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Abstract

Since the very successful application of parallel robots inmaterial handling, many
projects attempted to implement the Gough platforms as milling machine manipu-
lators with limited success mainly achieving roughing.

The displacement of the milling tool should meet surface finish requirements.
Users also wish to increase tool feedrate in order to improveproductivity thereby
reaching high speed milling levels. Even a constant high speed feedrate brings im-
portant challenges since they mean higher actuator accelerations even on straight
lines. This work introduces geometric formalization of surface finish which is more
realistic then classic error calculations.

This research work proposes an off-line simulation tool analysing the milling
task feasibility using a robot constituted by a general hexapod parallel manipulator,
namely the Gough Platform, often refered as the Stewart Platform. Moreover, in
order to meet the machine-tool standards, the parallel robot will be controlled by
a typical CNC controller implementing classic position based algorithms adapted
to the parallel robots with any kind of actuator polynomial interpolation. Control
sampling rates are studied and their impact evaluated.

High and very high speed milling simulation results show theimplementation of
linear and third order interpolation between the actuator set-points calculated from
the CAD/CAM computed end-effector or tool set-points points. The results show
that linear interpolation are not sufficient for high speed milling and then third order
interpolation reach the required surface finish at fast and feasible CNC sampling
rates.
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1



2 Luc Rolland

1 Introduction

After the confirmed success of parallel robots as flight simulators followed by their
more recent breakthroughs in material handling, they are actually implemented
as machine-tools. Several commercialization attempts were made over the years,
Fig. 1. With the promise of increased productivity, we aime to achieve the two fol-
lowing goals:

1. To reach higher feedrates while keeping excellent surface finish quality
2. To obtain faster accelerations during path transfers between task trajectories.

The main advantages of these robotic manipulators comparedto serial ones are
simpler construction, more rigid structures, non-cumulative kinematics chain deflec-
tions, greater throughputs from higher accelerations and less energy consumption
from smaller actuators. On the other hand, these manipulators feature drawbacks
such limited workspace and complex non-linear kinematics.

In material handling applications the ratio between actuator displacement travel
and accuracy is around 1000 mm over 1 mm, whereas in milling applications the
ratio becomes 1000 mm over 0,001 mmm, meaning it 1000 times larger.

Due to the highly non linear nature of parallel robots, theirimplementation still
pose serious challenges.

Initial path planning investigations for parallel robots were trying to determine
if any task would include their entire paths inside the robotworkspace, where the
notion of trajectory quality has been formulated in terms ofdistances from actuator
limits (Merlet 1993). Kinematics chain collision was addedto the analysis, (Ched-
mail, Hascoet and Guerin 1994). Path planning involved singularity investigation
to avoid instantaneous self-motion, (Nenchev and Uchiyama1996). Singularities
were extensively studied (Bhattacharya, Hatwal and Ghosh 1998), (Dasgupta and
Mruthyunjaya 1998), (Dash et al. 2003). The problem evolvedinto multi-objective
optimization finding the optimum path according to a certainnumber of criterias

Fig. 1 Two commercial milling machines : Variax of Giggings and Lewis and CMW-300 of CMW-
Marioni
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(Carbone et al. 1997), (Merlet 2001). (Chablat and Wenger 1998) introduced colli-
sion avoidance to singularity analysis to answer the question of moveability in the
presence of obstacles. Planning time-minimal trajectories were introduced by (Ab-
dellatif and Heimann 2005), (Huang T. et al. 2007). In (Khoukhi, Baron and Bal-
azinski 2009), the authors minimize electrical energy, kinetic energy, robot motion
time separating two sampling periods, and maximize a measure of manipulability
allowing singularity avoidance.

More specifically, implementing the Gough platform as a milling machine, of-
ten refered as the Stewart platform, path planning was studied where the contour
error was used as a performance criteria to determine the effect of PID controls
applied on each actuator (Masory and Xiu 1998). The redundant sixth degree-of-
freedom was utilized for optimization according to variouscriterias (Merlet, Perng
and Daney 2000). Path planning schemes also targeted the axial force minimization
(Shaw and Chen 2001), where maximum constant cutting force along the contour
were maximized (Oen and Wang 2007). Then, added objectives included stiffness
maximization (Pugazhenthi, Nagarajan and Singaperumal 2002).

This research work addresses the feasibility of a succesfull machining task in
terms of surface finish quality, the manipulator type, the sensor accuracy, the con-
trol strategy (position or velocity control), typical feedback servo loops, signal dig-
itization, time digitization, inter-point polynomial interpolation, the related com-
puter numerical control algorithms and even signal synchronization. This general
framework allows to study any specific robot controlled by any typical Computer
Numerical Controls (CNC). A novel formal approach to evaluate surface finish is
proposed including a milling task description. A CNC modulesimulation block is
introduced where the effect of time and signal digitizationcan be studied allowing
to adjust sampling rates. The task is analyzed from a pure kinematics point of view,
allowing to determine the best achievable result and eventually increase machining
parameters such as feedrates.

In the next section, the high speed milling problem and context are explained.
It includes the theortical background on parallel manipulator kinematics and CNC
control The third section reviews the machining Process. The fourth section covers
the geometric formalization of surface finish. The fifth section presents the path
planning simulation results.

2 General Issues with Parallel Kinematic Machines

2.1 Problem Statement

To obtain five axis CNC machining at high speed feedrate levels, the Gough platform
or hexapod has to be envisaged with six kinematics chains between the fixed base
and the mobile platform where the tool is located, Fig. 2. Then, three possible cases
can be derived. The 6UPS/6SPU configuration contains each kinematics chain with
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a free prismatic actuator (P) between one Universal joint (U) and one ball joint (S);
the 6RUS/6RSU includes kinematics chains constituted by a revolute actuator (R)
operating a crank moving a bar including one Universal joint(U) and one ball joint
(S); and finally the 6PUS/6PSU replacing the crank by a tracked prismatic actuator
(P).

In reality, any robotic system is never constructed identical to the ideally designed
one. A significant difference can be often osberved between the theoritical and prac-
tical configurations translating into errors on the passivejoint positions of the mo-
bile platform and the fixed base. These configuration errors will without doubt have
a significant impact on milling precision. These discrepancies will usually grow
following various milling operations where unperdictablewear is occuring in the
joints. These will also appear following maintenance wherethe manipulator was
reassembled if not followed by an adequate calibration procedure, (Daney 2000).

In the litterature, we can identify several procedures and sofwares analysing the
characteristics and performance of robotic manipulators,(Vaishnav and Magrab
1987). These studies seek to evaluate the extremes of a certain number of criteri-
ons. More specifically, in parallel robotics, lets highlight some interesting packages
proposing some level of verifications:
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Fig. 2 Typical 6-6 parallel robots: the 6UPS/6SPU, 6RUS/6RSU and 6PUS/6PSU
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1. Localisation of robot trajectories inside the workspace, (Merlet 1993) (Merlet
and Mouly 1994).

2. Singularities over nominal trajectories inside the workspace, (Merlet 1993)
(Nenchev and Uchiyama 1996) (Dasgupta and Mruthyunjaya 1998).

3. Power and torque of motors, (Salerni 1995).
4. Positioning errors, (Patel and Ehmann 1997) (Masory and Xiu 1998).

These analyses concern the entire workspace where performance can be affected
by large variations. In many scenarios, it may be possible toachieve the task over a
large portion of the workspace and then the task quality may not reach the desirable
levels in certains specific areas of the workspace. The performance analysis shifted
away from workspace studies towards the task trajectories themselves studying the
following factors:

1. the joint travel in terms of the actuators and passive joints, (Merlet 1993)
2. the kinematics chain and platform collisions, (Merlet 1993), (Chedmail 1994),

extrapolated from serial robotics work, (Tournassoud 1992)
3. maximum velocity, (Luh and Lin 1981)
4. dynamic rigidity, (Shulz et al 1999)
5. servo modeling, (Masory and Xiu 1998) (Shulz, Gao and Stanik 1999)
6. robot control, (Masory and Xiu 1998)
7. tool deformation in milling tasks, (Depince P., Hascoet and Furet 1997)
8. sixth rotation angle optimization for milling tools, (Merlet, Perng and Daney

2000) (Daney 2000)

These research works do not include all the important criterias. The displacement
of the milling tool should meet surface finish requirements and tool feedrate. The
second criterion will be increased in order to improve productivity. Even a constant
feedrate brings important challenges on trajectories suchas arcs since they mean
higher accelerations.

The goal of this work is to propose tools analysing the milling task feasibility
using a robot constituted by a 6-6 hexapod parallel manipulator, namely the Gough
Platform, often refered as the Stewart Platform. Moreover,in order to meet the stan-
dards of the machine-tool domain, the parallel robot will becontrolled by a typical
CNC controller implementing classic algorithms adapted toparallel robots.

The factors influencing robot trajectory following are the sub-space of task exe-
cution, tool feedrate, position sensor accuracy and the choice of control algorithms.
The milling task is in turn described by several robot trajectories. For high speed
milling, surface finish is required to obtain asperities notexceeding 10 to 20 mi-
crons over the entire trajectories constituting a milling task. To qualify as high speed
milling (HSM), the feedrate should reach 20 m/min and the target is even 60 m/min,
classified as ultra high speed milling (UHSM).

The simulation system will require solving the kinematics problems several
times. To aleviate many problems related to usual numericalmethods, an exact
and certified method was derived and will be applied to perform end-effector po-
sition and orientation calculations, (Rolland 2005) (Rolland 2008). This method
implements ideal based techniques utilizing Groebner bases and rational univariate
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representations (RUR) insuring that the produced equivalent system is excactly cor-
responding to the original system. The RUR system includes one univariate equa-
tion from which the real roots are calculated and proven in one-to-one bijective
correspondance with the original kinematics problem. Then, proven root isolation
techniques will provide for all the exact real roots. The system applies the modular
black-box approach where any user can replace the selected kinematics solver by
any other, at the condition that it provides for sufficient accuracy to study milling
tasks.

In practice, during design, construction, start-up or after robot maintenance, these
simulation tools will allow to select the complete control approach including sen-
sors and the the path planning algorithms; The operator willbe able to study the
control scheme, the path following algorithms, the joint interpolation functions, the
axis servo controls, the response-time of the various control levels, the effect of
time discretization, the effect of digital conversions andparameter fine-tuning. The
proposed tools will allow to determine milling task feasibility.

2.2 Kinematics of the general 6-6 parallel manipulator
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Fig. 3 Kinematics model

Any manipulator is characterized by its mechanical configuration parameters and
the posture variables. The configuration parameters are thusOA|Rf

, the base attach-

ment point coordinates inRf (the base reference frame, located atO), andCB|Rm
, the

mobile platform attachment point coordinates inRm (the mobile platform reference
frame, located atC). The kinematics model variables are the joint coordinatesand
end-effector generalized coordinates. The joint variables are described asl i , the pris-
matic joint or linear actuator positions. The generalized coordinates are expressed

as
−→
X comprising the end-effector position and orientation.
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The kinematics model is an implicit relation between the configuration param-

eters and the posture variables,F(
−→
X ,L,OA|Rf

,CB|Rm
) = 0 whereL = {l1, . . . , l6}.

For the sake of clarity and simplicity,OA|Rf
will be replaced byOAO andCB|Rm

by

CBO.
This simulator shall only require successive passages fromthe joint space to the

task space and vice versa, Fig. 3. The Inverse Kinematics Problem (IKP) is defined
as:

Definition 1. Given the generalized coordinates of the manipulator end-effector,
find the joint positions.

Accordingly, the Forward Kinematics Problem (FKP) is defined as:

Definition 2. Given the joint positions, find the generalized coordinatesof the ma-
nipulator end-effector.

Usually the IKP is required to model the FKP. To solve the FKP,an exact method
based on Groebner bases and rational univariate representations shall be applied,
(Rolland 2005) (Rolland 2008).

The forward kinematics problem (FKP ), Fig. 3, has been identified as a difficult
problem (Raghavan and Roth 1995). Usually theinverse kinematics problemis re-
quired to model theFKP and is defined as, (Raghavan 1993):given the generalized
coordinates of the manipulator end-effector, find the jointpositions.

Accordingly, theforward kinematics problemis defined as, (Raghavan 1993):
given the joint positions, find the generalized coordinatesof the manipulator end-
effector.

The kinematics problem can be described that, contrarily toserial manipulators,
the inverse kinamtics problem yields a closed-form explicit solution and the for-
ward kinematics involves the resolution of at least six non-linear equations. These
kinematics models play an increasingly important role whenrobotic manipulator
accuracy is decreased to the micron level.

2.3 Vectorial formulation of the implicit kinematics model

Containing as many equations as variables, vectorial formulation constructs an
equation system for each kinematics chain (Dieudonne 1972), as a closed vector
cycle between theAi andBi kinematics chain attachment points, the fixed base ref-
erence frameO and the mobile platform reference frameC. For each kinematics

chain, an implicit function
−→
AiBi =U1(X) can be written between joint positionsAi

andBi . Each vector
−→
AiBi is expressed knowing the joint coordinatesL andX giving

functionU2(X,L). The following equality has to be solved:U1(X) =U2(X,L). The
distance betweenAi andBi is set tol i . Thus, the end-effector positionX or C can

be derived by one platform displacement
−→
OC and then one platform general rota-

tion expressed by the rotation matrixR. For each distinct platform point
−→
Bi O with
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Fig. 4 Kinematics chain and mobile platform vectors

i = 1, ...,6, see Fig. 4, the position can be calculated in terms of the base reference
frame, (Merlet 1997):

−→
OBiO =

−→
OC+R

−→
CBi (1)

The vectorial formulation evolves as a displacement based equation system using
the following relation :

−→
AiBi =

−→
OC+R

−→
CBi −

−→
OAi (2)

These six equations cannot be applied as such. Hence, each kinematics chain can
be expressed using the distance norm constraint, (Merlet 1997):

l2i = ||AiBi ||
2 (3)

The rotation matrixR can be written utilizing various orientation models with
their specific rotation variable sets such as navigaton angles (yaw, pitch and roll),
Euler angles, quaternions or even taking the nine rotation matrix components as
variables, (Rolland 2008). Implementing the equation 2 directly, various displace-
ment based equation models can be derived depending on the selected orientation
variables, (Rolland 2008).

Another excellent approach is called the position based modeling and consists in
considering any rigid object to be positioned into three dimensional space by three
distinct points, Fig. 4. Any rigid body three points are actually characterized by
three distinct distance constraints and a pointing axis which remain constant. This
principle was then applied to the forward kinematics model of parallel manipulators
by Lazard (Lazard 1993). It is easy to choose three distinct points which are not co-
linear on most mobile platforms. These three points are usually selected to coincide
with three joint centers connecting the mobile platform to the kinematics chains al-

lowing to utilize the vectorial model, 4 and to rewrite of
−→
AiBi , 2 as it is explained in

details in (Rolland 2008).
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Two reasons justify the choice of the position based model. Every variable yield
the same units and their ranges are equivalent leading to thesame weight in the
equation system. The rotation impact is included into the point parameters and made
equivalent to the translation impact.

The coordinates of the three distinct joint center points become the nine variables
from which constraints equation can be written. The three platform distinct points
are usually selected as the three first joint centers, namelyB1,B2 anbdB3. Each
coordinate of the selected joint centers becomes a variable. The nine end-effector
variables are set to :

−→
OBi|O = [xi ,yi ,zi ] for i = 1. . .3. To simplify computations, we

choose one non-Cartesian reference frameRb1 to be located atB1 joint center. Then,
we defineu1,u2 andu3 asRb1 reference frame axes which are calculated by:

u1 =

−→
B1B2

||
−→

B1B2||
, u2 =

−→
B1B3

||
−→

B1B3||
, u3 = u1∧u2 (4)

This new reference frameRb1 is applied instead ofRm as the mobile platform Carte-
sian reference frame and has its origin located atB1 and the reference frame axes
u1 andu2 point towardsB2 andB3 respectively. The third reference frameu3 points
perpendicular to the plane determined byB1,B2 andB3. It becomes the mobile plat-
form pointing axis. This transformation is achieved to produce a simpler equation
system.

Knowing that the mobile platform is supposed infinitely rigid, any platform point
M can be expressed in the reference frameRb1 by calculating the following linear
composition:

−→
B1M = aMu1+bMu2+ cMu3 (5)

whereaM,bM,cM are constants in terms of these three points. Hence, in the case
of the IKP , the constants are notedaBi ,bBi ,cBi , i = i . . .6 and can explicitly be
deduced from the mobile platform fixed distancesCB|C by solving the following
linear system of equations :

−→
B1Bi |Rb1

= aBi u1+bBiu2+ cBiu3 , i = 1. . .6. (6)

where
−→

B1Bi |Rb1
=

−→
B1Bi |C.

Note that the mobile platform fixed distancesCB|C are given by the configuration
which is obtained from the design values or deduced from a calibration procedure
after the Gough platform manipulator construction. The configuration file is pro-
viding the position of all six joints of the mobile platform relative to the mobile
platform reference frame and this ensure that the points belong to the same rigid
body which is the mobile platform.

Equation 7 requires that we calculate the configuration distances with:

−→
B1Bi |C =

−→
CBi −

−→
CB1 , i = 1. . .6. (7)
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Hence, the remaining three mobile platform joint centersB4,B5 anbdB6 are ex-
pressed in terms of the nine end-effector variables.

Using the relations Eq. (6), the distance constraint equationsl2i = ||
−→
AiBi |O||

2
, i =

1. . .6 can be expressed Thus, fori = 1. . .6, theIKP is obtained by isolating thel i
actuator variables in the six following equations:

l2i = (xi −OAix)
2+(yi −OAiy)

2+(zi −OAiz)
2 , i = 1. . .3 (8)

l2i = ||
−→

B1Bi |Rb1
−

−→
OAiO||

2 , i = 4. . .6 (9)

2.4 The Inverse Kinematics Problem

The 3 or 9 are actually the two general forms of the explicit IKP.

2.5 The Forward Kinematics Problem

For the general Gough platform parallel manipulator, it is actually not possible to
express the FKP directly or explicitely, [?]. We have to revert to theIKP expres-
sion which gives an algebraic system comprising six equations in terms of three
point variables :x1,y1,z1,x2,y2,z2,x3,y3,z3, Eq. (9). This system contains algebraic
(polynomial) functions which can be handled by the numerical solvers implemented
in all genetic algorithms.

The usual method advocated for writing the FKP equation system starts by
rewriting the IKP as functions. This produces an algebraic system of three leg equa-
tions and three functions in terms of the nine variables:xi ,yi ,zi , i = 1,2,3.

Fi = (xi −OAix)
2+(yi −OAiy)

2+(zi −OAiz)
2− l2i , i = 1. . .3 (10)

Fi = ||
−→
Bi |Rb1

−
−→
OAiO||

2− l2i , i = 4. . .6 (11)

When solving the FKP with numeric or algebraic methods, it isnecessary to
provide a zero-dimensionnal system, meaning an equation system which contains
as many equations as their are variables, [?] and [?]. In this case, this means that
to the six equations provided by the IKP, three more shall be selected to close the
system.

Moreover, the actual FKP is derived directly from the IKP model, 11, and it does
not provide for any information to constrain the position ofthe mobile platform joint
positions which are necessary to describe the FKP.

Hence, to complete the algebraic system and to constrain themobile platform
joint positions, three constraints are derived from the following three functions. Two
functions can be written using two characteristic platformdistances, expressed as
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norms between theB1,B2 distinct points and theB1,B3 ones. The computations will
select the variables which are only at the right distance from theB1 reference joint
point. These constraint equations require one last equation. The points are known
relative to each other in terms of distance but the mobile platform alignement is
left undetrmined. To alleviate this problem, the third constraint equation will de-
termine where the mobile platform is pointing. The pointingvector is selected as
the one perpendicular to the three pointsBi , i = 1,2,3 by calculating the vectorial
multiplication of the two vectors separatingB2 andB3 from B1:

F7 = (x2− x1)
2+(y2− y1)

2+(z2− z1)
2−||

−→
B2B1|Rb1

||2 (12)

F8 = (x3− x1)
2+(y3− y1)

2+(z3− z1)
2−||

−→
B3B1|Rb1

||2 (13)

F9 = (x3− x1)(x2− x1)+ (y3− y1)(y2− y1)+ (z3− z1)(z2− z1)−||
−→

B3B1|Rb1
|| ∧ ||

−→
B2B1|Rb1

||(14)

The choice ofF9, the last function, provided an important mobile platform con-
straint related to the pointing axis. ForF9, it would be possible to write a function
related to the distance betweenB2 andB3 but our experience shows us that it does
lead to better results then the platform pointing function.

The result constitutes then an algebraic system with nine equations in the former
nine unknowns.

2.6 Machine Tool Control

In a high speed milling machine, a typical Gough platform being a general6-6 or
hexapod robot is constituted by several parts driven by a controller connected to
a remotely located CAD-CAM computer, (Mery 1997), and, for each kinematics
chain, it can be described by the following components:

• A manipulator end-effector where its position and orientation are indirectly con-
trolled, since an external sensor system cannot be implemented in milling opera-
tions.

• One prismatic axis per kinematics chain identified as an active joint.
• One DC electrical motor on each prismatic axis as one actuator.
• One position sensor on each prismatic axis measuring its length.
• One pulse-width-modulation (PWM) amplifier for each DC electrical motor.

As it is explained in (Mery 1997), one CNC machine-tool is essentially con-
sidered identical to a robot achieving arbitrary and predetermined continuous path
following.

Definition 3. NCMT - A numerically controlled machine-tool is defined as high
precision machine-tool associated to a control unit of quality, (Marty, Cassagnes
and Martin 1993).
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A milling task is achieved by an NCMT divided into five main elements, (Mery
1997):

• The tool: the device which performs the process of material removal.
• The end-effector: the unit which holds and activates the tool.
• The tool carrier machine: the specific robotic manipulator including actuators

and instrumentation.
• The CNC: the computer numerical controller.

Mery defines a computer numerical controller (CNC) in the following terms,
(Mery 1997):

The CNC is defined as the control system capable to manage the machine-tool
and its control in order to follow a program achieving a milling task.

Practically, the CNC handles a written program in standard format constituded
by G codes from the ISO standard, (Magnin and Urso 1991) (Marty, Cassagnes and
Martin 1993). Note that this machine-tool industry considers this format mandatory
for machine-tool controls. Any simulation package shall consider that CNC systems
handle these codes and simulate their operations. In Fig. 7,the basic elements of any
CNC are presented. The goal of such control system is to ensure that any machining
task is carried automatically. This particularily includes trajectory pursuit of the
robot and the operation of the tool.

In typical CNC, the control unit is further divided into three control stages or
levels: the off-line CAD-CAM providing the task set-pointsdescribing the nominal
paths, the on-line nominal path following as the upper controller level and the mo-
tor servoing as the lower controller level, usually drivingdirectly the actuators by
implementing onePID feedback loop for each axis. The connection between each

C

O

CAD − CAM

Control

Servos Power supply

Actuators

Sensors

Fig. 5 Typical robot schematic
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Fig. 6 Example of a CNC machine-tool

Motors

Sensors

Servos Path CAD−CAM

Fig. 7 Block diagram of machine-tool numerical control

stage is through data tables. Each stage operates in discrete time according its own
cycle time or sampling rates. Lets define the following cycletimes or sampling rates:

• Tc: the task trajectory set-point file sampling rate produced by the CAM program.
• Tp: the path following cycle time corresponding to the time required to calculate

the joint servo trajectory set-points.
• Ts: the motor servo cycle time corresponding to the time dedicated to PID loop

computation.
• Ta: the motor amplifier sampling rate which gives the time at which their output

is being refreshed.

The simulation module will allow to test and verify the threefirst cycle times.
The amplifier sampling rates will not be included in the simulation work. The task
follows one or several nominal functions from which discretization produces the
task path file containing a large number of points being dependant on the sampling
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rates. The number of points will have an impact on surface finish and impact CNC’s
ability to follow the nominal path.

The machine-tool operates in a spatial continuous domain which is completely
described by 6 dimensions (3 translations and 3 rotations),λ = 6, with parameters
∈ ℜ. To execute a milling task, the path following algorithm mayrequire from three
to five axes control. The sixth axis corresponds to the tool spindle rotation axis and
therefore does not participate to the trajectory pursuit. The CNC should then receive
five analog inputs or encoder inputs for actuator axis positions and drive five analog
or direct pulse-width-modulation outputs for actuator positioning. The simulation
will not include the tool spindle axis angular speed control.

The CNC can either implement one of the two control types: position and speed
control, (Coiffet 1986):

• Position control is preferred when you can calculate the IKP. Joint position con-
trol follows the trajectory profile at the axis level from interpolated point to in-
terpolated point and does not control the velocities between these points leading
to a discrepency between the exact nominal trajectory and the achieved trajec-
tory at the tool level. If the range of motion is important then the robot reaches
its destination with larger inaccuracies. The traditionalsolution is to slowdown
robots.

• Speed control is based on small displacements and implements the computation
of the inverse Jacobian matrix. You will need to calculate the FKP.

2.7 Task space conversion to joint space

In principle, implemented in the off-line CAM, the trajectory planning algorithm
calculates one inverse kinematics problem from the Cartesian-space set-point tra-
jectory functions to determine the six actuator-space fonctions which are then called
the joint set-point trajectories. The real continuous signals are computed from these
fonctions. Then, the continuous signals are sampled according to the first level cycle
time Tp corresponding to the time required to calculate these points and the signal
magnitude discretized into a certain number of bits.

When planning and following any task path, the upper level controller calculates,
in advance and in real time at eacht = kTp for k = 1. . .np wherenp is the number
of points provided by CAD/CAM, all interpolated points between joint set-points
that will then serve as set-points to the six lower level servo controllers driving
the actuators. It is interpolating these reference values using a polynomial interpo-
lation function or blended polynomial function sets. Sincethe majority of control
algorithms calculate the instructions in the joint space and there are no sensors for
performing a return position on the end-effector where the milling tool is located in
task space, then the controller must perform the forward kinematics problems (FKP)
calculations to return the tool Cartesian position and orientation.
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Fig. 8 Example of signal and time digitization of nominal actuatorfunction

3 CNC Handling of the Machining Process

3.1 Introduction on milling

Tournassoud emphasizes that the robotic task is defined in terms of constraint verifi-
cation for a set of measurements applied on the system, (Tournassoud 1992). All the
performance of a robotic task is then reduced to trajectory tracking and is expressed
as follows:

Let q0 be an initial configuration and qf a final configuration, both achievable,
that is to say, within the robot workspace and non-singular,then one trajectory H(λ )
with λ ∈ [0,1] is calculated in the free space, such that H(0) = q0 and H(1) = qf .
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Nilsson and Udupa proposed initial work on robotic tasks forspecific robots
(Nilsson 1969) (Udupa 1977). In (Lozano-Perez and Wesley 1979), a first general
approach included the first trajectory planning algorithm.In (Brady et al. 1982)
(Latombe 1991), numerous work summary indicates mostly obstacles avoidance.
Coiffet extends the application of constraints to the end-effector member maintained
in a constant orientation, singularity avoidance and sampling rates, (Coiffet 1986).
Specifically, the milling goal is to produce a workpiece by material removal (Mery
1997). The end result is an object whose surfaces are characterized by a certain
quality of surface finish. This quality is normally defined bya permissible error
denoted by a tolerance in terms of the part’s drawing and an index describing the
surface quality. The part is thus represented like a geometric object drawn using one
typical CAD software. The CAM functionality translates thevirtual object shape
into a certain number of paths spanning and scanning the part. These task paths are
the CNC set-points in one machining file.

The machining path is defined as the functional path that determines the contact
position between the tool tip and the workpiece, (Chedmail 1994).

3.2 Description

Several parameters are required to proceed with tool operation description: tool tip
position, tool tip orientation, tool feedrate, nominal trajectory to follow during ma-
chining and tool rotational speed. These parameters, except the last one, have been
integrated into the simulation tool since they are all specifically related to the robot
operation. Machining consists of a set of task trajectories, (10).

interpollation 1

interpollation 2

asservissement

Set−points

li
Nominal curve

t (ms)
Fig. 9 Details of actuator signal digitization
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Simulation proceeds with surfacing tasks which are easy to visualize and simple
to represent. However, from the point-of-view of the robot control, they are not
necessarily easier with a parallel manipulator featuring non-linear kinematics.

Definition 4. Let H be a machining task, cut into a set of m paths,H = h1,h2, . . . ,hm.
Let τtot be called the total time to perform all machining and letτi be path i duration.

The trajectoryPd departure point and thePf arrival point or final point are respec-
tively correspoding to timet = 0 andt = τtot (Taylor 1979) (Luh and Lin 1981). We
know that the end-effector is at rest at the point of departure and arrival, where the
velocity and acceleration are then set to zero at these points. For each task path
hi , the start point and the end point are made to respectively correspond to times
ti = ∑i

k=1 τk−1 andt = ∑i
k=1 τk.

The realization of the task is essentially reduced to the location of the tool tip
in task space. According to Chedmail and Mery (Chedmail 1994) (Mery 1997),
the majority of machining tasks consists of two types of paths, Fig. 10: Continuous
machining path and transition paths between them when thereis no contact between
the tool and the part. The transitions can be described as robotics classical point-to-
point motion which should last a minimum amount of time, (Mery 1997), justifying
the parallel robot choice.

Definition 5. The functional paths are defined as continuous paths corresponding to
the machining process of the workpiece, (Chedmail 1994).

These paths are usually made at a constant feedrate to ensurethe quality of the
finished surface. Each functional path is defined by two nominal functions: one
function describing the tool Cartesian position, a second function describing orien-
tations. For example, in Figure (6.6), we observe that the straight line segments are
the machining paths. A task is defined by a succession of displacements when the
tool is actually in operation, (Mery 1997):

Tooltip

Workpiece

Fig. 10 Example of a typical milling task
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Xnom
i |Rf = (xi(t),yi(t),zi(t),θ1i (t),θ2i (t),θ3i (t))

t (15)

Typically, milling tasks generally consist of sets of arcs,straight lines, spirals
and eventually splines. The robot moves the end-effector atconstant feedrate. This

translates by the following Cartesian constraint:||
−→

Vc(t)||= Fr whereFr is a constant.
Thus, the speed being the velocity magnitude is always constant. These tasks are
usually defined on planes parallel to the XY plane ofRf , the robot reference frame,
meaning that we must ensure that:Pd[z] = Pf [z] = Pi [z].

3.3 Trajectory Position Nominal Function

A task is defined by a parametered nominal function set where each function is

defined as
−→
P

nom
(λ ) with λ ∈ [0,1] to exactly describe the task trajectory to follow.

It covers the vast majority of machining work in the industry, (Mery 1997). For each
segment, we assignλ = 0 to the start pointPd to and end pointPf with λ = 1. The
task will seek to move the robot tool along a function whose general implicit form
is defined as follows:

−→
P

nom
(λ ) = f (Pd,Pf ,λ ) (16)

In the case of a constant feedrate,τ represents the time to complete a path, one
can express the parameterλ versus time t according to the following relationship:
λ = t

τ . The implicit function becomes:

−→
P

nom
(t) = f (Pd,Pf , t,τ). (17)

Knowing that the travelled distanceδS is the actual distance along the path between
Pd the start point andPf the final point and is calculated byδS= Fr τ whereFr is
the constant tool feedrate. Then, the implicit function is expressed by:

−→
P

nom
(t) = f (Pd,Pf , t,Fr). (18)

This form will be retained for the simulation since, in the machine-tool domain,
it is customary to specify the machining tasks in terms of initial points, endpoints,
path type and feedrate, (Mery 1997).

3.3.1 Trajectory in a general plane

For reasons of simplicity, the machining majority is arranged on planes parallel to
the XY plane.



Title Suppressed Due to Excessive Length 19

3.3.2 Straight line segment formulation

The straight line segment starts by calculating the trajectory time :

τ =
||Pd −Pf ||

Fr
(19)

Then, the segment equation is determine :

−→
P

nom
= Pd +

(Pf −Pd)

τ
t (20)

3.3.3 Arc formulation

It is therefore proposed several methods to evaluate an arc depending on the data
entered :

• First case - start point:Pd, end point:Pf , feedrate:Fr , centre of rotation:CC and
radius:r;

• Second case - start point:Pd or end point:Pf , displacement angle:δφ , feedrate:
Fr , centre of rotation :CC and radius:r;

• Third case: start angle:φ , end angle:Φ, feedrate::Fr , centre of rotation :CC and
radius:r.

Two additional inputs are necessary. To calculate the path as such,Pf is not di-
rectly used and it will only used calculate the total timeτ.

Firstly, the angular velocity is calculated and then, the circular fonction is in-
stantiated. Particular attention must be brought to theφ angle calculation which
corresponds to either the starting point or end point :

• to match the start time which is not always zero,
• to proceed with quadrant verification related to trigonometric function inversion.

The following algorithm is implemented :
This formulation has two disadvantages :

• The path calculation cannot include tasks where the arc is greater than a circle.
• We must ensure that the end point is on the arc.

The implemented solution is rather technical since it is cutting an arc being longer
then a circle into two arcs. If the arc rotates several turns,this technique is applied
whenever a complete rotation of 2π is encountered.

An alternative is to replace the endpointPf by a final angleΦ. It can handle
circles and arcs with a rotation angle larger than 2π . The algorithm becomes:

Another alternative is to replace the starting pointPd by a start angleφ .
These different Arc algorithms would adapt perfercly to object oriented pro-

grammning.
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Arc(Input) ω = Fr
r

if Pd[2]−CC[2] ≥ 0 then

φ = arccos(Pd [1]−CC[1]
||Pd−CC|| )

else
φ = π −arccos(Pd [1]−CC[1]

||Pd−CC|| )

if Pf [2]−CC[2] ≥ 0 then

Φ = arccos(
Pf [1]−CC[1]
||Pf −CC|| )

else
Φ = π −arccos(

Pf [1]−CC[1]
||Pf −CC|| )

−→
P

nom
= [CC[1]+ rcos(ωt +φ ),CC[2]+ rsin(ωt +φ ),Pd[3]]

tau= Φ−φ
ω

return (
−→
P

nom
,τ)

Arc(Input) ω = Fr
r

if Pd[2]−CC[2] ≥ 0 then

φ = arccos(Pd [1]−CC[1]
||Pd−CC|| )

else
φ = π −arccos(Pd [1]−CC[1]

||Pd−CC|| )
−→
P

nom
= [CC[1]+ rcos(ωt +φ ),CC[2]+ rsin(ωt +φ ),Pd[3]]

tau= Φ−φ
ω

return (
−→
P

nom
,τ)

Arc(Input) ω = Fr
r

−→
P

nom
= [CC[1]+ rcos(ωt +φ ),CC[2]+ rsin(ωt +φ ),Pd[3]]

τ = Φ−φ
ω

return (
−→
P

nom
, τ)

3.3.4 Constant velocity circle formulation

Using arc functions, any circle can be parametered, taking another path time calcu-
lation which takes into account that the path is returning tostarting point :

τ =
2π
ω

(21)

And if the task involves machining a plurality of turns, thisvalue is multiplied
by the number of turns.
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3.3.5 Variable radius spiral

Using arc functions, spirals can be parametered. A spiral isin most cases located in
a plane parallel to the XY plane.

Hence, the radius becomes a parametric function versus time. The evaluation
algorithm of the spiral function is the same as for the arc.

The first idea that comes to mind is to follow the path at constant feedrate, mean-
ing, it results in a spiral at constant tangential velocity.

Suppose that the path is traversed in the concentric direction, when you approach
the center, the angular velocity tends to infinity. So, thereis a minimum radius below
which the angular velocity exceeds the physical capabilities of the robot speed and
acceleration. This also means it will be impossible to machine a very small disk.

The solution is not mathematical but technical: at the time of machining prepa-
ration, the operator will mill the spiral until minimum radius is reached and then
finish milling the small residual disk by successive straight line passes.

A minimum radius calculation is provided in terms of the maximum feedrate.
One maximum acceleration calculation is added.

One alternative consists in traversing the spiral constantangular velocity, for this,
the function of tangential velocity corresponding to the feedforward will vary ac-
cordingly:Vc(t) = r(t)ω . When you approach the center, then radius thends towards
zero, the tangential velocity tends towards zero and then the machining time tends
towards infinity. Again, this is another case which is not physically realistic. The
machine-tool cannot cut a small disk of radius using spiral paths below a certain
radius or the operator will need to select a smaller machine-tool.

The calculation of minimum radius will in terms of minimal speed which is the
tool tip velocity vector magnitude.

3.3.6 Helix formulation

The helix or screw or spin ressembles the spiral, except thatthe radius does not
vary against the helix axis or rotation. To simplify calculations, the tool axis will be
positionned parallel to the helix axis, meaning perpendicular to the XY plane, then
the tooltip position will vary only in terms of its vertical position but its position
projection on the XY plane will coincide with a constant radius circle.

The arc equation can be implemented where the vertical component which is
calculated by one parametric function which is usually set to be linear :

Pnom
z = ν ωt (22)

The vertical helix is determined by the screw threadν.
If we implement a general pointing axis

−→
u , then the formulation becomes:

−→
P

nom
= {calR

−→
P

nom

z (23)
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where
−→
P

nom

z describes the vertical pointing helix and{calRis the rotation matrix
related to the displacement of the helix axis from the vertical position to its actual
position. The rotation matrix handles orientation changeswhich can be expressed
by equation 29 explained in the following orientation section.

3.3.7 Constant speed spline formulation

A spline is a set offi(λ ) with i = 1, . . . ,n parameterized polynomial functions. Let
a nominal milling path be defined by a set of these functions. We will focus on one
of them where the required trajectory continuity will be to ensure that the end of a
fi(λ ) spline trajectory is aligned and continuous with the beginning of next fi+1(λ )
function, matching velocities, accelerations and jerks attransitions.

Let the vector parametersA0, . . . ,An be constitued by constant real values, we
evaluate a path such that :

−→
P

nom
= A0+ tA1 . . .An+ tn (24)

We seek to establish these equations in order to have a constant feed rate isFr =
|| d

dt (P
nom(t))||.

3.4 Trajectory Orientation Nominal Function

The end-effector motion can be modeled to obtain decoupled translation and rotation
displacements (Coiffet 1996) (Dombre and Khalil 1999). Many methods exist for
modeling orientations and their displacements: navigation angles (roll, pitch, yaw),
two types of Euler angles, quaternions, Rordrigues parameters, the normal vector to
the mobile platform, the pointing vector of the tool axis, etc.

3.4.1 Constant orientation modelling

The first set of encountered trajectories are the so-called 3DOFs milling tasks or
surfacing tasks. These are performed at constant orientation where the tool axis is
kept perpendicular to the workpiece. To simplify calculations, the parallel robot is
positionned to keep the tool axis parallel to the base reference frame z axis. Then,
the rotation matrix is equal to the identity matrix. This means that the end-effector
axis is set toNc = [0,0,1] which is selected for orientation formulation, since many
rotation formulations lead to singularities whenR= I ( Euler angles , Bryant angles,
etc. ) as shown in (Coiffet 1996) (Dombre E. and Khalil 1999).Path planning can
be simplified with the calculations avoiding rotation matrix transformations. This
axis can be called pointing axis or normal axis since it is usually selected the mobile
platform normal axis coinciding with the tool axis.
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It is possible to apply the same formulation for any other constant pointing axis
displacement. The normal vector becomesNc = [nx,ny,nz]. However, in this case,
the normal rotation parameters are the converted into a rotation matrix. This is used
to calculate the IKP in trajectory analysis.

3.4.2 Variable orientation around one standard axis

The former tasks can be extrapolated into 4 DOFs milling tasks where the displace-
ment includes one rotation about a single axis staying constant over the entire tra-
jectory.

For reasons of simplicity, we chose to perform this rotationaround an axis par-
allel to the base reference frame X or Y axis. The rotation formulation will be ex-
pressed with the intuitive angles of aviation (yaw, roll, pitch).

Konwing that the CAM file data provides orientation in terms of tool axis orien-
tation. Thus, the normal axis will be converted in a the rotation matrix format ex-
ploitable by kinematics calculations. The conversion application will either produce
θx or θy. The third angleθz will not impact orientation sinced it corresponds to the
tool spindle angle. It must be either determined or optimized using a performance
criterion, (Daney 2002).

The rotation around an arbitrary axis is representated by a parameterized function
that can be instantiated with initial and final rotationθd or θ f . Then, we obtain a
functionθnom:

θnom= Fori(θ ,θd,θ f , t,τ) (25)

3.4.3 General variable orientation

The former tasks can be generalized into 5 DOFs milling taskswhere the displace-
ment includes one rotation about a single axis being arbitrary and changing over the
entire trajectory.

We could use the previous method to express changes of uniform rotations using
standard formulations ( aviation angles , Euler angles , quaternion , etc. . ) but these
formulation are not intuitive and some yield mathematical singularities at specific
configurations. Moreover, navigation angles do not correspond to theθx,θy andθz

since these last angles appear one after the other in the kinematics calculations based
on homogeneous transforms.

Euler’s theorem states that a finite displacement from a rotational movement
about a fixed point is equivalent to a rotation of a certain angle about an axis passing
through that fixed point, (Coiffet 1996). Generally, for anyrobot, any orientation can
be calculated by the following rotation matrix, (Luh and Lin1981) (Coiffet 1996)
(Dombre and Khalil 1999) :

R = [s,n,a] (26)



24 Luc Rolland

wheren,n,a are the unitary normal vector being colinear to the tool axis, the slid-
ing unitary vector and the approach vector being colinear with the tooltip feedrate
velocity vector respectively, Fig. 11. The sliding unitaryvector is also refered to the
transverse vector being perpendicular to the two others.

The rotation matrix can be generally expressed as:

R = I cos(θ )+q qt (1− cos(θ ))+ [qx] sin(θ ) (27)

Whereqx is the following matrix :

R =





r11 r12 r13

r21 r22 r23

r31 r32 r33



 (28)
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s

_

_

_

Fig. 11 The axisn,s,a of the robot end-effector

Since the CAM program formalizes tool orientation usingNc the normal unitary
axis of the end-effector, the Rodrigues formula representsa displacement of a ro-
tation angle around the resulting general motion rotation axis, (Coiffet 1996). This
formulation is related to quaternion formulation, (Coiffet 1996) (Dombre E. and
Khalil 1999). Let the vectorvectPbe subjected to a finite rotational displacement
of an angleθ about an axisq= [qx,qy,qz] then the resulting rotation matrix is :

R = I cos(θ )+q qt (1− cos(θ ))+ [qx] sin(θ ) (29)

Whereqx is the following matrix :
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[qx] =





q2
x a qxqya−qzsinθ qxqza+qysinθ

qxqya+qysinθ q2
ya+ cosθ qyqza−qxsinθ

qxqza−qysinθ qyqza+qxsinθ q2
za+ cosθ



 (30)

The inverse problem is then solved, (Coiffet 1996). Given the rotation matrix

computed from the normal vector
−→
Nc , q andθ are then calculated. Note that the

passage from the mobile platform vector to the rotation matrix can be done with
most formulations.

The trigonometric functions are derived for positive rotations constraining the
angle to: 0< θ < π :

cθ = (r11+ r22+ r33−1)/2 (31)

sθ = ±[(r32− r23)
2+(r13− r31)

2+(r21− r12)
2]/2 (32)

The angle value is found by calculating :θ = arctan(cθ /sθ ). For improved
accuracy, the following equations will be implemented :

q=







sign(r32− r23)[
r11−cθ
1−cθ ]1/2

sign(r13− r31)[
r22−cθ
1−cθ ]1/2

sign(r21− r12)[
r33−cθ
1−cθ ]1/2






(33)

An orientation change is described passing from matrixRi−1 to matrixR〉 by
rotation variableθi around a predefined arbitrary vectorq, Fig. 12. In the general

case, note that theq axis does not necessarily correspond to the
−→
Nc mobile platform

normal vector.
The rotation axis can be determined by calculating :

q=
1

2sin(θi)





(ai)t si−1− (si)t ai−1

(ni)t ai−1− (ai)t ni−1

(si)t ni−1− (ni)t si−1



 (34)

The rotation angle is obtiained henceforth :

θi = arccos(
(ni)t ni−1+(si)t si−1+(ai)t ai−1

2
) (35)

This formulation allows to represent the orientation evolution with two fonc-
tions :

• l’angle de rotationθ nom(t),
• l’axe de rotation exprim par le vecteurqnom(t) = [qnom

x (t),qnom
y (t),qnom

z (t)].

Note that the quaternion formulation has the advantage of avoiding the calcula-
tion of the transition to the Rodrigues formula.
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Fig. 12 Orientation change with axesn,s,a

3.5 Task transition trajectories

The task is defined by a set of m functionsH = h1,h2, . . . ,hm. In the implementation
of the trajectory simulator, at each extremity of the successive paths, positions and
velocities are made to correspond with each other. The end point of pathi −1 must
be equal to the starting point of the path i. The path transitions also require speed
equivalence. According to the strategy, we can also match the transition accelera-
tions and jerks.

The transition trajectories are usually following some arcs as shown on Fig. 10.

3.6 Milling task preparation

The machining engineer draws a mechanical workpiece on his prefered CAD pro-
gram and the result is a virtual solid. The CAM machining module is used to define
cutting planes on the workpiece. The program proceeds by intersecting the cut-
ting planes with the virtual solid to determine several parallel surfaces. The CAM
program then fills the surface with cutting paths This results into a set of nominal
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Cartesian trajectory functions that are saved in a nominal Cartesian trajectory file.
certain CAM programs allow the user to access this file.

The CAM program further transforms the nominal Cartesian trajectory functions
of the milling task into sets of points that are saved in a theoretical Cartesian trajec-
tory file. This file can also be retrieved is refered to the Cartesian set-point file.

3.7 Initial digitization of milling trajectories

As input, a task definition file comprises a series of nominal functions; each func-

tion is of the form
−→
X

nom
(t)|rF . The points of departure and arrivalPD andPf are

known for each function. Theoretical positions are thus calculated from these nom-

inal symbolic functions:
−→
X

th
(c)|rF =

−→
X

nom

|rF
(t) at eachTc sampling cycle. TimeTc

is assumed to remain constant throughout the process. The total time is therefore set
to t = c Tc for c = 1, . . . ,s. Firstly, a first time digitization occurs at the sampling
rate, Fig. 13, which has the effect of transforming the pathsin point series.

1P

2P

3P

n−1P

nP

Fig. 13 Digitization of task Cartesian theoritical path

Finally, the CAM program considers that all theoritical points are connected by
line segments in some kind of linear approximation, Fig. 13.Further point sampling
is then performed by separating the points selected by a calculated distance in ac-
cordance with a chord errorEc, Fig. 14. Thus, as an arc is bent by a straight line
rope, each pair of set points sees a line segment connecting them. This cord is at a
maximum distance ofEc from the nominal trajectory. Let the arc be of radius R and
lenght L, thenEc = R−Rcos( L

2R). In order to obtain a prederminedEc cord error,
the arc point distance is calculated by:L = arccos(1− Ec

R ). Then, the cord distance
is calculated by:D = 2

√

E2
c −2R Ec. Knowing the constant feedrate and the cord
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distance, the sampling timeTp is then calculated. Each new point will then add to
the original theoritical path file. The resulting file is called the complete theoritical
Cartesian path. TheCAM program linearization is typically already introducing an
error, so that the accuracy of the robot can never be better than thisEccord error
value.

Then, the IKP is calculated on each theoritical Cartesian path. For each pose point
comprising the position and orientation, the actuator positions are calculated. The
result will be written in an actuator theoritical set-pointfile which is then uploaded
to the CNC controller.

E c

Fig. 14 Digitization of task theoritical section

3.8 Second digitization of milling trajectories

Running at a smaller cycle time, the six servo feedback loopstraditionnaly imple-
ment a PID feedback loop on each linear axis position. DuringeachTp cycle time,
the path following level interpollates a certain number points inside the interval de-
termined by each point pair in the actuator theoritical set-point file. The number of
points is determined by:N = f loor(

Tp
Ts
) whereTs is the servo feedback loop cycle

time determined by the time to calculate the PID algorithm. Actuator point sampling
is then performed by utilizing a polynomial interpollationfunction.

Typically, in many CNC controllers, it is observed that the servo sampling rate
(second level) can be ten times the cycle time of the first level.

4 Verification criteria for machining

4.1 Machining accuracy

The most important performance criterion is the machining surface finish. Since
machining requires a trajectory following with high precision, we must ensure that
the path is simulated within a given precision, (Mery 1997).

In classic robotics, the majority of path planning applications are classified as
point-to-point and a marginal number are concerned by continuous paths such as
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in machining. However, even when implementing continuous,the robot control al-
gorithms handles points. The main difference with point-to-point control is that the
task is defined by several hundreds of points instead of a few points. Liege and Coif-
fet define four types of precision : static accuracy, dynamicaccuracy, repeatability
and resolution, (Liegeois 1984) (Coiffet 1986). Repeatability stands for the repro-
duction accuracy of the same movement and does not really apply for continuous
trajectory tasks. The resolution is the smallest amount of change in the positions and
orientations. It is determined by robot component choices.

Definition 6. Static accuracy is defined as the ability of the robot to position and
orient the end-mechanism in accordance with the programmedinstructions.

This notion is applicable to a specific point and then cannot extrapolated to one
entire continuous trajectory.

Definition 7. Dynamic accuracy is the ability of the robot to follow a path by the
end-effector mechanism in accordance with the programmed path.

In principle, the error is calculated at all points along itstheoritical pathX(kT)th

wherek = 1, . . . ,kmax where is thekmax number of discretized points. The error
vector between the nominal path and the simulated path is then:

−→
ε (kT) =

−→

X(kT)
th

−
−→

X(kT)nom (36)

The distance or error vector magnitude is also calculated:

ε(kT) = ||
−→

X(kT)
th

−
−→

X(kT)nom|| (37)

After calculating the error vector or value of distance for apath, we determine the
overall path accuracy for each error vector component and the error vector distance
by choosing the largest value.

4.2 Error over the Cartesian position

4.2.1 Calculation of the absolute error and the error vectorbetween the points

In practice, the end-effector precision calculation is divided into two task space
parts : Cartesian position and Cartesian orientation. For the error in the Cartesian
position, we obtain the equation is calculated for each theoretical Fig. (14) :

ε(kT) = ||
−→

X(kT)sim−
−→

X(kT)th|| (38)

We also study the nature of the error vector.
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−→

ε(kT) =
−→

X(kT)sim−
−→

X(kT)th (39)

This calculation is also applicable on theoretical points of the CAD produced
files.

P(kT)
th

sim
P(kT)

nom
P(t)

_

tang

E(kT)
trans

E(kT)

E(kT)

V

_

c

Fig. 15 Error vector, tangentielle error and transverse error

Since the error along the trajectory is not as significant as the transversal path
error, we calculate the tangential error and transversal error, Fig. 15. The transverse
error can also be called cross-sectional, normal or perpendicular error.

The tangential error allows us to evaluate if the simulated path is ahead or behind
the nominal planned route. A tangential error indicating that the real path is followed
ahead of time is of course advantageous because it means thatthe trajectory can
be continued in a shorter time than expected. In fact, Liegeois states that a robot
can be late in the path set without the finished surface being affected, (Liegeois
1984). A tangential error indicating that the real path is plagued by a slowdown may
not necessarily affect the surface finish as such and therefore is not so considered
important.

On the other hand, the transversal error will directly affect the surface finish. It
corresponds to the difference between the simulated path and the nominal path at
time t = kT wherek = 1,/ldots,m with m the number of points. Then, we try to
determine if the simulated path is located within a given path tube with a predefined
radius. The tube radius is determined by machining tolerances.

To calculate the vector tangential error, we must determinethe unit vector tan-
gential to the nominal curve through the velocity vector :

−→

u(t) =

−→

Vc(t)

||
−→

Vc(t)||
(40)
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The value of the tangential error is obtained by:

ε(kT)tang=
−→

u(t) ·
−→

δP(kT) (41)

Applying the Pythagorean theorem, we finally find the value ofthe transversal
error :

ε(kT)trans= [(ε(kT))2− (ε(kT)tang)2]1/2 (42)

The calculation of transversal error with respect to the nominal trajectory is not
exact but an approximate value of the deviation sought because it is obtained from
the digitized values and is not necessarily the perpendicular error defined as the
minimal distance between the nominal and theoritical trajectories. It is necessary to
nuance this comment. The perpendicular error may not be a direct measurement of
surface finish. For example, during 3D milling, the robot is positioned so as to obtain
the Z-axis of the terminal member perpendicular to the surface to be machined.
Then, we seek to mill a planar surface that is positioned parallel to the XY plane
and the finished surface will be evaluated by calculatingε(kT)z. Upon reaching the
portion of the part where a wall is reached, the wall perpendicular error will be
determined.

4.3 Calculate the actual deviation from a nominal curve

To be meaningful, dynamic precision must be defined relativeto the nominal path,

(Liegeois 1984). On the Fig. 15, we note that
−→

ε(kT)trans is not the actual deviation
from the nominal curve. To achieve this, we must calculate the pointP̃ being the

closest to
−→

P(kT)
sim

on the nominal curve. To do this , we determine the timetdevi

which corresponds to the pointP̃ on the nominal curve, Fig. 15, and two methods
can be derived.

The first method consists in determining the normal to the nominal curve which
is performed by solving the following system :

(
−→

P(kT)
sim

−
−→

P(t)
nom

) ·
−→

Vc(t) = 0 (43)

The second method consists in searching the minimum distance between
−→

P(kT)sim and
−→

P(t)
nom

by calculating the minimum of the function :

G(t) = ||
−→

P(kT)
sim

−
−→

P(t)
nom

|| (44)

which corresponds to determining the time at which the derivative of the function is
zero, that is to say whenG

′
(t) = 0.

Introducingtdevi time in the function, we obtaiñP and then the deviation is cal-
culated :
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ε(kT) = ||
−→

P(kT)
sim

− P̃|| (45)

Deviation value is determined by calculating the maximum deviation of an entire
trajectory. The second approach for calculating the deviation tdevi has the advantage
of being less complex in terms of calculations and thereforewill be preferred.

4.4 Calculation of deflection from a straight line segment

When the nominal paths are straight lines, it is not necessary to perform the calcula-
tion of the deviation to approach presented in the previous section. Determining the

deviation
−→

P(kT) directly by calculating the distance between the simulated
−→

P(kT)

and the line defined by the starting point
−→
P1 and the arrival point

−→
P2 of the section :

ε(kT) = (||
−→

P1 P(kT)||2−||
−→

P1 P(kT)∗

−→
P1P2

||
−→

P1P2||
||2)1/2 (46)

4.5 Calculation of the deviation from a theoretical curve

There are many cases where the nominal functions are not available and the curves
are not necessarily straight lines. For example, as we have already explained, many
CAD program produce files with anEc cord error between selected points. Not
knowing the curve profile between these points, theCAMmodule interpolates using
a linear function, that is to say, we assume that the points are connected by line seg-
ments, being different from the exact shape having then an unknown curvature. The
curvature was lost in the digitization process. The deviation calculation takes then
equation (46). The question to be carefully addressed is thechoice of the points

P1 andP2. We wish to determine the theoretical interval being closerto
−→

Psim
k , the

point simulated, Fig. 16. The comparison is limited to adjacent intervals : thei −1

segment before and the segment i after the point
−→

Pth
k .

There are two possible methods for interval selection. The first method is select-
ing the interval by the scalar products respectively for theintervali −1 and i :

vk−1 = (
−→

Pk−1

th
−

−→
Pk

th
) ·

−→

εP(kT) (47)

vk = (
−→

Pk+1

th
−

−→
Pk

th
) ·

−→

εP(kT) (48)

The closest interval will be identified by selecting the positive result between
vi−1 andvi .
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Fig. 16 Deviation vector from the theoretical points

The second method ivolves the calculation of the time corresponding to the point
on each straight line segment :

tk−1 = Tp
Px

sim
+Py

sim
+Pz

sim

||
−→

Pk+1

th
−

−→
Pk

th
||2

whereP
sim

=
−→
Pk

sim
−Pth

k−1 (49)

tk = Tp
Px

sim
+Py

sim
+Pz

sim

||
−→

Pk+1

th
−

−→
Pk

th
||2

whereP
sim

=
−→
Pk

sim
−Pth

k (50)

The two times are then compared with the cycle timeTp and the closest interval
from the point is the one confirming 0≤ t ≤ Tp.

The second approach is less complex to implement and has beenchosen.
The distance is determined by replacingP1 andP2 by the extrema of the chosen

interval in equation (46). This distance is not equal to the actual deviation since
each interpolation corresonds to the straight line segmentbetween two points. It is
necessary to take the deviation vector and add the vector related to theEc error being
perpendicular to the straight line segment and included in the plane defined by the
velocity vector at point i and the vector aligned with straight line segment.

Note that if the theoretical path is a straight line, then we can calculate the devi-
ation directly with equation (46).
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4.6 Calculate the actual deviation from a theoretical curvewith a
small radius of curvature

In the case where the radius of curvature is high, this methodis not guaranteed to

calculate the minimum distance, since the theoretical
−→
Pk

th
is not necessarily the

closest to the simulated
−→
Pk

sim
point. For example, such a situation is encountered

when machining rectangles with corners with radii of curvature tending towards 0.

To remedy this problem, an added algorithm determines
−→
Pn

th
, the closest the-

oretical simulated point, by seeking the value ofn such that(||
−→
Pn

th
−

−→
Pk

sim
||) is

minimized by varyingn from n− 20 to n+ 20. Indeed, it is not necessary to test
all trajectory points. Then, the deviation is calculated with the aforementionned
method.

4.7 Orientation errors

There would as many methods to calculate errors over the orientations as there exists
representation models. We chose to determine the orientation error by calculating
the variations on the normal vector because it is more ergonomic to visualize the
movement of a vector that characterizes the parallel robot mobile platform.

−→

δNc(kT) =
−→

Nc(kT)−
−→

N(kT)thc (51)

In addition,CADprograms represent orientations by expressing the pointing vec-
tor colinear with the tool axis which, in the case of parallelrobots, is commonly
corresponding to the mobile platform normal vector.

4.8 Actuator joint errors

The simulator also compares the theoretical and simulated actuator joint trajecto-
ries, thereby obtaining the actuator error for the six actuators. Fori = 1, . . . ,6, we
calculateζ sim

i = Lsim
i −Lth

i .

4.9 Error Models

In order to simulate a realistic trajectory pursuit, error models are introduced at
different levels of the simulator. The majority of errors are introduced by adding
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Fig. 17 Calculation block diagram of the end-effector relative error for a step

a parameter to a function determined by randomly selecting avalue in a specific
interval[−max,+max].

We have chosen to the modeling of all the following errors:

• CADfile precision,
• sensor accuracy,δ l i ,
• configuration precision,δOAi andδCBi ,
• precision on the calculation of theFKP,

Pc (kT) thPc (kT) sim

Theoritical path

Nominal path

Error

Path planning

IKP

Control

FKP

Fig. 18 Calculation flow chart of the end-effector absolute error
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• resolution of time measurement∆ t and temporal digitization,
• the resolution of signal digitization,
• the asynchronous nature of joint signal updates.

We can thus simulate a trajectory introducing all errors, any combination of these
or even only one. The simulation can be tailored to the actualstudy and it is possi-
ble to isolate errors and investigate their impact on surface finish. We propose two
alternative calculation errors :

• the relative error between two steps, Fig. 17,
• the absolute error giving the end-effector accuracy Fig. 18.

5 Results of path simulation

5.1 Operative part of the trajectory simulator

A simulator is proposed where a typical machining task is performed by a general
6-6 hexapod manipulator. Knowing that path planning and following is essentialy
a kinematics problem, the principle of the kinematics simulation is based on the
alternate use ofIKP andFKP.

The robot operative part consists of the following : the mechanism described by
the actual geometry (passive joints), sensors (instrumented joints), motors (actuated
joints) and amplifiers, (Mery 1997). The following models were incorporated : the
calibrated values of the configuration and the position sensors. Both are character-
ized by a certain measurement accuracy. At the simulation beginning, we determine
the actual real configuration values by adding a random contribution to the ideal
configuration valuesOA|rF

andCB|Rm
. Then, at each point of the theoretical Carte-

sian path, we calculate the theoretical joint values using the IKP using the actual
real values of the configuration. For each calculated ILik (for i = 1, . . . ,K) where K
is the number of actuator set-points. Realistic joint values are calculated by adding
random contributionsδLik on the six actuators (fori = 1, . . . ,6). We will continue
with the FKP calculation for each trajectory point. The simulation endswith the
surface finish evaluations.

The simulation does not address the impact of amplifiers and motors. It imple-
ments a nominal trajectory (continuous) or theoretical (discrete) as the set-points
and the real simulated trajectory (computed on points).

Consider that the random error on the measurements of the passive joint posi-
tions are determined at the beginning of the machining process and remains constant
throughout the simulation. This assumption means that we neglect the configuration
change values caused by mechanical wear. The position sensor random error is re-
calculated each time the measure is used by the control unit,meaning at eachTs

sampling period.
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Fig. 19 Simulator Diagram of the general hexapod robot with control

5.2 Trajectory simulator including the controller

The operative part could be studied by itself in order to identify the configuration
error impacts. After studying the robot operative part during a machining task, a
complete analysis of the parallel robot path planning is proposed incorporating a
model of theCNC. The controller performance is then investigated in terms of sur-
face finish, (Marty, Cassagnes and Martin 1993). The simulator then implements a
conventional joint control strategy as usually found in themajority of CNC. Each
servo can only ensure the setting of one single actuated joint variable. In the ma-
jority of current controllers, this variable is either the position or the speed. CNC
Speed control analysis will be left for another article.

5.2.1 Trajectory simulation for position control

The position control simulator implements a joint strategyof trajectory planning and
following for indirectly controlling the end-effector position through the calculation
of the FKP. The principle of the simulation remains basically the samekinemat-
ics one as before, meaning that it is based on the alternate use of IKP andFKP,
Fig. 19. Between the two calculations of the geometric patterns of the simulated and
theoritical trajectory, in addition to adding the various error contributions, a module
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that models the command is integrated and it calculates the servo set-points using
various polynomial interpolation functions. The surface finish evaluation proceeds
applying the same calculations as before.

5.2.2 Interpolations of actuator set-points

TheCNC is equipped with polynomial interpolators which calculates several inter-
mediate points between the theoretical set-points. These intermediate point calcu-
lation actually determines the higher level control cycle time,Tp. New interpolated
points are calculated at all times ofTs . It then follows that the polynomial joint
movements give a Cartesian movement which polynomial is assumed to approach
the scheduled task for the nominal machining movement . Notethat the movement
will never be obtained equivalent to nominal displacement .

Interpolation modules are used on a segment defined by two points of joint in-

structions
−→
l i

th
(k Tp) and

−→
l i

th
((k+ 1) Tp) upon which typical polynomial curve

fitting is performed. The time interval is the time for calculating the interpolation
order, orTp. They use polynomial functions whose parameters are measured by
matching certain amounts (positions, velocities, accelerations, jerks, etc.) depend-
ing on the polynomial order. The following interpolations can be simulated :

• first order : passing a straight line between each point , then the linearfunction
f (l i) = c1 l i + c0 , we calculate coeffientsc0 and c1 with the positions at the

beginning and end of the interval
−→

l i(k Tp)
th

and
−→

l i([k+1]Tp)
th

, this technique is
widely used in usualCNC machine-tools;

• second order: it calculates the parameters of the quadratic functionf (l i) =
c2 l2i + c1 l i + c0 from two positions and speed;

• second and first order: it divides the section into two parts : an acceleration phase
and a phase constant speed can choose two methods with calculated acceleration
or acceleration set (often the maximum acceleration of the axis);

• third order: it softens the movement using a cubic functionf (l i) = c3 l3i +c2 l2i +
c1 l i + c0 which coefficients are calculated from the known positions and veloci-
ties at the beginning and end of the interval values;

• fifth order: one takes the two positions, two gears and two known start and end
accelerations interval to calculate six parameters of a fifth degree polynomial
function.

5.2.3 Algorithm to simulate the control position

The former algorithm now includes one typicalCNC containing the control levels
with each its cycle time :

• The first level for path planning and following,
• The second level comes from the six motor servo controllers.
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The simulator requires the same inputs and produces the sameoutputs has shown
above.

SimulatorCNC Configuration of robot :OA|Rf
,CB|Rm

Configuration of commande :Tp,Ts

# of control intervals :np = round( δ t
Tp
)

# of servo intervals :ns = round(
Tp
Ts
)

Interpolation order :Or = 5
Configuration of the nominal path :Pd, Pf andFr

Nominal path :X(t) =
−→

X(t)
nom

Path duration :δ t = δs
Fr

Cartesian nominal derivativesVc(t)nom= d
dt X(t),Ac(t)nom= ˙Vc(t)

nom

Actuator nominal functionsL(t)nom= MGI(OM(t)nom)

Actuator nominal derivativesvLi(t)nom= d
dt L(t)

nom andaLi(t)nom= ˙vLi(t)nom

For k= 0→ np do
Foru= 0→ ns do

tw = k Tp+u Ts

OMth
w = OMnom(tw)

Lithw = interpolle(Or,Lnom
i (tw),Tp,Ts, tw)

OA|Rf
= OA|Rf

+Alea(OAmax)

CB|Rm
= CB|Rm

+Alea(CBmax)
For k= 0→ np do

Foru= 0→ ns do
tw = k Tp+u Ts

If k= 0 andu= 1 do
For i = 1→ 6 do

Lisim
k = Lithk +Alea(Limax)

sys= modeleFA7ent(OA|Rf
,CB|Rm

,Lisim
k )

res= MGDexact(sys)
For j = 1→ #(res)
solcj =CalculCentre(res)
OMsim

k =Closer(solc,Pd)
else

For i = 1→ 6 do
Lisim

k = Lithk +Alea(Limax)
sys= modeleFA7rat(OA|Rf

,CB|Rm
,Lisim

k )

res= MGDhybride (sys,OMsim
k−1)

OMsim
k =CalculCentre(res)

Calculation of precision :
−→
εP

sim

k ,εsim
k

Calculation of deviation :εsim
k

Calculation of actuator precision :ζ sim
k

return OMsim,Lisim,εsim,varepsilonsim,ζ sim

The simulator uses the following functions :

• modeleFA7ent (OA|rF
,CB|Rm

,Lisim
k ) : computing system ofFKP as the mobile

platform three points with integer coefficients,
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• modeleFA7rat (OA|rF
,CB|Rm

,Lisim
k ) : computing system ofFKP according to

the mobile platform three points with rational coefficients,
• Alea(valmax) a function that computes a random value taken between 0 and

valmax,
• PlusPres (solc,PD) function that computes the closest parameter in the listsolc

to pointPD

• CalcCentre ({
−→
X }) function that computes the position of the centerOA|rF

from

each parameter in the list(
−→
X )

• Interpolle function that calculates the interpolated set-points. This function re-
ceives the order of the polynomial function selected by the user.

6 Results of path simulation

In this section, as part of the path planning related to milling and by extension to
all high accuracy applications, kinematics simulation results calculates end-effector
surface finish impact integrating configuration inaccuracies and postion based CNC
control strategies. The results are compiled, presented, analyzed and compared.

Firstly, the error impact of the joint positions is studied.The actuator lenghts are
subject to an error and their introduction will be studied. Then, the passive joints
correspond to the kinematics chain attachment pointsAi andBi for i = 1, . . . ,6. The
section continues providing an analysis of trajectory simulation with classic CNC
position control which will be performed on6-6 parallel robots for the first time.
Various parameters will be varied and the results will allowto determine how to
improve finish surface.

6.1 Parallel robot configuration

Let us take a typical6-6 configuration example written in a configuration text file
which includes the manipulator essential parameters: the coordinates of the joint
center positionsOA|Rf

in the fixed base reference frameRf and the coordinates
of the joint center positionsCB|Rm in the mobile platform reference frameRm. In
the computations, we use their simplified format, respectively identified as A and
B. Here is a typical configuration example with a real manipulator configuration.
The unit is the millimeter. The values were the ones calculated by a calibration
procedure:

We try one difficult FKP example on a typical 6-6 hexapod with 40 complex
solutions out of which 16 real solutions can be extracted. Its configuration is given
on Table 6.1 where the fixed base and mobile platform joint coordinates,OAO,CBC

are given with units being the millimeter.
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Table 1 Parallel manipulator configuration table

Joint Coordinates Respective Values
OA1(x) OA1(y) OA1(z) 464.141 389.512 -178.804
OA2(x) OA2(y) OA2(z) 569.471 207.131 -178.791
OA3(x) OA3(y) OA3(z) 529.050 -597.151 -178.741
CB1(x) CB1(y)CB1(z) 68.410 393.588 236.459
CB2(x) CB2(y)CB2(z) 375.094 -137.623 236.456
CB3(x) CB3(y)CB3(z) 306.664 -256.012 236.461

Fig. 20 Selected nominal paths

6.2 Typical trajectory and realistic milling configuration

We have implemented various control strategies in positionby interpolating points
by polynomial functions of the first degree, third degree andfifth degree. We also
tested a preceded by an acceleration phase linear interpolation. The latter has been
interpolated with a quadratic function for setting acceleration. This type of interpo-
lation requires smoothing functions of first and second order. We must determine
four boundary conditions of the interval and two alternatives were studied : the two
positions and joint velocities at the ends and three end conditions by setting the
acceleration phase of the second order. In the first case, onehas to calculate the
acceleration as a function of the end conditions.

We chose two nominal paths located on planes parallel to the XY plane. These
path nominal functions are respectively determined by the following configurations,
Fig. 20 :

• a line segment starting at point[500,20,1200] and ending at point
[1500,20,1200] traveled at three constant feed forward speeds : 30, 45 and 60
m/min.

• an arc of radius 500 mm from the point[100,600,700] to reach point
[−400,100,700] using the same three feed rates. The center of the arc is point
[100,100,700].

Note that the selected tasks are simulated tyring to reproduce realistic milling
conditions. We will study the trajectories at different feed rates which are set to
30, 45 and 60 m/min. The feedrates of 30 and 60 m/min speeds correspond to the
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Fig. 21 Simulated path pursuits: straight line segment and arc

speeds of high speed millingHSMand ultra high speed millingUHSMrespectively.
A study is also conducted on the impact of path following cycle times which will be
set at 5, 10 and 20 ms.

The simulator computes and sketches the two resulting pathsutilizing a controller
with a cycle time of 10msand a feed rate of 30m/min, Fig. 21 where the one dimen-
sion is exagerated to visualize the path errors. There is a complex high-frequency
noise on every simulated patterns which highlight sudden and unpredictable changes
in the continued trajectory.

Firstly, we compute the error vector of the Cartesian position. The error vector
norm determines the accuracy of the robot at each control point and gives an idea
of the behavior of the robot itself. Since we are in the specific case of continuous
trajectory, the deviation of the path relative to the nominal path is calculated. In
these two cases of calculation of performance , we retain outliers . Finally evaluate
the surface finish , we study the vertical component of the error vector . In order to
simplify our study , there is provided the machining surfaces of which are parallel to
the XY plane . It also retains the maximum and minimum values and the difference
therebetween reflect surface finish .

The simulations are performed with actuator set-point interpolations of the first
(linear), third and fifth order.

6.3 Control with linear interpolation

6.3.1 Straight line segment with linear interpolation

The first tests with the simulator implements the first level control proceeding with
actuator joint set-point interpollation utilizing a linear interpollation. In the first
analysis, we calculate the deviation of a typical path segment simulated over a nom-
inal path. We therefore study the straight line segment pathby first varying the cycle
time of the order and the results are shown in Fig. 26.

At 5 ms, the deviation is a high frequency signal oscillatingaround a straight line
function f (t) = t/4+1 in microns. The amplitude increases and has peaks reaching
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Fig. 22 Simulated path deviation for a straight line segment : cycletimes of 5, 10 et 20 ms, linear
joint interpolation

3.6 microns. At 10 ms, the signal oscillates around a constant straight line at 1.8
micron and oscillations thend to increase very slowly. At 20ms, the average rose to
4.75 micron and the extrema of the oscillations are 1 and 8.5 microns with peaks at
9.5 microns.

In the second analysis, we study the same trajectory by now varying the feed-
rates and the results are shown in Fig. 23.

At feedrates of 30 m/min, the average is near 2 microns and thehigh frequency
oscillations feature peaks from 0 to 3.5 microns. At 45 m/min, a similar signal is
obtained where the average rises to 3.5 microns and peaks reach 6 microns. A 60
m/min, the oscillation average reaches 5 microns with 10 microns peaks.

We continue the analysis by showing graphs of vertical errors that are perpendic-
ular to the machined surface errors since they provide with an excellent account of
surface finish. The first graph shows the results at the selected feedrates, Fig. 24.

At feedrates of 30 m/min, the signal shows a high frequency oscillation with an
average of approximately 1,25 microns with peaks as low as -1microns and as high
as 3 microns. At 45 m/min, there is an oscillation between -1 and 5 microns with
an average of just over 2,5 microns. A 60 m/min, it is observedthat the oscillation
evolves mainly around 4.7 micron between -1 and 8.5 microns with some peaks at
10 and -1.5 microns.

We close this simulation cycle with vertical errors at the selected cycle times,
Fig. 29.

At 5 ms, the signal is oscillating at a high frequency of around 0.3 micron. The
amplitude of oscillation increases significantly. Peaks reached 2.4 and -1.6 micron
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Fig. 23 Simulated path deviation for a straight line segment : feedrates of 30, 45 et 60 m/min,
linear joint interpolation

causing surface finish error to become 4 microns. At 10 ms, thesignal oscillates
around 1.6 micron with an amplitude increasing less rapidlywhere extremas of 3.75

Fig. 24 Simulated vertical error for a straight line segment : feedrates of 30, 45 et 60 m/min, linear
joint interpolation
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Fig. 25 Simulated vertical error for a straight line segment : cycletimes of 5, 10 et 20 ms, linear
joint interpolation

and -1.6 micron are extracted giving surface finish variations of 5.35 micron. At 20
ms, the oscillation is constant between 8.5 and -0.5 with an average of 4.2 microns.
Peaks reach -1.4 and 9.5 microns leading to vertical variations of almost 11 microns.

Simulation results are collected in Table 2. On the table, the order of interpolation
functions, theTp cycle time in ms, theFr feed rate in m/min, then the minimum and
maximum extremas for theε vector error magnitude in microns, theεZ vertical error
in microns and||δ || deviation in microns.

Ordre Tp Fr εmax εmin εmax
Z εmin

Z ||δ ||max ||δ ||min

ms m/min micron micron micron micron micron micron

1 10 30 4.900 0.142 3.716 -1.738 3.796 0.047
1 10 45 7.198 0.219 5.918 -1.403 6.055 0.047
1 10 60 11.872 0.026 10.067 -1.403 10.106 0.096
1 5 30 3.783 0.142 2.470 -1.738 3.726 0.021
1 10 30 4.900 0.142 3.716 -1.738 3.796 0.047
1 20 30 11.487 0.258 9.734 -1.403 9.747 0.096

Table 2 Simulated errors and deviations for a straight line segment: position control with linear
joint interpolation

As might be suspected by intuition, we get better results by reducing the path
controller (first level) cycle time and also the feedforwardvelocity. At very high
speeds or with long cycle times, we met and exceeded the threshold of 10 microns.
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Fig. 26 Simulated path deviation for an arc : cycle times of 5, 10 et 20ms, linear joint interpolation

At feedrates below or equal to 30 m/min and cycle times equal or less than 10 ms, the
kinematics surface finish or the best feasible surface finishwould reach 5 microns.

6.3.2 Arc with linear joint interpolation

In the second analysis, the same simulation process is repeated for a typical arc path
y first varying the cycle time of the order and the results are shown in Fig. 26.

On Fig. 26, the signals are high frequency oscillations around a constant value. At
5 ms, the signal oscillates around an average of 1.5 micron with peaks evolving from
0 to 3 microns. At 10 ms, the signal oscillates around the value of 4 microns between
extremas of 0.5 and 7.5 microns with peaks near 0 and 8 microns. Increasing to 20
ms, the average increases to 14 microns. The signal resembles a very regular high
frequency sinusoidal curve ranging from near 0 to 27 micron.

We continue the study using the same arc path and varying the feedrate, Fig. (27).
The feedrate change from 30 m/min speed to 45 m/min doubles the signal av-

erage and its oscillation amplitude (from [0, 8] to [0, 16]).Similarily, The feedrate
change from 30 m/min speed to 60 m/min triples the signal average and its oscilla-
tion amplitude (from [0, 8] to [0, 27]). In the later, the signal average is 15 microns.

In the second analysis, we then continue the arc path analysis by plotting vertical
errors at the usual different feed-rates and the results areshown in Fig. 24.

The feedrate change from 30 m/min speed to 45 m/min doubles the signal aver-
age and its oscillation amplitude (from [-0.5, 3] to [-0.5, 6]). Similarily, The feedrate
change from 30 m/min speed to 60 m/min triples the signal average and its oscilla-
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Fig. 27 Simulated path deviation for an arc : feed-rates of 30, 45 et 60 m/min, linear joint interpo-
lation

tion amplitude (from [-0.5, 3] to [-0.5, 10.5]). In the later, the signal average nears
5.5 microns.

Fig. 28 Simulated vertical error for an arc : feed-rates of 30, 45 et 60 m/min, linear joint interpo-
lation
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Fig. 29 Simulated vertical error for an arc : cycle times of 5, 10 et 20ms, linear joint interpolation

Ordre Tp Fr εmax εmin εmax
Z εmin

Z ||δ ||max ||δ ||min

ms m/min micron micron micron micron micron micron

1 10 30 8.164 3e−5 3.2325 -0.806 8.157 0.016
1 10 45 16.128 0.023 6.533 -0.481 6.533 -0.481
1 10 60 27.178 0.129 10.803 -0.806 27.093 0.043
1 5 30 3.602 0.023 1.378 -0.806 3.598 0.023
1 10 30 8.164 3e−5 3.2325 -0.806 8.157 0.016
1 20 30 27.178 0.129 10.803 -0.806 27.093 0.037

Table 3 Simulated errors and deviations for an arc : position control with linear joint interpolation

To end this simulation cycle, vertical errors are computed at the selected cycle
times, Fig. 29.

The oscillating signals are similar to the high frequency previous ones. At 5 ms,
the oscillation ranges from -0.25 and 1.25 microns with an average at around 0.5
micron. At 10 ms, the oscillation extremes reach -0.2 and 2.8microns with an av-
erage at 1,5 micron. At 20 ms, the signal is a high frequency composite oscillation
with extremas at 0 and 10.5 microns and peaks at -1 and 11 microns.

Table 3 compiles the results of kinematics simulations for the arc path tests.
The results confirm the former results obtained with straight line segments. The

simulator can provide surface finish of 10 microns, only in the case of high speed
milling (< 30m/min).
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6.3.3 Discussion on the linear joint interpolation

From the kinematics analysis simulation, providing the lowest performance bounds,
the CNC robot controller with linearily approximated trajectories can reach the sur-
face finish if the feed-rate and path following cycle time areset properly. The con-
troller can provide surface finish of 10 microns, only in cases up to high speed
milling (< 30m/min). The surface finish is not met at faster feedrates. Linear inter-
pollators should keep control cycle times relatively short(< 10ms) in order to reach
the required surface finish. The surface finish is not met at longer cycle times.

To achieve an accuracy of less than 10 microns, one should setthe response time
at 10 msec or less and maintain the feed-rates below 45 m/min.This also means that
UHSM is not feasible.

Those linear displacements are performed by a robotic system which is not linear.
The interpolators try to transform curved path segments into linear path segments
leading to interrupted segments. The linear interpollation is only matching the posi-
tions at the ends of the intervals, Fig. 13. As an advantage, the linear interpollation
algorithm implementation is easy and does not require difficult computations lead-
ing to smaller cycle times. As disadvantage, with the application of parallel robots,
the control system will not be able to reach 10 micron surfacefinish without very
fast controllers featuring small cycle times. Moreover, rapid feedrates are not prac-
tical.

Let us add that the Cartesian velocity vector undergoes abrupt changes when
passing from one linear segment to another which will resultin dynamics overshoot.
In fact, the continuation of this type of movement by an effective robot is impossi-
ble without stopping at each interval change which would mean slowing down the
milling process.

This type of interpolation is only recommended for roughingmilling.

6.4 Control with third order interpolation

6.4.1 Straight line segment with third order interpolation

The second simulation test series implement the first level control proceeding with
actuator joint set-point interpollation utilizing a thirdorder polynomial interpolla-
tion. In order to ensure the continuity of movement, it is then found to match the
positions and joint velocities at the ends of intervals. As it was done for linear in-
terpollation, tests begin with an analysis of deviation with the different selected
feed-rates, Fig. 30.

The three signals are featuring growing high frequency oscillations until the tra-
jectory ends. At 30 m/min, the signal oscillates around a straight line described by
equationf (t) = 0.375t+0.75 and it peaks at 3.75 microns. At 45 m/min, the curve
deviation appears more advantageous since it oscillates about the same straight line
axis as with 30 m/min and the signal peaks do reach just under 3microns. At
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Fig. 30 Simulated path deviation for a straight line segment : feedrates of 30, 45 et 60 m/min,
cubic joint interpolation

60 m/min, the same conclusions can be deduced and the peaks exceed 3 microns
slightly.

The test are repeated by varying the cycle time of the CNC controller. The results
are shown in Fig. (31).
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Fig. 31 Simulated path deviation for a straight line segment : cycletimes of 5, 10 et 20 ms, cubic
joint interpollation
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Fig. 32 Simulated vertical error for a straight line segment : cycletimes of 5, 10 et 20 ms, cubic
joint interpolation

The three signals are actually very similar and are featuring growing high fre-
quency oscillations until the trajectory ends. The signalsoscillate around a line de-
scribed by equationf (t) = 0.375+0.75t. The peaks reach 3.75 microns. Note that
the feed-rate does not seem to impact deviation significantly. The difference be-
tween the error vector||ε|| and deviation||δ || is less than one micron. This result
means that the third order interpolation allows accurate theoretical trajectory fol-
lowing. This also means that the path following will take place without undue delay
or advance.

We continue the analysis by showing graphs of vertical errors where the cycle
times are varied, Fig. 37.

The three signals are actually very similar and are featuring growing high fre-
quency oscillations until the trajectory ends. The graphs show signals which are
centered on 0.2 micron with increasing oscillation with peaks getting close to 2 and
-2 microns.

The vertical error is simulated at various feed-rates, Fig.33.
The three signals are actually very similar and are featuring growing high fre-

quency oscillations until the trajectory ends. The signalsare around the constant
value 0.1 micron with peaks from -1.8 to 2 micronz. At 45 m/min, the peaks are
±1.4 micron.

Table 4 shows a compilation of results.
All error and deviation values remain below or equal to 4 microns.
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Fig. 33 Simulated vertical error for a straight line segment : feedrates of 30, 45 et 60 m/min, cubic
joint interpolation

Ordre Trajet Fr εmax εmin εmax
Z εmin

Z ||δ ||max ||δ ||min

ms m/min micron micron micron micron micron micron

3 10 30 3.787 0.069 2.124 -1.936 3.786 0.021
3 10 45 4.053 0.069 2.351 -2.059 3.285 0.032
3 10 60 3.692 0.069 1.978 -1.738 3.146 0.035
3 5 30 3.787 0.069 2.124 -1.936 3.786 0.021
3 10 30 3.787 0.069 2.124 -1.936 3.786 0.021
3 20 30 3.692 0.069 1.978 -1.738 3.146 0.035

Table 4 Simulated errors and deviations for a straight line segment: position control with cubic
joint interpolation

6.4.2 Arc with third order interpolation

The same simulation process is repeated for a typical arc path by first varying the
feed-rate and the results are shown on Fig. 34.

The three signals are actually very similar and are featuring irregular oscillation
signals with averages at approximately 0.5 micron with peaks at 0,02 and 1.85 mi-
cron. As the feedrate increases, the deviation signal becomes less dense indicating
a reduction of oscillation frequencies.

The simulation is repeated by varying the cycle time of the CNC controller and
the results are shown in Fig. (35).
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Fig. 34 Simulated path deviation for an arc : feedrates of 30, 45 et 60m/min, cubic joint interpo-
lation
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Fig. 35 Simulated path deviation for an arc : cycle times of 5, 10 et 20ms, cubic joint interpolation

The three signals are actually very similar and are featuring irregular oscilla-
tion signals with averages at approximately 0,5 microns. Moreover, the deviation
remains below 2 microns regardless of the case.

In Fig. 33, the simulation results are shown for the selectedfeedrates.
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Fig. 36 Simulated vertical error for an arc : feedrates of 30, 45 et 60m/min, cubic joint interpola-
tion

The three signals are actually very similar and are featuring irregular oscillation
signals with averages at approximately 0,1 micron with extremas at -0.4 and 0.6
micron and peaks at±0.8 micron.

We then study the vertical error where the controller cycle times are varied,
Fig. 37.

As it was observed for the former tests, the vertical error signals are very similar
and their density is inverserly proportional to the controller cycle time.

Tests ends by collecting the results onto the following table 5.

Ordre Tp Fr εmax εmin εmax
Z εmin

Z ||δ ||max ||δ ||min

ms m/min micron micron micron micron micron micron

3 10 30 2.034 0.042 0.695 -0.806 1.939 0.012
3 10 45 1.991 0.023 0.704 -0.812 1.816 0.037
3 10 60 1.823 0.058 0.695 -0.806 1.802 0.040
3 5 30 2.196 0.023 0.704 -0.812 1.939 0.012
3 10 30 2.034 0.042 0.695 -0.806 1.939 0.012
3 20 30 1.823 0.058 0.695 -0.806 1.802 0.033

Table 5 Simulated errors and deviations for an arc : position control with cubic joint interpolation

The results barely exceed the value of 2 microns whatever thespeed and response
time.
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Fig. 37 Simulated vertical error for an arc : cycle times of 5, 10 et 20ms, cubic joint interpolation

6.4.3 Discussion of the third order joint interpolation

A trajectory tracking using third order interpolators gives very satisfactory results.
In all instances, deviation of less than 2 microns are obtained.

It is notable that the arc path results are better than for straight line segment.
The difference between the error vector and deviation is at most 0.2 micron. As a
consequence, the simulated path is not significantly delayed or ahead of the nominal
path. It is observed that the curve is simulated even closer to the theoretical curve
for the case of the line segment.

The results of surface finish indicate milling quality within 5 and 2 microns re-
spectively for the line segments and circular arcs. Indeed,the results of the third
order interpollation show that hexapod performance shouldbe sufficient for UHSM
(feedrate of 60 m/min or higher). Position control with cubic interpolators are highly
recommended.

Furthermore, algorithms can be implemented in a conventional CNC adjusted
with relatively slow response time.

Among other advantages, the following can be observed :

• The relative ease for calculating joint speeds at the beginning and the end of a
trajectory interval.

• The continuity of movement is ensured.

The only drawback is that the acceleration continuity will not be ensured. Indeed,
nothing prevents large acceleration variations to be applied on the motors.
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6.5 Control with fifth order interpolation

6.5.1 Straight line segment with fifth order interpolation

Implementing interpolators with fifth order polynomial functions follows the goal
to ensure acceleration continuity of interval transitions. Fig. 38 shows the results for
the same straight line segment according to different selected feedrates.
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Fig. 38 Simulated path deviation for a straight line segment : feedrates of 30, 45 et 60 m/min,
quintic joint interpolation

The three signals are featuring growing high frequency oscillations until the tra-
jectory ends. These deviation signals seem similar to the third order results. The
deviation remains below 4 microns. At the higher feedrate, the signal amplitude is
sligthly larger at the beginning.

The simulation is repeated by varying the cycle time of the CNC controller and
the results are shown in Fig. (39).

The three signals are featuring growing high frequency oscillations until the tra-
jectory ends. The deviation signals share some commonalityand contain oscillations
remaining below 4 microns. Moreover, as the cycle time gets shorter, the signal be-
comes denser.

We continue the analysis by showing graphs of vertical errors. The following
graph shows the results at different cycle times, 40.

The three signals are actually relatively similar and are featuring growing high
frequency oscillations until the trajectory ends. At feedrates of 30 and 45 m/min, the
graphics show signals which are centered on -0.2 micron withincreasing oscillation
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Fig. 39 Simulated path deviation for a straight line segment : cycletimes of 5, 10 et 20 ms, quintic
joint interpolation

with peaks getting close to -2 and 2 microns. At 60m/min, the oscillations start with
larger amplitudes and grow less rapidly to reach -3,5 and 2 micron peaks.
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Fig. 40 Simulated vertical error for a straight line segment : feedrates of 30, 45 et 60 m/min,
quintic joint interpolation
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The next error results are calculated at cycle times, Fig. 40.
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Fig. 41 Simulated vertical error for a straight line segment : cycletimes of 5, 10 et 20 ms, quintic
joint interpolation

These results show a similar trend then for changing the feedrates. At feedrates of
30 and 45 m/min, the graphics show signals which are centeredon -0.2 micron with
increasing oscillation with peaks getting close to -2 and 2 microns. At 60m/min,
the oscillations start with larger amplitudes and grow lessrapidly to reach -3 and 2
micron peaks.

Several tests were performed and the results are summarizedon the following
table 6.

Ordre Tp Fr εmax εmin εmax
Z εmin

Z ||δ ||max ||δ ||min

ms m/min micron micron micron micron micron micron

5 10 30 3.886 0.087 2.113 -1.935 3.502 0.021
5 10 45 4.578 0.119 1.806 -2.847 3.621 0.028
5 10 60 4.992 0.136 1.830 -3.847 3.948 0.56
5 5 30 3.730 0.082 1.985 -1.857 3.502 0.035
5 10 30 3.886 0.087 2.113 -1.935 3.502 0.021
5 20 30 4.992 0.258 1.701 -3.847 3.948 0.096

Table 6 Simulated errors and deviations for a straight line segment: position control with quintic
joint interpolation
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Table 6 shows that the values are between 3.5 and 5.5 microns.Note that these
values are proportional to the feed-rate or cycle time.

6.5.2 Arc with fifth order interpolation

The simulation calculations are repeated with the straightline nominal trajectory
being replaced by the arc. Fig. 42 shows the results for different feedrates.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position

’deviation_arc_enpos_ordre5_10ms_30mmin.mup.gnup’

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 0.2 0.4 0.6 0.8 1 1.2
D

ec
al

la
ge

 (
m

m
)

Temps de trajet

Deviation de position

’deviation_arc_enpos_ordre5_10ms_45mmin.mup.gnup’

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
ec

al
la

ge
 (

m
m

)

Temps de trajet

Deviation de position

’deviation_arc_enpos_ordre5_10ms_60mmin.mup.gnup’

Fig. 42 Simulated path deviation for an arc : feedrates of 30, 45 et 60m/min, quintic joint inter-
polation

The results show oscillations which tend to be slightly decreasing with a signifi-
cant peak at the beginning. Signals are centered on a decreasing affine curve. At 30
m/min, the largest oscillation deviation is 3 microns. Nothwithstanding the starting
peak, at 45 m/min, the deviation remains below the value of 5 microns. At 60/min,
the oscillation deviation starts at 8 microns.

After varying the feed rate, the simulation is repeated varying the cycle time of
the CNC controller and the results are shown in Fig. 43.

These deviation signals seem similar to the results of the former tests where
feedrates are modified. At a cycle time of 5 ms, the high frequency oscillating signal
is irregular and slowly reducing. Some peaks are observed at2 microns. At 10 ms,
similar observations can be made but the peaks reach 2,7 microns. At 20 ms, not
considering the starting peak, the oscillatory signal is slightly decreasing and the
peaks start at 8 microns.

In Fig. 40, the vertical error is calculated on the selected feed-rates.
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Fig. 43 Simulated path deviation for an arc : cycle times of 5, 10 et 20ms, quintic joint interpola-
tion

The curves are oscillations of relatively constant amplitude around a slightly in-
creasing curve. As the feed-rate increases, the oscillation center is shifted down and
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Fig. 44 Simulated vertical error for an arc : feedrates of 30, 45 et 60m/min, quintic joint interpo-
lation
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the amplitude becomes larger. For the cycle time of 30 m/min,45 m / min and 60
m / min, we observe linearized averages of respectively 0.3,0.9, 1.2 micron and
amplitudes of [-1, 0.6], [-1.8, 0.4], [-3, 0.5] microns respectively.

Then, we study the vertical error for different cycle times,Fig. 45.
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Fig. 45 Simulated vertical error for an arc : cycle times of 5, 10 et 20ms, quintic joint interpolation

As expected, these vertical error signals seem similar to the results of the former
tests where feedrates are modified. The curves are determined by a center following
a slightly non-linear curve. At the cycle time of 5 ms, the average is approximated
to -0.1 micron, with sligthly decreasing amplitudes, wherethe extremas are -1 and
0.5 micron and peak reaches -1.2 and 0.6 micron. Time of 20 ms,the average signal
is -1 micron with peaks amount to 0.6 micron and down almost to3 microns.

To terminate this fifth order interpollation simulation cycle, the results are col-
lected and presented in table 7.

Ordre Tp Fr εmax εmin εmax
Z εmin

Z ||δ ||max ||δ ||min

ms m/min micron micron micron micron micron micron

5 10 30 3.037 0.042 0.679 -1.283 3.028 0.012
5 10 45 7.425 0.023 0.635 -2.742 7.423 0.037
5 10 60 13.052 0.129 0.635 -5.136 13.043 0.043
5 5 30 2.156 0.023 0.680 -0.867 2.017 0.012
5 10 30 3.037 0.042 0.679 -1.283 3.028 0.012
5 20 30 13.052 0.129 0.635 -5.136 13.0 0.037

Table 7 Simulated errors and deviations for an arc : position control with quintic joint interpolation
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We observe that the performance starts to decrease as the feedrate exceeds 45
m/min or the response time exceeds 10 ms. For UHSM, the calculated surface finish
is as high as 13 microns. Similar surface finish are reached ifcycle times are as high
as 20 ms. These poor results come from those first excessive unique peaks appearing
at the beginning of the path error signals. If we remove this first dedrimental peak,
then the table becomes the following 8. After excessive peakremoval, at high feed-
rates and slower cycle times, deviations reach 8 microns andvertical errors vary
between peaks of -3 and 0.7 microns.

Ordre Tp Fr εmax εmin εmax
Z εmin

Z ||δ ||max ||δ ||min

ms m/min micron micron micron micron micron micron

5 10 30 3.037 0.042 0.679 -1.283 3.028 0.012
5 10 45 7.425 0.023 0.635 -2.00 5.10 0.037
5 10 60 13.052 0.129 0.635 -3.00 8.00 0.043
5 5 30 2.156 0.023 0.680 -0.867 2.017 0.012
5 10 30 3.037 0.042 0.679 -1.283 3.028 0.012
5 20 30 NA 0.129 0.635 -3.00 8.00 0.037

Table 8 Second table or errors and deviations for an arc : position control with quintic joint inter-
polation

6.5.3 Discussion on fifth-order interpolation

Simulations of the fifth order give satisfactory results forhigh speed milling provid-
ing the initial excessive peak is not taken into account. However, performance is not
as good as for third order interpollations for very high speeds.

This interpollation stratedy is useful if it is necessary toensure jerk continuity at
path interval transitions. However, this approach requires the calculation of transi-
tional jerks which may increase implementation complexitywith time consumming
computations where Jacobians and their derivatives are involved. These computa-
tions should be not be performed on-line by the robot controller but handled off-line
by the CAM program on the remote computer. The CAM program maynot be ca-
pable to calculate actuated joint jerks.

This strategy is recommended as a second choice but it would be advisable to
apply a third order interpollation costing less computation time.

6.6 Discussion on the results of position control

Linear orders are not recommended despite their simplicitybecause you can not
perform high-speed machining. The third order gives the best results because the
accuracy is always ensured to remain under 4 and 2 microns respectively for straight
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line segments and arcs. Order 5 provides slightly less favorable results and it is more
complex to implement.

The implementation of high order interpolators becomes difficult because you
have to compute interval transition conditions that are noteasy to calculate.

All interpolators allow to follow trajectories with feed-rates up to 30 m/min cor-
responding toHSM at rapid cycle times of 5 ms or less. Note that trying to verify
UHSM with feedrates up to 60 m/min, the results indicate the application of order
three or five. Any case is feasible with third order inrerpollations.

7 Conclusion

The existence of an exact method for solving theFKP of the general6-6 hexapod
allows the design of a complete kinematics simulator to study milling processes.
A certified calculation method of the robot end-effector position has been imple-
mented in the analysis of milling task. It consists of a trajectory following algorithm
required for task planning applications, simulation and control. Several modeling
modules can simulate various essential elements: parallelmanipulator configura-
tion, kinematics modeler and solver, CNC control algorithms, set-point interpolla-
tors and performance calculations. For performance evaluation, new metrics were
proposed to evaluate surface finish more accurately.

This simulation package provides a kinematics result in theform of the trajectory
deviation and vertical error as a lower bound on the estimation of the surface finish
of any milling task.

We studied the performance of the classic CNC position control scheme applied
to the general6-6parallel robots and compared it with an existing hexapod. Model-
ing of various interpollation strategies at various feedrates and cycle times allowed
us to determine that milling quality surface finish can be obtained forHSM if third-
order interpolations are implemented. We can also implement functions interpola-
tions of the fifth order, but we must implement control cycle time less than or equal
to 10 ms but they remain more mathematically involved to prepare. Linear inter-
pollations will not allow forHSM and will only be limited to roughing at feedrates
slower then 20 m/min.

With position control,UHSM becomes only feasible if third order interpolations
are established. Results are slightly better for arcs then for straight line segments.

This work has allowed the design and programming of a complete robotic sim-
ulation package served as the backbone for the complete highspeed milling sim-
ulation program prepared as a collaboration of the INRIA in Nancy and Paris VI
Universityto fine-tune general Gough platforms and their position-based CNCs.
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