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Abstract—Coexisting biotite and muscovite in ten metapelitic and quartzofeldspathic rocks from western
Labrador have been analyzed by electron microprobe for major and minor elements and by a laser ablation
microprobe coupled to ICP-MS (LAM-ICP-MS) for selected trace elements—Li, Sc, V, Cr, Mn, Co, Ni, Cu,
Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf and Ta. The samples have experienced a single prograde Grenvillian
metamorphism ranging from 490 to 680°C and from 7 to 12 kbar. The trace element compositions of
coexisting micas in the metamorphic rocks are used to assess the effects of crystal structure, major element
composition and temperature on the partitioning of each element between biotite and muscovite.

Overall, trace element distributions are systematic across the range of metamorphic grade and bulk
composition, suggesting that chemical equilibrium was approached. Most distribution coefficients (biotite/
muscovite) show good agreement with published data. However, distribution coefficients for Co and Sr are
significantly different from previous determinations, probably because of contamination associated with older
data obtained by bulk analysis techniques. The sequence of distribution coefficients is governed mainly by the
ionic radii and charges of substituting cations compared to the optimum ionic radius of each crystallographic
site in the micas. In particular, distribution coefficients exhibit the sequente(G615 A)> V3 (0.64 A)>
SS* (0.745 A) in Vl-sites, and B&" (1.61 A)> SP* (1.44 A) and C$ (1.88 A)> K™ (1.64 A) > Rb*

(1.72 A)> Na* (1.39 A) in XllI-sites. The distributions of Li, Sc, Sr and Ba appear to be thermally sensitive
but are also controlled by major element compositions of micas. V and Zr partitioning is dependent on T and
may be used to cross-check thermometry calculations where the latter suffer from retrograde re-equilibration
and/orhigh concentrations of Pé&. The ranges and dependence of distribution coefficients on major element
compositions provide important constraints on the values that can be used in geochemical mdtigtipgght ©

2000 Elsevier Science Ltd

1. INTRODUCTION ment of the trace element partition coefficients for a wide range
of trace elements in various metamorphic environments is essen-
Major element partitioning between coexisting phases is an tial. At present, there are relatively few published trace element
important aspect of the characterization of phase equilibrium partitioning studies for biotite-muscovite pairs in metamorphic
relationships as a function of pressure (P), temperature (T) andsystems (Butler, 1967; Moorbath et al., 1968; Dutrow et al., 1986:
compositional variables (X) and is the basis for classical geo- Shearer et al., 1986; Hervig and Peacock, 1989; Dahl et al., 1993;
thermobarometry (Kretz, 1961). In principle, the concept pomanik et al., 1993). Moreover, very little is known about the
should also extend to trace element partitioning which should gependence of the biotite/muscovite distribution coefficients on
therefore also be useful to estimate P-T conditions during {he intensive and extensive variables, constraining geochemists

metg_morphism (e.g., Heinrich et ql., 1997; Bea_e_t a!., 1997). In to adopt a largely empirical approach using constant average
addition to thermobarometry, studies of the partitioning of trace distribution values in their modeling (e.g., Haack et al., 1984;

elements_among _coeX|st|ng me_tgm_orphlc minerals can_prowde Johnson, 1994). In addition, most trace element data in the
valuable information about equilibrium and petrogenesis (e.g., - L . .
earlier publications were obtained from bulk analyses of min-

Haack et al., 1984; Dahl et al., 1993; Hickmott et al., 1987 eral separates, which have commonly proved to be contami-
Hickmott and Spear, 1992; Johnson, 1994; Kretz et al., 1999; p. o . y P - .
nated with micro-inclusions of accessory minerals (Michael,

Yang et al., 1999). However, the subject has been relatively little 1988) Th £ mi | Iso d ke mi |
investigated because of the difficulty in obtaining uncontami- ) )- . e use of mineral separates also oes_ not ta ?_ m_lnera
gzonlng into account, so the results may not yield equilibrium

nated trace element analyses and due to complications resultin o St ) .
from crystal chemistry and the composition of host minerals. partition coefficients. These problems are especially acute in
Micas are petrogenetically very useful minerals because of Medium grade metamorphic rocks where micro-inclusions are

their high abundance in many metamorphic rocks, their wide ubiquitous. In this study, we have determined partition coeffi-
range of stability, their relatively simple mineralogy and their cients for selected trace elements in coexisting biotite and
potential to provide information about P-T conditions. To ex- Mmuscovite from ten metapelitic and quartzofeldspathic rocks
tract meaningful petrogenetic information, accurate measure- from western Labrador using a microbeam technique and have
examined the variation of biotite/muscovite partition coeffi-

cients as a function of crystal structure, variations in major
*Author to whom correspondence should be addressed. element composition and metamorphic temperature.
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Fig. 1. Generalized geologic map of the northern Grenville province
in western Labrador, Canada, showing metamorphic isograds and lo-
cations of the ten analyzed samples. GT-Gagnon terrane; MLT-Molson
Lake terrane Geologic map from Connelly et al. (1996) and metamor-
phic isograds from Rivers (1983b) and van Gool (1992).

2. GEOLOGY AND SAMPLES

T. Rivers

Metamorphic grade increases from greenschist facies in the
northwest, at the Grenville Front, to upper amphibolite facies in
the southeast, near Molson Lake terrane. Six metamorphic
zones have been outlined by Rivers (1983b) based on the
diagnostic mineral assemblages: chlorite-muscovite (1), biotite-
muscovite (Il), garnet-biotite (l1), staurolite-kyanite (1V), bi-
otite-kyanite-garnet (V) and biotite-kyanite-garnet-granitic
veins (VI) in order of increasing metamorphic grade (Fig. 1).
The isograds were telescoped during thrusting (van Gool,
1992), and the apparent absence of a staurolite-biotite zone
between the garnet-biotite and staurolite-kyanite zones may be
due either to telescoping and/or to poor exposure. The samples
chosen for this study include five from the garnet-biotite zone
(referred to as low-T samples) and another five from staurolite-
kyanite, biotite-kyanite-garnet and biotite-kyanite-garnet-gra-
nitic veins zones (referred to as high-T samples). Micas from
the lowest grade zone are very fine grained, presenting diffi-
culties for the LAM-ICP-MS technique, and were not included
in this study.

All selected rocks are foliated and are composed principally
of quartz (26—-62% modal), micas (35-54% modal) and lesser
amounts of garnet, kyanite, chlorite, epidote and plagioclase,
with accessory minerals constituting the remainder (Table 1).
All of the samples have at least one Ti-saturating phases such
as ilmenite and rutile in the matrix. Plagioclase occurs in all
samples except 88-58. Accessory minerals in the samples
include pyrite, ilmenite, rutile, monazite, apatite, tourmaline,

The ten analyzed samples come from Gagnon terrane in thegraphite and zircon. Both biotite and muscovite show little sign

Grenville Province of western Labrador (Fig. 1). Gagnon ter-
rane comprises a metamorphic foreland fold-and-thrust belt
(Rivers, 1983a,b; van Gool, 1992), that is separated from the

of retrogression and secondary muscovite rarely occurs in these
rocks. Inclusions of apatite, zircon and ilmenite are common in
the biotite crystals, and, to a lesser extent, in the white mica. A

Superior Province foreland in the northwest by the Grenville marked coarsening of the grain size of the micas occurs within
Front, and is tectonically overlain by Molson Lake terrane to the staurolite-kyanite zone and coincides with the disappear-
the southeast. Metasediments in Gagnon terrane, which are parance of primary chlorite from the assemblage (Table 1). Min-
of the Paleoproterozoic Knob Lake Group, were deposited on eral assemblages, textures and reactions in metapelitic rocks of
the passive continental margin of the Superior Craton and the Gagnon terrane in western Labrador are described in detail
experienced a single Barrovian-type regional metamorphism elsewhere (e.g., Rivers, 1983b; van Gool, 1992).

during the Grenvillian Orogeny at ca. 1000 Ma (Rivers, 1983b;

Brown et al, 1992; van Gool,1992; Rivers et.al1993;

Schwarz, 1998). During this orogenic event, Gagnon terrane
was overthrust by Molson Lake terrane, composed of Late
Paleoproterozoic to Mesoproterozoic granitoid and gabbroic

3. ANALYTICAL METHODS
3.1. Electron Microprobe Analysis

Major and minor element analyses were performed using the

rocks, and incorporated into the base of a major thrust wedge. Camec& SX-50 electron microprobe at Memorial University

Table 1. Mineral assemblages and modal percentages of the ten metapelitic samples from western Labrador.

Sample Zones Qtz Ms Bt Chl Ep Pl Ky Grt Tur Ap Rt Zrn Ilm Py Mo Gr
87-81 I 41 28 26 <1 <1 <1 <1 <1 <1 <1 <1

87-83 1 53 11 28 <1 <1* <1 4 <1 <1 <1 <1 <1
87-86 1 40 11 43 <1 <12 <1 <1 <1 <1 <1 <1 <1
87-279 M 48 6 23 B <1 <1 3 <1 <1 <1 <1 <1 <1
88-32 I} 30 19 3B <1 <@ <1 10 <1 <1 <1 <1

88-48 v 26 10 44 i <1 2 10 <1 <1 <1 <1 <1

88-45 \Y 44 27 11 <1 <1 11 <1 <1 <1 <1

88-85 \ 62 29 6 <1 2 <1 <1 <1 <1 <1 <1 <12
88-74 \ 34 26 23 5 <1 <1 <1 <1® <1 <1 <1 <1

88-58 \ 34 43 8 11 <1 <1 <1 <1 <1

#Minerals occur only as inclusions in garnet.

b Secondary minerals. Characteristic mineral assemblages of metamorphic zones are: Ill; Grt-Bt, IV; St-Ky; V; Bt-Ky-Grt and VI; Bt-Ky-Grt
granitic veins. Mineral abbreviations after Kretz (1983).
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Table 2. Precision and mean values for a glass standard BCR-2 determined by LAM-ICP-MS.

Elements AVG STD RSD DL No Known AVG/Known
Li 8.4 5.955 1 9.98 0.84
Sc 31.4 0.8 2% 0.653 5 32.6 0.96
TiO, 2.05 0.04 2% 1.6E-4 10 2.24 0.91
\% 402 11 3% 0.068 7 407 0.99
Cr 15.0 2.5 16% 2.501 6 16 0.94
MnO 0.18 0.01 4% 5.1E-5 7 0.177 1.03
Co 36.4 1.7 5% 0.325 7 37 0.98
Ni 11.3 1.4 12% 1.041 7 13 0.87
Cu 20.5 1.0 5% 0.356 5 19 1.08
Zn 173 12 7% 0.581 5 129.5 1.33
Rb 54 0.018 2 47.51 1.14
Sr 337.2 7.6 2% 0.006 5 337 1.00
Y 31.9 1.7 5% 0.007 7 32.51 0.98
Zr 170.5 6.3 4% 0.021 10 184.4 0.92
Nb 10.8 1.0 9% 0.006 5 13.14 0.82
Cs 1.3 0.014 2 1.19 1.09
Ba 644 21 3% 0.035 10 681 0.95
La 25.5 1.1 4% 0.005 7 25.3 1.01
Ce 54.3 1.7 3% 0.003 9 53.6 1.01
Hf 4.8 0.3 5% 0.021 7 5.17 0.94
Ta 0.6 0.1 9% 0.004 7 0.78 0.77

Based on 10 determinations over the period March 19, 1996 to April 5, 1997. A\derage; STD= standard deviation; RSB relative standard
deviation; DL = detection limits; No= number of observations; and Known literature values from Govindaraju (1994).

of Newfoundland using energy dispersive (ED) and wavelength ppb for lower-mass elements (Li to Zn) (Table 2). However,
dispersive (WD) methods simultaneously. Analyses were car- detection limits for samples are different from the glass stan-
ried out using a 15 kV accelerating voltage, 10 nA current and dard because of different beam diameters, counting times and
a 5 micron beam diameter. ED analyses used a cobalt gainablation energy used for each single analysis. For high-T micas,
calibration. Ti, F and Cl were determined by WD analysis using we used a~70 um beam size and-0.7 mJ/pulse of laser
ilmenite, apatite and tugtupite (MalBeSi,O,,Cl) as stan energy. For low-T micas, we had to reduce the beam size and
dards, respectively. Analyses were obtained on three or more pulse energy by almost half because of their smaller size.
crystals of biotite and muscovite in each of the ten samples. According to Longerich et al. (1996), the difference in beam

Precision at the & level for Ti (used for calibration of ICP-MS  sjze between low- and high-T micas results in at least a fourfold
results, see below) was better than 6% relative in both biotite jhcrease in the detection limit.

and muscovite. Repeated measurements of BCR-2 glass at the same ablation
_ conditions yielded a precision @) of better than 5 and 10%
3.2. LAM-ICP-MS Analysis relative for absolute concentrations above and below 1 ppm,

Trace element compositions in micas were determined by a respectively, except for Cr and Ni. The poor precision obtained

laser ablation system coupled to an ICP-MS (Fisons VG PQII for Cr and Ni is attributed to their concentrations approaching
+S9) at Memorial University of Newfoundland. The LAM detection limits in the glass. Zn analyses clearly show the
system incorporates a Nd:YAG laser (266 nm wavelength), a effects of fractionation during the laser ablation, as indicated by
custom built sample cell and an Ar carrier gas system. Details INCreéasing signals over time, invariably resulting in_higher
of the system are described in Jackson et al. (1992), Jenner efconcentrations compared to the literature values (Table 2).
al. (1994) and Taylor et al. (1997). Because of the fractionation effect observed, the lowest mea-
Data acquisition was performed by peak jumping in pulse Sured value of Zn for each sample was used. _
counting mode, acquiring individual intensity data for each T_he tlme-r_esoIVQd an_aly5|s of the LAM e_lllows det(_ectlon _of
analyte isotope during each mass spectrometer swekgéc). zoning and inclusions in the analyzed mineral grain during
A total of about 480 sweeps, comprising a gas background ablation, which is a great advantage over other microbeam tech-
interval of about 200 sweeps followed by an ablation interval of hiques such as PIXE and SIMS. However, the presence of sub-
about 280 sweeps was performed for each analysis. Calibrationmicroscopic inclusions below the resolution of the time-resolved
was conducted on the NIST SRM-610 glass standard, and signal (a few microns) cannot be ruled out. Indeed, Zr, La and
BCR-2 was used to check the data quality during each run. Ti Ce analyses of micas are highly variable on a thin-section scale.
was routinely employed as the internal standard, based on electronSince micro-inclusion phases enriched in Zr, La and Ce, such

microprobe measurement of the TiGontents in the micas. as zircon, monazite and apatite, were found in the analyzed
Data reduction followed the protocol outlined by Longerich micas, we consider the most reliable data to be those with the
et al. (1996). Limit of detection for BCR-2 fora50 um beam lowest concentrations of these elements. Zn, Zr, La and Ce data

size and~0.5 mJ/pulse was typically in the range 3-35 ppb for therefore should be considered as only semi-quantitative.
most high-mass elements (Rb to Ta), and between 68 and 6000 Electron microprobe and LAM-ICP-MS analyses of biotite
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Fig. 2. Distribution diagrams showing the partitioning of elements between coexisting biotite (Bt) and muscovite (Ms).
Open and closed circles represent low and high-T biotite-muscovite pairs, respectiaig. X represent mica pairs from
St and Sil-zone, reported by Dahl et al. (1993). Error bars represent the standard deviatioDatialare regressed where
they show systematic differences between low and high-T. The numbers are slopes of regression lines, with values in
parentheses representirfg Dashed lines represent equal partitioning. Labeled data points are discussed in the text.
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Fig. 2. (Continued)

and muscovite are presented in Tables 3—4 as averages ando avoid obvious cleavages during laser ablation, but cleavage

standard deviations () of 2—-3 analyses performed for each does not appear to affect analytical results.

mineral from two to three domains in a thin-section, except for

sample 87-86, in which all analyses come from a single 4. MAJOR ELEMENT COMPOSITIONS

domain. Most analyses of Ca, Y, Zr, La, Ce and Hf in biotite

and Ca, Ni, Cu, Y, Zr, La, Ce and Hf in muscovite are close to  Structural formulae for both biotite and muscovite are based

their respective lower limits of detectior<@ times detection on 22 oxygen atoms (Tables 5-6). Both biotite and muscovite

limit) and these elements are italicized in the Tables 3—4. Mica show no significant variation in Si and thus"Atontent, which

stoichiometries are given in Tables 5-6. Cation site-occupan- is defined as the difference between 8.0 and the number of Si

cies were assigned on the basis of ionic radii (Shannon, 1976). atoms. All of our micas are saturated with respect to Ti because
Establishing the presence or absence of zoning is important of their coexistence with either ilmenite or rutile. In the case of

for an evaluation of chemical equilibrium. Each mineral, there- Al, micas from high-T samples, except for sample 88-58, are

fore, was analyzed close to its rim and at the core for repre- saturated in Al because of the presence of kyanite in the matrix

sentative samples. The analyzed micas are virtually unzoned (Tables 5-6). However, there are no Al-saturating phases in the

both in major and trace element concentrations. Care was takenlow-T samples. F& /F€" ratios in biotite and muscovite were
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Table 7. Molar partition coefficients (Dof coexisting biotite-muscovite pairs from metapelites, western Labrador.

Elements 87-81F 87-81l 87-81K 87-83C 87-83D 87-86F 88-32A 88-32B 87-279D 87-279F 87-279G
Octahedral sites

Li 1.18  1.09 1.80 1.37 (0.23) 1.40 4.01(0.28) 1.77 (0.51) 1.69

Sc 0.27 0.25  0.26 (0.02) 0.27 0.18 (0.02) 0.25  0.19(0.03) 0.22 0.20 0.23 (0.05) 0.22 (0.05)
\Y 0.50 0.33 0.37(0.08) 0.33 0.35(0.01) 0.35 0.37 (0.04) 0.42 0.36 0.37 (0.07) 0.39 (0.09)
Cr 0.88 0.46 0.48 121 0.66 (0.14) 0.53 .76

Co 12.26 9.25 9.26 7.67 (1.01) 10.43 13.22(0.95) 8.41(4.12) 8.29 (3.98)
Ni 5.77 10.59 7.95 (0.48) 10.24 13.97 (1.82) 6.12 (3.73) 9.31

Cu 1.87 1.30 1.94 2.59 (0.64) 0.96 (0.68) 1.19

Zn 10.46 10.46 10.46 10.89 10.89 7.73 7.02 7.01 10.18 10.12 10.12

Y 0.39 0.39 0.39 0.67 0.67 121 0.40 0.40 1.32 131 1.31

Zr 0.62 0.62 0.62 0.37 0.37 0.31 0.31 0.31

Nb 1.44 1.56 (0.09) 1.09 1.07 (0.07) 1.25 1.18 (0.11) 1.14 1.35

Hf 0.31 0.22(0.12) 0.70

Ta 2.88  3.21(0.08) 2.56 1.89(0.01) 2.10 2.04 (0.14) 3.31(1.15) 2.65
Interlayer sites

Rb 1.89 2.11(0.11) 1.88 2.02 (0.25) 1.76 (0.40) 2.51 (0.68)
Sr 0.02 0.02 0.01 0.01 (0.001) 0.01 0.01 (0.002) 0.01 0.01(0.002)  0.02 (0.004)
Cs 18.12  30.50 (5.93) 16.14 (2.31) 15.46 13.27 (1.84) 12.43 (4.18) 11.44

Ba 024 020 0.25 0.30 0.21 (0.02) 0.20 0.26 (0.04) 0.31 0.29 0.25 (0.04) 0.32 (0.09)
La 2.04 2.04 1455 1446 14.45

Ce 3.90 3.90 3.90 1.29 1.29 3.86 3.86

T (°C) 507 507 507 492 492 503 503 503 530 530 530

P (kbar) 7.6 7.6 7.6 7.7 7.7 7.4 8.8 8.8 8.8 8.8 8.8

Italicized elements are present in concentrations below or close to 3 times detection limits in either biotite or muscovite. Metamorphic ésmperatur
and pressures were estimated using the garnet-biotite geothermometer of Holdaway et al. (1997), and Grt-PI-Bt-Ms and Grt-Ky-Qtz-Pl geobarometers
of Hodges and Crowley (1985).

not determined, precluding full evaluation of the variation of 0.10 and 0.28 atoms p.f.u. Cl contents are uniformly low

trace element distributions involving iron.

4.1. Biotite

The majority of the VI-fold sites are filled by Mg (2.04-3.01
atoms per formula unit, p.f.u.) and F&" (1.77-2.80 atoms
p.f.u.) (Table 5). X, of biotite, ranging from 0.42 to 0.64,
reflects variation both in the bulk composition and T. Octahe-
dral Al in biotite, defined as the difference betweed Al and
VAl is between 0.63 and 0.83 atoms p.f.u. Most of th&’ A$
balanced by A", suggesting operation of the Al-Tschermaks
substitution, (Fe, Mg)SiAl,Al'Y,. Biotite coexisting with kya
nite is relatively enriched in APT (3.18-3.28) compared to
low-T biotite (3.09-3.17), presumably due to Al saturation in
the former samples (Table 5). Ti contents in biotite range from
0.13 to 0.24 atoms p.f.u. with no clear correlation with the
contents of Fe and Mg and metamorphic grade (Table 5).
Concentrations of Mn are typically low, but vary widely (31—
1,541 ppm). In all of the biotites studied, the sum of the
octahedral cations is below the theoretical value of six atoms
p.f.u., butis always above 5.61, implying no significant amount
of FE®" in the biotites.

Theoretically, two atoms p.f.u. are allocated to the XII-
interlayer site in biotite. The XII- site in the analyzed biotites is

(<0.04 atoms p.f.u.).

4.2. Muscovite

AIV! of muscovite varies from 3.46 to 3.61 atoms p.f.u. with
the lowest value from the high grade sample 88—-58. Al com-
prises 88% of the ions on average in the octahedral sites, the
remainder being mostly Mg (0.21-0.28 atoms p.f.u.) and
Fe™T (0.14—0.28 atoms p.f.u.). The muscovite compositions
deviate slightly from the ideal Al-Tschermak substitution when
defined in terms of Si and APT. However, the linear distri
bution of analyses parallel to the Al-Tschermak substitution
(not shown) indicates no significant variations i Feontents
among the analyzed muscovites. With the exception of sample
88-58 (which does not contain kyanite), the content diAl
of muscovite from high-T samples is similar to that of low-T
samples, indicating quasi-saturation of Al in low-T samples.
The Ti contents of muscovite range from 0.04 to 0.09 cations
p.f.u., and correlate positively with the Mg content. The Mn
content of all muscovites studied is extremely low (1.3-76.7
ppm) and appears to decrease with metamorphic grade. The
total octahedral occupancy of analyzed muscovites (ideally
4.00 atoms p.f.u.) varies from 4.02 to 4.11 atoms p.f.u.,
indicating slight deviation from dioctahedral micas in all

dominated by K (1.46-1.89 atoms p.f.u.) with small amounts analyses.

of Na (0.10-0.15 atoms p.f.u.) and Ca@.01 atoms p.f.u.) The Xl interlayer site in white mica is filled predominantly
(Table 5). The amount of interlayer site vacancy, ranging from by K (1.48-1.82 atoms p.f.u.) and by lesser amounts of Na
0.02 to 0.41 atoms p.f.u., is surprising given the almost com- (0.17—-0.35 atoms p.f.u.). The Ca content determined by LAM-
plete analyses. Concentrations of F in biotite range between ICP-MS is negligible (mostly below detection limits, occasion-
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Table 7. (Continued)

Elements  88-48C 88-45D 88-45E 88-74C 88-74D 88-74E 88-85C 88-85D 88-58A  88-58B  88-58C

Octahedral sites

Li 2.98 2.93(0.22) 4.04(1.64) 3.58(0.49) 3.32 2.86(0.34) 3.09 3.78 3.40

Sc 0.51(0.23) 0.32(0.14) 0.70(0.16) 0.41 0.54 0.43 0.52(0.04) 0.93 0.55(0.09) 0.77
\Y 0.44(0.09) 0.59 0.59 (0.06) 0.84(0.13) 0.66 (0.08) 0.83 0.60(0.04) 0.76).07) 0.63 0.48(0.11) 0.63
Cr 1.78 2.01 2.62 (0.34) 1.99 1.34(0.12) 1.68(0.50) 1.57 0.96
Co 12.47 22.89 18.53 (4.36) 15.93(2.35) 17.14 (3.03) 18.63 11.91 (3.46) 13.26 (3.67) 12.16 10.85(1.14) 12.68
Ni 23.73 20.73 23.23(2.99) 18.81(1.65) 20.69 13.15(3.16) 16.51(3.16) 11.02 9.17(1.38) 11.16
Cu 1.92 2.82 4.98 (0.58) 3.08(0.18) 6.07 4.05(1.15) 3.58 329 3.0

Zn 9.37 21.31 21.31 15.31 15.31 15.31 12.53 12.52 13.43 13.43 13.44
Y 0.86 0.86 0.36 0.36 1.05 1.05 1.05

Zr 0.37 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.05 0.05 0.05
Nb 0.84(0.21) 0.34 0.33(0.06) 1.04(0.25) 0.90(0.15) 0.87 0.21(0.07) 0.25(0.07) 0.97 0.82

Hf 0.15 0.48 0.06 (0.01) 0.06 0.10 0.31 (0.08) 0.31(0.08)

Ta 1.83(0.41) 0.42(0.21) 0.65 2.20(0.58) 1.75(0.39) 1.610.55 0.41(0.16) 0.48(0.18) 1.32 1.75

Interlayer sites

Rb 2.70 2.54 2.95(0.28) 2.41(0.07) 2.46 2.29 1.79 2.04 1.55

Sr 0.01 0.01(.001) 0.03(.007) 0.03(.008) 0.03 0.02 (.002) 0.02(.002) 0.04 0.02(.005) 0.04
Cs 16.60 12.47 12.35(1.42) 11.41(3.07) 10.05 10.31 8.50 (1.76) 4.39 6.06

Ba 0.54 (0.10) 0.46 (0.06) 0.42 0.71(0.08) 0.58(0.11) 0.650.06 0.52(0.07) 0.62(0.11) 0.74 0.58(0.05) 0.67
La 47.24 13.48 13.48 3.60 3.60 3.60 2.56 2.56 23.47 23.48 23.48
Ce 27.34 477 4.77 5.34 5.34 5.34 8.95 8.95

T (°C) 622 643 643 658 658 658 656 656 680 680 680

P (kbar) 9.4 9.4 9.4 8.0 8.0 8.0 8.0 8.0 125 125 12.5

Italicized elements are present in concentrations below or close to 3 times detection limits in either biotite or muscovite. Metamorphic ésmperatur
and pressures were estimated using the garnet-biotite geothermometer of Holdaway et al. (1997), and Grt-PI-Bt-Ms and Grt-Ky-Qtz-Pl geobarometers
of Hodges and Crowley (1985).

ally up to 0.02 atoms p.f.u.). The total occupancy of the where ucog;iS the chemical potential of endmemb&s-Bt
interlayer site ranges from 1.80 to 2.02 and is not related to which is related to the concentration by

metamorphic grade. Deficiencies in the XlI-sites in muscovite,

even when trace elements are included in the analyses, may be Keset = Geser T RTINXcsmrYeser (3)

partially explained by the kDK _; and NH,K _; substitutions Here G..a,is the molar Gibbs energy of pure endmember
and by vacancies in Xll-sites due to charge balance constraintsCS_Bt Riz t;e gas constant, is an activity coefficient, and

. . . . . . Cs-Bt !
caused by other substitutions in 1V, VI and XllI-sites (Guidotti Xconis the mole fractionCs/(Cs+K) in biotite. By introdue

and Sassi, 1998a; Guidotti and Sassi, 1998b). The analyzed;, " e additional equations analogous to Eqn. (3) and sub-
muscovites have less than 0.06 atoms of F p.f.u. with a strong stituting them into Eqn. (2), we obtain

positive dependence on Mg content. Most Cl concentrations are

below detection limits. Xeo B /T Xel™ T v 18 el ™ ZAG®
=[5 el =l 1] el er )}

Xk Xk Ycs Yk RT i

5. THERMODYNAMICS OF TRACE ELEMENT ( )
DISTRIBUTION whereKS®X is the distribution coefficient foEsin K-biotite/

K-muscovite, and\G° is the Gibbs energy difference in reac-
tion (1) with all components pure. In dilute solutions, the
activity coefficients are expected to remain constant following
Henry's Law. Therefore, the concentration ratio will also re-
main constant by the Gibbs-Duhem equatid¥G° is thus

mainly dependent on variations in T. The effects of P are
predicted to be small owing to very small changes in the

The partitioning behaviour of trace elements can be consid-
ered in terms of exchange reactions involving major element
cations for which the thermodynamic basis is well estab-
lished (e.g., Kretz, 1961). For example, partitioning of the
trace element Cs and the major element K between coexist-
ing biotite and muscovite may be expressed by the exchange

reaction: volume of reaction as a result of the exchange reactions. Be-
C"MgY' ALY SIYO,(OH), + KX AIY' ALY SIY O,(OH), = causeXy_ g and X, s are very nearly 1.0, the distribution
Cs-Bt K-Ms coefficient on the left may be writteX._g{Xcs.ms HeNCE, for
KX'MgY' ALY SiY O,(OH), + CS"AIY' ALY SiY O,(OH), a very low concentration oCs we would expect a linear
K—Bt Cs-Ms relation betweerK.,_g.and X, usat constant temperature.
1)
6. THE DISTRIBUTION OF TRACE ELEMENTS
At equilibrium,

The abundance ranges and partitioning behaviour of the trace
Mesar T Mims = Mk-st T Mesms () elements among the 22 biotite-muscovite pairs are presented in
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Table 8. Comparison of the Nernst distribution coefficienty {@tween biotite and muscovite with those of previous studies.

Dahl et al. Domanik et al. ~ Dutrow et al. Butler Moorbath et al.
This study (1993) (1993) (1986) (1967) (1968)
Facies U. Greenschist Amphibolite Amphibolite Ep. Blueschist Amphibolite U. Greenschist Amphibolite
Methods LAM-ICP-MS Solution ICP-MS SIMS AA Spectrography Isotope Dilution
Octahedral sites
Mn 20.62 (5.73) 24.18 (9.64) 16.96 (7.22)
Li 2.38(1.22) 4.49 (0.56) 5.31(1.47) 4.57 (0.68)
Sc 0.31 (0.04) 0.77 (0.24) 0.49 (0.12)
\Y 0.50 (0.06) 0.86 (0.18) 0.88(0.15)
Cr 0.95(0.34) 2.35(0.67) 1.30(0.32)
Co 13.04 (2.51) 20.41 (5.05) 3.45(2.15)
Ni 12.15(3.71) 22.68 (7.30) 18.03 (7.93)
Cu 2.18(0.79) 4.98 (1.68) 2.52 (1.53)
Zn 12.73 (2.11) 20.00 (4.76) 17.77 (10.43)
Y 1.02 (0.57) 1.07 (0.41) 1.94 (2.15)
Zr 0.58 (0.19) 0.15(0.12) 0.74 (0.25)
Nb 1.67 (0.22) 0.89 (0.45)
Hf 0.55 (0.34) 0.28 (0.21)
Ta 3.43(0.72) 1.68 (0.93)
Interlayer sites
Na 0.47 (0.11) 0.28 (0.03) 0.21(0.11)
Rb 1.80 (0.25) 2.07 (0.40) 2.08 1.85(0.78) 1.52
Sr 0.01 (0.00) 0.02 (0.01) 0.32(0.33) 0.03 0.40
Cs 14.81 (5.64) 9.21 (3.26)
Ba 0.23(0.04) 0.53 (0.09) 0.44 (0.34) 0.57 0.42 (0.05)
La 8.48 (6.12) 13.11 (12.70) 0.72 (0.55)
Ce 2.76 (1.10) 8.03 (7.04)
Ca 0.37 (0.09) 0.65 (0.19) 2.07 (1.09) 0.48 (0.08)

The data of Dahl et al. (1993) represent an average of the St- and Sil-zones. Values in parentheses represent standard devitvehs at 1
Abbreviations: SIMS; secondary ion mass spectrometry, AA: atomic absorption spectrophotometry.

Figure 2 (a—u). Also included for comparison in these plots are thermometers incorporating significant corrections for calcium
data from Dabhl et al. (1993) who reported ICP solution analyses in garnet, such as those of Hoinkes (1986), Williams and
of separates from 49 coexisting biotite-muscovite pairs from Grambling (1990) and the TWQ program, version 2.02 (Ber-
the staurolite and sillimanite zones in the Black Hills of South man, 1991) invariably yield unreasonably high temperatures for
Dakota. The partition coefficients are presented here both aslow-T samples which contain garnet enriched in calciurd 2

ppm concentration ratios mole fraction) compared to high-T garnets@.1 mole frac-
tion). There is a temperature gap between low- and high-T
~_ Pppm Bt ®) samples, which may correspond to the missing staurolite-biotite
' ppm Ms zone noted above. As discussed above, distribution coefficients

of Ni, Cu, Y, Zr, La, Ce and Hf involve relatively high
analytical errors because of their concentrations in either biotite
or muscovite or both approach detection limits. The distribution

L X coefficients for these elements, therefore, should be considered
Di= XM (6) as only rough estimates.

equivalent to Nernst distribution coefficients, and as atomic or
molar partition coefficients

following the terminology of Beattie et al. (1993). In these g1 Trace Element Distribution
relationshipsj refers to a specific element and X the mole - . .
fraction of component in biotite or muscovite on a specific For the trace elements, it is evident from Figure 2 that:

site, calculated on the basis of two interlayer sites, eight tetra- 1. Li, Mn, Co, Ni, Cu, Zn, Rb, Nb, Cs, La, Ce and Ta prefer

gﬁgr?r:usslt:%s\;itzn?eznzzijgl( ?‘rﬁ)];)lldres%t:thviggil cS(;tee;sft(iJr: b't?it'te biotite over muscovite regardless of metamorphic grade;
' P Yii 9 2. At low-T, Cr and Y partition coefficients are nearly equal

e ot % between e micss; ang |
' i ; - o 3. Sc, V, Cr (high-T), Sr, Zr, Ba and Hf favour muscovite.
phic P-T were estimated using garnet-plagioclase-biotite-mus-
covite and garnet-kyanite-quartz-plagioclase geobarometers of The distributions of Li, Sc, V, Cr, Nb and Ba show systematic
Hodges and Crowley (1985) and garnet-biotite geothermom- differences between low- and high-T micas (Figs. 2a,b,d,e,0,q).
etry of Holdaway et al. (1997) (Table 7). Garnet-biotite geo- The factors governing these differences are discussed in a later
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Fig. 3. (a) Crystal-fluid partition coefficient vs. ionic radius for
interlayer cations in phlogopite and muscovite. Data are from Volfinger
(1976). Curves are calculated from Eqgn. (5). Dotted line indicates ionic
radius of K. (b) Schematic diagram showing the predicted decrease of
slopes with increasing temperature.

section. The decreasing concentrations of Sc, Mn and Y in
micas with metamorphic grade (Figs. 2b,f,m) indicate that the
matrix is progressively depleted in these elements, probably

because of the increasing modal abundance of garnet, whichis — 1

known to strongly sequester them. The distribution of Ti be-
tween biotite and muscovite is strongly controlled Xy, of
muscovite (not shown).

As indicated by the thermodynamic considerations above,
the systematic linear distributions of most trace elements at
similar metamorphic grade, together with the measured distri-
butions intersecting at the origin (Fig. 2), suggest a close
approach to chemical equilibrium between coexisting biotite
and muscovite across the range of bulk-rock composition and
metamorphic grade. In addition, there is no evidence that any of
the trace elements departs from Henry's Law behaviour.

However, it is noteworthy that biotite and muscovite from
sample 87-279 show variations in Sc ranging from 14 to 22 and
from 55 to 74 ppm, respectively, but with similar distribution
coefficients (Fig. 2b). Analytical errors can be ruled out, be-
cause they are especially low for Sc due to its abundance well
above the detection limits in both biotite and muscovite, and the

absence of spectral interferences. The variability in Sc concen-

trations at the thin-section scale may be attributed to mosaic
equilibrium (initially defined by Zen, 1963), which is caused by
limited diffusion ranges of the element under the metamorphic
conditions. Kretz et al. (1999) also reported evidence for dif-
ferent domains of equilibrium for specific trace elements,
which they attributed to variations in the magnitudes of defor-
mation and recrystallization, together with different diffusion
rates.

6.2. Contamination

Most trace elements in the micas show similar abundance
ranges when compared to the data of Dahl et al. (1993), but Zr,
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Fig. 4. Relationship between distribution coefficient and ionic radius.
(a) D, values for low and high-T micas plotted against ionic radius for
monovalent and divalent cations in Xll-interlayer sites (shaded areas),
along with distribution lines for 500 and 600°C (solid and dashed lines)
calculated from the data of Volfinger (1976). (b) 2alues of 3+
cations in VI-sites plotted against corresponding ionic radius. For
reference, ionic radii of A& and F&* ions are shown.

La and Ce are much lower in our analyses (Fig. 2n,r,s). This
result is clearly due to contamination from zircons and mona-
zite in their samples, which are difficult to remove from mineral

separates. Moreover, consistently lower contents of Mn and Co
in muscovite and higher Ca and Sr contents in biotite from our
data (Figs. 2f,g,l; Table 3) indicate that there may have been
other important sources of contamination in Dahl et al.’s data.
High Mn and Co in muscovite analyses of Dahl et al. (1993)

may be attributed to contamination by ilmenite, despite their
efforts to remove it using a high strength magnetic field. They
reported that Sr data of their muscovite were contaminated by
oligoclase and applied corrections using Sr contents in oligo-
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clase. However, significantly higher Sr contents in biotite, ysis method such as employed by Dahl et al. (1993) and
together with high Ca contents in the biotites of Dahl et al. Moorbath et al. (1968) are 10 times higher.
(1993), indicate that their biotite analyses were also probably  Partitioning of Rb between biotite and muscovite is within
contaminated by oligoclase (Fig. 2l). Bea et al. (1993) reported the range of values reported in the literature and shows little
a similar difference between LAM-ICP-MS and mineral sepa- variation through the entire range of bulk composition and
rate analyses for biotite. Their solution ICP-MS analyses for metamorphic grade. Mn, Ni, Cu and Zn data from Dahl et al.
REE, Th, U, Y, Sr, Zr, Cu and Zn were consistently higher, by (1993) plot on or very close to our trends (Fig. 2). For the
almost two orders of magnitude, than results from analyzing the distribution of Nb, Hf, Ta and Cs between coexisting micas, no
same crystals in thin section with a LAM-ICP-MS. published data from pelitic micas are available for comparison.
The comparison of data given above enables us to conclude
that our partition coefficients are more reliable than the results
from several previous studies which were obtained by means of
The measured distribution coefficients from this study are bulk analysis of mineral separates. Assuming an equilibrium
compared with other data from pelitic rocks, most of which distribution of trace elements, as is suggested by our data, we
represent amphibolite facies conditions, except for those of now discuss the distribution behaviour of trace elements in
Butler (1967) which are for greenschist facies conditions (Ta- terms of various structural, compositional or thermal controls
ble 8). In Table 8, the data of Dahl et al. (1993) and Butler on element partitioning.
(1967) are averages of their staurolite and sillimanite-zones
samples, and samples with no epidote, respectively. Overall, 7. FACTORS INFLUENCING THE DISTRIBUTION
the trace element distributions and relative enrichment patterns COEFFICIENTS
are consistent with published analyses of coexisting biotite and
muscovite (e.g., Butler, 1967; Moorbath et 4968; Dutrow et

6.3. Comparison

7.1. Crystal Structural Effects

al., 1986; Hervig and Peacock, 1989; Dahl et, a@993; Crystal-melt partitioning behaviour of trace elements for
Domanik et al, 1993). However, there are important differ-  various minerals has been modeled in terms of the lattice strain
ences between this and previous studies. associated with placing a cation on a particular crystallographic

The average R, D, and D, values of high-T samples show  site when the radius of the cation differs from the optimal
good agreement with those of Dahl et al. (1993) (Table 8). The radius for that site (e.g., Onuma et al. 1968: Mo 1988;
average [p; value of high-T samples also shows excellent Blundy and Wood, 1991, 1994; Beattie, 1994; Brenan gt al
agreement with that of Dutrow et al. (1986). The measurgd D 1995). Trace element partitioning in mica-melt and mica-fluid
value from high-T samples is similar to values reported for systems also shows that the incorporation of a trace element
epidote-bearing blueschists from the Franciscan Complex by into the crystal lattice is controlled by the size mismatch
Domanik et al. (1993) within permitted errors, implying no between the trace and host cations in the mica structures
significant pressure or bulk composition dependence on Ba (Jensen, 1973; Matsui et al., 1977; liyama, 1979; Volfinger and
distribution (Table 8). However, the {3 value of Butler Robert, 1980; LaTourrette et al., 1995). Using the phlogopite-
(1967), which was obtained from an upper greenschist facies fluid and muscovite-fluid partition coefficients experimentally
pelite, is higher than that of our low-T samples (Table 8). measured by Volfinger (1976) at 500 and 600°C at a constant
Distribution coefficients of Li, V and Ba between biotite and pressure of 1 kbar, we test the model in order to develop
muscovite increase with metamorphic grade (Table 8). analogous relations that describe biotite/muscovite partition

For Sc and Cr, the distribution coefficients of Dahl et al. coefficients in terms of the ionic radius of the substituting trace
(1993), which are from a metamorphic grade equivalent to our elements.
high-T samples, are close to our low-T samples (Table 8). A We assume, for example for reaction (1), th@,,cnangLan
close examination of the plots for Sc and Cr from Dahl et al. be approximated by the energy required to remove a iGa
(1993) reveals that their staurolite-zone data are close to our from the biotite and insert it into the crystal lattice of muscovite
high-T data, but their sillimanite zone data overlap with the while simultaneously transferring a*Kion from muscovite to
low-T data from this study (Fig. 2b, e). In addition, on the basis biotite. The structural work required to incorporate a @sto
of the observed trend for V partitioning between biotite and the muscovite is the sum &Gy, ,;, the lattice strain due to
muscovite in this study, the partitioning of Sc and Cr are size mismatch between the radius of "Cand the optimum
expected to increase with T. However, the opposite trends in radius (f) of the Xll-site in muscovite, and\ ¢aaion the
the data of Dahl et al. (1993) may indicate that their Sc and Cr energy liberated when a Cson is removed from the lattice
compositions from the sillimanite-zone micas were re-equili- site in biotite, assuming major element substitution contributes
brated at lower temperatures, or that their data were influenceda negligible amount oAGg,,,;, and AG, ¢ jaxation0€CAUSE O its
by an increasing amount of secondary (retrograde) micas in the similarity in ionic radius to the optimum size of the crystallo-
sillimanite-zone. graphic site.

Our distribution coefficients for Ca, Co and Sr differ signif- Following the method of Blundy and Wood (1994), we have
icantly from those Dahl et al. (1993), probably because of fitted the partitioning data of Volfinger (1976) by non-linear
contamination in either biotite or muscovite in their analyses as |east-squares regression to the relation:
mentioned above. In support of this assertiog, @ Domanik
et al. (1993), which was determined by the SIMS technique, D(P,T,X) = Do(P,T,X)
shows a good agreement with our high-T results (Table 8). On p[_47TENA {Fo

. ex o

1
2 (ri - ro)z + é (ri - ro)3}:| (7)

the other hand, B values determined by a bulk mineral anal “RT
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distribution of Li, Sc, Rb, Sr and Ba between biotite and muscovite. All of the trace elements except for Rb show two
different trends with metamorphic grade. Open and closed circles represent low and high-T, respectively.

which relates the partition coefficier(P,T,X), for a given
cation of ionic radius;r at a particular condition o, T and
bulk composition, to the partition coefficier (P, T,X), for a
cation whose radius equals the optimal site radiys|rr this
relation, E is the value of Young’'s modulus for the sitg, is
Avogadro’s numberR is the gas constant aridis in Kelvins.

The data and associated fits using Eqn. (7) are shown in Figureexperiments.
3 in which the slope of the parabola is a function of E. Partition

pattern is different, with Cs partitioning showing the least effect
of T. This is not in accord with expections, since the ionic
radius of Rb is close to the ideal radius for the site, suggesting
that it should show the least variation with T. Although we are
unable to unambiguously explain this result, we suspect that it
may be due to poor quality analytical data for Cs for the biotite

It is noteworthy that the derived peak value fqrfor 1+

coefficients for elements substituting into XlI-sites in biotite cations in biotite is slightly larger than that for muscovite. In
and muscovite decrease as the cation size misfit increasespiotite, the peak 4 coincides with the radius of Rbion. In
consistent with incorporation of the trace element becoming contrast, in muscovite the peak closely corresponds to the
less favourable with increasing lattice strain. Variations in radius of the K ion. This difference in optimum ionic radius
of XllI-sites between biotite and muscovite is compatible with
3a), consistent with the ionic radius of Rb being close to the the fact that ideal trioctahedral biotite has a completely filled
octahedral sheet (filled by the relatively large?Fand Mg+

DMs—fluid with T are greater for Na and Cs than for Rb (Fig.

ideal radius for the site (Fig. 3b). FB'~ "4 in contrast, the
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cations), whereas ideal muscovite has smaller and fewer octa-

T. Rivers

smaller K" cations reduces the optimum ionic radius of the

hedral sites as a result of the tetrahedral rotation necessary tointerlayer sites (Figs. 5e,f). A positive correlation between the
accommodate the size mismatch between the IV and VI-sheetsCo content and(Fe"°" + Mg) in muscovite (Fig. 5h) indi
(Guidotti and Sassi, 1998b). The decreasing slopes of the curvecates that Co incorporation is facilitated by higher contents of

for +1 cations in Xll-sites of muscovite, as the temperature
increases from 500 to 600°C, may indicate variations in ther-
mal expansivity with T (Fig. 3). If this is true, we would expect
more significant thermal effects for elements away from the
optimum ionic radius. The slopes of parabolas for XlI-sites in
biotite do not appear to change with T.

On the basis of biotite-fluid and muscovite-fluid partitioning,
the distributions of trace elements between coexisting biotite
and muscovite would be expected to vary systematically with
ionic radius, if lattice strain were a major controlling factor.
Fig. 4a shows the curve fddP" ™s, derived by dividing the
values forDB'~ 4 by those forD™S™ "9 in Fig. 3, together
with our data. Overall, our partitioning data for Na, K, Rb and
Cs fit the modeled biotite-muscovite partitioning curves very
well, demonstrating controls of ionic radius on solid-solid
partitioning. It is evident from Fig. 4a that cations8a(1.61
A), SP* (1.44 A) and N& (1.39 A) favour muscovite with its
smaller interlayer site, whereas'K(1.64 A) is equally parti
tioned between biotite and muscovite. In contrast,” Rib.72
A) and Cs (1.88 A) which are larger than K favour the more
open structure of biotite. In octahedral sites, distribution coef-
ficients exhibit the sequence®r(0.615 A)> V3* (0.64 A)>
SE* (0.745 A) for 3+ cations, implying that biotite has the
smaller optimum ionic radius for-8 cations in octahedral sites
(Fig. 4b). This is consistent with the smaller mean octahedral
metal-oxygen bond length of the M1-M2 site of 1M biotite
(2.093+ 0.027 A) compared to the M2 site of 2M1 muscovite
(2.236 = 0.021 A) (Bailey, 1984). We can also infer that
octahedral F&" is probably slightly favoured in muscovite
over biotite on the basis of the ionic radius argument (Fig. 4).
For the distribution of divalent transition elements in the VI-
sites, it is difficult to evaluate the effects of ionic radius or
crystal-field stabilization energy because of the high analytical
errors involved in the determination of distribution coefficients
for Ni, Cu and Zn.

7.2. Compositional Effects

Li*™ contents of biotite correlate positively with
S(AI"Y +AIV") contents of biotite (Fig. 5a)lhere is a similar,
but less evident, relationship between"Land (Al +AIV")
of muscovite (Fig. 5g). The Li contents of biotite and musco-
vite also show weak negative correlations wiitFe"©"+Mg)
contents (not shown), indicating that the main atomic substitu-
tion in the micas is WAI_; [J_, in octahedral sites with
Li(Fe, Mg)_, [J_, being subordinate. The incorporation of Cr,
V, and Sc into biotite is controlled by the content of AT,
with the slope and its sign depending on ionic radius (Fig.
5b,c,d). Cr shows a stronger positive correlation with 2 of
biotite, than V. On the other hand, Sc shows a negative corre-
lation with AIT®T, indicating that the presence of Al does not
promote the incorporation of Sc into the biotite structure. Such
correlations, however, are not observed in coexisting musco-
vite, because of the relatively small variations of &l. The
concentrations of Rb and Cs in biotite show negative cer
relations with K", suggesting that the incorporation of the

the larger F&" and Mg™ cations replacing Al'. Increased
amounts of phengite components in muscovite are expected to
produce a larger Xll-site, due to a smaller tetrahedral rotation
angle @) being required for articulation of the IV and VI-sheets
(Harlow, 1995; Guidotti and Sassi, 1998b). Indeed, Volfinger
(1974) found that Mg in VI-sites correlated positively with the
replacement of K by Rb™ and C$". However, Rb, Sr, and Cs
contents of our muscovites show negative correlations with
S (FE™T+Mg), which more likely controls the substitution of
these elements rather than #galone. Thus, the relationships
betweers (Fe'T + Mg) and the contents of Rb, Sr, and Cs in
muscovite cannot be attributed to the expansion of interlayer
sites by the phengite substitution in muscovite. Instead, it may
reflect pressure dependence, becai(@e °"+Mg) in musce

vite increases strongly as a function of pressure (Guidotti and
Sassi, 1998b). Substitution ofSrand B& " into XlI-sites of
micas must involve a coupled substitution or vacancies to
maintain charge balance, but our data do not allow us to
identify the mechanism.

Compositional effects on trace element partitioning are evi-
dent if solid solution is not ideal and there are interactions
between the constituent molecules, so that the excess chemical
potentials of these molecules contribute to the equilibrium
constant in Eqn. (4). In examining compositional dependence,
molar proportions, rather than weight proportions, are used. In
general, biotite favours divalent transition elements in VI-sites
due to the higher abundance of appropriately sized sites com-
pared to coexisting muscovite (Dahl et al., 1993). Based on the
same argument, strong affinities ofVand Sé* for musce
vite can be explained by appropriate sites for these elements in
muscovite.

D?, and D, show negative dependence on’Atontents of
biotite with two different trends depending on metamorphic
grade (Figs. 6a,b). The possibility of an effect due to the
difference in Al-saturation level between the two groups can be
ruled out because sample 88-58, which is the only Al-under-
saturated sample from high-T group, shows the same trend as
other high-T samples with respect to the distribution of Li and
Sc. The reason for the high distribution coefficient of Li in
sample 88-32, which belongs to low-T group, is not known.
Figure 6¢ shows that the distribution of Rb between biotite and
muscovite is governed by thE(Fe™T + Mg®") content of
muscovite. Sr and Ba distributions between biotite and musco-
vite are strongly controlled both by metamorphic grade and the
K contents of biotite (Fig. 6d,e). Figure 6 also shows that the
distributions of Li, Sc, Sr and Ba are dependent both on major
element composition and metamorphic temperature, making
the separation of the two competing factors difficult.

7.3. Temperature Effects

The equilibrium constar in Eqn. (4) should vary witfT
according to the relation

AH°

AS
RT TR

LnKp = — R
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if the constant I is solely determined bYAGS,  hangeOf @ ventional geothermometers for samples from a similar range of

reaction such as (1). To evaluate thermal effectsydlues for P-T and bulk composition, especially when conventional geo-

Li, Sc, V, Sr, Ba and Zr are plotted against metamorphic thermometers suffer from retrograde resetting and/or higt Fe

temperature estimated using the garnet-biotite geothermometercontents. The ranges and dependences of distribution coeffi-

(Fig. 7 a—f). Positive correlations betweeiidhd T are seen for ~ cients on major element compositions established here, for

Li, Sc, V, Sr and Ba, whereas a negative correlation exists for quartzofeldspathic and metapelitic rocks from upper green-

Zr. D¥values for Sc, V, Sr, Cs and Ba have a tendency toward schist to upper amphibolite facies, also provide important con-

equal partitioning as temperature increases (Fig. 7), as pre-straints on the values that can be used in modeling trace

dicted from fundamental thermodynamic considerations. How- element zoning of garnet, because biotite and muscovite par-

ever, all of these trace element partitionings except for V are ticipate in many prograde metamorphic reactions.

also controlled by major element compositions. Recall that V
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