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Highlights  

• Oxidation state of cobalt center plays crucial role in determining activity 

• Activity is greater for complexes of pyridyl-containing ligand 

• Ionic co-catalysts are more effective than neutral Lewis bases with these catalysts 

• High TON achieved at room temperature under solvent-free condition 

 

Abstract  

Cobalt complexes of tetradentate amine-phenolate ligands were studied for their potential 

in coupling carbon dioxide with propylene oxide under neat reaction conditions. Cobalt(II) 

complexes afforded catalytic systems with higher TONs than analogous cobalt(III) 

compounds. Tetrabutylammonium bromide (TBAB) and PPN+N3- were effective co-catalysts 

whereas N,N-dimethylaminopyridine (DMAP) shut down reactivity. Ligands containing a 

pendant pyridyl donor afforded more active catalysts than those containing dimethylamine 
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groups. Reactions proceeded well at room temperature under moderate pressures of 

carbon dioxide. 
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Graphical Abstract 
 

 
 
 
1. Introduction 
 

Carbon dioxide is an abundant and cheap C1 feedstock and there is continued 

interest in its chemical fixation, particularly its reactions with epoxides to form 

polycarbonates or cyclic carbonates [1-5].  The cyclic carbonates can be used as polar 

aprotic solvents and intermediates in organic synthesis. Cobalt(III) complexes of salen 

(N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) ligands have been 

particularly effective in the alternating copolymerization of propylene oxide (PO) and 

carbon dioxide [6, 7].  Darensbourg and Moncada recently reported that a related cobalt(II) 

complex in the presence of an anionic initiator could catalyze oxetane-carbon dioxide 

copolymerization [8]. Also, Williams and co-workers have developed remarkable dicobalt 

(II/II and II/III) and tricobalt (II/II/II) complexes of an amido-phenolato macrocyclic ligand 

for cyclohexene oxide-carbon dioxide copolymerization under 1 atm carbon dioxide [9].  In 

contrast to these examples, cobalt(II) salen complexes containing a binapthyl backbone in 

the presence of neutral Lewis base co-catalysts perform cycloaddition reactions of carbon 

dioxide with epoxides to yield cyclic carbonates with TON 800-913 [10].  Subsequently, it 

was shown that in these examples the phenolic ligands themselves could perform such 

reactions and similar TONs could be obtained without the need for a metal [11]. A range of 

bifunctional cobalt-salen complexes have been reported that under the appropriate 

conditions either copolymerize or form cyclic carbonates from propylene oxide and carbon 

dioxide [12-15]. We have recently reported a series of well-characterized Co(II) complexes 
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[16].  Given the precedent for carbon dioxide fixation using cobalt complexes of N,O-ligands, 

herein, we report our investigation of amine-phenolato Co(II) and Co(III) complexes, Fig. 1, 

for the coupling reaction of propylene oxide and carbon dioxide at room temperature under 

solvent-free conditions. 

 
2. Experimental 
 
2.1. Materials 

 
Reagents were purchased from Alfa Aesar or Sigma Aldrich and all except propylene 

oxide (PO) were used without further purification. PO was distilled from CaH2. 

Dichloromethane was purified using an MBraun solvent purification system. Supercritical 

fluid grade carbon dioxide was acquired from Air Liquide. 

 
2.2. Synthesis and characterization of cobalt complexes. 

 
Cobalt(II) complexes, including 3, were prepared according to literature procedures 

[16].  Co(III) complexes were prepared via oxidation using AgNO3 or AgO3SCF3. As an 

example, details for the preparation of CoIII[O2NN’]BuNMe2(NO3) (Fig. 1. Compound 7) 

follows. 

 

CoII[O2NN’]BuNMe2, 1 (0.52 g, 0.88 mmol), was added to a 50 mL round-bottomed 

flask. Dry dicholoromethane (25 mL) was added to dissolve the complex and a brown 

solution formed. Silver nitrate (0.20 g, 0.96 mmol) was added, the flask was wrapped with 

aluminum foil and the mixture was stirred open to air at room temperature for 8 h. The 

resulting dark brown mixture was filtered through a glass frit to remove precipitated silver, 

and the solvent was removed under vacuum. The product, CoII[O2NN’]BuNMe2(NO3)  7, was 

isolated as a dark brown powder (yield 0.51 g, 0.78 mmol, 89%).  Crystals of 7 suitable for 

single-crystal X-ray diffraction analysis were grown from a saturated solution in acetone 

stored at –35 °C. 

Anal. Calcd for C34H54CoN3O5; C, 63.44; H, 8.46; N, 6.53. Found: C, 63.02; H, 8.53; N, 6.62. 1H 

NMR (CDCl3, 500 MHz): δ 1.26 (s, 18H), 1.45 (s, 18H), 2.75 (br s, 2H), 2.80 (s, 6H), 2.89 (br, 

2H), 2.99 (d, 2J = 13.8 Hz, 2H), 3.52 (d, 2J = 13.7 Hz, 2H), 6.90 (s, 2H), 7.20 (s, 2H). 13C NMR 
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(CDCl3, 125 MHz): 29.8, 29.9, 34.2, 34.9, 45.2, 50.8, 63.0, 64.8, 118.9, 121.9, 123.7, 136.3, 

141.8, 156.2. MS (ESI): m/z (%) 644 (65, M+). 

 
2.3. General procedure for coupling reaction of PO and CO2 
 
 All reactions were performed in a 300 mL stainless steel pressure vessel (Parr) 

equipped with an overhead stirrer. The pressure vessel was heated under vacuum 

overnight to remove trace water. Under a nitrogen atmosphere, cobalt complex (0.05 

mmol), PO (7.5 mL, 107 mmol) and co-catalyst (0.05 mmol) were mixed in a vial and then 

the contents of the vial transferred to the pressure vessel. The reactor was pressurized with 

CO2 to 34 atm and stirred. In some cases, a moderate increase in temperature (reaction 

exotherm) was noted. After 12 h, the reactor was cooled in an ice bath and vented. An 

aliquot of the reactor contents was taken for analysis via 1H NMR. Propylene carbonate 

could be isolated from the reaction mixture via filtration through a short plug of silica gel, to 

remove the catalysts, and concentration under vacuum. 

 
3. Results and discussion 
 
3.1. Effect of ligand and co-catalyst on cycloaddition of PO and CO2 
 

Initial studies were performed using the neutral Co(II) complexes 1-4 (Fig. 1) as 

catalysts with a range of co-catalysts. As tetrabutylammonium halides have been reported 

as efficient catalysts and solvents for the reaction concerned [17], a control reaction using 

TBAB alone was also performed (Table 1, entry 1) for comparison with reactions in the 

presence of cobalt amine-phenolato complexes. It should also be noted that PPN salts alone 

have also been reported to yield cyclic carbonates under neat reaction conditions at high 

temperature [18].  As TBAB afforded a slightly superior catalyst in this study, we did not 

perform a control reaction for PPN azide alone.  Compounds 1 and 3 contain a pyridyl 

group as the pendant donor, whereas 2 and 4 contain a dialkylamine group. The nature of 

this pyridyl donor group is important for achieving high TON in the cycloaddition reaction 

(Table 1, entries 2-5). This effect could be due to either electronic or steric effects as the 

pyridyl group is a stronger sigma-donor and less sterically demanding compared with the 

dimethylamine pendant group.  Future research efforts will aim at understanding this 
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difference through use of both experimental (e.g. X-ray photoelectron spectrsocopy) and 

computational methods. The alkyl substituents on the phenolate group also affect the 

catalytic activity observed with the t-amyl containing compounds showing greater activity 

compared with the t-butyl analogues. 

 Ionic co-catalysts were found to be essential in the reactions studied. A cobalt(II) 

compound alone did not convert the propylene oxide (Table 1, entry 6). PPN azide afforded 

a TON similar to that obtained with TBAB but use of 4-dimethylaminopyridine (DMAP), a 

widely used neutral Lewis base co-catalyst, did not afford an active catalytic system (Table 

1, entries 7 and 8). 

 

 
Fig. 1. Schematic structure of Co(II) 1-4 and Co(III) 5-7 complexes used as catalysts in this 
study 

 
Table 1 
Reactivity of 1-7 towards carbon dioxide/PO cycloadditions with different co-catalysts a. 

 
Entry Complex Co-catalyst TONb 
1 - TBAB 17 
2 1 TBAB 950 
3 2 TBAB 250 
4 3 TBAB 2025 
5 4 TBAB 300 
6 1 - 0 
7 1 PPN+N3- 800 
8 1 DMAP 0 
9 5 PPN+N3- 30 
10 6 PPN+N3- 15 
11 7 - 65 
12 7 TBAB 400 
13 7 PPN+N3- 200 
14 7 DMAP 30 
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a Reaction conditions: Cobalt complex (0.05 mmol), co-catalyst (0.05 mmol), T = 25 °C, PCO2 
= 34 atm, 12 h. Yields were determined using 1H NMR spectroscopy and isolated yields 
were in agreement (entries 4, 7 and 12). b Moles of propylene carbonate produced per mole 
cobalt complex. 
 
 

Several reports have recently shown that bimetallic complexes of salen-type ligands 

can ring-open epoxides to yield polyethers.[19-21] It should be noted that in the current 

studies, no evidence for homopolymerization of PO was obtained. We have previously 

shown that 2 forms a PO adduct and NMR studies of 7 in the presence of either equimolar 

or excess quantities of PO show no evidence of coordination (i.e. broadening of PO signals) 

or reaction (i.e. signals for polyether).  Furthermore, in all reactions reported herein, no 

evidence of polypropylene carbonate formation was observed. 

 
 
3.2. Effect of cobalt oxidation state on coupling of PO and CO2 
 

In previous studies, many researchers have found that cobalt(III) complexes are 

highly effective in epoxide-carbon dioxide copolymerization reactions. Therefore, oxidation 

reactions were performed and compounds 5-7 were isolated. 7 was characterized by X-ray 

crystallography and contains cobalt in an octahedral coordination environment with the 

nitrate anion coordinated in a terminal, bidentate fashion (Fig. 2). 

 
 

Fig. 2. Molecular structure of Co(III) complex (7) used as a catalyst in this study 
 

Cycloaddition reactions using the cationic Co(III) complexes 5-7 were performed 

under identical conditions to their neutral Co(II) analogues. However, as compound 7 was 
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structurally characterized by X-ray diffraction, this complex was studied in more detail than 

the other two. Compound 7 exhibits slight activity without the addition of a co-catalyst 

(Table 1, entry 11). Presumably, the nitrate anion is sufficiently nucleophilic to ring-open 

the epoxide substrate.  In terms of co-catalysts, TBAB was once again superior compared 

with PPN azide and DMAP was found to inhibit the reactions (Table 1, entries 12-14). The 

Co(II) analogue of 7 is 1. Reactions using 1 with ionic co-catalysts have significantly higher 

TON than reactions using 7. Therefore, oxidation state plays an important role in 

determining the activity of cobalt amine-phenolato complexes towards carbon dioxide 

fixation. 

 
4. Conclusions 
 

In summary, a new catalytic system for coupling of propylene oxide and carbon 

dioxide at room temperature is reported. The oxidation state of the cobalt center and the 

nature of the neutral pendant donor are of importance with regards to catalytic activity. 

The stronger-donating, planar pyridyl-donor group containing complexes were the most 

active studied and achieved high TONs (800-2025) with ionic co-catalysts. To the best of 

our knowledge, this is the first report of tripodal amine-phenolato cobalt complexes for 

coupling of an epoxide with carbon dioxide. 
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Appendix A. Supplementary data 

 
Supplementary data (X-ray report) associated with this article can be found in the 

online version. CCDC 848223 contains the supplementary crystallographic data for complex 

7. The data can be obtained free of charge on application to CCDC, 12 Union Road, 

Cambridge CB2 1EZ, UK (fax: +44 01223 336033; e-mail: deposit@ccdc.cam.ac.uk). 
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