well the model marches a particular object in an imap. 

The template b made up of pametric plimitives linked in a eenain manner. h 

geomerric primitive could be any c ~ w e  described by a mathematical formula. This 

has the advanrage d a compact rep-ration in terms of the parameterr of the 

c u m  inwlwd, and g i v ~  the model the Beeb'11ity of deformation to a wide variety 

of shapes by changing the parameter values. Undesuable parameter eon6uarioas 
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can be houraged by adding penalty terms to the enew h i o n .  To nmowr for 

rhe rocation the object ro be exmaned may undergo. it is romerimes useful to haw 

a parameter for the orientation of the model. in addirion to  the ori@ of the ~ode l ' r  

mordioate qsysrem. 

The energy funccioion can be though of as the link bemen the geometric model 

and :he image. as it enables rhe o e e ~ l r w  interaction to artracr the cemplace ro 

salient feacures of the image. mch as edges. pde. and valleys of the intenrior 

Typically. the contribution of each c- to the energ). is expressed as che incegzal of 

an image potential 6eId along the eurw. Sometime, pmpemes of phek in a closed 

region are reaeered by the integral of the Image field as ir rehres to char properr?. 

over the closed rewon. 

Finding the besr parameter values that wuld make the template fit into the 

image is equivalent to optimizing the energ). ftmeiion. Yumerical optimirarion ceeh- 

niques which don't suarantee a global aprimum mlurion are the mart eommonlyused 

for i t is  tmk. They have the advanrage that e good solvrion w generally obraioed 

with considersbly l a r  rompuratioad and storage requirements than chase of a more 

ex!sustive method. Yuille et of. (771 have used s t e p s t  descent of rhe energ). be t ion  

in paramerer space. .kt each ireration. e w e  parameter is updated by che negative 

of the partial derivative of the function with respect to that parameter. However. 

the cd&tion d partial derivatives at every point is an d a u s i l w  task. Simulated 

onnulling can also be used in a similar xa). to that reported in [19]. It is bared on 



random sampling and no partial detivatiws kwlwd. Howem. a relatively Large 

sample size is needed. Chaw and Li [Uj have adapted rhe downhill aimpla method 

p r o d  by Selder and Mead (471 with %me modi6cations which indude randomiz- 

ing the inirial simplex eonfigurarion ro e m  char a good sample is achieved orex rhe 

enrM search space. Coianiz c t  oL 1161 haw used a nocha.itic opti-rion algonrhm 

described by Caprile and Gimsi 1131 .Xie et of. [i31 have empiqved the L41 merhod 

of Lavenberg and Ywuard t  1611. 

Regarding the selmrion of rhe uaeffieienrr for che eners h c r i o n  terms. e~peri- 

memation is W y  used. in the absence of a s l i d  theoretical basis that explains the 

different inceraetions. heuristics seem to  pmvide a practical mechanism for assigning 

mirial dues .  Then. b e  tuning is done by adjusting cenain eoe5cients individuall~ 

while Song the orhen. The extent ro which the releerton of suitable coeficlenm mar 

&eer general performance is nor n*U Imonm. Tbis issue E further eomplieared b? 

llncerraioties concerning other desip dedsioa. involved in the deformable remplate 

model. such as the image potential fields used. the energy h e r i o n  terms chosen. and 

the optimization technique employd. 

2.4 Previous Speechreading Systems 

S&a.i. Goldstein. SejnowsE and Je* 1731 trained s mulri-layer feedfomd neural 

network on static imager of mouth shapes for vowel recopnition. The neural network 

was not trained to elesiiy the himage. directly. bur rather to Mimate the aha*. 



term 5pcefml omglitude envelope (STS-AE) of the arousie tipal. The &fed 

STSIE laar combined wirh the power spectrum of the now-degraded audio Jignal. 

a d  the reult was presented to anorher neural network c M e r .  Several strarcgier 

for m m b i i  the two ti& wre explored including rhe average. weighted average. 

and a-r neural nenaorb. It is clear chat the applicability of this system was wn. 

&red because it w s ~  noc d-ed to deal with temporally ch@ parrenw. 

>lase and Pentland [MI emplwpdopticalBow methods toestimate mourh opening 

and elongation wladtim. .A aandard minimum &anee e l d e r  was used ro match 

rer utterances with prrviously-stored templates. after applykg h e a r  time warping. 

Stork. WON and Lev- [&Li uaed a rime delay n e d  nennork to r - w e  ten 

coawnanrs from sequen- of visual features. There fear- m e  der-red automati- 

cally. buur req-d that the speaker wears reflective markers around his or her mouth. 

CVoLff, Prasad. Stork and Hennecke (721 b d t  upon chis recoezer. and replaced the 

requirement of the reflective substance t preproesing algorithms that mrarted 

features from g r q  level images. 

Perajan ($11 extracted mouth opeaing fet- from eaeh image in a seqt~eorr 

of images using a sunple rbreshalding r-hnique. then emplqed Linear time warping 

to match the extraeced sequence wirh exemplar requenrrn. The h e a r  time warping 

alcorithm allowed only for simple dilation and eoorrmion of time, whch do not 

acmunt for dl natural s p e d  variations [62]. Bmake and Perajan [ID]. in a different 

wrk.  modlEed the previous wren by u s w  dynamic time warping for matching. Ln 



both -ems. there was a problem in the method used to isolate the mouth opening. 

It is mlihlv that the threshold that worked for a particular speaker would work for 

others. specially with variations in sldn darknerr and presence or a h r e  of facial 

hair. 

Goldschen. Garcia and Perajan 1221 described an optical speech recognizer char 

used information h m  the oral cavity shadow of a spcalm'r maurh. They did oor 

mention. however. how t h q  laered and exrrsned the oral cavity region. During 

training. principal mmponent analpsis was performed on seven naric oral-cam? 

hacure. (area. width. height. rounding, perimeter. number of connected regions in a 

mmpanenc h e .  and number of regions in s binary i m y  h e ) .  cheir h r  and 

semnd derivatives with respect to rime. and the magnitude of thme derivative. T b  

resulted in thirteen feat- to be considered. In operation. the proeainb. sraned 

by converting a sequence of oral cavity regions ro s seqnence of the rhirreen features. 

This larrer Eequence wis. in cum. rransfonned to asequrnrr of code-tors using rhe 

Euclidean distance. Remgnirion was done. next, bv hidden Markov modeling. 

In his *ual speech recognizer, llowllan (4.11 took the approach of preserving rhe 

original images and letting the rwognirion en&e discover re- features. He used 

sequences of pronssed mouth i m w .  There wne compffiites of portions h m  dif- 

ferenr reprnenrarions obtained by %punerr). enfoment.  temporal dXerentiation. 

subsampling and lobtie thresholding. These images were modeled as mcrturs of 

independent Gaussian distribunans and the temporal dependencies were captured 



with standard hidden blarkw models. An obvious disadvantage in such s rem@er 

is the size of the inpltr dara: 300 pixels for each image in the input sequence. 

Li. Dettmer and Shah [38] proposed eigerurqvencu for lipreading. The? used 

the spariotemporal eigen demmponiiion. in which the set of eigenveeron spans the 

space of all pesible sequences. Gray level values of all the pixells in in allframes 

representing a spoken letter were put in one -tar. Several of rhcae training wctorj 

char eo-onded to a main d m  were med 10 MmPUte the eigen-tors of that 

clm. Remgaition aras performed by computing the energy ratio when the sequence 

to be recognized was projected on the model eigeqace for each clars. In such a 

srrna~io. a e n a m  elass was s u p p e d  to have a high enerc ratio when presented 

with s mrrecr instanw. 

Liirb5-. \\'eiser and Dangelmay 1361 coded a mourh image into a vector of Q 

coeficienrs campured with respecr to rhe ser of Q eigen unager determined d-g 

rzaining as rhe basis far rhe space of mourh imagn. .I en- mrd  of P images war. 

accordingly, represented by a Q x P mat ti^. A templatrmatehing technique based 

on the Ellelidean distance ~ a r  wed to identify the words. 

Bregler and Iianig (81 mmbined both acoustic and v i s d  data. The vi4ual dam 

consisted of the 6m ten principal components of B pq lee1 matriri entered m u n d  

the lip (eigenlips). The data arar fed to  a mulci-layer feedtorward n e d  network in 

order to estimate the probability of a certain phone. given the amustic and visllai 

dara at eaeh rime insranee. The probabilities were used by an HhilM-based rprem ro 



mognLe German Ictrer~. The grey level mat* coding was invariant againsr U t i n g  

and sealing, but not lighting. B ~ g l e r  and tionig found that the &st princ~pal grey 

level repr-ced variations in lighting. In general. rhere is no guarantee ;L-: 

the h t  ten principal components comerpond to the ren mast relevant feature. of 

visual speech dynamics. 

Fino and .\lonrgomuy [21] invenigared optical recognition of English coosonars 

in a rowel-consonant-rowel (VCV] context. Twelve reflective docs were plsced amund 

the talker's mouth. and fourteen dinance measurements were manually derived (mm 

the dot positions in each frame recorded at rhe rate of chirty per second. The resulting 

reqtlence of measuremenu was marched agalnsr waning sequence. nsing a wmghced 

Euclidean dirrance metric. 

Sikbee (621 developed e visual pracwor which used a m o a e d  form of vector 

wantunhon Each mouth M y  of a sequence was mapped into the codevector which 

mhmized a "distance" me-. The disiance war compured by h r  Gnding a best 

alignment beween rhe codevector and rhe Mage to be clasi6ed. then ealcularing the 

roeal absolute pi~cl-by-pixel difference beween the wo.  However, rhis is nor a true 

distance in the mathematical sense. The triangle inequality. for =ample. doe. not 

n e d y  hold for chis quantiw. One of the consequences of rhis property was char 

standard -tor quantization rraining techique. would nor haw been appropriate 

ro generate the mdevectan automatieally So. the codevectors were &asen by hand 

(mm the training data. The last phase of Silsbee's lipreading system was based on 



hidden Marhw models. The major drawback of chis system was its inherent spea*er 

dependence due to the facr rhat it war based on a diren match be-n imager rather 

rhan higher lwel rep-ntatioas. 

41any of rhe -terns described here were not fully auromaric. . b y  practical 

system should avoid human intervention as much as posihle. Purring a reflexive 

marerial on the tucr'r face. and excraning visual feat- from images by hand are 

both clear violariosz of this principle. 

A great deal of attention should be direcred rowad time handling. In m a ?  

past apema.  time duration was 6 x 4  and the individual hame in speech evencs 

were eonearenaced and the r d t  was rimply viewed a s  static parrerns. Howevec. 

lipreading is far more complex than static parrern weognition due ro che hcr rhat 

rime pia3 a crucial role in speech reslizarion. If rime and Qace am created equally. 

the operation will not he aurarely rep-nted. The d.mamie nature of change 

in patterm with ierpecr to rime. which is the main chararreriration of lipreading. 

should be heavily emphasized. 

2.5 Neural Networks 

.Aa artihcial neural network ls a coUeetionof parallel pmesmrr connected together in 

the form of a directed graph, organized such that the network structure lends itself to 

rhe problem being eomidered [?Dl. Historically. much of the inspiration for the field 

came from the desire to pxoduce anihcialsysrems capable dimellgent computstioas 



similar to &are performed by rhe human b-. 

.bti6dal neural network have a grear for pardlparallelism. nine the mm- 

putations of the components are largely independent of each other. Besides che high 

computation races provided by the m a s k  pardelism. neural networks can provide 

a greater degree of robustness than do traditional sequentid computers. One of the 

mmt attractive features of neural networks is generabation. This enables a model 

to f m i i o  competently rhronghout the partem space. ewn rhmgh it has Learned 

h m  observing only a limited body ofexamples. 

2.5.1 Multi-Layer Feed-Forward Neural Networks 

A multi-layer feed-forward network can be v i e d  as a structure of several layen on 

cop of eaeh other. At the lowest level. rhere is an input laver. Then. 'here may be one 

or more hidden layem anh a t  the highest level, B(L output laser. The ad? comexion 

.?domed IS the feed-fonvard mnn~r ion  tom one layer ro the layer immediately on 

top of ~r This ldnd of architectttre is especially useful far sratie dassifirarioo tasks 

since a has rhe capability af appraxharing nor anlp any mntinuous map arbitrarily 

clorelp. bur also the detivariver of such a map. 

The baste operation of each hidden or output node b to map the weighted sum 

of otxcpurr tom the previous layer. according to an activation function such as the 

lagisriu or Gaussian function. The importance of activation herions is that they 

introduce nonlinesnty into the network, without which the network would not be 

any more powerful thao a plain pemptron (linear dasi~ier). 
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Typically. the bbo~mpgahon algorithm [58] (prided &rule) is used to train 

feed-fomd networks. Acmrding ro chis algorithm. the netmrk is initialized with 

small random weigha. then all training data is presented repeatedly to the network. 

Weighrs are adjusted alrer ever). trial. in order ro minimize a fmcrion of the e m r  

benmn the actual output produced b:- the nemrk and a desired output. 

One af rhe main problems concerning feed-forward networks rrained b backprop 

apation is the slow convergence during training. .hother problem is rhe lack of a 

solid rheoq to guide the user in d e c e d g  che sire of the network (number of 

hidden layerr and number of node in each hidden layer) for a s p e d e  application. 

2.5.2 The Hopfield Network 

Lo this architmture. che node are orgaaired as a fully-eonneered l a m  where r w q  

node reeeiva srimtdus fmm all orhers. The weight ma tm is s)mmettic. mewing 

char the weights on the connecnon. berween rwa nodm are equal in borh direcrioas. 

The nod- also receive an external input. The >slues of the nodes at any given time 

d e h e  the sate of the netmrk and this stare h a n g s  until a stable eon6guration is 

reached. The m e n r  stare is ealrulaied fmm the prevlaus one aspchmnousl~ That 

s. a node is pieked randomly and its value is updated. 

The mnwrpnce of the neumnal state of the HopGeld madel to its stable stares 

s based an the &ten- of an energp function (Liapunov function) which directs 

the flow in sate space. Such a function depends on the current stare as N ~ U  as 

the weight matrix. To guarantee convergence, rhe weights must be designed such 
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rhat any update in the network's state will darrase rhe e n e w  or sr leasr keep it 

unchanged. lo case where the network is supposed ro a n  as a mnfmt-addresable 

memory. che weight matrix is ealculared by raking the outer product of each waor 

to  be scored in che network with itself. Thn. dl the resulting outer produns am 

superimposed on one other. 

The original Hopfieldmodel~~ap binary [28] but hap been extended to amnrlnuous 

model by into-atingrome results horn neurabiology [291. The mminuous Hopfield 

model can be applied to optimization pmblems which are NP-complete 1301. h 

mch cases. a suitable represencation for the problem char corresponds ro a Hopfield 

network should be found. Then. the nenvork'r enera function is designed in a 

way which reflects the constrain= of the optimization problem so rhat the netmrk 

rrabilizes on a el- of good solutions depending on its initial configuration. 

In practice. the Hopfield network hav several limitazians. The associative memocy 

has n limited ~ a ~ a c i ~ .  onuneven recdl ability and recall of spurious states. For opii- 

miration problems. the approach tends to work on examples from a limited domain 

Severtheless. the Hopfield model provides an exeellent demonsrration of how pracri- 

cal problems that are tremendously difXcult can be attacked by neural nern~rk.  h 

panleular. it can be used to model some temporal phenomena. T a d  and Hopfield 

1651 discus. tasks similar to t h e  of recowtion of words in a continuous stream of 

spemh. 



2.5.3 The Time Delay Neural Network (TDNN) 

This archit~crure is a modiliearion of the standard mulci-1a.y feed-fomd network 

developed to deal ~ i r h  patterns that are presented in parts owr a period of time [6il 

[371. The barie unit in the TDKN is modi5ed bp introducing time delay. The inpur. 

to such a unit are multiplied by several seD of weighrs. one for e u h  deiawd mpur and 

one for the undelayed input. To train the TDNX. the badmropagstion procedure is 

applied to patterns that are stepped through time. Each collection of I D 3 4  unirs 

is duplicated for each one Irame shift in rime. The weights of the corresponding 

mnnections in the time shifted copies are eonstmined to be the same. This was. the 

network is forced to apply the same set of feature detectors to  we^ slice of rhe urpur. 

which makes the absrracrions learned bp rhe network invariant under translation in 

rime. Hawewr. rhe TD44 archirecture is aor capable of modeling mrds chat coasmr 

of mvltiple phonemes. 

h multi-state time delay neuml nehoovk (MSTDNN) [27] [24] has been pmposed 

ro extend the TDNX model to a word-level clarrifier. The .\ISTDNN incorporates 

d1namic pmgrmming into its training, so that the embedded time alignment all- 

rrruning with word-level external supervision. Another interesting enension of the 

TDNN is the Meto-P$ network [251. which har been designed to improve the TDNNr 

performance in the eonten of multi-speaker phoneme mognition. The Mera-Pi archi- 

twt- eomprisff a nnmber of TDNNs trained independently on particular spealars. 
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When the speech of an unlmown ~peaker is presented. the Lleta-Pi n e m k  computes 

its global output using a mmbination of rhe ourputs of rhe individual mboetworks. 

2.5.4 Recurrent Neural Networks 

A renurpnr nelual network marains at least one unit with the spffial properr), that 

its current input depends on the Onif's ourput at an earlier rime. This p r o p e ~  

dlows the nerwrk to keep infarmarion about pas  inpuu for an a m o m  of cime chat 

is nor 6.ed o p n o n  but rather depends on ss weights and the input 131. Reourent 

netmrb have not been used as extensively as f e e d - f o d  networks became they 

?em more m c u l t  ro analpe and train oprimally Nevertheler~. rhey have lmponsnt 

capabilitiesnor found in feed-fo-dnenworks. includingsttraeror Amamics and rhe 

abiliry to deal with remporal behavior though their own natural operation. 

Several algorithms have been pmpaed for craining murrent networks. In the 

6nd;pmp@otlon-thmugh-hme algorithm 1581 1681 (691. the recurrent network ro be 

trained is unfolded into a multi-layer f e e d - f a d  network thar gmw by one laver 

on each rime msiance. Then. the badmmpagatian procedure is applied in its usual 

form except char the corresponding  eights at each layer (or time insranee) are 

constrained ro be equal. The advantage of this algorithm b its generalir?. in dealing 

with reeurrenr netwrkF of any form. A major problem. homx,e.er. IS its sowing 

memor). requirements when even an a r b i t d y  long training sequence 

Another algorithm [ill, called fomanf pmpogdron has been derived to train 

unconstrained neural networks in a tempoml supnwed laming task. which means 
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thar eenain of the units'output vduaare ta mat& speeified target valuer at spe&ed 

timn. The algorithm avoids storing the complete sequence of oemrk  activations 

bp mmputw muAivel? and keeping in memory during a regular forward parz. 

partial derivari'ps which indicate how each weight of the nemrk iduenen  each 

unit's aczivsrion. The srmng point of this method is thar it can be applied m an 

on-line fashion since all the computations i m i d  can be eanied out forward in 

time. However. it is computationall?r expedve. h variant of this method has b e n  

expenmenred with. by W i  and Zipser [ill. which inmrporare a technique called 

teacher-forced Iearnmg. .according to chis technique. the actual output of a unit rs 

replaced bp the teacher sisd whenever ruch a value exism. Williams and Zipser [ill 

repon that teacher-ford iearningreduced radically training time for the& m n t  

networks. 

Orher iralning algorithms have been described [521 [31 1451 [46] [66]. some of ~vhich 

are constrained forms of the badrpropawrion-rhmugh-rime or forward propagation 

algorithms. In particular. the mums6 bockpmpogohrm algorithm (221 is a special 

case of the hadrpmpagarion-through-time when the nerwrk's input is held mnstaor 

over time and rhe network is m e d  to relay on a srable h i n t  [50]. The bock 

pmpogohon for sequences (BPS) algorithm [31. alao called faewed bodprnpagotton 

144, is somewhat related to the forward propagation when the recurrent archre- 

ture is constrained to haw units with a single feedback to themselves m d  lnmming 

mnnetions h m  the input layer. 



The methods mentioned ahow are bared on mmputing the gradient of an error 

h m i o n  with respect ro the rwlghts of rhe network. In a reeenr scud?. Ben@ rt d [Sj 

mndude that training renurrnr netmrk. with such methods bmomes incressiogly 

in6eient when the temporal span of the dependencies to be learned incrrares. 

Obviously, the e-xisting algorithms to directly train recurrent networks sutfer 

mainlg from two problems. Fim. the compurational mmpMry -dated with 

them is usually much higher rhan rhat of f e e d - f o d  training algorithms. Second. 

there has not been rufXcient evidence. fmm a theoretical point of view. thac a full" 

rmurent nework benefits h m  any of the recurrent algorithms. Ir m possible char 

the recurrent methods make the network settle on suboptimal solutions char rake 

into account shorn-rm rather r h  long-term dependencies ar pointed out m 141. 

Ol~arorimi 1481 presents s general framework for rraining r m n r  nemork which 

avoids both problems to a p a r  extenr. Hb ftamework. empharizes rhe imporranee 

of retrieving the state variables of the system being modeled. If these stare vari- 

abler are not retrievable fmm rhe output ahsemcions. there b slmply nor enough 

informarion to model the system by any technique. On the other h a d .  if a rearon- 

able scare representation can be mnscmeted. the weights of a fully r e c m n t  network 

can be learned using an exacr mansformation rhat rewals an embedded feed-faward 

structure in the recurrent d t e c t - .  



Chapter 3 

Locating the Mouth 

In this chapter. a method for automatically loacing a speaker's mourh is pr-nted. 

The methad consists of three man steps: prepmcesing. locating the eyes, and locat- 

ing the mouth. The input to the -em is a grey-level image of a person's face The 

mmputations involved do nor aim to 6nd the e m  pixels pertaining ra the mouth. 

Instead. a rectangular region. mnraining the mouth and possibly pan of the nee 

and ehio. is found. 

3.1 Preprocessing: 
Edge Detection and Threshoiding 

Preprocesiq is emplqd  to convert the aey-level image m an edge represencation. 

When 'ompared to raw grey levels. edger are far Ies sensitive ro lighting; also. rhey 

convey valuable information about boundaries between diflerenr regions. 

The required task is speei6c to face pmcesing, and a special-purpese detector 

that can be implemented efficiently is used. The fobwing operator. basically a 

Laplaeian operafar. has been reported, in the literature [33], to work su-fdJy in 
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line extraction from human face 

The original grey-level image g ( 1 . j )  is convolved with the above m s k  mlk.1). 

-4 5 b.1 5 4. and an edge image eli. j )  is produced. where eaeh piye1 in the new 

represenration is caleulaced m 

, ,  
r ( , . , )=  1 g ( , + I . ,  + k ) m ( k . l )  

k=-,,=-, 
(3.1) 

The effeccivenen of the operator is illustrated by F i  3.1. The binan- image it 

produced from rhe onginal idenrifier the eyes arell. and it seems to nor be parricularly 

sensitive to facial hair affecting o u t f i g  of che mouth segment. This operator has 

many advantages (331: 

1. It combines &rentid operation with averaging in a single step. 

2. It highlights b s l c  feat- of the human faee such as the head outline, eyes 

and mouth. 
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Figure 3.1: Original mage. and its b w  edge image produced usrng rhe Laplacia 
operator of Equation (3.1) 

3. It eliminarcs mosr k d e ~ n r  derails and noise. 

The pllrpme is to produce a b i n q  image on which aseamh for the laearion of rhe 

ws is performed. The strategy purmed for ddetamining the threshold value relies 

on experimentation. Experiments haw shown chat a d u e  of 200 for the threshold 

produces a birnar? edge unage b( i .1)  that successfully suirs the merhod of locaring 

rhe e y ~ .  

3.2 Locating the Eyes 

.Although nor relevant ra speech procesning, the eyes are loeared so thar they can 

he used as a reference point io lacare rhe mouth. This pro- h a  been somewhat 

problematic. Yanade 1331 was able to locate facial fearures through hLF pioneering 

work in the field. The fundamental technique used in his system war the integral 

projmtion technique. By pladng a l t .  be it horizontal or vertical. and a n a l ~ g  

the distribution of pmls along either dlection, Ganade was able to locate the top of 
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the head. then the sides of the face. This - f o U d  by loeating the nose. mourh. 

chin. chin contour. ch&. and finally the eyer. In mp approach, homer.  there is 

no need to locate t a d  features other thm the eyes. 

The method used here is derived from an intersting propew of rhe binar). edge 

image b(i.1). 0 < t < .V - I. 0 < 1 < 41 - 1. where .V is the number of r m  

and .bI is rhe number of ml- in rhe inpur image. This pmpe* allows for the 

simp~earian of rhe method used by Kanade. Innesd of analydng the dkftibotion 

of pixek in a f i t .  a simple computation that maps che sli t  to a quanriry rel-r to 

locaring the eyes is performed. 

Lrr h be a value appmdmarely equal co the height of the eyes and the qwbrmvs. 

This d u e  can be determioed using o p n a  knowledge of the speaker's head size. 

The approach r&n here is to 6x an index representing the ratio be-n the height 

of rhe ever redom and the heighc of the head. at a value that has proven to give good 

appmdmarions when applied to a varierp of pwple. Lf the height of the head in 

the inpur is expwred to be highly variable due to a wlde range of allowed disrancn 

benveen the wer and the camera, h can be caleulaced by multipl.mg the 6 ~ e d  index 

by the heighc af the head. .Uternariwly. if rhe expecred variarioo in the user's 

distance from the camera lies within a reasonable range. h can be asigned a &ed 

value. 

Define edgeness,(r) ar the number of foregmund phek in a horizontal slit with 

width .bf and height h starting a t  row r. Smee b(i ,  j )  is a b i i  edge image, 



Figure 3.2: Histogram used for locating rhe eyes. The &urn pe* o c w  ar the 
lacarion of the e y ~ .  

edgeners,(r) can be caleulsred as Mows: 

Now. mmider moving the slit donm h m  the top of the image. 

Lr is observed that edgedgeess.(r) reaches ma-um value when the ey- and the 

r:=hro%vs are contamed in the slit startingat r. as F i w  3.2 shows. This is so because 

the q- region is -ciared with astmng variation in intensity values. making theslit 

of eye  dutmgaished h m  the slits of other portions. Thus, a possible appmaeh far 

identir,inp the epes muld be aceompbhed by dculariog edgenmhlr) for each mv 

r in the image. then searching for rhe maximum value in the resulting dismburion. 
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However. che mmpurational mquiremenrr for such a. approach are racher high. 

A simpli6eationof the process on be derived tom another property The srming 

row of the optimal slit Lies within a range of mws mrrerponding to slits that are 

also distinguished (is.. they map to globally high valuer of edgenerr,). even though 

they  over rhe eyes partially. Thk suggesrs that a rubsampling technique R~UIIS in 

an appm?dmared histogram. the ma-- d u e  in which lies within a sacienrly- 

mall neighborhood of the original maximum. Therefore. the original histogram is 

subampled at 0. h/2.  h. 3h/2.. . .. That is. tM, mnsrmtiw samples overlap in h/?. 

o + h/2; rnor t 0: t 0: k t 0 
while k < .V/o 

sum(k) c O 
f o r ~ = o . k t o o . k + h  

for j = 0 to 41 
sum(k) + sum(k) + b ( l .  j) 

end far 
end far 
if sum(k) > m a  rhen 

mor + .sum(k) 

end if 
k t k + l  

end while 

Sote rhat the new histo- always eonrains a slit mvedng at least 75% of the e:es 

region, and not 50% as the overlapping factor might m n g l y  indicate. To show chis. 

m u m e  the contra+ rhat is. a m e  that the slit starting at mw 1 is che sample 

with maximum coverage of the eyes re@on. mwMg o < 0.75 which mmsponds to 

n lower pan of the e p  region (a similar argument applies in the of an upper 



part). If a < 0.25. the slit starting ar I - h. which is a h  -pied. m- 

which is obviously more rhan 75% of che upper pan. If 0.25 5 n < 0.5. rhe slit 

starting at m I - hl? cowrs 

which is dso more than i5% of the lo- pat .  Finally. ifO.5 5 o < 0.75. then the 

coverage by the stit stating at I - h / 2  is 

which is at  least 75% as aeU (upper put) .  In sll three cases. a slit which covers 

at leazr 75% of the rargec region %-as found. contradining the asmmprion char rhe 

maximum coverage is lem than 75%. 

The compurarianal duction achieved b? subsampling is by 2/h .  For a rpicai  

value of h = 30. ir quire. only 6.67% of the computation thar rhe ex!susrim 

approach would rake. 

3.3 Determining the Region of Interest (ROI) 

The organization of the human face. in terms of the basic mmponenrs. is hued. 

.\loreoMr. the relatiw disranms betawn t h e  components bUow a certain partern. 

king chis information, and given the a p p m a t e  location of the q ~ s  ahrained in 

the previous nep, the follolloalmg can be ntimated: 
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. Dimensions of the R01: 

The sire of the region of intererr w made larger than the e-ed size in order 

to account for persanal vadatioos. that may cause some deviation h m  the 

evened  measurements; and the appmrimation made in locating che e- due 

to rubamplk.& Consequently, the height and width of the R01 are both set 

ro Ih .  

Position of the ROi: 

The left-top corner of the region of interest is positioned sr 

where r w the starting row of the slit mmaining the eves. 

Note that borh errimater are omr-d in t e r n  of the height of e:w regigion. maldng 

rhe system invariant tor+ .  The expressions haw been selected s such after 

erpetimenr~ had shown their effeeeriwness in bounding the mouth entirely even when 

ir is wide open. 

By derermining che R01. the foeus of atrencion beomes restricted ro a much 

rmnller region rhan the whole input image. in whch more elaborate reehniques can 

be empioyed to seek accurate measurements for the mouth. 

T& chapter has addresed automatic location of a ~peaker's mouth. In the next 

chapter we a d k  the problem of extracting features of the mouth. 



Chapter 4 

Extracting Mouth Features 

In chis chapter. methods for extracting particular mouth feat- are described. The 

featurn inelude rhe enter. width and height of the lip. The search q a e  is resttiered 

to the region of inr- extracted in the previous chapter. F i  I1 show. the man  

mouth characteristics that che algorirhms presented in this chapter esrimace. 

c l  cz 

Figure 4.1: LIouth m-ements. 



4.1 Locating the Central Row 
and Corners of the Mouth 

The central mw of the mouth. i.e . the row where che upper and lower lips meet: has 

a strong edge presence. AcrnrdkgJ~, rhe rum of edge d u e s  dong chis row.. w i t h  

the ROI. is expered ra have a mdmum *due. The merhod to locare rhc central 

row of the mouth uses the edge image ell. j) obtained by applying the Laplaeian 

operator described in the previous chapter. .4n example is rhowo in Figure 4.2. 

E;L?&, e(2.j)  

Figure 1.9: Histopam used for locating the central row of the mourh. The marimurn 
peak camponds to the central rm. 

Locating the left and tight mrnerr of the mourh enabla the estimation of two 

important fearures: the central column and the width of the mouth. In this section. 

a method for obtaining iuitial estimates of the comers is dertibed. The method 

amunes that the central mw of rhe mouth has been appropriately determined 

F i t .  the distribution of the absolute vertical gradient ar each ml- in the 

central mrv of the mouth is analyzd. F i  4.4 is an example of this disttibution. 
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Let y. denote the central ma of the mouth. The vertical W e n t  of the pixel at 

column j. roar y.. denoted gradient()). is obtained bv applying the fouowing m k .  

vhich emphasire horizontal edges to pixel jy.. j). 

The mrnen a- near nxo peaks in the hempoponding kwgram (see Figure 4.4) 

T h e  peaks are distinguished by rhe foUowing ch-terisrics: 

. Dehe  lefr-heighr(j). the left height at col- J. as 

where vt is the valley immediately preceding J. Let p ,  be ruch char 

left-heighr(pl) is ma--. The left corner el is set ar the minimum d u e  2. 

t,, < Z < PI. satish.ing 

IMenr(r)l Igradienc(ptJI + Igradient(ut)l 
(4.1) 

. Dehe  right-heighr(j). the righr height ar calm j. s 

where r2 is the valley immediately following j. Let p, be such that 

right-height(h) is rnauimum. The right corner c2 is ret at the madmum d u e  

Y. ~z < Y < c2. satisfying 

lgradient(y)l _> Igradientb)l+ lgradient(%ll 
2 

(4.2) 



Figure 4.J rho- a peak with irs right and lefi heights. 

F l 4 . 3 :  Left heighr and right height of a peak. 

40w. inirial estimates for the central mlwnn of the mouth ze aod its vidih u. cam 

be determined k 
=I+- 

LC = 7 

4.2 Locating the Upper and Lower Lips 

The mws where the external borders of the upper and lower l i p  inrenecr with the 

vertical axis. denored u and 1 respectively. can be identilied cuing the previousi? 

estimated me-urements. A histogram is used to sum up each row's grey ievels for 

mlumns bemen the cornen. Only rows in a snd neighborhood mound the center 

of the mouth need to be considered. It is erpected that a change in incensip will 

ocuur ar the maximum extremities of the l m r  and upper lips and thisshould be seen 



Figure 1.4: Histogram ured for locating the mouth rnmers. Flr. the pe& nirh the 
madmum lef~ and right heights ( p ,  and p2) are identified. then the mrnen (el and 
c*] are computed aceording to (4.1) and (4.2) (see texr).  

in rhe b o p a m .  An example is illustrated in F W e  4.5. Ln fact, experiments haw 

s h m  that the p d  located immediately bdom the tenter of the month corresponds 

to the highest poinr on rhe upper lip and the peak after ir corresponds ro rhe lowesr 

point on the l m r  lip. This srimare reems to be vev good far the upper lip. 

However. there are eases where a peak oecm before rhc external ourline of the lower 

lip becaue of a brighc spot in the l aws  tip region. A method to  correct this nfl be 

diMlsred m -?ion 1.4. 

4.3 Improving the Mouth Corners 

The idea is to s e d  for the best fit of two e- (corresponding to the externd 

oucline of the left halfof the mouth] drawn from the left mmer to the m n t r a l e 0 1 ~ .  

The search is implemented by moving the left comer ro the left until a local optimum 



Figwe 4.j: Histogram med far locating the upper and lo- lip. .%*arch for 
ma peab mounding rhe central row is performed. 

is found for the h e r i o n  lefffEt(~~,  yYY 1. v. =I) .  This f u n c t i o n g i ~  a m e e m  of Ern- 

benveen the left c m  and rhe edge image. and is dehed = follows: 

~efr-fir(z<.u..l. U.C,I  = 5 verrgrad(y. + y,(r).r.fr) 
z=c,-r< 

- f: vertpadly. + L(*I.Z, + r) 
z=c,-zz 

where yt(rl and a ( = )  are the quartin given by 

A similar debition applies far the right corner. 



Ln the dehitions abwe. the rummations haw opposite s i p .  This is jwi6ed 

bv the folloaing. Wihen applied to grey levels. vertgrad(t. j )  (which is the d t  of 

applmg the same mask mentioned in m i o n  4.1 to pixel (i, j ) )  emphasizes rrso h d s  

of edger: 

I .  Seganve edges. rhe ~ . e y  lewls abow which are Low rhan those below rhem. 

The edges on the external ourline of the lower lip are of ihis kind. 

2. Posiriw edges. the gey 1-k above which are higher than those below rhem. 

The edges on rbe external outhne of the upper lip are of c h i s  kind. 

.t lower ralue for left-fit or tight-fir means a berrer march berween rhe r- and 

the lip. 

end while 
while tight-fir(z,.y.,f. u . q )  2 tighr-fit(=,. y..l. u . a  + I)  

.Ugotitbm ro improve the upper and lower lips 

4.4 Improving the Lower Lip 

.As mentioned earlier. the estimate for the lower tip might not be amurare. The 

method used to mrrect this rerembles the one applied u, rhe mouth mrners. but 

here the search is implemented by moving the l o r n  lip doam while keeping all other 

parameters &xed. Now, suppose that rhe initial estimate is accurate. then this tech- 

nique d probably identi& the lower tip in the wmng place. Thus, to emwe char 
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good initial estimates do not get mmpted. rhe change is not made if ir g m  beyond 

cercain conrmlled by the upper lip. 

l + l + l  
end while 
while Left-fit(r.. y.. 1. u. el) + righr-fit@,, ye. I .  u. c?) 2 

left-6t(rc,u,,l+ I. u.c,J + right-fit(zI. y,.r+) 

Algorithm to  Improve the lower lip 

4.5 Experimentation 

In this seerion. results of rhe appticat~on of the various algorithms described prevl- 

ously are presented. The estimated mouth me-mencs are mmpared to the aetual 

measurements in order to qua!& the accltmy of the methods. Table 4 I motains rhe 

error of the esrimared measluements when applling the algorithms co I9 facial image 

samples. The aboluie e m  is calculated as rhe absolure di5erence in pivels between 

the estimated m e m e n t  and the acrual measuremenr. E d  row in the herable stun- 

marizes the results of an individual sample. For example. the 6Ar mw indieares chat 

when the algorithm were applied to the 6rst image sample, the estimated central 

row and column of the mouth and the lower tip extremity were accurate (error was 

0): the estimated upper lip extremity was 2 pixels away kom the actual porn: and 

each of the estimated corners had a a - c e  of I pixel fmm the -r d u e .  -1s can 

be seen fmm Table 4.1. the accuracy of the merhodz ls wr?, good. In particular. rhe 



column labeled "ye" shows that the esrimaced central raw har been a-te at all 

samples. Furthermore. 93.7% (1631174) of the estimated me-meu have been 

within a range of 4 pixels fmm rhe =act on-. 

The average and d u r n  ermrs of each estimated featme are obtained hy an- 

alyzing the mlumns of Table 4.1, and are listed in Table 4.2. This latter table helps 
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in ranldng the mimated variables in t- of a m - .  For example. it can be seen 

h m  Table 1.2 that the central mn estimate h the man atcurate one. .Llomver. ir 

is evident that all enimarcs am quite accurate on rhe average (the awrage e m  is 

less than 3 pi~els for all estimate.). 

Table I ?  Average lorl ma-- errors of each ~5runarrd mourh mearwcmenr 
s)acamed bv r o d \ n n p  me mpk-of-TaKc 4 1 

Llc-uemeor I hsrrage  EM^ (tn PU~_S)  1 _\la_~mm Error :n PLXCSJ ' 
Jr  0 1 2 4  I 1 

This chapter has described algorithms that estimate mouth charaereristics. In <he 

nerr chapter. we use these characteristics to initialize a mourh deformable remplare 

which exwacw rhe shape of rhe mourh and track irs mowmenr during speech. 



Chapter 5 

Mouth Deformable Template 

5.1 Geometric Model 



5.1.1 Geometric Primitives 

The deformable templare for the mouth mnsists of che foUouing geometric primirives 

(see Fi- 5.1): 

I. The exrernal outline of the l o w  lip is modeled as s quartic 

2. The internal outline of the 1- lip is modeled ar a parabola 

5- The external ourline of the upper tip is modeled as a quarrie. 

( , ,  I - zI -.I' (121 -012 

[,,,-a,z ) + 4 q 7 l G - -  (&, - a )  I7", - e12).-tul 5 2 5 wl 

4. The internal ourline of the upper Lip a modeled s9 a parabola 

The points on the c- above are in reference to s mardinate ,-em entered 

at (0.0). To transform the template to the image c o c ~ t e  +.stem. every paiuc on 

each curve is mtated by 8. which is the angle of mouth indination in the image. then 

translated by (y..~~)'. which is the center of the mauch in the image. Figure 5.2 

shows a tramformed mouth template. 

I l o  t h .  their, a pixel ul mv 9 and mlumn r h denoted b. z). To avoid acy mnlmion, the 
pdm, i. the w p l u l e  ,hat .ompan& to p.me1 (y, r) k denote3 (y, Z) as we". 



Figure 5.2: Trmfomiq the template to  the image coordinate sysrem. 

5.1.2 Parameters 

The previous modeling &scheme results in the following parameters: 

I. h,: height of rhe e~ternal ouche of the lower tip. 

2. h' height of the internal outline of the l o w s  lip. 

3. h,: helght of the external outline of the upper lip. 

<. I,,: height of rhe internal outline of rhe upper lip 

6. w,: width of the emrnal reson. 

6. a: afTseset of the center of the upper quartic from the ordinate. 
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7 w*: width ofthe intwal re@on 

8. q,: parameter to mntrol haw far the lower quartic deviates fmm a parabola. 

9. a: parameter m control how far the upper quartic deviate. from a parabola 

LO. r.: =-coordinate of the center of rhe mouth. 

11. y,: y-coordinate of rhc m r e r  of the rrrernal lips. 

12. 8: the angle of inclination. 

5.2 Energy Function 

The deformable template e asrociated with an energy funerioo E which g~ws a 

m e m e  of fitness between the geometric model a d  the image. Consider the set 

I  = { ( I . T )  : (y.r) is a lip border pixel] 

The goal. at ths point. is to characterize the sec I .  The deformable template approach 

arremprs to model the set I  in terms of the parametrized nuws mmained in the 

.-merric model. In orher words. it seek to oppmmrmate the set I  by a set 41 such 

that 



c, = {(!,'.z') : y = fh(z).-w, 5' 5 w,). 

and C, = ( ( y ' . d )  : y = y.(z). -u, 5 z W Z ) .  

(J.2") is the result of transforming ( y . ~ )  ro the image mordinace system. 

ObviouJI?. 4 1  depends on the parameters (hl .  hr. ha. hi. wl .o .  w z , p l . q Z . r ~ .  ye.#). 

and so the pmhlem of h d i o g  the set .\I of pixels is reduced to the pmhlem of Ending 

rhe model's parameters that wuld make 41 b t e h "  I 

Since the ser I is not known m adwee.  it is narural to exploit one of its known 

properties. whieh is that the pkekeontained in this ser haw strong edge magnitudes. 

where Q. is ao edge mess- and IC,/ is the Length of curve y, 1261. This quanrit:- is 

rtippffied TO have a minimum value when .U matches I 

To define the edge d u e  at pkel (i. j ) .  a 3 x 3 kernel v(1.m). -I 5 I, m 5 I .  is 



When rhe pixel (i. j )  is on the border of the lower tip. this &E edge($. j )  high 

in msgnicude. bur negative in sign. On the ocher hand. if (1.1) is on the upper lip 

border. edge(1.j) will have a pmitive high d u e .  

Ciwn panidar values for the paramercrs of the model. the re- of the energ). 

h a i o n  em be calculated. 

term, = 5 5 2 i g ( ~ :  + 1.j; + rn)o(l. rn) 
WI I=., -=.I 

I I 

term2 = 5 2 1 1 g ( 4  + I. j; + m)v(I.m) 
w ,.-=,=., 

I I 
E e q  = -*5 2 1 1 g ( c  +I.,: + m)v(l. m) 

Ull ,i-',,=.l "&=-I 

term,= -4 2 g(i; +(.I; +m)u(i.rn) 
m2 ,=-mz ,= ., "=-, 

where 

i ;=~+ l . smb'+gd( j ) . co s8  

The stunmatiom are divided by or w2 in orda to normalire the quantities. The 

summation in term, and term, s preceded by a minus sign because the horizonral 

edges on the borders of the upper lip are positive. In addition. there are penalty 

remu to e m  that che mouth template does nor deform co illegal mourh shapes. 



term, ensures chac y, is alwaw below h. and term. eagures that y, is always abwe 

ur- kt. kz. k,. k*. k,  ks. k,. k8 are non-negatiw mnstants chat can be derermined em- 

5.2.1 Minimizing the Energy Funaion 

Fmdiog the template char best matdm the month in an image is equivdent co 

minimizing the mere fixmion. TNO methods have been inwsrigated in this mrk. 

5.2.2 Method 1 (Greedy Method) 

while nor stopcriteria 
for each parameter p, 
IP. +updare(p.J 

end for 
$01 each parameter p, 

P. + P. + AP, 
end for 

end while n 
.At each iteration. e v q  templare parameter p, is updated by one of three values: 

If p, E { h , . b .  h3. h,, w,.o. *,r.. y,). then step. = I. This is u, beeawe rhese 

parameters are relared to p i d s  which should haw integer values. Othe~wise (p. € 

mriables can rak. real %slues. and it is dRirhble to haw a ~ 1 u e  for step, that changes 

the shape of the template gradually during the minimization proeeu. .A value of 1 

for rep, when R E { q , , ~ , 8 )  muld make the template ehange its shape drastically 



in a single step. Sore that 0 b m e d  in r a h  ratha than depes.  

J t E ( p t . h . l h  ..... ~ ~ s e p i .  -.-. ~ i ~ J - E ( p , . h . l h  ..-.. P. .-... plzJ 
b t E(p,.lh.a. .... h. .-.. pL2) - E(PI.PI.PI. .... P. - step,. .... p12) 

updare + srep. 
eke if b ,0 then 

update t -step, 

updare t 0 

Ln pracucv. the merhod )iei& acceprable results. However. theor). shows char a 

has the porenrial to give erroneous results [%I. The merhod trier ro mmimize rhe 

function along the unit veetms 

in c u m .  Theoretieall?. -dong s particular diretian could be spoiled by 

the minimization along another direction. 

5.2.3 Powell's Method 

Powell's merhod [S] is attractive because it attempts to minimize an rrdimeosianai 

function without the need to -plicitly compute the function's gadient. Comput- 

ing the gradem requires the computation of the function's partial derivative with 
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rerpecr to each variable: a t a d  rhar is nor s t r a i g h t f o d  in our care because the 

b e e  c e m  of the meru herion are not xpreaed andyciealiy. furthermore. Pow- 

ell's method overcome the potenrid for error in the seedy merhod. Ir consists ui a 

mechanism for npdaring rhe ser of directions (which can be the unir werors at ihe 

beginning) a rhe method p m d .  artempcing m devise Nirh a non-interieriog set 

of directions. T h e  directions are called conpgote d i d o n s .  and have the special 

pmperry thar minimization along one diredon is not spoiled by subsequent raid- 

mizarion along another. 

The basic pmdtue  is as foU-: 

1. Initialize rhe set of directions u, ro the basis wtrors. 

Iote thar che number of such directions n equn: to the number of parameren 

of the mouth template 

2. Repear the fofloaing sequence of step until the energv herion sops  decree 

ing: 

Save the starring gosipmi rlon PO. 

. for I = I . . .  .. n. move Pa., to  the minimum dong direction u, This 

involves En- a value Amin for A at which the function E(P,., +A".) 

is minimum. Since the morn P.-I and u, are fUed. E(P,., + ,441 is 



Flgwe O.3 Dawhill direction detined 4v n and 6. Search for s thizd point m the 
direction mdiered by rhe arrow. 

a function in one variable and can be minimized using a one-dimensional 

method. .After that. set 

lE, + E(P.1 - E(P,-c) 

The method by which the onrdirnensionsl function IS minimized mnskb 

basically of rwo step: 

(a) Given initial d u e s  o = 0 and b = 1. 6od new porn- a, h. and e 

that bracket a minimum of the hetion,  by searching m the downhill 

direction d e b 4  by the hnion at the initial points b.4) (see Fiyre 

5.3). 

By dehifion, a. b.c me rpalnes for X that bracket a minimum of the 
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Figure 5.4: Triplet [a. 6.~1 bracket a minimum of E(P,., + A%). 

function E(P,., + Au,) if b is between a and e. and E(P,., + bu,) is 

less than bath E(P.., + au,) and E(P,., + eu,) (see Figure 5 4). 

(b) Cse Brent's mechod 191 to  mimmize the function on rhe triplet !R. b. c]. 

.\low P. to rhe minimum along direction u. and e d  chis point Po. That 

is. End a value Amin for A that minimize. the function E(P. + A*). Ser 

The baric procedure must nor be used in the fonn given a b m  because it rends 

to produce serr of direetiotu thac bemme linearly dependent. When this happens. 

the pmrd>~re Ends the minimum ooly over a subace  of the full n-dimensional a. 

The approach taken to 6r up this problem is similar co the one repaned in reference 
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[SB .  It make. use of s hnuirtie d e m e  which r d e  ro 6nd a few gwd directions 

along narrow MU- instead of n n d y  eanjugste riireerions. The change to  the 

b&c procedure is the following: at each iteration. discard the old direction along 

which the function made its largesr decrease. That is. u, is discarded (substituted 

by rhe new direction P. -Po which IS the average direction m o d  after rr)ing all R 

porrible directions) if AE, 2 AE,. j = 1 .2 . .  . . . n. 

5.3 Dividing the Minimization Process into Two 
Phases 

The general method of deformable raplare. implies that dlrhe e w e s  maldngup che 

model em fit at rhe same rime. However. it has been found, through experimenration. 

rhat a t-phase minimization praees giver better results than chase obtained by 

some single phase techniques. This ludicares that the inremrron of uz with the rerr 

of the model d o e  not help the cempiare to mnwrge. Therefore. the minLnization 

pm- is divlded inro two phases: 

I. ln the GrJt phase. che external rvrws are fit. The original geometric model 1s 

modi6ed. The internal width wz is replaced b? WL. and the internal heights. 

b2 and hr. are replaced by h; and hi. This simpler template has been able to 

capture the external borders accurately and to give reasonable estimates for 

h: and hi (up to 3 pixels away born the actual internal heights). In this p h e .  



is midmized using PmU's method 

Figure 5 5: 41odi&ed mouth model far the h t  phase. 

2. In the second phase. b. h,. and wz are he-tuned b?r mmimizing the fucnerion 

ternz and Germ attracts the internal curws to rtmng horizontal edges m rhe 

image. The term 4 tan(E)  enmurages w. to he less rhao u,. The last two 

terms ensure rhnr h2 and h, stay relatively close la h: and h; respscivelv 

5.4 Tracking the Lips 

Given a didrlzed movie of a penon's face. the deformable templare technique is used 

ro model the mouth shape in each image frame. 

1. A region of intern mnraining the mouth is located in the &st hame. Then. 

image pmcesing tdmiquer, are applied to roughly estimate several mouth 
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fear- such ar center. width and heig%t. These estimates are used as imrial 

values for the deformable template paramerus in the h t  kame. 

2. Having the i n i d  values. the deformable template can be pcsitianed mitiall? 

near the mouth. The enera. of rhe templare is minimized. and this leads ro an 

optimum march. 

3. Since there is a relatively mall change between two m m r i v e  framff. the 

initial values for a particular frame I .  1 2 2. am set to the pmameter dues of 

frame i-1. l'hk h s  the adwntage of saving the time that wuld be. athewise. 

needed to apply the initial operations to e- single frame. 

This chapter has addiewd the application of deformable templaces in extracting 

the shape of the mouth and tracking its movement duringspeech. In rhe nen  chaprer. 

we addre= rhe problem of segmenting a word inco visual speech units. 



Chapter 6 

Visual Speech Segmentation 

6.1 Introduction 

In this chapter. the problem of >+ma1 speech segmentation is addrmed. The method 

dfferibed here is applied to the training data of the speech mognirer. 

The problem of visual speech segmenrarion is formulated as follows. Ler 

be a giwu sequence of vectors. representing a word v i s d y .  where v, IS a vector of 

rn feature chaaereridng the rnourh shape of a speaker. sl ing a word lu. at time 

i/r. where r is the sampling rate and asuming that the s p e d  %arts at time 0. It is 

required to 6nd a nstoral number 1 < n, and indices kt,  b.. . . . kc-, for (v.);-' rucb 

that 

o = 4 < k , < k 2 < - - . < k , - , 5 n - L  



where T is a rransformarian, and Yo. V Z . .  . . . VI., are visual speech unim such chat 

VO k &tinct from V, 

Vt is &tinct from V2 

is distinct from V,., 

I is rhe number of regmenu. and k,. 1 = 0.1.. ... 1 - 1 is the inde* of the 6nr frame 

in Eegmenr i. 

The procedures presented in chis chapter operate on Eequences of feature vecron 

deriwd from the parameter. of the mouth deformable template. Let I.V be the mouth 

external Nidrh ( w , ]  in the first b m e  (at rime Ol of the sequence. E d  frame in the 

sequence in mapped to a -tar of the foUoaing festure~. 



The purpose of dividing rhe parameters by i L '  is. 

I. to make the system s d e  invariant. 

2. and co provide a suitable (normalizrd) rep-tation for ihe neural network 

that will process the data in n later sage. 

An example is represented gmphicdly in Fig. 6.1. Ln this figure. each homntal  

line represents a feature. The lengrh of the lines are pmponional to rhe valuer of 

rhr features. The graph hss been built bv applying the mouth deformable remplsre 

uf the prevlotls chapter to a sequence of facial images of a person d m g  speech 

(sampled at the rate of 30 h e s  per second). then mapping the resulting mouth 

template of each image into the seven feature listed abwe. .Vote that each mw of 

horizontal l in s  corresponds to the shape of the mouth at a certain time. 

6.2 Maximum Distance Method 

The ~mposed solution to the ~mblem pmed in the previoious reefion is based on 

i d e n r w g  dissimilarities vithio the sequence to be w e n t e d .  Let f ,  f'. n. a be 



Figure 6.1: Graphical representation of n sequence of feature vectors mrresponding 
to  a pemn's mouth during s p d .  



disr(f.P) measurn rhe dirrance between frames f and P. If f = f. obwglrly 

disrlf. P )  = 0. disr?(f. fl. Q) me-s how far frame f is fmm bath k a m s  fl 

and I2. If dist"(f. n. Q) = d. that means that f has a disranm of ar least d fmm fl 

and a. 

Given a frame f aod a set of frames F. it is possible to identify rhe mar  distant 

lramr in f from f by finding fmm E f amording to 

Similarly. given rwo frame4 fl and 8 .  the most distant frame m F h m  both fl and 

I2 is rhr frame fmax E F such char 

Upon segmenting a sequence of frames. there am two eases thac have to be d k  

tinguished. 

. The sequence cosisrs of more than one regmenr. 

Ln this care. a good candidate far a segmentation point is the frame that has 

che madmum distance from the scartmg frame. The value of the maximum 

distance represents a regmentotion mnfidmce m m e .  The higher the value 
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of the maximum distance. the the on6dence char chis paint xs a real 

boundary. 

. The sequence mnsists of only one segment. 

For orbis to happen. all rhe kamer in the requence should be "clme- ro each 

other. This sinlation can be identi6ed bv eramining the ma-= distance 

befween che 6rst frame and the rest of the kames. Lf chis disrance is ver). 

mall. it follows chat all the frames are dciently close to each orher. 

Claim: In a sequence of framer v,v,-, ... v ,-.. ,. suppme rhac k € I' = 

(s+l,s+? ..... s+n-I) issuch that 

Then. for an: p. q E l 

dist(v,. v,) 5 ?d 

Proof: The m p t i o n  implies that 

diSr(v..vp) S d 

&t("..",) 5 d 

Eq"ideL,tly. 



Adding both inequalities "el& 

That is. 

dirr(v,. v,) 5 2d 

Inqualitr 16.2) follows from 

where n. b and care  an? real oumbers.0 

Hence. if che segmentation coddence me- is I e s  than a rhreshold 6. it h 

guaranteed chat no nso tames m rhe squence are ar a disrance greater than 

28. 

Consider rhe following algorithm that takes as input a sequence of n rwtors 



This algorirhm segmenrs the sequence v,v,., - . - v.~.., into ram ~ k q u e n c e s  h (in- 

remd subsequence) and t such that 

t = " I I V I ~ ,  . ..".*,+, 

To complete the proc- of finding dl rhe segments in the dwn sequence. the same 

algorirhm can be applied recurswly ro t. It can also be applied co h. Bar since vt., 

and vx are rmo ~onsecucive visval speech framer and. thu.  wry close ro each other. 

there is a high pmbabiliw that applying rhe algorithm on h wi l l  result in segmenting 

the mksquence at its last frame ( k  - I). To amid this situation. a slightl? different 

algorithm is proposed. The algorithm takes a inpm an internal seqoenm of n frames 

v,v,-, . . . v .... , and rhe srarcing frame of che next su-uence v ,_.. 

&c(v.. v*) = ma.,r.&r(v..v.) 
if dist(v,. v.) > 6 

ourpur t 
segmern2(v.vs-, . . .vr.,,vr) 
sepment(v,v,-, . . . v ,-..,) 

end if 



Algorithm segmenrZ(v,v,-I.. . v  ,7.. ,.v,-.) 
findkkomrheser I = { s + l . s + ?  ..... a tn -1 )suehrbar  

dist2(vk.v..v.-.) = max,evdistl(v,.v,. v._.l 
if dist2(vh. v,. v,-.) > b 

otlrpur k 
segmenr2(v.v,., - . vr.,. vt) 
EegmenrZ(~kvt-~. . - v ,... ,.v,..) 

;Ugofitbm segmenr finds all segment boundaries with mddencr greater rhan the 

threshold 6 in the giwn sequenrr. regmenr2 does the same thing but has as input an 

internal rutsequence. Given a sequence of kames vov t . .  . v.., reprerenting a word. 

nU che segment boundaries (C's in rhe problem definition) with mddence grearer 

rhan chc threshold 6 an be found by simply calling 

The number of segments is equal to the number of segment boundaries pius one. 

Figure 6.2 k a gapheal representation of appl-g the hlaximum Disraore method 

ro a word. In chis 6-. each feat- is repmuted bv a recmngle. The inreusicy of 

the reerangle~ is proportional to  the value of the eo-onbg fear- The parrial 

res~rlts of appl:ing the method rmmively are shown at the left of the sequenee (these 

resulcs evolve as w go to the left direction). The find r m l u  are shown at the right 

of che sequence. 



Recursive 
Application of 
the Algorithm 

Potential 
Candidates fox 
Segment 
Boundaries 

Flgure 6 2 InLndual segmentation by I urn Distance method. 



6.3 Alignment 

Let r. y and ; be rhrec Merent rampies of the same word. If these reqamces are 

w e n z e d  individually. the d t  will be: 

p - ~ ~ . . . ~  

=--...= 
The problem b that the number of segmenD in 2. y and ; might be &rent. 

Thus. alignment aims to find a asegmencation for 2. y and 2 such char the number 

of segments in dl the sequencer n equal. Moreover. and more imponantly. the I-th 

segment in ao!, of the sequencer should cornspond to rhe I-ch segment in rhe others. 

Given two sequence. ic is pmibie to 6nd such a *@entation using ddynam*c 

Clnzc warping (DTbV) [5'3\, h DTW algorithm take  ~ m .  sequences of kames o = 

&a,. . .a,-, and b = bb,. . . b,-, as input. and outputs the optimum warping path 

between rhem according to same distance mezurement. The cort of the optunum 

warping path is also produced as an output. The algorithm mEamms haw well the 

m o  resue- can be aligned to each other based on the distance function used. 

The DTR algorithm operates by edculating a  mat^ g( i .  j ) ,  I 5 i 5 n. 1 5 j 5 

rn. The interpretation of g is that 



g(i. j) is the c m  of the optimum w i n g  parh 
between subsequencer %al.. .%.I and bobl . . - b,., 

Therefore. the required output will be stored in g(n.rn). To &ate g(t. j ) .  chem 

are raa c-: 

1. z = I md = 1 (initial c w l  

2. i # l o r j # l  

In ealcularing g(i. j) in general. rhere are three mbparhs ro consider: 

(a) The subparh formed b? linking the aprimum warping parh between 

sa, ...a-t and bob, ...bl., to che alignment of kames a,., and b,.,. 

(b) The subpath bmed W W n g  the optimum warping path between 

*a,. . .&.? and bob, .  . . bJ., to the alignment of hams a-, and b,.,. 

(c) The subpath formed b lioking che optimum narping path betwen 

sac- - . a - z  and bob, . .b,., to rhe alignment of frame a.l and b>.,. 

Figure 6.3 illusrrares this situation. b shows the t h e  options adable  ac 

a certain paint while marrructing che warping path between nw sequenrrs. 

Clearly. the optimum c a r  in this case is the c m  of the subpath that h a  the 



minimum cast among the three %bpa*. 

Figam 6.3: Calculating the optimum a w i n g  path 

The coefficienu of &t() in (6.5) and (6.6) are called rhe werghtmg eoefinent3. 

The specific d u e  sveo to t h e  mef&ienrs make the Writhm s)-m-tric. This 

imphes char rhe ~ s u l r  of aligning o ro b will be the same a. that of aligning b to a. 

When calculating the k t  row of p (g(l. j ) .  I 5 5 m). the elements in the C-th 

ruw are used. Since there are no real subpack coming from such elements that need 

co be eonsidered. they should be initialized to  a large d u e  in order to prewnr them 

from being selected as the optimum rhoice. A similar argument applies to the @-th 

column. 

sIO,jl= -, I 5 J 5 m 

g(i, 0) = 00. I < i 5 " 



The DTW algorithm uses a parameter r called the window l a s h .  This parameter 

limits rhe oprhum path to nor go bcwnd a regJon amuod rhe diagonal of matrix g. 

Therefore. only rhe elements in chis region of g ueed to be calculated The Lieured 

region can be expresred b?. 

The purpme of such a constraint is to prevent an timing di5mnce between 

the frames of the two requenres. In order for the constrained set of points to indude 

g(n. m). it is necesar). thar 

r > n - m  

is satisfied. 

The optimum warping ~ a r h  can be obtained by recodkg rhe choice made ar eaeh 

raleulation. cbcn tracing the r~quence of choices from rhe hal  output g(n.rn) back 

to the iairral  point g(1. I). 



for j = I to m 

g(0.j) + = 
md for 
for i r l to n 

g(i .0)  c r 
md for 
g(1. I )  + 2disr(ao. bo)) 
r o r j = 1 t o m  

for ~ = r n ~ ( l . ,  - r] to min(n.]+ r) 
~ z # ~ o ~ J # I  

g(i. j )  t min( 
g(i.J - 1) +disc(*-,.b,.,l, 
g ( ~  - 1.1 - 1) +2dist(&-,.b,-,). 
g(t - 1.1) +din(*-t.b,-,)I 

end if 
end far 

end for 
ms t g(n. rn) 

The alignment pmblem ran make use of DTW. However. rhe llsual DTCV al- 

gorithm needs to he modified to slut chis problem. In the m o a e d  version. rhe 

algorithm rakes as inpar the segment boundaries in two sequences. The optimum 

-kg parh L cued ro derive a uni6ed segmencacion scheme for borh sequences. 

To hen- the path pmduced @ the algorithm to a unSed segmenzarion: 

I. A vecror of ordered pairs. called the mmspondence vector. h obtained by 

fallowing the warping path. The Grsr component in an ordered paL reprereocs 

a frame in sequence a. and the sffond component is the hemaponding frame 

in b. 

2. Starring from the end of the mnerpandenee vector, which repreens the 1 s t  



kame. in borh o and b. the foUoning is repaced until the be-g of rhe 

co-ondeuce vector b reached. 

(a) If the two adjacent pairs. at the current point. are Merent in borh corn- 

ponenrs; record a sewenranon b o u d q .  

(b) Dmrnenc the cunPnL point index 

The problem. now. is haw to generalize rhis alignment method ro more rhan mr ,  

sequences. .4 pesible way to generalize the method could be to select a reference 

sequence and align ic to all ocher sequences. But even then. rhis might lead ra a 

=rent segmentation far the reference sequence in e w q  alignmrnr. To obrain a 

unique segmentation. the foUoaing procedure is proposed. 

. , 
segmenr s 
a l igns to r  
update che segmentations of r and s m r d i n g  

ro the rerulr of the previous alignment 
end for 
for each swuenee s f  r 

align a to 2 [this time the .~qmmtohon ofr is &g 
end for 

Xow. two questions arise. Fit. how to selecr the reference sequence i? Second. 

in which order should che ocher sequences be aligned to z? Ln all probability. such 

decisiom will affect the h a 1  alignments. Hence. there is a need to rank the sequenm 

%cording to some criteria. The miteria selected for raoking a certain sequence is 



b e d  on how well the sequence digns to the m t  of the sequenm. R d  that the 

DTU'algotithm returns the minimum cost at which SequcnePS I and 8 em be aligned 

ra each other ma(r. s). To p r  an overall mrr for a particular sequence r.  the average 

msr over all other sequence is iaken 

rank(r, - rsfz-st(=.s) 
.v - 1 

where .V is che number of sequences. Figure 6.4 r h m  che result of aligning 4 

instances of the same m r d  using the method described above. 

6.4 Adaptive Segmentation 

Two distance funerions have been used in the segmentation method described shave. 

First. the distance function for individual segmentation and second. the distance 

Function for dpnamie time warping. The Euclidean distance r v s  selecred for both 

P m -  

There is no reason why rhe Euclidean disrance is betrei rhan a weighted dwtanee. 

Csing a weighted distance muld not have been pasJible before bsause there was no 

o pnot i  knowledge ahour, the segmcnm of a particular word. But now that there is 

a -entarLon (initial segmentation). this knowledge can be used to  derive proper 

weights. 

This principle l e d  to an iterative method that stam bl, segmentation and align- 

m a r  using the Euclidean distance, which is equivalent to a weighted distance with 

equd weights. At each iteration, an error is computed b e d  on the previous seg- 
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mentation. The wigha ate adjwed in such a m y  that reduce the ermr. Then. 

sewenration and alignment a t e  repeated using the new weighted discan-. 

6.4.1 Weights for Individual Segmentation Distance 

Let w he the set of weighrs of rhe distance function used in the individual segmcn- 

ration. Two tabis are formed. 

. Similarity rable for w. 

Each entry is a vector mmpured as 

where x and y are two framer belonging ro the same rpgmenr. and * denotes 

imultiplicariod of vecrors elemeni by element. Far each segment eoomoiog 

more than one frame. x u selected as rhe b t  kame. and y as che mosr distant 

frame fmm x m the rame segment. 

DiEerence rable far w: 

Each entry is a vector computed ar 

w (x' - y') 

where x' and y' am RKO kmer belonging to adjacent segments. For each two 

adjacent segments. x' h seleeed as the k t  frame in the k t  segment. and y' 

as rhe kt hame in the w d  segmenc. 



The awrage entty a = [aa ol 4 -.%,.,I in the similarity table is mmpured. 

then the average element 1 in that encty is taken 

., = 2.5' e, 
.=, 

The error derived *om the similarity cable is expressed as 

, m-1 
error, = - t2(.4 - n,] 

d ,=, 

and d is the number of eiemenrs m a char are geater than A. The wighr updates 

based on this error are as follow. 

Ln ocher words. the wights of the feature. that haw a large ( g~arer  than -4) mn- 

rriburion to che total discan- in frames of the same sequence are reduced by their 

deviation fmm the average contribution. The justi6eation is that such features are 

norm relevant io segmentation gi- the fact that they reeonled a large contribution 

far &am- in the same sequence 

Similarly. the average entry b = [bo b ,  b r . .  . b,-,] in the dBereoce table is 

computed, as well as the average element B in that entv 

B=+5'b 
m ,=, 
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The error deriwd fmm rbe difIemce table Is  e m r d  as 
_-I 

error, = 1 1 T2(b, - B) 
.=a 

where e h the number of clemeacs in b that are less than B. The welgbr updazes 

based on chis enor are- 

AW. = -qr(h - B I  

That is. the weights of the feaeures char haw armall mntdburion ro the toraldisrance 

in framesof &cine1 segments areenforcd. Thep-se h to wpheaize the relevance 

of rueh features in discicwishing betyeen frames of diflerenr segments. 

6.4.2 Weights for DTW Distance 

To adjust rhe *tights of the DTW distance s. similariw and dieerence table arc 

formed. 

. Similarity table for z: 

Each entry is a wemr computed as 

where x is the sranlng frame m a regmenr belonging to rhe reference sample. 

and y is che starting frame in che mrrespondmg segmenr of another sample. 

. Difference table for z: 

Each entry is a vector computed as 

z (X' - y') 
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where i is the starting frame in a w e n t  belonging to the reference sample. 

and )'is the starting kame in asegment adjacent to the m-onding segment 

of aoocher sample. 

The enor derived from rhe similarity rable for z is caleulared a. 

where C = [co ct cr . . . G,H] b the average entty in rhe similarity table for z 

and p is the number of elements in c char are greater than C. The weight updares 

rmrding to ihis enor are 

1; = .,r(c - c.) 

The enor derived from the Merenfe rable for z is ealculared ns 

, m-I 
error, = - r2(f, - F) 

'l .=o 

where f = [f, f, . f,.d b the average entr). m the Merence rable far z. 

and q is the number of elemenrs in f char are Less than F. The weight updares 

according ra this error are 

k = -nr(f. - F )  



The owrd allerror is calculated as 

In this chapter w haw s d d d  =he problem of segmenling a word into visual 

s p e d  units. The next chapter addr- the problem of -a1 word reeognirion 

,sing recurrent oeural n m r k . .  



Chapter 7 

Visual Speech Recognition 

7.1 Neural Network Architecture 

F i  7.1: Reeuneoc neural nemork for v imd  speech reeognirion 



7.1.1 Neural Network Computation 

The input kames are presented to the input layer sequentially. one aac a rime. The 

inpur frame ar rime t is denoted "It). and rhe k-rh unit in rhe inpur layer is denoted 

#,&It)- 

The unicr uf the hidden layer are computed acmrding to 

where s(t - I) is the rime-delayed nate vector. z& is the weighf on the connection 

from rhe L th  mpur unit co the I-th hidden unit. r ,  is the weight on the COMectlon 

from che j-th unit in the rime-delayed nare vector to the I-rh hidden u r .  and f is 

s sigmoidal function. 

)In) =I. 
I + < - -  

The mnnsriom from rhc rime-delayed state layer ro rhe hidden 1a:~r are called 

renmenr conneetiom. These connffriom make thr nersnnk diflerenr from sn or&- 

nary multi-layr feed-forward neural network. The purpose of such conneetiom is to 

provide a eontext for each input patrern so chat rhe network can capture not only 

the spatial characteristies of the individual pattern. but ako the dynamic change 

of pattern with time. Before presenting rhe fmt input kame to the nenvork. the 

rime-delayed state -tor is sswned to have no mivity, that is. all units m that 

l a ~ m  a m  zero. 



To compute rhe m n t  state -tor s(t). the foUowiog is used 

 here w,, is the wight on rhe mnneerion h m  the Cth hidden unit to the,-& scare 

unit. 

The external outpur is considered only when all input kames have been presented 

to rhe network. and is calculared as 

where b is the weight on the connection from the j-th state unit ro the excernal 

omput unic. The r f f m n t  neural necwork is shown is Figure 7.1. 

7.1.2 Desired Activity on State Vector 

Given a mrrect sequence of kames 

which can be segmented at kc.  k2. k3.. . . . kt-!. che desired activity on the stare vector 

is hmolared w follow: 

The kames belonging ro the same segment should eawe 
the network to form the same patrern on the s a t e  vector. 

That is. when presenting rhe frames of the Grst segmetlt (segment 0). the state 

should be at each time the same. call it 8 , .  When presenting the frame. of the 

smnd  segment. the state should be .s2 and so an. .After presenting all rhe kame. 
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to the network. the arternd output is inspected. It is deigmed to  recognize the last 

stace which corresponds to the bt segment. 

Logeneral. r, and 3,. where 5 < J. should be Merent h r n  each ocher. Orhemise. 

the order segmenr I - I preceding segment J - I could newr be enforced. That is 

because I, and s, \wdd  correspond to frames of both regmenu. Even if rhe two 

segments are spatidly identical. it should be emphadzed chat rhe corresponding 

states must be made &rent. The correspondence between segments and states is 

nor based on the spatial characteristia of the Eegments alone. It is also based on the 

order of the segments. This r e d u  in stare s, being charmerired by: 

. The spatial eharaereristics of the individual components corresponding to that 

state. 

. The mntnr provlded by the recurrent mmstions (preceded by stare s,-,). 

There is an obrio~u r e m i o n  in the previous charaecerirsrion. rhe main purpore of 

which is to ensure that the xgmenrs follow rhe spmihe order dictared by rhe narure 

of the word to be recognized. 

State Encoding 

The following encoding scheme 4 be wed far the states: 



The sw;e variable mnrains at least 1 + I  bits (an)i number of trailing rerm should 

nor make a diffemce). s emodes rhe initial state, and s, eneaier an undebed 

stare which mdieara failure to recome the sequence. In rhir rheme. each unit 

on the scare layer eo-on& to a part~cular stare. Xote char. kom a rheorericd 

viewpainc. one set of state variables is ar gwd ar aqv orher. 

7.2 Training 

Two w e .  of training arc commonly reen: suprrvisedand vnsupnwcd h s u p e m  

<raining. there b a -rencheee' who "tells* rbe neiwork what the correct output for a 

r-rtain input 5. In unsupervised rr-g, the network is autonomous. I r  b d s  our 

about some of che properties of the data set, and l e m  to reseer t h e  properria 

in its ootpur. For the network used in this thais. we chase supervised rraining line 

we h e r  the r o m r  autpur for each rraining squence. 

Suppase the recurrent neural netmrk (RUS) described previously har trained to 

recognize a word IL. of rhe form 

Vo", ."V~. . ,V~IVt .~, . .~"hh, .hhvL,L,"4444,1.1v"~,  - 
Segment 0 segment I I - 1 



then. on a new instance J (of the same CIS of lu) 

V'OV'I . . ."r , . ! . /u.~'~,-~ - . . d % - , ~ ' ~  -,., ... d,. ,  

segmenc 0 segment 1 regmenc 1 - 1 

it is required that the RVN behaves ar follows: 

Jusc before taking the k t  input. the m e n t  state is in initial confcgmtion 

8 0 .  

. On inpats d..v',, . . . . ++I. the RNX should have a, on the state layer. 

On inputs v ' , : .~ '~- , .  . . . .v'r,., (framerof the segment I), the state should be 
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On inputs +re,, v'<-,-,. . . . . v'd-c, the stace should be sz. 

When all the &amps are prespnred and rhe scare wtor is in a,. the e r r d  

onrput which is muneered to  the stare layer feed-forward conoeetionr mwr 

haw a high value indicating that a' is recogxized. 

Therefore. the RiVX needs to Learn from the sample word r the following transfer- 

mation: 

R - I " ( t ) . ~ ( t  - I))  + s ( t )  

such that 

x ,  i f t = 0 a n d v € V o  
(v.s, s, i f ~ < o s ~ a n d v e ~ , - ~  

r,., if 2 < 0 < 1 and v E V, 

The last fine is to ensure that the RVN does not remgmze amng sequences. Note 

char it is nor ne-ary for 



ro hold. This makc the system rolerant to variable-length segmenrs. which enable it 

to handle realirriesituations  he^ the rime taken co speak a -am word -es from 

&ranee ro imtance ewn hp the rame speaker. Funhermore. it is almost impossible 

to haw the duration of a certain segment exactly the same in dBeeent instances of 

a even word. 

In summw. 

I. A dpamieal (absrract) sysrem with input and state is nmwly  

believed to haw the potential to handle important a4pecrs of word recognition. 

The behavior of the system can be described by 

2. Them are rune-de1a)ed samples (to be wed as training data) of the ryrrem 

which include stare x i a b l e  specred to appear during the system's operarion 

These are ohrained by specifying a d ~ i r c d  behavior, where the speeifieatian 

is based on charactenzing a word by cenain segmenr~ appearing in a spffSe 

order. 

Given points I and 2. and according to s propmition by Olvmtimi 1481. if an RNX 

is ra learn the d.wamiwami~ of the system z(t)  using the available training dam. it does 
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not need more than f e e d - f o d  mmplexiq. That b, ir is only requid 10 cr- 

the feed-forward network embedded in the mmenc  architecture by mnwnrional 

mechods (back-propagation). The RVN will learn its required dpnamic behavior as 

much as rhe feed-forward network learns its srarie cask. namely. the transformation 

R : V x S - S. where V b the set of input parterns and S b rhe set of nates. 

The feed-forward neural network embedded in rhe reeurrenr architecture b o b  

tained by the following steps: 

I. Remove the csfernal output unit and its mnneerions since this pm of the 

network performs only s natic psrrern clasiKcacion r& that cao be left our 

ar this sage without Setting rhe rraining of other -. 

2. Remow the time-delay connections. 

3. Coosider the rime-delayed state wctor as pan of the inpur in the embedded 

ner~york. 

4. Consider the state -tor as the aurpur laver in the unbcdded archirmure. 

Figure i.2 demonstrates the prams 

7.2.1 Training Data for the Embedded Feed-Forward Net- 
work 

Equation (7.1) b used as the basis for obtaining the training samplw for the em- 

bedded network. Given trainiog sequencer for the RNN containing llurances of the 
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Figwe i.2: Obtaining the fed-forward neural o e w r k  embedded in rhe RVX. 

word UI that is supposed to be rmognired by the nemork s well sr iartaoe~s of 

orher words. ao algorithm h s  been designed to generate the traiaing samples for the 

embedded feed-forward network. 

Each sample generared by the algorithm is an input-outpur pair. The inpur has 

two parw: srare and (speech) kame. The generaced sampls contain all possible 

smter. That is. there are samples conraining so in their state parr. orhers mntahhg 

8 , .  and ro on. 

For samples conraining so as part of the input. there are nvo possible sraric 

OUtPYtS: 

I. s,: if the frame part of the sample belongs to segment 0 of amrd w. 

2. 8,: otherwise. 

Therefore, there should be nam~les of the farm 

input = s0.u 



where u is a h e  belonging ro segment 0 of u. The pseudo code used to 

produce such rampies is 

for each sample requence s belonging co word w 
for each b e  u in segment 0 off  

aurpur(sa. u. 8 , )  

end far 
end for 

Also. rhere should be svnple of the fann 

where v is a frame belonging m a segment that b spatiall? Merent fmm 

sewnr 0 of a. The iasw of obtaining such frames will be diseusd later. 

. Fur samples concabhg sb. k = 1. ?.3.. . . .I-I. there are three possible outputs: 

I. s,: if the arwmard frame belongs to segment k - 1 of -word w.  

2. are,:  if the -dated frame belo* ro segment k of ~wrd w. 

3. r,: otherwise. 

Far svnples conraining q in the input pan. there am two possible outputs: 

1. 81: if the -dated frame below to segment 1 - I of word w. 



. Finally. for samples containing s,. there is or& one pmsible ourpur which LS 

3-. 

7.2.2 Obtaining Frames for the undefined state s, 

.b shorn earlier. the embedded network should be t-ed to produce 3, if rhe 

Game present in the inpur is nor mnsisrenr with rhe inpur sate. This include the 

fouowing casa: 

1. The state is so and rhe Game belongs to a segment that is spatially merent 

from -enc 0. 

1. The state is a,. k = 1.2.3.. . ..1 - I. and the Game belong. to a segment char 

is spat&? different from segmentr k and k - 1 .  

3. The nare is s, and the frame belong. to a segmmr that is spatid? diaerenc 

&om sgmenr I - 1. 

Ir is wry imporrant to identify such spatially different Eegmenrs as failwe to do so 

uould probabl? lead ro problems in rraioing. For sample. ifa certain Eegmenc I was 

a ~ u n e d  mngl? to be spatially different from repent 0. the static sample 

input = so." 

output = S, 



where v belongs to segment r: muld be included in the craining rer. However. the 

training set contains. s weU. samples of the form 

rub- u belongs to sewenr 0. Since the inputs of the two sample. are practically of 

the same dara while the ourpucr s, and s, are merent. this tituarian vlolares the 

definition of a mapping. and if allowed will certainly confuse the training process. 

Even if rhe sparial characrerisrio of segment t are slightly Mezenr fmm rhme 

of segment 0. the Erame of segment I should not be used to generate samples char 

have so in the input state and s, in rhe oarput. Those frames should not be -d 

beause. after trainmg. unseen kames thar s u p p d y  belong ro segmenr 0 d U  be 

possibly v i e d  by the netrvork ro be close to bath segments 0 and i. Lf the training 

et included ruch sampler. chis would increase the chance that the network enten 

undehed state conEgurarrans for sequencer that are accepcabl? close to those used 

in Graining. Therefore. when generating rhe static samples char contain a particular 

input state and map to s,. it b necesar). to select rhe most distant segments from 

rhe one char corresponds to thar scate. One way to achieve this is by developing 

a Merence measrement bermen sepenm. and selecting the segments wlch the 

highest Merenee values. To implement such dSereece measurement. some of the 

mncepm disc-d in the previous chapter will be employed. 



A-e that there are n samples of segment o taken from words belonging ro 

dass el. and m samples of*-ent b r&n from mrds belonging ro e h  e. Let 

dist, be the weighred distance hcr ion  used for &nmg the regments of rhe ~ o r d s  

belonging to elass Q. and dish be the weighted distance h e t i o n  used for aligning 

the segments of the words belonging w c l s s  c2. F k c .  each r e p e n t  is mapped to 

a representative frame bp averws all rhe frames in rhe sewenc. ThLI results in 

two sets of frames C and I.' mnraining the representative framer for sample segruents 

of kinds o and b rerpectiwly. Second. a new distance h n i a n .  disc. is deriwd by 

averaging che weighrs of the two distance h e t i o m  dist, and discr. .4aordingly. for 

an? two frames u E ti and v E I.. the distance between them (and a h  between the 

nvo segment samples being reprerented1 is calculated as 

distlu,vl = disfi(u.vl + di512(~ .~)  

To ger an overall difference measuremenr bemen the mo kinds of segments. the 

distance between all pasible nrn h e  pairs u E C and v E 1'. is caiculared. Then 

rhe average of the pairuise dmances is taken 



F i w  7.3: Xoise handling in the recurrent networks w d  for v h a l  speech remgni- 
tmn. 

7.3 Noise Handling 

Ln the original model described in ~bseetion 7.1.1. if a m m r  sequence conrains 

some noise. :his d cause the srare to bmme s, when the nernmrk reads the h r  

noisy h e .  and stays, until the end of the sequence. Thb siruacion is nor desirable 

since it does not rolerate an?. now. What makes the model intoleram to noise is the 

fact that :he current srare is delayed ever). time to be pan of the input ro che hidden 

layer in the next rime instance. 

To make the model noise-tolerant. a mechanism to monitor the cumnr stare 

is inmrporated by having a eontml unit chat indicates whether the current state 

d caw the sequence to be rejffted when time-delayed. If this is rhe ease. the 



r w e n r  state is igmored and an inrernal counter is inemenred. The m e  renario 

is allawed to happen for subsequenr as Long as the value of the munter does 

nor exceed the d n e  d n parameter ealied the noise tolaonce parameter. If the 

nertwrk recovers h m  the wrong eon6gurarion before exceeding the noise tolerance 

parameter. the eouncer is rerer and the m e n r  srare is rimedelawd. Orhenvise. the 

sequence conraim more noise than whar can be rolerated and is eonridered -ng. 

Figue 7 3  demorstrstes the mdanism for noise handling. Note that the n o k  

tolerance parameter is the ma-- number of collsffutiw noisy h e s  chat are 

allowed to east in a eorren sequence. If chis parameter is set co zero. nor a single 

nois). frame will  be allowed to omur in a m m r  sequence. and the nerwork dl be 

noiseinrolerant. 

7.4 External Output 

The eaernd ourput unit indicates whether che sequence in correct or nor. To deter- 

mine this. rhe ourpur unit is uupected after all the input frames have been fed to the 

network. To c d d a t e  the external output. rhc scare layer is bpied inro a .Ila.dmum 

Detection Subnetwork (MDS) which makes the maximum unit one and the resr of 

the units zero. This can be implemented by a Hap&ld network performing a winner- 

take-dl competition in which e w v  unit enforce ifself and ndbirs the others. The 

final srare unit in the %IDS is. then. copled into the external output unit. This my. 

an? sequence causing the network to haw a madmum output on the state unit. 



at rhe end. will be r e m e e d  as a mrrecr sequence. Sequencer causing a maximum 

output on my other stare will be cowidered wrong. The mmputation of ihe external 

outpur is illujtrated in Figure 7.4 

F i e  7.4. Compt~tation of <he external output in the m ~ m r  network used far 
visual sp& recognition. 



Chapter 8 

Experiments, Results and 
Conclusion 

8.1 Experiments and Results 

Ln this thesis. a mmputer w t e m  for visual speech remgnirion has been presented. 

The input to the -em is a sequence of digiralimagesmntabing the face of a p-n 

during speech. In the 6rsr phaw of the sysrem's operation. rime-varying visual speech 

patterns are obtained from the sequence of images. Through a number of algontbm. 

that have been developed. main charaercrktm of the mouth are estimated. Thee  

esrimace~ are used ra initialize s deformable remplate model. An energy hnedon 

h a  been designed to mess- how well the template's gmmetrie primiriw. match 

rhe lips' ourlim in the image. Due to the relatively high dimensionality of the 

enera function. *Ling an exact solution for i s  minimization problem is not prae- 

riral. Using a numerical oprimization technique. a gwd soiurion is obtained airh 

mnsiderably less computational and storage quMmenrs than that of an exhaus 

tive method. Taking advantage of the relatively mall change between eo-utivc 



frames. the svJrem sets a~ initial pasition af each rubsequent frame rhe best fir of 

rhe preceding one. rhus. eliminarlng the Med to apply the initid operations to ever)- 

single frame. A mment neural network architsme & been proposed to c l e  

the spatio-temporal patrern obtained in the 6rsc phw.  In this network. r-nt 

mnnstions am made between the hidden laper and the state laver sa that a mnrexr 

ran he combined with the input partems which are fed to the network one ar a rime. 

Training the recurrent network is armmplished by training the feed-forward network 

embedded in the r e c m n r  architmure. To derive static rraining sample for rhe 

heed-fornard network. a certain behanor is spsi6ed when the network is pmenced 

with sample sequences. The spmi6canon is based an charmetizing agiven word by a 

Eequenee of segments appesring in s cerrain order. where each segment is a variable- 

length set of frames chat represenr a visual speech cue. Adaptive segmentation B 

employed to segment rhe training sequence of a giren e h .  Thiii method ireraw 

the execution of two steps First. rhe sample sequences are segmented indindually 

b?. an algorirhm that has been dweloped. Then, a generaked version of d.yzamic 

time warping is used ro align rhe segments of all sequences belonging to the same 

dm. . i t  each iteration. the weights of the disraoce hncrions used in the premous 

two steps are updated adap~ively in a way that minimizer a segmentation error. 

The system hm been implemented using the C language and simulated on a Sun 

Spare workstation under the Unix operacing@em. To test the performeace of the 

mottth extraecion sutsptem, the tRbnique ha4 been applied to 15 people. Fie 



8.1 shows the result of some m p l e s  

hgure 8.1: Defarmable template applied to images. 

As can be seen, the method tolerates m e  mtat~on and faoal tdt The grq. 

s d e  value8 of the pmelti m a e  h p  regon vaned bom p-n to p-n, a d  the 

program w.w 8 U I  able to get a g w d  match A h ,  the presence of f a a d  hau &d not 

&m to have afTwted the performance of the p m 5 a m  It should be noted that when 

mtch~g natural curve8 mth parametrized c m ,  &ght det& mght be rmased 

However, the final parameter values are, to a great extent, accurate Thm 18 mtable 

for the tasL of vlsual s p e d  recawt~rm, srnce the ta& nk only the d y n m c  change 
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of those parameters over tan=. Because the method of locating the mourh depends 

on Locating the qws. the syarem is Limited to c- where the 6peak 's  e y e  can be 

sen.  If the speaker's eyes are abed by wearing a pair of sunglass. for example. 

the system will not be expected M beate the mouth appropriately because it dl 

probably W in Locating the erw. 

m tm the complete ?-stem. erperimems have been carried our to recognize 6 

words: yes. no. d m .  right, left. h p m n  was recorded while uccering each word 

6 rimes using an 8 mm Sony Handycam. The remrdinp w r e  copied to a Beta 

format tape. then digitized and sampled at the rate of .Xl hams per m n d  in one 

of n ~ o  methods. Ln the k t  method. the Beta tape a9s played back one Game at a 

time using a Beta ACE editor The ACE editor produced an XTSC *a1 rhac war 

and saved to &k by a Sun Videopi- capture board. In the second method. 

the Beta rape was played by a Beta .ACE editor and the output was sent to a person01 

nnimotion w r d e r  T& recorder conssted d rwo sped&ed hardware cards that 

were pot in a Pentium cornpurer system. One of the cards was a Liw Video card wrh 

n time base corntor. The Liw Video card sent its output to a PAR board (video 

mmpress4on board) that stored the video on a hard drive in compressed format. 

The personal animation rworder system had software to recriew the video and store 

ir as a sequence of individual Games in jpg format. .A training data set consisting 

of 4 ins~alnca of each aard c l w  was used to train 6 ret-r units corresponding 

to the 6 word e l m s .  The train- -"en- w r e  segmented using the adaptive 



Table 8.1: W t s  of implementing the visual speech momt ion  sjstern to remgnize 
5 word el- (adaptive ~egmenration war used in this implemmtacion) 

Static I Connree- I Perfamance l PeIfomvlao l 

w e n t a t i o n  t d q u e  pmpcsed in chaprer 6. Accordingly. staric samples were 

generated to train rhe feed-forward nerworb m-anding to the recurrent unirs 

as dereribed in chapcer 7. Each feed-forvanl network war rrained independently for 

lDOO iterations u s i q  the badmmpagatron algorithm desrribed in subsection 2.5.1. 

Training - stopped in any of the network whenewr the wtem ermr for that 

nework w reduced to 0.01. Uter traioiog. the syaiem was rested on a data set 

consisting of the sequence [bar were not wed for training (2 instances for each 

word). Table 8.1 summarizer the training p r o m  and the ck i fua t ion  resttlts for 

the -atern. There o a ~  only- one case where a misel&eation happened. One of the 

'right' instances was eonfused to be 'p'. which cawed the performance of the .).er' 

tlnir on the <raining set to be 19/20. Due to the rdat ivel~ small size of the rraining 

data. the 'p' unit war not able to capture all the differences between the two words. 

There were no other kinds of mnfusions. In particular. rhe recognition aherne was 

able to dirringuish between 'down' and 'right' e w n  though they have m m o o  sraning 

parts (Ida/ /ra/). .Use, ' d m '  and 'no' were distinyirhable despite the fact that 

right 
left 

I 
4 

570 
532 

- 

0.0095 at 614 
0.010 at LOW 

-~ , -- 
20120 
20120 

--, -- 
10/10 
10/1O 



Table 8.2 R e d t s  of implementing the visual speech recognition system to recognize 
S word d- (adaptive segmenration was nor used in thk implementation) 

word * Static Cncnmwm Perfoerfo  Perforforfo 

0.0117 at I N 4  20120 
riEht 646 1.841 at 1Ma 16/20 8/10 
leIl 528 0.0lm a l o w  l 8 l m  9/10 

most segments in .no' do edst in 'down'. 

To show the effect of the edaptive segmentation tffhnique proposed in chis thesis. 

noorher system was built in exactly the same way as the kt one. except that the 

adaptrve segmentation of ehaprer 6 was nor used. The resulrs are swnm-ed in 

Table 8.2. 

The convergence of the second system was generally sloarer than before. indicating 

char adaptive segmentation provides an easier task to learn. Furthermore. the rlaui- 

Gcarion results were much better m the &st system thar used adaptive regmenratim. 

If is worth mencianing here thar the computational time requed ro train the t a s b  of 

the k t  system. which used adaprlve segmentation, was lea rhea the cime required 

by the ta~b of the second system. T h e  results demonstrate that segmentation plays 

a rmcial mle in vjsval rp& mopnition. and the method of adaptive segmentation 

when applied to the training sequences leads to a better -tern. 



8.2 Contributions 

1. Knowledge about the spatial ogarizacion of the human face hm been wed to 

develop a heuristic chat limits the search spaced the mouth IoentioneEect~vely 

The heuristic is baced on charaneriung the mouth by its relative laearion with 

respect io thee.- rather than local derails of rhe human mouth which are very 

sensiriw LO disrane. orientation and illumination: huthermore. these can 

Gom person to person. The ews are located IF applying a simple version of 

slit analysis to rhe Lapladan of the f a d  image. 

2. Several algorithm pmpmed here have boen applied to esrimare local me-- 

ments of the mouth. including the center. left and right corners. and upper and 

lower lips. These algorithms andme the relati- m m c u d e  of the py levels 

-ciared with horizontal and vertical lines in the region of intemr. The a l p  

tithms provide s robust means of pmitioning an initial mouth template prior 

to the appticarian of the deformable template. This is lmown to be mcial  for 

the rffhnirlue ro succeed in extracting the shape of the mourh. 

3. The two-phase minimnation algotirhm proposed in chis thesis. which u~es a 

modified version of Powell's method. has been shown to be suitable far mio- 

imizing the energy function of the mouth deformable template. w, that the 

q t e m  is able to track the speaker's mouth during s p e d .  
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4. The approach takeken to model the mouth in terms of key ppauuncrers nor only 

enabler the mraction of its shape. but also pmvidea a mmpact description of 

it for cksi6carion. 

3. The fan that rhere is a relatiwly small change in the visual speech signal 

m&s the task of visual word Eegmenrarion Meult .  This rheas presents a 

mbm method m idenre  potential eanddarpr far segment boundaries 

6. In the projrct. the dmamic t i m e w i n g  algorithm has been generalized ra take 

rewral Eequencea as input instead of ram. The generAed algorithm relets the 

repmenc boundarie~ for wards of the same =la% by &ding w i n g  paths chat 

minimize a weighted disr-ce mewme. 

7. The idea af adaprive segmenrarion has been introduced. an ioirral ~eg-  

mentarion of a ser of words belonging to a certain clsa. properties of rhe seg- 

ments are learned and refler~ed in the weights of the disc- function. d far 

remencarion and alignment sueh that a better segmentation will be produced 

if the adjusted distance functions are used. 

8 :\ mot n e d  network arehitemre h a  been proposed for visual word 

remptian. The recurrent connections between the stare and she hidden layers 

provide a context with each n p d  pattern so that the network is capable of 

caprtuinp not only the spatial charaeterirti~ of the individual pactem. bur 

also the d~namie change of the parrems d t h  time. 
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9. The proposed arehirwture for r e c o ~ t i a n  allows for a natural reqv of handling 

variablelength words by r a b g  the input patterns one st a time. This elimC 

nates the need to alter the inpur sequencer to make them of a Gred k w h .  

10. Bg specifping a desired behavior based on arord senentation. the rffurrent 

network is istrained with no more than f e d - f o d  mmpleriv. the ore tic all^ 

this approach guarantee. that the d>mamical behavior is learned ss long as 

there is an unambiguous aaining set representing the state vanables of the 

wtem in the form of static samples. 

8.3 Directions for Future Work 

8.3.1 Use of Other Articulators 

In chis thesis. the shape of the lip. hss been used far speech reapit ion.  Perhaps 

che movement of the Ixps is the maar valuable source of intormarion. bur rt e nor 

rhe only one. For example. the appearan- of the teeth and tongue ma? miss 

in automatic lipreading as ~t is believed to  do in human lipreading. A system that 

would incarporare th- arriculatom should contain a subsystem which automaticall? 

analyzer the interior of the mouth. semhing for such objects as the teeth and tongue. 

.I suitable modeling technique for the teeth and tongue muld also he neeesar).. 

8.3.2 Clustering Segments 

CYhen static samples for training are being generated. determining the mast distant 

segments from a particular segment is m e a n t  in preraving the network's ability 
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to tolerate spatial MMtialvi in -en quences. Our grscem uses a linear distanm 

hmction far the tart Tbis might not be the best way to do it. CLuneMg dl 

the r e w e n s  bared on nonlinear arwrctations to determine rhe di5erence bcmeen 

regmenrn mighr provide an i m p m d  system. for example. 

8.3.3 Nonlinear Classifiers for Segmentation 

The idea of a d a p r i ~  segmencarion is implemented using hear functions. In generai. 

linear functions have limired cladcation capabilities. Therefore. it is believed rhar 

the adaptive regmentation technique nill impmw if it u ~ e s  nonlinear hroerioni. A 

suitable arav to  implement this could be 4v neural network e l d e r s .  

8.3.4 Extension to Multi-Speakers 

LC is deirahle to exrend the -em to handle multiple speakers. We believe rhat this 

will add a new dimension to  che problw. For example, becaw people are different in 

rhe ph.~eal characrecistics of their mouths. it is possible rhat the geomerrie features 

represenring mouth shapes of rwo different speakers ar rhe same viseme be diffemnc. 

To handle this proper15 ir might be =.mar?.  to incarporare additional features 

charseretiring the speaker nrirh each frame. ;\norher implication of haring mulr~ple 

spaken is the alignment between training sequences of ditfeeent speaken. The 

distance function wed for that would have to be designed in a ww that amounts 

for the difference between Merent speech ntes but nor for rhe di&erenees eme-g 

b m  the ph*cal characteristics of rhe speakers. 
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