Time domain seakeeping simulations of some multiple waterplane vessels

Rixmann, D. Bradley (2001) Time domain seakeeping simulations of some multiple waterplane vessels. Masters thesis, Memorial University of Newfoundland.

[img] [English] PDF (Migrated (PDF/A Conversion) from original format: (application/pdf)) - Accepted Version
Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Download (18MB)
  • [img] [English] PDF - Accepted Version
    Available under License - The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.
    (Original Version)

Abstract

In the design of ships and offshore structures, it is often desirable to assess the effects of environmental forces such as wind and waves on the vessel prior to its construction. Hence, several computational methods have been developed to predict the seakeeping performance of a prototype vessel in the design stage. Many of the commonly used methods are limited in their applicability to either vessel geometry or vessel operating conditions. The time-domain ship seakeeping simulation code, MOTSIM, has recently been extended for use with multi-waterplane vessels such as semi-submersibles and catamarans. As a further extension, the MOTSIM solver was modified to allow simulation of two vessels connected by a mechanical constraint such as an Articulated Tug Barge (ATB) Unit. -- Some validation studies were carried out to validate the modifications to the MOTSIM code. Model test data for a triangular semi-submersible platform was compared against simulated results. Comparison between the experiment and simulations was generally good except for very low wave frequencies which was likely due to wave reflection in the model basin. -- Similarly, simulations were performed for an ATB unit. Comparison of the connection loads and relative motion between the vessels appears quite reasonable for the limited set of simulations completed. Instability of the constraint algorithm caused a reduction in the number of simulations included in this study. -- The results presented indicate a strong potential for the application of the MOTSIM seakeeping code to problems involving multiple waterplane vessels or multiple vessels in proximity. However, further validation work is needed to confirm the accuracy of the code for more general vessel geometries.

Item Type: Thesis (Masters)
URI: http://research.library.mun.ca/id/eprint/1571
Item ID: 1571
Additional Information: Bibliography: leaves 85-88
Department(s): Engineering and Applied Science, Faculty of
Date: 2001
Date Type: Submission
Library of Congress Subject Heading: Ships--Seakeeping--Simulation methods

Actions (login required)

View Item View Item

Downloads

Downloads per month over the past year

View more statistics