Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory

Summers, Danny and Binbin, Ni and Meredith, Nigel P. (2007) Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. Journal of Geophysical Research, 112 (4). pp. 1-11. ISSN 2156-2202

[img] [English] PDF (Migrated (PDF/A Conversion) from original format: (application/pdf)) - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB)

Abstract

Radiation belt electrons can interact with various modes of plasma wave in their drift orbits about the Earth, including whistler-mode chorus outside the plasmasphere, and both whistler-mode hiss and electromagnetic ion cyclotron waves inside the plasmasphere. Electrons undergo gyroresonant diffusion in their interactions with these waves. To determine the timescales for electron momentum diffusion and pitch angle diffusion, we develop bounce-averaged quasi-linear resonant diffusion coefficients for field-aligned electromagnetic waves in a hydrogen or multi-ion (H+, He+, O+) plasma. We assume that the Earth's magnetic field is dipolar and that the wave frequency spectrum is Gaussian. Evaluation of the diffusion coefficients requires the solution of a sixth-order polynomial equation for the resonant wave frequencies in the case of a multi-ion (H+, He+, O +) plasma, compared to the solution of a fourth-order polynomial equation for a hydrogen plasma. In some cases, diffusion coefficients for field-aligned waves can provide a valuable approximation for diffusion rates for oblique waves calculated using higher-order resonances. Bounce-averaged diffusion coefficients for field-aligned waves can be evaluated generally in minimal CPU time and can therefore be profitably incorporated into comprehensive kinetic radiation belt codes.

Item Type: Article
URI: http://research.library.mun.ca/id/eprint/482
Item ID: 482
Department(s): Science, Faculty of > Mathematics and Statistics
Date: April 2007
Date Type: Publication

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics