
Time-Dependent Aspects of Fracture in Ice

by

©Mark B. Kavanagh
B.Sc, B.Ed, M.Sc

A thesis submitted to
School of Graduate Studies
in partial fulfilment of the

requirements for the degree of
Doctorate of Philosophy

in
Ocean and Naval Architectural Engineering

Faculty of Engineering and Applied Sciences
Memorial University of Newfoundland

May 2018

St. John’s Newfoundland



Abstract

An important aspect of ice fracture that is yet to be fully resolved in determining the
loads and pressures during an interaction with ice is the presence and growth of frac-
tures. Practical applications include icebreakers ramming into ice pack or structures
operating in ice-prone regions.

Existing models often use a simplified view of ice mechanics, often based on only
the elastic properties, which tend to overestimate the strength of the ice. It has long
been known that ice exhibits time-dependent properties, including its strength. This
is known from ship ramming experience as well as field and laboratory experiments.
Accounting for these time-dependent aspects of ice behaviour would allow for a more
analytical approach to interaction modelling and complement the empirical data that
is used currently in design practice.

The aim of this thesis is to provide a better understanding of ice fracture that
occurs during an interaction. To better understand the viscoelastic properties of ice,
an extensive review of the literature was performed. In particular, an in-depth review
of linear elastic fracture mechanics was performed, as it it critical to the foundations
of the viscoelastic fracture theory.

To guide the development of a new viscoelastic fracture model, three sets of exper-
iments were performed. The first was an indentation series, scaled down from similar
field experiments, that displayed several fracture properties of ice. These properties
were rate-dependent fracture, delayed fracture, and scale effects.

The next two series, designed to study a single crack, used ice samples under 4-
point bending. The first of these were constant loading rate test to further study the
rate-dependent fracture properties of ice, resulting in ice that is weaker under faster
loading in a decreasing power law relationship. The second of these applied constant
loads just below the breaking point to show that ice undergoes delayed fracture. The
data suggests a decreasing power law between applied load and time to failure for
these samples.

Building on previous works in viscoelastic fracture theory, and making use of the
insights gained from the experiments, a new model has been developed to predict the
fracture properties of ice. The model accounts for the delayed fracture of ice and
provides insights into the time-dependent fracture properties of ice, as was seen in
the laboratory and field experiments. The model, based on viscoelastic theory, was
shown to reasonably model time to failure for ice beams under constant load, as well
as the fracture strength of ice beams under different loading rates. The model, besides
expanding the old theories to beam bending geometries, was also shown to work for
compact tension specimens with a few minor changes.

Keywords: Ice, Fracture Mechanics, Viscoelasticity, Arctic, Simulation, Ice-Structure
Interaction, Scale Effects, Time-Dependence.
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Chapter 1

Introduction

1.1 Motivation

The Arctic is an important part of Canada, both culturally and economically. This

region presents a new frontier for development but poses many hurdles to overcome

for safe and economic development. The question of how to deal with ice in this region

is a vital question for Canadians, with safety to personnel and the environment being

of paramount concern.

The north is home to many Canadians who require goods and services and are

eager for meaningful, economic progress. The area can be developed with respect to

community access, tourism, and the transportation of goods and resources. With the

highest population growth rate and a high proportion of young people, there is an

opportunity to get input from the local communities on how to better serve them

and provide opportunities for the young population with new careers in science and

engineering that can enhance their way of life.

The North also contains many resources such as gold, diamonds, uranium, oil and

gas, and other resources to boost the Canadian economy (Croasdale et al., 2016).
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These sites account for roughly 10% of Canada’s total mineral production. There are

many more mining sites in the north, some of which are in the planning phase of

becoming operational. Development of these mines could lead up to the creation of

5000 jobs related to operation and development. For many of the northern mines, the

minerals extracted are often stored on site and shipped during the warmer seasons

when there is less ice present, though ice-breaking capabilities are still necessary.

Future endeavours in Arctic research will aim to increase the shipping season through

better ship design, infrastructure, and logistics (e.g., better navigational routes).

Local infrastructure in the Arctic is also important for the communities as many

of their goods are delivered by ships. Since there are few wharves in the Arctic, goods

are often transferred over beaches and ships are refuelled by fuel lines floating in the

water. Both of these problems pose risks to people and the environment, as well as

being time-consuming. The design of new docks, that take into consideration the

effects of ice loads on the structure and docked vessels, would greatly alleviate these

issues.

An important aspect that is yet to be solved in determining the loads and pressures

during an interaction with ice is the presence and growth of fractures. One practical

application relates to icebreakers ramming into ice packs or ships operating in ice.

In some cases, an icebreaker will fracture the ice immediately, but the ice may also

undergo a delayed fracture under load from the icebreaker. The type of loading will

also affect the type of fracture that occurs in ice from small, localized fractures to large

fractures that can span an entire ice floe. It is known from large and medium scale

indentation tests that the loads and pressures exerted from the ice onto a structure

are dependent on the rate of interaction (i.e., loading or strain rate). One such test

was done at the Hobson’s Choice ice island (Frederking et al., 1990), that shows that

the ice behaves more creep-like at slow rates, more brittle at fast rates, and a mix of

2



Introduction Objectives

both at medium rates.

Due to many factors, including the presence of pack ice, the cost of living and

doing business in the north can be costly, but a better understanding of the physical

properties of ice can greatly alleviate these costs.

1.2 Objectives

The aim of this project is to provide better insights into the fracture processes in ice

that occur during an interaction. This new knowledge can be used in the design pro-

cess to build more economical structures that meet the safety requirements for Arctic

environments. To achieve these goals, an extensive review of previous experiments,

along with theories has been investigated to provide guidance as to the issues that

need to be addressed.

The first objective is to study the effects that loading rate has on the type of

fractures that occur in ice. Following the indentation series of tests done by Frederking

et al. (1990), a series of small-scale tests were done in the laboratory to simulate

similar results. From these experiments, a pattern between the observed fracturing

and loading rates can be addressed.

Another objective of the indentation series is related to the scaling of the data. It

would be useful if there was a way to scale the results of small-scale tests to larger

scales. Previous experiments (to be discussed) have shown that there is a clear scaling

effect between the small and large scale data. These scale effects are explored in the

indentation series by the use of various indentors of different sizes to explore how the

indentor size affects the fracture behaviour.

The final objective is to develop a fracture model for crack growth using standard

geometries, primarily loading under 4-point bending. The model will attempt to
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explain two phenomena observed in ice failure. The first observation is the dependence

of the strength of ice in relation to loading rate. Various experiments, discussed in

the literature review, show that ice behaves as brittle material under fast loading and

becomes stronger and more creep-like under slower loading. The second property of

ice is the observance of delayed failure under load. This property is often employed

by icebreakers ramming up onto an ice floe and waiting for it to split if it does not

break immediately. These properties will be achieved in the model by treating ice as

a viscoelastic material, as this type of material displays these behaviours.

Two series of 4-point bending experiments (focusing on the different behaviours of

ice) provide the model with data that can be used to fit the model parameters. The

first series focused on loading the ice at different rates to observe the failure strength

dependence on loading rate. The second series held the ice beams under a constant

load that does not lead to instantaneous failure, with the aim of observing delayed

failure over time.

1.3 Mathematical Notation

Given the amount of mathematics in the following chapters, a brief note on the math-

ematical notation used in this thesis may be warranted. One key difference in math-

ematical notation is the use of braces (“{”) to denote “function of” instead of the

more commonly used parentheses (“(”). For example, the statement “F is a function

of x and t” would be written as

F {x, t}

instead of

F (x, t)
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Secondly, derivatives with respect to time will be written as either

∂a

∂t
= F {x, t}

or by using the dot notation

ȧ = F {x, t}

For derivatives of other variables, either the standard notation or a shorthand

notation is used, such as

∂F

∂x
= ∂xF

for a derivative, or the second derivative as

∂2F

∂x2
= ∂xxF (1.1)

∆ has two distinct uses in this thesis. The first is as a fractional change, such as

∂a

∂t
≈ ∆a

∆t

or ∆a = a {t+ 1} − a {t} in numerical approximations. The second use for ∆ is as

the Heaviside-step function, where

∆ {x− x0} =

1 if x > x0

0 if x < x0

and are easily distinguished by where it is a function (followed with braces) or not

(not followed by braces).

When performing series expansions, generally one will cut off the series at some

point at which the terms quickly become negligible. These terms are denoted by O.
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For example, a series approximation of exp {x} is given by

exp {x} ≈
∞∑
i=0

xn

n!

≈ 1 + x+
x2

2
+
x3

6
+
x4

24
+ ...

For x ≈ 0, a linear approximation may suffice, giving

exp {x} ≈ 1 + x+O
{
x2
}

(1.2)

where the O states that all terms of x2 or higher have been considered negligible.

Complex analysis of variables will make use of the real (Re{z}) and imaginary

(Im{z}) parts of a function/varaible so that

z = 3 + 4i

Re{z} = 3

Im{z} = 4

(1.3)

As a part of some analysis, the Laplace transform is used. The Laplace transform,

L{F {x}}, is defined by

L{F {x}} =

∫ ∞
0

F {x} exp {−px} dx (1.4)

and the inverse transform is noted by L−1 {F {p}}, and is often found from lookup

tables, but has an equation of the form

L−1 {F {p}} =
1

2πi
lim
P→∞

∫ c+iP

c−iP
exp {sp}F {p} dp (1.5)

for some real-valued c.
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Chapter 2

Physical properties and Behaviour

of Ice During interactions

2.1 Continuum Mechanics

2.1.1 Elasticity

All solids exhibit an elastic response upon loading. When a material behaves elas-

tically, it returns to its undeformed shape when the load is removed. Elasticity is

caused by the resistance of atoms of an object to being pushed or pulled apart from

their equilibrium separation. Provided no new equilibrium has been established (as

is the case with permanent deformation), then the atoms will simply return to their

original separation distance upon unloading.

Elasticity is a fundamental response of all materials, so a brief overview is given in

this section. Since the model developed in this thesis assumes isotropic, polycrystalline

ice, the discussion of elasticity will be limited to linear elasticity (Hooke’s Law and

Lamé’s constants) to cover some notation used in later sections.

Lastly, it is important to discuss elasticity in the context of viscoelasticity since

7



Ice Properties Continuum Mechanics

there is a mapping between the solution of an elastic material under load and a

viscoelastic material under the same conditions. This will be discussed in sections

about viscoelasticity (In particular, Section 2.1.3).

2.1.1.1 Hooke’s Law

Many materials exhibit a linear elastic response that relates the applied load, σ, to

the observed strain (ε) or vice versa. The relationship for a uniaxial load (in the

x-direction) is often written as

σxx = Eεxx (2.1)

where E is the constant of proportionality, called the Young’s Modulus (or Modulus

of Rigidity).

When dealing with multiaxial loading, one has to include the Poisson’s effect. The

Poisson’s effect is an objects lateral response to an applied load. For example, Figure

2.1 shows a cylindrical sample under uniaxial compression. The sides of the sample

will bulge outwards (in the y-direction) proportionally to the applied uniaxial load,

typically written as

εyy = − ν
E
σxx (2.2)

where the strain in the y-direction is related to the applied load in the x-direction.

This results in the original cylindrical sample to become compressed down into a

barrel-shaped sample.

In general, the elastic strain under a multiaxial loading can be written using sum-

mation notation as

εij =
1

E
[(1 + ν)σij − νδijσkk] (2.3)

where the subscripts i and j loop over the x, y, and z directions. δij is the Kronecker

8
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Figure 2.1: Illustration of the lateral expansion of a cylindrical sample under uniaxial
compression caused by the Poisson’s effect. Aside from Poisson’s effect, “barelling”
occurs because the ends are often confined by the end platens of a system (e.g., ice
frozen to a steel plate at its ends).
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delta defined as

δij =

1 for i = j

0 for i 6= j
(2.4)

and σkk = σxx + σyy + σzz.

2.1.1.2 Lamé’s Constants for Isotropic Materials

Equation 2.3 can be cast into matrix form and inverted to get

σij =
E

(1 + ν)(1− 2ν)
[(1− 2ν)εij + δijεkk] (2.5)

For a generalized isotropic material the compliance tensor, Cijkl, has the form

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.6)

Noting that stress and strain are related through the generalized, anisotropic compli-

ance tensor,

σij = Cijklεkl (2.7)

gives the isotropic elastic stress-strain relationship as

σij = µ(εij + εji) + λδijεkk (2.8)

Comparing equations 2.5 and 2.8 (and noting εij = εji)

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

(2.9)

which are known as Lamé’s constants.
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Figure 2.2: Example of a hydro dam under stress from the retained water.

2.1.1.3 Plane Strain and Plane Stress Conditions

Two frequently considered situations in engineering are the plane strain and plane

stress conditions. These conditions occur in many engineering applications. These

two conditions are also applicable to the state of stress and strain near a crack tip,

which will be discussed in Section 6.2.1.

2.1.1.3.1 Hookean Equation For Plane Strain

Plane strain conditions exists when the out of plane strain (εzz) are sufficiently small

so that they can be assumed negligible. One common example given is the stresses

and strains associated with a hydro dam or retaining wall (Figure 2.2). Typically, the

dam or wall are much longer than they are tall. Given that the force from the water

acts mainly on the plane of the dam/wall, and that the strain along the z-direction is

inversely proportional to the length of the wall in the z-direction. The strain in the z-
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direction will be considerably smaller than in the x- or y-directions. In mathematical

notation

∆x

Lx
� ∆z

Lz

εxx � εzz

(2.10)

with ∆x and ∆z representing changes in the length of the wall in the x- or z-directions,

as well as Lx and Lz representing the original lengths. This relationship also the case

for εyy � εzz since Lz � Lx,Ly.

Without any significant loss to accuracy. i.e.,

εzz ≈ 0

εxz ≈ 0

εyz ≈ 0

(2.11)

for plane strain conditions.

For plane strain, equation 2.8 simplifies to give

σij = λδijεkk + 2µεij

σxx = λ(εxx + εyy) + 2µεxx

σyy = λ(εxx + εyy) + 2µεyy

σzz = λ(εxx + εyy)

σxy = 2µεxy

(2.12)

2.1.1.3.2 Hookean Equation For Plane Stress

For plane stress to occur, there has to be no significant out-of-plane stress (σzz). One

example of this, shown in Figure 2.3, is a thin plate under planar stresses. Due to the

thinness of the the plate there will be no significant stress acting along the z-direction
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Figure 2.3: Example of a thin plate under planar stress.

of the plate.

Writing out the stress-strain relationships explicitly gives

σij = λδijεkk + 2µεij

σxx = λ(εxx + εyy + εzz) + 2µεxx

σyy = λ(εxx + εyy + εzz) + 2µεyy

σzz = λ(εxx + εyy + εzz) + 2µεzz

σxy = 2µεxy

(2.13)

but since σzz = 0, then the strain in the z-direction must be

0 = λ(εxx + εyy + εzz) + 2µεzz

εzz = − λ

λ+ 2µ
(εxx + εyy)

(2.14)
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Substituting εzz back into the stress-strain relationship defines a different Lamé’s

constant λ∗ for plane stress that is different than plane strain,

σij = λ∗δijεkk + 2µεij

σxx = λ∗(εxx + εyy) + 2µεxx

σyy = λ∗(εxx + εyy) + 2µεyy

λ∗ =
2λµ

λ+ 2µ

(2.15)

which allows one to quickly change answers between plane strain and plane stress by

using λ or λ∗ as needed.

One can also define

λ =
3− κ
κ− 1

µ (2.16)

where

κ =

3− 4ν Plane Strain

3−ν
1+ν

Plane Stress
(2.17)

instead of switching between λ and λ∗. While switching the value of κ has no real

notational advantage over switching λ with λ∗, the κ-notation is the notation used by

the underlying theory leading up to the model developed in this project.

2.1.2 Linear Viscoelasticity

Ice is found near its melting point under normal conditions in nature. Under fast

loading conditions, ice can act like a brittle material. However, under slower loading

conditions it behaves as a more ductile material. To study the effects that loading

rate has on ice, it can be treated as a viscoelastic material.
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2.1.2.1 Viscoelastic Strains

The overall strain of viscoelastic materials can be divided into four components: elas-

ticity, primary (or delayed elastic) creep, secondary (or viscous) creep, and tertiary

creep.

The elastic strain is the instantaneous1 strain any object feels under stress and

is caused by the stretching or compression of atomic/molecular bonding. Upon the

removal of stress, this strain will be completely recovered. The instantaneous elastic

response of a material is due to the due atoms being displaced from, or returning, to

their equilibrium positions.

Creep (primary, secondary, and tertiary) is caused by the sliding of grain bound-

aries (see Section 2.2.2.1) in the ice, as well as the pile up of dislocations (see Section

2.2.2.2.4). Dislocations are imperfections in the ice caused by different materials or

the addition or removal of atoms in the lattice structure usually caused by quick,

imperfect crystal growth.

Primary creep, also known as delayed elastic creep, is caused by grain boundary

sliding. With primary creep, the grains will return to their original locations upon

removal of any applied loads, but they require some (non-instantaneous) time to

return to their original positions. One model for primary creep, proposed by Andrade

(1910), models primary creep as

εd = βtn (2.18)

which compares well with data for time lengths on the order of decades. εd is the

delayed strain component, t is time, and β and n are material constants (n ≈ 1/3).

Since the grains will eventually return to their original location, primary creep is an

1note that “instantaneous” in the context of this thesis means “in a really short period of time”
- nothing is truly instant and is limited by the speed that information travels in the material (often
the related to the speed of sound in the material).
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elastic process that is not instantaneous (hence delayed).

Secondary creep, also known as viscous creep, is also caused by grain boundary

sliding, as well as dislocation pile-up within grains. Unlike primary creep, the grains

and dislocations are unable to return to their original location. This means that the

strain from this component is irrecoverable/inelastic, leading to a build up of strain

in the ice. Secondary creep follows the well-known Glen’s flow law Glen (1955)

ε̇ν = A {T}σ {t}q (2.19)

where ε̇ν is the strain rate, A {T} is the temperature dependent Arrhenius factor, σ

is the stress, and q = 3− 5 (typically) is the Glen’s flow law exponent.

Tertiary creep is caused by the inability of the material to continue building up

dislocations and the stoppage of grain boundary sliding. This leads to a build up of

stresses that cause the crystal structure to change (damage and grain restructuring),

that allow the new grains and dislocations to continue sliding and gliding. Eventually,

these changes of the structure will lead to failure of the material, which needs to be

explained by fracture mechanics.

2.1.2.2 Models of Linear Viscoelasticity

A simple way to model these processes is to represent the material as a combination of

elastic springs and viscous dashpots. These springs and dashpots can be combined in

many ways to capture the behaviour of a viscous material. Figure 2.4 presents three

basic models of viscoelasticity. Figure 2.4a shows a Maxwell unit, which contains a

spring and a dashpot in series. The spring of the Maxell unit represents an elastic

component given by

ε =
σ

E
(2.20)
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(a) Maxell unit (b) Kelvin-Voigt
unit

(c) Generalized Burgers model

Figure 2.4: Conceptual models of viscoelasticity.

and the dashpot represents the viscous (time-dependent) component, given as

ε̇ =
σ

µd
(2.21)

The spring, represented by E1 in all three models, is the initial elastic response. The

dashpot, µ1, represents the viscous, irrecoverable (secondary) creep. In the case of a

constant stress, σ0, applied from t = 0 to t = t1 the Maxwell unit can be solved

∫ t1

0

ε̇ {t} dt =

∫ t1

0

σ̇ {t}
E1

dt+

∫ t1

0

σ{t}
µ1

ε {t1} =

(
1

E1

+
1

µ1

t1

)
σ0

(2.22)

Equation 2.22 shows that the Maxwell unit has a linear creep response that captures

the initial elastic response and a linear viscous term. If the load was removed, the

Maxwell unit would show an instantaneous elastic recovery, but some permanent

deformation would remain due to the dashpot.

Figure 2.4b shows the Kelvin-Voigt model, which has the spring and dashpot in
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parallel. The stress-strain relation for this model can be written as

σ {t} = E2ε {t}+ µ2ε̇ {t} (2.23)

If placed under a constant stress, then the strain in the Kelvin-Voigt model is given

by

ε =

∫
e
∫ E2
µ2
dt σ0
µ2
dt+ c

e
∫ E2
µ2
dt

ε =
σ0

E2

+ ce
−E2
µ2
t

(2.24)

Since the the initial strain in this model is zero then the strain at time t = t1 is

0 =
σ0

E2

+ ce0

c = − σ0

E2

εt1 =
σ0

E2

(
1− e−

E2
µ2
t1
) (2.25)

If this is followed up by removal of the stress, then the relaxation can be found by

setting the initial strain to the value of the strain at t1. By solving the ODE

ε {t} = ce
−E2
µ2
t

(2.26)

Using equation 2.25

ε {t1} =
σ0

E2

(
1− e−

E2
µ2
t1
)

= ce
−E2
µ2
t1

c =
σ0

E2

(
e
E2
µ2
t1 − 1

)

18
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which gives the relaxation of strain at time t2 as

ε {t} =
σ0

E2

(
e
E2
µ2
t1 − 1

)
e
−E2
µ2
t

(2.27)

From equation 2.27, the model is able to capture the primary creep response of a

viscous material, but due to the dashpot being in series with the spring, equation

2.25 shows that the material has no initial elastic response.

The Generalized Burgers model, shown in Figure 2.4c, is a combination of a

Maxwell unit connected in series with one or more Kelvin-Voigt units. In the Burg-

ers model, the Maxwell spring idealizes the instantaneous elastic deformation. The

Kelvin-Voigt models represent the primary creep. Having more than one Kelvin-Voigt

unit allows for a broad spectrum of creep relaxation times, and providing better fits

to experimental data. The Maxwell dashpot represents the secondary creep, which is

also dependent on time but is not recoverable upon stress removal.

In linear viscoelasticity, the coefficients Ei and µi are independent of stress, they

are usually constants for many problems but may depend on other factors such as

temperature and ageing effects.

2.1.3 Viscoelastic Beam Bending and the Correspondence

Principle

To illustrate the properties of viscoelasticity (without fracture), two simple scenarios

are discussed below. These scenarios involve an ice beam under 4-point bending,

which has a well-known elastic solution. The key concept from these examples is the

application of the correspondence principle.

The correspondence principle is the technique that maps an elastic solution to a

viscoelastic one. In the first scenario, under static loading, the viscoelastic solution is
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found by a quick change of Young’s modulus with the inverse creep compliance. In

the second case, under non-static loads, a convolution integral is performed to give

the viscoelastic solution.

2.1.3.1 4-Point Bending

Consider the case of a Burgers model (with one Kelvin unit) ice beam under a 4-point

bend (Figure 2.5a) with the following properties

E1 = E2 = 9× 109 Pa w = 0.06 m

µ1 = µ2 = 1× 1013 Pa/s b = 0.04 m L = 0.3 m

(2.28)

where b is the thickness, w is the width, L is the length, and E1, E2, µ1, and µ2 are the

viscoelastic parameters. The sign convention shall be positive force and deflection are

upwards, positive shear rotates the element clockwise, and positive moment rotates

clockwise on the left and counter clockwise on the right (positive moment causes the

beam to ‘smile’ and negative moment causes the beam to ‘frown’).

The beam is loaded with a force of 2000 N split among two points at x1 = 0.1

m and x2 = 0.2 m. The shear and moment diagrams, along with the elastic beam
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: a) 4-Point Bending. b) Shear diagram. c) Moment diagram. d) Elastic
beam profile (initial viscoelastic response). e) Changing compliance with time. f)
Displacement of the midpoint of the beam over time.
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solution, are shown in Figures 2.5b—d. For reference, the elastic solution is

∂2

∂x2

(
EI

∂2y

∂x2

)
=
F

2
(δ{x}+ δ{x− L})− F

2
(δ{x− x1}+ δ{x− x2})

V {x} =
F

2
∆{x} − F

2
∆{x− x1} −

F

2
∆{x− x2}+

F

2
∆{x− L}

M {x} =
F

2
x∆{x} − F

2
(x− x1)∆{x− x1} −

F

2
(x− x2)∆{x− x2}

+
F

2
(x− L)∆{x− L}

y {x} =

(
F

12EI

)(
x3∆{x} − (x− x1)3∆{x− x1} − (x− x2)3∆{x− x2}

+
x

L

(
− L3 + (L− x1)3 + (L− x2)3

))
(2.29)

where

∆{x} =

0 x < 0

1 x ≥ 0
(2.30)

is the Heaviside step function.

Combining equations 2.22 and 2.25 gives the creep compliance of the Burgers

model (for a model with only one Kelvin-Voigt unit) as

J {t} =
1

E1

+
1

E2

(
1− e

(
−E2t
µ2

))
+

t

µ1

(2.31)

which has been plotted in Figure 2.5e.

For this problem, since the forces and do not change over time, the Correspon-

dence Principle states allows the Young’s modulus from equation 2.29 to be replaced

with 1/J {t} as the effective modulus to get the viscoelastic solution. For the centre
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Figure 2.6: Superposition of 4-point bending with spring into 4-point bending problem
(like above), and problem with a concentrated force due to the spring alone

displacement, δc = y {L/2},

δc =

(
FJ {t}

12I

)(
L3

8
−
(
L

2
− x1

)3

+
1

2

(
−L3 + (L− x1)3 + (L− x2)3

))
(2.32)

which is plotted in Figure 2.5f.

From Figure 2.5e, the creep compliance has an initial elastic response, then in-

creases exponentially under primary creep, and becomes linear over longer periods of

time as the viscous component becomes dominant. Figure 2.5f shows a similar effect

for the centre deflection of the beam - starting at an initial value, slight exponential

increase, followed by a linear increase over the long term.

In this case, since the stresses in the beam do not change over time, one could

simply replace the elastic compliance with an effective compliance. In the cases where

the stresses in the material are changing over time, this will not work as will be shown

in the following example.

2.1.3.2 4-Point Bending with Elastic spring

When fracture mechanics are considered, the growth of cracks will cause a redistribu-

tion of stresses/forces in the material. As an illustrative example of how viscoelastic

theory handles changes stresses and forces, consider a beam under 4-point bending as

before, but connected to an elastic spring at the centre of the beam, as shown in Fig-
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ure 2.6. As the beam deflects downward, the force of the spring will increase, creating

a system that has a time-varying force. For this example, consider a Maxwell type

material, since a Burgers model would not have an analytical solution - otherwise,

using the same parameters as the beam above.

First, the problem is solved for the elastic case by simplifying the problem down

into two problems by using the superposition principle. Figure 2.6 shows that the

first set up is the same 4-point bending problem solved above (see equations 2.29).

The second problem has a concentrated force in the centre caused by the spring as

the beam bends downward and has an elastic solution given as

∂2

∂x2

(
EI

∂2ys
∂x2

)
= −R

2
δ{x}+Rδ{x− L

2
} − R

2
δ{x− L}

Vs {x} =
R

2
∆{x} −R∆{x− L

2
}+

R

2
∆{x− L}

Ms {x} =
R

2
x∆{x} −R(x− L

2
)∆{x− L

2
}+

R

2
(x− L)∆{x− L}

ys {x} =
1

6EI

(
−R

2
x3∆{x}+R(x− L

2
)3∆{x− L

2
}

−R
2

(x− L)3∆{x− L}
)

+
1

16EI
RL2x

(2.33)

For a given spring constant, k, the final (elastic) displacement at the centre is

given by δc = −R/k. Using this, with equations 2.29 and 2.33 gives

−R
k

= y

{
L

2

}
+ ys

{
L

2

}
−R
k

= − 23FL3

1296EI
+

RL3

48EI

R =
23

27

(
FkL3

48EI + kL3

) (2.34)

Replacing 1/E with J {t} will not work since the force from the centre spring, R

becomes R {t} (not constant like F from the previous example). To solve this problem,
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apply the Correspondence Principle to the middle equation from equation 2.34

− R {t}
k

= −23FL3

1296I
J {t}+

L3

48I

[∫ t

0

R {t′} ∂J {t− t
′}

∂t′
dt′ +RJ {0}

]
(2.35)

where the first term is a simple change like before (since F is constant), but the second

term becomes a convolution integral since R varies in time. Letting

J {t} =
1

E1

+
t

µ1

(2.36)

and performing the Laplace transform

−1

k
L{R} = −23FL3

1296I
L{J}+

L3

48I
[L{R} (sL{J} − J {0}] + L{R} J {0}]

L{R} =
23L{J}FL3k

27(48I + L{J} kL3s)

(2.37)

and converting back into time dimension gives

A =
E1kL

3

µ1(48E1I + kL3)

R {t} =
23F

27
− 368e−AtFE1I

9(48E1I + kL3)

(2.38)

which has the results plotted in Figure 2.7 for a spring constant of k = 1× 108 N/m.

As before, as time advances, the beam will bend down beyond the initial elastic

result plotted in Figure 2.7d. As the bending increases, the elastic spring will apply

more force as it is compressed. Figure 2.7f show how the spring reacts changes over

time in blue with the elastic solution plotted in red for comparison. Initially, these

have the same value, but the Maxwell beam increases the load until it reaches a new

equilibrium.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: a) Setup for 4-point bending with spring. b) Shear diagram. c) Moment
diagram. d) Beam profile with centre bump due to spring. e) The Maxwell compliance
(linear in time and no primary creep). f) Change in spring reaction force over time
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2.1.4 Nonlinear Viscoelasticity

For nonlinear viscoelasticity, the three components of strain: elastic, primary creep,

and secondary creep are conceptually the same as the linear case. As mentioned

previously, the coefficients Ei and µi will be functions of stress for a nonlinear vis-

coelastic material. These functions are often separated into a constant part and a

stress-dependent part. These equations will have a similar form to the linear versions,

but with stress raised to some power.

2.1.4.1 The Sinha Model and Andrade’s Form

One of the earliest models of nonlinear viscoelasticity for ice comes from the works

of Sinha (1978, 1979, 1983, 1988) and Glen (1955). In these papers, Sinha performs

uniaxial compression tests on a variety of ice samples (usually S2 ice with loading

perpendicular to the length of the grains). For constant applied stress, σ, the strain

is calculated

εT = εE + εd + εν

εT =
σ

E
+ c0

( σ
E

)p (
1− e−Atn

)
+ ε̇ν1t

(
σ

σ1

)q (2.39)

where ε̇ν1 is the viscous strain rate for unit stress (e.g., 1 MPa). Sinha noted that both

A and ε̇ν1 are temperature-dependent, can can be adjusted for other temperatures by

using a shift function

ε̇ν1 {T1} =
ε̇ν1 {T2}
S1,2

A {T1} =
A {T2}
S1,2

S1,2 = exp

{
Q

R

(
1

T1

− 1

T2

)} (2.40)
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where Q = 65 kJ/mol is the activation energy for ice, R=8.314 J/K·Mol is the ideal

gas constant, and the temperatures are given in Kelvin units.

Sinha proposes that primary creep is caused by grain boundary sliding, meaning

that it will be affected by the size of the grains in the ice sample. Sinha starts with

the strain due to grain boundary sliding as

εgbs = Kgbsx̄d
−1 (2.41)

where x̄ is the mean boundary displacement, d is the average grain diameter, and Kgbs

is a constant. As a first approximation, one can assume that εd = εgbs. Following the

work of Langdon (1973),

εgbs
εT − εE

=
εd

εT − εE
=

[
1 + η

d

d1

(
σ

σ1

)p]−1

(2.42)

Sinha develops a grain-dependent primary creep as

εd =
c1d1

d

( σ
E

)p (
1− e−Atn

)
(2.43)

where d1 is the unit grain size, and c1 is a constant (such that c1d1 = c0d).

The Sinha model of primary creep, based on grain boundary sliding, provides a

physical basis for the delayed elastic response in viscoelastic materials. In practice, the

model does not completely predict the delayed elastic response. This can be attributed

to the model being represented by a single Kelvin-Voigt unit in the Burgers model

representation.

Many viscoelastic materials require more than one Kelvin-Voigt unit in the Burg-

ers model to capture the full delayed elastic response of the material. The β-flow
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approximation of Andrade (1910) is given by

εd ≈ βtn (2.44)

as mentioned in Section 2.1.2.1 and shown in Section 7.2.1. This form of the delayed

elastic considerably easier to implement for solving viscoelastic problem than employ-

ing a multitude of Kelvin-Voigt units, and is found to be accurate for several decades.

The one drawback is that, unlike the Sinha model, there is no upper bound on the

maximum delayed elastic strain. While this one drawback is unrealistic as grains can

only slide so much (e.g., becoming locked at a triple point), provided the problem

works within the limits of the β-flow approximation, then it is expected to give better

results than the Sinha model of delayed elastic strain.

2.1.4.2 The Schapery, LeClair, and Dempsey Model

The model developed in Schapery (1997) and LeClair et al. (1999), is generalized

nonlinear model. Unlike Sinha’s model, which was developed using step loading

applied stress, the Schapery, LeClair, and Dempsey model can be applied to any

time-dependent stress loading (albeit numerically). The model is of the form

εT = εE + εd + εν

εT = C0σ {t}+ C1

∫ t

0

(t− t′)b∂t′σp {t′} dt′ + C2

∫ t

0

σq {t′} dt′
(2.45)

where the β-flow is modified into hereditary integral since the stress does not have to

be a constant anymore. For an applied step loading, equation 2.45 takes the form of

Sinha’s model (equation 2.43), with the β-flow approximation for primary creep.

For non-constant loading scenarios, such as ramping until failure, this model pro-

vides good estimation to the expected viscoelastic response under uniaxial loading
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without failure. This model has been incorporated into the fracture model developed

in this thesis.

2.2 Atomic Properties of Ice

While the typical approach to modelling materials tends to use continuum mechanics

(as will the theory presented in this thesis), looking closer at the atomic properties of

materials provides insights into the behaviour of the material. Due to the continuum

nature of the proposed model, many of the underlying mechanisms presented in this

section are only briefly mentioned throughout the remainder of the text.

While these topics discussing the underlying physical mechanisms of viscoelastic

behaviour will not be referred to much beyond this chapter, knowledge of these con-

cepts provided many insights into the developed theory, and provides a physical basis

as to the assumptions used in the proposed model.

The macroscopic properties of materials are a consequence of the underlying prop-

erties of the complex interactions of atoms and molecules. Understanding the motions

and interactions of atoms and molecules provides an explanation of many of the rhe-

ological properties of materials such as elasticity, plasticity, and viscoelasticity. The

temperature-related properties of materials (including the rheological ones) are re-

lated to the kinematic energy of the particles, as well as the bonding between those

particles.

In particular to ice, looking at the properties of oxygen and hydrogen, primarily

their bonding properties, reveals many of the properties of water and ice that make

it a unique material.
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2.2.1 Atoms and Molecules

2.2.1.1 Hydrogen

Hydrogen is a colourless, odourless, highly combustible, diatomic gas (under normal

conditions) with an atomic mass of 1. Its most common form consists of a proton with

a single electron orbiting in the 1s1 shell. The single electron is the hydrogen’s valence

shell electron used in bonding with other atoms, by either accepting an electron to fill

the shell (the 1s-shell can only have two electrons due to the Pauli-exclusion Principle)

or donating the electron to empty the shell. It has a covalent bonding radius of 31±5

pm and a Van der Waals radius of 120 pm.

2.2.1.2 Oxygen

Similar to hydrogen, oxygen is a colourless, odourless, highly reactive diatomic gas

under normal conditions. By Mass, Oxygen is the 3rd most abundant element in the

universe after hydrogen and helium. Oxygen has an atomic mass of 15.999 and an

electron configuration of 1s22s22p4. The two s-shells of Oxygen are full, but the 2p-

shell can hold up to 6 electrons, meaning that oxygen can accept two electrons to fill

its valence electron orbital. Oxygen has a covalent bonding radius of 66±2 pm and a

Van der Waals radius of 152 pm.

2.2.1.3 Water

Water, chemically known as dihydrogen monoxide, is formed from the covalent bond-

ing of oxygen and two hydrogen atoms. In a covalent bond, electrons are shared

between two atoms. From the sections above, hydrogen can be seen as having an

extra electron to share and oxygen can be seen as needing two electrons to complete

its valence electron shell (atoms are more stable when they have full valence shells,
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(a) Water molecule at Van
der Waals distance, represent-
ing atoms by the size of their
covalent bonding size (size of
valence shell); Black is oxygen,
grey is hydrogen.

(b) Water molecule at the co-
valent bonding distance, show-
ing the water molecule’s actual
shape as less V-shaped and a bit
more rotund

(c) 2D water molecule showing
the polarization of the water
molecule due the the electroneg-
ativity differences in the oxygen
and hydrogen atoms.

Figure 2.8: The water molecule. Oxygen coloured in red, hydrogen coloured in yellow.

like helium and other noble gases). From a classical perspective, it can be said that

two hydrogen atoms each give their electron to the oxygen when they bond with it.

From a quantum mechanical perspective, it can be said that the electron probability

cloud, that was originally centred on the nucleus of the hydrogen atom, is now elon-

gated towards the oxygen atom. This means that the shared electron is orbiting both

atoms, but is more likely to be near the oxygen atom than the hydrogen atom, but it

is not separated from the hydrogen atom in a covalent bond.

The O-H bonds in a water molecule are about 97 pm in length, and have an angle

of roughly 1060 between them (Petrenko and Whitworth, 1999). Comparing the bond

length to the covalent radii and Van der Waal radii shows that the bond length is

equal to the sum of the covalent radii, indicating that the electron shells overlap (as

stated above and shown in figure 2.8).

Electronegativity refers to an atom’s ability to accept electrons, and electroposi-

tivity refers to an atom’s ability to donate electrons. These properties are essentially

the opposite of each other and simply put: the more electronegative an atom deter-

mines which atom will receive the electron during a covalent bond. Since oxygen is
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more electronegative than hydrogen (3.44 vs. 2.20 on the Pauling scale), then a single

O-H bond will have an electric dipole with a positive terminal on the hydrogen, and

a negative terminal on the oxygen, this is shown in figure 2.8c as a grey arrow. In

water, due to the symmetry of the placement of the atoms, the two grey dipoles in

figure 2.8 combine to give a single strong dipole for water. The dipole for water is

shown by a black arrow in figure 2.8 with a strong negatively charged oxygen atom

and two positively charged hydrogen atoms. This dipole will become important as

the water cools down and becomes ice.

2.2.1.4 Ice

For materials in a gaseous state, the kinetic energy of an atom or molecule can be

calculated by

KE {T} =
3

2
kT (2.46)

where T is the temperature in Kelvins, and k = 1.38x10−23 is the Boltzmann constant.

For gases, this energy would allow the molecules to move around with velocities close

to those given by

KE {v} =
1

2
mv2 (2.47)

since there are minimal forces acting on a gas molecule.

For liquid water, there will be attractive forces between the molecules due to

electric dipoles in the water molecules. Normally, this force is called the dipole-

dipole interaction, but due to the particularly strong dipoles of O-H bonds, it is

given the special name of hydrogen bonding. Unlike gases, due to the intermolecular

attractive forces, there is no simple theory to relate the velocity of the molecules to the

temperature (Born and Green, 1946). The energy of the molecules will still be related

to the temperature as above, but the velocity will be lessened due to the potential
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(a) Hydrogen Bonding showing Van der Waal
sized atoms

(b) Hydrogen Bonding showing Covalent bond-
ing sized atoms

Figure 2.9: Hydrogen bonding between water molecules.

energy of the dipole bonds (there is another force call the London-dispersion force,

but it much weaker than covalent and hydrogen bonding).

As a liquid, the water molecules are more confined than as a gas, but do have

relative free motion to move within the bounds of the liquid, even allowing oxygen

and hydrogen atoms to swap partners. In water, the molecules will bond to three other

molecules and will have a hydrogen bonding distance of roughly 178 pm between the

oxygen atoms.

As the liquid is cooled, the kinetic energy of the molecules continues to decrease,

while the hydrogen bonding strength remains relatively constant. As the water un-

dergoes its phase transition into ice, the molecules start to form solid bonds with

each other due to hydrogen bonding becoming more dominant as the molecules slow

down. As the molecules are locking into their final positions in ice, they form hydro-

gen bonds to a fourth molecule. Due to the increased number of interactions caused

by more and more molecules moving into closer proximity, the molecule’s angle be-

comes a little wider, about 109.50, and the oxygen atoms settle around 275 pm apart
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Figure 2.10: The ice crystal lattice

(Petrenko and Whitworth, 1999; Fanourgakis and Xantheas, 2006), which is close to

the Van der Waals distance for the atoms in the water molecule from figure 2.8a .

Figure 2.9 shows the bonding between two water molecules in ice. Figure 2.9a shows

the atoms at Van der Waals sizes to show a true shape of the molecules and that both

oxygen atoms are bonded to the hydrogen atom. Figure 2.9b shows the atoms at their

covalent bonding sizes to show that one oxygen atom is in a covalent bond with the

shared hydrogen atom and the other oxygen is bonded to the hydrogen by hydrogen

bonding. The bonding path (path along the covalent and hydrogen bonding) is not

actually straight, as often depicted for simplicity (as is done in figure 2.10).

Figure 2.10 shows a simplified view the final position of the water in an ice lattice.

The top view looks down on the crystallographic c-axis of ice. The red circles are the
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(a) Simplified tetrahedral water/ice bonding
arragement. Yellow lines show atomic bonds;
Black lines show tetrahedral shape.

(b) tetrahedral bonding arrangement using
Van der Waals sizes for atoms

Figure 2.11: Water molecules bonding in a tetrahedral formation. There are 6 varia-
tions to this bond that allow them to combine to form a hexagonal lattice.

oxygen atoms and the bonds between the oxygen atoms, where each bond is the sum

of the covalent bond and the hydrogen bond. The two simplifications in this model

are the hydrogen atoms are not shown, but it is implied that each bond contains one

hydrogen atom covalently bonded to one oxygen and hydrogen bonding to the other.

Secondly, the plane of oxygen atoms is not quite planar, but some oxygen atoms are

elevated above the others, due to the tetrahedral bonding depicted in figure 2.11

To see why ice forms a hexagonal lattice (as shown in the 3D view of Figure

2.10), consider the basic tetrahedral shape that the bonds form in Figure 2.11a. In

Figure 2.11a, the yellow connections are the actual hydrogen-oxygen bonds (these

are physical bonds; consisting of the covalent- and OH- bonds that existed between

any two oxygen atoms) and the black connections outline the basic tetrahedral shape

(they are not physical bonds; purely illustrative).

Figure 2.12a stacks these tetrahedral elements on top of each other. This figure
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(a) Stack of tetrahedrons. (b) Oriented to show hexagonal ring in 3D
space.

(c) Oriented to show 2D hexagonal ring. (d) Top-down view of tetrahedral stack.

Figure 2.12: Various views showing how stacking tetrahedral elements leads to the
hexagonal lattice structure in ice.
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was generated by starting with a single element at the top, and placing other elements,

such that the top atom of the new elements coincide with the bottom atoms of the

first element at the top. The bottom layer was formed in the same manner by making

the top atoms of the bottom elements coincide with the bottom atoms in the middle

layer.

While the hexagonal pattern is somewhat visible in Figure 2.12a, Figure 2.12b

shows the hexagonal rings a little clearer (it is simply a rotation of Figure 2.12a).

Figure 2.12b shows how the 3D nature of the tetrahedron gives rise to the formation

of hexagonal rings that appear in the (yellow) physical bonds of the atoms. In this

view, it is clear that the hexagonal rings are not flat (as simplified in Figure 2.10),

but are twisted in 3D space.

Figure 2.12c shows a more 2D-like view of the hexagonal ring formed by the

tetrahedrons. Aside from the central hexagon, one can see the beginnings of the

neighbouring hexagons and provides a similar view as the one depicted in the to view

of Figure 2.10.

While the black connecting lines are not physical, a top-down view of the stack of

tetrahedrons (Figure 2.12d) shows that they also exhibit a repeating, hexagonal shape,

similar to Figure 2.12c. What Figures 2.12c and 2.12d show is that the (non-physical)

black connections are directly above the (physical) yellow connections. This eludes

to the typical alternating stacking pattern seen in hexagonal lattices (often called

A-B-A-B stacking). In the case of ice, this amounts to saying that every oxygen atom

in the top layer is directly above the center of a hexagon formed by six oxygen atoms

in the layer below (unless near the edge of a lattice).

The tetrahedral-shaped bonding in ice is due to the positioning of the electron

orbitals in the water molecule (Hobbs, 1974). Of the ten electrons in a water molecule,

two orbit the 1s shell near the oxygen; four of the electrons lie in the bonding pair
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Figure 2.13: Electron bonding orbitals in a water molecule.

orbitals connecting the atoms; and four lie in two lone-pair orbitals. These orbitals are

depicted in Figure 2.13. The top lone pair orbital defines the top of the tetrahedron,

and the bottom lone pair defines the back corner of the tetrahedron (it is drawn smaller

to indicate into the page), and the hydrogen atoms are placed in the remaining two

corners (these would be coming out of the page).

What is interesting with the hydrogen bonding in ice is that once it dominates

the positioning of the molecules, the molecules are further apart than they were as a

liquid since the kinetic energy of the atoms is no longer able to overcome the hydrogen

bonding. Combined with the increased angle between the hydrogen atoms, increases

the distance between any two water molecules. This is the reason why ice is less dense

than water.
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Figure 2.14: A typical Cross-sectional cut of ice. Solid lines show grain boundaries,
arrows and colours indicate c-axis of grain (all in-plane for simplicity).

2.2.2 Lattice Defects

2.2.2.1 Grains

While it is possible for ice to grow from water into a single, perfect lattice, this is not

very likely and only occurs under careful laboratory control. For freezing to occur in

water, there have to be nucleation sites - sites in the water that the molecules join

together. Often this will be at an impurity such as another molecule or air bubbles

but can also be a place with a higher concentration of water molecules. Naturally,

there will be many nucleation sites for ice to grow from (such as snowflakes landing

on a river about to freeze over). This means that a block of ice will have many

different lattices growing that will have different orientations and sizes. Due to the

solidification process, once molecules are locked into place, there is little movement

and re-arrangement allowed. The end result will be that the ice block will be made
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up of many lattices that meet up and are unable to change. These lattices are called

grains, Figure 2.14 shows how grains of different sizes and orientations meet up in a

material such as ice.

Grains play an important role both the viscoelastic and fracture properties of ice.

When grains are placed under load, they will slide across one another - called grain

boundary sliding (Raj and Ashby, 1971). The sliding of the grains allows the ice to

relieve stress and is related to the delayed elastic response of ice since the grains can

return to their original locations over time, provided no other mechanism prevents

them from doing so.

Due to the discontinuity of the material at the grain boundary, grain boundaries

are also sites of stress concentrations (especially if it a triple-point intersection of three

grains). Once a grain cannot slide any further (typically on the order of Angstroms),

stress can build up along the boundary, leading to the formation of cracks due to

inability to relieve stress. Conversely, the build up of stress may attract dislocations

leading to a change in the shape of the grains, which may allow more sliding if the

surfaces of the grains become more compatible.

2.2.2.2 Dislocations

Dislocations are curvilinear defects in the crystal lattice structure of a material. These

can occur because of missing or extra molecules, dislocated molecules from applied

forces, or missing bonds between molecules.

Dislocations are caused by the imperfect growth of a crystal lattice. In the case of

ice, a perfect lattice will have a hexagonal shape with oxygen atoms at the vertices.

The hexagonal shape is a product of the strong, directional forcing from the hydrogen

bonding between the water molecules. For a slow, controlled freezing, the water

molecules will be able to place themselves in the perfect positions that minimize the
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potential energy (i.e., the perfect lattice). Under most freezing, molecules do not have

the time to reach the minimum energy configuration before they are locked into place

as a solid. Impurities in the water, such as air bubbles and trace amounts of other

molecules, will also affect the water’s ability to form perfect lattices since the ice will

likely have to incorporate those into its final solidified form.

Dislocations play an important role in the non-recoverable strain of materials, as

they are the physical mechanisms that cause creep in ice (Taylor, 1934). As will be

discussed, dislocations are able to move around in the material, changing the local

stress and strain fields in non-recoverable ways.

There are two main types of dislocations that have a variety of ways that they

can move and get past obstacles. These motions, described in the following sections,

lead to the creep behaviour of ice. Eventually, the dislocations will no longer be able

to move via their methods of motion. This will lead to a build up of stress in the ice

that can lead to tertiary creep and fracture in ice.

2.2.2.2.1 Edge Dislocations

Edge dislocations are caused by the insertion or lack of a partial row/column of atoms

that interrupts the normal, perfect arrangement of atoms of a perfect lattice. In ice,

edge dislocations tend to form on the non-basal plane (Petrenko and Whitworth,

1999). Figure 2.15a shows a perfect 2-D lattice of atoms as a simple example. In

the perfect lattice, all the atoms are bonded to their neighbours forming a square

crystal lattice (cubic in 3-D). Figure 2.15b shows the same crystal, but with an edge

dislocation occurring in the fourth column of atoms. In this case, the atoms that would

have normally occupied the bottom of the third and fifth columns are able to move

inward and fill the gap. This causes their bonds to be longer than the ideal condition,

causing tension in the bottom of the lattice. At the top, the atoms in columns three
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(a) A perfect lattice (b) An edge dislocation caused by missing
atoms in the fourth column

(c) Burgers Vector of a perfect lattice (d) Burgers Vector of a edge dislocation

Figure 2.15: Edge dislocation
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and five will be placed a bit closer to their neighbouring atoms along the sides of the

dislocation, putting the top part of the material in a state of compression. Figure

2.15b also shows how the atoms near the dislocation are displaced a fair amount, but

the atoms further away are less affected (column 8 in the figure has not moved from

the ideal, which will be true of atoms even further away).

A useful property of dislocations that is used in many theoretical calculations is

the Burgers vector. To determine the Burgers vector of a dislocation, a path is drawn

around the dislocation using the atoms as grid points on a coordinate axis. Each

atom counts as one step, steps are only allowed across bonds, and the number steps

along a direction must cancel (e.g, if you move left two atoms, then you must move

right two atoms later). For example, consider the perfect crystal in Figure 2.15c. Set

the origin at the top atom in column three. Move two right, three down, four left,

three up, and two right. From the coordinate movements

x : 2− 4 + 2 = 0

y : − 3 + 3 = 0

Start : (0, 0)

Finish : (0, 0)

Burgers : Start− Finish = (0, 0)

the distances moved along x (left/right) and y (up/down) directions cancel out. For

the perfect lattice, this path ended at the starting point giving a Burgers vector of

(0,0). Now consider the same path in Figure 2.15, due to the rearrangement of the
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atoms and new bonds formed

x : 2− 4 + 2 = 0

y : − 2 + 3 = 0

Start : (0, 0)

Finish : (−1, 0)

Burgers : (0, 0)− (−1, 0) = (1, 0)

the end point does not return to the starting point. This can be achieved by moving

one more atom to the right, giving the Burgers vector as (1,0).

2.2.2.2.2 Screw Dislocations

The second type of dislocation is the screw dislocation. This type of dislocation is a

bit harder to visualize than an edge dislocation. While conceptually more difficult, the

screw dislocation is the most common dislocation type in ice as its Burgers vector lies

parallel to the hexagonal symmetry of ice and glides across the basal plane.(Hobbs,

1974; Petrenko and Whitworth, 1999).

In a screw dislocation, a plane of atoms has been split into two planes. Figure

2.16a shows a perfect arrangement of atoms in a cubic lattice. Figure 2.16b shows a

screw dislocation in the lattice. As an analogy, it is as if the first column of atoms

were split as if tearing a piece of paper. One of those edges bonds with the next

column of atoms while the other will bond into the previous column of atoms that

have moved up (not shown). This provides a means to walk along a path of atoms

from one plane to another, much like a parking garage. The name screw dislocation

comes from the fact that the Burgers vector is found by defining a path that winds

down the axis of the dislocation, like the inclined plane that wraps around the core
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(a) A perfect 3-D lattice (b) A screw dislocation

(c) Burgers vector for a screw dislocation

Figure 2.16: Screw Dislocation
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Edge Screw
Dislocation width, d ⊥ to b ‖ to b

Dislocation motion, v ‖ to shear ⊥ to shear

Table 2.1: Properties of dislocations. b is Burgers vector, d is the direction along the
width. v is direction of motion.

of the screw.

In the same fashion as the edge dislocation, a Burgers vector can be defined for a

screw dislocation by walking along a surface. Figure 2.16c follows a path along the

bonds that goes: 3 left, 3 up, 3 right, 3 down giving

x : 3− 3 = 0

y : − 3 + 3 = 0

Start : (0, 0, 0)

Finish : (0, 0,−1)

Burgers : (0, 0, 0)− (0, 0,−1) = (0, 0, 1)

unlike the edge dislocation, the Burgers vector for a screw dislocation will be perpen-

dicular to the plane of atoms.

2.2.2.2.3 Dislocation Loops and Mixed Dislocations

Table 2.1 shows the properties of pure edge and screw dislocations discussed so far.

For both types, it was assumed that the dislocation went all the way through the

lattice. Considering that dislocations define the slip plane of a lattice, it makes sense

that a dislocation cannot go only part way through a lattice. For example, in thinking

of the screw dislocation as a parking garage, one can travel down through the entire

lattice by driving around the screw dislocation line. It cannot be the case for a lattice

that driving down the screw dislocation only gets one halfway down before being stuck
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Figure 2.17: Dislocation loop with marked edge and screw dislocations. Mixed dislo-
cations occur between the two types, acting as a transition between them.

in a plane of atoms. For a dislocation to exist in a lattice its ends must either reach

the end of a lattice or connect both of its ends to form a dislocations loop, as shown

in Figure 2.17.

2.2.2.2.4 Dislocation Glide

Dislocation glide is one of the mechanisms for the motion of dislocations. Figure 2.18

shows the formation of an edge dislocation in a perfect lattice. Due to the applied

shear, a slip plane develops around the center of the atoms, where the dislocation

forms. The shear causes the top atoms to slide relative to the bottom atoms, causing

them to break and form new bonds with new partners. The minimum shear required
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.18
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(i)

Figure 2.18: plots a–h show the formation of an edge dislocation (denoted by ⊥) and
sliding across a plane of atoms under an applied shear force, the width (w) of the
dislocation is shown in light gray. Plot i shows the change in force and energy as the
dislocation glides through the lattice (distance normalized by the Burgers vector).

to cause dislocation glide is called the Peierls Stress (Peierls, 1940; Nabarro, 1947)

given by

σp = µ exp

{
2πw

b

}
(2.48)

w =
d

1− ν
(2.49)

where b is the Burgers vector (also the atomic distance), µ is the shear modulus, and

w is the width of the dislocation. Here width means how far from the dislocation core

are the atoms displaced from the ideal, whereas the dislocation length would refer to

the distance the dislocation extends into the third dimension (i.e., out of the page for

the edge dislocation in Figure 2.18).

This process is irreversible as the atoms will not return to the original lattice upon

unloading. This can be seen from the plot in Figure 2.18i, since the dislocation would
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experience sinusoidally-varying energy levels, it would chose to remain in the local

minimal energy configuration that it would currently be in. When a dislocation is

located at a multiple of b/2 (sitting halfway between where atoms would be in the

ideal lattice), there is an unstable equilibrium since there is no force on the dislocation,

but the energy configuration is at a maximum. When the dislocation has completed

a glide displacement in integer multiples of b, the forces and energy configuration will

be the same as the ideal lattice.

While the final configuration is not the ideal structure, it is in a minimum energy

configuration (the same as the ideal lattice). The atoms would require a new source of

energy to return to their original positions, such as applying the stress in the opposite

direction or by annealing the material with a heat source (though that will do more

than just fix those atoms).

Even though the energy configuration and forces are the same as the ideal lattice,

the new lattice will have changed the properties of the material. Dislocation glide is

the underlying mechanism for strain hardening. The amount of gliding a lattice can

do is limited, leading to dislocation pile-up at the boundaries of grains. This leads

to greater resistance to ductile flow in materials, making them stronger but more

brittle. Dislocation glide is also the cause of slip planes in materials that often lead

to specimens under uni- and tri-axial splitting along planes approximately 450 to the

primary loading, since the greatest shearing stress happens along this plane leading

to the highest Peierls stresses.

2.2.2.2.5 Dislocation Climb and Kinking

as seen in Figure 2.18, the dislocation (⊥) moves horizontally across the page, never

leaving the plane of atoms it is between. Under normal circumstances, the edge dis-

location is not allowed to change its plane (e.g., go up or down in Figure 2.18). This
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(a) (b)

(c) (d)

Figure 2.19: Dislocation Climb. Starting with Figure 2.18e, the lattice has two im-
purities introduced: A larger atom and a vacancy.

means that an edge dislocation can become stuck at a barrier, such as an intersti-

tial atom (e.g., an impurity), and be no longer able to move and relieve stress. A

mechanism that allows the edge dislocation to move around the barrier is climb (and

anti-climb).

Starting with Figure 2.18, two impurities are introduced: a larger atom and a

vacancy (missing atom from the lattice). Similar to before, the dislocation moves to

the left along the plane, but this time is unable to advance further due to the larger
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atom preventing slip (since this atom cannot move and edge dislocations cannot leave

the plane to go around the large atom). As shown in Figure 2.19b–c, the vacancy

diffuses towards the dislocation (which is to say the atoms are diffusing away from

the dislocation). The vacancy diffuses to the dislocation, removing an atom from the

end of the dislocated (or extra) half-plane of atoms. This causes the dislocation to

move up (since it has to be just under the last atom in the half-plane, and pass over

the barrier. Anti-climb is a similar process that adds atoms to the half-plane, causing

the dislocation to move down to another plane instead of up.

The previous discussion looked at the edge location in 2-D. In 3-D, the edge

dislocation is a line, but one does not expect a line of barriers (like the large atoms)

to appear in the lattice. This means that the climbing of the edge dislocation is only

local to the barriers blocking its motion. The reshaping of the dislocation from a

straight line to a bent line is called kinking. Figure 2.20 shows a straight dislocation

(in black) travelling along a horizontal plane (denoted with dash, gray lines). Along

the path is a barrier (the black dot). When the dislocation reaches the barrier (Figure

2.20b), if possible, it will climb over the barrier. Since edge dislocations are confined

to their (in this case - horizontal) plane, the dislocation will continue to travel through

the lattice as a bent line provided nothing else causes this to change (such as more

kinking around other barriers).

2.2.2.2.6 Slip and Cross-slip of Screw Dislocations

Like edge dislocations, screw dislocations move under load. Due to the shear stress

on the lattice, the screw will undergo a motion perpendicular to to the direction

of the shear. Figure 2.21a–b show a screw dislocation line (the thicker line) move

along a plane of atoms. This (in this case, horizontal) motion of the screw is called

slip. Unlike edge dislocations, screw dislocations are able to jump from one plane of
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(a)

(b)

(c)

Figure 2.20: Dislocation kink caused by the presence of a large atom acting as a
barrier.
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(a) (b) (c)

Figure 2.21: Slip and cross-slip of a screw dislocation.

atoms to another, provided the motion is still perpendicular to the shear. The screw

dislocation’s ability to change its plane is called cross-slip. Figure 2.21b–c, shows a

screw that cross-slipped up one plane of atoms. Like edge dislocations, this may be

due to getting around barriers like larger atoms, only the screw dislocation does not

need any vacancies to do this.

2.2.2.2.7 Frank-Read Mechanism

Since dislocations are the primary cause for creep in materials, dislocations have to

form in the material. While many dislocations will be formed just by chance, such as

atoms and molecules being unable to reach their ideal positions before locking into

place during freezing, dislocations can be formed during the loading of a material. One

of the most important sources for dislocation generation is the Frank-Read Mechanism

(Read, 1953).

The Frank-Read Mechanism begins with a part of a dislocation pinned on both

ends, such as the kinked edge dislocation shown in Figure 2.22. The kink is located

in the basal slip plane and is pinned at both ends by some barrier. For low stress,

the dislocation bows outward to relieve some stress. As the stress is increased, the

edge will bow outward further. The dislocation will bow stably until it reaches a
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2.22: Generation of dislocations via the Frank-Read Mechanism. a) shows
a non-basal, kinked edge dislocation pinned at both ends of the kink. As shear is
applied to the basal plane, the dislocation grows outward, eventually annihilating in
f) resulting in a new dislocation and the original dislocation in g).
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semi-circular shape, as shown in Figure 2.22c. The critical stress for stable growth is

given as

σc =
2µb

x
(2.50)

where µ is the shear modulus, b is the Burgers vector, and x is the distance between

the two pinning points (Hobbs, 1974).

Figure 2.22d-f show the unstable growth of the dislocation. The dislocation con-

tinues to grow outward and curls around the pinning points. The curling around the

bottom of the two sides meets up in Figure 2.22f. Since the dislocations are pointing

in the opposite direction, they will annihilate, causing one piece to snap back to the

original edge dislocation and one to snap back into a dislocation loop. The final result

is shown in Figure 2.22g, showing the original dislocation and dislocation loop. Super-

imposed is the location of the edge and screw dislocations portion of the dislocation

loop, and mixed dislocations elsewhere along the loop.

2.2.2.3 The Bjerrum Effect

A common defect in ice is related to defects in the hydrogen-bonding between water

molecules. The Bjerrum defect (Bjerrum, 1952) is a defect in the lattice of ice that

causes ice to have electrically conductive properties. In a perfect lattice, all the

oxygen atoms are bonded in a hexagonal shape with a hydrogen atom along each

bond. Similar to how oxygen can be caught out of place during freezing or through

dislocations, hydrogen can also be misplaced. The L-type defect is when there is no

hydrogen atom between two oxygen atoms and a D-type defect is when there are two

hydrogen atoms between two oxygen atoms. The bonding energy for each type of

defect is around 0.64 electron-volts (Raj and Ashby, 1971; Frost and Ashby, 1982).

Alternatively, the various mechanisms leading to dislocation motion, discussed

above, can cause this effect to occur (Hobbs, 1974). The motions of dislocations
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Figure 2.23: Bjerrum Effect due to dislocation glide.

cause the atoms to move in unit length Burgers vector jumps. Figure 2.23 shows

the process by which dislocation glide can cause the Bjerrum effect. The “Before”

image shows three water molecules that make up a part of an ice lattice. Molecule

1 is above the slip plane and will move relative to molecules 2 and 3 below the slip

plane in the direction of stress indicated by the arrow. The motion of dislocations

will move molecule 1 one Burgers vector to the right, placing it above molecule 3. In

this example, molecule 1 was hydrogen bonding to molecule 2 below the slip plane

and molecule 3 was hydrogen bonding to molecule 4 above the slip plane. In the new

configuration, molecules 1 and 3 are now bonded to each other, but they both have

hydrogen atoms forced to be on the same bond (D-type effect).

The Bjerrum effect acts to weaken the strength of ice. In both the L-type and

D-type Bjerrum effects, the bond strength is reduced due to atoms of similar charge

(two negative oxygen atoms or two positive hydrogen atoms) being closer to each
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Figure 2.24: Global vs local loads. From Taylor (2010).

other. These atoms will have a stronger repulsion to each other than they would in

the perfect lattice configuration. This will cause greater ductility in the ice as these

atoms will be more readily available to move to find a more favourable position.

2.3 Interactions with Ice

2.3.1 Local and Global Loads

Two important aspects of ship and structure design relate to designing it to withstand

the global and local loads. During an interaction between ice and structure/vessel (see

Figure 2.24a), a global (or nominal) contact area can be defined as a projection of the

structure on the ice. For the case depicted in Figure 2.24, the nominal area would be

the rectangular cross-section of the structure matching the height of the ice, depicted

in light grey in Figure 2.24b). Global load refers to the load exerted over the entire

contact area. Similarly, the global pressure can be defined as the global load divided

by the global area.

Structures and vessels are built using frames and panels. The frames are the

support of the vessel whereas weaker points will exist on the panels between the

frames. Thus when it comes to design, one must ensure that the panels are strong
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Figure 2.25: The Molikpaq drilling caisson surrounded by ice. After Timco et al.
(2006).

enough to withstand the interactions with ice, meaning one should consider the loads

and pressures on these panels. The loads and pressures that act on the panel-sized

area of the structure/vessel are refered to as the local loads and pressures.

Figure 2.24b shows the distinction between the global and local interaction areas

from which the global and local loads/pressures are defined. The local loads need to

be considered for every individual panel in the contact area, and the global load is the

sum of the local loads from the panels. The local pressure are the local loads divided

by the local area and the global pressure is the global load divided by the global area.

These are two important concepts, because they produce remarkably different

results in terms of loads and pressures. The typical global pressures at medium-scale

(up to 3 m2) are around 2–4 MPa and less than 1 MPa for full-scale tests which include
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ship ramming and the Molikpaq drilling caisson (See Figure 2.25). Local pressures, at

the centre of high pressure zones (discussed in the next section) can reach pressures

of 70 MPa (Jordaan et al., 2005). Thus, the design engineer has to consider two

strikingly different pressure regimes when designing for Arctic environments.

2.3.2 High Pressure Zones

When ships or structures come into contact with ice, the applied loads and pres-

sures are generally not evenly distributed, due to irregular shape of ice contact, non-

uniformities in the ice (e.g., distribution of pre-existing cracks, dislocations, grain size,

and grain boundary effects), and increased confinement near the centre of the contact

area. The portions of the contact area that undergo higher-than-normal pressures are

known as high pressure zones (hpzs) (Jordaan, 2001; Wells et al., 2011), as illustrated

in Figure 2.26a. These zones are the primary means by which loads are transmitted

to the structure, and understanding their properties and evolution over time are a key

aspect in designing safe structures in icy environments. Typical compressive pressures

in the field tend to range from 0.1–1.0 MPa (Sanderson, 1988) while the pressures at

the centre of a hpz (localized to areas on the order of 10 cm2) can attain pressures of

70 MPa or greater (Jordaan, 2001).

Jordaan (2001) provides details and insights into the formation of hpzs. They detail

the hpz to have three zones: Zone 1 is near the edge and is the zone where spalling

typically occurs due to less confinement, Zone 2 is the area of pulverized ice deeper in

the contact zone, and Zone 3 is the pulverized and sintered ice that forms in the contact

area closer to the structure. The main processes in the hpz are recrystallization and

microcracking. Both of these processes causes a change in the compliance of the ice,

making it more compliant than undamaged ice, as well as lowering the density in the

region. The damaged layer can be deceptive since it tends to maintain a bluish colour
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(a) Ice-structure impact cross section (b) Typical load profile during an interaction

(c) Thin-section displaying microcracking during
a slow indentation test

(d) Remains of a hpz after an indentation test at
Hobsons Choice.

Figure 2.26: High Pressure Zones.
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to the eye (see Figure 2.26d), giving an appearance of being undamaged, but thin-

sections of this area do show highly damaged and recrystallized grains. High-stress

creep tests done under triaxial loading have shown that the inelastic component of

creep can greatly exceed the elastic component. There are high shear stresses near

the edge of the hpz that is the cause of the material flowing out as extrusions.

The hpz is under a triaxial state of stress. This is due to confinement from the

structure and the rest of the ice that surrounds it. Due to the high confinement

near the centre of the hpz, the ice tends to undergo dynamic recrystallization. The

state of stress in this region acts to suppress crack formation, leading to a thin layer

of recrystallized ice. This damaged layer is much softer while under stress than the

parent ice (Wells et al., 2011). Outside the centre of the hpz, where there is less

confinement, the stress field changes to one with more shearing stress, which leads to

more frequent microcracking (see Figure 2.26c). As the ice and structure continue to

interact, the reformed ice in the hpz will gradually undergo viscous flow towards the

edge of the hpz. As the ice reaches the edge, it will squeeze out (much like toothpaste)

as fine particulate, referred to as extrusion. As ice extrudes, the load will undergo a

load drop and ramp up as new contact is made, as seen in Figure 2.26b.

2.3.3 Damage Layer

Beneath the high pressure zone is a layer of highly damaged ice. The ice beneath

the hpz will undergo damage in the form of recrystallization or microcracking. Under

high confining pressure, the grains near the contact area will undergo pressure melting

or softening. During the process of pressure melting, the ice will be softer than

undamaged ice, but will harden once the the pressure is removed. Since the grains are

pressure melting, they will undergo changes due to the movement of atoms/molecules

having sufficient energy to rearrange bonds (similar to how annealing of metals works).
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(a) Large damaged layer under slow loading (b) Small damaged layer under fast loading

Figure 2.27: Thin sections of ice samples showing the underlying grain structure of
the damaged layers of fast and slow indentation loading (O’Rourke et al., 2015).

Upon the removal of the stresses, the atoms/molecules will freeze into place, forming

new grains. These new grains can be considerably smaller than the grains from the

parent ice. The mechanics and theory of how this damaged layer affects the behaviour

of ice during an interaction are discussed in much greater detail by Turner (2018).

For a hpz (or parts of a hpz) under less confinement, the likelihood of recrystal-

lization decreases due to the lack of pressure melting. In this scenario, microcracking

is likely to occur. While technically microcracking is a discontinuity in the material

and could be discussed in terms of fracture mechanics, it is typically not done this

way. Typically, there will be many microcracks that it is often easier to treat them as

weaker continuous material than as distinct cracks. As some of these cracks become

larger, they may require consideration of using fracture mechanics, but typically can

be discussed in the realm of damage/continuum mechanics.

Barrette et al. (2003) discusses many aspects of laboratory indentation of ice.

The experimental program involved isotropic, polycrystalline ice tested at various

temperatures and indentation velocities. Much of the data and numerical modelling

are focused on the development of the damaged layer of recrystallized grains and

microcracks beneath the contact zone. In general, slower tests were shown to have
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(a) (b) (c)

Figure 2.28: Cross-section of an ice-structure interaction showing the formation of a
spall fracture event. a–c show a pre-existing crack grow under load, reach the edge of
the ice, and break off as a discrete piece of ice (spall).

larger damage layers than faster tests (see Figure 2.27), and warmer temperatures

were more likely to be dominated by recrystallization whereas colder temperatures

favoured microcracking.

2.3.4 Types of Ice Fractures

2.3.4.1 Spalling Event

Figure 2.28 shows a spalling event, where a discrete piece of ice (a spall) breaks off.

Often, there will be a pre-existing crack in the ice behind a hpz. As the load on the

ice is increased, the crack will grow as the stress increases. Initially, the crack grows

stably, as the energy release upon crack growth will relieve the build up of potential

energy (or stresses in terms of loads and pressures). Eventually, the rate of energy

going into the crack will be greater than the energy release rate, causing the crack to

undergo unstable growth. When the crack grows to the edge of the ice, a piece of the

ice will break off as a spall.

As seen in Figure 2.28c, the spall takes away a part of the hpz, causing a change

in the contact area of the ice and structure. This may result in the destruction of
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(a) Combined Stress field in ice under spherical
indentor

(b) Wing Crack formation at the boundary of
two grains

Figure 2.29: The formation of wing cracks. a) sorts the stress field into three zones
based on the relative strength of the vertical, horizontal, and shear stress components.
b) shows the formation of a wing crack under stress.

the hpz. With the removal of the hpz, the pressures will redistribute over the contact

area, which will give rise to the growth of a new hpz.

2.3.4.2 Wing Cracks

Many fractures will occur from pre-existing cracks in the ice. One such crack, known

as a wing crack, is caused by sliding along grain boundaries or the faces of an inclined

pre-cursor crack (Cannon et al., 1990). In the scenario of depicted in Figure 2.29a,

ice is in contact with an indentor (this can be viewed as a top-down view of an ice

floe colliding into a structure, such as the leg of a platform). In Figure 2.29a, there

is a shear zone that forms beneath the surface of the contact zone. Wing cracks, also

known as shear cracks, often start at the boundary between two grains, as depicted in

Figure 2.29b. As the pressure increases on the grains, they will begin to slide relative

to each other. This causes the crack to grow wings (or kinks) that are roughly 70◦ to

the pre-existing boundary crack. Wing Cracks can grow stably under load, making

them a valid candidate for time-dependent fractures in ice discussed in Section 3.1.7.
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(a) (b)

Figure 2.30: a) Photoelastic fringe pattern from Hoek and Bieniawski (1965) for a
thin plate of annealed glass. Modified to highlight the presence of a wing crack. b)
Wing crack dimensions for a crack oriented 30 degrees to the direction of loading.

Kachanov (1982a,b) provides an analytical solution to the initiation growth of

wing cracks in the preferred growing direction (between 30 and 45 degrees to the

normal load). The model starts with a pre-existing penny-shaped crack. The model

assumes that the wings (kinks) start growing at roughly 70 degrees to the body of

the crack. Assuming that the main factor for wing growth is the stress on the wings

gives

KI = κFN

√
1

2
l − σ′

√
π

2
li (2.51)

where FN is the shear stress on the main body of the cracks, l is the length of the

crack body, l′ is the length of the wing, and σ′ = n · σ · n is the stress normal to the

wing, as shown in Figure 2.30b.

Hoek and Bieniawski (1965) performed experiments using 6x6x0.5 inch annealed

glass plates. In their analysis, they noted that crack growth initiation was near the

crack tip (and not at it), but it is of this author’s opinion that what they saw was
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a wing crack, as seen in Figure 2.30a. Hoek and Bieniawski (1965) also noted a

significant time-dependent the fracture of ice, but declined to commit to the idea due

to a lack of data.

Following the work of Cannon et al. (1990), E. M. Schulson and colleagues contin-

ued to study the properties of wing cracks introduced into thin plates of ice. Batto

and Schulson (1993) performed uni-axial compression tests on thin plates of columnar

ice at -10◦C. The grain size ranged from 1.5–15 mm and cracks were introduced via

15 mm Teflon strips placed at angles approximately 45◦ to the loading axis, or from

naturally occurring wing cracks. The ice was loaded at various rates to study how the

cracks behave as the ice properties vary over the ductile-to-brittle transition. Under

both ductile and brittle regimes, wing cracks did nucleate after some time. However,

they found that the wing cracks did not grow under the ductile (low strain rate) ice,

but did grow when the ice transitioned to brittle behaviour. Schulson (1997) provides

a summary of the properties of wing cracks from experiments done by the author and

his colleagues. Wing cracks are harder to form in granular ice than columnar ice, due

to the decreased grain boundary lengths. The growth of wing cracks differs from duc-

tile/brittle regimes due to stress build up and relief near the crack tip. Axial splitting

of ice samples in uniform loading experiments are caused by wing crack growth either

by a single wing crack (columnar ice) or by the linking up of many smaller wing cracks

(granular ice). The stress required to cause wing crack failure is higher in tri-axial

experiments due to increased confinement of the crack, leading to greater dissipative

forces.

2.3.4.3 Floe Splitting and Radial Cracks

In a series of experiments done by Canadian Marine Drilling Ltd. (Danielewicz and

Metge, 1981), loads exerted on Hans Island (located between Ellesmere Island and

68



Ice Properties Interactions with Ice

(a) (b)

Figure 2.31: Floe-splitting observed at Hans Island. Light gray represents the island
and dark grey shows the tensile zones near the contact area between the ice floe and
Hans Island.

Greenland) by ice floes colliding with the island were recorded. Danielewicz and Metge

(1981) notes that the lowest loads occurred during the test in which floe splitting

happened, as seen in Figure 2.31a.

Flow splits originate as cracks that form in the tensile zone beneath the contact

zone (the central zone in Figure 2.31b). As the load increases, the tensile stresses on

the crack become greater due to Poisson’s effect. This will cause the crack to grow in

the direction of maximum energy release rate. As crack growth becomes unstable it

will begin to grow rapidly.

The crack growth rate is limited by the maximum speed that a crack can grow in

ice - roughly 200–400 m/s depending on ice type (Mackay, 1993). Early experiments

by Parsons et al. (1987) suggested that the crack velocity in ice was 22 m/s. This

was based on the assumption that the crack had time to reach its maximum velocity

over the length of their 50 cm specimens, as would be the case for glass. Experiments
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done by Dempsey et al. (1999) studied the crack growth in first-year sea ice and saw

that the small-scale growth of cracks (e.g., growth between grains) were on the order

of 400 m/s, but the large-scale velocity was on the order of 10 m/s. In other words,

the cracks did not have continuous growth, which gave an apparent slower velocity

than the actual crack velocity would be.

Once a crack reaches its maximum speed limit, its energy release will be capped,

but since it must release all the required energy, then the crack will split in two so

that the second branch can release the remaining amount. The crack many continue

to branch into more segments if needed, until it reaches the surface and fractures the

ice.

Tests done by Kendall (1978) on plates with a single crack that would mimic a

floe split, suggests that a crack can be modelled by a double cantilever with each half

taking half the force. Using elastic beam theory, Kendall developed an expression

for the splitting force of the crack for both centre and off-centre cracks. His analysis

concluded that off-centre cracks would require more force and thus cracks would prefer

to travel along the centre plane.

Kendall’s original theory neglected the lateral forces at the end of the beam from

when the two cantilevers bend in and touch each other (effectively allowing the two

beams to pass through each other). The theory was modified by DeFranco and

Dempsey (1990) that constrained the ends of the cantilevers. This eliminated the

problem of Kendall (1978) and gave forces nearly three times larger.

Zou et al. (1996) performed numerical simulations in Abaqus FEA for an ice sheet

with a central cracked loaded by an indentor. They showed that the results of crack

energy release approach the modified cantilever theory when the ratio to crack length

to ice thickness is 0.8 but doesn’t match until the ratio is about 9. This theory can

be applied to cases of axial splitting in ice but does not provide much insight into
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(a) (b)

Figure 2.32: Bending failure of ice due to interaction with structure and vessel.

spalling fracture seen during indentation tests, as the cracks need to be sufficiently

large for the theory to apply.

Radial cracking can also occur for out-of-plane loads, such as the case of ship

ramming. Radial cracking will tend to occur in ice floes that are narrow (meaning

their width is roughly equal or greater than their length) and not too small. Long

ice floes will likely undergo bending failure (discussed below), whereas a small ice floe

may move out of the way or rotate and flip over (Lu et al., 2016).

2.3.4.4 Bending Failure

Bending failure is caused by the creation of circumferential cracks in the ice. As

an ice floe collides with a structure, as depicted in Figure 2.32a, cracks can grow

circumferentially under flexural failure. This typically requires the ice floe to be long

and narrow (much like a beam). Otherwise, other fracture mechanisms are likely to

take place. In Figure 2.32b, a bending failure under load from a ship ram is depicted.

Ship ramming is likely to cause either floe splitting or bending failure for long, thin
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floes. In both cases, icebreakers often ram into the ice and wait for the ice to undergo

delayed failure under the weight of the ship.

Timco and Cornett (1997) tested how ice sheets of uniform and non-uniform thick-

ness would interact with a sloped structure via a small-scale set-up at NRC-CHC in

Ottawa. Experiments were done in a 21x7x1.2 m tank at -20◦C. The structure could

slope 30◦ from the vertical to produce either upward-breaking (structure lifted ice up)

or downward-breaking (pushed ice down into the water) ice interaction, and had a

width of either 0.6 or 1.2 m. They suggest that the effective thickness of the non-

uniform sheet can be represented by heff = havg + khσ where k is a constant, havg is

the mean, and hσ is the standard deviation. The results from the experiment and the

model developed by Croasdale (1980); Croasdale et al. (1994) match up well and show

that downward-breaking ice has smaller loads associated with it due to the buoyancy

of the ice in water.

2.3.4.5 Load drops and Area Loss

Figure 2.33 shows how the area and loads change under crushing and spalling. For

crushing, Figure 2.33a shows that there is a load drop, but minimal area change.

This is because crushing causes the material to be extruded relatively slowly as small

flakes. Since only fine particulate is extruding at the top of the damaged layer, there

is little change in the area since the layer behind is unchanged. Like spalling, there

is a load drop since extruding removes energy from the system, proving temporary

relief of loading as new contact is established.

Figure 2.33b shows that there is load drop under spalling, which is usually greater

than the load drop under crushing. More notably, there is a significant change in

contact area due to the spall removing a large part of the damaged layer. Since spalls

start as cracks deeper in the layer, when they break, they remove deeper parts of the
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(a) Crushing

Figure 2.33
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(b) Spalling

Figure 2.33: Each before/after shows the pressure distribution during an ice-structure
interaction from a pressure sensor. a) shows the pressure and area change from a
crushing/extrusion event. The crushing event shows very little change in the contact
area. b) shows the pressure and area change from a spalling event. The arrows point
to various spalls that occurred and lead to localized loss of contact area. The Data
is from Nakazawa et al. (1999) for a medium-scale flat indentor. Figure is modified
from Taylor et al. (2008).
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layer that extrusions do not. This causes a change in the area that will lead to the

formation of new hpz as the contact area between the indentor and ice has changed.

2.3.5 Scale Effects

The experiments performed in Dempsey et al. (1995) investigated the size effect law.

This law simply states that material’s strength is related to its size. In a comparative

sense, the size effect theory postulates that large samples are weaker (break under

lower stress) than smaller samples based on the ratio of their sizes. They investigated

several size effect laws and determined that they were “rather fickle” in predicting

results outside the sample ranges.

Section 2.2 discusses the underlying physics of materials. To briefly summarize a

key point: materials are composed of atoms/molecules that are bonded to each other.

Some bonds are stronger than others (covalent bonds are stronger than hydrogen

bonding) and are affected by defects such as dislocations and grain boundaries. To

fracture a material, the atomic bonds in this material need to be broken. This Means

that a crack grows when the local stresses are on the order of the theoretical limit

(variations due to bonding type and defects).

Since the theoretical limit (hence the bond breaking limit) is independent of sample

size, then some other effect must be at play that explains why larger samples are

weaker than smaller samples. This other effect is known as the scale effect. The scale

effect is related to the size of the specimen and to its distribution of cracks.

The scale effect refers to the relationship seen between the pressures exerted on a

structure/vessel (and the ice) and the size of the contact area of the interaction with

the ice. Often this relationship is discussed in terms of the pressure-area curve.

Figure 2.34 shows a pressure-area curve for ice from laboratory-scale indentation

up to island-sized indentation experiments. The figure shows a clear decreasing power-
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Figure 2.34: Indentation data from a variety of sources from laboratory-scale inden-
tation to island-sized indentation in the field. Taken from Jordaan et al. (2005),
modified from Sanderson (1988).

law relationship (linear in a log-log plot) between the measured pressure and the

contact area. While there is considerable scatter in the data (which is to be expected

since there are a variety of sources), the data shows that laboratory ice typically has

pressures on the order of 10 MPa whereas the pressures for the island-size experiments

were closer to 0.1 MPa. Much of the field data, such as from ship ramming, resulted

in pressures around 0.5–1 MPa. A similar pressure-area curve is also produced from a

series of datasets can be found in Timco (2011) that displays the scale effect ranging

from full-scale (Island-sized) and medium-scale (offshore structures and bridge).

Barrette et al. (2003) perform a series of indentation tests using four indentors

(10-,20-,40-, and 100-mm diameters). These indentors were each indented at four

different speeds each (the speeds were scaled; for example, the four speeds of the 20-

mm indentor were twice the speeds of the 10-mm indentor, and the 100-mm indentor
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was 10 times the 10-mm indentor). These experiments were scaled down versions

of the experiments done in the field (Frederking et al., 1990; Masterson et al., 1993,

1999). The test matrix for the series is given in Table 2.2.

The results of Barrette et al. (2003) are plotted in Figure 2.35. Series (a) of tests

(which was their slowest speeds) produced no noticeable scale effects. Both (b) and

(c) displayed scale effects similar to Figure 2.34. The study showed that the pressure

followed a decreasing power-law between pressure and contact area given by

P = kA−n (2.52)

where P is pressure, A is area, k and n are constants with 0 < n < 1.

To understand why the scale effect occurs, a statistical approach to fracture me-

chanics is required. Scale effects are well-explained by the theory of ‘weakest-link’ in

fracture mechanics (See Section 3.1.5) and is discussed further in Section 4.3.3 (with

experimental data).

The basic premise of the scale effect is that it is not the size of the sample that is

important, but rather the stress and strain fields. If two samples of the same geometry,

where one is a scaled-down version of the other, then a proper scaling of the loads (or

loading rate) will lead to similar material strength and behaviour. This is because

proper scaling will lead to similar stresses/strains in the material, resulting in similar

fracture behaviour from the stresses localized near a crack tip.

One valuable use of the scale effect (as shown in the experiments) is the ability to

recreate large-scale experiments in the laboratory. This can be useful for studying a

variety of scenarios in the laboratory, which allows for more repeatability, saving on

time and resources, and is considerably safer than field experiments.
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Indentor Displacement Rate (mm/s)
Diameter (mm) Series a Series b Series c
10 0.01 0.1 1
20 0.02 0.2 2
40 0.04 0.4 4
100 0.10 1.0 10

Table 2.2: Test matrix of indentation experiments performed in Barrette et al. (2003).

Figure 2.35: Observed scale effects for various indentors at different loading rates from
Barrette et al. (2003). Units are in MPa and mm2.
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Chapter 3

Review of Fracture Mechanics

3.1 Key Concepts of Fracture Mechanics

Fracture refers to the growth of new or pre-existing cracks in the ice. Cracks nucleate

at several stress-raising sites, called nucleation sites. These sites will be related to the

atomic and crystal structure of the ice, such as dislocation pile-up and shear causing

sliding at grain boundaries, discussed in Section 2.2.2.

This section provides an overview of some key concepts in fracture mechanics.

As a crack is loaded, the material in front of the crack will undergo changes in its

properties due to the increased stresses caused by the presence of the crack. The

energy stored in this region will cause the crack to grow once a critical level is reached,

which will be based on the surface energy of the crack as well as of any dissipative

processes in the material. The concepts discussed in this section are fundamental to

developing any fracture model and outline some of the underlying assumptions used

in the development of the proposed model in this thesis.
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Figure 3.1: Modes of cracking opening.

3.1.1 Linear Elastic approximation

Linear elastic fracture mechanics (LEFM) is based on the material being a linear

elastic material that eventually undergoes brittle fracture. It relates to the changes

in the stress field due to the presence of cracks, and how the cracks will grow and

propagate.

Due to the high stresses near the crack tip, the material will have to dissipate

energy by either plastic or viscoelastic mechanisms. This will cause a damaged zone

near the crack tip, changing the properties inside, while not changing the properties

outside (e.g., steel would develop a plastic damaged zone near the crack, but would

be elastic elsewhere). Provided that this zone, known as the process zone, is small

in comparison to the dimensions of the material, then LEFM can be used as an

acceptable approximation. An in-depth analysis of linear elastic fracture theory is

discussed in Section 3.2.

3.1.2 Modes of Crack Formation

Based on the loading felt by a crack, there are three ways that cracks grow, appro-

priately called Mode I, Mode II, and Mode III. These modes are shown in Figure
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3.1.

Mode I is known as the opening mode, where the displacement of the crack surfaces

is perpendicular to the plane of the crack. That is, if we say the crack runs in the x

direction, then the surface displacement is in the y-direction. This mode of fracture is

generally considered the most dangerous mode. For ice, a tension crack under Mode

I loading conditions is always unstable and will lead to brittle failure once the stress

becomes sufficient to break the ice.

Mode II is known as the in-plane shear mode, where the displacement of the crack

surfaces are in the same direction as crack growth (the x-direction). In ice-structure

interactions, this mode is considered the second most important type of crack loading.

While not as severe as a Mode I type fracture, Mode II is plays an important role in

ice fracture. For many interactions, Ice is often likely to fail from crack originating in

a zone under high shear stresses. These cracks (the wing cracks) are very important

cracks that are likely to occur in confined specimens (that limit the Mode I cracks),

and can exhibit stable crack growth leading to delayed failure.

Mode III is the out-of-plane shear mode (or tearing). In this mode, the crack

surface displacement would be in the z-direction. This mode is caused by torsion

forces causing the separation of the material (i.e; tearing a piece of paper) and is

generally considered the least important in ice-structure collisions.

For ice-structure collisions, the cracks are generally going to form via Mode I

(under compression), or a mixed mode combining elements of both Modes I and II.

A full analysis of ice fracture would need to incorporate all three modes (or at least

the first two), but the analysis presented in this project will focus solely on the Mode

I type fracture.
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3.1.3 Crack Nucleation and Propagation

It can be shown (Anderson, 2005) that the cohesive strength of atomic bonds of a

material can be approximated by

σc ≈
E

π
(3.1)

However, the strength of materials is typically much weaker than the theoretical

value. This is due to flaws in the material such as impurities, dislocations, and grain

boundaries that lead to stress concentrations. Experiments by Griffith (1921) using

glass fibres of varying diameter showed that the fracture strength of the fibre becomes

weaker for thicker fibres. For the thinnest fibres, the fracture strength approached the

theoretical value of 11 GPa. As the fibres became thicker, the strength approached

the bulk glass strength of 175 MPa (about two orders of magnitude less).

The work by Inglis (1913) shows that the stress concentration factor near an

elliptical hole with the major axis, a, and the minor axis, b, is given by

k =
σ

σa
= 1 + 2

a

b
(3.2)

in the case that b comes small, on the order of atomic distance xo, the hole becomes

a crack with a stress concentration given by

k = 2

√
a

xo
(3.3)

and the material will crack when the applied stress, σa, causes a local stress, σ, to

exceed the critical stress, σc.

Following the works of Inglis (1913), Griffith (1921) was interested in determining

why the strength of materials are significantly less than the strength required to break

bonds (Griffith looked at glass, but in terms of ice, the atomic strength of ice should
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be on the order of 100-1000 MPa, but many field and laboratory experiments show

that ice breaks on the order of 1 MPa).

Griffith, often considered the father of fracture mechanics, was the first to consider

the release of strain energy into surface energy as a crack grows. Griffith showed that

nucleated cracks can grow when

σf =

(
2Eγs
πa

) 1
2

(3.4)

where γs is the surface energy of the material (energy required to create new surfaces).

The explanation why larger samples tend to be weaker than smaller samples had

to do with the presence of cracks, where larger samples likely had larger cracks, which

would require less energy to break. In other words, all samples break at the theoretical

limit, but local energy build up due the presence of cracks significantly reduces the

applied stresses needed to fracture the sample.

3.1.4 Energy Release Rate

For a linear elastic material under stress, the strain energy is given as

U =
1

2

∫
σijεij dV (3.5)

Consider a situation with two different double-cantilever beams under constant

loading F , but with different crack lengths a and a+ δa, as shown in Figure 3.2a and

d. The end displacements of the beams, δ1 and δ2 (respectively), will differ since the

beam with the longer crack will have reduced stiffness, as seen in Figure 3.2c. Then

the difference in strain energy of the two systems is

∆U =
1

2
F (δ2 − δ1) (3.6)
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(a) Short Crack pre-extension (b) Short Crack post extension(c) Force-Displacement Plot
showing ∆U

(d) Long Crack pre-extension (e) Long Crack post extension(f) Force-Displacement show-
ing ∆Wext

Figure 3.2: Energy release rate due to crack extension.

which is the area under the a+ δa line minus the area under the a line in Figure 3.2c.

Now consider that the two beams are the same beam, just different points in

time, then the beam starts with crack a and undergoes displacement via Hooke’s law

(the diagonal line). Then a critical point is reached where the crack extends and the

F − δ plot extends horizontally to the situation of the extended crack beam. Using

dδ = δ2 − δ1 and calculating the external work done using Figure 3.2f, we get

∆U =
1

2
F dδ (3.7)

∆Wext = F dδ (3.8)
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which has an increase in strain energy per crack extension.

The other extreme condition is to force the beam tip under constant displacement.

Like before, as the δ is increased, the F − δ graph increases linearly with a reduced

stiffness for a beam with a longer crack. Similar to above, if we allow the crack to

extend under constant displacement, then the plot curve would be the diagonal line

(as δ increases to the extension point), followed by a drop to the point on the second

line. In this case, the changes in strain energy and work are

∆U =
1

2
δ dF (3.9)

∆Wext = F dδ = 0 (3.10)

which shows a decrease in strain energy (since dF < 0) when the crack extends.

For a crack in a semi-infinite plate with thickness B, Griffith (1921) showed that

the strain energy of a centre crack (with two tips) is given by

Ua =
πa2σ2

E
B (3.11)

and the energy release from extending the crack is

Us = 2(2a)BγS = −4aBγs (3.12)

The sum of these two equations gives the total energy at the crack tip

UT = Ua + Us =
πa2σ2

E
B − 4aBγs (3.13)
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The derivative of UT with respect to 2a gives the slope

∂UT
∂(2a)

=
πaσ2

E
B − 2Bγs (3.14)

Setting the slope equal to zero determines the transition between stable and unstable

crack growth. In terms of a, the critical crack length before unstable growth is

a =
2Eγs
πσ2

(3.15)

The energy release rate as the crack grows can be written as

G = −∂Π

∂A
= −∂(U −Wext)

∂A
= − 1

B

∂Π

∂a
(3.16)

where A is the change in the area of the crack during extension, where an incremental

increase in A is given by

∆A = B∆a (3.17)

In terms of material compliance, C, for a constant load

δ = CF (3.18)

G =
F 2

2B

∂C

∂a
(3.19)

which holds in the case of constant displacement.

The resistance of an elastic material is defined as

R = 2γs (3.20)

and is used to determine whether the crack growth is stable or unstable.
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For fracture to initiate in an elastic material

G ≥ R (3.21)

meaning that there is enough available energy to create the new crack surfaces.

Stable crack growth occurs when

∂G

∂a
<
∂R

∂a
(3.22)

which means the crack would stop growing if the applied load was removed. For the

case that

∂G

∂a
≥ ∂R

∂a
(3.23)

then the crack growth will be unstable. At this point, the growth of the crack has

enough energy to continue its growth without the need of an applied load any more.

Removal of the applied load at this point would not cause the crack to stop growing

and catastrophic failure will occur.

For 2-D problems (or problems that can be simplified to 2-D), the energy release

rate and stress intensity are related by

G =


K2
I

E
Plain Stress

(1−ν2)K2
I

E
Plain Strain

(3.24)

3.1.5 Weakest Link Theory of Failure

The previous sections outlined the basic theory and terminology for the growth of a

single crack. Under normal conditions of interactions with ice, the ice will naturally

have a distribution of cracks with many different lengths and orientations. The basic

tenant of a weakest link theory is that a linked chain (Figure 3.3) is only as strong as
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Figure 3.3: Two chains of different strengths. The strength of a chain is determined
by its weakest link.

its weakest link, meaning the bottom chain would likely break on the fourth link.

One commonly used theory for describing the weakest link behaviour of materi-

als was proposed by Weibull (1951). For any probability distribution, the following

functional form

P {X ≤ x} = F {x} = 1− exp {−ψ {x}} (3.25)

where F defines the probability and ψ is some function that defines the shape of a

distribution (such as the classic Gaussian or chi-squared distributions) of finding a

value X less than x. Conversely,

1− P {x} = exp {−ψ {x}} (3.26)

defines the probability of finding a value X greater than x.

Applying this logic to breaking a link in a chain, P {x} would define the probability

of the link failing and 1−P {x} would define the probability of non-failure for a given

load x. By definition, a chain is considered broken if any one of the links in the chain
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breaks. Assuming there are n links in the chain, then the probability that the chain

survives a forcing is

Psurvive {x} = (1− P {x})n = exp {−nψ {x}} (3.27)

which gives the probability that the chain breaks as

Pbreak {x} = (1− P {x})n = 1− exp {−nψ {x}} (3.28)

According to Weibull (1951), the shape function ψ, is only required to be a positive,

non-decreasing function. Weibull proposed

ψ {x} =
(x− xµ)m

x0

(3.29)

which is an empirical formula. This function has no physical basis, it is simply a basic

function that works, but provides exceptional fits to various experimental results

(Weibull, 1951).

In the case of ice, the strength of the ice will be affected by the natural distribution

of cracks. The strength of an ice sample will be limited by whatever crack has the

most favourable length and orientation for failure. A long crack with an orientation

along the loading axis will cause an ice sample to fail under smaller loads/pressures

than if the crack was shorter or oriented along a different axis (such as perpendicular

to the loading axis). Since the distribution of cracks in ice samples will be different

from sample to sample, then the strength of any ice sample will follow a statistical

distribution. As explored in Hunt and McCartney (1979) and Taylor and Jordaan

(2015), the statistical distributions of fracture strengths in ice experiments follow a

Weibull-type weakest link theory.
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3.1.6 Fracture Toughness

The mode I stress intensity factor for an internal crack in a thin, infinite plate is

KI = σ
√
πa (3.30)

where a is the half-crack length of an internal crack. Similar definitions for the modes

II and III stress intensity can be defined (written as KII and KIII), but for notational

simplicity, only mode I will be considered here.

The critical stress intensity, otherwise known as fracture toughness is given by

KIC = σf
√
πa =

√
2Eγs (3.31)

The fracture toughness is related to dissipative terms, such as the surface energy

release. For ice, this will include any viscoelastic effects giving the fracture toughness

as

KIC = σf
√
πa =

√
2E(γs + γv) (3.32)

which will also affect σf .

In the case of plastic deformation, one can consider an effective crack length which

is the actual crack length plus the fracture zone radius (since it cannot support any

more stress). The size of the plastic zone is given by

Rp =
K2
I

2πσ2
y

=
σ2a

2σ2
y

(3.33)

where σp is the plastic yield strength. This gives the fracture stress as

σf =
KIC√

π(a+Rp)
=

KIC√
πa(1 +K2

IC/(2πaσ
2
y))

(3.34)
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which gives the effective fracture toughness as

KIC =
σf
√
πa√

1− 1
2

(
σ
σy

)2
(3.35)

The stress intensity often can be written in a more general form as

KI = Y σ
√
πa (3.36)

which will lead to fracture when KI ≥ KIC . This occurs when a critical stress is

reached in the presence of a known crack, or when a crack extends to a critical length

in the presence of a known stress. The coefficient Y is known as the geometric shape

factor. Y can be a function of crack shape and size; specimen shape and size; and the

loading method (e.g.; loading modes I, II, and III)

To provide a consistent way to measure KI , various sets of fracture tests have

been defined to guide experimenters in obtaining good results. One such guideline is

the ASTM E399 (Anderson, 2005; Zhu and Joyce, 2012) that provide a variety of test

scenarios and provides an equation relating KI to the applied stress on the specimen

in the form of equation 3.36. A few of these specimen geometries are summarized in

figure 3.4.

Experiments done by Dempsey (1996) investigated the fracture toughness using

naturally grown ice from two lakes in Northern Alberta. A variety of tests were done

including 3-point bending, reversed tapered, and specimens with edge cracks split by

a flatjack (see figure 3.5). The results of these experiments showed that the fracture

toughness nearly tripled over the length scales up to 30 m (covering a ratio of 1:80

from smallest to largest). This increase mostly happened on scales up to 5–10 meters

and became nearly constant for larger scales. Unfortunately, the rate of loading on
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Figure 3.4: Sample recommended testing from ASTM for KI fracture. a)Singe Edge
Notched Tension (SENT) b) Single Edge Notched Bent (SE(B)) c) Double Edge
Notched Tension (DENT)
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(a) (b) (c)

Figure 3.5: a) 3-Point beam bending set-up. b) Reverse Tapered ice specimen with
steel-walled flatjack along crack wall. c) Compact tension specimen loaded at grips
above and below an edge crack.

the crack faces was not recorded. This hinders the study of any scale effects related to

how the strain rate near the crack tip would be changed by the increase in specimen

size. The local strain rate at the crack tip is related to the ductile or brittle properties

of ice, which would affect the values of the recorded fracture toughness.

Weiss and Schulson (1994) experimented with 155 mm cubic ice samples under

multi-axially, proportionally loaded ice at temperatures -10◦C, -20◦C, and -40◦C. Ice

was loaded at a strain rate of 10−3 s−1, and unloaded at 10−6 s−1 to prevent crack

nucleation and growth upon unloading. Their experiment showed that smaller grained

ice was more ductile than larger grains.

The work of Goodman and Tabor (1978) also showed that the fracture toughness

is dependent on temperature: decreasing with decreasing temperature. This is due

to the decreased creep and damage mechanisms at lower temperatures, meaning less

energy is dissipated by these mechanisms, reducing the total energy input needed to

initiate and propagate cracks.

Gagnon and Gammon (1995) conducted 3-point and 4-point bending tests on ice

obtained from Greenland and Labrador. The aim of the study was to explore the

effects of bubble density and temperature on the flexural strength of ice. The results
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of this study showed the flexural strength of ice increased with increased bubble

density (by 27%) and decreased with increased temperature (by 60%). These results

show that the flexural strength (and fracture toughness) can vary significantly in ice

due to effects such as temperature and bubbles.

Timco and Frederking (1983) studied ice samples from the Beaufort Sea. The sam-

ples were granular at the top and become columnar below 30 cm. They performed

4-point bending experiments on the ice to test its flexural strength. Aside from frac-

ture toughness decreasing with increasing loading rate, increasing temperature, and

decreasing grain size, Timco and Frederking (1983) also note that fracture toughness

decreases with increasing salinity.

3.1.7 Time-dependent Failure

Time-dependent failure in ice is a relatively new development in ice fracture mechanics

(though it has been used in other materials), and providing a better understanding of

it is the major aspect of this thesis. Studies in the field and the laboratory (discussed

later) have shown that the strength of ice is strongly dependent on the loading rate.

This relationship is represented as a decreasing power-law curve between the strength

of the ice and loading rate (which could be strain-, displacement-, or force-controlled).

The strength of ice is highest under slow loading tests and is the weakest under

extremely fast loading tests (in which the ice behaves as a brittle elastic). In short,

slow loading lead to creep-like behaviour in ice, fast loading lead to brittle behaviour,

and intermediate loading rates provide a mix of both.

The second aspect of time-dependent failure is stable cracks growth under load

leading to delayed failure. One example of delayed failure occurred during the medium-

scale indentation series at Hobson’s Choice ice island (Frederking et al., 1990). Many

of the experiments done in that series were focused on the loads and pressures exerted
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(a)

(b)

Figure 3.6: Delayed fracture during creep test at Hobsons Choice medium-scale in-
dentation test (Frederking et al., 1990).
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Figure 3.7: Time to Failure for peak loads, taken from Timco (2011). Trendlines
added to original plot to show decreasing power law relationship discussed in text.

at the contact zone between the indentor and the ice wall. In one test, a slow speed

was used, causing the ice to have a more (damage-enhanced) creep-like response. As

shown in figure 3.6, after roughly 1.5 minutes of testing, the ice underwent a large

failure that broke off a large section of the ice wall (for comparison, most tests during

that series were under 1 second). As will be discussed later, under faster loading, this

large-type of failure is less likely to be seen and is replaced by smaller more frequent

spalling events.

Timco (2011) provides analysis of a variety of data sources from the Hans Island

experiments (Danielewicz and Metge, 1981), the Molikpaq Arctic Caisson (Hardy

et al., 1996), and various other bridge and laboratory-scale experiments for a total of

9 data sources. One particularly interesting plot (Figure 3.7), was of peak load versus
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time to failure. In the figure, the data was presented in a way to show that the higher

peak loads have a longer time to failure (one can visualize a linear fit with a positive

slope connecting the various datasets) and is explained that this is true because the

bigger experiments had the bigger loads and would take longer to fail. However, as not

mentioned in the paper, there is a decreasing power-law curve relating time to failure

with peak load. This can be seen by considering any one dataset, where each data

set (e.g., The Hondo Bridge) exhibits increasingly longer time to failure for reduced

loads. These all have a power-law decreasing relationship as expected.

A set of medium-scale indentation test were ran in the winter of 1984-85 at Rae

Point in Northern Canada. There was a total of 24 indentation test with velocities

ranging from 0.1–100mm/s (Masterson et al., 1999). The experiments used flat (sur-

face area=1m2) and spherical indentors (1m2 and 2m2) in trenches cut into the ice 50

m long, 2.5 m wide, and 3.5 m deep. Figure 3.8a and b show the results of a slow (1

mm/s) and fast (10 mm/s) loading tests. The slow test displays ice undergoing ductile

behaviour with no fracturing and small amounts of crushed ice. The fast test displays

brittle behaviour as the ice displays more crushed ice and the formation of cracks

radiating from the contact zone. Figure 3.8c shows the data from the 1m2 indentor.

This data shows a clear exponentially decreasing pressure with contact area.

Another series of medium-scale indentation experiments were conducted by Memo-

rial University, the National Research Council of Canada (NRC) and Sandwell (for-

merly GEOTECH) at Hobson’s Choice ice island in 1989/1990 (Frederking et al.,

1990; Masterson et al., 1993). Trenches were cut into the ice and an indenting appa-

ratus was placed in the trench. The apparatus could be attached by various indentors

up to 3 m2 and could load the ice with up to 4.5 MN of force. These experiments

showed that the damaged layer was thinner for faster loading rates. The pressure

at the centre of the indentor was about three times the average pressures over the
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(a) Ductile Indentation (b) Brittle Indentation

(c) Scale Effect

Figure 3.8: Images and data collected during the Rae Point indentation series by
Sandwell/GEOTECH in 1984-85
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contact area. The results also showed the rate-effect on the ductile-brittle behaviour

of ice and a large spalling event that occurred at the end of a slower test (hinting at

delayed failure in ice).

Urabe et al. (1980) did a set of 3-point bending tests using sea ice at −2◦C form an

inland sea in Northern Japan. The specimens rested on rollers 160 cm apart in water.

The height of the rollers were adjusted so that the weight of the ice from buoyancy

was cancelled out, as shown in Figure 3.9a. The experimental results in Figure 3.9b

show that the fracture toughness was constant for strain rates less than 10−3s−1 and

underwent power-law decay for strain rates above 10−3s−1.

Fracture toughness testing on compact tension ice specimens, as well as crack-

arrest tests, were performed by Liu and Miller (1979). They used fresh-water ice that

was distilled and grown from a layer of 4 mm seed placed in the bottom of a tank

between −8◦C and −10◦C. Aided by mechanical shaking, this produced bubble-free,

columnar ice. Their test speeds ranged from 0.5—480 mm/s for the fracture toughness

testing. These experiments showed a decreasing power law with respect to velocity,

Hamza and Muggeridge (1980) performed small-scale experiments on fresh water

ice grown at -23◦C. The ice samples were cubes with a side length of 60.96 cm and

columnar grain sizes of either 8 or 12 mm. 3-point bending experiments were done

with a range of temperatures from -40◦C to -3.89◦C, with velocities that ranged from

0.00167 mm/s to 0.833 m/s. The experiments showed that the faster loading rates

resulted in lower fracture toughness, due to viscoelastic effects of the ice. The fracture

toughness also increased with decreasing temperature to -30◦C and then lowered at

-40◦C. The increasing fracture toughness with decreasing temperature is similar to

the results of (Goodman and Tabor, 1978) and (Liu and Miller, 1979), except for the

changing trend at -30◦C. The change in the trend at -30◦C may or may not be a real

effect as the change is within the errors of the experiment, and more testing could be
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(a)

(b)

Figure 3.9: a)Experimental set-up from Urabe et al. (1980). Bottom rollers are ad-
justed to cancel the buoyancy of the ice, causing it to be weightless. b) Results of
Urabe et al. (1980), showing the relationship between apparent fracture toughness
and strain rate of sea ice under 3-point bending tests.
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done to confirm if this a temperature effect or due to some variability in the ice.

3.1.8 Summary of Literature Review

From reviewing previous experiments, there is much work to be done in understanding

fracture mechanics and building an appropriate model. The indentation experiments

and Rae Point and Hobson’s Choice show that there are distinct zones of high pressure

that are significantly different from that of the parent ice far from the contact zone.

As a result of the high degree of confinement and shear stresses in the centre of these

zones, ice becomes highly softened due to processes such as recrystallization, pressure

melting, and microcracking.

From a fracture mechanics perspective, the centres of these zones are under high

compression, leading to mainly damage processes and microcracking. Just beyond

the centre the ice is under less compression but is under a lot of shear stress. This

zone of high shear no longer prevents to growth of larger crack formation, leading to

spalling events.

The rate of loading on the ice affects its properties (ductile versus brittle), which

has an impact on the stability of crack growth and the type of failures - such as small

localized spalls or possibly large, global, delayed spalling events.

Given the rate-dependent nature of fracture in ice and the random nature of ice

grain formation, experimental results would suggest that a physically-based model

using a viscoelastic theory of crack growth would be required to explain the fracture

properties of ice.
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3.2 Critical Analysis of Linear Elastic Fracture The-

ory

The purpose of this section is to develop the background theories involved in devel-

oping the model to be used in this project. The following works provide the physical

and mathematical background used in the new model.

As the title of this section suggests, these theories were developed for linear elastic

materials, and will be discussed here in such a manner. Field and laboratory exper-

iments on ice have shown that ice does not behave like an elastic (or elastic-plastic)

material. As was discussed in the previous sections, the strength of ice has been shown

to be highly dependent on how it has been loaded and fails over time. A viscoelastic

treatment of ice fracture is discussed in Chapter 6, but is built upon the theories

discussed in this section.

Having discussed the key concepts of fracture mechanics (and alluding to the

viscoelastic nature of ice), the underlying LEFM model described in Westergaard

(1939), Williams (1957), and Alturi et al. (1975) is discussed. The major shortcoming

of this theory (to be explained in detail), was an infinite stress at the crack tip. This

issue was addressed by the introduction of a cohesive zone in front of the crack tip

by Barenblatt (1962). A model developed by Dugdale (1959) using a plastic zone in

front of the crack tip has similar results to the work of (Barenblatt, 1962) - leading

to what is known as the Dugdale-Barenblatt (DB) model. While the two versions of

the cohesive zone (also known as process or failure zones) have similar results, the

physical meanings are strikingly different. It is of the opinion of the author that the

Barenblatt model lies closer to the reality of the processes in ice, and will explain the

Barenblatt model in some detail.

The final step in developing a set of viscoelastic equations for the modelling of
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Figure 3.10: Westergaard setup of a centrally located crack in an infinite plate under
biaxial tension

ice was developed by Schapery (1975a,b,c). Schapery (1975a) uses the correspon-

dence principle to convert Barenblatt (1962) from a linear elastic material to a linear

viscoelastic material. This will be presented in Chapter 6.

3.2.1 The Westergaard Model

The model by Westergaard (1939) defines a small crack, of length 2a in a semi-infinite

plane of a linear elastic material, as shown in Figure 3.10. This experimental set-up (in

either uniaxial or biaxial loading) provides the least complex geometry/mathematics

for studying fracture mechanics. Using the approximations of Westergaard (1939),

the stress field of the material to be solved analytically near the crack tip, but there

will be a stress singularity at the crack tip (which has been resolved). The solution

from Westergaard (1939) provides a solid starting point into fracture mechanics and

led to many insights.

To begin, the elastic stress field (σ0
x, σ

0
y, and σ0

xy) can be found with the Airy’s
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Stress Function given by

∇4φ = 0

σ0
x = ∂2

xxφ

σ0
y = ∂2

yyφ

σ0
xy = ∂2

xyφ

(3.37)

with the boundary conditions

for y = 0 for all x, σ0
xy = 0 No shear on crack plane

for − a < x < a on y = 0, σ0
y = σ0

xy = 0 Stress-free crack face

as z →∞, σ0
x = σ0

y = σ and σ0
xy = 0 Biaxial tension

(3.38)

as defined by the biaxial loading used in Westergaard (1939).

To obtain the Airy’s stress function (and hence the Westergaard solution), complex

analysis can be used. Starting with the equations from Muskhelishvili (1953b), who

developed generalized analytical solutions for the Airy’s Stress Function using complex

analysis (among other things),

σ0
x + σ0

y = 4Re{∂zΩ {z}}

σ0
y − σ0

x + 2iσ0
xy = 2(z∗∂zzΩ {z}+ ∂zzψ {z})

2µ(u0 + iv0) = κΩ {z} − z∂zΩ∗ {z} − ψ {z}

∇φ = Re{z∗Ω {z}+ ψ̄ {z}}

(3.39)

where Ω {z} and ψ {z} are complex functions of z = x+iy. The over bars are integrals

with respect to z, and an asterisk refers to the complex conjugate. κ is defined in

equation 2.17.
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For the case of biaxial loading, σ0
xy = 0 along y = 0, from the second expression

in equations 3.39

Im{2(z∗∂zzΩ {z}+ ∂zzψ {z})} = 0

z∗∂zzΩ {z}+ ∂zzψ {z}+ A = 0

∂zzψ {z} = −z∗∂zzΩ {z} − A

(3.40)

where A is some real constant. In the analysis of Westergaard, he used A = 0, but

it does not have to be. Substituting equation 3.40 back into the equations 3.39 (and

setting A = 0) gives

σ0
x = 2Re{∂zΩ {z}} − 2yIm{∂zzθ {z}}

σ0
y = 2Re{Ω {z}}+ 2yIm{∂zzθ {z}}

σ0
xy = −2yRe{∂zzΩ {z}}

2µu0 = (κ− 1)Re{Ω {z}} − 2yIm{∂zΩ {z}}

2µv0 = (κ+ 1)Im{Ω {z}} − 2yRe{∂zΩ {z}}

(3.41)

which provide equations for the stress and displacement fields, provided an Airy’s

function can be found.

Westergaard showed that the Airy’s stress function can be written as

φ = Re{ ¯̄Z}+ yIm{Z̄} (3.42)

Where the complex function Z is subject to the Cauchy-Riemann conditions

Re{∂zZ} =
∂Re{Z}
∂x

=
∂Im{Z}

∂y

Im{∂zZ} =
∂Im{Z}
∂x

= −∂Re{Z}
∂y

(3.43)
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which are necessary and sufficient conditions for Z to be complex-differentiable (Z

has real and complex derivatives).

The Airy’s stress field defined in equation 3.37 can be rewritten as

σ0
x = ∂xxφ = Re{Z} − yIm{Z}

σ0
y = ∂yyφ = Re{Z}+ yIm{Z}

σ0
xy = ∂xyφ = −yRe{Z}

(3.44)

which is the same as equation 3.41 with

Ω {z} =
1

2
Z (3.45)

For the case of the crack in a thin, infinite plate under biaxial tension, σ,

Z =
σ(z + a)√

(z + a)2 − a2
(3.46)

which meets the conditions defined in equation 3.38. Here a is the half-crack length

and z has its origin at the crack tip. Provided that one is only interested in the area

near the crack tip, then a >> z, giving

Z ≈ σa√
2az

= σ
√
a(2z)−

1
2 (3.47)

Defining the stress intensity as

KI = σ
√
πa (3.48)
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(by definition, Y = 1 for this geometry), gives

Z =
KI√
2πr

(
cos

{
θ

2

}
− i sin

{
θ

2

})
(3.49)

to which one can calculate the stress field as
σ0
x

σ0
y

τ 0
xy

 =

(
KI√
2πr

)(
cos

{
θ

2

})
1− sin

{
θ
2

}
sin
{

3θ
2

}
1 + sin

{
θ
2

}
sin
{

3θ
2

}
sin
{
θ
2

}
cos
{

3θ
2

}
 (3.50)

Figure 3.11b—j shows a typical stress field near a crack tip. The first image shows

the resulting fringe pattern. The pattern captures most of the properties of a crack

in a brittle material, but is missing stresses in front of the crack tip (σ1− σ2 does not

necessarily equal in real materials). The remaining figures show the stress components

for the Westergaard solution at various points near the crack. The solution shows

that there is no shear stress along the crack or in front of the crack (Points 1 and 8).

The other points show that the shear stress (and principal angle) is of the opposite

sign for locations above and below (e.g.; Points 2 and 3 differ in shear stress). The

Westergaard solution captures much of the pattern observed, but in reality there is a

non-zero fringe pattern in front of the crack tip.

The crack opening, for the case of plane strain, can be found by doubling the left-

hand side of the last expression in equations 3.41, equations 2.16 and 2.17 for plane
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(a) Crack under biaxial tension (b) Principal stress fringe pattern near crack tip

(c) Point 1 (d) Point 2

(e) Point 3 (f) Point 4

Figure 3.11
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(g) Point 5 (h) Point 6

(i) Point 7 (j) Point 8

Figure 3.11: Westergaard stress solution at multiple points
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Figure 3.12: Williams wedge-shaped geometry. As α tends to zero, the wedge becomes
a crack.

strain, and using y = 0 along the crack

2µv0 = 2(κ+ 1)Im{Ω {z}} − 4yRe{∂zΩ {z}}

v0 =
1

µ
(κ+ 1)Im{Ω {z}}

v0 = 4
1 + ν

E
(1− ν)Im{Z}

v0 = 4

(
1− ν2

E

)
Im{Z}

(3.51)

3.2.2 The Williams Model

The solution of Westergaard (1939) is a first-order approximation of the stress field

near the crack tip (but not too close as there exists the singularity at r = 0). A more

accurate representation of the stress field near the tip can be found in Williams (1957)

(but still containing the singularity).

Williams (1957) defines the Airy Stress Function in the form

φ = r`+1F {θ} (3.52)

from previous works (Williams, 1952), William’s approach has two boundary con-
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ditions related to the crack being stress free (see Figure 3.12 for crack geometry).

Notably

σθθ = 0

σrθ = 0


θ=±α

(3.53)

where the stress components, in polar coordinates are

σrr =
1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
=

1

r
F {θ} (`+ 1)r` +

1

r2
r`+1F ′′ {θ} (3.54)

σθθ =
∂2φ

∂r2
= `(`+ 1)r`−1F {θ} (3.55)

σrθ = − ∂

∂r

(
1

r

∂φ

∂θ

)
= − `

r2
r`+1F ′ {θ} (3.56)

Using the boundary conditions (equation 3.53), setting σθθ = 0 implies F {α} = 0,

and setting σrθ = 0 implies F ′ {α} = 0 at the crack face. This means F {θ} is

an Eigenfunction, thus for every value of ` (the Eigenvalue), there is a corresponding

Eigenfunction. William’s generalized stress solution is the sum of all the combinations

of ` and F {θ} that satisfy the boundary conditions.

Substituting equation 3.52 into the Biharmonic equation gives

∇2φ =
∂4F

∂θ4
+ 2(`+ 1)

∂2F

∂θ2
+ (`2 − 1)2F = 0 (3.57)

resulting in the following family of solutions

F {θ} = c1 cos {(`− 1)θ}+ c2 sin {(`− 1)θ}

+ c3 cos {(`+ 1)θ}+ c4 sin {(`+ 1)θ}
(3.58)
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Now applying the boundary condition σθθ = F {±α} = 0 gives

F {α} = c1 cos {(`− 1)α}+ c2 sin {(`− 1)α}

+ c3 cos {(`+ 1)α}+ c4 sin {(`+ 1)α}
(3.59)

F {−α} = c1 cos {(`− 1)α} − c2 sin {(`− 1)α}

+ c3 cos {(`+ 1)α} − c4 sin {(`+ 1)α}
(3.60)

and for σrθ = F ′ {±α} = 0

F ′ {α} = − c1(`− 1) sin {(`− 1)α}+ c2(`− 1) cos {(`− 1)α}

− c3(`+ 1) sin {(`+ 1)α}+ c4(`+ 1) cos {(`+ 1)α}
(3.61)

F ′ {α} = c1(`− 1) sin {(`− 1)α}+ c2(`− 1) cos {(`− 1)α}

c3(`+ 1) sin {(`+ 1)α}+ c4(`+ 1) cos {(`+ 1)α}
(3.62)

Writing equations 3.59 and 3.61 in matrix form

 cos {(`− 1)α} cos {(`+ 1)α}

(`− 1) sin {(`− 1)α} (`+ 1) sin {(`+ 1)α}


c1

c2

 =

0

0

 (3.63)

which should give a zero determinant for a non-trivial solution. This gives

` [cos {(`− 1)α} sin {(`+ 1)α} − cos {(`+ 1)α} sin {(`− 1)α}]

+ cos {(`− 1)α} sin {(`+ 1)α}+ cos {(`+ 1)α} sin {(`− 1)α} = 0

(3.64)

which simplifies to

` sin {2α}+ sin {2`α} = 0 (3.65)
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and for a crack (α = π)

sin {2π`} = 0 (3.66)

which is valid when

` =
n

2
for n=1,2,3,... (3.67)

which is the same result when combing equations 3.60 and 3.62.

Now the general form for the Airy Stress Function can be written as

φ = φI + φII

φI =
∞∑

n=1,3,...

c1n

(
cos

{
n− 2

2
θ

}
− n− 2

n+ 2
cos

{
n+ 2

2
θ

})
+ c2n

(
sin

{
n− 2

2
θ

}
− sin

{
n+ 2

2
θ

})
φII =

∞∑
n=2,3,...

c1n

(
cos

{
n− 2

2
θ

}
− cos

{
n+ 2

2
θ

})
+ c2n

(
sin

{
n− 2

2
θ

}
− n− 2

n+ 2
sin

{
n+ 2

2
θ

})
(3.68)

where φI and φII are the stress functions for crack opening modes I and II respectively.

The 1st-order approximation for the stress field is


σrr

σθθ

σrθ

 =
KI

4
√

2πr


5 cos

{
θ
2

}
− cos

{
3θ
2

}
3 cos

{
θ
2

}
+ cos

{
3θ
2

}
sin
{
θ
2

}
+ sin

{
3θ
2

}
 (3.69)

Following the work of Alturi et al. (1975), the William’s mode I stress field can be
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cast into Cartesian coordinates as
σxx

σyy

σxy

 =
∞∑
n=1

n

2
A1nr

n−2
2


(
2 + (−1)n + n

2

)
cos
{
n−2

2
θ
}
− n−2

2
cos
{
n−6

2
θ
}

(
2− (−1)n − n

2

)
cos
{
n−2

2
θ
}

+ n−2
2

cos
{
n−6

2
θ
}

−
(
(−1)n + n

2

)
sin
{
n−2

2
θ
}

+ n−2
2

sin
{
n−6

2
θ
}
 (3.70)

which provide generalized stress field equations for LEFM. These equations can be

fitted to experimental stress fields by choosing appropriate values for AIn. The 1st-

order Cartesian stress field is
σxx

σyy

σxy

 =
1

2
A11r

−1
2


3
2

cos
{

1
2
θ
}

+ 1
2

cos
{

5
2
θ
}

5
2

cos
{

1
2
θ
}
− 1

2
cos
{

5
2
θ
}

−1
2

sin
{

1
2
θ
}

+ 1
2

sin
{

5
2
θ
}
 (3.71)

setting A11 = KI/
√

2π gives


σxx

σyy

σxy

 =
KI

2
√

2πr


3
2

cos
{

1
2
θ
}

+ 1
2

cos
{

5
2
θ
}

5
2

cos
{

1
2
θ
}
− 1

2
cos
{

5
2
θ
}

−1
2

sin
{

1
2
θ
}

+ 1
2

sin
{

5
2
θ
}
 (3.72)

Directly ahead of the crack tip (θ = 0) gives


σxx

σyy

σxy

 =
KI√
2πr


1

1

0

 (3.73)

which gives the same stress field as Westergaard (1939) in front of the crack tip, and

is used in the development of the viscoelastic theory in Schapery (1975a)
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(a) (b)

Figure 3.13: a) Physical setup of ideal crack on the x-axis. b) Stress distribution
inside the process zone, and in front of the crack.

3.2.3 The Barenblatt Model

While Westergaard (1939) and Williams (1957) provide a good start into LEFM, there

arises a problem in equation 3.50 as the model approaches the crack tip. Since there

is a 1/r term, the stress at the crack tip becomes infinity. Barenblatt (1962) rectified

by this using limiting values of Cauchy-type integrals (Muskhelishvili, 1953b).

Figure 3.13a shows an ideal crack in a material, where ap is the distance from the

centre of the crack to the apparent crack tip. The apparent crack tip is where the

crack faces join together - much of the literature refer to this as the crack tip, as it is

visually the tip of the crack (i.e., what the eye can tell). For the following discussion,

the actual crack tip occurs at a = ap + Rp. This crack tip includes the process zone

of length Rp. In the process zone, the forces of cohesion between the molecules of

the material act to hold the material together, but the material in this zone may not

be continuous or behave the same as the bulk material. It is because of the forces of

cohesion that allowed Barenblatt (1962) to develop the theory to remove the stress

singularity at the crack tip.

From Figure 3.13b, we define two coordinate systems that originate at the crack
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tip. Coordinate s increases to the left (e.g., the apparent crack tip is at s = +Rp),

and coordinate r increases to the right (the same as Westergaard’s). The stress field

outside the process zone can be solved using Westergaard (1939) or Williams (1957),

as before. To deal with the stress field inside the process zone, Barenblatt (1962)

considers a superposition of two stress fields. The first stress field is simply the elastic

solution of Westergaard (1939) or Williams (1957) (as if there were no cohesive forces

in the zone). Due to the presence of the cohesive stresses, the actual stresses acting

on the crack (in particular, the process zone) will differ from the elastic solution. The

second stress field, g {t}, is defined as the difference between the stress field from the

elastic solution and the actual stress field.

As stated by Barenblatt, the actual stress field is unknown, but for now, assume

that it is (or can be found). This issue will be addressed using other principles of

continuum and fracture mechanics to alleviate this shortcoming. Barenblatt (1962)

defines the Airy’s stress function of this second stress state as

Φ {z} =
1

2πi
√
z

∫ √
s′g {s′} ds′

s′ − z
(3.74)

which is a complex Cauchy-type integral (Muskhelishvili, 1953a).

Integrating equation 3.74 with respect to z = x+ iy gives

φb {z} =
1

2πi

∫
g {s′} log

{√
s′ +
√
z√

s′ +
√
z

}
ds′ (3.75)

which allows Φ {r} can be written as (Muskhelishvili, 1953a)

Φ {r} =
1

2πi
√
z

∫
(φ {s′} − φ {r}) ds′

s′ − r
+
φ {r}
2
√
z

(3.76)

where φ {s′} =
√
s′g {s′}.
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In the case that s >> r (in the process zone) and along the y = 0 axis (giving

θ = π along the crack), the stress field is found using Muskhelishvili (1953a) as

σ(2)
y = σ(2)

x = 2Re{Φ {z = r}} = Φ {r}+ Φ {r}

=
φ {r}√

r
− 1

π
√
r

∫ Rp

0

φ {s′} ds′

s′ − r
+O

{√
r
}

= g {0} − 1

π
√
r

∫ Rp

0

g {s′} ds′√
s′

+O
{√

r
} (3.77)

where the integral runs over the process zone, from the crack tip (at s = 0) to the

apparent crack tip (at s = Rp).

Superimposing equation 3.77 onto the elastic solution for no cohesive stress gives

the actual stress field due to the cohesive stresses as

σby = σf {0} −
1

π
√
r

∫ Rp

0

σf {s′} ds′√
s′

+O
{√

r
}

(3.78)

where σf is the stress field in the process zone, and σby is the Barenblatt stress in the

bulk material.

Equations 3.50 and 3.78 combine to give the complete stress in the material near

the crack tip as

σby + σ0
y =

(
KI√
2πr

)(
cos

{
θ

2

})[
1 + sin

{
θ

2

}
sin

{
3θ

2

}]
+ σf {0}

− 1

π
√
r

∫ Rp

0

σf {s′} ds′√
s′

σby + σ0
y =

(
KI√
2πr

)
+ σf {0} −

1

π
√
r

∫ Rp

0

σf {s′} ds′√
s′

(3.79)
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for θ = 0. This can only be finite at the crack tip (r = 0) if

0 =

(
KI√
2πr

)
− 1

π
√
r

∫ Rp

0

σf {s′} ds′√
s′

KI =

(
2

π

) 1
2
∫ Rp

0

σf {s′} ds′√
s′

(3.80)

which relates the stress intensity to the forces of cohesion of the material and removes

the singularity (infinite stresses) at the crack tip.

Using similar analysis from Muskhelishvili (1953a,b), the crack opening displace-

ment can be found as

vb =
4(1− ν2)

E
Im{φb {z = s}} = −2(1− ν2)

πE

∫ Rp

0

g {s′} log

∥∥∥∥∥
√
s′ +
√
s√

s′ −
√
s

∥∥∥∥∥ ds′ (3.81)

3.2.4 Summary of Critical Analysis

The aim of the this chapter was to highlight the underlying theories used to develop the

new model developed for this thesis. The fundamental theory on fracture mechanics

were developed by Westergaard (1939), Williams (1957), and Alturi et al. (1975).

Their approach was to look at the stresses near a crack tip and treat the crack as

if it were a thin elliptical hole (its semi-major axis was much longer than its semi-

minor axis). This lead to a formulation that could work near the crack, but led to a

singularity (infinite stress) at the crack tip itself.

This theory was enhanced by the addition of cohesive forces by Barenblatt (1962),

that act to hold the crack together (and would be related to breaking atomic bonds).

Barenblatt’s addition, while still elastic, provided a means to remove the singularity

at the crack tip, allowing for a better physical approximation.

With the linear elastic fracture theory developed, a viscoelastic fracture theory

can now be developed (Chapter 6). While there are field and laboratory experiments
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that demonstrate the viscoelastic properties of ice, a set of in-house experiments were

also performed. These experiments were able to test the viscoelastic properties of

ice and can provide great insight and guidance in expanding the original viscoelastic

fracture theory developed in Schapery (1975a,b,c).

3.3 Viscoelastic Fracture

As discussed, this time-dependence of the properties of ice have been explored by

several other authors. It is in the opinion of the author that ice is best described as a

viscoelastic material. This type of material displays all the time-dependent properties

of ice that treating ice as an elastic-plastic material could not encompass. There are

several components to a viscoelastic material that incorporate elasticity, anelasticity,

and viscous flow into the continuum nature of the ice. The growth of cracks also needs

to be incorporated into the continuum model in such a way to allow for a crack to

grow as a discontinuity in the ice.

Aside from the viscoelastic fracture model discussed in Chapter 6 of this thesis,

other models of viscoelastic fracture do exist. One such model was created my Mul-

mule and Dempsey (1998). This model makes use of cohesive zone in front of the

crack tip where LEFM does not apply (this is in agreement with the proposed model

in this project), but they seem to treat the process zone as a linear viscoelastic ma-

terial, which is in disagreement of our proposed model. As (Schapery, 1975a) points

out, the process zone may be discontinuous and highly nonlinear.

They make several assumptions about the process zone, such as the use of an

empirical stress-separation curve (cohesive stress as a function of atomic separation

and rate of separation). The proposed model in Chapter 6 will also make (albeit

different) assumptions about the process zone stress. Mulmule and Dempsey (1998)
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make no attempt to justify their assumptions, while this is not a direct critique of

those assumptions, it is unfortunate that they do not provide any physical basis for

their choice.

There certainly may be some merit to their modelling approach, such as being

usable for complex geometries (the proposed model here is not as universal), but

their are a couple of issues with Mulmule and Dempsey (1998). One issue is that

they propose a viscoelastic model, meaning that their model has time-dependence

(which the equations do have), but they present several figures, none of which have

any mention of time. While this not directly related to the model, it is certainly

an omission of the importance of time in their presented results. The second issue

was that the maximum cohesive strength of the ice was 10 MPa in the model. The

physical mechanism of the cohesive zone is the atomic bonds of the crystal lattice of

ice. It is not reasonable to assume that these atomic bonds are going to break under

10 MPa of stress, that is at least an order of magnitude off, as the stress should be

the theoretical stress (note that an applied load at the surface can be considerably

less than 100 MPa, but the local stresses near a crack tip will be much higher than

at the surface).
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Chapter 4

Experimental Program: Indentor

Series and Analysis

4.1 Objectives

The indentation series, explained in greater detail below (also see Kavanagh et al.

(2015) and O’Rourke et al. (2015)), comprised of several loading scenarios of a spherical-

capped indentor into cylindrical ice samples at varying displacement rates. This series

was a laboratory-scale version of the experiments done at Hobsons Choice Ice Island

in 1989 (Frederking et al., 1990) and Pond Inlet (Masterson et al., 1992). This series

was designed to highlight several key properties of ice.

The first objective was to provide insights to the fracture properties of ice under

compressive loads at different rates of loading. As noted in the literature review,

several authors (Goodman and Tabor, 1978; Liu and Miller, 1979; Hamza and Mug-

geridge, 1980; Urabe et al., 1980) provide evidence of time-dependent fracture for a

single crack in different testing specimens. As will be discussed, the series demon-

strates the brittle and viscoelastic properties of ice that lead to rather diverse fracture
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(a) Indentor Setup (b) Tekscan Pressure Sensor

(c) Large Moulds (d) Small Moulds

behaviour in the ice samples.

Secondly, the series provides evidence of delayed failure, much like the slow loading

test from Frederking et al. (1990). The use of a load transducer, high-speed video,

and pressure sensors should provide evidence of delayed failure in the samples under

slow loading conditions.

Lastly, the series reproduces the pressure-area relationships seen in medium-scale

experiments (Barrette et al., 2003; Taylor, 2010). These relationships describe a

decreasing power-law relationship between the pressures exerted on the ice and the

contact area during the interaction. This relationship will be tested through the use

of indentors of different sizes.
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Table 4.1: The various spherical indentors used during the experiments, along with
some of the test speeds at different normalized velocities.

Diameter Radius of Velocity
(mm) curvature (mm) (mm/s)

10 12.8 0.03 0.3 2 3 30
20 25.6 0.06 0.6 4 N/A 60
40 51.2 0.12 1.2 8 12 120
70 89.6 0.21 2.1 14 21 N/A

4.2 Methodology

To simulate the interaction between ice and a structure, a set of indentation tests

were done. Ice was grown from bubble-free ice that was chipped down and sieved into

ice seed with grain sizes between 2–3.75 mm. Steel moulds (of 154 mm and 300 mm

inner diameters) were filled to 1
3

of the mould depth with the seed. Water that was

cooled to 0◦C was poured in the moulds with the seed ice, and allowed to freeze at

−13◦C. This procedure produced isotropic, polycrystalline ice which was used in the

series of indentation tests.

Each mould was clamped to platens attached to the actuator on a Materials

Testing Systemr (MTS) frame beneath various steel indentors (10-, 20-, 40-, and

70-millimetre diameters). The indentor approached the ice with fixed velocities-to-

indentor-diameter ratios, here termed the “Normalized Velocity” as

VN =
v

d
(4.1)

for indentation velocity, v, and indentor diamter, d. For example, the 10 mm indentor

with a velocity of 3 mm/s would have VN = 3/10 = 0.3 s−1.

For each test, the indentor penetrated into the ice to a depth of 10–15 mm at

various normalized velocities (some of which are shown in Table 4.1), at a temperature

of −10◦C.
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During the experiment, loading and penetration data were recorded using the

MTS (load and displacement) transducers and software. A high-speed video-camera

(HSV) recorded the event to be played back in slow motion. Lastly, some of the

experiments used Tekscan pressure sensors to record the pressure profile. This data

was used to identify and distinguish crushing and spalling events that occur during

the interaction.

After each test, the sample was stored at −13◦C until it was ready to be thin

sectioned. Each sample was then cut into a 10 mm thick vertical section near the

contact zone using a band saw. These “thick” sections were then finely scraped down

to a thciness less than 0.5 mm using a microtome. Photographs of the thin sections

were taken between crossed-polarized sheets with a back light and side-lighting to

produce images that show the grain structure and microcracking in the ice. Thin-

sectioning of the samples follow the procedure outlined in Sinha (1977).

4.3 Results and Discussion

4.3.1 Behaviour at Different Normalized Velocities

4.3.1.1 Slow Loading Rate (VN = 3× 10−3 s−1)

Test T140 used the 20 mm diameter indentor with a velocity of 0.06 mm/s. The

results of this test are given in Figure 4.1, the figure shows that under such low

loading rates, the ice undergoes damage-enhanced creep. As the indentor continues

into the ice, the slow rate allows the energy to be dissipated via damage processes

giving a characteristically large region of recrystallized grains over the contact area

and deep into the ice. This recrystallized material remains a part of the ice continuum,

as shown in the thin section in Figure 4.1c 1.

1Section was slightly damaged during microtoming, causing the top right surface to break off
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(a) (b)

(c)

Figure 4.1: Test T140 2B V0P06 T10 R20 035. a) Force diagram for a damage-
enhanced creep. b) Top view photo showing distributed damage along the surface
with no spalling. c) Thin-section photo showing a recrystallized damage zone with a
lot of microcracking along the edges of the contact zone.
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Due to the slow loading, the various mechanisms of energy release (such as grain

boundary sliding and dislocation glide; see Section 2.2) are able to act. These mech-

anisms cause a gentle dissipation of energy that spread out the damage deeper into

the ice.Jordaan (2001)).

4.3.1.2 Medium Loading Rate (VN = 3× 10−2 s−1)

Figure 4.2 shows a set of tests using the 10-, 20-, and 40-mm indentors. The loading

plot in Figure 4.2a looks like a creep curve from the slower tests. However, Figure

4.2d shows spalling events that occurred outside the contact zone during this test.

These “outside the zone” (OTZ) spalls, dissipate little energy and do not cause any

major changes in the load on the ice.

Test T139, shown in Figure 4.2b, displays a behaviour similar to the creep curves,

but there is a major load drop in the beginning, caused by crushing and extrusion.

After the extrusion event, the ice load plot is similar to the damaged-enhanced creep

curve of the slower tests. Visual inspection of Figure 4.2e, shows many OTZ spalls

had formed that do not affect the compressive loading behaviour.

Test T125, for the 40 mm indentor, shows a different behaviour than before. The

loading curve in Figure 4.2c and HSV in Figure 4.2f show that the test had a lot of

small crushing and OTZ spalls that dissipates the energy. Near the end of this test,

the energy build up leads to a spall that causes a big drop in the load. The spall can

be seen on the left of Figure 4.2f, which had its origin in the contact zone.

4.3.1.3 Fast Loading Rate (VN = 2× 10−1 s−1)

At this rate of loading, the ice behaviour has become more brittle than the previously

mentioned experiments. The loading plots in Figure 4.3a-c no longer have a dominant

creep curve, but rather a cycle of build up and release. As shown in Figure 4.3a, the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: a) T122. Load plot for 10 mm indentor with “outside the zone” spalls
forming in d). b) T139. Load plot for 20 mm indentor showing crushing behaviour
and subsequent OTZ Spalls in e). c) T125. Load plot for 40 mm indentor showing a
delayed spalling event within the hpz in f)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: a) T109. Load plot for 10 mm indentor with a large spall forming from
the event at t = 6.6 seconds in d). b) and c) are loading plots of tests T115 and T119
for the 40 mm indentor. e) shows the spalling event from T115, which produced a
tiny spall. This spall resulted in a drop in the area shown by the Tekscan sensor in
f).
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load builds and undergoes ice crushing and eventually spalls. After both spalling

events (t = 5.5 and 6.6 seconds), there is a rebound in the load (the high-frequency

spikes) as the ice and indentor re-establish contact.

Test T109 in Figure 4.3a shows a typical brittle material with a build up of load

with some minor crushing, leading up to several major events. Figure 4.3d shows a

large spall that formed from the event at t = 6.6 seconds. The other events in Figure

4.3a do not eject any large spall features (just particulate ice).

The HSV image in Figure 4.3e, for test T115, shows the ice being ejected from

underneath the Tekscan sensor. This resulted in a tiny spall piece being ejected, as

evidenced by the Tekscan sensor. The loading plot in Figure 4.3b showed that the

spall did suddenly lower the load, but not a big drop that is typical for spalling events.

The peak loads of the brittle ice are of similar magnitude to the more ductile ice

in the lower rate tests, but the constant crushing and spalling constantly reduce the

loads, reducing the mean load and the time that the indentor is under high stress in

comparison to the slower speeds.

4.3.1.4 Fastest Loading Rate (VN = 3 s−1)

The highest indentation rates were done at VN = 3 s−1. The tests done at this velocity

show similar behaviour as the tests done at VN = 2× 10−1 s−1. Figure 4.4 compares

the result of the 40 mm indentor under these two different rates. The two loading

plots exhibit brittle behaviour with build up leading to spalling or crushing. The

HSV captures shown in Figure 4.4b and e show the initial contact between the ice

and indentor. These images show how different the interaction can behave, even with

similar loading behaviour. Along with the post-test photos in Figure 4.4c and f, it

can be seen that test T121 had more spalling over a short period of time. The HSV

showed the spalls and crushed ice in test T121 ejected from beneath the indentor with
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Comparison of two 40 mm indentors. T119 (a-c) has a rate of VN =
2× 10−1 s−1 and T121 (d-f) has a rate of VN = 3 s−1. The results of both tests show
that they behave similarly in the loading plot, but T121 has more energetic expulsions
of ice.
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greater velocity.

4.3.1.5 Explanation of Different Fracture Observations

4.3.1.5.1 Indentation Series

As seen from the previous sections, the indentation series displayed many time-related

properties in relation to fracture mechanics. Slow loading tests often resulted in no

fracture, fast loading resulted in many localized spalling events, and medium-rate

tests resulted in a combination of the two with occasional large fracture events.

To analyse these different behaviours, an elastic FE model (shown in Figure 4.5)

was ran to study the stress fields generated in the ice. The model uses an elastic

material for the ice, confined in a rigid mould and indented by a rigid indentor. While

there could be some stresses on the sides of the mould (due to cohesion beteween

the ice and the mould), this is not modelled here. This analysis is meant to to

be illustrative, so many of the finer details are left out, in favour of a quick-and-

easy means of considering (at leat approximately) the stress fields present during an

indentation test.

Figure 4.6 shows the equilibrium stress field of the ice under indentation. Figure

4.6a shows the σ11 (out of plane) stress 2. The analysis shows that the ice is mostly

confined to the plane with the exception of a large zone beneath the contact area

(outside of the hpz) and near the edge of the ice. The large tension zone is due to

the Poisson’s effect of the ice compression and will contain both the shear zone and

interior tensile zone, discussed below.

Figure 4.6b shows the stress component in the direction of loading. Not surpris-

ingly, the compression is strongest in the hpz and directly beneath the indentor. There

is little to no compression near the surface of the ice outside the hpz, which will aid

2it should be noted that σ11 and σ33 are the same radial stress due to axial symmetry, but are
rotated 90 degrees, so that a σ33 is tangential view of σ11 is plotted
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(a)

(b)

Figure 4.5: a) FE model of cylindrical ice sample under indentation inside a rigid
mould. The mould completely surrounds the ice, including the bottom. b) Cauchy
stress cube showing positive stress components.

132



Indentor Series Results and Discussion

(a) σ11 elastic stress field under indentation. Grey shows areas of highest tension and black
shows areas of highest compression.

(b) Close-up of contact area for the vertically applied stress, σ22. There is a compressive stress near
the indentor, but becomes tensile further down.

Figure 4.6
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(c)

(d)

Figure 4.6: Elastic Stress field of ice under indentation. The x1-axis is out of page.

134



Indentor Series Results and Discussion

in the creation of the surface cracks (the OTZ spalls) that occurred but caused no

significant load drops in the experiments.

Figure 4.6c shows the in-plane stress field. As expected, there is a compressive

hpz beneath the indentor, with a tensile zone beneath that. There are compressive

zones that branch out from the hpz and angles of 45◦ to the loading axis. At the

surface of the ice, and just outside the hpz, are two tensile zones of ice that are the

origin of those surface fractures that caused no significant load drops.

Figure 4.6d shows the in-plane shear stresses (the out-of-plane stresses are prac-

tically zero).The shear zone has two sections that split 45◦ to the loading axis and

surround the interior tensile zone. This zone will be conducive to the growth of mi-

crocracks and wing cracks, as well as grain boundary sliding. These processes lead to

the growth of deeper cracks that lead to the spalling events that caused the significant

load drops in the experiments.

Figure 4.7 shows the locations of the different stress zones. Near the surface of

the ice is the two tensile zones (they are really just one zone that circles around the

ice). The state of stress in this region is dominated by tensile stresses parallel to the

ice surface. Due to the lower stresses in this region, there is not an appreciable load

drop upon removal of a fractured piece of ice, unless the crack extends into the hpz,

in which case there would be a significant load drop. The OTZ spalls originate in this

zone, which explains why the load curves for those fractures show no appreciable load

drop.

The compressive zone is the core of the hpz. Due to the high confining stresses,

cracks are unlikely to originate in this region since any potential crack surfaces would

likely be compressed together and healed. This region will likely undergo dynamic

recrystallization and extensive damage (not modelled here).

The interior tensile zone is due to the Poisson’s effect that would like to split the
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Figure 4.7: Location of compressive, shear, and tensile zones in ice under indentation.

ice in half. Figure 4.8 shows the elastic strain energy stored in the ice. The build

up of this energy (or equivalent in stress formulation) is the cause of crack growth.

Considering a pre-cursor crack along the centre of the ice, the crack will grow by

opening due to the tensile forces pulling the faces apart. Since the crack will follow

the path of maximum energy release, for smaller specimens this may split down the

middle, but confinement may cause it to tend to the sides, as depicted in Figure 4.8

(or the Hans Island experiments).

The shear zone is arguably the most important region for fracture mechanics in ice.

While a central, radial crack (from the tensile zone) would all but remove the loads

from the ice (since the ice would have split), these are rare events. The most likely

place for fracturing of ice will occur in the shear zones, especially for faster loading.

For faster loading rates, stresses in the shear zone will rise quickly. Since stresses
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Figure 4.8: Potential radial crack growth following a path of maximum energy release,
perpendicular to the contours of strain energy density. For an unconfined specimen,
the indentation would be analogous to the Hans Island experiments.
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(a) (b)

Figure 4.9: Potential spalling following a path of (elastically modelled) maximum
energy release from the shear zone.

have to propagate through a material, the stress field under fast loading will not

resemble the static stress fields from the FE analysis - there will be high stresses near

the indentor and little elsewhere (due to the time-dependent aspect of viscoelastic

stresses and strains from the underlying mechanisms). Since stresses will initially

build up closer to the contact area, brittle failure is accompanied by fractures that

occur near the surface - leading to many localized, small spalling events occurring in

rapid succession. For medium loading rates, the stresses near the surface are able

to relax, allowing the stress field to more closely resemble the stress field from the

analysis. This stress field covers a larger area, so that deeper cracks may form and

spall from the shear zone. The medium-rate tests showed fewer spalls than the fast-

rate tests since the energy was more distributed, but the medium-rate spalls were

larger since they originated deeper in the ice. The medium rate tests were also able

to captured delayed failure as small, stable cracks are able to grow until they reach a

critical length.

Figure 4.9a shows a close up of the elastic potential energy stored near the indentor

with no crack. Figure 4.9b introduces a shear crack near the indentor in the shear

zone. The presence of the crack slightly alters the elastic potential energy field as
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Figure 4.10: Strain Energy Field with possible crack growth for Hobsons Choice
Medium-Scale test done at slow speed.

it grows. Figure 4.9b shows a rough estimation of the crack growth that follows the

path of maximum energy release. As the spall breaks off, the elastic potential energy

(and stresses) in the ice will decrease. This decrease will hinder the growth of other

cracks, such as the radial cracks, making the shear zone the dominant area of ice for

controlling the loading forces that the ice would exert on a structure or vessel.

4.3.1.5.2 Hobsons Choice Indentation

One of the better known examples of delayed failure was the slow loading test done

in Frederking et al. (1990), and discussed in Section 3.1.7. In this slow loading test,

a large failure was observed that started ahead of the contact area and broke off

a large piece of the ice wall. One possible explanation can be seen in Figure 4.10.
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The figure shows an elastic finite analysis 3 of the strain energy for the Hobsons

Choice experiment. A crack may have originated in either the interior tensile zone

(as depicted in Figure 4.10) or the shear zone in the ice. The strain energy field is

such that the maximum energy release would be towards the top of the ice wall due

to its lower confinement. Much like the observed crack (see Figure 3.6a), this strain

energy field would suggest that the crack grows towards the top, leading to the large

spall that was observed.

4.3.2 Examples of Delayed Failure

The time-dependence of ice fracture can be seen in how the ice fractures according

to different normalized velocities. At the lowest velocities in this experimental series

(this would likely be different had the experiments ran for longer than they had), the

creep behaviour of ice is dominant and little-to-no fracture occurs. At the highest ve-

locities, the ice is constantly either crushing or undergoing spalling that creates small

spall fragments (but larger than fragments from crushing). At medium normalized

velocities, where the ice behaviour is a mix of ductile and brittle properties, the spalls

that can occur are quite sizeable.

Figure 4.11a and b show that for test T110 (10 mm indentor), had a lot of frac-

turing at the surface. Many of these were OTZ spalls that had little impact on the

loading plot, but two of the spalls did cause a drop in the load (though not down to

zero), suggesting that at least some of these spalls originated from the contact zone.

Test T113, shown in Figure 4.11c, was interesting in that it formed a single OTZ

spall that covered nearly a quarter the surface of the ice sample. This behaviour is

similar to results seen from the medium-scale experiments done at Hobson’s Choice

3All finite analysis uses E = 9.5 GPa, and ν = 0.3. These analysis are very simple and are meant
for illustrative purposes only.
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(a) (b)

(c)

Figure 4.11: a) T110 used the 10 mm indentor at NV = 0.1. b) Final results of T110
displays many large pieces of ice. c) T113 (VN = 0.03 s−1) resulted in a large section
of the surface breaking off (10 mm indentor imprint can be seen at the bottom of the
piece).
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Figure 4.12: Pressure vs Area scatter plot of the data from the laboratory-scale
indentation series. Data shows a decreasing power-law relationship.

ice island (Frederking et al., 1990; Jordaan, 2001) and shown in Figure 3.6

Test T125 underwent creep-like behaviour that caused a crack to grow slowly over

time until it became unstable leading the spall piece presented in Figure 4.2f. This

spall did cause the load to drop significantly (see Figure 4.2c). This can be understood

from the works of Schapery (Schapery, 1964, 1981, 1984a), and Schapery’s linear

viscoelastic crack model (Schapery, 1975a,b,c), discussed in Chapter 6.

4.3.3 Observed Scale Effects

Figure 4.12 presents the pressure-area relationship from the indentation series. The

figure shows the maximum pressures for all the tests from the series. The area used in

this plot is the nominal area of the indentor, resulting in several columns of data points

corresponding to each indentor. The data is also sorted into groups of normalized

velocities by colour.
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Observations of Figure 4.12 clearly shows the expected decreasing power-law re-

lationship that was seen in the medium-scale experiments. The plot also shows a

decrease in pressure for higher normalized velocities than the slower normalized ve-

locities. However, for any particular normalized velocity, the decreasing power-law

trend is clearly evident. The power-law curve fit is the best fit curve to the data.

A second observation about the data is in the scatter. In general, including the

medium-scale data sets, there is more scatter in the smaller contact area experi-

ments/interactions. The scatter decreases for increasing contact area.

Both of these observations can be explained by the weakest link theory of Weibull

(1951), as discussed in Section 3.1.5. To begin, the explanation will begin with a

simple case of samples cut from a block of ice and put under some applied load. One

may assume that these samples in the next sections are thin plates under biaxial

loading to ease discussion. The discussion will then relate back to the results of the

indentation series.

4.3.3.1 Explanation of Scatter Differences

Figure 4.13 shows an ice block cut into four samples labelled A1, A2, B1, and B2.

A1 and A2 are both large samples that contain a large number of cracks of different

lengths and orientations. In every sample, there will be a critical crack that fails

first, much like the weakest link in a chain, that causes the sample to have failed.

Given a large number of cracks that can exist in larger samples, it is more likely that

they will have critical cracks that are similar in length and orientation. This suggests

that large samples like A1 and A2 will have similar failure loads (less scatter). On

the other hand, smaller samples like B1 and B2 are less likely to have similar critical

cracks. It can be seen that the crack in B2 is considerably larger than the crack in

B1, meaning that B2 will likely be much weaker than B1. This suggests that smaller
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Figure 4.13: Samples cut from an ice block will contain random distribution of cracks
and flaws. Large samples are likely to be weak due to containing a large flaw. Smaller
samples will exhibit more scatter as they may or may not have a large flaw.

samples should have more scatter than the large samples.

4.3.3.2 Explanation of Observed Decreasing Power-Law

Similar to the explanation of the scatter, the decreasing power-law is also a result of

the distribution of cracks in a sample. For large samples (A1 and A2), it is very likely

that they will contain a large critical crack or one that is favourably oriented. Simply

put, it is very likely these samples will be weak because a large, random distribution

of cracks will likely contain a critical crack that will cause the ice to fail under smaller

loads/pressures.

In the case of small samples (B1 and B2), they will have a smaller number cracks.

Since the crack distribution is random, then it is more likely that some small sam-

ples will contain a small (or unfavourably oriented) critical crack, requiring larger

loads/pressures to break the sample. Griffith (1921) applied axial tension to glass

fibres and found that thinner wires were stronger than thicker wires. This is due to

the increased likelihood of weaker critical cracks that are found in larger samples and
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the increased likelihood of less severe cracks in smaller samples.

4.3.3.2.1 Application of Theory to the Indentation Scale Effects

Unlike the previous section, all the indentation experiments listed here were per-

formed on ice samples of one or two different sizes, both of which would be considered

large samples. While the sample size here may have some influence, it is not likely

the case as most samples were made in the smaller mould. Clearly, the actual size of

these samples would not be the main factor, possibly even negligible at this scale.

Figure 4.14 shows the Von Mises stress field in the ice beneath the indentor for

both the 10-mm and 40-mm indentors as they are indented 2 mm into the ice sample.

As expected, the stress field beneath the larger indentor covers a larger area of the

cross-sectional cut. The difference between these two areas under high stress is akin

to the sample sizes from the previous section. Essentially, the larger area underneath

the 40-mm indentor is more likely to contain weak critical cracks like the A1 and A2

samples above. Due to the smaller area of high stress underneath the 10-mm indentor,

much like B1 and B2, this area is more likely to have some samples with less severe

critical cracks.
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(a) 10-mm Indentor

(b) 40-mm Indentor

Figure 4.14: Von Mises elastic stress field for ice underneath the 10- and 40-mm
indentors.
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Chapter 5

Experimental Program: 4-Point

Bending Series and Analysis

5.1 Objectives

The aim of the 4-point beam bending series was also to study the fracture properties

of ice. The indentation series showcased many of the viscoelastic properties of fracture

in ice. Due to the random crystal structure of ice, and the random distribution of

pre-existing cracks in natural (and many lab-grown) ice samples, these properties will

generally require statistical methods to understand them. That said, the underlying

physical properties of crack growth are still crucial as they provide the means in which

cracks grow.

More specifically, the aim of the 4-point beam bending series is to study the

fracture properties of a single crack. In the following series of experiments, a large

crack is cut into the bottom-centre of a beam of ice. Due to the large size of the

crack, it will clearly become the critical crack that fractures the ice beam. These

experiments will provide insights into crack growth that cannot be obtained from the
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indentation series by simplifying the geometry and reducing the randomness that was

evident in the indentation series due to the presence of many cracks.

5.2 Facilities

Two sets of 4-point beam experiments took place in the Thermal lab of the S. J.

Carew building at Memorial University. The lab contains a temperature-controlled

cold room that can be maintained to within ± 0.5◦C. Within the cold room is a series

311.21 MTS load frame which can be loaded to 500 kN of force.

For the first series of tests, the load on the ice beam was measured using a 10 kN

force transducer (MTS series 661.19), located between the MTS crosshead and the top

of the beam bending apparatus. This transducer is good for temperatures down to

-53◦C with a reading sensitivity of 0.002% per ◦C. This transducer was chosen because

it provides more precise results than the 500 kN force transducer (series 661.23) that

was available.

Data was acquired using National Instruments SC-2043-SG Data Acquisition (DAQ)

connected to MTS Flexttest™ GT 100 (series 793.00) controller with 8 channels for

data acquisition with a frequency of 4 kHz. The Controller was connected to a Dell

Optiplex 980 computer running the MTS FlexTest™ GT Station Manager software for

electronically controlling the MTS frame, designing test programs, and storing data

onto the computer.

High-speed video was recorded on a Mega Speed MS55K camera with accompany-

ing software on an IBM Lenovo Thinkpad X60s. Typical frame rates were 1000-1500

fps, as to keep adequate image quality.

The second set of experiments made use of a custom-designed dead-weight appa-

ratus. Force was measured using a 250-lbs button load cell. This load cell is good
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Figure 5.1: a) 4-point bending experimental setup with dimensions. b) shear-moment
diagram for 4-point bending.

for temperatures down to -40◦C with a voltage sensitivity of 2 mV/V. This load cell

was chosen as the only other button load cell available was a 1000-lbs load cell by the

same company. A linear variable displacement transducer (LVDT) was used to record

deflection of the beam. The LVDT used a Sensotech AC Modulator to modulate its

voltage to 0–5 volts and had a sensitivity of 2 mv/V.

Data for this series was acquired using a National Instruments NI-6008 DAQ

connected to the same Dell Optiplex 980 computer. All the components (including a

solenoid valve for load control) were controlled using a program designed in National

Instruments Labview software, which would also record data from the DAQ until the

ice failed or the experiment was aborted.

5.3 Procedure

5.3.1 First Series

Bubble-free ice was crushed and sieved to grain sizes between 2–3.35 mm. A plastic

container, surrounded by insulation on the bottom and sides, was filled with seed

and water and allowed to freeze over 2-3 days at −2◦C to ensure the ice froze slowly

(reducing bubbles), creating granular, polycrystalline ice. The ice was then cut down
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to the final dimensions in Figure 5.1 using a bandsaw. The ice was then allowed to

equilibrate to −10◦C before testing. Each ice sample was notched with a fine-tooth

saw to a depth of 10 mm, and a razor blade was used to give the crack a sharp edge.

Prior to each test, the razor blade was run through the crack to prevent the cracks

from healing and becoming dull.

The experimental setup, shown in Figure 5.1 (and again in Figure 5.2b), used a

4-point bending apparatus to ensure a constant moment was applied at the mouth of

the crack between the top rollers. A 4-point bending specimen was chosen over the

3-point bending specimen (see Figure 5.2a) as the 4-point specimen has a constant

bending moment between the the top rollers, ensuring that the experiments would

not be affected by any slight misalignment from the centring of the beam, which can

be compared to the bending moment under 3-point bending from Figure 5.2c.

The beam was installed on a MTS frame that would apply a stress to the beam.

As is the case for the second series of tests, the ice was placed by hand on the bottom

rollers, using measuring tape to centre the beam as best as possible. The top rollers

were slowly brought into contact with the ice. The top portion of the 4-point bending

apparatus was connected to a swivel that would allow it some rotation so that the

loads would be evenly distributed between the two rollers.

During initial tests, various loading rates were considered during the ramp up

phase, but it was subsequently decided to use a constant rate of approximately 1000

N/s. The loading rates were set using the MTS software, but the load-time plot of

each test was checked to get the actual loading rate, as the MTS would be slightly off

the prescribed value.

The original goal of this series was to apply a stress that was less than the failure

stress (i.e.; fracture toughness, KIC , was greater than the stress intensity factor, K).

Once the peak load was attained (which varied from specimen to specimen) this
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(a) (b)

(c)

Figure 5.2: a) 3-Point bending set-up. b) 4-Point bending set-up. c) Bending moment
diagram comparison of 3- and 4-point bending. 4-Point bending has a more uniform
bending moment near the crack than in a 3-point bending set-up.
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load level was maintained until either the ice broke or until the test was stopped

(intentionally or in some instances due to technical issues with the apparatus).

Due to the varying failure strength in ice (due to both time-dependent aspects

and natural variability in flaw distribution), many experiments failed while the load

was still ramping up towards a set load. Since many of these experiments were under

different loading rates, the experiments also provided data on the relationship between

failure load and the applied loading rate.

5.3.2 Second Series

The method of growing the bubble-free ice remained the same from the first series of

beam bending experiments. Likewise, the samples were cut to their final dimensions

using a bandsaw and were pre-notched using a razor blade.

To allow more experiments to be completed, it was decided that the samples for

this series of tests were to be made about half the size of the previous ice beams

for each dimension. The ice samples were 150 mm in length (technically they were

longer, but the bottom roller separation was 150 mm), 30 mm in width, and 20 mm

in thickness. The larger beams had a crack that was 1/4 of the thickness of the beam,

to keep the experiments self-similar, the smaller beams were pre-notched with a crack

that was 5-mm in length.

The previous beam bending series only provided a couple of delayed failure exam-

ples. Consideration went into determining the best means to capture delayed failure.

It was decided that using a dead weight loading apparatus would provide a stable

and consistent way to apply a load over long periods of time. The apparatus, shown

in Figure 5.3, used a hanging mass and lever to apply a load to the top rollers of

the 4-point bending apparatus in contact with the ice. For this experimental series,

various loads were tested to see how the the time to failure would change as a function
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(a)

(b)

Figure 5.3
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(c)

Figure 5.3: 4-Point beam bending dead-weight apparatus. Elevated reservoir filled
with fluid not shown.
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of applied load.

The apparatus sits atop of a wooden table that is supported with steel plates to

act as stiffeners, preventing unwanted deformation. A pair of rollers are bolted to the

table 150 mm apart. Each roller has a 8 mm steel rod as a core, surrounded by a

hollowed 25.4 mm cylinder that constitutes the bulk of the roller. The steel rod core

stiffens the roller, minimizing any deformation in the roller. The aluminium shell is

used as ice is less likely to freeze to it than it would to steel, reducing any additional

stress on the ice due to the rollers.

The ice is placed on top of the rollers that are bolted to the table. On top of the

ice is another pair of rollers bolted to an aluminium top plate, spaced 50 mm apart.

The purpose of the top plate is to have the top rollers at their proper spacing and

to connect them to the lever arm that will apply a downward force to the top plate

and the ice. Between the lever arm and the top plate is a 250-lbs button load cell for

measuring the applied load. The load cell has two 6.35 mm bolts built into its design.

One of the bolts screws into a hole in the centre of the top plate. The other bolt is

screwed into 6.35 mm female tie rod end. A 6.35 mm bolt is used to connect the tie

rod to the right side of the lever arm, 20 mm from the lever’s fulcrum.

On the front and back of the apparatus, there are four supports near the ice

sample. One pair, the darker-coloured in Figure 5.3, are steel guides for the top plate.

As a force is applied to the top plate, it will move downward into the ice. On either

side of the top plate, there are 2 M8 bolts that protrude outward and rest within the

prongs of the steel guides. This ensures that the top plate moves straight down and

minimizes any twisting of the top plate from the ideal motion.

Next to the steel guides, shown as a lighter colour in Figure 5.3, are the lever

supports. At the top of the lever supports there are 8 mm holes for an M8 bolt to

connect the two supports to the lever. A threaded steel rod is screwed into the two
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lever supports and acts as the lever’s fulcrum.

On the left side of Figure 5.3 there is a hanging bucket that fills up from an

elevated reservoir (not shown). As the bucket fills up it pulls down on a string. This

string is connected to a pulley that causes a lever to be pulled up on its left side.

The fulcrum of the lever is 20 mm from the top plate and 300 mm from the left end,

providing the hanging mass a mechanical advantage of 15, allowing for the necessary

loads while requiring significantly less fluid for the hanging bucket.

As the right side of the levers lowers from the increased mass in the bucket, it

pushes the top plate of rollers into the ice sample, causing it to bend. The force

that is applied to the ice is measured by the load cell. A program was written in

LabVIEW™ that recorded the load data. Prior to each experiment, the desired load

was input to the program. Upon starting the program a solenoid valve would open

up and fluid from the reservoir would flow into the hanging bucket. When the desired

load was reached (or the sample broke on loading), the solenoid valve would shut off.

The program would record data to the computer until the ice broke or the experiment

was terminated.

5.4 Results and Discussion

5.4.1 Rate-Dependent Fracture Toughness

Figure 5.4a displays the results from the first series of experiments that involved ramp

up to failure for various loading rates. There is a decreasing power-law relationship

between the load at failure and the applied loading rate. For faster loading rates, the

failure load approached an asymptotic value for failure load. For the curve fitted to

the data, this would be around 120 Newtons as the elastic limit of failure. All the

samples broke at loads just under 450 Newtons, which provides an upper limit on
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(a)

(b)

Figure 5.4: a) Experimental results of failure load due to changing loading rates. b)
The same results plotted as an apparent fracture toughness.
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the failure load of ice (essentially the failure load can be estimated by the smaller of

450 Newtons and the curve fit). A preliminary analysis of this dataset (along with

the indentation series) was discussed in Kavanagh et al. (2015) that highlighted these

features (There was a slight calculation error in that paper that altered the numerical

results, but the trends and ideas from that analysis still hold with the corrections).

The apparent fracture toughness plot (Figure 5.4b) was generated from the load

plot (Figure 5.4a) by converting the loads to fracture toughness by using the following

4-point bending stress intensity equations (see Figure 5.1 for values)

KIC = Y {α}F (x2 − x1)

BT
3
2

Y {α} = 1.9887− 1.326α− (3.49− 0.68α + 1.35α2)α(1− α)

(1 + α)2

(5.1)

There is roughly a three-fold difference between the maximum and minimum fail-

ure loads for these samples. Clearly, the data demonstrates that the fracture proper-

ties of ice are time-dependent. Since the behaviour of the crack changes from a brittle

to more ductile response, it is clear to see why the range of behaviours was seen in

the indentation series.

Under fast loading conditions, the material in front of the crack (in particular, the

process zone) have little time to adjust to the sudden increase in stress. This increase

in stress near the crack provides the crack with sufficient energy to grow and become

unstable more quickly.

As the loading rate decreases, the stress near the crack rises more slowly. As

discussed in Section 2.2, there are various ways (such as grain boundary sliding and

dislocation glide) that allow the ice to relieve stress by the movement of grains or

sub-grain structures. For slower loading, these processes have more time to react

to the stress increase, allowing these processes to lower the maximum stress. These
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processes are the underlying mechanism for ductility in materials and provide the

means for viscoelasticity in materials.

As seen in previous experiments (Urabe et al., 1980), the data shows a clear upper

limit that is unaffected by the loading rate. The processes that relieve stress have

a limit to how much they can do, for example, grains can only slide so far before

becoming locked into place. This provides an upper limit on how strong ice can be

as the slower tests all achieve the maximum amount of local stress relief from the

dissipative processes, resulting in similar peak failure loads.

5.4.2 Time to Failure Under Constant Load

Two examples of delayed failure were observed in the first beams series using the

large ice beams. The loading curves of these samples are plotted in Figure 5.5. Figure

5.5a shows a sample that was held for roughly 12 minutes and 45 seconds before

it underwent delayed failure. Figure 5.5b shows a sample that broke just after 0.2

seconds under applied load.

Both samples were loaded to 180 N but gave drastically different failure times.

This is likely due to the natural variations in flaws that occur during ice growth as

both samples had similar loads (180 N) and loading rates (1055 N/s and 1083 N/s),

and should have similar geometries.

Figure 5.6 shows several delayed failure events that occurred in the second series of

4-point beam bending tests using the small ice samples. An initial run on the samples

found that they would break during the load up if the load reached 80 Newtons

(though given the variation in ice strength, this was more of a rule of thumb than a

guarantee). The samples are shown in Figure 5.6 were loaded to values under this 80

Newton threshold and held until failure. The samples broke approximately at 3, 10,

20, and 50 minutes respective to their order in Figure 5.6. The initial spike in the
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(a)

(b)

Figure 5.5: Experimentally observed delayed failure in the large ice beams from the
first series. Both samples were under a load of 180 N.

160



4-Point Bending Series Results and Discussion

(a) (b)

(c) (d)

Figure 5.6: Experimentally observed delayed failure in the small ice beams from the
second series. All samples were held under constant load after the initial ramp up
phase.
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Figure 5.7: Experimental results for the dead-weight 4-point bending experiments.
Samples that did not break are displayed with an arrow pointing to the right.

data as the desired load is reached is an artefact of data filtering and not physical in

nature.

To better understand the relationship between the time to failure and the constant

applied load, consider Figure 5.7 that plots all the experiments from the second series.

Due to the random strength of ice, there are many samples that did not break within

an hour (or longer), these tests are indicated when an arrow that points to the right.

The experiments that lasted for over an hour were either stopped early (within two

hours) to do another experiment (to collect as many data points as possible), or were

allowed to run over a weekend before termination. While these points do show the

variability of ice strength from sample to sample, that is not the focus of this thesis,

and these samples will be omitted during the analysis to follow (focusing instead on

the time-dependent aspects of the data points from the specimens that broke).

For the samples that did break under delayed failure, there is a clear decreasing
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power-law relationship between the applied load and the time to failure. Experiments

on solithane 50/50 (Knauss, 1970) under uniaxial tension show a similar power-law

relationship between the applied load/stress and the time to failure in the specimen.

To have a better understanding of the physical processes that lead to this result,

a numerical model based on the theory of Schapery (1975a,b,c) was designed. This

model will be discussed in the following chapter.
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Chapter 6

Viscoelastic Fracture Theory and

Model Development

The aim of this chapter is to provide an in-depth analysis of viscoelastic fracture

theory. This analysis, along with new insights, is then used to advance the theory to

new geometries and to new loading scenarios. The linear viscoelastic theory presented

by Schapery (1975a,b,c) provides a solid physical basis for analysing the behaviour

of ice. This chapter provides the author’s interpretation of the works of Schapery

(1975a,b,c) (providing details left out of the original), and provides a means to expand

the theory to both 4-point bending beam bending scenarios considered in Chapter 5.

As briefly discussed in Section 2.1, a viscoelastic material can be thought of as

being an elastic material that has a changing compliance over time (an effective com-

pliance), so that one can convert an elastic solution to a viscoelastic solution (should

such an effective compliance exist). In Chapter 3, an elastic fracture theory was dis-

cussed that provides the basis for the viscoelastic theory in Schapery (1975a,b,c). As

with the simplified cases in Section 2.1, the correspondence principle is needed to

convert the elastic fracture theory from Section 3.2.3 into a viscoelastic one. As will
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be discussed, there are certain conditions required to allow for an effective compliance

to be found.

6.1 Graham’s Correspondence Principle

6.1.1 Classical Correspondence Principle

As mentioned in section 2.1.3, the correspondence principle provides a mapping from

elastic solution to a viscoelastic solution. The version of the correspondence principle

presented there is known as the classical correspondence principle.

The classical correspondence principle is relatively straight forward to implement

but has some limitations (Graham, 1968). For the classical correspondence principle

to work, the complete history of the boundary conditions must be known and the

boundary conditions must be stationary over time (e.g., an applied load may vary

in magnitude, but not in the location on the boundary). It is also required that the

boundary does not change over time. The indentation series would fail the classical

correspondence principle since the boundary conditions change as the region of applied

load changes as the indentor penetrates into contact with a sample. Crack growth

problems (the core of this project) also fail since the boundary itself changes as the

crack grows, adding more surface to the material.

These issues are taken care of by the correspondence principle developed in Gra-

ham (1968). This section will highlight the key points of Graham’s theory as it relates
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to the project. To begin, consider the typical elastic stress conditions given by

2εij {x, t} =
∂ui {x, t}
∂xj

+
∂uj {x, t}

∂xi
(6.1)

∂σij {x, t}
∂xj

= 0 (6.2)

σij {x, t} = σji {x, t} (6.3)

then the classical correspondence principle for constant temperature gives

sij {x, t} = J1 {t} eij {x, 0}+

∫ t

0

J1 {t− τ}
∂

∂τ
ei,j {x, τ} dτ

σkk {x, t} = J2 {t} εkk {x, 0}+

∫ t

0

J2 {t− τ}
∂

∂τ
εi,j {x, τ} dτ

(6.4)

where J1 and J2 are the viscoelastic moduli for shear and hydrostatic stress compo-

nents. sij and eij are the deviatoric stress and strain, respectively.

For the classical correspondence principle, the Laplace transform of previous equa-

tions are required, resulting in

2L{εij {x, p}} = L
{
∂ui {x, p}

∂xj

}
+ L

{
∂uj {x, p}

∂xi

}
L
{
∂σij {x, p}

∂xj

}
= 0

L{σij {x, p}} = L{σji {x, p}}

L {sij {x, p}} = pL{J1 {p}}L {eij {x, p}}

L {σkk {x, p}} = pL{J2 {p}}L {εkk {x, p}}

(6.5)

Equation 6.5 defines a set of equations that can be solved in the usual methods of

solving elastic problems.

For any problem in elasticity, boundary conditions are typically defined in terms

of either stresses/forces or strains/displacements. Both stresses and strains can be
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split into components normal to the boundary (σn and un) and tangential to the

boundary (σs and us). For the classical correspondence principle, two of the four

components need to be defined along the boundary. Three boundary conditions are

needed for Graham’s extended correspondence principle. These components can be

listed in matrix form as (Graham, 1968)


ab : σs σs σn σn us us un un

bb : un σn us σs σn un σs us

cb : σn un σs us un σn us σn

 (6.6)

where ab, bb, and cb are the boundary conditions from any one column of the matrix

that match the problem to be solved. For example, the problem may be defined by

the normal and tangential stresses on the boundary (e.g., biaxial loading), in this case

ab and bb would represent σn and σs from column four of the matrix.

Having determined two of the four boundary conditions, they can be represented

in vector form as

ab {x, t} = Ab {x, t} on the boundary B

bb {x, t} = Bb {x, t} on the boundary B
(6.7)

and the Laplace transform as

L{ab {x, p}} = L{Ab {x, p}} on the boundary B

L{bb {x, p}} = L{Bb {x, p}} on the boundary B
(6.8)

The equations defined in 6.5 and 6.8 define a complete set of elastic equations that

can be solved using typical methods (e.g., Airy’s stress function). Upon Laplace inver-

sion, the final solution will be the viscoelastic solution for the classical correspondence
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principle

6.1.2 Extended Correspondence Principle

For the extended correspondence, the boundary conditions become

ab {x, t} = Ab {x, t} on the boundary B

bb {x, t} = Bb {x, t} on the boundary B1 {t}

cb {x, t} = 0 on the boundary B2 {t}

(6.9)

where B1 {t} and B2 {t} are the changing components of the boundary B. That is,

the union of B1 {t} and B2 {t} is B (B1 {t} ∪ B2 {t} = B). Given that the boundary

conditions bb and cb are constantly changing, it is not possible to have a complete

history of all the boundary points, meaning that the classical correspondence principle

is not applicable. As before, the boundary conditions are chosen from the matrix in

equation 6.6, only with an addition condition (c).

Considering a simplified problem with

sij {x, t} = 2µeij

σkk {x, t} = 3Kbεkk {x, t}
(6.10)

where µ and Kb is the elastic shear and bulk moduli. Then elastic solutions for c can

be found as

ceb {x, t} = KP {µ,Kb}Ce
b {x, t} on boundary B (6.11)

where KP is a function of the elastic shear and bulk moduli, whereas Ce
b is independent
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of the elastic moduli. Taking the Laplace transform of equation 6.11 yields

L{ceb {x, p}} = KP {µ,Kb}L {Ce
b {x, p}} on boundary B (6.12)

By making the substitutions

µ =
p

2
L{J1 {p}}

Kb =
p

3
L{J2 {p}}

(6.13)

results in converting the simplified problem to the full solution of equations repre-

sented in equations 6.5. This results in

L{cb {x, p}} = KP

{p
2
L{J1 {p}} ,

p

3
L{J2 {p}}

}
L{Ce

b {x, p}}

cb {x, t} = J3 {t}Ce
b {x, 0}+

∫ t

0

J3 {t− τ}
∂

∂τ
Ce
b {x, τ} dτ

(6.14)

with the viscoelastic modulus defined as

J3 {t} = L−1

{
1

p
KP

{p
2
L{J1 {p}} ,

p

3
L{J2 {p}}

}}
(6.15)

under the condition that B1 {t} is a monotonically increasing function in time.

6.2 The Schapery Model

The work of Schapery (1975a,b,c) uses the correspondence principle (Graham, 1968) to

convert the works of Westergaard (1939), Williams (1957), and Barenblatt (1962) from

a purely elastic material to a viscoelastic material. The addition of the viscoelastic

properties provides an explanation of observed phenomena in ice, such as delayed

failure and time-dependent fracture properties, that cannot be explained with a time-
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independent model.

6.2.1 Plane Stress and Plane Strain

For a crack, the local state of stress/strain will be approximately represented by plane

strain under the following conditions:

• The crack tip is far from the surface or another crack in comparison to the

process zone size, RP (see Figure 3.13).

• The radius of curvature of the crack is much greater than RP .

• The stress normal to the plane is small in comparison to the in-plane stress.

This is the case if RP is small in comparison to the plate thickness for a crack

in an infinite plate.

These conditions will all be valid in the case that RP is exceedingly small. For the

case of a crack in a thin plate, if RP is large in comparison to the thickness of the

plate, then the crack will be under a state of plane stress.

6.2.2 The Process Zone

As mentioned in Section 3.2.3, the process zone is the small section of material in

front of the apparent crack tip that is vastly different from the bulk of the material.

Within this zone, the stress field can be quite different than the rest of the material

and the viscoelastic properties of the process zone can change from the bulk material.

The process zone may not be continuous as this is the section of material that is

fracturing from the breaking of the atomic bonds that hold the ice together in the

crystal structure.
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While the process zone is a key factor in determining the fracture properties of

ice, little is (or possibly - can be) known about it. While this is a shortcoming of any

cohesive model, provided the zone is small, it is possible to determine the fracture

properties of ice using an averaged model of the process zone, allowing the theory to

gloss over the finer details of the process zone. This assumption will be validated in

Section 7.1.3.

To begin the discussion of the model presented by Schapery (1975a,b,c), the dis-

tribution of the stress field in the process zone is discussed. Aside from normalizing

the stress field by its maximum value, an integral that relates to the normalized stress

field is formalized. These two terms appear throughout the theory and are pivotal in

the discussion of viscoelastic fracture.

6.2.2.1 The Process Zone Stress Distribution

Starting with the cohesive zone stress intensity definition (equation 3.80) from Baren-

blatt (1962). Making the following substitutions

σm = max[σ {s′}]

f =
σ {s′}
σm

(6.16)

gives

KI =

√
2

π
σm

∫ RP

0

f{s′}√
s′

ds′ (6.17)

Next, the limits of integration can be normalized to the size of the process zone

using the following substitutions

η =
s′

RP

ds′ = RP dη

(6.18)
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and changing the limits of integration

as s′ → 0 then η → 0

as s′ → RP then η → 1

(6.19)

resulting in a normalized stress intensity function

KI =

√
2

π
σm

∫ 1

0

f{RPη}√
RPη

RP dη

=

√
2

π
σm
√
RP

∫ 1

0

f{RPη}√
η

dη

=

√
2RP

π
σmI1

(6.20)

with

I1 =

∫ 1

0

f
√
η

dη (6.21)

with the arguments of f dropped for clarity.

I1 defines the shape of the stress distribution. For a constant stress (i.e., f is

constant), I1 will have a value of 2, which is the maximum value it can attain.

6.2.2.2 Process Zone Size

The size of process zone can be found by rearranging equation 6.20 as

RP =
π

2

(
KI

σmI1

)2

(6.22)

In the case that σmI1 is constant (e.g., under constant load) then the process zone is

proportional to the square of the current stress intensity factor.
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6.2.3 Elastic Crack Opening Displacement

Starting with the elastic crack opening displacements from Williams (1957) and Baren-

blatt (1962)

v =
Ce
2π

∫ RP

0

σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′ (6.23)

and assuming that the stress distribution between the process zone and the rest of

the material is continuous, i.e.,

σ{s} = σ0 + ∆σ{s} (6.24)

the displacement can be split into two components

v =
Ce
2π

∫ RP

0

σ0

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′

+
Ce
2π

∫ RP

0

∆σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′

(6.25)

Using the approximation

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)
≈ −2

3

( s
s′

) 3
2 − 2

5

( s
s′

) 5
2

≈ −2

3

( s
s′

) 3
2

+O{s
5
2}

(6.26)

and subbing into the first term of equation 6.25 gives

v =
Ce
2π
σ0

∫ RP

0

(
−2

3

( s
s′

) 3
2 − 2

5

( s
s′

) 5
2

)
ds′

+
Ce
2π

∫ RP

0

∆σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′
(6.27)
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In the limit of s→ 0, higher order terms of s can be ignored leading to

v =− Ce
3π
σ0(s

3
2 +O{s

5
2})
∫ RP

0

(s′)
−3
2 ds′

+
Ce
2π

∫ RP

0

∆σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′
(6.28)

and solving the integral of the first term

v =
2Ce
3π

σ0√
RP

(s
3
2 +O{s

5
2}) +

Ce
2π

∫ RP

0

∆σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′

(6.29)

The second term in equation 6.29 can be split in two as

v =
2Ce
3π

σ0√
RP

(s
3
2 +O{s

5
2})− Ce

3π

∫ RP

0

∆σ{s′}
( s
s′

) 3
2

ds′

+
Ce
2π

∫ RP

0

∆σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣+
2

3

( s
s′

) 3
2

)
ds′

(6.30)

Applying equation 6.26 to the third term gives

v3rdterm =
Ce
2π

∫ RP

0

∆σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣+
2

3

( s
s′

) 3
2

)
ds

=
Ce
2π

∫ RP

0

∆σ{s′}
(
−2

5

( s
s′

) 5
2

)
ds′

= O{s
5
2}

(6.31)

which simplifies the the displacement as

v =
2Ce
3π

σ0√
RP

s
3
2 − Ce

3π
s

3
2

∫ RP

0

∆σ{s′}(s′)−
3
2 ds′ +O{s

5
2} (6.32)
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Performing integration by parts on the second term, and noting that,

lim
s→0

∆σ{s}√
s

= 0 (because of stress continuity)

∂∆σ{s}
∂s{s}

=
∂σ

∂s
(from equation 6.24)

(6.33)

gives

v =
2Ce
3π

σ0√
RP

s
3
2 − Ce

3π
s

3
2

(
− 2∆σ{s′}√

s′

∣∣∣∣RP
0

+ 2

∫ RP

0

∂∆σ

∂s′
1√
s′

ds′

)
+O{s

5
2}

=
2Ce
3π

σ0√
RP

s
3
2 − 2Ce

3π
s

3
2

(
−∆σ{RP}√

RP

+

∫ RP

0

∂σ

∂s′
1√
s′

ds′
)

+O{s
5
2}

(6.34)

where the argument of σ{s′} inside the integral have been dropped for clarity.

Replacing ∆σ{RP} in equation 6.34 with equation 6.24 gives

v =
2Ce
3π

σ0√
RP

s
3
2 − 2Ce

3π
s

3
2

(
σ0 − σ{RP}√

RP

+

∫ RP

0

∂σ

∂s′
1√
s′

ds′
)

+O{s
5
2}

= −2Ce
3π

s
3
2

(
−σ{RP}√

RP

+

∫ RP

0

∂σ

∂s′
1√
s′

ds′
)

+O{s
5
2}

(6.35)

For the case of a stress-free (apparent) crack surface

σ{RP} = 0 (6.36)

giving

v = −2Ce
3π

s
3
2

∫ RP

0

∂σ

∂s′
1√
s′

ds′ +O{s
5
2} (6.37)

Applying the substitutions from equations 6.18 amd 6.19 changes the displacement
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to

v = −2Ce
3π

σms
3
2

∫ 1

0

1

RP

∂f

∂η

1√
RPη

RP dη +O{s
5
2}

= −2Ce
3π

σm√
RP

s
3
2

∫ 1

0

∂f

∂η

1
√
η

dη +O{s
5
2}

= −2Ce
3π

σm√
RP

s
3
2 I2 +O{s

5
2}

(6.38)

where

I2 =

∫ 1

0

∂f

∂η

1
√
η

dη (6.39)

I2 is related to the rate of change in the stress field inside the process zone. Similar

to I1, it provides a single integral that stores the details of the process zone into a

much easier to manipulate form during the development of the theory. Equation 6.38

provides a simplified approximation of the crack opening displacement near the crack

tip.

6.2.4 Continuous Crack Growth

There are two phases of crack growth. The first phase is the intermittent phase where

the material does not have a fully developed process zone. During this phase, the

process zone has to grow before the apparent crack starts to grow.

Once the process zone has grown, and conditions for crack initiation have been

met, the second phase begins. This phase is the continuous crack growth phase.

Discussion of these two phases will begin (maybe somewhat counter-intuitively) with

the continuous crack growth phase. For many constant loading tests (e.g., looking for

delayed failure), this is the phase that will be the predominant phase of crack growth.

Aside from its greater importance, many viscoelastic principles will be introduced

that will be also needed for the intermittent crack growth.
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This section breaks down the various components and terminology used in vis-

coelastic fracture mechanics and culminates to an equation of continuous crack growth

from an initial length up to unstable failure.

6.2.4.1 Viscoelastic Crack Tip Opening Displcement

According to the correspondence principle (Graham, 1968; Schapery, 1975a), the elas-

tic solution of the opening displacement defined in equation 6.38, can be cast into a

linear viscoelastic solution as

v = − 2

3π

∫ t

t1

Cν{t− τ}
∂

∂τ

{
σm√
RP

s
3
2 I2

}
dτ (6.40)

having dropped the higher-ordered terms.

Using the substitutions

ρ = τ − t1

dρ = dτ

∆t = t− t1

(6.41)

and applying to equation 6.40 gives

v = − 2

3π

∫ ∆t

0

Cν{∆t− ρ}
∂

∂ρ

{
σm√
RP

s
3
2 I2

}
dρ (6.42)

Assuming that the crack growth can be approximated linearly as

a = a{t0}+ (t− t1)ȧ (6.43)
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for short time scales, then s{τ} can be defined as

s{t} = (τ − t1)ȧ (6.44)

where ȧ is approximately constant over small time scales.

Returning to equation 6.42, and assuming that RP , σm, and I2 are constant, the

displacement can now be written as

v = − 2σmI2

3π
√
RP

∫ ∆t

0

Cν{∆t− ρ}
∂

∂ρ

{
s

3
2

}
dρ

= − 2σmI2

3π
√
RP

∫ ∆t

0

Cν{∆t− ρ}ȧ
3
2
∂

∂ρ

{
(τ − t1)

3
2

}
dρ

(6.45)

By definition

ȧ =
s{t}
t− t1

=
s{t}
∆t

(6.46)

then the displacement can be further simplified

v = − 2σmI2

3π
√
RP

∫ ∆t

0

Cν{∆t− ρ}
(
s{t}(∆t)−1

) 3
2
∂

∂ρ

{
ρ

3
2

}
dρ

= − 2σmI2

3π
√
RP

∫ ∆t

0

Cν{∆t− ρ}
(
s{t}(∆t)−1

) 3
2

(
3

2
ρ

1
2

)
dρ

= − 2σmI2

3π
√
RP

s{t}
3
2

(
3

2
(∆t)−

3
2

∫ ∆t

0

Cν{∆t− ρ}ρ
1
2 dρ

)
= − 2σmI2

3π
√
RP

s{t}
3
2Cef{∆t}

(6.47)

where the effective compliance has been defined as

Cef{t} =
3

2
(t)−

3
2

∫ t

0

Cν{t− ρ}ρ
1
2 dρ (6.48)

and equation 6.47 has the same form as the elastic crack opening displacement (equa-

tion 6.38), with the elastic compliance replaced by the effective compliance.
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Figure 6.1: Effective Compliance Normalized by Elastic Compliance.

For illustrative purposes, consider a viscoelastic compliance of the form

Cν = Ce(1 + tn)

so the elastic and viscous coefficients are the same, and n = 0.3. Figure 6.1 shows

how the compliance would change over time (normalized by the elastic compliance).

This would also have the same effect on the crack tip opening displacement, as seen

from equation 6.47

6.2.4.2 The Effective Compliance

The effective compliance, discussed in Section 6.2.4.1, defines the correspondence

between the elastic and viscoelastic solutions. Provided one can derive (or compute)

an elastic solution to a problem with a given stress field, then a viscoelastic solution

is found by substituting the elastic compliance with the viscoelastic compliance (not

accounting for crack growth).

This section will provide insights into the sensitivity of the viscoelastic solution to
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the approximated elastic solution from equation 3.70. This section will result in some

simplifications to the compliance that is expected to still provide reasonable results

to experimental data.

6.2.4.2.1 Sensitivity of Elastic Solution (The k-sensitivity)

The effective compliance can be converted to logarithmic (base 10) time using the

following substitutions

ρv =
ρ

t

L = log{t}

l = log{1− ρv}

dl =
−dρ

(t− ρ)Ln{10}

(6.49)

noting that L+ l = t− ρ gives the logarithmic compliance (Ĉν) as

Cef{t} =
3

2
t−

3
2

∫ t

0

Ĉν{L+ l}ρ
1
2 dρ (6.50)

converting from dρ to dl changes the limits of integration:

as ρ→ 0 then l→ 0

as ρ→ t then l→ −∞

Cef{t} =
3

2
t−

3
2

∫ −∞
0

−Ĉν{L+ l}ρ
1
2 (t− ρ)Ln{10} dl

(6.51)

where Ln is the natural log (base e). Flipping the limits of integration, bringing the

Ln{10} outside the integral, and the t−
3
2 inside gives

Cef{t} =
3

2
Ln{10}

∫ 0

−∞
Ĉν{L+ l}ρ

1
2

t
1
2

(t− ρ)

t
dl (6.52)
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from equation 6.49

10l = 1− ρv =
t− ρ
t

(6.53)

giving the effective compliance as

Cef{t} =
3

2
Ln{10}

∫ 0

−∞
Ĉν{L+ l}w 3

2
dl (6.54)

with a weighting function defined as

w 3
2

= 10l(1− 10l)
1
2 (6.55)

The analysis of displacements so far have focused on a one-term solution (in much

the same way that the Westergaard (1939) solution is the first-term approximation of

Williams (1957)). Had the analysis included multiple terms (of the form of equation

3.70), i.e

v =
∑
k

Aks
kC

(k)
ef {∆t} (6.56)

where C
(k)
ef is the k-th effective compliance (not a power of k), and is given by

C
(k)
ef = kt−k

∫ t

0

Cν{t− ρ}ρk−1 dρ (6.57)

Similar to before

C
(k)
ef = kt−k

∫ t

0

Ĉν{L+ l}ρk−1 dρ

C
(k)
ef = kt−k

∫ 0

−∞
Ĉν{L+ l}ρk−1(t− ρ)Ln{10} dl

C
(k)
ef = kLn{10}

∫ 0

−∞
Ĉν{L+ l}ρ

k−1

tk−1

(t− ρ)

t
dl

C
(k)
ef = kLn{10}

∫ 0

−∞
Ĉν{L+ l}(1− 10l)k−110l dl

(6.58)
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Figure 6.2: First-term effective compliance weighting function

which can be recast as

C
(k)
ef =

3

2
Ln{10}

∫ 0

−∞
Ĉν{L+ l}2

3
k(1− 10l)k−110l dl (6.59)

giving the k-th weighting function as

wk =
2

3
k10l(1− 10l)k−1 (6.60)

Figure 6.2 shows the first-term weighting function, w 3
2
, plotted from present time

to 1000 seconds in the past. From the figure it can be seen that the weighting function

(and by extension, the first-term effective compliance) is only significant during the

past 1.2 decades (roughly 15 seconds).

Figure 6.3 shows how the weighting function, wk changes with different values

of k. As k is increased, the weighting function begins to spread out. By 15–30

seconds, the weighting functions have decreased considerably in value. Given that
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Figure 6.3: Sensitivity of the weighting function, wk, to k

the majority of the materials displacement is captured in the first term and that

successive displacement terms will affect the resultant displacement in less significant

amounts, it is reasonable to approximate the effective compliance of each term by

using only the w 3
2

weighting function to simplify the analysis.

6.2.4.2.2 Approximation of the Effective Compliance

Schapery (1975b) assumes that the creep compliance, Cν , can be approximated by

Cν = C1t
n (6.61)

where the primary and secondary creep components are combined into a single term

(which will be validated in Section 7.1.2). Substituting equation 6.61 into equation

6.57 gives

C
(k)
ef = kt−k

∫ t

0

C1(t− ρ)nρk−1 dρ (6.62)
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and integrating gives

C
(k)
ef = kt−k

(
C1

Γ{k}Γ{n+ 1}
Γ{k + n+ 1}

tk+n

)
= C1t

n

(
k

n+ k

)(
Γ{k}Γ{n+ 1}

Γ{k + n}

) (6.63)

Setting

`nk =

(
k

n+ k

)(
Γ{k}Γ{n+ 1}

Γ{k + n}

)
(6.64)

and the effective compliance can be written as

C
(k)
ef = `nkC1t

n

= Cν{`
1
n
nkt}

(6.65)

Figure 6.4 shows how `nk and `
1
n
nk varies over n for different values of k. For most

materials, including ice, the values of n are around n = 0.3 or less. For values of

n around 0.3, `nk is relatively insensitive to the value of k. As expected, `
1
n
nk is also

relatively insensitive to k. For values of n ≈ 0.3, `
1
n
nk can be set to a constant.

Given the relative insensitivity to k, the effective compliance can be approximated

by using only the first-term compliance (k = 3/2). Subbing k = 3/2 into equations

6.64 and 6.65 gives the effective compliance as

Cef = Cν{`
1
n
n t}

`n =

(
3

2(n+ 3
2
)

)(
Γ{3

2
}Γ{n+ 1}

Γ{n+ 3
2
}

)
=

(
3
√
π

4(n+ 3
2
)

)(
Γ{n+ 1}
Γ{n+ 3

2
}

)
(6.66)

where the removal of the k sub- and super-scripts implies k = 3/2. For values of n
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(a)

(b)

Figure 6.4: Sensitivity of `nk and `
1
n
nk to k.
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associated with ice, `
1
n
n ≈ 0.3 from Figure 6.4b.

6.2.4.3 Fracture Energy

6.2.4.3.1 Definition

As a material is loaded, stress and strain will build up near the crack tip, due to

processes such dislocation glide and grain boundary sliding that cause viscoelastic

effects. The amount of force on the process zone would be

FRP = σfdA (6.67)

where dA is the area defined by the height of the process zone along an element length

ds and along the width of the crack, `c (i.e., dA = `cds). Thus the work done on the

process zone is

Wf =

∫ vm

0

(σfdA) dv (6.68)

Assuming that dA = ∆A is approximately constant over the process zone, then

the work done per area, known as the fracture energy, is defined as

ΓG =
Wf

∆A
=

∫ vm

0

σf dv (6.69)

If the crack opening displacement is a function of time (as it would be for a

viscoelastic material), then the fracture energy is also defined as

ΓG =

∫ t2

t1

σf
∂v

∂t
dt (6.70)

where v = 0 at t1 and v = vm at t2.
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Equivalently, noting that s{t} = a{t}−x, the fracture energy can be expressed as

ΓG =

∫ RP

0

σf
∂v

∂s′
ds′ (6.71)

The viscoelastic approximation for the crack opening displacement can now be

given by replacing the elastic compliance from equation 6.23 with the effective com-

pliance from equation 6.66 to give

v =
Cν{`

1
n
n t}

2π

∫ RP

0

σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′ (6.72)

Two periods of time can be considered: the time it takes the crack to grow some

distance s < RP , and the time it takes the crack to grow the length of the process

zone. These would be

ts =
s

ȧ

tR =
RP

ȧ

(6.73)

respectively. Combining with the `
1
n
n gives

t̃s = `
1
n
n
s

ȧ

t̃R = `
1
n
n
RP

ȧ

(6.74)

With these time definitions, two displacements can be defined as

v =
Cν{t̃s}

2π

∫ RP

0

σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′

vR =
Cν{t̃R}

2π

∫ RP

0

σ{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds′

(6.75)
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Equation 6.71 can separated into two terms

ΓG =

∫ RP

0

σf{s′}
∂v

∂s′
ds′

=

∫ RP

0

σf{s′}
∂vR
∂s′

ds′ +

∫ RP

0

σf{s′}
∂(v − vR)

∂s′
ds′

= ΓA + ΓB

(6.76)

which defines two parts of the total fracture energy.

6.2.4.3.2 Fracture Energy Term, ΓA

The first term of the total fracture energy, ΓA, can be rearranged by integration by

parts

ΓA =

∫ RP

0

σf{s′}
∂vR
∂s′

ds′

= σf{s′}vR|RP0 −
∫ RP

0

∂σ{s′}
∂s′

vR ds′

= −
∫ RP

0

∂σ{s′}
∂s′

vR ds′

(6.77)

where the first term is zero since

σf{RP} = 0

vR{0} = 0

(6.78)

6.2.4.3.3 Fracture Energy Term, ΓB

From equation 6.75

v − vR =

(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR (6.79)

and

ΓB =

∫ RP

0

σf{s′}
∂

∂s′

{(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR

}
ds′ (6.80)
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Using integration by parts with

u = σf{s′} du =
∂σ{s′}
∂s′

ds′

v =

(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR dv =

∂

∂s′

{(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR

}
ds′

(6.81)

gives

ΓB = σf{s′}
(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR

∣∣∣∣RP
0

−
∫ RP

0

∂σf{s′}
∂s′

(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR ds′

= −
∫ RP

0

∂σf{s′}
∂s′

(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR ds′

(6.82)

6.2.4.3.4 Comparison of ΓA and ΓB

Using a one-term solution from equation 6.56

v ≈ A 3
2
s

3
2Cν{t̃s} (6.83)

v{RP} ≈ A 3
2
R

3
2
PCν{t̃R} (6.84)

gives a normalized displacement for vR as

vN =
vR

v{RP}
=

A 3
2
s

3
2Cν{t̃R}

A 3
2
R

3
2
PCν{t̃R}

=

(
s

RP

) 3
2

= η
3
2

(6.85)

also the ratio of the compliances in ΓB is

Cν{t̃s}
Cν{t̃R}

=
t̃s

t̃R
=

(
s

RP

)n
= ηn (6.86)

having used equations 6.18, 6.61, and 6.74.
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Figure 6.5: Figure showing the relationship between ΓA and ΓB, normalized by the
size of the process zone, RP .

From equation 6.82 and 6.86

ΓB ∝ −
(
Cν{t̃s}
Cν{t̃R}

− 1

)
vR

= − (ηn − 1) η
3
2v{RP}

= (1− ηn)η
3
2v{RP}

(6.87)

Likewise, substitution of equation 6.84 into equation 6.77 shows that

ΓA ∝ −vR = η
3
2v{RP} (6.88)

The ratio of the two terms energy terms of ΓG as

∣∣∣∣ΓBΓA

∣∣∣∣ = 1− ηn (6.89)
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Figure 6.5 shows the relation of ΓA and ΓB (equation 6.89). From the figure, it is

seen that ΓA � ΓB as long as the failure stress is not acting primarily in the region

of η = 0 (near the actual crack tip).

6.2.4.3.5 Defining Fracture Energy in Terms of Stress Intensity

Up to now, the fracture energy has been discussed in terms of the local, and unknown,

stress field in the process zone. This section relates the fracture energy to the stress

intensity factor. This is an important step since it relates the unknown properties of

the model (the process zone stress) to properties that can be measured or calculated

by the engineer.

From the previous section

ΓG ≈ ΓA =

∫ RP

0

σf{s′}
∂vR{s}
∂s′

ds′ (6.90)

substituting in equation 6.72 (setting t = tR from equation 6.73) gives

ΓG =

∫ RP

0

σf{s′}
∂

∂s′

[
Cν{t̃R}

2π

∫ RP

0

σf{s}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds

]
ds′

=
Cν{t̃R}

2π

∫ RP

0

σf{s′}
∫ RP

0

σf{s}
∂

∂s′

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

ds ds′

(6.91)
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Performing the derivation in the integrand

F{s, s′} =
∂

∂s′

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣
)

=

 1

s′
√

s
s′

−

(
√
s+
√
s′

2
√
s(
√
s′−
√
s)

2 + 1

2
√
s(
√
s′−
√
s)

)(√
s′ −
√
s
)

√
s+
√
s′


=

√
s

s′

(
1

s− s′

)
(6.92)

and returning to equation 6.91 with equation 6.92 yields

ΓG =
Cν{t̃R}

2π

∫ RP

0

σf{s′}
∫ RP

0

σf{s}
√
s

s′

(
1

s− s′

)
ds ds′

=
Cν{t̃R}

2π

∫ RP

0

σf{s′}√
s′

∫ RP

0

σf{s}√
s

(
s

s− s′

)
ds ds′

(6.93)

Making the substitution

s

s− s′
=

1

2
+

1

2

(
s+ s′

s− s′

)
(6.94)

results in

ΓG =
Cν{t̃R}

4π

∫ RP

0

σf{s′}√
s′

ds′
∫ RP

0

σf{s}√
s

ds

+
Cν{t̃R}

2π

∫ RP

0

∫ RP

0

σf{s′}√
s′

σf{s}√
s

(
s+ s′

s− s′

)
ds ds′

=
Cν{t̃R}

4π

∫ RP

0

σf{s′}√
s′

ds′
∫ RP

0

σf{s}√
s

ds+ ΓZ

(6.95)

with

ΓZ =
Cν{t̃R}

2π

∫ RP

0

∫ RP

0

σf{s′}√
s′

σf{s}√
s

(
s+ s′

s− s′

)
ds ds′ (6.96)
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Figure 6.6: Contour plot showing anti-symmetry of s+s′

s−s′ over the process zone.

Figure 6.6 shows a contour plot of

F{s, s′} =
s+ s′

s− s′
(6.97)

from Figure 6.6, the contour plot shows that the function is anti-symmetric about

the s = s′ line. Values near the line approach ±∞ and taper off to zero when off the

centre line. This anti-symmetry can also be seen as

F{s′, s} =
s′ + s

s′ − s

=
s+ s′

(−1)(s− s′)
= −F{s, s′}

(6.98)

since the integrand of ΓZ is antisymmetric over the process zone (i.e., the limits of

integration), then

ΓZ = 0 (6.99)
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and

ΓG =
Cν{t̃R}

4π

(∫ RP

0

σf{s′}√
s′

ds′
)(∫ RP

0

σf{s}√
s

ds

)
(6.100)

Using the definition of stress intensity (equation 3.80) into equation 6.100 results

in a relationship between the stress intensity and the fracture energy given by

ΓG =
Cν{t̃R}

4π

(√
π

2
KI

)(√
π

2
KI

)
=
Cν{t̃R}

8
K2
I

(6.101)

6.2.4.4 Crack Growth

Under continuous crack growth, the process zone is fully developed. This does not

mean it is of a constant size as it will grow with increasing stress intensity, but the

zone growth is small so that the apparent crack grows at the same time. During

this phase the crack will grow due to the local stress causing the atoms in the ice

lattice to break apart, forming the new surfaces of the extended crack. From the

previous sections, the crack expands by a distance of RP over a time interval of tR.

Starting with the definition of creep compliance, and using the definitions of fracture

energy and effective compliance, an equation for stable continuous crack growth can

be formulated.

Expanding the compliance term to include the elastic component, i.e.,

Cν{t} = C0 + C1t
n (6.102)

will have no effect on the previous analysis with an addition of a constant elastic

component to the displacement terms. Since the displacement in the definition of

fracture energy (equation 6.76) takes the spatial derivative of v (and likewise vR),
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then the fracture energy analysis is unchanged since the constant term is dropped.

This means equation 6.101 is correct whether the elastic compliance is included or

not.

Subbing equation 6.102 into 6.101, and solving for ȧ

ΓG =
C0 + C1t

n
R

8
K2
I

(6.103)

and using equation 6.73

ΓG = 8−1
(
C0 + C1(`

1
n
nRP ȧ

−1)n
)
K2
I

8ΓGK
−2
I = C0 + C1`nR

n
P ȧ
−n

ȧ−n = (8ΓGK
−2
I − C0)(C1`nR

n
P )−1

ȧ = (8ΓGK
−2
I − C0)

−1
n (C1`nR

n
P )

1
n

ȧ =

(
C1K

2
I

8ΓG − C0K2
I

) 1
n

`
1
n
nRP

(6.104)

Noting that

ȧ =
∂a

∂t
(6.105)

and defining the fracture toughness (critical stress intensity) as

KG =

√
C0

8ΓG
(6.106)

gives the crack growth rate,

∂a

∂t
=

 C1K
2
I

8ΓG

[
1−

(
KI
KG

)2
]


1
n

`
1
n
nRP (6.107)
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under constant loading. Applying equation 6.22 expands equation 6.107 to

∂a

∂t
=
π

2

 C1K
2
I

8ΓG

[
1−

(
KI
KG

)2
]


1
n

`
1
n
n

(
KI

σmI1

)2

(6.108)

6.2.4.5 Time to Failure

For the case of constant loading and assuming self-similar crack growth (i.e., the

process zone stress profile always looks the same except translated along the material

as the crack growths), then

σmI1 = Constant (6.109)

In general, the fracture energy, ΓG, may possibly be a function of loading rate or

crack growth rate, but for a constant applied load, it is reasonable to approximate

the fracture energy as a constant. By extension, the fracture toughness will also be

constant, as seen from equation 6.106.

Using the definition of the stress intensity

KI = Y {a}σ
√
πa (6.110)(

KI

KG

)2

=
Y {a}2πaσ2C0

8Γ
=
Y {a}2a

aG

where

aG =
8Γ

πC0σ2
(6.111)

and Y {a} is the geometric shape function as a function of crack length. Substituting
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back into equation 6.108 yields

da

dt
=
(π

2

) C1Y {a}2πaσ2

8Γ
(

1− Y {a}2 a
aG

)
 1

m

`
1
m
m
Y {a}2πaσ2

σ2
mI

2
1

(6.112)

Separation of variables in equation 6.112 leads to

(aG)
1
m

(
1− Y {a}2 a

aG

Y {a}2(1+ 1
m)am+1

) 1
m

da =

(
π2

2

)(
C1

C0

) 1
m

`
1
m
m

σ2

σ2
mI

2
1

dt (6.113)

and integrated from the initial (a0) to current (a) crack size and from 0 to current

time, t

∫ a

a0

(aG
a

) 1
m

(
1− Y {a}2 a

aG

Y {a}2(1+ 1
m)

) 1
m

da

a
=

(
π2

2

)(
C1

C0

) 1
m

`
1
m
m

∫ t

0

σ2

σ2
mI

2
1

dt (6.114)

making the substitutions γ = a
a0

, dγ = da
a0

, and dγ
γ

= da
a

gives

∫ a
a0

1

(
aG
a0γ
− Y [a0γ]2

Y [a0γ]2(1+ 1
m)

) 1
m

dγ

γ
=

(
π2

2

)(
C1

C0

) 1
m

`
1
m
m

σ2

σ2
mI

2
1

t (6.115)

which reduces to the form of Schapery(1975c) when Y {a} = 1 for a central crack in

an infinite, thin plate.

From equation 6.112, it can be seen that for an infinite, thin plate, the specimen

will fail when the crack size reaches the critical crack size (when a = aG). Recasting

the limits from equation 6.114

∫ aG

a0

(aG
a

) 1
m

(
1− a

aG

) 1
m da

a
=

(
π2

2

)(
C1

C0

) 1
m

`
1
m
m

∫ tf

0

σ2

σ2
mI

2
1

dt (6.116)
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and using the substitutions u = a
aG

and du = da
aG

gives

∫ 1

a0
aG

(
1

u

)1+ 1
m

(1− u)
1
m du =

(
π2

2

)(
C1

C0

) 1
m

`
1
m
m

σ2

σ2
mI

2
1

tf (6.117)

where tf is the time to failure.

6.2.5 Intermittent Crack Growth

The previous section is for a crack that is under continuous crack growth with a fully

developed process zone (i.e., RP is constant over time). Under discontinuous loading,

this would not particularly hold. For the experiments performed during this project,

this is not a concern as the tests either underwent ramp up to failure or held at a

constant load. However, assuming the ice is undamaged (aside from the pre-notched

crack, of course), then the ice may start without an initial process zone. This means

that for the crack to grow, a process zone would have to grow. During this time, the

growth of the crack is completely due to the process zone growth. This means that

until the process zone is fully developed, the apparent crack does not grow (unless an

unstable failure occurs, of course).

6.2.5.1 Crack Opening Displacement

To begin the study of intermittent/initial crack growth, it is best to consider the crack

opening width. Starting with the non-simplified displacement

v =
1

2π

∫ t

0

Cν{t− τ}
∂

∂τ

{∫ RP

0

σf{s′}

(
2

√
s

s′
− Ln

∣∣∣∣∣
√
s′ +
√
s√

s′ −
√
s

∣∣∣∣∣ ds′

)}
dτ (6.118)

By definition

s = a{t} − x = RP{t} − 0 (6.119)
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by setting x = 0 and noting that the crack growth is simply the growth of the process

zone initially.

Substituting equation 6.119 into 6.118 gives

v =
1

2π

∫ t

0

Cν{t− τ}
∂

∂τ

{∫ RP

0

σf{s′}

(
2

√
RP

s′
− Ln

∣∣∣∣∣
√
s′ +
√
RP√

s′ −
√
RP

∣∣∣∣∣ ds′

)}
dτ

(6.120)

Using the following definitions

u =
s′

RP

ds′ = RP du

Ln

∣∣∣∣√u+ 1√
u− 1

∣∣∣∣ = Ln
1 +
√
u

1−
√
u

(6.121)

where the last is true since u ≤ 1, and the limits change

as s′ → 0 u→ 0

as s′ → RP u→ 1

(6.122)

For a constant process zone stress (σf = σm), the displacement becomes

v =
1

2π

∫ t

0

Cν{t− τ}
∂

∂τ

{
σmRP

∫ 1

0

2

√
1

u
− Ln

1 +
√
u

1−
√
u

du

}
dτ

=
1

2π

∫ t

0

Cν{t− τ}
∂

∂τ
{2σmRP} dτ

(6.123)

Using the definition of the process zone size from equation 6.22, the displacement
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becomes

v =
1

2π

∫ t

0

Cν{t− τ}
∂

∂τ

{
2σm

(
π

2

(
KI

σmI1

)2
)}

dτ

=
1

8σm

∫ t

0

Cν{t− τ}
∂K2

I

∂τ
dτ

=
K2
I

8σm

∫ t

0

K−2
I Cν{t− τ}

∂K2
I

∂τ
dτ

(6.124)

where the K2
I and K−2

I are added for reasons that will become evident when discussing

the fracture energy.

6.2.5.2 Fracture Energy

6.2.5.2.1 Constant Process Zone Stress

Fracture energy is also defined as

ΓG =

∫ vm

0

σf dv (6.125)

where vm is the crack opening displacement at failure. For constant process zone

stress, and using equation 6.124, this becomes

ΓG = σmvm

=
K2
I

8

∫ t

0

K−2
I Cν{t− τ}

∂K2
I

∂τ
dτ

(6.126)

Defining the secant compliance as

Cs =

∫ t

0

K−2
I Cν{t− τ}

∂K2
I

∂τ
dτ (6.127)

gives the fracture energy as

ΓG =
1

8
K2
ICs{t} (6.128)
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which has a similar form to the continuous crack growth case.

6.2.5.2.2 Time-varying Process Zone Stress

As mentioned, during the initial growth of the process zone, the stress inside the zone

may not be necessarily constant but may vary over time (such as increasing under

increasing applied load).

Consider the approximate crack opening displacement near the crack tip, given by

v = − 2

3π

∫ ti

0

Cν{t− τ}
∂

∂τ

{
σmI2s

3
2R
− 1

2
P

}
dτ (6.129)

Multiplying the term inside the braces by K2
I /K

2
I results in

v = − 2

3π

∫ ti

0

Cν{t− τ}
∂

∂τ

{
K2
I

πσmI2s
3
2R
− 1

2
P

2σ2
mI

2
1RP

}
dτ

= −1

3

∫ ti

0

Cν{t− τ}
∂

∂τ

{
K2
I

(
I2

I2
1

)(
s

RP

) 3
2

σ−1
m

}
dτ

(6.130)

where σm = σm{τ}.

Using equation 6.125, the fracture energy for time-varying σm is now

ΓG =

∫ vm

0

σf dv =

∫ 1

0

σfvm dρ (6.131)

after making the substitution ρ = v/vm.

Substituting equation 6.130 in to the above gives

ΓG = −1

3

∫ 1

0

σf

∫ ti

0

Cν{t− τ}
∂

∂τ

{
K2
I

(
I2

I2
1

)(
s

RP

) 3
2

σ−1
m

}
dτ dρ

= −1

3
K2
I

∫ 1

0

σf

∫ ti

0

K−2
I Cν{t− τ}

∂

∂τ

{
K2
I

(
I2

I2
1

)(
s

RP

) 3
2

σ−1
m

}
dτ dρ

(6.132)
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Since KI , σf , and Cν{t} are not dependent on v (or by extention, ρ), the integrals

can be switched to give

ΓG = −1

3
K2
I

∫ ti

0

K−2
I Cν{t− τ}

∂

∂τ

{∫ 1

0

K2
I

(
I2

I2
1

)(
s

RP

) 3
2 σf
σm

dρ

}
dτ (6.133)

From equation 6.130, it can be seen that v is proportional to s
3
2 and vm is propor-

tional to R
3
2
P , Thus

(
s

RP

) 3
2

→ v

vm
= ρ

σfv

σmvm
→ F{ρ}

(6.134)

resulting in the fracture energy as

ΓG = −1

3
K2
I

∫ ti

0

K−2
I Cν{t− τ}

∂

∂τ

{∫ 1

0

K2
I

(
I2

I2
1

)
F{ρ} dρ

}
dτ (6.135)

Defining R{ρ} as

R{ρ} = −8

3

(
I2

I2
1

)∫ 1

0

F{ρ} dρ (6.136)

and rewriting the fracture energy as

ΓG =
1

8
K2
I

∫ ti

0

K−2
I Cν{t− τ}

∂

∂τ

{
K2
IR{ρ}

}
dτ

=
R{ρ}

8
K2
I

∫ ti

0

K−2
I Cν{t− τ}

∂

∂τ

{
K2
I

}
dτ

=
R{ρ}

8
K2
ICs{t}

(6.137)

which has a similar form to the constant stress state, but is multiplied by R{ρ}.
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6.2.5.3 More on the Secant Compliance

The secant compliance is the compliance of the material during the growth of the

process zone to its full size. For a monotonic growth in stress intensity, the secant

compliance will always be less than or equal to the creep compliance, i.e.,

Cs{t} ≤ Cν{t} (6.138)

For the case of a power-law growth in stress intensity, denoted by

KI = Atj (6.139)

the secant compliance becomes

Cs =

∫ t

0

K−2
I Cν{t− τ}

∂K2
I

∂τ
dτ

=

∫ t

0

(Atj)−2Cν{t− τ}
∂(Atj)2

∂τ
dτ

= 2kt−2jC1

∫ ti

0

(t− τ)nτ 2j−1 dτ

(6.140)

Similar to before, this can be solved to give

Cs{t} = `nlC1t
n = Cν{`

1
n
nlt} (6.141)

`nl =
l

n+ l

Γ{l}Γ{n}
Γ{n+ l}

(6.142)

where l = 2j.
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6.3 Nonlinear Viscoelastic Fracture Mechanics

While it is beyond the scope of this thesis, a brief mention of nonlinear viscoelastic

fracture mechanics is warranted. The nonlinear theory is an other expansion of the

linear viscoelastic theory of Schapery (1975a,b,c). While this theory is quite complex,

it borrows a lot of terminology and concepts from the linear theory. Aside from the

new geometries and loading scenarios that this project will add to viscoelastic fracture

theory, the nonlinear theory is the next important theory that needs to be developed

in providing better estimations of ice loads during an interaction.

As mentioned in Section 3.1.4, when a crack grows it releases energy. This energy

loss relieves the material of built up stresses. Crack growth is governed by two things

related to strain energy. Crack growth initiation occurs when there is a build up

of strain energy that ductile processes (e.g., grain boundary sliding and dislocation

glide) can no longer relieve which will be related to fracture toughness. Secondly, the

path the crack grows in will determine its strain energy release rate (SERR). Often

cracks will grow in the direction of maximum SERR (Zou et al., 1996; Taylor, 2010) if

the SERR of the crack is greater than the build up from the loads, the crack will grow

until the build up of energy is gone, otherwise, the crack will grow to a free surface

(i.e, spalling event). Given the importance of the SERR, it becomes important to

consider how the energy builds up in the process zone.

Assuming the process zone is small, then it is not important to perfectly model

the nonlinear effects in this regime. For fracture mechanics, it is sufficient to only

know how the energy is being stored and released as the crack grows, as mentioned.

To do this, the energy release rate of crack growth is calculated using the J-Integral.

The original work by Rice (1968) considered a 2-D crack in an elastoplastic mate-
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Figure 6.7: The J-integral is defined by a contour around the process zone. The con-
tour has to be inside the material and contain no cracks, so that continuum mechanics
applies within the contour.

rial. In this paper, Rice defines the integral

dRice =

∫
S

[
(U dy − Ti

∂ui
∂x1

]
ds (6.143)

which is surrounded by the contour, S, that runs counter-clockwise along the surface

of the crack and process zone and clockwise around the loop. The theory considers

the Piola stresses and displacements σRij and uRi . U is the strain energy and Ti is the

traction along the contour given by

U =

∫ εij

0

σRij dεRij

TRi = σRijn̂j

(6.144)

Provided that the contour is within the material and contains no cracks, then con-

tinuum mechanics applies within the material. By applying Green’s Theorem, Rice

(1968) shows that this integral is equal to zero.
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The work done by Schapery (1981, 1984a, 1990), modified the Rice’s original

equations, using the correspondence principle, to provide solutions for viscoelastic

materials, based on the solutions for a purely (hyper)elastic material

Using the correspondence principle, Schapery starts with the stresses and strains

from the reference elastic solution (i.e., the same stresses and strains used in Rice’s

theory for an elastoplastic material), which follow the equilibrium equations

∂σRij
∂xj

+ FR
i = 0 (6.145)

with body forces FR
I . There exists potential functions such that

σRij =
∂U

∂uRi,j

FR
i = −∂UF

∂ui

(6.146)

where U would be the strain energy, rewritten here as

U =

∫ ∂ju
R
i

0

σRij d∂ju
R
i (6.147)

and the strain is given by

εRij =
1

2

(
∂ju

R
i + ∂iu

R
j + ∂iu

R
k ∂ju

R
k

)
(6.148)

By multiplying eqn. 6.145 by ∂uRi /∂x1, integrating over the volume, and using the

divergence theorem gives

d =

∫
S

[
(U + UF )n1 − TRi ∂x1uRi

]
ds = 0 (6.149)

One form of the J-integral is found by integrating over the part of the contour that
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surrounds the crack going counter-clockwise from point 1 to point 2 (where dx2 = 0)

JF =

∫ α

o

τRi ∂ξ∆u
R
i dξ (6.150)

where ξ goes from the crack tip out to the failure zone, τi is the stress (i=2 is normal,

i=1,3 are shear stresses), and ∆u is the separation between to points that were once

together (i.e., the crack opening).

If we consider the rest of the contour going from point 2 clockwise around the

continuum material to point 1, then we get

JV =

∫
C1

[
(U + UF ) dx2 − TRi ∂x1uRi dL

]
JV =

1

L3

∫
S1

[
(U + UF )n̂1 − TRi ∂x1uRi

]
ds

(6.151)

where C1 is the contour going from point 2 to point 1, L3 is the thickness of the crack

face in the x3-direction, and S1 is the surface that includes C1.

Invoking the theory of virtual work, multiplying the equilibrium equations by δuRi

and integrating over a volume surrounding the crack tip (e.g., with the surface S1

from above) gives

∫
V

∂jσ
R
ijδu

R
i dv +

∫
V

FR
i δu

R
i dV = 0∫

V

∇ ·
{
σRijδu

R
i

}
dv −

∫
V

σRij∂jδu
R
i −

∫
V

ΦF dV = 0

(6.152)

and using the divergence theorem on the first integral gives

∫
S

(σRijδu
R
i )n̂j dS =

∫
V

(Φ + ΦF ) dv∫
S

(TRij δu
R
i ) dS =

∫
V

(Φ + ΦF ) dv

(6.153)
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to which the virtual work done as the crack grows is defined as

WR
V =

∫
S

TRi δu
R
i ds =

∫
S

[
TRi ∂ξδu

R
i ∂aξ + ∂aδu

R
i

]
δa ds

WV = −L3δa

∫ α+δa

0

τRi ∂ξ∆u
R
i dξ = −L3δaJF

(6.154)

Using the definition of virtual work, the time to crack growth initiation can be

found relating the surface energy (plus any viscous effects) to the work done

2ΓG = WV (6.155)

to solve for the time that the virtual energy reaches the critical energy of 2ΓG.

When the crack is growing (ȧ > 0), the virtual work can be defined as

WV =

∫ α

0

τi∂ξ∆ui dξ (6.156)

Assuming that α and ȧ are constant over time steps of α/ȧ, τi and ∆ui are independent

of x1, but not ξ (self-similar crack growth), and D {t− τ, t} is unaffected by aging,

then the approximation

∆ui ≈ ERD
{
t̃, t
}

∆UR
i (6.157)

can be made, where t̃ = kξ/ȧ, and k ≈ 1/3. The virtual work can then be approxi-

mated by

WV = ERD
{
t̃α, t

}∫ α

0

τi∂ξ∆u
R
i dξ (6.158)

where t̃α = kα/ȧ. From which the crack speed, ȧ, can be found

2ΓG = ERD
{
t̃α, t

}
Jv (6.159)
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6.4 Continuous Crack Growth

The theories of fracture mechanics, including the viscoelastic theory of Schapery

(1975a,b,c), consider a crack in an infinite plate under uniaxial loading. This setup

is useful in describing and understanding fracture mechanics because it simplifies the

mathematics (such as the geometric shape function being equal to 1). Many authors

also consider uniaxial creep tests for the same reason of simplifying the mathemat-

ics around the applied stress (a step function, but essentially a constant) and its

derivatives (zero, aside from the start of the applied load).

The model proposed below expands beyond these limitations without giving rise

to overly complicated mathematics that could be prohibitive to implement or too

computationally demanding for modern computers. This model will be discussed

for the case of 4-point beam bending but can be easily modified to work for other

geometries.

The underlying assumptions of the linear viscoelastic model of Schapery will be

discussed and validated in Section 7.1 (e.g., a small process zone is required), but will

be assumed valid for this chapter. This chapter’s discussion can now be focused on

developing a new model by modifying the original model of Schapery (1975a,b,c).

In maintaining consistency with Section 6.2, discussion of the model will begin

with the continuous crack growth portion of the model. While the model will begin

with the intermittent equations, the continuous growth portion will play the bigger

role of the model simulation under constant load and ramp loading.
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Figure 6.8: Schematic of 4-Point Bending Specimen showing geometry definitions.
Depth of the beam into the page is denoted by d.

6.4.1 Fracture Toughness and Stress Intensity

Starting with Schapery(1975b) formula for crack growth

da

dt
=
(π

2

) C1

8ΓG

(
1− K2

I

K2
G

)
 1

n

`
1
n
nK

2(1+ 1
n)

I

σ2
mI

2
1

(6.160)

This can be written in the form

da

dt
=
(π

2

) C1K
2
I

8ΓG

(
1− K2

I

K2
G

)
 1

n

`
1
n
n
K2
I

σ2
mI

2
1

(6.161)

where

KG =

(
8ΓG
C0

) 1
2

(6.162)

C0 =
4(1− ν2)

E
(6.163)
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as defined in Schapery (1975a,b,c) and C0 is the elastic compliance under plane strain

conditions that would be present near a crack tip. For the case of a pre-notched beam

under 4-point bending, the stress intensity is defined as

KI =

(
Y {a}

( √
α

(1− α)
3
2

))
3F (S2 − S1)

2dh
3
2

(6.164)

where the geometric shape function is given by

Y {α} = 1.9887− 1.326α− (3.49− 0.68α + 1.35α2)α(1− α)

(1 + α)2
(6.165)

with α = a/h (Strecker et al., 2005).

6.4.2 Process Zone and Crack growth

From Schapery (1975a,b,c), the size of process zone can be approximated as

Rp =
π

2

(
KI

σmI1

)2

(6.166)

where I1 defines the stress profile in the process zone.

This can be used in equation 6.161 as

da

dt
=

 C1K
2
I

8ΓG

(
1− K2

I

K2
G

)
 1

n

`
1
n
nRP (6.167)

or as

da

dt
=

(
C1K

2
I

(8ΓG − C0K2
I )

) 1
n

`
1
n
nRP (6.168)

which masks the unstably that occurs at KI = KG, but shows the dependence on the

elastic compliance (equation 6.167 is the version used in the model).
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6.4.3 Failure Energy and the Process Zone Stress Field

The remaining aspect of the model relates to parameters ΓG, σm, and I1. Due to the

unknown nature of the process zone, these parameters are harder (if not impossible) to

determine. This section attempts to provide some thoughts on what may be happening

inside the zone but is in no way definitive (merely a speculation on the author’s part).

ΓG is related to the bonding of the atoms. It can stand to reason that this should

be a constant for a constant temperature, as the bonds between atoms/molecules will

have a constant bonding energy that would be also affected by temperature.

σm is the maximum stress found in the process zone. During the initial phase when

the process zone is forming, this parameter will change from zero to a maximum. On

physical grounds, for a constant temperature σm should match the theoretical stress

required to break the bonds between atoms and molecules once the crack begins to

propagate (as the apparent crack tip advances).

I1 is the area under the shape of the normalized stress curve, but may be simply

thought as a way to define the curve (for understanding purposes). The maximum

value that I1 can have is 2, which is achieved for a constant process zone stress field

(like a plastic zone of yielding).

The process zone stress is a function of the applied load and the underlying motion

of the grains and dislocations, as these act to relieve stress. The ability for grain sliding

and dislocation glide will be made easier under higher stress due to the increased

energy available. However, these processes require time for them to activate.

Should the grains and dislocations have time to move, the stress field in the process

zone should change. The initially high stressed area should decrease, but stress should

increase in other areas where the grains and dislocations become stuck. This would

have the effect of spreading out the stress field. For constant loading tests that have

last a considerable amount of time, the process zone should have a relatively constant
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stress field as the grains and dislocations have time to shift around. Thus I1 should

be equal (or nearly so) to 2.

Under faster loading conditions (like the ramp up to failure experiments), the

grains and dislocations may not have enough time to shift around. This means that

the highest stressed area will be unable to alleviate this stress. This will cause the

process zone stress field to be less uniform, meaning that I1 < 2 (possibly much less

than 2).

From elastic considerations, one may expect the highest stress to be near the

apparent crack tip (near the mouth). This may not be the case as the process zone

may be discontinuous and have other stress concentrations, but it provides a good

starting point for discussion. Assuming the process zone is continuous, then one would

expect the highest stresses to be near the apparent crack tip and would decrease

exponentially further away (in a 1/
√
r manner from the LEFM theory).

Under slow loading rates (or constant load), the process zone stress is a constant

as previously stated. Under fast loading rates, the stress field should be high around

the apparent crack tip, but quickly drop off as the stress is unable to be relieved. For

medium loading rates, the stress can spread out more than the fast loading test but

may be less spread out than the slow loading rates. This results in a trend that

as Ḟ → 0 I1 → 2

as Ḟ →∞ I1 → 0

(6.169)

For illustrative purposes, using an exponential decreasing function to describe

the process zone stress gives insights into the value of I1. Consider the following

213



Model Development Continuous Crack Growth

(a)

(b)

Figure 6.9: a) Exponentially decreasing normalized process zone stress fields with dif-
ferent steepness parameter, A. b) The value of the I1 for varying steepness parameter
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normalized stress field

f = exp {−A(1− η)}

I1 = 2
DF

{√
A
}

√
A

(6.170)

where A defines the steepness of the decay, η is the normalized distance (apparent

crack tip at 1, actual crack tip at 0), and DF is the Dawson Function defined as

DF {x} = exp
{
−x2

}∫ x

0

exp
{
y2
}

dy

= −iπ
2

exp
{
−x2

}
erf {xi}

(6.171)

where i =
√
−1 and the Error Function is defined as

erf {x} =
2√
π

∫ x

0

exp
{
t−2
}

dt (6.172)

Figure 6.9a shows various stress fields for different values of the steepness param-

eter in equation 6.170. For A = 0, the stress field is constant and becomes more

sharply defined for larger A. One can think of A being a function of loading rate and

that A = 0 for constant loading and increases as the loading rate increases.

Figure 6.170b shows how this hypothetical I1 varies with A. As A → 0 (slow

loading) then I1 → 2 as expected. Under fast loading, the stress field is more con-

centrated near the apparent crack tip and I1 tends to zero. The curve in Figure 6.9b

suggests that I1 has an exponential decreasing relationship with A and possibly with

the loading rate, as suggested from Figure 5.4.

Stated briefly, the model will assume that the fracture energy and the maximum

process zone are constants (at least for constant temperature) and I1 will be a function

of loading rate. While it may be more prudent to lump these variables as one, there
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is no evidence to suggest that the model will be improved by this change. One should

also consider that the three variables do not always appear in all equations (such as

equation 6.166), and would pose issues for the model.

6.5 Intermittent Crack Growth

The model is assumed to start with no process zone, such that the process zone has

to grow as suggested in Section 6.2.5. During the initial phase, the length of the crack

is simply the initial crack length plus the current length of the process zone defined

in equation 6.166.

6.5.1 Secant Compliance

Having calculated the stress intensity from equation 6.164 and using equation 7.1, the

secant compliance is calculated using

Cs =

∫ t

0

K−2
I Cν{t− τ}

∂K2
I

∂τ
dτ (6.173)

which is a hereditary integral that requires integration at every time step until failure

initiation into the continuous crack growth phase.

6.5.2 Fracture Initiation

Continuous crack growth begins once the initial phase ends (i.e., there is a fully-

developed process zone). This is determined by the fracture energy defined as

ΓG =
1

8
K2
ICs{t} (6.174)

Failure initiation is said to occur once ΓG from equation 6.174 reaches a critical
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value (e.g., if the critical value is 1 J/m2, then continuous crack growth commences

once equation 6.174 obtains a value of 1 J/m2).

6.6 Numerical Implementation

The following section outlines the numerical implementation of the viscoelastic frac-

ture model discussed. Figure 6.10 provides a flow chart of the numerical implementa-

tion. Figure 6.10a outlines the intermittent crack growth phase, referring to reader to

the continuous crack growth phase upon completion. Figure 6.10b then outlines the

continuous crack growth phase, which will produce the final output upon completion.

Details of the various steps in the model are discussed below.

6.6.1 Time-Stepping

The model is implemented with a Euler forward method. While other numerical

schemes are available, such as Heun’s Method, that provides more stability and ac-

curacy, the basic Euler’s method was chosen to match the numerical scheme used in

commercial FEA solvers like Abaqus FEA.

The default time step for continuous crack growth is defined as

∆t =
0.1

Ḟ
(6.175)

for Ḟ of the ramp up phase. This provides a sensible baseline time stepping that

typically will not lead to numerical instability, but is not prohibitively small for doing

quick model runs. For the intermittent portion of the model, the time step was

initially set to ∆t = 1 millisecond but was allowed to vary as needed.

To prevent large changes, such as numerical instability, in the crack length, the
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(a) Intermittent Crack Growth

Figure 6.10
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(b) Continuous Crack Growth

Figure 6.10: Flow chart of how the model numerically simulates continuous crack
growth.

219



Model Development Numerical Implementation

model checks the difference between ai+1 and ai. If that difference is too big (currently

defined as a micrometer) then the model will discard the new values and redo the time

step with the time step halved and will keep halving ∆t until the condition is met or

a user-defined minimum value for ∆t is met).

Once the crack has reached the value of h (i.e., the ice breaks), the model will undo

the last couple of values (so return to time ti−1) and run the model with a default

time step of

∆t =
0.001

Ḟ
(6.176)

to fine tune the results of when the ice broke, for more accurate results of time to

failure and fracture load (it does this “do-over” once, the next time the ice breaks,

the model will finish)

6.6.2 Updating the Force

The model currently uses a force loading profile of a constant ramp up from zero to

a maximum value that it would hold (provided the modelled ice doesn’t break during

ramping), however, the code can be easily modified to take an input loading.

Under ramp up to hold, the force at time t is defined as

F{t} = min
{
Ḟ t, Fmax

}
(6.177)

where Fmax is the applied load for the constant load tests and set to an unobtainable

value for the ramp up to failure model runs.

Numerically, this is written as

Fi+1 = min
{
Fi + Ḟit, Fmax

}
(6.178)
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though the min function could be removed with a prescribed loading.

6.6.3 Updating the Stress Intensity and Geometric Shape

Function

The stress intensity is given as

Ki+1 = Y ∗i {αi}
3Fi(S2 − S1)

2dh
3
2

(6.179)

where

Y ∗{αi} = Y {αi}
√
ai

(1− αi)
3
2

=(
1.9887− 1.326αi −

(3.49− 0.68αi + 1.35α2
i )αi(1− αi)

(1 + αi)2

) √
ai

(1− αi)
3
2

(6.180)

with αi = ai/h and the beam dimensions from Figure 6.8.

6.6.4 Updating the Size of the Process Zone

The new process zone size can be calculated as

Rpi+1
=
π

2

(
Ki+1

σmi+1
I1

)2

(6.181)

As discussed above, σm is set to a constant that represents the theoretical strength

of the bonds in the crystal lattice of ice (the weakest would be along the basal plane).

the value of I1 is set to depend on the applied loading rate. The function is a
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bounded power-law decay given as

I1 = min
{

max
{
Ḟ − Ḟ0, 0

}m
, 2
}

(6.182)

where Ḟ0 and m are constants, and I1 has an upper bound of 2, which will occur for

slow loading rates and constant loading. σm, Ḟ0, and m are parameters that have to

be found empirically using available data from the beam series.

6.6.5 Continuous Crack Growth

6.6.5.0.1 Updating the Fracture Toughness

The fracture toughness is a function of the failure energy, elastic compliance, and

Poisson’s ratio (currently set to 0.33). Fracture toughness is defined as

KGi+1
=

2ΓGi+1

(1− ν2)C0

(6.183)

6.6.5.0.2 Euler Forward Crack growth

ai+1 = ai + ∆t

 C1i+1
K2
i+1

8ΓGi+1

(
1− K2

i+1

K2
Gi+1

)


1
n

`
1
n
nRPi+1

(6.184)

the model will continue to update and grow the crack until either the ice breaks

(defined as ai+1 = h) or when a user-defined time is reached (when ti+1 = tmax).
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6.6.6 Intermittent Crack Growth

6.6.6.1 Secant Compliance

The secant compliance can approximated using the trapezoidal rule as

Csi =
i∑

k=1

f {tk+1}+ f {tk}
2

∆tk

f {tk} = K−2
Ii

[C0 + C1(ti − tk)n]
K2
k −K2

k−1

tk − tk−1

(6.185)

which is valid for uniform or non-uniform time steps.

6.6.6.2 Fracture Initiation

The fracture initiation energy is numerically determined by

ΓGi =
1

8
K2
Ii
Csi (6.186)
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Chapter 7

Model Validation and Results

7.1 Underlying Assumptions of the Schapery Model

Since the new model developed in Chapter 6 is modified from the works of Schapery

(1975a,b,c), this new model will also make use of the assumptions from the earlier

model from Schapery.

One assumption that was made is that the primary and secondary creep terms

can be combined into a single term in the form of equation 6.61. To show that this

assumption is valid, at least for the time scale considered in this project, various

datasets are shown to match this form in the following section. For convenience,

equation 6.61 is rewritten here as

Cν = C1t
n (7.1)

As mentioned in Section 6.2.2, the second underlying assumption of the model is

that the process zone is small, which allows for the details of the process zone to be

glossed over. Section 7.1.3 will show that, for reasonable considerations of process

zone stresses, the process zone is expected to be small.
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7.1.1 Datasets Used for Validation

To begin the analysis of the validation of the effective compliance, a collection of

datasets were used. The datasets are from Schapery (1997), LeClair et al. (1999),

Sinha (1978), and Brill and Camp (1961). These experiments performed creep tests

on ice samples under various conditions (detailed below). This section will analyse the

data to show that the creep curves can be approximated by equation 7.1 (accounting

for the elastic compliance).

Schapery (1997) and LeClair et al. (1999) performed uniaxial tension tests on ice

samples. Samples were loaded under creep and recovery cycles with three stress levels

of 0.13, 0.23, and 0.32 MPa. Each stress level was applied for time periods of 1, 2,

and 4 minutes with recovery periods roughly 3 times as long between each successive

loading (e.g, load 0.13 MPa for 1 minutes, recover for 3 minutes, load 0.13 MPa for

2 minutes, recover for 6 minutes, load 0.13 MPa for 4 minutes, recover 12 minutes,

now load to 0.23 MPa for 1 minutes, recover 3 minutes, and so on...) as shown in

Figure 7.1. The type of ice used in these experiments was saline, polycrystalline

laboratory-grown ice. The ice was grown from a 26 ppt salt-water mix that was

chilled to -1◦C and seeded by spraying a mist on top of the solution (to mimic natural

growth). This resulted in the formation of randomly oriented S2-columnar ice with a

grain size of 10 mm. While a nonlinear viscoelastic model is required to fit the full

dataset, each individual creep load can be modelled using equation 7.1 (discussed in

the next section).

Figures 7.2 and 7.3 are experimental results from Sinha (1978). Sinha (1978)

grew S2-columnar ice using deaerated water in a plastic container chilled at -10◦C.

Finely crushed ice was sprinkled on the top of the water to act as the seed for grain

nucleation. Grains near the top had a random c-axis orientation but became elon-

gated and vertically-oriented deeper down in the resulting ice block. Grain diameters
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Figure 7.1: Data (represented by circles) of ice specimens under uniaxial tension from
Schapery (1997); LeClair et al. (1999). Nonlinear optimization of the parameters from
equation 2.45.
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Figure 7.2: Left: Comparison of experimental data Sinha (1978) (-41◦C, columnar ice)
to an effective linear compliance of the form in equation 7.1 by nonlinear optimization
of the model parameters.

Figure 7.3: Left: Comparison of experimental data Sinha (1978) (-30◦C, columnar ice)
to an effective linear compliance of the form in equation 7.1 by nonlinear optimization
of the model parameters.
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Figure 7.4: Left: Comparison of experimental data Brill and Camp (1961) (-5◦C,
isotropic ice) to an effective linear compliance of the form in equation 7.1 by nonlinear
optimization of the model parameters.

were around 3 mm in size. The ice was cut into rectangular blocks and loaded in

compression perpendicular to the long side of the grain.

Ice samples used in Brill and Camp (1961) were polycrystalline in nature. The ice

was grown from tap water, covered with fine snow particles and chilled at -5◦C. The

resulting ice had a random grain orientation and a grain diameter of 1–2 mm. Figure

7.4 shows a specimen that underwent uniaxial tension at -5◦C.

Of the datasets considered, the ice grown in Brill and Camp (1961) is the most

similar to the ice grown for the beam series. The ice samples of Brill and Camp (1961)

are randomly oriented and isotropic, whereas the columnar ice from the other series

would have a preferred c-axis. The grain size of Brill and Camp (1961) is slightly

smaller than the 2–3.35 mm grain size used in the beam bending series. The other

difference is that Brill and Camp (1961) performed their series at -5◦C instead of

-10◦C.
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7.1.2 Effective Compliance Validation

For each of the nine loading cycles in Figure 7.1, the beginning of each cycle is zeroed

both in time and strain to study the creep properties of the newly applied load.

Figure 7.6 displays the log-log plots of the data in these cycles along with a linear fit.

From the figure, it is clear that there is a strong linear relationship between the ice

compliance and time. This suggests that a power-law type equation should predict the

creep behaviour of ice reasonably well. Similarly, Figure 7.2 shows a strong indication

of a power-law type compliance. Figure 7.2 shows the data (in circles) plotted against

the fits from equation 7.1. The bottom shows the values used in the equation.

Both of these results are for short time periods of ice. Since delayed elastic creep

is modelled using a power-law type equation, it is reasonable to expect good approxi-

mations to happen during time scales in which it is the dominant form of strain. Over

time, the viscous creep will become dominant which should change the shape of the

compliance curve towards a more linear path (under creep conditions). This means

that other datasets should be checked to confirm that the power-law type equation

holds true for longer time periods.

Figure 7.3 shows ice under creep for roughly 800 seconds (131
3

minutes). Many of

the experiments performed in this project fall roughly into this time frame. Even at

this time scale, equation 7.1 is capable of providing reasonable fits to the data.

To ensure that equation 7.1 still approximates creep curves for longer time scales,

the data from Brill and Camp (1961) can be used. The data shows ice under creep for

1 hour, which exceeds any of the experiments in this project that resulted in broken

ice samples. Figure 7.4 shows that equation 7.1 fits the data as well as it did during

the shorter experiments.

From this, it is reasonable to assume that the effective compliance method used

in the model will provide accurate results for the time scales used in the experiments.
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(a)

(b)

(c)

Figure 7.5: Log-log plots showing the creep response of the nine cycles applied to the
ice sample from Schapery (1997); LeClair et al. (1999).
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(a)

(b)

(c)

Figure 7.6
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(d)

(e)

(f)

Figure 7.6: Log-log plots showing the creep response of the nine cycles applied to the
ice sample from Schapery (1997); LeClair et al. (1999).
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Source C0 C1 n
(10−5) (10−5)

Sinha (1978)
(-41◦C)

9.10 0.52 0.26

Sinha (1978)
(-30◦C)

10.5 1.10 0.34

Brill and
Camp (1961)

15.4 3.00 0.28

Table 7.1: Summary of model coefficients of the compliances from Sinha (1978) and
Brill and Camp (1961).

A summary of the compliance parameters can be found in Table 7.1.

7.1.3 Validation of Small Process Zone Size

The size of the process zone is defined in Schapery (1975a) as

Rp =
(π

2

)( KI

σmI1

)2

(7.2)

For an estimation of the process zone in ice, consider a linear stress profile that is

maximum at the crack tip and decreases towards the apparent crack tip, as shown in

Figure 7.7a. Using the following values for ice

KIC ≈ 0.1 MPa
√
m

σf {η} = σm(1− bη)

1 MPa <σm < 600 MPa

(7.3)

produces the results in Figure 7.7c. Figure 7.7c shows the size of the process zone as

a function of maximum stress in a linear profile (b = 0 would be a plastic response,

b = 1 would have zero stress at the apparent crack tip). The figure shows that unless

the maximum stress in the process zone is less than 2 MPa, the size of the zone is
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(a) (b)

(c) (d)

Figure 7.7: a-c) Linear profile and process zone size. b-d) Quadratic profile and
process zone size.
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certainly negligible. Given that fracture requires breaking the bonds between atoms,

it is clear that the stress is magnitudes higher than 2 MPa (probably in the 100–600

MPa range). Similarly, Figure 7.7b and d show the results for parabolic process zone

distributions. Case 1 shows a curve where the magnitude at the actual and apparent

tips are half the maximum stress, case 2 shows a profile that is more stressed towards

the apparent crack tip, and case 3 shows one that is more stressed towards the actual

crack tip. While there is some difference between the results, the differences are very

small. In either case, provided the stress is above 2 MPa, the process zone should

be relatively small, allowing the one to gloss over the specifics of the process zone in

favour of a simplified, but acceptable theory.

7.2 Validation of Linear Model

Ice is a nonlinear viscoelastic material that is better described by equation 2.45,

rewritten here as

ε {t} = C0σ + C∗1σ
p∗tn

∗
+ C∗2σ

q∗t (7.4)

as opposed to a linear viscoelastic model of

ε {t} = C0σ + C1σt
n + C2σt (7.5)

of which the viscous (C2) creep is combined with the primary (C1) creep to form a

single creep term in Schapery (1975a,b,c).

This nonlinearity of the ice rheological properties can pose issues for the model,

given the the linear model may not accurately represent the nonlinear ice. This means

that the model could have trouble modelling the ice if the nonlinearity is too great.

However, provided the nonlinearity is small, then the model can provide an accurate
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Model Parameters Used to Fit LeClair et al. (1999)
Linear Parameters Nonlinear Parameters

C0 13.3x10−5MPa−1 C0 13.3x10−5MPa−1

C1 3.82x10−5MPa−1s−
1
3 C∗1 5.65x10−5MPa−1.2s−

1
3

n 1/3 n∗ 1/3
C2 5.87x10−8MPa−1s−1 C2 49.7x10−8MPa−2.79s1

p 1.00 p∗ 1.20
q 1.00 q∗ 2.79

Table 7.2: Model parameter used in fitting LeClair et al. (1999) in Figure 7.8.

estimation of time to failures or peak ramp loading. Therefore, a check should be made

to ensure that ice can be reasonably approximated by a linear viscoelastic model.

To address this issue, consider the multiple stress loading that was done in LeClair

et al. (1999). Table 7.2 shows parameters used in linear (equation 7.5) and nonlinear

(equation 7.4) fits of this data. From Table 7.2, it can be seen that the primary creep

term is only slightly nonlinear at p∗ = 1.2 and the viscous creep has a nonlinearity

of q∗ = 2.79 which is slightly below the typical value of 3 (q∗ is often called n in the

Glen’s flow equation for viscous creep (Glen, 1955)).

Figure 7.8a and b show the linear and nonlinear fits for the parameters in Table

7.2. As expected, Figure 7.8b (the nonlinear fit) provides a better fit to the data

than the linear fit in Figure 7.8a. That said, Figure 7.8a provides a rather good fit

to the data, suggesting that a linear model does provide a reasonable estimation for

the behaviour of the ice for the shorter time lengths. This would suggest that the

ramp loading series, often lasting less than a second to complete, should be reasonably

simulated by the linear model.

For longer times, and higher stresses, the nonlinearity of the ice could become an

issue. Creep in ice is made up of the primary and secondary creep terms that need to

be considered.
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(a)

(b)

Figure 7.8: Linear and nonlinear parameter optimization fits of LeClair et al. (1999)
using equations 7.5 and 7.4.
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7.2.1 Primary Creep

Primary creep in isotropic, polycrystaline ice is defined in (Sinha, 1983) as

εd = c1

(
d1

d

)( σ
E

)p (
1− e−(at)n

)
(7.6)

considering the last term in equation 7.6

ε {t} = 1− e−(at)n (7.7)

and making the substitution x = βtn, where β = an, gives

ε {x} = 1− e−x (7.8)

The Taylor series expansion around x = x0 is

ε {x} ≈ε {x0}+ ε′ {x0} (x− x0) + ε′′ {x0}
(x− x0)2

2
+ ε′′′ {x0}

(x− x0)3

6
+ ...

ε {x} ≈ε {x0}+ ε′ {x0} (x− x0) +O{(x− x0)2}
(7.9)

for early time steps, we can let x0 ≈ 0 since t ≈ 0 giving the Maclaurin series

ε {x} ≈ ε {0}+ ε′ {0} (x) (7.10)

Using

ε′ {x} = e−x (7.11)
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gives

ε {x} =(1− e−x) + e−x(x)

ε {x} =1− e−x(1− x)

ε {x} ≈1− (1)(1− x)

ε {x} ≈x

and converting back to t

ε {t} ≈ βtn (7.12)

as long as βtn remains relatively small.

Equation 7.12 suggests that equation 7.6 can be approximated by

εd = Atn (7.13)

where

A = c1

(
d1

d

)( σ
E

)p
β = c1

(
d1

d

)
E−san (7.14)

Equation 7.13 is of the form by Andrade (1910), which is known to be equiva-

lent (for time frames up to a decade) to the broad-spectrum approach developed in

Schapery (1962). In short, the broad-spectrum approach involves approximating the

delayed elastic creep by a series of linear Kelvin-Voigt units in a generalized Burgers

model of a viscoelastic material.

This suggests that the nonlinearity in the primary creep can be approximated by

a linear model, leaving only the viscous creep to be a potential issue in terms of using

a linear model to predict ice behaviour.
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Symbol Parameter Value
E Young’s Modulus 9.5 GPa
c1 Primary Creep Constant 9
d1 Reference Grain Diameter 1 mm
d Grain Diameter 5 mm
p Primary Creep Nonlinearity 1
q Secondary Creep Nonlinearity 3
n Primary Creep Exponent 0.34
a Primary creep Coefficient 1.76 × 10−7s−1

s1 Reference Stress 1 MPa

Table 7.3: Parameter values used to generate creep values from equations 7.6 and
7.15.

7.2.2 Secondary Creep

The secondary creep from Sinha (1983) is defined as

εν = c2

(
σ

σ1

)q
t (7.15)

where c2 is a constant and σ1 is a reference stress.

Unlike the primary creep, there is no broad-spectrum approach that would allow

a linearization of the secondary creep. Following the normalized compliance approach

of Sinha (1978), define normalized compliance as Eεt/σ. From this analysis, one can

determine a length of time in which the nonlinear effects can be neglected and a linear

model provides an acceptable approximation to the ice behaviour.

For the experiments performed in Sinha (1978) the total strain on the ice is given

by

εt =
σ

E
+ c1

(
d1

d

)( σ
E

)p (
1− e−(at)n

)
+ c2

(
σ

σ1

)q
t (7.16)

using the parameters defined in Table 7.3.

The cracks in the beam are under tensile stress and should undergo tensile fracture

in the range of 0.7–3.1 MPa for temperatures of -10◦C —20◦C (Petrovic, 2003). To
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Figure 7.9: Normalized creep for experiments performed by Sinha (1978) presented
in Figure 7.3.

test how the nonlinearity affects the ice behaviour, stresses of 0.1, 1.0, and 2.0 MPa

were used to calculate three normalized creep compliance curves.

Normalizing the strain in equation 7.16 as E(εt/σ) gives the red, green, and blue

curves in Figure 7.9 for the three different stress levels chosen. Using the linear model

fit shown in Figure 7.3, and normalizing by the elastic term, gives the black curve

shown in Figure 7.9.

Figure 7.9 shows that the linear fit, using the equation and parameters from Figure

7.3 (noting that C0 = 1/E), underestimates the normalized creep curves for longer

time periods (comparing the black curve to the green curve for same stress). The

linear model manages to give reasonable results for times upto 20–30 seconds, but is

quickly deviating from the 2 MPa curve. This would suggest that the model should

provide reasonable results for the ramp series experiments, as many of them were

much shorter than a second in duration, but may have issues fitting the constant load

series as these experiments lasted several minutes to almost an hour.

A similar analysis was also performed on the experiments of Brill and Camp (1961),
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Figure 7.10: Nonlinear parameter optimization fit of the creep curve from Brill and
Camp (1961).

as the ice used was polycrystalline like the ice used in the beam bending experiments.

Figure 7.10 shows a nonlinear fit of the data using equation 7.4 and the values listed

in Figure 7.10.

Normalizing the creep from equation 7.4 and equation 7.5 (using the values from

Figure 7.4), generates the normalized compliance curves in Figure 7.11. The linear

model curve fairs better in this series than it does in Figure 7.9, suggesting that the

linear model may even be good for upto 100 seconds. While better than the results

of Figure 7.9, these results still suggest that the ramp series should be approximated

well by the model, but the constant load series would become less accurate for the

longer tests.
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Figure 7.11: Normalized creep curves for the experiments of Brill and Camp (1961).

Dimension Symbol Value
Bottom Roller Separation S2 285.75 mm

Top Roller Separation S1 100.0 mm
Beam Thickness h 40.0 m

Beam Depth d 60.0 mm
Initial Crack Length a0 10.0 mm

Table 7.4: Geometric dimensions of the ice beam for the ramp series.

Dimension Symbol Value
Bottom Roller Separation S2 150.0 mm

Top Roller Separation S1 50.0 mm
Beam Thickness h 20.0 m

Beam Depth d 30.0 mm
Initial Crack Length a0 5.0 mm

Table 7.5: Geometric dimensions of the ice beam for the constant load series.
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Parameter Value
C0 1.57x10−10 Pa−1

C1 1.8x10−10 Pa−1s−0.47

n 0.470
σm 318 MPa
ΓG 1.60 J/m2

Table 7.6: Rheological Parameters from uniaxial fit to (Brill and Camp, 1961).

7.3 Beam Geometry

Tables 7.4 and 7.5 list the beam geometry for the constant ramp and constant load

series. The name of the variables is adapted from the beam bending schematic in

Figure 6.8.

7.4 Model Fits Using Brill and Camp Parameters

The goal of this chapter is to show how well the model can match the data collected

from the two 4-point bending series experiments discussed in Chapter 5. To begin,

consider the uniaxial model fits of the creep tests performed by Brill and Camp

(1961). This parameter set was chosen because the ice used in Brill and Camp (1961)

was polycrystalline ice, with grain size of 1–2mm, and tested at -5◦C. This is rather

similar to ice used in the current experiment, which was polycrystalline, 2–3.35 mm

grain diameter, and tested at -10◦C.

The creep parameters in Table 7.6 are taken from Figure 7.4 from Section 7.1.1.

σm and ΓG from Table 7.6 were arbitrarily chosen as reasonable values of these two

parameters and used to fit the experimental data from the two bending series.

Figures 7.12 and 7.13 show the numerical results of the model simulations of

the constant ramping experiments and the constant applied load bending tests from

Chapter 5. From these two figures, the parameters from Table 7.6 provide reasonable
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(a)

(b)

Figure 7.12: Model Results of 4-Point bending under constant ramping using param-
eters from Table 7.6.
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(a)

(b)

Figure 7.13: Model Results of 4-Point bending under constant applied load using
parameters from Table 7.6.
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Parameter Value
C0 1.20x10−10 Pa−1

C1 1.44x10−10 Pa−1s−0.3134

n 0.313
σm 318 MPa
ΓG 1.61 J/m2

Table 7.7: Rheological ice model parameters from experimental fitting.

agreement to the data collected. The parameters used slightly underestimates the

strength of the ice in Figure 7.12 for the ramp loading series, and overestimates the

strength of the ice (overestimates the time to failure) from the constant applied load

series.

Given that the ice and temperature considered in Brill and Camp (1961) is different

from that used in Chapter 5, these results are quite promising. Considering the

differences, it is reasonable to consider varying the parameters from Table 7.6. The

next few sections will explore the effects of changing the parameters of Table 7.6.

7.5 Independent Model Fits

In this section, the model is fitted to both of the beam series independently of each

other. In other words, even though the ice is the same in both series (i.e., should have

the same rheological parameters), no such restriction has been used.

Given that this is an initial run of the model, and there is limited experimental

results, the first step is to see how well the model can predict the behaviour of the

ice. The results presented here are the best fit the model can give for both series.
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Figure 7.14: Rate dependence of I1 with loading rate, due to the change in the
distribution of the process zone stress field under different loading rates.

7.5.1 Rate-Dependent Fracture Results

The model parameters used in this study are listed in Table 7.7. These parameters for

ice were determined from a nonlinear optimization of the data to provide the best fits

(in a least squares sense) for both of the experimental programs done using 4-point

beam bending in ice. Following equation 6.182, and discussed in Sections 6.4.3 and

6.6.4, I1 was set to be loading rate dependent and is given by

I1 = min

{
max

{
Ḟ − 10

N

s
, 0

}−1.25

, 2

}
(7.17)

and would have a value of 2 when held under constant load, as shown in Figure 7.14.

The model results for the ramp to failure of the first beam series is plotted in Figure

7.15. The figure shows that the model is able to capture the decreasing power-law of

the force versus loading rate.
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(a)

(b)

Figure 7.15: Results of model simulation for the ramp up to failure experiments. a)
shows the data plot on a normal scale and b) shows the data plotted in the log-log
domain.
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Parameter Value
C0 1.52x10−10 Pa−1

C1 1.71x10−10 Pa−1s−0.3134

n 0.514
σm 349 MPa
ΓG 1.53 J/m2

Table 7.8: Rheological ice model parameters from experimental fitting.

7.5.2 Time to Failure Predictions

For the second series, the optimized model parameters are listed in Table 7.8. The

results of the model simulation are plotted in Figure 7.16.

As before, the model provides excellent fits to the data, with only slightly longer

times recorded for the higher loads (the model curve is slightly above the data at

lower times). The model is able to replicate the decreasing power-law relationship

between applied load and time to failure.

7.5.3 Discussion

The goal of this section was to illustrate the model’s ability to fit the experimental

data. Given the limited data available, the previous fits were individually optimized

for each series independent of each other, even though they used ice grown using the

same method. Given the natural variability in ice strength (as seen by the scatter

in the data), this exercise demonstrated that the model is capable of fitting the data

and exhibits behaviour that matches the behaviour of the ice samples.

The two optimization fits use strikingly different values for the parameters. Given

the limited data (in particular, the time to failure data for the constant applied loads),

this is not unexpected due to the scatter in ice strength. With more data, it is likely

that the two optimizations would agree more as the scatter in ice strength can be

averaged out more.
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(a)

(b)

Figure 7.16: Model results for time to failure for the small ice beams used in the
second series. a) shows the results the results using normal space, whereas b) shows
the results in log-log space.
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Parameter Value
C0 1.15x10−10 Pa−1

C1 2.71x10−10Pa−1s−0.3

n 0.30
σm 318 MPa
ΓG 1.60 J/m2

Table 7.9: Rheological ice model parameters from experimental fitting of both beam
series.

7.6 Combined Model Fits

Since the ice for both series was grown under similarly controlled conditions, it is

reasonable to assume that they should have the same (if not similar) rheological

parameters. In this section, the model was fitted to provide a set of parameters

that would result in reasonable fits to both beam bending series. The rheological

parameters used in the following sections are given in Table 7.9

7.6.1 Rate-Dependent Fracture Results

7.6.1.1 Baseline Model Results

With the new ice parameter set (I1 is still defined by equation 7.17), the model results

(shown in Figure 7.17) provide an excellent fit with the experimental data.

7.6.1.2 Sensitivity Analysis of Model to Rheological Parameters

Given the uncertainty and variance that the properties of ice exhibit, a sensitivity

analysis of the model to the ice parameters has been conducted. For each parameter,

five other values were tested along with the baseline result.

For each run, a single parameter was changed from the base value to one of the

values in Table 7.10. For example, the Medium run in Figure 7.18a replaces the value

of C0 from 1.154x10−10 to 1.3001x10−10.
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(a)

(b)

Figure 7.17: Results of model simulation for the ramp up to failure experiments. a)
shows the data plot on a normal scale and b) shows the data plotted in the log-log
domain. The rheological ice parameters used are in Table 7.9.
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(a)

(b)

Figure 7.18
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(c)

(d)

Figure 7.18
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Sensitivity Values For Ramp Loading
Variable Base Low Med-Low Medium Med-High High
C0x10−10 1.15 1.06 1.18 1.30 1.42 1.54
C1x10−10 2.71 0.271 1.35 5.42 13.5 27.1

n 0.300 0.150 0.238 0.325 0.413 0.500
σm 318 100 225 350 475 600
ΓG 1.60 1.00 1.25 1.50 1.75 2.00

Table 7.10: Values of the parameters used in the sensitivity analysis for the ramp
loading.

(e)

Figure 7.18: Sensitivity analysis of rheological ice parameters for ramp up to failure
simulations.
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Figure 7.18a shows the sensitivity results of the elastic compliance from 1.056x10−10

to 1.54x10−10 (E = 6.47–9.47 GPa). Quite surprisingly, the model results are rather

insensitive to the value of elastic compliance for the ramp loading experiments. One

effect that the elastic compliance has is to change the peak load seen in the slower

loading tests (lower compliance increases the peak ice strength).

Given that the C1 parameter is less known than C0 (which could be constrained

by reasonable values of elastic modulus), the C1 parameter was allowed to vary by

an order of magnitude in either direction. Figure 7.18b shows that the model is very

sensitive to C1 over this test range. Lower values of C1 increase the strength of the

ice (as expected).

The last creep parameter, n, was tested over a range of 0.15–0.5, which would

cover any expected value of n. Figure 7.18c shows that the model is rather insensitive

to n for slower rates, but becomes rather sensitive for the faster loading rates. Higher

values of n decrease the strength of the ice as it causes an increase in the ice’s ability

to undergo creep.

Aside the creep parameters, the model also considers the maximum stress in the

process zone, which would be near the required stress to break the bonds in the lattice.

The value of σm was allowed to vary from 100–600 MPa, consistent with an expected

fracture stress of the bonds. Figure 7.18d shows that the model is rather sensitive to

the value of σm, with increasing σm leading to stronger ice, as expected.

Lastly, Figure 7.18e shows the model’s sensitivity to the fracture energy, ΓG. Sim-

ilar to σm, increasing ΓG increases the strength of the ice as this parameter is directly

related to the strength of the ice.
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Sensitivity Values For Constant Applied Loading
Variable Base Low Med-Low Medium Med-High High
C0x10−10 1.15 1.05 1.18 1.30 1.42 1.54
C1x10−10 2.71 1.35 2.03 3.39 4.06 4.74

n 0.300 0.150 0.238 0.325 0.413 0.500
σm 318 100 225 350 475 600
ΓG 1.60 1.00 1.25 1.50 1.75 2.00

Table 7.11: Values of the parameters used in the sensitivity analysis for the constant
applied load tests.

7.6.2 Time to Failure Predictions

7.6.2.1 Baseline Model Results

Figure 7.19 shows the model results for the parameters from Table 7.9. This is clearly

not a plot that best fits the experimental data, as was done in Section 7.5.2.

While not a best fit, the model still behaves similarly to the data. Given the

variability of ice fracture strength and the limited data available, it is not unreasonable

to assume that a there would be many data points that could exist on the plot between

the model curve and the available data points. This can be seen in the amount of

scatter in Figure 5.7 from the experiments that never broke (those plotted at the one

hour mark).

Clearly, more data is needed to truly determine how well the model predicts the

time to failure. However, the results are promising in that more data would likely

show that the model prediction here is closer than it seems and that a better fit could

be obtained with more data.

7.6.2.2 Sensitivity Analysis

Similar to the ramp loading case, a sensitivity analysis was performed for the constant

applied load tests. The values of the parameters are listed in Table 7.11.

Figure 7.20a shows that the time to failure series is much more sensitive to the
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(a)

(b)

Figure 7.19: Model Results for time to failure for the small ice beams used in the
second series. a) shows the results the results using normal space, whereas b) shows
the results in log-log space. These results use the parameter set from Table 7.9.
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(a)

(b)

Figure 7.20
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(c)

(d)

Figure 7.20
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(e)

Figure 7.20: Sensitivity analysis of rheological ice parameters for time to failure sim-
ulations.

value of elastic compliance than the ramp series was. As expected, increasing C0

causes the ice to be weaker, leading to shorter time to failure under equal loading (the

model curve is lowered).

The time to failure series is highly sensitive to the value of C1. For the ramp series,

the value of C1 as varied from 0.1–10 times the base value, but this was changed to

0.5–1.75 for the time to failure series due to the high sensitivity. For the values tested

in this range, Figure 7.20b shows that the model is still rather sensitive to C1, with

increased compliance leading to weaker ice, just like C0.

Figure 7.20c shows the model sensitivity to the creep exponent, n. Quite counter-

intuitively, the model shows that the ice is stronger with increasing n. The reason

for this can be seen in equation 6.161. Equation 6.161 shows that the crack growth

rate has an exponent of 1/n around the terms in parentheses (i.e., it is the n-th root).

Larger values of n actually suppress crack growth. Unlike the ramp loading tests,
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where an excessive force was used to break the ice samples, the constant load tests

were designed so that the increasing crack size was the reason for failure instead of

the applied load. Since n tends to suppress crack growth, this leads to longer times

to failure as n is increased.

Figures 7.20d and e show the sensitivity of the model to the process zone param-

eters, σm and ΓG. The model is rather sensitive to both of these parameters, with

more sensitivity to ΓG. Increasing either leads to stronger ice that requires longer

times to fail under similar constant loads, which is an expected result.

7.6.3 Discussion and Summary

The results of combined model fits are shown in figures 7.17 and 7.19. For a single

set of parameters, the model was able to provide reasonable fits to both experimental

series. The combined parameters underestimate the strength of the ice of the ramp

loading series in comparison to the optimized values, and overestimates the strength

of the ice of the constant load series in comparison to the optimized parameter set.

As suggested in Section 7.6.2.1, more data could be collected for the constant load

series. It is not unreasonable to suggest that new data would likely include stronger

ice samples. In other words, it is possible that new data would suggest that the ice

is stronger than the constant load series data would indicate from the limited data

available. Should this be the case, then a new parameter set could be fitted that

would match this stronger ice as well as provide a better fit for the ramp loading

series.

Sensitivity analysis of the model suggests that the model is highly sensitive to all

the parameters within a reasonable range of values for each. The model results were

not sensitive to the elastic compliance for the ramp loading series, but were for the

constant load series. In both cases, the elastic compliance did affect the peak strength
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of the ice.

The model was really sensitive to the primary creep compliance coefficient, C1,

with increasing values leading to weaker ice. Given that the primary creep of the

ice is directly proportional to this value, it is no surprise that this term is rather

important. The constant load series was more sensitive to the value of C1 than the

ramp load series. This can be explained by the constant load series tests requiring

longer times, allowing for more creep to occur.

The model results behave striking different under ramp loading versus constant

loading for changes in the primary creep exponent, n. Under ramp loading, increases

in the value of n lead to weaker ice, whereas increasing n leads to stronger ice under

constant loading. This has to do with the dual nature of n. On one hand, increasing

n would lead to increased creep compliance, which would result in weaker ice (similar

to how larger C1 leads to weaker ice). On the other hand, as mentioned in Section

7.6.2.1, n also acts to suppress the growth of cracks. Under ramp loading, the ever-

increasing applied load is what causes the ice to fail and there is little stable crack

growth before catastrophic failure, suggesting that n mainly acts to cause weaker ice

due to increased compliance. For the constant load series, the main reason the ice fails

is due to the stable growth of the crack that leads to catastrophic failure. Since the

constant load series relies on crack growth, n’s effect of suppressing the crack growth

dominates over its weakening of the ice due to increased compliance.

The last two parameters, σm (maximum process zone stress) and ΓG (fracture

energy), detail the processes occurring in the process zone ahead of the apparent

crack tip. These two parameters are related to the discrete fracture processes (such

as bond breaking or dislocation glide) occurring in the zone. As such, increases in

these values lead to increased ice strength for both series, as expected.

The sensitivity analysis also alludes to reasons that ice exhibits so much scatter
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in its strength. For example, ice is known to exhibit Young’s modulus values from

5 – 11 GPA which the sensitivity analysis shows can have a significant impact on

the strength of ice. This is likewise true for other parameters as well. Considering

the works of Sinha (Sinha, 1978, 1979, 1983, 1988), the primary creep component is

shown to be related to the size of the grains in the ice. While all attempts to create

uniform grain sizes were taken into consideration, the thin sections of ice samples

shows that there is some variance in the sizes (and orientations) that will have a clear

effect on the primary creep coefficient. These will also likely have an effect on other

parameters as well. Given the importance of how the local stress (σm) affects the

results, depending on the exact location of the crack in terms of other defects (like

dislocations, grain boundaries, triple points, etc...) will have a significant effect on

the local stress value, which will affect the strength of ice. While not explored in

this project, the parameters will also be temperature dependent, which will affect the

strength of ice.

Both the model fits and the sensitivity analysis suggests that the model can ade-

quately describe the fracture properties of the ice samples under 4-point bending for

constant applied loads and constant ramp loading. Sensitivity analysis shows that the

model parameters behave in a manner that is consistent with the underlying physics

that they describe.

The model has an advantage over a fully-developed finite analysis in that is fast

to run, requiring 2–3 minutes of runtime for a single run using 6 threads in parallel

(using the OpenMP library with Fortran) on a personally-owned laptop running a

quad-core 2.3 GHz processor and 8 Gb of ram. The main drawback of the model is

that it is designed for specific geometries and would not work for generalized loading

scenarios that an finite element analysis would be required for (this could be a future

implementation, as this model was designed to work for the experiments performed
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Parameter Value
C0 1.224x10−10 Pa−1

C1 7.929x10−15 Pa−1.499s−0.20

n 0.351
σm 95.1 MPa
ΓG 2.173 J/m2

Table 7.12: Rheological ice model parameters from experimental fitting CT-specimens
from Liu and Miller (1979).

in-house).

7.7 Model Fits of Liu and Miller (1979)

So far, the model has been used to fit the data from two 4-point bending series

performed in-house. It is also reasonable to assume the model would work for a central

crack in thin plates, as it is developed from Schapery (1975a,b,c) who developed his

model for that case.

In this section, the model will be shown to be flexible enough to work for other

geometries with a few modifications to the model described in Chaper 6. To show

how this can be done, consider the specimens tested in Liu and Miller (1979). As

discussed in Section 3.1.7, Liu and Miller (1979) performed ramp loading tests on

CT-specimens, as shown in Figure 7.21a.

Table 7.12 and Figure 7.21b show the model fit of the experimental data from Liu

and Miller (1979). The data from Liu and Miller (1979) list the results in terms of

fracture toughness and rate of fracture toughness. It is assumed that these are the
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(a)

(b)

Figure 7.21: Comparison of results from Liu and Miller (1979) (dots) to viscoelastic
model with parameters used in Table 7.12
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apparent fracture toughness calculated (i.e., assuming no crack growth) using

KI =
Y {α}F
B
√
h

K̇I =
Y
√
aḞ

BL

Y = 29.6− 185.5α + 655.7α2 − 1017α3 + 638.9α4

(7.18)

where B is the thickness of the CT-specimen and h is its length (see figure 7.21a).

The force and loading rates were derived from equation 7.18 using the KI and K̇I

from Liu and Miller (1979).

The model for the beam series was modified to use the 1st and 3rd of equation 7.18

for the stress intensity and geometric shape functions. The model parameters were

fitted to match the force and loading rate derived from the data. The results of this

fit can be seen in Figure 7.21b, with the parameter values defined in Table 7.12.

Much like the ramp to failure beam bending tests, the data for the ramp to failure

CT-specimens display a decreasing power-law type relationship, which is matched by

the model. It is expected that the parameters of the ice from Liu and Miller (1979)

would be different due to

• The type of ice used – in-house experiments used isotropic ice with grain size of

2 3.35 mm while Liu and Miller (1979) grew columnar ice.

• The orientation of the c-axis. The beams would have a random distribution

of c-axis orientations, while the CT-specimens had c-axis perpendicular to the

long axis of the grains.

• The bubble density of the ice samples.

• Temperature – All the in-house experiments Were done at -10◦C, whereas the

tests from Liu and Miller (1979) varied from -1◦C to -46◦C.
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(a)

(b)

Figure 7.22: Static loading finite element analysis of a) In-house 4-point beam bending
and b) compact tension specimen of Liu and Miller (1979).
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Aside from the different ice types, different failure loads in the ice may be due

to the geometry of the specimens. Finite element analysis of the two geometries was

performed. For the beam in Figure 7.22a, the bottom rollers remained stationary and

the top rollers were displaced 2 mm into the ice. For the compact tension specimen

in Figure 7.22b, one grip hole remained stationary while the other was displaced

vertically by 2 mm.

The analysis showed that for these same displacements (as the respective authors

would have measured), the stresses near the crack in the compact specimen were

roughly four times greater than those of the beam. This would suggest that the

cracks in Liu and Miller (1979) were subject to greater stresses and failed under lower

loads than the ice beams from Chapter 5.

With a few quick changes to the definitions of stress intensity and the geometric

shape function, the model was quickly converted from a 4-point bending simulation

to a CT-specimen simulation. While not done here, it is easy to see how the model

can be quickly changed to work with a variety of specimen types.

7.8 Time to Failure Approximation

As discussed in Section 6.2.4.5, equation 6.117 is an approximation of the time to

failure for a crack in a thin plate. For the case of thin plate, equation 6.117 could be

used to approximate the time to failure without the need of a fully developed model

(though this equation would ignore the effects of the initial growth of the process zone

as it only considers the continuous crack growth stage).

More generally, it has been suggested in Jordaan and Xiao (1992), with a physical

basis discussed in Schapery (1984b) and Schapery (1991), that the crack growth rate
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for any crack can be represented by

ȧ = c1J
k (7.19)

where J is the energy release rate and c1 and k are constants.

Using the elastic approximation

ȧ = c1G
k

ȧ = c1

(
(1− ν2)K2

E

)k (7.20)

where G is the elastic energy release rate for plain strain from equation 3.24.

Substituting equation 6.164 into equation 7.20 gives

ȧ = c1c2

(
Y {α}

√
α

(1− α)
3
2

)2k

(7.21)

with α = a/h and

c2 = (1− ν2)E−k
(

3F (S2 − S1)

2dh
3
2

)2k

(7.22)

where the beam geometry terms are as shown in Figure 6.8 and are listed in Table

7.5 for the constant load series.

Rearranging equation 7.21 leads to

∫ a

a0

(
Y {α}

√
α

(1− α)
3
2

)−2k

da =

∫ t

0

c1c2 dt (7.23)

Equation 7.23 can be solved numerically for any given values of c1, k, and the

applied load (F , which will affect c2). Numerical optimization of equation 7.23 results
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Figure 7.23: Optimized fit of constant load series using the crack growth approxima-
tion from Jordaan and Xiao (1992).

in

c1 = 3.0× 10−18

k = 29

(7.24)

and results in the fit shown in Figure 7.23. Figure 7.23 shows that this empirical

approximation behaves similarly to the linear viscoelastic model and displays the

decreasing power-law curve fit to the data.
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Chapter 8

Conclusion

8.1 Summary

8.1.1 A Brief overview

Before going into details of the conclusions, the following list will highlight some of

the main features and results of the model and experiments performed in this project.

The indentation experimental program:

• Showed that with a proper scaling of velocity for different sized indentors would

result in similar beviour in ice.

• Proper scaling of the velocity aims to keep the strains and strain rates the same.

This can be used to scale experiments from laboratory to larger scales.

• Ice exhibits damage-enhanced creep under slow loading.

• Medium rate tests provided a transition towards brittle behaviour. These ex-

periments also exhibited delayed failure.
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• Fast loading experiments exhibited more brittle-like behaviour, resulting in

many small, localized spalling events.

• a decreasing power-law between pressure and area was observed (known as the

scale effect), that was similar to results from field experiments.

The ramp loading 4-point bending experiments:

• Allowed for simplified analysis of a single crack.

• Showed a clear decreasing power-law relationship between ice strength (fracture

toughness) and increasing loading rate.

• Alluded to that ice was a strongly time-dependent material with ice strength

ranging from about 450 N down to about 150 N.

The constant load 4-point bending experiments:

• Used a gravity-based system to provide a constant load for an extended period

of time.

• Ice was shown to undergo stable crack growth, leading to delayed failure in ice.

• The time to failure increased exponentially as the the applied load was lowered.

Sensitivity analysis of both 4-point bending series:

• showed that the strength of ice was strongly related to all of the viscoelastic

parameters.

• This strong dependence on the parameters suggests that the scatter in ice

strength is related to the local conditions near a crack tip.
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The viscoelastic fracture model:

• Expanded on the eariler model of Schapery (1975a,b,c).

• Schapery’s model was designed for a central crack in a thin, infinite plate under

biaxial stress (though uniaxial would work for a slight change in values).

• This project expanded Schapery’s theory to new geometries, particularly 4-point

bending and compact tension specimens.

• Schapery’s theory was also expanded to include ramp up to failure loading.

• Validation of the model assumptions showed the assumptions were reasonable

for the given experiments.

• While not a generalized model that can be used in finite element analysis, the

model will work for geometries that have a defined fracture toughness equation.

• The model was shown to give reasonable results in comparison to the experi-

mental data for the two 4-point bending series in predicting ice strength and

time to failure.

• The model also provided reasonable fits to the compact tension specimen data

from Liu and Miller (1979).

8.1.2 Time-Dependent Properties of Ice

Chapters 4 and 5 summarize the results of the experimental programs completed dur-

ing this project. The first of these series involved cylindrical ice samples surrounded

by steel moulds under indentation by spherical-capped indentors.

When considering the velocity-to-indentor-size ratio (the “normalized velocity”),

the ice samples displayed markedly different behaviours under different loading rates.
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For slower normalized velocities, the ice behaved in a creep-like behaviour and ice was

ejected from the contact area as a fine particulate (much like toothpaste), in what is

known as extrusion. At the fastest normalized velocities, the ice would break off in

discrete, localized pieces referred to as spalls. For medium-rate normalized velocities,

the behaviour of the ice was a mix of the previous two cases, with spalling events

being less frequent but with larger pieces than under fast loading. The medium-rate

tests also exhibited delayed failure as a crack grew stably under load, until reaching

a critical length.

To study the process of ice fracture, ice beams with a pre-notched crack were

subjected to 4-point bending. The first series of experiments placed the ice under

a ramp up to failure at various loading rates. This series showed that the failure

load of the ice was time-dependent. Ice that was subjected to slower loading rates

were able to withstand greater loads than the ice that underwent faster loading rates.

This behaviour exhibited a decreasing power-law type curve. This behaviour was also

seen in experiments on other specimen geometries (Liu and Miller, 1979; Hamza and

Muggeridge, 1980; Urabe et al., 1980).

The constant-rate ramp up to fracture series exhibited a 3-fold increase in apparent

fracture toughness, similar to the experiments of Dempsey (1996), but for ice samples

of the same size. While the experiments (and the model) considered the loading rate

as the time-dependent aspect that affects ice properties, it is likely that the strain

rate is the fundamental factor behind the changes in the apparent fracture toughness.

This would suggest that the size effect observed in Dempsey (1996) was simply due

to the change in strain rate caused by the different sized samples. This can also be

seen in the indentor series using the “normalized velocities” for the indentor. The

use of “normalized velocities” was a means to scale the experiments such that they

have similar strain rates, leading to similar results, even though the indentor sizes
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and velocities were changing.

The second set of 4-point bending experiments placed the ice samples under a

constant load. The aim of this series was to apply a load to the ice such that stable

crack growth would occur that would lead to delayed failure. Experiments were able to

capture delayed failure in the ice samples for various loads. A plot of load versus time

to failure indicate that there is a decreasing power-law relationship between them.

The goal of the theory and model developed in this project was to provide a

physics-based explanation of the time-dependent observations from the in-house ex-

perimental program, as well as observations from other laboratory experiments and

from field data.

8.1.3 The Underlying Theory

Chapter 3 details the development of the linear elastic fracture theory that underlies

the model developed in this thesis. The theory is first developed from linear elastic

fracture mechanics discussed in Westergaard (1939), Williams (1957), and Alturi et al.

(1975). These theories, which are related, describe the elastic stress field around a

crack in an infinite plate under biaxial tension, but are effectively the same for uniaxial

tension with a change in coefficients. For an elastic crack, it would not undergo any

growth before the unstable fracture when the fracture toughness of the ice has been

met. These theories predicted an infinite stress singularity at the stress tip. The work

of (Barenblatt, 1962), introduced the idea of cohesive molecular forces that resisted

crack growth. With this additional process, (Barenblatt, 1962) was able to remove

this infinite stress singularity.

The theory of linear viscoelastic fracture mechanics were expanded from the lin-

ear elastic theory in Chapter 6. The two theories are linked through the correspon-

dence principle discussed in Graham (1968) and Schapery (1975a,b,c). The works of
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Schapery (1975a,b,c) detail the process by which a crack can grow stably in a linear

viscoelastic material for stress fields less than what would cause unstable fracture, as

in the elastic case. By use of the correspondence principle, Schapery develops an effec-

tive compliance that replaces the elastic compliance in decribing material behaviour.

This effective compliance can be used to calculate the stress and displacement fields

of the viscoelastic material at various times from the elastic stress field solution under

the same conditions.

As with the previous authors, Schapery (1975a,b,c) considers the case of a thin

plate under biaxial tension of a constant applied load. From his theory, he was able to

predict the time to failure for a thin plate specimen under load. The theory developed

in this thesis was derived to expand on the theory of Schapery (1975a,b,c). The theory

was expanded to include predictions for other geometries. In particular, the theory

was expanded to predict the time to failure for ice beams held under constant load in

a 4-point bending apparatus. The new theory also considered 4-point bending beams

and CT specimens (Liu and Miller, 1979) under a constant ramping load.

These two new additions to the linear viscoelastic theory greatly expand the ap-

plicability of Schapery’s theory to new loading conditions and to new specimens. This

new theory was the basis for the model that was developed and tested with 4-point

bending experiments completed in-house, as well as comparisons to the CT-specimen

data from Liu and Miller (1979).

8.1.4 The Viscoelastic Fracture Model

The model was built (and expanded) upon the linear viscoelastic model developed

in Schapery (1975a,b,c). The model uses an Explicit Euler time-stepping to simulate

the growth of a crack in an ice beam under 4-point bending, but other geometries can

be incorporated.
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To condition the model, two sets of 4-point beam bending experiments were done.

They used ice samples grown in a similar fashion and were pre-notched with a crack

1/4 of the thickness of the beam. The first series provided data on the failure strength

of ice under various applied loading rates, that showed a decreasing power-law in ice

strength with increasing loading rate. The second series of beam bending tests focused

on capturing delayed failure in ice under a constant applied load. The second series

exhibited a decreasing power-law curve between the applied load and time to failure

when the time to failure is plotted on the x-axis (conversely one can say that the

time to failure increased exponentially with decreased applied load). Having these

two data sets, the model was able to provide an excellent agreement to both data sets

using a single set of parameters that define the properties of the ice used.

The model used several assumptions that included a small process zone and that a

nonlinear viscoelastic rheological ice model could be converted to a linear viscoelastic

ice model. The process zone was indeed found to be small for reasonable estimation

of the stress field inside the process zone. While somewhat limited in the types of

loading used, the linear viscoelastic compliance was found to provide reasonable fits

to the nonlinear viscoelastic compliance for the types of loading used in this project.

The model was able to provide excellent agreement to the experiments performed

in-house, as well as the data Liu and Miller (1979). The results can be found in

Chapter 7. This model was able to predict the decreasing power-law relationship

between the failure load and the loading rate for both the 4-point bending and CT-

specimens. The model also predicted the relationship between the time to failure

for the beam bending specimens under various constant load (exhibiting a decreasing

power-law when plotted as force vs time to failure).

One of the outcomes of this new model is to provide insights into the rheological

and fracture properties of ice as a viscoelastic material. These insights can aid in
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the design process of ships and other structures that are to be deployed in ice-prone

regions, such as the Canadian Arctic. With improved (and more efficient) designs,

there could be increased activity in the Canadian Arctic that could provide better

mineral extraction, transportation routes, and a better local economy for the people

who call the Arctic home.

8.2 Practical Implications

The purpose of this model is to provide insights into the fracture properties of ice. Due

to the need to develop the Canadian Arctic, for both the residents and for mineral

exploration, ice is going to play a major role in how engineers and designers build

infrastructure and vessels to withstand the Arctic environment.

Fracture mechanics plays an important role during interactions with ice, as it limits

the strength of the ice. Cracks, grains, and other flaws in the ice drastically weaken it

from its theoretical strength (which is true for every solid material, in general). These

flaws greatly increase the local stresses, such as those near the tip of a crack, so that

the local stresses are at the theoretical limit, but the applied loads are much less. For

example, the theoretical strength of ice is likely on the order of 100 MPa (or more),

but tensile strength of ice is on the order of 1 MPa (Petrovic, 2003).

Many of the applications of ice fracture mechanics, and the accompanying vis-

coelastic theory, will be related to building infrastructure (such as wharves) that can

withstand the interactions with ice. Similar to infrastructure would be any ocean-

bound structures like drilling platforms that operate in areas prone to sea ice. In

both cases, the structures have to be built to withstand the interaction. Additionally,

engineers and designers would like to build these objects as efficiently as possible to

minimize the required materials and cost of maintenance, without compromising the
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integrity of the structure. Improved models of ice fracture mechanics (and viscoelastic

theory) will aid in the design process by providing better estimations on the strength

of ice under various conditions.

Secondly is the use of ships in the Arctic. Development of the local infrastructure

will require ships to carry resources to and from the Arctic, as well as the necessities

for the local populace. The development of Arctic infrastructure would also allow for

the use of the Northwest Passage through the Canadian Arctic, allowing for better and

quicker trade with Asian Markets, as well has developing northern tourist attractions.

Similar to stationary structures, ships will have to interact with the ice in the case

that they are ice breakers meant to collide with ice, or in the case that there is no way

to avoid the ice (such as ice floes than span the ocean). Depending on the type and

thickness of the ice, the ships may be able to break through with ease, provided that

they are durable enough to withstand the impact. Alternatively, a common technique

for breaking stronger ice is to ram up onto the ice. Over time, the weight of the ship

will break the ice due to the stable crack growth predicted by viscoelastic fracture

mechanics.

While often a burden to overcome, the ice present in the Arctic can also be ex-

ploited to aid in exploration and development. As explored in Masterson et al. (1980)

and Ekelund and Masterson (1980), ice can be used as landing strips for aircraft and

as temporary roads/bridges for transportation. Drilling rigs can also be built on ice

islands (Masterson et al., 1980). Analysis of this is done using the theory of an elastic

plate (the ice) on an elastic foundation (the ocean). The highest stress concentration

occurs at the hole that the drilling equipment pass through. The stress concentra-

tion is estimated from the theory of Westergaard (1939). As suggested in this thesis,

the theory of linear elastic fracture mechanics, of which the work of Masterson et al.

(1980) is based upon, can be improved upon by incorporating a viscoelastic fracture
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mechanics model, such as the one developed in this thesis. Improved stress analysis

from a viscoelastic fracture model would help assess the requirements of designing an

ice platform that is both economical and safe for the lifetime of its use.

8.3 Future Work

The model presented in this project is a new application of the theory presented in

Schapery (1975a,b,c), expanded to incorporate new geometries and loading scenarios.

As such, there are many ways the model could be expanded upon.

8.3.1 New Geometries

Currently, the model is applied to 4-point beam bending as it relates to the exper-

iments performed in this project. The model was also modified for CT-specimens.

The model can be easily modified to be used for other common test specimens, such

as 3-point beam bending specimens. Performing experiments using other specimens

would provide a good test to see how the model performs under different geometries.

8.3.2 The Process Zone

The process zone is an important part of the fracture process, but little is known

about it. The theories and model presented in this project aim to minimize the need

to have detailed knowledge of the process zone. However, given the importance of

the process zone, it seems that further exploration of its inner workings could be a

worthwhile endeavour. It is hard to say much of its practical use in terms of present

models, but new insights into its workings could lead to even better models that are

less restricted by some of the assumptions about the process zone.
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8.3.3 Combining with Finite Analysis

Currently, the model is a 1-D model of the growth of a crack under plane strain (and

subject to having a small process zone). While this is useful for common geometries

like the 4-point beam bending where there are equations for the stress intensity,

many interactions with ice will have no such equations readily available. Currently,

the concepts and equations in the model are used in specialized geometries, but there

is no reason that they could not be expanded upon to be used in a more generalized

fashion as a part of a finite analysis of a complex loading scenario.

The use finite element analysis could open up a suite of new scenarios such as

multiple cracks in a specimen, such as the indentation series. The incorporation of

concepts like strain energy release rate could affect a crack’s trajectory under various

loading and confinement conditions, providing more insights to phenomena such as

wing cracks.

8.3.4 Converting to a Nonlinear Viscoelastic Fracture Model

Later works by Schapery (Schapery, 1984a, 1990) advanced into developing a nonlinear

viscoelastic model based on the (elastoplastic) J-Integral technique developed in Rice

(1968). While this new theory is more complex than the theory presented in this

project (as would be expected of a nonlinear fracture theory), many of the concepts

from the linear theory present here are present in the nonlinear theory. Some of key

equations and concepts for this theory are outlined in Section 6.3.

The creation of a nonlinear viscoelastic fracture model would likely lead to better

estimations of the fracture strength of ice and its time to failure under an applied

load. This could provide even further advancements in the design process.

Schapery’s nonlinear theory lends itself more to the development of a finite element
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approach and may address the previous issues from Section 8.3.3.

8.3.5 More Experimental Data

Due to the limited amount of data, particularly delayed failure data, the model pa-

rameters may not be as accurate as they should be. This would pose issues should

the model be used as a predictive tool. With the collection of more data, the model

can be tested for its ability to provide predictions/estimations of ice loads for new

experiments. As the model is in its initial stages, the fact that it displays the proper

behaviour for reasonable rheological ice parameters is promising, but further testing

is needed confirm the validity of the model before it can be used with confidence.
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Appendix A

CAD Specification Sheets for Dead

Weight Apparatus
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Appendix CAD Specifications

Figure A.1: Complete Assembly with component labels.
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Appendix CAD Specifications

Figure A.2: Specifications for wooden table at the base of the apparatus.
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Appendix CAD Specifications

Figure A.3: Specifications for table stiffener
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Appendix CAD Specifications

Figure A.4: Specifications for flange at the base of the pulley system.
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Appendix CAD Specifications

Figure A.5: Specifications for the bar that holds up the pulley.
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Appendix CAD Specifications

Figure A.6: Specifications for the table guide that aligns the top plate.
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Appendix CAD Specifications

Figure A.7: Specifications for the supports that hold up the lever.
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Appendix CAD Specifications

Figure A.8: Specification for the lever arm.
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Appendix CAD Specifications

Figure A.9: Specifications for the rod that the lever pivots about.
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Appendix CAD Specifications

Figure A.10: Specifications for the hollowed cylinder part of the rollers.
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Appendix CAD Specifications

Figure A.11: Specifications for the steel core of the rollers.
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Appendix CAD Specifications

Figure A.12: Specifications for the holders that connect the rollers to the table or top
plate.
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Appendix CAD Specifications

Figure A.13: Specifications for the top plate.
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Appendix CAD Specifications

Figure A.14: Specifications for the bucket portion of the hanging mass.
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Appendix CAD Specifications

Figure A.15: Specifications for the brackets that connect the bucket to the pulley (via
string).
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Appendix CAD Specifications

Figure A.16: Diagram illustrating the construction of the lever arm and its supports.
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Appendix CAD Specifications

Figure A.17: Diagram illustrating the construction of the pulley, its support, and the
stiffening flange.
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Appendix CAD Specifications

Figure A.18: Diagram illustrating the assembly of a roller from its constituent parts.
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Appendix CAD Specifications

Figure A.19: Diagram illustrating the assembly of the components that apply and
measure the load on the ice sample.
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Appendix CAD Specifications

Figure A.20: Diagram of the hanging mass assembled from the bucket and its brackets.
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