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Abstract

This thesis addresses probabilistic approaches to uncertainty quantification, within the

context of climate science. For the results of climate studies to be appropriately un-

derstood and applied, it is necessary to quantify their relation to the observable world.

Probability theory provides a formal approach that can be applied commonly to the

encountered uncertainties. Three studies are presented within. The first addresses the

Bayesian calibration of climate simulators. This method quantifies simulation uncer-

tainties by taking into account inherent model and observation uncertainties. Here an

alternative method for the fast statistical emulators of model parameter relationships

is tested, as well as a rigorous approach to quantifying model limitations. The second

examines probabilistic methods for identifying regional climatological features and

quantifying the related uncertainties. Such features serve as a basis of comparison

for climate simulations, as well as defining, to some extent, how we view evolution

of the modern climate. Here typical patterns are recreated using an approach that

quantifies uncertainty in the data analysis. As well, temporal shifts in the distribu-

tion of these features and their relation to ocean variability is explored. The third

study experiments with approaches to regional stochastic weather generation. There

is an inherent residual between climate simulations and large scale features, and re-

gional variability seen on daily timescales. Weather generators provide an error model

to quantify this uncertainty, and define features and variability underrepresented in
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global simulations. A method is developed which allows for regional, rather than site

specific, simulation for the North Atlantic, a region of very active and varied atmo-

spheric activity. In total, the work presented within covers the range of uncertainty

types that must be considered by climate studies. The individual articles addresses

contemporary questions concerning appropriate methods and implementation for their

probabilistic quantification.
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Chapter 1

Introduction

This chapter provides an overview of and supporting material for the three articles that

document the work performed for this thesis. As the body of the thesis is composed

of stand-alone articles, there is overlap between these individual articles and with the

material presented here. Some emphasis is placed here on providing details for subjects

not directly addressed in later sections and on synopses of alternate approaches not

pursued.

1.1 Types of Uncertainties

The central theme of the work presented here is the quantification of uncertainty

for climate modelling applications. The need for improved quantification of forecast

uncertainties has been expressed by many sources including the Intergovernmental

Panel on Climate Change; e.g., Stainforth et al. (2005) ; Murphy et al. (2007a) ;

Solomon et al. (2007a) ; Snyder et al. (2011). Without some measure of how climate

simulation results relate to the observable world, these studies represent little more

than best guesses or thought experiments. It is desired that, when possible, these

uncertainties be expressed probabilistically (Webster et al., 2006) as, due to the in-

1
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herent unpredictability of climate systems (Palmer, 2006), most end user decisions

regarding climate issues are matters of risk management (Richardson, 2006; Beven,

2009). As well, end users are not only concerned with long-term global phenomena,

but require information on sub-annual scales for prescribed regions, as this relates to a

variety of civic, industrial and agricultural concerns; e.g, Beven (2009), Maraun et al.

(2010), Brand (2011), and Mukherjee and Dutta (2011). As such, uncertainty quan-

tification requires methods which describe the natural variability of the investigated

system(s) and the potential errors of the simulation methods. The work presented

here addresses both needs by creating probabilistic descriptions of various observed

and simulated elements of the climate system.

Computational simulations, such as those used in climate studies, have many

inherent sources of uncertainty, listed in Table 1.1. Most general is that they are typ-

ically applied to complex nonlinear systems. As such, even though these simulations

are defined by formal relationships there is no a priori way to know the output that

will result from given inputs. Nor is it possible to fully predict how changes in input

will effect the resulting output. This is referred to as “code uncertainty” (Kennedy

and O’Hagen, 2001), although often this situation is a result of the complexity of

the system being investigated, hence the need for complex models, rather than only

a property of the programmes used. This is especially relevant to climate simula-

tions given the highly nonlinear and open nature of the climate system as well as the

intricacies of many climate models.

In climate simulations, responses to subprocesses and external forcing are often

represented by empirical parametrizations, defined by constants referred to as model

parameters. In climate modelling, uncertainty regarding appropriate values for pa-

rameters which cannot be derived from first principles is known as parametric un-

certainty. These approximate descriptions of indirect processes are unavoidable as
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climate is a continuous open system while numerical models are limited to discrete

descriptions on predetermined scales; an issue known as the “closure problem” (Muller

and Storch, 2004). The term parametric uncertainty is in other contexts used to refer

to uncertainty regarding model inputs in general (Kennedy and O’Hagen, 2001).

For climate simulations, additional inputs are required to prescribe external forc-

ing and initial conditions. External forcing includes solar cycles and greenhouse gas

concentrations for global models as well as boundary conditions and other indicators

for regional simulations. Solar cycles are highly predictable and paleo records of at-

mospheric concentrations are available. The future composition of the atmosphere,

however, is dependent on many chemical, biological, and anthropogenic factors, few

of which are well understood and all of which will be influenced by climate evolution

(Snyder et al., 2011). Greenhouse gas concentrations are external in the sense that it

is uncertain how to describe these feedback effects, although carbon cycle models are

under development. Typically concentrations are prescribed as abstract experiments

or as plausible scenarios (Nakicenovic et al., 2000a). For the near future (next fifty

years) the difference between conservative and extreme proposed scenarios is small

and other uncertainties dominate (Wilby and Harris, 2006; Deque et al., 2007). Over

many (∼ 10) decades, however, the range of plausible outcomes diverges and becomes

a driver of the mean climate state (New and Hulme, 2000). An additional input

uncertainty for climate simulations are initial conditions. Chaotic systems, such as

those which describe atmospheric evolution, are highly sensitive to this uncertainty

which dominates over meteorological time scales. Since initial conditions cannot be

perfectly known, even a perfect simulation will diverge from the observed evolution

in a matter of (simulated) days (Kalnay, 2002). However, unless the system is near

a tipping point; i.e., an unstable state where a small deviation will cause the system

to tend towards a new equilibrium, mean climate statistics are insensitive to initial
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conditions, over sufficiently long simulations. As such, climate simulations should be

evaluated using long-term climate statistics, rather than the observed chronologies

typically used to evaluate meteorological forecasts (Muller and Storch, 2004).

Note that the parametric uncertainty, as discussed, refers only to choosing ap-

propriate parameter values, not the parametrization schemes that incorporate them.

Errors resulting from differences between the true system dynamics and simulator de-

sign are referred to as structural errors. Since these errors would exist even if optimal

forcings, initial conditions, and parameter values could be known, they are considered

a separate source of uncertainty. As all simulations are limited representations of

observed systems these discrepancies are inherent to the practice of modelling. De-

scribing structural errors for climate simulations is complex due to the number of

simulated variables, and the imprecision with which the relationships between these

variables is known (Allen et al., 2006). As well, limited amounts of data for past

climate can make it difficult to quantify the temporal nature of model biases; e.g.,

if a simulation under-represents an observed warm period, this could imply that the

simulation is cold biased, or that due to uncertainty in initial conditions it is repre-

senting a different state of a natural cycle than that of the observed chronology cf.,

Deser et al. (2012).

Related to structural uncertainty is what Kennedy and O’Hagen (2001) call “resid-

ual variability”. This refers to the situation where a simulation makes a prediction

for a given set of inputs, for which there are many possible observed states. In some

cases this is an example of structural error; a more detailed description of the system

might more narrowly define the relationship between inputs and possible events. For

weather forecasting, however, the chaotic nature of the involved systems make cur-

rent states unpredictable past the range of a few days. As such, climate models can

only reliably describe long-term climate conditions; statistical properties which would
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be shared by many possible weather sequences. For this context, structural error

is considered to be uncertainty about a simulation’s depiction of climate variables,

while residual variability refers to uncertainty as to how these climatic conditions will

manifest themselves as weather events.

Descriptions of the uncertainties assumes a known state for the simulation to be

compared against. Observational uncertainties however are unavoidable and need

to be taken into account when estimating other uncertainties. Additionally, often

for climate studies direct measurements are not possible and so variables must be

inferred from proxies using potentially imprecise relationships (Snyder et al., 2011).

Identified climate features, such as trends or cycles, also have associated uncertainties

relating to the statistical methods used to identify and/or define them. One major

source of observational uncertainty for climate studies is the temporally and spatially

limited supply of historical data (van der Veen, 2001). This makes it difficult to verify

inferences based on proxy data and to determine the significance of statistical features.

Due to the interconnected nature of the climate system, these uncertainties com-

pound in forecasts (Snyder et al., 2011). This can be thought of as there being mul-

tiple possible external forcing scenarios and initial conditions that can be interpreted

through multiple imperfect climate simulations. These predictions, in turn, actually

imply a continuum of possible current states, which themselves can only be impre-

cisely observed and so represent many possible realities. In practice uncertainties are

described using such discrete ensembles of multiple possible trajectories. However,

the situation is actually even more complex as the use of “multiple” and “many” in

the preceding sentences would be more accurately replaced with “infinite possibilities

of differing plausibility”. As such, these ensembles must represent these plausibilities

in such a way, that their total effect on certainty can be determined from the finite set

of projections included in the ensemble. How to best determine and quantify uncer-
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tainty is an open question and a subject of broad philosophical discussion. As these

descriptions are a quantification of the amount of information available to particular

observers concerning an unknowable true state/outcome/history they are unavoid-

ably approximate and subjective. Different approaches have been applied in climate

studies. Some focus on establishing upper and lower bounds of possible behaviours or

quantifying linguistic expressions of belief (Matthies, 2007). Most often in practice,

probabilistic models are used as they are able to express the highest level of math-

ematical detail (Matthies, 2007). It is largely agreed that this is the most desirable

way to express uncertainty, although it is sometimes contentious as to whether it is

possible in select situations to provide all the information needed to make use of this

level of formalism (Beven, 2009). General statements can be made in probabilistic

form; e.g., uniform distributions which allow equal probability within a predetermined

range or Cauchy distributions which describe median tendencies but still allow signif-

icant probability for any magnitude of outlier, as well as non-parametric descriptions.

However, since formal distributions define plausibility across an entire range of out-

comes; i.e., not just upper and lower bounds for what is possible, careless use can

overstate or misrepresent the level of information available.

Table 1.1: Summary of uncertainty types

Uncertainty type Description
Structural Approximations: conceptual and numeric
Parametric Selection of constants used in parametrisation of sub-scale processes
Code Non-linearity limits ability to predict model output from inputs
Residual Difference between simulation and full range of potential events
Observational Limitations in measurement and classification ability
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1.2 Bayesian inference

Considering probability as a measure of uncertainty is referred to as the Bayesian

interpretation. This differs from the more common interpretation of probability as

the measure of the expected frequency of different types of random events, but is

built on the same mathematical principles (Jaynes, 2003a). As such, in the Bayesian

interpretation, the probability distribution is interpreted as a quantification of the

amount of information available rather than an inherent property of the investigated

phenomena (Jaynes, 2003a). This allows for Bayesian inference which uses the propo-

sitions of probability theory as rules of logical inference for uncertain quantities. As

such it provides a formal framework for expressing and combining uncertainties, as

well as using additional information to constrain initial beliefs.

Bayesian inference is applied many times in the work presented here. Although

based on the ideas of Pierre-Simon Laplace (1749–1827), (Struik, 1987), it was popu-

larised and formalised in the 20th Century (Cox and Hinkley, 1974). Jaynes (2003a)

provides a complete overview of the concepts and methods, as well as some colourful

commentary on scientific practise. More applied descriptions are given by MacKay

(2003) and Sivia and Skilling (2006b).

Typically analysis is carried out using Bayes’ Theorem (hence the name) :

P (H|D, I) =
P (D|H, I)P (H|I)

P (D|I)
, (1.1)

which is often read as H and D representing a hypothesis and observed data respec-

tively, such that one reads: “the probability of the hypothesis given observed data

(the Posterior Distribution) is proportional to the probability of the data given the hy-

pothesis (the Likelihood Function) times the probability of the hypothesis (the Prior

Distribution). The normalisation factor P (D|I) is referred to as the Evidence Term.
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The I term serves as a reminder that the form of the distributions used are always

conditional upon the amount of information available to the individual who defines

them (Jaynes, 2003a). As the I term is not an actual value in the calculations, it

is often omitted. When the analysis is used to address parametric uncertainty the

process is referred to as model calibration. In this case the hypotheses that comprise

the H terms are sets of model parameters, so that the posterior distribution expresses

confidence in the suitability of a given set of model parameters given observations and

prior beliefs/information. Hence, rather than obtaining a single optimised model, one

obtains a distribution of possible realisations, which can be used to estimate predic-

tion uncertainties. Using the probability calculus also allows the inclusion of relevant

uncertainties in the observations and the model in the calculation of this posterior.

The evidence term can be considered the distribution of the observations over the

model space, at all possible parameter values; i.e.,

P (D|M) =
∫

P (D, θ|M) dθ =
∫

P (D|θ, M)P (θ|M) dθ, (1.2)

where M is the selected model and θ the model parameters. The choice of model M

here replaces the I term as it defines the form of the distribution based on available

information; i.e., the possibility of M being a useful description of the data D. As

the evidence term is constant when considering the calibration problem and as its de-

termination is typically analytically intractable, it is often ignored. However, as the

term describes how well a given model fits the data “on average”; i.e., over the distri-

bution of potential model parameter values (Sivia and Skilling, 2006b), its value can

be used to compare the robustness of different models; cf., Burnham (2004), Dose and

Menzel (2004), and Bhat and Kumar (2010). Alternately, model comparison through

a Bayesian variant of analysis of variance methods has been developed (Kaufman and
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Sain, 2010; Sain et al., 2010).

A reason for the current increase in popularity of Bayesian methods is the avail-

ability of the computational resources needed for extensive random sampling. Such

sampling is used to estimate the density of and to draw samples from analytically

intractable distributions. These are often produced by Bayesian inference due to dif-

ficulties evaluating the evidence term. These complex distributions can be avoided

by selecting initial distributions whose combination results in closed form solutions,

but this greatly limits the flexibility of the Bayesian approach. One notable sampling

method is the Latin Hypercube. Here, the range of each parameter is broken up

into predetermined subsets. The method randomly generates many parameter com-

binations, but includes samples from each subset only once. This ensures that the

full ranges of individual parameters are represented using the least possible combi-

nations (McKay et al., 1979). It has been argued to be more efficient and effective

for experiment design and for providing computer inputs in machine learning ap-

plications (Urban and Fricker, 2010b), than standard gridded searches; cf., MacKay

(2003). There are several variations on this method as well as metrics to compare how

well dispersed the values in different hypercubes are; cf., Tang (1998), Grosso et al.

(2008a), and Abdellatif et al. (2010), as well as proposed alternatives; e.g., Morris

(1991). Another class of sampling techniques are Markov Chain Monte Carlo

(MCMC) methods. These create random walks biased towards locations of higher

probability, so that the distribution of samples (locations visited in the random walk)

approximates the theoretical probability distribution. A basic implementation is the

Metropolis-Hastings approach (Metropolis et al., 1953). There are many variations

which attempt to locate informative regions of the sample space efficiently, without

becoming trapped in local maximums. When a limited number of parametric distri-

butions are used, Gibbs sampling is effective (Gelman et al., 1995). Here parameters
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are varied sequentially in proportion to the conditional probability defined by fixing

the other parameter values. Another MCMC approach is Simulated Annealing, which

controls the probability of the random walk being allowed to move to a lower proba-

bility location through the course of the sampling. This allows for greater probability

space exploration at the beginning of the walk (Kirkpatrick et al., 1983). Alternately,

Hybrid Monte Carlo sampling incorporates a gradient-based method; i.e., the walk

proceeds in the direction which has produced probability increases in past steps, with

a stochastic component which increases as the gradient decreases. This attempts to

prevent the walk being trapped in local maximum by increasing the randomness of

the walk at these points (Neal, 1996a). Importance Sampling is used to focus the

sampling, potentially using an iterative search procedure (Neal, 2001), when there is

a known region of interest within the sample space (Denny, 2001). These variations

typically require additional information in order to appropriately tune the method

to the problem under consideration. It has been argued that Slice Sampling, a non-

parametric approach to Gibbs Sampling, can outperform other methods when this

additional information is not available (Neal, 2003b).

1.3 Model calibration

The first portion of this thesis documents the implementation of a Bayesian calibra-

tion methodology using a simplified General Circulation Model (GCM). One

objective of model calibration is to addresses parametric uncertainty, which repre-

sents a major source of uncertainty for GCMs used for climate studies. This is done

by using Bayesian inference to investigate plausible values for simulator parameters

using observational targets; i.e., large scale climate features that form the basis for

comparison between model output and observational data. By comparing simulator
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outputs against these observations, prior beliefs about reasonable parameter values

are evolved into posterior distributions describing parameter suitability. Repeated

sampling of model parameter values from these distributions allows for the creation

of probabilistic projections for future events based on simulator output. Calibration,

however, addresses more than parameter selection. As the formal routine accounts

for all relevant uncertainties, this allows quantified statements about what may be

inferred from the simulations. As such, error bars can be created for forecasts. Also,

this enables applications which use these forecasts to account for input uncertainties.

Without such uncertainty estimates, the practical usefulness of GCM simulations is

limited. Bayesian calibration has been presented as an alternative to parameter op-

timisation for earth systems modelling (Wagener et al., 2001b). The latter approach

does not allow for fully1 probabilistic forecasting since it identifies only a single set of

values, which are assumed optimal based on a selected metric. Such optimization ap-

proaches are also limited by their sensitivity to the chosen metric, without providing

any criterion for comparison between alternative choices (Khu, 2005).

The practise of using Bayesian methods for calibration and probabilistic projec-

tion has been developed largely in the field of hydrology and other geosciences; e.g.,

Sambridge and Mosegaard (2002a). Early work on choosing computer simulation pa-

rameters based on observations was referred to as addressing the “inverse problem”

(Mosegaard and Rygaard-Hjalsted, 1999; Sambridge, 1999); i.e., inferring a process

from the outcomes it produces rather than direct observation. More formal procedures

incorporating all the previously discussed uncertainties; cf., Kennedy and O’Hagen

(2001), have been applied to simulations in many different areas of study; e.g., glacial

modelling (Schaefli et al., 2005; Tarasov et al., 2012), agriculture (Hue et al., 2008),

1Ensembles of multiple optimised models using a variety of initial conditions are used to produce
uncertainty estimates, although this method is more limited and less flexible than a truly probabilistic
forecast.
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and forestry (van Oijen et al., 2011). Bayesian calibration has been advocated as a

rigorous approach to quantify uncertainties in climate forecasts. Early work in this

area focused on applying data assimilation methods to the inverse problem; e.g., Har-

greaves and Annan (2002) and Hargreaves et al. (2004). However, the formulation of

these methods; e.g., the requirement of Gaussian priors, is typically too specific to

allow them to be effectively extended to parameter estimation. Recently, large fore-

casting centres have worked to implement the hydrological methods, as described for

climate modelling by Rougier (2007a), for their simulators; e.g., Sanso et al. (2008),

Sanso and Forest (2009), Sexton and Murphy (2011), and Sexton et al. (2011). Out-

side of the examples given here, climate focused discussions of calibration are limited

in the literature and there are many open questions regarding effective execution. The

work presented in this thesis provides an example of the procedure within the context

of climate modelling, while making preliminary tests of some alternate implementation

approaches.

The computational expense of standard climate models is a major hindrance to

the implementation of Bayesian calibration. Exploring the parameter space using

MCMC methods requires running large numbers of individual simulations, with run

times for most GCMs being on the order of days to months (Muller and Storch, 2004).

The computational cost can be reduced by allowing certain portions of the calibration

routine to be performed using statistical emulation2 of the climate simulator response

to changes in parameter values (Annan and Hargreaves, 2007a). Since it is not pos-

sible to know exactly how changes in parameter values will affect model output, a

probabilistic representation of the inferred uncertain relationships is necessary. Such

a representation allows a computationally efficient exploration of the parameter space

2There is a (not universal) convention in calibration literature to refer to the dynamical model
being calibrated as a “simulator” and (if used) the empirical emulation of that model’s behaviour as
an “emulator”. This leaves the term model to be applied more generally without confusion.
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that takes into account the so-called code uncertainty, allowing it to be formally in-

cluded in the Bayesian approach (Craig et al., 2001a). It has been argued that for

certain applications an ensemble of well-calibrated low complexity models; i.e., com-

putationally fast, might produce more useful results than a complex model that can

only be emulated to a certain degree of certainty (Higdon et al., 2004). However,

most climate forecasting objectives, such as determining tipping points or transient

features, cannot be met with simulations simplified enough for direct MCMC sampling

to be computationally feasible.

Typically, emulation is done using linear methods such as Gaussian Process

Emulators (GPEs), which are essentially an extension of the smoothing method

known as kriging (Rougier et al., 2007b). In this thesis, I examine whether nonlinear

Bayesian Artificial Neural Networks (BANNs) can be a viable alternative for

calibration. Such networks have been used in a similar way for other applications; e.g.,

Khu and Werner (2003) Tarasov and Peltier (2005a). Artificial Neural Networks

(ANNs) are a regression method where a network of nonlinear functions linked by

prescribed weights and biases is used to map given inputs to expected outputs. These

nonlinear components, which can be arranged sequentially in multiple layers, make

the method more flexible than many empirical regression methods that are based on

linear correlations; cf., Kanevski et al. (2009). It has been shown that ANNs are able

to produce accurate emulations of GCMs (Knutti et al., 2003b). A single optimised

ANN, however, does not describe the emulation uncertainties needed in the formal

calibration framework. An ensemble of ANNs, where Bayesian inference is used to

determine the network weights and bias, defines a BANN (Neal, 1996a). This enables

the required estimation of the emulation uncertainties, and allows the BANN to be

considered an example of a non-parametric statistical model; cf., Lee (2006). As well,

hyper-parameters, which control characteristics of the distributions the weights and
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biases are drawn from, provide a means to regulate the complexity of the model.

For many ANN applications regulation of model complexity; i.e., the smoothness

of the prediction function it describes, is performed manually. This is often done

through early-stopping; i.e., halting training when the ANN parameters become so

specific to the training data that performance wrt. a separate set of test data is

diminished. Alternately, this can be achieved by including terms in the training metric

that penalise model complexity. The use of hyper-parameters fit through Bayesian

inference allows a data driven means to adjust how specific BANN parameters are

allowed to become. It has been argued that this technique, combined with the use of

ensemble statistics that marginalise over parametric uncertainties, potentially makes

BANNs more resistant to overfitting than ANNs fit to common maximum likelihood

measures (MacKay, 2003). This potential has been demonstrated in experiments

performed by Neal (1996a). However, BANNs are not immune from overfitting and

care must be taken when evaluating predictions.

Under certain conditions, the properties of a single layer BANN can be shown

to approach that of a GPE given an arbitrarily large number of components (Neal,

1996a). However, it is argued that, in practise, ANNs have the potential to outper-

form GPEs at extrapolating complex structures, and so can potentially create more

detailed emulations from limited data, especially when they incorporate multiple lay-

ers (MacKay, 2003). Within an iterative search procedure, BANNs may provide

better guesses about the location of unobserved high probability areas in the param-

eter phase space than is possible using linear interpolation. To test the feasibility of

including BANNs in a climate simulator calibration, BANNs are used as the statisti-

cal emulator in all the calibration experiments presented in this thesis. This requires

determining BANN structures that can emulate abstract statistical characteristics of

the simulator output when limited to the amounts of training data typically available
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when calibrating a full GCM. Tests are performed on how to best structure iterative

search routines to improve results from the BANNs’ data learning capabilities. As

well, to incorporate the BANNs into the formal approach, estimates of their emu-

lation uncertainties must be made from the ensemble of emulator predictions. The

results of these experiments will suggest whether further comparisons of climate model

emulators are warranted.

While the main focus of calibration is to address parametric uncertainty, this re-

quires estimates of structural model errors as well (Edwards et al., 2010b). In order

to identify preferred model parameters, it is necessary to quantify how accurate the

simulation has the potential to be. Attempts to fit models to a degree of precision

beyond their abilities force parameter values to attempt to compensate for shortcom-

ings that they were not designed to address. This results in simulations with much

reduced or no predictive capability (Annan et al., 2002). Think of fitting a straight

line with a fixed y-intercept of zero to data taken from a line with an intercept sig-

nificantly different from zero. While it is possible to produce a line that passes close

to a limited sample of data, this fit is not informative about the true trends. The

further from the sample the fit line is used for prediction, the more inaccurate these

predictions will be. As such, any uncertainty determined from the mismatch between

the fit line and the sample will be inadequate to describe the prediction errors. A fit

that reproduces the slope of the data while acknowledging that the observed values

will actually be offset an estimated distance from the fit line is much more useful for

prediction. In this case the prediction is always within the estimated uncertainties.

In this simple example it’s easy to say that the problem could be simply solved by a

more complex model. However, the problem of structural error is unavoidable in all

descriptions of complex and open real world systems, where no one model will be able

to capture all relevant attributes. The challenge in addressing structural error is the
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creation of a rigorous statistical description of this uncertainty (Doherty and Welter,

2010).

Some researchers advocate that rigorous statistical descriptions of structural un-

certainty are not possible and various alternate approaches have been suggested. One

proposal is quantifying this error by performing incomplete Bayesian calibrations us-

ing increasing amounts of observational data until the simulator projections for a set

of reserved observations no longer fall within a given tolerance level (Gaganis and

Smith, 2001). At this point it’s considered that the simulator parameters have been

over-tuned to make up for structural deficiencies in the model and the tolerance is

considered to be an approximation of the scale of the irreducible error. An alternative

method is finding a separate optimal simulator setting for every given observation,

and using this information to define the smallest possible volume of parameter space,

over which the simulator is optimised (Gaganis and Smith, 2006). The difference

between this compromise solution and the optimal solution for a given observation is

considered the inherent structural error of the model for describing the given obser-

vation. A comparison between the methods shows that the first approach gives more

conservative uncertainty estimates, and suggests that the optimisation scheme is only

useful when observations are plentiful and it is possible for the simulator to recreate

every individual observation (Gaganis and Smith, 2008). Neither approach is capable

of identifying model biases as they do not acknowledge the possibility. Avoiding the

issue of structural error, and instead calibrating a model within a given tolerance, does

not allow simulations to be seen as ways to sample the state of current knowledge.

Rather, they can only be seen as hypothesis to be evaluated, and most likely rejected

(Beven, 2009). Or in the case of GCMs, certainly rejected. This approach may be

pragmatic for highly specific risk assessment applications such bridge weight tolerance

or determining the (non)existence of locations for nuclear power plants where safety
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can be guaranteed. It is, however, impossible to define such rigid performance criteria

for exploratory and multi-objective studies of climate systems, whose nature preclude

the possibility of fully comprehensive models.

For climate simulations, formal probabilistic structural error estimates are es-

pecially challenging to produce (Allen et al., 2006). These estimates are typically

prescribed using subjective beliefs about the range of errors produced by unresolved

model processes; e.g., Goldstein and Rougier (2009) and Holden et al. (2009), or

by error estimates based on comparisons between the simulator and those of other

modelling studies; e.g., Murphy et al. (2007a). The first approach is problematic as

it may require a great deal of prior information beyond the current state of knowl-

edge regarding the relevant systems3. The second depends heavily on ensembles of

multiple GCMs, which should not be considered to be an unbiased estimate of cur-

rent climate knowledge (Knutti et al., 2010) and require significant computational

expense to generate. In this thesis an alternative and more formal approach is tested.

The nature of the structural error is described using a few tunable parameters and

values for these terms are evaluated along with simulator parameters as part of the

model calibration. This method has been successfully applied to less computationally

demanding geophysical modelling applications; e.g., Keats (2009). The experiments

presented here use a very simplified description in order to perform an initial test of

the methodology. It is examined whether these terms will evolve through the course

of the calibration and that the posterior values do not underestimate mismatches be-

tween the calibrated simulator and observations. The limitations created by such a

simple approximation are also observed. These investigations will suggest directions

for further development of Bayesian estimates of structural errors.

Similar issues to those created by structural errors arise when fitting models to

3It is often argued that if these errors were understood well enough to make such estimates then
they could be addressed within the simulation design.
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imprecisely known observations, and so estimates of the uncertainties of the calibra-

tion targets is also required. Selection of calibration targets is dependent on simulator

capabilities and application. They must be features which can be reproduced, in spite

of structural errors, by the simulator. As well, they must relate to the variables which

the simulator is being used to describe or predict, since the reliability of these fore-

casts will be estimated based on calibration results (Beven, 2009). As discussed, for

climate studies targets are often statistical properties rather than particular events4

or site chronologies. The next portion of this thesis deals with such features.

1.4 Atmospheric Circulation Regimes

Due to the low resolution of the simulator in the experiments in the first part of this

thesis, the calibration targets are limited to climatological averages over continental

scale regions. The second section of the thesis examines more subtle features such

as regional atmospheric circulation regimes. These regimes are not directly observed

as meteorological events or physical phenomena, but rather are mean states repre-

sentative of certain patterns of atmospheric circulation; e.g., preferred storm track

locations or typical locations of persistent high pressure features, that emerge at dif-

ferent scales. At decadal time scales, the frequency and residence time of such regimes

is informative about the natural variability of the system (Corti et al., 1999). They

are also informative about smaller spatial/temporal scale phenomena (Benestad et al.,

2008). It is thought that external forcing from climate change drivers can influence the

frequency, residency, and transitions between regimes (Palmer, 1999), while enacting

limited change in spatial structural (Terray et al., 2004). As such, these regimes are

4Exceptions include paleo studies designed to examine climatic shifts or simulations of long-term
events such as the North Atlantic great salinity anomaly. However, these events are shifts in large
scale trends rather than individual meteorological occurrences.
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potentially stationary features whose evolution and associations can offer more predic-

tive and explanatory power regarding modern phenomena than more linear measures

of climate evolution (Palmer, 1999).

One of the first documented examples of a chaotic nonlinear dynamical system is

the Lorenz system; a simplified set of equations meant to approximate local atmo-

spheric convection (Lorenz, 1963). One component of these systems are attractors;

which can include quasi-steady-state solutions that system realisations tend towards

without converging. These describe regimes of typical behaviour within the chaotic

evolution of the system. An exhaustive study of the now well known Lorenz system

is given by Sparrow (1982), and a general tutorial on the properties of chaotic sys-

tems can be found in Hale and Kocak (1991). The chaotic dynamics of the global

atmosphere affect the predictability of the system on different time scales (Kalnay,

2002) On short time scales (days), sensitivity to initial conditions limits predictabil-

ity. For longer time scales though, it is argued that observed central tendencies of

these chaotic behaviours suggest atmospheric circulation regimes can be considered

as elements of chaotic attractors (Palmer, 1999). Recent climate simulations suggest

current atmospheric regimes remain stable under projected changes in external (an-

thropogenic emissions) forcing (Terray et al., 2004). However, theoretical studies have

found that with sufficient forcing attractor structure can break down (Lorenz, 2006).

The dynamics of the earth-ocean-atmosphere system do not allow for analytical

descriptions of attractors. Rather, statistical methods are used to look for multimodal

behaviour within observed variability. Describing standard regional weather types has

been practised since the late 19th century; e.g., Hanns (1887). Algorithmic detection

of possible regimes is more recent. There are many approaches to describing such

regimes and the following common methods represent a departure form earlier linear

techniques of mapping teleconnection patterns; cf., Wallace and Gutzler (1981), and
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Principal Component Analysis (PCA) (Preisendorfer, 1988b); e.g., Fraedrich

et al. (1997), Bergant et al. (2002).

Identifying regions in the data phase space with high densities of occurrence

through kernel density estimates has been used in early studies; e.g., Corti et al.

(1999). The method estimates the Probability Density Function (PDF) of a

multivariate distribution by considering each data point to be the centre of a Gaus-

sian distribution with a preassigned width, summing the distributions and examining

the resulting topography for peaks. The kernel widths can be estimated using rule

of thumb formulations or through experiment (Roberts et al., 2012). Significance of

results is determined by comparing outcomes against those obtained using the same

parameters to model red-noise simulations. This allows for an estimate of the prob-

ability that the peaks observed in the data PDF are not artifacts of the estimation

method.

Another approach is hierarchical clustering (Wilks, 2011). The technique initiates

with each data point being considered an individual cluster. Then the two most

similar, typically by a variant of Euclidean distance, elements are merged to become

a new element. This process repeats until only one element remains; which is the

mean of all the original elements. The approach produces many possible clusters and

cluster combinations through a sequence of iterations. Significant modes from within

the total set of produced clusters are considered to be the most “reproducible”; i.e.,

the routine is repeated with different subsets of data and the clusters that repeatedly

appear in the analysis are considered the most informative (Cheng and Wallace, 1991).

The algorithm is simple to implement but produces a large amount of data which must

be subjectively analysed. Often it is used as means to check results of other methods;

i.e., that the clusters created also appear within a hierarchical investigation (Cassou

et al., 2004).
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The K-means clustering method divides the data set into a predefined number

of subsets (clusters) of similar elements. This results in cluster centroids; i.e., the

mean of all elements assigned to the same cluster, which describe characteristic pat-

terns common to their elements. The algorithm is designed to subdivide the data to

maximise the distance between centres, while also maximising the similarity of the

members assigned to individual clusters (Kaufman and Rousseeuw, 1990). The metric

for similarity is the squared Euclidean distance, which results in spherical clusters of

similar sizes (radii). Outcomes are examined using various methods, including cross-

validation, testing random initial centres, and comparison with results produced from

clustering red-noise samples with similar characteristics to the data (Cassou et al.,

2004).

The hierarchical and K-means methods referred to as crisp clustering. These group

data such that each data point is a member of exactly one distinct cluster. This can

be described by saying that the membership of a given data point to a certain cluster

is binary; i.e., either zero or one. Alternatively, fuzzy clustering allows a continuous

range of membership to a cluster on the range [0,1]. The method grew out of the idea

of fuzzy sets, originally motivated as a way to quantify imprecise uses of descriptors in

casual language (Zadeh, 1965); e.g., often people do not consider all men above 174cm

to be in the set of tall men, and those below in the set of short men, but use the term

subjectively to imply a continuum. The fuzzy extension of the k-means clustering

method is given by Bezdek (1981), and implementation algorithms are described by

Kaufman and Rousseeuw (1990). Fuzzy clustering has been previously applied to

identifying local circulation patterns (Ghosh and Mujumdar, 2006). Heuristics for

evaluating results are similar to those of other clustering methods (Klawonn and

Hoppner, 2003; Ghosh and Mujumdar, 2007). Fuzzy clustering is sometimes referred

to as probabilistic clustering as the degree of membership can be interpreted as the
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probability that a data point belongs to a given cluster (Bezdek, 1981). It can be

shown that the method is a nonparametric variant of formal probabilistic models; cf.,

MacKay (2003).

One such parametric probabilistic method are Gaussian Mixture Models

(GMMs). This approach describes a set of multivariate data by considering it as

being generated from a combination of Gaussian distributions. The task is to esti-

mate how many distributions comprise the sample, the percentage each distribution

contributes to the data sample, and the mean and variance terms for each distribution

(Fraley and Raftery, 2002). GMMs are conceptually quite similar to the described

heuristic methods. The k-means algorithm and fitting a GMM where the covariance

matrices are set to be diagonal, equal, and the same for all clusters, both depict

drawing spheres within the phase space to define data groupings (MacKay, 2003).

However, GMMs are a mathematically formal approach, fit to different metrics, that

give a continuous probabilistic measure of membership. This gives some advantages

over the other discussed clustering algorithms. It is trivial for GMMs to classify newly

observed data points as they define membership probabilities continuously across the

observation space. Once fitted, the model can be used for stochastic simulation by

sampling from the defined PDFs. As well, they can be fit with Bayesian methods,

giving a formal means for comparing models and describing parametric uncertainties.

The parametric nature; i.e, the use of defined distributions, of the model can however

overly restrict the form of the solution. As with all the methods described here, time

correlation is not taken into account, limiting the usefulness of simulation. For the

results of this method to be fully interpretable; i.e., to receive the full benefit of the

model’s formal structure, the modelled data would need to be temporally independent.

Bayesian implementations for GMMs have been developed (Neal, 1991). One

variation is known as an Infinite Mixture Model. Rather than pre-selecting an ini-
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tial number of clusters for the model, the number is set a priori to infinity, with

an associated prior distribution, which takes the form of a concentration parameter,

representing how diffuse the observed data is believed to be. This gives a means

to calculate uncertainty for the number of clusters, but makes it difficult to make

an ensemble estimate of the other parameters, since their number and meaning are

different for each sample. Alternately, the number of clusters can be determined by

comparing different potential values using Bayesian model comparison, which com-

pares values for the Bayesian evidence term; see Sivia and Skilling (2006b). As this

value is typically analytically intractable, an estimate can be computed using the

Bayesian Information Criterion (BIC); cf., Burnham (2004). Essentially this

calculation rewards goodness of fit, but penalises the number of parameters; i.e., the

principle of Occam’s Razor. Use of this method for model selection is discussed by

Lee (2006) for ANNs, and for selecting the form of GMMs in the context of climate

data by Rust et al. (2010).

Clustering is not the only classification approach to have been applied in climato-

logical contexts. Most of the described classification methods attempt to define only

the most distinct groups within the data set. Alternately, Self Organising Maps

(SOMs) create sets of similar states so as to highlight more subtle differences and

transitions in behaviour (Kohonen et al., 1996). As this is not a clustering method

but rather a form of discreet nonlinear regression there is the potential to invent

features not actually present in the data. However, when effective, SOMs are able

to present a more continuous and nuanced description of the features present in the

investigated variables. SOMs present full maps of the same dimension of the data, as

is the case for other clustering methods, referred to as nodes. These are arranged in a

two-dimensional arrays, referred to as grids. The individual nodes are referenced by

their x,y coordinate on the grid or by their sequence of occurrence when reading left-
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to-right top-to-bottom. Training occurs by finding the node most representative of a

given data point, then adjusting this map and those of nearby nodes, relative to the

grid, to match the data point based on set learning rates and decorrelation lengths.

Training is repeated until convergence is reached. Performance is checked by the er-

ror between the final nodes and the data points they are considered representative

of. As well, it is checked that nodes that are neighbours on the grid are in fact more

similar to each other than to any other nodes. Hewitson and Crane (2002) provides

an overview of the application of the method to the field of synoptic climatology. The

method has been applied to classify weather patterns in the Arctic (Cassano et al.,

2005) and Antarctic (Reusch and Alley, 2007) regions, as well as the North Atlantic

(Reusch et al., 2007).

SOMs have been referred to as discreet analogues to other nonlinear equivalents

to common data analysis techniques (Hsieh, 2004); i.e., PCA and Canonical Corre-

lation Analysis. Here ANNs are used to create nonlinear functions to reduce a data

field to a single variable and then map this variable back to the original data (Hsieh,

2004). Such methods have been successfully used to investigate El Nino Southern Os-

cillation processes (Monahan, 2001) and Northern Hemisphere atmospheric dynamics

(Monahan et al., 2001), but it is suggested that their performance would suffer in

the higher noise to signal ratios found in regional studies of higher latitudes (Hsieh,

2004). Recently, another nonlinear technique, Network Analysis, has been employed

to analyse climate data. Typically used to describe phenomena such as cellular in-

teractions, disease spread, and Internet systems, this approach considers data points

as discreet nodes and looks to map the connections between them (Barabasi and

Bonabeau, 2003). Systems that consist mostly of closely linked communities with

limited external connections are referred to as complex networks (Steinhaeuser and

Chawla, 2010). The method is applied to climate data by replacing the usual binary
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links between nodes with weights derived from lagged cross-correlations (Steinhaeuser

et al., 2010). Investigations using this approach suggest that many large scale climatic

phenomena can be thought of as occasionally intercommunicating subsystems (Tsonis

and Swanson, 2012). While this method offers an alternative way to study climate

phenomena, the results are mainly descriptive and, especially when they differ from

classical analyses, difficult to interpret.

Weather regime searches using crisp methods have been conducted for different re-

gions, using either Sea Level Pressure (SLP) and/or various geo-potential height

fields. Studies over the northern hemisphere have found patterns relating to pre-

viously documented variability features (Corti et al., 1999; Monahan et al., 2001;

Molteni et al., 2006). The significance of results produced over this broad region have

however been questioned (Stephenson et al., 2004; Christiansen, 2007). Studies over

different sections of western Europe by Corte-Real et al. (1998) and Casty et al. (2005)

revealed common high pressure features and local manifestations of the North At-

lantic Oscillation (NAO). The latter is indicative of extra-tropical cyclone tracks

across the North Atlantic (Vallis et al., 2004). It is classically defined as the anomaly

in the difference in SLP for local measurements in Iceland and the Azores, although,

it’s broader regional structure has been documented by many studies and methods;

cf., Hurrell et al. (2003)

The second section of this thesis focuses on describing atmospheric regimes for the

North Atlantic region. It is believed that ocean circulation anomalies over this region

and the recently observed variability in Labrador Sea temperatures (Yashayaev and

Clarke, 2006), including some of the extreme observations from the last few years can

be associated with atmospheric regimes (Zhu and Demirov, 2011). The Labrador Sea

plays an important role in global ocean dynamics as a location for the deep water

formation believed to partially drive the thermohaline circulation (Haine et al., 2008)
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and has motivated more detailed regional studies; e.g., Zhu et al. (2010). As such,

descriptions of atmospheric processes from this region are particularly important to

understanding global climate dynamics and represent important metrics for evaluating

GCMs.

Studies of daily SLP anomalies over the North Atlantic region by using K-means

clustering have identified NAO+/- regimes, as well as blocking regimes known as

the Atlantic Ridge (AR), and Greenland-Scandinavian Dipole (SG), (Cas-

sou et al., 2004). These are also observed by studies using regions shifted to focus

more on Europe and alternate methods; i.e., GMMs, although these studies report

additional; c.f., Terray et al. (2004); Rust et al. (2010), or fewer; c.f., Franzke et al.

(2011), features of interest than the four commonly discussed. Discussion of the ’cor-

rect’ number of patterns is ongoing and often dependent on what researchers are

attempting to describe through these patterns. Work in this thesis focuses on de-

scribing the four patterns whose associations are most commonly documented in the

literature, although Appendix B offers some alternative analyses using more involved

classification methods, that tentatively support the observations of (Franzke et al.,

2011). The four regimes, NAO+/-, AR, and SG, have been related to various re-

gional climactic features. The NAO+ is linked to above average precipitation for

North Europe and Eastern US and cold events for Eastern Canada, and the NAO-

with above average precipitation for Southern Europe and the Canadian Arctic (Yiou,

2004). The Madden-Julian Oscillation5 appears to be associated with shifts between

NAO+ and NAO- over timescales of one to two weeks, possibly as a driving influence

(Cassou, 2008). It has been argued that given the extreme dominance of the NAO-

regime in the winter of 2009/2010 and the trends typically associated with the regime,

that European winter was actually far milder than could be expected, despite many

5A cyclic pattern of eastward propagating moist convection that appears in the Indian and West
Pacific Oceans (Zhang, 2005).
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extreme cold events being observed. This has been interpreted as a climate change

signal (Cattiaux et al., 2010). The SG is associated with extreme precipitation for

East Greenland and the Mediterranean and the AR to high temperatures and pre-

cipitation for Newfoundland (Yiou, 2004) and decreased rainfall across the Iberian

Peninsula (OrtizBevia et al., 2011). Associations between increased blocking events,

which are poorly represented by the traditional NAO index, and warmer sea temper-

atures as well as the Atlantic Multidecadal Oscillation6 have also been documented

(Hakkinen et al., 2011).

In this thesis, I test whether the weather regimes documented for the North At-

lantic can be reproduced using Bayesian GMMs. This approach should theoreti-

cally be able to reconstruct patterns of the form described by previous studies, while

quantifying uncertainties in their spatial structure and classification. While applying

a Bayesian method involves more detailed implementation and analysis than more

commonly used algorithms, these features have been identified as potentially desir-

able calibration targets (Palmer, 2012). Use of such features within the calibration

framework requires descriptions of observational uncertainty. Typical distributions

of regimes may provide additional information about the system state (Michel et al.,

2012). This is assessed in this thesis by classifying interannual atmospheric trends

through fuzzy clustering. This non-parametric approach does not overly restrict the

form of the results, while the calculated memberships levels allow classification uncer-

tainties to be accounted for. It is examined whether the resulting modes are indicative

of shifts in the distributions of weather regimes. These interannual modes are also

compared against results from previous studies and ocean data. One of the motiva-

tions for considering long-term trends is that they are more directly comparable to the

evolution of the ocean states that they are believed to be linked with (Marsh et al.,

6An observed oscillation between anomalously warm and cold Atlantic water with a period of
around 70 years (Schlesinger and Ramankutty, 1994).
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2008; Zhu and Demirov, 2011). Another is the observation that current GCMs do not

provide consistent descriptions of regional weather regimes (Rust et al., 2010). This

may be because the weather regimes are closely tied to detailed synoptic features that

many GCMs struggle to represent in detail (Muller and Storch, 2004). Interannual

trends are potentially more within the reach of lower resolution simulations.

1.5 Weather Generator

That the described regimes can be statistically linked to more limited spatial/tempo-

ral scale regional phenomena such as storm activity (Cattiaux et al., 2010; OrtizBevia

et al., 2011), makes them useful as predictors which can be used to constrain pro-

jections for more variable local events referred to as predictands. GCMs typically

underestimate variability in general and at mesoscale spatial and/or temporal scales

in particular since they oversimplify or do not represent the related processes and

interactions (Muller and Storch, 2004). The likely significant role of comparatively

small scale variability as a driver of climate variation is still under discussion, cf.

Frankignoul and Hasselmann (1977) and Monahan et al. (2010). Even when it is

possible to accurately simulate climatic trends, it is often an open question how much

this information constrains the potential range of the related smaller scale behaviours

(Milliff et al., 2011). Describing the variability of these processes is required to further

quantify the residual variability portion of simulation uncertainties. These studies are

also needed to provide information for regional applications and risk assessment given

that local responses can vary significantly from region to region (Benestad et al.,

2008). While it may be optimal to couple as many linked processes as possible into

unified simulations, the ability to do this is constrained by theoretical and compu-

tational limitations (Sato, 2004), especially when considering the need for ensemble
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simulations for uncertainty quantification.

Using larger scale features to make projections for smaller scale phenomena is

referred to as downscaling. Downscaling can be done dynamically by using output

from a global model as boundary conditions for a higher resolution Regional Cli-

mate Model (RCM). Alternately, empirical-statistical downscaling uses data to

derive statistical relationships between variables. This greatly decreases computa-

tional expense compared to RCMs, and avoids the boundary effects inherent to those

models (Wilby et al., 2004). However, the method requires adequate data to deter-

mine the statistical relationships and the assumption that these relationships will be

stable over the time period for which the model is to be used (Wilby et al., 2004).

Many approaches have been implemented, including linear regressions, ANNs and

non-parametric classifications (Benestad et al., 2008). A common example is the

analogue method, which selects from a collection of historical states based on which

occurred under large scale predictors most similar to current conditions (von Storch

and Zwiers, 1984). There are many general reviews of downscaling methods including

Murphy (1999), Campbell (2006), and Benestad et al. (2008).

Weather generators are a downscaling technique which produce stochastic simula-

tions of the evolution of a small scale process conditioned on large scale predictors7.

The focus on system evolution and the stochastic representation of unresolved pro-

cesses means these models are not calculated directly from the predictor state, as is

the case for many other downscaling approaches (von Storch, 1999; Benestad et al.,

2008). Most examples of weather generators are focused on precipitation modelling.

Simple examples involve fitting one or more standard distributions, typically Poisson-

type, to rainfall amounts and defining rules to choose which distribution to sample

from for a given interval; cf., Ferraris et al. (2003) and Maraun et al. (2010).

7Some authors; e.g., Wilby and Harris (2006), refer to weather generators which are conditioned
on external factors as being hybrids between weather generators and regression models.
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For the third portion of this thesis, a weather generator that describes the variabil-

ity within given long-term atmospheric regimes is developed. The interannual regimes

described in Section 1.4 are used as predictors to condition simulations of the daily

features within the North Atlantic region. The method combines Hidden Markov and

regression models to simulate state shifts and within state variability respectively; see

Corte-Real et al. (1999a) and Furrer and Katz (2007) for examples of conceptually

similar approaches. In Markov models, the probability of observing a given state

is conditional on the previous states of the system. Hidden Markov models are an

extension where there are multiple sets of these transition probabilities and a higher

order process determines which will be in use for a given time step; cf., Rasmussen

and Akintug (2004); Cappe (2005). A typical example, adapted from Rabiner (1989),

is to consider the occurrence of a sunny or cloudy days. This can be modelled by a

set of transition probabilities defining the odds that the next day will be sunny or

cloudy based on the state of the previous day. Consider a region where cloudy days

are more common in winter, and sunny days in summer. Thus, different transition

probabilities are appropriate for different seasons. The changing seasons, which mod-

ifies the Markov properties, and thus the statistics of the observed sequence of events,

is considered the hidden process. In this example the hidden process is quite regular,

but typically it is also thought of as being stochastic or externally prescribed by an

unknown mechanism. For weather generators the higher order, hidden, process is

the evolution of predictor values, in this case the state of atmospheric regimes. The

Markov process(es) describes the evolving state of the predicted variable.

Using identified atmospheric circulation patterns as downscaling predictors is com-

mon practise8; e.g., Corte-Real et al. (1999b), Bardossy et al. (2005), and Kannan and

8Boe et al. (2006) present an alternate bottom-up approach. They consider typical local events
and then classify large scale predictors based on what predictor arrangements are most likely to result
in a given behaviour. The method has been successful, but only for very specific regional settings;
e.g., what sort of local atmospheric conditions are most likely to result in heavy precipitation on a
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Ghosh (2010). Often large scale features are mapped to site specific observations; e.g.,

Semenov and Stratonovitch (2010). The goal, however, in this work is to reproduce

the evolution of full data fields produced by reanalysis; i.e., high resolution models

corrected with extensive data-assimilation (Kalnay et al., 1996a).

This approach is also known as empirical model reduction (Kravtsov et al., 2005).

A review of different methods is given by Strounine et al. (2010). The preferred

method, a lagged second order regression with stochastic noise terms is referred to

as a Linear Inverse Model (LIM) (Kravtsov et al., 2010), by the developers who

considered their approach to be a variation on earlier methods of the same name;

c.f., Kravtsov et al. (2005). This method and naming convention is adopted in this

thesis, but it should be noted that in the literature a LIM often refers only to models

without higher order terms. Further comparison with other mid-range forecasting

techniques is given by Hawkins et al. (2011). Conceptually, empirical model reduction

is similar to model emulation, but with a different focus. The goal of this method

is to produce self-evolving fields that match the observed variability, rather than

to model how key features will change due to different simulator settings. Using

this method to study unresolved behaviour within larger processes puts the work

presented here in the framework of reduced order stochastic models. These have been

used to investigate potential interactions in the earth system such as ocean responses

to external forcing; e.g., Frankignoul and Hasselmann (1977), Monahan et al. (2010),

and Prange et al. (2010). It has been argued, and for some cases demonstrated, that

formally incorporating stochastic models into GCMs and other simulations to describe

unresolved processes could effectively increase resolution without prohibitive increases

in computational expense; see, Palmer et al. (2005), Jung et al. (2005), Wilks (2008),

and Palmer (2012).

given day.
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Typically weather generators produce values for a limited number of distinct lo-

cal sites within the region of interest (Benestad et al., 2008), and so downscale both

temporally and spatially. Alternately the evolution over a region is depicted by dis-

creet transitions between finite sets of predetermined states through versions of the

analogue method; e.g.; Boe et al. (2006). For the weather generator developed here

this approach is augmented to produce continuous values over the entire region. The

motivation for this is that the dominant sources of variability over the North Atlantic,

extratropical cyclones, occur on spatial scales on the order of thousands of kilome-

tres (Hoskins and Hodges, 2010) and are highly variable in their manifestation. An

analogue type weather generator cannot sufficiently represent this variability, while a

regression model of the full system requires more model parameters than can be de-

termined by the amount of data available. This study experiments with the feasibility

of combining the methods by using an analogue type model, developed from a SOM

analysis, for basic features, and describing the residual variation with a regression

model. Experiments are performed to determine a suitable regression method for the

continuous portion of the model. Two methods are tested for creating the continuous

portion: a LIM parametric linear approach and a BANN model. Testing different

methods in different applications to determine when nonlinear approaches are advan-

tageous is ongoing in weather generator research; e.g., Tang and Hsieh (2002), Hashmi

et al. (2011), and Hawkins et al. (2011). Experiments using ANNs for forecasting and

as weather generator components have produced mixed results; cf., Tangang et al.

(1998), Tang et al. (2001) and Aguilar-Martinez and Hsieh (2009). The presented

weather generator provides an estimate of the residual variability between the large

scale features described previously and higher frequency processes. Such a model can

be used for more detailed local studies within the region it describes. Also, as the

weather generator is defined to behave differently for individual interannual regimes,
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comparing how these differences manifest structurally within the model may be in-

formative about properties of the long-term modes.

1.6 Summary

As outlined, the organisation of this thesis follows a top-down trajectory. First issues

relevant to quantifying global modelling uncertainties are addressed. Then, regional

scale modes are examined, using different methods to describe observed features and

the associated classification uncertainties. Finally, day to day local behaviours are

described, looking to match the full range of variability despite limited information of

related sub-processes and interactions. In practise however, it is difficult to separate

the topics addressed in the various sections. Simplistic or missing descriptions of local

sub-processes contribute to global model errors and biases. This makes estimates of

unrepresented variability an important tool when testing the range of uncertainty in-

duced by these necessary simplifications. The combined behaviour of these processes

defines the global response to so-called external forcing, of which only a portion is pro-

duced physically external to the earth system, which creates feedbacks for regional

subsystems. Regional subsystems interact across the climate system (Tsonis and

Swanson, 2012) driving both global trends and local variation. Hence, reproducing

and predicting the behaviour of these modes and interactions are important to both

global modellers and local forecasters. The statistical approaches used here provide

a common language for addressing various uncertainties across the different scales.

It also makes possible stochastic simulations whose computational efficiency poten-

tially allows for a wider range of investigations than more computationally exacting

approaches. As well, a probabilistic framework puts an emphasis on constraining pos-

sibility rather than creating narratives of indeterminate relevance. That is, the less
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information/understanding we have the greater the range of possible outcomes we

must accept, rather than creating false certainty by ignoring elements that we cannot

explain.

As outlined, there are three main areas of study presented in this thesis. The

first, described in Chapter 2, demonstrates a formal Bayesian calibration for GCMs,

which is necessary to quantify the uncertainties in their projections. This experiment

focuses on two areas of current research within calibration; emulation and estimating

structural uncertainty, specifically

1. Testing the effectiveness of BANNs as climate simulator emulators given limited

training data;

2. Testing the estimation of posterior distributions of parametrised structural error

models in the context of a climate simulator.

The next section, described in Chapter 3, examines classifying patterns of atmo-

spheric variability for the North Atlantic Region. This is an important region within

the global climate system and so meaningful calibration targets and their observa-

tional uncertainties must be determined. The specific goals of this investigation are

to:

3. Examine the reproducibility of published results using methods that better de-

scribe associated classification uncertainties;

4. Describe long-term shifts in the distribution of these regimes;

5. Relate these shifts to regional processes.

The final study, described in Chapter 4, is the construction of a local scale weather

generator conditioned on the regime shifts described in the previous study. Such

models are one way to estimate the residual variability between calibration targets
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and observations. As such, this study experiments with empirical model reduction

and stochastic modelling of unresolved processes. The main objectives are to:

6. Determine a computationally efficient approach to creating realistic simulations

of local variables for the sub-polar North Atlantic, that capture the range of

observed variability;

7. Test if BANNs are needed to describe the residual between the discreet portion

of the generator and the data to be simulated, or if this can be accomplished

with a less opaque model;

8. Use this model to investigate the daily signals of the trends described in Chapter

3.

1.7 Thesis Overview

This thesis is written in manuscript format. Content is presented as three journal

articles that have either been published elsewhere or submitted for publication. Be-

cause they are written as standalone articles there is overlap between the articles, and

between them and material that has already been presented in the introduction. Note

that occurrence of the terms “above” and “below”, in relation to the placement of in-

formation, refer to content within the individual chapters. To meet the requirements

of Memorial University thesis guidelines each article is presented with its associated

bibliography and, in addition, there is a bibliography for the entire thesis. Appendices

and supplementary material for the articles is appended after thesis bibliography.

The original research papers appear in Chapters 2, 3 and 4. An overall summary

of the body of work, and comments on envisioned future efforts are presented in

Chapter 5.
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Connecting Text

The following article presents a more detailed discussion of a Bayesian formulation

and implementation, in the context of a simplified GCM calibration problem. This

provides examples of the uncertainties outlined in Chapter 1, with the exception of

residual variability, being addressed within the approach. More specifically, this article

addresses objectives (1) and (2), described in Section 1.6. This article has appeared

as Hauser et al. (2011), in the journal Climate Dynamics. Additional discussion can

be found in Section A.2.
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2.1 Abstract

Earth systems models that attempt to make long-term predictions are sensitive to

the approximations they employ. These approximations crucially depend upon model

parameters whose values and uncertainties ought to be defined using objective and

repeatable methods. In this study we approach this problem by using observational

data to generate Bayesian posterior probability distributions for the model parame-

ters. This allows us to determine high-probability parameter values along with their

credible intervals, and accounts for the observational uncertainties related to the cali-

bration data. For complex climate models, evaluating these distributions can require

a prohibitive degree of computational expense. In the experiments presented here,

Bayesian artificial neural networks (BANNs) are trained with output from a general

circulation model (GCM) and used as statistical emulators of the full model to al-

low a computationally efficient Markov Chain Monte Carlo (MCMC) sampling of the

Bayesian posterior of the GCM calibrated against seasonal climatologies of tempera-

ture, pressure, and humidity. Constraint data is categorized using principal compo-

nent analyses of the observations. For these initial investigations we vary only five

model parameters, which influence radiation, heat and momentum transport. We val-

idate the methodology by calibrating to targets produced by a model run with added

noise. A calibration is then performed to an observational data set. This requires

us to incorporate a posterior assessment of the model structural error, which in turn

allows the model to be used to make probabilistic forecasts for future climate states.

All calibration experiments are performed with emulators trained using a maximum

of one hundred model runs, in accord with typical resource restrictions imposed by

computationally expensive models. We conclude by summarizing remaining issues

to address in order to create a complete and validated operational methodology for

objective calibration of computationally expensive models.
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2.2 Introduction

Earth systems models are unavoidably incomplete descriptions of environmental phe-

nomena. While the mathematical descriptions of the modeled processes are often very

sophisticated and consistent with physical theory they inevitably contain approxima-

tions. Furthermore, given the complexity and nonlinearity of the Earth system, such

models will invariably lack critical processes. As models expand to include more

components of the Earth system, the number of approximations invoked also tends

to increase. These approximations generally require parameters whose values are

not derivable from first principles or field measurements. As Earth systems models

generally have nonlinear dependencies on these parameters, determining appropriate

parameter values and estimating the related forecast uncertainties is a challenging

task. The models employed in the area of climate study are more complex and com-

putationally expensive than those used in many other applications, with the nonlinear

nature of these models further increasing the difficulty of identifying the relationship

between parameters and model output. As well, the time and spatial scales con-

sidered in climate modeling make it difficult to prescribe with certainty appropriate

calibration data. As a result, climate and Earth system models generally have a host

of parameter values which have been fixed through subjective “hand tuning” to un-

documented metrics. While this practice can result in models that provide arguably

“reasonable” descriptions of the current climate system, it is unclear how accurately

they will respond to changes in external forcing (Jackson et al., 2008). Furthermore,

such hand-tuning precludes the determination of objective uncertainty estimates for

model predictions.

One result of these issues is that similar models can often produce very different

forecasts with no well-defined estimate of the degree of uncertainty in their predic-

tions. Due to its nonlinear nature and dimensionality, the evolution of the climate
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system is impossible to describe in an explicit deterministic fashion. Therefore, policy

discussions regarding climate issues are inherently about risk management. Unfortu-

nately, the projections of current climate models are, for the most part, not presented

in a form that allows for that type of decision making. These concerns have been

expressed by many sources, including current reports by the Intergovernmental Panel

on Climate Change (Solomon et al., 2007).

Due to the inherent (and difficult to quantify) divide between models and reality,

as well as the uncertainties in observational data, calibration has often been viewed

not singularly as a question of optimization, but as the probabilistic description of

a range of parameter sets (and therefore model forecasts) in which the modeler has

confidence (Wagener et al., 2001), which lends well to a Bayesian formulation of

model calibration. Such formulations result in complex solution spaces which require

numerical integration schemes such as Markov Chain Monte Carlo (MCMC) sampling

methods (Mosegaard and Sambridge, 2002). Many variations of these methods have

been developed and applied to a variety of geophysical inverse problems (Sambridge

and Mosegaard, 2002).

It has been argued that the Bayesian calibration of climate models would provide

a framework for addressing the above concerns, provided that (i) structural model

errors (i.e. that can not be reduced by improved calibration) between the models and

“reality” can be quantified (Rougier, 2007) and (ii) that the parameter space can be

adequately sampled (Jackson, 2009). However, the computational demands of current

climate models make most sampling routines unfeasible. Various sampling routines

have been proposed and investigated (Jackson et al., 2004; Villagraon et al., 2008), but

most are impractical for all but simplified models when computational resources are

limited. One proposed method for coping with computational limitations is the use of

statistical emulations of model response (Annan and Hargreaves, 2007; Rougier, 2008)
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to sample the model parameter space with Markov chain methods. One such type of

emulator, Bayesian Artificial Neural Networks (BANNs), has been used in this way for

different applications (Khu and Micha, 2003; Knutti et al., 2003; Tarasov and Peltier,

2005). However, there is little guidance available concerning the implementation of

this method with regard to computationally expensive General Circulation Models

(GCMs). The following work is an exploratory examination of its practical application

to such models under the constraint of limited computational resources.

We will show that the BANNs enable Bayesian inference to be applied simul-

taneously to questions of calibration and model discrepancy despite computational

resource limitations. This approach allows us to avoid basing structural discrepancy

estimates solely on previously observed model errors and meta data concerning the

processes being described (Murphy et al., 2007; Holden et al., 2010). As such, this

approach is in contrast to using the Bayesian inference to assign weights to members

of a much larger ensemble of model realizations; e.g., Holden et al. (2010), where the

ensemble members are initially selected according to very general constraints, allow-

ing the ensemble to span the believed range of the inherent model error (Edwards

et al., 2010).

To describe these experiments we proceed first with a comprehensive overview of

Bayesian inference as applied to the problem of model calibration using an emulator,

with an emphasis on the probabilistic formulation. We also describe the practical

steps taken to implement the method. Next we describe the model and data used

in the presented experiments, with an outline of the model parameters selected for

calibration and the method for calculating particular calibration targets from the

available data. We then present the results of calibration experiments using “perfect

model” and observational climatology targets. We conclude with a discussion of our

findings and the issues raised in the course of the experiments.
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2.3 Bayesian model calibration

In this section we describe our approach to the model parameter estimation problem,

explaining the need for the model emulator and how it is addressed in the probabilistic

formulation. This Bayesian formulation of the problem will allow us, in subsequent

sections, to explicitly state the assumptions and information that will be used in the

model calibration. The “objectivity” of the Bayesian approach does not imply that

there is only one way to construct the terms used in the following equations, but

rather that given this information, there is a framework to make reproducible and

interpretable inferences from it. For example, there is no stipulation of what amount

or type of observational data is to be used in the calibration. The probability density

functions (PDFs) utilized represent a quantification of our state of knowledge, rather

than claiming to be a complete statistical description of the system. Formally the

form of the PDFs are always conditional upon the amount of information available to

the individual who defines them1.

2.3.1 Model parameter inference

Confidence in the values assigned to model parameters is expressed probabilistically

based on comparison between selected model outputs f , produced by running the

model with model parameters set to θ, and corresponding observational data z. This

is expressed as P(θ | z), which reads, “The probability of the parameter choice,

given observations and background information.” This probability distribution is con-

structed using Bayes’ rule, so that:

P(θ | z) ∝ L(θ ; z) P(θ). (2.1)

1To emphasize this, some writers express such probability distributions in terms of P(· | I), where
the “I” represents the information available to the individual; e.g., Jaynes (2003).



45

The distribution P(θ) is referred to as the prior as it is defined using prior infor-

mation about the model parametrization. For example, in a situation where there is

little physical basis for assigning proper parameter values the prior can be defined to

give zero probability to all parameter sets known to result in physically unrealistic

model output, and equal non-zero probability to all others.

The likelihood function2 L(θ ; z) = P(z | θ) = P(z | f , θ) expresses what the

probability of observing z would be given that the model predicts f , with the model

prediction being tied to the choice of parameter values θ. Thus “high likelihood”

parameter sets are those whose associated model output have a high probability “being

close to” observations. The likelihood is derived by considering the existence of a true

but unknown system state y, which is then marginalized, so that:

P(z | f , θ) =
∫

P(z, y | f , θ) dy

=
∫

P(z | y, f , θ) P(y | f , θ) dy

=
∫

P(z | y)P (y | f , θ) dy. (2.2)

This formulation asserts that the relationship between the observations and y is in-

dependent of the model. This makes it possible to relate the model parameters to an

unknowable “reality” using observed values, provided that judgements can be made

on how to separately represent the relationships between both the observations and

model to this “true state”.

The posterior distribution P(θ | z) represents a result of combining prior infor-

mation with observational evidence. The resulting expression can not typically be

calculated analytically. However, it is possible to evaluate the value of the posterior

2The expression P(z | θ) = P(z | f , θ) results from f being a deterministic function of θ.
However, it does not necessarily follow that P(z | f , θ) = P(z | f) unless the relationship between θ

and f is one to one.
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(up to an unknown constant) at a given value of θ. This makes it possible to determine

high probability parameter sets by sampling the distribution using MCMC techniques,

which generate parameter sets in proportion to the density specified by the posterior

distribution. The resulting sample is then dominated by high-probability parameter

sets. The algorithms for these methods often involve a large number of sequential

evaluations of the posterior distribution. This is problematic as every evaluation of

P(θ | z) at a given value of θi requires an evaluation of f i; i.e., the model must be run

using a prescribed parameter set, with run times for many GCMs being on the order

of days or weeks. When only a limited number of runs are possible, MCMC sampling

may be implemented using an emulation of model output response to parameters of

interest. The computational feasibility of such an approach will be shown below.

2.3.2 Expected model output

Approximating a PDF for the parameters; i.e., the MCMC sampling of the poste-

rior, produces not only samples of desirable parameter sets, but also a measure of

uncertainty. In order to see how this parametric uncertainty translates into variabil-

ity in the model output, an ensemble of model realizations is created; i.e., multiple

model runs are performed with the parameters of each run set to a different sample

parameter vector θi taken from the Markov chain. As it is necessary to assess the

relationship between the model and the “true state” y in the construction of the Like-

lihood function (see above), this information can then be used to make statements

about y. It is also possible to extract statistics such as the ensemble mean and vari-

ance3, which can be interpreted respectively as the expected model output and the

model output uncertainty due to the uncertainty with which parameter values can

3This is if the resulting model output space makes such calculations appropriate; c.f. Sivia and
Skilling (2006).
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be assigned. Typically, the expected model output E[f ] over the parameter space

P(θ | z) is approximated through the calculation:

E[f ; P(θ | z)] =
∫

f(θ) P(θ | z) dθ

≈
1

n

n∑

i=1

f(θi), θ ∼ P(θ | z). (2.3)

As stated above, the required integral is typically not expressible in closed-form, hence

the approximation which reads; “the expected output is approximated by the mean

of n model runs, where the parameters for each run i are selected in accordance to

(drawn from) the posterior distribution4.” An MCMC method is used to sample from

the posterior (i.e., to generate the actual values of θi).

MCMC sampling of the posterior requires a large number of model runs (a much

greater number than n), which is unfeasible given the computational expense of Earth

Systems models. Instead, the above approach is implemented using Bayesian Artificial

Neural Networks (BANNs) as an effective non-linear regression of the model response

to input parameter values. The BANNs are used in place of the actual model in

the MCMC sampling, to permit algorithmic completion in an acceptable amount of

time. Given that the emulators are by necessity a simplified approximation to the

full model, we must now consider a posterior distribution for the model output f :

P(f , θ | z). As above we marginalize out the unknown term, so that:

4The symbol ∼ reads as “distributed as”; i.e., samples are concentrated according to the distri-
bution P.
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P(θ | z) =
∫

P(f , θ | z) df

∝
∫

P(z | f , θ) P(f | θ) P(θ) df

= P(θ)
∫

P(z, f | θ) df

= P(θ) P(z | θ). (2.4)

The result is that our likelihood function must now represent the relationship

between the model parameters and model output, as well as the considerations given

above. For parameter sets at which we have run the model this can be done with

complete certainty; i.e., P(f | θ) is a delta function centred on f(θ). In other cases

our ability to describe model outputs and “good” parameter sets is determined by our

ability to make inferences about the model phase space. This is represented by the

emulator predictions and their uncertainties.

2.3.3 Emulation using Bayesian artificial neural networks

Artificial neural networks (ANNs) are tools for performing nonlinear regression of

complex systems, where a network of nonlinear functions described by prescribed

weights and biases is used to map inputs to expected output. These networks can be

made much more computationally efficient than the numerical model they describe

and they can be implemented with a much weaker understanding of the underlying

system dynamics. For the BANNs used here, the weights and biases are not single

valued. Instead, the BANNs are actually ensembles of ANNs drawn from probability

distributions derived by training the network against available data (in this case sets

of Earth System Model parameters and associated Earth System Model output) using

Bayesian inference as described above. The parameters defining these distributions
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are determined by MCMC sampling as part of the training routine. Note that this

is a separate, though conceptually identical, occurrence of using Bayesian inference

and MCMC methods to determine model parameters than that discussed elsewhere

in this work. The implementation details are given by Neal (1996) and are beyond

the scope of this paper.

This approach results in the BANNs being much more resistant to over-fitting

than ANNs constructed by optimising values for the weights and biases (Neal, 1996).

Furthermore, a trained BANN actually represents a posterior distribution for possible

weights and biases values, given the training data. As a result the BANN prediction is

comprised of an expected value together with an associated uncertainty (Lee, 2004).

This property is why we refer to the BANNs as emulators. Other artificial neural

network methods do not generally provide an uncertainty estimate and are therefore

inappropriate for this application. We construct the BANNs using the freely available

Software for Flexible Bayesian Modeling and Markov Chain Sampling suite5 (Neal,

1996).

For ease of discourse in this work, the “architecture” of a BANN refers to the

elements of the network directly selected by the user in order to improve emulation

quality. For the present application these elements are: the number of hidden layers,

the number of elements (size) of each layer and the degree of connection between

layers. Explanations of these components can be found in Neal (1996). The link be-

tween the network architecture and the workings of the system or model that is being

emulated is often vague at best6. This is a departure from some other approaches

to emulation; e.g.; Goldstein and Rougier (2010), which focus more on statistically

replicating the structure of the model in question. As a result, in practice compu-

5Available at http://www.cs.toronto.edu/∼radford/fbm.software.html
6It is commonly pointed out that ANNs can have very limited applicability when the goal is to

describe the mechanisms behind an observed relationship; e.g., Sanderson et al. (2008).
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tational capacity has a larger impact on network design than prior beliefs about a

system. Often, network architecture is (re)arranged so as to improve the fit between

the network and a set of test data (Lee, 2004). The fact that network construction

is to a certain extent rather ad hoc is part of what makes the method flexible and

tractable, although it makes it difficult to argue that the utilized network is optimal

for the problem at hand. The optimal number of weights and biases required by an

BANN depends on the size of the training dataset, the number of inputs and outputs

addressed, and their actual relationships. The more non-linear the relationship be-

tween the input and the outputs, as well as the more uncorrelated the outputs, the

larger and more complex the BANNs will need to be. Therefore, when it is desired to

predict multiple outputs with limited training data it is often better to use separate

BANNs for different outputs.

BANNs are only one of many available non-parametric regression methods. An

overview of these and how they relate to BANNs is given by Lee (2004). The above for-

mulation of the calibration problem can be applied using any emulation method; i.e.,

any method that can predict model response and give an estimate of the uncertainty

of this prediction. It has been observed that as the number of elements of a single layer

ANN approaches infinity, the ANN behaviour approaches that of a Gaussian process

model (Neal, 1996), which have been successfully used for similar applications; e.g.,

Rougier et al. (2007). Additionally, it has been suggested that for some applications,

BANNs with multiple hidden layers may possess additional attributes that allow them

to outperform smoothing-based techniques MacKay (2003). The above, coupled with

reports that BANNs can perform very well on high-dimensional, non-linear problems,

where there is no known functional form relating inputs to responses (Lee, 2004), has

motivated our decision to experiment with the method in this context.
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2.3.4 Calibration procedure

The calibration follows an iterative implementation. An interim posterior generated

by emulators trained on available data is used to select a new set of parameter vectors

which is then used to construct additional model runs to add to the training suite.

The iterative process allows these posterior distributions to gradually improve as the

BANNs obtain more information about the model space. As the routine iterates,

the amount of data available about the high probability portion(s) of the parameter

space increases. It is sufficient, and much more efficient, to emulate the parameter

subspace(s) of interest well, rather than to exhaustively recreate the entire phase space

(Craig et al., 2001)., In detail this procedure is as follows:

1. Create initial ensemble of size m0

• Use the prior to generate the initial parameter sets: θ
(0)
1:m0

∼ P(θ)

• Run an ensemble of models f
(0)
1:m0

using these parameter sets

2. Augment the current ensemble using parameter sets identified by MCMC sam-

pling7.

• for j = 1 : N

– Create and train BANN (or BANNs) using all available input-output

sets {θ(0:j−1), f (0:j−1)} as training data

– Generate a MCMC chain that samples from the Posterior, using the

BANN emulator:

θ̃1:k ∼ P(θ | z) ∝ P(θ)L(θ ; z), k ≫ mj

– Take new parameter sets θ
(j)
1:mj

from post burn-in8 θ̃1:k

7Typically N , the number of times this process is reiterated, is determined by time and compu-
tational resources. Ideally this loop would repeat until a selected convergence criteria is met.

8The “post burn-in” portion of the sample are the samples that occur after the MCMC chain
has converged.
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– Run the model using the new parameters sets to create new ensemble

members f
(j)
1:mj

– Augment previous ensemble with the new parameter sets and model

realizations

3. Retrain the BANN(s) using all available data, in order to maximize their skill

and further focus the posterior distribution. This distribution can be used to

generate an ensemble of calibrated model runs f
(j+1)
1:mN+1

, whose expectation (and

higher moments) can be calculated following Eq. (2.3).

We apply the method iteratively so as to condition our beliefs on newly available

information about the model; i.e., model runs at previously untested parameter sets,

as well as from the observational data. In these experiments m is kept constant for

each iteration (although this is not necessarily optimal) to allow experimentation with

different values for m.

2.4 Model and observational data

As stated, the above described calibration methodology is a framework for making

inferences based on a given data set. The selection of appropriate targets; i.e., the z

in the above equations, can depend on many factors. These targets should be able to

adequately constrain the model, and should be relevant to its spatial and temporal

resolution, with the physical properties they represent appropriately resolved by the

model (Müller and von Storch, 2004).

For the calibration exercises described here, the climate fields utilized are sea level

pressure, surface temperature, and surface specific humidity as they relate to key

model processes. As the model is run at a low resolution, we consider regional mean

seasonal climatologies for these fields (herein calculated over the years 1958 - 2008).
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2.4.1 Planet simulator general circulation model

The Planet Simulator is an Earth systems model of intermediate complexity (EMIC)

developed by the Meteorological Institute of the University of Hamburg. This model

solves the atmospheric primitive equations with a slab ocean model (Lunkeit et al.,

2007a). For this study, it is run at a low resolution of T21 with five vertical levels. The

model is forced with observed annual atmospheric CO2 concentrations from the years

1958 - 2008 as provided by Tans (2009), and with data for present day ice extent,

vegetation, and surface roughness. The Planet Simulator is run for the full cycle of

fifty model years with this forcing (following a ten year initial spin up cycle, the results

of which are discarded). For each model run, seasonal climatologies are calculated for

each grid point, averaged from mean values over the fifty simulated years.

The Planet Simulator incorporates many parametrized sub-processes with tunable

constants. For the initial experiments presented here five parameters were chosen for

use in the calibration procedures. An effort was made to select parameters repre-

sentative of a variety of physical processes. This is consistent with the context that

calibration is not being used to refine a particular area of model physics, but rather as

an attempt to view unresolved processes as interdependent elements of a non-linear

dynamic system. An overview of the role of these particular constants in the model

equations can be found in Lunkeit et al. (2007a), and are described briefly as follows:

θ1: Coefficient representing liquid mass absorption in clouds, in the context of an

equation approximating the Long Wave Radiation (LWR) flux permitted by

different levels of cloud cover.

θ2: Used in the calculation of the ocean vertical diffusion coefficient for the three

layer slab ocean model.

θ3: Links time scale for divergence to damping time scale in the parametrization of
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atmospheric horizontal diffusion.

θ4: Accounts for back scatter as proportional to the solar zenith angle in the calcu-

lation of cloud transmissivity for visible and ultraviolet Short Wave Radiation

(SWR).

θ5: Adjusts mixing length in equations for calculating exchange coefficients for mo-

mentum and heat in vertical diffusion relating to wind, temperature, and spe-

cific humidity. This calculation of vertical diffusion is used to approximate

atmospheric turbulent exchange.

2.4.2 Data suite

The calibration target data fields used for the following experiments are regional mean

seasonal climatologies for two meter temperature, sea level pressure, and two meter

specific humidity. To validate the methodology, we first calibrate the Planet Simulator

model against results from the model run at its default parameter settings with added

noise to simulate observational uncertainty. The calibration data used in the second

experiment is taken from NCEP/NCAR reanalysis data (Kalnay et al., 1996), and is

transformed to match the locations of the model output as the reanalysis field is of

higher resolution than the model. Note that if we were to use the reanalysis data to

calibrate the same model that is used to conduct the reanalysis then we would break

our assumption from Eq. (2.2), i.e. independence between observations and model.

The observational uncertainties for the reanalysis data set were approximated from

calculated regional inter-annual climatological variability.
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2.4.3 Calibration targets

Given the low resolution of the model employed, the calibration data must first be

reduced to an approximate synoptic spatial scale. Time centered Principal Component

Analysis (PCA), as described in Preisendorfer (1988), is used to objectively select

regions of the world to average over.

A time centered PCA9 is used to identify orthogonal patterns of variance from

the temporal mean of each global field. Projecting the data onto the leading (i.e.,

most statistically significant) basis vectors gives a projection coefficient vector which

shows the dominance of an identified temporal variance pattern (the basis vector)

at a given location. Therefore, these projection coefficient vectors can be used to

identify similarly behaving regions, as locations of positive or negative values with

respect to a given basis vector share a common trend of temporal variance that is

either respectively in agreement with or in opposition to the basis vector. For the

present analysis, each projection coefficient vector is used to create two regions of

interest, one consisting of locations where the values are positive, the other where it

is negative. The calibration targets for a given variable are taken to be the weighted

means, for each season, of that variable over each region. The weights for each region

are calculated from the respective portion of the projection coefficient vector which

defines it by normalising the absolute values. Locations corresponding to the opposite

portion of the vector are given a weight of zero, as are any weights bellow 1 × 10−5.

Thus the weights reflect how representative each location within a specified region is of

the behaviour described by the relevant variance pattern; i.e., the original eigenvector.

These regional means, along with the global mean values, become the 108 calibration

targets; i.e., 4 seasons × 9 regions × 3 climate variables. These targets can be

compared to model runs by calculating weighted averages of the model output within

9PCA is also referred to as Empirical Orthogonal Function Analysis
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the above prescribed zones, using the same weights as used for the calibration data.

The result for an analysis of NCEP/NCAR surface temperature data is seen in Figure

2.1.

Figure 2.1: Regions averaged over to create surface temperature calibration targets.
Colour bar displays weights used in calculating these averages.

A benefit of this method of data classification is that all of the data is utilised
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yet reduced to limit correlation, and so simplify the calibration. This choice of tar-

gets should drive the calibration to favour models that perform well over all climatic

regions. However, this does not address correlation between seasons for like regions.

Also, as with all PCA methods there is no guarantee that zones describe physically

and not just numerically meaningful areas. For example, note in Figure 2.1 how the

second region contains both poles. This is not because these regions have a similar

seasonal cycle, but rather because their seasonal cycles correlate in being consistently

colder than the global mean. Also, while the projection coefficient vectors are or-

thogonal, the vectors which define the regions are not. Therefore, regions are double

counted, although potential complications are mitigated as they are being counted

as part of different phenomena. For example, region two acts as a check that the

poles are cooler than the mean global temperature, while regions three and four act

to check that the seasonal cycles of the Northern and Southern hemispheres are dif-

ferent. Decisions must also be made on how many zones are to be used when defining

the calibration targets. It is suggested (Preisendorfer, 1988) that it is required to use

a large number of the projection coefficient vectors to account for all of the signal

provided by a data set. In Figure 2.1 the vector that resulted in the first two zones

was produced from the eigenvector that accounted for 99% of the variance, but the

second two vectors also seem to have produced clear signals while the last set of zones

appears more noisy.

2.5 Demonstration of calibration methodology

Two experiments are performed to demonstrate the calibration method. For the first

experiment, the calibration targets are calculated from synthetic test data produced
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from the Planet Simulator GCM run at its default parameter settings10. This repre-

sents a simplified “perfect model” situation where the model is known to be able to

reproduce the data, and at least one optimal parameter set is known to exist within

the allowed parameter ranges. For the second experiment the calibration targets are

calculated from the reanalysis data set. Therefore, there is no reason to believe a pri-

ori that there is any acceptable parameter combination where the GCM can entirely

reproduce the calibration targets. This is addressed through the construction of a

simple error model. We also give an example of how this calibration result can then

be used to create a probabilistic forecast for a future event.

2.5.1 Prior distributions, likelihood functions and probabilis-

tic forecasting

For this experiment prior ranges are set by multiplicatively expanding the range of

each parameter around its default value, representing a “worst case” scenario of lim-

ited intuition as to what would be physically realistic values for the investigated

parameters. Resulting ranges are given in Table 2.1 and designated by the labels

given in the Planet Simulator code and documentation provided by Lunkeit et al.

(2007b). To quantify this decision the prior distributions are set to be null outside

the predetermined acceptable ranges and uniform11 over a logarithmic scale within.

As such, they are invariant under power law transforms, and so represent a uniform

probability over all orders of magnitude. This formulation for the prior distribution,

P(θ), is used in both calibration experiments.

As stated above, defining the likelihood function requires a representation of our

10Here we use the term “default” to refer to the values assigned in the original source code for
the Planet Simulator model.

11While conceptually simple, it has been argued that uniform priors would rarely truly represent
ones prior beliefs; c.f., Rougier (2007).
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Table 2.1: Investigated parameters and their priors

Parameter Name Prior Range
θ1 acllwr [0.05, 0.2]
θ2 vdiffk [1 × 10−5, 1 × 10−3]
θ3 tdissd [0.04, 0.8]
θ4 tswr1 [0.02, 0.08]
θ5 vdiff

lam
[80, 320]

ability to relate the observational data and model outputs to the true state of the

system. For the perfect model “observations” are created by adding Gaussian noise

to the calibration targets, such that z = y + ǫ, where the elements ǫi are normally

distributed with a mean of 0 and variance of σ2
zi

, and are independent of each other.

Therefore, we define the relationship between the observed and true state by a mul-

tivariate normal distribution12:

P(z | y) , N(z | y, σ2
z). (2.5)

As the “true state” of the calibration data is a model realization, there is no inherent

discrepancy between model output and this state.

Emulation of model output is represented in a Gaussian formulation where the

expected model output f and its associated uncertainties σf for any given untested

parameter set are taken to be the mean and one-sigma range respectively of the

predictions sampled from the BANN for a given target (as discussed above), so that:

P(f | θ) , N(f | f(θ), σ2
z). (2.6)

The formulations in Eqs. (2.5) and (2.6) allow us to solve the integral in Eq. (2.4) so

12The symbol , reads as “equal by definition” and N(z | ·) represents a Gaussian distribution
for z.
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that the likelihood function is represented as,

L(θ ; z) , N(z | f(θ), σ2
z + σ2

f ), (2.7)

where the σz are known explicitly and the σf are given by the emulator for each

parameter set of interest. This representation of the emulator is in many cases a sim-

plification of the non-parametric distribution of predictions generated by the BANN.

As such, it represents a conservative (i.e. imposing as little structure as possible)

formalisation of the information available to us.

For the second experiment we use the same model for the relationship between

y and z, except the σ2
z terms are our approximation of the uncertainty of each cali-

bration target derived from the reanalysis data (described above). Therefore, as for

the emulator terms above, the expression N(z|y, σ2
z) does not necessarily describe

the statistical structure of the data, but rather represents the amount of information

that is available to us. Similarly, as we do not have evidence for a more complex

error relationship between the Planet Simulator GCM and the true state of the Earth

system that extends over all possible parameter sets, we use the same “truth plus

noise” model to describe the expected misfit between model output and reality. In

detail, f = y + ρ, where each ρi has mean of 0 and variance of σ2
Mi

, so that:

P(y | f , θ) , N(y | f(θ), σ2
M). (2.8)

Solving the integral in Eq. (2.4) using Eqs. (2.5), (2.6), and (2.8) results in:

L(θ ; z) , N(z | f(θ), σ2
z + σ2

f + σ2
M). (2.9)

As in Eq. (2.7), the terms σf are provided by the emulator, and the terms σz
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have explicit values for each individual data point and parameter set respectively.

The model error terms, σM , however, represent inherent model discrepancies over

the entire potential parameter space, and so are very difficult (and computationally

demanding) to assess. In keeping with the Bayesian framework, our procedure is to

define these values as unknown parameters and consider them part of the solution

space of the posterior distribution. Therefore, when performing the MCMC evalua-

tion of the posterior we sample for both these terms and the model parameters; i.e.,

θ, σM ∼ P(θ, σM | z) ∝ N(z | f(θ), σ2
y + σ2

f + σ2
M) P(θ, σM). This approach can

dramatically increase the dimension of the calibration problem. As described above,

we investigate five model parameters, using 108 calibration targets, making σM a

vector of length 108. Additionally, if we consider the possibility of describing correla-

tions between model errors, (e.g. the possibility that locations in the model that are

prone towards erroneous spring temperatures are consistently the same locations that

display a similar degree of error in summer) then we face the prospect of estimating a

108 × 108 member covariance matrix. There are trade-offs to consider concerning the

merits of such an extensive investigation. The more complex our posterior distribu-

tion becomes, the more computational limitations hamper our ability to approximate

it accurately; e.g., we require greater accuracy from the BANNs, enough MCMC sam-

ples to be sure of convergence, etc. As well, our limited ability to explore the model

space also reduces our ability to acquire prior information regarding the nature of the

model error. These issues emphasize the importance of decorrelating the constraint

data as much as possible. For the experiment described here, we adopt a much cruder

description of model error, that more accurately reflects the current limited state of

our understanding of the model and the scope of the investigation we are able to

conduct. We define σ2
M as [σ2

H , σ2
P , σ2

T ], where σ2
H , expected squared model error

for specific humidity, σ2
P , expected squared model error for sea level pressure, and
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σ2
T , expected squared model error for surface temperature.

Priors for these parameters were specified by assigning log(σH), log(σP ), and

log(σT ) Gaussian distributions with means and variances estimated from error statis-

tics for the initial spread of model realizations13 Employing such a general description

of model error will likely produce assessments of σ2
M that are more conservative than

those that might result from a more accurate description that captures the covariant

structure of the errors. However, an estimation of large uncertainty is appropriate

given the limited understanding of the system under consideration. This is preferable

to ignoring model discrepancy and so obtaining a false estimation of high confidence

in the model result, or using an inappropriately detailed description that would be

overly sensitive to our (admittedly ill-informed) prior judgements.

A primary motivation for earth systems modeling is the desire to define inferences

about some element(s) of the earth system, ỹ, that are conditioned on our observations

of the physical system z; i.e., to be able to estimate P(ỹ | z). The calibrated model

and estimates of its relationship to reality are the means by which these inferences

are made. For the example presented here the probability for any potential value of

ỹ can be found by considering the joint probability between ỹ and model parameters

θ conditional on z and marginalizing θ, so that:

13By working with the logarithm of the standard deviation, we essentially consider the probability
of σ/2 to be equal to the probability of 2σ. This type of treatment is appropriate when describing
‘scale’ parameters whose uncertainties are relative rather than absolute Sivia and Skilling (2006)
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P(ỹ | z) =
∫

P(ỹ, θ | z) dθ

=
∫

P(ỹ | θ, z) P(θ | z) dθ

=
∫

P(ỹ | f , θ, z) P(θ | z) dθ

=
∫

N(ỹ | f(θ; z), σ2
M(θ; z)) P(θ, σM | z) dθ

≈
1

n

n∑

i=1

N(ỹ | f(θi; z), σ2
M(θi; z)),

θi, σ2
M(θi; z) ∼ P(θ, σM | z), (2.10)

where n = the number of members of the forecast ensemble and f(θi; z) is the model

forecast for the quantity ỹ with the dependence on z maintained by using model pa-

rameters and associated discrepancy terms14 prescribed by the posterior P(θ | z). As

the posterior incorporates parametric and observational uncertainties any final esti-

mate of ỹ is conditioned on these as well as σM . The use of the Gaussian distribution

in the fourth line follows from Eq. (2.8) and so is particular to this exercise. Note

that for this example the model forecast is assumed to be an unbiased estimator of

ỹ. It is also assumed that (a component of) the estimated discrepancy relationship

between the model and the calibration data can be directly applied to ỹ. In prac-

tice, depending on the model used and the nature of ỹ, these assumptions (as well

as those made concerning the structure of the observational and emulator errors) will

potentially be quite tenuous, especially when predicting future events. As the exper-

iments presented here are meant to form a baseline demonstration of the method, we

adopt the simplest possible form for all the assumptions made in this section, even

when we may have access to additional information (as seen below). In many cases

14Here the discrepancy terms are written σ2

M
(θi; z) as a reminder that they are sampled jointly

with θi from the posterior, and so are distinct for each parameter set.
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a more complex, and potentially subjective (Holden et al., 2010), error model will be

required, or if this is not possible, the functionality of the model as a descriptor of ỹ

will have to be reassessed.

2.5.2 Perfect model experiment

Here we present the implementation details and results of calibrating the selected

model parameters to the model run at its default parameter values. In order to assess

the functionality of the methodology under realistic computational limitations we

restrict ourselves to running the model no more than one hundred times for any given

experiment. We break up our ensemble into batches of size m following the routine

outlined above, and experiment by creating three different ensembles using values of

m = 20, m = 30, and m = 50. We refer to these throughout the text as Ensembles

A, B, and C respectively. This gives us an idea of how the quality of the calibration

degrades with ensemble size, and allows us to investigate whether benefit is gained by

increasing the number of times the routine is iterated, even if this involves training

the emulators with a reduced amount of data at each iteration.

2.5.2.1 Implementation

As outlined above, the first step in the calibration routine is to create an initial

ensemble of model runs. Parameters for these initial model runs were selected from

the prior through Latin hypercube sampling. This form of sampling has been shown to

be an effective method for selecting emulator training data (Urban and Fricker, 2010).

We generate 100 initial hypercubes and utilize the one with the maximum minimum

distance between its members, although more developed algorithms are available for

this task; c.f., Grosso et al. (2008).

For this experiment, multiple BANNs were needed to successfully approximate
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model response. Nine BANNs are used for each climate variable, one for each cali-

bration data region, giving a total of twenty seven individual networks. Initially, for

each location, multiple BANNs, with architectures of varying complexity, are created

and compared, with the architecture that results in the best emulation being selected

to represent the location in the calibration procedure. Ideally the quality of this em-

ulation would be assessed with independent test data. However, since our imposed

limitations leave us with very little training data to begin with, rather than reserve

some of this information for testing, we take advantage of the nature of the BANNs

and their resistance to over fitting and judge their quality based on their mean abil-

ity to recreate the training data. While this is not a good measure of the BANNs’

predictive ability, it does allow us to identify network architectures that are able to

reproduce the system we wish to describe15. Where similar results were obtained with

different architectures, selection was motivated by the desire to use emulators with

varying degrees of complexity.

All the BANNs have as their inputs the five parameters discussed above. As each

BANN is trained to express all the data of a specific region, each produces a four

element output vector; i.e., the regional average value for each of the four seasons

of the associated climate variable. We consider it appropriate, and perhaps even

beneficial (MacKay, 2003), to use a single network for the entire temporal output of

a region, as these regions are selected on the basis of their having distinct seasonal

cycles for the variable in question (see above). Thus, these values will potentially

be related to each other and so simplify the non-linear relationship the BANN must

approximate. However, the potential for a resulting correlation between the outputs

15A more prudent approach is to perform a cross-validation, where a different element of training
data is reserved each time and used to test the predictive ability of the resulting BANN. While this
does require additional computing resources, it requires less than running a full GCM only to find
out that it was calibrated based on the predictions of a poorly performing emulator. Alternatively,
the Bayesian structure of the emulator does allow for more sophisticated methods of model selection,
including comparison of Bayes factors or use of the Bayesian information criterion (Lee, 2004).
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is not reflected in the description of emulator error above.

The trained BANNs are incorporated into the likelihood function (described above)

and MCMC is used to sample from the resulting posterior distribution. Slice sampling

was selected for the MCMC routine since it can be easily implemented and adjusted

for efficiency despite limited knowledge of the form of the distribution to be sampled

(Neal, 2003).

In keeping with the outlined calibration procedure, parameter sets from the re-

sulting MCMC chains are used for subsequent model runs, which are then used to

extend the model ensemble. Data from the resulting (and previous) ensemble(s) are

used to retrain the BANNs. These are then used in the generation of new MCMC

samples. Samples of parameter sets extracted from these are used to further extend

the ensemble, and so on until we reach our one hundred run limit. When the model is

rerun as the calibration routine reiterates, its output is used to check the performance

of the BANNs. The final posterior distribution is obtained as a result of training the

emulators against the entire, iteratively generated ensemble.

2.5.2.2 Results

In the context of the marginal probability distributions for individual parameters

resulting from the final posterior distributions (Figure 2.2), the parameters used to

construct the synthetic data are all within one standard deviation of the means of these

distributions for Ensemble A (and generally very close to the mode of their marginal

distribution). Marginal probability densities are not necessarily representative of the

true shape of the full N -dimensional (and thus very difficult to visualise) posterior

distribution. Investigations of two and three dimensional marginal posteriors (not

shown) offer little further information, aside from a strong linear connection between

the values for θ1 and θ4. This is not unexpected, as both are related to the effects of
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clouds on radiative fluxes. Still, these results suggest that the method performs well,

given that a set of parameters that we know deserves high confidence is so represented

within the posterior. This is also the case for Ensemble C, although the result for

Ensemble B is problematic for θ3. For most model calibration scenarios there will be

no “true” parameter set, and further analysis (not shown) suggests that even for this

example the relationship between fit to targets and distance from the “perfect model”

parameter set is highly non-linear, giving reason to believe that there are various

distinct parameter sets that will produce similar output for the model, and/or values

for the calibration targets.

Figure A.3 shows the evolution of the emulators’ ability to predict the model

response to the selected parameter sets. As all fields showed similar behaviour only the

temperature field is shown, both to simplify the presentation and as its results are the

most pronounced. It appears that initially the emulators were unable to consistently

emulate the model. Initially the BANN also fails to provide accurate assessments

of the prediction uncertainties for any of the ensembles; e.g., for Ensemble A only

27% of the emulator errors were below the 3σ level of the corresponding predicted

uncertainty. Further iteration results in improved overall estimates of uncertainties,

and in the case of Ensemble A, improved accuracy as well. This suggests that when

the total number of runs is limited, there is more benefit to be had in allowing the

emulator to “learn from its mistakes” through an iterative process than there is in

providing it with large amounts of initial data. We find that by the final iteration

of Ensemble A, 93% of the emulator errors are below the 3σ level of the associated

predicted uncertainty. However, the remaining outliers can be very far from the mean

prediction, up to a distance of 35 times the respective predicted standard deviation.

Note that this ratio represents an extreme underestimation of uncertainty, but not

necessarily an extreme error. This suggests that the Gaussian approximation of the
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Figure 2.2: Histograms show final marginal posterior densities for model parameters
(in log scale) as estimated in the perfect model experiment. Red lines show the prior
distributions for the parameters, black dashed lines show the parameters used to
create the synthetic data. Top row is the result of performing five iterations of the
calibration routine, using twenty model runs apiece, middle is result of performing
three iterations using thirty model runs apiece, and bottom is result of performing
two iterations using fifty runs apiece.
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BANN distribution used in Equation 2.6 is too restrictive, and that it would be

more appropriate to use a “heavier tailed” distribution in its place. While not ideal,

after repeated iterations the representation does capture the bulk of the uncertainty

(refer to Appendix A for further discussion of the relationship between the emulator

error and its estimation), and does provide quite (when compared to the scale of

the targets) accurate predictions. So in practice (for this exercise), this does not

preclude reasonable results. As a technical aside, we find that the parameter to

target relationship is sufficiently nonlinear that regardless of initial fit to training data,

multiple hidden layers are required to ensure the possibility of predictive ability.

To track the progress of the calibration we calculate the natural log16 of the like-

lihood function, Eq. (2.7), for each model run produced by the calibration, except

here the model output is produced from the GCM itself (rather than from the emu-

lator) and so the σf term is ignored. Figure 2.4 shows the evolution of this measure

of misfit between the ensembles and the calibration data as the calibration routine

iterates. The comparatively good fit for Ensemble B at iteration two suggests that

the emulators’ ability to predict their own errors was sufficient to prevent the targets

for which they have low skill from overly affecting the calibration (82% of the errors

are constrained by the 3σ level of the associated predicted uncertainty), although it

also suggests limitations in the targets’ ability to constrain the calibration. The over-

all result shows that given reasonable performance by the emulators, the calibration

routine can identify parameter sets that produce better fits to targets than can be

expected to be discovered through Latin hypercube sampling alone.

16The logarithm is used to avoid computational round off errors.
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2.5.3 Calibration to reanalysis data

Here we present the implementation details and results of calibrating the selected

model parameters to targets calculated from the NCEP/NCAR reanalysis data.

2.5.3.1 Implementation

The same procedure outlined above is followed when calibrating the model to the

reanalysis data. We refine our initial search for suitable BANN architectures based

on results from the previous experiment.

2.5.3.2 Results

The emulation quality for the three ensembles is more consistent than in the above

experiment as shown in Figure A.4, although here again we obtain better performance

from repeated iterations, even if this requires smaller sample sizes to be used. By the

final iteration of Ensemble A, 92% of the emulator errors are below the 3σ levels

of the predicted uncertainty. However, the presence of outliers far beyond the esti-

mated uncertainty is again observed. This, as well as investigation of the distribution

of ANN responses that comprise the individual BANN predictions, further support

our suspicion that the Gaussian approximation of Equation 2.6 is too restrictive to

fully describe the BANN behaviour (refer to the supplement for a QQ-plot based

consideration of this).

There is a faster and more uniform convergence to comparatively high likelihood

model output (Figure 2.6) for all ensembles. As such it is not surprising that the

marginal distributions (Figure 2.7) show similar behaviour between all ensembles.

While it is in general impossible to assess the true nature of the distribution from the

marginal distributions, we see that the latter are most focused for Ensemble A, and

express the lowest expected model discrepancy values (Figure 2.8). This is sensible as
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a higher proportion of the training data in Ensemble A is focused on the high proba-

bility regions of the parameter space, and so the emulators are better able to provide

information about these regions. However, the much larger estimated observational

uncertainties for the reanalysis data set than for those constructed for use with the

perfect model experiment, as well as the presence of model discrepancy, do result in

a wider range of potential parameter sets in general. This behaviour was observed

in tests (not shown) where additional noise was added to the calibration data for the

perfect model experiment (described above), and then modelled using the additional

model discrepancy terms. The larger the model discrepancy becomes, the wider the

range of “reasonable” parameter sets becomes. Still, it is notable that many of the

marginal posterior distributions do not appear (Figure 2.7) to have evolved signifi-

cantly from the prior distribution. Investigations of the two and three dimensional

marginal distributions (not shown) give little additional information beyond the as-

sociation between θ1 and θ4 discussed above. To investigate how well the marginal

parameter densities describe the full posterior, an additional ensemble was run using

parameter values sampled independently from the individual marginal distributions.

These model runs were frequently lower in likelihood than runs with parameter sets

sampled from the multivariate posterior, with less than a quarter of the runs produced

using the marginal posteriors having likelihood values within the range of the top fifty

percent of values produced from the final iteration of Ensemble A. This suggests that

the marginalization masks a more focused multivariate distribution.

Comparing the global expected model output from the last sub ensemble of En-

semble A17 to the entirety of the reanalysis data (Table 2.2) shows that the calibration

has reduced global biases and errors for all fields. For the sea level pressure field, the

17Note that this sub ensemble is not actually produced by the posterior distribution addressed
in Figure 2.7 which would require generating a new set of runs with the GCM. Given the limited
evolution between the final iterations of the calibration routine for Ensemble A, we assume that this
sample is an adequate approximation to that which would be generated by the final posterior.
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Figure 2.7: Histograms show marginal posterior densities for model parameters as
estimated by the BANNs when calibrating to the NCEP data. Red lines show the prior
distributions for the parameters. Top row is the result of performing five iterations of
the calibration routine, using twenty model runs apiece, middle is result of performing
three iterations using thirty model runs apiece, and bottom is result of performing
two iterations using fifty runs apiece.
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model run with the maximum calculated (over all targets) likelihood performs worse

than the model run with the lowest calculated likelihood, suggesting that these targets

are not dominant contributors to the total likelihood calculation. This is appropriate

considering that the relative observational uncertainties for the sea level pressure tar-

gets are an order of magnitude higher than the targets for the other fields, and so the

calibration results are more focused on matching these latter targets. The ensemble

produced from the marginal distributions (discussed above) has a similar Root Mean

Square Error (RMSE) with respect to NCEP/NCAR fields though with a bit more

bias and wider standard deviation (Table 2.2). The latter again suggests that the

final posterior has a structure that is not fully captured by Figure 2.7. For larger

parameter sets, more complex models, and non-diagonal error models, the marginal

distributions will likely be more unreliable.

As an example of the spatial distribution of the fields used to calculate the statistics

of Table 2.2, the difference maps for mean annual surface temperature between model

output and the NCEP/NCAR field are shown for the original model settings and the

ensemble mean (Figure 2.9). Similar patterns are seen for all other fields, although

misfit levels over the poles have a strong seasonal component not shown here. While

certain areas see increases in misfit, the overall error is reduced and is more evenly

spread across the globe. This suggests that the regions averaged over to produce the

calibration targets were well selected to address model performance in a variety of

regions. This may however not be the most desirable result in practice. Considering

that the model in question is an EMIC without realistic ocean circulation, producing

reasonable approximations of equatorial and mid latitude phenomena and allowing a

polar cold bias may be a more “physically realistic” calibration goal. Here we observe

one of the dangers of calibration and parametrization in general; compensating for

model shortcomings through potentially unrelated parameters. Due to the lack of
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Table 2.2: Comparison of the total model output for each field against the correspond-
ing NCEP/NCAR reanalysis map, for a default model run at the original parameter
settings, and for the mean field calculated from the samples composing the final iter-
ation of Ensemble A. Runs from this subset with the highest and lowest calculated
likelihood are also included, as well as temperature results from a model ensemble
created using the marginal densities for individual parameters as estimated from En-
semble A. Results are summarized by the mean difference (model output - reanalysis),
and by the root mean square difference between the fields. The standard deviation of
the model ensembles about their mean fields is also presented.

mean difference RMSE ensemble-1σ

specific humidity [kg/kg] DJF
default model settings −0.0028 0.0029
ensemble mean 0.000035 0.0016 0.00038
max-likelihood run −0.00018 0.0016
min-likelihood run 0.00061 0.0017
specific humidity [kg/kg] JJA
default model settings −0.0031 0.0033
ensemble mean −0.00013 0.0019 0.00041
max-likelihood run −0.00034 0.0019
min-likelihood run 0.00046 0.0020
sea level pressure [hPa] DJF
default model settings 1.24 4.33
ensemble mean 0.82 4.00 0.64
max-likelihood run 0.85 4.21
min-likelihood run 0.74 3.86
sea level pressure [hPa] JJA
default model settings 0.27 3.98
ensemble mean −0.091 3.70 0.43
max-likelihood run −0.063 3.80
min-likelihood run −0.16 3.64
surface temperature [◦K] DJF
default model settings −5.10 6.08
ensemble mean 0.83 4.35 0.73
marginal ensemble mean 1.08 4.37 1.10
max-likelihood run 0.41 4.301
min-likelihood run 1.95 4.68
surface temperature [◦K] JJA
default model settings −4.80 6.14
ensemble mean 1.77 4.04 0.77
marginal ensemble mean 2.00 4.09 1.10
max-likelihood run 1.34 3.95
min-likelihood run 2.91 4.48
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heat transport, the polar cold bias is corrected by increasing the global available

energy, which results in overheating in equatorial and other regions. This issue could

be addressed by changing the calibration targets; e.g., reducing the weighting for

data from polar or other regions. However, as this is an issue of model discrepancy

a preferable solution would be to create a more sophisticated error model. Allowing

different error (and potentially bias) terms for targets relating to different latitudes

would provide the opportunity to use the Bayesian inference to determine where

(spatially) the model can perform best. Including such terms in the approximation

of the likelihood covariance matrix would focus the calibration to physically realistic

solutions where possible, and quantify the degree of error where they are not. Provided

that these terms can be successfully estimated in the posterior this may produce

a more desirable result than our current “compromise solution” which results from

fitting the model to our simplistic assumptions about its information content.

Table 2.2 shows that the model never describes the observational data within the

ensemble standard deviation. However, the ranges of the estimated discrepancy terms

(Figure 2.8) completely capture this error. These estimates are, as predicted, overly

conservative. This results from the oversimplification of the likelihood covariance ma-

trix as discussed above. Testing the effect of adding additional noise to the calibration

data for the perfect model experiment (described above), suggests that when the er-

ror and its model are of the same statistical form, the resulting estimates typically

lie within the one-sigma range of the “true” synthetic error. However, the quality of

this description decreases as the synthetic error is located further into the tails of the

prior distribution, showing that the error model can be sensitive to the utilised pri-

ors. Figure 2.8 suggests that use of a log-normal prior for this experiment is perhaps

restrictive for the case of σH and σT . While it describes our initial information, the

relatively narrow tails of the log-normal distribution represent an assumption that it
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Figure 2.9: Difference in surface temperature between the model run at its original
settings and the reanalysis data (top), and between the the ensemble mean produced
by the final iteration of Ensemble A for the NCEP calibration and reanalysis data
(bottom)
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is very unlikely to find within the parameter space a model realization that performs

significantly better or worse than what we have seen in our limited initial samples. In

general, whether such an assumption is justified will be very specific to the amount

(or lack thereof) of initial information available concerning the model in question. In

contrast the marginal density of the discrepancy for sea level pressure (σP ) is only

slightly shifted from its prior. This is in agreement with the small change in this field

produced by the calibration discussed above.

As an example of the use of this result for probabilistic forecasting we create

two ensembles of twenty model runs each, using the posterior produced by Ensemble

A. These ensembles are run into the future, one using an approximation of the A2

climate forcing scenario as described by Nakicenovic et al. (2000), the other having

CO2 stabilised at 2008 levels. These ensembles are used to compute Eq. (2.10) for a

range of potential mean global temperatures for the decade of 2048-2059, the results of

which are shown in Figure 2.10. It is important to note that given the simplistic nature

of the current experiment this figure is not meant to serve as an actual prediction,

but simply as an illustration of the potential of the method. Given the degree of

convergence of Ensemble A we could alternately have minimized computational time

by running the final sub-ensemble forward to the desired future date.

2.6 Conclusions

As part of the construction of a Bayesian posterior distribution, we have documented

the information, assumptions and inference used to constrain model parameter se-

lection. The BANNs, despite a limited supply of training data, emulate the model

behavior to a sufficiently high degree to allow identification of high-probability param-

eter sets which improve model fit to observational data. The resultant computational
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feasibility of MCMC methods enables the sampling of terms describing model error

while exploring the posterior space. This in turn permits estimation of the inherent

uncertainties over the resulting space of calibrated model realizations, and avoids the

false assumption that parametric uncertainty can capture the entirety of the model-

reality discrepancy. Therefore model ensembles can be used to construct rigorous

probabilistic forecasts.

Our results show that the error model will need to be more complex in practice

than the one we have experimented with here. In particular it will need to be more

responsive to differences in the model’s ability to resolve distinct targets. Also, it

will be necessary to estimate some portion of the targets’ covariance structure over

the model space, particularly temporally, so as to properly address the information

content of individual targets as regards overall model performance. Further work

must be done to assess what practical limitations exist in how complex these error

models can become. Also, implementing more detailed descriptions of model error

will require more exact representations of emulator error.

The “smoothing” of errors over the model domain (Figure 2.9) suggests that the

calibration targets are well distributed. However, it is not clear whether the degree of

reduction in information was appropriate for our calibration goals. As there exist a

wide variety of data classification methods, criteria for the selection and pre-processing

of calibration targets for particular models and applications need further development.

As the model discrepancy is estimated through the MCMC sampling of the posterior,

our assessment and interpretation of these terms is inherently linked to the choice

of calibration target. The more we can elucidate the potential covariance structure

between modelled calibration targets, the more we simplify the task of accurately

assessing the model discrepancy.

In general, problems of emulator design, approximation of the likelihood covariance
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matrix, selection of calibration targets and specifying prior information, as well as dis-

cerning the appropriate use and interpretation of ensembles produced in accordance

to the resulting posterior, will all have to be tailored to the available model and data,

with solutions that will vary from situation to situation. However, in these initial tests

the methodology has shown potential for the objective and tractable Bayesian cali-

bration of computationally expensive Earth system models. Furthermore, this is to

a degree of completeness such that the generated information and related uncertain-

ties can be directly used to make statistically rigorous inferences about the physical

system(s) being investigated.
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Connecting Text

The following article was written as a review of atmosphere and ocean interannual

variability, over the past fifty years, for the North Atlantic region. The evolving under-

standing of interactions between atmospheric and ocean processes on multiple scales

is outlined. These are related to dominant modes of atmospheric variability, which are

described in different degrees of regional and temporal detail; addressing objectives

(3)-(5). As such, this article offers a perspective on issues inherent in defining sta-

tistical climate features for calibration targets,; e.g., identifying features, determining

relationships between processes, and formulating targets such that their uncertain-

ties can be quantified. This article has been submitted to the journal Progress in

Oceanography.
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North Atlantic atmospheric and

ocean interannual variability over

the past fifty years - spatial

patterns and decadal shifts
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3.1 Abstract

This article presents results from a study of the patterns of interannual variability of

the North Atlantic atmospheric circulation over the past fifty years, and their links

with the observed subpolar ocean variability. A fuzzy clustering analysis is used to

identify the patterns of atmospheric variability in the interranual spectral interval.

Four dominant patterns of North Atlantic interannual variability are found, which

describe phases of two asymmetrical alternating modes. The first two patterns have

the spatial structures of positive and negative phases of the North Atlantic Oscillation.

The third and fourth patterns define the opposite phases, here referred to as G+ and

G-, of an alternating mode that closely resembles the regional manifestation of the

Pacific-North American Pattern (PNA).

Alternatively, the patterns of interranual variability are characterised through the

associated distributions of subseasonal weather regimes. The latter are defined from

Sea Level Pressure (SLP) anomalies using Bayesian Gaussian mixture models. In the

1960s the distribution of weather regimes favoured blocking patterns over the North

Atlantic and warmer than normal upper ocean temperatures. In the late 1980s and

early 1990s the dominant weather regimes favoured intensification of the Icelandic

low and cold winters over the Subpolar North Atlantic. The change of the distribu-

tion of the weather regimes between 1960s and 1990s is associated with a decadal

shift in the dominant interannual patterns from NAO- and G+ in the 1960s towards

NAO+ and G- in the late 1980s and early 1990s. While there are strong indications

that the recent warming of the Subpolar North Atlantic since the mid-1990s was

triggered by internal ocean dynamics and Atlantic Multidecadal Oscillation, it is sug-

gested that the atmospheric variability related to the domination of the G+ pattern

in the past 20 years was a factor that additionally contributed to this process.



93

3.2 Introduction

The global oceans have warmed since the mid 20th century (Levitus et al., 2009).

This trend is well correlated with contemporaneous greenhouse gas driven variations

in radiative forcing (Solomon et al., 2007). On regional scales interannual and decadal

variations are often superimposed on the long term climate trends. One example is

the observed decadal cooling of the Subpolar North Atlantic Ocean and warming of

the continents in the 1980s and early 1990s (Wallace et al., 1996; Corti et al., 1999).

Studies of the impact of atmospheric interannual variability on the North Atlantic

climate date back to the works of Sir Gilbert Walker (Walker, 1922, 1924). Walker

and Bliss (1932) demonstrated that the intensity of the Icelandic surface pressure min-

imum is well correlated with the cold winters in Eastern North America, Greenland

and the Middle East, and with warm temperatures in and Northwest Europe. The re-

verse pressure anomaly over Iceland is related to opposite tendencies in these regions.

The anomalous low pressure over Iceland is dynamically consistent with stronger than

normal cold advection over the Labrador and Greenland, and with intense southwest-

ern flow of mild ocean air over the Northwestern Europe. More recent studies (for

a review see Hurrell and Deser (2009), Greatbatch (2000), and Hurrell et al. (2003))

have demonstrated that this alternating mode, identified by Walker (1922, 1924) as

the North Atlantic Oscillation (NAO), dominates the variability of the North Atlantic.

The origin of the NAO has been related to processes of baroclinic instability, and

with eddy generation and decay (Thompson et al., 2003), with typical time scales of

about ten days (Simmons and Hoskins, 1978). The influence of these processes on the

ocean is usually presented as a background noise providing energy to internal ocean

dynamics, which have higher inertia and longer time scales of variability (Frankig-

noul and Hasselmann, 1977). The ocean, which has a higher heat capacity, damps

the atmospheric variability leading to a red spectrum in climate variability (Vallis,
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2009). This paradigm of climate is often called null hypothesis of climate variability

(Greatbatch, 2000). Alternate descriptions have been presented and are reviewed in

this text. These put more emphasis on isolated ocean processes for decadal scale

variations. Shorter term variation is driven by responses to specific regimes of at-

mospheric forcing. This approach requires more detailed descriptions of atmospheric

variability. It has been suggested that, while informative, typical measures of NAO

activity obscure more subtle, yet significant features (Monahan et al., 2001; Cassou

et al., 2004; Reusch et al., 2007).

The mechanism of the NAO on time scales longer than the typical life time of

atmospheric weather events and disturbances is less understood (Vallis, 2009). Peaks

in the observed atmospheric power spectrum on interannual and decadal time scales

suggest the presence of regime like behavior. While atmospheric regimes with ro-

bust statistical and dynamical foundations have been identified (Molteni et al., 2006),

their predictability and the predictability of the atmospheric interannual and decadal

variability on periods longer than a year is not significant (Vallis, 2009).

This article presents results from a study of the patterns of interannual North

Atlantic atmospheric variability. It is based on the paradigm of the North Atlantic

atmosphere as a dynamical system, which exhibits chaotic variability on many time

scales with complex feed-backs between its components (Molteni et al., 2006; Lorenz,

2006; Monahan et al., 2010). More specifically, the following discussion addresses

possible mechanisms of coupled atmosphere-ocean variability of the Subpolar North

Atlantic (see Figure 3.1).

In the following we first give a brief overview of atmospheric and oceanic interan-

nual variability, as observed over the North Atlantic for the past fifty years, focused

on the NAO. Then we discuss the paradigm of the atmosphere as a dynamical system,

and related methods for describing atmospheric variability. We present results from
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Figure 3.1: North Atlantic Region, with major ocean circulation patterns outlined.

the analysis of interannual variations in the North Atlantic atmospheric circulation.

Finally, associations with interannual and decadal ocean variability are presented fol-

lowed by general discussion.

3.3 North Atlantic atmospheric and oceanic vari-

ability from years to decades

The long-term mean surface atmospheric pressure distribution over the North Atlantic

region is dominated by the Azores high and Icelandic low pressure centres (Hurrell and

Deser, 2009). The Azores high pressure system is stronger over the summer season

when it covers a large area of the North Atlantic. In winter the Icelandic minimum

dominates and the Azores high weakens and moves equatorward. The zonal westerly

flow driven by the mean pressure gradients dominates the regional circulation at

mid-latitudes throughout the year. The westerlies extend through the troposphere

and have a maximum at a height of about 12km (Hurrell and Deser, 2009). This

mid-latitude jet stream coincides approximately with the storm tracks between North
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America and Europe, and its variability influences the climate of the North Atlantic

region (Willet and Sanders, 1952; Hoskins and Hodges, 2010).

The NAO is typically defined by variations in the strength of the Azores and

Icelandic pressure centres (Hurrell et al., 2003). The NAO index; cf., see Hurrell

(1995), is often calculated from the difference between normalised Sea Level Pressure

(SLP) anomalies in Iceland and the Azores. Alternatively, the NAO index can be

defined as the dominant Principal Component (PC) of the SLP (Hurrell et al., 2003).

The NAO index is indicative of the position of the jet stream and extra-tropical

cyclone tracks across the North Atlantic; i.e., whether these features tend northward

or southward of their climatological positions (Vallis et al., 2004). A positive NAO

index is associated with warmer wetter weather in northern Europe, and cold dry

weather in northern North America, while a negative index is associated with an

opposite variability (Hurrell et al., 2003). Current investigations; e.g., Luo et al.

(2011), suggest that there is a relationship between long term NAO phase and storm

intensity. Links to local-scale phenomena beyond the North Atlantic have also been

made; e.g., Feliks et al. (2010). While the NAO signature is typically strongest in

the Northern Hemisphere winter months the relevant processes exist in weaker forms

throughout the year (Feldstein, 2007).

The mechanism of the NAO has been a centre of debate over the role of global at-

mospheric process for the North Hemisphere (Thompson et al., 2003), North Atlantic

regional dynamics (Deser, 2000), and Sea Surface Temperature (SST) (Rodwell, 2003;

Kushnir et al., 2002). Numerical simulations have demonstrated that the NAO does

not owe its existence to the ocean-atmosphere interaction but is a result of intrinsic

atmospheric dynamics (Hurrell et al., 2003), and on monthly to yearly time scales

the SST has weak impact on NAO (Kushnir et al., 2002). Thompson and Wallace

(2000) and Thompson et al. (2003) found that the NAO is a component of Northern
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Hemisphere large scale atmospheric circulation variability. More specifically, Thomp-

son and Wallace (2000) demonstrated that the NAO is a regional manifestation of the

dominant mode of variability of the zonal mid-latitude flow, known as the North Hemi-

sphere Annular Mode (NAM), or also as the Arctic Oscillation. The NAM variations

are related to pressure anomalies with opposite signs along 55◦N and 35◦N. The NAM

spatial pattern, which is defined as the leading PC of SLP anomalies over the Northern

Hemisphere, is zonally symmetric over most of the hemisphere, but intensifies locally

over the North Atlantic, where it resembles the NAO spatial pattern. The NAM has

a strong signature in the pressure fields of the middle and upper troposphere. In the

stratosphere it has a zonally symmetric structure typical for the atmospheric annular

modes of the Northern and Southern hemispheres (see Thompson et al. (2003)).

Figure 3.2 shows the NAM pattern calculated as dominant PC of SLP for the

Northern Hemisphere (Figure 3.2a) and the correlation pattern for the time series of

the first PC of the North Atlantic region only (Figure 3.2b). The two patterns are

very close over the North Atlantic. The time series for the NAO index calculated

from Lisbon, Portugal and Stykkisholmur/Reykjavik, Iceland station data (Figure

3.3a) and as the first PC of the North Atlantic SLP (Figure 3.3b) show very close

temporal variability with the NAM index calculated as the dominant PC of the North-

ern Hemisphere SLP (Figure 3.3c). The close similarities in the spatial patterns and

temporal variability of the NAO and NAM reflect the fact the NAO is the regional

projection of the NAM (Thompson and Wallace, 2000; Thompson et al., 2003). In the

following we will refer the dominant mode of North Atlantic atmospheric variability

as the NAM/NAO.

The time variations of the NAM/NAO reflect the variability in the position and

strength of the mid-latitude zonal jet stream over the North Atlantic, with respect to

its climatological position (Thompson et al., 2003). This is an eddy-driven jet, which
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Figure 3.2: Hurrell’s North Atlantic Oscillation and North Annular Mode patterns:
(a) Top panel: The first PC of Northern Hemisphere (20o-90oN, 90oW-40oE) winter
SLP data. It explains 23% of the extended winter mean (December-March) variance.
(b) Bottom panel: The correlation pattern for the time series of the leading PC
of SLP anomalies over the North Atlantic. Contour interval is 0.5 hPa for both im-
ages. These figures are from the UCAR web site: climatedataguide.ucar.edu/climate-
data/hurrell-wintertime-slp-based-northern-annular-mode-nam-index
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Figure 3.3: Hurrell’s North Atlantic Oscillation and Northern Annular Mode in-
dices. (a) Top panel: The winter (December through March) NAO station-based
index based on the difference of normalized sea level pressure (SLP) between Lis-
bon, Portugal and Stykkisholmur/Reykjavik, Iceland since 1864. (b) Middle panel:
The NAO PC-based index of SLP anomalies over the Atlantic sector, 20o − 80oN,
90oW-40oE. (c) Bottom panel: The NAM PC-based index of SLP anomalies over
the Northern Hemisphere 20o − 90oN. The figures are from the UCAR web site:
climatedataguide.ucar.edu/category/data-set-variables/climate-indices/
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is triggered by eddy fluxes of momentum between the mean flow and transient eddies.

The latter are usually defined as departures from the time mean zonal flow. Panetta

and Held (1988) showed that the eddy-mean flow interaction can maintain jets in the

absence of thermal forcing. When a perturbation grows and decays it drives back

the mean jet through the convergence of westerly eddy momentum flux. The eddy

driven jets are usually weaker, and at the same time exhibit much stronger spatial and

temporal variability than their thermally driven sub-tropical counterparts (Thompson

et al., 2003). The variability related with their dynamics is particularly strong when

the meridional extension of the baroclinic zone exceeds the size of the eddies, which

permits meanders to develop in the jet (Lee and Feldstein, 1996). The presence of

warm ocean surfaces in the subpolar North Atlantic permit atmospheric eddy activity

over a larger latitude sector, which supports particularly strong baroclinic instability

and eddy-mean flow interaction in the region. This is one possible explanation of the

particularly strong NAM variability in the North Atlantic sector (Thompson et al.,

2003).

NAM/NAO exhibits temporal variability on all time scales from sub-seasonal,

to interannual and decadal (Hurrell and Deser, 2009). The physical mechanism of

NAM/NAO variability is related to the processes of atmospheric baroclinic instability,

Rossby wave propagation and breaking, and eddy generation and decay. The typical

time scales of these processes varies from seven to sixty days (Thompson et al., 2003).

Longer NAM/NAO variability may be triggered through interactions of the zonal

jet with the quasi-biennial oscillation in the equatorial troposphere which has an

estimated period of 27 months (M. P. Baldwin et al., 2001). Less is known about

the mechanism of NAO/NAM related atmospheric variability on longer time scales.

The observed atmospheric spectrum exhibits peaks on interannual and decadal time

scales, suggesting the existence of atmospheric regimes on these scales (Vallis, 2009).
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Trends for the NAM/NAO to favor certain phases can persist for time periods

longer than years and decades (Hurrell and Van Loon, 1997). Historical data indicates

that the NAO was positive for much of the first three decades of the 20th century

(see Figure 3.3). From the 1930s to early 1970s the NAO index exhibited a downward

trend (see Figure 3.3). Since the 1980s the NAO has been in a predominantly positive

phase, with the highest values of NAO index ever observed occurring in the late

1980s and early 1990s (Hurrell and Van Loon, 1997). This NAO/NAM variability at

interannual and decadal time scales is linked to variations in the surface atmospheric

conditions over the North Atlantic Ocean in the past fifty years, which had a significant

impact on the subpolar water mass characteristics and ocean circulation; e.g., Dickson

et al. (1988); Dickson et al. (2000); Curry and McCartney (2001); Yashayaev and

Clarke (2006);Yashayaev (2007); Lohmann et al. (2009); Lozier et al. (2010); Zhu and

Demirov (2011).

During the 1960s when the NAO was predominately negative in phase, the winters

over the Subpolar North Atlantic were mild and surface cooling weaker than average.

The deep convection and ocean circulation were less intense than normal (Yashayaev,

2007; Zhu and Demirov, 2011). In the late 1960s a low salinity anomaly in the

surface layer was observed to propagate around the Labrador Sea. This phenomena

is known as the Great Salinity Anomaly (GSA) (Dickson et al., 1988). The GSA was

related to an approximately 79 × 109 ton salt deficit, which was advected through the

Labrador Sea, and in mid 1970s returned to the Nordic Seas (Dickson et al., 1988). It

was equivalent to a 2 × 109 ton increase in the freshwater and sea-ice transport into

the Subpolar North Atlantic (Aagaard and Carmack, 1989). Dickson et al. (1988)

found that the excessive freshwater transport was triggered by intensified sea-ice and

freshwater export from Arctic through the Fram Strait and Nordic Seas, which in the

1960s entered the Subpolar North Atlantic.
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It is well established that the export of Arctic sea-ice through the Fram Strait is

positively correlated with the NAO index (Kwok and Rothrock, 1999). In the 1960s

the low frequency NAO index was predominantly negative in phase, while at the same

time the observations suggest that this was the period when excessive freshwater and

sea-ice transport through the Fram Strait triggered the GSA. This so-called the "GSA-

paradox"; cf., Dickson et al. (2000), suggests that enhanced sea-ice transport through

the Fram Strait is possible during both states of the NAO. In particular, Dickson

et al. (2000) demonstrated that there were time periods during the 1960s when the

atmospheric circulation patterns which favour stronger than normal sea-ice export

dominated the atmosphere over the Northern Seas. It is also important to note,

that while NAO trends can persist on decadal time scales, individual years need not

conform to these patterns. In the 1950s and 1960s such short term changes may

have impacted ocean transport through the Fram Strait, considering that the GSA

was triggered by 25% higher than normal sea-ice and fresh water export through the

Fram Strait, for a period of time of only about two years (Aagaard and Carmack,

1989).

Another mechanism that could have potentially contributed to the salt deficit in

the Nordic Seas, during the development of the GSA in the 1960s, is related to varia-

tions in the export of salty and warm Atlantic Water to the Nordic Seas. The model

simulations of Lundrigan and Demirov (2012) suggest that the export of Atlantic Wa-

ters into the Nordic Seas in the 1960s was anomalously low following the decay in

the intensity of sub-polar gyre circulation. The latter was weaker than normal due

to the weak surface forcing during the 1950s and 1960s, when the NAO index was

predominately negative (Zhu and Demirov, 2011). Lundrigan and Demirov (2012)

suggested that the weakening of the salty Atlantic Water inflow to the Nordic Sea

additionally intensified the GSA, which had been triggered initially by the excessive
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Arctic freshwater and sea-ice inflow.

Figures 3.4 and Figures 3.5 show the major trends in properties of the surface and

intermediate water masses in the Labrador Sea in the past fifty years. During the

GSA the surface layer salinity dropped by about 0.38psu. This is the largest variation

in the surface layer salinity for the whole period which occurred within a time period

of five years from 1967 to 1971. Following the decadal variability in the atmospheric

forcing, the surface layer temperature was high in the 1950s and 1960s when the

NMA/NAO was mostly negative in phase, and low in the 1980s and 1990s when NAO

was predominately positive. These decadal trends are well pronounced also in the

intermediate water mass properties. The surface layer, which has a smaller inertia

than the intermediate and deep layers, shows an intense variation on time scales of

two to three years, that are superimposed on the decadal trends.

The NAO index was in predominantly positive phase in the past three decades

since the 1980s (see Figure 3.3), with exceptionally high values in the late 1980s

and early 1990s when the NAO index reached its highest values since 1860 (Hurrell

and Van Loon, 1997). The severe winter surface winds and cooling triggered intense

deep convection (Yashayaev, 2007) and intensified the subpolar gyre circulation (Zhu

and Demirov, 2011). Starting from the mid 1980s, the deep convection progressively

developed to record depths. The estimated annual production of the Labrador Sea

Water (LSW) between 1987 and 1994 was about 4.5 Sv with peaks in some years

close to 7Sv (Yashayaev, 2007). The fresh and cold LSW which formed in this period

(see Figure 3.5) was the deepest, densest and largest Labrador Sea Water (LSW) ever

observed (Dickson et al., 2002).

The Subpolar North Atlantic has warmed substantially (see Figure 3.4) since the

mid-1990s (Yashayaev and Clarke, 2006). This warming was initially stronger in

the eastern North Atlantic (Marsh et al., 2008). In the western part of the basin, the
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warming was contemporaneous with a decrease in the intensity of the deep convection.

Once winter convection had lost its strength after the winter of 1994/1995, the deep

LSW 1987-1994 layer lost ’communication’ with the mixed layer above (see Figure

3.5), consequently losing its volume, while gaining heat and salt from the intermediate

waters outside the Labrador Sea (Yashayaev, 2007). The surface 1000 m layer has been

steadily becoming warmer and saltier since 1994/1995 (see Figure 3.4), although, there

were two periods when cooling caused by an abrupt increase in the deep convection

in the 1999/2000 and 2007/2008 (Yashayaev, 2007; Yashayaev and Loder, 2009; Vage

et al., 2008).

The mechanism of the recent warming in the North Atlantic was a focus of the

debate over the role of interannual variations in atmospheric forcing, and in that of

the Atlantic Meridional Overturning Circulation (AMOC). The North Atlantic gyre

circulation intensified during the period of strong positive NAM/NAO in the late

1980s and early 1990s (Curry and McCartney, 2001). In the second half of the 1990s

the intensity of the subpolar gyre circulation declined (Hakkinen and Rhines, 2004),

which was contemporaneous with the onset of the warming trend (see Figure 3.4) in

the Subpolar North Atlantic (Hatun et al., 2005). A number of studies have indicated

that the NAO related atmospheric changes since the mid-1980s played a role in the

dramatic changes of the heat storage observed in the Subpolar North Atlantic Ocean;

e.g., Lozier et al. (2010); Robson et al. (2012); Zhu and Demirov (2011).

The NAO index magnitude has declined since 1995, while it has remained mostly

in the positive phase. There were only isolated one and two year periods when the

NAO index increased in magnitude. In particular, when the NAO was negative in the

winter 1995/1996. Robson et al. (2012) suggested that the changes in the atmospheric

characteristics related to this negative NAO phase after a prolonged period of positive

NAO triggered the onset of warming period for the North Atlantic. Hakkinen et al.
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(2011) found that the long term North Atlantic atmospheric variability was influenced

by blocking events, which between 1996 and 2010 were more frequent than normal.

For the North Atlantic region, "blocking" typically refers to atmospheric phenomena

where large anticyclonic patterns persist for more than several days (Berrisford et al.,

2007), although in general the term has broader application; cf., Tibaldi and Molteni

(1990). These features block westerlies and divert the jet stream and storm tracks

from their climatological positions. Years with more frequent blocking correspond to

warmer and saltier Subpolar North Atlantic Ocean (Hakkinen et al., 2011). These

are important features in their own right, with unique associations documented in

Section 3.5. However, they are often grouped with different phases of the NAO in basic

atmospheric analysis. Woollings et al. (2008) found that blocking can be triggered

by upper level breaking of Rossby waves in the atmosphere over the North Atlantic.

They found that Rossby waves breaking and episodes of blocking occur frequently

when the NAO is negative in phase. The blocking effects are rare when NAO is

positive. The study of Croci-Maspoli et al. (2007) confirms that the blocking in the

North Atlantic anticorrelates with the NAO index. These authors made a comparison

of the blocking effects over the North Atlantic and Pacific Ocean. Similarly to the

North Atlantic case, they found that the blocking over the North Pacific anticorrelates

with the Pacific North American pattern (PNA).

3.4 Patterns of the North Atlantic atmospheric

variability

Historically, two conceptual views have been used by meteorologists in studies of at-

mospheric variability. These concepts differ in their interpretation of the distribution

of instantaneous states of the atmosphere (in the space of all possible states). The
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(a)

(b)

Figure 3.4: (a) Upper layer (10-150 m) temperature (red) and salinity (blue) anomalies
in the Labrador Sea based in a combination of ship and Argo drifter measurements.
(b) Temperature (red) and salinity (blue) anomalies in the Labrador Sea for the 20-
2000 m layer based in a combination of ship and Argo drifter measurements. (Figure
produced by Igor Yashayaev)
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P

Figure 3.5: (a) A σ2-time plot showing average thickness (m) of ∆σ2 = 0.01 kgm−3

layers in the Labrador Sea (σ2 is potential density anomaly referenced to 2000 dbar].
(b] Potential temperature (θ)salinity (S) ’volumetric’ projections of the 1994, 2000
and 2004 AR7W hydrographic section (Figure produced by Igor Yashayaev)
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linear paradigm assumes that the atmospheric states are normally distributed around

the climatological mean. Hence, the density of observed states decreases with the dis-

tance from the origin, which is the climatological state. Within the linear paradigm,

the spatial structure of the patterns of atmospheric interannual variability as well as

other teleconnection patterns were originally estimated using site to site correlation

measures by Wallace and Gutzler (1981). More generally, they can be described as

the leading modes of variability of pressure anomalies (at various atmospheric levels)

for the region of interest defined by using Principal Component Analysis (PCA) or

rotated variants of the same (von Storch and Zwiers, 1984).

The non-linear paradigm assumes that the climatological mean is not necessarily

the most frequently observed state of the atmosphere. Rather, the distribution in the

state space is skewed and multi-modal. An example of a similar system is provided

by the Lorentz model (Lorenz, 1963), shown in Figure 3.6, where the distributions

are indentified by the modes of the chaotic attractor. The most frequently observed

states are not close to the mean of the solution, but instead in the neighbourhood of

the stationary points of the system.

Chaotic non-linear dynamical systems, such as the Lorenz system, are sensitive to

initial conditions; i.e., small differences in state can lead to a completely different sys-

tem evolution over time. The resulting divergence of trajectories and non-repetitive

behavior limits description and predictability, as information about “similar” trajecto-

ries or previous states does not necessarily prescribe current behavior (Lorenz, 1963).

The attractors of such systems are quasi-steady-state solutions that the trajectories

tend towards. As such, these tendencies give some predictability/structure to the sys-

tem (Kalnay, 2002). These attractors can be quite complex; e.g., the Lorenz “Strange

Attractor” where the quasi-equilibrium states involves chaotic oscillation between two

distinct orbits (Sparrow, 1982), as shown in Figure 3.6.
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Figure 3.6: A trajectory of the Lorenz 1963 dynamic system demonstrating the mul-
timodal nature of the attractor.

The nature of the attractors and the location of bifurcation points (critical thresh-

olds which determine which attractor a trajectory will be drawn towards) are depen-

dent on the system dynamics which evolve with changes in external forcing (Hale and

Kocak, 1991). Changes in the system dynamics, whether through variation in the

coupled systems or larger climatic changes, will manifest themselves through shifts

in frequency, residency, and transition statistics between attractors/attractor-modes

(Corti et al., 1999), provided that the external changes are moderate. If alternatively

the external forcing changes are large (as defined by the thresholds of the individ-

ual systems) shifts in external forcing can change the structure (or existence) of the

attractors/modes themselves (Lorenz, 2006). Currently it is believed that the near-

future evolution of the climate state will be within the first category (Terray et al.,

2004).

The atmosphere is a multidimensional nonlinear dynamical system, whose evo-

lution in time is typically described by a set of differential equations. Within this

paradigm, so called atmospheric regimes are interpreted as the existence of quasi-

equilibrium states or fixed points of attractors in the atmospheric phase space. When
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a state of the atmosphere is close to one of these attractors in the phase space, it

remains there for a period of time much longer than the lifetime of weather distur-

bances. The persistence of such state is a result of the balance of dynamical tendencies

with the eddy-mean flow interaction which exists when the state is close to one of the

attractors (Molteni et al., 2006).

The dynamics of the atmosphere do not always allow for tractable analytic de-

scriptions of attractors and bifurcations. Furthermore, multi-modal behaviour in the

atmosphere need not be produced by non-linear interactions in the resolved dynam-

ics, but rather by state dependent variations in the influence of unresolved sub-scale

processes (Monahan, 2002; Sura et al., 2005). As such, statistical methods are used

to look for modes of variability. These search for multi-modal behavior; e.g., Molteni

et al. (2006), by identifying regions with high densities of occurrence within obser-

vational and simulated data (Casty et al., 2005). A related method is identifying

self similar subgroups within the data by cluster analysis; e.g., Cheng and Wallace

(1991). These methods have been shown to locate known modes of intensively stud-

ied chaotic systems such as the Lorenz attractor (Stephenson et al., 2004). However,

such methods have been criticized for not meeting certain frequentest measures of

significance especially when applied over hemispheric regions e.g., Stephenson et al.

(2004). This is potentially due to the limited duration of observational data. As well,

these methods do not necessarily determine the number of individual attractors and

modes within a system, and attempts to do so can be sensitive to variations in time

period and sampling (Christiansen, 2007). Inherently, the results of cluster analysis

can always be further subdivided down to the level of individual data points, and

to some degree the number of relevant modes can be more a function of the level of

detail needed for a particular study than as an approximation of the system dynamics

(Dennett, 1991). For some applications the classification methods presented here can
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be seen as an overlapping between the theoretical concerns of dynamical systems and

the weather typing approaches of descriptive meteorology (von Storch and Zwiers,

1984). Irregardless of the sometimes exploratory nature of the analysis, the results

and methods presented in this article have been successfully applied in the fields of

predictive meteorology and downscaling; e.g., Corte-Real et al. (1999), Boe et al.

(2006), Kannan and Ghosh (2010).

3.4.1 Fuzzy Clustering

Cluster analysis is a classification method which divides a data set into a predefined

number of subsets of similar elements. Typically these subsets, referred to as clusters,

are thought of having centres, which describe the characteristic pattern common to

their elements. Algorithms are designed to subdivide the data so to maximise the

distance/difference between centres, while also maximizing the similarity of the mem-

bers assigned to individual clusters (Kaufman and Rousseeuw, 1990). The method

has been used previously to describe large scale atmospheric circulation regimes over

hemispheric domains; e.g., Cheng and Wallace (1991), as well as the North Atlantic

region; e.g., Cassou et al. (2004), and Yiou (2004). Once defined these climate regimes

can be statistically linked to local mesoscale phenomena; e.g., Cattiaux et al. (2010),

OrtizBevia et al. (2011).

Most clustering methods classify data according to “crisp” or “hard” clusters where

each data point is a member of exactly one distinct cluster. This can be described

by saying that the membership of a given data point to a certain cluster is binary;

i.e., either zero or one. Alternatively, fuzzy clustering allows a continuous range of

membership to a cluster on the range [0,1]; e.g., a data point may have a 0.35 degree

of membership to Cluster A and a 0.65 degree of membership to Cluster B, with the

conditions that a data point’s memberships must be greater than or equal to zero and
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sum to one. These requirements result in this method sometimes being referred to

as “probabilistic clustering”, where the interpretation is that the membership degree

represents the probability that one would assign a given data point to a given cluster

(Bezdek, 1981). However, as is the case with many clustering algorithms, this is a

heuristic approach of which the formal mathematical properties of the results is not

well studied. The more common interpretation is that fuzzy membership allows one

to think of an object as being able to belong to two sets simultaneously. Either inter-

pretation highlights that the degree of membership describes an uncertainty regarding

classification, rather than reflecting a probability of occurrence (Kosko, 1990). It has

been suggested that fuzzy clustering may be a preferred clustering approach to cli-

mate data, as notable variability in classification often occurs during cross-validation

(Cheng and Wallace, 1991).

For this investigation, membership degrees are determined using the “FANNY”

algorithm (Kaufman and Rousseeuw, 1990) as implemented by Maechler et al. (2005)

for the software package R (R Development Core Team, 2011). For this application

this amounts to a variant of the “fuzzy c-means” algorithm (Bezdek, 1981) using

Euclidean distance, rather than the traditional squared Euclidean distance, since the

former method has less outlier sensitivity, and better represents non-spherical clusters

(Kaufman and Rousseeuw, 1990). To prevent the utilized algorithm from converg-

ing to “crisp clusters”; i.e., outputting only membership values of zero and one, it is

necessary to transform the membership coefficients (m) within the algorithm so that

there is an uneven response between changing “high” (m → 1) and low (m → 0)

membership values. Typically the membership value is raised to a power (Klawonn

and Hoppner, 2003); i.e., for membership m, m 7→ mk, where k = 1 results in crisp

clusters and k → ∞ will produce completely fuzzy; i.e., equal membership, delimita-

tion. This value must be set by hand. Values are tested by comparing distributions



113

of membership coefficients produced by data and by red noise simulations, so as to

check that distributions of membership values resulting from the data are bimodal,

while distributions from red noise are typically (> 95 % occurrence) uni-modal; i.e.,

we check that we do not use so low a value of k that would “force” the appearance of

distinct clusters onto a uni-modal data set. Seeing that it is possible to create fuzzy

yet significantly distinct clusters also serves as a means to check the choice of number

of centres (Horenko, 2010).

3.4.2 Gaussian Mixture Models

A more formally probabilistic alternative to the fuzzy clustering described above are

Gaussian Mixture Models (GMMs). GMMs model a set of (multivariate) data by

describing it as being generated from a combination of Gaussian distributions. The

task is to estimate how many distributions; i.e., clusters, comprise the sample, the

percentage each distribution “contributes” to the data sample, and the mean and

(co)variance terms for each distribution. GMMs are conceptually quite similar to

the described heuristic methods. The k-means algorithm and fitting a GMM where

the covariance matrices are set to be diagonal, equal, and the same for all clusters,

both depict drawing spheres within the phase space to define data groupings (MacKay,

2003). However, GMMs are a mathematically formal approach, fit to different metrics,

that give a continuous probabilistic measure of membership across the phase space.

As such, the mathematical properties of the resulting models are rigorously defined.

This gives some advantages over the clustering algorithms discussed above. Namely,

they can be fit with Bayesian methods, giving a format for comparing models and

describing parametric uncertainties. However, the parametric nature; i.e, the use of

defined distributions, of the model can overly restrict the form of the solution.

One variation on the method is the “Infinite Mixture Model”. Here, rather than
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pre-selecting an initial number of clusters for the model, this number is set a priori to

infinity, has an associated prior distribution, which takes the form of a concentration

parameter dictating how diffuse the observed data is believed to be (Neal, 1991).

This gives a means of calculating uncertainty for the number of clusters, but makes

it difficult of make an ensemble estimate of the other parameters, since their number

and meaning are different for each sample.

The results presented below are produced using the software provided at http:

//www.cs.toronto.edu/~radford/fbm.software.html.

3.5 The North Atlantic weather regimes

In the early development of atmospheric forecasting, meteorologists invented classifi-

cations for typical weather regimes or so-called Grosswetterlagen (Baur et al., 1944).

At the time this approach was instrumental in the development of methods for short

and medium range weather forecasting. The major assumption behind this approach

is that certain atmospheric patterns can persist on time scales larger than the typical

life time of atmospheric weather events and disturbances. Three types of weather

regimes were identified over Europe by Hess and Brezowsky (1952), e.g. zonal, block-

ing and mixed. The transition probabilities between these patterns were used as input

information for weather forecasts; cf., Spekat et al. (1983).

The weather regimes are defined as points in the phase space where the atmosphere

is in statistical quasi-equilibrium. In these points the dynamical tendencies of large

scale flow are balanced by mean-eddy interaction (Molteni et al., 2006). If the state

of the atmosphere is in a close vicinity of one of these quasi-equilibrium states on the

phase space, then the atmosphere will remain in this area over a time frame longer

than the typical life time of atmospheric disturbances.
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Four dominant weather regimes have been identified, using crisp clustering meth-

ods, for North Atlantic SLP anomalies, by Yiou (2004), Cassou (2008), OrtizBevia

et al. (2011), Cattiaux et al. (2010), and Hakkinen et al. (2011). These regimes cor-

respond to asymmetrical descriptions of the positive and negative phase of the NAO.

This asymmetrical description is able to better classify NAO+/- events than classi-

fications based on linear statistics (Cassou et al., 2004). The analysis also reveals

two additional features. One such feature is the Scandinavian-Greenland dipole (SG),

with low and high pressure features over Greenland and Scandinavia respectively. The

second is defined by a region of high pressure south of Greenland, referred to as the

Atlantic Ridge (AR) (Cassou, 2008). The spatial structure of these patterns is robust

and shows little sensitivity to the difference in the clustering methods and the period

averaging of the analyzed data set (Cassou, 2008). These North Atlantic weather

regimes have been successfully used in a number of recent studies of atmospheric vari-

ability over Europe and North America. Yiou (2004) found that the regional extreme

precipitations and temperature over the North America and Europe are connected to

the type of dominating atmospheric weather regimes. The relation with the weather

regimes was used by OrtizBevia et al. (2011) to explain the extremes of precipitations

over the Iberian Peninsula (Cattiaux et al., 2010).

Here we test using a Bayesian approach to classification so as to better capture un-

certainties which will be relevant in following sections. We use winter (DJF) SLP fields

from atmospheric reanalysis data, provided by the National Center for Environmental

Prediction (NCEP) (Kalnay et al., 1996), for the North Atlantic region, specifically

20◦N : 80◦N and -90◦E : 30◦E, so as to match previous studies. The classification

methods described above are multivariate methods, but tend to lose effectiveness for

high dimensional data sets. In the following analysis the dimensionality of the data set

is first reduced by performing PCA and retaining the leading ten PCs, which explain
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81% of the variance. The clustering algorithms are then applied to the time-series of

expansion coefficients for these PCs rather than to those of individual field elements.

Parameters for the GMMs are estimated using Bayesian inference1. The GMM is

set a priori as having four spherical components so as to be in agreement with the

k-means approach of Cassou et al. (2004). Further analysis is performed using one

hundred samples drawn from the resulting posterior distribution of possible models.

Figure 3.7 shows the posterior mean centers of the four clusters. These match

the patterns reported in previous studies. The robustness of the estimated centres is

studied here in terms of the standard deviation of centres calculated from the posterior

samples. These are shown in Figure 3.7. The range of difference between sample

estimates is small compared to the distance between the centres themselves. Most of

the posterior variability occurs at the edges of the features described by the centres.

For the NAO+ and NAO- features the variability in the models is primarily related

to shifts in the North-South orientation of the extents and centres of the dipoles.

Variability for the SG Dipole is mostly in the western extent of the Scandinavian high

pressure feature. Different models shift the AR feature north or south, and vary to a

lesser amount concerning its east-west extent.

Figures 3.8 and 3.9 show the variations of the frequency of the winter weather

regimes on two different time scales - daily and annual. The probability of membership

to each cluster for each day of the winter of 2012 is shown in Figure 3.8. The mean

membership probabilities are displayed, as well as those for individual samples from

the posterior. The NAO+ and SG weather regimes dominate the North Atmospheric

circulation for the most of the winter of 2012. The AR pattern is present only during

two weekly periods in January and February and NAO- probability membership is

1Gaussian priors are used to ease implementation but set to be wide enough so as to be essentially
uninformative. Further testing shows that the results are insensitive to specifications regarding the
width of the priors or variations in sampling.
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very low during the whole period. The winter mean probability of membership, again

shown as posterior mean as well as sample values for each winter is shown in Figure

3.9. In NAO+ and GS frequency peaks in the winter of 2012. The mean probability

membership for AR in 2012 is significantly smaller and for NAO- it is close to zero.

The NAO index reported for 2012 was overwhelmingly positive, corroborating our

results, which have the additional advantage of showing the presence of the AR events.

Typically AR features are grouped with NAO- events in the classical indexes. Both

time series as well as the cluster centres match estimates created using other clustering

methods as well as optimized GMMs (not shown), but have the extra feature of

being able to approximate error bars for the presented descriptions. The interannual

variability in regime distribution, for the past fifty years, is discussed in the following

sections.

3.6 Patterns of North Atlantic atmospheric inter-

annual and decadal variability

Some weather regimes may dominate in the North Atlantic atmospheric circulation

for years or decades before being replaced by other regimes. In the past fifty years,

the NAO- and AR regimes dominated in the 1960, while the NAO+ and GS regimes

were dominant in the 1980s and 1990s (see Figure 3.9). Such long term variability

is often regarded as regime change or sometimes as a climate change signal (Lorenz,

2006). An important question in the context of understanding the long term North

Atlantic atmospheric variability is if and how the weather regimes changes are linked to

external forcing triggered by global climate change, or large scale decadal atmospheric

variability of the zonal circulation in the Northern Hemisphere.

Two types of response by the atmospheric circulation are possible to anomalies
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Figure 3.7: The mean posterior estimate of centers calculated using Bayesian Gaussian
Mixture Models for winter (DJF) daily SLP anomalies and the standard deviation
between samples.
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Figure 3.8: Daily probability of membership for the 2012 winter (DJF) season for the
Bayesian GNNs, bars give the mean posterior estimate, gray dots give the results for
the centres generated by individual samples.
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Figure 3.9: Mean winter (DJF) probabilities of membership for the Bayesian Gaussian
Mixture Model SLP centres, bars give the mean posterior estimate, gray dots give
results for individual posterior samples of centres. Brown curve gives a smoothed
time series of the mean probabilities.
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in the forcing or boundary conditions (Molteni et al., 2006). If the atmosphere is

subject to weak and persistent forcing, then the number of the regimes and their

spatial structure remain constant and only small variations in the position of the

centres and changes in the frequencies of regimes will occur (Palmer, 1999; Corti

et al., 1999). If the external forcing is strong enough, the number and centres of the

regimes may also change (Molteni et al., 2006). Existing studies suggest that the

change in the North Atlantic atmospheric regimes most probably falls into the first

group (Lorenz, 2006). In this case, the weather regimes do not change their spatial

patterns, but the external forcing “nudges” the nonlinear dynamical system causing

domination of some weather regimes (Corti et al., 1999). Due to its intrinsically

chaotic nature, the atmosphere will still occupy states in the phase space that are in

vicinity of all quasi-equilibrium points, although the weather regimes that are favored

by the forcing will occur more frequently than the others, e.g. the external forcing

will cause the atmosphere to stay close to these weather regimes longer than for the

remaining regimes. Here this notion is demonstrated using the chaotic Lorenz system

subjected to intermittent external forcing, in an experiment similar to that of Corti

et al. (1999).

3.6.1 The low frequency patterns: example of the Lorenz

System

The solution of the Lorenz equations is given in the top panel of Figure 3.10. The

Lorenz system has two dominant regimes and the solution exhibits irregular fluctua-

tions between these two modes. In this experiment external forcing is applied, so that

the system favours one mode of the attractor over another, as previously described

by Palmer (1999) and Corti et al. (1999). The use of external forcing in these exper-

iments serve only to create statistical shifts such as observed in the atmosphere, it
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is not meant to imply the physical origin of such shifts in the atmosphere occur at

certain scales or that they have well defined predictability.

The characteristics of long term transitions between the states favoured by the

external forcing can be identified through analysis of the low pass filtered solution,

which is shown in the middle panel of Figure 3.10. The filter removes the most

energetic high frequency transitions leaving only the local mean. It is calculated as a

moving average, with a smoothing interval comparable to that of the external forcing

transitions, so that each point depends on the local mean residence time for the two

modes and their amplitudes. As such, the filtered curve indicates the phase of low

frequency variations in the system. The extrema in the middle panel of Figure 3.10

correspond to periods when one of the modes dominates in the solution, e.g. the

external forcing favors one of the attractors. In the transition periods, the filtered

solution has low magnitudes reflecting the fact that the modes are almost uniformly

distributed under weak external forcing.

This approach of using low pass filtered solution can be extended towards the

study of low frequency variability in the high dimensional atmospheric state at least

in the following two ways:

(i) Using fuzzy cluster memberships calculated from the filtered data. The mem-

berships for the Lorenz system is shown on the bottom panel on Figure 3.10. These

membership series relate to the entire (multi-dimensional) data set, and so are rep-

resentative when, unlike for the example problem here, projection onto a single com-

ponent is insufficient to describe the system. The memberships to the centres of the

Lorenz system (bottom panel Figure 3.10) clearly indicate the long term shifts in the

solution driven by external forcing.

(ii) Examining the distribution the modes within the clusters identified from the

filtered data. This probability distribution for the Lorenz system is shown on Figure
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3.11. It indicates the change in the frequency of occurrence of the two modes relating

to different external forcing.
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Figure 3.10: Top panel shows the x-component of a simulation of the Lorenz model,
with varying external forcing being applied intermittently through out the run.
Colouring displays the results of using clustering to identify the two modes of the
system. The dashed horizontal lines show the x-coordinate of the calculated mode
centres. The vertical lines show where the nature of the external forcing is changed, in
a repeating sequence of no forcing, forcing towards positive mode, no forcing, forcing
towards negative mode, etc. The middle panel is the same as the top but calculated
using the running mean of the original data. The bottom panel shows the fuzzy mem-
berships as calculated for the filtered data presented in the middle panel. Dashed
horizontal lines divide the bottom panel into thirds to aid visualisation.
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Figure 3.11: The distribution of occurrence for the system modes within the clusters
identified using the filtered data for the Lorenz system example.

3.6.2 Patterns of low-frequency North Atlantic atmospheric

variability

Esbensen (1984) identified four dominant patterns in Northern Hemisphere 700 mb

geopotential data low-pass filtered in the interannual band. They resemble the struc-

ture of the Pacific-North American (PNA), North Pacific (NP) patterns; cf., Wallace

and Gutzler (1981), the Northern Hemisphere Annular Mode (NAM/NAO) and the

Eurasian pattern. Esbensen (1984) also found that the three interannual modes PNA,

NP and NAM/NAO are correlated, suggesting that they may not be independent

modes of atmospheric variability. The NAM/NAO and PNA are the two interan-

nual atmospheric patterns described that have strong impact on the North Atlantic

variability (Esbensen, 1984).

The two dominant PCs for the Northern Hemisphere monthly mean 500 mathrmmb

geopotential height (H5) fields are shown on Figure 3.12. The first PC has a spatial
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structure that resembles the PNA; cf., Wallace and Gutzler (1981), but with the

centres over the Gulf of Alaska and Florida shifted northeastward of their canonical

positions. This mode describes a variability which is out of phase in the Gulf of

Alaska and near the southern tip of Greenland. The second PC descries a pattern

that contains elements of NAM/NAO and North Pacific Oscillation. The anomalies

related to this PC at the centres in the Gulf of Alaska and near the southern tip of

Greenland are in phase.

Here we study the interannual patterns of North Atlantic variability by using

the low-pass filtered solution. As discussed in the previous section we focus more

specifically on the spatial patterns of the clusters centres and probability distribution

of the weather regimes related to each of the clusters. We analyze winter (DJF) H5

anomaly fields from the NCEP reanalysis (Kalnay et al., 1996), over the domain of

25◦N : 75◦N (Bahamas and Canary Islands to Baffin Bay and Barents Sea) and -105◦E

: 45◦E (Gulf of Mexico and Hudson Bay to edge of Scandinavia and Mediterranean).

This is a higher elevation field and wider region than those used for the weather

regime classification, which were selected to allow comparison between our method

and previous studies. We are looking to compare surface events with variations in

long term processes, which include variations in upper troposphere processes such as

the jet stream. The H5 is a linking field that offers a compromise between the two

levels, and is used this way in previous studies and in meteorological applications. As

these processes incorporate continental effects, we expand the east-west range of the

region, although the presented results are largely insensitive to small changes in the

study area. Low-pass filtering is performed with a Lanczos filter (Duchon, 1979). The

clustering is performed on the leading ten PCs of the data, which account for 90% of

the variance.

Fuzzy clustering, rather than GMMs, is used to analyze the interannual patterns of
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Figure 3.12: Dominant PCs of montly mean 500 mb geopotential height field
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variability. The method is non-parametric, yet still allows for continuous memberships

to be determined. GMMs assume a structure where the data is clustered around the

centres in a Gaussian fashion. This gives a first approximation of the form of the

data set, but does not well match the appearance of the data. This assumption also

results in very crisp cluster memberships for the classified data points. This is not

supported by visual inspection, and given the time scales considered the PDF is not

expected to identify unique physical processes or dynamic effects. Rather, multiple

centres, skewness and other deviations from linearity are potentially indicative of

shifting trends and tendencies at shorter time scales (Teng et al., 2004). The number

of clusters to use is investigated by two-dimensional; i.e., using the first two PCs,

kernel density estimates of the PDF (Figure 3.13), which suggests four notable modes

when compared against red noise simulations. This number is confirmed by fitting an

infinite mixture model to all ten PCs and finding four clusters to be the mode of the

posterior estimate2. The cluster centres are given in Figure 3.14.

The first(counting left to right, top to bottom) and fourth clusters match (see

Figure 3.14) depict the positive and negative phase of the NAO, with the maximums

and minimums of the meridional dipoles of these two clusters zonally elongated. The

second and and third clusters have spatial structures that resembles the regional rep-

resentation of the two opposite phases of PNA pattern with the Florida centres shifted

eastward and the Scandinavian centre shifted northwestern in the second cluster. The

dominant element of the second and third centres are pressure anomalies southern of

Greenland. In the following, the second centre is refereed as the G- pattern. Its op-

posite pattern defined by the third cluster centre is labeled as G+. A centre similar

to that of G- in Figure 3.14 was identified by Cheng and Wallace (1991) (cluster A,

2This result is obtained using an a priori concentration parameter set to favor a limited number
of clusters. This is deemed appropriate based on the previous investigations and our initial beliefs
about the system dynamics.
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Figure 3.13: Kernel density plot showing the distribution of the leading two PCs of
the interannual H5 field.

Page 2681 in that paper) in an analysis of the Northern Hemisphere H5 data, low-pass

filtered to remove variations with period less than 10 days. The fourth (NAO-) centre

in Figure 3.14 resembles the regional structure of the centre labeled as cluster G by

Cheng and Wallace (1991). While the spectral interval represented by the data and

the spatial domain for the cluster analysis in Cheng and Wallace (1991) differ from

the ones used in our study, the similarities in the regional structure of the centres

over the North Atlantic suggest that they are robust. This also suggests that there

may be spatial correlations between the regional patterns on Figure 3.14 and some

elements of larger scale atmospheric variability over the Northern Hemisphere.

A time series comparing the dominant cluster for each winter against the NAO

index3 is shown in Figure 3.15. The NAO+ and NAO- interannual patterns are

dominate in years of high and low NAO index respectively. The two other clusters, G+

and G-, dominate mostly in years of low magnitude of NAO index. More specifically,

3As provided by http://www.cpc.noaa.gov/.
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the G+/G- dominate in some the years in the 1950s when NAO index was negative

and since 1995 when NAO index was positive. In both cases the NAO memberships

in the low-pass filtered data had a low magnitude.

Another way of representing the time series for the cluster centres is shown on

Figure 3.16. The two panels show the time variability of the fuzzy clustering for

NAO+/NAO- (upper panel) and G+/G- (bottom panel). The patterns on the two

figures clearly exhibit oscillating behavior. This connections between the oscillating

pattern can be expressed in terms of the coefficient of correlation which is very similar

for the two modes. For both G+/G- and NAO+/NAO- the correlation coefficient

between the membership of the opposite patterns is very close and about 0.46. This

coefficient is higher when calculated only for years strong NAO+/NAO- or G+/G-.

If we remove the years of strong NAO+ or NAO- the G+/G- membership correlation

coefficient increases to -0.58. The NAO+/NAO- membership correlation is again very

close -0.58, when calculated for years of low G+/G- membership.

To examine the relationship between the structure of the patterns of variability, on

interannual and sub-seasonal time scales, we look at the frequency of occurrence for

days mapped to the above described sub-seasonal regimes within days mapped to the

interannual regimes (when defined as crisp clusters). This result is shown in Figure

3.17. The analysis is performed using posterior samples from the Bayesian GMM

discussed above, and the distribution of the results is presented. From this we see

that in years of dominant interannual NAO+ pattern, the most frequent sub-seasonal

weather regimes are NAO+ and Greenland-Scandinavian (G-S) Dipole features, with

a high probability that the G-S Dipole is more dominant. The interannual NAO-

pattern shows a mirror effect with a dominance of the sub-seasonal NAO- and Atlantic

Ridge features. The other two interannual features are more evenly mixed although

they do show a significant redistribution of the sub-seasonal components. We suggest
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that the interannual clusters presented here represent shifting in distributions of the

sub-seasonal patterns, which have tendencies to be grouped in distinct combinations.

Figure 3.14: Cluster centres of the interannual H5 data, found through fuzzy cluster-
ing.

Winter

S
ta

nd
ar

di
se

d 
N

A
O

 in
de

x

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−2

−1

0

1

2

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

NAO−

G+

G−

NAO+

Winter

C
lu

st
er
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3.7 SST patterns of interannual variability

The life time of weather disturbances is significantly smaller than the typical time

scales of ocean surface and deep layer variability. Hence, the null hypothesis of climate
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Figure 3.17: The frequency of occurrence for the sub-seasonal data for each inter-
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variability of Hasselmann (1976) assumes that the climate system variability consists

of two parts: (1) a fast component which is the atmosphere, and (2) a slow component

- the oceans. The effects of the fast atmospheric component on the surface ocean

mixed layer is represented by white noise. In this case the SST variability is a result

of the integration of surface heat fluxes and is an auto-regressive processes of first

order. Within this paradigm, the ocean is a passive element of the system which

is forced by the atmosphere and influences the long term climate variability mostly

through its large heat capacity and the dynamical processes in the ocean are not

considered. The results of Frankignoul and Hasselmann (1977) demonstrated that on

time scales shorter than a decade, SST variation can be approximated as a first order

auto-regressive process.

Dommenget and Latif (2002) studied the spectrum of long term observed and

simulated SST. They found that neither spectrum corresponded to that of a first order

auto-regressive process. Dommenget and Latif (2002) explained these deviations as

an increase in the variance of SST oscillations on interannual to decadal time scales,

triggered by internal ocean dynamics, specifically lateral heat transport.

The idea that decadal variations of SST are driven by the variability in the merid-

ional heat transport dates back to the work of Bjerknes (1964). Delworth et al. (1993)

found that the AMOC exhibits oscillations with a period of about 50 years, which

lead to variance of SST of approximately 0.5C in the sub-polar North Atlantic. Del-

worth et al. (1993) suggested a mechanism of decadal AMOC variability explaining

the connection between variation in horizontal ocean transport, properties of the wa-

ter masses, and deep convection in the Subpolar North Atlantic. A weakening of the

AMOC reduces heat transport, which, following decadal scale lags, causes cooling of

the water masses and anomalously high salinity in the region of deep water formation.

This strengthens the AMOC, leading to an increase in transport of warm and salty
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waters into the Subpolar North Atlantic. This in turn reduces the intensity of vertical

convection, and as a result produces a new decay in the AMOC.

Delworth and Greatbatch (2000) have demonstrated that there is no evidence that

the AMOC is a part of a dynamically coupled mode of atmosphere and ocean, nor

that the AMOC driven variations in the SST have any significant impact on the at-

mospheric circulation. Rather, the long term meridional heat flux in the ocean and

atmosphere is positively correlated with ocean horizontal heat transport, and nega-

tively correlated with transport in the atmosphere (Delworth and Greatbatch, 2000).

Thus the ocean is the driver of the variability in the AMOC, while the atmosphere

compensates for the long term changes in the ocean heat transport.

On time scales shorter than the period of the AMOC, the SST anomalies are

forced by the atmospheric variability. Like in the Hasselman-1976 model, this forcing

is triggered mostly by fast weather systems with time scales smaller than the one of

the surface mixed layer variability. The type of this forcing, however, depends on the

frequency of occurrence of the dominating weather regimes (Figure 3.7). The NAO+

and GS regimes are related to deepening of the Icelandic minimum. This favors

colder than average winters in the Subpolar North Atlantic. The NAO- and AR

regimes favor blocking events in the region, which divert the storm tracks from their

climatological path. When these two patterns dominate the winters are warmer than

average. Within the paradigm of atmosphere as a multiscale nonlinear system, the

probability distribution of these regimes is conditioned upon the interannual patterns

of variability (see Figure 3.17).

Here we study the correlation patterns between monthly mean interannual patterns

memberships and SST (Figure 3.18). Note that high temporal correlation in the data

reduces the significance of correlations found between data sets (Zwiers, 1990). To

determine significance we test correlating the data sets against red-noise simulations



134

constructed to have the same temporal auto-correlations as the membership indexes

(Ebisuzaki, 1997). Correlations were only considered significant if they were higher

than those found when comparing red noise simulations of the index time series to

the SST fields, so as to maintain the spatial autocorrelation structure of the data.

We find that accepting correlations above values of 0.3 allows for a very conservative

claim that the correlations are above 95% significant.

The correlation maps between SST and monthly means fuzzy membership (Fig-

ure 3.18) show two oscillatory patterns of SST that are forced by the G+/G- and

NAO+/NAO-. The NAO+/NAO- driven SST anomalies resemble the well known

tripole pattern; cf., Visbeck et al. (2003). The tripole pattern has a cold anomaly in

the subpolar ocean during positive NAO phase in the sub-polar and equatorial North

Atlantic ocean and warm anomaly in the subtropical sector. The spatial pattern for

the negative NAO phase is symmetric to the NAO+ pattern with opposite signs of

the SST anomalies.

The G+/G- driven SST anomaly is less symmetric than the tripole pattern and has

magnitude of the SST anomaly associated with the G+ pattern much stronger than

the one for G-. The SST spatial pattern for G+ in the subpolar North Atlantic has

a spatial structure similar to the one for NAO- with the warm centre in the subpolar

ocean shifted towards the Eastern North Atlantic. Both interannual patterns G+ and

NAO- (Figure 3.14) are related to higher occurrence of the AR and NAO- weather

regimes (see Figure 3.17). The latter favor atmospheric blocking over the sub-polar

North Atlantic, which can promote anomalous distributions of heat within the region.

While in general the spatial structure G- driven SST pattern is antisymmetric to

the G+ pattern in most of the regions the magnitude of SST correlations to the G-

membership are insignificant except in the Eastern Subpolar North Atlantic. The low

temperature anomaly in this region is concomitant with a maximum in the correlation



135

of the G- membership and near surface wind stress curl (not shown here). One possible

explanation of this pattern is that it favors local intensification of the Ekman pumping

triggered by local strengthening of cyclonic wind vorticity.

Figure 3.18: Map of correlations between monthly mean interannual H5 fuzzy mem-
berships and SST values.

3.8 Conclusions

Four patterns of interannual and decadal variability for the North Atlantic are iden-

tified in this study. They display the spatial structure of two oscillatory patterns,

referred to here as the NAO+/NAO and G+/G-. The NAO+/NAO- represents the

regional manifestation of long term variability of the NAO/NAM mode. The G+/G-

oscillatory pattern suggests the elements of a regional manifestation of the PNA mode.
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The four interannual patterns ,NAO+/NAO- and G+/G-, have many similar elements

with the dominant PCs of the H5 field, the PNA (Figure 3.12a), and NAO/NAM

(Figure 3.12b), which have extrema in the North Pacific. Our analysis (not shown

here), however, did not show significant correlation between the interannual patterns,

NAO+/NAO- and G+/G-, and the SLP variability over the North Pacific. Previously,

Wallace and Thompson (2002) have shown that the SLP variations in the Atlantic and

Pacific centres of NAM are uncorrelated, due to the PNA related variability, whose

pattern in the Pacific is inversely related to that of the NAM (see also Figure 3.12).

The same notations (NAO+/NAO-) are used here for the NAO+/NAO- weather

regimes shown on Figure 3.7, cf., Cassou et al. (2004), and the NAO+/NAO- in-

terannual patterns of Figure 3.14; cf., Esbensen (1984). They, however, refer to

patterns that differ in terms of their spatial structure and temporal variability. The

NAO+/NAO- weather regimes are associated with the local intensification of the Ice-

landic low and severe/mild winters in the Subpolar North Atlantic, as described by

Walker and Bliss (1932). The interannual NAO+/NAO- patterns are defined by the

frequency of occurrence of the four weather regimes and their amplitudes therein (Hur-

rell and Deser (2009)). Hence, the spatial structure of the interannual NAO+/NAO-

patterns are elongated in zonal directions (see Figure 3.14) compared to the cor-

responding NAO+/NAO- weather regimes; as expected from previous studies; cf.,

Esbensen (1984). In this study our focus is on the long term interannual and decadal

atmospheric shifts represented by these patterns.

Figure 3.17 associates each interranual pattern with specific distribution of the

weather regimes. The NAO+ interranual regime favors weather NAO+ and GS

weather regimes. In the late 1980s-early 1990s when the NAO index was predom-

inantly positive, the NAO+ interannual pattern was dominant (see Figure 3.15), and

the NAO+ and SG weather regimes were the most frequent over the North Atlantic
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(see Figure 3.9). Both weather regimes favor intensification of the pressure low over

the Greenland and Iceland regions, and colder than normal winters over the Subpolar

North Atlantic. The NAO- interannual pattern is associated with NAO- and AR+

weather patterns (see Figure 3.17). In the 1960s when the NAO index was negative,

the NAO-interannual was dominating (see Figure 3.15), and the NAO- and AR+

weather regimes were the most frequent over the North Atlantic (see Figure 3.9).

Both weather regimes favor development of blocking structures over Greenland, and

deviation of the storm tracks from their climatological positions.

The G+/G- patterns dominate in the time before the 1960s and after the early

1990s. G+/G- are associated to more evenly distributed weather regimes (see Figure

3.17). Our results suggest that, in general, the G+ related atmospheric forcing is

warmer than normal and winter SST is higher than average in the Subpolar North

Atlantic (see Section 3.7). The G- pattern temporal variability correlates with a cold

SST anomaly in the subpolar ocean, with a maximum in the Eastern North Atlantic

(see Figure 3.18). There are strong indications; cf., Robson et al. (2012) and Marsh

et al. (2008), that the warming of the Subpolar Ocean in the past two decades was

triggered by intensified AMOC. The frequent occurrence of the G+ in that period

(see Fig. 3.16) may have additionally contributed to this warming.

There was a significant shift of the NAO index in the 1970s-1980s (see Figures

3.3) from strongly negative phase in the 1960 to high positive the late 1980s (Hurrell

and Van Loon, 1997; Dickson et al., 2000). Figure 3.19 shows the impact of this

shift on the probability distribution of the four interannual regimes, calculated for

two separate time periods. Figure 3.19a shows the distribution for the period from

1952 to 1971 when NAO index was negative. Figure 3.19b shows the distribution

for the period of positive high NAO index from 1983 to 2008. These figures show a

decadal shift similar to the low frequency shifts described in the example of the Lorenz
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Figure 3.19: Contours showing percent probability (derived from kernel density esti-
mates) of the interannual regime difference indexes for the time period of (a) 1952-1972
(left) and (b) 1983-2008 (right)

system (see section 3.6.1). While all of the regimes occur during the two periods, in

the first period years with strong NAO+ are less frequent than for the other three

patterns. Correspondingly, the NAO- interannual pattern has a low frequency of

occurrence in the second period. Palmer (1999) suggested that similar shifts in the

probability distribution of the regimes of a nonlinear climatic dynamical system can

be triggered by weak and persistent forcing. One possible mechanism of the shift

observed in Northern Hemisphere atmosphere in the 1980s is given by Shindell et al.

(1999). These authors demonstrated that the atmospheric circulation and mean-

eddy interaction from stratosphere to the ground can be sensitive the changes in the

external radiative forcing. This study also demonstrated that the impact of Northern

Hemisphere atmospheric response to the greenhouse gases is “manifested by a gradual

reduction in high-latitude sea-level pressure, and an increase in mid-latitude sea-level

pressure associated with one phase of the Arctic Oscillation excitation of the positive
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phase of the NAO”. Whether the expected increase in greenhouse gas forcing in the

mid to late 21st century will result in increased occurrence of NAO+ related activity

is still an open question. Many, but not all climate model studies suggest this is the

case (Gillett et al., 2003), although there is debate as to how well such models address

the range of processes that have been postulated to affect regime behaviour (Shindell

et al., 1999).
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Connecting Text

One uncertainty not addressed in the Chapters 2 and 3 is residual variability, as

defined in Chapter 1. Chapter 3 examines mean states at different spectral intervals,

not day to day weather events themselves. The EMIC used in Chapter 2 does simulate

daily weather (at a very coarse resolution), however these features are not examined,

as the low resolution of the simulator prevents it from accurately reproducing the full

structure and variability of these events. The following article develops an approach

to describing residual variability in the form of a stochastic weather generator for the

Subpolar North Atlantic, a sub-region of that outlined in Chapter 3. For this smaller

region the sub-seasonal patterns of Chapter 3 are not defined, and as well do not

approximate day to day circulation events. A more detailed analysis using SOMs, as

discussed in Chapter 1, is used to describe activity within the area of interest. The

weather generator is conditioned on the interannual patterns defined in Chapter 3.

That these patterns can be used to define longer term shifts in the distribution of

weather events was brought to attention in the analysis of the sub-seasonal regimes of

Chapter 3. Weather generator construction is an area of ongoing investigation, with

less development in the area of regional, rather than site specific, models. The design

questions addressed in this article follow objectives (6)-(8). This article has appeared

as Hauser and Demirov (2013) in the journal Stochastic Environmental Research and

Risk Assessment. Additional discussion can be found in Section C.1.
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A long term aim of the work presented in Chapter 4 is to examine ways of providing

detailed realistic atmospheric forcing for ocean models that is not constrained by the

length of historical records. At present it is not known how responsive ocean variability

is to subtleties in atmospheric forcing. Studies conducted using forcing typical to the

long-term variation identified in Chapter 3 would help clarify this, particularly for

neutral periods in long term evolution of the NAO.

There are two inconsistencies in presentation between the preceding and the fol-

lowing chapter. In Chapter 3 the term “weather regimes” was used to refer to the

sub-seasonal modes. In Chapter 4 the term refers to the interannual patterns of

Chapter 3, as these are the only regime type features discussed. Also, the interannual

pattern “G-” from Chapter 3 is referred to as “Eastern Blocking” in Chapter 4 and

the pattern “G+” is referred to as “Western Blocking” in Chapter 4. The change in

naming convention is due to the different context and target audiences of each article.

While “blocking” is visually informative about the structure of the features, block-

ing events are not interannual phenomena and so would confuse the presentation of

Chapter 3.
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4.1 Abstract

The article presents an approach for creating a computationally efficient stochastic

weather generator. In this work the method is tested by the stochastic simulation of

sea level pressure over the sub-polar North Atlantic. The weather generator includes

a hidden Markov model, which propagates regional circulation patterns identified

by a self organising map analysis, conditioned on the state of large-scale interannaul

weather regimes. The remaining residual effects are propagated by a regression model

with added noise components. The regression step is performed by one of two meth-

ods, a linear model or artificial neural networks and the performance of these two

methods is assessed and compared. The resulting simulations express the range of

the major regional patterns of atmospheric variability and typical time scales. The

long term aims of this work are to provide ensembles of atmospheric data for applied

regional studies and to develop tools applicable in down-scaling large-scale ocean and

atmospheric simulations.

4.2 Introduction

A stochastic weather generator (WG) produces synthetic time series of weather data

based on the statistical characteristics of weather at that location. As such, WGs are

not designed to forecast individual events; i.e., there is no expectation that the value

of the generated variables for a given date/time will match those observed. Rather,

they create time series of atmospheric variables with statistical characteristics that

resemble those of observations (Jones et al., 2009). These are empirical models based

on statistical relations rather than the equations of earth system dynamics (Benestad

et al., 2008).

WGs are often used as a downscaling technique, as they can simulate values at
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scales below the resolution of most dynamical circulation models. Most commonly

they are used to produce precipitation values for agricultural and hydrological models

(Maraun et al., 2010). Such WGs can provide ensembles of long time series for use in

uncertainty analysis and are often used in climate projections (Semenov and Barrow,

1997).

The primarily goal of this work is to develop a tool which is capable of producing

synthetic atmospheric fields that have characteristics typical for the relevant trends of

a specific period of time; using the long-term tendencies of the atmospheric circulation

as inputs. The need for such a WG arises from recent studies of climate change for the

North Atlantic Ocean. Through the late 1980s and early 1990s the sub-polar North

Atlantic has shown a tendency towards cooling temperatures which have changed

towards rapid warming since the 1990s (Marsh et al., 2008). The mechanism of

this change has strong links with the North Atlantic Oscillation (NAO) interannual

atmospheric variability (Bersch et al., 2007) and the Atlantic Meridional Overturning

Circulation (AMOC) (Robson et al., 2012) and has received strong attention in recent

publications; e.g., Marsh et al. (2008), Sarafanov et al. (2008), Lohmann et al. (2008)

and Hakkinen et al. (2011). The NAO is understood to be indicative of trends in the

west-east tracks of extra-tropical cyclones (Hurrell et al. (2003), Luo et al. (2011)).

These storms are the major source of atmospheric flux anomalies relevant to ocean

circulation, namely surface winds and precipitation, for the region. As such, shifts

in the dominant pathways of these storms; whether tending towards Central Europe,

Iceland, or being diverted northward towards the Labrador Sea, can have significant

effects, especially given the highly local nature of the deep water formation which

occurs within the region.

For the purposes of ocean modelling, Lohmann et al. (2008) and Zhu and Demirov

(2011) created deterministic forcing series typical of positive and negative phase NAO
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atmospheric variability. The forcing was constructed as a sum of the monthly mean

characteristics for the specific phase of NAO and the deviation from the monthly mean

taken from a specific subjectively chosen year. The weakness of this method is that

atmospheric weather conditions in years with persistent NAO phase are highly variable

and change from year to year. The sign of the phase itself is also a rather qualitative

characteristic and the results of calculating monthly averaged characteristics over

years of persistent phase is sensitive to the specific years used. In this article we

describe an alternative approach for providing series of synthetic atmospheric data

that are representative of the statistical characteristics of the atmospheric interannual

variability.

Previously a simple generator of atmospheric characteristics in ocean modelling

applications was used by Tang et al. (2001). Their approach was based on so called

Hybrid Coupled Models (HCM) which include two way coupling between a general

circulation ocean model and an empirically derived atmospheric regression model.

The HCM proved to be an efficient tool for representing the air-sea interaction in

the equatorial area and its impact on coupled atmospheric and ocean dynamics. In

the North Atlantic simulations, however, a different approach is required because the

dominant atmospheric variability in this region does not owe its existence directly to

the air-sea interaction (Valis, 2007).

The atmospheric variability in the midlatitudes of the North Atlantic is triggered

by transient waves, meandering of the jet stream, and the instability and breaking

of planetary waves (Thompson et al., 2003). The local processes that govern the

mechanisms of circulation regimes such as the NAO are nonlinear and chaotic and

show strong links to global planetary circulation variability. The main purpose of this

work is to develop a stochastic tool; i.e, a WG, that will be able to represent properly

the statistical characteristics of these processes. In this work we focus on developing a
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stochastic model capable of reproducing the intrinsic variability of dominant regional

patterns in climate, unresolved processes, and the interactions between them.

Weather generators are typically designed to generate values for specific locations,

e.g., Oelschlagel (1995), or multiple sites (Maraun et al., 2010). Whole field simu-

lating weather generators are mostly developed for precipitation modelling over local

regions. A comparison of common approaches is given by Ferraris et al. (2003). These

methods are designed to mimic spatially discontinuous time series of small scale con-

vective precipitation, rather than the smoothly evolving, large scale weather systems

considered here. In this article we present a method for generating spatially contin-

uous atmospheric fields that reflect dominant patterns of atmospheric variability at

interannual, seasonal, and intra-seasonal scales.

Many weather generation methods use a two layer approach. First a general

weather state is selected, which in turn defines the parameters used to generate the

model output. A common example is a precipitation model which first selects be-

tween states of precipitation occurrence (or non-occurrence), with each state being

associated with its own probability distribution from which rainfall amounts can be

sampled; e.g., Furrer and Katz (2007), and Baigorria and Jones (2010). The method

used in our work is also based on a multi-layer approach to represent the multi-scale

dynamics of the atmosphere and the interaction between the scales in propagating the

atmospheric fields. Here, we first model the progression of expected general states

within individual interannual regimes. The status of these states then influences a

residual model which simulates variability unaddressed by the initial classification. In

this article we present the results from testing different methods of describing these

components. Since these are statistical rather than physically based models, it is often

indeterminable a priori what the most appropriate and/or effective approach will be.

The importance of considering multiple approaches is often stated in the literature;



159

e.g., Hashmi et al. (2011).

This article outlines a WG designed for a limited area over the sub-polar North

Atlantic. The initial experiments presented here provide a proof of concept for the

method and compare two potential approaches to implementation. The article is

organised as follows. The WG is described in detail in the following section. This is

followed by a presentation of the results from simulations, along with some concluding

comments on the results and required further developments.

4.3 Methods

4.3.1 Region and Data

The region of interest is the portion of the Sub-Polar North Atlantic from 45◦N : 67◦N

and 4◦W : 66◦W, shown in Figure 4.1. This is an area of active atmosphere - ocean

interaction which has a strong impact on the AMOC and global climate. Gulf Stream

water of sub-tropical origin is carried north by the North Atlantic Current, a branch

of which carries this warm and salty water to the Irminger Sea. This water mass is

then cooled through interaction with the cold sub-polar atmosphere and mixing with

the surrounding waters, as a result sinking to intermediate depths to form so called

Irminger Water. The abrupt warming of the sub-polar ocean observed since the mid

1990s has been related in recent studies (see for review Zhu and Demirov (2011) and

Robson et al. (2012)) to variations of the inflow of Irminger Waters in the sub-polar

North Atlantic. These are ultimately attributed to the impact of variations in surface

forcing for this region. Our current study is motivated by a desire to allow further

investigation of this process.

The atmospheric data used in this work is taken from the NCEP reanalysis project

(Kalnay et al., 1996) daily Sea Level Pressure (SLP) and 500 mb geopotential height
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Figure 4.1: Map of the region of interest, displaying ocean currents that compose the
North Atlantic Supolar Gyre.

fields (H5). The data is de-trended and high and low pass filtered respectively, to

isolate the SLP intra-annual components and the interannual H5 components respec-

tively, using a Lanczos filter; see Duchon (1979). This results in daily fields which

express the comparative high and low frequency portions of the data set, respectively.

To remove boundary filter effects the resulting data sets are trimmed to encompass

the years 1951-2008. Currently simulations are only created for Northern Hemisphere

winter (DJF). Future development will include repeating the process described below

for each season.

For the experiments described here, the focus is on simulating intra-seasonal SLP

anomaly fields. SLP is selected for these initial tests as the surface lows and highs

it depicts are representative of factors composing and influencing the storm tracks

discussed above. If these features can be represented then the method has the po-
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tential to be extended to related variables. This method can also potentially be used

to downscale General Circulation Model (GCM) results. Current GCMs are typically

able to simulate large (spatial and temporal) scale climate features; e.g., Severijns

and Hazeleger (2010), Rust et al. (2010), and the uncertainties at these scales can

be quantified to a certain degree; e.g., Sexton and Murphy (2011) and Hauser et al.

(2011). Stochastic downscaling techniques can serve as a method to better estimate

smaller scale variability often missing from such simulations (von Hardenberg et al.,

2007; Minville et al., 2008).

4.3.2 The weather generator

Atmospheric circulation displays variability on multiple scales. On time scales longer

than a single season the dynamics of a limited region, such as the one which is of

interest for the present study, are influenced by the interactions at its boundaries.

The most energetic variability in the extratropics is driven by synoptic eddies and

weather systems, with time scales on the order of a few days. Variability with time

scales between ten and one hundred days typically has lower amplitude than that

seen at shorter time scales. While the dynamics of this variability are not well un-

derstood, they are considered to be primarily atmospherically driven as the scales of

interannual variations in SST are significantly longer and not likely to affect strongly

the atmosphere intra-annual variations (Vallis et al., 2004). In the present study we

separate the variability of the atmospheric field in three components - (a) large-scale

for the region at interannual time scales, (b) seasonal, and (c) regional limited area

scale intra-seasonal. Component (c) is what we seek to simulate with the presented

weather generator. The daily signature of the large-scale component is the input for

the model and separate models are considered for different seasons.

As mentioned in the introduction, the weather generator is based on a multi-
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level approach. The primary level is essentially a Hidden Markov Model (HMM); see

Cappe (2005) for a thorough overview of this technique. The HMM makes discrete

stochastic transitions between predetermined states based on prescribed transition

probabilities. These transition probabilities are determined by a "hidden state". Such

a model, determined by lagged internal processes affected by external forcing matches

our concept of the examined system. For the model presented here the "hidden states"

are determined by classification of the large-scale interannual trends over the North

Atlantic as described in section 4.3.3. Studies performed in other regions have argued

that interannual variability, though often comparatively small in amplitude, can be

an important modulator of behaviour on shorter time scales; e.g., Grimm (2011). For

this model there are four possible "hidden states" which in the following are referred

to as weather regimes. Each weather regime has an associated set of discrete states

and transition probabilities for the intra-seasonal behaviours of the sub-polar region

described above; i.e., the fields we are looking to simulate. These states and transitions

are determined by a Self Organising Map (SOM) analysis of the region (performed

separately for time-periods dominated by different weather regimes), as described in

section 4.3.4.

The use of a limited number of discrete states in the HMM gives a limited rep-

resentation of field evolution. More nuanced effects are described using Principal

Component Analysis (PCA) to represent the leading variability modes of the residu-

als between the full intra-seasonal state and that described by the HMM. The strength

of these modes are propagated by lagged regressions which are specific to the large-

scale weather regimes and conditional on the current state of the HMM. The lagged

regression methods tested here are similar to those used by Kravtsov et al. (2005) and

Aguilar-Martinez and Hsieh (2009). Additional variability not captured by the HMM

and the residual model is represented as spatially correlated noise, the parameters of
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which are also dependent on the higher-level states. Samples from these distributions

are used to perturb the estimated system state to account for unrepresented processes.

Two methods for performing the lagged regression step described above are tested.

The first is based on the empirical model reduction approach as described by Kravtsov

et al. (2010). For this method a polynomial regression is fit using training data, along

with additional modelling of residuals. The method also uses stochastic terms to ac-

count for unresolved processes, as also seen in Guo et al. (2012). The second approach

creates a non-linear regression by using Bayesian methods to generate an ensemble of

Artificial Neural Networks (ANNs) with additional stochastic noise models that ac-

count for unexplained variability. ANN based regressions have been shown to improve

on linear approaches in similar contexts; e.g., Tang and Hsieh (2002) and Chowdhury

et al. (2010). However, they are much more involved to implement and provide less

transparent results (Heckerling et al., 2003). As well, it is not clear a priori if the

high sensitivity of the ANNs to non-linearities will offer an advantage when modelling

a large-scale flow determined variable, which should respond well to the empirical

reduction technique.

Stochastic simulations are created only for possible trajectories of the intra-seasonal

component of the described system, given indicators of the long term trend of in-

terannual variability, which are defined from the original data. Should we wish to

reconstruct the full vector of the unfiltered system state xfull−state for any time t,

the interannual xinterannual and seasonal xseasonal components can be taken as given,

prescribed by the observations or GCM which provide the model predictors, such that,

x
(t)
full−state = x

(t)
interannual

︸ ︷︷ ︸

GCM

+ x
(t)
seasonal

︸ ︷︷ ︸

GCM

+ x
(t)
intra−seasonal

︸ ︷︷ ︸

”generated”

. (4.1)

These intra-seasonal simulations are designed to reflect the daily signature of the
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large scale, lower frequency components of the system which are classified into inter-

annual regimes. These are defined based on clustering of H5 interannual fields over

the North Atlantic (see section 4.3.3). This region and variable are considered to be

representative of the dominant processes affecting weather patterns for the sub-polar

North Atlantic (Hakkinen et al., 2011). Separate stochastic simulations of the intra-

seasonal data are created using data specific to the dates considered as part of a given,

season specific, interannaul weather regime.

4.3.3 Weather Regimes (Large-scale Interannual Modes) -

Fuzzy Clustering

The large-scale atmospheric variability of the North Atlantic is dominated by the

NAO (Hurrell et al., 2003). The NAO is defined as an oscillatory spatial pattern

which appears in multiple layers of the atmosphere (Wallace and Gutzler, 1981).

It is a robust pattern which can be easily identified using linear methods such as

correlation maps (Wallace and Gutzler, 1981) or PCA techniques (Feldstein, 2000).

By necessity these linear methods assume a spatial symmetry of distribution in the

phase space between opposing phases of the oscillation (Cassou et al., 2004). An

alternative nonlinear approach for describing the dominant patterns of atmospheric

variability is based on the concept of weather or climate regimes, defined as peaks in

the probability density of the climate phase space (Palmer, 1999). Long term climate

changes are then defined as a shifts in the amplitude of these peaks due to changes

in frequency of regime appearances (Corti et al., 1999). For example, Corti et al.

(1999) showed that recent temperature trends over the Northern Hemisphere could

be described by an increased occurrence of the so called cold-ocean-warm-land regime.

One method for defining regimes which can take into account spatial asymmetry and

temporal shifts in dominant modes is cluster analysis (Cassou et al., 2004).
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Cluster analysis is a classification method which divides a data set into a predefined

number of subsets (clusters) of similar elements. The cluster centroids describe the

characteristic pattern common to their elements. Often these are defined as the mean

of all elements assigned to the same cluster. The goal is to subdivide the data in a

way that maximises the distance/difference between centres, while also maximising

the similarity of the members within individual clusters. The method has been used

to describe large scale atmospheric circulation regimes over hemispheric domains; e.g.,

Cheng and Wallace (1991), Corti et al. (1999), and Molteni et al. (2006), as well as the

North Atlantic region; e.g., Cassou et al. (2004), Yiou (2004)and Cassou (2008). Once

defined these climate regimes can be statistically linked to mesoscale local phenomena;

e.g., Cattiaux et al. (2010) and OrtizBeviá et al. (2011). Fuzzy clustering provides

an alternative to the more typical binary clustering, so called as the membership to a

cluster can be considered to be equal to zero or one. Rather, fuzzy clustering defines a

continuous range of membership to a cluster on the range [0,1], with the condition that

memberships across all clusters sum to one. These requirements result in this method

sometimes being referred to as “probabilistic clustering”, with the interpretation that

the membership degree represents a (subjective) probability that one would assign a

given data point to a given cluster (Bezdek, 1981).

The weather regimes used here are categorised by using fuzzy clustering analysis

on the interannual H5 fields for the region from 25◦N : 75◦N (Bahamas and Canary

Islands to Baffin Bay and Barents Sea) and from -105◦E : 45◦E (Gulf of Mexico and

Hudson Bay to edge of Scandinavia and Mediterranean), so as to capture the extent

of the relevant weather modes (Hoskins and Hodges, 2010). Taking predictors from

beyond the simulated region is common practice for weather generation; e.g., Guo

et al. (2012). For this investigation, membership degrees are determined using the

“FANNY” algorithm (Kaufman and Rousseeuw, 1990) as implemented in by Maechler
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et al. (2005) for the software package R. For this application this amounts to a variant

of the “fuzzy c-means” algorithm (Bezdek, 1981) using Euclidean distance, rather than

the traditional squared Euclidean distance, since the former method has less outlier

sensitivity, and better represents non-spherical clusters (Kaufman and Rousseeuw,

1990). The results for the DJF season are shown in Figure 4.2.

Figure 4.2: Cluster centres produced using the PC time series of the 10 leading
eigenvectors for interannual 500 mb geopotential height.

Initial investigations of the phase space using kernel density estimates; following

Molteni et al. (2006), support the multi-modal hypothesis which justifies the use of

the clustering approach. This analysis also suggests four as the operative number of

centres. These results are supported by an analysis using Bayesain Infinite Gaussian

Mixture Models as developed by Neal (1991). Note that the use of interannual rather

than sub-seasonal data means the results are not directly comparable to the four

regimes commonly identified with the North Atlantic; cf., Cassou (2008), which more

closely correspond to observable events. The first and fourth clusters represent the

positive and negative phase of the NAO. The maximums and minimums of the merid-
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ional dipoles of these two clusters are zonally elongated. The second mode depicts

trends towards a north-eastern high pressure feature by Scandinavia and a low in the

Newfoundland Basin. The third mode displayed depicts a western blocking feature.

The occurrence of the first and fourth regimes over the historical record correspond

with the behaviour of the classical NAO index and the published results of associated

sub-seasonal data classifications. Years dominated by the second mode show a pref-

erential, but not exclusive, occurrence of the so call Scandinavian Blocking feature

(Cassou et al., 2004). Years dominated by the third mode show an increase in the

so called Atlantic Ridge (Cassou et al., 2004) anti-cyclone events compared to other

regimes, but there is no dominant sub-seasonal scale feature for this regime.

4.3.4 Regional Intra-Seasonal Modes - Self Organising Maps

A time decorrelation analysis of principal components of the intra-seasonal field (not

shown here) for the limited area shown on Fig 4.1 suggests that there are dominant

regional modes of variability on intra-seasonal time scales. The spatial structure of

these modes is described by classifying the intra-seasonal field using Self Organizing

Maps (SOMs).

Self Organising Maps1 are a form of non-linear regression (machine learning).

Where many clustering techniques (as above) attempt to define the most distinct

groups within the data set, SOMs create sets of neighbouring states to highlight more

subtle differences and transitions in behaviour. An overview of the application of the

method to the field of synoptic climatology is given by Hewitson and Crane (2002).

The analysis is performed in the following stages as described by Kohonen et al. (1996),

Cassano et al. (2005), and Reusch et al. (2007). First a preselected number of “maps”;

i.e., vectors whose length corresponds to the number of data points per time step of the

1The software used here is freely available from: www.cis.hut.fi/research/som_pak/.
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fields being investigated, are initialised. Here smooth transitions between the opposite

phases of the leading two PC eigenvectors are used. These maps are considered to be

arranged on a two-dimensional grid so that the individual maps can be thought of as

having neighbouring states. In the training phase each time step of the investigated

data set is repeatedly (as the routine progresses) assigned to the map it is currently

most similar to (in terms of Euclidean distance). This map and its neighbours are

nudged to pre-specified degrees towards the state of the associated data. The number

of training steps and the order that the data fields (re)appear within the training is

also user specified, with the degree of assimilation between data and reference map

decaying over time. Once training is finished the SOM grid is thought to describe

“typical” system states and so can be used to identify main features of the data and

to classify meta data associated with the individual fields and/or additional data.

Here, the parameters which control the training process are determined by gridded

searches; c.f. MacKay (2003). The optimal SOM grid is determined by first checking

that states are in fact more similar to their defined neighbours than any other states

in the grid, and then selecting the SOM grid which minimises the mean difference

between the generated reference maps and the training data.

Elements of the intra-seasonal data set are segregated by “crisp” cluster member-

ship; i.e., the cluster which a given time step has the highest probability of belonging

to, based on the results of the fuzzy clustering described above. These four data sets

are separately analysed using SOM analysis. The resulting classifications and their

highest probability transitions (ignoring for the moment the probability of repeating

the current state, which for all the SOM clusters is the highest probability transition)

are shown in Figure 4.3 and 4.4.

Additional tests are performed to check the robustness of the classification. The

analysis is repeated using different subsections of the data to check the optimal pa-
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rameter settings are not overly sensitive to the range of data. The analysis is also

repeated for different size grids. The 3 × 4 grids presented here are considered prefer-

able. Smaller grids do not reproduce the full range of basic patterns seen with the

twelve member grids, while the use of larger grids does not produce any new “be-

haviours” but simply creates more subtle distinctions between previously observed

features.

The SOMs for all of the four large regimes describe similar regional patterns. They

all contain an oscillating mode with a pole west of Great Britain (patterns 1 and 12

for NAO+, Eastern and Western Blocking and patterns 3 and 10 for NAO-). This

corresponds to a anticylonic blocking pattern in the positive phase of the mode and

cyclonic through for the negative phase. This oscillating mode has the structure of

so called East Atlantic pattern described by Wallace and Gutzler (1981). The three

other patterns are present in the SOMs, corresponding to a regional projection of the

positive/negative NAO and the Eastern Blocking on Fig. 4.2. A pattern similar to

the Western Blocking is not present in the SOMs.

4.3.5 Residual Modelling

The residual between the intra-seasonal field and the SOM derived modes above are

then described using the leading eigenvectors derived from PCA. The final residual

resulting from using only a limited number of eigenvectors is treated as spatially

correlated white noise. As such the intra-seasonal field is constructed as,

x
(t)
intra−seasonal = x

(t)
regional

︸ ︷︷ ︸

SOM

+ x
(t)
residual

︸ ︷︷ ︸

PCA

+ ξ(t)

︸︷︷︸

noise

, (4.2)

where xintra−seasonal is the vector giving the intra-seasonal state, as in Equation (1), at

time t, xregional is the portion of the intra-seasonal state described by the applying the
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HMM to the SOM derived modes, xresidual is the portion of the intra-seasonal state

described by the residual model, and ξ is a vector of additional noise used to represent

the information lost by truncating the number of residual PCs (as described below).

The residuals are described using the nine leading PCs of the residual between

the original intra-seasonal field and the defined SOM sequence. These modes describe

92% of the variance of the residual field. The PCs used here come from performing the

PCA over the entire time period, although (as described above) separate regressions

are fitted for data relating to separate weather regimes. It was found that subdividing

the data by weather regime does not fundamentally change the structure of the leading

PCs, and as well, using common PCs simplifies the use of time-lagged information

during regime transitions. The regression outputs are the PC coefficients for the

current day. The regression inputs are as follows:

• Which SOM grid element is prescribed as representative of the given day.

• The “strength” of the current weather regime; i.e., the amplitude of that days

given regime centre when projected onto the 500 mb geopotential height field

for that day.

• The PC coefficients from the two previous days. Experiments have been per-

formed using lags from day one to three, with a two day lag producing the best

results with the simulation assessment metrics.

The remaining residual resulting from using only a limited number of eigenvectors

is treated as spatially correlated white noise.

4.3.5.1 Linear Inverse Model

The Linear Inverse Models (LIMs) are constructed following Kravtsov et al. (2005).

This approach is essentially an iterative method for constructing an auto regressive
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moving average model which includes second order; i.e., interaction, terms (Strounine

et al., 2010). This empirical method has been shown to perform well compared to

more formal stochastic dynamical models, which typically require a more distinct

scale separation between modelled and sub-scale processes (Strounine et al., 2010).

The initial implementation step is to fit a regression (through the method of least

squares), including interaction terms, for the predictors described above, with cate-

gorical values identifying the current SOM cluster. The decision to use (up to) second

order interaction terms in the initial model is based on the order of the equations

used to model atmospheric flow (Kravtsov et al., 2005). Note that for the LIM is fit

to the change between the previous and current system state (dxi) to further mimic

the atmospheric flow equations. Additionally linear residual models may also be fit

using the information above (but with no interaction terms), plus the residual values

forecast for the previous time step. The number of residual models is selected such

that the final residual is white in time, and so in simulation can be described using a

spatially correlated noise term. No such residual modelling (beyond the noise term)

is needed here. This is likely due to the decision to use inputs beyond a time lag

of one, which is a departure from the original Kravtsov et al. (2005) implementa-

tion. For both regressions the set of predictors used for each individual PC coefficient

is pruned to find the regression resulting in the best Akaike Information Criterion

(AIC) score. A conceptual overview of this approach to model selection can be found

in Burnham (2004). This is an additional modification of method of Kravtsov et al.

(2005). Stochastic noise is added to each forecast, with these terms generated from a

multivariate normal distribution, using the sample covariance matrix calculated from

the observed errors. The use of stochastic terms will occasionally create unstable sim-

ulations. This is addressed by truncating the sampling to not allow any values which

would result in predictions that surpass observed minimum or maximum values. This
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is justified as the simulation only seeks to reproduce observed statistics, rather than

investigate the possibility of new behaviours.

4.3.5.2 Bayesian Artificial Neural Networks

Artificial Neural Networks (ANNs) are a method of non-linear regression, using a

network of functions linked by prescribed weights and biases to map given input to

an expected output. These networks are more flexible than many empirical regres-

sion methods that are based on linear correlations, as they contain so called “hidden

layers”, composed of nonlinear transform functions2 (referred to as “nodes”). As well,

the Bayesian ANNs (BANNs), as developed by Neal (1996), that are employed here3,

represent an ensemble of ANNs. This ensemble is defined by posterior probability

distributions for the model parameters derived by training the network against ob-

served input-output sets. The resulting neural network is considered a nonparametric

model, as it does not assume any type of statistical distribution when fitting to data

(Lee, 2006). Individual “hyper-parameters” are allowed to modify the contribution

of individual inputs to the network. This is know as Automatic Relevance Detection

(ARD); and is described by Neal (1996) and MacKay (2003). This feature potentially

provides a counterpart to the AIC pruning used in selecting the LIMs. The BANN

training procedure estimates not only network parameters but also fits a noise model;

i.e., each prediction target is considered to be a sample from a Gaussian distribution

whose standard deviation is estimated along with the other network parameters. The

networks are designed to predict the mean of this distribution.

Initially a variety of designs; i.e., the grouping and interconnectedness of inputs,

nodes and outputs, as well as different sampling parameters are tested. This is done

2For the ANNs used in this project the non-linear transforms are the arctan function.
3The software used for these experiments is freely available from: www.cs.toronto.edu/\$$\

sim$\$radford/fbm.software.html.
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by training networks on a subset of the data and testing their predictive skill on the

remaining data. Time steps used for testing are selected randomly from throughout

the entire observation period. The best performing design uses an initial hidden layer

of a few nodes to process the SOM and regime strength information, and then joins

this information with that of the lagged coefficients in a larger second layer. The

actual size of the hidden layers varies between the regressions fit for separate regimes.

This design is diagrammed in Figure 4.5.

Figure 4.5: Conceptual diagram of the ANN architecture used for the experiment.
The actual size of the hidden layers varies between the regressions fit for separate
regimes. The top two inputs are the SOM map selected for the given day, and the
strength of the interannaul regime. The bottom two are the PC coefficients for lags
2 and 1. The outputs are the PC coefficients describing the residual for the current
simulation day.

This process is performed for data relating to each “crisp” weather regime cluster.

As such, as with the LIMs above, each regime has its own set of regression equations

for propagating the residual PCs. The final design for each regime is retrained using

the entire data set for the given regime. Several network ensembles are created using

different initial seeds for the parameter sampling procedure. Samples from all these
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ensembles are combined to create the final BANN. Propagating the model using the

final BANNs is done by at each time step first selecting a random network output

from within the ensemble, and then perturbing this prediction by a random variable

generated from that network’s noise model.

4.3.5.3 White Noise Sampling

The final residual between the retained and truncated PCs of the SOM residuals is

assumed to be white in time (there is a significant drop off in lag ≥ 1 correlation

following the ninth PC). A random field is generated for each time step from a multi-

variate Gaussian distribution, using a mean vector and covariance matrix particular

to the selected weather regime and SOM mode for the given day. Often there are

fewer observations mapped to a given SOM than needed to properly estimate the

covariance matrix. For these cases a covariance estimate using the shrinkage method

of Schaefer and Strimmer (2005) is used rather than the sample covariance matrix.

4.3.5.4 Propagation Scheme

The implementation for the stochastic simulation of the intra-seasonal state is as fol-

lows, the described procedure is outlined in Figure 4.6:

For each time step (day) t:

1. Select categorically which interannaul regime, R, the day is considered to belong

to using the probabilities defined by the cluster membership M (as described

above) for that day; R(t) ∼ P (R|M (t)). E.g.; if the current day is classified

as 0.6 Regime 1, 0.2 Regime 2, 0.1 Regime 3, and 0.1 Regime 4, then there is

a 60% probability of selecting regime 1, 20% probability of selecting regime 2,

etc. The strength A(R) of the chosen regime is estimated by then projecting
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this regime onto the interannual data for that day and recording the resulting

amplitude.

2. The choice of R in Step (1) defines which set of SOMs to select from. The SOM

cluster S for time (t) is selected based on the transition probability of the SOM

cluster of the previous day (t − 1); S(t) ∼ P (S|S(t−1), R(t)). If the SOM cluster

at time (t−1) is from a different regime, then the transition probability is taken

from the map within the set for the current regime which is most similar (by

Euclidean distance) to S(t−1).

3. The coefficients of the n leading PCs (c = {c1, . . . , cn}) which describe the

residuals are propagated by a regression, such that

c
(t)
j = fR(S(t), A(R)(t), c(t−1), c(t−2)) + ǫ,

where a separate regression (f) is fit for each regime (R). The S(t) terms are

taken into account using categorical regression; i.e., there are twelve additional

predictors only one of which can be non-zero (actually 12 − 1 predictors are

used, if all eleven have a value of null, then the state is assumed to be that of

the twelfth), ǫ is a stochastic term representing the regression residual.

4. Spatially correlated noise fields are added at each time step. Separate spatial

means and covariance matrices are defined for each weather regime and SOM.

As Step (3) is performed using modes that are orthogonal (at time (t)) to the

information being modelled here, this noise and the state of Step (3) are inde-

pendent.

Note that initial values are needed for the first iteration of Steps (2) and (3).

The initial values are taken from the observational data so as to provide realistic
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combinations of components. For subsequent winters the initial values are taken from

the end of the previous year to simplify implementation. As the simulations have

very limited memory of initial conditions, this should not affect the results which are

presented here.

time : t Reanalysis

Regime Memberships

Intra-seasonal mode (t-1)

Hidden Makov Model

Select intra-seasonal mode (t)

Choose interannual regime (t)

Regression 
Generate residuals (t)

Residuals (t-1, t-2)

Create additional variance (t)

Random Sampling

time : t = t+1

Figure 4.6: Conceptual diagram of the implementation scheme for the presented
Weather Generator.

4.3.6 Results

Following Furrer and Katz (2007), the weather generator is evaluated by running

simulations of the same duration as the training data series, and calculating various
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gross statistics for comparison against the respective results from this data set. En-

sembles of simulations are created to check the range of fit to observations between

model runs. Evaluation metrics are the same as in Strounine et al. (2010). To reduce

dimensionality of the simulated data is projected onto the leading PCs (95% of the

variance of the data set) of the training set; i.e., the NCEP intra-seasonal data for

the sub-polar region. Note that these are separate PCs than those used above in

constructing the residual models in the weather generator.

Comparisons are made between the distribution of the amplitudes of these PCs in

the observations and amongst the ensemble members. This checks that the range of

observed behaviours is reproduced by the simulations. Results for the LIM experiment

are given in Figure 4.7 and for the BANN experiment in Figure 4.8. Distributions

are depicted using kernel density plots to add visual comparison, and show similar

information to those obtained using other non-parametric comparison methods (not

shown). The LIM based model performs quite well, with the observation distribution

within the span of the ensemble for most of the PCs except for isolated areas of the first

two PCs. As well the ensemble range is comparatively small and the members quite

self similar. This reassures that the highly stochastic nature of the simulations does

not permit so much variability as to allow unrealistic results. The BANN based model

appears to be outperformed by the LIM model. None of the simulated distributions

match the observations as closely as seen for the LIM, with the errors appearing to

be consistent through out the ensemble members. PCs 4 and 6 appear especially

troublesome, and although they account for only 10% and 3% of the data respectively

they seem to be extreme cases of a consistent tendency for the BANN based model

to underestimate the variability seen in the observations, with all but PCs 3 and 5

having shallower tails than the observed distributions.

Comparisons are also made between the Auto Correlation Functions (ACFs) of the
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Figure 4.7: Distribution of the values for the expansion coefficients of the leading nine
PCs of the observational data set (black), and the distributions of expansion coeffi-
cients obtained by projecting an ensemble of weather generator simulation obtained
using the LIM (grey) onto the same PCs. Distributions are depicted using kernel
density plots.
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Figure 4.8: Distribution of the values for the expansion coefficients of the leading nine
PCs of the observational data set (black), and the distributions of expansion coeffi-
cients obtained by projecting an ensemble of weather generator simulation obtained
using the BANNs (grey) onto the same PCs. Distributions are depicted using kernel
density plots.
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observed and simulated expansion coefficients. This is to check that the simulations

have temporal structures similar to the observations. This is important as the simu-

lations are meant to recreate transient features. Results for the LIM experiment are

shown in Figure 4.9 and for the BANN experiment in Figure 4.10. Here both methods

seem to match well with the observations, although both underestimate the temporal

correlation of the first two PCs. Over all the LIM method matches the observations

closer, and avoids the issues with PC 6 shown by the BANNs.
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Figure 4.9: Auto Correlation Functions for the expansion coefficients of the leading
nine PCs of the observational data set (black), and those of expansion coefficients
obtained by projecting an ensemble of weather generator simulation obtained using
the LIM (grey) onto the same PCs.
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Figure 4.10: Auto Correlation Functions for the expansion coefficients of the leading
nine PCs of the observational data set (black), and those of expansion coefficients
obtained by projecting an ensemble of weather generator simulation obtained using
the BANNs (grey) onto the same PCs.

To assess the over all phase space of the simulations, rather than individual PCs,

Gaussian Mixture Models (GMMs) are fit using the joint distributions of the same

expansion coefficients investigated above; following Fraley and Raftery (2002) and

using the software provided by Fraley and Raftery (2006). This is to investigate if the

multi-modal and non-linear behaviour of the data set is reproduced by simulations,

again following Strounine et al. (2010). Using the method of Fraley and Raftery

(2002) the Bayesian Information Criterion (BIC) is used to rank models composed

of different numbers of spherical multivariate Gaussian distributions. The analysis is

applied to the observational intra-seasonal data as well as to each ensemble member

of the LIM and BANN experiments. The optimal GMM for the observational data

contains fifteen distributions. A number this high is most likely indicative of the non-

spherical nature of the data set, rather than the number of peaks in its probability

density function. No simulation from either ensemble displayed this level of multi-

modal behaviour. For both methods the ensemble mode for the optimum number
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of distributions is six. While this is less than seen in the observations it still shows

that the models are not simply red-noise generators but incorporate some degree of

system dynamics. It is expected that the simulations would be more Gaussian than

the reanalysis data set, given the number of Gaussian noise components they contain.

These represent only a portion of the stochastic elements of the weather generator,

and their use was justified by testing the structure of the residuals they describe.

However, they still contribute to a smoothing of the resulting system compared to the

raw data. The BANN regression produced more (comparatively) highly multi-model

ensemble members than the LIM, This is also expected given the higher degree of non-

linearity in the regression and the non-parametric distribution of network parameters

resulting from the Bayesian implementation.

By the applied metrics the weather generator with the LIM component appears

to have outperformed that with the BANN component. This is not unexpected, as

the former approach is designed to mimic flow dynamics with quadratic nonlinear-

ities with a limited number of parameters (Kravtsov et al., 2010). The creation of

a comparable result using the BANNs may require more complex models than the

amount of available training data allows. There is however, no reason to expect that

this result would stand for fields with a more non-linear dynamical structure, such as

precipitation, especially given the more multi-modal behaviour of the BANN derived

simulations.

To get an idea of how realistically the favoured weather generator describes the

day to day evolution of the SLP field sample weather events are examined. To illus-

trate the model performance figures 4.11, 4.12 and 4.13 show three sequences from

simulations. Figure 4.11 shows a low pressure system passing over the North Atlantic

towards Iceland, typical of such systems which travel northeast from Newfoundland to

Scandinavia by this route. Figure 4.13 shows a system taking a more southerly path
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while high pressure anomalies dominate the northern latitudes. Figure 4.12 shows an-

other system originating south of Newfoundland, but being diverted by a high pressure

system northward to the Labrador Sea. All three are examples of typical meteoro-

logical occurrences, with variants being generated frequently within the simulations.

Figure 4.11 and 4.13 show typical NAO+ and NAO- behaviour, respectively. Figure

4.12 provides a good example of a blocking event, which typically bring wet and mild

weather to the Labrador region. All of these events have important meteorological

and ocean circulation associations. The occasional “wispy” appearance of the simu-

lated systems is an artifact of the final noise terms being generated from distributions

defined using shrinkage estimated covariance matrices (as described above). When

sample covariance matrices are used for this component such “blurred edges” do not

occur.

We are confident that the weather generator is able to reasonably emulate the

system and conclude by summarising some further details of its empirical structure.

The components of the HMM have been presented above. With the exception of the

NAO- related SOM the spatial differences between the SOM states are subtle, with

most of the uniqueness between components resulting from state intensities and tran-

sition probabilities. The regression coefficients of the LIM relating to the given SOM

mapping are displayed in Figure 4.14. These inputs relate most strongly to the first,

third and fourth PCs, with the latter two predictands showing almost a mirror image

between the NAO+ and NAO- models and a different pattern appears for the other

two weather regimes. These three PCs are similar to the patterns displayed in the

SOM analysis, and so act largely to modulate the amplitude of these patterns. Dis-

tinctions between the Eastern and Western Blocking features appear in the behaviour

of other PCs. Regression coefficients for other predictors (not shown) generally give

more weight to the lag-1 predictors than the lag-2, and interaction terms are predom-
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Figure 4.11: Example of low pressure system observed in the weather generator sim-
ulation following a typical “NAO+” track across the region (time proceeds from top
to bottom).
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Figure 4.12: Example of low pressure system observed in the weather generator sim-
ulation durning a typical blocking event (time proceeds from top to bottom).
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Figure 4.13: Example of low pressure system observed in the weather generator sim-
ulation following a typical “NAO-” track across the region (time proceeds from top
to bottom).
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inately notable only for the less dominant PCs. There is a tendency, with exceptions,

for the lag-2 predictors to have higher predictive power for like elements than seen

for other PCs. The structure of the regression coefficients for all components shows

notable variability between weather regimes. The inputs expressing the “strength” of

the relevant interannual regime were all eliminated from the model during the course

of the AIC pruning. As such, we observe that for our model each of the weather

regimes has a unique signature that permeates through the entire system, although

more through shifts in tendencies than as a direct driver. No element of the LIM

evolves independently of the others, although the system has a limited memory. As-

sociations tend to become more indirect for the less dominant processes. We are

unable to say if this is because these represent local (more “self-contained”) processes

or elements driven by external considerations we have not accounted for. One of the

strengths of stochastic modelling is that it allows both situations to be represented

within the model framework.

4.3.7 Conclusions

In this article we describe a stochastic weather generator for a limited area of sub-

polar North Atlantic. The model design is multi-level and is based on the use of the

dominant structure of variability at interannual, seasonal and intra-seasonal scales.

Two different methods for performing the lagged regression residual modelling are

tested. The differences in performance between using the empirical model reduction

and BANN methods in the regression component of the model were subtle. However,

the BANN forecasts had a greater tendency to underestimate the range of variability

of the system.

Ensemble simulations were conducted with the stochastic weather generator. The

results were compared with the original data using the metrics of Strounine et al.
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Figure 4.14: Categorical regression coefficients (gridded values), fit to normalised
values, of each input SOM map (labelled on y-axis) for forecasting each PC of the
residual model (labelled on x-axis). Note that there is a different SOM grid for each
map; e.g., map 2 of the NAO+ grid will not be the same feature as map 2 of the
NAO- grid.



191

(2010). The dimensionality the simulated data is reduced through projection onto the

leading PCs (95% of the variance of the data set) of the training set. The distributions

of the simulated data fit with the observed distribution within the span of the ensemble

for most of the PCs except for isolated areas of the first two PCs.

The further development of the method will require extension of the method to

output more atmospheric variables, as well as to produce year round simulations. The

present method is based on that“top down” approach, where information propagates

from large to small scales. More expansive studies will require feedback effects between

processes.

The results of the initial tests presented here are promising. The stochastic model

is able to efficiently generate ensembles under different assumptions about the state of

the large scale atmospheric variability. These simulations mimic general statistics of

the observational record while producing realistic meteorological events. As well, the

model components display notable shifts in short term regional dynamics associated

with larger-scale/longer-term trends. As such the model can be used both as an

analysis of the properties of the weather regimes it uses as predictors, and potentially

to study the shifts in regime statistics associated with changing climates.

4.4 Bibliography

Aguilar-Martinez, S., Hsieh, W. W., 2009. Forecasts of tropical pacific sea surface

temperatures by neural networks and support vector regression. International Jour-

nal of Oceanography 2009.

Baigorria, G., Jones, J., 2010. GiST, a stochastic model for generating spatially and

temporally correlated daily rainfall data. Journal of Climate.



192

Benestad, R. E., Hanssen-Bauer, I., Chen, D., 2008. Empirical-Statistical Downcal-

ing. World Scientific Publishing Co. Pte. Ltd.

Bersch, M., Yashayaev, I., Koltermann, K. P., May 2007. Recent changes of the

thermohaline circulation in the subpolar north atlantic. Ocean Dynamics 57 (3),

223–235.

Bezdek, J. C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum Press, New York, New York.

Burnham, K. P., Nov. 2004. Multimodel inference: Understanding AIC and BIC in

model selection. Sociological Methods & Research 33 (2), 261–304.

Cappe, O., 2005. Inference in hidden Markow models. Springer, New York.

Cassano, E. N., Lynch, A. H., Cassano, J. J., Koslow, M. R., 2005. Classification

of synoptic patterns in the western arctic associated with extreme events at barrow,

alaska, USA. Climate Research 30 (2), 83.

Cassou, C., Sep. 2008. Intraseasonal interaction between the Madden–Julian oscilla-

tion and the north atlantic oscillation. Nature 455 (7212), 523–527.

Cassou, C., Terray, L., Hurrell, J. W., Deser, C., 2004. North atlantic winter climate

regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. Journal of

Climate 17, 1055–1068.

Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., Codron, F.,

Oct. 2010. Winter 2010 in europe: A cold extreme in a warming climate. Geophysical

Research Letters 37 (20).



193

Cheng, X., Wallace, J., 1991. Cluster analysis of the northern hemisphere 500-hPa

height field: Spatial patterns. Journal of the Atmospheric Sciences 50 (16), 2674–

2696.

Chowdhury, M., Alouani, A., Hossain, F., 2010. Comparison of ordinary kriging and

artificial neural network for spatial mapping of arsenic contamination of groundwater.

Stochastic Environmental Research and Risk Assessment 24 (1), 1–7.

Corti, S., Molteni, F., Palmer, T., 1999. Signature of recent climate change in fre-

quencies of natural atmospheric circulation regimes. Nature 398.

Duchon, C. E., 1979. Lanczos filtering in one and two dimensions. Journal of Applied

Meteorology 18, 1016–1022.

Feldstein, S. B., Dec. 2000. The timescale, power spectra, and climate noise proper-

ties of teleconnection patterns. Journal of Climate 13 (24), 4430–4440.

Ferraris, L., Gabellani, S., Rebora, N., Provenzale, A., 2003. A comparison of

stochastic models for spatial rainfall downscaling. Water Resources Research 39 (12).

Fraley, C., Raftery, A. E., 2002. Model-based clustering, discriminant analysis and

density estimation. Journal of the American Statistical Association 97, 611–631.

Fraley, C., Raftery, A. E., 2006. MCLUST version 3 for r: Normal mixture modeling

and model-based clustering. Tech. rep., Technical report.

Furrer, E. M., Katz, R. W., 2007. Generalized linear modeling approach to stochastic

weather generators. Climate research 34 (2), 129.

Grimm, A. M., 2011. Interannual climate variability in south america: impacts

on seasonal precipitation, extreme events, and possible effects of climate change.

Stochastic Environmental Research and Risk Assessment 25 (4), 537–554.



194

Guo, J., Chen, H., Xu, C. Y., Guo, S., Guo, J., 2012. Prediction of variability of

precipitation in the yangtze river basin under the climate change conditions based

on automated statistical downscaling. Stochastic Environmental Research and Risk

Assessment 26 (2), 157–176.

Hakkinen, S., Rhines, P. B., Worthen, D. L., Nov. 2011. Atmospheric blocking and

atlantic multidecadal ocean variability. Science 334 (6056), 655–659.

Hashmi, M. Z., Shamseldin, A. Y., Melville, B. W., 2011. Comparison of SDSM

and LARS-WG for simulation and downscaling of extreme precipitation events in a

watershed. Stochastic Environmental Research and Risk Assessment 25 (4), 475–484.

Hauser, T., Keats, A., Tarasov, L., Sep. 2011. Artificial neural network assisted

bayesian calibration of climate models. Climate Dynamics.

Heckerling, P., Gerber, B., Tape, T., Wigton, R., 2003. Entering the black box of

neural networks. Methods Inf. Med 42 (3), 287–296.

Hewitson, B. C., Crane, R. G., 2002. Self-organizing maps: applications to synoptic

climatology. Climate Research 22 (1), 13–26.

Hoskins, B. J., Hodges, K. I., 2010. New perspectives on the northern hemisphere

winter storm tracks.

Hurrell, J. W., Kushnir, Y., Ottersen, G., Visbeck, M., 2003. An overview of

the north atlantic oscillation. GEOPHYSICAL MONOGRAPH-AMERICAN GEO-

PHYSICAL UNION 134, 1–36.

Jones, P. D., Harpham, C., Kilsby, C., Glenis, V., Burton, A., 2009. Projections of

future daily climate for the UK from the weather generator. Tech. rep., Met Office,

Exeter, U.K.



195

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gadin, L., Iredell,

M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins,

W., Janowiak, J., Mo, K., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R.,

Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin

of the American Meteoroligcal Society 77, 437–470.

Kaufman, L., Rousseeuw, P. J., 1990. Finding Groups in Data; An Introduction to

Cluster Analysis. John Wiley & Sons.

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., 1996. Som pak: The self-

organizing map program package. Technical A31, Helsinki University of Technology,

Laboratory of Computer and Information Science, Espoo, Finland.

Kravtsov, S., Kondrashov, D., Ghil, M., 2005. Multilevel regression modeling of

nonlinear processes: Derivation and applications to climatic variability. Journal of

climate 18 (21), 4404–4424.

Kravtsov, S., Kondrashov, D., Ghil, M., 2010. Empirical model reduction and the

modelling hierarchy in climate dynamics and the geosciences. In: Stochastic Physics

and Climate Modelling, 1st Edition. Cambridge University Press, pp. 35–72.

Lee, H., 2006. Bayesian Nonparametrics via Neural Networks. ASA-SIAM.

Lohmann, K., Drange, H., Bentsen, M., Sep. 2008. Response of the north atlantic

subpolar gyre to persistent north atlantic oscillation like forcing. Climate Dynamics

32 (2-3), 273–285.

Luo, D., Diao, Y., Feldstein, S. B., Mar. 2011. The variability of the atlantic storm

track and the north atlantic oscillation: A link between intraseasonal and interannual

variability. Journal of the Atmospheric Sciences 68 (3), 577–601.



196

MacKay, D., 2003. Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., 2005. Cluster analysis basics

and extensions.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann,

M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun,

K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., Thiele-Eich, I., Sep. 2010.

Precipitation downscaling under climate change: Recent developments to bridge the

gap between dynamical models and the end user. Reviews of Geophysics 48 (3).

Marsh, R., Josey, S. A., de Cuevas, B. A., Redbourn, L. J., Quartly, G. D., Apr.

2008. Mechanisms for recent warming of the north atlantic: Insights gained with an

eddy-permitting model. Journal of Geophysical Research 113 (C4).

Minville, M., Brissette, F., Leconte, R., 2008. Uncertainty of the impact of climate

change on the hydrology of a nordic watershed. Journal of hydrology 358 (1), 70–83.

Molteni, F., Kucharski, F., Corti, S., 2006. On the predictability of flow-regime

properties on interannual to interdecadal timescales. In: Predictability of Weather

and Climate. Cambridge University Press.

Neal, R., 1991. Bayesian mixture modeling by monte carlo simmulation. Tech. Rep.

CRG-TR-91-2, University of Toronto.

Neal, R., 1996. Bayesian Learning for Neural Networks. No. 118 in Lecture Notes in

Statistics. Springer-Verlag, New York.

Oelschlagel, B., 1995. A method for downscaling global climate model calculations

by a statistical weather generator. Ecological modelling 82 (2), 199–204.



197

OrtizBeviá, M. J., SánchezGómez, E., Alvarez-García, F. J., Mar. 2011. North at-

lantic atmospheric regimes and winter extremes in the iberian peninsula. Natural

Hazards and Earth System Science 11 (3), 971–980.

Palmer, T. N., 1999. A nonlinear dynamical perspective on climate prediction. Jour-

nal of Climate 12 (2), 575–591.

Reusch, D., Alley, R., Hewitson, B., 2007. North atlantic climate variability from a

self-organizing map perspective. Journal of Geophysical Research 112, 1–20.

Robson, J., Sutton, R., Lohmann, K., Smith, D., Palmer, M., 2012. Causes of the

rapid warming of the north atlantic ocean in the mid-1990s. Journal of Climate 25,

4116–4134.

Rust, H. W., Vrac, M., Lengaigne, M., Sultan, B., 2010. Quantifying differences in

circulation patterns based on probabilistic models. Journal of Climate.

Sarafanov, A., Falina, A., Sokov, A., Demidov, A., Dec. 2008. Intense warming and

salinification of intermediate waters of southern origin in the eastern subpolar north

atlantic in the 1990s to mid-2000s. Journal of Geophysical Research 113 (C12).

Schaefer, J., Strimmer, K., 2005. A shrinkage approach to large-scale covariance

matrix estimation and implications for functional genomics. Statistical applications

in genetics and molecular biology 4 (1), 32.

Semenov, M. A., Barrow, E. M., 1997. Use of a stochastic weather generator in the

development of climate change scenarios. Climatic change 35 (4), 397–414.

Severijns, C. A., Hazeleger, W., 2010. The efficient global primitive equation climate

model SPEEDO v2. 0. Geoscientific Model Development 3, 105–122.



198

Sexton, D. M. H., Murphy, J. M., Oct. 2011. Multivariate probabilistic projections

using imperfect climate models. part II: robustness of methodological choices and

consequences for climate sensitivity. Climate Dynamics 38 (11-12), 2543–2558.

Strounine, K., Kravtsov, S., Kondrashov, D., Ghil, M., Feb. 2010. Reduced models

of atmospheric low-frequency variability: Parameter estimation and comparative

performance. Physica D: Nonlinear Phenomena 239 (3-4), 145–166.

Tang, Y., Hsieh, W., Tang, B., Haines, K., 2001. A neural netowork atmospheric

model for hybrid coupled modeling. Climate Dynamics 17, 445–455.

Tang, Y., Hsieh, W. W., Jul. 2002. Hybrid coupled models of the tropical pacific -

II ENSO prediction. Climate Dynamics 19 (3-4), 343–353.

Thompson, D. W., Lee, S., Baldwin, M. P., 2003. Atmospheric processes governing

the northern hemisphere annular mode/north atlantic oscillation. GEOPHYSICAL

MONOGRAPH-AMERICAN GEOPHYSICAL UNION 134, 81–112.

Vallis, G. K., Gerber, E. P., Kushner, P. J., Cash, B. A., 2004. A mechanism and

simple dynamical model of the north atlantic oscillation and annular modes. Journal

of the atmospheric sciences 61 (3), 264–280.

von Hardenberg, J., Ferraris, L., Rebora, N., Provenzale, A., et al., 2007. Mete-

orological uncertainty and rainfall downscaling. Nonlinear Processes in Geophysics

14 (3), 193–199.

Wallace, J. M., Gutzler, D. S., 1981. Teleconnections in the geopotential height field

during the northern hemisphere winter. Monthly Weather Review 109, 784–812.

Yiou, P., 2004. Extreme climatic events and weather regimes over the north atlantic:

When and where? Geophysical Research Letters 31 (7).



199

Zhu, J., Demirov, E., Mar. 2011. On the mechanism of interannual variability of the

irminger water in the labrador sea. Journal of Geophysical Research 116 (C3).



Chapter 5

Conclusions

5.1 Summary

The specific objectives of this thesis as listed in Section 1.6 were to:

1. Test the effectiveness of BANNs as climate simulator emulators given limited

training data;

2. Test the estimation of posterior distributions of parametrised structural error

models in the context of a climate simulator;

3. Examine current methods for defining weather regimes, looking at both the

reproducibility of published results and estimating their associated classification

uncertainties;

4. Describe long-term shifts in the distribution of these regimes;

5. Relate these shifts to regional processes;

6. Determine a computationally efficient approach to create realistic simulations,

for the sub-polar North Atlantic, of local variables that capture the range of

200
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observed variability;

7. Test if BANNs are needed to describe the residual between the discreet portion

of the generator and the data to be simulated, or if this can be accomplished

with a less structurally opaque model;

8. Use this model to investigate the daily signal of the trends described in Chapter

3.

The first two objectives are addressed in Chapter 2. The BANNs where shown to

be effective emulators, locating high probability areas of the parameter space. Given

the assumed computational limitations, the most effective strategy tested was using

small sample sizes to allow multiple iterations of training and searching. Estimates

of the emulator uncertainty also improved with repeated iterations. There were,

however, examples of the BANNs underestimating their prediction error during the

initial iterations of the calibration routine. This is in part due to an oversimplified

description of the distribution of BANN predictions. Posterior structural error es-

timates were successfully obtained. The posterior distributions had evolved, where

appropriate, notably from their priors. They also provided satisfyingly conservative

descriptions of the simulator’s limitations. The limiting effects of the simplistic error

model on the calibration results were documented.

Objectives (3) - (5) are addressed in Chapter 3. For objective (3) Bayesian GMMs

were used to define weather regimes from North Atlantic SLP anomalies. The re-

sulting features match those obtained in previous studies. The ensemble of models

produced by the Bayesian approach quantifies uncertainties regarding spatial struc-

ture and classification. This allows an evaluation of significance and robustness not

seen in previous studies. Objective (4) is considered by fuzzy clustering interannual

trends. This identifies four modes which allow a novel description of shifting dis-
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tributions of commonly reported weather regimes. Fuzzy clustering is also able to

address classification uncertainties, although not as formally as the GMM method.

The interannual regimes show shifts in atmospheric tendencies over the last fifty years.

These are correlated, through the fuzzy memberships, with ocean anomalies of ocean

surface fields. These suggest previously undocumented ocean associations with long

term shifts in the distribution of weather types.

The final objectives are addressed in Chapter 4. Stochastic simulations of daily

SLP anomalies are created for the sub-polar North Atlantic region. These simulations

are created by a novel combination of analogue and regression models, conditioned

on the state of the interannual regimes. They well represent the range of observed

variability and key features. However, simulation outputs are more smoothly dis-

tributed than in the observed system. Similar results are obtained from LIMs as for

BANN models. The BANN models underestimate observed variability compared to

the LIM, although they show potential for creating more multi-modal simulations.

The weather generator components have little difference in spatial structure between

different regimes. However, the regression coefficients, throughout every layer of the

model, differ greatly for different regimes. This shows that these regimes do identify

different behavioural states. They do not represent spatial reorganisation or the in-

troduction of new features, but rather, shifts in tendencies and interactions within

the system.

5.2 Future work

This thesis has discussed some contemporary issues for uncertainty quantification

within the context of climate science. The studies presented here represent only

initial investigations into ways to address these topics. There are many avenues for
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future work, some of which are now described.

Calibration Creating statistical emulations of climate models is an area that needs

further exploration. One issue raised by Chapter 2 is: how to well represent the

emulator uncertainty using the BANN ensemble? Gaussian assumptions are easy to

incorporate within the likelihood function. However, in the experiments presented in

Chapter 2, their appropriateness is questionable. As well, the simplification of the

BANN distribution undermines the advantages of the non-parametric method. Trans-

forms could be used to convert the distribution of emulator predictions to a Gaussian

form; cf., Sexton et al. (2011). Alternately, results from this study suggest that using

wider-tailed distributions would increase the accuracy of the approximation. Non-

parametric estimates of the ensemble distribution could also be created. In either

case the most effective form is likely to be specific to the particular study and the sta-

tistical structure of the BANN errors. Developing methods to create these estimates

and incorporate them into the likelihood function would improve the effectiveness of

BANNs as emulators within a rigorous calibration.

The results from Chapter 2 show that subtle differences in BANN architecture

can have a significant effect on performance. ANN design is typically done using

intuition and rules of thumb. The most appropriate architecture will vary depending

on the simulator and calibration targets, and will need to be determined using trail

and error. That said, conscientious documenting of methods when BANNs are used

would benefit the field. Any general recommendations within the context of GCMs,

or other earth systems models, would make the approach more accessible. Potentially

there are no preferred approaches common to different studies. Evidence for this

would also be beneficial, so that emulator designers will know to not limit themselves

to architectures used in previous studies.
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While there are many approaches to emulation in general, selecting appropriate

methods for climate simulations is only beginning to be addressed. Given the complex

and varied nature of earth systems models, it is doubtful if rigid selection guidelines

could be established. Insights from direct comparisons of emulator performance, how-

ever, would be useful for specific problems.

Improving structural error descriptions is another direction for future work. Due to

the large number of terms involved, error covariance matrices must be parametrised,

if they are to be estimated using Bayesian methods. A common approach is using

decorrelation lengths. Here, the correlation between variables is assumed to be a func-

tion of their distance from each other. Estimating parameters defining the correlation

function allows a full matrix to be calculated. This can produce good results when

modelling spatial fields, but defining ‘distance’ between more abstract variables, such

as those used for calibration targets, is less intuitive. Subjective measures could be

defined, potentially with additional adjustable parameters. Experiments would be

needed to compare the potential for different schemes. This could be extended to

block parametrization approach, where the matrix is subdivided and different param-

eters and schemes are used for different areas. As before, subjective assumptions will

need to be made as to how to subdivide the matrix, as well as, if and how to connect

different subgroups.

Decomposing structural error matrices through PCA may be a better way to re-

duce the dimensionality of the problem. This does reduce the matrix to the minimal

number of independent descriptors. However, this analysis would define a fixed struc-

ture for the errors across the ensemble, based on a limited number of initial samples.

These estimates would need to be repeated as part of the iterative calibration process.

Again, experiments are needed to test the potential of the approach.

Long term biases are important structural error components, especially when the
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modelling objective is to make future projections. Estimating these terms is more

problematic than others, as they are related to unobservable states. Defining biases

essentially assumes correlation between current errors and those that will occur in

future. One approach is to estimate biases from the period of observations and assume

stationarity. As this is often not a satisfactory assumption, it may be necessary to

compare how different GCMs describe the future states of the calibration targets.

One possible way to test future associations between variables would be to include

stochastic perturbations, representative of believed structural uncertainties, into the

model and evaluate the long term deviations produced in simulator output.

Circulation Regimes Confidence in the results presented in Chapter 3 is limited

by the length of the observational record. A reanalysis study that covers a longer

historical period does exist (Compo et al., 2011). This reanalysis study, however,

incorporates far less observational information than satellite-era reanalysis projects.

It would be worthwhile to see if the low data study recreates the features recorded

here, for the same time period. If so, then the study could be used to better estimate

the significance of these regimes over a longer time period. As well, it will be important

to check that these features can be reproduced to some degree by current GCMs, and

other reanalysis products, if they are to be used as calibration targets and predictors.

Determining to what degree the interannual patterns of Chapter 3 appear in other

data sets, would be assisted by more detailed descriptions of the original patterns.

In this thesis, these regimes were described using a non-parametric fuzzy approach,

so as to not limit the form of the solution. Initial tests show that similar patterns

can be reproduced using non-spherical GMMs, fit using expectation-maximisation

methods. However, to fit these with Bayesian methods will require extending the

current implementation. As this requires estimates of off-diagonal terms with in a
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covariance matrix, similar issues to those described in the context of structural error

modelling must be addressed. Use of Bayesian methods will produce more complete

uncertainty estimates, and provide more straightforward comparisons between data

sets then is possible with optimised GMMs; cf., Rust et al. (2010).

Further analysis of the behaviour of the sub-seasonal regimes within the interan-

nual regimes is desirable. The shifts in distributions presented in Chapter 3 are a

good first approximation. However, shifts in transition probabilities, residence, and

typical sequences would further dynamical interpretation of the results. As well, more

information could potentially be gained by applying nonlinear PCA, as described in

Section 1.4, to the region. This method could provide a continuous extension to the

SOM results shown in Appendix B, giving additional means for identifying dominant

modes and describing their temporal evolution. These could be compared with typical

sequences of the sub-seasonal regimes. If the patterns are similar, it suggests that the

sub-seasonal regimes are good indicators of nonlinear atmospheric behaviour. If not,

then it will have to be determined whether the classic regimes are oversimplifying

features, or if the nonlinear PCA is not effective for the region; cf., Hsieh (2004).

Weather Generator One way to further explore the relationship between the sub-

seasonal and interannual regimes would be to expand the region for weather gener-

ation, to that typically used with defining the sub-seasonal regimes. These patterns

could then potentially be used as the SOM clusters are in the generator presented

here. Descriptions of atmospheric multi-scale processes require the same analysis as

that needed to construct such a weather generator. Framing the results in the form of

a simulator allows for further testing of their effectiveness as a model of atmospheric

behaviour.

One of the original motivations for constructing the presented weather generator
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was to create ensembles of forcing data for regional studies. For the current model to

be useful for this context it will need to be augmented to produce more variables. One

approach would be to use generated model states as predictors for other variables;

i.e., add a new “bottom layer” to the model. This would require detailed investigation

into in what way are the additional variables linked to SLP. Alternately, additional

variables could be incorporated directly into current model, through multi-field PCA

and SOM analysis.
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A.1 Analysis of error models

The following is the supplementary material provided for the publication of Chapter 2

Here we present further analysis of the error models used for the emulators and

the model discrepancy. Figure A.1 shows a normal Q-Q plot of the results of scaling

the differences between the mean BANN prediction and actual model output by the

uncertainties estimated for each prediction using the 1σ range of the BANN posterior

for that target and parameter set. These are the emulators which were used to select

the final sample of Ensemble A for the perfect model experiment; i.e., they were

trained on the first 80 model runs of the ensemble, which are tested against the final

model runs produced for this ensemble. The fit to a Gaussian is reasonable for the

most part, except for at the tails of the distribution of emulator errors, which are

quite exaggerated. Our model of emulator error does not account for correlations,

and so we do not expect a close fit, but it is clear that here the errors are too long

tailed to be normally distributed. As such it would seem a more appropriate choice of

error model would be a thicker tailed distribution. Figure A.2 shows similar behaviour

for the emulators which were used to select the final sample of Ensemble A for the

calibration to reanalysis data. The behaviour seen here is more muted however, except

for an extreme outlier.

To give an impression of the general evolution of the central tendencies of BANN

performance we include Figures A.3 and A.4. These show the spread of RMS errors

(using their mean and standard deviation) between model output and the emulator

predicted values for each iteration of the calibration experiments (plots are for BANNs

used to predict temperature values, and are representative of the overall BANN be-

haviour). Also included is the mean predicted emulator uncertainty at each iteration.
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It can be seen that for much of the calibration routine this value is comparable to the

mean error.
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Figure A.3: Spread of RMS errors (y-axis) between actual model responses and those
predicted by the emulator for each iteration (x-axis, points are offset for clarity) of
the perfect model experiment, are displayed with the mean bracketed by the standard
deviation. Ensembles A, B, and C are represented by the colours blue (circle), green
(square), and brown (diamond), respectively. Crosses represent the mean predicted
emulator error as estimated by the emulator.

To check the validity of the our model discrepancy estimates, given our poor de-

scription of the distribution of emulator predictions, we again construct Q-Q plots,

this time for the differences between the outputs of the members of the final model en-

semble (for the calibration to reanalysis data experiment) and the calibration targets.

Each error is scaled by the associated model discrepancy and (much smaller) observa-
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Figure A.4: Spread of RMS errors (y-axis) between actual model responses and those
predicted by the emulator for each iteration (x-axis, points are offset for clarity) of
the calibration to NCEP/NCAR data, are displayed with the mean bracketed by the
standard deviation. Ensembles A, B, and C are represented by the colours blue
(circle), green (square), and brown (diamond), respectively. Crosses represent the
mean predicted emulator error as estimated by the emulator.
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Figure A.5: Normal Q-Q plot of differences between model output and calibration
targets, with each error scaled by its associated estimated model and observational
uncertainty. The line of best fit to the presented points is also plotted.

tional uncertainty estimate and this distribution is compared to a standard Gaussian

in Figure A.5. The distribution is skewed, and somewhat biased, as expected, as no

attempt was made to account for bias or correlation in the model output. However,

the range of the scaled errors compared to the standard Gaussian shows that the

estimated model discrepancy is quite conservative. Without more sophisticated error

models, we can’t know what effect the over simplified emulator error model has had

on the results of the model discrepancy estimates, although given the large difference

in scale between the emulator and model errors it is unlikely to have been significant.
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A.2 Examiner Discussion

The following documents additional discussion of the topics of Chapter 2

1. Within the Chapter 2 paper, the candidate developed an emulator based on

a BANN methodology to calibrate parameters of a climate model. It is clear

that employing an emulator to increase the number of parameter combination

tests is a positive development, it is less clear that these tests will be successful

in producing optimal model parameters for the GCM used. In addition, the

implications of the data summarization and filtering on the parameter selection

is not clear.

• The goals of calibration are different than those of optimisation. However,

the "perfect model experiment" does suggest that, while caution has to be

used (eg ensemble B), the method is capable of locating ’ideal’ areas of the

parameter space. Studying the effects of calibration targets was beyond

the scope of the presented study. Due to the simplicity of the GCM, the

described experiment represents more of a ’toy problem’ for exploring the

methodology, rather than an exhaustive study designed to result in a fully

calibrated model for use in climate investigations.

2. It would be useful to see a flow chart, similar to the one used in Chapter 4 to

assist in focusing the discussion of data preparation and information flow in for

the parameter selection study.

• Such a chart is given as Figure A.6. This is a conceptual diagram only

which ignores certain steps in the procedure. A description of the full
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iterative procedure is in Section 2.3.4.

3. Why are the calibration targets based on the EOF fields split into positive and

negative domains? This choice seems rather arbitrary. What is the justification

for this choice? Were any alternatives considered? This point needs further

elaboration in the thesis.

• As is stated in Chapter 2, the calibration targets are not the focus of the

study being performed. As such, generic features, essentially continental

scale averages, were calculated and used to test the methodology. As ob-

served in the article these generic targets do not appear to be ideal should

someone want to perform a full calibration of the model. As the EMIC

used here serves only as a test case for the method further discussion of

observational features is reserved for Chapter 4, although in a different

context.

4. I don’t understand why amplitude vectors with weights less than 10−5 are set to

zero. Surely the definition of what is small is more dependent on what maximum

value of the particular vector is. Are these vectors normalised?

• This is an arbitrary cutoff to simplify the calculation. There is no no-

table difference in the result whether such small values are included in the

averaging or not.

5. I flagged this text on reading but then when I went back it seemed a bit clearer.

But, what is the "default" value here, is it the mean of the proposed distribution?

I’m not sure I know what "multiplicatively expanding" means here. Aren’t you

just assigning a distribution with a large variance?
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• The term "default", which is undesirable but lacks a concise alternative, is

described in Footnote 10.

6. Am I to understand that large variances are being selected arbitrarily to accom-

modate unknown variability? Does this approach in fact capture the outer limits

of variance supported by inputs absent covariance?

• As discussed in the article in reference to figures 2.8 and Figure A.5 the

structural error model is if anything an overly conservative description of

model error.

7. You say "order of magnitude higher" comparing targets between fields, but what

is this relative to. What if you’re comparing temperature to sea level?

• This is a reference to the ratio between the target and its standard devia-

tion, indicated by the term relative uncertainty.

8. "the overall error is reduced ..." How is this reduction quantified? By how much

is the error reduced?

• This is quantified in Table 2.2

9. On the 3rd line of Equation 2.10, how does f suddenly appear among the variables

being conditioned upon? Its presence would suggest that f is perfectly known

given theta and z - this doesn’t seem consistent with the formalism developed

above, in which there is an error in f associated with the emulator.

• Equation 2.10 describes making forecasts with an ensemble of calibrated

GCMs, and so the emulator is not used to generate simulator outputs. If

the emulators were used to construct such an ensemble their uncertainties

would have to be taken into account.
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10. What is it about θ3 that results in its particularly poor estimation in Ensemble

B? Is this poor estimation related to the bimodality of theta1?

• This illustrates one of advantages of using an iterative technique when a

small number of GCM runs can be sampled. This gives the emulator ’a

chance to learn from it’s mistakes’. It is possible for a limited sample of

training data to suggest erroneous locations of high probability parameter

space, which can then be explored in the next iteration. For the B ex-

periment where the training data limit was reached by iteration 2, there

was no opportunity for this. Note, as can be seen in Figures 2.3 and A.3

the BANN used for iteration 2 of experiment B appears to have performed

comparatively poorly at emulating the model response, suggesting the em-

ulator’s extrapolations about the portion of the parameter space shown

in Figure 2.2 turned out to be inaccurate. This could have been resolved

by retraining the emulator with the newly generated data. Also, simpler

emulator architectures were used in the ’perfect model experiment’. The

multi-layer BANNs used in the second experiment do not have these sorts

of errors, suggesting they are able to better able to detect features of the

parameter space.

11. Did you investigate how the parameter calibration changed with changes in the

calibration targets? For example, if you calibrate on just temperature, how dif-

ferent are the results from calibrating on all of temperature, pressure, and humid-

ity? Based on conversations I have had with colleagues who tune such models

"by hand", it’s common that instead of parameter estimates becoming sharper

as more target fields are included, they become broader (because of systematic

errors).
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• Sharper parameter estimates are expected when using more specific targets.

This is the motivation for using multiple fields as targets in the presented

experiment, so as to better simulate a multi-objective calibration. These

are typical in GCM calibration where it’s necessary to be wary that the

model is not being over fit to one variable/field at the expense of having

’realistic’ physical mechanisms.

12. It would be good to show similar distributions based on the model parameter

priors, as well as distributions of the change in predicted temperature change

by the mid 21st century for the calibrated and uncalibrated models (which would

indicate if the model calibration has any effect on climate sensitivity).

• Figure 2.10 was included in the article only as an example of the potential

of the probablistic method, since future projects don’t give any way to

evaluate the accuracy of the calibration. However, this does appear to be a

good way to compare the effect of different calibration methods and targets

when such experiments are performed.
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Figure A.6: Conceptual diagram of information flow during model calibration proce-
dure.
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B.1 Alternate approaches to clustering North At-

lantic daily SLP anomalies

As stated in Chapters 1 and 3, the classical daily-data regimes for North Atlantic SLP

anomalies of Chapter 3 can be reproduced using a variety of methods. The results

from different cluster analysis methods, applied to the same data set, is presented

here. As expected most of the methods produce similar features. However, some

interesting variations occur when the number of clusters is allowed to vary.

B.1.0.1 K-Means

Centres obtained using the k-means algorithm (the method most commonly applied

in the literature) are shown in Figure B.1. These reproduce the standard results as

reported by the sources cited in Section 1.4. The regime assigned for each day of the

winter of 2012 is shown in Figure B.2 The percentage of occurrence of each regime

for each winter is shown in Figure B.3.

Figure B.1: Centres calculated using K-Means algorithm on winter (DJF) daily SLP
anomalies.
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B.1.0.2 Fuzzy Clusters

Centres obtained using the fuzzy clustering algorithm (with fuzziness parameter set

to 1.2) are shown in Figure B.4. Note that these are very similar to the k-means

results. The degree of membership for each day of the winter of 2012 is shown in

Figure B.5. The mean cluster memberships for each winter is shown in Figure B.6.

These time lines match the k-means results but allow for a continuous measure of the

system evolution. This is particularly notable when comparing Figure B.2 and Figure

B.5.

Figure B.4: Centres calculated using Fuzzy Clustering on winter (DJF) daily SLP
anomalies.
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B.1.0.3 GMM (Expectation-Maximisation)

Centres obtained using a four component spherical GMM,fit using an Expectation-

Maximisation (E-M) routine, are given in Figure B.7. The probability of membership

to each cluster for each day of the winter of 2012 is shown in Figure B.8. The mean

probability of membership for each winter is shown in Figure B.9. Results are similar

to the first two methods. Note that the distribution of membership probabilities

assigned by the GMM are more sharply defined modal than those produced by the

fuzzy method.

Figure B.7: Centres calculated using E-M optimised spherical Gaussian Mixture Mod-
els using winter (DJF) daily SLP anomalies.
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B.1.0.4 GMM (BIC)

As stated, all results presented so far are produced by fixing the number and shape of

the clusters estimated. Here E-M optimised spherical GMMs are created for a wide

variety of clusters and then the best model is determined by their BIC values, as

described in Chapter 1. The result is a mixture of 27 clusters with centres shown in

Figure B.10. Note that the previously identified modes all appear within this larger

set. The AR appears as Mode-10, the SG-Dipole as Mode 13, NAO+ as Mode 20,

and NAO- as Modes 26. This high number of clusters most likely does not represent

the number of regimes in the data, but rather is a result of the model attempting to

describe a highly non-linear data set; i.e., it requires a number of spherical clusters

to describe a single non-spherical mode. The test is expanded by allowing for GMMs

with non-spherical covariance matrices. Selecting the GMM with the best BIC value

of various fitted models gives a GMM with three ellipsoidal clusters, shown in Figure

B.11. The resulting centres appear as combinations of the standard regimes from

previous examples; i.e, a merger of the NAO+ and SG Dipole and merger of the

NAO- and Atlantic Ridge, as well as a new feature, depicting a zonally extended low

over the middle of the region. The mean winter probability of membership for these

clusters is shown in Figure B.12. The probability of membership to each cluster for

each day of the winter of 2012 is shown in Figure B.13. Trends for the first two

clusters are similar to observed NAO index behaviour, while the third cluster does

not show any clear trend over the time period.
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Ensem

Figure B.10: Centres estimated using the BIC optimal number of spherical GMMs
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B.1.0.5 SOM

An analysis of the data field using SOMs is presented in Figure B.14. The results show

the four typical patterns, with the modes with the highest frequency of occurrence

giving the closest matches. Note that by this measure the NAO- regime more closely

resembles the “central storm track” regime from the three cluster elliptical-GMM than

that of the k-means NAO- regime.
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Development of a Stochastic
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Sub-polar North Atlantic
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C.1 Examiner Discussion

The following documents additional discussion of the topics of Chapter 4

1. A discussion is given that is essentially a visual comparison between autocorre-

lation functions. That is okay, but a quantitative evaluations would have been

better especially given the overall philosophy of the thesis. Also, when comparing

functions, especially when the differences are not so large, it is easier to look at

the difference (which I believe you do elsewhere in the thesis).

• As stated in Section 4.3.6 more quantitative analysis were performed and

further are possible. However, since there is limited physical interpretation

that can be made of the components of the PCA decomposition it was

decided that long tables of lagged auto-regression coefficient ranges would

not provide much of interest to the reader. Figure 4.14 is an example of

where the quantitative information available is presented and interpreted.

The decision to not use difference plots is in part to show the form of the

observation distributions (which have some interesting subtle deviations

from Gaussivity) and to what degree this is captured by the ensemble

spread. This information is mostly lost when showing difference plots.

2. In the conclusion you talk of subtle differences but can’t this be quantified? How

subtle are the differences and are you sure they are significant?

• This question refers to is a summary line in the concluding paragraph of

the article, the differences referenced are described in the results section

using quantitative methods. For some measures a visual representation
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was considered the most informative way to express the information (see

previous comment), while others (such as the mixture model analysis) are

described numerically. Significance is in part described by the ensemble

spread of model realisations for both methods. There are many metrics

where these do not overlap (e.g., PCs 4 and 6 in figures 4.7 and 4.8).

Whether these differences ’matter’ is hard to define in absolute terms for

this project since the aims are descriptive rather than predictive. There

does not exist a consensus on how exact the representation of observations

must be for them to be ’good enough’ to provide effective forcing fields

for ocean models. A long term aim of the project is to test whether these

more nuanced descriptions create a notable difference in the output of

simulations where they are applied. In that context it would be possible

to talk about the significance of differences in representation in a more

concrete way. For the study presented, however, the question investigated

and answered is: do the different methods give different representations,

and if so, which representation is most similar to the target?

3. How do the stochastic terms generate instabilities? The occurrence of insta-

bilities would suggest a problem with the fit, because the actual residuals have

bounded dynamics.

• Because the stochastic terms are drawn from Gaussian distributions they

will occasionally produce comparatively large values. This is rarely a prob-

lem, but there are isolated occurrences where feed backs with the interac-

tion terms expand these variations into physically unrealistic values (which

continue to expand until the model crashes). As stated, the actual residu-

als should have bounded dynamics and so a truncated Gaussian distribu-
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tions are more appropriate. This is effectively what is implemented in the

Weather Generator.

4. The Kravtsov and BANN models fit in this section are quite complicated. How

many statistical parameters are fit in each of these models? This is needed to be

able to estimate the robustness of the fit.

• The number of parameters for the Kravtsov models range from 22 to 41.

The number of parameters for the BANN models are an order of magnitude

more with values from 251 to 580. This difference is in part because the

AIC pruning used for the Kravtsov models actively removes regression

coefficients, thus decreasing the number of terms to be fitted. The ARD

for the BANN models, however, reduces the influence (associated weights)

of uninformative predictors, without actually removing model parameters.

As stated in the article the all models are designed such that the initial

number of free parameters is much lower than the available training data.

Also, the experiment is to see whether advantage can be gained from the

more complex model, rather to produce technical insights from an ’even’

compassion between two operations.


