








Neural Network Based Incipient Fault
Detection of Induction Motors

By
"Mohd. Rokonuzzaman, B.Sc. Eng.

A THESISSUMDMITTED TO THE SCHOOL OF GRADUATE
STUDIESIN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
MASTEROF ENGINEERING.

FACULTY OF ENGINEERING AND APPLIED SCIENCE.
MEMORIAL UNIVERSITYOF NEWFOUNDLAND.

MARCH,1 995

ST. JOHN'S NEWFOUNDLAND CANADA.



1+1 Naliona! Ubra ry
01Canada

Acquisitionsand
Bibliographic sevcee Branch

395w~S1_

OItawa. 0Il 8lio
K 'AON~

Direct ion des acq uisitions cl
des servicesbibliographiques

:J95. n.oIW.,ainglon

~m~0rt8nol

The author has granted an
irrevocab le non-excluslve licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means end
In any form or format, making
this thesis availabl e to Interested
persons .

The author retains ownership of
the copyright In his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her perm ission.

ISBN 0-612-01914-4

Canada

l 'auteur a accorde une licence
irrevocable at non exclusive
permettant II la Blbllotheque
nation ale du Canada de
reprodulre, preter, distribuer ou
vendra des copies do sa these
de quelque manlere at SOUS
quelque forme que ce salt pour
mettre des exemplaires de cette
these a la disposition des
personnes lnteressees.

L'auteur conserve la prop rlete du
droit d'auteur qui protege sa
these. NI ta these nl des extralts
substant lels de celle-cl ne
doivent etre imprlmes ou
autrement reprodults sans son
autorisation .



Abstract

An incipi ent fault detection scheme of inductio n moto rs through the recog

nition of frequency spect ra of the stat or current has been developed in this

thes is. It is based on the adap tive resonance theory of neural networks. T his

fault diagnosi s scheme is not only capab le of detecting a fau lt but also can

repor t if it canno t ident ify a parti cular fault so that necessary preventive

steps can be taken to update the underl ying neural network to adapt to this

undetected fault . Moreover , it can update itself to cope with t his dyn amic

situation retaining al ready acquired knowledge with out the need of ret rain ing

with the old patt ern s.

A laboratory experimental set-up using a digital signal proc essing(DSP)

technique has been employed to collect the frequency spect ra of the st ator

curren t at different fault conditions. A wound -rotor ind uction motor has been

used as the test motor to create different types of faults making unbala nce

in the st ator and rotor cir cuits . A 24-bit high speed nsp boa rd has been

used with a personal computer to develop a reel-t ime interac tive software to

collect the spectr a . A driver for the UP-plotter has also been developed to

directly plot the frequency spectra of the stator cu rrent.

Adapt ive resonance theory(ART ) based network is a recent additio n to

the neural network family. A Dew software bas been successfully developed

and implemented in the laboratory experimen t using ART neu ral network.

Its performances in training, recalling and dynami c updating have been stud 

ied with a set of example patterns . T he incipient faults of a a-phaee wound

rotor induction moto r have been su ccessfully diagon ized by th is neural net

work.
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Chapter 1

Introduction

Fault diagnosis has been an active area of research in both the engineering

and computer science communities. In spite of the ma ny ad vances in t bis

area, fault diagnosis still remains ch&llenging with many ques tions unan

swered. With advances made in technology, complexi ty is a major fac tor

t hat we have to deal with. Complexity confron ts us, perhaps , when some

thing breaks down. We are forced to come up with more effective techniques

and analysis for detecting and diagnosing such anomali es. Diagnostic anal y

sis is not always quan titative . 1Dfad much detecti on and diagnos tic anal ysis

is heuristic , and results from repeated and long time cognitive experiences.

In the last decades, a.<:drive installation has shown tremendous growth bo th

in size and complexity. The interruption of serv ice due to faults in a motor

drive installat ion is often costly and could interfer e with public safety in some

install ations .



These motors are exp osed to .. wide variet y of environments and condi

tions which make th e motor subject to incipient faults. T hese incipient faults .

if left und etected, cont ribu te to t he degrada tion and even tu al failu re o{ thl'

motors. With proper mo nitoring and fault det.ect.ion echemea, th e incipi

ent faults can be detected in their early sta ges, and ma intenan ce a nd down

time expenses aLn be red uced whil e alflO improvi n~ safet y. Thu I , the moto r

incipient fault detection can be used in the moto r prevent ive maint enance

programs also.

1.1 Incipient Fault Detection of Induction
Motors

1.1.1 A B r ief Descr iption

Although rotat ing ma.chiD~ are wually well const ructed and robus t , the

possibility of incipien t fau lts is inh erent in th e machines du e to the stres ses

involved in the co nversion o f electri cal energy to mechanical energy a nd vice

veraa\ l , 2]. Incipient r..nlh withi n .. machine will affect th e performance of

t he machine before major failures ocru r. Wit h proper s)'1Item monito ring and

fau lt detection schemes, mai ntenance costs can be red uced and reliability of

t he machi nes can be improved significantly .

An exper ienced engineer may de tect and di agoc»e t he motor faulh bycb 

serving the motor 's oper..ting performeaeee . However, expe rienced engineers

are expensive and difficult to trai n . It is, the refore des ira ble to aut omate



the system monitor ing and fault detection schemes rather than to rely on

an expert to perform continuo us on-line monitoring. Several faul t detection

methods have been developed, each with their own prosp ects and constraints.

Some techniques requi re expensivediagnostic equipment and/or off·line fault

analysis to determine the motor condit ion. For instanc e , thc radio frequency

monitoring scheme injects radio frequency signals to the stator winding of

a machine and measures the changes of the signal waveform to determine

whether the winding insulation contains faults 12J. This technique requires

expensive equipment and is justified only for use with large an d expensive

machines. Other popular techniques, such as particle analysis whi ch requires

bringing the motor oil samples to a labora tory for analysis [2J to determine

the motor condition , are more suitable for overhaul or routine check-up rathe r

than on-line monitoring and faul t detection.

The parameter estimation approach [3J is a non-invas ive fault detection

scheme. Non-invasive fault dete ction schemes are based on easily accessi

ble and inexpensive measurements to predict the motor condition withou t

disintegrating the motor struct ure. These schemes are suitable for on-line

monitoring and fault detection purposes. Due to their eco nomical and non

destructive features , ncn-iavaeive techniques are often preferred by many

engineers. However, t he paramete r estimation approach requires an accurate

mathematical model and an elaborate understanding of the system dynam

ics based on a set of system parameters. The parameters arc usually chosen

to reflect the motor conditions. For example, the bearing condition will

affect the damping coefficient of the motor 's mechanical equation . As the



bearing wears out, the d am ping coefficient increases. Thus , the parameter

estimation approach can be based on the motor's mechanical equation and

measurements to estimate the value of the damping coefficien ts, Afte r catl

mating the numericalvalue ofthe chosenparameter , a means to translate the

estimated numerical values to qua litative descript ion is required . T he major

difficulty with the parameter etimaticn approach is that an accurate mathe

matical model is required, and is usually difficult to obtain. O ULcr techn iques

like non-parametr ic surface fitting method also requ ire case by case specific

mathematical analysis. In addition , the interpretation of the fault condi

tions, which is a fuZ2lY concept using rigorous math ematical formulat ions, is

generally impractical .~d inaccura te,

On th e other hand, use of an ar t ificial neural network for fault detec tion

is alsoa non-invasive techn ique 13, 4] . But, unlike the parameter estim ation

approach, neural networks an perform fau lt detection based on measure

ment! and training without the need ofcomplex and rigorous mathematical

models. In addition, heur istic inte rpretation of the motor conditions, which

sometimes only humans are capab le of doing, can be eeslly implement ed in

the neural network throug h supervised training.

1. 1.2 Mathematical Analysis of Induction Motor

In order to successfully p erform fau lt detect ion, different sets of crite ria are

needed to define a moto r 's status at different oper ating co n-ditions . The

fault detection of a 3·pha.se induction motor has been used f OT illustration



pUrJlO'CS. U is wo rthwhile to descr ibe the faul\ det ection problem in mathe

maticaJ terms to facilitat e future d iscu99ions ODthe subject .

Methematical Description of Motor Dynamics

An induction motor un b e described bythe following 9t.Ue equations in the

Rta Uc.nU Y reference frame :

!.- [;,]= [An ."] [ ;, ]+[S' ]••
dt ' . An An ';, 0

= A%+Bu.

Where

StGlor Currmt i . = [ i~. i t . r

R«...Fluz ;. = [ '.'r l'

St.GfOl"V ol t age 11. =[ tt ", u t • r
• An = - (R. / (6L,J+ (1-6) /(6T,1I1= . ,,,1

(1.1)

(1.2)



• D, ~ l / l IL.)I- b,1

R. an d ~ ar e .t&tor a nd rotor resistances, respectively,

L. an d f.., are , l.ltor an d roto r self inductances, respect ively,

M is mutua l inductance,

Loa.... a>efficid>16 = I - M'/( L.L - r ),

Rotor timeco nlt Ult r.. = L - r I R, and

w. is motor ao gulu velocity in radian / seconds .

Input current depend s on tb e motor parameters R••& ,L ••L ... M and 6.

An internal fault in the machine will be reSect ed in the stetc r current of

the machine. It iepossib le the refore, to detect the fault Irom the analysis of

etatcr current.



1.2 Artificial N eural Network for Fault D e
tection

1.2.1 Expert Approach for Fault Detect ion

As stated previously, the interpret ation of a motor's condition based on nu

merical value ;s usually a difficult task because fault detection is a fuzzy con

cept and usually requires experience [5}. Therefore, in many eases, heuristic

interpre tat ion of the results, which only humans are capab le of doing be

comes necessary. An experienced engineer can diagonose the motor's condi

tion based on its operating conditions an.-Imeesuremente without knowing

exact mathematkaJ model of t he motor. The approach is simple and reliable,

and th f' complicated mathem atical relation is embedded in the engineer's

knowledge abou t the motor. However. an experienced engineer may not be

able to give detailed explanat ions regard ing his/ her reasoning and logic used

to make the decisions, simply because experience belongs to the fuzzy logic

realm and is difficult to describe accurately in exact mathematical terms.

As it tu rns out, this human expertise approach has many advantages

over th e parameter estimation approach . However, the major drawback of

t he human expertise approach is that experience is difficult to tr ansfer and

automate. Both reeeerchers and engineers usually transfer experience and

knowledge tLrough languages and mat hematics, which are sometimes time

consuming and inaccurat e. In pract ice, t he experience and the knowledge

used by expert engineers to perfonn motor fault detection and or diagnosis



histori cal fault detection data gat hered. by the experts.

1.2 .2 Learning Skills of A rtificial Neural Network s

Wit h th e emergin,; technology of art ificial neural networks, the human ex

pert ise app roach ean be mimicked and automat ed {6, 7, 81. Artificial neural

networks (ANN) can be trained to perform motor fault detect ion by learn 

inc expert 's knowledge using a represen tati ve set of motor data. [91. In the

case of an indu ction motor, incipient faults can be detected by an alyzing

the frequency spect rum of tbe sta tor current as shown in Fig. l.l (aHb).

Now it is clear that the stato r current spect rum c.a.rri~ the signatu re of an

internal faul t within the machine. Soby training an ANN with th e values of

spect ral component related to partic ula r faults without tbe need of matb e

metical modeb , tbe complexity of t he par ameter est imation approach can be

avoided. Once the ANN is trained appropria tely, the network weights con

tain th e knowledge needed to perlo nn fault detection , which is equivalent to

the expert ise gained by an engineer over tbe yean in machine fault diagnosis .

1.3 Lit erat ure Review

ANN. have been proven to be capable of successfully performing motor faul t

detec t ions 19, 10J. One of the advantages of this type of pattern recognit ion

techni ques is th at it can SAve time in ia forrnatlcu processing in run tim e,

where all th e comput ation Al complexities are don e off· line in th e train ing
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Figure 1.1: (a) Frequency spectra of input current of II. healthy machine.(b )
Frequency spectra of input current of II. faulty machine. (c). Model of Neural
Network based fault related spectra identification syst em.



period of the network.

When developing an ANN based system to perform a particula r pattern

classification problem, typi cally the precess is to gat her a set of examples or

training patt erns, then using these examples to t rain the underlying ANN.

During the training, the information is coded in the syste m by the adjust

ments of the weight values. Once the trai ning is deemed to be adequate,

the system is ready to be used in the real-lime situations, and usually no

additional weight modification is required.

This operational scenario is a.cceptable provided the problem domain has

well-defined boundaries and is sta ble. Under sucb condit ions it is possi

ble to define an adequate set of t raining inputs for whatever problem be

ing solved. Unfortunately, like many realistic sit uations involving incipient

fault detect ion of induction motors, the environment is neither bounded nor

stable. To solve th is dynamic behaviour convent ional Feed-forward Neural

Network(FNN) suffers a major set back.

Mo-Yuen Chow and others 13]-(5],(9]-[11] have done significant works in

neural network based incipient fault diagnosis of induction motors. But they

have used FNN as fault diagnosis tool and in their research work they have

neglected this dynamic operational scenario which is an indispensable part

in real-world environment. M.F. Abdel Mageed and his colleagues 1121 have

used Hierarcbical neural network, but tbis neural network also suffers the

same limitatio n as FNN. The same limitatio n also prevails in the research

works of F.Filippetti 113, 14], Chin-Teng [6J and their colleagues. Moreover,

10



the reporting ability of the neural network, if it cannot diagnose a perth 'liar

fault has not been considered by them. So, there is a need to carry out a

research work to find suitable neural network which is not only capable to

diegcneee a fault but also can report if it cannot , so that preventive steps

can be taken to update the neural network to adapt to this Dew fault, while

retaining the already acquired knowledge witbout retraining of the already

trained patterns.

Mathematical analysis as mentioned in sect ion(1.1.2} makes sense that

wave shape of the stator current carrie! the signature of internal condition

of the machine. R. Nata rajan 1151 has used the stato r current to diego

niecthe fault by only measuring if.9value, Dot though the spectral analysis,

which is necessary for neural network based fault detect ion scheme to get

better result. F.Filippet ti and M.Martelli (13) have considered the frequency

spectra of the stator current as the key fault related informat ion carrier of

the fault diagnosis scheme, but they have not reported a detailed study of

frequency spectra of the stator current at different fault conditions. B.C.

Papadiaa [16}and others have given an out line to develop an expert system

for troubleshooting of electrical machines, b ut the collection of fault related

informat ion is not mentioned. While the focus of research work of Mo-Yuen

Chow and others (3)-[5J,[9)-(11J is towards the applicability of neural network

in the incipient fault diagnosis of induction motors specially in bearing fault,

they have not considered the spectral analysis of the stator current . At this

present state, it is evident tha t it is important to pay attentio n to collect the

frequency spectra of the sta.tor current at different fault conditions.

11



1.4 Object ive of t he Pres ent Work

The long-term objective of this work is to imp rove the state-or-the-art of in

cipient fault diagnos is of induction mo tors. The specific shor t-term objectives

are summarized in the following three points:

• Tofind a neural network suitable forincipient faults detection ofelectric

machines . This fault diagnosis scheme is not only capable of dttccting

a fault but also can report if it cannot identify a particular fault so

tha t necessary preventive steps can be taken to update th e underlying

neural network to adapt to this undetected fault.

• To develop a laboratory set -up to collect frequency spectra of the stator

current of induction motor in real-time using digital signal processing

techniques, and to collect frequency spectra of the stator current at

different fault conditions for the experimental ind uct ion motor .

• To train the selected neu ral netwo rk with fault related frequency spec

tra of the etetor current and to study th e performance of the trained

network to diagonise fa.ults in noi se free as well as noisy cond itions.

1.5 Overview of Thesis

The contents of the t heses can be summarized in the following chapters:

12



Chapter 2 covers a survey of ....v....i1....ble neural networks. A comparative

study has been done to select a neural network to satisfy one of the

objectives.

C ha pter 3 discusses the software implementat ion of the selected neur....l net

work. It's performance has been tested with a number of examples.

Cha pte r " explains the related algorithms and techniques to collect the

fault related frequency spectra of the stato r current of a three phase

induct ion motor. This chapter ....lso gives .... brief outline of the digital

signal processing (DSP) board as well as the DSP library. Salient

features of the software developed as part of this work to acquire real

time frequency spectra of the stator current has been also described in

this chapter.

Chapter 5 explains the performances of the selected neural network to clas

sify faults based on fault related frequency spect ra of the stator current .

A model based on the selected neural network for on-line incipient fault

diagnosis system for the induction motor has also been reported in this

chapter.

Ch apter 6 contains the conclusions and recommendations for future work.

It has been expleined that there is a good prospect to do further work

00 the irrespect ive of design parameter, type of machine as well as

operat ing conditions fault diagnosis system. Moreover, the scope of

development of multi-machine fault diagnosis system to make it cost.

effective and u"ler·rriendly has also been emphasized.

13



Chapter 2

An overview of Artificial
Neural Networks

2.1 Introduct ion

A neural network is .. massively parall el distributed prDCeSSO-" tha t has nat

ural prop dlllity for storing experimental koowledge and ma kiog it avai lable

for use [17J. It mimia the brain in two respeds :

a). Knowledge is acquired by the network through a laming

process.

b). Inter-neuron connect ion st rengths, usually known &5 synaptic

weights, are used to etore the knowledge.

T he procedu re used to perform the lear ning pro cess is called a "lea rning

algorithm" , the (unction 01which is to modify th e synapt ic weights of the

network in an orderly fash ion so as to attain a.desired design objective. The

"
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Figure 2.1: Model of a neuron

"'.

use of neural net works offen & number of benefits , amo ng them nonli near ity,

input -output mapping and adaptivi ty are most important.

2.1.1 Models of a Neuron

Fig. 2.1 shows the model of a neuron. Three basic elements of the neuron

are ex plained as fellows:

1. A set of eynepeea or connect ing links, each of which is characterized by

a weight or strength of itB own.

2. An Adder for eummlng the input signals .

3. An a.ctivat ioo function {or limiting the amplitude of the output of t he

15



A neuron K can be explained by the following equatio ns:
,

Uk = I: WkjXj
';.. 1

(2.1)

(2.2)

where Z llX 2,. .. ,Z, are inpu t signals; wu ,wU ,...,Wk, ar e the synaptic weight s

of neuron k ; Uk is t he linear combined outp ut ; Ok is the thr eshold; '.p is lilt'

activation function ; and Yk is the outpu t signal of the neuron. The use of

threshold OA has the effect of applyin g an affine trans format ion to the outpu t

UAof the linear combiner in the model as shown hy

(2.a)

The output can be represented by the following equation:

(2.4)

Types of activation function

Generally used three different types of activation function s are describe d he.

low {I7]:

L Threshold EUnction:

For this type or function as shown in Fig. 2.2(a)

( {
l i/ V > O

I(J v) = 0 if v :( 0

16
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,
Vk = LWkj% j -O.

j ,. 1

2. P iecewi se-Lin ear Function:

(2. 7)

(2.8)

(2.9)

A Piecewise-linear function as shown in Fig. 2.2(b ) can be explained by

the following equat ion:

{

I , i f v ~ l
rp(v) = v, if - i > v >- !

0, if v:::; -t
3. Sig moida l Fundion :

The Sigmoidal function aa shown in Fig. 2.2(c) is by far t he most com

mon form of activation function used in the constr uction of artificial neura l

networksas explained by the following equation:

y>(v) = 1+e%~(-au)

where a is the slope parameter.

2.1 .2 Network Architecture

Learning algorith m to trai n a. neural network depends on the way it is str uc

tur ed. In general, there a re four different classes of network arch itectures:

1. Single-LayerFeedforward Networks.

2. Multilayer Feedforward Network.

3. Recurrent Networks.

4. Latt ice Struct ures

17
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Figure 2.2: Activat ion Functions: (a) Threebcld Function. (b) Piecewise
Linear Function (c) Sigmoidal Function

2.1. 3 A rt ificial Intelli gen ce a nd Ne ural Networks

The aim of artifici al int elligence{AI) is the develop ment of para digms or

algorit hms that require machines to perform tasks th at apparently requir e

cognit ion when performed by humans. An AI system must be capable of:

1. storeing knowledge;

2. appling the knowledg e stored to eclve problems;

3. acquiring new knowledgethrough experience;

18



An AI system has three key components: representation , reasoning, and

learning. AI can be described as the formal manipulation of a language of al

gorithms and dat a representations in a top-down fashion. On the other hand,

neur al network can be described as parallel distrib uted processors with a nat 

ural learning capability, and which usually operate in bott om-up fashion. For

the implementa tion of cognitive tasks, it therefore appears tha t rather than

seek solution based on Al or neural net work alone, a. more potentially useful

approach would be to build st ructured connectionist models tha t incorpora te

both of them.

Some import ant neural networks have been explained briefly in the folow.

ing sections ending witb a comparati ve analysis for the select ion of proper

neural network for incipient fault detedion of an indudion motor.

2.2 B ack pro paga t ion

Backpropagation neural network(BPN) as shown in Fig. 2.3 learns a prede

fined set of input-output example pairs by using a two-phase propagate-adapt

cycle 118]. After an input pattern has been applied as st imulus to the first

layer of the network unit s, it is propagated throug h each upper layer until

an out put is generated. This output pat tern is then compared to the de

sired output ,and error signal is computed for each output unit. The error

signals are then transmitted backward from the out put layer to each node

in the intermedia te layer that contributes directly to the output. However,

each node in tbe intermedia te layer receives only a portion of the total er

ror signal, based roughly on the relative contribution the uni t made to the

19



Figure 2.3: The three la.yer BPN architecture

original output . This process repea ts, layer by layer until each node in the

network has received an error signa l that describes its relat ive contribution

to the total error . Th e training procedur e of a BPN can summarized in the

following points:

1. The vector , x" = (3:,1' :,,2 , :1: )' is applied to the inpu t unit s.

2. The net-input values to the hidden layer unit s arc calculat ed:
N

nd~.i =?;wt;Zpi+Dt (2.10)

3. The outpu ts from the hidden layer are calculated:

4. For output layer the net- input values to each unit is calcu lated :
L

net;l:=:Lw:ji"i +0: (2. 12)
I"

20



5. T he outputs are calcu lated :

6. T he error terms of t he output units Ate calcu lated:

6:; = f t'<net:;)~6;'W:i

7. The weight on the ou tput layer is updated :

8. Weights in the hidden layer a re updated:

w~;(t + 1)= wMt) + '16:{t ;

(2.13)

(2.14)

(2.15)

(2.16)

T he following equat ion is t he meas ure of bow well the net work is lear ning.

I "
E, ~ 2~ 6i. (2.17)

When the error is acceptably small for each of t he trai ning-vecto r pairs ,

trai ning an be discontinu ed.

2.3 The Binary Associative Memory (BAM )
and t he Hopfield Memory

A type of memory called an associative memory is a subject mat ter of this

sect ion. In fact, the concept of associat ive memory is a fairly intuitive one:

uStlciative memory appear s to be one of tbe primary funct ions of tbe brain

(181 ·
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x layer

y laye r

Figure 2.4: BAM architecture

2.3 .1 T he BA M

The BAM consists of two layers of processing elements that are fully inter

connected between the layers. The units may, or may not, have feedback

connection to themselves. The general case is shown in Fig. 2.4. For the

L vector pa irs that constitute the set of examplers should be stored, the

following mat rix can be constr ucted:

w "" YIX~ + Y~X2 + + YLxi (2.18)

This equat ion gives thf' weightson the connections from the x layer to the y

layer. To construct the weights for the x layer units, it is necessary simply

to take the t ranspose of the weight matrix, w~
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BAM Mathematics

0 11 the y layer

net" = wx (2.19)

where net~ is the vector of t he net-input values on the y layer . In terms of

th e individual units , Vi,

On t he x layer

netf = E Wjj:d
j_1

neti = E YjWj;
j .. 1

(2.20)

(2.21)

(2.22)

(2.23)

The quant it ies n and m are dimensions of the x and y layers, respectively.

The output values for each processing element depends on th e net input

value, and on the current output value of th e layer. The new value of y at

time step t +1, y( t +1) is related to th e value of y at time step t , y (t ) by

{

+1 netf >O
y;(t+1) = Yi(;) , netf =0

-I, netT< 0

Similarly, X(Hl ) is related to x(t) by

{

+ 1 neti > 0
%i(t +1) = Z'i(i), netf = 0

-I, netf < 0

BAM Processing

(2.24)

To recall the information using the BAM, the following steps should be per

formed:
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1. The initial vector pair, (XO .Yo) is applied to the input elements of the

BAM.

2. Information is propagated from the x layer to the y layer; and the

values on the y- layer are updated.

3. The update d y information is propagated back to the X layer and the

units are updated.

4. Steps 2 and 3 are repeated unt il there is no further change in the units

on each layer.

2.3.2 The Hopfield Memory

Hopfield memory(HM) can described as a derivat ive of the BAM [18]. There

are two types of Hopfield memory as described below.

Dis crete Hopfield Memory

Fig. 2.5 illustrate the structure of discrete Hopfield Memory.

Continuous Hopfield Memory

Continuous Hopfield Memory has same useful properties of associative mem

ory but it can accept analog input making it closer to natural neuron, More

over, it can be represented by analog elet ronic circuit making it suitable for

VLSI implementation.
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Figure 2 .~: Discrete Hopfleld Memory

2.4 Simulated Annealing

It it possible to extend the analogy between information thoory and stati s

tical mechan ics in order to place neural network (IS] in contact with a. heat

reservoir at scree, u yet undefined temperature. If 110, t bcu it is possible to

perform a lim ulated annea.lin~ precess whereby uadua1ly lowering the tem

perature while processin~ takesplace in t he network , in the hopes of avoiding

• )ocal minim um on the enersy landscape u Sh OWL in Fig. 2.6. This sit 

uatio n can be better explained in the neural network known as Boltzma.n

Machine.

2.4.1 The Boltzman Machine

The basic archi tecture of this type of neu ral net work can be explained by

F;g. 2.7 [181.
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Figure 2.6: A eimpie energy landscape with two minimal , a local minimum
and a global minimum

V1dl1elayer

Figure 2.7: The Botzrnan Complet ion Architecture
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As the disc rete 8 M, the system energy can be calculated from

(2.25)

Where n is th e tot al numb er of units in the network, and .:tk is the output of

the kth unit. T he energy difference bet ween t he sys tem with .:t+k =0 and

.:tk = I is given by

(2.26)

The recall procedure is done by the aimulat ed IUlDealing procedu re with x'

as the starting vector on th e visible units . T he procedure is described by the

following algorithm:

1. All th e out puts of all known visible uni ts are forced to t he values spec

ified by the ini tial inp ut vector, x'

2. All unknown visible units and all bidden uni ts are assigned random

output values from set 1,0.

3. A unit, .:tk, at renecm is selected and its net- input , n etk is calculated.

4. Ste ps 3 an d 4 are repeat ed until all units ha ve had. some proba bility

of being selecte d for upda te. This number of unit·updates defines a

prcceealng cycle.

5. Step 5 is repea ted (or several pcoCCllsing cycle , until th erm al equilibrium

hILS been reach ed at given temperat ure, T .

6. Temperat ure T is lowered and ste p 3 thro ugh 7 are repea ted.
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Learning in Boltzman Machines

Areasonable approachto train a Boltzman machine can summarized in tao

followingway:

1. Artificially the temperature ofthe Soltzmanmachine israisedto some

finite value.

2. The systemis annealed untl! the equilibrium is reached at somelow

temperature.

3. The weights of the network is adjusted 80 that the dift'eJence between

the observed probability distribution and canonical distribution is re

duced.

4. Steps 1 through 3 arerepeateduntil the weights no longer change.

2.5 The Counter Propagation Network

For a givensetof vector pairs, (Zt'Yl)'(Z2,Y2)'.•.•••b·..,YII), thecounterprop·

agation network(CPN) can learnto associate an vectorx on the input layer

with a Vector y at the output layer [181. II the relationship betweenXand

y can be described by a continuous function ~ , such that y = tJ.(x), then

CPNwilllearn to approximate thismapping for any value ofx in the range

specified by tbe set of training vectors. Thissituation is known AS forward

mapping of ePN and its structure is shownin Fig. 2.8.
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xlnputvector

Figure 2.8: Forward-mapping CPN

2.5.1 CPN Building Block s

The building blocks of CPN are explained in following section :

The In put Layer

The input layer of processing elements is shown in Fig. 2.9. The total input

pattern intenBity is given by 1 = Ei Ii' Coue9ponding to each I i, a quantity

can be defined

(2.27)

The vector , (e lt 8 3 6,,)1 is caned a reflectance pattern. It should be

DOted that this pattern is normalized in the sense that L ; Gi =1.
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Fi~ure 2.9; Layer of input unite of .. ePN

The Instar

The instar is a siosle processinSelement as shown in Fig. 2.10

Assuming the ini\i~ output ill zero, and that a uceaero input veetee it

present from time t = 0 until time, t when the output can be defined

The equilibrium value of 1I(t) is defined by

y.' = ~net.

30
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Figure 2.10: This figureshows(a) the generalformof the processing elements
(b) th e instar form of processing elements

Com petitive Networks

Fig. 2,11 illustrates the int erconaect icn that implements competition among

the insian. The unit acti vations are determined by differential equations

and simplest formis defined by

z,= - A%, + (B- z ,) [!(%,) + "",I- %; [~!(%.)+ ~n"'] (2.30)
k~ ; JI;t i

T he Du tat . r

Fig. 2.12 shows an outstar. It is composed of all of the units in ePN outer

layer and a single hidden-layer unit . During the training precess, the output

values of the cutstar can be calculated fcom

~; =- 'Iii +byi+enet;.
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Figure 2.11: A Ia.yerof instars arrallged in c e PN

2.5 .2 "!raining th e C P N

The tra.iniDg procedure of CPN WI be IUmmuizcd in the following points :

1. ADinput vector i. select ed from all the inp ut 'leeton to be used for the

t raining.

2. lnput vector i. normalized and is a.pplied to the CPN competitivelayer.

3. The winner should be de termined .

4. For the wiDning uait , onlYl o(x - w)should be calculated and unit 's

weight should be updated according to the following equat ion:

We' + 1) =w(l) +Q(x-w)
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Figure 2.12: Outstar and its relat ionship to the CPN architecture , (a).
Outatat st ructures in ePN ne twork (b ). A single outstar unit is shown

5. Steps 1 through 4 .hou ld berepe ated un til all input vectors have been

processedonce.

6. Step 5 . hould be repeated until all input vedo~ have been classified

properly.

7. The network should be tested to see the effectivenes s.

2.5.3 Forward Mapping

It has been eeeumed th at &ll tr aining baa occurred en d th at th e network i9

now in & prcductica mode. For the input vect or [it is necessary to find

the corresponding Y vector. The required pre ceeing can be done by the

followingalgorithm:
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I. The input vector ehculd be normal ized , Zi =: I ;/ (Jf:i!.)

2. In put vector should be applied to the x-vectc r portion of layer 1 and a

ze ro vector should be app lied t o the y -vedor po rtKloof t he same layer.

3. Since the in put vecto r is already normali zed, t he input layer onl y di, 

tri butes it to the units on laye r 2.

4. Lay er 2 i, a w jnner-teke-all co mpetitiv e layer. The outp ut of each unit

can be calcul ated as follow,

{
I, Unet; > IlndjOf or all j .; i

It = 0, otherwi.,e

5. The ,in&!e winner on layer 2 ex cites aD outst.ar

2.6 Self-O rganizing Maps

(2.33)

In Self· O rganizing Maps(SOM) , th e ePN network i. modified sucb th~,

during t he leaming proau , t he posi tive feed back will extend from the cen

t ral(the winning) unit to the othe r units in somefinite neighborhood ar ound

t he cent r al unit (18J. In the compet it ive layer of the ePN, only the winni ng

un it was allowed to learD. j in th e SOM, all th e unit, in the neighbo rhoo d t hat

re ceive p ositive feed back from the winning unit par ti cipate in the lea rni ng

pre cess.
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2.6.1 Un it Activations

The following equation define the act ivat ion of the precessing elements

iii = - r; (Yi) +net; +L Zijyj, (2.34)

The function Ti(Yi) is a general form of a loss term. If Zij takes the form of

the Mexicanhat function, then the network will exhibit a bubble of activity

around the unit with the largest value of net input.

2.6 .2 The 80M Learning Algorithm

The learning process can be defined by the following equation

Wi =a( t)(x - WI)U (Yi) (2.35)

where the w, is the weight vector of the ith unit and x is the input vector.

For an input vector X, the winning unit can be determined by

[x - well = min; lIx - Will (2.36)

where index c refers to the winning unit . This can be explained as

W,(t+ l ) ~{ w,(t) + o(t)(x-w,(. ) ; ,N, . (2.37)
o otb ersuise

2.7 Spatiotemporal Pattern Classification

Neural networks as described previously are suitable for the recognit ion of

spat ial information patte rns. Spatiotempo ral pattern classifier can classify
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Figure 2.13: Grossberg's formal avalanche structure

time-correlated sequence of spatial patterns (181.

2.7.1 The Formal Avalanche

The foundation for the devei...pmcnt of the network architectures discussed

in this section is the formal avalanche structu re by Grossberg as shown in

Fig. 2.13.

2.7.2 Ar chitectures ofSpatiotemporal Networks(STNS)

Fig. 2.14 shows an arrangement that generates the spatiote mporal patte rn"

(STPs) from spoken word. At each instant of time, the output of the spec

trum analyzer consists of a vector whose components are the powers in the
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Figure 2.14: Power Spectra genera tt:d from speech

various cha a uels.

2.8 The Neocognitron

This is a special type of neural network tai lored (or the recognit ion of han d

writ len characters 118). T he main pathways for neuron 1ea.ding from th e

ret ina backto area of the brain as the visual, or st riate , cortex .

2.8 .1 N eocogn tt ron Arch itecture

The processing elements( PEs) of the neocognit ron are organized into modules

that aball refer to AS levele.Eech level consist s of two layers: a layer of simp le

cells, or s.ceUs, followed by a layer of complex cella, or c-cells.



2.8.2 Neo cognltron Data Proce ssing

S-ce ll Pr o cessin g

Here it has been considered that the index k j refers to the kth plane on level

I. Each cell on a plane can be labeled with & two-dimensional vectort with

n indicating its position on the plane and v refer to tbe rela tive position of

a cell in the previous layer lying in the receptive field of the unit n. The

equation for the S-cell can be written as :

where the function 4J is a linear function given by

{

X :t > 0.«)= 0 « 0

C-cell P ro cessing

(2.39)

Usually, units on a given C-plane receive input connections from one, or at

most a. small number of S-planes on the preceding layer. The output of B.

Ocell is given by

U (k n)= .,. [ l+E~:-ljl(k"kl)r;"'Drdl(tJ).U.'(k"n + V) _ l] (2.40)
c, ,, 'P l + v",(n)
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The funct.ion ¢ is defined by

(2.41)

Where P is eonetant.

2.9 Adaptive Resonance Theory(ART)

Adapt ive resonance thoory( ART) is an extension of the competi tive-learning

schemes(CPN) [19]. A key to solving the stab ility -plssticity dilemma is to

add a feedback mechanism between the competitive layer and the input layer

of a network. Tbis feedback mechanism facilitates the learning of new in

formation witbout destroying old infonnation, automatic switching between

stable aDd plutic modes, and stabilizat ion of the encoding of the classeedone

by the nodes. The results from tbis approach are two neural network archi

tecturea tha t are particularly suited for the pattern classification problem

in realistic environment. These network architectures are ARTI and ART2.

ARTI and AJIT2 differ in the nature of tbe ir input patterns. ARTI networks

require that the input vectors be binary . ART2 networks are suitable for

processing analog or gray-scale patt erns [20].

2.9.1 ART Network Description

Fig. 2.15 shows the basic features of the AlIT architect ure. There are two

types of memory,
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Figu re 2.15: Model of ART system

1. short term memory(STM) that develops over the nodes in the two

layers.

2. long term memory(LT M), top-down and bot t om-up weight between PI

and F2 layers.

Patt ern Matc hing in ART

The pattern matching cycle in ART can be defined by Fig. 2,161'20).
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Figure 2.16: A pattern matching cycle in An ART. Ca) pattem.m;ltching
att empt (b) reset. in (e) finu recognition (d) end of match ing cycle

2.9 .2 ARTl

The input vecLorto ARTl is binary and it shares the common architectu re

of the ART. It.'. processing can summarized in the following poinu :

1. Input vector J is applied to Fl ' F I activit ies are calculated a! follow!

2. The outpu t vector for FI is calculated AS

h( ) {
I Z<; >0'i I:; Z i i = 0 Z Ii :50

(2.42)

(2.43)

3. S ill propAgated forward to F2 and the act ivities are calculated as

M

Tj = ~ JiZi; (2.44)



4. Only the winning £1 node has a nonzero output :

u. _ {I t , =m4%~T.'V
1- 0 otherwi"e (2.45)

5. Outpu t from F1 is propagated back to Fl ' Net inputs from F2 a ll the

units of FI are calculated as
N

V;=~::U.i%(i
, "'I

(2.46)

(2.46)

6. New activiti es are calculated as

Xli = 1 + ~17I;D:~~V;~~ C1 (2.47)

7. A~ in step 2 out on values .!Ii is calculat ed.

8. Th e degree ofmatcb between the inpu t pattern and th e top-down tem

plat e is given by th e following equation

l SI E~I .!I i
m-l:,,",l;

9. 1£Is 1/ 111< p, then VJ is marked all inactive, zero the outputs of Pl '

and it is necessary to return to stepl. It not t hen we have to cont inue.

10. Botto m-up weight has to be updated on vJ onl y

{
-L. ·r . ,.. _ L-1+1_1 t Vi IS ac Ive

ZJ, - 0 if Vi is inact ive (2.49)

11. Top-down weight is updated coming from VJ only to a ll Fl units

z. _{I if Vi i" aa ive (250)
,J - 0 if Vi i" inactiv e .

12. Input pat tern should he removed. All inactive F2 units should restored
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2.9 .3 ART2

This neural network is similar to ART!. It only differs in the sense that its

input patt ern is analog signal.

2.10 Comparative analysis and selection of
suitable Network

In case of incipient fault detection of induction motor hu ed on spectral

recogni tion, an ANN should have t he following properties:

1. Low training time.

2. Ability to learn new knowledge while retai ng the old one wit hout any

retraining of past pat tern

3. Tr aning process should have certaini ty to reach globa l minima.

4. It should accept anal og input patt ern.

5. Input patt ern should he in spatial domain

6. It should have ability to report ifit can not classify a particular patte rn.

7. It should be a general purpose ANN, 80 that necessary modifications

can be done to make it suitable to the present problem domain.
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To seleet a proper ANN for this purpose salient reAtures or different AN Ns

have been summarized in th e ionow1n~ Tahle. Fro m the previous discussion

it an be concluded that ART2 u.tidies the neceu&l')' characteri stiC! to be

accepted M suitab le neu ral network in incipent rault detection of an indu c

tion motor . Detailed software implementation and performance or AJIT2 are

explained in t he next cha pter.

Table-2.1

Comparative Performances of Different ANN Tech niques.



Chapter 3

ART2 Neural Network

3.1 Introduction

In response to the questions of dynamic updating and training time of conven

tional neural network, adaptive resonance theory(ART) baa been proposed

by Grossberg, Carpenter and ctbere [19] . ART2 is a special version of ART

having the property of analog input . In the implementation phase it has

been modified to have an additional property of report ing if it cannot find a

match for an inpu t pattern.

3.2 ART2 Architecture

The structureo! AlIT2 can he represented by Fig. 3.1. It consists of two sub

system known as attentiontli subsyslem(AS) and orienting Bubsystem(OS).

The AS consists of two layers of processing elements (PEs) . Fl and F2 and
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Figure 3.1: The overall stru ctu re of ART2

a gain-control syst em G.

3.2.1 The Attent io na l Subsystem

Th e a.ctivities of process ing elements on the layers PI and F2 can be defined

by the following dynamic equ...tion as

where Jt and J; are the ex citory and inhibitory inputs to t he kth unit ,

respectively. The precise definition of A, Band C depend s upon the layer

and for this case B and C have been considered to be zero. Here it has

been considered tha t Z H and z~i refer to the a.ctiviti es on Fi an d F2 layers,

respect ively. Here Vi represents the nodes on F I and IJj those on F2. Th e
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Figure 3.2: Struc ture of processing element 0 0 F1 layer

consta nt. E determi nes how fu t. %, reaches to equilibrium.

Processing on Fl

A siosle proces!ioS element. on P I with iLa~ 'lious inpuu and weisht vectors

can be rep resented by FiS. 3.2 (I9J. The uniu calculate & net-input value

coming from F2 in t he Ulual way:

(3.2)

The values oi indj 'fHual quantities in t he defining equatio n! of F I and

1'2 vary according to the sublayer being considered . For t he la ke of con

venience, t he appropri &te valu es of t he par amet ers for layer FI have been
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summarized in the Table 3.1. Based on the table, the activities ODeach of

the l ix mhlayus OD Fl QD be summarizedby the followins equations:

Ta.ble 3.1

V.lues of parameters on F·l Ia.yer

Q....nI1t,

IA," r; J:
I, + au, 0

i-',.g
/( zj)+&/14.) 0

"'+ LJ(II,I'jJ

101
..,+cp. ' 11+ qll

w; = Ji +au;

z ; = c +~;WII
v, =f (. ,) +bf(, ,)

v,u,=;:;:jjVff

p, = u;+ L:.(,,)',;,
48
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P.
q. ~ <+lIpll (3.8)

The form of th e function /(%) determi nes the natu re of the cont rast en

banchement t hat tues place on Fl ' A sigmoid mi!h t be th e klgical choice

for this fundion , but Carpenter's (20] choice is

(3.9)

where 9 is a positive const ant Icss than one.

P rocessing on F2

Fig. 3.3 shows & typical PE on F2 layer. Bottom-up weight s are calcu lated

according to the following equation

(3.10)

The output on F2 is pven by the function

( .) _ { d Tj=maziT. VK
g y, - 0 olh enoi.sc

3.2.2 The Orienting Su bsystem

(3.11)

From th e parameter tabl e and the defining equation or ART2, tbe acti uvites

on the layer r OD the orient ing subsystem can bedefined by

Ui +CP;

" = lIuli+11..11

'9

(3.12)



Figu re 3.3: Structure of processing element en F, layer

Here it has bee n assumed that e =0 and the condit ion for reset is

(3.13)

It should he noted that twosu blayers p and u participat e in the matching

process, As top-down weight changes on the p layer du ring lea rn ing, t he

activi ty of t he units on the p layer also changes. The u layer remains stable

during this process, so including it in the matching process preven ts reset

from occurring while learning of a new patter n is taking pl ace,

3.2.3 Gain Control in ART2

The th ree ga in control units on Fl ncnepecifically inhibit the x ,u , and q

eublayere. T he inhibitory signal is equal to the magni tude of the input vector
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to th ose layers . The effect is tha t the activ iti es of these th ree layers are

normalized to unity by the gain control signals.

3.2 .4 Le ast- mean-sq uar e E quat ions

Doth bottom-up and top-down Least-mean-squar e equatio ns have the sam e

form a9 shown below:

for the bott om-up weights from Vi on FI to Vi on F2• and

i j; :::g(y;)(p>-Zj; )

(3.14)

(3.15)

for top-down weight! from Vj on F2 to v; on Ft _ If VJ is winning node, t he n

from the previ ous equa tions it can be shown that

and similiarly

ZjJ =d(Ui+dZiJ - zu)

(3 .16)

(3.17)

with all other ii i::: iji ::: 0 f or i ¥ J. For t he fast-learnin g case for the

equilibrium values of the weights:

U;
ZJi =ZiJ ::: -

l-d
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where it has assumed tha t 0 < d < 1

3.2.5 Bot tom-U p Least- mean-sq uar e Ini tialization

The bottom-up weight vectors can be initiali zed by th e following relation:

(3 .19)

It is also possible to accomplish the initiali zation process by setting the

weights to small r andom aumbere . Alterna tively, the initializat ion process

can be performed also by the relation

, ;;{O)S {I _ ~h/M

3.2.6 ART2 Processing Summ ary

(3.20)

In thi s sit uat ion only the asymtotic solu tions to the dynami c equations, and .

t he fast-learning mode have been considere d and it has also been ccneld

ered that M be the number of units in eech F1 sub layer, and N be the

numbe r of units on F,. Param ete rs are chosen according to the relation s

a,b > 0;0:5 d:5 1; t!;,::; 1; 0 :5 (J:5 1;0 ::; p::; l i e « l. Top-down weights

are init ialized to zero Z;j = 0 and bottom-up weights are initialized accord ing

to

(3.21)

The processing can be now summa.rized in the following points (181:
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1. It is necessary to initializeall layer and sublayer output.sto zerovectors,

and to establish a cycle counter to a value of one.

2. An input pattern I should be applied to the w layer on Fl ' The outpu t

of this layer is

lUi = J; + au;

3. Forward propagation to the x sublayer should be done:

4. Propaga.tion forward to the v subleyer is done

,,=f(',) +bf(q, )

5. The result should be propagated to the u sublayer,

6. Forward propagation to the p ill done by

pi = u; + dziJ

(3.22)

(3.23)

(3.2' )

(3.25)

(3.26)

where the J th node on the F2 is the winner of the competition on that

layer. If F2 is inactive, Pi =Ui .

7. It is necessary to propagate to the q eubleyer

(3.27)

8. Steps 2 th rough 7 should be repeated to stabilize the values on F1
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9. The output of r layer is calculated

u;+cp;
,,~ ' +lIull+ llcpli (3.28)

10. Whether a reset condition is indicated should be determined. If p{(c +
UrID> 1, then a reset signal to F2 should be sent. Any active node

on F2 should be marked ineligible for the competetion and the cycle

counter should be set to one and should be returned to step 2. If

there is no reset, and the cycle counter is one, cycle counter should be

incremented and continue with step 11. If there is no reset , and the

cycle counter is greater than one, then it necessary to skip to step 14,

as resonance has been established.

11. The output of the p sublayershould be propagated to the F2 layer and

the net inputs to F2
M

t , == EPiZj ;
."'1

12. Only the winning F2 node has nonzero outp ut .

(T..) _ { d t , == mu.n
9 J - 0 otherwise

13. Step 6 through 10 should be repeated.

14. Bottom-up weights on F2 unit should be modified

u;
Z};== IT-

15. 'Icp-down weights from the winning F2 unit should be modified

U;
Z;}== r:J

(3.29)

(3.30)

(3.31)

(3.32)



16. Input vector should be removed and aU inactive F2 units should be

restored and now it is the time to return to step 1 with new input

pattern.

3.3 ART2 Simulator

ART2 has been irnplemeted using Object Oriented software development

methodology. It bas been considered &!i an independent dass structu re so

that an instance of this eless can be easily used to an application software

like on-line condition monitoring system of induction motor.

3.3.1 Model of ART2 as an Ob ject

The model of ART2 as an object can be shown in Fig. 3.4. Salient features of

this object are pattern encoding and decoding through t raining and recalling,

dynamic addit ion and deletion of neurons in the network. Fig. 3.5 shows

the flow chart of training algorithm of ART2.The detailed program listing is

given in Appendix-A.

3.3.2 Modified Str uct ure of Thaining an d Recalling
P attern in the Network

To add the property to give a unmatched signal if it cannot find a pattern

in the network and also to to make the t raining process faster, the patt ern

encoding and decoding technique has been slightly modified as shown in Fig.

3.6.
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Add......... --Figure 3.4: Mode l of ART2 as an objec t

3.3.3 Dynamic Updating

In tbe object model of the network, it should be DOled tbat there arc pro

vaions for addit ion and deletion ornodes. So, the st ruct ure of the ANN

is not determined by tbe initial parameters. Due to this ad vanta.ge, ART2

type neural network is suitable {or ll. dynamic scenario like incipient fault

detection, which doe. Dot require retrainins of the already t rained patterns.

Moreover, usin g this dyn amic pro perty it is possible to make opti m um use

of tbe computing resou rces .

3.4 Experimental Varification ofPerformance

For the experimeIlbl purpose, tbe Dumber of neurons in layer FI and F I have

been coaeide reset to 6 and 9, res pectively, The following p eremetere have

been initi alized with speci fied valu es:

a = lO; b ::: 0.10 ; c = 0.08;8 = O.2; c ::: a.o;p= 0.995. In it ial bottom-up

weight=2.08, initial top-down weigbt=O.O.
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Figure 3.6: Modified Training an d R.eca.U Algorithm o f ART2

3.4 .1 Tra inin g of t he Neur a l Network with t est Pa tt
te rn

Pattern of the exemplars and correspond ing t raining results are shown in

Tab le 3.2. Tab le 3.3 an d Table 3.4 represent the bottom- up end Lop. a O-io'n

weight mat rices, respect ively. tn the t raining lessio n it . hould be noted t hat

the network has stored both the patterns 2 and 3 in the aame cla.sa, though the

vectort are eeper ated by euclidian distance JeM - 60)2+(15 _ 13)2 _ 5.38.

Th is t)'pe of bebaviow is suita ble to cLusify like patte rns in same class to

realize fuzzy nature of th e prob lem. But when two vectors are f...,apart as

in cas e of pattern s 3 and 4, t he network classifies t hem in sepe rate classes,



Ta ble 3.2

1 U ed T ART2S t f Te 0 ramlDg eJl"amp ell , to ram

No. Pattern: Trainin Result .
I. 60.00.0 20.0 11.0 20.0 0 .0 10.00.0 18.0 stored in class 0
2. 60.0 16.031.0 0. 0 17.0 0.0 0.0 0.0 13.0 stored in class 1
3. 65 .0 16.031.0 0 .0 17.0 0.0 0.0 0.0 15.0 stored in class 1
4. 50.0 11.0 31.0 0 .0 0.0 0.0 23.0 0.0 12.0 stored in class 2
6. 50.0 0.0 25.0 0.0 22.0 30 .0 20.0 0.0 18.0 stored in class 3
6. 67.02 5.044.0 15 .0 0.0 10.011 .0 0.0 17.0 stored in class 4
7. 68.0 26.0 48.0 21.0 20.0 0 .0 0,0 10.0 0.0 stored in class 5
8. 17.0 27.0 42.0 16.0 27,0 20.0 40.0 0.0 13.0 No mo te neuron

Table 3.3

Bo . bt aittom·up wezg me tnx ter tramlng.
10.19 10.50 9.89 8.64 9.97 9.25
0.0 2.8 0 0.0 0.0 3.72 3.54
3.64 5.4 2 6.13 4.32 6.66 6.53
0.0 0.0 0.0 0.0 0.0 2.86
3.64 2 .9 7 0.0 3.80 0.0 2.72
0.0 0.0 0.0 5.18 0.0 0.0
0.0 0.0 4.55 3.46 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
3.27 0.0 0.0 3.11 0.0 0.0

Tabl e 3.4

~ d . ht Iri £t tOP- own wel g rna nx s er rammg.

10.91 0.0 3.64 0.0 3.64 0.0 0.0 0.0 3.2 7
10.50 2.80 5.42 0.0 2 .97 0.0 0.0 0.0 0.0
9.89 0.0 6.13 0.0 0.0 0.0 4.55 0.0 0.0
8.64 0.0 4.32 0.0 3.80 5.18 3,46 0.0 3 .11
9.97 3.72 6.65 0.0 0.0 0.0 0.0 0.0 0.0
9.25 3.54 6.53 2.86 2.72 0.0 0.0 0.0 0.0
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3.4 .2 Dynamic N euron Add it ion

As number of neurons in the output layer F2 is 6 , BO it can cla.ssi fy only

six classe s of patterns. Now in case of a dynamicsystem the network should

have the ability to update it to handle this newsituat ion. Us ing Add-Neuron

behavio urof the network this ca.n beaccomp lished as shown inTable 3.5aft er

addition of a new neuron. No retraining of previous pa.tterns is necessary.

Now. after the addition of last p attern new bottom-up and top-down weight

matricesaregiven in Table 3.6 and Table 3.7, respectively.

Table 3.5

No.
8.

ottom-up wei! matrix ter tralnlDg.

10.19 10.50 9.89 8.64 9.97 9.25 2.80
0.0 2.80 0.0 0.0 3.72 3.54 4.44
3.81 5.42 6 .13 4.32 6.55 8.53 6.91
0.0 0.0 0.0 0.0 0.0 2.86 2.63
3.64 2.97 0.0 3.80 0.0 2.72 4.44
0.0 0.0 0.0 5.18 0.0 0.0 3.29
0.0 0.0 4 .5 5 3.46 0.0 0.0 6.58
0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.27 0.0 0.0 3.11 0.0 0.0 0.0

Table3 .6

B . ht a.f
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Table 3.7

Top-downwe ight matrix after training.

10.9 1 0.0 3.64 0.0 3.64 0.0 0.0 0.0 3,27
10.50 2.80 5.42 0.0 2.97 0.0 0.0 0.0 0.0
9.89 0.0 6.13 0.0 0.0 0.0 4.55 0.0 0.0
8.64 0.0 4.32 0.0 3.80 5.18 3.16 0.0 3.11
9.97 3.72 6.55 0.0 0.0 0.0 0.0 0.0 0.0
9.25 3.... 6.53 2.66 2.72 0.0 0.0 0.0 0.0
2.80 4.44 6.91 2.63 4.44 3.2lI 6.58 0.0 0.0

3.4.3 Pattern Recall fr om the Network

The performances of th e network in pattern matching are given in Table

3.8. From Ta.ble 3.8, pertinec.t information can be highlighted. In CIlSe of

patte rn 1,the euclidian distance of the recallpattern from the closest trained

pattern is ";(5.0 - 0.0)2 +(15 10)2= 7.07, but the network has classified

it as member of class O. But wh en the distance is very high as in case of

pa.tter ns 5ud 7, the networkhas reported tbat it is una.bleto classify, instea.d

of giving some falseclassification result. This is cue or th e most important

behaviours from the ne ural network for the diagnostic purposeof incipient

{:lults of an ind uction m otor.
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Table3 .S

I fth ttchiP ta te rn me IDg reau t 0 e ram e ne Lwor •

No. Pa tt ern: Training Result .
1. 60 .05.0 20.0 11.0 20.0 0.0 15.00. 0 18.0 classified all class 0
2. 60.0 16.0 31.00.0 17.010.0 0.0 0.0 13.0 classified as class I
3. 65.0 16.0 31.0 0.0 17.0 0.0 0.0 0.0 15.0 clasaitied as class 1
4. 50.0 11.031.0 0.0 0.0 0.0 23.0 0.0 12.0 classified as class 2
5. 50 .0 0.0 25.00 .0 22.0 0.0 110.00.0 18.0 unable t o classify
6. 67.0 25.0 44.015.0 0 .0 10.0 11.00 .0 17.0 c1l13sified aa class 4
7. 68.0 26.0 8.0 21.0 20.00.0 0.0 10.0 0.0 unabletoclusi fy
6. 17.027,042.016. 027.020.040.00. 0 13,0 classified as class 6
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Chapter 4

Fault Related Information
Collection

4.1 Introduct ion

Fromstudy it has beennoticed that the waveform of the stator currentof

an induction motorcarriesthe signatureof internal statUli of the machine

1151. The frequency spectra of the stator current ca.a be considered as the

information carrier of the indpientfaults [13].

4.2 Model of Spectr a Collection

The input current to an induction machine is all analogsignal. But due

to the rapid development ofdigitalsignalprocessing(DSP) techniques, it is

comparatively easynowto usethesetoolsto get the frequency spectra of the

uetcr current,The modelofspectra collectioncan beexplained by the Fig.

4.1
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Figure 4.1: Model of FaultRelatedSpeetee Collection

4.3 Discrete Time Signals and Systems

A signalcan be defined as a function that conveys the infonnation, gener

ally about the state or behaviour of a physical system 121J.The independent

variablein the mathematical representationof a signalmaybeeithercontin

uous or discrete. Continuous-time signals are defined alonga continuumof

time and thus are represented by a continuous independent variable. Con

tinuous time signals are oftenreferred to as analogsignals. Discrete-time

signals are defined at discretetimes and thus the independent variable has

discrete values . Digitslsignslsare those forwhichboth timeand amplitude

are discrete.
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Figure 4.2: Representation of discrete-t ime system

4.3.1 Discrete-Time Signals: Sequences

Discrete-time signals are represented mathema t ically as sequences of num

bers. A sequence of numbers :t , in which the nth number in the sequence is

denoted by x[n}, is formally written as

z =z[n), -oo < n < 00

where n is an integer.

4.3.2 Discrete-Time Sy st ems

(4.1)

A discrete-time system is defined nuthematic a./lyas a transformat ion or op

erator tha t maps an input sequence with valu es z[nl into an output sequence

with values y[n] [211. Th is can be denoted as

yin] = Tx(n]

and is indicated pictorially in Fig. 4.2.
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4.3.3 Sampling of Cont .inuous-T'Ime Sign als

Typica l method of obtaining a discrete-time signal representatio n or a continuous

time signal is through periodic sampling, wherein a sequence xln]is obtained

Irom a continuous-time signal xe(t) accord ing to the relation

xln] = xc(nT ),-oo ,n,oo (<.3)

where T is th e sampli ng period , and its reciprocal, f . = l IT, is the eempling

frequency, in samples per second .

Nyq uist Sampling Theorem:

Let .:tAt} be a band -limited signal with

Then :reO}is uniquely determined by its samp les

xln] = xAnT},n = O, ±1,±2, ...., i j

n.=~ >2n....

(4.4)

(4.5)

'I be frequency 0 .... is commonly referred as th e Nyquist frequency, and the

frequency 20 .... tha t must be exceeded by the sempllng frequency is called

the Nyquist rate.
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4.3.4 T he Discrete Fourier Tl'ansform(DFT)

For a fi ni~ length sequence .:t[nlof length N generallythe DFT analysisand

synthl";ll is equatiolls are written as [21)

N-'
Ant.l ly~i~ equalion: X[k]=~J: [nJW~n, k = O,I, N - 1 (4.6)

1 N_I

Syn/htsls equation : :r(n] =N[; XlkjW;;;hi, 11=0,1,.. .,N - I (4.7)

4.3.5 Computation of the Discrete Fourier Transform

The OFTis all important component in many pratlical applications of

discrete-time eyetems. To makethe DFT computation faster a numberof

efficient algorithms havebeen developed collectively knownas fast Fourier

troWform(FFT).

Deciminatlon-In-Time FFT Algorith m

Algorithmsin whith the decomposition is based on decomposing the se

quences %[n] into successively smaller subsequences, are calleddeciminaticn

in-timealgorithms. An (N/2) point DFT canbe represented by

(N/2)-1 (Nm -I

X[k]= ~ :[2r]WN~2 +W~ ~ : [2r+ I JWN~ (4.8)
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~, L....:= =-'

Figure 4.3: Processing steps in the discrete-time Fourier analysis or a
contin uous- time signal

Decimlnat lcn-In-Frequency FFT Algorithm

For a sequence x(n] the out put sequence X [k] can be divided into smaller and

smeller subsequences in the same manner . FFT algorith ms baaed on this

procedure are commonly called decimina tion-in-frequency algorit hm. The

N{2 point DFT of the NJ2- point sequence eM be represented by

(N/2 )-1

XI2,]= ?; (x[n)+x[n+(N/2)J)WNj••, =O.1.2•.•....•(N/2) - 1 (4.9)

4.3.6 Fourier Analysis of Signals Using the Dis cr ete
Fourier Transform

The consistency bet ween the finit e-length requirement of the DIT and the

reality of indefinitely long signals can be accommod ated exactly or approxi

mately through the concepts of windowing, block processing, and the time

dependent Fourier tran sform. The processing steps in the discrete Fourier

analysis of a continuo us time signal can be represented by Fig. 4.3. Fig. 4.4

is the illustra tion of the Fourier transforms .
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Figure 4.5: DSP56000Block Diagram
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4.4 M ot orola's DSP56000 DSP Fa mil y

The DSP56000 and DSP56001 are the two membe:ra of Motorola' s Family

of HCMOS, low-power, general-purpose DSP, I22J. Block diagram of the

DSP56000 is shown in Fig. .4.5. The DSP56001 features 512 words of Iull

speed, on-ehip, program RAM, two preprogrammed data ROM. , and . pecial

on-chip booll trap hardware to permit convenient loading of user prot;fams

ioto tbe program RAM. T he DSP56001is an off·t he-lhelf item since there Me

DO user·programma.blecn-ehip ROMs. The DSP56000 features 3.75k words

of full speed, on-chip, program ROM instead of 512 words of program RAM.

The central part of the processor coneiete of t hree execution unite oper

ating in parallel:

1. the data arithmetic logic unit(ALU)
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2. t he address generation unit(AGU)

3. the program controller

The DSP56000j DSPS6001 hu microcontroller unit (MCU)-style on-chip pe-

ripherele, program memory, data memory, and a memory expansion port.

The microprocessor unit (MPU)-style programming model and instru ction

set allowstra ightforward generation of efficientand compact code. The high

throughput of the DSP56000/DSP56 001 makes it well-suited for communi

cation, high-speed control, numeric processing, computer applicat ions, and

audio applications . The main featu res making this throug hput are as follows:

• Sp eed : At l0 25-miliion instruction per sccond(MIP) , the DSP56000/ DSP56001

CM execute a 1024-point complex FFT in 3.23 ma,

• P recision : T he data paths are 24 bits wide, providing 144 dB of

dynamic range; intermediate results held in the 56-bit accumulators

can range over 336 dB.

• P arallelism: Each on-chip execution unit(AGU, program controller,data

ALU), memory, and peripheral operates independently and in parallel

with the other units th rough a sophisticated bus system . The data

ALU, AGUs and program controller operate in parallel 80 t hat all in

struction prefetch, a 24-hitx24-bit multiplication, a 56-bit addition, two

data moves, and two address pointer updates using one of the th ree

types of arit hmetic can be executed in a single instruction cycle. This

parallelism allows a four-coefficient infinite impulse response( IIR) filter
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section to be execut ed in ooly four cycles, the theoretka l minimum

for single-multiplier architedwe. At the same tim e, two serial con

trollers ca.n send and receive full-duplex data, and t he host port CAn

send/receive simplex da.ta.

• In t egrati on : In addi tioo to the three independent executio n units, the

DSP56000/DSP56001 has six on-chip memories, three on-chip MeV·

style peripherals (serial communication interface(SCI) , synchronous se

rial interface(SSI), an d host inter lace), a clock genera tor , and seven

buses (three address and lour data), making t he overa ll system low

ccst , low power, and compac t.

• In visib le P ip elin e: The tbree-st age instru ct ion pipeline is essent ially

invisible to the programmer, allowing Itraigbtforwar d program devel

opment in either aaaembly language or a high-Jevd lang uage.

• InlJtrudion Set : The 62 instruct ion mnemonics art: Me U-like, mak

ing the tranlition from programming miaopr~r to programm ing

th e DSP56000/DSP~l as euy as possible. The orthogonal syntax

supports controllin! the parallel execution units. The hardware Do

Loop instruction and the repea t inltruction make writing st raight line

code cbsclete,

• DSP560 00 /DSP 56DOl Co mJ.iat ib ility : T he DSP56000 is identical

to the DSP56001 except for the following features:

- 512-ward x 24-bit, on-chip program RAM instead of 3.75k program

ROM.



- 32-w....rd x 24·bit bootstra p ROM for loading the program RAM from

eithe r a byte wide, memory-mapped ROM or via the host interface.

• Low Power : As a.CMOS part, the DSP56000/ DSP56001 is inherently

very low power; however, t hree other features can reduce power con

sumption to except ionally low levels.

- Th e WAIT instruction shuts oft' the clock in the int ernal processor

port ion of the DSP56000/D SP56001.

- The STOP instruction halts the internal oscillator.

- Power increases linearly with frequency; thus, reducing the clock fre-

quency reduces power consumption.

Fig. 4.6 is a block diagram of DSP56001 based board P C-56 123J. The main

subsystems are as foDows:

1. The DSP56001 processor.

2. External 16k data RAM.

3. Paral lel data port t hat is between the P C and the hoard PC-56.

4. Single cheauel analog interface.

5. Interrup t·driven interface to the outside world.
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Figure 4.6: PC-56 BlockDiagram

4.5 Ariel's Interface and DSP Library

A good set orroutines for communicationorthe board with the PC and digital

signal processing are provided by Ariel Corporation (24) in a. C call-able

software library. A brief description or the library is given in the subsequent

sections:

4.5.1 Interfac e Library

The PC-56 interfacesoftware provides a means to configureand control the

PC-56 for user applicat ions through the use of C call-able routines [24]. The

package consists of both 56000 and PC based rout ines, which when used to

gether allow straightforward control over a user's 56000application program.

Ariel Monitor(ARIELMON ) is the required56000monitor. It is a super-
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• forward and inverse FIT,

• ml.!nit ude, phue, dB comp utat ion {lOS},

• windowing, IC&1ing, IJId data acquisition.

Precessing of da ta consisu of execut ing one or more of these comman ds in a

given sequence.

4.6 Applica t ion Software for Sp ectra C ollec 
tion

With the proper use of interface and DSP library, an &pplication program

has beendeveloped as part of this work to coUed frequency spectr a of sta tor

current at different fault condit ion' . The salient featumi of algorithm i,

shown in flowchart form in Fig. 4.7. The detailed program listing is given in

Appendix-B and Appe ndix·C.

4 .7 Experimental Setu p

To acquire different faulu related spectra of the stator current of an induction

moto r following equip ment were used:

• Induct ica Motor.

• Current P robe.

• DSP board
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set ofdebug monito r(DEGMON), and provides the means for communicating

with the PC in the form of up-load/down-load of program and dat a memory,

as well a.~ user program initia lization and termination . It is t ied specifically

to the PC routines, which are compatible with Microsoft C V5.1 and Quick

C. Other Microsoft languages can use these routines by using the app ropriate

declarations for setting up the proper C ca.llingconvention.

4 .5.2 DSP.Library

The FFTu is a software package which enab les the PC-56or nSP -56 boards

to fundion as FFT co-processors in an IBM PC/XT/ AT or compatible com

pute r. In addition to processing da ta from the PC, it also suppo rts real time

data acquisition using the analog interfaces available on the board .

User has access to the FFTs9 functions by using low level drivers in

conjunction with a set of 56000 programs and data files. The general pur

pose drivers perform basic funct ions necessary to cont rol the 56000and up

load/do wn-load data to the co-processor board.

56000 software consists of a monitor program, which is loaded during the

boot cycle, and aloapplication program, loaded by the monitor under control

of the PC. The monitor provides the means for communicating with the PC

{i.e. up-load/do wn-Ioad of program and data memory) and is tied specifica.lly

to the PC driver routines. The application program consists of a set of FFT

related functions which can he initiated by the PC through Host commands.

T hese include:
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Figure 4.7: Flowchart of the application program
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I~~I
Figure 4.8: Block diagram of the experimental setu p.

• IBM Pe

• HP-plotter

The experimental setup is ebowa in Fig. 4.8. In tbi. fiSUreCIl, C12, C21,

C22. C23 and C33 are individual coilsin the stator winding .

4.8 Spect ra for Different Fault Conditions

In the laboratory, different typee of fa.ults have been occurred in an induc

tion machine. The labcratcry wound-rotor induction motor has the following

specification :

Sp ecificat ion:
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• Ph ase: Three

• Voltage: ~ vollll

• Frequ ency: 60/ 50 Hz

• Speed: 1725/ 1425r.p. rn

• Full-lead Cur rent s: ~ A

• Horse Power: 2.5/2 H,P.

• Po les : 4.

The motor was operated at 208v and 60 Hz at no-load condition. SpectrA

related to different fault currents are shown in the subsequent sections.
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4.8.1 No Fault condition:

This is the operating condition which is identical to the set-up as shown

in Fig. 4.8. The frequency spectra of the st ator current is shown below.

Here, in addit ion to the fundamental component there are also t hree higher

frequencies as the stator curren t is Dot pmect ly sinusoidal.

0 d

-,""

~
i -ace

~
-5""

~7OdtlO

I I I
200 300 0100 500 600 700 BOO 900

Spe ct rll! FreQUllncy in H.I:.,:

Figure 4.9; Frequency spectra at no fault condition.
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4 .8.2 Stator phase 1 is open :

Under this operating condition. tbe "hase 1 of the stator has been discon

nected from the powu supply. The corresponding current spect ra is shown

below.

-aos

-6'"

- 70llbo tOO

I I
50 0 60 0 700 80 0 90 0

Figure 4.10: Frequency epectra when Itator pbeee I ls cpen.
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4.8 .3 Stator p h as e 2 is open:

To do it in the Laboratory the ph ase 2 of the st ator wa., disconnected from

t he power suppl y. The corresponding current spectra is shown below.

0 ,
-,..

~

j

-5".t
-...
-71):lt!o

I I
100 200 3 00 400 sao 600 70 0 ecc 900

Spectro31 Froegul!"cy 1" Hz;J

Figure 4.11: Frequency spectra when stator phase 2 is open .

4 .8.4 St ator phage 3 is open:

Under this cond ition &8 current probe is in phase 3 as shown in Fig. 4.8,

every frequency componen t has zero value .
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4.8 .5 Shor t circ uit fau lt through resistance in Stator
Phase 1:

This is the condition when coil ell as shown in Fig . 4,8 was disconnected

and a resistor of value 9.5 ohm was connected externally in its position. The

corresponding frequency spect ra is shown below.

0 .
-.'"

~
-2'"

i -ace

i
-,'"
-ece

I I
~

I-ece

-70<1
--... <00 " ., '. " ' "" 0""

Spllc trll l Fr e Quenc y 1" Hz)

IFigure 4.12: Frequency spectra when stator ODe coil of phase 1. hl'-s been

externall y replaced by a resistor .
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4.8 .6 Short circ uit fau lt through r esist ance in Stator
Phase 2:

Under this condition coil C21 as shown in Fig. 4.8 was disconnected and

a resistor of value 9.5 ohm was connected externally in it 's position. The

corresponding frequency spect ra is shown below.

I I
. 00 500 6 00 70 0 8 0 0 900-7Odbij 100 2 00 300

Spectr81 Fre Quency l n Hl ,.,

o ,

Figure 4.13: Frequency spectra when stato Aone coil of phase 2. bas been

externally replaced by a resistor.
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4.8 .7 Sh or t circuit fault through resistance in Stator
P hase 3:

At this condition coil C31 as shown in Fig. 4.8 was disconnected and a resistor

of value 9.5 ohm was connected externall y in its position. The corresponding

frequency spectra is shown below.

- ODd

- 7Dd
II

10. 200 300 400 · 500 60 0 70 0 aoo 900

Figu;e 4.14: Frequency spectra when stator one coil of phase 3. has been

externally replaced by a resistor .
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4.8.8 Short circuit fault in Stator Phas e 1:

T his is the condition when coil Cll as shown in Fig. 4.8 was disconnected

and coil C12 was directly connected to Tl. The frequency spectra under this

operating condition is shown below.

0 ,
-....

~

i

-see
~

-7'" I I I
c uu , :;X; U DUU I UU ou u lfU U

Figure 4.15: Frequency spectra when stato r l2le coil of phase 1 was shorted.
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4.8. 9 Short circui t fault in St a t or Phase 2:

Under this condition coil C21 all . howD in Fig. 4.8 Wall disconnected and coil

C22 was directly connected to tenninal n . Th e Ireauency spect ra is shown

below.

o. r

'j:!-ace

u - <l0d

~

.1

~ - SOd

I
.t

-6"
- 7 .00 0 ' 00 .. . 600 !lOO

~.ctt'.l Fr eQUenl:Y 1ft HI :•
Fis ure 4.16: Frequency spectra when st at or ene coil of phase 2 was shorted .
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4.8 .10 Shor t cir c u it fau lt in St a t or Phase 3:

At is the condition coil C31 as shown in Fig. 4.8 was disconnected and coil

C33 was directly connected to terminal Ta. The corresponding frequency

spectra is shown below.

,

,I I I, I I
'6 100 200 300 4100 1500 6 0 0 7" BO. sec

- t OO

Figure 4.17: Frequency spect ra when sta tor one coil of phase 3 was shorted .

88



4.8 .11 Rotor ope n circuit fault in phase 1:

According to the Fig. 4.8 the rotor terminals Ml ,M2 and M3 are short cir 

cuited. To make an open circuit £ault the rotor's phase Ml was disconnected .

Under this condit ion, the frequency spectra of the stator current is shown

below:

0 ,
-'00

-200

i -ace

-'oo
-500

I.
~

-'00 I
-7Odbjj <D. 200 300 400 500 ' 00 70' BOO 900

Spe ctrl} Fr equenc y 1n lS·

Figure 4.18: Frequency spectra of the stator current when rotor one phase

Ml was open circuited.

89



4.8 .12 Rotor open circuit fault in p hase 2:

At this condit ion M2 was disconnected from the close loop of Ml , M2 and

M3 in rotor's circuit . Under this condition the frequen cy spect ra of the sretor

current is shown below:

-1""

-ece

I I
---:i01 <lUI ~Ol DUU I UU I:II",U >lUV

Spectral Frequency 1n HZ;:

Figure 4.19: Frequency spect ra of the stator current when rotor phas e M2

wasopen circuit ed.
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4.8.13 Rotor open cir cuit fault in phase 3:

To make an open circuit fault in rotor's phase M3, only Ml and M2 were

connected and M3 was left open. Under this condition the frequency spect ra

of the stator current is shown below:

, ,
- sce

-2"

~
j -aos

-,,,
s:: -sc n

I
~

-0'" I
- 7Odbij . 00 200 '00 '" . 00 00' ' 00 'PO 'PO

So. c trl l Fr-oql.lllncy 1" lU•
Figure 4.20: Frequency spectra. of the st ator current when rotor ph ase M3

was open circuited.
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4.8 .14 R ot or p has e 1 is sh orted t o neural:

Under the no fault condition, the rotor 's terminals MI, M2 and M3 are

conn ected in a. sinSle loop as shown in Fig. 4.8. Now to make th is fault MI

WL' disconnected from the loop and it Wall hooked up to the neutral point

or the rotor. It was noted that this type of fault has litt le impact on wave

shape of the stator current who se frequency spect ra is shown below :

, "..-----------------~

"D O . 0 0

Sg.ctr sl Frlt. Q\l. Ocy 10 Hz "

Figure 4.21: Frequency spectra of sta tor current when rotor phas e MI is

shor ted to neutral.
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4.8.15 Rotor phase 2 is shorted to neu ral:

At this condition M2 was disconnected form the d ose loop and it W3.<I con

nected to the neutra l point of the rotor. The correepcnding freq uency spectra

is shown in figure below.

o .,,-----------------,

II I
o .00 a

Spect r al frequency 1n HI ~

F igure 4.22: Frequency spectra of stator cur rent when rotor phase M 2 is

shorted to neut ral.
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4 .8.16 Rotor phase 3 is shor ted to n eural:

Here the rotor terminal M 3 was connected to neutral and the termin als MI

and M2 are shorted. Following figu re sho....s the frequency spectra of stator

current under this condit ion.

.......------- ---------,

,
i - 3Od

Splctra l Froequ ln cy 1n

100 200 300 40 0 SOO 600

-SOd I I I ,..
"'~

8 00 900

Figure 4.23: Frequency spectra of stator current when rotor phase M 3 is

shorted. to neutral .
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4.8 .17 R ot or short circuit fa ult through r esist ance in
phase 1 :

Under this sit uation it has been considered that phase one of rotor was shor t

th rough resist-mce. To make this fault in laboratory MI was disconnected

from the loop as shown in Fig. 4.8 and a resistor of value 6 ohms was

connected externallyin parallel to M2 and M3. Th e corresponding frequency

spectra ie shown below.

,
"1

-.'"

~
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- 10' 200 ;;,00 40 ' 500 600 7 0 0 8 0 0 9 '0

Speetl".l Fl"lIq ulln cy 1n HEJ,

Figure 4.24: Frequency spectr e,of stator current at rotor short circuit fau lt

through resista nce in phase Ml.
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4.8 .18 Rotor shor t circuit fault t hr ough re sistance in
phas e 2 :

M2 Wa9 disconnected from the loop and a.resistor of value 6 ohms was con

nected externally in paralle l to Ml and M3. The corresponding frequency

spectra is shown below.

-,..
~
i -3"

~
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-7"
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200 300 400 . 50 0 6 00 700 800 900

Sp. ctr.l Fr equ. nc y 1" Hz
~

Figure 4.25: Frequency spect ra of st ator current at rotor short circuit fault

thr ough resist an ce in phase M2 .
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4.8 .19 R otor short circu it fa ult through resist a nce in
p h ase 3 :

To make this situil.tiollin the laborato ry M3 was disconnected from the loop

and an externa l resistor of 6 ohms was ec nnected in parallel to Ml and M2.

The corresponding frequency spectra is shown below.

40 0 !lDO 600 700 800 gOO

S08c:tl'"l1 Fl'"equency lin Hz >

II II
bO reo , 0-7"

, .
~I ~::! -301:1

i - 4Dd

go - sce
.t

-6"

Figure 4.26: Frequency spectra of stato r current a t rotor short circuit fault.

thro ugh resistance in phase M3.
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4.8.2 0 Rotor phase 1 is unbalanced through a n exter 
nal resistor:

In this situat ion ...resistor of 6 ohrm was connected in series wit.h the coil

MI wit hGUt dis turbing the close loop si t.uat ion. T he follolVing figure shows

the corresponding spectra..

.
...
20l

.""...

...
I

7.... ,t OO 200 300 00 500 600 7 0 0 800 900
Sp_e t ,.d FreQ uency 1n Hz

!j~
: 
~ .....

Figure 4 .27: Freq uency spectra of sta tor curre nt w hen there is an unbalance

in roto r circuit due to an edemal reeietcr in phue Ml.
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4.8.21 Rotor phase 2 is unbalanced through an exter
nal r esistor:

To make it happen in the laboratory a resi stor of 6 ohms was connected

in series with M2 in the same way as the p revious one . The corresponding

frequency spect ra is shown below.

-,..
-2"

-...
-7"

I
'00 200 '00 40 0 500 600 ' " 0" ' 00

Figure 4.28: Frequency spectra of stator current when th ere is an unbalance

in rotor circuit due to an externa l resistor in phase M2.
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4.8.22 Rotor phase 3 is unba lanced through a n ext er
nal r esistor :

A resistor of 6 ohms was connected in series with M3 . The corresponding

spect ra is shown below.
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Figure 4.29: Frequency spectra of stato r cur rent when there is an unbalance

in rotor circuit due to an external resistor in phase M3,
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4.8.2 3 Simultaneous op en cir cui t fault in Rotor phase
2 as well as Stator p has e 1 :

To make this happen in the laboratory M2 WaJI di sconnected from the close

loop of the rotor's circuit and phase one of stato r wasdisconnected (rom the

supply. The corresponding frequency spect ra of the stator current is shown

below.
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Figure 4.30: Frequency spectra at eimultaneous open circuit fault in Rctor 

phase 2 as well as Sta tor ph ase 1.
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4.8.24 Simultaneous op en circuit fault in Rotor phas e
2 as we ll as Stator phase 2 :

To make this happen in the labo ratory M2 was d isconnecte d from the close

loop of the roto r 's circ uit and p hase 2 of stator was disconnected fromthe

supply. The co rrelljlon ditlgfrequency spectra is shown below.

~I~::i -3 011

i - 40ll

:- - 50ll
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3

Figure 4.31: Freq uency spectra at simult aneous open circu it fault in Rotor ..

phase 2 as well as Stat or phase 1.
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4.8.25 Simultan eous open circuit faul t in Rotor phase
2 as w ell as Sta tor phase 3:

At this cond ition, as sta.tor's phase 3 was open , sothere isno stator current

in phase 3 .

4.8.26 Remarks on Fault Related Frequenency spec
tra of the S t ator Current

T hough a sinusoidal voltage was applied to the mot or terminals, the fre

quency spect ra of th e stator current carries some higher harrnonlcain addi

tion to the fundamen tal due to the non-sinusoidal wave shape of the stator

current. It should be noted that in the frequency spectra at different fault

conditione, frequency components beyond 5th harmonia areno t perfect ly di

visable by th e fundam ental; it is due to the slightly non periodic nature of

the stator current.

The frequency spectra of the stator current in case of stator's open circuit

fault in phase 1 lIS well as phase 2 are almost identica l, though they arc

different from those of other typesof faults. So. it is difficult to differentiate

sta tor open circuit fault in ph ase1 from that in phase 2. The sa me situat ion

is also prevailing in case of rotor open circuit fault and short circuit faults.

Moreover, in case of rot or's phase to neutral short circuit fault, th espect ra of

the stator curr ent is very close to that in CMeof no fault condition. But the

spect ra of the major types of faults are significantly different, which opens

up the door to UBe neural network based fault diagnosis scheme.
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Chapter 5

Fault Recognition by ART2
Neural Network

5.1 Introduct ion

The performance of ART2 in pattern recognition bot h in noise free as well

as noisy conditions has been repo rted in cha.pter 3. Th is neu ral network :

not only capa ble of classifying patterns accurate ly but also can report if it

cannot do so. Moreover , it i. suit able in dynamic environment like incipient

fault diagnosis of inducl ion motor. u it does nol requ ire ret raining of alread y

t riUne<! patte rns to ada pt itself to new faulu . Frequency spec tra of sta tor

current at different fault conditions have been reported in chapter 4. As

patterns of those spectre, are different for different typn of faulu, pattern

recognition technique can be applied on these IIpr.et ra to diagonise incipient

fault s of th e induction motor. Under thi s lIituation, ART2 neural network

can be used to diagonise incipient fau lts of induction molo rs hued on patte rn

recognition scheme of frequency spect ra of t he st.at.or current.
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Table 5.1: Tabl e of Faults with unique number.
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5.2 Training Data Set

To formulate the fault relat ed spectra in a twc-dimenaic nal t raining data set

it is convenient to give unique number to each fault as shown in Tab le 5.1.

The corresponding values of spectral components have been shown in Table

5.2. In t his work eight major classes of faults have been studied . To give

unique class numbers to different classes of faults pattern number has been

used, where t he leftmost chara cter of t he pattern number represent the cleee

of faults. No fault condition has been numbered as '0'.
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Table 5.2: Fault related spectralcomp onent s in matrix form .

InH

5.2.1 Dat a Reduct ion:

Nowto get a suitab le training matrix representingpatterns of differentfal,lts,

t ha following processing have beenperformed on the matrixof Table 5.2, and

a.tter these processinga new matrixhas beenobtainedas shownin Table 5.3.

1. All the components having negative valueshave been deducted from

70 to makethem posit ive as minimum valueof a component may be

·70.
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Table 5.3: Tra ining Mattix of fault related curr ent spec t ra .

I HFrequency n ,... .., '" ,.. ,.. ,n on ... ... '", n .oo lD. OO 0 . 00 11 .00 ....
U 3l . ' 0 n.oo 0.00 11.00 0 . 00 0.00 0 . 00 ra.ee 0. 00.. U.Oo 0. 0 0 n.oo 0. 00

" 0.0 0 2 . 00 .... 1 .00 •• 00 10 .00 n .o o 14.00 15 . 00 11 .00

" n .oo 0.00 15 .00 0 . 0 0 .... a . oo 11 . 0 0 0 . 00.. ".'0 n.oo " . 00 n. oo e.ee 0 .00 1'.00

" ) t .OO H.oo U.OO 21. 00 20 ./lO 0 .0 0 0 . 00 0 . 00 0.00

" 11.00 U .OO 15.00 0.00 n .OO 0 . 0 '

" U.OO ' 0.00 20 . 00 2 1.0. 0.00 .... ••ao n. oo 0. 0 '

" ) t. ' O 20.00 n.oo 20 .00 0. 0 0 11. 00 0 •• 0 ) 1 . 0 0 1$ .0 0.. )o . /lO o.n 20 . 00 0.00 12.0. 0 .0 0 .... 0 . 00 0 .00 0. 0 '.. )0 .00 0.00 12.00 0.00 12.00 .... 0.00 0.00 0.00., 0 . 00 20.00 0 .'0 13.0' 0.00 '.00

" .... n .oo .... 0 .00 12.'0 0 .00

" .0 . /lO 10 .0 0 D.O• .... 11 . 00

" 0.00 n . oo .... I ~.OO 0.00 It . OO 0.0'

n U. \I'O 17 .00 1t.00 IS . DO .... 11. 00 0.00 11 .0 0
0 . 00.. " .00 H.OO 15 . 00 11. 0lI 14 . DO 0 . 00 17. ~0 0.00 It.DO.. ) 3. '0 ss.ee 11 . 00 .... n .Do 0.00 n.DO 0 . 00

" . 00 u.a.a 11 .00 e.ee 0 .00

" U.SO n.oo u .oo n . oo 1e ,00 .... .... 0 .00 0.00 0 .00

" !J .SO 21 . 00 U . OO 13 . 00 e.ee .... 0.00 0. 00

n e.ee ".00 0 . 0. n .oo n.o o ".00 )).00 n.oo 11 .00.. 0 .00 " .00 0 . 00 . ' .0 0 11.00 " .00 n. oo 11 .0 0 17. 00., .... • •00 10 . CO 12. 00 It.co 11.00 It. oo

2. All blanks cells have been filled by zeros to make them sensible to neur al

network.

3. Spectr al componen ts of higher frequencies have been shifte d to lower

empty spaces as there ar e only few components at that reg ion.

4. As fundamental component is domina.nt, so it has been reduced by fifty

percent to give importance to other compone nts which rea.lly car ry fault

related information.
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Table 5A: Faults mapping of t he trained network in high prect-icn domain

···,··""""
""""..
"..

". _Ho

"""""""....
"..
....

5.3 Structure of the Network

Now the matrix as shown in Ta ble 5.3 represents the traini ng mat rix. As

this is a 25xlO dimension matrix, so t he components on Fl layer of ART2

should he 10. Now there are 25 different patterns to be recorded in th e neural

network, but a number of them are simila r, so the number of nodes on F2

layer ehculd be less than 25. For this reaso n it hu been chccsen to be 20.
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5 .4 Training of t he Netw ork

T raining of the network hASbeen perform ed in high precision dom a in. It

should be noted that. training time with 25 patterns of dimension 10 as shown

in Table 5.3 is very low and it is less than one minute, At the end of thE'

t raining th e knowledge of fault d iagnosis is now embedded in the weight

vector an d the network bas classified diffl.>J'ent patte rns as the signat urt' of

corresponding faul ta all shown in Table 5.4 . The bot tom-up and top-down

weight ma trices are shown in Tabl e 5.5 and Table 5.6. respectively. From

Ta ble 5.4 some imp orLant remarks regarding the fault classificat ion of ART2

based on frequency spect ra of thest ato r curre nt, elUl he noted in the following

po ints:

1. Fau lta having patt ern numbe rs 11 and 12 ha ve been cleseified in the

same UOUP. As their frequency spedr a of the l t4tor curren t are s imilar,

so th e network is unAble to d ifl'erenti m bet ween them.

2. In case of pa tter n numbers 51 and S2 as frequency epect re are s imilar,

50 ne twork hu grou ped them in t he l&me clus. It should be noted

t hat the spect ra of pat tern nu mbers 51,52 and 53 have similar shape

to tha.t of pat tern number O. So, t here is a chan ce that network may

recogn ize rotor '. short-circuit-to-neut ral fault u no fau lt condition .

3. The same situat ion is prevailing in cas e of pattern numbers 71 an d 72

as well as 81 and 82. In fact in such cases, B.B the spect ra are close to

each other , it is difficult for the neura l network to different iate be tween

the m.
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Table 5.5: Top-down weight matrix of the trained network.

8 . 3 4 0 .00 5 .56 0.00 5 .56 0 .0 0 0 .00 0 .00 5 . 00 0 . 00

7.24 5.19 6.90 0 .0 0 3 .19 0 .00 0 .00 0 .00 2 .89 0 .00

0 .00 0 .0 0 0 .00 0 . 00 3.04 3.80 4.56 5 .32 6.07 6 . 83

6 . 62 0 .00 6 .62 0 .0 0 5 . 93 0 .00 0 .00 3 .44 4. ·n 0 .00

6 .46 4 .82 B. 49 2 .89 0 .00 0 .00 0.00 0.00 3. 2 9 0 .00

6.02 4 .61 9 .50 3 .72 3 . 54 0.00 0 .00 0 .00 0.00 0 .00

6.11 4 .99 7. 1 4 2. 95 4.99 0 . 00 0 . 00 0 .0 0 0.00 0.00

5 .63 3 .81 8 .29 3 .3 1 3.98 0 .00 0 .00 0 .00 3 .81 0 .00

4 .10 2.12 1 . 49 2.72 6 .26 0 .00 0 .00 0 .00 4 . 90 0 .00

9 . 97 0 .00 6 .58 0 .00 3 .95 0 .00 0 .00 0 .00 0 .00 0 .00

9 .00 0 .00 6 .30 0 .00 4 . 50 0 .00 0 .00 0 .00 3 .90 0 .00

9 . 93 0 .00 6. 25 0 .00 0.00 4 . 47 0 .00 0 .00 4. 17 0 .0 0

6 . 95 1.68 2. 91 3 .32 3. 11 0 . 00 3. 1 4 0 .0 0 2 .70 0.00

6 . 14 6 . '/0 6.51 2 .79 2.60 0 .00 3 . 16 0.00 2 .60 0 .0 0
6 . 19 1 .0 1 6.83 3 .69 2 .95 0 .00 0 .00 0 .00 0 .00 0 .00

6 .13 5 .67 7 .6& 4 .57 2 .56 0 . 00 0 .00 0 .00 .00 0 .00
6 .19 5.3 6 8 .13 4. 80 0.00 0.00 0 .00 0 .00 0.00 !l . 00
4.08 0 .00 7 . 12 0.00 5 .56 4 .0 1 3 .15 4 .53 2 .72 0. 0 0

0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 . 00 0 .00 0 .00 0 .0 0
0.00 0 .00 0.00 'J. OO 0 . 00 0 .00 0 .00 0.00 0 .00 0 .00

Table 5.6: Bottom-up weight matrix of the t rained net work.

• • U l.l~ o. OOt. n t.U t . 02 t .us.n • •"'IOI. n I . OO ' . U 5. l5t .1I '. lI t.13 t . I' ~ . oe 0 .00 0 .00
0.005. 11 0 . 000. lK\ • •U t .tl 4. 9I 3 . n 2.no.00 O. OO O.llO 1. U t .10 1.015 .51 S.15 0 .00 0.0 0 0 . 00
5.5tt.10 o.o o'.n • •., ••so 1 . 1. ' . n ' . U t . S' t .3 0'.15 2.llt. 51 '.nl . n 1.131 . 31 0. 00 0 . 00
0 . 000.00 0 .00 0.0 0 2 . "3.12 2 . 1 5 J. n 2.12 11. 00 0.00 0 . 00 J. n 2 . n J." e , 57 • •100 . 00 0. 00 0 . 00
5 . ,.J.n J .o~ 5.n O.OOl.'. ' . 9IJ." t . 26 J . tS ' . 50 0. 00 l.1I2.tO I .U2 .56 0. 00 5.51 0 .000.00
0. 00 0.0 0 l.IO O.OO 0. 000.00 0.000.0fI 0. 00 0 .00 0 . 00 ~ .Cl 0.110 0 . 00 0.00 0 .00 0. 00 e , 01 0.01111.00
0 . 000.0 0 ~ . 51 0.00 11.000.00 0.000 . 00 0.00 11. 00 0.000.00 J.l~ l . U 0.1100.00 O.OOl." 0.000 .00
0 .000.00 5.J2l.U 0 . 00 0. 00 0.000 . 00 0 .00 0. 00 0.0 0 0 .00 c.ecre.ee 0. 000.00 0. 00' .5 3 0.000. 00
5 .00 2." t .Ol •• 17 l.no.o o 0 . 00 1.11 e , '0 0 . 00 3. ' 0 e , 17 2.1 0 2. '0 0.0 00.00 0. G02 .12 0 . 00 0 . 00
0 .000.00 e.ene.ee 0. 00 (1.1100.00 0.00 (1.00 0. 00 0.000.0010.0 0 0.0(1 (1.00 0 .0 0 (1.00 0 . 00 0. 00 0 . 00
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5.5 Fault R ecognit ion by the trained net
work.

To test the diagnost ic performance of the tr ained network both in noise

free as well as noisy conditions, the traini ng data set was taken as first test

patt ern and after that noisy data set . The performance of the net work to

diagnose t he fault in noise free condition is identical to t hat of Table 5.4. To

simulate a noisy situat ion , random noise was ad ded to spect ral components as

shown in Tab le 5.8. Every borde red cells including shaded cells are corrupted,

but shaded ones are corrupted heavily, Now the trained network h;u been

asked to diagnose the faults related to th ese noisy spectra and the diagnosti c

performance is reporte d in Table 5.7. From thi s table it should be not ed that

the trained network is unable to detect three faults in thi s noisy condition.

This operational scena rio can be improved to handle higher noise margin,

but that will loose accuracy by training the network in low precision mode.

Under t his situa t ion t he pat tern mapping in training stage and fault diagnosi s

performance in previous noisy situation are shown in Tabl e 5.9 and Table

5.10, resped ively. Table 5.10 apar ently shows bett er performance with only

one detection failure bu t Table 5.9 shows that t he network has mapped th e

rotor ehcrt-circuit-to-neutral fault l\S no fault conditi on. Thus there exists a

need for optimization of accuracy and noise margin. It is beyond th e scope

oftbis thesis.
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5. 6 Model of ART2 neural network based
Incipient Fau lt D etection System

Based on th e performance of ART2 neural network in fault diagnosis of in

duct ion motor using the frequency spec tr a of the stator current , it is evident

t hat tbe basic requirement s for incipient fault detection of induction motor s

C&II be met with ART2 neural network based system. Fig. 5.1 gives the

schematic of such a fault detection system. Here the controller gives the

frequency spectra of the stator current to the tr eined network which dete cts

the present internal condition of tbe machine. If h can diagnose a fault ,

th e controller gets specific fault related informa tion from the corresponding

databue and can report to the user. If the neural network is una.ble to

detect a fault , tbe controller asks t he user Cor information related to the spe

cific situation and simultaneously upda tes its knowledge-base as well as t he

underlyi ng neural network.
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Table 5.7: Fault related noisy current spectra.

.. ... n • ,.. '" '" on ... ... on. 0.00 20.00 0.00 20.00 0.00 .... .... 11 . 00 0.00.. 20.00 11 .00 2.00 e.ee 0 . 00 11 . 00 0.00

n n.so '0.00 0.00 n . oo 0.00.. 2 . 00 .... 0.00 .... n .oo 11. 00.. 25.00 2 . 00 " . 00 0.00 n.oo 0 .00 0.00 U. OO 0.00.. ....
" ".00 2' .00 20.00 0.00 0 .00 0.00 0.00 0 .00

n ' J . 50 2 J . 00 21 .00 u .oo 15.00

n n. oo 5J.00 n.oo 24 .00 0. 00 0.00 .... n .oo 0.00

" 51 . 50 " . 00 '0." 44.00 JI. OIl It.oo.. ' 0 .0 0 0.00 l'.OO 0.00 0.00 0.00.. 0.00 0.00

" 50 . 00 'D.OX! .... n.oo 0.00 0 .00 0.00 0.00 0 .00

' 0 •• 0 0 .0' 15 . 00

" '0 .00 0. 00 0.00 n. OD 0.00

" n.aD n.oo 0 .00 0 .00 " . 00.. n.oo '1 .00 11 . 00 U . OIl 15. 00 11 .0. 0. 00 U. O'O
n .oo 15 .00 11. 00 II . OD 0.0.

" '0.00 11.00 0. 00 11 .00 0.00 n.oo 0 .0.

n " . 50 tI.OO

" U . OD n .oo l S.O O 0.00 0 .00 0 . 00 e.ee 0.00

" n.so lI.aD ".00 0 .00.. 1) . 50 !!.oo .... es.ee " .00 n .on 11.00.. 0.00 !S ••• o.u tI.OO n .oo n.oo 11.00 n.oo

" 0 . 00 2.00 10 .00 u .oo 14 . 00 n.oD n .oD

Table 5.8: Diagnost ic test result of the tr ained network in noisy situatio n.
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Table 5.9; Faulh mapping in trai ning pha.<te in low precision domain.

Table 5.10: Fault diagoostic performance of the network trai ned in low pre
cision doma.in in noisy situation .

.
t
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"....

..
""
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Figure 5.1: Model of ART2 neural network based. on-line incipient fault di
agnosis system for induction motors.
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Chapter 6

Conclusions and
Recommendations for Future
Work

6.1 Conclusi ons

In this thesis an incipient fault detec tion scheme of induction motors based

on ART2neur&!network has been developed. This fault diagnosis scheme is

not only capable of detecting a faul t but also can repor t if it cannot diag

nose a particu lar fault , 80 that preventive steps can be taken to update the

underlying neural network to cope with this undetected fault while retaining

the already acquired knowledge without retraining of the trained patterns.

The accuracy of this fault diagnosis scheme is aueceptable to noise margins .

For lower ncise level, it givee high accuracy in its perfonnance.

A laboratory experimental set-up based on DSP techniques to coiled the

fault related frequency spect ra in real-time of t he stator current of induction
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motor has been developed . This is a general purpose frequency spectr a collec

tion system, which can he used for other purposes. Frequency spect ra of the

stator current of a wound-rotor induct ion motor at different fault conditions

making unbalance in the stat or as well a.srotor circuits have been ccllecved.

From the pat tern s of the spect ra it is evident tha t the majo r faults can be

detected from th ese spect ra t hrough a pattern recognition scheme. But it is

difficult to differentiate similar fault s as they have identical frequency spec

tra.

ART2 neural network has been implemente d using object oriented soft

ware methodology. Its traini ng, recalling and dynamic updating performance

have been stud ied. It 's training time is very low in compariso n to t he popu

lar Feedforward Neural Network. It can updat e its knowledge to cope with

the new pattern while retaining the acquired knowledge without the need of

retraining.

In this t hesis work, only stator current has been conside red as fault related

informat ion carr ier. But in order to develop a comprehensive fault diagnosis

system, multi-sensor s based scheme may give bett er result . This is beyond

the scope of th is t hesis. Throug h this research work the present stat e-of

the-art of incipient fault detection of an induction motor has been improved

to find bett er neural network and to collect fault related frequency spectra

of the stator curren t , which can be used as a basis for the development or

robust and comprehensive rault diagnosis system for electrica l machines .
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6 .2 Recommendations fo r Future Work

From previo us work 1251 it is evident that informa t ion from a single sensor

is not good enough to identify al l possible faults t hat may occur in induc

tion machines. As for example, stator current usually does not carry the

signature of the bearing faults. Th erefore it is necessary to pay at tent ion

ill mult iple sensors based sch eme. Performan ce of 0'1. machine fault diagnosis

systeu: should be independent of operating conditions of the machine as well

as the desig n par am eter va ria tions. Moreover , the system shou ld report not

o nly the ty pe of faul ts but also t he extent of the det ected fault . To make it

cost-effectiv e and ueer-Irlendly for the maintenance engioee r in t he case of

a large manu factu ring plan t, a single system should be capa ble to diagonise

faults of mult iple machines.

The fut ure work should abo con sider bot h the t beoretical as well as the

experi ment al study to select the opti mum numb er of sensors necessary to

collect all major faul ts rela ted information. For exam ple, a vibration sensor

ma y he necessary for hea ring fault s.

Data from mul tip le sensors sho uld he red uced t hrough neural network

base d filter to avoid redundant in!onnation.

Usually fau lh related information are contaminated by th e interference of

operati ng conditio ns as well as t he desig n parameter vari ation of the ma chine.

It is th us necessary to develop suit able neural netwo rk based filter to get noise

free fault related information .

As the extent of a particular fault is fuzzy in na tu re, there fore, in su ch a
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cue the ap plicat ion of fuuy logic should beexplored . A neuro- fuuy comput

ing model should be developed for the incipient faull di&&nosis of elect rical

machines .
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APPENDIX 'A' Pm,...", u..... forART2 Noun! Notwo"'.

This is the program for implementation of ART2 neural network . Art2 has been
implemented using object oriented softwar e dev elopment methodology . So it can be used
as. clus libraryto add its feature to application program. Dynamic memory operation has
beenused to handleall matrices,so virtually the sizeof input pattern is determined by the
memory of the system. It also includesan user interfaceroutine to train and test a neural
network. It has been written in Borland C++ under DIS MS-DOS for mM PC
environment

IMohd. RakoR.zumao. I
#includc<stdlib.h>
Ninclude<.io.h>
Ninclude <conio.b>
/iinclucle <sulio.h>
lI'includc<alloe.h>
liIincludc: <ma1h.b>

"defineTRAIN 10
Ndefine RECALL11
ftdcfine DEFINE12
IIdcfinc QUIT 13

constfeaturc:s~:

COf1SI type=4;
const DBSIZE-J O;

int train_m(dLar 'fnamc,int fea,inttype.char'fuamcl) ;
int rcca1I_nct(char' fnamc,char'result);
intmcnuO;

12.



,. t
,. Dcc~nd.D ot.ra class e ,,. , ,
c1ass. rU{

private:
noa t avf,bvf,cvf.tvf,dvf.cvf,rovfj
floal · uwpf.· dwpf;
int · f2n;
inI Nvi.Mvi;

public:
art2(floal aav{- IO.O,noal abvf- IO.O.floal acvf=.I,float atvf- .2.floal advf.e.9.noat
aevf-O.O,

inl aMviafeatum ,int aNvi-type.float arovf.-I.O);
-art20;
inttrain(l1oal· l) j
inc reca ll(float · l)j
incshow_uw(FlLE . rp) j
int sbo w_dw(F1LE . Cp);
inl add_neuronO;
int defme(int fea,int type );
int pararneters(floate, float ro);
int givc_feluype(int · M,int . N);
};

,. ,
,.•••••••••••••••••••• A. la tt rfaee '0 'raia aDd lesC 'be Necwurk t,. /

mala O
(
int N,M,Uo,c;
floalc ,ro;
charfnum:{IOJ,fnamc l [I O)j

Uo-l oo;
while(lJo !-Q UIt)

(
menu();
t-getchO;
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iltc-'t.' I e:-'"r Re-' I')Uo-1'RAIN;
iltc-'r' I c-'R' Be-'2')Uo-RECALL;
ifte-"d" I c-'D' IIc-'3')Uo-DEFINE;
iffc-"q' Uc-'q nc-'4')Uo-QUIT :
switeh(Uo)

(
caseTRAIN:

pr ind("\n\nln ");
printf{"\n Patt ern' featureS - ");scantt "%d",&:.M);
printft"\n C llw iflc.ati on Types-· r,semft-,w",&oN);
printf{"\n PattcmFile llllllC - ");scantt"%s ",fnarn e);
PJUrtfr\n Weighl File Jllllle ~ft"%s·,fnamel);

m ia nct(frwnc,M,N,fname l );

""'"cascRECAU.:
prinlf("\n\n\n\n\n\n" );
printft"\n Recall Pa tt ern File name = " );SCllll ll."% s",fnam e );
printft"\n Recall resu lt Filename . "); scanQ"%s",fnamc 1);
recr.ll_nct(fnamc,fnamcl)i
'<Uk;

aseDEFINE:
printf("\n PleaseEn ter yalue of'~ - ") ;sc&lIf("% 1'",&e);,
priDlf{"\n PleaseEn tc:r u luc o f 'ro...· ) >SCIlIf("%f" ,&ro);,
oartl. parameun(c:,ro);

""""caseQUIT:
UO"QUIT;
printf{"\n \n ln\ •••• Thanks a lot.. . . e);

bred ;

retu rn I;
I

/" t
,.. . . . . . .... . . . . .. . . . . . . .. Coulnctor ,
/" ,
art1::a rt2(f1oat omffloat abvfJlomGCY/JlGQ1 atvfJloat Ql/vIJloo t atVf,1n1dbl,l", aNvlJlool

=if)
{
Ivf-aavf;
bvf-abv f;
tvf=acvf;

Moo"'"<M-advf;
c:vf-&eVf;



Mvi=aMvi;
Nvi- aNvi;
rovf=arovf;

uwpf.=(float · )farmalloc(sizcoftfloat)· Mvi· Nvi);
dwpf;(float · )fannalloc(sizeof{float)· Mvi· Nvi);
f2n=(int · )fannalloc(siz.eof{int)· Nvi);

floatuiwvf,dhwf';
uiwvf=2.236;
diwvf=O;
for(int i=O;i<Nvi;++i)

(
for(int j-(rj <Mvi;++j)

· (uwpf+i· Mvi+j )-u iwvf;
fl n(i}sO;
}

r.:ll{i-.o;i<Mvi;++1)
(
for(int j-oJ<Nvi;++j)

· (dwpf+i· Nvi+j)-d iwvf;

, ,
,· ..····························· Destnctor · · · · ·· · · ..•••••• • ,, ,

(
fufu,(owpf);
fufu,(dwpf);
}

, ,. ,
, Display aDd . tore bonom wp tile Wei&bt ,
,. t

intart1::dlow_ww(FlLE 'b )
(
printfl:"\n-);
for(int i-o ;i<Nvi,++I)

(
printft"\n-);
for(int j -o ol<Mvi;++j)

printf( "%f-, · (uwpf+i· Mvi+j »;
}

fprintf{fp,"\n\n Bonomupw eight:\n-);
for( i-O;i<Nvi;++i)

{
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(pnntt{fp."\n R
) ;

forCint j-O;j<M vi;++j)
fprinrf{fp, "%f -. · (uwpf+ i · Mvi+j ) );

I
retu ra l;
}

,. t
,.· ..••• • ••• • •.. Displ.ly.ad.llHttllelopdoWIII Wdc bt · · · ····· • ••••.. · · ··, ." t

int .rt2::lbow_dw(F1I£ '/P)
{
pri nll{'"Vl");
(orCin!io.O;i4llvJ;++ i)

(
prin tf("In");
for(i ntj -ll ;j<M vi;++j)

printf{''%f",' (dwpf+i'Mv i+j» ;
}

fp rintf{fp."\n \nTop_downwcight:\n-);
r"r(i" O;i<N v i;++i)

(
fpri nlftfp,"\n");
for(int i-O"J<Mvi;++j)

lJrintf( fp, "%r ...· (dwpf+i·Mvt+j» ;
}

return I;
}

" t
,, · · · · · · · ••••• Tn in theNet with define Pattern /" /

int . rt2::tBl a(floaf .1)
(
int counte r.J, · a,iIJ . iI 4000;
float· u,'v.·w,·X;
float· q,·qb,· r.·T;
float'p,'g;
float' rx,-fq;

floatnv.nvp,testl.tcst2;
int eq.reso;

J-G;
f2-( int· )farmalloc(siz.eol{int)· Nvi);

IInormali7.edvalue



v=(float')fannalJoc(sizeof{float)'Mvi);
W"'(float ' )farmalloc(sizeof{float)' Mvi)j
x-(float ')fannalloc(sizcof{float)'Mvi) j
q"'(float' )fann alloc(sizeof{float)' Mvi)j
qb=(floal')farmalloc(sizeof{float)'Mvi);
F(float ' )fa.nnalloc(sizeof{float)' Mvi)j
Tc(float ' )fann alloc(sizeof{float)'Mvi);
p=(floa")fannalloc(sizeof(float)'M vi);
g=(floa")fanna lloc{sizeof(float)'Mvi);
fxc(float')farrnalloc(sizeof(float)'M vi)j
fq=(floal')fannalloc( sizeof{floal)'Mvi)j
li t.
countc~l j

for(int i=O;i<Mvi;++i)
{
u[i]=O.O; v[i]=O.O; w[i]=O.O;x[i]=O.O;
q[i]=o.O;qbli]c O.O;r(i]:O.O;T[i]=O.O;
p[i]..o.O;g[i)=O.O;
}

for(i=O;i<Nvi;++i)
f2{i]-t;i13-0;

fore;;)
{do

(
do{
if(i13""'O)

{
for(i=O;i<Mvi:++i)

w[iJ=I[i]+avf- u[i]:
n\'=O.O;
for(i~;i<Mvi ;++i)

nv=nv+w[i]'w[i];
nv-sqrt(nv);
for(i=Oji<Mvi;++I)

x.[J]=w[i]/(evf+nv);
for(i-oj i<Mvi;++i)

{
if{x[iJ >tvf)fx.[i)-x [i]; else fx.[i]=o.Oj
fq[i]"'<l[i];
v[i]-fx[i)+bv t-fq[i] j
}

nV'=O;
for(i-O;i<Mvi;++i)

nv=nv+v[i)'v[ i];
nV"'sqrt(nv);
for(i=O;i<Mvi;++i)

u[iJ~[i]/(evf+nv);

}
for(i"'O;I<Mvi:++i)
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nv-O;
for(i=O'J<Mvi;++i)
nv:nv+p(i)-p[i);

nV-sqrt(DV);
for(j...(t-,i<Mvi;++Jl
q[i )-P[ i)I(evf+n v);

eq"l ;
for(int i-O;i<M v i;++i)

I
if(qb[ ij l-q[iJ)eq-O;
qb[iJa'q[i];

)
)

whlle(eq-=O) ;

nv- O;nvp-O:
for(i-o:i<Mvi;++i )
nv-nv+u[i]-u [l ):

nv-sqrt(n v);

for(izO;i<Mv;;++ i)
nvp-nvp+p[i)-PlWcvf"cv (;

nvp"'Sqfl(nvp);

for(i"'"fr,i<Mvi;++ej
r[iHu[i)-+a'r-p [ i)Mcvf+nV'+1lVp);

•.".0;
fOl{i-O;i<Mvi;++i )
nvp-flvp+r(i] -r(i);

nvp-..oqn(llYp);
Iesl.I-rovf1(cvf+nvp);//pri nd{"\ll%r .tesll):
if{tcstl >1)
I
f2[JJ-O;
counter-I ;
++J;
if(J-Nvi)retum .l ;
I

I
while<testl> I);

if(countcr>l)il4-1;

if{counter-I)
I
- 0;
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for(intj=Oj<N~i;++j)

{

TliJ"·~
for(i-O;i<M\'i;++i)

TIi)+-P(iJ' ' (uwpf+j'M\'i+i):
Tli)-11Jl"12UJ;
)

;-0 ;
fot(j-O'j<N\'i:++j)

;fl71~ <T(jJ)l~;

for(j-G'j<N\'i;++j)
I
;flj-~

l1iJ-d,rTliJ;
elseT[j]-o.O ;
}

J
m "li
if(il4-I )break;
I

for(i-O;i<M\'i;++i)
·(uwpf+J ·Mvt+t')-u(iV( I .~M);

for{PO;i<Mvi;++i)
· (dwpf+J·Mvi+i)-u(iV(I-d\'f);

l2n1JJ-J;
farfrec(fl);farfrce(u);farfrec(v);
fufree(w);farfree(x);farfree(q);
farfrec(qb);fatfm:(r);far&ee(l);
'''''''<Pt.'am..(gl;'_fx);
'_lqJ;
returDJ;
}

t- ,
t- P.ne Matc:illng ,, ,
inlu l1::rca.II(11oot ·1)

{
int counter.·f2,J,i13,iI 4· 0:

float "U,"v,·W,· ll;
flOIt 'q,' qb,'r,"T;
f1oat'Po'g;
nOll' rx,'fq;
flOIt n~,nvp.tcstl ,lcst2; Itnonnalizc:d value
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mteq.resc:

1" 0;
t'2-( int · )fannalloc( s izeof(int)·~vi ) ;

u:( f1oat · )farmalloc(siu of( f1oaWM vi);
v=(f1oat·)farmalloc(sizeof{f1oat)'M vi);
W"'(f1oat')farmalloc(siu of(f1031)'Mvi);
x"'{floal ' )farms l1oc(sizeof{float) ' Mv i);
q-( float ')farrnsll oc(sizeof{floal)'Mvi);
qb=(flolt')fanna lloc(sizeo f{f1oal) ' Mvi);
r-( floal ')farmalloc(sizeo f{float)'Mvi);
Too{float ' )farmal loc{sizeof{float)'Mvj);
p>"(floal ' )fann alloc(s iz.eof(float)' Mv i);
8'"'<float ' )farmaJloc(siz.eofffloat) ' Mvi);
fx-(f1oat ' )farmalloc(sizeo f(floal)' Mvi);
fq-(fl o3t ')farmalloc{sizeof(fl oat)'Mvi);
counter- I;

for(inl j-=O;i<Mvi;++i )

I
u[i]=-O.O;v[i]=O.O;w[i]=O.O;
x[i] ooQ.O;q[i}zD.O;qb[i]"'O.O;
r[iJ-o.O;T[i}-o.O;p[i}"'O.O;
g{i]=O.O;
)

for(i" O;i<Nvi;++i)
f2[ij -) ;

m-e,
for(;;)

I
dol

dol
ifti13 =O)

I
for( j=O;i<Mvi;++i)

w(i]aI (i]+avf"u [i};
nv=O.O;
for(i-<l;i<Mvi;++i)

nv-nv+w[i)'w[i);
nv=sqR(nv) ;
for(iC();i<Mvi;++ i)

x(iJ_[iV(evf+nv);
for(i=O;i<M vi;++i)

{
if{xfiJ >tvf)fx[i)=x(i] ; else fx [i)=O.O;
fq{i)"'q[i);
v[i}efx [i]+bvrofq[i);
)

nv=O;
for(i=O;i<Mvi;++i)



n~v"v(Wv [ i J :

nV"'sqrt(nv);
for(i~:i<Mvi:-i}

u[i)-v(iVtcvf+nv):
I lIi l l =O;

for(i=O;i<Mvi:- i)
p[iJ=u(iJ+dvf"' e(dwpf+JeMviTi):

nv-<l;
for(~i<Mvi;-i)

nv=nv+p(i)ep[i);
nv=sqn(n v);
for(i-o;i<Mvi;- i}
q[i)-p[i¥(evf-tnv);

eq"' l ;
tor(inf izO;i<Mvi:_i)
{
if(qb(i] !'"q[i])eq-o ;
qb[i]-q( i]:
}
} m.

while(eq-o);

nv-<l;nvp-O;
for(i=O;i<:Mvi:++i)
nv=nv.....[W u[i);

nv=sqrt(nv);

fOl(i=O;i<Mvi;- i)
nvp=nvyt"P{i)ep{iJecyf-cvf;

nvp=sqn( nvp);

fOJ(iooO;i<Mvi;++i
r(i)=(u[i}t-evr P{i))I(evf-tnv+nvp);

/fl O•
n",,"",
for(i-o;i<Mvi;++i)
nvp-Ilvp+r(i)er(i);

nvp=sqn(nvp);
test l=rovfl(evfTnvp);//printf{"\n%f'".tcst l );
ifttestl >1)

{
121~·O;

countcr=l ;
++J;
iftJ- Nvi)r'etum. l;
}

}
while(tcstl > 1);
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il"(counler >l)i I4- 1;

il"(c:ounler-I )
I

++counter;
1111.
for(int j-O;j <NYi;.......j)

I
Tli) -o ·O;
for( i-O;i<M vi;++i)

T[j)+-P{W "(uwpf+j"Mvi+;);
TUl-T[jj' 12Ul;
}

1/12.
j-{) ;
for(j-oJ <Nvl:++j)

iqTm<TlJ W-j;
for(j-OJ<Nv i:++j )

I
ifij- J)

T[j] -d vr-T{j] :
el~ T(jl-o.O;

}
}

ill") ;
if{iI4- 1)Oreak:
}
if{f2n{J] -o)J- -l:
fatfree(f2 );farfree(u);farfree(v);
r.m...(w~""",<,);r.m...(q);

farfrce(qb);r ufree(r);rarfrec(T);
rarfree( p); farfree(s );rarfTee(fx);
rarfree(fq );
relum J;

I
, ,
, Ad d . New Neuron 10 c:Iusil'y more cl OSe! ,, ,
intart2::add_DeUnl DO

I
float ·nuwpf,·ndwpf:
int ' nf2n;

++Nvj;
nuwpf-(nNt · )rann aUoc(siz.eoQfIoal)·Mvi· Nvi);
ndwpf-( f1oat ·)fannalloc(sizeol'{fb,t)'"Mvi'"Nvl);
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nf2n=(int ' }fann alloc:(sizeollint}' Nvij;

float uilwf.diwvf;
uiwvf-z2.236;
diwvf=O;
for(in t i-O;i<Nv "I ;++i)

I
for(intj -&j<Mvi;++j)

· (nuv.rpf+i· Mvt+j )- · (uwpf+i· Mvi+j );
nf2n[i)-f2n(i);
}

nf2n [iJ..o;
farftec(l2n):
f2n=nf2n;

fOr{ intjE(JJ <Mvi;++j)
' (nuwpf+i' Mvi+j )-uiwvf;

farfree(uwpf):
uwpfznuwpf:

fcr( i=O;i<Nvi. l :++i)

I
for(intj-O;j<Mvi;++.J)

' (ndwpf+i ' Mvi+j)=' (dwpf+i' Mvi+j);
I

fOl'{ j-O"j<Mvi;++j)
' (ndwpf+i' Mvi+jPd i_ f;

'- 'wpQ;
dwpf=ndwpf:

retum 1;
}

, ,
, Defi Dethe Net by featura and type of c:Iaultll• • • • • • •• • • • • ••• • • • • • •,"' ,
int a rt2:: de 8De(intjea, inl l)1:1e)

I
oart2.Mv i-fea;
oart2.NvMype;

,.m.o<...."Q;
farfree(dwpf):
,.m.O<I2nt,
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uwpf-{float · )flllnnalloc(siu oftfloat)· Mvi· Nvi);
dwpf=(float · )fannalloc(sizeoftfloat)· Mvi· Nvi);
f2n"'(int·)fannalloc(sizeoftinl)·N vi);

float uiwvf,diwvf;
uiwvfm2.236j
diwvf=O;
for(int i=O;i<Nvi;++i)

(
for(inlj=Ooj<Mvi;++j)

· (uwpf+i· Mvi+j )=uiwvfj
f2n(i]=O;
)

for(i=Oji<Mvi;++i)
(
for(inlj=Ooj<Nvi;++j)

· (dwpf+i· Nvi+j )-diwvf;
)

return I;

I
, , /
, Delitaegenerallzallob parameten ,, ,
int .rt2:: para melen( floate,noal ro)

I
evf=e;
rovf=ro:
returnl ;
I

, ,
, Give (bev.lues of fe.lure end Type ,, ,
j nt.rU::llveJ~_type(int ·M,int·N)

I
· M- Mvij
· N=Nvi;
return I:
}
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, /

, Userin terfacetotraintheN et · ··· · · · · · · ..···············/
, ,j- e e /

int 1raID_ Det(char ·./rIu..:e,inljea,illt type.char ·/namel )
(
FllE·fp:
float data;
long int handte,fsize;
int iJ,f:
char -buff,vbuff[DBSIZE];
float spa ttern;
int M,N:

oart2 .givejea_lypc(&M.&N):
handle=open(fname,O);
fs izc=file lengdl(handlc);
buff=(char · }fIlJlna;loc(fsizc);
pancm=( float · )fann alloc(sizcoftflGaI)·fea);
close(handle);
fpufortn( fname,Mrb+")jiftfp =-NULL) retum -l :
fread(buff, l ,fsize,fp);

for(i'"6:i<fsizc:++i)ptintf{"%c",buff(i);priRtft''\n\n");

oart2.dcfjne{fea,t~>pe) :

fmO:
for(i-O;i<fsizc;++i)

(
wh ilc(buffl i)==32)++ i;
if( i=-fsizc)brcak;
if{buffIi) 1""13)

(
j-G:
for(:;)
(
vbuff(j]=buff[i);
++j:++i:
if{buff[i]=- 13 Ubuff(i].... 32)brcak:
if{i=fsize)brcak:
if(j=-DBSIZE)brcak:
}
vbuffUJ-'\O';
data=a toftvbuft):

if{f<M)
{
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pattem(fJ-dau ;
++f;

I
if(buffIiJ- 13)

I
while«( !-MUpattcrn(fFO ·O;++f:!
++i;f-O;
oart2.train(pattem);

I
}

else (++ i:prlntf(\n ">;
}

I
farfrcc{buff):
fatfrec(p anern):
fclose(fp )j

fpfopcn(fname l ."wb+"),
oart2.show_uw(fp);
oart2.show_dw(fp)j
felose(fp) j
return I;
}

,. ,
r .. •••••••••••••••• U.er IDlerf . u for panern c1uslfiC:.lioD ,

r .. •••• .. •••••••••••••••.. •••••• ••••••• ••••• •• .. ••••• •••••••••••••• •••••• ••/

inl rtallt Det(cbar '}w1M.chor ' n sult)
I
F1l E °fp,°fp<;
floatdl ta;
longint handle,f size:
int ij.f,rtype,patno j
char ' buff,vbufllD BSIZEJ:
(k)a1 ' pattcm;
inI M,N;

oart2.givc_fCl_typI:(&.M,&.N);
handle=opcn(fname.O);
fsize-filclenglh(handle);
buff-(char')farm ill oc(fsizc)j
pattem >a(floll ')fm nalloc(sizeof{f1oat)'M);
c1ose{hlUldic)j
fp- fopen(fname."rb+")jiftfp- NULL)relum - I;
frcad(buff. l.fsizc,fp);

II for(i-&,i <fsize;+i 1)printf("%c",buffIiJ );prind{"\n\nW);
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fpr=fopcn(resu lt."wb+");
fprintf( fpr." Panern Matching Result Of ART2\n\n "):
f='-O;patno=O;

for{i=O;i<fsize;++i)
{
while(buff[i)-32)++i;
jf{i==fsize)break;
jf{buff[i] !=13)

{
j=O;
for(;;)

I
vbufJijJ=buff[iJ;
++j;++i;
if{buftli J=13 llbuftli] =32)break;
if{i-fsize)break;
ifij·=DBSIZE)break;,
vbuflij]-'\O';
data=atof{vbuf1);

if{f <M)

I
pattem(f)mdata;
++f;,

if{buff[i]= 13)
{
++patno;
while(fl - M){pattcrn[f]=O.O;++f;)
++i;f=O;
r1ype=oart2.rc:call(pattern);
fprintf(fpr,"\n");
if{rtypc:=-I)
fprintf(fp r. "No Matched paaem of pattern No- %d ",patno);

else fprintf(fpr,"%d is the Matched pattern of pattern NO'"
o/.d" ,rtype+ I,patno);

}
}

else (++i; printf("\n ");
}
}

farfrec( buf1);
farfree(patte rn);
fclose( fp);
fclose(fp r);

return I ;
}
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,. /
, UHr lalt rfau mal. me ,, ~ ,
intmea u()

I
clrscrQ;
printf("\n\n\nlnln\n

printf{"\n\n\n
printft"\n
printf{"\n
printf("\n
rerum l ;
I

•• •• TE ST OF A R T 2 ....~);

I. Tra i ning~);

2. Recall");
3. Define Parameters");
4. Quit");

,. t

,···· ·..·······..·..·..··..···········..·END ··············· ,, ,
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APPENDIX "B" Programlisting for real-time frequencyspcan.acquisition.•

This program is for real-time frequencyspectra collection of the stator current of a
inductionmotor using digitalsignal processing(DSP) technique.

#inc1udc<stdlib.h>
#inc1udc<stdio.b>
#includc <conio.h>
#includc<ctypc.h>
#inc1udc <dos.h>
#inc1udc<graph.h>
Nincludc <rnath.b>

Ninclude ~pc56.h~ , . headerfie for global pc56declarations. ,
Nincludc ~pe56ext.h~ , . external variable definitions . ,

, . definedin PC.56Ii bRry (init_56.c) . ,
#inc1udc "ftl 56.h" /. fR 56 definitions . ,
#inc1udc ~dcffiogrpb .h" , . graphicsdefinitions*'
Ninclude~printer.b·

lIinc1ude ~ploncr.b·

cxtcm unsignedlong Int DATA;
cxtcm unsigned long Int COEF,.
externunslgneJlong Int WlNDCOF;
exte rn long Int maxN;

' · data ma y . /
J-smJws table .,

I- windowcoefficients*'
J-maximum data see . /

/ ,
J- Function prototypes t
J- ,

voidinitarp h(loog irrt);
void demoplot(int D. int D, in!,int, int);
voidpa use(void);

, /

J-··..• · · · ···········Globald.u . rrays(or trllnSfen. etc:···..••••• ,
J-.................................. . .......................................••/

f1oatJP;
int arrays/f]048]. arrays2f2048] ,ln;
clw c,:Ulep=/ ;
intparrayf514],dlff.cuuntero:O,parrays2f514].dls_COIInler-O,slgnal.l1IICJIC1, =/ ;
intfref/OO],ampflOO];
rhar tbuff[50];
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mlla O
I

muct dostimc_I start, finish:

char key.tbu ff(121];
inl mcodej.mu.;
inapoinu. endloop. count, dspopt.pkltopt;
IonS inan.1.fsamp, space. pruample;
intbpfilt,pm;
rcs isterint i;
inl optioa. timopt, camp_fll s, won t sizc. usr_l1Jg;
unsigned IofIg inl reteode ;

" ' nitialize vuiables, ctc "

klng inl x_mcmflag. OL;
long int y-memflag-IL;

/ ' lnilialize Essential graphics tcxl modc "

_setvideomodeL ERESCOLOR);

n - I024L;
1- 513L;
(samp-SOOL;

bpfilt-l;
gain --4L;
timopt- O;
plotopl:-O;
_-I;

" Initialize 1ft_56 program"

encode - iniUft(&n, AI);
i1{errcodel-oo_error)(

printf{"\aFATAL ERROR %d · eannot initillizc\n".Cl1'CO<Ic);
cxil(l );
)

" Initil lize Ale parameters "

encod e - init_aic:(A fsamp , bpfilt, sain);
i1{em:ode 1- no_CJJOr)(

printft."\aFATAL ERROR %d - UlIDOt initialize\n-, errcodc):
cxit(I);
)
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/ - Initia lizeAICconverter- '
errcode =cmd S6(adin it) ;
if(errcode - err_hostcmd)

printf(" IaERROR %d Unable to initial ize AlC\n ",errcode);
, - Lcaduser ccmmand fft routine w

em: ode .. load_ usr("demofftJod",usr);
if(errcode I- no error )

printf( "ERROR o/.din loading user command\n ",en code);

points =-1;

J eset :

' - comvert to integer -'

if(ldspopt){
encode =- cmd_S6(sample);
for(i" O; i<n; i++)

arra ys2[i] -O;
}

else{
errcode » cmd_56(usr ); , - Execute on time to fill array-'
for(i=O; i<n; H+}

mays1[i} -graph_ulx;

, - Sample and display until keyboard is hit -,

count -O ; ' - initiallu count -/
if(timopt){

endloop e 10; , - initializ e loopcount if timing - ,
_dos-Bettime(&start);

dol

encode - dwnart'U(.uraysl , J, X_SPACE, DATA) ;

, - Startprocess,displayarraysl ,erasearrays2-'

if(dspo pt)
errcode .. hostcmd(usr);

ets
erreode» hostcmd(sample); , - start process - ,

' -I demoplot{array sl ,arrays1,points,yellow,pJotopt); -,

, - When compl ete, download intoarraysl - ,

while( ldsp_don e()){ , - wait for 56000 code to be finished - ,
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I
rcv_hp(&.retcodc) j
cl'TCOdc -retcodc;

if(errcodc '-no_error)
cxit(I);

,tconversionto int-'

cl'TCOdc -dwnarns(arrays2,I.X_SPACE,DATA) ;

'* Stan process for next Amly, display anays 2, erase arrays l *'
if(dspopt)

crrcode.. hostemd(usr):
. 1",

cm:odc...hMtcmd(sample); '*start process*/

fOT(i=O;i<II ;++i)
{
_scttcxtco]ot{I);
sprintf(tbuff,"%d ~.i)j

_settcxtposition(25,8+i·S+il4+ilS);
_outtcxt(tbuff};
_sclcoJor(IS);
_moveto(48+it4S,349);

_linelo(48+it45,340);
_movcto(48+it4S+22,349)j

_lineto(48+i·4S+22,34S);
}

_sctcolor(6);
Jcctanglc:(2,O,90,639,349);
_scltolor(7);
_movcto(48,9S);
Jinclo(48,33S);
Jineto(6J8,33S);
_setcolor(14) ;
_settextcolor(14);

fot{i=O;i<points;++i)
{
ittarnys2[i]>310)arrays2[i]-310;
arrays2[i}-JIO-arrays2[i);
}

for(i-Q;i<5;++i)arrays2[il-O;

max-<l:
for(j"'Oj<points;++j)

{
if(anays2{max] <arrays2UJ)
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}
for(j-Oj<poinu;++j)

I
i£(am ys2[j] < (amys2(max))lS )
arnys2[j}-O;

I

(or(i=O;i<po ints; ++i )

I
if{arn.ys2Iil J-Q)
I

for(j-ij<i+2S:++j)
(
if{arrays2 (m ax ] < . rn. ys2 UJ)

max-j ;
}

forG"'ij<i +25:++j)

I
ifij 19ll1X)

amys2[j]"O;
}

i+-24;
}

}

for(i=O; i<points;++ i)

I
_sdCOIor(O);
_moveto(. 9+i-utep,) 34);
_ lineto( 49+1,- xst ep.92 );

scteo1or{14):
- _moveto(48+i·xstep,) 34);

if{am ys2{i) I-()
_lineto( 41+i·xstep)34-amys2[i]);
}

_settextcolor(l )j
j -7 ;
for(i-Qji<8:++i)

I
sprintf(tbuffr-,...dOdb· J);
_settcxtposition(24-i-2.i14,2);__!bofl};

_seteolor(S );
_lJtO\Ieto(47,33S-i-3 1);
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Jinclo(l 7.11S-i ' J I ):
_m~1O(47,llS - i -ll - IS );

J inelO(42.]3S.i -3J - IS):
-j;
I

_senexl coI0f( 14);
_SCICOJor(S);
_rectan gle{l .O.O.639.11);
j=O;
ror(i- O;i<poinlS:++i)
I
if(arra ys2[i] 1-0 )

I
rp-;;
fp-fp·2.4 ;
in-rp;
if{in%6<l<J 7)

in-m.in%6O;
if{in%60 >SO)
in-~6l).in%60):

sprintf{lbutr."%d--%d",iIl,ll'Tays2(i]);
_selttxtposition(4+j17,5+{j%7) -I):

_ounex t(lbuft);
++j;

I

if{kbhil() 1000)(
e-ge1ch() ;
i f{e-'P')
gettex l{);
)

fOf(i-O;i<poin lS;++i)

I
iftdis_counter>o)
I

_movelo(IO+i'l5I ep.339);
Jineto( IO+i-,mep,am.ys2[i»;

I
diff'+-lbs(pan-ay(i}-amr.}s2[i ]):
signa..... 3Jo-maysl[i);
pIlTIyJi]- amr.ys2(i];
5pfinti{tbuff,"Y.d".J Io-1lTlIys2 [I);
illi<lS)
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_settc xtposition(7,O+i -3 );
else if(i >- 15 && i<30) _senextpositi on(7+ 1,0+(i·15)-S);
e lse iQi >- 30 & & i<45 ) _senextp osition( 7+2.()+(i·3 0)- S);
e lse _settextpos ition(7+3,O+(i-4S) -5);
oune xl(tbuff);

}
signal.....I.O;
sprintf(tbuff."Error=% d Signal=% d per.ofErrol"'o/od

......".d iff,signlll,« diff"I OO)/signal» :

_settextcolor(14) ;
setcolor(O);

:rectangle(3,O.O.I 00,20 );
_settextposition(O,O);
if(di s_counter >l )
_OUltext(tbufI);

if{kbbitO! =O){
c- getchO:
if{e-'q')Lsetvideom odeLDEFAULTMODE ); exit( I»
if(, - 'p')
gettextO j
gell:hO;

J

co unter- Oj
++ dis counter;
for(i~; i<poinu;++i)

parrays2[i]-O:
J ' /

I - Wh en compl ete. download into arrays I (a t top of loop) -,

wbile( ldsp_doneO) { ,. wait for 5600 0 code 10 befinish ed-'

J
rc",_hp(&retcode);
errcode= retcode; I- , onvers ion lo int -'

if(errcod el "'n o_crror)
exit( I);

count++ ; I- incl't!rnent counter -I

if(ti mo pt){
endloop - endloop-I ;

)
etse

endloop = lkbhit() ;
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I
wh ile(end loop );
if{limopt)

_dosJdtilne(&.finish);
el se (

key " geteh(); " gcl c lwac:ter , /
rwiICh(kcy)(

case('1' ); " Iogg le dispiay "
<a>«TI'

dspopt - Idspopt;
goto_reset;
break;

ca.se('f " freezc dispJay "
=fFJ'

while(lk bhit()H
}
key- getdl();
Boto _re set;

"""';
c:asc('p'): r graph with poinu ' /
OU«'P');

rplotopt -o; -t
Iltttext() ;
key-IO;
goto _reset;
break:

case(' I'): / ' graph with lines ' /
=fL',

plotopt - l:
goto _reset;
b<uk;

~'Q'): r Quit display "

=f'!'l'...-,."
""""derault r Ignorc aUother kcys "
SOlO _reset;
b<uk;

if{l imopl){
printf{"Start V.d.'Y.2.2dFinishYod,o/,2.2d\n",start.sccond.

start.hsecond,finish.second.finish.hsecond);
printf{"Executed loop 'ltd times, Yad spectra displl yed\n ",

count, 2'count);
I

_setvidcomodcCDEFAULTMODE);
}



, ,
, · · · ..•••••..• • • • • • •.. • ••••.. GetUser Op tion .. •••• ..• .. • • • •..•••••..•• ,, ,
intgmex tO

I
floatfp ;
int ij.in :

_~extpOSition(O.O);

printf{"Frequency speetnln on of induction motor It Condilion: \n');
SCIrlf{"%s",tbuff) ;

inil_se ria1();
init'plotter(),

for(i- O:i<I00,++i)
fte[ij ....l,

i-O;j=O,
for(i- O:i<SOO:++i)
(
if{arra ys2{i] >0)

{
fp-i ;
fp=fp· 2.4; in--fp;
if{in%60<I7)

inaift.-in%6O;
if{in%60>45)

in-in+{60- in%60);
if{in<IOOO)

(
fre(j)=in; c,-.m.)"2lij;
fp-(~17)·70; ampUJ-fy.

-Hj ;
if(j>l)

(
iq"O·I)_[j-2))

(
if{lmp[j-I] >amp[j-2J)amp[j·2]zamp[j·lj ;
"[j-Ij-I;-j;
)

}
}

}
ilij- MAJ,-COM·I)brcak;
)

' · P lot the spectrl · '
plot-81'8ph(fre,arnp:Rotor's phase rep laced by exlemal RSislofor 6onm s" );
mum I ; )
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APPENDIX "e" PrognmlistingofllP.plott"dri_ .

This is th e program for Six pen HP~plotter driver 10 get real-time plot of frequency spectra
cfthe sta tor current of an induction motor..

IIdcfinc RED J
IIdcfillc G REEN 2
1Iddinc: a LACK 3
Ndcfinc:: PURPLE 4

IIdefinc RIGHT MOST X 10000
IIdcfinc UP MOST Y - 8500
IIdcfinc DvaoCITv 7
IIdefine MVELOCIn" 38
lldefineDEVEW CfIY 10

lIincludc<stdio.h>
#include<dot.h>
Ninclude<stdlib.h>

, , ,/
, Plot 1be IlX'd r ,, , ,
int ploC ara pb(int frcO,intampO. char tideD)

I
noat famp;
intij, val ue,x,y;
intxl ,y l ,lI2,y2,xdstep,xhdstep,xsstep,ydstcp,yhdstep,ysstcp,sdh,shdh,ssh,xdim,ydim;
x)z I2S0; yl=2000; x2=72S0; y2~OO;

xdim=1OOO;ydimo:70;
xdstq>=IOO;xhdstep=SO;
llSstep= lO;ydstcp<=IO;
ybdstep=S;ysstcrl;
sdh=120jshdh=80;
" h=30;

cdgcJ e<:t(xl ,yl.x2,y2);
p)oCabso]ute(IlI,yl );
fol{i=O;i« xdimlxdsttp);++i)

I
plotJincto(O.sdh);
x=( ll2oxl)J(xdimlxdsttp);
y=-s:ib;
plot_~lative(lt,y);

}
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plot_absolule(xl;yl);
x-xl ;
fOl(jzO;i«xdim/xhdstep);++i)

I
ploU ineto(O.,shdh);
x+o=(x2-x.I)'(xdimlxhdSlep);
y-shdh;
plol_ l bsolute(x,yl );
)

ploc_lbsolute(x l;yl);
for(~;i«xd imlxsSlep);++i)

I
ploUineto(O.ssh);
x-(x2-xl y(xdimllw lep);
y=-ss h;
plot_ rt lalive(x,y);
)

plol_ab solule( xl ,yl );
for(i-Qj i«ydimlydstep);++i)

I
plot)ineto(sdh,O);
x-sdh;
r(y2-y l),(y dimlydSlep);
plot_te lative(x.y );

I
ploc_absolute(xl;Yl) ;
for(i-o;i«ydimlybdstep);++i)

I
ploU ineto(shdh.O);
x-shdh;
y-(y2-yl)'{ydimlybdstep );
plouelative(X;Y);

I
ploc_absolu te(x l ;yl );
for(i-o;i«ydimlysstep);++i)

I
ploUineto(ssh,O);
x- ssbj
r=(y2-yl )'(yd imlysstep);
ploc re1adve(x,.y);

I,t selecl-penCGREEN)j t,
plol_obsolul e(xl ,yl );
plotJine(xl +(x2-xl )l4,yl .SOO,xI+() tCx2-xl»)l4,yl-SOO);
pIoU ine(x l+(x2-x l)/ 4,'1I+IO-SOO,xI+() ·(xl-xl»)/4,'1I+ IO-SOO);
plotJine(x l+() · Cx2-x l)Y4,y)-SOO,x1+() ·Cxl-xl »)/4-200,'11-70-Soo)j
pIocJin e(x.l+WCx2-xl )y4;yI- SOO,xI+WCx2-xl» )/4-2oo,yl+700Soo);
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ploU ine(x l- 7M,yl +(y2-y l}/6,xl-700,yl+{S'(y2 -yI W6);
ploUine(x l.710,yl+{y2-yl )l6,xl-7 10,yl+{S'ey2-yIW6) ;
ploUine(xl .70S,yl +(S' (y2.yl » /6,xl -70S-70,y l+(S'(y2-yl )Y6-200);
pIOl_line{x1-70S,yI+(S-(y2 .yl »)l6,x1-70:;+70,y I+(S' (y2-y 1»)/6-200);

/' selec t..J!en(RED);'/
i-Oj
while(fr04ijl- l)

(
iftamp[i] <1000 && amp[i] >0)

(
x=xl +frc[iJ'«(x2-xl )/xdim);
M l+amp[W «y2-y l)ly dim);
ploUine(x,yl ,x,y);
plot-, ine(x+l 0,yl, x+IO,y);
}

++i;
I

/ ' Jelect,JJe n(pURI'LE); ' /
i"O;
plot_string (K2+S00,y2, "Frequency Amplitude");
plol_str ing(x2+S00,y2-200," in Herz in db") ;

/ ' select...,Pen(BLACK); ' /
while(fre[ijl-l)

I
if{amp[i] <1000 && amp[i] >0)

I
x-x2+7S0;
y=y 2-i'2SO-S00;
plol_ intvBl(x,y,rre[ij);
x-x2+2000;
famp-amp[i];
p lol_intval(x,y,.(70-amp[iJ» ;
}

++i;
}

/ ' se1ect-PCD(GREEN); "
edgeJcct(x2+400,y2+200,x2+2700,y2-S00-i'2S0);
edgeJcct(x2+4oo,y2+2oo,x.2+2700,y2-3S0);

/' setect,J)en(BLACK);"

,. sclectpen(RED);'/
edge_rect(x 1-12oo,y1-800,x.2+300,y2+8oo);
edge_rec lex1-1215,y 1-81S,x2+31O,12+gI0);
plol_absol ule(12000,9200);getcbC);getch();
relative_dircction(O,I) ;

" seleet,J)en(BLACK): "
plol_string(xl-800,yl+(y2-yl)/6+1S0,"FrequencyAmplitude ");
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, . scleclyen(PURPLE):·'
for( i-O:i<8;++i)

{
value-(7-0· 10:
x=xI·S20;
y=y 1+i·«y2.yl)l(ydim/ydslep»- IOO:
plol_intva l(x,y,value);
x=xI·200;
plot_string(x,y,~db");

}

for(i -O;i«xdi m/xdslep) ;++i)
ploUntval(xl+i·«x2·xl )l(xdimlxdstep»),yl-150,i·IOO);

, . sc:leclyen(B LACK); ·'
plot_string(xl+(x2-xl )l4+60,yl+80-S00,~Spectral Fre quency in Hen");
plot_string(xl+300,yl-IIOO,lil le);
return I ;
}, " " ,

I· ..•• • •••••••••..• •• • • • •• •• Plot iDtlger value ,, ,
int plot)otval(inl x,inty. int value)

(
int i;
charlep'2;
charbufJ1l0);

itoll(value,buff,IO);
pen_ up();
plot_absolutc(x,y);
writ c_scrial( 'D');
writc_scrial('T');
writc_scrial(ter);
writc_serial('; ');

writc _serial('L') ;
write_serial('B');
i-O;
whilc( bufITi] I-NULL) , . Print The String . ,

(
wrile_serial(buffl:i]);
++i;
}

writc_scr ial(ter);
init..p lotter();
return I ;

return1;
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I, ,
r······..·······..···..·..··· · · · · Plot .btolute IOlbe po iat l,)'··· ..•••••••• .. · ,, ,
in! ploU h.elo( inl ;E,W Y)

I
pen_down();
scl ecl_vclocity(DVELOCIlY);
plot_re lative( x, y);
pen_u p();
selecUlt locit)'(DVELOCITY);
retum l;
I

/ /

/· · · · · · · · · · · · · · · · ..•••••..·····Plo(tbe reaeallgl e · ..•••••..•••• ,
/ /

int p loU "ecta llg le(ln t~J.in, y l ,lnt xV n' )/1)
I
plot_Dbsolute(xl ,yl);
ploU ineto(x2 -x l,O);
pI01) ineto(O,y2-yl);
plotJineto(xl -x2.0);
plot) ineto(O.yl.y2);
return I ;
}

, ,
1- Pio. rebtne rrom p~ell1 posl11011 ,,. ,
in! ploC n latin ( inl ;r,inIy)

I
int i;
c:harbufJ(IO);

vm te_sel'iaI('P' );
vm te_Serill('R');
iIGa(x,butl', IO);
i-o ;
whilt{buflIi) 1=0 NULL)

I
wrilt_seria l(bufl'[i) ;
++i;
}

wr11c_serill('.');
itoa(y,butt:IO);
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i-o;
while(b uff[il r""NUU)

(
wri te_srnal(bu ftli]);
++i;
}

write_seri al(';');
tC'IUml;
}

/ t

, · · ..• ••••.. •.. • ••••..·····PlotleJ.1ItriDc·· • ••• • • •• ••• ,
/ ,
int ploU trin c(int " .int y,chu1- buJllJ)

I
int i;
chartcr- 2;
pcn_up( ) j
plot_abso lutc(x,y )j
writc_scrialCD');
write_serial(T);
writescrial(ler);
writc:scrial(';');

Mitc_scria)('L1 ;
nritc _scrW('B' );
;.0;
Yofl ik(buffli] I ~NULL) I ' Prinl The String ' 1

I
wrilc_scrial(buff[iJ);
++i;
)

v.ritc_scrial(lcr) ;
default.,p lotter();

I ' plot_absolule(IO,IO); Movetoongin'/
returnI ;
I

'"



/ /
/ PLOT LINE ,
/ /

tntploU lne(intx /,int yJ,int x l ,in!yl)
(
pen_up();
piocabsolute(:rc: l ,y l);
pen_downO:
select_velocity(DVElOCITY):
plot_absolulc(x.2,y2):
pen_up();
selecU 'elocity(DVELOCITY);
return I ;
}

/ ,
, SELECT VEWCITY /
/ ,
int lelecCveloclty(int y)

{
inti:

charbufJ{IO);

wrile_seria~'V');

wrile_seriaICS');
il08(V,buft',IO);
i~;

while(buflIi)I=NULL)
(
wrile_seriaJ(buff[iJ);
++-i;
}

writc_scriaIC;');
return I;
}

1, 6



, }

, PLOT ABSOLl1fE ,, ,
int ploc_absolute(mt x.inl )'1

(
int I;
charbuff[IO);

wrilt_serial('P'};
write senal('A');
itoa(X:bu~IO);
i-<l;
whilc(buff[i) I-NULL )

{
writt _scrial(buff[ i»;
++i;
}

writc_senal(',');
itoa(y.bu~ IO);

i-o ;
whilc(buff[i) I- NULL)

(
write_scrial(buff[i]);
++1;
)

wriIC_serial(';');
retunll ;
}

r···..······· ···················..··..·····..··•··..····· ,r····..·······..····· ··· PLOT CIR CLE ,r····..········..···· ·····..····..········..···•·..······· ,
inl plot_dr d e(irlt :r,hlt y ,int rodlow)

(
inti ;
charb uff[IO);
pen_up();
plot_sbsolute(x,y);
write_serlal('C');
writt_senal('I');
itoa(radious,buff,IO);
i- O;
whilc(buff[i] I..NULL)

{
wrilt_serial(buff[ i);
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++i;

I
write_serial(';');
returnI;
I

J- /
,. SELECT PEN ,
r /

inll electpea{i l'ltno)
I
inti;
charburq IO];

wrile_senalrs');
write seriaICP');
iloa(;"o,buff, IO);
i- Oj
while(blJfI'[i) I..NULL)

(
writc_serill(butJIi]);
++i;
I

wrile_seria.I{';');
retu rn I;
I

r .. •• •••• .. •.. ••• •••••..•••• •..•••• •• •••••..••••••.. ••• /,. INlTPLOlTER ,,. ,
int la ltJlonerQ

I
write_seria.l('r);
wrilc_5CriaI('N');
wrilc_lCrial(';');
retum I;
I

intdcfaullJ)l otter()
(
wrilc_lCrial('D');
writc_Jeria l('P);
write_scrialr;' ):
n:turn I;
I

158



, ••••..•••• f

f · · ..••••••..•••• PEN UPand DOWN ••••..f

f · · .. ••••••••••••••.. ••••• •••..•..•••• ....••• • • • • • • .. •••• •••• ....f

inIJl"l_"p()
I
write_seri«P');
v.ritc_serial('U');
write_sen. I(';');
rdIlm l :
I

intpel_d oWD()

I
writc_serialrp');
wrilc_se rialrD');
write_serial('j');
relum1;
I

f·········..······..·······..···· ···· ······..······..·· /
, · · · · · · · · · •••• ··Ialliallzati oi lid W rillag to Serial Pon ••••••••• ..••• ..·fI··..·· ~ " f

intiait_.e~

I
un jee REGSregs;
regs.h..ah-O;
reg.s..h.a}=(128-$32)+(0+fJ)+( 1)+(1+1);
regu.dx-O;
int86(OxI4,& regs,.tregs);
rctunll;
}

int write_s crial(charc:)
(

union REGS regs;
regs.h.ah-=Ox.OI;
rr.:gs.h.al-e;
reg s.x.dx·O ;
int 86{OxI4,&regs,&'regs);
return I;
I
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, , ,
, (' Set Relative Direction "' ,, ,
in! n lative_dinctioll(illlnm,int rise)

I
int i;

char bufT(IO);

wrile_serial('D');
write serial('R');
itoa(run,buff,10);
i=O;
while(buffliJ J"NULL)

I
wrile_scrial(buffliJ);
+ti;
I

write_seriaIC,');
iloa(rise,buff,IO);
P O;
whiJe(bufT[ijl=-NULL)

I
wrile_scril l(buff[i]);
++i;

J
write_seriat(';');

return I ;
J

tt ······· ~···· ·· .. ••••••••••••••••••••• .. ••••••• .. •••••• ,t Draw aD edged ncaDgle In ablolute Co-ordiDat ,, ,
intrdl e_ftCt_a b(Jnt x,lmy)

I
int i;
charbuftllO] ;

write_serial('E');
writc_scrial('A');
iloa(x,buff,IO);
ia();
while(buff[i) ' '' NULL)

I
write_serial(buffIi» ;
++i;
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}
write_seriale,');
itoa(y,buff.IO);
PO ;
while(buffIiJ !zNUU)

(
write_serial(buff[i]);
++i;

return I ;
}

, ,
, 0 1" auedgt'll recan gle lu relativ e co-ordia.tc· .. • • ••••••••.. · /, /

inl ed gCJ ccl(inl x l,int yJ,inl xl,lnt y ")
{
inti;
charbuff[ IO];
pioU tbsolule(xl ,y l );
wrilc_senal('E');
wri te_sen. I('R');
itoa«x2 -. I), buff,JO);
;..0;
whllc(bufl[i] I" NUU)

{
writc_scrial(bufJIi]l;
++ i;
}

write_serill (',');
itoa«y2 -y l),buff,10);
i..();
while(buffli] I- NUll.}

(
wrilc_serial(buff(i)):
++i;
)

writc_scrial(';1;

return I ;
)

}51
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