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ABSTRACf 

The eastern Avalon High-alumina belt is an alteration system of Precambrian age, 

hosted by the Johnnies Pond formation. The Johnnies Pond formation is a newly recognized 

unit and is separated from the Harbour Main group which was previously thought to he the 

only major volcanic unit on the eastern Avalon Peninsula. Detailed mapping demonstrates 

the presence of a major regional unconformity between the Conception Group and the 

Johnnies Pond formation. The remaining volcanic rocks in the Harbour Main group 

conformably underlie the Conception Group. The Holyrood Granite is pre-Conception in 

age and clearly intrudes both the Johnnies Pond Formation and foliated hornblende diorite 

of the Foxtrap diorite, which is interpreted to he the oldest unit on the Avalon Peninsula on 

the basis of structural relationships. 

The eastern Avalon High-alumina belt is marked by the development of silicification, 

sericitization and pyroplry/litization within the rhyolitic ash-flow tuffs of the Johnnies Pond 

Formation. The earliest alteration in the zone involved silicification, presumably proximal 

to pyrophyllitization at depth, subsequently overprinted by fracture hosted sericite and 

pyrophy/lite. Early silicification is accompanied by pyritization which locally contains 

anomalous gold The alteration system and the redistribution of rock components were likely 

controlled by dissolution mechanisms and kinetically inhibited precipitation of less soluble 

hydrous aluminosilicates producing amorphous reaction products which subsequently 

recrystallize to pyrophyllite. 
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l.llntroductioa 

CHAPTER I 

INTRODUCOON 

High-alumina altered rocks in eastern North America have been of economic interest 

since the first gold rush in North America occurred. During the 1700's gold deposits were 

discovered in the Carolinas associated with high-alumina zones of Precambrian age 

(Worthington and Kiff, 1970). These zones have had an intermittant mining history that 

extends into the present day. In the early 1980's the discovery of gold in high-alumina altered 

rocks at Hope Brook, sparked a modem gold rush in Newfoundland. Since that time much 

research has been done revealing the relationship of the historically known deposits of gold 

bearing zones at Hope Brook, and new occurrences which have been subsequently found 

throughout the Avalon Zone. The Avalon Zone is a lithotectonic zone, characterized by 

Precambrian volcanic, sedimentary and intrusive rocks that can be traced along the eastern 

coast of North America from Newfoundland to Georgia (Williams, 1979). 

High-alumina alteration zones, intermittently mined at Manuels since the 1900's 

under a fee simple mining lease, have also provided raw material for the ceramic tile industry 

in North America. The present operation known as the Oval Pit Mine, has been in continuous 

production since the 1950's. The deposit at the Oval Pit Mine is part of a linear belt of 

pyrophyllite occurrences which extend over a distance of 14 km. The pyrophyllite 
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occurrences are enveloped by an aureole of related sericitic alteration and silicification and 

the belt defines a major regional structure~ tenned the Avalon High-Alumina Belt (AHAB). 

Significant gold mineralization also occurs in silicified and sericitized rocks within the belt 

and as such the AHAB represents the northern tenninus of a gold/high-alumina metallotect 

within Avalonian strata of the Appalachian Orogenic Belt. Outside of the Avalon Peninsul~ 

the Avalon Zone has been deformed and metamorphosed. Consequently other high-alumina 

zones and their host rocks are overprinted by Silurian and younger orogenic events. The 

AHAB is not extensively deformed and provides a unique opportunity to understand the 

formation and geologic relations of high alumina alteration in the Avalon Zone. The AHAB 

also constrains the timing of magmatism and basin development on the Avalon Peninsula 

which is the type area of the Avalon Zone. 

The most widely documented occurrences of pyrophyllite are those which are 

associated with acid-sulfate (or high-sulfidation) alteration systems. The AHAB, however, 

is not an acid-sulfate system which suggests that there can be a second environment of 

pyrophyllite formation. In the AHAB-type pyrophyllite deposits alteration, textural and 

structural development of the high-alumina zone are interrelated. It is therefore important to 

establish the regional geological setting and to isolate subsequent structural events from 

those which are contemporaneous with the alteration system. 

2 



1.2 Project Backgrouad md Aim of Present Study 

This study originated as a Newfoundland Department ofMines and Energy (presently 

the Newfoundland Department ofNatural Resomces, NDNR) project to determine the gold 

potential of the alteration zone hosting the Oval Pit Mine (Hayes and O'DriscoU, 1990). It 

is part of a longer term effort by the NDNR to understand the metallogeny of the Avalon 

Zone in Newfoundland. The aim of this particular study is to model the genesis of the 

AHAB, including timing with respect to the regional geology, and thereby improve 

understanding of the geological history of the Avalon Peninsula and the economic geology 

of this class of deposit within the Newfoundland Avalon Zone. 

1.3 Methods 

To complete this project, field mapping and detailed sampling were carried out. 

Extensive field description of textures and structures related to the development of the 

alteration zone were made, and major, trace element and stable isotope geochemical studies, 

were carried out on a suite of samples representative of the AHAB and its host rocks. 

Mapping of the alteration system and host rocks, at a scale of 1:12,500 with more detailed 

follow-up mapping in the vicinity of the Oval Pit Mine, was undertaken from May to 

September 1989. Field visits were also made to areas on the Avalon and Burin peninsulas 

that have similarly altered rocks with gold or base metal mineralization. Major, trace and 

precious element (Au, Ag) data have been previously published (Hayes, 1994). 
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1.4 Location, Access aad Geographic Databases 

The field area is located in the eastern part of the Avalon Peninsula (Figure 1.1) and 

is readily accessible from St. John's via the Conception Bay or Trans-Canada Highways. 

Secondary roads provide access to the Oval Pit-Mine Hill (Country Path and Dawes Road) 

and Dog Pond Area (Pastureland Road). Access is enhanced by abundant trails, cutovers and 

power lines. 

The area is completely covered by 1:50,000 and 1:12,500 topographic maps (NTS 

lN/10, 1NI7). Map coverage for the northern part of the field area is also available at 

1:25,000 and 1:5,000 scales. There is also complete 1:12,500 colour air photograph coverage 

from a 1978 survey. 

l.S Physiography and Glaciation 

The physiography of the Conception Bay region is largely controlled by bedrock 

geology. The coast is bordered by a 2 km wide lowland, underlain by a belt of friable 

Cambrian sedimentary rocks, which rises inland to a dissected inland plateau of well exposed 

Precambrian strata and intrusive rocks. The plateau is drained by a series of streams and 

rivers running north into Conception Bay which are localized along late faults that dissect 

the plateau. 
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Figure 1.1. Regional geology of the eastern Avalon Peninsula and location of the study area. 
Geology modified from King (1988). 
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Away from the fault valleys~ much of the upland area is covered by glacial drift and 

peat bogs~ however~ bedrock exposure is excellent near the plateau margin. Thick overburden 

deposits appear to be confined to valleys and local topographic lows. Glacial erratics are rare 

on the plateau but are more abundant in valleys and on the lowland. Within the alteration 

zones the comparatively soft pyrophyllite lenses and the general outcrop area of pyrophyllite 

schists are fluted on a north-south axis indicating a dominantly northerly ice flow direction. 

1.6 Previous Work 

The geology of the high alumina alteration and its host rocks have been the subject 

of numerous investigations since the 1800's (see Table Ll). The most comprehensive 

regional mapping to date was undertaken by the Geological Survey of Canada in the 1950's 

and 1960's (Rose, 1952, McCartney, 1967) to which major stratigraphic revisions have been 

made by Williams and King (1979), and King (1985, 1988, 1990, and personal communi

cation 1993). The history of stratigraphic nomenclature outlined by King (1990) for the 

St.John's (1N/10) map area is equally applicable to the AHAB host and country rocks. 

1.7 Regional T«tonic Setting of the Avalon Peninsula 

The Avalon Peninsula lends its name to the more extensive Avalon tectono

stratigraphic zone or "Avalon Zone" (Williams, 1979) which is the most continuous litho-
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Table 1.1. PreviOIIS geological studies o[the eastern Avalon Peninsula and the Avalon High Alumina Belt 

Year Investigator(s) 

1843 Jukes, J.B. 

1881 Murray, A. and 
Howley, J.P. 

1885 Howley, J.P. 

1889 Walcott, C.O. 

1916 Buddington, A.F. 

1936 Vhay, J.S. 

1952 Rose, E.R. 

1958 Lee, B.W. 

1959 Gillespie, C.R. 

1963 Dawson, J.M. 

1967 McCartney, W.O. 

1970 Keats, H.F. 

1978 Papezik, V .S., 
Keats, H. and 
Vhatra, J. 

1978 Batten and Hume 

1986 King, A.F. 

1988 O'Driscoll, C.f., 
Collins, C.J. and 
Tuach, J. 

1988 King, A.F. 

Major results/theme of stu<ly 

Regional geology, first stratigraphic column 

Geological map of Avalon Peninsula 

Unpublished geological map ofpyrophyllite schists in Foxtrap area 

Revison of stratigraphic nomenclature, Avalon Peninsula 

First geological description of altemi rocks and regional geology. Noted proximity 
to Holyrood Granite and inferred the alteration was related to the granite 

Investigation ofpyrophyllite occurrences and map of alteration zones 

Geological report and mapping ofTorbay mapsheet (1 inch=S miles) 

Mapping and tonnage estimation of the Mine Hill occurrence 

Drilling report and tonnage estimate of Oval Pit Mine deposit 

Detailed geological investigation of the Topsails Foxtrap area 

Comprehensive geological report and map of the Avaion Peninsula 

Geological, mineralogical and chemical investigation of the pyrophyllite deposits. 
Origin by fluids from the Holyrood Granite proposed. 

Geological, mineralogical and chemical investigation of the pyrophyllite deposits. 
Origin by fluids from the Holyrood Granite proposed. 

Investigation of the pyrophyllite potential of the Trout Pond area. 

Detailed mapping of the St. John's area including stratigraphic revision 

Examination of the high-alteration. Proposed an epithermal style atleration system 

Geological map of Avalon Peninsula with revised stratigraphic nomenclature 

198? Saunders, C., APEX Gold exploration in the Dog Pond area. 

1986 Lenters, M., ESSO GeologicaVgeochemical investigation following discovery of a gold anomaly in 
Topsail River. Mapping and sampling of bedrock exposures along AHAB. 

1989 Hayes, J.P. and 1:12,500 map of alteration system 
O'Driscoll, C.F. 

1994 Hayes, J.P. Comprehensive multi-element geochemical database including Au and Ag data 
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tectonic zone of the Appalachian orogenic belt (Williams and Hatcher, 1983). This zone is 

characterized by a thick sequence of Late Precambrian volcanic and sedimentary rocks that 

flank the eastern edge of the North American craton. The Carolina Slate Belt of the south

eastern United States, which hosts high-alumina alteration systems similar to the AHAB ( cf. 

Schmidt, 1985), is also part of the Avalon Zone. 

Within the Newfoundland Appalachians, the Avalon Zone forms a broad belt, sub

parallel to the Gander tectonostratigraphic zone (Figure 1.2). The Avalon-Gander zone 

boundary is marked by the Dover Fault to the north and the Hennitage Bay Fault to the south 

(Blackwood and Kennedy, 1975; Blackwood and O'Driscoll, 1976). Both faults are cut by 

the Devonian Ackley Granite which provides a minimum age of juxtaposition. The low grade 

of metamorphism and strain of the Avalon Zone in comparison with older zones of the 

Newfoundland Appalachians were interpreted to indicate that the zone was outside the 

Appalachian orogenic cycle (Williams and Hatcher, 1983). Recent studies (O'Brien eta/., 

1993; O'Brien eta/., 1985 in press and references therein) indicate the presence of Late 

Precambrian rocks at the western part of the Hermitage flexure. These rocks have been 

postulated to be the part of the Gondwana continent which faced the Iapetus Ocean (O'Brien 

eta/_, 1993) and imply that at least part of the zone may have been involved with the 

Appalachian cycle. O'Brien et a/. (1995) proposed that much of the Late Neoprotozoic 

sequences were dispersed in the late Proterozoic but were reamalgamated by Silurian 

orogenesis at the end of the Appalachian Orogeny. 
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Figure 1.2. Geology of the Avalon Zone in Newfoundland (after Colman-Sadd et al., 1992). 
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1.8 Description of the PyrophyUite Occurrences 

In addition to the Oval Pit Mine, pyrophyllite occurs in four other prospects within 

the study area. The following sections provide an overview of the Oval Pit Mine and describe 

each of the prospects. The locations are shown on Map 1 (in folder). 

The early history of production from the belt is described by Martin (1983). The 

earliest production from the property was in 1904 and the early era of mining of the belt saw 

the deposit close and reopen twice within six years. 

1.8.1 Oval Pit Mine 

The Oval Pit Mine is Canada's only producing pyrophyllite mine and is owned by 

Newfoundland Minerals Division of Armstrong World Industries (Canada) Ltd. Average 

annual production is on the order of 50,000 short tons of pyropbyllite-rich rock; in 1992 the 

value of production from the deposit was on the order of $750,000 US. Material from the 

Oval Pit is blended after crushing to a minimum grade of 18% Al20 3 and a maximum total 

alkali (Na20 + K20) content of 0.65%, for use primarily in the production of ceramic tile. 
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1.8.2 Mioe um 

The Mine Hill Quarry was the site of the earliest production from the AHAB. It is 

located on the west side of Johnnies Pond and is accessible by a dirt road and cart trail from 

Country Path. Mine Hill itself is an elongate north trending ridge composed of variably 

altered felsic volcanic rocks. Old quarry workings on the east side of the hill provide 

excellent exposures of pyrophyllite lenses. This site was probably chosen as the steep sides 

of the hill provided easy access to small, but high-grade deposits which were amenable to 

mining by drill steel and block powder. 

1.8.3 Trout Pond Pro5l'S'ct 

The Trout Pond Prospect is located approximately 500 m north of the Trans-Canada 

Highway on the western side of a prominent north trending ridge which extends into the 

Oval Pit Mine area. The area was first investigated in the early 1900's through construction 

of two short drifts and numerous small test pits. All of the workings from this period are 

overgrown or filled with water and humus and none of the drifts were safely accessible 

during the present study. Renewed exploration on the site during the late 1970's included 

drilling and stripping, however, no significant pyrophyllite reserves were defined (Batten and 

Hume, 1978a, b). 
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1.8.4 Do& Pond-lakes Gully Prospects 

The Dog Pond and Jakes Gully prospects consist of a group of outcrops along an 

elongate ridge south of the Trans Canada Highway. The area is easily accessible by narrow 

roads and foot trails leading from the Pastureland Road. The prospects are separated by a 

marsh with no exposures, however, the regional alteration pattern indicates that these may 

be both part of the same zone (Map l ). This is supported by exploration work conducted on 

the two prospects and drilling in the intervening area indicates they are exposures of a 

continuous zone of pyrophyllitized volcanics (Batten and Hume, l978a, b). The Dog 

Pond-Jakes Gully Prospect contain zones of high grade pyrophyllite mineralization with a 

reported tonnage of -40,000 short tons of pyrophyllite (Keats, 1970). 
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CHAPTERl 

REGIONAL GEOLOGY OF THE AVALON PENINSULA 

2.1 IatroductioD 

The purpose of this chapter is to provide a regional framework for discussion of 

geological relationships in the study area Some of the key problems of the geology of the 

Avalon Peninsula are discussed in this chapter as the field area contains several major units. 

2.2 Avalonian Orogeny, Geochronology and Tectonism Within the Avalon Zone 

Crustal deformation and granitoid intrusion within the Avalon Zone was the basis for 

the recognition and definition of the Avalonian Orogeny (Lilly, 1966) and this name has 

been subsequently applied to stratigraphic and tectonic events that span much of history of 

the zone (cf. O'Brien et al., 1983; Cawood eta/., 1988). Since most of the Avalonian 

successions lack penetrative deformatio~ the evidence for orogenesis has historically come 

from unconformities, such as the basal Cambrian unconformity and the Lilly unconformity 

(Anderson eta/., 1975; King, 1990). The application of high-precision geochronological 

techniques has led to the recognition that periods of magmatism likely coincide with tectonic 

disturbances (O'Brien et al., 1992b). Outside of the Avalon Peninsula detailed mapping and 

age dating has permitted recognition of significant Avalonian tectonic events that were 
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previously unrecognized and indicate a complex history for much of the Avalon Zone 

(O'Brien eta/., 1996). 

The earliest evidence of Avalonian orogenesis is the temporal gap between the Burin 

Group (763 +2.2/-1.8) and volcanic rocks of the Tickle Point Formation (681 ± 3 Ma) 

(O'Brien eta/., 1992b). The Burin Group has been correlated with the Bou Azzar ophiolite 

in Morocco (Krogh et a!., 1988) and the ophiolitic affinity of these rocks has been interpreted 

as indicating an extensional tectonic setting (cf. O'Brien et al., 1983). 

By far the most regionally extensive events are represented by volcanism in the 

Harbour Main, Love Cove and Connaigre Bay groups which occurred in the period 630-620 

Ma (Krogh et al., 1988; O'Brien et al., 1992b). The 580-550 Ma period was also marked by 

volcanism and magmatism and examples of these rocks are found throughout the zone. On 

the Avalon Peninsula the Harbour Main Group contains rocks from both these periods, the 

implications of which are discussed in Section 1.9 (Geochronology). 

Assuming an age of 570 Ma for the basal Cambrian, the period of geological time 

represented by the Avalon Zone in Newfoundland is on the order of 190 Ma. The Avalon 

Peninsula itself, including the study area, has a Precambrian history extending over 60 Ma 

(from the oldest dated rocks). It is clear that the Avalon Zone has been the product of a 

complex orogenic history, yet the evidence on the Avalon Peninsula is obscured by 

interpretation. Unconformities such as those described by McCartney (1967), Rose (1948) 
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or Dawson (1963) have been assigned little temporal significance by the original and are 

ignored by later workers. The following section will review the bedrock geology of the 

Avalon Peninsula and further detail the geological problems that are presented in the cmrent 

data. 

2.3 The Geology of the Avalon Peninsula 

2 3 .I Introduction 

The Avalon Peninsula is dominated by plutonic, sedimentary and volcanic rocks of 

Late Precambrian age unconformably overlain by a sequence of Cambrian to Ordovician 

sedimentary rocks (Figure 2.1 ). The bimodal volcanic rocks of the Harbour Main Group have 

been considered by previous workers to be the oldest rocks on the Avalon Peninsula (Rose, 

1952; McCartney, 1967). The Harbour Main Group has been described as passing upwards 

either conformably (Rose, 1952; King, 1990) into the marine sedimentary rocks of the 

Conception Group or with a local angular unconformity separating the units (McCartney, 

1967). The Conception Group is overlain conformably by deltaic sedimentary rocks of the 

St John's Group which in tum are overlain confonnably by alluvial sedimentary rocks of the 

Signal Hill Group (King, 1990). The Holyrood intrusive suite is described as either intruding 

the Harbour Main and Conception groups (Rose, 1952) or intruding only the Harbour Main 

Group (McCartney, 1967). 
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Figure 2.1. Geology of the Avalon Peninsula (from King, 1990). 
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The western part of the Avalon Peninsula is underlain by bimodal volcanic and 

sedimentary rocks of the Musgravetown Group (McCartney, 1967; King, 1988). The 

lowermost sedimentary unit of the Musgravetown Group (Big Head Formation) is 

interbedded with the Signal Hill Group (King, 1988). The Musgravetown Group is folded 

along a regional synclinal axis, the Trinity Bay Synclinorium (King, 1988) and the core of 

the syncline contains Cambrian strata, indicating a relatively young (Silurian or later) period 

of deformation (McCartney, 1967). 

No basement rocks were recognized by earlier workers, however, Papezik (1973) 

reported detrital garnet and muscovite within sedimentary rocks of the Signal Hill Group 

which he inferred to have been derived from a sialic basement. Essentially the view of the 

Precambrian geology of the Avalon Peninsula held by most workers is that of more or less 

contemporaneous deposition of volcanic and sedimentary rocks with synvolcanic 

magmatism. 

Despite the apparent simplicity of the geology it has fostered much controversy due 

to the conflicting observations regarding the geological setting and contact relationships of 

bedrock units. The major problems include the chemical affinity of the volcanic rocks 

(Harbour Main Group), stratigraphic relationships and genetic relationships of volcanic and 

plutonic rocks (Harbour Main Group and Holyrood Intrusive Suite) and also the relationship 

between the Harbour Main and Conception Groups. 
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2.3 .2 The Harbour Main Group Subdivision and Chemical Affinity 

The Harbour Main Group (Rose, 1952) consists of a mixed felsic-mafic volcanic 

sequence with associated sedimentary rocks. Papezik (1974) made the first subdivision of 

the Harbour Main Group and considered it to be disposed in three distinct blocks. These 

blocks were termed the Eastern, Central and Western blocks. These subdivisions have no 

clear stratigraphic significance. The Eastern Block included all those rocks exposed north 

of Topsail which were considered to have been deposited in a subaqueous (marine) setting 

given the presence of pillowed flows and well sorted sandstones. The Central Block, as 

described by Papezik (op. cit.) consists of mainly flow-banded rhyolite exposed along the 

eastern margin of the Holyrood Intrusive Suite. The Western block comprises the Colliers 

Peninsula and the immediate area which are underlain by ignimbritic rhyolitic rocks and 

associated subaerial basalt flows (Papezik, 1974). 

King (1990) fonnally subdivided the Harbour Main Group in the St John's Peninsula 

area into three formations, the St. Phillips, Princes Lookout and Portugal Cove Formations 

which are composed of volcaniclastic rocks, basalt flows and interbedded sedimentary and 

volcanic rocks, respectively (King, 1990). These units and rhyodacitic rocks forming domes 

exposed near Cape St Francis correspond to Papezik's (1974) Eastern Block. The rhyolitic 

ash flow tuffs (Johnnies Pond Formation, this work) near the eastern margin of the Holyrood 

Intrusive Suite correspond to the Central Block. The Western Block crops out west of the 
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Holyrood Horst and according to the division ofPapezik (1974) does not crop out within the 

study area. 

Papezik (1970), studying the Western and Eastern Block, reported that the Harbour 

Main Group bad a mildly alkaline geochemical affinity and was also distinctly sodic. The 

alkaline chemistry was taken to indicate that the rocks were erupted in an extensional setting 

analogous to the Basin and Range province. The distinct sodic compositions were obtained 

on samples of the rhyodacites near Cape St. Francis and appear peculiar to this rock type in 

the eastern Avalon. Hughes (1970) and Hughes and Bruckner (1971) considered the Harbour 

Main and Conception Group to have formed as part of an island arc-complex which shed 

detritus into an adjacent basin forming the Conception Group. Hughes (1973) disputed 

Papezik's (1970) interpretation based upon the petrological character of the volcanic rocks. 

He noted that the volcanic rocks contained albite phenocrysts, and that epidote was not 

uncommon as an accessory mineral. He reasoned, citing a paucity of plagioclase 

compositions less than An20 in similar volcanic rocks elsewhere, that the Harbour Main 

Group compositions were secondary, resulting from the low grade metamorphic breakdown 

of more calcic plagioclase to albite. Hughes (1972) proposed that volcanic rocks throughout 

the Avalon Peninsula were part of a spilite-keratophyre province and as such their major 

element chemistry is difficult to interpret with certainty. 

It was clear from the early stages of mapping during this project that the units these 

authors compared had no equivalents in the study area. Furthermore, the units that Hughes 
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compared actually represented a diversity of rock typest as they included the rhyodacites of 

Cape St. Francis (Harbour Main Group) being compared on the gross sense with rhyolitic 

ash-flow tuffs of the Bull Ann Formation (Hayest 1985). In addition to recognizing that these 

rocks had no equivalents in the study ~ mapping also indicated relationships which help 

establish that the rhyolites of the Eastern Bloc~ are clearly younger than the rocks of either 

the Central or Western Blocks (see section 2.4). 

2.3.3 Relationship ofConc;ption and Harbour Main Groups 

Volcanic rocks of the Harbour Main Group underlie sedimentary rocks of the 

Conception Group. The contact has been described as an unconformity (McCartney, 1967) 

in the Holyrood area and also as essentially conformable (Rose, 1952; Dawson, 1963 ). 

McCartney (1967) mapped the folded nature of the unconformity and described a moderately 

dipping sequence of interbedded volcanic and volcaniclastic rocks which strike into folded 

Conception Group rocks over a distance of less than 250 m. Locally the unconformity is 

exposed. Rose (1952) indicated that the Harbour Main volcanic rocks were deformed prior 

to the deposition of the Conception Group. Nevertheless he placed little temporal 

significance on the unconformity and concluded that the sequences were practically 

conformable. 

Dawson (1963) mapped the Harbour Main Group and Conception Groups along the 

eastern margin of the Holyrood intrusive suite, including the present study area. He 
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supported Rose's (1952) earlier contention that green-matrix conglomerates and fine 

greywackes interbedded in both units suggest that sedimentary rocks within the Harbour 

Main Group are in part equivalent to the Conception Group. Dawson (1963) subsequently 

included some of these rocks within the Conception Group and where an unconformity 

between these and some Harbour Main Group volcanic rocksl had been mapped, they were 

assigned to a new unit called the "Black Mountain Formation" (Dawso~ 1963). Dawson 

(1963) postulated that the depositional environment of the Conception Group was partly 

submarine and partly subaerial and deposition of volcanic and sedimentary rocks of the 

Harbour Main Group was contemporaneous and transitional with deposition of "cleaner" 

Conception Group sedimentary rocks "in a large slowly subsiding basin" to the east 

(Dawso~ 1963). King (1990), drawing comparisons between sedimentary rocks within the 

Portugal Cove Fonnation and the lower part of the Conception Group, inferred, like Dawson, 

that deposition was penecontemporaneous. 

2 3 4 Holyrood Intrusive Suite and its Relationship to the Hamour Main/Conception Groups 

The relationship of the Conception Group and Holyrood Intrusive Suite was not 

established with certainty by earlier workers. Rose (1952) postulated that there was a "pre

Conception Holyrood" and a "post-Conception Holyrood" to account for what be bad 

suggested was locally an intrusive relationship. He appealed to an intrusive relationship 

1 This earned these rocks the informal designation of "Misconception". 
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largely to explain the local proximity of the Holyrood Intrusive Suite and the Conception 

Group. Dawson (1963) and McCartney (1967, 1969) did not indicate a clear intrusive 

relationship between the Conception Group and the Holyrood Intrusive Suite. Holyrood-like 

granite clasts are found in several localities in units considered to be part of the Conception 

Group (McCartney, 1967). Hughes and Bruckner (1971) proposed that these units were 

penecontemporaneous and represented intrusive, extrusive and sedimentary facies of a 

volcanic island complex. The available geochronological data (section 2.4) and the work of 

King (1990, and references therein) refutes much of the interpretations offered on the 

relationship between the units. 

2.3 .5 Precambrian Sedimentazy Rocks 

Precambrian sedimentary rocks of the eastern Avalon Peninsula contain facies 

deposited in submarine to subaerial fluvial environments and are disposed in three main 

units, the Conception, St. John's and Signal Hill Groups. Detailed descriptions of individual 

formations may be found elsewhere (Williams and King, 1979; King, 1986, 1988, 1990). The 

following descriptions are adapted from these sources: 

The Conception Group (Rose, 1952) is the lowermost unit within the sequence and consists 

of marine turbiditic siliceous siltstone and sandstones with locally interbedded coarse 

volcaniclastic rocks. The Gaskiers Formation near the base of the Conception Group records 

a Precambrian glacial event. Near the top of the group, the Mistaken Point Formation 
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contains Precambrian metazoan fossils preserved beneath a tuff layer. The intermittent 

deposition of tuff throughout the sequence has been interpreted to represent a distal airfall 

facies related to ongoing volcanic activity to the west (King, 1979). 

The St. John's Group (Williams and King, 1979) conformably overlies the Conception 

Group. It is composed of sandstone and shale with minor tuff within the lowermost 

formation. It appears to represent a period of transition from marine turbidite facies through 

to onset of the deltaic deposits of the Signal Hill Group {King, 1986). 

The Signal Hill Group (Williams and King, 1979) consists of a sequence of thick -bedded 

sandstone with local siltstone, tuff and conglomerate that is overlain by a variety of generally 

coarser-grained siliciclastic sedimentary rocks. The basal unit (Gibbett Hill Formation) is 

interpreted to represent the distal delta-basinal setting that was eventually overlain by 

prograding coarser-grained delta plain to proximal alluvial fan sedimentation from a source 

area to the present northeast. The Lilly Unconformity represents a period of uplift and 

deformation late in this depositional cycle (King, 1986) and is marked by folded rocks of the 

Conception Group overlain by the Piccos Brook Member of Flatrock Cove Formation 

(Signal Hill Group) (King, 1979). 

23 



2.3.6 Cambrian aod Later Evolutjon 

Precambrian strata of the Avalon Zone are unconformably overlain by Cambrian and 

Ordovician sedimentary rocks. On the A val on Peninsula, the unconformity cuts through the 

entire Precambrian stratigraphic sequence. In the western Avalon Peninsula Eocambrian 

quartzite (Random Fonnation) rests unconformably upon the Musgravetown Group and is 

in tum unconformably overlain by Cambrian strata (McCartney, 1967). In the Conception 

Bay area, the Random Formation is absent and basal Cambrian sedimentary rocks lie directly 

upon the Harbour M~ and Conception Groups and the Holyrood intrusive suite (Rose. 

1952; McCartney, 1967). 

The absence of strata younger than Ordovician on the Avalon Peninsula implies that 

it has been an uplifted area since that time. Evidence from offshore investigations indicate 

that Silurian strata and a Devonian unconformity are present in the near offshore (King. 

1988). Post-Cambrian movement on the Topsail fault evident at Topsail Head, may be in part 

or wholly related to the development of this unconformity. The offshore Palaeozoic 

sequences are bounded to the west by a linear feature striking subparallel to the coast which 

might be a result of the Precambrian structural grain. The Avalon Peninsula was affected by 

Triassic rifting along the Atlantic margin as demonstrated by the easterly trending Trans 

Avalon Dyke (Hodych and Hayatsu, 1980). It is possible that some structures on the Avalon 

Peninsula were active during tectonism associated with this rifting event. but such 

relationships are difficult to demonstrate. The dyke has a remarkably linear positive 
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aeromagnetic anomaly along most of its length. The anomaly signature is perturbed as it 

crosses the Topsail Fault and this might actually provide evidence of an offset of the dyke, 

indicating that the fault bas had post-Triassic displacements. 

2.4 Geochronology 

Geochronological studies of the Harbour Main Group volcanic rocks and the 

Holyrood Intrusive Suite have been conducted using the Rb/Sr and U/Pb isotopic systems. 

The Rb/Sr method was used primarily on the Avalon Peninsula before the 1970's and 

exclusively on whole rock specimens. Table 2.1 below provides a list of geochronological 

data from major units which crop out within the study area. These data indicate that the 

Harbour Main Group contains rocks with widely differing ages. Hughes (1972) had earlier 

postulated that the group was composite drawing analogy with the Basin and Range to 

explain the range in lithologies and this model was also proposed by Krogh et a/. ( 1988) to 

explain the similar time span of volcanic activity in the Harbour Main, and its western 

equivalent the Love Cove Group as represented by U/Pb ages on various parts of these 

groups. Despite the gap in ages between the Holyrood Intrusive South and the rhyodacite of 

the Eastern Block of the Harbour Main Group of volcanic rocks the authors (Krogh et a/., 

1988) did not consider the break represented any distinct tectonic event despite the general 

acknowledgment of regional workers that the Holyrood intruded the Harbour Main Group 

(Rose, 1941; McCartney, 1961). The available geochronological data is consistent with the 

presence of a significant unconformity in the study area between the Holyrood Intrusive 
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Suite and parts of the volcanic sequences presently mapped as the Harbour Main Group. 

Detailed mapping of these units (see Chapters 3 and 4) has resolved geological relationships 

and pennits a clearer interpretation of the geochronological data. 

Table 2.1. Summary of geochronology data for the eastern Avalon Peninsula 

Unit/Description and Age (Ma) 

Harbour Main Group 
552 ± 29 Rb/Sr 

Ignimbrite (Western block) 
606 +3.7/-2.9 U/Pb 

Rhyolite (Western block) 
622.6 +3.21-2.0 U/Pb 

Porphyry (Central block) 
631 ± 2 U/Pb 

Rhyodacite (Eastern block) 
585.9 +3.4/-2.4 U/Pb 

Holyrood Intrusive Suite 
590 ± 11 Rb/Sr 

620.5 +2.1/-1.8 U/Pb 

Conception Group 
563 ±3 U/Pb 

Source 

Krogh et aL, 1988 (recalculated from Fairbairn et al. 
1966) 

Krogh et al., 1988 

Krogh et al., 1988 

Krogh et al., 1988 

Krogh et al., 1988 

Krogh et al., 1988 (recalculated from Fairbairn et al., 
1966) 

Krogh et al., 1988 

Benus et al., 1988 
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3.1 Introduction 

CHAPTER3 

BEDROCKGEOLOGYOFTHESTUDYAREA 

The study area contains Precambrian volcanic, sedimentary and intrusive rocks 

unconformably overlain by Cambrian strata. In the course of mapping, bedrock units and 

unconformities were recognized that indicated the need for revision of the regional 

stratigraphy. The field area contains six major units, some of which can be further 

subdivided. Two of these are new units and were previously included in the Holyrood 

Intrusive Suite and Harbour Main Group. Detailed mapping also permits correlation of the 

Harbour Main Group and Conception Group in the study area with the stratigraphy of the 

units in the St. John's area where these units have been subdivided to the bed and member 

level (King, 1990). The aim of this chapter is to describe the bedrock units and their 

stratigraphic and intrusive relationships. A revised stratigraphy for the study area is presented 

based upon the new field observations. The data for this chapter are based upon detailed 

mapping of approximately 350 bedrock exposures supplemented with petrographic study. 

3.2 General Stratigraphy and Relationships in the Field Area 

The oldest bedrock unit in the field area is the Foxtrap Diorite which consists of 

foliated dioritic to tonalitic intrusive rocks containing conspicuous amphibolite xenoliths. 
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These rocks have been historically assigned to the Holyrood Intrusive Suite (McCartney, 

1967; King, 1988). The Johnnies Pond Formation is also a new unit and it is composed of 

rhyolitic ash-flow tuffs and related rocks which had been considered to be part of the 

Harbour Main Group (King, 1988). Its contact relationship with the Johnnies Pond 

Formation is unkno~ however both units are intruded by the Holyrood Intrusive Suite. The 

Johnnies Pond Formation is separated from the Harbour Main Group and Conception Groups 

by an unconformity. 

The Harbour Main Group, passes upwards conformably into the Conception Group. 

Small intrusions of quartz porphry and diorite intrude the Harbour Main Group and are likely 

coeval with this unit. The Cambrian Harcourt Group sedimentary rocks crop out in the 

northern part of the study area and overly all older strata with unconformity. Figure 3.1 is a 

general geological map of the field area, showing the locations discussed in the text. Map l 

(in pocket) provides greater detail on unit boundaries and structural information. Table 3 .l 

is the Table ofFormations for the field area; it indicates the geological relations as inferred 

from the present study. 

3.3 Tbe Foxtrap Diorite 

3.3 .I Description 

The Foxtrap Diorite (informal) is a unit of intermediate intrusive rocks containing 

abundant amphibolitic xenoliths that crops out in the western part of the map area The 
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Figure 3.1. Geological map of the Avalon High Alumina Belt. 
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Table 3.1. Table of formations 

Age Group Rock types 

Cambrian 

>570Ma Adeyton and Harcourt Gps. sandstone, siltstone and shale 

UNCONFORMITY 

Precambrian 

>586 Ma Conception Gp. siliceous, sandstone and siltstone 
586Ma Harbour Main Gp. mafic volcanic rocks, rhyodacite 

UNCONFORMITY 

620Ma Holyrood Intrusive Suite granite 

INTRUSIVE CONTACT 

622Ma Johnnies Pond Fm. rhyolitic ash flow tuff 
630Ma 
? 

UNCONFORMITY 

?680 Foxtrap Diorite foliated diorite, tonalite 
Basement lower contact unknown 

diorite was first described as a metagabbro by Rose (1950, 1952). Its distribution was 

mapped by Dawson (1963) and Gale (1963) who referred to it as a meta-diorite and 

recognized it as a distinct unit which is older than the Holyrood Granite. McCartney (1967, 

1969), however, thought that the Holyrood granite represented a single period of intrusion. 

Consequently he had inferred that these rocks were formed by hybridization of mafic 

volcanic rocks and the xenoliths were formed by conversion of "basaltic roof pendants'' 
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(McCartney, 1969, p. 122), presumably when the unit intruded Harbour Main basalts. Main 

basalts. Dawson's original recognition of the unit as being older than the Holyrood Intrusive 

Suite appears to have been ignored by subsequent investigators. The boundaries of the unit 

were mapped in detail by Gale (1963 ). 

The unit is best exposed near the intersection of the Foxtrap Access Road and the 

Trans Canada Highway where outcrops consist of a variety of intermediate intrusive rocks 

of which diorite is most common. The diorite is a grey to white and black, massive to slightly 

foliated, medium grained rock containing variable amounts ofhomblende and biotite. There 

is variation in the modal abundance of mafic minerals and in some places the rock 

approaches tonalite in composition. Biotite-rich (3 to 8%) phases have a weakly to 

moderately developed foliation and elongate xenoliths of hornblende diorite and amphibolite 

occur within the deformed diorite. The xenoliths are elongated parallel to the foliation. 

Dawson (1963) described the typical rock from this unit as mostly hornblende and 

plagioclase (~3-46) with 3 to 4% biotite typically altered to chlorite. 

3.3.2 Aae Relations of the Foxtrap Diorite 

The presence of a foliation and the elongation and flattening of the amphibolite 

xenoliths within the unit indicate ductile deformation (McClay, 1987). Such ductile fabrics 

are not exhibited by other units in the study area. Rhyolitic ash-flow tuffs of the Johnnies 

Pond Formation and the Holyrood Intrusive Suite in proximity to the Foxtrap Diorite exhibit 
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dominantly brittle deformation. Ductile fabrics such as schistosity are only manifested in 

alteration zones. Both the Johnnies Pond Formation and the Foxtrap Diorite are intruded by 

massive granite of the Holyrood Intrusive Suite. These structural and intrusive relationships 

indicate that the Foxtrap Diorite is older than the Johnnies Pond Formation, which is clearly 

the oldest stratiform unit in the study area Intrusive rocks older than 620 Ma have been 

identified in the Avalon Zone in Newfoundland, within the 685--670 Ma age range (O'Brien 

et al., 1996). It is possible that these rocks are related to those units which are also similarily 

deformed having penetrative ductile fabric development (O'Brien eta/., 1996). No units 

older than the diorite are kown in the study area. This unit is probably part of a basement 

terrane to the A val on rocks. 

3.4 The Johnnies Pond Formation 

3.4.1 Qefinitjon ofthe Johnnies Pond Formation 

The Johnnies Pond Formation is composed of a sequence of rhyolitic crystal and 

lithic tuffs, with local intercalations of coarse volcaniclastic debris flows and fluvial 

conglomerate. It is exposed along a north trending ridge that extends from the Thousand 

Acre Marsh to the Conception Bay Highway (Map I) and has an outcrop area bounded in the 

west by the Holyrood Intrusive Suite and to the east and south by mafic volcanic rocks of the 

Harbour Main Group and siliciclastic rocks of the Conception Group. The Johnnies Pond 

Formation strikes north to Conception Bay where it is overlain unconformably by Cambrian 

strata. The unit is named after Johnnies Pond which is located in the central part of the belt 
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near the Oval Pit Mine. The formation is well exposed in the immediate area and most 

contact relationships can be observed despite the extensive alteration. The alteration is useful 

in determining the relationships of the formation to younger stratigraphic units. 

The rocks which are recognized as the Johnnies Pond Formation bave been removed 

from the Harbour Main Group. Potentially the entire sequence of Harbour Main Group rocks 

of the eastern block may have to be reassigned to a different group. This difficulty arises 

since the Harbour Main Group of the type area is intruded by the Holyrood Intrusive Suite 

(S. O'Brie~ personal communication, 1995). Since the scope of the present study does not 

extend into extensive stratigraphic revision, the Johnnies Pond Formation is removed from 

the group. This seems the most prudent adjustment since the actual geochronological age of 

the unit is not known. It is expected, however, that the Johnnies Pond Formation is more 

closely allied with ash-flow rocks of the central Avalon Peninsula. The available geochrono

logical data (Table 3.1) indicate that the Johnnies Pond Formation is actually older than 

much of the felsic volcanic rocks within the type area of the Harbour Main Group and on this 

basis it probably represents a distinct magmatic event. 

3.4 2 Contact and Aae Relationships 

The base of the Johnnies Pond Formation is not exposed. No contact between the 

Johnnies Pond Formation and the Foxtrap Diorite was observed in the field area. Given the 
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deformation within the diorite, and the absence of this style of deformation within the 

Johnnies Pond it is likely that an angular unconformity separates these units. 

The Johnnies Pond Fonnation is intruded by the Holyrood Intrusive Suite. Xenoliths 

of rhyolitic ash flow tuffs typical of the formation occur in the granite near all contacts 

between the units. These xenoliths are progressively more altered near the high-alumina 

zone. An outcrop of granite on Country Path near the Oval Pit Mine contains xenoliths of 

rhyolite with hematite veins and a xenolith of silicified, brittly fractured and sericitized 

rhyolite. Roof pendants of the Johnnies Pond Formation occur within the Holyrood Intrusive 

Suite at White Mountain and are clearly intruded and recrystallized by the granite. On Mine 

Hill, silicified rhyolite is intruded by the Holyrood Intrusive Suite (Map 1 ). 

A Precambrian unconformity is exposed in the Oval Pit Mine where a pronounced 

angular relationship between the Johnnies Pond Formation and the Conception Group is 

evident (see also Dawson, 1963). Highly altered and brittly fractured rhyolite is overlain by 

a boulder conglomerate derived from the alteration zone. The conglomerate passes conform

ably upwards into sedimentary rocks of the Conception Group (see Section 3.7). This 

unconformity is of regional significance and is named the Oval Pit Unconformity. 

The Johnnies Pond Formation is everywhere in fault contact with the Harbour Main 

Group and consequently the original relationship appears nowhere to be preserved. The 

contact is difficult to trace in many areas due to poor exposure but the original contact 
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relationship was clearly an unconformity since the Harbour Main Group and the Conception 

Group are in gradational contac~ outside of the study area and also conformable in the 

southeast part of the map area, therefore the Johnnies Pond Formation and the Harbour Main 

Group must also be separated by the Oval Pit Unconformity. 

3.4.3 Description of Rock Ty,pes 

The Johnnies Pond Formation consists primarily of intensely welded rhyolitic and 

lithic ash-flow tuffs with lesser breccias and fluvial conglomerates. Poor exposure, alteration, 

faulting and the general discontinuous nature of the volcanic facies preclude fonnal 

stratigraphic subdivision of the Johnnies Pond Formation. The unit is, however, subdivided 

by rock type on Map 1. The main rock types are crystal tuff, lithic tuff and epiclastic rocks 

(reworked tuffs and conglomerates). Most of the rock types recognized in the Johnnies Pond 

Formation have counterparts in better exposed and more intact ash-flow successions. These 

lithologies are known to occur in multiple depositional cycles within the caldera environment 

and consequently these facies are likely diachronous within the unit and do not warrant 

recognition at the stratigraphic level. Much of the Johnnies Pond Formation is pervasively 

altered and primary features are obscured. 
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3.4.3.1 Rhyolitic Crystal Tuffs- Field Description and Relationships 

Rhyolitic crystal tuffs are the most abundant rock type of the Johnnies Pond 

Formation. Rhyolitic crystal tuffs of the Johnnies Pond Fonnation are typically red to purple 

and grey, very tine-grained and siliceous. Relict pumice and shards are difficult to identify 

with certainty since most primary matrix textures and depositional features have undergone 

extensive devitrification and recrystallization. Flow-banding, lithophysal zones and local 

primary layering, marked by interbedded crystal and lithic tuffs, indicate that the bulk of the 

sequence probably originated from ash-flow tuff style volcanism ( cf. Smith, 1960). 

Lithophysal zones are often the only relict volcanic features recognizable in intensely 

altered rocks and outcrops of lithophysal rhyolite occur along most of the belt within 

recrystallized crystal tuffs, and locally defining crude north-trending zones. The zones are 

elongate horizons and locally continuous over 30 m in strike length. Lithophysal zones 

usually contain 40 to 80% lithophysae with a mean size of approximately 2 to 3 em, set in 

a rhyolitic matrix. Some zones, are however, characterized by sparse (10 to 15%) 

concentrations of 4 to 5 em lithophysae and these seem to be of more limited extent. 

Individuallithophysae appear in cross-section as circular to oval structures with an internal 

star shaped-region usually filled with cryptocrystalline quartz. In thin section the quartz 

appears as a fine grained mass of randomly oriented irregular crystals with variable 

extinction angles. The fine quartz is probably from the recrystallization of chalcedony as 
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cbalcedonic banding is clearly preserved in one lithophysae. Lithophysae are typically 

infilled with chalcedony in ash-flow tuff sequences (see Smith, 1960).2 

The crystal tuffs have a variable crystal content and they comprise 1-2 to 10% of the 

rock. Bedding is recognizable in sequences containing crystal tuff. ln these areas the tuffs 

appear to be medium to thick bedded (bedding thickness nomenclature foUows In~ 1954, 

in King 1990). Grading is difficult to determine, primarily due to the recrystallization. Lithic 

fragments, mainly rhyolitic in composition, are found scattered in many exposures. The 

fragments are typically less than .5 em in size and are red to purple coloured and angular. 

Flow banding and crude tuffaceous layering are ubiquitous with variation in the scale 

and intensity of welding. Some of the intensely welded tuffs are flow-banded, and have 

wildly contorted layering perhaps indicative of early rheoignimbrite behaviour. Less welded 

rocks have a em-scale colour banding, probably marking original ash-flow layering and 

bedding. 

3.4.3.2 Petrography 

In thin section the crystal tuffs generally consist of various proportions of feldspar 

and quartz crystals, .5 to 3 mm in length, set in a very fine-grained, felty matrix of quartz and 

2 The references to "spherulites" in many of the previous geological descriptions 
of the area are actually misidentified lithophysae. 
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feldspar. Some of the feldspar grains are simply twinned. Locally the quartz grains are 

broken and partially recrystallized. The grains are generally sub- to euhedral and are 

commonly broken or cracked. Locally the groundmass is fluxioned, indicating some flow 

has taken place, yet the presence of relict pumice in some samples indicates the rocks are 

fragmental. The accessory minerals in the rhyolites consist of chlorite, sphene and zircon. 

Secondary textural features are developed in the rhyolites due to vapour phase activity and 

crystallization. The most dominant secondary feature noted are the lithophysae. Within the 

rhyolites, however, the spherulites are also developed, which locally define bands in thin 

section. These features indicate that the Johnnies Pond Formation likely underwent primary 

compaction and welding associated with the cryptic cycle by comparison to other ash-flow 

tuffs (Smith, 1960). 

3.4.3.3 Lithic Tuffs 

Lithic tuffs are green-grey and white weathering. They typically contain 10 to 40% 

lithic fragments in addition to abundant crystal material, set in a very fine-grained matrix. 

These were originally fragmental rocks but have been well indwated by welding and matrix 

recrystallization. The matrix of these rocks closely resembles the felsic crystal tuffs. Bedding 

features such as grading within the lithic tuffs are rarely evident, and probably indicates that 

many of these are also mass flow deposits, however, locally they are interbedded with 

welded lithic-poor crystal and ash tuffs. Lithic fragments are chiefly composed of rhyolite 

although some mafic fragments composed of plagioclase and iron oxides also occur. 

38 



3.4.4 Coarse Breccias 

Coarse breccias composed of020 em to 0.5 m clast supported angular blocks with 

a coarse sand to pebble matrix form a minor component of the Johnnies Pond Formation. 

Some of the rocks included in this subdivision were mapped as auto brecciated rhyolite by 

earlier workers since they contain angular flow-banded clasts giving the appearance of 

auto breccia. However, there is also a population of massive. subangular clasts in these 

exposures indicating that these units represent reworking of a variety of volcanic rocks. 

These rocks are extremely thick bedded, unsorted and they share these features with mass 

flow deposits ( cf. Smith, 1986). These facies were possibly fluidized by surface water and 

originating near topographic features in the volcanic environment such as the caldera 

margins. Most of the material in these rocks appears to have been glassy volcanic detritus. 

Devitrification has served to fuse the clasts and obscuring many of the primary features. 

3.4.5 Conilomerate 

The only example of extensively reworked sedimentary rocks in the Johnnies Pond 

Formation are known from a single outcrop of conglomerate south of Johnnies Pond. 

Although the exposure is extensively silicified, the outlines of individual clasts reveal that 

the conglomerate was clast supported and consisted of well rounded elongate cobbles in a 

fine grained matrix. Both clasts and matrix are silicified such that only traces of the cobbles 

are visible on broken surfaces of the outcrop. The presence of this facies indicates that some 
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reworking of the ash-flow sheet occurred after deposition and prior to alteration, however, 

if there were significant amounts of reworked facies originally this is the only preserved 

example. The alternative possibility is that their was no reworking and the absence of 

reworked facies might indicate a lack of geomorphic influences on the volcanic terrane. Such 

conditions might exist in an arid terrane. 

3.5 Holyrood Iatrusive Suite 

3.5.1 Introduction and Nomenclature 

The Holyrood lntrusive Suite is a polyphase granitoid intrusion of batholithic 

dimensions that crops out in the western part of the study area The name "Holyrood granite" 

was first used by Buddington (1919) for intrusive rocks in the central Avalon Peninsula. 

Rose (1952) referred to the rocks as the "Holyrood batholith". McCartney (1967) proposed 

that the unit be referred to as the "Holyrood Plutonic Series" disagreeing with Rose (1952) 

over the use of a structural term (batholith) in designating a name for the unit. The unit has 

been commonly referred to as the "Holyrood Granite" (e.g., O'Driscoll et a/., 1988) although 

Holyrood Intrusive Suite" is also in use (e.g., King, 1986, 1988, 1991; Hayes and O'Driscoll, 

1989, 1990). The description of the batholith as an "intrusive suite" likely resulted from 

inclusion of the F oxtrap Diorite as a phase within the unit and the inclusion of monzonitic 

rocks which crop out in the western part of the Avalon Peninsula within the suite 

(McCartney, 1967). Based on modal proportions and feldspar composition in the northern 

part of the batholith, Strong and Minatidis (1975) defined the rock type as granite (sensu 
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stricto) with subordinate granodiorite. Most outcrops of the unit within the study area are 

granite (sensu stricto). 

The Holyrood Intrusive Suite within the field area comprises three phases divisible 

mainly by texture. Fine-medium grained porphyritic granite, medium grained equigranular 

granite and aplitic rocks associated with some of the finer grained phases are found in the 

study area. 

3.5.2 Aie of Intrusion 

The Holyrood Intrusive Suite intrudes the Johnnies Pond Formation as a variety of 

Johnnies Pond xenoliths and roof pendants are contained within the granite along the contact. 

The xenoliths display a crude zonation from unaltered to silicified approaching the contact 

with the AHAB. On White Mountain (Map 1) ash flow layering is preserved in small ( <1 00 

m long) roof pendants of rhyolitic crystal tuff. Thin section examination reveals that the tuffs 

are completely recrystallized and cuspate bounded snowflake-like textures are developed in 

the mesostatis of the rhyolites. These textures are only known from that locale. 

Altered xenoliths are common within the granite and indicate that alteration predates 

intrusion of the granite. Near Mine Hill, blocks of silicified rhyolitic ash flow tuff occur in 

the granite and an outcrop ofHolyrood Intrusive Suite on Country Path, contains a xenolith 

of sericitized ash-flow tuff and also a xenolith cut by a quartz hematite breccia vein are 
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enclosed by granite. The host granite shows no sign of veining or extensive hematitic 

alteration. Altered xenoliths, composed of silicified rhyolites were observed in a body of 

slightly chloritized granite northeast of Dog Pond. These features indicate that intrusion of 

the Holyrood Intrusive Suite postdates the alteration system. 

No evidence for intrusion of the granite into the Harbour Main Group was found in 

the field area. Rose (1952), however, described clasts of granite in both the Conception and 

Harbour Main groups and hypothesized that these clasts were of an older granite since he 

thought the Holyrood granite intruded the Conception Group. With clear evidence of 

intrusion into the Johnnies Pond Formation and the presence of clasts in younger units, a 

more reasonable conclusion is that the Holyrood Intrusive suite does not intrude these units. 

Therefore, it must not cross the unconformity which separates the Johnnies Pond Formation 

from the Conception and Harbour Main groups. The Johnnies Pond Formation and the 

Holyrood Intrusive Suite form a basement for later basalt-rhyodacite volcanism and 

sedimentation associated with the Harbour Main and Conceptio~ St John's, and Signal Hill 

groups. The large scale anticlinoria that forms the central part of the Avalon Peninsula (King, 

1988) has at its core a basement block. 

3.5.3 Description of Phases 

The dominant phase in the Holyrood Intrusive Suite is a massive, medium grained 

equigranular, biotite granite. Smaller plutons and dykes intrude the main phase. These 
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include K-feldspar porphyritic biotite granite and aplite. They appear to be localized along 

the eastern margin of the Suite along Country Path. 

Outside of the main body, the biotite granite itself forms plugs that intrude the 

Johnnies Pond Formation at Manuels River and Scout Pond. The granite is typically grey to 

black and white, locally pink, with a typical hypidiomorphic texture evident in outcrop. 

Along fault zones, the granitic texture is replaced by a pseudo-porphyritic texture in which 

feldspars form augen in a matrix of chlorite, that is replacing biotite, and ground feldspar and 

quartz. This imparts a greenish colour to the granite near fault zones. The granite is also 

typically pyritized along fault zones forming contacts with other units. 

The medium-grained granite locally contains zones crosscut by tuffisite veins. 

Tuffisite was first described in the Holyrood granite by Hughes (1971) in pegmatitic granite 

west of the study area at Duffs. Similar tuffisite zones are common throughout the area and 

are not always associated with pegmatite but they are clearly less extensively developed 

away from pegmatites. Alteration does not appear to be associated with the veining. Some 

of the most profuse tuffisite veining in the study area occurs in the apophyses of granite 

exposed along the shore of Manuels River. In this area the veins network and anastomose 

throughout the exposure and in a well exposed part of the outcrop that forms part of the 

eastern riverbank, the granite is completely brecciated by tuftisite veins (Figure 3.2). 
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Figure 3.2. Tuffisite veining in the Holyrood Intrusive Suite, Manuels River. 
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On the basis of nonnative mineralogy, Strong eta/. (1974) considered the Holyrood 

Intrusive Suite to represent compositions ranging from granite to granodiorite. Strong and 

Minatides (1975) later suggested, on the basis of modal mineralogy, that the suite is largely 

granite and refuted McCartney's (1967) contention that a monzonitic component was present. 

With the recognition of the Foxtrap Diorite as a distinct unit rather than a phase, the 

Holyrood Intrusive Suite within the study area is dominantly a homogenous granite body 

with local textural variation. The porphyritic phases are well exposed in the immediate area 

of the main tailings pile and settling pond of the Oval Pit Mine where the dominant phase 

is a fine- to medium-grained, variably porphyritic, biotite granite. The youngest phase of the 

Holyrood Intrusive Suite consists of very-fine grained aplite which intrude the porphyritic 

granite. 

Phase relations within the Holyrood Intrusive Suite suggest that early components 

were intruded by successively quicker cooled, and hence finer-grained, phases. Cooling may 

have been by conduction or in part aided by the release of volatiles. The tuffisite veins in the 

coarser phases may have been produced by the release of volatiles from the finer-grained 

phase which intrude the coarser phases. The sequence granite-porphyritic granite-aplite 

suggests extensive, perhaps shallowing, intrusive activity. Intrusion of the granite into the 

AHAB alteration system indicates that final granite emplacement postdated the alteration 
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system. This satisfies the field relations expected if a granite acting either as a source of 

volatiles for the alteration or a heat source intruded its alteration system. 3 

3.6 Harbour Main Group 

3.6.1 Introduction 

The mafic volcanic and related rocks in the field area can be traced north into the 

Topsail Head area (King. 1988) where they are continuous with the St. Phillips and Portugal 

Cove formations ofthe Harbour Main Group (King, 1986, 1991). These units are presumed 

to conform-ably underlie the Conception Group in the St. John's area. Mafic volcanic and 

epiclastic rocks in the study area occupy a similar stratigraphic position with respect to the 

Conception Group. 

The Harbour Main Group represents a range in volcanic depositional environments. 

Within the field area, the group is composed of a variety of mafic tuffaceous, pyroclastic, 

epiclastic and coarse debris-style deposits. Much of the Harbour Main strata within the study 

area lie within the strained zone of the Topsail Fault, hence most exposures are extensively 

chloritized and have a strong penetrative foliation. Original features are not preserved in 

these chloritic schists. Features which would indicate clearly whether some of these rocks 

3 Construction of a highway through the northern part of the study area began in 
1994. Outcrops examined during the summer of 1995 included an example of a silicified 
rhyolite intruded by a leucocratic granite. At Mine Hill, workings along a new mine road 
indicate that some granite intrudes silicified, sericitized and pyrophyllitized rhyolites. 
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are flows (e.g., presence of pillows, vesicles) or sedimentary deposits (e.g., bedding, primary 

laminations) are also largely absent in the lesser deformed exposures and this is a problem 

that hampered past regional geological mapping. Much of the area presently considered to 

have been underlain by Harbour Main mafic volcanic rocks by McCartney (1967) and King 

(1988) was originally mapped as Conception Group by Rose (1952). 

The Harbour Main Group within the field area bas been divided into two facies in the 

present study. The volcanic facies consists of those rocks with features closely indicating a 

volcanic origin including vesicles, flattened and vesiculated lapilli and bombs. Basalt flows, 

agglomerates, and ash-lapilli tuffs have been recognized with these criteria. The second 

significant facies is dominated by immature sedimentary rocks but also contains a 

volcanogenic component These are mostly fme-medium grained poorly sorted sandstones 

and coarse debris deposits. The sandstones are typically dark green, chloritic and gritty and 

appear to grade into better sorted siliceous sandstones of the Conception Group (see also 

Dawson, 1963). 

3 .6.2 Contact Relations 

The Harbour Main Group is in gradational contact with the Conception Group and 

unconformably overlies the Johnnies Pond Formation. Medium-coarse sandstones, which 

are interbedded with Harbour main Group mafic volcanic facies grade into sandstone and 

siltstone of the Conception Group. These relationships are exhibited by the close association 
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of these facies in exposures east of the Johnnies Pond Formation near the Thousand Acre 

Marsh. A mafic tuff also occurs within the Conception Group exposed in the Oval Pit Mine. 

Mafic volcanic detritus appears as a component in some sandy beds in the Conception Group 

such as in the inlier within the Oval Pit Mine and their presence indicates that some Harbour 

Main volcanism occurred during the Conception Group depositional cycle. Evidence of the 

basal unconformity may also be found in this exposure as clasts of silicified and/or quartz 

veined Johnnies Pond Formation occur within unaltered coarse debris deposits in the 

Harbour Main Group. These relationships indicate that altered Johnnies Pond Formation 

rocks were available as a source of detritus at the time of Harbour Main volcanism. 

The volcanic rocks of the Harbour Main Group are unaffected by the alteration 

processes evident in the Oval Pit Mine, despite being in proximity to highly altered volcanic 

rocks of the Johnnies Pond Formation. For example undeformed and relatively unaltered 

basalt flows crop out within metres of extensively brittly fractured and altered Johnnies Pond 

rocks on Country Path (MAP I). Similarly no distal parts of the alteration system such as 

quartz-hematite breccia veins are found in the Harbour Main Group. The absence of these 

features which pervade the Johnnies Pond Formation point to a young age for the Harbour 

Main Group in the area. 

The contacts between the Harbour Main Group and the Holyrood Intrusive Suite are 

faulted and thus the original relationships are not apparent. The earliest record of detritus 

from the Holyrood Intrusive Suite occurs in the Conception Group (Vhay, 1936) and there 
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may not have been an extensive depositional contact between the Harbour Main Group and 

Holyrood Intrusive Suite. Instead, the Harbour Main Group may rest largely on Johnnies 

Pond Formation beneath the Oval Pit Unconformity. 

3 .6.3 V olcanjc Facjes Association 

3.6.3.1 Mafic Flows 

Well-preserved lava flows are rare within the Harbour Main Group in the map area. 

Flows crop out near the main gate to the Oval Pit Mine and in an outcrop along the 

eastbound lane of the Trans Canada Highway, east of the Pastureland Road. Papezik (1974) 

had reported pillow basalt near Mine Hill but close examination of this exposure during the 

present study failed to reveal any reliable pillow structures. The outcrop is, however, divided 

by a conjugate fracture system into lozenge shaped blocks which may have been the structure 

identified as pillows. The exposure on the Trans Canada Highway is similar and also 

contains a wide (0.2 to 0.5 m) conjugate shear set. The flows in both localities are dark green, 

very fine grained and homogenous in appearance except for scattered vesicles. Most of the 

mineralogy has been replaced by chlorite. Their depositional environment is unknown, 

however, the lack of pillow structure might indicate they were locally erupted in subaerial 

environments. Pillow basalt is, however, known from other localities within the Harbour 

Main Group (King, 1990). 
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Other possible flow rocks preserved within the Harbour Main Group include a 

massive horizon within an outcrop of tuff and sediment on the Pastureland Road south of the 

TCH. The sequence consists of a pyroclastic flow, overlain by a thin siltstone (or tuff bed) 

having an irregular scoured lower contact with the pyroclastic flow. The siltstone is overlain 

by massive, reddened, basalt. The top of the flow is not exposed and the scoured basal 

contact indicates tops to the east. The coincidence of fine grained sediment and oxidized 

basalt may indicate a shallow water or subaerial depositional environment. 

3.6.3.2 Agglomerates 

Most of the agglomerates in the study area are associated with fine-grained tuffs, 

lapilli tuff, or flows. The agglomerates are typically red to purple and green fragmental rocks 

composed of partly welded bomb and lapilli sized pyroclasts. The flattening and welding of 

the pyroclastic debris indicates deposition of hot juvenile materiaL Many of the pyroclasts 

are vesiculated and are, therefore, distinct from the massive, gree~ fine-grained chloritic 

groundmass which encloses them. These rocks are inferred to represent a proximal volcanic 

facies based upon the size and monolithic, juvenile nature of the fragmental debris. The clast 

to matrix ratio is on the order of 4-S:l, however, it is variable on the outcrop scale and 

generally these rocks are clast supported. The agglomerate grade into other facies at the 

outcrop scale. 
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3.6.3.3 Ash and Lapilli Tuffs 

These rocks are gree~ purple and red and similar in appearance to the agglomerates, 

however, the tuffs differ in the size of the pyroclastic components and in the clast to matrix 

ratio. Typically the pyroclasts are flattened, with some showing vesiculation, and are largely 

supported in a dark green chloritic matrix.. The matrix is indistinguishable from most other 

mafic tuffaceous rocks in the field area. On the average, clast to matrix ratios are on the order 

of 1:4-5 and, like the agglomerates, are extremely variable within the same outcrop. 

3.6.3.4 Felsic Rocks 

Felsic volcanic rocks of the Harbour Main Group are represented by a suite of thin 

rhyodacitic dykes. A small outcrop of diorite contains dark grey siliceous rhyodacite dykes 

where it crops out along the Trans-Canada Highway near Scout Pond. The dykes are 

approximately l m wide and are faulted. Fractures in the dykes contain a soft asbestifonn 

pale grey blue amphibole which probably fanned as a result of thermal metamorphism of the 

host rocks (amphibole of Dawson (1963)). The dykes are also well exposed in the bed of 

Manuels River. Geochemical analysis of the dykes indicates that they are highly sodic and 

most likely part of the same magmatic event that has produced extensive dyke and dome 

fonnation in the eastern Avalon Peninsula. 
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3 .6.4 Sedjmeotazy Facies 

The sedimentary facies consist of coarse debris-flow style sedimentary rocks and fine 

to medium grained greywackes. The coarse rocks are distinguished from the volcanic debris 

flows by the lack of juvenile volcanic material in the clast or coarse fraction of these rocks. 

The coarse fraction consists oflithified felsic, mafic volcanic rock fragments and/or in some 

localities sedimentary clasts are also evident. The matrix ranges from a fine-grained chloritic 

mud- to crystal- and rock fragment-rich poorly sorted sandy detritus. Rocks included in this 

category likely represent a variety of depositional environments and processes. 

Fine-medium grained greywackes are the most abundant rock type of the Harbour 

Main Group in the field area. The finer grained rocks within this unit closely resemble some 

of the sedimentary rocks that are interbedded with the Conception Group. These rocks appear 

transitional between the Harbour Main and Conception Groups. 

3.6.4.1 Coarse Debris-style Deposits 

Coarse debris flows containing 0.2-4 m boulders crop out close to the boundary with 

the Johnnies Pond Formation. These units are typically matrix supported and composed of 

cobbles to boulder sized clasts that are clearly derived from the Johnnies Pond Formation set 

in a dark green matrix that is similar to the greywackes elsewhere in the Harbour Main 

Group. The contacts, where exposed, are faulted, however, these units probably occur near 
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the base of the Harbour Main Group given their coarse clast content. Some well-exposed 

examples of this facies are present in the study area. 

At Mine Hill, blocks of silicified rhyolite typically ranging from 10 to 50 em in 

diameter are enveloped by a dark green sand-pebble conglomerate matrix. Some em scale 

fragments composed entirely of quartz also occur as clasts. The largest clast in the deposit 

is over 3 m in length and is composed of silicified rhyolite. The matrix contains 20 to 40% 

of2 to l 0 mm fragments of rhyolite and silicified rhyolite with the remainder composed of 

dark chloritic material. Generally many fragments bave the size and shape of fracture 

bounded fragments in the alteration zone indicating very little reworking of the coarse 

fraction. The blocks show variable degrees of internal fracturing. The deposit appears to be 

coarsely graded over a 50 m distance with some larger blocks appearing closer to the contact. 

This deposit appears to have formed as a cohesive grain-flow or mudflows with large 

entrained blocks and a characteristic of this type of debris flow is that they emplaced en 

masse ( cf. Smith, 1986). 

Northeast of the Oval Pit Mine, near Black Hill Pond, 2 to 3m blocks of relatively 

unaltered rhyolite occur in green, fine- to medium-grained greywacke. The blocks are matrix 

supported and also contain quartz veins which do not cut the enclosing greywacke. This 

deposit also is massive having no indication of bedding structures and the matrix is finer 

grained and better sorted than the Mine Hill debris flow but these deposits are essentially 

similar. The bulk of the Johnnies Pond Formation in the vicinity of Black Hill Pond is 
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unaltered with the exception of quartz veins so these blocks also appear to be of local 

derivation. 

These deposits are significant in that they confirm the timing of alteration in the 

Johnnies Pond Formation with respect to the Harbour Main Group. Since these deposits 

contain fragments of quanz and quartz veined material they imply that sedimentary rocks of 

the Harbour Main Group were sampling an already altered Johnnies Pond Formation. 

Further, since quartz veins are known to occur distal to the main alteration in the Johnnies 

Pond Formation it might also indicate that the upper parts of the alteration system were 

begun to be eroded during the early part of the Harbour Main Group volcanic cycle. This 

woul~ therefore, be consistent with the fact that later sedimentation clearly samples deeper 

levels of the alteration system (see section 3.7). 

3.6.4.2 Greywacke Facies 

This facies includes immature fme-medium grained sedimentary rocks and 

associated tuffs. These rocks are included within the Harbour Main Group since they appear 

to represent reworking of unconsolidated volcanic deposits and on the whole they are 

associated with volcanic facies within the Harbour Main Group. These rocks contain 

rhyodacite dykes, hence they were deposited prior to cessation of Harbour Main volcanism. 

As a field tenn for these rocks, greywacke is most appropriate (following the suggestion of 

Blatt eta/., 1980, p. 37S) since the rocks are aerially extensive, 'dirty' (i.e., immature) 
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sandstones. In hand specimen the greywackes are green and purple having a fine-medium 

grained matrix flecked with whitish sand·sized fragments. In thin section the greywackes 

contain variable amounts of rounded to partly rounded quartz and feldspar crystal fragments 

along with mafic volcanic detritus set in a fine-grained matrix of plagioclase laths, chlorite, 

epidote and carbonate. The greywacke facies grades into better sorted sandstones which are 

in tum interbedded with siltstone. Locally the greywackes contain 1 to 2 m blocks of green, 

fine-grained siliceous siltstone. These clasts are indistinguishable from similar rocks in the 

Conception Group and imply fJJ'Stly that there was a overlap in their depositional period. 

Some deposition of this siltstone facies, which is typical of the Conception Group, had 

occurred and was clearly reworked by Harbour Main Group sedimentation. The second 

important insight that can be gained from this relationship is that the early environment of 

deposition of Conception Group was unstable and that periods of quiet sedimentation as 

indicated by early fine grained siltstones could change rapidly as coarse clastic material was 

shed into the basin, perhaps associated with volcanism. 

3.6.5 Correlation 

The types of sedimentary and volcanic facies within the Harbour Main Group in the 

field area broadly resemble those of the St. Phillips Formation of King (1990). The St. 

Phillips Formation has many features of the Harbour Main Group within the study area 

including tuffs containing disrupted beds of siltstone (see King, 1990, p. 24). The St. Phillips 

Formation, therefore, continues across the Topsail Fault and within the field area 
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unconformably overlies the Johnnies Pond Formation an<L by implicatio~ the Holyrood 

Intrusive Suite. This correlation permits the observation to be made that the post-620 Ma 

geological history of the eastern Avalon Peninsula records the development of a rift basin, 

accompanied by extensive volcanism (Harbour Main Group) and turbiditic sedimentation 

(Conception Group) that was eventually infilled by subaerial volcanism (see King, 1990 for 

details on facies within the basin). Essentially, the basement upon which the rift developed 

is represented by these earlier units. 

3. 7 Black Mountain Formation, Conception Group 

3. 7 .I Introductjon 

Sedimentary rocks of the Conception Group are best exposed in the vicinity of St. 

John's (King, 1990). Within the field are~ the Conception Group forms isolated outliers in 

fault contact with the Johnnies Pond Formation and older units, and also occurs as large 

lenses having a gradational contact between the Conception and the Harbour Main groups. 

The Conception Group facies in the field area are comparable with some recognized 

stratigraphic subdivisions of the Conception Group (King, 1990). However, stratigraphic 

relation-ships as exposed in these outliers and some of the rock types cannot be 

accommodated by existing subdivisions. The Black Mountain Formation is the name 

proposed for the Conception Group sedimentary rocks in the study area. Black Mountain 

fonns a prominent feature composed of siltstone with some sandstone and conglomerate is 
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typical of the formation through the study area. The Black Mountain Formation rests 

unconformably upon the Johnnies Pond Formation and is interbedded with facies broadly 

equivalent with the Harbour Main Group. Upper parts of the formation appear to be 

lithologically similar to the Broad Cove River Member of the Drook Formation which King 

(1990) defined as the basal unit of the Conception Group. The base of the Drook Formation 

is not known from the St. John's study area (King, 1990) and since the Black Mountain 

Formation has depositional contacts with the Johnnies Pond Formation and the Harbour 

Main Group it is thought that the Black Mountain Formation is the lowermost formation of 

the Conception Group. There is no evidence for an intrusive relationship between the 

Holyrood Intrusive Suite and the Black Mountain Formation. 

Rocks assigned to the Black Mountain Formation include the Black Mountain 

sequence (informal) of Dawson ( 1963) and Conception Group siltstone and siltstone-

sandstone interbedded with Harbour Main Group greywackes (Dawson, 1963; King, 1988). 

Dawson (1963) had considered the Black Mountain sequence to be younger than the 

Conception Group and that the rocks were unconformable upon the Harbour Main Group4 

and Holyrood Granite. With the recognition of the contemporaneous nature of Harbour Main 

and Conception group sedimentation and the nature of the basement rocks, it is clear that all 

4 Dawson considered the Johnnies Pond Formation rhyolitic rocks to be part of the 
Harbour Main Group. Thus these sedimentary rocks were divided into two units to account 
for their basal contact relationships. 
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of these facies and relationships occur at the same stratigraphic level. It is therefore 

appropriate that they be grouped in the same formation. 

3.7.2 Contact Relationships 

The Black Mountain Formation unconformably overlies the Johnnies Pond Formation 

and is interbedded with the St. Phillips Formation of the Harbour Main Group. The 

unconformable relationship is clearly visible in the Oval Pit Mine where sheared and altered 

volcanic rocks of the Johnnies Pond Formation are overlain by boulder conglomerate oflocal 

derivation. The con-lomerates occur at the base of a section of sedimentary rocks which 

grade upwards into green siliceous siltstone. This siltstone unit occurs at the top of each 

exposed section of the Black Mountain Formation and is also interbedded with greywacke. 

It locally grades into massive greywacke and volcanic rocks of the Harbour Main Group. In 

the southeast part of the field area outcrops containing thick interbedded siltstone and 

greywacke which pass abruptly into mafic lapilli tuff. These patterns and field relations 

indicate that the Black Mountain Fonnation forms part of a conformable sequence with the 

Harbour Main Group volcanic facies. Some local facies relationships have been observed 

which support these correlations. 

An outcrop along the Pastureland Road contains a pyroclastic flow, with a scoured 

top infilled and overlain by a thin (S em) bed of reddish siltstone. The siltstone is in turn 

overlain by a massive basalt flow. This close association of the Harbour Main Group 
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volcanic facies and sedimentary facies that typify the Black Mountain Fonnation further 

indicates a temporal relationship between these facies and that local periods of sedimentation 

represented by the siltstone intervened between episodes of volcanic activity. 

The base of the formation is, as indicated on Map 1, recognized and defined as the 

first appearance of interbedded siltstone and sandstone where the unit overlies Harbour Main 

Group greywackes and it is marked by boulder conglomerate where it overlies the Johnnies 

Pond Formation. Essentially the Black Mountain Formation, as preserved in the Oval Pit 

Mine above the unconformity, probably represents a marine transgressive sedimentation of 

the Conception Group onto the Holyrood Horst. In some sense it maybe diachronous since 

the earlier Black Mountain sedimentation . may have occurred within the basin and the 

transgressive sedimentation onto the Horst could be slightly later. 

3.7.3 Facies Relationships and Litbolo~Ues 

The Black Mountain Formation is comprised of light green, fine grained siliceous 

siltstone, green to dark green fine to medium grained sandstone, and fine to medium grained 

greywacke. Locally the formation contains conglomerate and sandstone, particularly where 

it overlies the Johnnies Pond Formation, as at the Oval Pit Mine and at Black Mountain. 

The dominant depositional facies in the Black Mountain Formation was chiefly 

turbiditic since much of the units consisting of rhythmically bedded sandstone and siltstone. 
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Thinly planar and wavy laminated siltstones are found interbedded with the Harbour Main 

Group greywackes on the regional scale and outcrop scale (see above). Laminated siltstones 

also crop out at the Oval Pit Mine and Black Mountain. These facies styles are consistent 

with B, C, and D divisions of the Bouma sequence (Bouma, 1962 in Walker, 1992). Facies 

vary from exposure to exposure within the Black Mountain Formation, and each outcrop 

likely lies within a distinct structural block. Consequently variation in the stratigraphic level 

coupled with rapid facies variation could account for the different facies preserved in each 

block imbricated with older rocks. 

Many outcrops of the Black Mountain Formation also feature rhythmically 

interbedded siltstones and sandstones. The sandstones range from medium-grained grey

wackes to well-sorted fine grained sandstone. In the Dog Pond area, most exposures of this 

unit are composed of alternating beds of siltstone and medium to fine grained wacke. The 

rocks vary from metre- to decametre-scaled fine-grained greywacke interbedded with 

siltstone to medium grained greywacke interbedded with centimetre scale bedded siltstone. 

At Dog Pond the siltstone is clearly associated with greywacke. The greywackes in this 

locality are less chloritic than most greywackes of the Harbour Main Group and perhaps 

more mature (i.e., less clay fraction). The siltstone contains syn-sedimentary deformational 

features including slump folding and faulting and within some of the greywacke beds there 

are clasts of siltstone indicating disruption and reworking of pre-existing units. At the Oval 

Pit Mine slump folds are visible along the uppermost trenches in the pit and are marked by 
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thin (3 to 5 em) interbeds of medium to coarse grained pebbly sandstone. The sandstone 

contains pebbles of very fine-grained crystal tuff and extensively chloritized vesicular basalt 

Although there are differences in the depositional style and facies within the Black 

Mountain Formation and the Conception Group there are also similarities. Sequences at the 

Oval Pit Mine, west of Mine Hill, Dog Pond and Black Mountain all contain rhythmically 

bedded facies which may be related to a similiar facies descn"bed by King (1990) throughout 

the Drook Fonnation. The inlier at Black Mountain is composed of white weathering green 

thinly laminated siltstone. This siltstone is interbedded on the outcrop scale with black-green 

fine- to medium-grained siliceous sandstone. The interbedded greywacke sandstone-siltstone 

facies appears to be related to facies within the Broad Cove River Member as described by 

King ( 1990). Some of the rhythmically bedded siltstones may have affinities to the Mannings 

Hill Member of the Drook Formation (op.cit). 

3.8 Conclusions 

The existence of a single volcanic unit of group status representing a single, extensive 

volcanic episode, prior to the deposition of the Conception Group is rejected by the present 

study. King (1990, p. 24) had offered this as a possibility to explain the range in ages 

presented by the group. It is clear from the present study that the large gap in ages reported 

by Krogh et al. (1988) are due to the fact that there is a major regional unconformity 

separating an older volcanic-intrusive terrane from a younger sequence that includes the 
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Harbour Main Group. Substantial revision of the pre-Conception Group stratigraphic 

nomenclature will be required if the Johnnies Pond Formation relationships can be traced 

over much of the volcanic sequence currently mapped as Harbour Main Group. 

Recognition of the stratigraphy permits a detailed examination of the structural 

history of the study area. The structural geology of the belt requires examination to establish 

the distribution of structural zones within the belt and the relationship of the belt to its 

country rocks at the deposit scale. This has new implications for the development of 

exploration models for pyrophyllite and mineralimtion within the Johnnies Pond Formation. 
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CHAPTER4 

STRUCTURAL GEOLOGY AND GEOLOGICAL WSTORY 

4.1 Introdudion 

The bedrock geology of the study area records structural events which provide insight 

into Precambrian crustal development of the Avalon Zone. The basement units within the 

Holyrood Horst and the cover rocks of the Harbour Main and Conception Groups illustrate 

the development and interaction between a Precambrian arch and a flanking, yet younger, 

Precambrian volcano-sedimentary basin. There is also evidence of their continued tectonic 

interaction since Cambrian time. This chapter presents the evidence for the timing of 

deformation within bedrock units and explains the present distribution of units. An 

understanding of the structural geology is important in developing genetic and exploration 

models for pyrophyllite. The structural features associated with high-alumina alteration 

system aid in unravelling the complex structural history of the region. Previous studies on 

the Avalon Peninsula did not fully explain the complex outcrop patterns or structural 

relationships observed in the study area Consequently, the interpretations presented in this 

section are new. 
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4.2 Main Structural Elements in the Study Area 

The most important regional·scale structures in the study area are the Topsail Fault 

(Rose, 1952; King, 1988) and the Holyrood Horst (McCartney, 1967). The Johnnies Pond 

Formation crops out along and forms the eastern boundary of the Holyrood Horst. The 

Topsail Fault and its secondary structures juxtapose major units and consequently control 

the outcrop pattern. Much of the northerly strike of the geology is more structural than it is 

depositional. The Holyrood Horst and the younger Topsail Fault appear to both occupy the 

same zone of crustal weakness. 

Previous workers have made somewhat similar observations. Rose ( 1952) noted the 

deformation marking the Topsail Fault and thought the Holyrood Intrusive suite acted as "a 

buttress against which the less competent rocks were thrust or as the causative agent of 

thrusting" (Rose 1952, p. 41 ). No tectonic context was provided for the deformation, since 

the mapping and interpretation preceded modem concepts of plate tectonics. He also 

recognized that there were Precambrian to post-Cambrian movements on the Topsail Fault, 

however, the timing of the Precambrian movement was not specified. Rose (1952, p. 40) 

mapped a number of thrust faults, including two near Johnnies Pond, and on this basis 

considered the overall structural regime to have been compressive. McCartney (1967, 1969) 

described the structural geology of the central part of the Avalon Peninsula and inferred that, 

after deposition of the Harbour Main (include his definition the Johnnies Pond Fonnation) 

and Conception Groups and the intrusion of the Holyrood Intrusive Suite, the area was 
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uplifted and became the source of sediment for the Signal Hill Group thus implying that the 

Holyrood Horst is a post-Conception Group feature. 

The revised stratigraphy presented in Chapter 3 also permits refinements of the 

structural history of the region. Seven periods (01-07) of tectonism can be recognized. Not 

all produce penetrative deformation. Most are brittle in style and their deformational effects 

may be apparent in zones as narrow as a few centimetres in width. 

4.3 0 1-Foxtrap Diorite 

The 0 1 in the study area is the foliation defined by the biotite and hornblende in the 

Foxtrap Diorite. The foliation is vertical and strikes northeasterly and amphibolite xenoliths 

are elongated in about a 3:1 length to width ratio subparallel to the foliation. This is 

considered the oldest deformation since no nearby units exhibit any evidence of strictly 

ductile fabrics developed by alignment of primary mineralogy. Its extent is limited to the 

outcrop area of the Foxtrap Diorite. 

4.4 0 1-Pre-AHAB Deformation of the Johnnies Pond Formation 

0 2 is restricted to the Johnnies Pond Formation and is represented by a period of syn 

to late volcanic deformation prior to the development of the AHAB. Vertical AHAB 

structures cut inclined Johnnies Pond Formation strata, hence tilting of bedding occurred 
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prior to the development of the AHAB. Despite the intense alteration throughout the 

Johnnies Pond Formation the effects of this deformation are apparent at a number of 

localities within the unit. Some examples of these relationships include: 

(1) Northeast of the Oval Pit Mine, northwest to north trending and vertically dipping 

quartz- hematite breccia veins cut steeply (80°) northwest dipping tuffs. 

(2) At Mine Hill steeply to subvertically dipping ash-flow layering and flow banding is 

overprinted by a subvertical fracture system associated with the AHAB. 

(3) Interbedded rhyolitic and crystal tuffs crop out in a large exposure north ofTCH near the 

intersection with the Foxtrap access. Bedding strikes 60° and dips 70° southwest, is cut by 

a north trending zone of silicification containing a sericitic core which appears to be 

vertically dipping. 

The relationships of the AHAB to these structures are depicted in Figure 4.1. No 

regional cleavage development is associated with this phase of deformation as the 

deformation appears to involve mostly moderate to steep tilting of the volcanic pile as both 

eutaxitic foliations (Figure 4.LA} and unwelded tuffs (Figure 4.1 B) show a range in 

orientations. The eutaxitic foliations generally have a greater tendancy to be inclined than 

the unwelded rocks. This may be indicative of an original relationship. The deformation in 

the Johnnies Pond Formation may be the result of broad regional caldera collapse structures 

or deformation related to the volcano-tectonic environment. This may be analogous to the 

deeply dissected caldera described by Branney et al. (1992) in the Lake District. The 

deformation within the Johnnies Pond Formation is also analogous to the style of defor-
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Figure 4.1. Primary and secondary (AHAB-related) structures in the Johnnies Pond 
Formation. 
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marion seen in other ash-sheets. Branney and Kokelaar (1994) document syn-caldera 

deformation of a tuff in the English Lake District that resulted in the formation of local 

vertical fabrics within the tuff. It appears that heterogeneous deformation of this type is 

probably responsible for the variation seen in pre-Johnnies Pond structural orientation. The 

limited preservation of these features and later tectonic deformation permit no further 

evaluation of these hypothesis. 

4.5 0 3-Regional Structural Significance of Deformation Associated with the Avalon 

High Alumina Belt 

Deformation associated with the eastern AHAB defines a distinct and significant 

regional structural event. The AHAB is more or less a continuous zone of alteration cropping 

out within the entire 14 km exposed length of the Johnnies Pond Formation. It attains a 

maximum width of about 500 m in the vicinity of the Oval Pit Mine where it is associated 

with pyrophyllite (Map 1). It is locally, however, defined by narrow (10 to 20m) zones of 

intense deformation and sericitic alteration or fracturing with minor silicification. All 

deformation associated with the alteration is linked with a vertically dipping zone of 

networked subvertical fractures. The defonnation is dominated by brittle fracture processes 

and is most easily recognized where secondary minerals accentuate fracture planes (Figure 

4.1 C and D). Some foliation development in the AHAB represents deformation associated 

with later faulting (compare Figures 4.1 C and 4.1F). Early AHAB fabrics are brittle joints 

with cleavage development (Figure 4.1D). With increased alteration, foliations are developed 
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within the altered rocks (Figure 4.1 C). Kinematic analysis is rendered impossible due to the 

alteration processes and the fine-grained nature of the replacement assemblages which 

overprint earlier features that would serve as a guide to the deformation history. The 

relationship of fabric development within the AHAB and its relationship to hydrothermal 

processes are discussed in Chapter 5. The most important regional geological features of the 

ARAB structure are its continuous nature and vertical orientation. The alteration serves as 

a distinct temporal marker, since the alteration system is intruded by the massive Holyrood 

Intrusive Suite, the deformation must be pre-Holyrood (ca. 620 Ma) in age. 

4.6 0,.-Post-AHAB Uplift and Basin Development 

The Oval Pit Unconformity (see Chapter 3) is important since it demonstrates a 

significant stratigraphic break between sequences of rocks that have a 40 Ma age difference. 

It represents a transition from the ca. 620 Ma continental, felsic ash-flow style volcanism to 

marine volcanism and development of major marine basin (Conception-St. John's Groups). 

The age of this basin is probably about the same age as the volcanic sequences which include 

rhyodacite domes dated at 586 Ma. The tectonism associated with this event was closely 

coupled with the volcanism in the Harbour Main Group and this largely extensional event 

is recognized as D,. within the study area. 

Basement rocks to the eastern Avalon Peninsula must have underwent extensional 

tectonic regimes which led to the development of the basin in which the Harbour Main and 
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Conception groups were deposited. It is difficult to identify structures associated with this 

period of uplift and extensio~ however, the Johnnies Pond Formation does not crop out east 

of the Topsail Fault, implying that this structure controls distribution of the formations. This 

might be explained if the fault was initially a basin controlling structure. This interpretation 

is supported by stratigraphic data as the Conception and Harbour Main groups thicken 

rapidly to the east of the Topsail Fault. In the Paddy's Pond and Cochrane Pond Anticlines, 

the Drook Formation is about 1000 m thick (King, 1988). In contrast, the section of Black 

Mountain Formation rocks exposed at Dog Pond is on the order of200 m thick. Although 

the degree of preservation of the Dog Pond section may be called into questio~ there is a 

significant difference in the thickness of the unit at both these locations which are separated 

by the Topsail Fault. The rapid thickening of sedimentary units, and the presence of coarse 

clastic debris within the thinner section at the basin margin is consistent with the Topsail 

Fault being a strike-slip basin bounding fault early in its history. 

The Conception Group stratigraphic section at the Oval Pit Unconformity represents 

a marine transgression onto the Holyrood Horst and sedimentation in the Conception Group 

is also closely sourced from the Harbour Main volcanism. Throughout much of the study 

area there appears to have been a close depositional relationship between the typically 

interbedded siltstones of the Conception Group and greywackes and tuffs of the Harbour 

Main Group. 
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Along the unconformity in the Oval Pit Mine, the main source of detritus was the 

Johnnies Pond Formation.. The basal conglomerate is overlain by successively finer·grained 

pebble conglomerates and pebbly sandstones and the beds of altered fragments diminish in 

thickness. Near the top of the sectio~ the coarse beds contain altered and unaltered rhyolite 

fragments. The fine-grained rhythmically bedded siltstone-sandstone sequence that forms 

at the top of the Oval Pit Mine section occurs in all outliers of the Conception Group and 

appears to be correlative with parts of the Drook Formation (Chapter 3). 

The distribution of Black Mountain Formation outliers along the eastern margin of 

the Holyrood Horst, and in particular the thickness and facies variation as compared with 

typical Drook Formation, which elsewhere is the lowermost formation of the Conception 

Group (Williams and King, 1979), indicates that the margin of the Holyrood Horst was 

subject to local inundation during basin development. Importantly these inundations are 

spatially coincident with high-alumina zones in the AHAB and result in the preservation of 

high-alumina alteration beneath the Conception Group. This pattern indicates fundamental 

basement control on the presence of the outliers. The contact on these outliers may be a result 

of differences in subsidence rate of reactivity of basement structures. The subsidence rate in 

areas of high-alumina alteration may have been greater due to structural control as the 

weakening of the rock by alteration may have localized deformation into these zones or the 

pre-existing ARAB-related structures may have been exploited by basin structures 

facilitating greater extension and consequently more inundation in these areas. Clearly some 
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of the faults have the same orientation as foliations within the ARAB (compare Figures 4.1 C 

and 4.1F). 

Extension throughout basin development appears to have been closely tied to uplift 

in the source area as reflected in the variation in the source of coarse clastic material within 

major stratigraphic units. Within the field area the type of clasts found in debris flows within 

both the Harbour Main Group and Conception Group differs with stratigraphic level. In the 

Harbour Main Group the clasts in the debris flows are either unaltered, quartz veined or 

silicified and clearly of Johnnies Pond/ AHAB derivation. The Conception Group contains 

clasts of pyrophyllitized rocks, implying that further uplift and erosion had occurred to such 

an extent that this material was accessible. 

The record of detrital input from the Holyrood Intrusive Suite into the basin is 

somewhat more complex. Granitic detritus is rare in the Conception Group, however, clasts 

were reported by Rose (1948) from Black Mountain and a mixtite unit within the Conception 

Group cropping out on the Witless Bay line. The Signal Hill Group also contains abundant 

rhyolite and granite clasts (King, 1990). This sourcing pattern is consistent with continued 

uplift of the Holyrood Horst and that signified unroofing of the Holyrood Intrusive suite 

through the Jobnnies Pond Formation did not occur until the deposition of the Signal Hill 

Group. On the opposite side of the Holyrood Horst, near Holyrood, Holyrood Granite clasts 

are found within the Harbour Main Group (McCartney, 1967) requiring that unroofing of the 

granite was not contemporaneous throughout the area. Further work is needed along the 
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margins of the Horst to develop a regional understanding of the uplift history. However, it 

is clear from this investigation that a significant structural event was responsible for the 

formation of the basin and it is manifested in the depositional record within the study area. 

4. 7 Dr Topsail Fault and Related Struetures 

4.7.1 Topsail Fault 

The Topsail Fault is marked by a linear zone of intense deformation in rocks ofboth 

the Harbour Main and Conception groups (Map l ). The fault can be traced north to the 

Topsail Head area where latest movement on the structure juxtaposes Cambrian sedimentary 

rocks of the Adeyton Group with the Harbour Main Group. This indicates a period of post

Cambrian deformation. 

The fault is marked throughout much of the field are by a zone of secondary fabric 

development marking the Ds deformation. In the southern part of the map area, greywackes, 

basalts and mafic tuffs of the Harbour Main Group are extensively chloritized and schistose. 

Early quartz veins in these exposures are disaggregated and boudinaged and few primary 

features of the host rocks are recognizable. Within the fault zone relatively competent green 

silicic siltstones of the Conception Group have a millimetre spaced fracture cleavage, 

oriented perpendicular to the schistosity seen in the more chloride rocks. In coastal exposures 

at Topsail Head, the host rocks are extensively quartz veined along the fault. Rhyodacitic 

dykes which intrude the Harbour Main Group are boudinaged and enveloped by a schistose 
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fabric in their host rocks, which appear to be greywacke and tuffs that are extensively 

sheared and chloritizecL 

Figure 4.2 shows a series of contoured equal area stereographic projections 

constructed from cleavage and bedding data for the Harbour Main Group and Conception 

groups. The data illustrates the strong northerly orientation of secondary structural features 

and bedding bas an angular relationship to the secondary structures. Bedding in the Harbour 

Main Group is subvertical and strikes northwest while bedding within the Conception Group 

is moderately to shallow dipping. Bedding is rotated into the main cleavage direction within 

the Harbour Main Group (compare Figure 4.1B and D) while the same cleavage orientation 

crosscuts the subhorizontal bedding in the Conception Group. These observations indicate 

that within the cover sequence the lower parts of it are more intensely deformed. This is 

consistent with the flower structure model for the Topsail Fault (see below). Upper parts of 

the structural complex have undergone less rotation (Conception Group) but are cut by the 

same structures (hence the same orientation is evident on cleavage in both units). Since the 

map pattern of major units parallels the structural data on the gross scale, it is reasonable to 

infer that the outcrop pattern is structurally controlled by the Topsail Fault. 

4.7.2 Structures Related to tbe Thpsail fault 

The effect of the deformation along the Topsail Fault is not restricted to the fault zone 

itself as several other major faults in the study area appear to be related to this event. The 
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Figure 4.2. Bedding and cleavage relationships within the Harbour Main Group. 
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Dog Pond, Trout Po~ Mine Hill, Oval Pit Mine and Black Hill faults place cover sequences 

of the Conception and Harbour Main Group in fault contact with the basement rocks of the 

Johnnies Pond Fonnation, Holyrood Intrusive Suite and Foxtrap Diorite (Map 1). The fault 

zones are generally subvertical but moderately dipping structures are also present. The main 

effect of the deformation is the imbrication of basement and cover rocks along the eastern 

margin of the Holyrood Horst. The Johnnies Pond Formation and the Conception Group are 

structurally intercalated locally along the length of their contact. The relationships are easily 

seen in the vicinity of Mine Hill (Figure 4.3). The deformation is marked by a penetrative 

fabric in fault zones and by a weak secondary fabric in some high-alumina rocks. The 

primary ARAB structures are brittle and do not have the penetrative fabrics. These foliations 

are recognized as belonging to younger events on this basis. 

Moderately dipping, seemingly compressional, structures occur at Mine Hill. In this 

area pyrophyllitized and sericitized rocks of the Johnnies Pond Fonnation are structurally 

imbricated with Harbour Main and Conception Group strata by a series of easterly dipping 

faults. These faults appear to be compressional since on the gross scale they appear to cut out 

parts of the stratigraphic section. Basement rocks appear in both the footwalls and hanging 

walls of thin slices of cover rocks. A clear example of this type of relationship is exhibited 

in Figure 4.4. This pattern is also reflected to some degree by the distribution of large 

Conception Group outliers. 
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Figure 4.3. Detailed geological map of the Mine Hill area. 
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Figure 4.3. Continued 
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Figure 4.4. Thrust fault in roadcut at Mine Hill. The hanging wall consists of AHAB 
pyrophyllite zone and the footwall contains relatively unlaltered Harbour Main Group 
basalts. 
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At Mine Ria a Harbour Main breccia unit forms cover imbricated into the Johnnies 

Pond Formation. The fault structures bounding the breccia unit trend north and dip towards 

the east approximately 70°. A weak secondary fabric is developed in the pyrophyllite schist 

which dips easterly 60 to 70° and is consistent with the structures produced the imbrication. 

To the east of Johnnies Pon~ a block of Conception Group strata is relatively 

undeformed internally yet an intense foliation is developed where the unit is in contact with 

the Johnnies Pond Formation. The zone of deformation marks the fault contact between the 

units strikes north and dips 60° east and thus has the same general orientation as the second 

foliation in the rhyolites at Mine Hill. The easterly dips and compression of the sections 

indicate westward directed component to the sub-horizontal fault movements. The outcrop 

patterns are further complicated in the area by high angle faults. One of these faults exposed 

near the south end of Johnnies Pond terminates a block of Conception Group strata and is 

marked by a vertically dipping zone of intense shearing and penetrative fabric development. 

This particular fault may be related to the main compressional faults and its style and spatial 

relationship indicates it could be a lateral ramp. 

This fault system also affects contact relationships between the Johnnies Pond 

Formation and the Holyrood Intrusive suite. Despite having an original intrusive relationship, 

many contacts of the Johnnies Pond Formation and the Holyrood Intrusive Suite are now 

marked by vertical faults. Deformation in the granite results in chloritization of biotite, some 

cataclastic reduction of grain size an~ locally, the development of a weak schistosity. 
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Pyritization of the granite and the Johnnies Pond Formation adjacent to the fault zones is 

ubiquitous and gives these outcrops a rusty appearance. 

The compressional faults in the Mine Hill area and all of the vertical structures 

intercalating the pre-580 Ma basement and cover rocks are components of the same regional 

fault system. Although the bulk of the structures are subvertical, the east dipping faults occur 

to the west of the Topsail Fault and hence dip into the plane of this structure. On the eastern 

side of the Topsail Fault in the Portugal Cove area, thrust structures in the Harbour Main and 

Conception Group Rocks are easterly directed (King, 1990). The sense of dip direction on 

each side of the Topsail Fault is similar to flower structures which form in strike slip fault 

systems (Sylvester, 1988). Thus the Topsail Fault likely represents a regional transpressional 

structure and there is clear implication of movement on this structure having influenced the 

present distribution of rock units within the study area. 

The pyrophyllite deposits are influenced by the deformation associated with the 

Topsail Fault. The primary effect appears to be that the deposits are exhumed through the 

Conception cover. The defonnation may also imbricate ore zones within these deposits, as 

indicated by the pattern of faulting in the cover rocks of the Conception Group, however 

there are no suitable markers in the altered rocks to facilitate reconstruction. Much of the 

schistosity seen in some outcrops of altered rock is probably related to subsequent (post

alteration/deformation) and may be related to the Topsail Fault. The deformation of 
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pyrophyllite at Dog Pon~ for example, occurs along the Dog Pond fault which is clearly 

related to this fault system. 

Based upon the foregoing structural and stratigraphic analyses the potential, exists 

for blind deposits of pyrophyllite wherever Conception Group rocks are in fault contact with 

altered Johnnies Pond Formation. The large area of Conception Group strata in fault contact 

with the Johnnies Pond Formation west of the Dog Pond Fault may be underlain by 

pyrophyllitic rocks. It should be recognized that the true thickness of the cover in the block 

is unknown and if the estimate of200 m of exposed strata is correct, a potential occurrence 

might be too deep to exploit economically. The Dog Pond prospect, however, warrants 

further exploration by diamond drilling through the Conception Group since here as at the 

Oval Pit Mine the cover may be thin near the fault. 

Deformation in all major units affected by this deformational event is accompanied 

by extensive pyritization along fault contacts (see Chapter 5). The fault contacts provided 

fluid pathways for sulphur-bearing fluids to invade the rock masses. Some minor quartz 

veins containing galena and chalcopyrite were found at Topsail Head in the fault zone and 

these may equally be related to this event. 
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4.7.3 Timine ofQeformation alone the Topsail fault Zone 

The age of the movement on the Topsail Fault that produced the main deformation 

within the Conception and Harbour Main Groups is most likely Precambrian as there is no 

similar inter-calation of Cambrian cover and Precambrian basement Had the Cambrian been 

deposited before the deformation it would be reasonable to conclude that at least locally the 

basement and the Cambrian cover would have the same structural relationships locally as the 

Johnnies Pond Formation and the Conception Group. The movements on the Topsail Fault 

may be related to late Precambrian event that produced broad regional folding in the St. 

John's area (see King, 1990). 

The Topsail Fault is probably responsible for the formation of a graben which was 

ultimately infilled by Cambrian and Ordovician sedimentary rocks in present-day Conception 

Bay. This hypothesis requires further evaluation through the examination of similar 

structures in western Conception Bay. It should be noted that the Cambro-Ordovician 

sequence is roughly bounded by the Topsail fault system in the east and also along a similar 

fault system that bounds the Holyrood Horst to the west {King, 1988). 

4.8 Veins and Metamorphic History 

A variety of quartz veins cut the Precambrian rocks and can be broadly divided into 

vertically and horizontally dipping groups of veins. 
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The vertically dipping set includes quartz-hematite and quartz-specularite veins 

cutting the Johnnies Pond Formation are clearly related to the AHAB. Another vertically 

dipping vein set of quartz veins contains no accessory minerals. These veins are fol.Uld within 

the Johnnies Pond Formation, Holyrood intrusive suite and Harbour Main Groups and hence 

may have no affinity to the AHAB. 

Horizontally dipping quartz veins cut the pyrophyllite zone at the Oval Pit Mine. 

Horizontal-subhorizontally dipping quartz, quartz-chlorite and lesser quartz-chlorite-epidote 

veins occur throughout the study area. The veins are 2 to 5 em thick and contain milky quartz 

and large clots of green chlorite and locally epidote. The horizontal veins form a suite which 

are related to the post-Conception, Precambrian deformation and they appear to form as 

dilatant zones near thrust planes. Evidence for this relationship can be seen in the south east 

wall of the Oval Pit Mine where sub-horizintally dipping quartz veins cut pyrophyllitized 

rocks in the hanging wall of the thrust. Similar veins were also examined along the northwest 

face, also having the same relationship to major compressional structures traversing the Pit. 

The sub-horizontal quartz-chlorite veins found on a regional scale and probably occur in the 

hanging wall of regional structures. The mineralogy of the quartz veins metamorphic grade 

is the same as that of the Harbour Main and Conception groups within the field area. Figure 

4.5 shows equal area projections of poles to planes of the orientation of quartz vein 

assemblages within the study area The dominant subhorizontal nature of the veins within 

the Johnnies Pond Formation are clearly evident (Figure 4.5A). The veins within the Harbour 

Main and Conception groups are both horizontal and moderately inclined. Although both 
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Figure 4.5. Orientation of veins within the Johnnies Pond Formation and the Harbour Main 
and Conception groups. 
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groups are sub-horizontal veins, the moderately inclined veins dip westward in the Harbour 

Main and dominantly eastward in the Conception. The vein orientations are not coincident 

with cleavage in these units, consequently the difference may reflect local structural 

environments. or be of different generations. 

4.9 Post-Cambrian Deformation 

The Cambrian and Precambrian rocks in eastern Newfoundland have been affected 

by a period of deformation marked by re-activation of existing fault structures. Fossiliferous 

Cambrian strata are deformed and faulted against Precambrian rocks at Topsail Beach (Rose, 

1952; Boyce and Hayes, 1990). McCartney (1967) noted the presence of faults cutting the 

Cambrian strata. North of the study area, an outcrop of intensely deformed Cambrian shale 

is exposed on the access road to the bulk fuel terminal and ore dock at Long Pond. The 

deformation is of such intensity that the material in the exposure is mostly fault gouge and 

as the outcrop is on strike from Conways Valley it provides an indication that this and other 

valleys in the field area are likely controlled by post-Cambrian faults. 

4.10 Summary of Structural and Depositional History 

The structural history of the eastern Avalon Peninsula as determined from this study 

are shown in Figure 4.6 and are summarized as follows: 

D1• Defonnation in the Foxtrap Diorite (pre-630 Ma). 
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Figure 4.6. Age relations and timing of structural events in the eastern Avalon Peninsula. 
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0 2• Pre-AHAB post-depositional block faulting of the Johnnies Pond Formation. These 

are syn- and pre-Johnnies Pond Formation structures related to the caldera setting and 

recognized by the tilting of volcanic stratigraphy prior to the AHAB fracture zone. 

0 3• Development of the AHAB in a north trending fracture zone. 

0 4• Major extension during basin formation as evidenced by syn-sedimentary structures 

and volcanism in the Harbour Main Group In the later stages it involves unroofing 

of the Holyrood Horst (partly in conjunction with 4). Transgressive sedimentation 

on Horst margin in response to extension. 

Os. Development ofTopsail Fault flower structure. 

0 6• Deposition of Cambrian and Ordovician rocks. 

0 7• Reactivation of the Topsail Fault. 
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CHAPTERS 

DETAILED DESCRIPTION OF ALTERATION AND STRUCTURES 
WITDIN THE AVALON HIGH-ALUMINA BELT 

S.l Introduction 

The Eastern Avalon High·Alumina belt is a brittle structural zone (D3) along which 

migrating hydrothermal fluids caused extensive alteration of the Johnnies Pond Formation. 

The AHAB has mappable alteration zones (Map 1) which parallel the structural grain of the 

belt and a variety of alteration minerals were produced through the redistribution of elements 

of the original host rock concomittent with the 0 3 fracture zone. In this section the types of 

alteration are described along with their inter-relationships and their dependencies upon the 

structural evolution of the AHAB. 

5.2 Alteration Types 

5.2.1 Overview 

The main types of alteration exhibited by the Johnnies Pond Formation are 

silicification, sericitizatio~ pyrophyllitization, diasporization and bematization. Detailed 

mineralogical investigations have been completed by previous workers which indicate the 

bulk mineralogy is dominated by these minerals (Keats, 1970; Papezik, Keats and Vhatra, 

1978; Papezik and Keats). These types of alteration are visible in band specimen scale 

although many of the features are best seen in outcrop. A propylitic alteration zone marked 
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by the chlorite-coated fractures is developed locally. Features indicative of metasomatism 

are also exhibited by feldspar phenocrysts in the rhyolites as small patches of secondary 

feldspar (adularia?). 

5.2 2 Alkali Feldpr Metasomatism and Adularia 

Exposures of Johnnies Pond Formatio~ exhibiting no obvious signs of alteratio~ 

crop out along the outer margins of the silicified zone. Samples of these rocks were studied 

petrographically and found to contain features indicative of alkali metasomatism. The 

metasomatism is marked by the development of chessboard feldspar. This exsolution 

structure has been reported from rhyolites elsewhere on the Avalon Peninsula that have 

undergone extensive metasomatism {Mal pas, 1971; Hayes, 1985) and are known elsewhere 

to occur in metasomatized rocks. 

One sample examined contained patches of secondary potassium feldspar as indicated 

by sodium cobaltinitrate staining. The feldspar appeared to be pore filling, having no 

discemable crystal shape/form and the entire patch bad radial undulatory extinction. These 

patches are likely adularia, which is a common phase in low sulfidation-type hydrothermal 

systems (Heald eta/., 1987). 
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5.2 3 Silicjficatiop 

Silicification is the most regionally extensive type of alteration within the AHAB. 

The silicified rocks are typically very-fine grained, light grey and typically white-weathering 

and in places they are tinged reddish-brown by patches of hematite. With the exception of 

minor quartz associated with some breccias on the distal parts ofthe alteration system, most 

silica is present as amorphous chalcedony. The chalcedony forms the matrix to breccias 

zones throughout the alteration system and commonly fills profuse net-veined fractures 

within the rhyolites. These fractures are undoubtedly produced by hydrothermal brecciation 

of the host rock and as there is no evidence of banding this further indicates that silica was 

introduced during a single brecciation event along each fracture. An example of hydro

thermal brecciation in a silicified zone is shown in Figure S .l which shows a silica net vein 

system cutting rhyolite. Cross-cutting silica veinlets occur in several exposures throughout 

the belt and indicate that overall silicification involved multiple over printing brecciations 

and silica flooding events. This may be similar to the crack-seal process described by White 

and Hedenquist, 1990) From the hydrothermal fields ofNew Zealand 

Original textures, such as delicate layering features, have also been obliterated in the 

most intensely silicified rocks. The most intense silicification appears to promote extensive 

recrystallization of the tuffs and this recrystallization appears to be the fabric destroying 

stage of the alteration. Locally silicified rocks contain lithophysal zones and exhibit flow 
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Figure 5.1. Hydrothermally brecciated and silicified rhyolite near Johnnies Pond 
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banding or layering and as such these robust textures are the only identifiable features of the 

protolith that are preserved (Figure 5.2). 

Silicification was concurrent with hematization along the outer margin of the 

alteration zone and in these areas hydrothermal breccias with matrices ofboth chalcedony 

and hematite are common. Near the Oval Pit Mine, silica-hematite breccias form vein-like 

zones cutting unaltered rhyolites. The largest veins are sub-vertical, up to 0.5 m wide and 

contain fragments of the host rock in a grey translucent very fine grained matrix with red 

hematitic patches (Figure 5.3) Some of the thinner, millimetre-scaled, veins in this locality 

have hematite-rich cores. The margins of the veins are lined with clear euhedral quartz rather 

than fine grained chalcedonic silica. 

5.2.4 Sericitic Alteration 

Sericite was the earliest structurally controlled alteration mineral developed in the 

AHAB. It occurs on the outer margin of the pyrophyllite zones adjacent to the silicified zone 

and forms zones overprinting silicified rocks between pyrophyllite occurrences along the belt 

(Map 1 ). As is evident on both small and large scales, sericite distribution is closely tied to 

the structural development of the host rock. The first indication of sericite in the silicified 

rocks is accompanied by the develop-ment of a weak penetrative fabric evident in hand 

specimen. 
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Figure 5.2. View of silicified zone at the southern end of Mine Hill showing relict flow 
banding and layering. 
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Figure 5.3. Quartz-hematite breccia vein near Oval Pit Mine. 
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Similar features are also evident on the outcrop scale. Figure 5.4 shows a fracture 

system in silicified rhyolites which outcrop in a large hill between Little Pond and Trout 

Pond. The fractures are millimetre to centimetre scaled in width and filled with pale green 

sericite. Some of the wider fractures contain fragments of comminuted silicified rock and 

sericite. Sericite locally forms massive schistose zones which crop out between pyrophyllite 

occurrences. A particularly sericite-rich zone crops out on the power line north of Black 

Mountain and sericite zones also crop out in the vicinity of Balls Marsh. The sericite zones 

are also the sites of intense shearing, perhaps some of which is related to post-AHAB 

defonnation focused into these less competant zones. 

Sericite also occurs within high-alumina zone rocks in mixtures with pyrophyllite. 

In the Oval Pit Mine rocks, the typically whitish grey silicified rocks are tinged green when 

sericite is present and sericitic rocks are marginal to pyrophyllite-rich zones on the scale of 

the pit walls. Some parts of the pit walls contain a mixture of sericite and pyrophyllite. Keats 

( 1970) found through detailed XRF study that the rocks of northern face of the Oval Pit 

contained a mixture of sericite and pyrophyllite. This area was examined during the present 

study and found to be typical of the partly to completely pyrophyllitized rocks in terms of 

colour, texture and degree of alteration. 
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Figure 5.4. Fracture hosted sericitic alteration in silicified rhyolites north ofTrans Canada 
Highway. 
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5.2.5 Pyropbyllite 

Pyrophyllite occurs as a soft pale-yellow, slightly translucent, very fine-grained mass 

within fractures and pod-like zones within silicified rhyolitic rocks. The pyrophyllite is 

locally stained rusty brown and yellow by hematite from the oxidation of post-ARAB pyrite. 

In thin section individual pyrophyllite crystals are less than .I mm and difficult to resolve 

even under high-power ( 40X) magnification. The distribution of pyrophyllite within most 

exposures is controlled by typically thin millimetre-scale fractures, however, larger 

centimetre- to decametre-scale zones are formed by coalescing of fractures. Other metre

scale zones of relatively pure pyrophyllite appear to form by accumulation of pyrophyllite 

material. 

Many of the features of pyrophyllite mineralization can be seen on Mine Hill which 

is compose~ for the most part, of white silicified rhyolitic ash-flow tuff cut by a system of 

pyrophyllite-bearing fractures. Near the south end of the hill, a small pure pyrophyllite pod 

is developed within a mass of sheared and silicified pyrophyllitized rhyolite (Figure 5.5). The 

pod is hosted in a zone of intense fracturing. Where the zone is most fully developed it hosts 

a 0.5 m wide pod containing abundant centimetre scale, subangular fragments of silicified 

rhyolite, which are clearly remnants of host rock with their angular shape having been 

derived from the fractures. The boundaries of the pod are gradational and marked by a 

reduction in the density ofpyrophyllite-bearing fractures. The development of this pyrophy

llite z"ne is clearly influenced by the fracture history of the host-rock. 
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Figure 5.5. Pyrophyllite in sheared rhyolite, Mine Hill. 
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Elsewhere within the AHAB, pyrophyllite is found in pods which appear to have 

formed by accumulation rather than in situ fracturing and alteration. The boundaries of these 

pyrophyllite lenses appear sharper than the intensely sheared zones hosting pyrophyllite and 

the pods are wider on the scale of 1 to 2 m. Less comminuted material is found within the 

pods and instead large pieces of silicified rock are entrained within the massive pyropbyllite. 

These indicate that the degree of fracturing was relatively low in these areas. Some of the 

inclusions of silicified material are, however, conspicuously fractured and this observation 

is consistent with some pre-pyrophyllite fracturing. These structures terminate at the 

boundary of the silicified fragment and cannot be traced into the pyropbyllite. Figure 5.6 

from Mine Hill is an example of a typical piece of entrained silicified rock. The pods are in 

most cases influenced by the pattern of intersecting fractures produced by the style of 

deformation and are often associated with comparatively massive rhyolite rather than the 

finely commutated material of the smaller fractures. These accumulations are not the result 

of mere increasing deformation and alteration. [nstead these are more likely to have 

originated as zones ofaccumulationofpyrophyllite material (Figures 5.7 and 5.8) and imply 

that physical remobilization of the pyropbyllite is occurring within the alteration system. 

Examination of the textures within the pyrophyllite zones reveals that there is a fundamental 

process at work. 

Within the largest masses of pyrophyllite, some having exposed areas of over 10 m2, 

there are no variations in grain size. In fluid-rich environments one might expect that 
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Figure 5.6. Pod of pyrophy/lite from Mine Hill with block of silicified rhyolite. 

101 





Figure S. 7. Example of pyrophyllite pod from north of Oval Pit Mine. The pod is located in 
the interstices oflarge diamond-shaped fractured blocks ofpyrophyllite. The pyrophyllite 
pod in the photo appears dark-grey to black due to lichen (pen knife is resting on pod). The 
white coloured rocks are massive silicified rhyolite. 
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Figure 5.8. Example of pyrophyllite pod near south part of Oval Pit Mine. Pyrophyllite pod 
is i"egularly shaped and appears to be infilling between blocks of silicified rock. 
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crystallization would produce a range in grain sizes and textures leading to a coarsening of 

individual crystals such as in a pegmatite. Instead the pyrophyllite zones are texturally 

homogenous and pyrophyllite coarsening only occurs with associated diaspore nodules. This 

homogenous fine-grained texture indicates that there was little individual crystal growth, yet 

abundant crystal nucleation. The explanation for this behaviour involves the recognition that 

the absence of large crystals may imply that there is a kinetic influence inhibiting crystal 

growth or another mechanism is responsible for controlling crystal growth in the system. One 

hypothesis is that these zones have originated by the crystallization of a pyrophyllite colloid 

rather than in situ growth of pyrophyllite along fractures. In the colloid model, a colloid with 

the necessary composition to fonn pyrophyllite and diaspore would form first in the fracture 

system and at some stage collect in large fractures or migrate to dilatancy zones. This 

behaviour would explain why masses of pyrophyllite form irregularly distributed pods rather 

than being located throughout the fracture system as predicted by the structural relations and 

also goes far to explain the genesis of the diaspore nodules. The role of colloids or materials 

with colloidal properties have not been widely documented in natural hydrothermal systems, 

although there is sufficient evidence to document their existence. The presence of a colloid 

probably indicates that there are some complexities with the crystallization of pyrophyllite 

in natural systems. It is known that crystallization is a function of both thermodynamics and 

kinetics. 

Crystal growth mechanisms were discussed by Steefel and Van Cappelen (1990), 

with particular attention to processes operating when there is a kinetic inhibitor to prevent 
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the crystallization of the thermodynamically preferred phase. Rock dissolution and the 

crystallization of secondary phases are clearly controlled by solubility relations and the 

stability of mineral phases. It is noted by Steefel and Van Cappelen (1990) that stable, 

insoluble minerals can have slow precipitation that is kinetically inhibited even on geological 

time scales. 

Within the ARAB, the main process is the dissolution of quartz and feldspar followed 

consequently by the precipitation of sericite, pyrophyllite and diaspore. Helgeson ( 1979) 

pointed out that dissolution-precipitation systems are rate dependant upon their slowest step. 

In the case of the AHAB it would imply that the dissolution of feldspar would be largely 

dependant on the crystallization rate of pyrophyllite. Steefel and Van Cappellen (1990) carry 

this thinking forward to systems where the crystallization of secondary phases is slow and 

would inhibit the reaction were it not for the existence of compensatory mechanisms that 

provide alternative pathways for crystallization. Two mechanisms described are precursor 

phases and Ostwald ripening. 

A precursor crystallizes instead of the more stable phase and is subsequently 

scavanaged and replaced by the slower crystallizing stable phase. The precursor minerals are 

usually amorphous or poorly crystalline and may not have the same chemical composition 

as the stable mineral by which it is replaced by solution in mediated processes (Steefel and 

Van Cappellen, 1990). Ostwald ripening is also an alternative strategy to inhibitory 

crystallization kinetics and involves the crystallization of a large number of smaller crystals 
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that are subsequently redissolved and the material transferred to larger crystals (Steefel and 

Van Cappellen, 1990). 

Under near neutral conditions most high-alumina minerals have reduced solubilities 

and alumina is practically immobile (see Chapter 6). This would mean that the rate of 

feldspar dissolution in the AHAB would be controlled largely by the crystallization rate of 

secondary products (cf. Helgeson, 1979). Solubility data for pyrophyllite is not available, so 

it is difficult to assess the relative solubility relations between feldspar and pyrophyllite 

quantitatively. There are, however, analagous minerals and behaviours throughout the high

alumina minerals that may help explain the textures within the AHAB. The massive 

crystallization of pyrophyllite withn the AHAB probably involves precursor processes, 

however, the local coarsening might involve Ostwald ripening. 

Based upon the crystal distribution in the pyrophyllite zones and the pooling of 

pyrophyllite in large masses within the alteration zones there is a physical role for a precursor 

in the process of pyrophyllite crystallization. The massive fine grained nature of the 

pyrophyllite might also be consistent with an early stage Ostwald-like process involving 

massive nucleation of fine-grained pyrophyllite directly with little or no subsequent crystal 

growth (with the possible exception of diaspore nodules, see next section). It is unlikely, 

however, that anything other than massive nucleation could produce monotonous, very fine 

grained crystals as that seen in the pyrophyllite in the AHAB. 
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Steefel and Van Cappellen (1990) note that the observation of Parham (1969) that 

kaolinite forms in weathering profiles as a replacement of halloysite, which in turn, had 

replaced allophane. This is a naturally occurring example of a precursor and these 

transformations provide a clear analogy as to processes suspected to have occurred in the 

AHAB. Kaolinite and pyrophyllite form at about the same pH conditions, the main 

difference being that pyrophyllite is stable at a higher temperature than kaolinite. The 

behaviour exhibited by kaolinite at low temperatures can likely be extrapolated to 

pyrophyllite since the control on the kinetics of crystallization is the solubility of the 

crystallizing phase. It is expected that pyrophyllite will also have a kinetic barrier to 

crystallization tending to form supersaturated solutions because most aluminum minerals 

have poor solubilities, especially within the near neutral to slightly acid conditions 

envisioned for the hydrothermal fluids of the AHAB. Most pure alumina hydroxides exhibit 

similar relations. For example, gibbsite (Al(OH)3) is least soluble in the 4.5 to 6 pH range 

at l00°C (Wesolavski and Palmer, 1994). Bohemite (AIOOH) is also relatively insoluble 

over this pH range (Caslet et al., 1993). Both are less soluble at higher pH and lower 

temperatwes and at pH~ -3 both these minerals become more soluble by 2 or more orders 

of magnitude. The behaviour of bohemite is important since it forms an aqueous species 

during the dissolution of feldspar (Helegson et al., 1984; Walker and Woodland, 1993) such 

that if a solution were to become supersaturated with bohemite it would impair the 

dissolution of feldspar. It is also recognized that silica and alumina form complexes at low 

temperatures in the pH range 4.5 to 8 (with the higher pH restricted to low silica concen

trations). The mineral allophane is known from waters outflowing from a hydrothermal 
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alteration system in New Zealand (Wells eta/., 1977). Despite the scarcity of data on the 

presence and behaviour of these minerals at higher temperatures it is clear that allophane, or 

a mineral like it, could act as a precursor to pyrophyllite crystallization. Importantly it would 

serve as a sink for alumina and silica, reducing the concentration of these compounds in 

solution and thereby promoting further dissolution of feldspar. 

An alternative mechanism to allopbane crystamzing first and being replaced by 

pyrophyllite is the direct crystallization of pyrophyllite from solution. This is difficult to 

envisage given the fact that little variation in grain size occurs and there seems to be no 

plausible way to transport crystallized material to the zones of accumulation. It might be 

expected that some reduction in rock fragment size be favoured due to the fact that the 

alteration system is hosted by a fracture zone, however, this must be balanced against the fact 

that as a hydrothermal system with open spaces controlling fluid flow there should be little 

further influence on the fragment size by strain where fluids are flowing. Since later Ostwald 

ripening of the grains does not widely occur this can be interpreted as further evidence for 

the inference that there is a considerable kinetic barrier to pyrophyllite crystallization. There 

may be, however, a role for Ostwald processes associated with the coarsening of pyrophyllite 

in diaspore zones. Unfortunately, there are not any detailed studies of pyrophyllite deposits 

in which crystallization mechanisms have been addressed on which to make comparisons. 

This is especially true of the mechanism by which the pods or pyrophyllite form in the 

dilatency zones. No detailed studies of these types of zones are available. 
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It would seem from the data gathered in this study that extensive alteration occurs 

along fractures in the pyrophyllite zones with the immediate phase precipitated being an 

amorphous allophane with the extraction of silica and alkalis from the host rock.. The 

allophane largely remains in the fracture systems and the massive pods appear to form by the 

migration of this material into zones of dilatency where pyrophyllite then crystallizes from 

allophane. 

5.2.6 Diasporization 

Diasporization is an alterationlremobilization process occurring within pyrophyllite 

zones and is marked by the formation of diaspore nodules. The diaspore nodules are 

accompanied by an increase in the size of pyrophyllite crystals. The pyrophyllite surrounding 

the diaspore zones is light tan in colour and is somewhat distinct compared to the 

pyrophyllite found in lower grade zones. The diaspore nodules themselves are typically 

spherical and contain coarse (5.0 mm) patches of radial pyrophyllite blades and in terms of 

the hydrothennal system represent small scale zones of pyrophyllite coarsening and the 

development of a new mineral phase. Since diaspore contains no silica, the diaspore nodules 

mark the zones of most intense silica depletion. Their presence indicates that alumina is 

chemically immobile at this stage of the alteration. The spherical nature of the nodules 

probably reflects that nodule growth occurred within the host pyrophyllite~ and were not 

influenced by other features such as fractures or other dilatencies. Within the context of 
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kinetic mechanisms the coarser pyrophyllite might represent true Ostwald ripening of the 

fine-grained pyrophyllite. 

There are two possibilities for the timing of their formation; the first being that the 

earliest crystallizing phase in these zones may be allophane, then pyrophyllite to be replaced 

by coarser pyrophyllite and diaspore in the high-temperature zones. Alternatively, the 

diaspore nodules could have formed first in the allophane and their associated coarse 

pyrophyllite with the last stage being massive nucleoation of fine grained pyrophyllite 

throughout the high-alumina zone. The data from this study are unable to resolve this timing. 

5.2. 7 Bematization 

Movement of Fe in the alteration system is associated with diffusion processes and 

zones of brecciation or veining and is indicated to occur by the differing styles of 

hematization associated with the alteration system. The controls on hematization are 

dependant on its proximity to the core of the high-alumina alteration and style of alteration. 

Within the Oval Pit Mine there are large patches of reddish brown hematite-stained material 

within the pyrophyllite zone. On the small scale it can be observed that the hematite zones 

actually fringe the pyrophyllite zones and consist of two parts. The part closest to the 

pyrophyllite zones consists of a zone of diffuse dusty hematite and the second part forms 

within 2 to 5 m from the pyrophyllite front and is marked by the coalescing of the dusty 

hematite into millimetre-scaled veinlets. Much of the hematite-stained areas on the pit walls 
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contain both these styles of hematization (Figure 5 .9). Enclaves of relatively unaltered 

pyrophyllite within the alteration system are typically fringed by veinlets of hematite. 

Outside of the pyrophyllite zones dusty hematite of this type is increasingly rare and 

the hematite is mostly associated with hematite breccias (although some of the sericitic rocks 

are overprinted by hematite). The breccias form zones in less altered rocks, and are typically 

associated with silicified zones distal to high-alumina alteration. In these areas hematite 

occurs with silica in quartz-hematite breccias. Near the Oval Pit Mine three quartz-hematite 

breccia veins are exposed. The veins are 15 to 30 em wide and can be traced for a distance 

of several metres (Figure 5.3). Much of the same outcrop contains numerous centimetre

scaled hematite veinlets with quartz margins. The largest veins in the area appear structurally 

controlled by the AHAB shear system. Their orientation suggests that they form in zones of 

extension oriented obliquely to the overall trend of the alteration system. 

5.3 Structural Control on Secondary Mineral Development 

5.3.1 Introduction 

Much of the apparent complexity in pyrophyllite distribution within outcrops of 

altered rock has its origin in the structural style of the alteration system. The rhyolitic rocks 

have no pore space and consequently little inherent porosity, hence development of 

secondary porosity in the silicified felsic volcanic rocks is necessary to permit fluid flow. 

The fracture style and pattern influence the shape of the pyrophyllite zones as evident in 
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Figure 5.9. Hematite alteration zones proximal to pyrophyllite zones in the Oval Pit Mine. 
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many some exposures and the lensoid shapes of the silicified fragments within the alteration 

system are artifacts of the 0 3 fracture system. Not all factors controlling the distribution of 

alteration assemblages are directly related to variations in fluid compositio~ temperature or 

pressure within the zone or the source of fluid. The AHAB demonstrates that in a structurally 

controlled alteration system the development of the fracture system likely controlls these 

variables significantly. 

5.3.2 Alteration Zonation and Structural Style 

The mechanism and type of structural failure is variable throughout the alteration 

system. In the silicified zones, the presence of hydrothermal breccias indicates that increases 

in fluid pressure above lithostatic pressure were the causative mechanism of secondary 

porosity generation. The pathways generated by the hydraulic fracturing were essentially 

infilled by chalcedony. These zones are located along the margins of the system and also 

within the core of the system in rocks that have subsequently been overprinted by the 

pyrophyllite alteration. Brecciation therefore occurs along the outer margin of the system and 

also at the advancing front of the propagating fracture zone. 

The sericite and pyrophyllite in the AHAB are controlled by secondary porosity 

developed from a fracture system (see below). The coincidence of the alteration style and 

structural style may be explained in terms of fluid flow rates. The sericite zones are 

characterized by widely.spaced fractures or a narrow fracture system. In the sericite zone, 
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the fracture system probably did not support sufficient enough a fluid flow to cause a 

significant elevation in isotherms and/or did not permit large mass transfer from these areas. 

In contrast the pyrophyllite zones are characterized by the greatest degree of fracturing. This 

implies that the fluid flow rate was higher in these zones~ hence, causing elevation of 

isotherms and greater mass transfer. These zones were conducive to the formation of 

pyrophyllite by the mechanisms outlined in Section 5.2.5. 

The hydrothermal brecciation episode is not accompanied by sericitic alteration 

probably indicating that the fluid flow regime was not sufficiently established by this style 

of deformation to produce either the elevation of isotherms or transfer of material necessary 

to produce a significant alteration mineralogy. Infilling of the hydrothermal breccias by 

quartz or chalcedony, also indicates that the fluids were supersaturated with respect to these 

phases. In essence the style of rock failure and the fluid composition are similarly zoned. 

Figure 5.10 shows a generalized view of these relationships. The mechanism of fracture may 

have a large effect on the efficiency of the hydrothennal alteration process. This is explored 

in the following section. 

5.3 3 Role offmctal Fracture 

A noticeable feature of the fractured and altered rocks is the presence of discrete 

subrounded blocks of silicified rock in a sericite/pyrophyllite matrix. These were called 

"ellipsoidal schists" by Vhay (1936). In the leSser altered areas, fractures subdivide the host 
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Figure 5.10. Overview of alteration zonation and structural development of AHAB. 
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rock into crude diamond-shaped blocks by a process that is scale-invariant as it persists from 

outcrop to hand specimen to thin section with little change in style or appearance. It is, 

however, becoming accepted that fracture systems display fractal geometries (Chiles, 1988; 

Chelidse and Gueguen, 1990; Steacy and Samms, 1991; Nagaham~ 1993 ). Scale-invariant 

phenomena are a consequence of a fractal origin. Fractal geometries are restricted to a finite 

range (compare Wong and Lin, 1988), and outside of the more "fractal" parts of the fracture 

system Euclidean geometries are present. 

Euclidean geometries are easiest to observe between the pyrophyUite deposits in areas 

dominated by sericitic alteration. This may be an artifact of preservation, or it may reflect 

a lower strain in these areas. It has been demonstrated that fractal dimension (or the degree 

of deviation from Euclidean geometry) increases with energy input in fracturing experiments 

(Poulton et a/., 1990). These observations might also indicate that fractal dimension will 

increase with increases in loading rates and strain in natural systems. In areas with euclidean 

geometries (i.e., fractures can be recognized over distances of 5 m or more), there appear to 

be fewer fractures, and those that are present are wider spaced. It has been demonstrated that 

the roughness of a fracture increases with fractal dimension (Lee et al., 1990). Fracture 

roughness also influences the surface area of a fracture surface in that smooth fractures have 

less surface area than rough fractures. s 

s This can be intuitively demonstrated with a bucket of paint. It takes more paint to 
cover a rough surface than a smooth one since it has larger surface area. 
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Within the AHAB this relationship between roughness and surface area likely exerts 

a fundamental control on the alteration system. A rough fracture maximizes the contact area 

between the rock and water hydrothermal solution thereby facilitating the mineral-fluid 

interactions that produce alteration. In areas where there are few, narrow linear fractures, 

there is abundant sericitic alteration and this is consistent with low fluid flow (as will be 

demonstrated in Chapter 6). Pyrophyllite zones are characterized by abundant small scale 

fractures with no clear Euclidean features. These geometries are difficult to quantify due to 

local variation and modification of fracture surfaces during alteration. It is therefore 

improbable that an accurate estimate of their contribution to increased fracture surface area 

can be made. However, they represent a significant factor in determining the progress of 

hydrothermal alteration in this system as given by field relations. The greater degree of 

fracturing promotes greater infiltration of the hydrothermal fluid. Isotherms will be higher 

in these areas and consequently the highest temperature alteration assemblages are formed 

in the most fractured zones. 
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CHAPTER6 

THERMOCHEMISTRY AND SOLUBILITY RELATIONSHIPS BETWEEN 
PHASES IN THE ALTERATION SYSTEM 

6.1 Introduction 

The mineralogy of most significant aluminosilicate phases within the alteration 

system can be expressed in terms of the A120 3-K20-Na20-Si02 system; phase relationships 

within this system have been studied in detail and provide some insight into the nature of 

pyrophyllite stability. It is important that these data be reviewed to fully appreciate the 

dynamics of material transport in relation to the hydrothermal fluid and the distribution of 

secondary phases. Knowledge of the mechanics and stages of feldspar dissolution is integral 

to the understanding of the process of pyrophyllitization and how the solution chemistry is 

reflected in the zonation of the alteration minerals. The mineral zoning reflects the 

fundamental solubility relations of alumina and silica minerals. 

6.2 Review of Stability Data and Relations 

6.2.1 Alte@ljon Minerals in the AHAB 

Most of the alteration minerals in the Avalon-High-alumina Belt belong to the system 

Al20 3- K20-N20-Si02• Table 6.1 lists the composition of phases that are of interest within 

this system as they either are present in the AHAB or their absence pennits some immediate 

conclusion to be reached. It should be noted that the list of minerals that are present in the 
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Table 6.1. Partial listing of minerals in the system 

Mineral 

Quartz 
Chalchedony 
Orthoclase 
Adularia 
Albite 
PyrophyUite 
Kaolinite 
Muscovite 
Paragonite 
Diaspore 
Corundum 
Topaz 
Andalusite 
Kyanite 
Sillimanite 

x- present; 
n- absent; 

Formula 

Si02 

Si02 
KA1Si30 1 

KAISi301 
NaA1Si30• 
AhS40,o(Oflh 
A}zSh0s(OH)4 
KA13Si30,o(0Hh 
NaA13Si30 10(0H)2 
HAL02 
Al203 
Al2Si04(FOH) 
Al2Si05 

Al2Si05 

Al2Si05 

o - identifed optically in small grains; 
1 - largely present as components of sanadine 

Present in AHAB 

X 

X 

1 
0 

1 
X 

n 
X 

n 
X 

X 

0 

n 
n 
n 

AHAB includes phases that are solid solutions (sanadine) or represent great degrees of 

mineralogical disorder (adularia). Alunite is commonly associated with pyrophylite in many 

high alumina alteration systems (Remley eta/., 1969) yet it is absent in the AHAB. 
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6.2 2 A Reyiew of Stability Relations between Phases 

The stability relations ofhigh-alumina minerals in natural hydrothermal systems have 

largely been extrapolated from studies of the topology and the stability limits of the phases 

in the system Si02-Al20 3-H20 (Haas and Holdaway, 1973; Burt, 1976; Day, 1976; Remley 

et a/., 1980). More recent sttudies aimed at determining the stability of feldspar and 

muscovite (Helgeson eta/., 1984; Sverjensky eta/., 1991) yield a more complete picture for 

the hydrothermal systems developed in felsic rocks. The choice of experimental technique 

and the subsequent application of the phase diagrams appears to have been the source of the 

belief that the presence of pyrophyllite in a hydrothermal system must indicate acidic 

conditions. This can be demonstrated to be an oversimplification. 

Figure 6.1 illustrates the phase relations in the system Si02-Al20 3-H20. The main 

feature of the equilibrium relationships of importance to the AHAB in this system is the join 

between pyrophyllite-diaspore which exists from about 273° ± 10°C to 366° ± 10°C 

(Remley eta/., 1980). It is characterized in this region by a sloping boundary indicating that 

at any given temperature the stability of diaspore is strongly influenced by the concentration 

of silica in the coexisting fluid. It can also be expected that for any point on the pyrophyllite

diaspore curve, an increase in temperature will shift the equilibrium towards diaspore, 

producing silica according to the reaction: 

Al2Si401o(OH)2 + 8 H20 -> 2 AlO(OH) + 4 H4Si04 

(from Remley, 1980). 
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Figure 6.1. Phase relations in the system Al10rSlOrH10 (from Hemley et al., 1980). 
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Sverjensky eta/. (1991) conducted an assessment offeldspar-mica-aluminosilicate 

equilibria and provide a concise overview of relations of these minerals. Instead of 

examining stability as a function ofSi027 as was the case with Hemley eta/. (1980), the KIH 

composition of the fluid in equilibrium with the mineral assemblages during experimental 

runs were compared to calculated stability relations. The study also compared different 

internally consistent thermodynamic datasets (Helgeson eta/., 1978 and Berman eta/., 

1988). The final adjusted data have topologies that are identical, however the position of 

phase boundaries differ. The pyrophyllite-kaolinite boundary calculated using the data of 

Berman eta/. (1988) is closer agreement to the value determined experimentally by Hemley 

et al. ( 1980) than the data of Helgeson et a/. (1978). It also places the lower thermal limit of 

pyrophyllite stability above 300°C (Figure 6.2). 

The most significant feature of the relationships on this diagram is the boundary 

between muscovite and pyrophyllite. Most previous workers on the AHAB (Papezik et a/., 

1978, Taras, 1989) consider the production of muscovite an intermediate phase. Essentially 

these diagrams indicate that the stability of pyrophyllite versus the stability of muscovite is 

controlled by both the narrow thermal stability field ofpyrophyllite and the aK+IaH+ of the 

solution6• It would appear that the muscovite is stable at the expense of pyrophyllite when 

the activity ofK is about 100 times that ofH+. Conversely pyrophyllite is stable at low K+ 

6 The calculated and experimental data for mJmH (molal) concentrations in solution 
agree closely but are different from the calculated activity .K+f.H+ ratios at high temperatures 
due to complexing with chloride ion (Sverjensky et al., 1991). 
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Figure 6.2. Feldspar-mica-aluminosilicate equilibria (from Sverjensky et al., 1991). 
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activities with respect to H+. Many authors describing hydrothermal alteration have 

considered pyrophyllite to be a hallmark of acid alteration and certainly acid solutions may 

have H .. activities that are considerably higher thanK+. The phase relations indicate that the 

acid solutions that produce pyrophyllite merely satisfy the condition of having a low K+/H'. 

solution composition (see also Rose and Burt (1979)). Pure water has aK+ = 0 and also 

satisfies this condition. Pyrophyllite may equally be a product of near neutral, or basic 

solutions having these relations when the temperature is above 275°C. 

It is worthwhile to note that the data to produce the types of diagram in Figures 6.1 

and 6.2 are typically determined using pressure vessels containing mixtures of pure reactants 

and subjected to varying P-T conditions until it is expected that a reaction has taken place. 

The starting materials are then removed and examined for new phases. Very little can be 

determined about the process of the reaction which takes place. Recently the reaction rate 

and process of dissolution of mineral phases in this system has been studied. These data 

provide more direct evidence for the mechanism and controls on hydrothermal alteration 

within the zone and the data relevant to this problem are explored in the next section. 

6.3 Mineral Dissolution Rates and Solubility 

The dissolution process in the AHAB involved mass transfer between the host rock 

and the hydrothermal fluid which was localized in the fracture zone. The relative solubility 
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of quartz and feldspar and the behaviour of alumina and silica in hydrothermal fluids appear 

to be the dominant influences upon the morphology of the alteration zoning. 

Feldspar dissolution kinetics have been determined to be strongly pH dependant at 

any given temperature (Helgeson eta/., 1984; Hellmann, 1994; ReHmann eta/., 1990). 

Figure 6.3 (after Hellman, 1994, Fig. 4. p. 603) indicates that for the range of temperatures 

of interest in hydrothermal solutions, the dissolution rate of feldspar is lowest between near 

neutral and slightly acid solutions. It is also clear from dissolution studies that feldspars 

dissolve incongruently, with preferential release ofK or Na cations, silica orAl dependant 

upon prevailing conditions. Studies aimed at understanding surface processes of feldspars 

subjected to hydrothermal conditions have determined that there is a leached surface layer 

which varies in thickness with pH (Chou and WoUast, 1984; Hellman eta/., 1990). These 

studies also indicate that the lack of an extensive leached layer development for near neutral 

experiments indicates that these solutions are poor solvents for feldspars. There have been 

different interpretations as to how feldspar hydrolysis kinetics operate. It has been suggested 

that the material transport through the leached layer may influence the dissolution rate of 

feldspar (Helgeson, 1971 ), however, studies of Chow and Wollast (1984) imply that the 

leached layer is not a process boundary. 

Single, pure, well-ordered or completely disorded feldspars are often the subject of 

these experimental studies whereas feldspar in natural systems invariably exhibit more 

complex behaviour. Orville (1963) demonstrated that feldspars in contact with hydrothermal 
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Figure 6.3. Feldspar dissolution rate after Hellman, I 994. 
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solutions will preferentially exchange Na forK and this behaviour was recently confirmed 

by Walker and Woodland (1993). The process is extremely efficient and Na will be 

exchanged forK even when the abundance ofNa is 400 times less than than of K.This type 

of exchange is unavoidable in feldspar-water systems and probably occurred early in the 

AHAB. The exchange reaction would tend to change the feldspars exposed in the fracture 

system producing a pure K-feldspar by removing Na. This may explain the persistence of 

sericite and the exclusion of paragonite within the pyrophyllite zone. 

The dissolution of quartz also plays a significant role in the alteration system and its 

behaviour is controlled by a variety of factors including temperature, pH and the presence 

of other ions in solution particularly Na"" and K'· (Dove, 1994). At any given temperature and 

fluid composition the behaviour of quartz is largely antithetic to that of feldspar. Quartz is 

most soluble in solutions of near neutral composition and is particularly insoluble in acid 

solutions (see Figure 6.4 after Dove, 1994). This contrast in behaviour is the underpinning 

of the morphology of any zone of high alumina alteration in felsic rocks. 

The importance of these observations in formulating models of pyrophyllitization is 

that simple replacement of feldspar by pyrophyllite has not been observed in any experi

mental procedure. In fact, feldspar dissolution is incongruent and even in natural systems 

may lead to the formation of secondary products. The evidence for sluggish dissolution 

kinetics at near neutral compositions by no means prohibits the dissolution of feldspar, yet 

it is suggestive that other processes may be aiding the dissolution process in the AHAB. This 
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Figure 6.4. Solubility ofSi01 after Dove (1994). 
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is a clear indication that the development of a fiactal fracture system with a large surface area 

is the key process in producing pyrophyllite from hydrothermal solutions of near neutral pH. 

6.4 Description of the Genesis of the Alteration 

Hydrothermal fluids in disequilibrium with rocks which they contact will produce 

changes in the composition of both the fluid and host rock as the system tends towards 

equilibrium. This change be produced by exchange reactions, oxidation, dehydration, 

hydrolysis or dissolution of mineral phases. The alteration products within the AHAB appear 

to have formed principally by dissolution of and precipitation of the original host rock. The 

formation of alumina-rich zones, including the silica-depleted diaspore zones likely involves 

a series of reactions. An additional step in the process involved in transforming rhyolite into 

pyrophyllite is that the initial material might as well have been glass. It is known from 

experimental studies with rhyolitic glass that it can exist as a metastable phase and undergo 

K -Na ion exchange under hydrothermal conditions (Shiraki and Liyam~ 1990). Fracturing 

introduces primary permeability and fluids are permitted to flow through the rock. The fluid 

both dissolves minerals and transfers beat to the rockmass elevating the isotherms along the 

fracture zone. Within the core of the alteration zone feldspars are dissolved, leaving a 

relatively insoluble alumina-rich residual phases and silica is transported along with alkalies 

to the extremities of the alteration system. Reaction of transported alkalis with unaltered 

feldspars promotes ion exchange, sericite forms in zones peripheral to the high-alumina 

zones in response to KIH ratios in the fluid and elevated isotherms. Silic~ being carried by 

129 



the hydrothermal fluid in high concentrations is injected into the surrounding rockmass 

during periods ofhydrothermal brecciation. During the pyropyllitization process the fate of 

minor components is less well known. Fe and Mg may form chlorite in the outermost parts 

of the hydrothermal system. Iron moves in colloidal form (Papezik et al, 1978) outwards 

from the pyrophyllite zones and coalesces fonning veins in less·altered rocks. Some silica 

is carried into these veins in addition to the hematite. The hematite zones appear to be 

remobilized as the alteration front progresses. 

Within the high·alumina part of the alteration system, an amorphous high·alumina 

phase, probably allophane, forms along the fracture planes. Zones of massive pyrophyllite 

form through intense fracturing and alteration locally although most large pods appear has 

formed by the migration allophane into dilatent zones. The allophane undergoes 

crystallization with earliest crystallization producing the coarse pyrophyllite associated with 

diaspore nodules. These areas probably have the highest temperature zones since diaspore 

is stable at higher temperatures than pyrophyllite. The coarse well·formed radiating clusters 

of pyrophyllite occurring with the diapore nodules is consistent with a longer period of 

crystal growth than that of the remaining pyrophyllite zones and perhaps involves 

recrystallization of early fine·grained pyrophyllite. The main masses of pyrophyllite 

crystallize en masse as very fine grain size and in all of the pyrophyllite pods indicate rapid 

crystallization. 
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7.llntroduction 

CHAPTER7 

GEOCHEMISTRY OF THE AHAB 

The original mineralogy of the Johnnies Pond Formation is replaced by secondary 

minerals within the Avalon High-Alumina belt. The description of the field relationships 

within the altered rocks of the AHAB in Chapter 6 demonstrates that the replacement process 

occurs in stages, with silicification preceding both sericitization and pyrophyllitization. The 

alteration processes are not pervasive and consequently outcrops of the alteration system 

exhibit considerable heterogeneity at all scales. It is expectable that through the alteration 

process a rhyolite in the AHAB will have elevated values of silica during silicification and 

then through the sericitization and pyrophyllitization process contain less silica. At some 

point its silica composition will revert to its unaltered composition as the alteration vector 

approaches the high alumuna composition. The analyses of any partly pyrophyllitized rock 

will reflect both the silicificationldesilicification processes to some degree. The geochemistry 

of immobile major elements will also be affected in this process through the constant sum 

effect. The challenge in extracting information about the alteration system through 

geochemistry is to select and apply methods of data analyses which will negate this effect. 

In this chapter major and trace element and data are used to explore the alteration 

process. The topics to be addressed in this part of the study are the description of the 
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composition of the altered rocks and unaltered rocks, comparisons of chemical and physical 

transport of material, the relative mobility of elements~ and the original chemistry of the 

rhyolitic rocks as preserved in the geochemical data. The geochemical data are available in 

digital form from the Newfoundland Department of Mines and Energy as Open File 

NFLD/2377 (Hayes, 1994). 

7.2 Trends in Major CompoDent CompositioD 

7.2.1 Overview ofAlumjna-:Silica:=Pomssium Compositions 

The major element geochemistry of the rhyolitic rocks within the Johnnies Pond 

Formation largely reflect the conversion of the igneous minerals to the secondary assemblage 

of the Avalon High-Alumina belt. The most apparent changes occur in the silica, alumina 

and pottasium contents since the chemical equilibria involve the stability of quartz, feldspar, 

sericite, pyrophyllite and diaspore. 

Table 7.1 (data from Hayes, 1994) provides summary statistics for SiO~ Al20 3 and 

K20 and compares different types of alteration mineralogies. The most evident feature of the 

data is that there is considerable overlap in composition between rocks representing different 

parts of the alteration system. The overlap in the sample ranges reflects the heterogeneity of 

the samples and also the reversal of compositional vectors within the alteration system. This 

can be seen readily in the summary statistics for Si02 in the pyrophyllitized rocks, the l 
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Table 7.1. A comparison ofSiO:z, A/10 1 and K10 grouped by alteration type 
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Eleni"Emt Si02 Sib2 - Si02 -
Rocktype all P- s-·-
Mean 75.9754 7 0.9025 
Std-Err 0.6096 3.6013 
Min-- 53.15 53.15 -
Skewness 1.3673 -0.4945 
Median 77.37 72.33 
Variance 30.1021 ·1 03.7567 
Max - 87.79 84.52 
S E Skew 0.2673 0.7521 
5% Trim 76.322 --71 .1322 
std oev- 5.4865 -10~1861 
Range - 34.64 31 .37 
Kurtosis 3.1695 -0.295 
lOR 5.525 14.6925 
S E Kurt 0.5287 1.4809 
n 81 8 

· alfSamples 

SiOZ - u- -
74.626 - 77.3683 
1.6084 -0.5869 

63 .7 - - 73.8 
- --=-o.-5191 -0.4785 

- 17-:45 ·-77.525 
- 38.805 - 4.1338 

83.75 79.98 
0 .5801 . 0.6373 
74.i261 77.4215 
6.2294 . 2.0332 . 

20.05 6~18 
1.0724 0.8529 

11.2 - 3.84 
1 .1209 . 1 .2322 

15 . 12 

Ai203 - AI203..-_lAI?03 Al203 - k20 k20 - . - 1<20 - '1<20- - 'K2o -
p s lss ·- u --· all -·· -rp s - ss - u-- . -

- 12.9483 22 .0375~ 1 .6228J 1 3.028 11 .87 4.6438~.9613- 5.3172 4.83 --3]183 
0.5087 _ 3.1692 1-- 0.2785 t- 0.8895 - 0.4968 0.2851 0.5393 0.3601 0.5628 ·- 0.7983 

6.31 9.67 6.31 1 7.97 - 9.67 o.16 - o.3 - 0.91 -- 0.11 - o.f6 
- 2.8818 r- -o~2373 -o.3475 r o .5247 ~---o . o39s · o.1895 --0.3314 o.2452 ----cf.1526 o.1791 

11 .78 21.84~ 11 .66: 11 .74 - f1.985 . 4.45 1.76 - 5.405 - 4.21 - 3.405 
20.959 80.3504 3.56741 TI.8695r---- 2.89 6.5859·--2.3268 - 5.9636 ---·4.752 --7.6482 
·-36.62 36.62 15.71 i 18.85 14.19 11.26'- 4.29 11.26 8.27 8.34 

---0.2673 0.7521 r- - 0.3501 1 0 .5801 -- 0.6373 0.2673- 0.7521 0.3501 - 6.5801 --0.6373 
1 2.3359 21 .9144 11 .6674t 12.9856 - 11 .8633 4.5961 - 1.9242 5.2477 - 4.8678 3.5481 

4.5781 8.9638 1.8888 " 3.4452 1.7 2.5663r- 1.5254 2.4421 - 2.1799 - 2.7655 
30.31 26.95 9.4 l - 1o.88 - 4.52 -- 11 .1 - 3.99 1o-:-35 - 7.56 ·a.TB 
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sigma error (1 0.18%) at 70.90 Si01 shows considerble overlap with the unaltered rocks (2.03 

at 77.37% SiOJ. 

Similar features are also present in the K20 data. Silicified and sericitized rocks (SS) 

contain apparently less K20 than rocks which are classed as silicified (S). The presence of 

greater Al20 3 and Si02 in the silicifed and sericitized rocks bas likely produces lower values 

of other constituents (including K20) through the constant sum effect (see Section 7.2) and 

also through redistribution of K in the alteration system. The effects of these processes 

relative to each other cannot be obtained from univariate anaysis of the compositional data. 

Another means of examining the distribution of these elements is through the use of 

cumulative frequency plots. Cumulative frequency plots of data representing a single 

normally distributed population produce a straight line. Those data which contain values 

from different populations when plotted in this fashion will reveal a series of inflection 

points along a curve. The inflection points mark the boundaries between diffemt sub

populations. The distribution plots show curves indicating populations that represent the 

different types of alteration iont the altertation system. These groups established on the basis 

of these curves do not reflect the empirical field classifications. 

Figure 7 .l shows the cumulative frequency curve for Si02• Three broad divisions are 

recognized probably representing the original, silicified and desilicified rocks. The original 

composition is likely a mixed group itself in that it might also include some silified rocks 
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Figure 7.1. Cumulative .frequency diagram ofSi01 within the AHAB. 
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with pyrophyllite which are progressing from silicified to desilified. This illustrates the main 

problem with univariate analyses of the altered rocks. Rocks having complex alteration 

histories may move back through the unaltered composition to a different composition 

through reversal of the compsoitional vectors. 

Figure 7.2 is a cumulative frequency plot for K20. Again three broad groups of data 

can be identified although the inflection points are not sharp. A range of compositions 

between 3.30 and 4.60% K20 seem to represent the original composition. Values above 4.6 

rise sharply and result from metasomatism and sericitization. Values below 3.30% can be 

attributed to silicification (gain of Si02, producing a lower value of K20 through constant 

sum) or through pyrophyllitization Ooss of K20). When silicification accompanies 

sericitication these can compete to lower the actual K20 value. 

Figure 7.3 is the probablity curve for Al20 3• Unlike the K20 and SiQ curves the 

curve is much smoother, likely due to its conservative behaviour within the alteration system 

and the ranges in Table 7.1 for different types of alteration can be more closely tied to 

different parts of the curve. The pyrophyllitized rocks can be identified by the sharp increase 

in Al20 3 above 13.00%. Below this a zone representing unlatered rocks is recognized. Values 

below 10.50 % Al20 3 most closely agree with the sericitized and silicified rocks. A striking 

feature of this curve is the arrangement of subpopulations that broadly correspond to 

alteration types. Potentially there may be a lack of samples bearing pyrophyllite that lie 

within the rattge of the unaltered rocks. If this is the case it would imply that the rocks are 
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Figure 7.2. Cumulative .frequency diagram for K10 in the AHAB. 
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Figure 7.3. Cumulative frequency diagram for A/20 1 in the AHAB. 
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alumina enriched for other reasons than pure silica loss; it could equally indicate a gain such 

as by the mechanism of colloidal alumina mobility as proposed in Chapter 6. 

The weakness of the univariate analysis is that it does not provide information on the 

mechanism, or degree of alteration since changes in composition result from a gain or loss 

in more than one element simultaneousely. This kind of information can only be gained 

through bivariate and multivariate statistical analyses. 

7.2.2 Bivariate Analysis of Major Element Qata 

7.2.2.1 Silica-Alumina Variation 

A Harker variation diagrams was constructed using silica as the independant variable 

and alumina as the dependant variable (Figure 7.4). Significant correlation with Si02 was 

expected because of the wide range from 38 to> 90 wt% due to alteration, however, since 

all major elements by definition sum to 100%, a decrease in Si02 will consequently result 

in an increase in Ah03• This relationship is known as "closure" (Russell and Stanley, 1990) 

and the strong correlations between A120 3 and Si02 apparent in many geochemical datasets 

result from this statistical artifact. However in the case of the AHAB covariation in Si02 and 

Al20 3 due to geological causes is expected apriori since sericite, pyrophyllite and diaspore 

contain different amounts of these components than feldspar. Some evidence is seen on this 

diagram for geological causes, rather than purely statistical constructs. 
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Figure 7.4. Al20 1 vrs Si02for altered and unaltered roc/cs of the Avalon High Alumina Belt. 
Note the pronounced variation in slope of the pyrophyllitized rocks from the remaining 
samples and also the preponderanc of silicified and sericitized samples falling at the high 
alumina part of the main trend 
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Along the main trend it can be noticed that the highest alumina rocks falling along 

that part of the trend are almost exclusively serictized. The position of the samples indicates 

that sericitization was responsible for the loss of silica in these samples (Si in sericite is less 

than Si in feldspar). Rocks containing sericite also plot within the main trend at various silica 

concentrations and these points are less readily interpreted. The contribution of sericitization 

to variation in silica in these samples is probably less than silica variation due to 

silicification. 

An important feature of this graph is the prominent trend defined by a group of 

samples which contain pyrophyllite. These samples range in mineralogy from pure pyre

phyllite, containing diaspore, to silicified rhyolite with abundant pyrophyllite along fracture 

planes which, respectively, plot near the high-alumina and high-silica ends of the range. 

Regression analysis on these two trends reveals that the data within each group are highly 

correlated (R2 > 8 ). This high correlation is likely the result of closure. However the 

intercepts at high-silica values and the regression lines are otherwise significant. The slope 

of the regression line is -1.12191 for the pyrophyllite group and is gentler than the -1.79554 

slope defined by regression of the silicified-sericitized group (Figure 7.4). 

The trends on this graph indicate that the process of extensive pyrophyllitization is 

decoupled from progressive alteration processes such as sericitization. The pyrophyllite 

group trend has the fonn of a mixing line between a silicified rhyolite and pyrophyllite. The 

data reflects the coincidence of pyrophyllite zones and silicifed rhyolite since there are no 
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known occurences of unaltered or slightly unaltered rocks having pyrophyllite on fracture 

surfaces. The geochemical data is consistent with the field observation that pyrophyllite 

appears physically mixed with silicified rhyolite through deposition of an amorphous 

aluminous precursor through the silicified zones. 

The association of some pyrophyllite-bearing samples on the lower trend indicates 

that an extensively sericitized rhyolite can give rise to a slightly pyrophyllitized rock. 

However this process cannot account for pyrophyllite in rocks which contain more than 15% 

alumina. In essence the data show that rocks desilicitied through extensive sericitization do 

not directly give rise to pyrophyllite-rich zones through further alteration. 

Figure 7.5 shows a plot ofTi02 versus Al20 3• These elements are considered to be 

immobile under most conditions of alteration and metamorphism. The data depicted in the 

figure show that these elements have two different patterns of behaviour in the ARAB. The 

first group of elements is characterized by Al20 3 <17.0 wt% and a range ofTi02 from 0.1 

to 0.9 wtO/o. This trend is defined cheifly by silicified rocks along with some unaltered and 

some sericitized rocks. A second trend is marked by a group of samples having Ti02 less 

than 0.4 wt% and a range in Al20 3 from 14.0 to 37.0%. The low Al20 3 end of the line which 

these samples define is marked by a group of dominantly silicified samples having low Ti02• 

The fact that both low and high Ti02 contents are found in silicified rocks probably indicates 
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Figure 7.5. Ti01 vrs A/20 1 diagram for the AHAB revealing discrete panerns of covariation 
relative to type of alteration. 
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that the high Ti02 may reflect primary compositional differenced within the Johnnies Pond 

Formation (this will be explored further using the trace element data). The covariance in 

Ti02 and Al2 O:J as indicated by the slope of the line defined by the high-alumina rocks 

indicates that Ti02 also behaves as an immobile element in the alteration system. This 

interpretation also offers support for the idea that the high-Ti02 trend reflects primary 

compositional differences since such trends might not be evident ifTi02 was not conserved 

during the alteration process. 

7.2.3 Temazy Dia~W~ffis ofMajorElement Data 

T emary diagrams offer the opportunity to examine groups of elements that are related 

to the major element chemistry of the alteration minerals. To more fully understand the redis

tribution of silica and alumina within the context of the original and alteration mineralogy 

a triangular plot of Al20rSi02-K20 was constructed (Figure 7.6). K20 is a component of 

both igneous minerals (feldspar) and sericite in the alteration assemblage. The main cluster 

of data lies between the composition of quartz and K-feldspar indicating that the bulk 

composition of the rocks for these elements is largely controlled by these minerals. Outliers 

from this cluster define crude linear arrays between secondary minerals. The sericitized 

rocks, fall on a crude line between quartz and sericite, the high alumina rocks fall on a 

distinct trend between the aluminous minerals pyrophyllite, allophane and diaspore. 

Interestingly the maximum alumina concentration in the sericitized and silicified rhyolites 

falls near the same concentration as seen in K-feldspar. This probably indicates that the 
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Figure 7.6. Ternary diagram showing the relationship of Al10rSiO:rK20 with respect to 
the major mineral phases. 

145 



Al203 

Symbols 
~ Unaltered 

;+- Sllicl11catlon 

• Sllcl11catlon and 
S&rlclt1zatlon 

• Sericitization and 
Pyrophy1lltlzatlon 

• Pyrophy11ltlzatlon 

~Sericite 

!&I K-feldspar 

Quartz 

Si02 50 K20 



sericite associated with silicification results from a closed system-style alteration of feldspar 

with intrduction of H20 only. 

In a similar manner K20 and Na20 were examined on a ternary diagram with Ti02, 

since it was previously indicated as reflecting variations in original chemistry, to examine 

the distribution of the major alkali elements between altered and unaltered rocks (Figure 7.7). 

The data show two principal groups of rocks divided in K20/Na20 composition along with 

a group ofTi02 rich high-alumina altered rocks. These rocks form a continuim with the high

K rocks on the diagram. The high and low K20 rocks appear to form a continum wth the 

high-K rocks although there is a lower density of intermediate samples. The sericitized rocks 

are distributed between the high-and low K20 groups indicating that sericitization alone does 

not influence the bulk alkali composition of the rocks and in fact it is more strongly 

influenced by the original chemistry. 

7.3 Trace Element Chemistry 

7.3. I Introduction 

Trace element geochemistry has the greatest potential to unravel the complexity of 

the alteration process and identify original geochemical features of the Johnnies Pond 

Formation that are distinct from hydrothermal processes. Elements within an alteration 

system are either conserved and reflect only apparent changes in composition predicated 

upon gains/losses in other constituents or are mobile and reflect inherent gains/losses in the 
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Figure 7. 7. Ternary diagram showing K10-Na P-TiO .1 The relationship between the 
alkalias and the immobile component Ti01 demonstrates the influence of original chemistry 
of the rhyolite in controlling the distribution of K and Na. 
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element. Most of the trace elements within the alteration zone appear largely conserved 

despite the high degree of alteration. This feature is attributable to the fracture controlled 

nature of the alterations system. 

7 3.2 Classification Piamms 

An approach to trace element geochemistry that had dominated early endeavours in 

the field were the use ofimmoble elements to classify the rock association. Figure 7.8 (after 

Winchester and Floyd (1977) is such a diagram and it classifies the AHAB according to 

Zrffi02 and NB/Y ratios. The main features of the diagram are that the Johnnies Pond 

formation is cheifly composed of rhyolite~ the highly altered rocks define a line crossing into 

the Trachyte field and have near constant Zrffi02 ratios. A number of samples fall within 

the Rhyodacite/Dacite field. It may be tempting to interpret these variations as solely due to 

original compositional variation, however, some features of the diagram indicate that some 

of the pattern is related to alteration, despite its apparent correctess with respect to rock 

classification. Firstly, with flew exceptions the unaltered rocks (+'s) plot closely together 

near the rhyolite-rhyolite/rhyodacite field boundary. The more altered rocks are dispersed 

around this area and the highly altered rocks extend from this region with constant Zrffi02 

ratios. The samples which fall in the Rhyodacite/Dacite field appear to form a gross linear 

array with the bulk of the data (excluding the highly altered rocks). This array is consistent 

with the trace element concentrations being dispersed along the array by gains and losses in 

major elements. The most highly altered rocks are clearly displaced from this array. 
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Figure 7.8. AHAB rhyolitic rocks plotted on the Zr/l'i02 vrs. Nb/Y discrimination diagram 
of Winchester and Floyd (1977). See Figure 7.5 for legend of the symbols. 
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Figure 7.9 compares the composition of the AHAB rocks with the granite classifi

cation diagram of Pearce eta/. (1984). The diagram is compares Rb~ a large ion lithophile 

element that is chemically similar to K, to total Y +Nb. The diagram indicates that the bulk 

of the rhyolites are volcanic arc or I-type granites (compare Christianson and Kei~ 1996). 

The most altered rocks containing pyrophyllite plot at low Rb values whereas the higher Rb 

values are associated with sericitized rocks (circles). This is consistent with covariation of 

Rb and K. The diagram appears to work despite the apparent dispersion of Rb and the 

dispersion of Y +Nb elements within the alteration for two simple reasons. Firstly, the range 

in Rb values are small compared to the overall range ofRb in granitoid rocks and similarily 

the variation due to losses and gains in other elements is of lesser importance when 

compared to the over all range in the concentration of these elements. 

These two diagrams indicate that these classification diagrams provide first order 

information on the chemical affinity of the alteration system since the changes due to the 

alteration are small when compared to the overall ranges in values that characterize the 

different rocktypes or associations. Both diagrams are plagued by losses and gains that are 

due to other elements in the system and are not shown on the diagrams or considered when 

the diagrams are constructed. As it will be seen in the following section consideration of the 

gains and losses and diminishing their effect provides for a more consise analysis allowing 

for the detection of subtle patterns. 
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Figure 7.9. AHAB rhyolitic rocks classified using the Rb vrs. Y+Nb diagram of Pearce et 
al. (1984). 
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7.3.3 Pearce Element Ratios 

Pearce element ratios employ a technique of comparing elements of interest by 

comparing them ratioed to a common denominator which is conserved during the alteration 

process. By comparing elements through ratios, the effect oflosses or gains are diminished. 

Figure 7.10 is a Pearce Element Ratio plot which compares Y and Nb. ratioed to Zr. 

which is immobile under most conditions. The distribution of points on the diagram reveals 

variation due to both variation in the original rock chemistry and variation due to alteration. 

The variation due to original rock chemistry is most strongly expressed in the Nb/Zr 

ratios. Nb has a range in concentration in silicic magmas due to its initial variation in 

different source areas and its retention in the melt fraction of igneous systems since it is a 

high field strength element as is Zr (Christianson and Keith. 1996). The rhyolitic rocks of 

the Johnnies Pond Formation fall into two groups based upon Nb/Zr ratios however Y/Zr 

ratios fall into the same range in both groups. Within Group A and B the most altered rocks 

remain discrimated on the basis ofNB/Zr ratios however the Y/Zr ratio in these rocks is 

noticibly lower. This might indicate the persistence of phases such as zircon even in highly 

altered rocks thereby lowering the Y IZr ratio. It is significant however that these variations 

are only noted in rocks that are virtually completely altered to pyrophyllite. 
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Figure 7.10. Discrimnation diagram using immobile elements demonstraing the use of 
Pearce Element Ratios to classify rhyolitic rocks of the Johnnies Pond Formation. 
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7.4 Discussion 

The geochemical data from the AHAB reflect both changes due to alteration and the 

original bulk geochemical composition. Since the alteration is fracture contrail~ a plausible 

explanation for this observation is that the alteration processes are not pervasive and only 

involve a portion of the rocks in the alteration system. This supports the field evidence that 

the alteration is characterized by high water:rock ratios and that the immobile elements are 

"conserved" within the fracture system. This latter point is especially clear when the fact that 

the alkali elements, typically mobile in alteration systems retain in part their original 

distribution as indicated by their covariance with Ti02 which is cheifly an immobile element 

( op. cit.). The AHAB data contains significant information regarding alteration and 

classification using immobile elements. In the AHAB at least, alteration is a secondary 

influence on the distribution of many elements typically used in the classification of igneous 

rocks. 
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8.1 Introduction 

CHAPTERS 

ECONOMIC GEOLOGY 

After an exhaustive literature search it is clear that the ARAB has no clear analog 

among other examples of high-alumina alteration systems nor does it readily fall into 

existing classifications of alteration associated with auriferous hydrothermal systems. The 

most allied high-alumina altered rocks occur elsewhere within the Avalon zone and have 

features in common with the AHAB that extend beyond the morphology of the deposit to 

include the type and age of the host rocks. The AHAB, its host rocks, and their surrounding 

units are, however, well exposed compared to most of the high-alumina altered zones in the 

Avalon Zone. The low grade of metamorphism and good exposure pennit clear observations 

with respect to distribution of mineral phases, structural and stratigraphic relationships. The 

AHAB in some respects appears to resemble epithermal alteration associated with the 

adularia-sericite style Au-Ag deposits, however the high-temperature and fracture-control 

distinguish it from these largely vein-style systems. The discovery of gold mineralization 

within the belt, in conjunction with the alteration history, provides insights into the 

mineralizing process in the AHAB-type system. 
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8.2 Overview of Epithermal Alteration Systems 

8.2.1 Introduction 

Two major classes ofhydrothennal mineral deposits are recognized throughout the 

geological record, the acid-sulfate and adularia-sericite type alteration systems (Heald eta/., 

1987). The tenns "high-sulfidation" has also been applied to the acid-sulfate type alteration 

systems (e.g., Hedenquist eta/., 1994) and "low-sulfidation" type to adularia-sericite 

systems. The use of these tenns and the range of deposits to which they are applied were 

discussed by White and Hendenequist (1990) who concluded that classifying an alteration 

system on the basis of the amount of sulphur in the hydrothermal system or mineral species 

is less appropriate than consideration of the redox state of sulphur in the hydrothermal fluid. 

Low sulfidation systems have sulphur as H2S in the hydrothermal fluid, while high 

sulfidation systems have S04• A drawback to this approach is that the oxidation state ofS 

will change as the hydrothermal fluid evolves. Some deposits are formed by different fluids 

at various stages in their evolution (such as the deposits of the Nansaku district of Japan, 

Hedenquist eta/., 1994 ). The purpose of reviewing the different deposit models is to isolate 

the fundamental controls of the morphology of the deposit they describe. Deposit 

morphology appears to be a robust indicator of deposit type. Mineralogy of the deposits is 

the most useful guide in this regard as the morphology of the deposit is represented by 

mineral zonation. 
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The Precambrian sequences of the Avalon Zone (Smi~ 1986; Huard and O'Driscoll9 

1985; Hayes and O'Driscoll9 1990) and other related Gondwanan terranes7 in Newfoundland 

host a variety of alteration systems that can be broadly classed as epithermal. Some of these 

are clear examples of high-sulfidation systems such as the alteration system at the Hope 

Brook mine. Many of the deposits elsewhere in the Avalon zone are similar to the AHAB 

and have some broad characteristics that imply a relationship to the adualria-sericite type 

deposit. In the following section these two groups of alteration systems are discussed and 

comparisons made with the AHAB. 

8.2.2 Acid-Sulfate 

The pyrophyllite occurrences described in the literature are nearly exclusively 

associated with acid-sulfate type deposits (e.g., Heald eta/. 9 1987). Alunite is a characteristic 

alteration mineral in these deposits and serves to identify the acid nature of the hydrothermal 

fluid (Hemley et a/., 1969). The primary mechanism of pyrophyllite formation in acid 

systems is extreme acid leaching, usually of a volcanic host. The acid is produced by 

oxidation ofH2S bearing fluids in a shallow mixing zone (e.g., Schoen et al., 1974) or by 

dispropriation of H2S from a magmatic source (e.g., Hedenquist et a/., 1994 ). The acidic 

oxidized fluids in these systems promote extensive leaching which produces silica-rich 

7 The host rocks of the Hope Brook Mine have been interpreted to represent peri
Gondwanan crustal remnants within the Appalachian orogenic cycle ( cf. O'Brien et a/ .• 
1996). 
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residual pods enveloped by an advanced argillitic-type alteration aureole. These aureoles 

contain high-alumina minerals such as pyrophyllite and kaolinite. Steam Boat Springs 

(Schoen eta/., 1974) and the Kasuga Deposit (and other deposits) in the N ansatsu District 

(Hedenquist et a/., 1994) are type examples of these deposits. Pyrophyllite is also known to 

occur in association with massive sulfide ore bodies of the Kuroko type (Marumo, 1989). 

Figure 8.1 illustrates the main features of these types of deposits. Most acid-sulfate 

sulfidation systems contain copper in addition to gold. 

The relative mobility of silica and alumina in high-sulfidation hydrothermal fluids 

as exposed in the morphology of the deposits is consistent with their acid conditions. Since 

silica has lower solubility than alumina under low pH conditions it readily explains why 

silicified vuggy residual zones form in the host rock following passage of a high-sulfidation 

fluid. The vuggy characteristics of the residual silica is a feature that persists in even ancient 

deposits such as the late Proterozoic Hope Brook in southern Newfoundland (Yule et al., 

1990). Alumina minerals tend to form along the outer margins of the silicified zones as 

alumina bas increased mobility in acid systems. The reduction in alumina solubility, as 

indicated by precipitation of aluminous phases, results from neutralization of the acid fluid 

by either groundwater or wallrock reaction (Hedenquist et al., 1994). The distinctive 

alteration zonation patterns of these types of deposits permitted recognition of an acid-sulfate 

origin for the EnAsen gold deposit (Sweden) despite overprinting sillimanite grade high 

temperature metamorphism (Hallberg and Fallick, 1994). 
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Figure 8.1. Morphology of high-sulftdation or acid-sulfate type deposits (after Bonham. 
1988). 
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8.2.3 Adularia-Sericite Systems 

Adularia-sericite systems form low-sulfidation conditions and, unlike the high

sulfidati.on systems, are not characterized by the development of extensive sulfate phases and 

extreme leaching. They are instead marked by the development of sericite, chlorite and 

adularia (Heald eta/., 1987). The typical form of this deposit type consists of a sericitic and 

chloritic alteration halo peripheral to a central vein system that contain adularia (Figure 8.2). 

There are a number of Paleozoic deposits within the US of this type including the Creede 

(Bonham, 1988). Adularia- sericite type alteration is also widespread within the recent 

island-arc sequences oflndonesia (Perell6, 1994). A particularly well developed example of 

this deposit type is Gunung Ponkor (Basuki eta/., 1994). 

Whereas high-sulfidation systems are influenced heavily by magmatic fluids, 

adularia-sericite deposits form from the interaction of deeply circulating, essentially 

meteoric waters, with plume waters of magmatic or meteoric origin circulating upwards from 

greater depths {Heald et al., 1987; Berger and Henley, 1988). Berger and Henley (1988) 

indicate that the presence of lakes at the paleosurface during the time some of these deposits 

formed signifying involvement with large-scale hydrological processes. 
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Figure 8.2. Morphology of adularie-sericite deposits (after Bonham. 1988). 
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8.3 Avalonian Deposits 

A review of occurrences of high-alumina alteration throughout the Avalon Zone 

(Table 8.1) reveals that there are a range of characteristics within these systems. Examples 

of high and low sulfidation systems are present High sulfidation type systems are the easiest 

to recognize given the presence of alunite and a Cu-Au metallogenic signature. Within the 

A val on Zone this signature is found at the Hope Brook mine in Newfoundland and the 

Brewer Mine in the Carolina Slate Belt. Hickey's Pond and the Stewart Option have the 

alunite alteration characteristics of the high sulfidation style of system. Anomalous A14 Cu 

and Mo which are suggestive ofbigh-sulfidation type processes at the Stewart Option. The 

remaining occurrences listed in Table 8.1 do not appear to fall into either high or low 

sulfidation categories. 

8.4 Base Metals and Gold Systematics of the ARAB 

Gold is deposited under different conditions in acid-sulfate and adularia-type hydro

thermal systems (Heald et al. 1987). The metals associated with gold in acid-sulfate and 

adularia-sericite systems are also different. Acid-sulfate deposits often contain appreciable 

amounts ofcopper(i.e., Hope Broo~ Yule eta/., 1990; Dube eta/., 1994) and the presence 

of enargite is characteristic of acid-sulfate deposits (Bonham, 1988). Low-sulfidation 

systems are generally gold-silver systems (Heald eta/., 1987; Berger and Henley, 1988), 
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Table 8.1. Overview of Avalonian volcanic-hosted hydrothermal alteration zones and 
deposits 

Deposit Name 

Brewer1J 

Hailel 
Ridgeway 
Pilot Mountain' 
Glendon' 
SnowCamp1 

AHAB'3 
Hickey's Pond7 

Stewart Option6 

Hope Brook4 

Headwaters Showing7 

Reforences 

L Feiss, 1985 
2. Hayward, 1992 
3. Schmidt, 1985 
4. Yuleetal., 1990 
5. Scheetz et al., 1991 

Mineralogy 

Ser, Pyr, AI~ Ky, Ct, Di, To 
Ser, Ka, To, Rt 

Pyr, Ser, And, Ka, To 
Pyr, Ser 
Pyr, Ser, Par, Ct 
Pyr, Ser, Di, Rt, Hem 
Pyr,Al~Hem 
Pyr, Ka, Ser, Chi, Alun 
Pyr, Ser, And, Ka, Rt, Laz 
Pyr 

Abbreviations 

6. Dimmell and MacGillivray, 1993 

And- Andalusite 
Pyr- Pyrophyllite 
Ser - Sericite 
Ka- Kaolinite 
To- Topaz 
Alun- Alunite 

7. Huard, 1989 
8. Papezick et al. 
9. This study 

Commodity 

Au-Cu·-Mo· 
Au-Ag-Mo· 

Au-Cu·-Mo· 
Pyr 
Pyr 
Pyr, Au ·-Ag. 
Au· 
Au·-eu·-Mo· 
Au-Cu 

Hem- Hematite 
Par- Paragonite 
Ct - Chloritoid 
Rt -Rutile 
Di - Diaspore 
Chi - Chlorite 

Elements/commodities marked with asterisk occur in sub-economic concentrations. 

however, Au-Ag deposits related to high-sulfidation systems have also been described 

(Muntean et al., 1990). 

Both Au and Ag anomalies occur in the AHAB and are most evidenced where the 

style of alteration is dominately intense sericite development accompanied by pyrite and 
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chloritic zones. Figure 8.3 shows the range ofhigh silver values associated with the AHAB 

and their distribution. The association of gold and silver in the most anomalous samples is 

consistent with a low-sulfidation origin for mineralization within the AHAB. A significant 

aspect of the alteration system is that gold and silver anomalies are not associated with 

pyrophyllite zones. The AHAB has a coincident period of alumina alteration and hematiz

ation which indicates that the hydrothermal fluids were oxidized. Sulfide complexes are 

inhibited under these conditions. Gold may only be carried in sufficient concentrations in an 

oxidizing fluid as a chloride complex. 

Regional lithogeochemical and or surficial geochemical signatures for some gold 

deposits in the A val on terrane includes elevated concentrations of Mo (Smith, 1986; Dimmel 

and MacGillivray, 1993) Mo mineralization is associated with the Holyrood Intrusive Suite 

(Rose, 1948), within quartz veins about 10 km southwest of the AHAB and locally in 

fractures within the granite (O'Driscoll, pers. comm.). The metallogeny of the Holyrood is 

also consistent with the high-level features described in the Holyrood from this study by 

Hughes (1971 ). Minor chalcopyrite is present in the roadcut showing and copper staining has 

been identified in the Oval Pit Mine (Max Dawe, 1989, pers. comm.). The relation ofthe 

copper minerals to the phases described here are unknown at present although these sulfide 

phases, in minor quantities, are not inconsistent with low sulfidation systems. 
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Figure 8.3. Gold and silver occu"ences in the AHAB. 
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8.5 Con~lusion 

The AHAB is a high-alumina alteration system. It was formed when low-fS fluids 

invaded the Johnnies Pond Formation along a fracture system. The fluids produce a residual 

high-alumina alteration zone and redistributed silica, aiakais and iron oxides proximal to the 

high-alumina core. What is observed in outcrops is the distal silica alteration being 

overprinted by the high-alumina facies proximal to the alteration system. The earliest high

alumina products were a silica-alumina gel, perhaps allophane, which recrystallized to 

pyrophyllite and diaspore. Gold and silver mineralization in the belt is consistent with a low

sulfidation adularia-sericite type system. pH plays an important role in determining the 

morphology of epithermal systems in general and explaining the morphology differences 

between pyrophyllite occurrences associated with high-sulfidation deposits and the pyre

phyllite of the AHAB. 

The mineralization appears to be associated with a zone of silicification and 

sericitization. The fracture system hosting the AHAB is sited along a fundamental tectonic 

weakness that is reactivated throughout the geological history of the eastern Avalon 

Peninsula. The localization of hydrothermal alteration, granite magmatism and the presence 

of extensive basin controlling structures indicate that deposits of the AHAB type occur in 

areas of fundamental crustal weakness rather than, features of secondary consequence such 

as the volcano tectonic structures of high-alumina and ring calderas. 
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9.1 MetaUotedonies 

CHAPTER9 

CONCLUSIONS 

The foregoing chapters have examined the main insights into the genesis and the 

regional setting of the ARAB. Future work is required to provide a better understanding of 

the relationship documente~ since this thesis has exposed areas where further research is 

required. The data in this study, however, provide for an integrated model of structural 

evolution and alteration that in tum demonstrates that metallogenesis and tectonism were 

allied processes within the Precambrian rocks of the Avalonian terrane. A singular alteration 

or structural model would fail to explain much of the observed data and would similarily 

decouple these two processes which clearly interact on the regional scale. The basic question 

that remains to be addressed is the identification of the tectonic setting of the Johnnies Pond 

formation. Data presented in Chapter 7 indicate that the Johnnies Pond formation itself is 

akin to 1-type granites although these appear highly evolved since these are chiefly high

silica rocks. It is probable that these rocks formed in a supra-subduction zone environment 

as envisioned by Christianson and Keith (1996) for many representatives of this group. The 

hypothesis that the Holyrood Granite and Johnnies Pond formation are comagmatic was not 

addressed geochemically in this study, however, their temporal and intrusive relationships 

support such a conclusion although the Holyrood Granite is younger than the volcanics and 

first alteration. The only statement that can be made about the tectonic setting of the AHAB 
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is that it was probably situated in an active magmatic arc providing a high heatflow to 

support a prolonged period ofhydrotbermal activity. Gold mineralization and its association 

with Ag, is considered to be an important indication that the ARAB is related to the 

adularia-sericite-style alteration systems. 

9.2 Alteration 

The alteration processes in the ARAB have been demonstrated to involve near

neutral fluids, probably in large volumes given that the porosity in the system is directly 

related to the degree of fracturing. The AHAB is essentially a large scale flow-through 

reactor and is a natural example of some of the devices employed in laboratory studies. 

Unlike these studies the products of the reactions are produced in large quantity and the 

identification of mineral phases is made considerably easier. The indications of amorphous 

precursor phases to pyrophyllite indicates that further understanding of the formation of these 

phases is required to concretely define the conditions of alteration. The presence of this 

behaviour as demonstrated in this study requires that hydrothermal systems are far more 

complex than can be gained by a single phase diagram and full understanding of the reaction 

path can only be gained through the consideration of dissolution and precipitation kinetics 

of the mineral phases. 
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9.3 Regional Geology 

The AHAB itself and the later structural history of the eastern Avalon Peninsula 

indicate that much of the geological evolution of the area has been controlled by the same 

fundamental structural zone. The influence of the structural zone can be traced through the 

evolution of the AHAB into the deposition of the Conception Group and development of the 

Holyrood Horst. The recognition of the role of this structure explains the northerly strike of 

much of the geology of the Avalon Peninsula and clearly demonstrates that the present 

distribution of units is the result of Precambrian rather than Paleozoic tectonics. 
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