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ABSTRACT 

The Newfoundland mussel culture industry has experienced significant growth 

over the last tive years and growers are beginning to fully utilize the available space on 

their tenures or in some of the inshore bays. This has raised questions as to the extent to 

which a site can be stocked and what are the optimum stocking levels. A reciprocal 

transplant experiment of three mussel populations was undertaken at three commercial 

aquaculture sites of different hydrographic and environmental regimes. Variations in 

growth, survival and production were assessed bimonthly in relation to seston flux, 

temperature and salinity, which were measured over 2-3 weeks at several stations on each 

site. Calcium Sulfate cylinders were calibrated with S4 current meters to assess relative 

current speeds. A strong positive relationship was established between cylinder 

dissolution and actual current speeds providing a useful index for calculating seston flux. 

Mussel growth and production varied according to season, populations, site and location 

within a site (ANOVA, p <0.05). Survival of all mussels exceeded 85% at all sites. 

Population differences explained variations in survival. Differences in mussel 

performance were related to the relative seston flux and showed higher as well as more 

uniform growth and production in areas of higher flux. The importance of relative food 

flux measurements is discussed in relation to site evaluation criteria and production 

capacity estimates. 
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1.0 INTRODUCTION 

1.1 Biology 

The blue mussel, Mytilus edulis, is distributed in the boreal and temperate regions 

ofthe Northern and Southern Hemisphere (McDonald et al., 1991). In the Southern 

Hemisphere M. edulis occurs along the west coast of South America, the Falkland and 

Kerguelen Islands (McDonald et al., 1991). In the Northern Hemisphere, the species 

occurs on the west coast ofthe Atlantic extending from the Atlantic Provinces of Canada 

to Cape Hatteras in North Carolina. In European waters it occurs in the White Sea and 

along the Atlantic coast of southern France (Varivo et al., 1988). The waters off the coast 

ofNewfoundland are home to two species ofMytilids, the blue mussel M edulis and M. 

trossulus. The two species are not visibly distinguishable from each other in sympatric 

populations and there is little hybridization (Innes and Bates, 1999, Penney et al., 2002). 

The only accurate method of classification is by electrophoresis and DNA gel analysis. 

Therefore unless stated, any reference to "blue mussels" will include both species of 

Mytilids (Figure 1 ). 

Mytilids are bivalves, which inhabit a wide range of estuarine and marine 

environments. Mussels attach to rocks, jetties and piers and sometimes form dense beds 

on sandy flat substrates. They can be found from the low tide level to a depth of 50 

meters (McDonald et al., 1991). The blue mussel has a wide temperature tolerance; 

sustaining optimal growth to a maximum temperature of20°C (Almada-Villela et al., 

1982), growth is compromised at 0°C yet remains significant below 5°C in the presence 

of adequate food levels (Loo and Rosenberg, 1983, Mallet and Carver, 1993). Mussels 



are suspension teeders. They feed by filtering particles from the water. The main source 

of food is phytoplankton while decomposed macrophytes or resuspended detritus may 

also supplement their diet. 

Figure 1: Blue mussels, Mytilus spp. from Newfoundland, Canada (Photo credit, 
Sean Macneill). 



Mussels are dioecious. They are easily distinguished, as male gonads 

appear creamy white while females are slightly orange. The orange color is due to oil 

droplets in the developing eggs (Gosling, 1992). Blue mussels are broadcast spawners; 

therefore fertilisation occurs in the water column. In this environment, successful 

fertilisation is very low and the fecundity of these animals is extremely high. A single 

female mussel may produce between 5 and 12 million eggs in a year (Thompson, 1979). 

In Newfoundland, spawning occurs predominantly in late June (Sutterlin et al., 1981, 

Macneill et al., 1999). This is typically a single annual occurrence however the present 

study, as well as others have found evidence of a secondary-spawning events later in the 

year in blue mussel populations (King et al., 1989, Pryor et al. , 1999). This is considered 

to be characteristic of mussels under more favourable nutritional conditions during the 

fall and early spring (Rodhouse et al., 1984). 

The ontogenetic larval development of mussels is similar to other marine 

bivalves. Once fertilised, it takes five hours at 18°C for the embryo to develop small cilia 

and begin to swim freely. The life cycle is affected by temperature (Baird, 1966) and an 

embryo requires 100 hours to reach the veliger stage at 8°C. The planktotrophic larvae 

feed on small phytoplankton cells and begin to develop the larval shell, which has a 

distinct D shape and measures approximately 95 !liD in length (Schweinitz and Lutz, 

1976). In 3 weeks, the mussel grows to over 200 !liD (Bayne, 1965, Penney, 1993). The 

late stage larva is referred to as a pediveliger and may be distinguished by the 

development of a foot and eyespot. The timing of this stage is negatively correlated with 

temperature (Bayne, 1965). At this time the mussel searches for a suitable substrate for 
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settlement such as a rock. wharf or collector. The larva then extends the foot and anchors 

itself to the surface and undergoes metamorphosis, after which it develops into a juvenile 

and mature adult. 

1.2 Mussel Culture in Newfoundland 

Culture of the blue mussel is a developing and expanding industry in 

Newfoundland. Presently mussels account for the largest cultivated shellfish production 

in Newfoundland and in Canada. The industry in the province has been involved in 

commercial efforts to produce mussels since the early 1980's. Initial yield for the 

province was a mere 70 tonnes in 1989. However, the industry has since expanded 

producing 1,700 tonnes in 1999 (Government ofNewfoundland and Labrador, Fisheries 

and Aquaculture Production Statistics, 2000). Newfoundland's projections for 2003 

however, are estimated at a total of 4,500 tonnes (Burke Consulting Inc., 2000). As the 

industry continues to grow and expand there will be concerns related to mussel growth 

rates and site carrying capacity. To address these potential constraints, studies examining 

improved husbandry practices and the development of production capacity models that 

account for available food, rate of delivery, population densities and environmental 

factors will be beneficial to the mussel culture industry. 

1.3 Seston Availability 

The amount of available seston in a given volume ofwater is never constant even 

in the absence of grazers (Navarro and Thompson, 1995). It is a dynamic food source, 
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consisting primarily of phytoplankton. However, bacteria, decomposed macrophytes or 

resuspended detritus also constitute part of the natural seston available as tood to 

bivalves. Food availability. both planktonic and particulate, has been demonstrated to 

significantly control the seasonally changing metabolism of mussels regardless of water 

temperature (Hatcher et al., 1997). 

1.3.1 Effect of Temporal Variations in Seston Availability on Mussel Growth 

1.3 .1.1 Variations and Effects of Annual Seston Availability on Growth 

Seston concentration is greatly influenced by oceanographic processes and factors 

such as currents, availability of light and nutrients. By considering the inter-annual 

variations in temperature, wind and nutrient availability due to run off, annual production 

measured in a body of water year after year can vary greatly (Navarro and Thompson, 

1995). In addition, long term studies of phytoplankton availability in the North Sea 

indicate that new production in coastal waters may have increased by 25% in recent 

decades (Richardson and Pedersen, 1998). 

Annual variations in seston availability affect the reproductive output ofbivalves 

(MacDonald and Thompson, 1985b ), which in turn contribute to variations in total annual 

production. Mussels have an opportunistic reproductive strategy in which they invest 

excess energy into gametes when favorable conditions allow, ensuring continued 

prosperity in an unpredictable environment (Thompson 1979, MacDonald and 

Thompson, 1985b ). Somatic growth is not associated with improved environmental 

conditions (MacDonald and Thompson, 1985a). This conservative effort utilises the 
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surplus energy without creating the nutritional demands of additional body mass, which 

may not be supported in subsequent years. 

1.3 .1.2 Variations and Effects of Seasonal Seston Availability on Growth 

Seston availability fluctuates seasonally (Navarro and Thompson, 1995). Despite 

the high degree of variability in the planktonic habitat, there are regular occurrences of 

blooms in seasonal cycles. The exact timing of a bloom is however subject to climatic as 

well as hydrodynamic variables and therefore is difficult to predict. The occurrence of a 

"Spring bloom" which occurs in populations previously light limited, is often dependent 

upon the stratification ofthe water column (Riley, 1947, Sverdrup, 1953, Legendre, 1990, 

Pitcher and Calder, 1998), which is caused by warming at the surface and run-off 

(Richardson and Pedersen, 1998). As a result phytoplankton are retained in the surface 

layer where conditions for development are more favorable. The timing ofthis 

occurrence can vary greatly from year to year by a matter ofweeks (Yin et al., 1997) or 

even months (Smayda, 1998). These blooms can also be interrupted or hindered by the 

breakdown of the stratification by energy inputs such as wind, tidal currents and cooling. 

Quite often in subarctic regions such as Newfoundland, autumn blooms occur. 

Cooling of the surface layer and subsequent autumn turnover can initiate this process. 

This mixing provides an input of nutrients from resuspended bottom material to drive the 

bloom similar to those, which occur as a result of upwelling (Legendre, 1990, Pitcher and 

Calder, 1998). 
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Seasonal influxes of primary production in a system have been correlated with 

mussel growth suggesting that phytoplankton is the main source of food (Widdows et al., 

1979, Page and Hubbard, 1987, Mallet and Carver, 1989, Deslous-Paoli et al., 1990, Page 

and Ricard, 1990, Grant, 1996). The correlations are often made under the assumption of 

a time lag, which reflects the time required for metabolic conversion of absorbed energy 

from the bloom into growth, which is specific to the size of the animal (Page and 

Hubbard, 1987, Page and Ricard, 1990). 

During months when phytoplankton populations are light limited by day length 

and ice cover, primary production is low and mussels may exhibit signs of food 

deprivation (Hatcher et al., 1997). 

1.3.1.3 Variations and Effects ofTidal Seston Availability on Growth 

Further fluctuations in seston concentration and composition occur as well on 

shorter temporal scales. Seston supply is influenced by its rate of delivery. On spring 

tides (large tides) the turnover of seston is greater. Conversely, on neap tides there is less 

of an exchange of seston. Considerable tidal variability has been found with higher levels 

of total particulate matter (TPM) during the spring tides due to resuspension (Hawkins et 

al. , 1996, Barille et al. , 1997). Barille et al. (1997) reported an extreme range of seston 

(20-350 mg·L-1
) over a spring-neap cycle in an oyster estuary. 

Temporal variations in food supply have been reported as well over a tidal period 

(Litaker et al., 1987, 1993, Fegley et al. , 1992, Muschenheim and Newell, 1992, Zurberg 

et al., 1994, Hawkins et al., 1998), with the increased velocity of ebb and flood tide 
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currents. the relative contribution of resuspended microalgae, detritus and silt increased 

(Verity et al., 1998) near bottom. Chlorophyll concentrations may be lower during ebb 

than flood tides, which has been ascribed to the feeding activity of bivalves (Srnaal and 

Haas, 1997). The range of seston concentrations measured in a single tide can be as great 

as the range of seston recorded at the same site for an entire year (Fegley et al. , 1992, 

Newell et al., 1998). 

Short-term variability in phytoplankton availability, that is less than 24 hours, will 

depress the assimilation efficiency of Mytilids (Frechette and Bourget, 1987). Providing 

that this occurs daily in accordance with the tidal cycle, it stands to reason that growth 

and production would be limited. 

1.3 .1.4 Variations and Effects of Storm Induced Seston Availability on Growth 

On a more unpredictable level, short-term fluctuations in food available to 

suspension feeders may occur during storm events including periods of increased wind 

velocities and wave action (Bock and Miller, 1995, Pedersen et al. , 1995, Srnaal and 

Haas, 1997, Cranford et al. , 1998, Pitcher and Calder, 1998), as well as river discharge 

(Yin et al. , 1997) and coastal upwelling (Pitcher and Calder, 1998). These inputs of 

energy can break the stability of stratification and interrupt phytoplankton blooms or 

enhance it further by adding inputs of nutrients from resuspended bottom material. 

Cranford et al. (1998) studied seston during a wind-induced resuspension event and 

reported large fluctuations in seston availability (1 to 30 mg·L-1
). 
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The interruption or hindrance of a regular seasonal bloom by storm events can 

seriously depress the growth and production of a bivalve population as the food stores, 

w·hich are relied upon for reproductive output and somatic growth are not available. 

Storm events more frequently result in a decrease of seston quality conditions as opposed 

to increasing seston availability. This will be discussed further in the section on 

"Variations in Seston Quality". 

1.3.2 £.fleets of Spatial Variation in Seston Availability on Bivalve Growth 

The supply of seston to a population of bivalves is a result of the larger scale 

patterns of the seston concentration and the hydrodynamics of the water body (Cahalan et 

al., 1989). For this reason, spatial variations in seston availability may exist within 

kilometers of each other (MacDonald and Thompson, 1985a, b, Page and Ricard, 1990, 

Stirling and Okumus, 1994), within mussel beds (Carlson et al., 1984, Wildish and 

Kristmanson, 1984, Okamura, 1986, Newell, 1990, O ' Riordan et al., 1993, Svane and 

Ompi, 1993), within the water column (Page and Hubbard, 1987, Frechette and Grant, 

1991 , Smaal and Haas, 1997, Andreassen and Wassmann, 1998, Sara et al. , 1998), within 

suspended raft culture (Blanco et al. , 1995, Perez Camacho et al., 1995, Mueller, 1996, 

Navarro et al. , 1996) and within suspended longline culture (Rodhouse et al. , 1985). 
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1.3.2.1 Variation and Etfects ofScston Availability amongst Experimental Sites on 

Growth 

MacDonald and Thompson (1985a) in a study of four sites around the island of 

Newfoundland and one in New Brunswick, reported differences in seston availability 

among study sites. Similar fmdings noted differences in phytoplankton biomass between 

two experimental sites along the coast ofCalifornia (Page and Ricard, 1990) and two 

Scottish sea lochs (Stirling and Okumus, 1994). Inshore areas have a tendency to have 

higher total seston concentrations than offshore areas (Page and Ricard, 1990). Stirling 

and Okumus ( 1994) suggested the lower phytoplankton biomass at one of their sites was 

due to its high level. of enclosure, limited light penetration due to mountains and tidal 

currents. These studies reported differences within their own sites however, by 

comparing the studies to each other, the results also indicate large spatial variations in 

seston concentration owing to their extensive geographic range. 

Spatial variation in seston availability affects the growth and nutritional condition 

of filter feeding species (Page and Ricard, 1990, Stirling and Okumus, 1994). Mussel 

growth is typically elevated at sites with greater chlorophyll-a concentrations (Page and 

Ricard, 1990, Stirling and Okumus, 1994). MacDonald and Thompson (1985a, b) found 

that not only somatic growth but total production due to reproductive output was 

enhanced at sites with greater food availability. Grant (1999) predicts that a more variable 

food environment will result in greater variability in growth of shellfish. 
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1.3.2.2 Variation and Effects ofSeston Availability within Mussel Beds on Growth 

Bivalves. in dense populations, demonstrate the ability to deplete the "near-bed

environment" oforganic seston particles in flume studies (O'Riordan et al. , 1993, Prins et 

al., 1995, Rheault and Rice, 1996) and in field studies (Frechette and Bourget, 1985a, b, 

Rodhouse et al., 1985, Smaal et al., 1986, Newell and Shumway, 1988, Frechette et al. , 

1989). Similarly, in tidally reversing flows, animals positioned on the "upstream edge" of 

the relative flood tide, which receive the flow frrst may deplete the available seston to a 

level that inhibits the growth of mussels on the "downstream edge" (Carlson et al., 1984, 

Karayuecel and Karayuecel, 2000). The extent to which the seston is reduced is inversely 

proportional to its delivery rate by the tide in most studies on mussels. 

Variations in seston availability due to competition from other bivalves result in 

limited growth and production (Frechette and Bourget, 1985b, O'Riordan et al., 1993, 

Rheault and Rice, 1996). It should not be assumed however that growth and production 

increase/decrease over a wild bed or culture site at the same rate. Growth in dense 

populations of bivalves may be greater on the edge of large mussel beds where there is 

less depletion of seston by other mussels (Wildish and Kristmanson, 1984, Okamura, 

1986, Newell, 1990, O'Riordan et al. , 1993, Svane and Ompi, 1993). Each ofthese 

studies measured characteristically low average current speeds. Therefore, growth in a 

population of bivalves is not simply a function of seston concentration or flow velocity, 

but instead, a result of these two components acting in combination, i.e., seston flux. 

Seston depletion over dense mussel beds may therefore be compensated for by higher 

flux rates (Grant, 1999). Areas with characteristically higher current may support a higher 
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biomass of mussels (Frechette and Bourget, 1985b, Frechette et al. , 1989, NewelL 1990. 

Rheault and Rice, 1996, Campbell and Newell, 1998, Frechette and Bacher, 1998, Newell 

et aL 1998). Growth rates within benthic populations of wild bivalves have been 

correlated to seston f1uxes in field situations (Wildish and Kristmanson, 1985, Eckman, 

1987). 

1.3.2.3 Variation and Effects ofSeston Availability with Depth ofBed on Growth 

In Eastern Newfoundland larger seston rations are representative of shallow water 

environments (MacDonald and Thompson, 1985a, b). Similar fmdings were reported off 

Otsuchi Bay, Japan (Nakaoka, 1992) with shallow water experimental sites indicating 

characteristically higher seston biomass than their deep-water counterparts. This is due 

largely to increased primary productivity is likely due to warmer water temperatures and 

greater light penetration. 

Improved shell growth, notably somatic growth and greater production in bivalves 

have been reported in shallow water sites owing to higher food availability (MacDonald 

and Thompson, 1985a, b, Nakaoka, 1992). 

1.3.2.4 Variation and Effects ofSeston Availability within the Water Column on Growth 

Studies comparing seston availability within the water column have yielded 

varying results. Page and Hubbard (1987) in an offshore study off California found 

higher chlorophyll-a and phaeopigment concentration at 9 and 18 m than at 2 m. A period 

of thermal stratification occurred in both years of the study from late May through 
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September. Water temperatures could vary by as much as 4°C from a depth of2 m to 18 

m. In this study, mussel growth rate was associated with phytoplankton abundance, but 

not water temperature. In a similar open ocean system in the southern Mediterranean, at 

comparable time of year, higher phytoplankton abundance occurred at 5 mas opposed to 

15m (Sara et al., 1998). 

Suspension culture is designed to utilise more of the water column, taking 

advantage of not only horizontal flux but vertical flux as well. By utilising the water . 

column suspension culture allows more water to flow past the mussels in order to 

maximise production (Thorarinsd6ttir, 1996). However, variations in seston availability 

have occurred locally in both high-density raft culture (Navarro et al., 1991, Blanco et al., 

1995, Perez Camacho et al., 1995, Heasman et al. , 1998) and longline culture (Rodhouse 

et al., 1985). 

Several studies have shown that growth of mussels as a function ofheight off the 

bottom is related to the concentration of organic matter as opposed to mere seston 

concentration (Frechette and Bourget, 1985b, Page and Hubbard, 1987, Sara et al., 1998). 

This will be discussed further in the section concerning spatial variations in seston 

quality. 

Studies of high-density raft culture have reported "edge effects" similar to those 

found in benthic beds, the result of intraspecific competition and decreased flow (Navarro 

et al. , 1991 , Fuentes et al., 1994, Mueller, 1996, Navarro et al. , 1996, Heasman et al., 

1998). These farms were not placed in areas of low flow. The problem occurred 

following the placement of the farms. Current flow through a dense raft is not laminar 
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(Blanco eta!.. 1995). The majority of the flow is diverted around the raft, within a raft, 

the flow aligns along its major axes and is greatly reduced (Boyd and Heasman, 1998). In 

the study by Boyd and Heasman ( 1998) flow was reduced by over 82% inside the raft. 

Seston flux values decreased, reducing growth and production. Growth rates were 8% 

higher and the percentage of marketable mussels was 30% higher on rafts with increased 

rope spacing (Heasman et al. , 1998). 

Similar growth patterns were encountered with longline suspension culture 

(Rodhouse et al. , 1985, Grant, 1999). Like raft culture, longline systems deflect currents 

away from the farm reducing flow through the farm by 30% or more of ambient with the 

rest ofthe flow being forced around the farm or below it (Gibbs et al., 1991). Mussel 

growers, by adjusting the spatial organization of their suspension culture may reduce the 

deflection of currents around and under their farms thereby manipulating food 

availability to mussels. 

1. 4 Effect of Seston Quality on Bivalve Growth 

Growth patterns of bivalves are not affected by the quantity of total particulate 

matter (TPM) available or the measure of particulate organic matter (POM) but usually 

the proportion between these two variables (Bayne and Worrall, 1980, Bayne et al. , 1987, 

Page and Ricard, 1990) until an asymptote is reached (MacDonald et al., 1998). There is 

a positive relationship between the pulse-like growth of mussels, which alternates 

between growth, and de-growth phases with fluctuations in the POM:TPM (Sara et al. , 

1998). Bivalves select organic particles and reject inorganic particles regardless of the 
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total seston concentration. However this relationship diminishes as the percentage ofthe 

organic content of the seston decreases (Bacon et al., 1998). Variations in the filtration 

rates of mussels have been attributed to a decrease in clearance rate due to increasing 

TPM (Prins et al. , 1994). In addition to a reduction of clearance when exposed to 

increasing seston concentrations, bivalves increase pseudofaeces production resulting in 

maximum ingestion rates that are predetermined by the species (Clausen and Riisgard, 

1996, Arifm and Bendell-Young, 1997, Bacon et al. , 1998). 

1.4.1 Temporal Variation in Seston Quality 

1. 4 .1.1 Seasonal Variation and Effects in Seston Quality on Growth 

Seston quality can vary seasonally, similar to seston availability. During the 

spring bloom, the energy content of seston is at its peak (MacDonald and Thompson, 

1985a). The percentage of organic matter in the seston is often at its highest 

concentration at this time while relatively low during winter (MacDonald and 

Thompson, 1985a, Prins et al., 1994, Navarro and Thompson, 1995, Sara et al., 1998). 

Studies under similar conditions to this one reported 43% POM in Bellevue, NL at 0 to 

15°C (Thompson, 1984) and 35 to 55% in Whitehead, NS at 9 to l8°C (Carver and 

Mallet, 1990). In some situations, spring run-off or re-suspension (Sara et al. , 1998) may 

dilute this influx ofPOM. 

Bivalves will flourish during the spring bloom, translating the high quality seston 

into reproductive and somatic growth (Sara et al. , 1998). Elevated levels of POM:TPM, 

greater than 40%, generally result in higher seasonal growth patterns (Bayne and Worrall, 
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1980). However. during periods of high-suspended loads, the animals will enter a phase 

of "de-growth" until the ratio of POM to TPM increases (Sara et al. , 1998). 

1.4.1.2 Variation and Effects of Seston Quality Due to the Tidal Cycle on Growth 

In shallow tidal estuaries spring tides have been reported to deliver higher levels 

of seston than neap tides due to the enhanced shear forces acting on the bottom (Barille et 

al., 1997). The resulting available seston is therefore greatly due to resuspension in near 

bottom situations (Grant and Bacher, 1999). Chlorophyll-a and POM increase linearly 

with the increasing seston; however the POM:TPM decreases (Widdows et al., 1979, 

Berg and Newell, 1986, Hawkins et al., 1996, Barille et al., 1997). 

Chlorophyll-a values have been found to be lower on the ebb tide than the flood 

tide due to the feeding activity of bivalves in dense culture situations (Smaal and Haas, 

1997). The organic content of the seston is also lower during low tide due to 

sedimentation (Srnaal and Haas, 1997). 

In the event that Mytilids interrupt feeding frequently due to a reduction in the 

quantity or quality of available food, the production of the mussel population will decline 

(Deslous-Paoli et al., 1990). Shell growth rate has been found to respond to changes in 

the percent organic matter on a daily time scale in infaunal clams, with no lag or memory 

to previous seston parameters (Bock and Miller, 1994). 
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1.4.1.3 Variation and Eftects ofSeston Quality Due to Storm Events on Growth 

Cranford et al. ( 1998) reported that resuspension of bottom materials during a 

storm results in large range of nutritional quality in the seston (25-50% organic content). 

These data coincide with similar studies on the effects ofresuspension by wind-induced 

waves wherein the organic content ofthe seston was diluted (Bock and Miller, 1994, 

Smaal and Haas, 1997). 

Absorption efficiency in bivalves following a storm event is closely related to 

seston quality, declining exponentially with decreasing seston quality (Cranford et al., 

1998). Daily growth rates in bivalves have been correlated to seston quality following 

resuspension by to wind-induced waves (Bock and Miller, 1994). These bivalves 

responded to changes in POMona daily time scale with no time lag (Bock and Miller, 

1994). 

1.4.2 Spatial Variation in Seston Quality 

1.4.2.1 Variations and Effects of Seston Quality on Growth 

The quality of seston has been shown to vary among sites (MacDonald and 

Thompson, 1985a, b, Page and Ricard, 1990, Stirling and Okumus, 1994). The 

percentage ofPOM is often found to be higher at one experimental site than another, 

which is also characterised by higher mean chlorophyll-a concentrations (Page and 

Ricard, 1990, Stirling and Okumus, 1994). 

Sites characterised by higher percentages ofPOM have been found to support 

improved growth (Page and Ricard, 1990, Stirling and Okumus, 1994) and production 
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(Bayne and WorralL \980, MacDonald and Thompson 1985b). In these studies some 

sites were out-performed in spite of abundant TPM concentration, which suggests that 

variation in seston quality as opposed to quantity is the limiting factor for growth (Bayne 

and WorralL 1980. MacDonald and Thompson, 1985b, Page and Ricard. 1990, Stirling 

and Okumus, 1994 ). 

1.4.2.2 Variation and Effects of Seston Quality within a Bottom Culture Site on Growth 

Measurements taken upstream from and within a mussel bed indicate a large 

reduction in seston quality directly over a mussel bed (Muschenheim and Newell, 1992), 

suggesting particle selection processes are at work. Chlorophyll, total diatoms, benthic 

diatoms and total diatom cell volumes each indicated a reduction directly over the bed 

when compared to the incoming water from upstream due to filtration of POM by the 

bivalves (Muschenheim and Newell, 1992). The degree to which POM:TPM is reduced is 

dependent on patch size and therefore mussel biomass. 

Seston quality is reduced as it passes over a dense mussel bed (Muschenheim and 

Newell, 1992). In a large patch, turbulence is required to replenish TPM levels to prevent 

food limitation. However, the reliance on turbulence is a reliance on low quality sediment 

loaded seston (Smaal and Haas, 1997). As a result, animals within the center of a large 

bed exhibit food limited growth due to the depletion of POM by animals on the edges of 

a bed (Okamura, 1986, Newell, 1990). The extent of the depletion of POM is dependent 

upon the size of the patch (Newell, 1990, Svane and Ompi, 1993) and the rate of delivery 

of seston, i.e. , seston tlux (Newell , 1990). 
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1.4.2.3 Variation and Effects ofSeston Quality with Depth ofBed on Growth 

In a 3 year study, MacDonald and Thompson (1985a, b) reported the energy 

content of seston was greatest in the shallow water experimental sites for the first half of 

their study while no pattern existed in later months. In addition to energy content, the 

particle size spectra also varied greatly with depth wherein the surface layer was 

composed of predominately phytoplankton while deeper depths were characterised by 

low seston concentrations with similar volumes of phytoplankton, miscellaneous 

plankton and detritus (MacDonald and Thompson, 1985a, b). 

MacDonald and Thompson (1985a) reported negative correlations between 

differences in somatic weight and depth at 3 of 5 sites studied. These sites were each 

characterised by decreasing quality of seston with increasing depth. 

1.4.2.4 Variation and Effects ofSeston Quality within the Water Column on Growth 

Depleted chlorophyll-a and phaeopigment concentrations have been recorded just 

above a mussel bed (Frechette and Bourget, 1985a). Further reports indicate low levels of 

organic seston in the benthic boundary layer due to dilution by resuspension of sediment 

(San\ et al., 1998). A comparison of surface and bottom samples indicates higher total 

seston concentrations on the bottom (Smaal and Haas, 1997). However, the quality ofthis 

seston is greatly reduced by resuspended inorganic matter (Frechette and Bourget, 1987, 

Smaal and Haas, 1997). 

Frechette and Bourget (1985b) reported improved growth in caged mussels held 

just 1 m above the control animals on the bottom. Animals within the benthic boundary 
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layer endured food limited growth due to the poor quality of seston caused by sediment 

loading. A comparison of suspension culture versus bottom culture in Iceland had 

improved growth and production within the water column as opposed to within the 

benthos (Thorarinsdottir, 1996). 

1.5 Carrying Capacity 

Carrying capacity can be defmed as the stocking density at which production 

levels are maximised without negatively affecting growth rates (Carver and Mallet, 

1990). While carrying capacity concerns have not been an issue previously in the 

relatively new Newfoundland mussel culture industry, as the industry continues its rapid 

growth, questions of carrying capacity will arise. However carrying capacity has been 

studied in other areas ofthe world at varying levels of effect utilising a multitude of 

approaches, categorised as: global models, empirical models, calculations of budgets and 

simulation modeling. 

Global models provide a simple reliable empirical function ofthe biomass, based 

on historical production data (Lawrence, 1996). This model design does not account for 

inherent temporal or spatial variations in the carrying capacity. 

Empirical models represent some view of the dependence between bivalves and 

ratio of food supply to seston flux (Incze et al. , 1981 ); seston depletion correlated with 

the density of the bed (Smaal et al. , 1986); food supply divided by food demand 

estimated from in situ measurements (Carver and Mallet, 1990). 
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Budgets of energy transfers during production (Rosenberg and Loo, 1983, 

Rodhouse and Roden, 1987, Deslous-Paoli et al., 1990) are useful in assessing the 

relative importance of several variables in the ecosystem. However, they are limited 

within spatial and temporal boundaries. They do not account for the impact of shellfish 

culture on the overall dynamics of the system, or the regeneration of food within the 

shellfish system (Raillard and Menesguen, 1994). 

Simulation modeling is designed to account for the spatial variability of both 

biological demand and physical characteristics ofthe system characterising the role of the 

filter-feeder by measuring the depletion of phytoplankton as well as their positive effect 

on nutrient cycling and subsequently primary production. Some models have been based 

upon energy budgets in which the environment was assigned (Ross and Nisbet, 1990, 

Frechette and Bacher, 1998). More recent models are designed to dynamically pair 

bivalves to their environment (Raillard and Menesguen, 1994, Grant, 1996, Dowd, 1997). · 

Creating an accurate forecast of bivalve growth as a function of environmental 

and oceanographic variables is a complex task. It must account for the influences of 

spatial and temporal variations in the quantity and quality of the available seston 

(Schulte, 1975, Frechette and Bourget, 1985a, b, Fegley et al. , 1992, Barille et al. , 1997), 

fluctuations in flow (Loo and Rosenberg, 1983, Grizzle et al. , 1992, Eckman and 

Duggins, 1993, Claereboudt et al. , 1994, Leichter and Witman, 1997) and particle flux 

(Frechette et al. , 1989, Grizzle and Lutz, 1989, O'Riordan, et al. , 1993, Wilson-Ormond 

et al. , 1997, Roegner, 1998). Difficulty in assessing such a predictive model occur even 

when the variables are known; direct measurements of seston availability are often 
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complex because the sample is not always representative as to what is accessible by the 

animal (Abelson et al., 1993). This problem becomes even more difficult when 

considering sessile animals that can not actively hunt for potential food, but must rely on 

ambient currents to supply them. 

The present empirical study differs from those previously mentioned as it has 

been conducted in a boreal environment on cultured mussels and in suspension culture. 

As well, this study encompasses the main concepts of carrying capacity. However, 

instead of defining the upper limit as the maximum stocking density at which growth rate 

does not decline, it is defmed by the optimal sustainable yield, i.e., production capacity. 

Production capacity includes economic variables, such as considering the yield per unit 

cost faced by the grower. This may mean that due to the increased stocking density, 

growth rates are decreased somewhat but overall, annual production is increased. This is 

a more practical tool for the grower as it answers: Does the production yield at density 

"X" warrant the time, effort and equipment cost? The study was designed to develop a 

basic guideline, which will aid mussel farmers in site selection as well as the estimation 

of production on a sustainable/optimal basis. 

1.6 Reciprocal Transplants 

The focus of this study was to examine the effects of environmental factors such 

as temperature, salinity and seston flux on the growth and production of blue mussels 

held in suspension culture. However it is important to firmly establish that our fmdings 

are the result of environmental influences, and not merely a genetic component of growth 
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(Koehn and Gaffney, 1984. Rodhouse et al., 1986, Tremblay et al. 2001). Growth 

performance variations due to genetic effects have been found among animals originating 

from different oceans (Jamieson and Heritage, 1989), within closer proximity in 

neighboring seas (Johannessen et al. , 1990, Kautsky et al. , 1990) and even from sources 

within kilometers of each other in the same coastal waters (Widdows et al. 1984, 

Swarbrick et al. , 1988, Mallet and Carver, 1989, Stirling Okumus, 1994). Fuentes et al. 

(1994) using four closely related stocks found significant effects on growth rate despite a 

slight genetic differentiation. It has been found that family genotype has a clear effect on 

the competitive influence of each individual on its neighbors and its neighbors and its 

response to competition from them (Brichette et al., 2001). As a result, it is necessary to 

employ reciprocal transplants when trying to quantify the extent to which observed 

differences in growth rate are based on environmental factors or genetic variation 

(Widdows et al. , 1984, Mallet and Carver, 1989, Kautsky et al. , 1990, Page and Ricard, 

1990, Stirling and Okumus, 1994, Iglesias et al. , 1996). 

1.7 Objectives 

The objectives of this study were: 

1. To quantify mussel growth and survival in relation to temporal variations in seston 

flux, quantity and quality. 

2. To quantify mussel growth and survival in relation to spatial variations in seston flux, 

quantity and quality, within and among sites. 
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3. To utilize growth and survival as functions of temporal and spatial variations in 

seston t1ux to determine if each site has stayed within or exceeded its optimal 

stocking density. 

4. To determine temporal and spatial variations in environmental characteristics 

(temperature, salinity, current speed and direction) of each site in relation to mussel 

growth. 

5. To test Grant's hypothesis ( 1999) that a more variable food environment will result in 

greater variability in growth of mussels. 

6. To develop a practical means of monitoring relative current speed utilising the rate of 

dissolution of plaster cylinders. 

7. To develop a basic guideline that will aid mussel farmers in site selection as well as 

the estimation of production on a sustainable/optimal basis. 

The primary hypothesis being tested is that higher seston flux will promote higher growth 

and production. A secondary hypothesis is sites with characteristically higher seston flux 

will demonstrate more uniform growth and production. 
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2.0 MATERIAL AND METHODS 

2.1 Study Sites 

Experiments described in this study were performed between September 1997 and 

November 1998. Three sites were selected from a number of culture sites around the 

island of Newfoundland, on the basis of their hydrographic and geomorphic 

characteristics as well as accessibility and production history. Burnt Arm South ( 49° 35' 

N. 54° 38 ' W) is located approximately 130 km NE ofthe Town of Grand Falls-Windsor 

(Figure 2). This study site was characterised as a shallow semi-enclosed bay. The Reach 

Run (49° 25' N, 54° 40' W) is located 123 km NE of Grand Falls-Windsor (Figure 2). 

This study site was characterised as a shallow flow-through system. The Big Island site 

( 49° 29' N, 55° 41' W) is located 63 km NW of Grand Falls-Windsor (Figure 2). This site 

is also characterised as a shallow flow-through system; however, flow at this site is 

interrupted by a series of islands. All three sites had a farm production history of at least 

tive years. 

2.2 Mussels 

Beginning September 17, 1997 and finishing October 7, 1997, blue mussels were 

stripped hom collector ropes from the three grow out sites. Each source was assessed for 

initial she ll length (n= 150, nearest 0.1 mm) and condition index (n=30, CI= dry soft 

tissue wt (g) • dry shell wt (g) _, • I 00) prior to placing the animals in socks. Mussels 
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Figure 2. Map ofNewfoundland. Dots represent experimental sites. 
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were placed in 3 meter socks at approximately 200 animals• 30 cm-1
• The sock material 

utilised varied slightly in mesh size depending upon the initial size ofthe mussels and 

grower preference but initial densities and sizes of the mussels were comparable. In 

addition, at each site, mussels were placed in six square-based, pyramidal- shaped pearl 

nets (mesh size= 6 mm, n=150 mussels• nef1
). All pearl nets with animals were hung on 

existing production lines to await transplantation. This date hinged upon the approval of 

transfer permits from the Government ofNewfoundland and Labrador. 

The determination of the ratio of M edulis: M trossulus at the onset of the 

experiment in each seed source was characterised according to hmes et al. ( 1999) where 

species were distinguished by PCR amplification of a diagnostic nuclear DNA marker. 

The Innes et al. ( 1999) study sampled spat from the same seed sources and cohort as the 

present study. 

2.3 Transplant Experiment 

Two weeks following the completion of placing the mussels in socks, the 

reciprocal transplant experiment began. On October 19, 1997, all socks, regardless of 

their destination were removed from experimentallonglines and placed in plastic totes. 

Socks were identifiable by either sock color or identification tags. In total 324 socks from 

each source were transferred reciprocally to each site (54 socks•source-1•line-1
). Animals 

were placed on two experimentallonglines by the grower and located near the front 

(stations 1, 2 and 3, Figure 3a-c) and back of each farm (stations 7, 8 and 9, Figure 3a-c). 

Each line was composed of three experimental stations. A Global Positioning System 
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(GPS) was used to indicate positions of experimental lines and form the layout of the 

experiment on each site. Seed sources were dispersed at each station in a standard pattern, 

one sock from Reach Run, one from Burnt Arm and one from Big Island until a total of 

54 socks ( 18•source.1
) were placed at each station. This was done in order to remove any 

spatial effects on growth within the stations. Continuously recording thermographs were 

placed in containers with the mussels to record temperatures during the transfer period 

and throughout the experiment. During the two weeks between placing the animals in 

socks and transfer, the animals had attached themselves to the socks and mussel loss 

during transfer was minimal. 

A third line devoid of experimental mussels was later chosen in the middle of 

each farm. This line composed of three sample stations was utilised for environmental 

sampling. 

2.4 Environmental Sampling 

Adverse weather conditions limited environmental sampling in November 1997 to 

CTD casts (SBE 25 Sealogger CTD, Sea-Bird Electronics, Inc., Bellevue Washington) at 

four stations: a control station outside the farm, one on the front experimental line, 

middle line and back line. This was repeated every three hours for 9 hours at each site. 

Due to winter ice and weather conditions, it was not possible to continue sampling 

beyond November until the following spring. Tony Clemens, a research technician for the 

Newfoundland Aquaculture Industry Association (NAIA) provided local CTD data for 

1997-1998. 
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Figure 3. Experimental site set up showing distribution of sampling stations (1-9) at a) 
Burnt Arm South, b) Reach Run and c) Big Island. The control stations were located 
approximately 200 meters from the front line at the seaward edge of the site. 
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In May 1998, sampling resumed (Figure 3). Each site was composed of I 0 

sampling stations. The "control" station was positioned approximately 200 m outside the 

site on the seaward edge. This site was utilised to determine the seston concentration and 

composition in the absence of mussels. Stations I through 3 were on the front 

experimental line, stations 4 through 6 were located on a designated line in the middle of 

the farm and stations 7 through 9 were located on the back experimental line of each site 

(Figure 3a-c ). There were no experimental animals positioned on the middle line 

therefore, these stations were utilised merely to determine the variation in seston 

concentration and composition as flow passed through the farm. 

2. 4.1 CTD Casts 

A profiling SBE 25 CTD was utilised for measurements of temperature, salinity, 

chlorophyll-a, dissolved oxygen, pressure, transmittance, dissolved oxygen, pH and 

optical backscatterance for casts during the day measuring the entire water column from 

the surface to within 1 m of the sea floor at each of the 10 stations. Measurements were 

made over the entire tidal cycle during the day. However, it was not possible to perfonn 

regular sampling in the dark, thus the CTD was employed for only a single "Night Cast" 

to obtain information on short tenn variations in temperature, salinity and chlorophyll-a 

during this period. This required the CTD to be suspended in the water column at 3.5 m 

depth on the front experimental line (station 2). Approximately 12 hours later the 

instrument was retrieved and data downloaded. Due to the extensive operating time 

required for a Night Cast, the parameters measured had to be limited to temperature, 
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salinity and chlorophyll-a to avoid battery failure overnight. Similar studies have taken 

environmental samples at one station, once per location (Page and Ricard, 1990) and at 

three stations, at high and low tide per location (Carver and Mallet, 1990). 

2. 4. 2 Preparation of Water Samples 

Water samples were taken with a Niskin sampling bottle at 3.5 m depth in vicinity 

of mussels and placed in clean 4 L covered containers previously rinsed with seawater. 

The samples were held in coolers with ice until they could be analysed at the lab that 

evening. The water was screened through a 300 J.lm Nitex mesh to exclude debris and 

large zooplankton. The samples were immediately filtered under a mild vacuum ( < 15 

PSI) through pre-weighed, pre-combusted Whatman GF/C 47 mm diameter filters for 

determination of total particulate (TPM), particulate organic (POM) and particulate 

inorganic (PIM) matter. Blank filters for all the seston analyses were prepared with each 

set of water samples and assigned the same treatment. Filters were frozen at -20°C until 

they could be dried and analysed at a later date. 

2.4. 3 Seston Analysis 

Filters containing particulate matter, as well as blanks were rinsed with 10 mL of 

distilled water. The filters were dried at 60°C for 48 hours, weighed to obtain TPM 

values, combusted at 450°C for 3 hours and fmally re-weighed the nearest 0.1 mg after 

cooling in a desiccator to assess PIM. The POM value was determined by subtracting the 

weight ofPIM from TPM. 
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2.4.4 Dissollllion Lylinders 

Hydrated calcium sulfates have efficiently been utilized as an inexpensive means 

to quantify water motion (Petticrew and Kalff, 1991, Komatsu and Kawai, 1992, 

Thompson and Glenn, 1994). There is a strong linear relationship between dissolution 

and water flow (Petticrew and Kalff, 1991). In this study, plaster cylinders were utilised 

to obtain a relative index of current speed over the tidal cycle (Appendix 1.0). 

2.4.4.1 Preparation of Cylinders 

Moulds were made out of3.81 em internal diameter ABS pipe, 15.24 em long. 

The pipe was split down one side so that it could be later wedged open for the removal of 

the cylinder. The bottom of the pipe was closed off with a piece of cardboard covered in 

duct tape. A piece of twine with 2 fmishing nails, 2.54 em long inserted through the 

twine, went through the pipe with approximately a meter of twine on either side 

(Petticrew and Kalff, 1991). The twine was later used to tie the cylinder to the frame. 

In a clean plastic container, 3.6 L ofH20 and 7.2 kg ofDurabond 90R Plaster 

Patch were mixed using a drill with a paint mixing attachment. The mixture was blended 

until smooth. It was then poured into moulds. This made approximately 30 cylinders. 

The cylinders allowed to dry overnight at room temperature and then were 

removed from the moulds. The ends ofthe cylinders were covered in epoxy around the 

base of the twine to avoid loss of due to friction by the twine when hanging in the water 

column (Petticrew and Kalff, 1991). Cylinders were then oven-dried for 48 hours at 40°C, 

weighed and identification tags were attached to the twine. 
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2.4.4.2 Deployment ofCylinders 

Upon arrival at the site, 30 cylinders were attached to 6 ABS square frames (5 per 

frame) measuring approximately 1 m2 (Figure 4). The frames were weighted on the 

bottom to keep them upright in the water column. They were then hung at the front and 

back ofthe sites on the experimentallonglines at each ofthe sampling stations (1-3, 7-9) 

next to mussel socks and pearl nets. Following two complete tidal cycles, the cylinders 

were retrieved from the water, removed from their frames and carefully transported in the 

same container to the lab. In the lab, they were lightly rinsed to remove any sludge, 

which may have collected. They were then dried at 40°C for 48 h (Petticrew and Kalff, 

(Jokiel and Morrissey, 1993, Claereboudt et al., 1994). Upon cooling the identification 

tags were removed, and the cylinder weights recorded to the nearest 0.1 mg. Dissolution 

ofplaster cylinders was determined by difference (Petticrew and Kalff, 1991). 1991). Dry 

weight provides the best determination of weight loss in plaster cylinders. 

2. 4. 4. 3 Assessment of Environment on Dissolution 

To determine if temperature had an effect on dissolution rates, a small experiment 

was undertaken. Three tanks of water at 28 ppt salinity, with one suspended cylinder each 

were tested at 4, 10, 14, 18 and 25°C. The tanks were large enough so that the 

concentration of the plaster in the water did not over-saturate and affect the dissolution 

rate. Petticrew and Kalff(1991) studied the effect oftank size on dissolution and found 

that for a 50 g block, a 20 L tank was sufficient. As the cylinders employed in this study 
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Figure 4. The layout of each experimental station, displaying a) socks, b) S4 current 

meter, c) dissolution cylinders, and d) pearl nets with mussels from 3 sources. At stations 

2 and 8, the cylinders were placed next to the S4 current meters. 
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averaged 250 g: I 00 L tanks were utilised. Cylinders were treated exactly as they were in 

the field. 

With the knowledge that the environment would have a significant effect on the 

dissolution ofthe cylinders (Appendix 1.1), environmental data collected by the CTD 

was included in a stepwise regression using the dissolution data from station 2 and the S4 

current meter at the same station. Only data from the S4 at station 2 were utilised for 

cylinder estimates, as there was uncertainty concerning the calibration of the instrument 

at station 8. The environmental data were averaged over the time periods that the 

cylinders were in the water. From the regression equation relative current speeds could 

then be calculated at six stations on each farm, based on cylinder dissolution rates. 

2.4.5 Current Direction 

Current direction was measured at each of the 10 stations, every 2 hours for 

approximately 5 sampling events. Direction was determined by attaching a piece of 

fluorescent flagging tape approximately 30 em long to a pole. The pole was lowered to a 

depth of3.5 m and secured against the side of the boat. The current direction was noted 

and mapped immediately. On occasion environmental conditions or lack of available 

daylight did not allow for current directions to be taken. 

2.4.6 Seston Flux 

Growth in a population of bivalves is a function of seston flux, which is a product 

of the concentration of seston and the flow velocity. For this experiment the seston was 
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measured in terms of chlorophyll-a and PIM:POM. However for the calculation of flux, 

chlorophyll-a (f.lg•L "1
) was employed as it was sampled around the tidal cycle at each 

sample station. These values were multiplied by the relative values of current speed 

obtained by the dissolution cylinders calculated at each ofthe six stations (described 

previously) to assess the spatial and temporal variance of seston flux throughout each 

farm using the formula: 

Flux (f.lg•cm·2 ·s-1)= chi-a • relative current speed (em •s"1
) 

2.5 Biological Sampling 

2.5.1 Density and Growth 

Sampling of mussels began in November 1997, completing one site at a time. For 

growth, samples were collected within 7-10 days of each other at all three sites. Sampling 

continued the following spring with collection of mussel samples in May, July, 

September and November, 1998. Two socks from each source at each station (n=6) were 

sampled. The weight of each sock was recorded as well as the weight of 3 sub-samples of 

100 mussels, chosen at random from the top middle and bottom of each sock, to 

detennine stocking density • sock1
• Biofouling on the socks was minimal. Samples of 

mussels from each sock were then bagged and labeled for later measurement of shell 

length and tissue parameters. To determine growth rate (GR), average mussels lengths 

per source, per station, were compared using the formula: 
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GR = (L~~- L11) •days·', where L12 is the average length of the mussels at time 2, 

Ltlis is the average length of the mussels at time L 

Of these samples, 100 mussels from each sock were measured for length to 0.01 mm and 

30 were frozen at -20°C for subsequent examination of condition index (CI). 

To determine coefficient of variation (CV), sock weight was compared using the formula: 

CV =standard deviation •mean sock weighf1
• 

2.5.2 Condition Index 

Condition index was calculated based on the methods described by Walne and 

Mann (1975). The animals were thawed, cleaned, shucked and dried at 80°C for 48 hours. 

Shell and soft tissue weights were measured to the nearest 0.1 g for each mussel (n=30 

per treatment). Condition index was calculated according to the following equation: 

CI= dry soft tissue wt (g) X 100 

dry shell wt (g) 

2. 5. 3 Sampling Design 

Bimonthly sampling, which was labeled "Comprehensive Sampling," began in 

May 1998 and consisted of: 

1) Deployment ofS4 current meters (InterOcean Systems, Inc., San Diego -tilt 

compensated model), one placed on each of the experimental lines at station 2 and 8 

(Figure 3). The current meters were suspended from the main line at a depth of3.5 m 
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next to the mussel socks and pearl nets and weighted with a small weight to keep them 

upright in the water column. 

2) Deployment of "plaster dissolution cylinders" placed at 3.5 m depth at each station on 

the front and back experimentallonglines. 

3) Spatial/ temporal sampling began as soon as the current measuring equipment was 

deployed. Seabird casts (SBE 25 Sealogger CTD fitted with additional sensors for chl-a, 

dissolved 0 2 , etc.) and current direction were taken at each of the 10 stations, every 2 

hours for approximately 5 sample periods during the day depending upon the 

environmental conditions and available daylight. Current direction collected at the same 

time. 

4) Uploading of the CTD data, new batteries installed and the reconfiguration of the CTD 

for ''Night Sampling". The CTD was then deployed on the front line (station 2) and hung 

at 3.5 m depth overnight (approximately 12 hours). 

5) Retrieval of the CTD the following morning, uploading the data and changing the 

batteries. In addition, water samples were taken along with one fmal set of CTD casts and 

current direction. 

6) Retrieval of all field equipment, including cylinders CTD and S4s. 

7) Collection of mussel samples and measurement of mussel survival in pearl nets. 
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2. 5. 4 Sampling Schedule 

During months, which did not include a "Comprehensive sampling", a similar 

sampling schedule was in place. It was referred to as "Restricted sampling", which 

entailed the procedures 1 to 6 of the Comprehensive sampling schedule listed above. 

At approximately 2 week intervals between major sampling a simple "Spatial 

sampling" was performed at each site. This sampling regime consisted of a CTD cast, 

water samples and current direction taken at each of the 10 stations. The Newfoundland 

Aquaculture Industry Association' s environment sampling program provided further 

supplemental data, as required. 

2. 5. 5 Survival 

Each experimental station (1-3, 7-9) at each site contained 6 pearl nets. Two pearl 

nets containing 150 mussels from each original source at each station. These animals 

were selected from the same collectors as those animals in the socks and were held at 

similar densities. These pearl nets were monitored for mortality, counting live and dead 

animals, beginning in May 1998 and at each subsequent mussel sampling period. This 

was to determine the losses due to natural mortality as opposed to drop off or dispersion, 

of each seed source at each location. 

2. 5. 6 Secondary Set 

During the course of this study a second set of mussels occurred, raising the 

density of the mussel socks and lowering the average size of the mussels. To remove the 
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effects of this "unwanted" cohort. cohort analysis was utilised to identify and separate the 

normal distribution of the cohorts (Appendix 2.0). 

2.6 Additional Data 

Additional information such as wind speed, wind direction and precipitation 

measured at Twillingate, NL were obtained from Environment Canada. Tidal height 

information was taken from Canadian Tide and Current Tables (1997, 1998). Volume 1, 

Atlantic Coast and Bay of Fundy. 

2. 7 Data Analysis 

Analysis of variance (ANOVA) procedures (SPSS, 1999) were used to test the 

effect of site, station, source, and date on the parameters measured in this work: growth 

(length), production (biomass increases in kg) and survival. Post hoc tests (Bonferroni 

and Tukey) were conducted to determine difference in means within these factors. 

Significance was determined at a= 0.05. 
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3.1 Environmental Data 

3.1.1 Temperature 

3.0 RESULTS 

Over the course of the study the temperature at 3.5 m depth varied significantly 

by site, location within the site and season (ANOVAs, F= 1536.9, 6.6, 2051.1 , p< 0.001 

for each). During the sampling events temperatures ranged from -1.1 °C to 20.0°C (Figure 

5). Thermograph data, which were collected continuously during the experiment, 

confirmed this range (Appendix 3.0). Reach Run had significantly higher temperatures 

throughout the study, followed by Big Island and Burnt Arm, respectively (Tukeys HSD, 

p< 0.001). Reach Run had 2346.6 cumulative degree-days followed by Burnt Arm at 

1820.5 degree-days and Big Island at 1657.8 degree-days. 

Significant seasonal variations occurred over the course of the experiment at each 

of these sites (Figure 5, Appendix 3.0). Burnt Arm temperatures reached subzero in the 

January of 1998 (Appendix 3.0) to 17.2°C in September 1997 (Figure 5.1, Appendix 3.0). 

Temperatures at Reach Run reached subzero a month earlier in December 1997 and rose 

to 20.0°C in August 1998 (Figure 5.2, Appendix 3.0). The thermal pattern at Big Island 

ranged from subzero in January 1998 to 14.5°C in August 1998 (Figure 5.3, Appendix 

3.0). Short-term temporal variations in temperature occurred on a daily basis at the Burnt 

Arm site during most sampling events except for November 2-3, 1998 (Table 1, 

Appendix 4.1-4.6). In Reach Run, short-term temporal variations in temperature occurred 

during half of the sampling periods (Table 1, Appendix 4.7-4.12). Temporal variations in 
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Figure 5.1. Seasonal environmental data collected at Burnt Ann, Sept. 1997- Nov. 1998 
at 3.5 m. Column 1 represents data collected in this study as well as another NAIA 
sponsored study, column 2 represents data from this study collected at the control station 
located at the outside each farm, column 3 represents data collected at station 2, 
positioned at the front of each farm, column 4 represents data collected at station 8 
positioned at the back of each farm. Each row represents temperature, salinity, 
chlorophyll-a and dissolved oxygen, respectively (n= 3-5 per point, error bars= standard 
error). 
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Figure 5.2. Seasonal environmental data collected at Reach Run, Sept. 1997 - Nov. 1998 
at 3.5 m. Column 1 represents data collected in this study as well as another NAJA 
sponsored study, column 2 represents data from this study collected at the control station 
located at the outside each farm, column 3 represents data collected at station 2, 
positioned at the front of each farm, column 4 represents data collected at station 8 
positioned at the back of each farm. Each row represents temperature, salinity, 
chlorophyll-a and dissolved oxygen, respectively (n= 3-5 per point, error bars= standard 
error). 
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Figure 5.3. Environmental data collected at Big Island. Sept. 1997 - Nov. 1998 at 3.5 m. 
Column 1 represents data collected in this study as well as another NAJA sponsored 
study, column 2 represents data from this study collected at the control station located at 
the outside each farm. column 3 represents data collected at station 2, positioned at the 
front of each farm, column 4 represents data collected at station 8 positioned at the back 
of each farm. Each row represents temperature, salinity, chlorophyll-a and dissolved 
oxygen, respectively (n= 3-5 per point, error bars= standard error). 
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Table 1. Results of ANOVAs of temperature variation over a tidal cycle at each site. 

Temperatures were averaged for all 10 stations prior to analysis. 

Site Sample Dates df F Significance 

Burnt Arm May 21-22, '98 5 42.517 <0.001 

June 23-24, '98 5 14.546 <0.001 

July 30-31 , '98 5 4.677 0.003 

Sept 13-14, '98 5 62.478 <0.001 

Sept 28-29, '98 4 546.016 <0.001 

November 2-3, '98 4 0.613 0.439 

Reach Run May 25-26, '98 6 22.79 <0.001 

June 24-25, '98 5 19.578 <0.001 

August 3-4, '98 5 0.105 0.991 

September 8-9, ' 98 5 6.304 <0.001 

September 29-30, '98 3 1.658 0.194 

November 4-5, ' 98 3 2.775 0.057 

Big Island May 28-29, '98 4 6.06 0.001 

June 25-26, '98 4 8.242 <0.001 

August 4-5, '98 5 4.476 0.002 

September 3-4, ' 98 5 6.854 <0.001 

October 1-2, ' 98 3 0.934 0.434 . 
November 7-8, ' 98 3 0.998 0.405 
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temperature occurred in the Big Island site during most sample sessions but not October 

1-2, 1998 or November 7-8, 1998 (Table 1, Appendix 4.13-4.18). 

Spatial temperature variations occurred within each site. Higher mean average 

temperatures occurred among sample stations on the experimental line at the front of 

Burnt Arm (Tukey HSD, p< 0.05 for each, Figure 5a, Appendix 3.0). In Reach Run, two 

stations had significantly different temperature patterns. Station 5 indicated significantly 

higher mean average temperatures than all others except the Control station while 

temperatures measured at station 9 were lower than all other stations at Reach Run 

(Tukey HSD, p< 0.05 for each, Figure 5b). Spatially, the Big Island site differed only at 

station 9, which had higher mean temperatures than all other stations (Tukey HSD, p< 

0.05 for each, Figure 5c). 

Thermal stratification near the surface was evident in Burnt Arm from May to 

August. However, no stratification occurred in September 1998 (Figure 6.1). In Reach 

Run, thermal stratification in May and July began at depths greater than 5 m (Figure 6.2). 

Temperatures ranged between 15°C at the surface and 8°C at 8 m depth in September. 

Samples taken during the months of August, October and November 1998 had no 

stratification (Figure 6.2). The water column of the Big Island site was stratified in all 

months with the exceptions of September and November 1998 (Figure 6.3). 

3.1.2 Salinity 

Salinity ranged from a low of24.3 ppt at Reach Run to a high of33.7 near Big 

Island (Figure 5). Salinity values measured varied by site (ANOVA F= 2345.7, p< 0.001 ) 
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and season (ANOVA, F= 44.4, p< 0.001). Burnt Arm had the highest salinities followed 

by Big Island and Reach Run, respectively (Tukey HSD, p< 0.001). 

Variations in seasonal temporal patterns of salinity were significant at all three 

sites (Figure 5). Salinity values recorded at Burnt Arm ranged from a low of27.8 ppt in 

May 1998 to 31.5 ppt in December 1997 (Figure 5.1). Reach Run salinity values ranged 

from 24.3 ppt to 30.9 ppt (Figure 5.2). Salinity at Big Island ranged from 29.3 ppt in 

April1998 to 33.7 ppt May 1998 (Figure 5.3). 

In Burnt Arm, short-term temporal variations in salinity occurred during almost 

all sampling sessions with the exception of July 30-31, 1998 (Table 2, Appendix 4.1-4.6). 

The Reach Run site had short-term variations in salinity when sampled during all sample 

sessions except September 29-30, 1998 (Table 2, Appendix 4.7-4.12). Short-term 

temporal variations of salinity in the Big Island site occurred during only the May 28-29, 

1998, June 25-26, 1998 and September 3-4, 1998 sample sessions (Table 2, Appendix 

4.13-4.18). 

Within Burnt Arm, salinity did not vary spatially at a depth of3.5 m (ANOVA F= 

0.5, p= 0.897, Figure 3a); however, a halocline was present during sampling in May, 

June, July and November 1998 (Appendix 4.1). Station 9, 3.5 m depth, Reach Run, had 

significantly lower salinities than all other sites, while station 5, recorded salinities lower 

than all sites except station 1 and 9 (Tukey HSD, p< 0.05 for each, Figure 3b). A 

halocline was present at depths greater than 5 m during the July and August sampling 

events (Appendix 4.2). The Big Island site, differed only at station 9 wherein higher 

mean average salinities were recorded (Tukey HSD, p< 0.05 for each, Figure 3c). The 
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Table 2. Results of ANOV As of salinity variations over a tidal cycle at each site. 

Salinities were averaged for all 10 stations prior to analysis. 

Site Sample Dates df F Significance 

Burnt Arm May 21-22, '98 5 36.994 <0.001 

June 23-24, '98 5 34.735 <0.001 

July 30-31, '98 5 1.973 0.115 

Sept 13-14, '98 5 180.877 <0.001 

Sept 28-29, '98 4 222.476 <0.001 

November 2-3, '98 4 4.365 0.043 

Reach Run May 25-26, '98 6 19.492 <0.001 

June 24-25, '98 5 18.540 <0.001 

August 3-4, '98 5 0.617 0.688 

September 8-9, '98 5 4.150 0.003 

September 29-30, '98 3 0.431 0.732 

November 4-5, ' 98 3 7.692 0.001 

Big Island May 28-29, '98 4 2.987 0.029 

June 25-26, '98 4 5.402 0.001 

August 4-5, '98 5 2.127 0.076 

September 3-4. ' 98 5 4.066 0.003 

October 1-2, ' 98 3 1.631 0.199 

November 7-8, '98 3 0.362 0.781 

51 



water was slightly less saline at the surface during the May and July sampling sessions 

(Appendix 4). 

3.1.3 Chlorophyll-a 

Throughout the study the chlorophyll-a concentration at 3.5 m depth varied 

significantly by site and season (ANOVAs, F= 275.7, 195.0, p< 0.001). Reach Run had 

significantly higher chlorophyll-a values during the study, followed by Burnt Arm and · 

Big Island, respectively (Tukey HSD, p< 0.05 for each). During the study chlorophyll-a 

concentrations ranged from a lowof0.31!lg•L"1 to 19.75!lg•L"1 (Figure 5.1, 5.2, 5.3). 

Significant seasonal temporal variations of chlorophyll-a occurred over the course 

of the experiment at each site (Figure 5). Burnt Arm chlorophyll-a values ranged from a 

low of0.60 1-1g·L·1 in April1998 to 5.88 !lg·L-1 in September 1998 (Figure 5.1). 

Chlorophyll-a values at Reach Run ranged from 1.0 1-1g·L·1 in February 1998 to 19.75 

1-1g•L -I in September 1998 (Figure 5.2). Chlorophyll-a at Big Island ranged from 0.31 

1-1g•L-1 in May 1998 to 5.30 1-1g•L-1 in October 1998 (Figure 5.3). 

Short-term temporal variations in chlorophyll-a concentration occurred over the 

tidal cycle in Burnt Arm during all sampling periods with the exception ofMay 21-22, 

1998 (Table 3, Appendix 4.1-4.6). Chlorophyll-a levels at 3.5 m depth correlated with 

tidal height during the May, June and July sample sessions (Table 4). In Reach Run 

(Table 3, Appendix 4.7-4.12) and Big Island (Table 3, Appendix 4.13-4.18) short-term 

temporal variations of chlorophyll-a occurred on a daily basis during each sampling 

period. In Reach Run, chlorophyll-a concentration could vary by 2-3 fold over the tidal 
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Table 3. Results of ANOVAs of chlorophyll-a variation over a tidal cycle at each site. 

Chlorophyll-a values were averaged for all 10 stations prior to analysis. 

Site Sample Dates df F Significance 

Burnt Arm May 21-22, '98 5 2.380 0.052 

June 23-24, ' 98 5 17.180 <0.001 

July 30-31 , '98 5 2.779 0.038 

Sept 13-14, '98 5 25.774 <0.001 

Sept 28-29, '98 4 121.707 <0.001 

November 2-3, ' 98 4 4.994 0.032 

Reach Run May 25-26, '98 6 25.601 <0.001 

June 24-25, '98 5 52.447 <0.001 

August 3-4, ' 98 5 34.649 <0.001 

September 8-9, '98 5 36.394 <0.001 

September 29-30, ' 98 3 4.046 0.014 

November 4-5, ' 98 3 6.603 0.001 

Big Island May 28-29, ' 98 4 8.733 <0.001 

June 25-26, ' 98 4 78.970 <0.001 

August 4-5, ' 98 5 2.524 0.040 

September 3-4. ' 98 5 37.718 <0.001 

October 1-2, ' 98 3 30.51 6 <0.001 

November 7-8, ' 98 3 14.846 <0.001 
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Table 4. Results of correlations between tidal height and chlorophyll-a levels at 3 .5 m 

depth. Chlorophyll-a values were averaged for all 10 stations prior to analysis. 

Site month height (m) ~hla 

!Burnt Arm 1.00 height (m) Correlation .141 
P value .325 

2.00 height (m) Correlation 1.000 .686 
P value .000 

3.00 height (m) Correlation 1.000 .257 
P value .043 

~ .00 height (m) Correlation 1.000 .267 
IP value .030 

5.00 height (m) Correlation 1.000 - .068 
IP value .620 

6.00 height (m) [correlation 1.000 .319 
IP value .035 

!Reach Run 1.00 height (m) Correlation .443 
IP value .000 

2.00 !height (m) [correlation 1.000 .755 
P value .000 

3.00 !height (m) Correlation 1.000 .772 
P value .000 

4.00 !height (m) Correlation 1.000 .482 
P value .000 

5.00 !height (m) Correlation 1.000 -.811 
P value .000 

6.00 height (m) Correlation 1.000 .064 
iP value .700 

Big Island 1.00 height (m) Correlation 1.000 .156 
IP value .249 

~.00 height (m) Correlation 1.000 .177 
IP value .192 

3.00 height (m) Correlation 1.000 .266 
IP value .03 1 

~ . 00 height (m) Correlation 1.000 .772 
IP value .000 

5.00 height (m) Correlation 1.000 .355 
IP value .017 

6.00 height (m) Correlation 1.000 - .551 
IP value .000 



cycle (Appendix 4.7-4.12). During the months ofMay, June and August, chlorophyll-a 

levels at 3.5 m depth correlated with tidal height in Reach Run (Table 4). At Big Island 

chlorophyll-a concentrations chlorophyll-a levels at 3.5 m depth correlated with tidal 

height in July and September and October (Table 4). 

There were no spatial differences in chlorophyll-a among the stations ofBurnt 

Arm (ANOV A, F= 0.46, p= 0.997, Figure 3a); however, chlorophyll-a concentrations 

increased with increasing depth during the May to August sampling (Figure 6.1 ). In 

Reach Run, there were no significantly different spatial patterns of chlorophyll-a 

increased with increasing depth during each sampling event from May 1998 to November 

1998 (Figure 6.2). The Big Island site differed only at station 9, which had higher mean 

chlorophyll-a concentration than all other stations (Tukey HSD, p< 0.05 for eac~ Figure 

3c). Chlorophyll-a concentrations increased with increasing depths from May 1998 to 

July 1998 (Figure 6.3). 

3.1.4 Dissolved Oxygen 

Throughout the study the dissolved oxygen concentrations at 3.5 m depth varied 

significantly by site, location within each site and season (ANOV As, F= 496.2, 8.5, 

361.0, p< 0.001 for each, Figure 5). Burnt Arm had significantly higher dissolved oxygen 

values during this study, followed Big Island and Reach Run, respectively (Tukey HSD, 

p< 0.001 ). During the study dissolved oxygen concentrations ranged from a low of 6.8 

mg•L'1 to 14.0 mg·L-1 at 3.5 mdepth (Figure 5). The corresponding range. in saturation 

was 75% to 100%. 
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Significant seasonal temporal variations in dissolved oxygen occurred over the 

course of the experiment at 3.5 m depth at each site (Figure 5). Burnt Arm dissolved 

oxygen values ranged from a low of8.1 mg·L-1 in August 1998 to 11.4 mg·L-1 in April 

1998 (Figure 5.1). The corresponding saturation was 80% to 85 %. Dissolved oxygen 

concentrations at Reach Run ranged from a low of6.8 mg·L-1 in August 1998 to 14.0 

mg·L-1 in April1998 (Figure 5.2). The corresponding saturation was 75% to 100%. 

Dissolved oxygen concentration patterns at Big Island ranged from a low 8.6 mg·L- 1 in 

September 1998 to 12.2 mg·L-1 in April1998 (Figure 5.3). The corresponding saturation 

was 83% to 85%. 

Short-term temporal variations in dissolved oxygen in Burnt Arm occurred on a 

daily basis during all except two sample sessions (Table 5, Appendix 4.1-4.6). In Reach 

Run daily temporal variations in dissolved oxygen occurred at each sampling session 

with the exception of September 29-30, 1998 (Table 5, Appendix 4.7-4.12). Big Island 

had short-term temporal variations in dissolved oxygen during all sample periods except 

May 28-29, 1998 (Table 5, Appendix 4.13-4.18). 

In Burnt Arm, the control station recorded higher dissolved oxygen 

concentrations than stations 3 (Tukey HSD, p= 0.018) and 6 (Tukey HSD, p= 0.015) and 

dissolved oxygen concentrations increased with increasing depth during the May to 

August sampling (Figure 6.1). The greatest variation in dissolved oxygen for Burnt Arm 

occurred in July, ranging from 6 mg·L-1 (47% saturation) near the surface, to 9 mg·L-1 

(75% saturation) at 7.5 m depth. There were significantly different spatial patterns of 

dissolved oxygen in the Reach Run (ANOV A, F= 2.5, p= 0.011). The control station and 
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Table 5. Results of ANOV As of dissolved oxygen variation over a tidal cycle at each site. 

Dissolved oxygen values were averaged for all 10 stations prior to analysis. 

Site Sample Oates df F S igniticance 

Burnt Arm May 21-22, ' 98 5 6.875 <0.001 

June 23-24, '98 5 2.795 0.026 

July 30-31, '98 5 2.118 0.094 

Sept 13-14, ' 98 5 15.857 <0.001 

Sept 28-29, '98 4 16.983 <0.001 

November 2-3, '98 4 2.287 0.139 

Reach Run May 25-26, ' 98 6 5.039 <0.001 

June 24-25, '98 5 23.821 <0.001 

August 3-4, '98 5 2.442 0.046 

September 8-9, '98 5 3.016 0.018 

September 29-30, '98 3 0.475 0.701 

November 4-5, '98 3 4.897 0.007 

Big Island May 28-29, '98 4 1.934 0.121 

June 25-26, '98 4 4.328 0.005 

August 4-5, '98 5 4.072 0.003 

September 3-4. '98 5 12.572 <0.001 

October 1-2, '98 3 9.987 <0.001 

November 7-8, '98 3 11.797 <0.001 
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station 9 had significantly higher dissolved oxygen concentrations than stations 5 (Tukey 

HSD, p< 0.001). 6 (Tukey HSD, p= 0.007), 7 (Tukey HSD, p= 0.01) and 8 (Tukey HSD, 

p= 0.0035). Dissolved oxygen concentrations increased with increasing depth during each 

sampling event from May 1998 to August 1998. The greatest variation in dissolved 

oxygen for Reach Run occurred in June, ranging from 6 mg·L-1 (57% saturation) near the 

surface, to 8.5 mg·L·' (78% saturation) at 8.5 m depth. However, the water column was 

well-mixed through the autWIU1 months (Figure 6.2). There were significantly different 

spatial patterns of dissolved oxygen in the Big Island site (ANOV A, F= 18.8, p< 0.001 ). 

The control station had significantly higher dissolved oxygen concentrations than stations 

1-9, while station nine had significantly lower concentrations than stations 0-8 (Tukey 

HSD, p< 0.05 for each). Dissolved oxygen concentrations increased with increasing 

depths during sampling from May 1998 to August 1998 (Figure 6.3). The greatest 

variation in dissolved oxygen for Big Island occurred in July, ranging from 7.5 mg·L·' 

(70% saturation) near the surface, to 11 mg·L·' (81% saturation) at 7.5 m depth. 

3.1.5 Particulate Organic Matter 

Throughout the study the particulate organic matter (POM) concentrations at 3.5 

m depth varied significantly by site, location within each site and season (ANOVAs, F= 

126.0, 35.6, 212.8, p< 0.001, Figure 7). Particulate organic matter concentrations ranged 

from 0 mg to 11.3 mg·L-1
• The highest concentrations ofPOM throughout the study were 

at Big Island averaging 3.52 mg·L·' , followed closely by Reach Run at 3.51 mg·L-1
, and 

fmally Burnt arm at 2.76 mg·L-1
• Burnt Arm had significantly higher POM percentages 
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Figure 7.1 . a) Percent POM averaged over all stations at Burnt Arm (BA), Reach Run (RR) 
and Big Island (Bl) at 3.5 m, %POM in Burnt Arm at station b) control, 1, 2 and 3 c) 4, 5 and 6 
and d) 7, 8 and 9, respectively (error bars= standard error). 
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Figure 7.2. a) Percent POM averaged over all stations at Burnt Arm (BA), Reach Run (RR) 
and Big Island (BI) at 3.5 m, %POM in Reach Run at station b) control, 1, 2 and 3 c) 4, 5 
and 6 and d) 7, 8 and 9, respectively (error bars= standard error). 
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Figure 7.3. a) Percent POM averaged over all stations at Burnt Arm (BA), Reach Run (RR) 
and Big Island (BI) at 3.5 m, %POM in Big Island at station b) control, 1, 2 and 3 c) 4, 5 and 6 
and d) 7, 8 and 9, respectively (error bars= standard error). 
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during this study, followed by Big Island and Reach Run, respectively (Tukey HSD, p< 

0.001 tor each, Figure 7). 

Significant seasonal temporal variations in POM occurred over the course of the 

experiment at each site (ANOV As, F= 155.1, 18.4, 171.0, p< 0.001 for each, Figure 7.1 ). 

Concentrations ofPOM in Burnt Arm ranged from 0.2 mg·L-1 in May, 1998 to 8.65 

mg·L- 1 in June, 1998 while %POM in Burnt Arm ranged from a low of 10.47% in late 

November 1998 to 31.61% in October 1998 (Figure 7.1). Reach Run concentrations of 

POM ranged from 0.2 mg·L-1 in August, 1998 to 9.4 mg·L-1 in June, 1998, however, 

Reach Run %POM ranged from a low of 0% in August 1998 to 88.2 % in October 1998 

(Figure 7.2). Big Island POM ranged from, 0.5 mg·L-1
, in September 1998 to 8.3 mg·L-1 

in July 1998. Percent POM patterns at Big Island ranged from 9.54% in November 1998 

to 93.8% in September 1998 (Figure 7.3). 

Percent organic matter varied spatially within all study sites (ANOVAs, F= 15.3, 

55.5, 17.6, p< 0.001 for each). In Burnt Arm, the control station recorded higher %POM 

than station 9, while all other stations had higher %POM than stations 4 and 9 (Tukey 

HSD, p< 0.05 for each, Figure 7.1). As well, station 9 had the lowest concentration of 

POM, 1.9 mg•L _,, throughout the study, while the control station and stations on the front 

line had the highest concentrations averaging 3.15 mg·L-1
• In the Reach Run, the control 

station, stations 1-4 and 7-8 had significantly lower %POM than stations 5, 6 and 9. In 

addition, station 5 had lower %POM than stations 6 and 9 but higher %POM than all 

other stations, station 6 had higher %POM than all stations with the exception of station 

9, which was higher in %POM.than all stations (Tukey HSD, p< 0.05 for each, Figure 
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7.2). However, the absolute values of POM are highest at station 3, 4 and 5, averaging 

4.3, 4.4 and 4.8 mg·L- 1 and lowest at stations 6 and 9 averaging 2.2 mg·L-1 for each. At 

the Big Island site the control station had significantly higher %POM than stations 1-4 

and stations 8-9 (Tukey HSD, p< 0.05 for each, Figure 7.3). Station 1 was lower than the 

control as well as stations 3, 5, 6 and 7 (Tukey HSD, p< 0.05 for each, Figure 7.1). 

Station 2 had %POM values less than the control station, as well as stations 5 and 6 but 

higher vales than station 9 (Tukey HSD, p< 0.05 for each, Figure 7.1). Stations 3, 4 and 8 

have similar results to station 2 with the addition of lower %POM than station 1, station 9 

had higher %POM values than all stations throughout the study (Tukey HSD, p< 0.05 for 

each, Figure 7.1 ). Absolute values ofPOM are highest at stations 5, 6 and 7 with average 

concentrations of 4.2, 4.65 and 4.15 mg•L"1 respectively throughout the study. 

3.2 Currents 

3.2.1 S4 Current Meter 

In Burnt Arm, hourly current spe~ds ranged between 0.9 and 6.8 em ·s·1 at 3.5 m 

depth throughout the study and averaged 2.35 em ·s·1 (Appendix 5.1). Current speed at 

3.5 m depth did not correlate with daily average wind speed (Pearson Correlation= 0.053, 

p= 0.544, Table 6, Appendix 5.1) but was negatively correlated with current direction 

(Pearson Correlation= -0.259, p= 0.0020, Table 6, Appendix 5.1) and daily wind 

direction (Pearson Correlation= 0.261 , p= 0.002, Table 6, Appendix 5.1). Current 

direction was hot a simple tidally driven force. In many cases, regardless of changing 

tidal activity, current direction remained constant (Appendix 6.1 ). 
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Table 6. Results ofS4 current meter correlations with wind data. Wind data= average 

daily values from Environment Canada. 

Site Current Wind Wind 
Direction Speed Direction 

Burnt Arm Current Correlation -0.259 0.053 -0.003 
Speed 

Sig 0.002 0.544 0.969 
N 138 131 133 

Current Correlation -0.107 0.261 
Direction 

Sig 0.225 0.002 
N 131 133 

Wind Correlation 0.244 
Speed 

Sig 0.010 
N 131 

Reach Current Correlation 0.102 -0.198 -0.222 
Run Speed 

Sig 0.228 0.023 0.011 
N 142 131 130 

Current Correlation 0.030 0.153 
Direction 

Sig 0.735 0.083 
N 131 130 

Wind Correlation 0.266 
Speed 

Sig 0.002 
N 128 

Big Island Current Correlation -0.495 -0.018 0.179 
Speed 

Sig <0.001 0.840 0.040 
N 134 132 133 

Current Correlation 0.343 -0.015 
Direction 

Sig <0.001 0.864 
N 132 133 

Wind Correlation 0.322 
Speed 

Sig <0.001 
N 131 
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Current speeds in Reach Run ranged between 0.8 em ·s·1 and 8.7 em ·s·1
, 

averaging 3.7 em ·s-1 over the study (Appendix 5.2). Current speeds in Reach Run 

correlated negatively with both wind speed (Pearson Correlation= -0.198, p= 0.023, 

Table 6, Appendix 5.2) and direction (Pearson Correlation= -0.222, p= 0.011, Table 6, 

Appendix 5.2). Reach Run current directions did not correlate with wind speed (Pearson 

Correlation= 0.030, p= 0.735, Table 6, Appendix 5.2) or direction (Pearson Correlation= 

0.153, p= 0.083, Table 6, Appendix 5.2). Current direction was not a simple tidally 

driven force. In many cases, regardless of changing tidal activity, current direction 

remained constant (Appendix 5.2). 

The Big Island site had the lowest recorded hourly current speeds, ranging from 

0.6 em ·s·1 to 4.1 em ·s-1
• Average current speed during the study was 1.8 em ·s-1 

(Appendix 5.3). Current speeds at the Big Island site correlated negatively with current 

direction (Pearson Correlation= -0.495, p = 0.0 18, Table 6, Appendix 5.3) and positively 

with wind direction (Pearson Correlation= 0.179, p= 0.040, Table 6, Appendix 5.3) but 

was not correlated wind speed (Pearson Correlation= -0.018, p= 0.840, Table 6, 

Appendix 5.3). Big Island current directions correlated with wind speed (Pearson 

Correlation= 0.343, p< 0.001, Table 6, Appendix 5.3) but not direction (Pearson 

Correlation= -0.015, p= 0.864, Table 6, Appendix 5.3). Current direction was not a 

simple tidally driven force. The position of the islands in relation to the mainland 

topography seemed to have an effect on the current flow (Appendix 6.3). 
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3.2.2 Relative Current Speed 

The relationship of the S4 current meter data at station 2 with cylinder dissolution 

at the same station is represented by the following regression equation: 

C= (D +1.257 ·10·2-2.398•104 
• (Temp)-4.202•104 •(ppt)) • (4.147•104

) _, 

Where C= current speed (em ·s-1
), D= dissolution (mg•cm·2·h-1

), Temp= temperature (°C) 

and ppt= Salinity (ppt). 

(R square= 0.752, F= 56.562, p< 0.001, Figure 8). 

From this equation, relative current speeds were calculated at six stations on each farm 

(Figure 9). Relative current speed at the test sites varied significantly by site and season 

(ANOVAs, F= 7.1, p= 0.001, F= 83.8, p< 0.001). Reach Run had the highest relative 

current speeds, followed by Burnt Arm and Big Island, respectively (Tukey HSD, p< 

0.05 for each, Figure 9). The highest relative current speeds were found over the course 

of the entire study to be in November followed by the sampling in May and fmally June 

and September, which were not significantly different from one another (Tukey HSD, p< 

0.05 for each, Figure 9). Relative current speeds measured in July were high at Reach 

Run while significantly lower than any other sample period in the study at Burnt Arm and 

Big Island (Tukey HSD, p< 0.05 for each, Figure 9), however, wind speeds in July were 

not low (Figure 9). 

On a smaller scale, within site differences existed in Burnt Arm, Reach Run and 

Big Island (ANOVAs, F= 7.8, 31.153, 6.399, p< 0.001 for each, Figure 9). Relative 
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current speed in Burnt Arm was significantly higher at stations at the front of the farm 

(Tukey HSD, p< 0.05 for each, Figure 9). Similarly in Reach Run, the highest relative 

current speeds occur at stations 1 and 2 at the front of the farm (Tukey HSD, p< 0.05 for 

each, Figure 9). The Big Island site had its highest relative current speeds at stations 8 

and 9, at the back of the farm (Tukey HSD, p< 0.05 for each, Figure 9). 

Temporally, relative current speed varied amongst the sites as well. The highest 

relative current speeds in Reach Run and Big Island occurred in November (Tukey HSD, 

p< 0.05 for each, Figure 9). These currents correspond with high wind speeds in 

November (Appendix 5). Relative current speeds were greatest in Burnt Arm in the 

month of May (Tukey HSD, p< 0.05 for each, Figure 9).These speeds do not correspond 

with high wind speeds (Appendix 5). Although there was no precipitation reported for 

this time period (Table 7) the current speed may be explained by river discharges due to 

run off from the spring thaw. 

3.3 Seston Flux 

Seston flux rates over the entire study ranged from 0.0 flg •cm-2 ·s-1 to 117.3 flg 

•cm-2·s-1
• Seston flux values at the test sites varied by site and season (ANOV As, F= 

389.3, 15.0, p< 0.001 for each, Figure 10). Reach Run had the highest relative seston flux 

(calculated using relative current speed values), followed by Big Island and Burnt Arm, 

respectively (Tukey HSD, p< 0.05 for each, Figure 10). The highest current speeds were 

found over the course of the entire study to be in November followed by the sampling in 

July, September and fmally May and June, which were not significantly different from 

one another (Tukey HSD, p< 0.05 for each, Figure 10). 
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Table 7. Daily precipitation in Twillingate NL, 1998. Data were provided by 
Environment Canada (N/ A indicates missing data). 

Twillingate. NL 1998 Total Precipitation (nun) 
Day Jan Feb Mar Apr May Jun Jul Aug Sept Oct 
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NIA 
2 0.0 0.0 N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
4 N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A 
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NIA N/A 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NIA 
7 0.0 N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A 
8 N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A 
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
10 0.0 0.0 NIA N/A 0.0 0.0 0.0 0.0 NIA 0.0 
11 0.0 0.0 0.0 NIA 0.0 0.0 0.0 0.0 NIA 0.0 
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NIA 
13 0.0 0.0 NIA N/A 0.0 0.0 0.0 0.0 NIA 0.0 
14 5.0 NIA 0.0 NIA 0.0 0.0 0.0 0.0 N/A N/A 
15 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A N/A 
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A N/A 
17 N/A 0.0 0.0 NIA 0.0 0.0 0.0 N/A N/A 0.0 
18 N/A 0.0 0.0 0.0 0.0 0.0 0.0 N/A NIA N/A 
19 N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NIA 0.0 
20 0.0 4.0 NIA 0.0 0.0 0.0 0.0 0.0 NIA N/A 
21 9.0 N/A 0.0 0.0 0.0 0.0 0.0 0.0 N/A 0.0 
22 6.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A 0.0 
23 0.0 0.0 0.0 0.0 0.0 N/A 0.0 N/A N/A 0.0 
24 N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A 0.0 
25 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
26 0.0 3.0 0.0 0.0 0.0 0.0 NIA NIA N/A 0.0 
27 0.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A 0.0 
28 0.0 0.0 N/A 0.0 0.0 0.0 0.0 0.0 N/A 0.0 
29 0.0 NIA 0.0 0.0 0.0 0.0 0.0 0.0 N/A 0.0 
30 0.0 N/A 0.0 0.0 0.0 0.0 0.0 N/A N/A 0.0 
31 NIA NIA 0.0 N/A 0.0 NIA 0.0 0.0 N/A 0.0 
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Nov Dec 
0.0 0.0 
0.0 0.0 
0.0 NIA 
0.0 NIA 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 NIA 
0.0 NIA 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 NIA 
0.0 N/A 
0.0 N/A 
NIA N/A 
0.0 NIA 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 N/A 
0.0 NIA 
0.0 N/A 
0.0 NIA 
0.0 NIA 
0.0 N/A 
N/A N/A 
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On a smaller scale. within site differences existed in Burnt Arm, Reach Run and 

Big Island (ANOVAs. F= 7.6, 26.5, 9.68, p< 0.001 for each, Figure 10). Seston flux rates 

in Burnt Arm were significantly higher at the front of the farm (Tukey HSD, p< 0.05, 

Figure 1 0). Stations I and 2 in Reach Run had significantly higher seston flux rates than 

other stations (Tukey HSD, p< 0.05 for each, Figure 10). The Big Island site had the 

highest seston flux rates at stations 8 and 9, located at what is considered the back of the 

farm (Tukey HSD, p< 0.05 for each, Figure 1 0). 

Temporally, relative seston flux varied among the sites as well. The highest seston 

flux values in Burnt Arm and Reach Run occurred in September (Tukey HSD, p< 0.05 

for each, Figure 1 0), while the seston flux rates were greatest in Big Island in the month 

ofNovember (Tukey HSD, p< 0.05 for each, Figure 1 0). 

3.4 Mussel Growth, Density and Survival 

3. 4.1 Growth Rates (Length) 

Growth rates over the entire study ranged from 0 to 383.3 J..l.m•d-1
, and averaged 

74.8 J..l.m·d-1
• This rate varied by site, source and season (ANOV As, F= 8.8, p< 0.001 , F= 

4.3, p< 0.015, F= 32.9, p< 0.001, Figure 11). The Big Island site had the highest seasonal 

average growth rates, significantly higher than Burnt Arm (Tukey HSD, p= 0.004, Figure 

11) and Reach Run (Tukey HSD, p< 0.001 , Figure 11), which were not significantly 

different from one another (Tukey HSD, p= 0.737, Figure 11). The best performing seed 

source with respect to average shell growth originated from Reach Run followed by the 

Big Island and fmally Burnt Arm. However, the growth rate of the Reach Run and Big 
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Figure 11.1. Average growth rate (J..l.m•d- 1
) per station for Reach Run spat (a), Burnt Arm 

spat (b) and Big Island spat (c), transplanted to Burnt Arm (n= 100 mussels, error bars= 
standard error). 
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Island seed sources were not significantly different from one another (Tukey HSD, p= 

0.051 Figure 11). Over the course of the study, the highest growth rates occurred between 

July and September while the lowest growth rates were found following winter in May 

(Tukey HSD, p< 0.05 for each, Figure 11). 

Analysis of each site individually gave differing results. At Burnt Arm growth 

rates did not vary by source or station (ANOV As, F= 0.8, p= 0.455, F= 1.1 , p= 0.380, 

Figure 11.1 ). In Reach Run, growth rates were significantly different among sources but 

not stations (ANOVAs, F= 16.5, p< 0.001, F= 2.1 , p= 0.69, Figure 11.2). The Reach Run 

source performed the best at Reach Run followed by Big Island (Tukey HSD, p= 0.005, 

Figure 11.2) and Burnt Arm (Tukey HSD, p< 0.001 all cases, Figure 11.2). Growth rates 

at Big Island were significantly different for both source and station (Figure 11.3, 

ANOV As, F= 5.4, p= 0.006, F= 2.8, p< 0.020). Again, the Reach Run source out 

performed the other two. However, it was not significantly higher than the Big Island 

source (Tukey HSD, p= 0.261, Figure 11.3). The station variation was due to higher rates 

at the back of the farm (Tukey HSD p< 0.05 for each, Figure 11.3). 

3. 4. 2 Biomass 

Biomass (sock weight) of mussels within the experiment correlated positively 

with density; chlorophyll-a, salinity, dissolved oxygen and food flux (Table 8). There was 

a significant negative correlation between biomass and condition index (Table 8). 

Biomass measurements varied by site, source, station and date (ANOVAs, F= 9.8, 

125.0, 4.3, 761.0, p< 0.001 all cases, Figure 12.1). Burnt Arm biomass was significantly 
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Table 8. Results of mussel growth correlations with environmental data, biomass (kg), 
density (number of animals•30 cm. 1

) , condition index (CI), (growth rate, g·d-1
), 

temperature (°C), salinity (ppt), dissolved oxygen (DO, mg•f 1
) , current speed (cm·s·1

, 

dissolution), food flux (FF, chlorophyll-a• relative current speed). N= 432 for all. 

Density CJ g•d" Chla Temp ppt DO cm•s - FF 
Biomass Con .322 -.276 -.094 .320 .017 .280 .121 .040 .246 

Sig. < 0.001 < 0.001 .052 < 0.001 .721 < 0.001 .012 .406 < 0.001 
Density Con -.180 -.090 .381 .212 -.181 -.058 .028 .312 

Sig. . < 0.001 .060 < 0.001 < 0.001 < 0.001 .231 .560 < 0.001 
CI Con .127 -.397 -.751 -.067 -.003 .158 -.134 

Sig. . .008 < 0.001 < 0.001 .162 .954 .001 .005 
g•d" Corr -.087 -.172 .084 .104 -.061 -.073 

Sig. .072 < 0.001 .082 .030 .2og .128 
Chla Corr .327 -.356 -.348 .063 .656 

Sig. . < 0.001 < 0.001 < 0.001 .193 < 0.001 
Temp Corr -.350 -.159 -.316 .021 

Sig. < 0.001 .001 < 0.001 .67C 
ppt Corr .534 -.173 -.335 

Sig. . < 0.001 < 0.001 < 0.001 
DO Corr -.181 -.357 

Sig. . < 0.001 < 0.001 
cm·s·' Corr .662 

Sig. . < 0.001 
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Figure 12.1: Summary of increasing biomass by sock weight (kg) of Reach Run 
mussels (a-c); Burnt Arm mussels (d-t); Big Island mussels (g-i) transplanted to 
Burnt Arm (column 1), Reach Run (column 2) and Big Island (column 3), 
respectively (n= 2, error bars= standard error) . 
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higher than the Big Island site (Tukey HSD, p< 0.001, Figure 12.1). Burnt Arm biomass 

was also higher than Reach Run biomass; however the difference was not significant 

(Tukey HSD, p= 0.780, Figure 12.1). Seed source analysis showed that the animals 

originating from Burnt Arm had the highest biomass (Tukey HSD, p< 0.001, Figure 12.1) 

followed by Reach Run and Big Island, which were not significantly different from each 

other (Tukey HSD, p= 0.573, Figure 12.1). 

Analyzing the coefficient of variation (CV= standard deviation •mean sock 

weighf1
) of biomass values, variation ranged from 34% at Burnt Arm in May to 18% in 

Big Island in September (Figure 13), the differences amongst sites however were not 

significant (ANOVA, F= 0.731, p= 0.736). Coefficient of variation decreased over time. 

In May there was a difference of 12% CV between Burnt Arm and Big Island (Figure 

13). At the end of the experiment, the difference in CV between Burnt Arm and Big 

Island was only 4%. Within each site, differences occurred in the coefficient of variance 

results; however, these statistics were not significant in Burnt Arm, Reach Run or Big 

Island, respectively (ANOVAs, F= 0.230, p= 0.994, F= 1.376, p= 0.280, F= 0.596, p= 

0.704). Coefficient of variation averaged 23.8% for seed originating from Reach Run, 

while seed from Burnt Arm and Big Island averaged 16.0 and 15.7, respectively (Figure 

13.1). 

Individual site analysis indicated that Burnt Arm biomass differed significantly by 

seed, station and date (Figure 13.1 , ANOVAs, F= 24.1, 10.8, 119.6, p< 0.001 all cases, 

Figure 12.1 ). Animals originating from Burnt Arm had a higher biomass than the Big 

Island mussels (Tukey HSD, p= 0.014, Figure 12) and the Reach Run mussels (Tukey 
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HSD, p< 0.001, Figure 12.1) at this site. Increases in biomass in Burnt Arm were 

significantly higher at stations at the front of the farm (Tukey HSD, p< 0.05, Figure 

12.2). A separate analysis comparing the front experimental line to the back experimental 

line of Burnt Arm (ANOVA, F= 36.5 p< 0.001, Figure 12.2) indicated a significant line 

factor. 

At Reach Run, biomass varied significantly by source and date (ANOVAs, F= 

21.4, 75.1, p< 0.001 for each, Figure 12.1) but not station (ANOVA, F= 1.4, p= 0.250, 

Figure 12.1 ). At this site, animals originating from Burnt Arm performed better than 

animals from Reach Run and Big Island (Tukey HSD, p< 0.001 for each, Figure 12.1). 

Biomass of mussels at the Big Island site differed significantly by source and date 

(ANOVAs, F= 70.0, 101.8, p< 0.001 for each, Figure 12.1) but not station (ANOVA, F= 

1.3, p= 0.256, Figure 12.1). Although individual stations were not significantly different 

at the Big Island site, a separate analysis comparing the front experimental line to the 

back experimental line ofBig Island (ANOVA, F= 4.8 p= 0.030, Figure 12.2) showed a 

significant line factor. 

Biomass increases measured in g ·d-1 of sock weight varied significantly by date, 

source, site (ANOVAs, F= 26.6, 17.1 , 29.9, p< 0.001 all cases, Figure 14) and 

experimental line (ANOVA, F= 5.6, p= 0.019, Figure 14). Biomass increases correlated 

positively with condition index and dissolved oxygen, while correlating negatively with 

temperature (Table 8). The Burnt Arm site had a higher biomass increases per day than 

Big Island (Tukey HSD, p< 0.001 , Figure 14) but not Reach Run (Tukey HSD, p= 0.780, 

Figure 14). The animals originating from Burnt Arm had significantly higher biomass 

83 



BA 

400 
a 

l 
·~ ! 
~300 -r---
~ ! 
>- 200 -l--
~ i 
C. I 

CI'J I 
0:: i 
0:: 100 -1 

- ---------------

0 1H.JJLn~jL~- -
400 -,---- ---- - - -----------

1 d ~ 

'» 
"' "? 300 

-::9 
"0 
0 
;;:: 200 
o; 
0. 

Cll 

<X: 
a:J I 00 

0 

i 

- --

~ ~ ~ 
I 

400 --.----------
g 

·~ 
yoo +-~-~~---

>-200 +-tt---;J-~~---..--It--n 
<Q 
0. 

CI'J 

co I 00 +.--f l--::---il---=--11----11----lf--U 

1 2 3 7 8 9 

RR 

h 

I_ - - - - -- ------ - -- -- - -

I 
I-

I 

~j J 
e 

~I i1 ~~ d ~1 ~ n 
I I I I I I 

h 

2 3 7 8 9 

Station 

Bl 

c 

•Nov-97 

DMay-98 

L._ II J ul-98 

I II Sep-98 

lllfl~WdaL. . aNo-~8 

f 

•Nov-97 

DMay-98 

IIJui-98 

IISep-98 

lllNov-98 

•Nov-97 

DMay-98 

+-------- IIJul-98 

2 3 7 8 9 

RSep-98 

fiJNov-98 

Figure 14. Daily increases ofbiomass (g·d-1
) ofReach Run mussels (a-c), Burnt Ann 

mussels (d-f), Big Island mussels (g-i) transplanted to Burnt Ann (column 1), Reach Run 
(column 2) and Big Island (column 3), respectively. 

84 



increases than animals from Reach Run (Tukey HSD, p< 0.001 , Figure 14) but not higher 

than animals from Big Island (Tukey HSD, p= 0.573, Figure 14). 

Analyzing each site individually indicated significant differences in biomass 

increases at the Burnt Arm site for date, source (ANOVAs, F= 217.9, 143.9, p< 0.001 for 

each, Figure 14) and experimentallongline, (F= 8.9, p= 0.004, Figure 14). At this site, the 

Burnt Arm source out-performed the other two in daily biomass increases (Tukey HSD, 

p< 0.001 for each, Figure 14). The Reach Run site varied only by date (ANOVA, F= 6.5, 

p< 0.001, Figure 14). The Big Island site varied by date (ANOVA F= 6.5, p< 0.001, 

Figure 14) and experimental line (ANOVA F= 5.3, p< 0.025, Figure 14) due to the higher 

increases on the back line (Figure 14). 

3.4.2.1 Model 

A model was developed using the biomass data in this study. We used a stepwise 

regression including, site, seed source, station, date, temperature, salinity, chlorophyll-a, 

current speed (by dissolution) and seston flux. The best equation to predict biomass 

included only date, site, temperature, salinity, and seston flux (by dissolution) (R Square= 

0.537, n= 432): 

Biomass= 4.13 5+0 .161•( date )+0 .186•( site )+0. 3 7 •( temperature )+0. 0 14 2 •( salinity)+ 

0.012• (seston flux) 

85 



The date variable contributed the most. explaining 48.75% of the variance followed by 

site at 2.67%, temperature at 1.22%, salinity at 0.56% and lastly, seston flux at 0.53%. 

3.4.3 Condition Index 

The condition index of all animals measured in the experiment ranged from 86 to 

292. This index varied by site and date (ANOVAs, F= 86.4, 1651.2, p< 0.001 for each, 

Figure 15) but not source (ANOVA, F= 2.745, p= 0.64, Figure 15). Condition index of 

animals within the experiment correlated negatively with biomass, density, chlorophyll-a, 

temperature, salinity, and food flux while correlating positively with relative current 

speed (Table 8). Over all, the Big Island site had the highest condition indices followed 

by Burnt Arm and Reach Run, respectively (Tukey HSD, p< 0.001 for all cases, Figure 

15). 

Condition index at the Burnt Arm site ranged from 133.9 to 292. At this site, 

condition differed significantly by date, source and station (ANOV As, F= 337.3, p< 

0.001, F= 3.6, p< 0.029, F= 16.5, p< 0.001, Figure 15). Condition peaked in May at all 

sites and was lowest in July following spawning (Figure 15). In Burnt Arm, the source 

originating from Big Island had the highest average condition indices, averaging 4.0 

indices points higher than the Burnt Arm source (Tukey HSD p= 0.197, Figure 15) and 

6.16 points higher than Reach Run (Tukey HSD p= 0.024, Figure 15). Condition indices 

at stations the front ofBumt Arm averaged 14.9 points higher than stations at the back of 

the farm (Tukey HSD p< 0.05 all cases, Figure 15). 
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The Reach Run site condition indices ranged from 86.0 to 280.0. The values were 

significant different by date and source (ANOVAs, F= 1216.2, 6.7, p< 0.001 for each, 

Figure 15) but not station (ANOV A, F= 1.1 , p= 0.355 Figure 15). In Reach Run, the 

Burnt Arm source had the highest average condition indices, averaging 5.8 points over 

the Reach Run source (Tukey HSD, p= 0.0 14, Figure 15) and 7.1 points over the Burnt 

Arm source (Tukey HSD, p= 0.002, Figure 15). Condition indices in the Big Island site 

ranged from 114.7 to 272.0. These values varied by date and station (ANOVAs, F= 

572.2, 4.43, p< 0.001 for each, Figure 15) but not source (ANOV A, F= 1.213, p< 0.298, 

Figure 15). The station differences involved station 2 at the front ofthe farm, which had a 

higher condition index than stations 3, 7 and 9 (Tukey HSD, p< 0.05 for all cases, Figure 

15). 

3.4.4 Density 

3.4.4.1 Secondary Set 

A notable observation in our experiment was the presence of a secondary set, 

which may have resulted from larval settlement or small drifting juveniles (Appendix 2). 

It was assumed that the set occurred within the two weeks between placing the mussels in 

socks and transfer to other sites as all socks transplanted from Reach Run increased in 

density. As well, socks from other sites, which were transferred to the Reach Run, 

received a later set (Appendix 2.4 and 2.6). To distinguish between experimental mussels 

and newly settled mussels, histograms were produced and the cohorts were separated for 

growth analysis (Appendix 2). 
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Initial density values ranged from 20 I animals•30cm·1 to 220 animals•30cm·1 

(Figure 16). During the study these values differed significantly by source, station, site 

and month (ANOVAs, F= 56.828, 6.907, 48.399, 69.629, p< 0.001 , Figure 16). Density 

of animals in the study correlated positively with biomass, chlorophyll-a, temperature, 

salinity and food flux while, correlating negatively with condition index (Table 8). 

Overall the Reach Run site had the highest densities averaging 21.5 and 56.1 animals per 

foot more than Burnt Arm and Big Island, respectively (Bonferroni, p< 0.05 each case, 

Appendix 4.32). As well, the Reach Run source had the highest density overall averaging 

37.7 and 27.8 animals per foot higher than Burnt Arm and Big Island (Bonferroni, p< 

0.05, Figure 16). Investigating each site individually had the same results as the overall 

analysis. Each site varied by source, station and month (ANOV As, F= 18.2, 6.1, 34.9, p< 

0.001 all cases, Figure 16). The Reach Run source had the highest densities at all sites 

(Bonferroni, p< 0.05 each case, Figure 16). Within site density variations existed in Burnt 

Arm and Reach Run; socks at the front ofthese farms have higher densities than those at 

the back (Bonferroni, p< 0.05 each case, Figure 16). 

3.4.5 Survival 

The final survival ofthe animals ranged from 86.1% to 96.1 %. Survival differed 

significantly by site, source, month (ANOVAs, F= 19.8, 51.9, 549.3, p< 0.001 all cases, 

Figure 17) and station (Figure 22, ANOVA, F= 2.9, p< 0.014, Figure 17). Reach Run had 

the highest survival rate (Tukey HSD, p< 0.001 for each, Figure 17), followed by Burnt 

Arm and Big Island (Tukey HSD, p= 0.456, Figure 17). Individually, survival at the sites 
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varied by source and date (ANOVAs. Burnt Arm F= 18.9, 209.6 p< 0.001 for each; 

Reach Run, F= 30.9, 101.0 p< 0.001; Big Island, F= 5.7, p= 0.004, F= 296.1 , p< 0.001, 

Figure 17). In Burnt Arm and Big Island, the Big Island source had the highest survival 

rate, while at the Reach Run site, the Reach Run source had the highest survival rate 

(Tukey HSD, p< 0.05 for each, Figure 17). The seed source with the lowest survival was 

from Burnt Arm (Tukey HSD, p< 0.05 for each, Figure 17). This source was composed 

of90% M edulis and 10% M trossulus at the time ofplacement in the socks, while the 

other sources were composed of 100% M. edulis (Innes et al., 1999). Only the Big Island 

site had variation in the survival within the farm, which indicated slight differences in 

survival between stations 7 and 8 (Tukey HSD, p< 0.019, Figure 17). Seasonally, the 

mortality increased greatly in all groups from July to September, following spawning and 

again from September to November (Figure 17). 



4.1 Environmental Data 

4.1. I Temperature 

4.0 DISCUSSION 

Due to the broad annual range of temperature at these three sites, -1 .1 °C to 

20.2°C, mussels were exposed to their upper and lower performance limits. However, 

studies have shown that filtration and growth are not limited at temperatures as low as-

1 °C provided there is sufficient food available (Loo, 1992). Hatcher et al. ( 1997) found 

that in areas covered by winter ice, as was the case in this study, mussels suspended in 

longline culture respired less due to inadequate food rather than low temperatures. 

Temperatures of20°C and above as found in Reach Run, are an exception along the coast 

ofNewfoundland. Previous work on this site found the maximum temperature to be 13°C 

(Dabinett and Clemens, 1997, Clemens et al., 1999). 

Given time to acclimatise, Widdows (1976) showed that the processes of feeding 

and respiration in Mytilus edulis could function independently of the temperature within a 

fluctuating range of 11 to l9°C. However, growth in M edulis has been shown to 

decrease considerably at sites where water temperatures exceeded 20°C (Incze et al., 

1980). This could have been a factor in the lower than expected growth rates in Reach 

Run as water temperature peaked beyond this upper limit for two weeks in the month of 

August. However, variations in degree-days of exposure to elevated temperatures did not 

influence mortality as Reach Run had the highest survival rate of the three sites. This 

supports Incze et al. (1980) who found sites with temperatures elevated above 20°C to 
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have decreased growth but not increased mortality. The seed source originating from 

Reach Run pertorrned the best under the wide range of thermal conditions in Reach Run. 

Previous studies examining seed sources have shown that some stocks which have not 

had the "previous thermal history" are less able to acclimatise their metabolic rates to 

high habitat temperatures (Bayne et al., 1975, Thompson and Newell, 1984, Tremblay et 

al., 1998). 

All three sites had a slight thermal stratification throughout the spring and early 

summer. This thermocline which isolated the mussels from the nutrient rich waters 

below, likely caused a depletion of nutrients and a reduction in phytoplankton biomass 

and as a result a reduction in growth and biomass of the mussels. Over the course of the 

summer, the thermocline slowly sank deeper until the water column became mixed in 

September. At this time, there were high increases in growth as a result of the increase in 

phytoplankton biomass, which in tum was due to an influx of nutrients following the 

breakdown of stratification. Previous studies on these sites by Dabinett and Clemens 

( 1997) found similar patterns and are typical for inshore, protected areas along the 

Newfoundland coast. 

4.1.2 Salinity 

Large variations in salinity can be lethal toM edulis. However, if given the 

opportunity to acclimatise M edulis can live at salinities as low as 7 ppt (Kautsky et al., 

1990). Salinities in the vicinity of mussels, ranged from 24.3 ppt at Reach Run to a high 

of33 .7 ppt near Big Island and little daily fluctuations were observed. Typically the 
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salinity remained around 28 ppt. However, on February 15, 1998, salinity dropped to a 

low of24.3 ppt in Reach Run. This decline may have been the result of heavy 

precipitation. 15 mm on January 25 and 9 mm February 3, 1998. There were no samples 

taken at the other two sites at this time. The next sample date was April 5. At this time 

the salinity measured 3 1. 5 ppt in Burnt Ar114 3 0. 9 ppt in Reach Run and 3 3. 7 ppt in Big 

Island. This rise in salinity was likely due to the lack of precipitation in the month of 

March and beginning of April. Within the range of salinity observed, it is concluded that 

salinity had no negative impact on mussel performance (Mallet and Myrand, 1995). 

4.1. 3 Dissolved Oxygen 

Throughout the study the dissolved oxygen concentrations at 3.5 m depth varied 

by site, location with each site and season. The higher D.O. at Burnt Arm followed Big 

Island and Reach could be explained by average site temperature. Reach Run, had the 

highest average site temperature and therefore had the lowest dissolved oxygen 

concentration, followed by Big Island and fmally Burnt Ar114 which had lower average 

temperatures. The dissolved oxygen concentrations did however, follow a similar pattern. 

Likewise, the concentration varied annually, ranging from 6.8 mg•L"1 to 14.0 mg·L-1 or 

70 to 100% saturation. Solely, 70% saturation may not affect mussel growth however, 

when combined with temperatures above 20°C, it is possible the mussels were stressed as 

at 20°C, the metabolism of the mussels is greatly enhanced requiring more 0 2 than at 

lower temperatures (Widdows, 1976). It was fortunate that the salinity was relatively 

stable at this time as salinity has also been found to influence the clearance rate and 
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oxygen consumption (Frenette et al., 2002). The decline ofD.O. in the spring and rise in 

autumn occurred in response to the annual temperature variations. 

Spatially, the control station at Big Island, at which there were no mussels, had a 

significantly higher concentration of D.O. than several stations at this site. This was the 

case as well for the Reach Run site in which the layout is parallel to the flow. This was 

possibly due to the respiration of the suspended mussels near the experimental stations. It 

is unlikely that these variations caused any decrease in mussel performance, as percent 

saturation was still relatively high. The vertical profiles froin the control station sampling 

in late spring and early summer indicated higher concentrations of dissolved oxygen at 

depths below the mussel socks, which was unlikely due to depletion by the mussels as the 

control station showed a similar pattern and did not contain mussels. It was more likely. 

due to the cooler waters present at lower depths with higher 0 2 content as the D.O. 

gradient between the surface and deeper waters becomes nonexistent as the temperature 

in the water column becomes homogenous. 

4.1.4 Chlorophyll-a and Particulate Organic Matter 

4.1.4.1 Temporal Variations 

Temporal variations in the concentration and composition of seston available to 

filtering bivalves can be detailed by regular monitoring (Navarro and Thompson, 1995). 

Unfortunately, our CTD data were sporadic and as a result data for the spring bloom were 

not available. However, the three study sites had similar trends of chlorophyll-a 

concentration. The trends found in this study were similar to previous work by Thompson 
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(1984 ). Dabinett and Clemens ( 1997) and Clemens et al., (1999). However. tor the 

months of September and October the chlorophyll-a levels were exceptionally high in 

Reach Run as chlorophyll-a values reached levels of 19.75 Jlg·L· ' . An autumn bloom at 

this time in Notre Dame Bay is not unusual (Dabinett and Clemens, 1997, Clemens et al., 

1999). However, the level attained was extraordinary as previous autumn blooms had 

been reported at 4 to 5 Jlg·L-'(Dabinett and Clemens, 1997). This was likely the result of 

the abnormally warm water temperatures that season. As well, the winds in Notre Dame 

Bay may have contributed to a sizeable autumn bloom. In the months of August and 

September leading into the bloom, winds had been fairly moderate averaging 

20.8 km·hr·'. However, beginning in the early morning of September 5, winds averaged 

53.54 km·hr·' and continued all day September 6 at 77.58 km·hr· ' . The wind event may 

have mixed the water column and resuspension of nutrient rich sediments, resulting in the 

fmal disappearance of the sinking thermocline. This vertical mixing likely created an 

influx of nutrients to which the phytoplankton responded shortly after the wind event. 

Similar wind induced phytoplankton blooms have been observed in British Columbia 

reaching a maximum of 63 mg•m"2 chlorophyll-a (Yin et al., 1997) and the South 

Atlantic Bight reaching a maximum of 13 Jlg·L·' chlorophyll-a (Verity et al. , 1998). Run

off was not a contributing factor to this bloom, as precipitation levels were low 

throughout the months of August and September, 1998. 

Seasonal growth in mussels has been attributed to the seasonal proportibn of 

particulate organic matter and total particulate matter (Bayne and Worrall, 1980, Bayne et 

al. , 1987, Page and Ricard, 1990) until an asymptote is.reached (MacDonald et hl., m'8). 
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Percent POM peaked in s~ptember, averaging approximately 60, 38 and 42% organic 

matter in Burnt Arm, Reach Run and Big Island, respectively. This was due to the 

presence of the phytoplankton bloom as indicated by chlorophyll-a levels. Mussels have 

pulse-like growth, alternating between growth and de-growth phases with fluctuations in 

the POM: TPM (Sara et al. , 1998). As a result, it would be expected that a large increase 

in growth following the autumn bloom and subsequent rise in POM: TPM would occur 

and this was observed at all 3 sites in terms of shell growth, sock biomass and condition 

indices. The total POM in the present study ranged from 0.2 mg·L-1 to 8.65 mg·L-1 and 

was well within normal range ofPOM values found in temperate waters (Dabinett and 

Clemens, 1993). 

In addition to annual and seasonal variations, relatively large variations in seston 

flux can occur over a tidal period (Fegley et al., 1992, Barille et al., 1997, Smaal and 

Haas, 1997, Wilson-Ormond et al., 1997, Roegner, 1998). Our data had significant 

variations in the chlorophyll-a concentration, as well as several correlations between tide 

height and chlorophyll-a concentration. This phenomenon was most apparent in Reach 

Run where in the months of May, June and August, chlorophyll-a increased with 

increasing tidal height. This fmding agrees with Fegley et al. ( 1992) where seston 

concentrations were found to be lower during the ebb tide than during the flood tide. In 

September and October, during the bloom, chlorophyll-a concentration was diluted on 

the flood tide. This may be evidence that the bloom was localized to the warm shallow 

waters ofthe Reach Run. This may explain some of the variation between the 

chlorophyll-a concentrations at each site. The present study confrrms earlier fmdings that 
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environmental parameters vary on scales from hours to months and must be considered 

when attempting to explain production performance in a culture setting. 

4.1.4.2 Spatial Variations 

The quantity of chlorophyll-a varied greatly among sites mainly due to the 

considerably higher concentrations found in Reach Run. Chlorophyll-a values were 

greater at this site during the entire study period. The autumn bloom led to a maximum 

concentration of 19.75 1-1g ·L-1 in Reach Ru~ which was over three times that of the other 

sites. Such a bloom has not been previously reported offNewfoundland. It was likely the 

result of favorable conditions such as unusually warm water temperatures and a wind 

event, which stirred up nutrients from the shallow depths. 

On a smaller scale many studies have reported within-site depletion of available 

food by filter feeding bivalves in wild populations (Smaal et al., 1986, Peterson and 

Black, 1987, Nakaoka, 1992), bottom culture (Newell, 1990, Muschenheim and Newell, 

1992), raft culture (Navarro et al., 1991, Fuentes et al., 1994, Blanco et al., 1995, Perez 

Camacho et al., 1995, Mueller, 1996, Navarro et al., 1996, Heasman et al. , 1998, 

Karayuecel and Karayuecel, 2000) and longline culture (Rodhouse et al., 1985). This 

within-site depletion can lead to localized food limited growth. Food limitation was not 

an issue within the present study as no consistent patterns of depletion existed among 

stations at any site. Thus it would initially appear that from this information that carrying 

capacity had not been exceeded at any of the study sites or locations within-sites as the 
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food supply, as measured by chlorophyll-a and POM, was not depleted as the water 

currents travel from one end of the farm to the other. 

The percentage of particulate organic matter varied significantly by site and 

location within each site. Burnt Arm had the highest average percentage of POM:TPM at 

38.6%, while Reach Run, which had the highest chlorophyll-a concentration had the 

lowest average POM:TPM at 29.8%. This would suggest large concentrations of 

inorganic matter in the Reach Run considering the extremely high concentrations of 

chlorophyll-a. Bivalves select organic particles and reject inorganic ones independent of 

seston concentration, resulting in growth phases, which follow POM:TPM (Sara eta!.. 

1998). However, this selection by mussels diminishes as the organic content ofthe seston 

decreases (Bacon eta!., 1998). From this, one could assume that feeding was more 

efficient at the Burnt Arm and Big Island sites as the mussels have to process less 

inorganic matter. This may explain why Reach Run which has extraordinarily higher 

seston t1ux rates did not produce extraordinary growth. 

There were within-site variations of POM with particular stations having higher 

concentrations than others. However, there was no consistent pattern with respect to 

higher POM at stations on the front line versus stations on the back line of any site. 

4.2 Current Speed and Seston Flux 

As food limited growth occurs predominantly in high mussel density situations, 

this can be a serious concern for mussel farmers in bottom, raft or longlines culture. 

Studies have suggested that increases in t1ow rates compensate for either low seston 
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concentration or higher densities by replenishing available seston; that is, increased 

seston t1ux may support a higher biomass of mussels (Frechette and Bourget, 1985b, 

Frechette et al., 1989, Newell, 1990, Rheault and Rice, 1996). The effects of flow on 

bivalve mussels may not be clear until we fully understand the animal's ability to filter 

and ingest food particles under "natural conditions" (Manuel and Lobsiger, 1999). Reach 

Run, which had the highest average current speed of3.695 em ·s-1
, also had the greatest 

range extending from 0.785 to 8.735 em ·s-1
• Thus it would be expected that this site with 

its previously mentioned high food levels and combined higher current speeds would 

support the highest production of the three sites. However, this was not the case. There 

may in fact have been periods where food levels were too high for mussels to ingest and 

digest and utilise (Newell et al., 2000). 

Similarly, our plaster cylinder dissolution study indicated within-site differences 

in current speed. Burnt Arm for instance, had higher relative current speeds at the front of 

the farm as opposed to the back of the farm as ambient flow is diverged (Rodhouse et al., 

1985). As chlorophyll-a levels did not vary among stations throughout this farm and we 

know that the flux rate was higher at the front and therefore would assume that the front 

of the farm would support higher biomass or faster growth than the back ofthe farm 

(Frechette and Bourget, 1985b, Frechette et al., 1989, Newell, 1990, Rheault and Rice, 

1996). The present fmdings support this, as there was a 25-30% increase in biomass on 

the front line compared the rear line. Also according to the cylinder data, Big Island had 

higher relative current speeds at stations 8 and 9, which according to the locations of 

these stations, was expected, as this area is a narrow channel between the land and Big 
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Island itself These stations as well would be expected to support higher biomass or faster 

growth, as was observed (Frechette and Bourget, 1985b, Frechette et al., 1989, Newell, 

1990, Rheault and Rice, 1996). 

4.3 Growth, Density and Survival 

4.3.1 Shell Growth Rates (length •unit time-1
) 

Daily growth rates averaged 74.95 J..lm •day"1 or 2.33 mm •month-1
, slightly higher 

than that for mussels in a Nova Scotia site (Mallet and Carver, 1989). Variations in 

growth rate as determined by shell length have been attributed to site and season (Dickie 

et al., 1984, Mallet and Carver, 1989, 1993, Mallet et al. 1987, Sukhotin and 

Maximovich, 1994), source (Stirling and Okumus, 1994), chlorophyll-a (Page and 

Hubbard, 1987, Page and Ricard, 1990, Thorarinsd6ttir, 1996), current speed and salinity 

(Delmer, 1998) and seston flux (Perez Camacho et al. , 1995). In the present study, season 

and site influenced mussel shell length in keeping with previous studies 

The suitability of shell length as an index of production, has often come into 

question, as it does not give evidence of tissue condition. Shell length on its own may 

provide misleading information, as it does not respond to food limitation, as does soft 

tissue (Frechette and Bourget 1985b, Fuentes et al., 1994). Moreover, shell and tissue 

growth are generally uncoupled in mussels (Hilbish, 1986) and scallops (Penney and 

Mckenzie, 1996). In the present study, shell length did not show significant differences 

among the stations ofBurnt Arm. However, our data indicated that biomass and 

condition were reduced at the back ofthe farm. Lewis and Cerrato (1997) in a study of 
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soft-shell clams concluded that shell growth is coupled to metabolic activity and is not a 

measure of somatic tissue production. Therefore, the present study' s observation that the 

season and site factors account for the majority of the variability in growth rates 

according to length is reasonable as seasons and environment govern metabolic activity. 

Mallet and Carver (1989) found seed source and seed source by season to be the 

largest contributors to variance in their reciprocal transplant experiment. However in the 

present study, species composition was quite similar, hence less likely to differ on;his 

basis. 

4. 3. 2 Biomass, Condition and Density 

4.3.2.1 Site Effects 

The variation in fmal biomass or sock weight is mainly due to season and source 

although site and station did play a significant role. Biomass was positively correlated 

with density, chlorophyll-a, salinity, dissolved oxygen and food flux, while there was a 

negative correlation between biomass and condition index. This negative correlation is 

likely due to the spawning event, which took place. Early in the experiment when 

biomass was low, condition index was increasing. Following the spawning event, 

condition plummeted while biomass did not. This is likely due to the fact that shell 

growth and soft tissue growth do not occur simultaneously (Hilbish, 1986, Borrero and 

Hilbish, 1988). Total experimental biomass was highest in Burnt Arm; however this 

result was not significantly higher than Reach Run. This was unexpected as Reach Run 

had considerably warmer temperatures, higher chlorophyll-a values, seston flux and as 
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well. higher current speeds. However, contributing factors to biomass increases over time 

(g •dai 1
). were very different as the ANOVA and regression model indicated. 

According to the regression model, date, site, temperature, salinity and seston t1ux were 

the best predictors of biomass increases. Daily biomass increases were positively 

correlated with condition index. Daily biomass increases were highest in Burnt Arm, 

however these increases were not significantly higher than the Reach Run site. These 

results were not predicted as Reach Run had what was thought to have significantly more 

favorable conditions. As well, condition index was at a maximum at the Big Island site, 

followed by Burnt Arm. Again, Reach Run results were not as expected given the higher 

tlux values. 

Burnt Arm and Reach Run which have higher flux values than Big Island, have 

higher biomass increases supporting our primary hypothesis being tested that higher 

seston flux will promote higher growth and production. Contradicting this of course is the 

tl1ct that the Reach Run, which has higher flux than Burnt Arm, did not have the most 

rapid growth and production. 

Upon closer examination of this site we tind that although chlorophyll-a values 

were considerably higher, the ratio ofPOM:TPM was the lowest of all three sites. At its 

peak during the autumn bloom, the site averaged only 34.6% POM to TPM. This value 

coupled with a peak of chlorophyll-a of 19.75 ~tg ·L-1 infers a great deal of inorganic 

matte r. Throughout the year, the ratio of POM to TPM was only 29.8% . Part of the 

explanation for unexpected lower growth rates in Reach Run may lie in that there may be 
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periods when there is simply too much food for the mussels to use/ingest/digest (Newell 

et al.. 2000). 

Bayne and Worrall ( 1980) stated that seasonal growth patterns are not a function 

of total particulate matter or particulate organic matter but their relative proportion. As 

organic matter becomes diluted by inorganic matter food becomes 'available with 

difficulty' for suspension feeders (Sara et al., 1998). Recent field studies suggest that 

throughout short term periods of low POM:TPM, bivalves clear more water of particles 

as TPM increases, rejecting PIM as pseudo faeces. Selection efficiency improves retaining 

organic matter proportional to the clearance rate. As a result, nutrient intake remains 

balanced (Cranford, 1995, Hawkins et al., 1996). Our data however suggest that the 

POM:TPM ratio throughout the year in Reach Run was the lowest of all the sites. This is 

not to say that it was detrimentally low or that the mussels there were "food limited". 

Rather, mussels at the other sites were exposed to higher quality food and therefore had 

higher corresponding growth rates (g •daf\ biomass and condition. 

Another possible explanation as to why biomass, growth rates (g •daf1
) and 

condition may be lower in Reach Run was the density. Initially mussels were placed in 

socks in Reach Run at 201 mussels •30 cm·1
• A secondary set occurred in Reach Run 

between the time of placement in the socks and transfer in October 1997. Initially the 

second set was undetected, as it was likely very small "pepper seed" (<1 mm in size). 

Length-frequency histograms indicated a rise in density in socks originating from Reach 

Run at each ofthe three sites after deployment. In September 1998, Reach Run received a 

subsequent set increasing the density of mussels in the experimental socks further. The 
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impact of density on growth has been well documented, indicating "edge dfect" in beds 

(Wildish and Kristmanson, 1.984, Okamura, 1986, Newell, 1990, O'Riordan et al., 1993, 

Svane and Ompi, 1993) and raft culture (Navarro et al., 1991 , Fuentes et al., 1994, 

Blanco et aL 1995, Perez Camacho et al. , 1995, Mueller, 1996, Navarro et al., 1996, 

Heasman et al. , 1998). This situation could be analogous to intra-specific competition in 

an individual sock. Therefore although animals may not be "food limited" in terms of the 

site or line, localized limitations may exist decreasing the overall sock biomass, growth 

and condition. This process has been described as "self thinning" and is well recognized 

in cultured mussel populations (Frechette and Lefaivre, 1990). 

The presence of this secondary set however was indicative of a site with favorable 

conditions, such as warm temperatures and high food levels, which support 

redevelopment ofthe gonads (Thorarinsd6ttir, 1996). It is unknown whether the seed, 

which settled on the socks originated in Reach Run; however, the increased density may 

have contributed to the low condition indices ofthe mussels in the presence of abundant 

food. 

4.3.2.2 Within-site Effects 

Biomass and condition in Burnt Arm had a marked difference between stations at 

the front of the farm versus stations at the back of the farm. According to our model 

seston flux was a significant predictor of growth (partial correlation= 0.1 08). Although 

food levels do not diminish from the front to the back, flow was diverted around the 

farm; within a farm, flow aligns along its major axes and is reduced (Boyd and Heasman, 
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1998). The result of lower current speed is reduced flux, which in tum results in lower 

biomass and condition (Frechette and Bourget, 1985b, Frechette et a!. , 1989, Newell, 

1990, Perez Camacho et aL 1995, Rheault and Rice, 1996). This supports our hypothesis 

ofhigher flux areas yielding higher growth and production, and alternatively, lower flux 

yielding lower production. 

Similarly the Big Island site had higher biomass on the back line of the farm in 

the location of higher current speeds due to the narrowing flow-through area between the 

land and Big Island. This combined with the higher chlorophyll-a at station 9 resulted in 

higher flux, and consequently higher biomass. 

The Reach Run did not vary by location within the farm or source, a result quite 

likely prompted by the higher flux levels supporting our secondary hypothesis that sites 

with characteristically higher seston flux will demonstrate more uniform growth and 

production (Grant 1999). The layout ofthe farm, which is parallel to the current may also 

reduce variation in mussel growth and production by not impeding flow. Our coefficient 

of variance data support this hypothesis as the coefficient of variance differences were 

not significant among stations within the site. 

4.3.2.3 Seed Source Effects 

Seed source has been shown to be an important factor in the growth rate and 

production in bivalve populations (Dickie et a!., 1984, Mallet and Carver, 1993). Other 

studies have noted the importance of seed source on growth rate and production ofblue 

mussels based on the ratio of M edulis to M trossulus (Mallet and Carver, 1995) as well 
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as physiological energetics (Labarta et al., 1997). The highest pertorming source in terms 

ofbiomass, originated in Burnt Arm. However, the difference between the Burnt Arm 

source and the Reach Run source was not significant. It is interesting that the Burnt Arm 

seed source was initially composed of 90% M edulis and 10% M trossulus, while the 

Reach Run source was 100% M edulis. Mallet and Carver (1989) found that while source 

and site variations were important factors in the variance of shell growth, tissue growth 

was almost solely a function of the site factor (i.e., environment). Our results are in 

agreement as source was outweighed by the effect of site, location within the site, 

temperature and relative current speed in terms of relative importance in explaining 

growth. As well, source was not a significant factor in the condition indices of the 

mussels on the whole; however, it did contribute on a local scale at each farm. This result 

supports the raft culture fmdings oflglesias et al. (1996), who reported condition index 

was dependent on raft position, reflecting the spatial variability in the quality of available 

food as well as origin effects. 

4.3.3 Survival 

Survival was high for all experimental animals averaging >85% in all cases 

compared with studies conducted in the Canadian Maritimes (Mallet et al., 1993). 

Variations were explained mainly by season and source. Site and station were also 

significant factors but to a lesser extent. Similar fmdings in a reciprocal transplant 

experiment in Nova Scotia by Mallet and Carver ( 1989) found source to account more for 

mortality patterns. This suggests that genetics influence mortality. Our data concerning 
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species indicated that Big Island and Reach Run spat from 1996, which were used in this 

study vvere both l 00% M. edulis. The Burnt Arm spat used in the experiment, which had 

a signiticantly lower survival rate than the other two, was composed of 90% M. edulis 

and I Q<Yo A4. trossulus. It is possible that the source's slightly lower ratio of M. edulis: lvf 

trossulus was responsible for the increased level of mortality (Mallet and Carver, 1995, 

Penney and Hart, 1999); however we did not ascertain species composition at the end of 

the experiment, and can not confirm this postulate. Evidence of a genotype dependent 

survival has been reported in Mytilus spp. populations in Newfoundland (Penney and 

Hart. 1999). Penney et al. (2002) have recommended the transplantation and growout of 

unispecitic lvf edulis seed sources in place of indigenous mixed-species stocks. 

Seasonal mortality increased over time; however, there was a marked increase in 

mortality for all groups between July and September and again from September to 

November. This could be the result of expended energy reserves and low food levels 

following spawning (Myrand et al., 2000) and is common in bivalves. including cultured 

mussels in Newfoundland (Sutterlin et al., 1981 ). 
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5.0 CONCLUSIONS 

Variations of seston tlux in Notre Dame Bay occurred over a tidal cycle in the 

same magnitude as on a seasonal or even on annual scale. A comparison of the three sites 

studied within Notre Dame Bay found that variations existed in quantity and quality of 

seston. Within each site, local variations in the concentration and composition of seston 

also occurred. In addition to seston variation, environmental and hydrological parameters 

were not only site specific but in many cases varied within sites considerably. 

There was little evidence of reductions in phytoplankton quantity (chlorophyll-a) 

and POM throughout the farms. Therefore it is concluded that production capacity was 

not exceeded in each ofthe three farms. However, the physical arrangement of lines in 

Burnt Arm, perpendicular to flow, did appear to affect the flow patterns and subsequent 

seston flux from the front to back. 

Site was the most important factor in the prediction ofbiomass increases 

(g_•dai1
) in socks. This was followed by temperature, location of the experimental line, 

relative current speed and fmally seed source. Biomass increases at the Burnt Arm and 

Reach Run site were not significantly different from each other which was not expected 

considering the higher flux values recorded at Reach Run. This was possibly a result of 

food quality versus food quantity or a consequence of the secondary set at Reach Run. 

Growth rates and production at Reach Run did not vary within the farm by area or 

source, which supports the hypothesis that sites with characteristically higher seston flux 

will have more uniform growth and production. Conversely, the Burnt Arm site showed 
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reduced production at the back of the farm, where t1ux levels were decreased as a result 

of lower relative current speeds. 

Survival of experimental mussels was high at all sites. Seed source differences 

accounted for the greatest variation in survival rates. Sites with a mixed population of M. 

edulis and M. lrossulus had lower survival than the pure M edulis source from Big 

Island. 

Plaster cylinders were found to provide a good relative index of average current 

speed at mussel culture sites in a boreal environment. These sites are relatively poor in 

resuspended sediments. 

5.1 Implications of Study to the Industry 

Seed source is important in mussel performance but in this study, site was shown 

to be a more important factor in growth and production. Therefore, site evaluations are 

critical to success. Environmental and hydrological parameters should be considered and 

assessed not only for site selection purposes prior to set up but also during production to 

determine the effects of the placement of the farm on currents patterns, available seston 

and growth, particularly when considering production expansions. This regular appraisal 

of the environmental conditions could prevent losses or delays in production. In the event 

that such services are not available an assessment is possible through means of accurate 

production records. From such records, growth rates, uniformity of grade and mortalities 

can provide a good indication if production capacity has been exceeded or not at a given 

site. 
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Caution is always advised when production expansions are proposed for a farm. 

In addition to record keeping, proper husbandry practices, i.e., attention to stocking 

density/ sock, spacing between socks and spacing between lines are good assurances of 

staying within a site 's production level. This study demonstrated the importance of 

proper line spacing, as it has shown that the physical arrangement of lines at sites affects 

food patterns and food supplies. Also, lines arranged parallel to current flow resulted in 

reduced variation in mussel growth/production and therefore, less variation in quality. 
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Appendix 1.0 How to make plaster cylinders. 
3.7 em 

ABS cylinder with slit cut down one side. 15 em 

Duct tape covering cardboard disc 3.7 em diameter. 

-nails 
Cardboard bottom covered in duct tape with orange twine through it. 
Also nails placed in twine. (Not to scale). -disc 

Cylinder with twine in place and edges sealed. 

-twme 

Cylinder with plaster poured and 
twine secured so that it is centered 
in the cylinder. Mix 7.2 kg of plaster 
with 3.6 L of H20. 

To remove cylinder. Pry pipe open with a chisel. Dry at 40°C. 
Keep twine away from heat 
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Appendix 1. 1: The effects of temperature on dissolution of plaster cylinders. 
Dissolution based on weight ofloss of dry cylinders per unit surface area per hour. 
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Appendix 2.0: Shell length frequency distribution. 
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Appendix 2.1: Shell length frequency distribution ofReach Run spat transplanted in 
Burnt Arm measured a) Sept. 1997 b) Nov. 1997 c) Nov. 1998 modified d) May 1998 e) 
May 1998 modified f) July 1998, g) July 1998 modified h) Sept. 1998 i) Sept. 1998 
modifiedj) Nov. 1998 k) Nov. 1998 modified (se= standard error, n= number of mussels, 
modified= data from secondary set removed). 
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Appendix 2 continued. 
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Appendix 2.2: Shell length frequency distribution ofReach Run spat transplanted in 
Reach Run measured a) Sept. 1997 b) Nov. 1997 c) May 1998 d) May 1998 modified e) 
July 1998, f) July 1998 modified g) Sept. 1998 h) Sept. 1998 unmodified modified i) 
Nov. 1998 j) Nov. 1998 modified (se= standard error, n= number of mussels, modified= 
data from secondary set removed). 
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Appendix :2 continued. 
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Appendix 2.3: Shell length frequency distribution ofReach Run spat transplanted near 
Big Island measured a) Sept. 1997 b) Nov. 1997 c) May 1998 d) May 1998 modified e) 
July 1998, f) July 1998 modified g) Sept. 1998 h) Sept. 1998 unmodified modified i) 
Nov. 1998 j) Nov. 1998 modified (se= standard error, n= number of mussels, modified= 
data from secondary set removed). 
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Appendix 2.0 continued 
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Appendix 2.4: Shell length frequency distributions of Burnt Arm spat transplanted in 
Reach Run measured a) Sept. 1997, b) Nov. 1997, c) May 1998, d) May 1998 modified, 
e) July 1998, f) July 1998 modified, g) Sept. 1998, h) Sept. 1998 modified i) Nov. 1998, 
j) Nov. 1998 modified (se= standard error, n= number ofmussels, modified= data from 
secondary set removed). 
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Appendix 2 continued 
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Appendix 2.5: Shell length frequency distribution ofBurnt Arm spat transplanted to; 1) 
Burnt Arm 2) Big Island, measured a) Sept. 1997 b) Nov. 1997 c) May 1998 d) July 
1998 e) Sept. 1998 f) Nov. 1998 (se= standard error n= number of mussels). 

134 



Appendix 2 continued. 
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Appendix 2.6: Shell length frequency distribution ofBig Island spat transplanted to 
Reach Run measured a) Sept. 1998, b) Nov. 1998, c) May 1998, d) May 1998 modified, 
e) Jul 1998, f) Jul 1998 modified, g) Sept. 1998, h) Sept. 1998 modified, i) Nov. 98, j) 
Nov. 1998 modified (se= standard error, n= number of mussels measured, modified= 
data from secondary set removed). 
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Ap1>endix 1 continued. 
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Appendix 2.7: Shell length frequency distribution ofBurnt Arm spat transplanted to; I) 
Burnt Arm 2) Big Island, measured a) Sept. 1997 b) Nov. 1997 c) May 1998 d) July 
1998 e) Sept. 1998 f) Nov. 1998 (se= standard error n= number of mussels). 
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Appendix 3.0 Ther·mogr·aph data. 
Hurnt Arm Reach Run Big Island 
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Appendix 3.0. Summary ofhourly thermograph data (°C) collected at 3.5 mat the (a, b 

and c) front experimental line and (d, e and f) back experimental line ofBumt Arm 
(column 1), Reach Run (column 2) and Big Island (column 3). 
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Appendix 4.1: Short-tem1 environmental (tidal) data collected at Bumt Arm, May 
21-22, 1998; measured at the control station and three lines in the front, middle and back 
ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.2 : Short-term environmental (tidal) collected at Burnt Arm, June 23-24, 
1998; measured at the control station and three lines in the front, middle and back 
ofthe farm at 3 .5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.3: Short-tenn environmental (tidal) data collected at Bumt Arm, July 

b 

c 

d 

e 

30-31, 1998; measured at the control station and three lines in the front, middle and back 
ofthe fam1 at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.4: Short-term environmental (tidal) data collected at Bumt Am1, Sept. 

b 

c 

d 

e 

13-14, 1998; measured at the control station and three lines in the front, middle and back 

ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 

d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.5: Short-term environmental (tidal) data collected at Burnt Ann, Sept. 

b 

c 

d 

e 

28-29, 1998; measured at the control station and three lines in the front, middle and back 

ofthe farm at 3 .5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.6: Short-term environmental (tidal) data collected at Burnt Arm, Nov. 

a 

Control! 
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e 

2-3, 1998; measured at the control station and three lines in the front, middle and back 

of the fam1 at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 

143 



a 
G 20 · · •·- Centro 
c 

"; 15-,_ 
:::; 
rn 1 o -----~ ...... ~·----....... _ _... ____ ~ _ 
~ . ··-·- ---- ·-•···•-··•····· @- 5 

I 
- · • · ·Front .... 
- - •- · Middle 

~ 0 ---·-+-·--+ -··-:-·-·-+····- f-----7----t---,--t-----+---+----+--;--- --+-: •,- · Back 

' 
- 31 i 
0.. l 
C 9 i P···D···C···C···C· ·D. 
>. 2 .., ' 

-~ 17 J _ .... 
ca - c~--o.----·-Oit-··-o,..--a.--··.0. a. 

Vl I 

25 +.--~,-~--~~----~~~--~~~--~~~--.----

-----20 l 

Cl) 

..s 10 
~~ 15 1 

(::; 

~ 5! ••• ·•····•·- • • ~ ··· ~«r• • = ••• •· •••·• ·· ·•···•···•········ 
U 0 . : I I : i I I , I I : ; I I : I 

~ 
;o12l . 
=10 -j - --·-- - • ··· •···• ·· ·•··•- . -;:; 8 ...................... ,... : .......... - - - . .. 

~ 6 I 
~ 4 l 
] ~ j_ ··· 1· ·-···-:--····+ ·-···+- ··· 1- -+- ---+-··· -;--··· -1·· ·-·-1·· ··-: --··--7-----+·- ···-1···· ···· +----·-+·· ·····:·- ·· 

ca 
"'0 

~ 0 .... ·- -·· ···-···' - -+-------+----+-···+-- + - ..:- ___ _______ _; ____ ·-· ··:-------f-- -1- - 1--- + --+-·· 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 
~ ~ ~ ~ ~ ~ ~ 00 6 ~ ~ 6 ~ ~ ~ 0 ~ ~ 

~ ~ ~ ~ ~ ~ N N N 
Time of day 

Appendix 4.7: Short-term environmental (tidal) data collected at Reach RWl, May 

b 

c 

d 

e 

25-26, 1998; measured at the control station and three lines in the front, middle and back 
ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.8: Short-term environmental (tidal) data collected at Reach Run, Jtme 

24-25, 1998; measured at the control station and three lines in the front, middle and back 

ofthe fann at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.9: Short-tenn environmental (tidal) data collected at Reach Run, Aug. 
3-4, 1998; measured at the control station and three lines in the front, middle and back 

ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 

d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.10: Short-tem1 environmental (tidal) data collected at Reach Run, Sept. 

8-9, 1998; measured at the control station and three lines in the front, middle and back 

ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 

d) dissolved oxygen e) tidal height at time of sampling . 
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Appendix 4 .11: Short-tenn environmental (tidal) data collected at Reach Run, Sept. 

29-30, l 998; measured at the control station and three lines in the front, middle and back 
ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.12: Short-tenn environmental (tidal) data collected at Reach Run, Nov. 
4-5, 1998; measured at the control station and three lines in the front, middle and back 

ofthe farm at 3 .5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling_ 
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Appendix 4.13: Short-term environmental (tidal) data collected at Big Island, May 
28-29, 1998; measured at the control station and three lines in the front, middle and back 
of the farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.14: Short-tenn environmental (tidal) data collected at Big Island, June 
25-26, 1998; measured at the control station and three lines in the front, middle and back 
of the fann at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.15 : Short-term environmental (tidal) data collected at Big Island, Aug. 

4-5, 1998; measured at the control station and three lines in the front, middle and back 

ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 

d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.15 : Short-tenn environmental (tidal) data collected at Big Island, Aug. 

4-5, 1998; measured at the control station and three lines in the front, middle and back 
ofthe fann at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 
d) dissolved oxygen e) tidal height at time of sampling . 
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Appendix 4.16: Short-term environmental (tidal) data collected at Big Island, Sept. 

d 

e 

3-4, 1998; measured at the control station and three lines in the front, middle and back 
of the farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 

d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4.17: Short-term environmental (tidal) data collected at Big Island, Oct. 
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1-2, 1998; measured at the control station and three lines in the front, middle and back 
ofthe farm at 3.5 m depth with a CTD, a) temperature, b) salinity, c) chlorophyll-a, 

d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 4 .18: Short-tenn environmental (tidal) data collected at Big Island, Nov. 

7-8, 1998; measured at tl1e control station and three lines in the front, middle and back 

oftl1e farm at 3.5 m deptl1 with a CTD, a) temperature, b) salinity, c) chlorophyll-a , 
d) dissolved oxygen e) tidal height at time of sampling. 
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Appendix 5. 1: Hourly current speed a)-f) and current direction g)-l) measured with an 
S4 current meter in Burnt Arm, Notre Dame Bay, NL (station 2) on May 22, June 23, 
July 30, Sept. 13, Sept. 28 and Nov. 3, respectively: Hourly wind speed m)-r) and 
direction s)-x) collected in the Twillingate, NL on the above dates (source Environment 

Canada, Twillingate, NL, n= 3 per point). 
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Appendix 5.2: Hourly current speed a)-f) and current direction g)-1) measured with an 
S4 current meter in Reach Run, Notre Dame Bay, NL (station 2) on May 26, June 25, 
Aug. 4, Sept. 9, Sept. 30 and Nov. 5th, respectively; Hourly wind speed m)-r) and 
direction s)-x) collected in the Twillingate, NL on the above dates (source Environment 
Canada, Twillingate, NL, n= 3 per point). 
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Appendix 5.3: Hourly cWTent speed a)-f) and current direction g)-1) measured with an 
S4 current meter near Big Island, Notre Dame Bay, NL (station 2) on May 30, 

Jtme 26, Aug. 6, Sept. 4, Oct. 1 and Nov. 6th, respectively; Hourly wind speed m)-r) 
and direction s)-x) collected in the Twillingate, NL on the above dates (source 
Environment Canada, Twillingate, NL, n= 3 per point). 
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Appendix 6.1. Layout of experiment on a mussel farm in Burnt Arm, 49° 35 'N, 54° 
43'W. Dark lines indicate positioning of experimental mussel lines. Numbers 1-9, 
indicate sample stations. Small arrows indicate current direction as determined with 
flagging tape on a pole, lowered to 3.5 m. Time of day is located in the bottom right 
corner. Large arrow indicates tidal activity, rising /r , falling'& or slack tide -+ . 
Current direction was measured. a-e) May 21, '98, f-j) June 23, ' 98, k-o) July 30, '98, p
u) Sept. 13, '98, v-y) Nov. 3, '98. Current direction could not be monitored Sept. 28, '98 
due to high winds. 
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Appendix 6.2. Layout of experiment on a mussel farm in Reach Run, 49° 21 'N, 54° 
44'W. Dark lines indicate positioning of experimental mussel lines. Numbers 1-9, 
indicate sample stations. Small arrows indicate current direction as determined with 
flagging tape on a pole, lowered to 3.5 m. Time of day is located in the bottom right 
comer. Large arrow indicates tidal activity, rising _,;JilT , falling -....... or slack tide ~ 
Current direction was measured. a-f) May 26, '98, g-l) June 25, '98, m-p) Sept. 8, '98, q
t) Nov. 5, '98. Current direction could not be monitored Aug. 3-4 or Sept. 30, '98 due to 
high winds. 
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