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An effective method for transforming an amino-sugar into an

N-substituted furan in an ionic liquid is reported. B(OH)3

significantly improves the yield (60%, 3 min MW heating).

The transformation of biomass into useful chemicals has become an

important area of research, as a way to reduce global dependence on

fossil fuel resources.1 Conversion of carbohydrates and their

derivatives into useful materials is one such area, e.g. production

of 5-hydroxymethylfurfural (5-HMF) from glucose and fructose. Of

course, as carbohydrates typically contain C, H and O only, products

from these processes are typically small molecule oxygenated species.

We wondered whether transformations similar to those performed

on more typical carbohydrates would be able to produce

N-containing molecules from amino-sugars such as N-acetyl-D-

glucosamine (NAG). NAG is the monomer unit of the polysacchar-

ide chitin from which it can be obtained. Chitin is naturally abundant

and can be found in the shells of crustaceans (e.g. waste from the

fishing industry), and exoskeletons of insects. The recently formed

American Chemical Society Green Chemistry Institute Formulator’s

Roundtable has highlighted greener small amines, including those

sources from renewable feedstocks, as highly desirable for the

consumer products industries.

Ionic liquids (ILs) have been used quite widely in the dehydration

of carbohydrates.2 ILs can be considered ‘green’ solvents under

certain conditions, as they are normally non-volatile, non-flammable

and potentially re-usable reaction media.3 They can also act as

catalysts in reactions. Several are known to dissolve cellulose and

other sugars, which makes them ideal reaction media for studying

the reactivity of hexoses. Previously, 3-acetamido-5-acetylfuran

(3A5AF) has been obtained as one of the major products from the

thermal degradation of NAG albeit in only 2% yield.4,5 The work

reported herein represents a feasible ionic liquid/solution phase

method for the direct conversion of NAG to 3A5AF, Fig. 1. From

this foundation, the chemistry and transformations of 3A5AF can be

studied and potentially lead to new renewable amines in the future.

Recent research by others on the formation of ‘‘renewable’’ amines

has employed ammonia as the source of nitrogen.6 The work

presented here represents a source of biologically-fixed nitrogen in

the product and as far as we are aware, this is the first report of its

kind.

In a typical reaction, 100 mg of NAG and 750 mg of IL were

mixed and warmed for 1 min until a homogeneous solution formed.

The reaction mixture was then microwave-heated for the appropriate

amount of time, an aliquot extracted with ethyl acetate and analyzed

via GC-MS, using an internal standard and calibration curve (Fig.

S3, ESI{). The dehydration process was first studied at 120 uC, under

additive-free conditions, Table 1. Six different ILs were used with

various alkyl chains and anions. These included 1-ethyl-3-methyl-

imidazolium bromide ([EMim]Br) and acetate ([EMim]OAc),

and 1-butyl-3-methylimidazolium chloride ([BMim]Cl), bromide

([BMim]Br), and acetate ([BMim]OAc), and 1,2-dimethyl-3-butyl-

imidazolium chloride [BMMim]Cl. NAG was found to be readily

soluble in all the ionic liquids studied, under the experimental

conditions employed. The reaction of NAG in [BMim]Cl at 120 uC
gave 14.1% 3A5AF following 3 min of microwave (MW) heating. A
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Fig. 1 Direct conversion of NAG to 3A5AF using a combination of an

imidazolium ionic liquid and microwave heating.

Table 1 Dehydration of NAG using varying solventsa

Entry Solvent T/uC Yield 3A5AF (%)b

1 [BMim]Cl 120 14.1
2 [BMim]Cl 180 25.5
3 [BMim]Br 120 4.7
4 [BMim]OAc 120 trace
5 [BMim]BF4 120 trace
6 [EMim]Br 120 trace
7 [EMim]OAc 120 trace
8 [BMMim]Cl 180 25.3
9 20 mol % [BMim]Cl in DMSO-d6 180 tracec

a Reaction Conditions : solvent (750 mg), NAG (100 mg, 0.452 mmol),
3 min. b Determined by GC-MS. c Analyzed by 1H NMR.

RSC Advances Dynamic Article Links

Cite this: RSC Advances, 2012, 2, 4642–4644

www.rsc.org/advances COMMUNICATION

4642 | RSC Adv., 2012, 2, 4642–4644 This journal is � The Royal Society of Chemistry 2012

Pu
bl

is
he

d 
on

 0
5 

A
pr

il 
20

12
. D

ow
nl

oa
de

d 
on

 2
1/

11
/2

01
3 

16
:1

6:
39

. 
View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/c2ra20578e
http://dx.doi.org/10.1039/c2ra20578e
http://dx.doi.org/10.1039/c2ra20578e
http://pubs.rsc.org/en/journals/journal/RA
http://pubs.rsc.org/en/journals/journal/RA?issueid=RA002011


25.5% yield was obtained at 180 uC under the same conditions, but

prolonged heating (longer than 3 min) or higher temperatures were

found to decrease the yield of product, most likely through

decomposition of 3A5AF via accelerated side reactions.

The anion within the ionic liquid was found to have a profound

effect on reactivity. The incorporation of a chloride counterion

(within the IL) was found necessary to form significant quantities of

3A5AF with trace or low yields obtained when bromide or acetate

ILs were used (Table 1, entries 1, 3–5). This has been observed in the

dehydration of glucose/fructose to 5-HMF using imidazolium ILs,

where high conversions were obtained in the presence of a loosely

bound chloride ion.7 Chloride ion concentration has also been shown

to increase conversions in aqueous transformations of cellulose and

hexoses.8,9 Alkyl chain length on the cation was found to slightly

affect yield. In the case of entries 3 and 6, it was found that

[BMim]Br was more able to facilitate the dehydration than the ethyl

equivalent. [BMim]Cl and [BMMim]Cl (entries 2 and 8) showed

equal activity towards 3A5AF formation. In previous research, using

fructose as the feedstock, 0% yield of 5-HMF was obtained in

[BMMim]Cl whereas 63% yield was obtained in [BMim]Cl.10 It has

been proposed that the acidic protons on the imidazolium ring help

to catalyze the dehydration reaction. In our studies using

[BMMim]Cl, substitution of a methyl group at the C2 position

removes the most acidic proton of the imidazolium cation.

Therefore, the protons at the C4 and C5 positions must play a

larger role in this conversion process for NAG compared with

fructose. This difference may be due to the basic nitrogen atom

within NAG and its absence in fructose. As ionic liquids are

expensive and can be toxic, we also wished to explore whether the

reaction could be carried out using catalytic amounts of [BMim]Cl

partnered with a co-solvent, entry 9, but unfortunately only a trace

amount of product was detected.

To further the study, additives were screened in the hope of

increasing product yield, Table 2. The addition of water (entry 2) did

not affect the yield of product. This is important for biomass

transformations where feedstocks are unlikely to be 100% dry. GC-

traces of the EtOAc extracts from the reactions showed the presence

of 1-methylimidazole and 1-butylimidazole, presumably from the

decomposition of the IL under reaction conditions. If additional

1-methylimidazole is added at the beginning of the reaction, the yield

of 3A5AF is dramatically reduced (entry 3). Use of a more inert

reaction medium would therefore be highly desirable, as the presence

of IL decomposition products are likely inhibiting the reaction.

Future research will focus on using more thermally stable or

supported ionic liquids in this reaction. However, it should be noted

that 3A5AF could be isolated in an analytically pure form using flash

chromatography (see ESI{).

A wide range of basic and acidic additives were studied (entries

4–12), and with the exception of boric acid, yields of 3A5AF of

between 10 and 30% were obtained. Metal salts proved ineffective at

increasing the yield of 3A5AF under the reaction conditions

employed. This result was surprising given the high catalytic activity

of chromium(II)/(III) chlorides in the dehydration of fructose.11 This

difference might be due to the presence of nitrogen in the substrate,

which would coordinate strongly with the transition metal and

inhibit turnover within the catalytic cycle.

B(OH)3 afforded the highest yield of 3A5AF (Entry 4). Of

particular relevance to this work, Riisager and co-workers reported

B(OH)3 mediated dehydration of glucose to 5-HMF using ionic

liquids.9,12 A yield of up to 42% from glucose and as much as 66%

from sucrose was obtained. B(OH)3 has also been used as a

selectivity inducer in glycerol hydrogenolysis, via formation of an

intermediate borate ester.13 B(OH)3 acts as a Lewis acid in aqueous

solution, resulting in the formation of a tetrahydroxyborate complex,

which, upon the addition of a hexose (e.g. glucose or NAG), forms a

doubly coordinated borate–hexose complex.12 The formation of this

complex helps to shift the hexose–aldose equilibrium towards the

right, resulting in the release of acidic protons which aid in the

dehydration process. In order to study the effect of B(OH)3 loading,

three reactions were screened using 10, 100 and 200 mol% boric acid,

yielding 33.5, 44.5 and 60.0% 3A5AF respectively. For comparative

purposes, the reaction using 200 mol% B(OH)3 was repeated using

conventional heating (180 uC for 1 h) and 60.0% 3A5AF was

obtained. After purification, isolated yields of 57–58% could be

obtained. Overall, as the amount of boric acid was increased, the

yield of 3A5AF increased, presumably due to both formation of a

borate–hexose complex and also increased acidity of the reaction

mixture. It is also interesting that a larger quantity of boric acid is

optimum for this reaction compared with glucose. Again, this is

likely due to the presence of the basic nitrogen atom in the substrate.

The mechanism for this reaction (Fig. 2) likely has much in

common with previously studied fructose and glucose dehydration

processes. For example, dissolution of N-acetyl-D-glucosamine in an

IL leads to a disruption of the hydrogen bonds between sugar

molecules. Chloride ions are thought to be important in this process

and addition of NaCl to the reaction mixture led to a moderate

Table 2 Dehydration of NAG in [BMim]Cl with different additivesa

Entry Additive T/uC Yield 3A5AF (%)b

1 none 180 25.5
2 water 120 28.7
3 1-methylimidazole 120 2.9
4 B(OH)3 180 60.0c,d

5 NH4OH 180 30.9
6 NH4Cl 180 25.3
7 HCl 180 24.1
8 ZrO2/SO4

22 180 10.3
9 DBUe 180 16.5

10 DABCOf 180 16.6
11 K2CO3?1.5H2O 180 24.3
12 NaOH 180 11.5
13 CrCl2 120 12.1
14 CrCl3 120 12.4
15 SnCl4?5H2O 180 17.8
16 NaCl 180 38.3d

a Reaction conditions: [BMim]Cl (750 mg, 0.573 mmol), NAG (100 mg,
0.456 mmol), 10 mol% additive, 3 min (MW). b Determined by GC-MS.
c Using 2 : 1 B(OH)3 : NAG. d Heated by oil-bath at 180 uC for 1 h.
e 1,8-Diazabicycloundec-7-ene. f 1,4-Diazabicyclo[2.2.2]octane.

Fig. 2 Possible mechanism for the formation of 3A5AF from NAG.
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increase in yield of 3A5AF (entry 16). Acidic protons present on the

imidazolium ring (or the added B(OH)3) are proposed to interact

with the hydroxyl oxygen of the sugar to give a complex, which

increases the concentration of the open chain aldose form of the

sugar. Next, nucleophilic attack by a hydroxyl group affords the

5-membered heterocycle, which undergoes subsequent dehydration

and keto-enol tautomerization to give the product. In order to help

probe the mechanism and the sugar dissolution, the reaction was

followed by 1H NMR and the shifts of the three imidazolium

protons studied. In the case of H2, H4 and H5 a gradual shift to

higher frequency was indeed noted as the reaction progressed. We

suggest that this observation is linked to increased hydrogen bonding

with H-bond acceptors (sugar hydroxyl groups) resulting in the

deshielding of the acidic imidazolium protons. However, it could also

be due to H-bonding with the water released during the reaction.

Kinetic studies were performed to assess the activation energy and

pre-exponential factor associated with the decomposition of NAG in

the absence of an additive. As such, reactions were performed at 140,

160, 180 and 200 uC and the concentration of NAG monitored using
1H NMR. In a typical reaction, [BMim]Cl (1.00 g, 5.75 mmol) and

33 wt% NAG (424 mg 1.92 mmol) were mixed. The sample was

heated using an oil bath and an aliquot taken (20–50 mg) at the

desired time. To this sample, was added 3.00 mL acetophenone

(internal standard) and 600 mL DMSO-d6.
1H NMR spectra were

obtained, and the amount of NAG measured using the added

internal standard (Fig. S6, ESI{). The decomposition reaction data

at 140, 160, 180 and 200 uC were fitted to first order rate plots,

yielding linear correlation coefficients (R2) close to unity (Fig. S8,

ESI{). Through a plot of ln (kobs) vs. 1/T, Fig. 3, the energy of

activation and pre-exponential factor were determined to be 82.8 kJ

mol21 and 1.34 6 108 min21, respectively. Qi and Watanabe et al.

calculated the activation energy and pre-exponential factor to be

114.6 kJ mol21 and 3.54 6 1014 min21, respectively, for the

conversion of glucose to 5-HMF using CrCl3 in [BMim]Cl under

microwave irradiation.14 Although the two processes differ it is

important that the activation energy values are of roughly equal

magnitude, as they both involve the dehydration of a hexose

molecule. However, the pre-exponential factor determined from this

work is six orders of magnitude lower than the value reported for

glucose. This is to be expected, as a microwave-heated reaction

should have a larger pre-exponential factor compared with a

conventionally heated one because of an increased number of

collisions among reactant molecules.15 Further kinetic studies are

needed to understand the role of chloride anions and boric acid on

the process described herein.

In summary, we have shown that the N-substituted furan,

3-acetamido-5-acetylfuran, can be obtained in good yield from the

dehydration of N-acetyl-D-glucosamine in an imidazolium based

ionic liquid. These data contrast with recently published work from

our group where levulinic acid was obtained as the primary product

through transformations of aminocarbohydrates (glucosamine,

chitosan and chitin) in aqueous media.16 Although, some clues

concerning the mechanism have been obtained, more detailed studies

are underway in our group. Initial studies suggest that there are both

similarities and significant differences between this process and

previously reported reactions using fructose and glucose. We intend

to investigate 3A5AF as a source of renewable amines, and as a high-

value precursor to proximicins (biologically active compound) of

which it is a structural motif.17
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