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Abstract

For ships operating in arctic and sub-arctic waters, ice load is a major threat. Due
to the uncertainties in ice conditions and varying operating situations, an accurate estima-
tion on design ice load is difficult. The objective of the present research is to investigate
the ice loads and the associated structural strength from aspects of mechanics, statistics

First, the i it ion process is i igated from the view point of

The it ion is ized by ice fracture and damage. The ice load is

highly localized within high pressure regions termed critical zones. A numerical analysis

was carried out to investigate how a crack may propagate in an ice sheet and how the ice

material is damaged during an ice-structure interaction. The analysis showed that small

shear cracks, with mixed modes, are more likely the candidates for the fracture spalls and
the formation of critical zones.

Critical zones vary in space and time. These critical zones are characterized using
parameters such as spatial density, zonal area, and the zonal force. These parameters in
the model were calibrated using ship trial data of CCGS Louis St. Laurent. The ice loads
on a design area were modelled as a random number of critical zones, each with a random
force. Based on this model and extreme value theory, a design curve was proposed for the
estimation of extreme ice loads.

Third, the strength of the structure was investigated. A long plate, loaded by uni-
form pressure was proposed as the design model for the plating. Due to the randomness
of ice load, there are uncertainties associated with the design model. To understand this
uncertainty, various load scenarios were investigated using the finite element method. The
results show that the plate fails at a dominant section, which fails in 2 way similar to an
“equivalent long plate”. Factors affecting the failure of the panel are lateral support and

m



were derived based on finite element modelling

A simplified model was proposed to investigate the failure of the “equivalent long
plate”. This model was used, together with factors of lateral support, location and inter-
actions between critical zones from empirical formula, in Monte Carlo simulation scheme
to model the uncertainty of the design model of the structure. The simulated results of the

factor were i by a lognormal di

Finally, the results from the analysis on the ice loads and the structural resistance
were used in discussion of the design principles. Two design methods, i.e., reliability de-
sign and code design methods, were discussed. Principles in selecting design load and re-
sistance were discussed. These principles were applied in an example design of an off-
shore oil tanker. Reliability of the plates from different design strategies were evaluated
It was found that, for ultimate rupture, a yearly maximum with a probability of exceedance
of 10™ is appropriate as the design load.
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Chapter 1

Introduction

1.1 Overview

The hull of a ship is exposed to different environmental forces during its lifetime.
These forces include hydrostatic loads, wave loads, wind loads and ice impact loads. The
load during interaction with ice is a major consideration for the design of ships in arctic
and subarctic waters. Considerable forces due to ice impact may result when an arctic
class vessel strikes multi-year ice or ice island fragments, or when a subarctic vessel strikes
an undetected growler or bergy bit. For a designer or an engineer, choosing a design ice
load has always been a challenge because of the uncertainties of ice loads in nature. These
uncertainties are partially due to the varying ice conditions and the complicated nature of

From the view point of ics, i and ice-vessel i ion (except

at very low rates) is characterized by ice fracture and ice damage processes. The fracture
usually initiates from flaws and irregularities in the ice and results in discrete pieces of ice
spalling off. Consequently, the contact area between ice and structure is reduced and the
pressure on the ice-structure interface is redistributed. In addition, the stress within the ice
mass is redistributed, which causes additional spalls. The pressure in the reduced contact

areas, especially towards the center, is very high and the ice is subjected to severe damage.



These high pressure regions (termed critical zones) correspond to the areas on the struc-
ture where localized ice loads occur. The critical zones are important in the estimation of
ice loads and structural design and are the focus of the present research.

The fracture trajectories dictate sizes and geometry of spalled ice pieces and
therefore govern the formation, number, sizes and intensities of critical zones. Fracture is
random in nature due to the randomness of flaws and irregularities in ice. As a conse-
quence, critical zones are also random. It has been observed from the ship ramming trials
(e.g- Glen and Blount, 1984) and in medium scale indentation tests (e.g. Frederking et al.,
1990) that high pressure zones constantly disappear and reappear, move from one place to
another and change in intensity. The randomness of ice load and critical zones can be ac-
counted for by a probabilistic analysis. Usually, the probability distribution of ice load can
be derived from measurements of field tests and ship ramming trials. Such a distribution
can then be used in the determination of the design ice load or the design resistance for the
structure.

The structure of a ship’s hull is a complex combination of plating, stiffeners and
supporting frames. In practice, the strength of the ship structure is divided into three
components. These are primary, secondary and tertiary (Paulling, 1988). The primary, or
global, strength is associated with the hull girder. Loads affecting the hull girder are gen-

erally global impact loads. The or semi-local strength is ed with the
strength of a large plate panel (or grillage). The tertiary, or local, strength is concerned
with the strength of plating between two stiffeners or two frames. This region must resist



‘This region is the focus of the present study.

For a rule based design for ice, such as the Proposals for Arctic Shipping Pollution
Prevention Regulations (the ASPPR Proposals, Melville Shipping Ltd., 1989), the plating
is usually treated as a long plate, loaded by uniform lateral pressure. The plate may fail in
one of three limit states, e.g. the three-hinge collapse, permanent set and ultimate rupture.
The three-hinge collapse and permanent-set are usually associated with serviceability
‘whereas ultimate rupture is concerned with safety. The long plate model is easy to imple-
ment. In reality, the ice loads on a plate are more complicated than the idealized uniform
load. Critical zones moves from place to place, and change in intensity. Depending on the
exact distribution of the load, the response of the plate could be quite different from one
case to another. This results in an uncertainty in the design model of the structure.

The strength of a structure is also random. This is because of uncertainties related
to structural size and material strength. As was learned from the review and verification
of The ASPPR Proposals by Memorial University of Newfoundland (Carter et al. 1992),
the ship structural strength might be affected by uncertainties in plate thickness, material
strength, weld effect and heat-affected zones.

An optimal design of the structure should account for all uncertainties associated
with the environmental loads and design model. Such a design can be viewed as a decision
process. The designer must give due consideration to two conflicting objectives, i.e.
safety and economy. Theoretically, there is no absolutely safe structure because of uncer-

tainties of environmental load and structural resistance. The safety level of a structure can
3



be evaluated by the probability of structural survival. This probability can be obtained
from the probability densities of the load and resistance. An optimal structure should have
a probability of failure close to a target value which is accepted by the engineering prac-
tice. There are two methods in structural design, namely reliability method and code de-
sign method. For the first, the structural strength is selected based on the target reliability.
In the second, the structure is designed according to a design rule. The rule has an intrinsic
safety margin accepted by the profession. New rules are also calibrated by reliability
analysis.

1.2 Scope of the Work

Mechanics of ice-structure interaction, statistics of ice loads and reliability analysis
of structural strength are three important and interlinked aspects for the design of a struc-
ture. The proposed research presents an approach which integrates all three aspects. The
focus of the research is critical zones ( localized high pressure regions which are the key
elements of ice loads). I will investigate how they form and how they affect the overall ice
loads and the response of the structure.

First, I will investigate the ice-structure interaction process from the view point of
mechanics. I will investigate existing fracture models and their applicability to the prob-
lems of spalling and formation of critical zones. I will investigate the propagation of small
cracks in different stress zones within an ice sheet. [ will also investigate the fracture

damage interplay process by a numerical example.



Second, we propose a probabilistic approach to the estimation of ice loads. Extre-
mal analysis and its application in evaluating design ice load is first discussed. Critical
zones are quantified by parameters such as their spatial density, sizes and intensities.
These parameters are calibrated using the ship ramming trial data of Louis St. Laurent. A
probabilistic model of critical zones is proposed; which assumes that the ice load on a de-
sign area is applied through a random number of critical zones, each with a random force.
This model is then used in deriving the probability distribution of extremal ice loads.

Third, we will investigate the strength of the structure. We will focus our analysis
on the ship plating. The long plate model, which is used in practical design, will be re-
viewed and different failure mechansims will be investigated. The response of a plate to
various realistic loads will be analyzed using a finite element method. A long plate model,
which accounts for the non-uniform loads, will be developed. This model, together with
the results from the finite element modelling of various load scenarios, will be used to
analyze the uncertainty of the design model of the structure.

Finally, we will discuss the principles of design. These include a discussion on
different design methods in practice and rationale in selecting the design loads and resis-
tance. The principles are applied for the design of plating of a tanker for offshore New-
foundland waters. Plate thickness according to different design strategies are derived and

the probability of failure for each design is evaluated.



Chapter 2

Ice-Structure Interaction Process

2.1 Introduction

Ice-structure and ice-vessel interaction (except at very low rates) is characterized
by ice fracture and damage processes. The fracture usually occurs near the free edge bor-
dering the actual contact area between the ice and the structure. Such fractures result in
large pieces of ice spalling off and a reduction in the remaining contact areas. The pres-
sure in these contact areas is very high, especially towards the center. The areas have been
termed critical zones. Extensive damage to ice usually takes place in these zones. There
is evidence that ice has been microfractured, broken into small pieces, subjected to
pressure melting and sintered together in these zones (Jordaan, Xizo and Zou, 1993).
These zones also carry most of the ice load and are crucial to the modelling of the global
scale effect and to the analysis of local pressure. Spalling by fracture governs the variation
of size, number and location of these zones during the interaction process. Figure 2.1

schematically illustrates an interaction with one critical zone and spalls.

Spalling by fracture has been analyzed, using finite element modelling, by Xiao and

Jordaan (1991) in terms of the propagation of a flaw located near the ice-structure
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Figure 2. 1 Schematic lustration of A Critical Zone with Spalls

interface. They found that the crack would propagate at loads about one tenth of those
calculated using damage analysis only and that the propagation would result in a piece of
ice spalling off and a reduction of ice force. Furthermore, they found that flaws propagate
more readily in zones of low confining pressure. These zones are located near the free
surface of the ice where spalls are often observed. A flaw may propagate in a tensile
mode, a shear mode or a mixed mode. They also found that the tensile zones near the free
edge of an ice sheet are often small. Zones with high shear stress tend to be larger, with a
higher probability of containing a flaw. Fracture is unlikely to be initiated from cracks

under high confining pressure.



Evans et al. (1984) proposed a semi-quantitative model for the spalling of edge-
loaded ice sheets. The model was based on the plain-strain cavity expansion theory (Hill,
1950) and elastic plate bending theory. It confirmed that the forces required to propagate
spall cracks are relatively small but the authors experienced difficulties in calibrating the

in the model by

Critical zones and spalls are random in nature. This has been demonstrated in
medium scale indentation tests (i.e. Frederking et al. 1990) and ship trials (i.e. Glen and
Blount 1984), where high pressure areas constantly disappear and reappear, move from
one place to another, changing in intensity. The probabilistic nature of critical zones and
spalls is associated with the randomness of flaws in ice, which lead to the initiation of
spalling. Similar to other materials, ice contains many defects such as cracks, inclusions,
pores, grain boundaries and other weakness. Both the size and the location of these are
generally random. For this reason, a probabilistic analysis of existing flaws is needed. A
probabilistic model has been proposed by Maes et al. (1986), by assuming that the cracks
are randomly dispersed in a material volume according to a Poisson process. On the other
hand, Kendall (1978) referred to the probabilistic approach as “dubious statistical argu-
ments involving invisible flaws™. He proposed a deterministic model, well known as “the
double cantilever beam”, which assumes that a centrally located crack divides a beam into
two cantilevers and that the resulting bending moment on each cantilever results in crack
growth. It has been found by Zou et al. (1996) that the basic assumption in Kendall's
model, that is, treating two struts as elastic beam, is only valid for large crack lengths (ie.

The thickness of an ice sheet). Cracks of such length and of such location can be rarely



be rarely found in nature. Although long central cracks have been observed in some
indentation tests (Kdrna and Muhonen 1990), they are more likely formed as a result of
the propagation of small cracks rather than being present as initial flaws. In addition,
DeFranco and Dempsey (1990) found that the boundary condition in Kendall's model is
not well defined, which may result in the fracture force estimated being close to one third
of the real value. Therefore, the replacement of “invisible flaws” (for example grain
boundaries) by a precisely located yet also invisible central crack is a questionable
alternative, which will be investigated in detail in this section. In addition, a deterministic
analysis of the propagation of cracks, with different lengths and located in different regions
with different stress conditions, will be analyzed. Finally we will review some basic aspect
of damage mechanics and the fracture damage interplay during the ice-structure
interaction process. We begin our analysis from some basic aspects of ice fracture

mechanics.
2.2 Ice Fracture

As described in Section 2.1, fracture of ice usually initiates from a flaw in the ice.
According to linear elastic fracture mechanics (LEFM), a crack will begin to propagate
when the stress intensity factor at the crack tip exceeds the fracture toughness. An
equivalent criterion of stress intensity factor is strain energy release rate. The fracture
toughness of fresh water ice ranges from 0.1 to 0.14 MPa m'? and the corresponding
critical strain energy release rate ranges from 1 to 2 J/m? (Timco and Frederking, 1986;

Dempsey et al., 1989).



Once the fracture is initiated, its subsequent propagation depends on its stability. If
the fracture continues to propagate, then the crack is unstable. If additional force is
needed for continual crack growth, the crack is stable. The stability of a crack can be

uulyzedbythechlna:ofmﬁwwwrdaaemerimmpmmuﬁlmyhmg,

The crack is unstable when the ratio is greater than zero. In an ice-structure interaction,
an unstable crack may propagate into a compressive zone and become stable and not cause
any catastrophic failure.

As already discussed in Section 2.1, a crack may propagate in a tensile mode, a
shear mode or a mixed mode. The mixed mode fracture has been studied extensively, e.g.,
by Sih (1973), Palaniswamy and Knauss (1974), Conrad (1976), Cotterell and Rice
(1980), Sih and Tzou (1983), Hutchinson and Suo (1992). There are three principal theo-
ries: first, that the crack will propagate at right angles to the maximum tensile stress, sec-
ond, that it will propagate in the direction which corresponds to the maximum strain en-
ergy release rate (SERR), and third, the crack direction is that which corresponds to the
strain energy density. The most fundamental of these is judged to be the maximum
SERR. Indeed, Conrad (1976) quotes from Griffith: “the crack will grow in the direction
along which the elastic energy release per unit crack extension will be the maximum and
the crack will start to grow when this energy reaches to a critical value”. For practical
purposes, there is little difference between the first and the second criteria. This agrees
with the results of Hutchinson and Suo (1992) who found no distinction between a crite-

rion for crack kinking based on maximizing strain energy release rate or based on propa-



propagation in the direction in which K= 0. Figure 2.2 shows that the angle of crack
propagation corresponds to the maximum SERR with respect to the ratio of KvKj, where
Ki and Ky are stress intensity factors of tensile and shear mode respectively. Figure 2.3
shows critical values of K; and Ky at which the maximum SERR at the direction of crack
propagation reaches the material fracture toughness. Values of K; and K are normalized
with Kic and plotted together with the results of mixed mode fracture tests on ice by Shen
and Lin (1986). The closed form formulae of the relationships in Figure 2.2 and 2.3 are
derived and given below for the convenience of analysis:

Ky K, i
21 = [-0.007373(-L)" - 0.6642 - + 0671} , :
Ke [ 73(- Kn) Ke + }} @n
' .9) K K,
-6 = exp[~0.00003318(+-L)° +001665(L)* ~ 031914 +43097] . 22)
Ku Ku Ky

A crack may also propagate when the crack tip is under a shear stress and a con-
fining pressure. The propagation in this case is more difficult than for the case of mixed
mode tensile and shear cracks as indicated by the studies of Hallam (1986), Kachanov,

(1993) and by Smith and Schulson (1991).

2.3 Analysis of Kendall's Double Cantilever Beam Theory

Kendall’s double cantilever beam is shown in Figure 2.4. The beam is fixed at one
end and free at the other. A centrally located crack at the free end divides the beam into

two struts. A punch at the free end causes the struts to ‘bend and shear outward”



Figure 2. 2 Angle of Crack Propagation (Pa.aniswamy and Knauss, 1974)
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Figure 2. 3 Data of Shen and Lin (1986) Fitted to the Maximum SERR Analysis of

Palaniswamy and Knauss (1974). Data Normalized with K;=0.107 MPa m'?
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Figure 2. 4 Kendall's double cantilever beam
Kendall simplified the force of the punch as two concentrated forces on the free end (see
Figure 2.4).
According to the law of energy conservation, the total strain energy of the system (
U r) does not change with the crack length ¢ for a stable crack growth.
dU/dec=0 @3)
The strain energy due to the punch has two major components: compression, corre-
sponding to forces F/2 applied along the axes of the struts, and a bending moment caused

by the eccentricity of the force F/2. The compressive component is assumed not to



change with the crack length and therefore disappears from equation (2.3) The bending

component for the simple beam geometry can be derived as:
v, =%F’(d—w)’cl Ebd @49
and the total energy of the system (excluding the compressive component) is given by:
U,=——;—F’(d—w)’clﬂd’sﬂbc @s)

where R is the surface energy. Applying the above equation to equation (2.3) Kendall de-
rived the fracture driving force for a stable crack propagation:

b ey
F=amura G B @6

With the same principle described above, Kendall also derived the force required to
propagate a crack which is not located at the center of the beam (see Figure 2.5a) result
shows that the force required to propagate the crack is minimum when the crack is located
at the center (see Figure 2.5b). Hence he concluded that “there will be a preference for

cracks to travel on the central plane™.

Some of Kendall's assumptions are now discussed. First, in Kendall's model, there
is no lateral restraint on the free end of the struts. This means that the struts are free to
run into each other as shown in Figure 2.6, which does not correspond to the intended

idealization in Figure 2.4. In reality, there is a reaction on the end of each strut causing an
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Figure 2. 5 Kendall's model for the crack off the center line (from Kendall 1978)
additional bending on the beam. Assuming that the ‘free ends’ are completely restrained,
DeFranco and Dempsey (1990) derived the value of fracture driving force:

4
b erays @n
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Figure 2. 6 Struts with no constrains at free ends

which is close to three times the value in Kendall's theory (see Figure 2.7). In a practical
case, the end condition may be between free and completely restrained depending on the
conditions of the interface, which, for the ice-structure interaction, may involve friction,
pressure melting and sintering. Second, the simplification of the deflection of the struts as
pure bending is not appropriate for the case of small crack lengths. In this case com-
pressive stress is not a constant throughout the beam, especially in the region near the in-
dentor where compressive stress dominates. In fact this high compressive stress may cause
the crack to close when the crack is very short. To demonstrate this, the following
numerical analysis on a double cantilever beam is carried out using a finite element mod-
elling package ABAQUS.

Figure 2.8 shows an ice beam with a central crack at the free end, subjected to an
indentor of one meter width. The indentation speed in this case is assumed high enough so

that ice can be treated as an elastic material.
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Figure 2. 7 Double Cantilever Beam with restrained ends from DeFranco and Dempsey
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(1990)

‘The simplification of indentor force as two concentrated forces in Kendall's theory
is not accurate for the analysis of small crack lengths and is not applied here. For the ice-
structure interaction, the pressure distribution on the interface is complicated. A damage
analysis by Xiao and Jordaan (1996) shows that the distribution is an inverse parabola in
shape when ice is initially in an elastic contact, then it changes to a uniform and a parabolic
shape as the ice damages near the interface. The distribution is further complicated by
spalls and the formation of critical zones. For the purpose of comparison, a uniform

pressure distribution is used in this analysis. Values of strain energy release rate
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Figure 2. 8 An ice sheet with a central crack, loaded by an indentor

G at crack tips of different crack lengths were evaluated. The crack will propagate when
G reaches a critical value G.. The value of G. for ice is in the range of 1~2 J/m’ (Timco
and Frederking (1986). In this study a value of G.as | J/m’ is used. The results are pre-
sented in Figure 2.9 (a) together with values obtained from Kendall's theory and De-
Franco and Dempsey (1990), where the crack length is presented in a non-dimensional
form with respect to the ice thickness @/D. Figure 2.9 (a) shows that G increases with
crack length. The rate of increase diminishes when the crack length @/D is 0.8 and G
gradually reaches a constant value which corresponds to a stable crack growth. The con-
stant is close to the value predicted by DeFranco and Dempsey (1990) and one eighth of
the value in Kendall's theory. A more detailed plot (Figure 2.9 (b)) shows that G is equal
to zero for crack lengths @/D less than 0.22. This is in agreement with the stress analysis
which shows that the crack tip is under high compressive stress. Figure 2.9 (b) also shows
that G reaches G. when the crack length a/D is 0.3, which corresponds to a 60 cm crack in
a 2 meter thick ice sheet. This is a long flaw and is unlikely to be found.



Thirdly, the extension of the centrally located crack model to the non-central lo-
cated crack model presents difficulties. This is because in the first case the shear strain

energy is not i which may be i in the second case. To

investigate this further, the same double cantilever beam is analyzed with the crack located
in different lateral positions (see Figure 2.10). The crack length is fixed as 0.5 m and
values of G of crack at different locations were evaluated. The results are presented in
Figure 2.11 together with Kendall’s prediction. The results show that G increases when

the crack is off the central plane in contrast to the Kendall's conclusion.

In conclusion, Kendall's model is only valid for long cracks. The model as modi-
fied by DeFranco and Dempsey (1990) gives a good prediction of G for large crack
lengths. The extension of the model with a centrally located crack to one with a non-
centrally located crack presents difficulties. The double cantilever beam theory has been
applied to the analysis of ice spalling by a number of researchers. The application may be
suitable for the analysis of a large splitting ice feature but ot suitable for the analysis of
ice spalling, since in a real field situation spalling may result from the propagation of
cracks of various locations. An alternative beam model was proposed by Hutchinson and
Suo (1992) which considers a mixed mode crack. This approach may provide a good ap-

proximation to ice spalling and is given in next section.
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Figure 2. 10 An ice sheet with crack in different vertical locations
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Figure 2. 11 G values for cracks at different locations



2.4 Analysis of Beam Model By Hutchinson and Suo

Hutchinson and Suo (1992) described a beam model originally developed by Suo
(1990), which is similar to that of Kendall but includes the effect of compressive stress

(see Figure 12). The strain energy release rate at the crack tip, G, was derived as:

G-L[ir'-uz LM B,

2 h 7 R G

M )
(h+H)
where E is the effective Young's modules, Py, Py, Ps, My, My, Ms, h and H are defined in
Figure 2.12.

The strain energy reiease rate in Equation (2.8) was further separated into opening
and shearing components by Hutchinson and Suo (1992) using linearity and dimensional-

ity. Consequently, the stress intensity factors take the form:

K, = 2 cosw + M sin(e +7),
U JM’V

29)
f R P | cos(@+7).
« = T2 2wy 4
where P and M are linear combinations of the applied loads:
P=R-CP-CM,/h, M=M-CM,, (210
1 6/n 1
=— =2 = p=h/H, 2.11
G Un+l" 72 (/p+)’ G 1/ n+1)" 9 ¥ @

and U, ¥ and y are geometric factors described as below:
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Figure 2. 12 A Beam Model by Suo (1990)
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Accurate determination of @ of Equation (2.9) is very complicated. The elasticity problem
was solved rigorously with the help of numerical solutions of an integral equation by
Hutchinson and Suo and the results are presented in an approximate formula:

@=52I"-3"n. @13)
Further, Hutchinson and Suo presented a criterion for mixed mode crack propaga-

tion by:
G, =F.g=0r @14)

where G, is the critical energy release rate, F is the factor depending on the ratio of ; to
Ky. In Equation (2.14),  is the direction of crack propagation, & is a parameter related
to traction at crack tip and I is the fracture toughness. F in Equation (2.14) is equal or

less than 1, which means the mixed mode crack will propagate at an “apparent strain en-



energy release rate” less than the fracture toughness. This is in agreement with the results

of Palaniswamy and Knauss (1974).

The preceding approach by Hutchinson and Suo provides a better treatment of

beam than Kendall by ing for the i of the strain energy. In
the following, we will use this model to investigate the fracture strength of an ice sheet
shown in Figure 2.13. We assume that a long crack exists and is parallel to the ice sheet.
The end of the ice sheet is loaded by a patch load with a width of w, and has a parabolic
pressure distribution. This patch load is similar to a critical zonal force. We define an
equivalent fracture strength of the ice sheet as the mean pressure over the thickness of the

ice at which the crack propagate:

Py == . (2.15)

where p(x) is the pressure distributi ing to the ion of the crack.

Tentatively, we assume it has the form:

Px)=py(1 —(:w'/';’));) § (2.16)

where py is defined in Figure 2.13.
Factors affecting the fracture strength include the position of the crack relative to
the center of the ice sheet, /, the width of the patch load, w, and the location of the load xo,

(see Figure 2.13). In the following we analyze these factors.
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Figure 2. 13 An Idealized Ice-Structure Interaction

To investigate the effect of /, we examine the case when w = D, x, = 0 and / varies
between 0 to D/2.  For each value of /, Equations 2.9 to 2.13 are used to calculate K;
and K for the case when pp =/. The amplitude of po which causes crack propagation is
then derived based on minimum SERR criterion (Equation (2.1)). The fracture strength is
then calculated from Equation (2.15). The results are presented Figure 2.14. The strength
is normalized with p,’, which is the fracture strength when / = 0. Note that the fracture
strength is lower when the crack is off the center. This is consistent with the resuit from
our finite element analysis (see Figure 2.11).

Next, we investigate the effect of the width of the loaded area, w. We examine the
case when / = 0, x, =0 and w varies between 0.2D to D. The fracture strength for each w
is derived from the same method used in analyzing the effect of /. The strength is nor-
malized with respect to p,’ and is presented in Figure 2.15. Note that the strenath de-
creases with the load width, implying that the more concentrated loads make the fracture

propagation easier.
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Figure 2. 14 Analysis on the effect of location of the crack

Finally, we examine the effect of x;. We vary x; between 0 to D/4 for the case that
w =D/2, [ = 0. and we derive that strength from the same method described before.
Strength against x, are presented in Figure 2.16 in terms of normalized form. Note that
the strength decreases with respect to x,.

Note that in the above analysis we only dealt with some special cases of a compli-
cated combination between /, w and x,. In reality, this combination could be random,
which results in the randomness of the fracture strength. To investigate this, we perform

the following Monte Carlo simulations.
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Figure 2. 16: Analysis on the effect of xo
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In each simulation, we randomly select w between 0 and D. Then, we randomly
select x, between 0 and (D-w). We also randomly choose / between 0 and D/2. For the
selected combination of /, w and x,, we calculate the strength. All these parameters are
selected following a uniform distribution. A total of 5000 simulations were performed.
The results of prare ranked and presented in terms of probability of exceedance in Figure
2.17. The simulated results indicate that p.ris scattered within the range from 165 Pa to
35 MPa with a mean value of 0.2 MPa. The results indicate the fact that ice failure by
crack propagation can occur at any load level depending on the load configuration and the
location of crack. It should be realized that only fracture failure is considered in the
simulation. The ice sheet may fail by other mechanism such as damage.

The preceding analysis shows that an open crack parallel to the ice sheet may
propagate at 2 random load level depending on the location of the crack and the load pro-
file. In reality, the fracture strength of the ice is even more complicated since cracks in
nature are usually smaller and their propagation is more complicated. They can be located
in a random location with a random orientation. The propagation of these cracks is more
difficult to predict. This is illustrated by a deterministic analysis of close form cracks given

in the following section.

2.5 Analysis of Small Cracks at Different Locations

The large open cracks of Kendall's model are rarely found in ice fields. Instead,
small cracks have a high probability to exist. With a favorable location and orientation,

these cracks may propagate and result in discrete ice pieces spalling off.
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Figure 2. 17 Results of Monte Carlo Simulations

In the following, we shall investigate these cracks at different locations in an ice
sheet of two meters thickness loaded by an indentor at its end (see Figure 2.18). The in-
dentor force is assumed to have a parabolic distribution following a damage analysis by
Xiao and Jordaan (1991). The interaction rate considered here is high enough that dam-
age to the ice only occurs near the interface and the response of the rest of the ice sheet is
assumed elastic.

The stress distribution in the ice sheet has been analyzed. A tensile zone has been
found near the center of the ice sheet (see Figure 2.18). The direction of the tensile stress
is mainly perpendicular to the ice sheet. This suggests that the cracks parallel (or close to
parallel) to the ice sheet are more likely to propagate. Cracks with other orientations may
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be subjected to compressive stress and are more difficult to grow. The shear stress paral-
lel to the crack plane will also cause the crack to propagate. Zones of such shear stress

parallel to the ice sheet are identified and are plotted in Figure 2.18.

Cracks at three different locations are investigated. The cracks are assumed to be
parallel to the ice sheet for simplicity. Cracks of different orientations can be considered
later. Cracks at location 1 are mainly subjected to shear stress, cracks at location 2 may
cause mixed mode fracture and cracks at location 3 will cause tensile fracture. Values of
strain energy release rate have been evaluated for different crack lengths and are plotted in
Figure 2.19. The result shows that G increases with crack length. Gic and Gic are critical
strain energy rates for tensile and shear crack modes respectively, which are derived from
K; and Ky discussed in Figure 2.3. Gyc=0.6 Gic is used in this study. A mixed mode crack
will propagate with the value of G between Gc and Gy depending on the ratio of tensile
and shear stress intensity factors as discussed earfier. While Figure 2.19 shows that the
mixed mode crack at location 2 has the highest G value, it also shows that cracks at all
locations can propagate for very small crack lengths. Suggested crack trajectories
following Conrad (1976) are also plotted in Figure 2.18. Cracks at location 1 and 2 may
result in discrete ice pieces spalling off Cracks at location 3 will cause splitting of the ice
feature. Such a splitting has been reported by Kamna et al. (1990). It is also noted that
depending on the location of the crack, the size of the spalled piece is different; subse-

quently, the size of critical zones (remaining contact areas) is also different. Since
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Po=5 MPa.

Figure 2. 18 Tensile Stress Zone and Shear stress Zones

the location, sizes and orientations of flaws in nature are random, the trajectories of frac-
ture propagation are also random. This leads to the fact that locations, sizes and intensi-

ties of localized high pressure zones are also random.

The preceding example demonstrates how a spall can be initiated from a flaw in an
ice sheet. The spall intensifies the pressure in the remaining contact area. The intensified
pressure will form a larger shear zone, hence causing subsequent spalling. In the mean
time, in the reduced contact area, ice is subjected to highly localized pressure and severe

damage. Some basics of ice damage mechanics are described in the next section.

2.6 Ice Damage
As spalling occurs, the remaining contact area is reduced. This will cause the high
stress concentration and severe ice damage. Damage mechanics may offer the insight look

at the failure process and a method to estimate of the forces on the structure.

3



Most of the early work on damage mechanics was based on the idea that the dam-

age to a structure can be measured by a scalar factor, which equals either the ratio of the
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Figure 2. 19 G Values of Different Crack Lengths

area of voids to the whole cross section, or a function of the density of microcracks and
voids which would permanently affect either the elastic modulus or shear modules. The
importance of this kind of model is the establishment of a rational damage law which de-
fines the rate of damage accumulation in terms of current values of state variables and

internal variables.



Damage mechanics has been applied to ice by Jordaan and McKenna (1988),
McKenna et al. (1989), Karr and Choi (1989) and others. An isotropic damage model
with a single scalar damage parameter has been developed, by Jordaan and McKenna
(1988) based on rate theory, and has the form:

) o>0

N=N T2 b
o,

N=0 o<o,. @1mn
where o is the threshold stress, oo is a unit stress, m is a constant and N, is a reference
rate. The damage, Dy, due to microcracking is defined in the form:

D, =a'N (2.18)

where a is the radius of crack.

It should be noted here that it is not appropriate to use crack density as the only
measure for the damage. For example, in the cases of crushed ice in the critical zones, the
crystal structure of intact ice has been broken down to fine grains. Under high confining
pressure, the crushed ice may be sintered into a solid but microstructurally modified ice
mass due to pressure melting or recrystallization.

The approach taken by Schapery (1981,1991) offers a rigorous solution to a class
of problems involving cracking and damaging viscoelastic materials. It includes a proper

treatment of energy flux into the crack tip zone, a thin layer of damage material in the re-
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region of the crack tip, and damage in the parent material. The damage measure given by
Schapery is -

s=j's44r. @.19)
°

where g is a constant and S is the damage parameter.

From experiment, especially compressive creep tests, it has been found that the
presence of cracks and damage significantly enhances the creep strain. The creep strain of
damaged ice is 5 to 10 times that of intact ice. An exponential factor for creep strain rate
was introduced to capture the behavior for both low and high crack densities, which has

the form: exp(BS), where B is a damage enhancement parameter.

2.7 Fracture and Damag in Ice-Si Interaction

As we described in section 2.1, failure of ice during the ice-structure interaction is
characterized by fracture and damage process. The fracture usually causes pieces of ice
spalling off and the reduction of the contact area. Extensive damage of ice takes place in
the reduced area and results in the reduction of the total indentation force. This interplay
process plays a key role in the appearing and disappearing of critical zones. Following we
illustrate this process by a numerical example given in Jordaan, Xiao and Zou (1993).

In T gure 2.20 (A), an ice sheet 2 m thick is loaded by a rigid indentor at its end at
a rate of 100 mm/s. For illustrative purpose, two flaws are assumed to exist in the ice

sheet at the locations shown in Figure 2.20 (A). The propagation of these two cracks are



modelled by applying maximum SERR principle and by using finite element package
ABAQUS. The propagation of the cracks eventually causes spalls at instant B shown in
Figure 2.20 (B). The spalls result in the reduction of contact area and pressure redistribu-
tion. Figures 2.20 (B) to (F) show the pressure redistribution process within remaining
contact area. The pressure in the remaining area is very high initially, and the distribution
quickly changes from a reversed parabolic to a parabolic shape. The amplitude of the
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Figure 2. 21 Effect of Spalls on Total Force

pressure decreases as the indentation proceeds. The decrease is caused by the damage of
the ice near the ice-indentor interface. The pressure will eventually decrease to a very
small value when the ice is completely damaged and extruded. The whole process corre-
sponds to the formation and disappearance of a critical zone. Figure 2.21 shows the force
-time curve; the peak obtained and subsequent decline in load results from the damage
process in ice. The peak load in Figure 2.21 should be contrasted with the value about 40

MN that occurs in the absence of spalling.
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2.8 Conclusions

Ice-structure interaction was analyzed in terms of ice fracture and ice damage
processes. The fracture causes pieces of ice spalling off and formation of localized high
pressure regions (critical zones). In these regions ice is subjected to sever damage and
results in the decline of total indentation force. Critical zones are key elements in esti-
sities of these zones.

Two beam models for fracture, namely Kendall's double cantilever beam and the
model of Hutchinson and Suo, were analyzed. Both models are limited to the case of long
open cracks. The model of Hutchinson and Suo provides a better alternative which also
considers the compressive component of strain energy and can be used for mixed mode
fracture. This model was subsequently used in analyzing the fr cture strength of an ice
sheet with an open crack. Monte Carlo simulations were carried out, in which factors
show that uncertainties in these factors cause significant variations in fracture strength.

Initial analysis of small closed cracks at three different locations shows that shear
cracks and mixed mode cracks are the likely candidates for spall development. The loca-
tion and the orientation of the crack dictate the trajectory of crack propagation hence also
govern the size and location of critical zones. Because of the randomness of flaws in na-
ture, the critical zones are also random. A probabilistic approach to these critical zones

and ice loads is necessary, which is investigated in the next chapter.
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Chapter 3

Probabilistic Analysis of Ice Loads

3.1 Introduction

As discussed in Chapter 2, i i ion is ized by spalls and

critical zones as the result of fracture and damage process. This affects three distinct re-
gions of pressure in a design area. The first region is the critical zone where intense local
pressures and pressure gradients exist. These are caused by the spalls and may also be
attributed to the forced extrusion of damaged ice in a very narrow layer between solid ice
and the structure. Measurements in the medium scale indentation tests (Frederking et al.,
1990) and in ship trials (Glen and Blount 1984) indicate that the pressure in this region
may reach up to 70 MPa over a fairly small area. In the second region, lower pressures
are present. This region may be likened to an area of “background pressure”. Such pres-
sure is associated with the ejection of granular ice in wide spaces and is much lower than
those in critical zones. The third region is one in which pressure is approximated by zero.
This region is associated with areas of spalls where ice is no longer in contact with the
structure. These three regions are shown schematically in Figure 3.1. Among the three
regions, the critical zones are most important in estimating the ice loads and are the key

elements in the approach presented in this chapter.
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Figure 3. 1 Schematic View of Three Regions of Pressure within a Design Window.

Figure 3.2 shows pressure measurements taken onboard CCGS Louis St Laurent
during a ramming test (Blount et al,, 1981). Each frame in the figure represents the pres-
sure distribution on the instrumented panel at a point in time. The transducer marked with
the dark color is the one with the maximum pressure while the ones marked by light color
are active transducers. Indicated at the lower right corner of each frame is the value of the
maximum pressure. The maximum pressure during the ram reached 51 MPa. The shaded
areas in the figure approximate the critical zones. As indicated in the figure, these critical

zones appear to be random, move from place to place, and change in intensity and
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size. This randomness of critical zones can be attributed to the probabilistic nature of
fracture, which is associated with the randomness of flaws in ice.

Johnston (1993) performed an extensive analysis on critical zones based on several
sets of test data including the medium scale indentation tests conducted at Hobson's
Choice Ice Island (Frederking et al., 1990), the ship trials of the Louis St. Laurent (Blount
et al, 1981), the CanMar Kigoriak (Dome Petroleum Itd., 1982) and an ice event experi-
enced by the offshore structure “Moliqpak™ (Jefferies, 1988). Fundamental properties of
critical zones such as average size, total force within the zone and spatial density were
quantified. The author found that critical zones, which are of the order of 0.1 m?, and that
the forces range from 0.1 to 4 MN. The author also found that the best data set for the
analysis of the critical zones is the ship trial data of Louis St. Laurent. For other data sets,
the area that 2 pressure sensor represents is of the same order of magnitude as that of a

critical zone and in some cases more than one critical zone may exist on a single sensor.

Jordaan , Xiao and Zou, (1993) proposed a probabilistic treatment of critical zones
in estimating the local ice loads. In this approach, the load on a design area is applied
through a random number of critical zones, each with a random force. The number of
critical zones was suggested to be modelled as a birth and death process and the critical
zonal force was suggested as gamma distributed. Further work was performed by John-
ston (1993) by treating the load as a compound Poisson process in which the number of

critical zones was modeled by a Poisson process and the zonal force was modeled by a

41



The approach was applied to the analysis of the trial data of Louis St. Laurent. Discrep-
ancies were found between measured and simulated results, in part because of the limited
number of simulations. A similar approach, treating the critical zones as a compound
Poisson process, was proposed by Kujala (1994) but no application was given in the work.

The present approach is based on the works of Jordaan. Xiao and Zou, (1993) and
Johnston (1993). First, a statistical analysis on critical zones is carried out based on the
ship trial data of Louis St Laurent. Due to the limitations in size of the instrumented panel
and the spatial resolution of the pressure sensors, difficulties exist in interpreting the
measured data. For example, for those sensors located near the border of the instru-
mented panel, the measurement may present only a portion of a critical zone which extend
beyond the border. To explore the uncertainty in this, different assumptions are made in
the analysis. Probabilistic formulations of critical zones in two scenarios are proposed,
and the corresponding probability distributions of the pressure on the design area are de-
rived using a Monte Carlo simulation scheme.

Once the probability distribution of the pressure is derived, extremal statistics are
used to estimate the extreme value of ice load which a structure is likely to experience.
The key issue in extremal analysis is exposure. Exposure defines the extent that the
structure of ship may experience ice hazards. For instance, an arctic vessel may experi-

ence thousands of impacts by multiyear ice during one year, whereas a ship in the offshore
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offshore Newfoundland water may encounter an iceberg impact once a year. The extreme
pressure for the first would be much greater than the latter.
accounting for different exposure, yields an algorithm for the estimation of the design ice
load.

Before proceeding with our approach, we review of the fundamentals of extremal

analysis and the previous experience in statistical analysis of ice loads.

3.2 Extremal Analysis

For the purpose of formulating a design code for a certain standard, one needs to
know the largest probable environmental load which a structure may encounter. Extreme
value statistical analysis has been developed for this purpose. An extreme value is defined
as the largest value of a random quantity expected to occur in a certain number of
observations or in a certain period of time, i.e. a return period. For ice loads, this could be
the maximum ice load during an ice navigation season or the “one hundred year load” for
an iceberg collision. In the following, the extreme value of a general natural phenomena is

examined.

The random nature of a can be ized by a ility density

function (pdf) of one (or more) random quantities, X, which describe the intensity of the
event. For example, an ice ramming event can be described by the ice load and the dura-

tion of the interaction. The pdf, fu(x). is essentially valid for a specific site at any point in
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in time, and frequently a considerable amount of prior analysis is required in order to
derive fr. The distribution, Fx, is usually called the parent distribution.

During a design lifetime, the structure may experiences a number # of consecutive
events. For instance, a ship in the arctic region may experience hundreds of multiyear
impacts each year; a ship in the offshore Newfoundland waters may encounter an iceberg
impact every other year. In each case, we need to analyze the maximum, Z, among a
number n of random quantities X:

Z=max(X,.X.... X,). [e3))

According to order statistics, and assuming that X, (i = /. ...n), are independent and have
identical pdf, we can derive the probability distribution of Z from the parent distribution Fy

F()=Fi(x) G2
where F(z) and Fx(x) are cumulative distribution functions (cdf) of Z and X, respectively.
The distribution F2(z) is called an extremal distribution and it is valid for a specified
number of events or a period of time.

As shown by Maes (1985), this procedure can be extended to cases where X, (i =
1, ... n), are not independent and do not have identical densities. If n is also random, the

cdf of the extreme value Z can be described as:

F0)= 3 FiIpu(m) 63)



where py(n) is the probability of the number of event, n. If # follows a Poisson process, £z

can be expressed as:
Fy(3) = exp(-A(1- F () 3.4
where Az is the expected number of events.

If the parent distributic ing the natural is known, the extreme

value can be evaluated exactly by applying order statistics. Unfortunately, the parent
distribution is usually difficult to obtain. In this case, one has to use an approximate
method or an asymptotic formulation.

A very popular asymptotic formulation is the double exponential distribution with
the form:

F(2) = exp(-exp(~(z - ,) / @) 3.5)

where F7 is the cumulative distribution. @ and =, are the dispersion and characteristic

largest value respectively and can be obtained from:

a:ﬁ; 3.6)
T

2 =my-Y05770, 6N

2y =m, ~220577a, ;



where m. and o7 are the mean and standard derivation of the extreme value, respectively.
The double exponential distribution is also called Gumbel [ distribution or the Fisher-
Tippett distribution.

Another approximation to the extremal problem is the parent distribution with an
exponential tail. Consider the tail of an arbitrary unbounded pdf, fifs). in Figure 3.3. The
shaded area under the tail is equal to /-Fifx), and it decreases with increasing x. At the
same time, however, fifx) decreases. It can be shown that the shaded area under the tail

(called the ity of has an ial di ion for most of the dis-

tributions used in engineering practice, with the following form:

B =1-F, =exp(-(x-x,)/ @) 68

The distribution with an exponential tail is useful in cases when we are only inter-

ested in the region which has a small ility of This type of di
is used in a number of places in this chapter.
e 7

i =

Figure 3. 3 The Tail of a Distribution



3.3 Previous Experi in Statistical Analysis of Ice Loads

3.3.1 Overview

According to current literature, Kheysin (1973, b) was the first to use a probabil-
istic approach to ice loads on ships. He used a Poisson distribution for the number of im-
pacts in an arbitrary interval of time, based on measurements by Likhomanov (1973).
Maes et al., (1984) performed a study on probabilistic methods for fixed structure in ice
and the methodology has been reviewed by Nessim et al., (1987), Nessim and Jordaan
(1991), and Blanchet (1990). Daley and his co-workers formulated the ASPEN model
over several years and this culminated in the publication by Daley et al. (1991). Kujala
(1991) used the results of probabilistic methods to study the safety of ships in the Baltic
Sea with respect to ice induced loads. Jordaan et al. (1993a) presented a probabilistic ap-
proach to the local ice pressure based on test data of ship ramming trials. This approach
provided a framework for the treatment of extremal values and exposure for the present
study. The approach is described in the following section.
3.3.2 An Approach Based on Data of Ship Ramming Trials

This section describes a probabilistic analysis of local ice pressure by Jordaan et al.,
(1993a). Two main data sets for ship-ice interaction are used, the USCGC Polar Sea
(Daley et al., 1986) and the MV CanMar Kigoriak (Dome Petroleum Ltd., 1982). The

pressure data from the Polar Sea were collected during an April 1983 deployment of the

vessel in the North Chukchi Sea. This data set consists of 513 impacts with multiyear and



heavy first-year ice features recorded on an instrumented panel of 9.1 m’ located in the
bow of the ship. This panel was subdivided into 60 subpanels of 0.1516 m’. For each
collision, the highest pressure on a single subpanel was recorded (Appendix A of Daley et
al,, 1986). The data were ranked in ing order. The ility of P,

was calculated, where P, = i/n+ 1), i is the rank and n is the number of data points. The
pressure data are plotted against the log of P, in Figure 3.4. Since there are 60 instru-
mented panels exposed, the maximum reflects to a 60n exposure of a panel. Figure 3.4
also shows the data re-plotted, adjusted for the reality of this exposure. The result is a
vertical shift of the best fit line giving a lower probability per panel. The data are char-
acterized by an exponential tail discussed earlier.

The pressure data from the Kigoriak were collected during August and October,
1981 deployments of the vessel. The August tests were conducted primarily in thick first-
year ice and second-year ice while the October tests were conducted in multi-year ice.
During these tests, 397 rams were recorded and the loads on two instrumented areas A/
(1.25 m’) and 42 (6.00 m’) were measured. The two data sets were combined and the
panel pressures ranked in descending order for each area. The probability of exceedance
was calculated as before, where 7 is the number of rams producing pressure greater than
zero on the instrumented panels. There were 120 such rams for A2 and 181 for Al.

For most practical cases, the tail of a distribution can be represented by the expo-
nential distribution given in Equation (3.8). Analysis of plots similar to Figure 3.4 for

various data sets shows that the parameter a in Equation (3.8) is a function of the fixed
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Figure 3. 4 Ranked Data on Local Pressure Measured Onboard the USCGC Polar Sea.
(Jordaan et al. 1993a)

areaand xp<0.2 MPa. A tentative curve of & for use in design was presented, (see Figure
3.5), given by:

a=125"" 3.9)
where a is the area in m”. The results are supported by the more detailed analyses of Maes

and Hermans (1991) and Brown (1993).

One important factor in deriving the extreme ice loads is the occurrence rate of
impacts. The analysis has been performed on the basis of the total number of rams per
year. Each ram could also have two possible outcomes, namely “hits” and “misses”. Here

we will take a single panel in a fixed location. Those rams or interactions for which
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Figure 3. 5 Results of a for In p. vs. x Plots (Jordaan et al., 1993a)

no contact with the panel is made are omitted, only “hits™ are included. In considering n
events in future interactions, let 7 be the proportion of hits, we then need to consider only

the number of “hits™:

m=m (3.10)
where m is the number of hits, or in the case where m and  are random (noted as Af and
n),

u=ry G.1m
where 4 and y are the expected number of events with hits and the expected number of

events, respectively, per unit time.



If equation (3.8) applies, then the distribution of the maximum of Z can be ob-
tained based on Equation 3.2 as:

F ()= -exp(~(z-x,)/ a))” ¢12)
If the number of events is fixed and large, Equation (3.12) can be approximated by:
Fy(2) = exp{~exp[(z - x, - x,)/ a]} @13
where x, =a(nn+Inr).
If M is binominally distributed, with m trials per time interval, and the probability
of an event per trial is given by p, then:
F(2)={1-pll-F2)1}" (G.19)
and Equation (3.8) provides possible distributions for Fr.
In the case of a Poisson process, substituting Equation (3.8) into (3.4) yields
F(2)=exp{-exp[~(z-x, - x)]} @15
where x, =a(lny +Inr) and yis the expected number of impacts. Note that Equations

(3.13) and (3.15) have the same format except that n is a fixed large number and y is an

expected value.

As an example application, we consider a design area of 1.25 m?, with a = 1.07

MPa, x,= 0 MPa and 7 = 0.46. The resulting probability distributions for pressure are



shown in Figure 3.6 for various exposures. For small 4 a “spike” of probability, of value
e =e™7 appears at the origin.
A design value can be chosen from Figure 3.6. If we choose a value =, corre-
sponding to a given exceedance probability, [/-F2(=J], then
5, =x,+af~In[-InF,(z,)] +Iny +Inr} (3.16)
The value at 1% exceedance, the *“100-year load” is

2y =%, +a(46+Iny +Inr)=91MPa @G

Note here that when x, is small, it does not affect the value of z, significantly.

3.4 Statistical Analysis of Critical Zones

3.4.1 Definition of the Problem

To determine a design ice load, we need to know the total force on the design
area. This force can be approximated by contributions from a number of critical zonal
forces superimposed on a background pressure. As noted in Figure 3.1, a critical zone
may be located on the border of the design window, with only a portion of the zonal force
acting on the design area. To account for this uncertainty, we divide the critical zones into
two groups, those fully located within the design window and those partially located inside
the window. Two approaches are proposed to model these critical zones. In approach A,
we assume that all critical zones are located within the design area. This is schematically

illustrated in Figure 3.7 (a). In approach B, we consider the critical zones
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Figure 3. 6 Probability density of extreme pressure (Jordaan et al., 1993a)

which are located within the window and those on the border separately. For critical
zones on the border, the proportion of the zonal force inside the window is considered
when calculating the total force on the design area. This is illustrated in Figure 3.7(b).
Parameters of critical zones are calibrated based on the analysis of ship ramming data of

3.4.2 Analysis of Ship Trial Data of Louis St. Laurent

In November 1980 the Canadian Coast Guard conducted impact tests on multiyear

ice with CCGS Louis St. Laurent. These tests were the first direct measurements of ice
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Figure 3. 7 Schematic lllustration of Contact Area, Critical Zones and Design Windows

pressure in the high arctic (Daley and Riska, 1990). The principal objective of the 1980
trials was to measure the pressure generated in the impact zone between the ship and ice.
For this purpose, an array of 25 pressure sensors and 12 strain gauges were installed in the
bow thruster compartment. The location of the pressure sensors are illustrated in Figure
38.  During the ramming tests, five pressure sensors were inactive reducing the contact
height of the ice sheet to 1.38 meters and the ‘active window’ to 1.62 ar’. Note that, due
to the limit in spatial resolution of pressure sensors, the “effective instrumented area™
could be smaller (1.25 mr’) as indicated in Figure 3.8. The pressure distribution on the
instrumented panel was plotted at various points in time and the critical zones were ap-
proximated in a way similar to Figure 3.2. Because the spatial resolution of the pressure
sensors is limited, care is needed in determining the zonal area and force. For instance, ice
forces may exist between sensors L6, L9 and L10; L33 and L34 which were not measured.
[n addition, the pressure measured by sensors on the border of the ‘active window' may

extend beyond the border. To consider the uncertainties due to the limit in size of
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Figure 3. 8 Location of Various Pressure Sensors (dashed circles indicate sensors in in-
active region, each rectangular in solid lines indicates the area a pressure sensor repre-
sents in approach B )
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the instrumented panel and spatial resolution of the pressure sensors, we made two as-
sumptions: first, each sensor on the panel represents an area of 0.0472 . Ice forces be-
yond this area (i.e. the gap between sensors L6 and L9) is negligible. We refer this as as-
sumption A. Assumption A is consistent with the analysis by Johnston (1993) and Blount
etal, (1981). Second, each sensor represents a ‘weighted area’ as shown in Figure 3.8 by
rectangular solid lines. For those sensors located near the edge of the instrumented win-
by these transducers are located on the border of the window. We refer this as assump-
tion B. In both cases, the pressure measured on a sensor represents the uniform pressure
on the designated area. Figure 3.9 illustrates how the pressure distribution is approxi-
mated. As shown, assumption A considers only the area within the window, while as-
sumption B accounts for the area beyond the boundary. In the figure, the shaded areas are
active. Adjacent loaded areas are considered as one critical zone. In each case, the num-

ber of critical zones are counted and the zonal force is approximated as:
F=Y pA, 3.18)
=

where F is the zonal force, 7 is the number of active pressure sensors in the zone and p, is
the pressure on ith sensor. A, is the area that the ith sensor represents. In assumption A,
A4, =0.0472 m’for all sensors, for assumption B, A, is listed in Table 3.1. Note that areas

assigned to sensors L6, L10, L11, L15, L16, and L23 are obtained under the assumption



Table 3. | Area assigned for each pressure sensor

Sensor | A;(m) | Sensor | A:(m®) | Semsor [ A:(m®) | Sensor | A:(m)
L6 | 1416 | Lis | 0708 | 120 | 0472 | 125 | 0472
Lo [ s | wLis [ ms | L2 | o412 | L2 | 094
L10 118 L16 0944 L23 0944 L33 0944
L1l .18 Li8 0472 L24 10944 L34 0944
L13 .0708 L19 0472 L26 0472

B " 5 | =2

(a) Assumption A

() Assumption B

Figure 3. 9 Approximation of Critical Zones



that the weighted area extend beyond the boundary for an additional area of 0.0473 m’.
‘This assumption is not accurate and is only for the purpose of comparison.

Controlled impact tests were conducted on November 12 and 13, 1981 with large
multi-year floes off Bylot Island. These impacts consisted of backing and ramming into a
selected portion of a multi year floe with the starboard side of the ship. The target area on
the ship was the instrumented hull in the starboard bow thruster compartment. Control of
the impact was difficult because of high winds and the need to avoid damage to propellers.

Initial analysis of the data by Blount et al. (1981) shows that only twenty impacts
are significant enough for further analysis. These impacts had a “clean’ impact on or close
to the instrumented area. ‘Of 20 impact cases identified, one, case 10, while indicating
strains, showed no response on the pressure transducers’. This reduced the number of
cases to 19.

Johnston (1993) selected 9 cases which ‘demonstrated well defined impact to the
panel of pressure transducers’ with crushing accompanying the interaction. In fact, a
“good impact’ as defined by Blount et al. (1981) corresponds to these cases. A ‘good im-
pact’ is determined through the visual record as one which * hits all instrumented panels
simultaneously or from front to rear, with ice-crushing present’. I[mpacts not included in
the ‘good” category are those which had ‘no definite visual impact’, ‘with the broken ice
passing the panel of pressure transducers’ , with ‘no ice-crushing present’ , in which ‘the
ice sheet probably impacted fore or aft of the panel of pressure transducers’.



It was noticed by Johnston (1993) and by the author of the present study that some
of the “poor” impacts produced significant pressure on the panel. Therefore all 19 cases
have been included in the analysis of the critical zones, since they provide a complete data
Johnston (1993) based on 9 cases is invalid, but care must be taken in applying the results.
The results should be modified such that the effect of exposure is considered. The results
of Johnston (1993) are based on 9 ‘good impacts’ out of 19 cases, therefore, when ap-

plying the results, a ion of 9/19 should b

In estimating ice loads, we are interested in the peak value of the pressure. Figure
3.10 shows the time traces of pressure from active transducers. ‘Time slices’ which corre-
spond to pressure peaks (points A to [ in the figure) are chosen for analysis. At each time
slice, a pressure distribution similar to that in Figure 3.9 is constructed and the critical
zones are approximated. A total number of 266 time slices are selected and the results are
presented in terms of zonal area, spatial density and zonal force of critical zones. The
zonal area and spatial density are presented in Table 3.2. The number of time slices used
in each ram is also counted and the mean value is given in Table 3.2. Note that the spatial
density of the critical zones is derived from the area of the “active instrumented window™
shown in Figure 3.8. The densities correspond to the “effective instrumented area” were

also given in the table for comparison.
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Table 3. 2 Mean zonal Area and the Spatial Density

Assumption A Assumption B
within the window on the border
Spatial Density o | 0.8927 zones/m” |  0.6183 zones/m” 0.1674 zones/m
Spatial Density 0 | 1.16 zones/m’ 0.80 zones/m”
Mean of Zonal Area | 0.0809 m” 0.136m”

mean number of time slices used in analysis for each ram: 9

(Note: g corresponds to the “effective instrumented area” of 1.25 m’)

The zonal forces are ranked in ing order and the ity of

is calculated according to P, = i/(i+1). where i is the rank and n is the number of the time
slice. The results of both approaches are presented in Figure 3.11.
‘The lines fitted to the data indicate that the distributions of the zonal force can be

well by an ial distribution as given by Equation (3.8). The parame-

ters fitted to Equation (3.8) are listed in Table 3.3, where y =1/ a . Notice that x, is very
small and the distribution can be approximated by the following equation:

fex)=r™ @.19)

Table 3. 3 Parameters of exponential distribution of critical onal force

Assumption A Assumption B
X 1.2876 0.7235
X 0.07235 0.0793
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Critical Zonal Force (MN)

Figure 3. 11 Probability of Critical Zonal Force

Compared with the results of Johnston (1993), the spatial density of critical zones
from assumption A is higher while the mean area and the force of critical zones are lower.
This is because, in the approach of Johnston (1993), critical zones with zonal pressure of 2
MPa were considered as background pressure and were not included in the analysis. The
present analysis included all the cases. As a result, the present analysis included more
“small critical zones™ which have lower values of zonal area and zonal forces.
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3.4.3 The Probabilistic Model

Approach A: in this case all the critical zones are located within the design area. We as-

sume that the total force on the area is acted through a number of critical zones, each with

Figure 3. 12 Schematic View of A Design with The Critical Zones
a random force (see Figure 3.12). Background pressure is assumed small here and can be

treated separately elsewhere.

‘We approximate the critical zonal force in general by a Gamma distribution:
=l grpies
fe(x)= 5 prxle (320

where fis the scale parameter and v governs the shape of the distribution,

EX)
= 321
e G21)
v=EXp , (.22)

where E(X) and Var(X) are the mean and variance of the zonal force, respectively.

The total load on a design area, Y, is the sum of the critical zonal forces:



r=3x. 63)

where n is the number of critical zones.
If the number of critical zones, n, is fixed, the total load ¥ has a density function
similar to that given by Equation (3.20). Thus

I P
£ l'(v,)ﬂ'y e (3:29)

The mean and variance are given as:
E(N)=nE(X) . (3.25)
Var(Y) =nVar(X) , (3.26)
where ; and v; are defined as in Equations (3.21 and 3.22).
Assuming that the number of critical zones n is proportional to the design area:
n=pa, G2n

where p and a are the spatial density of critical zones and the design area, respectively.
The design pressure on the area is also a Gamma distribution. With a change of scale, the

mean and the variance can be derived as:
E(P)=pE(X) (3.28)

Var(P)= pVar(X)/a . (329)



Note that the mean pressure does not change with respect to the design area and

the variance decreases when the design area increases.

If the number of critical zones is random and follows a Poisson process, the ice
pressure follows a compound Poisson process with mean and standard deviation (Ochi,
1990):

E(P)=pE(X) , (3.30)
Var(P) = p{Var(X)+ E*(X)]/a . @31

If the critical zonal force follows an exponential distribution (a special case of
Gamma distribution with v = 1 in Equation (3.20)), and the zonal force has mean and

632
333)
equations (3.30) and (3.31) become:
EP)=2 . (334)
v
Ve 20
ar(Py=25; . (3.3%)

ay
Approach B: in this case, some critical zones are partially located within the design area,
and the total force is:



L -
r=¥s+¥Tal, (3.36)
-

Figure 3. 13 Modelling of Critical Zonal Forces

where ¥ is the total force, n’ and n” are number of critical zones within the area and on the
border, respectively. x’ and x’ are random forces and & is the proportion of a zonal force
within the design area. & may be random. Tentatively, a value of 0.5 is used for & in the
present analysis. This is consistent with the calibration of the spatial density of the zones
on the border. The above approach is schematically illustrated in Figure 3.13.  The

probability distribution of ice pressure due to the zones within the area and on the border
can be derived respectively in a way similar to that used in approach A. Assuming that
Poisson processes and the zonal forces follow exponential distributions, and assuming that
the proportion of the zonal forces inside the design area is 0.5 for those critical zones on

the border, the mean and variance of the pressure can be derived as follows:
Ep)=L(o+Lp0) (5
P'rh Zapl B &

Var(p)= ”L,(z/o. ). 639



where y is the parameter of the exponential distribution of the zonal force, p; and p; are
the spatial density of critical zones within the border and on the border respectively and a
is the design area.
3.4.4 Monte Carlo Simulation of Critical Zones

If the number of critical zones in a design window follows a Poisson process, the
probability distribution of ice pressure can be derived using a Monte Carlo simulation
scheme described below.

First, we simulate the scenario of approach A (Figure 3.12). For a given design
area, the probability of the number of critical zones is calculated using:

P,v(ﬂ)=$(m)"=" 3 (3.39)

where 7 is the number of critical zones, p is the density of critical zones, a is the design
area. In each simulation, the number of critical Zones is selected randomly from the prob-
ability distribution calculated from Equation (3.39). For each critical zone, the zonal force
is selected randomly from the probability distribution from Equation (3.19). The total
force on the design area is then obtained by summing all zonal forces (Equation 3.23).
The design pressure is the total force divided by the design area. A similar scheme is used
for approach B, in which the number of critical zones in the design window and on the
border are selected randomly, and the total force is calculated using Equation (3.36). The

length of the border is assumea as (a/1.5)"?, where a is the design area.



Simulations using the schemes described above are carried out for design areas
ranging from 0.4 to 6 m’. For each design area, a number of 10000 simulations are carried
out and the results of the pressure are ranked. Figures 3.14 and 15 show the probability of
exceedance of ice pressure on an design area of 0.8 m® from approaches A and B
respectively. The tails of these distributions can be well by an
distribution. By fitting the tails to the exponential distribution described in Equation (3.8),
parameters @ and x; for different design areas are obtained and presented in Figures 3.16
and 3.17. Also plotted in Figure 3.16 is the design curve proposed by Jordaan et al.
(1993a). As indicated in the figure, the results of the present models, approach A in par-

ticular, agree well with the proposed design curve. Note that for design areas less than
0.59 m?, the design value for a becomes a constant while those from the present analysis
continue to increase with the decrease of the design area. This is because the present
analysis assumes that critical zones are point loads, which is not accurate when the design
area is very small.
area” have also been carried out and the results are included in Figures 3.16 and 3.17.
Note that there is no significant change in result due to the change of density from active
instrumented area to the effective area.

Results from Figures 3.14 to 3.17 suggest that the probabilistic distribution of local

pressure can be i by an ial distribution with a@and x; as

given in Figures 3.16 and 3.17. Appropriate consideration of exposure is needed in
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applying the above resuits to a design problem. As mentioned previously, the above
analysis is based on time slices corresponding to peak pressures during a ram. In choosing
the design load, we are interested in the maximum pressure for a certain return period. To
be consistent with the previous analysis on the ramming data of the Kigoriak and the Polar
Sea by Jordaan et al., (1993a), we will use a ram as the base for our maximum pressure.
The probability distribution of the maximum pressure during a ram can be derived from its
parent distribution (pressure for each time slice) using the procedures described in Section
33. Assuming that the number of peak pressures for each ram follows a Poisson
distribution with a mean number of 9 peak pressures per ram (see Table 3.2), the
probability distribution of the maximum pressure per ram yields a similar form to that
described in Equation (3.8) with a modification to xo:

x5 =x, +alog(9) .
Values of x, are presented in Figure 3.18.

Results presented in Figures 3.16 and 3.18 together with Equation (3.8) give the
probability distribution of the maximum pressure per ram. In general, the results from
approach A, with the parameters of critical zones calibrated from assumption B, are closer
to the proposed design curves, whereas approach B gives more conservative results.
Note that the proposed design curve was derived mainly from the data set of the ramming
trial of Kigoriak, in which the pressure was measured by shear gauges and forces near or
on the edges of the instrumented pane! were not picked. From the view point of structural
response, forces near the edge (support) have little effect on structural
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response compared with those near the midspan and therefore can be neglected. To be
consistent with the previous analysis on Kigoriak by Jordaan et al. (1993a), we recom-
mend to use approach A in modelling the critical zones.
The design pressure corresponding to different rams can be modeled according to

the extremal analysis presented in Section 3.3.

3.5 Exposure

In their approach to the local ice loads, Jordaan et al., (1993a) indicate that the key
issue in extremal analysis is the exposure. It is important to examine the extent to which
the structure is exposed to a natural hazard. For a ship structure interacting with ice, the
exposure includes the duration of interaction, the area of contact, the position on the ship

and the number of rams or the period of interactions. The present section investigates the



effect of duration of the interaction. This is achieved by a comparison between the ship
ramming with multi-year ice in the Canadian Arctic and the icebreaking in the Baltic Sea.
The effects of contact area, position on the ship and the number of rams are discussed later
in Chapter 6.

The duration of the interaction is, in general, the length of an individual event.
Figure 3.19 illustrates the two extreme cases of durations. In the first case (Figure 3.19
a), the duration of the impact may be a few seconds, whereas in the second case (Figure
3.19 b) the interaction is continuous and may last for a few days. In both cases, we are
interested in finding the maximum load during the event. In the first case, the maximum
10ad, X, is the maximum value among x; to x;, while in the second case the maximum
103d, Yo is the extreme value among y; to y:. The probability distribution for Xme. and

Ymax can be derived from their parent dit i i ions of x and y),

Since yma is the extreme value from a larger number of random quantities, its probability
distribution tends to be more peaked, with smaller variance. This is illustrated schemati-
cally in Figure 3.19 (c). To further investigate these two cases, we examine the probabil-
istic characteristic of the ice ramming force for ships in the Canadian Arctic and the ice
pressure on ships of the Baltic. An ice ram in the Arctic usually lasts a few seconds and is
represented by the first case in Figure 3.19. The probability distribution of the maximum
pressure per ram is analyzed in Section 3.3. The icebreaking for a ship in the Baltic sea
might last a few days. For instance, a trip for an ice tanker from Baltic Proper to the
Bothnia Bay takes two days. The probabilistic distribution of the maximum icebreaking

pressure per trip is analyzed in the next subsection.
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3.5.1 Statistics of Ice Loads in The Baltic
The statistical nature of ice loads on the ship hulls in the Baltic has been studied by
a number of researchers, including Varsta (1983) and Kujala (1991, 1994). This analysis
uses the results of an approach by Kujala (1991). The approach was based on the full-
scale empirical data. Gumbel [ distribution was used to fit the daily maximum ice force
measured during one winter in various sea areas. The parameters of the asymptotic
distribution are assumed to be related to the winter maximum ice thickness, also taking
into account the equivalent thickness of ridges. Based on this relationship, the life time
load characteristics are evaluated on the basis of the published data of maximum ice
thickness during a long time period. The approach was applied to the chemical tanker
M/S KEMIRA of ice class [A Super. The most probable extreme forces for the bow
frame as a function of return period were presented in Figure 14 of the original paper, and
are shown here in Figure 3.20.
In order to compare the icebreaking data with those of the Canadian arctic ships,
of the i ion to the same format (i.e. the pdf of yearly maxi-

mum) is needed. We begin this by examining the return period 7, curve for the Bothnia

Bay. The curve can be represented by the following:

(3.40)

where

Fly,) = exp(-exp(~c(y, —u)) . (3.41)

s
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Figure 3. 20 The most probable extreme loads obtained as a function of days in ice in

various sea area for the bow frame (FFR2) (From Kujala, 1991, Figure 14)

and T, represents the unit time for measured maximum load, a half day (0.5) was used in
Kujala (1991). In Equation (3.41) u is a characteristic largest value and ¢ is an inverse
measure of the dispersion of the measured maxima. In the present analysis, ¢ and u are
calibrated based on the curves presented in Figure 3.20. Choosing two points on the
curve, (T=1000, y,=660) and (T=1, y,=105), substituting them in to Equation (3.40)
with manipulations yields:

€=00130, (3.42)

7



u=7688 . (3.43)

In the following, we transform the distribution of maximum force y,, (Equation
(3.41), into the distribution for the maximum local pressure x, . Assuming that ice and ship
hull contact through a continual ice belt of a height 4 (0.3 m was used in Kujala, 1991),

the local pressure can be expressed in terms of the maximum force:

-
neke o) G.49)

where 5 = 0.35m is the frame spacing and the constant 1000 converts pressure unit kPa to
MPa. Note that the local pressure described above is the design pressure, which is differ-
ent from the pressure measured in critical zones. The latter is much higher and is confined
to much smaller area. Substituting Equation (3.44) into Equation (3.41) with manipula-

tion yields:
F(x,) = exp(-exp(~(x, ~x,)/ @) , (3.45)

where
= lootlwnc f S
%=y m‘:kh ) (347

Equation (3.45) gives the maximum local ice pressure on a half day basis. Assuming that
the ship travels in the Bothnia Bay for a number of 7 unit times (half days) in a year, the

yearly maximum pressure can be then derived, according to the extremal theory, as:
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G(2) = F(=)" = exp(-exp(~(z - x, - x,)/ @) (3.48)
where G(z) is the cdf of zand = is the yearly maximum pressure and x, = a log(n).
3.5.2 Comparison of the Different Duration of Interactions

In the following, we compare the probabilistic distributions of ice loads for the
icebreaking in the Baltic and the ship ramming with arctic multiyear ice. The yearly
maximum ice pressure derived above was plotted in terms of probability density in Figure
321 for different values of n for a contact area of 0.1 m’. Note that the number of ice
navigation days for the life time (20 years) in Figure 3.20 for Bothnia Bay was 236, which
suggests that the yearly ice navigation time is 11 days, yielding n = 22. The probability
distributions for a similar ship in the Arctic are calculated using the results reviewed in
Section 3.3 and are plotted in Figure 3.21. The variance of local pressure on Canadian
arctic ships is much higher than that of the Baltic ships. This result is consistent with the
arguments presented in Figure 3.18. The design ice loads according to the Finish Rules
and for the ASPPR Proposals are also plotted in Figure 3.21. The local pressure for the
Canadian Arctic Class ships is much higher than that of the Baltic ships.

3.6 Concluding Remarks

Critical zones were considered as essential elements in the ice-ship interaction

process. The total ice force on a design area was assumed to be applied through a number

of critical zones, i ona pressure. S itical zones could be
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Figure 3. 21 Comparison Between Canadian Arctic Class and Baltic Class
located on the border of a design window and only a portion of its force is inside the de-
sign window. To i i this inty, two namely appi hes A and
B, were proposed. Calibration of the parameters of critical zones from ship trial data was

also difficult due to the limit in size of instrumented panel and the spatial resolution of
pressure sensors. Two assumptions were made in the calibration. Since the force near the

edge is negligible from the view point of structural response, and to be consistent with the

”



previous analysis by Jordaan et al. (1993a), approach A is recommended for the modelling
of critical zones.

force on a design area is a compound Poisson process with an exponentially distributed
zonal force, the probability distributions of the ice pressure are derived, using Monte Carlo
by the ial di ion and the for this ion are derived. The

probability distribution for the maximum local ice load per ram is derived from the results
of the model of critical zones.

The spatial resolution of the pressure sensors and the size of the instrumented
panel for the Louis St. Laurent data are limited. A further analysis of ramming data from
other ships such as the Polar Sea would be beneficial to the present analysis. This is be-
yond the scope of present work. The ice pressure for certain design conditions (number of
rams per year) can be obtained following a procedure employed in a previous analysis by
Jordaan et al., (1993a).

Effects of exposure are discussed with emphasis on the length of the interactions.
The probabilistic distributions of the local ice pressure for two extreme cases, namely the
ice ramming in the Canadian Arctic and the icebreaking in the Baltic, are examined. The
ice pressure for the ice ramming in the arctic is much higher, with a larger variance, than

those of the Baltic ships.



Chapter 4

Structural Strength

4.1 Introduction

The structure of a ship’s hull is a complex combination of plating, stiffeners and
supporting frames. The plating together with the stiffeners make up a stiffened plate. The
stiffened plate together with the supporting frames and stringers compose a larger panel
(or a grillage). Consequently, the complete vessel can be modelled structurally as a
collection of interconnected and interacting panels. In general, there are two kinds of ship
structures, namely transverse and longitudinal structures, which have transverse and lon-

There are three levels of loading and responses associated with a ship structure.
First, the plating deflects relative to the stiffeners and transfers the load to stiffeners; sec-
ond, the stiffeners act as beams to carry the load to the boundaries such as supporting web
frames or stringers; third, the supporting web frames and stringers yield and the entire
panel deflects, transferring the load to the bulkheads and decks.

The complex structural combination and the associated response to the applied
load make it desirable to divide the structural strength into three components. These are
primary, secondary and tertiary (Paulling, 1988). The primary, or global, strength is con-



concerned with the hull girder. For this classification, the hull is treated as a free-free
beam. The major strength members of the hull girder are longitudinal members extending
over half of the ship length such as the main deck and the keel. Loads affecting the hull
girder are generally global impact loads. An example is the maximum bow force resulting
from the collision between the ship hull and an ice feature. The secondary, or semi-local
strength is concerned with the strength of a large plate panel (or grillage), generally taken
between two stringers or bulkheads or deep web frames. The tertiary, or local, strength is
concerned with the strength of plating between two stiffeners or two frames. This region
‘must resist localized ice loads, especially the critical zones that resulted from the ice failure
mechanism described in Chapters 2 and 3. This region is of importance in the design of
plating and is the focus of the present study.

Figure 4.1 schematically shows a transverse structure subjected to ice impact
loads. The ice loads are highly localized within critical zones, which move from place to
place and change in intensity. The responses of the structure are very complicated. The
figure also shows two idealized cases. First, the ice load is uniformly distributed between
two frames. The plating can be modelled as a long plate loaded by uniform pressure
(referred to as the long plate model). This idealization is used in the ASPPR Proposals.
Second, the ice load is applied through an “ice belt”, within which the ice pressure are
uniform (here, referred to as the patch load model). The second idealization is close to
reality when the ice features are first year. This is used in the formulation of the Finish-

Swedish Ice Class Rules (1989).



5 \

{ \ = t-shar ¥
~—— \ \: pra

\ \— -— .,{E’l* -

Double Bottom

Figure 4. 1 A Ship Panel Subjected by Ice Impact Loads

The long plate model and patch load model are easy to implement in design. Since

the realities are much more i there are inti iated with these two

models. First, the design loads are different from real ones; second, the modelled
responses are different from the real structural deformations. Understanding of these
uncertainties are vital in calibrating a design rule such as the ASPPR Proposals.

In this chapter, the long plate model is reviewed in detail. In particular, three fail-

ure isms, i.e., three-hi i set and rupture, will be analyzed.

The patch load model will be analyzed using the yield-line theory. This analysis is limited

to plastic collapse. Other mechanisms are considered later in a finite element analysis. A



analysis. A plate panel, loaded by critical zonal forces is analyzed using the finite element
method. Typical load cases are analyzed. More loading scenarios will be generated from
the statistics of critical zones and be analyzed using the finite element method (FEM) in
Chapter 5. The design strategy for plating is discussed, with focus on associating the
design ice load in the design model to the yearly maximum ice load, which can be
predicted by the method presented in Chapter 3.

We begin our analysis with the long plate model.

4.2 The Long Plate Model

We define the long plate model as a long plate loaded by uniform pressure. Usu-
ally, this plate fails in three limit states, namely plastic collapse, permanent set and ultimate
rupture. The plastic collapse is defined as the formation of three hinge mechanism and
resuits when the plate is assumed to have no in-plane resistance against the load. With
fully supported, ductile steels, this mechanism is the onset of minor denting. Permanent set
is defined (Hughes, 1988) as the deflection of a plate involving plastic bending strain along
its boundaries, ie., frames and stringers. The edge hinges are responsible for the
commencement of the permanent set. Plastic collapse and permanent set relate to the
serviceability of the ship. Ultimate rupture is defined as reaching the maximum membrane
capacity of the plate. This relates to the safety of the ship. There is considerable reserve
of strength beyond the three hinge limit in steel plating provided membrane effects can
occur. Reliance on membrane action assumes that the adjoining.
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structure provides adequate lateral restraint. This is schematically illustrated in Figure 4.2.
We begin our analysis with two-hinge and three-hinge failure.

4.2.1 Two-Hinge and Three-Hinge Failure

Two-Hinge Failure: Figure 4.3 shows a long plate, which is fixed at both ends and
loaded by uniform lateral pressure. The plastic hinges form when the bending moments at
the edges reach the plastic bending moment:

M:-%ﬂzi=~u,. @y

where Py is the critical pressure for edge hinges, 7 and s are defined in Figure 4.3 and M,
is the plastic bending moment. For a long plate, using the Hencky-von Mises yield crite-

rion, M, can be expressed as:

. “2)

where o; s the yield stress and v; is the plastic Poisson’s ratio. For steel with v,=0.5, P

can be derived from equations (4.1) and (4.2) as:
Py =us4a,(3' : “3)

The corresponding deflection at the midspan, Guax, is:

5 Bust0=v)

- 2EF (4

For v,= 0.5 Equation (4.6) becomes:
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Figure 4. 3(a) Schematic Diagram of a Plate With Fixed Ends and Loaded by Lateral
Pressure, (b) Distribution of Bending Moment.

where v is the Poisson’s ratio in elastic range.

Three Hinge Mechanism: Once two edge hinges form, the plate continues to bend

until the third plastic hinge forms at the midspan as shown in Figure 4.4. Considering the

straight bar ism and ing the force, the virtual work equation
gives:
5 s 2 5Py b _
M M M0 (4:3)
which yields:
16M, 40, A
=—t ol L 4.6
A== =:]l~v,+v=(:) “9
o
p,,,:a.sza,(;) : @n
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Figure 4. 4 Schematic Diagram of Three Hinge Mechanism.

Serviceability: The deflection at midspan, G, can be used as the criterion for the serv-
iceability of the plate. Ayyub et al. (1989) assumed that & = 21 is 2 reasonable limit for
plating. Daley et al. (1991) suggest that ... = 0./s is a reasonable limit state. Brown
(1993) showed that using S = 21 results in plate thicknesses that are too thin for stiff
(high s ratios) plates while taking Gmee = 0./s results in thin plate thickness for less stiff
plates. As a result, a blended function was proposed. For simplicity, the three-hinge
collapse (Equation 4.7) was used as the limit state of serviceability in the present study.
This is consistent with a study by Nessim et al. (1992) but it could be conservative as
suggested by Brown (1993).
4.2.2 Membrane Action and Ultimate Rupture

Once three plastic hinges form, the plate begins to collapse. This collapse is,
however, restrained by the membrane force due to the fixed boundaries. Ignoring the
flexural stiffness of the plate (assuming pure membrane action), the equilibrium condition
gives ( see Figure 4.5):

%x-l—;——ﬁ

F, =0, (48)



Figure 4. 5 Schematic Diagram of Membrane Action

where &, and Fj are the deflection at x and the horizontal component of the membrane
force, respectively (see Figure 4.5). The maximum deflection at midspan can be obtained
by substituting x= s/2 into Equation (4.8):

Bamts (49)

~ 3

Based on Equations (4.8) and (4.9), Ratzlaff and Kennedy (1985) derived the load as a

function of the deflection at midspan for elastic membrane action as follows:

64(50) _E 1
Pl k] . 4.10]
3( s ) 1-v) s +@s,..) .19

where vis the Poisson’s ratio.

When the load reaches the yield limit and the full plastic membrane action is de-
veloped, the relationship between the uniform pressure and the deflection at midspan can
be derived as:

80,0, 1

P= R @.1n
:71 -V, +v,} S5+ @6



Figure 4.6 Diagram of Action Failure Mechani

Assuming full plastic membrane action and that the deflected plate is a circular arc
(see Figure 4.6), Nessim et al. (1992) derived the equilibrium equation as:

2Fsin@=Ps. (4.12)
The shape of a circular arc gives:
siné x
5 " (4.13)

where &, is the nominal membrane strain in the plate at rupture and £=0.05 was suggested

by Egge and (1991) and et al, (1974). ituting £=0.05

into Equation (4.13) gives #=31°. Substituting this value of & into Equation (4.12) and

rearranging gives:
B= 2Fsin(31°) - LO3F, (a.14)
7 s



Figure 4. 7 Mechanical Properties of Material
where F, =oyt is the membrane force which corresponds to the ultimate rupture and
o, =(,+a,)/2 for an elasto-plastic material was suggested by Nessim et al., (1992)

(see Figure 4.7). Substituting F, into Equation (4.14) gives:

P,=0515(c, ""(9 . .19
and the corresponding deflection at midspan:
5L, =01679s (4.16)

Equation (4.15) was derived by Nessim et al. (1992) as the criterion for the ultimate

strength of the plating.

4.2.3 Finite Element Analysis of A Long Plate
In the following we analyze the response of a long plate illustrated in Figure 4.3
(a), using the finite element method. Particulars of the plate are determined from a design

in Chapter 6 and are given in Table 4.1.

9



Table +. | Particulars of the plate beam

Plate Thickness (/) 32mm
Plate Span (5) 600 mm
E 190 GPa
Steel Grade EH 36
Yield Stress ( or) 388 MPa
Ultimate Stress ( ov ) 537 MPa

The analysis was carried out using the finite element package ABAQUS. We as-
sume that the material is bilinear as illustrated in Figure 4.7, and account for the membrane
forces by fixing both ends of the plate. This boundary condition will ensure the membrane
effect in both elastic and inelastic range. Figure 4.8 shows a section of the deformed plate
when loaded by an uniform pressure of 33.6 MPa. The figure also shows the distribution
of the principal strains. Rupture is most likely to occur near the support where the
principal strain reaches 25%, a value suggested by Shackelford, (1988), for tensile failure
of ductile steel. The average strain across the span is 5%. This value corresponds to the
nominal membrane strain at rupture reported by Egge and Bockenhauer, (1991) and
McDermott, et al., (1974). In the present analysis, we use 5% average strain as the crite-
rion for ultimate rupture.

The pressure against the deflection at midspan of the plate was evaluated and
plotted in Figure 4.9. For comparison, the plate with no lateral restraint at one end was
also analyzed. The load-deflection curve is plotted in Figure 4.9. The figure shows that,

when lateral restraints exist at both supports, rupture occurs at a pressure much higher
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Figure 4. 8 A section of the deflected plate and the distribution of the principal strains.
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Figure 4.9 lllustration of Different Failure Mechanism
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than that of three hinge collapse. The figure also shows the pressure-deflection for the
pure membrane action from equations (4.10) and (4.11). Note from the figure that the
model of pure membrane action underestimate the pressure at rupture by a factor of 1.3
‘This is because the pure membrane action model ignores the flexural resistance. ~ Figure
4.9 also shows the pressures at which 2-hinges and 3-hinges occur from equations (4.3)
and (4.7), respectively. The pressure of 3-hinge collapse corresponds to a point on Curve
C (results of FEM) with maximum curvature of the convex. This point is defined in our

finite element modelling as the plastic collapse.
4.3 The Patch Load Model

In this section, [ will analyze the response of plating under an idealized load, .g.
ice belt, which is shown in Figure 4.1. T will limit my analysis to the plastic hinge collapse.

Membrane action and rupture will be considered later in a finite element analysis.

4.3.1 Model Development

1 approximate the plating as a panel with fixed boundaries and loaded by a patch of
lateral pressure. This is shown in Figure 4.10. The panel corresponds to the ship plating
supported by intersecting stiffeners. The stiffeners can be beams, frames or stringers. [
assume that these stiffeners are much more rigid than the plate (especially for a panel in
the bow region) and provide sufficient lateral restraint and resistance to rotation at the
plate boundaries. The loaded area in Figure 4.10 extends the entire frame spacing and has

P



Figure 4. 10 An Idealized Plate Under Lateral Pressure.

Since [ am mainly interested in the failure of the plate, [ will consider the plate as a
perfectly plastic body which does not undergo deformation before the yield condition is
reached. The difference between perfect plastic and elasto-plastic behavior is schemati-
cally illustrated by the stress strain relations in Figure 4.11. [ will use the upper-bound and

lower-bound theorems of plasticity which can be enunciated as follows (Baker, 1956):

* Upper-bound theorem: If the work of a system of applied loads with an associated
field (collapse i is equated to the

corresponding internal work, then this system of loads will cause collapse of the

structure.
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* Lower-bound theorem: If a system of generalized stresses can be found that is in
equilibrium with the applied loads and that nowhere violates the yield condition, then
the structure will not collapse.

The limit analysis solutions can be obtained by either maximizing a lower bound or
by minimizing an upper bound. The solutions are approximate ones and provide sufficient
accuracy for engineering applications.

In the following, we will use the upper bound theorem to determine the strength of
the plate shown in Figure 4.10. I will limit our analysis on the plastic collapse of the plate.
I assume that the plate is perfectly plastic as we stated earlier and ignore elastic
deformation in the plate. I assume that the panel deforms into a tent shape once the plas-
tic limit is reached as suggested by Wood (1961). In the case that no lateral restraint ex-
ists at the boundaries, such a tent shape forms a mechanism of collapse. In our case, the
lateral restraint is provided and the formation of a tent shape marks the beginning of large



Table 4. 2f3 values for different cases.
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Figure 4. 12 lllustration of Three Possible Failure Patterns.
deformations. There are five yield lines inside the plate and four yield lines at the
boundaries. Four of these yield lines initiate from the comer and intersect with the one
located in the center of the plate. There are three possible failure patterns, designated as
cases 1, 2 and 3 as shown in Figure 4.12. The three cases differ from each other by the
patterns of the yield lines relative to the loaded area. This can be characterized by the

range of B angle given in Table 4.2
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Governing Equation: the governing equation for each case can be obtained, according
to the upper-bound theorem, by equating the external work of the lateral load to the inter-
nal energy dissipated. Assuming that the plastic deformation is localized at 7 generalized

hinge lines, this equation can be expressed as:
[oWaa=3 M6, + N ), . @1
. <

where p is the pressure, # is the vertical deflection, £ and @ represent the concentrated
elongation and rotation along the hinge line /, respectively, and M, and N are the full
plastic moment and the axial force normal to the hinge line, respectively. For an isotropic
plate, they are:

A 1:—}«,1-‘ and (@18)

N,=op. (4.19)

where o, is the yield stress and  is the thickness of the plate.

Internal Energy: the internal energy due to the deflection of the plate can be derived
following Wiernicki (1987). For case | and 2, the result is:

1
tan(B)

D= %{M[u ]»z%m[u-mﬁhﬁ]} , *20)

where D is the total internal energy, ! = L s, W, is the maximum deflection at the central

hinge line. For case 3, the total energy is:
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D=m{m[}mnw]'m~.,[%vmm-——ﬁ ’ @an

where the parameters are defined as before.

External Work: the external work by the lateral pressure can be obtained by evaluating

the integration term in the left hand side of Equation (4.17) and can be derived as:

forcase 1,
U=pW;s % . 4.22)
for case 2,
U=pW,s*f.(h1B) and (4.23)
for case 3,
U=pHs f(hLp) . (429

where U is the total external work, W, is the maximum deflection at the middle hinge line,
p is the uniform pressure in the loaded area, s and J are defined in Figure 4.5. Parameters
h =H'sand | = L’s in Equations 4.7 to 4.8 are normalized dimensions shown in Figure 4.5
and fih.l f) and fi(h.L B) are functions of h./ and §and are given below:

fGLp= —'-{%(mp-l+h)‘[unﬁ+z(/-h)]~%(l-h)=h+(1+h-w.p)

tan’ 8

(4.29)
(mﬂ_l’h{(unﬂ-loh)(zhh—zunﬂ)‘é(b_h)]}



S LB = m{ G- K 5-2) - anp-2n)

1hGuang-3+2h) 1
6 (2anf-2+h)

(4.26)
o]

Solutions: by equating the external work to the internal energy, the pressure for plastic

collapse can be derived as:

for case 1:
xu,,[n m‘w)}zqu[y-un(m. m'( ﬂ)]} ; (#27)
for case 2:
p oNn[-l an(f)+—— ] (4.28)
xan(ﬁ)l )
and for case 3:
PN - w[l+un(p)]+2WN 2 - w2
SAmLA| U T (@) |

Once the expressions of pressure at collapse (Equations 4.27 to 4.29) are obtained,

the actual pattern of plastic collapse can be derived by minimizing p with respect to 3

2o, (4.30)

and the corresponding minimum pressure causes the collapse of the plate. Tentatively we

designate this pressure as the strength of the plate, p,.
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A theoretical evaluation of Equation (4.30) is very tedious and sometimes impos-
sible. Instead, a numerical evaluation is more convenient. [n the present study, Equations
(4.20) to (4.30) were implemented in a computer program using matlab and the results
are presented in the following section.

4.3.2 Results

In the following, we use the model developed in the preceding section to examine
the response of a plate with different aspect ratios (/ = L 5) and with different width of
loaded area (h = H’s). The pressure, p, is normalized with respect to the frame spacing
and the full plastic moment ( ps’ My ). Figure 4.13 shows the variation of normalized
pressure against f values at / = 2 and h = L.8. As indicated by the figure, the pressure is
minimum in case 2 and corresponds to a # value of 52 degrees. This minimum pressure
corresponds to the solution of Equation (4.30) and is designated as strength p,. In Figure
4.14, values of p, for different aspect ratios and different load widths are presented. As
shown in the figure, p, converges to the one way action of three hinge mechanism
(equivalent to a plain strain beam). To investigate the effect of membrane force, we im-
pose a deflection , Wp, at the midspan. This deflection provides a membrane effect there-
for increase the strength of the plate. The strength p, against #, ( normalized with respect
to plate thickness) are plotted in Figure 4.15.

101



s M,

70
=2 ——ocasel P
h=18 oty H

60 We=0 ——case} F

50

40

30

“o 05 15

B (rad))

Figure 4. 13 Variation of Normalized Pressure at Collapse against f

M,
350+

rc Wo=0
—
s
‘assuming fhat deflechon.
o e B, 520
‘when the plase fasls

0 0.5 1 15 2 25 3
h(=H’s)

Figure 4. 14 The Normalized Strength of the Plate with Different Loaded Width.
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4.3.3 Finite Element Analysis

In this section [ analyze the plate panel of Figure 4.10 using the finite element
method. Particulars of the panel are chosen based on an example design in Chapter 6;
theyare :s=06m,L=12mand =32 mm. Four load widths are used in the analysis.
They are: H =02, 0.3, 0.5 and 1.2 m, respectively. Figure 4.16 shows the deformed
panel at plastic collapse for # = 0.3 m. Note the deformation of the plate is more local-
ized in the central region compared with the roof shape suggested in Figure 4.12. Pres-
sure against displacement at midspan are plotted in Figure 4.17. Pressures at plastic fail-
ures are identified. These loads are plotted together with the results from the yield line

model (Equations 4.27 o 4.30). The results are shown in Figure 4.18. Note that the pres-



pressure predicted by yield line theory is higher than that of the finite element resuits. This
is because the yield line model assumes that the deformed shape of the panel is a roof
shape, which imated the true i The real ion of the panel is

more localized in the central region.
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Figure 4. 17 Pressure vs. displacement at midspan
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Figure 4. I8 Strength at various load widths

4.4 Structural Response to Critical Zonal Forces

In this section, we use the finite element method to analyze the response of a plate
panel to critical zonal forces. The panel is shown in Figure 4.19. Particulars of the panel
are:s=0.6m, L =12mand =32 mm. Material properties of the steel are given in Ta-
ble 4.1. The loads on the panel are applied through a number of critical zones, which are
modelled using squares of uniform pressure. They are shown schematically in Figure 4.19.
The number of critical zones could be one, two or many. In this section, we investigate
typical cases with one, two and three critical zones. More load cases are generated in

Chapter 5 from statistics of critical zones and analyzed by the finite element method.
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First, we examine the case in which one critical zone, with an area of 009 m’. is
located at the center of the panel (Case | in Figure 4.20). Figure 4.21 shows the de-
formed panel when the pressure in the critical zone reaches 72 MPa. The figure also

Fixed Boundarues

LAt s

Figure 4. 19 A plate Panel Loaded by Critical Zonal Forces

shows the distribution of the principal strains. Note that the maximum deformation occurs
at the mid section (A-A), when the average membrane strain reaches the limit of 5%. This
is the section where plastic collapse and rupture initiates and is referred to, in the present
analysis, as the dominant section. Such a section fails in a way similar to that of 2 long
plate, loaded by strip loads (e.g., see Case 4 in Figure 4.20). We refer to this plate as the
equivalent long plate. An equivalent long plate, (Case 4 in Figure 4.20) is also analyzed.
The width of the strip is the same as that of the critical zone. The maximum strain occurs
near the support, which is the same as the dominant section of the panel. The average
strain over the span reaches 5% at a pressure value of 46 MPa, which is lower than that
of the dominant section. The difference is caused by the lateral supports of the panel. The



pressure against the displacement at midspan is piotted in Figure 4.22 for both cases
Plastic hinge collapse occurs at 16 MPa and 8 MPa for the dominant section and the long
plate, respectively. To simplify analysis, the dominant section of Case |

Cases
long plate

Figure 4. 20 Selected Load Cases

can be analyzed by the long plate model, Case 4, with modification factors accounting for
lateral support. Factors affecting the lateral support include the size and the location of
critical zone, which are investigated in more details in Chapter S.

For the case of two critical zones or more, the structural response is more compli-
cated. Critical zones may be aligned on the dominant section (Case 21), along the frames
(Case 32) or adjacent to, or overlap each other (Case 39). Figures 4.23 to 4.25 show the
deformed panel and distribution of principal strains for Case 21, Case 32 and Case 39,
respectively. For Case 21, the plate fails at the dominant section. The dominant section
may be approximated by the long plate in Case 24. For Case 32, the dominant section is
located within the critical zone a,. In addition to lateral support, the failure of the section

is also affected by the presence of other critical zones a; and as. Such effects are investi-
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are investigated in detail in Chapter 5. Case 39 is more complicated. It can be
approximated in the way of Case 21 or 32, depending on the extent of overlap, which is

also investigated in details in Chapter 5.

dominent faiure section

Figure 4. 21 Deformed panel, showing contours of principal strains (Case 1)
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Figure 4. 22 Pressure vs. Displacement at midspan
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Figure 4. 23 Deformed panel and distributions of principal strain (Case 21)

Figure 4. 24 Deformed panel and distributions of principal strain (Case 32)
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Figure 4. 25 Deformed panel and distributions of principal strain (Case 39)

4.5 Design Strategy
In the preceding section we concluded that a plate usually fails in a dominant sec-
tion, which can be approximated by a long plate. For simplicity, in practical design, the
load is considered uniform. This resuits in uncertainties in the design model, which will be
investigated in Chapter 5. The long plate model is easy to implement in a rule based
design and was used in design codes such as the ASPPR Proposals. In the ASPPR Pro-
posals, the plate thickness was derived based on the two-hinge mechanism. The most
recent revisions to ASPPR Proposals (Carter et al., 1996) proposed a design ice load as:
DPP = AF xCF x OF x (6.4 +(0.044 x (D" + D°* x P®)) / 5 431)
where DPP is the design pressure in MPa, AF, CF and OF are area, class and frame ori-
entation factors, respectively. In Equation 4.31, D is displacement in kilotonnes, P is the

engine power in megawatts, and s is the frame spacing. The most sensitive parameter for
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for design pressure is the frame spacing. Design pressures against frame spacing for three
arctic class CAC1 ships are plotted in Figure 4.26.

Carter et al., (1992) suggest that the design load proposed in the ASPPR Propos-
als corresponds to the average value of the yearly maximum ice pressure. Recall that the
probability distribution of yearly maximum ice load can be approximated by a double ex-
ponential form Equation (3.13), and the corresponding average of yearly maximum pres-
sure is:

% = a(ln(n) +In(r)}+577) (432)
where a is dependent on the design area (see Equation 3.9), # is the number impacts per
year and r is the proportion of hits. Suggested value of # for CAC 4 is 10000 and r is
0.46. To explore the relationship between the proposed design pressure (Equation 4.31)
to the yearly maximum (Equation (4.32), we calculate the yearly maximum pressure on
plate panels with different aspect ratio. Average maximum ice pressures for plate panes
with different aspect ratios are plotted against frame spacing in Figure 4.26. Note the av-
erage of the yearly maximum for the panel with an aspect ratio of 1.5 matches well with
the proposed design values. To be consistent with the present design rules, it is suggested
that the yearly maximum ice load be estimated based on a design area of sx1.5s, where s is
the frame spacing. The limit state can be plastic collapse or rupture. For the first, the
average of the yearly maximum load should be used as the design pressure. For the latter
case, the yearly maximum with a specified probability of exceedance (e.g. 1%) should be

used.
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Figure 4. 26 Analysis of design pressure for CAC! Vessels with r =0.46, n = 10000

46 Co and

The components of a ship structure and associated strength were reviewed. A
long plate, loaded by uniform pressure (referred as the long plate model), was analyzed.
Two limit states affect the design of the plating, i.e. plastic collapse and ultimate rupture.
The first relates to the serviceability while the latter relates to the safety. There is consid-
erable reserve of strength beyond the three hinge limit in steel plating provided membrane
effects can occur. An idealization of ice load as an “ice belt’ is investigated. A model was
developed using yield line theory. This model is limited to the plastic collapse and can be
only used for serviceability design. The long plate model is easy to implement and is
recommended as the design model.
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The realistic ice load is more complicated than the idealized uniform pressure.
which results in the uncertainties in the design model. Structural response to critical zonal
forces are investigated. A plate panel usually fails at a dominant section, which is affected
by the lateral support and the interactions between critical zones. Factors affecting the
dominant section are investigated in more details in the next chapter.

It is important to associate the design pressure in the long plate model to the yearly
maximum ice load. By comparing the yearly maximum ice load from the method
presented in Chapter 3 to the new formula in the ASPPR Proposals, a design area of
sx1.5s, where s is the frame spacing, is suggested for estimating design ice load. The un-
cenainties of the design model due to the uncertainty of the ice loads are investigated in

the next chapter.
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Chapter 5

A Probabilistic Analysis of The Design Model

5.1 Introduction

In Chapter 4, we proposed a design model, which treats the plating as a long plate,
loaded by uniform pressure. This model is easy to use in practical design. Realistic ice
loads are more complicated than the idealized uniform pressure used in design. They are
highly localized, move from place to place and change in intensity. This results in an un-
certainty in the design model. [f the resistance from the design model is Ry, the true re-
sistance of the plating can be represented as:

R=BR, . [CRY]

where R is the true resistance of the plating and B is a factor of uncertainty associated with
the randomness of ice load. B is a random quantity and we will investigate this factor in
this chapter.

First, we investigate various load scenarios using the finite element method. We
approximate ice loads by a number of critical zones, each with a random force, area and
location. The dominant failure section in each case is identified, and the section is com-

pared with “an equivalent long plate”, which is loaded by strip loads. Factors affecting the
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affecting the failure of the plate, such as the size and location of critical zones and the
interaction between them are investigated. Second, a model of a long plate, loaded by
non-uniform loads is developed. This model can be used to predict the plastic collapse
and the ultimate rupture of the equivalent long plate. Third, a scheme of Monte Cario
simulation is proposed to simulate the uncertainty in design model of plating.

We begin with our finite element analysis of structural response to realistic ice
loads.

5.2 Structural Response to Realistic Loads

In this section, we further our analysis on the response of the plate panel described
in Section 4.4 (see Figure 4.19; material properties of the steel are given in Table 4 1)
We assume that the ice loads are applied through a number of critical zones, each ap-
proximated by a square with uniform pressure.

The number of critical zones, the area of critical zones, the zonal forces and the
locations of critical zones are important factors in the response of the plating. We will use
the properties of critical zones from assumprion A of Chapter 3 .a the present analysis.
The average number of critical zones is 0.893 zones/m”. The number of critical zones on 2
panel can be modelled as a Poisson process. Excluding the case of zero critical zones, the
number of critical zones on a panel is a conditional Poisson process. Figure 5.1 shows the
probability distribution of the number of critical zones on a panel of 0.72 m’. Note that
one critical zone has the highest probability, and the probability of five critical zones is

very small.
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Figure 5. I Probability of the Number of Critical Zones on a 0.72 m Panel

The average area of a critical zone is 0.08 m’, and the probability distribution of
2zonal area from Louis St. Laurent data is shown in Figure 5.2. The zonal forces range
from 0 to 3.45 MN and have an exponential distribution (see Figure 3.11). The data show
that the average zonal forces increase with the zonal area. This is shown in Figure 5.3. In
We use three critical zonal areas, i.e. 0.04, 0.09 and 0.25 m’, representing small, average
and large size critical zones, respectively.

§.2.1 Cases With One Critical Zone

If there is one critical zone on the panel, the plate fails at the dominant section,

which passes through the center of the critical zone. The dominant section fails in a way

similar to a long plate, loaded by a strip load, with the same width as that of the critical
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Figure 5. 3 Zonal Forces vs. Zonal Area (from Approach A of Chapter 3)
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zone. We refer to this long plate as the “equivalent long plate”. This is shown schemati-
cally in Figure 5.4. An additional factor affecting the failure of the dominant section is the
lateral support. This includes the length of the critical zone (4 in Figure 5.4) and the
location of the critical zone (y; and y;). To investigate these factors, we selected 20 load

cases, which are shown in Figure 5.5.

To investigate the effect of H, we first examine Cases | to 3 in Figure 5.5. In
these cases, the critical zone is located at the center of the panel. Each case has a different
area of critical zone, hence has a different value of H and b. For each case, the pressure of
the critical zone at plastic collapse, p:, is identified from the load deflection curve similar
to Figure 4.22. The pressure at ultimate rupture, p,, which corresponds to 5% of average
strain in the dominant section, is identified from the load-strain curve. Similar analyses are
carried out on the equivalent long plates (Cases 4 to 6), and pressures at plastic collapse,

", and at rupture, p,°, are identified. We define the factors of lateral support as:

P
=Ba (52)
*
and
fr= P_: s (5.3)
P

where h = H/L, fu", and f." are factors representing lateral support for plastic hinge col-

lapse and rupture, respectively. Results of ps, pu. pa’, P, fn', and £.* are summarized
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Figure 5. 4 A panel loaded by one critical zone

in Table 5.1. Similar analyses for the cases in which the critical zone is off the center of
the panel have been carried out. This includes Cases 10 to 13. The cases of patch load
with different 4 values (Cases 15 to 19) are also included. Results are included in Table
5.1. Values of fu", and f.* against different & values are plotted in Figure 5.6 together

with the fitted lines. The fitted lines are :
fa=m" G4
i (5.5)

To investigate the effect of the location, we vary y; and y,. These are Cases 7, 8,
9, 14 and 20. The effect of lateral support increases with y; and decrease with ;. We

introduce a location parameter A = y»y,, and the corresponding location factors:

&

fa=te, 56)
P
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Figure 5. 5 The case with one critical zone
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[CR)]

where ps” and p,’ are pressures at plastic collapse and rupture for the case when y; = 0,
respectively. Values of f", and £, against A are plotted in Figure 5.7. Note that the

effect of location of critical zones is not significant for A > 0.2. The approximate relations

are proposed as:
A _131-
£} =UBI-LA A<02 -
=1, Az202
=146-195A, A <021 (59)

=105, Az021°

We define the mean pressure of the dominant section at failure, 5,, and p, as the

mean pressure over the span:

= 5
Pu=222, (5.10)

(5.11)

If the resistance of the plate from the design model (Equations 4.7 and 4.15) are ps” and

p’ for plastic collapse and rupture, respectively, then, the difference between the design

model and the selected load scenarios can be evaluated by uncertainty factors By and B.:
B, =2u (5.12)

I
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Figure 5. 7 Analysis of the effect of the location of critical zones
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Table 5. 1 Results of finite element analysis for Cases [ to 20

Case |pu P2 |p.MP |fu' | £ |fu* | £ |Ba B,

1 16 2 2 157 |- - 132 142
2 |9 43 139 (123 [- |- 123|141
3 30 122 3 197 - |- 164|160
4 |8 46 A S E T -

5 6.5 35 - - - - - -

6 10 62 S ER AC R N

7 16 76 -] 1 106 [140 [150
FE 105 - |- 131 146 (173 [207
9 |9 47 - - 1 109 [123 [1se
10 23 i 256 (155 |- - 1.89 1.56
TRRE 51 - -1 - .

12 |26 9l 200 |158 |- |- [23 179
1B |13 s1.5 - = = I s s

14 |23 82 = |s 1 104 189 |16l
15 |19 7 29 214 |- |- [3125 [283
16 |13 55.5 2 |ues |- |- 213 [218
17 |9 a2 138 [125 |- |- 148|165
18 |7 35 107 (108 [- |- L6 138
19 |65 336 - |- - - . -

20 |17 6 105 [1.05 (140 [1.50

123




B =%, (5.13)

Values of B, and B, are summarized in Table 5.1. Note that in all cases, B: and B, are

greater than 1.

5.2.2 The Case With Two or More Critical Zones

If there are more than one critical zones on the panel, the response of the structure
is more complicated. In addition to the factors discussed in the case of one critical zone,
the response is also dependent on the relative locations between critical zones. The rela-
tive locations between critical zones can be divided into three cases, first, the center of
these critical zones are aligned along the direction of the frame spacing; second, they are
located along the direction of frames; third, these critical zones overlap each other in the
direction of frames. We term these Cases A4, B and C respectively. This is shown sche-
matically in Figure 5.8.

Case A: If the centers of critical zones are aligned in the direction of frame spac-
ing, the plate fails in a way similar to the case with one critical zone. The dominant sec-
tion passes through the centers of the critical zones. This dominant section fails in a way
similar to the equivalent long plate. Additional factors affecting the failure are the size of
critical zones (H in Figure 5.8) and the location of the dominant section. We propose an

equivalent length of critical zones as:
SbH,
=
L35,

(5.14)
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where 5, and H, are the width and length of ith critical zone. n is the number of critical
zones and L is defined in Figure 5.4.

To investigate the effect of /&, we examine Cases 21 to 23 of Figure 5.9 together
with their equivalent long plates (Cases 24 and 19). The factors of lateral support, [,
and £, similar to those defined in Equations (5.2 and 5.3) are calculated and the resuits
are summarized in Table 5.2. Values of 3", and /. against & are plotted in Figure 5.10,
together with the proposed relations of Equations (5.4 and 5.5). Note that the results
agree well with the formulae proposed earlier. For simplicity, we recommend to use
Equations (5.4 and 5.5) to account for the effect of & . We also propose to use Equations
(5.8 and 5.9) to account for the effect of locations of critical zones.

Case B: If the critical zones are located along the direction of the frames, the
plate fails at a dominant critical zone, which has the maximum zonal force. Other critical
zones have effects of interactions with the dominant zone. The interactive effect depends
on the distance from each critical zone to the dominant section and the zonal force. The
effect increases with the zonal force and decreases with the distance. We define a pa-

rameter of interaction, &

t=2.:5'—f_: # (5.15)

-
where F, and d, are critical zonal force and distance from the center of the critical zone to
the dominant section respectively, F is the force of the dominant critical zone. If the plate
fails in plastic collapse and rupture at py* and p.’, respectively, we define the interaction

factors for plastic collapse and rupture as:
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Figure 5. 8 Relative locations between Critical Zones

‘=&. 5.15)
S o (5.15)
/_‘:Z—::. (5.16)

respectively, where ps” and p.?, are pressures at which the plate fails with the dominant
critical zone alone.

To investigate the effect of £, we examine Cases 25 to 31, 33 and 34 of Figure 5.9
Values of ps* and p,* are obtained from FEM and compared with the case in which the
plate fails by the dominant critical zone alone (Case 35). The interaction factors are de-
rived from Equations (5.15 and 5.16). Similar analyses are carried out on Cases 32 and 9.
Values of f5° and £} against £ are plotted together with fitted lines in Figure 5.11. The

fitted lines are:
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fi=1-00571¢ , 517
fE=1-00516¢ , (5.18)
Case B can be simplified by analyzing the case with dominant critical zone alone, with
interaction effect from Equations (5.17 and 5. 18).
Case C: If the critical zones overlap each other, the plate fails at a dominant sec-
tion which is located between critical zones. This is as shown schematically in Figure 5.8.
The actual failure of the plate is very complicated. In the present study, we propose a
simplified approach.
First, we identify the dominant critical zone, which has the maximum zonal force.
For the rest of the critical zones, we divide each into two parts, one aligned on the domi-
nant section and another along the direction of the frame. The first part can be analyzed
by the method proposed in Case A and the second can be treated as an interacting zone
proposed in Case B. This is shown schematically in Figure 5.8. The failure pressure can
be estimated by analyzing the equivalent long plate with the modifications from the effect
of lateral support and the effect of interaction:
P = fafifipi (5.19)
p.=LL L (520
where ps and p, are pressures of plastic collapse and rupture at dominant section, re-
spectively, pu° and p,* are failure pressures of the equivalent long plate, f4", fu", fu",

£, 1.2 and £} are defined as before.
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Figure 5. 10 Effect of F (the analysis is supported by the previous analysis of )
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Figure 5. 11 Analysis on the effect of interaction between critical zones.
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Table 5. 2 Results of finite element analysis for Cases 21 to 39

Case |puMPa) |povPa) (fo' (£ |fa® (A5 [Ba |8
21 |16 70 229 |18z [- |- |219 |233
22 16 61 246 (182 |- - 263 |24
P T a5 |16 |14l |- |- | 181 |187
24 7 39 - - - - - -

P T 3 < [- |75 907 [115 | 134
26 15 m - - 938 947 [123 | 140
27 14 9 - - 875 | 92 115 | 136
28 15.5 71 - - 961 |.947 | 128 |1.40
9 | 152 7l - [95 |93 [125 |140
30 13 58 - - 813 [.773 [1.07 [L14
31 155 72 - - 969 | .96 128 | 142
32 8 4 - - 889 (936 (1.10 | 144
33| Bs & T |- | |07 |11 134
34 13 63 - - 813 | 84 107 | 124
35 16 7 - - - - - -

36 20 70 - - 7 794 1165 |1.38
37|15 4 24 175 | 886 | 897 222 |2.13
38|15 52 255 | 181 | 848 | 86 | 246 |205
3% |15 5 272 | 189 | 771 | 794 | 246 |232




The above method is applied to Cases 36 to 39 in Figure 5.9. These cases are also
analyzed by finite element method. Results from Equations (5.19 and 20) are plotted
against the resuits from FEM in Figure 5.12. The results from the simplified method agree
well with those from the finite element method.

Mixed Case: The plate will fail by a dominant zone, which can be analyzed by an
equivalent long plate. The pressure distribution on the equivalent long plate can be ob-
tained by superimposing the pressure of the dominant zones with the ones of those over-
lapping with the dominant zone. This is illustrated later in Figure 5.19. Other zones affect
the failure in terms of effect of interaction or the effect of lateral support which can be

approximated by the proposed formula.
5.3 A Long Plate Loaded By Non-Uniform Forces

As we concluded from the preceding section, the response of a plate to the critical
zonal forces can be i by an equi long plate with ifications from the

effect of lateral support and the interaction effect between critical zones. The equivalent
long plate is loaded by non-uniform loads. In this section, we propose a simple model to
analyze the plastic collapse and rupture of such a plate. The plate is schematically shown
in Figure 5.13. We define the “equivalent uniform strength” as the maximum mean pres-
sure that the plate can support.
5.3.1 Three Hinge Mechanism

We assume that three plastic hinges form at points 4, B and i as shown in Figure

5.14. We assume that the beam is rigid plastic and use the upper bound theorem. First,
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Figure 5. 12 Analysis of CASE C
the governing equation is derived by equating the external work to internal energy as:

3, 3,

521)

D A e B WAL RS
x, x, - K =

s-x,

where M,, M and M, are bending moments at points A, B and i respectively and are equal
to plastic moment M, defined in Equation (4.2). We define the proportional loads, at
‘which the three hinges form, as follows:

F=4f, 622)

where f, is a profile of point loads which varies from 0 to 1. A'in Equation (5.22) is the
amplitude at which the third plastic hinge forms at i point. Further we define corre-

sponding proportional mean pressure as:
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Figure 5. 13 Schematic Diagram of a Beam Loaded by multiple Point loads

247,
P = 523)

Substituting equations (5.22) and (5.23) into (5.21) and rearranging gives:

2 1,
')r,(l-r,) &

(5.29)

P=
¢, o ¢
(,Z.f‘r_.",;..f'l-r

where ', =x, /s and ¥, = x, /s are normalized coordinates. The strength of the plate at
plastic collapse can be then derived by minimizing the proportional pressure in Equation
(5.23). Since plastic hinges at points A and B are necessary for the mechanism, the
strength of the plate can be obtained by minimizing P, with respect to x,,

P,y =min(P') (5.25)
where i = 1 to n. Note that point i does not need to be at a point with force F, but be-

tween F,, and F,.
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Figure 5. 14 Three Hinge Mechanism

5.3.2 Membrane Action and Ultimate Rupture

‘We assume that the effect of bending is negligible when the membrane action takes
place. The deflection of the beam due to point forces is schematically shown in Figure
5.15. In the following, we will derive the deflection and the nominal strain due to the
membrane action. We will use the equilibrium conditions in deriving the governing
equation and as a result, the solution is a lower bound. First, the vertical reaction forces at

the ends of the beam can be derived based on the equilibrium condition as:

ZF(J x,)
Fas———= AZf(l ) (526
and
3 Ex,
F, ——-—AZ/{, \ 527

where F, = Af; is the proportional load at ith point, 4 is the proportion at which the ulti-
mate rupture occurs and f; is the load profile described before. The equilibrium condition

at each load point gives:
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Figure 5. 15 Schematic View of Membrane Action of a Beam Loaded with point Loads
Fi2, -3 (¢.~%,)F, ~Fw,=0, i=L.n, (5.28)
<
where w, = w, /s is normalized deflection at it point. Manipulating (5.28) yields:

F2 (2 ~%,)F,
W e 5.29)
~ 3 (5.29)

where Fi; can be derived based on the geometric condition indicated in Figure (5.15):

£y x—ﬁ%:ffi : (5.30)
i

Similarly, w', in Equation (5.30) can be derived as:

Fx

w, = 5 (531)
TR

where S, is the membrane force. For full plastic membrane action, S, is the plastic tensile

stress in the plate and can be expressed as:
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where o, is the yield strength. Substituting Equation (5.30) into (5.29) yields:

Fx -3, -, F,
el —.
: Fry

w'l
(533)

2.
&g

Finally, we define the nominal strain for the membrane action as the ratio of the
total elongation to the original length:

Z": Joo, =w, Y +(x,-x,) +,/wf wx; + W e (s-x,)
=

s

N N AR R
o

(534

Usually, the ultimate strength of the plate is characterized by a nominal ultimate strain &,
and & = 0.05 for steel plate was suggested by Egge and B&ckenhauer (1991). Substitut-
ing the suggested & and Equation (5.33) into Equation (5.34) one can derive the corre-
sponding w', . In the present approach, this is achieved numerically. Once ', is obtained,
the corresponding F; can be derived from Equation (5.31) and subsequently the factor A
defined in Equation (5.27) can be derived. We define the corresponding ultimate strength

as:
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5.3.3 Results and Comparison With Finite Element Modelling

The two models presented in preceding sections were implemented into a com-
puter program using matlab. First, we use these models to analyze three typical cases
shown in Figure 5.16 (a), (b) and (c). Figure 5.16 (c) represents the load profile corre-
sponding to the minimum strength for the plate. The pressure in (a) and (b) is approxi-
mated by nineteen point forces. The results of three-hinge collapse are presented in Table
5.3 in terms of normalized strength. The exact solutions are also given in the table and
good agreements are noticed. The results of ultimate rupture are given in Table 5.4. The
approximate solutions of Equations (4.15) and (4.16) are also given in the table. The re-
sults of the point load model agree well with the approximate solutions.

Next, we analyze the cases (d, ¢ and f) in Figure 5.17 and compare the results with
those of finite element analysis. The material properties are given in Table 4.1. The re-
sults are summarized in Table 5.5. Note that results from the present analysis and the fi-
nite element modelling agree well in the case of plastic collapse. For the rupture, the pre-
sent analysis under-estimates the pressure by a factor greater than 1.3.

Table 5. 3 The Mean Pressure at Three Hinge Collapse for Different Load Type

Load Type Psu (point loads model) Py (exact solution)
Uniform Load | 16 M/s” 16 My/s’

Tent Shape 1.7 M/s 12My/s”

Point Load SMs” 8Mys”
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Figure 5. 16 Beam under Different Loading Conditions, (a) Beam Loaded by Uniform
Point Loads, (b) Beam Loaded by Tent Shape Point Loads, (c) Beam Loaded by A Single

Point Load
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Figure 5. 17 Different load cases

Table 5. 4 Comparison of Point Load Model with the Approximate Solutions

Present Model | Approximate Solution
Equations (4.15) and
“.16)
Uniform P 0.9760" s 1030 ws
Distribution e 0.141s 0.168s
Tent Shape Py 0.8020" /s
Distribution G 0.146s
Single Point Load | py 0.61c s




Table 5. 5 Results for Cases d, e and f

Case Cased |Casee | Casef

P 6.05 608 595

v 2415|2406 | 2291

I

Pa (Fom FEM) | 5.83 65 585

pu(fom FEM) | 325 36 3225
R

NS 0963 | 1.07 0.983

e /P 135 .40 T41

5.4 Modeling of the Uncertainty in the Design Model

5.4.1 The Model

In this section, we propose a
model. We assume that the ice load is applied through a random number of critical zones,
each with a random size, force and location. We approximate each critical zone by a
square, with uniform pressure. For each load case, the strength of the panel is estimated

and compared with that of the design model. We analyze this by Monte Carlo simulations.

The scheme is described below.

First, we randomly chose the number of critical zones on the panel. We assume
that the number of critical zones follows a Poisson process, with a density of p zones/m®.
In present analysis, o = .893 zones/m’ is used following Approach A in Chapter 3. In our
model, we are not considering the case in which the number of critical zones is zero;

istic approach to the
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therefore the probability for the number of critical zones is a conditional probability of n >
0, where n is the number of critical zones. The pdf of the number of critical zones used in

present analysis (for an area of 0.72 m®) is shown in Figure 5.1

Next, we randomly chose the size, location and zonal force for each critical zone.
The size can be determined from the pdf of the ship trial data of Louis St. Laurent (Figure
5.2). For the location, we assume that the critical zone is fully located within the panel
following the assumption in Approach A of Chapter 3. The center of the critical zone (x,
) is randomly located between ([5/2, s-6/2), [H/2, L-H/2)), following an uniform distri-
bution. This is shown schematically in Figure 5.18. The zonal force referred here is the
relative amplitude between critical zones. We chose this force randomly from the prob-
ability of exceedance shown in Figure 3.11 (Approach ).

Figure 5.19 shows schematically a load case chosen randomly by the above de-
scribed procedure. For such a load case, we identify the dominant critical zone s the one
nant section. This is achieved by superimposing the pressure of the dominant zone with
the zones of others which are aligned with the dominant one, e.g. Zone 1 in figure 5.19,
and which overlap with the dominant zone, e.g. Zone 3 in Figure 5.19. The strength of
the dominant section can be obtained by analyzing the equivalent long plate, the effect of
lateral support and the interactive effects. The failure of the equivalent long plate can be
analyzed by the model proposed in Section 5.3 (Equations 5.25 and 5.35). The effect of

location of the dominant critical zone can be obtained from Equations (5.8 and 5.9). The
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Figure 5. 18 Variation of the location of a critical zone

Figure 5. 19 A randomly chosen load case

effect of lateral support can be estimated from Equations (5.4, 5.5 and 5.14). The effect
of interactions between critical zones can be estimated by Equations (5.17, 5.18 and 5.15).

Once the strength of the dominant section is obtained, it is compared with the results of
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the design model, hence the model uncertainty defined by factor B in Equation (5.1) can
be evaluated.

5.4.2 Results

The flow chart of the above described procedure is shown in Figure 5.20. The
procedure is implemented in a computer program using matiab. As an example, we per-
form our analysis on the plate panel shown in Figure 4.19. A total of 1000 iterations are
performed. Figure 5.21 and 5.22 show the results in terms of the probability distribution
of uncertainty factors By and B, for plastic collapse and ultimate rupture, respectively.
An approximation of the probability densities by a lognormal distribution with parameter

A(s,0*) and by a truncated Weibull distributions are also plotted in the figures. Both

the left tail of the ity density well. For convenience, we
use the lognormal di ion to i these inties in the present analysis.
of the lognormal dis i ing to Figures 5.21 and 5.22 are given

in Table 5.6.

Table 5. 6 Probability Density Functions for Model Uncertainty (lognormal)

mean cov “ o

“Three Hinge Collapse, B 1.553 0.206 0.420 0.204

Ultimate Rupture, B, 137 0.182 0.299 0.180
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56 C and

The uncertainty of the design model due to the randomness of the ice loads was
analyzed. A number of 39 load cases are analyzed using finite element method. It was
found that the plate failed by a dominant critical zone. The dominant section fails in a way
similar to an equivalent long plate. Additional factors affecting the failure of the dominant
sections are the effect of lateral support, the effect of location and the effect of interaction
between critical zones. Empirical formulae for these factors are proposed based on the

results of finite element analysis.

A simplified model of a long plate, loaded by a non-uniform load was proposed.
The model considered both three hinge failure mechanism and the ultimate failure by
membrane action. This model can be used to estimate the strength of the equivalent long
plate. A scheme of simulating the uncertainty in the design model due to the randomness
of the ice loads was proposed. Monte Carlo simulations were performed and the results
were presented in terms of the ility density of inty factors. The
factor for plastic collapse has a mean value of 1.553 and 2 COV of 0.206. The uncertainty

factor for the ultimate rupture has a mean value of 1.371 and a COV of 0.182. Both prob-
ability densities can be approximated by a lognormal distribution. It is recommended that
the model uncertainty should be considered when evaluating the safety of the structures
which are designed by the design model.
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Chapter 6

Design Principles

6.1 Introduction

The most important issue in an ice related design is to select a design ice load and
to choose a structural resistance. Chapters 3 to 5 investigated the uncertainties in ice
loads and in the design model of the structure. This chapter discuss the design principles
from the findings of the previous chapters.

First, we review two design methods, namely the reliability method and the code
design method. Second, we discuss the rationale in selecting a design ice load and a
method to the calculation of ship plating. Different design strategies are proposed to
specify the ice load and resistance. The probability of failure for each strategy is evaluated.
The analysis is based on a concept design of an oil tanker, which is described below.

The concept design: A vessel, with an approximate capacity of 830,000 bbls, is
proposed to serve as a tanker for a local refinery in Newfoundland or as a shuttle tanker to
and from an offshore oil field. Interaction with glacial ice is a potential hazard to this
vessel and is a major consideration for structural design. Glacial ice includes icebergs of

all sizes including bergy bits and growlers. The expected number of impacts per year is



very low for this vessel, and varies for different operating routes. A study by Fuglem et
al., (1996) showed that the expected number of glacial-ice impacts for this kind of tanker
is 0.5 to 2 per year. This number could be even lower if measures of avoidance are taken.
A design code for such a case is not available. In this analysis, we will use a reliability
method and partial safety method in selecting the structural resistance. We will limit our
analysis to the plating. The expected number of impacts is chosen as one per year. The
principal dimensions for the tanker are determined based on a similar concept design of an
OBO vessel in Carter et al. (1992) and are listed in Table 6.1.
First, we review two design methods mostly used in practice.

6.2 Design Methods

The design of a structure can be viewed as a decision problem. The designer has

to give due i ions to two

« safety: the minimization of the risk to indivi and the envi and
« economy: the careful and efficient use of private and public resources.
There is no unique solution to the design decision problem. Indeed, technical decisions

are made in the face of uncertainty, since the future state of nature, e.g. loads imposed by
the environment, is not known at the time of decision-making.

Figure 6.1 shows a decision tree for the design of a certain structural member.
Suppose a particular specified strength or resistance (e.g. yield strength) for the structure,
Tz is decided upon, the actual resistance is not necessarily equal to 7., but is a random
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Table 6. 1 Principal Particulars

of the Vessel

Length, BP 260 M
Beam “M
Depth 22aM
Design Draft 16M
Displacement 140,000 tones
Power 20.5 MW
Frame Spacing ( Bow Area) | 600 mm
Frame Spacing ( Main Hull) 750 mm
Course of Action State of Nature: Comsequences
0 =
.. —Ct

Y"-"\/‘

Sclect a design A:n-l

resistance 7, resistance, R
[ : Decision fork
O :Chance fork

22}
\

lﬂ&\

Figure 6. | Analysis of a Design Decision

148




quantity R with a probability density function, f,, (ri7,), where the notations Rir,, and
rir, represent the condition “given r,,". Not only the actual resistance R, but also the ac-
tual load, X. is random. Both random quantities characterize the “uncertain states of na-
ture” that the designer is faced with.

In Figure 6.1, to each combination of selected r,,, actual resistance 7, and actual
load x., we can ascribe certain consequences c,:. The degree of satisfaction associated
with c,« is generally the product of many interacting evaluations and is expressed by the
“utility” ufc,»). The object of utility theory is to analyze formally the preferences among
each of the consequences, cy«.

The above described decision process is usually complicated due to the large
number of possible outcomes. This complexity can be greatly reduced by an approach
using risk analysis. Suppose the level of of a particular ination (i, /. k)
in Figure 6.1 is valued in terms of a single criterion, namely a limit. In our analysis, this
limit state can be three-hinge collapse or ultimate rupture of a plate. For given values of R
=r,and X = x;, the outcome would be either that the structure will fail or not fail. By

working back two steps in the decision tree in Figure 6.1, it is possible to appreciate the
effectiveness of original choice of design strength 7, by means of a single number, namely
the probability of failure (Jordaan, 1982). This failure probability is readily evaluated once
the probability densities of resistance, R and load, X are known:

b= [ rCosr. ©n
e

149



where fifx) and fu(r) are probability densities of load and resistance respectively. As
schematically shown in Figure 6.2 (a), the probability of failure 2, depends on the zone
where two densities overlap. Based on Py; it is possible to evaluate the systems which are
unsafe, illustrated in Figure 6.2 (b) and those are too safe, Figure 6.2 (c). An optimal cri-
terion is obtained when the probability of failure is close to a certain target value.

In practical design, two methods can be used to achieve this target value, namely
below.

6.2.1 Reliability Method.

The reliability method is directly based on the probabilistic analysis of structural
failure. The solution of the analysis (the optimal design) is the one with the probability of
failure close to the target value of the probability of failure. Usually, the reliability design
of a ship structure involves an iterative process consisting of initial estimation of ship pa-
rameters, prediction of the environmental loads, analysis of the structural response and
evaluation of the structural safety (Jordaan et al. 1987). Figure 6.3 illustrates such a proc-
ess, in which, the estimations of the environmental forces, the structural capacity and the
reliability are the key steps of the whole procedure. Initial estimates of overall ship pa-
rameters, including displacement, operating mode, bow geometry, scantling of principal
members, can be achieved based on the previous experience. The optimization enables a
designer to achieve the desired safety at minimum structural costs. The optimal design is
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Initial Estimation of Overall Ship Parameters;

i -Displacement |
H -Operating Mode -—
i -Bow Geometry i
-Vessel S {
|l -Scantling of Principle Members §
I . T
| Estimation of Environmental Loads Analysis of Structural Response
| (lce Loads, Wave Loads, etc) | _—
T
P
Evaluation of Structural safety
(Risk Analysis)

— o

Biagiin

Figure 6. 3 Schematic View of the Process of Optimal Design of Structure
crucial to the preliminary design of a ship, which determines the location, spacing and
scantlings of the principal members.

Reliability design offers several benefits including economy and safety. Since it
involves an iterative process the aid of a computer is necessary to achieve cost effective-
ness. The approach is also important in the formulation of the design code.

6.2.2 Code Design

In the design of ship structures, there are a large number of structural items. It
would be inefficient to design all of them from first principles. A rule-based method is
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more efficient in this case. Most of the structural items that come under detailed design
are similar from ship to ship and in-service experience provides a sound basis for their
design. A design code is usually formulated based on past experience and has intrinsic
safety margins accepted in practice. Newer design codes are also calibrated using risk
analysis (e.g. CSA S.471, the ASPPR Proposals).

A comprehensive review of different formats in rule-based design was carried out
by Mansour et al., (1984) The most common format is the method of partial safety fac-
tors, which involves a specified load, x, and a specified resistance r,. The principles im-
plied in x, and 7, can be better explained by the probability density curves of X and R

shown in Figure 6.4.

As illustrated in the figure, the specified load x,, which most directly characterizes

2 particular situation, usually 10 a certain lity of or to the
n-year return period event. (n is generally 100). A load factor a is applied to x,, resulting
in the design load x,:

62)

x,=ax, .

The value of the specified resistance, which is the basic unknown in the design problem, is
obtained by applying a material factor Sto the design load:

6.3)
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Figure 6. 4 Load-Resistance Problem
The purpose of the above procedure is to specify an extreme load that is exceeded on av-

erage once in n years. The safety factor is designed to take into account parameter uncer-
tainty and uncertainties associated with load-event (e.g. ice load vs ice impact). The re-

For both optimal design and code formulation, it is important to understand the
probabilistic nature of the load and resistance, which is investigated in the next two sec-

tions.
6.3 Design Load

‘The environmental loads for a ship hull include hydrostatic loads, wave loads, wind
loads and ice loads. These forces are generally random in nature due to the varying

environmental conditions. Here, we will focus our analysis on ice loads. An analysis on



extremal ice loads is described in Chapter 3. As we concluded, the fundamental issue in
estimating extremal ice load is exposure, which is discussed first.

6.3.1 Exposure

The exposure of a structure to an ice hazard relates to duration of impacts (or, in-
teractions), number of ice impacts, area of contact (design area) and position on ship
(proportion of hits). The duration of impact relates to the nature of interaction (i.e. ice-
breaking - ice ramming) and has been discussed in Section 3.5. Other factors are dis-
cussed below:

Expected number of impacts: As already illustrated in Figure 3.6 of Chapter 3,
the probability density of extremal ice loads will shift to the right as the expected number
of impacts increase. Such a number also indicates the ice capability of the structure. For
instance, in ASPPR Proposals, each arctic class implies a range of expected number of

impacts (Carter et al., 1992):

CACIL: several thousand;
CAC2: hundreds ,
CAC3: decades ,

CAC4: several .

The expected number of ice impacts for the tanker in the concept design ranges

from 0.5 to 2 times per year. Another important aspect is that as the number of impacts
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decreases, the load changes from frequent to rare, and the principles in selecting a design
load need to be changed accordingly. This will be discussed in the following section.
Area Factors and Proportion of Hits: The exposure of the structure to ice im-
pacts is different depending on the position of the structure. For instance, the bow region
of an arctic vessel is more exposed to ice than the bottom region. In our extremal analysis
on ice loads, this can be accounted for by the proportion of hits (i.e. 7 in Equation 3.11).
In practical design, this can be accounted for by an area factor. For instance, in ASPPR
proposals, area factors are suggested for different positions relative to the bow region as:

Position on the Hull Area Fac-
tor

Bow Area 1o

Appendage and Ice Skeg Area 2

Continual Ice Skeg Area 15

Middle Body and Stern Area 05

Bottom Area 03

Area of Contact: It has been found in field tests of different scales ( Sanderson,
1988; Frederking et al. 1990) that the ice pressure decreases with the increase of the
nominal contact area. This was further supported by the probabilistic analysis of local ice
load of Jordaan et al, (1993a) and by the analysis on critical zones in Chapter 3. (see Fig-
ures 3.16 and 3.17). For design of plating, it is important to select an appropriate design
area (unsupported area). Based on the analysis in Chapter 4 and the study by Brown,
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Brown, (1993), an unsupported rectangle of sx LSs (s, frame spacing) is appropriate
when the method in Chapter 3 is used to evaluate the extreme ice loads.

6.3.2 Specified Load and Load Factor

As we described earfier, in a code design, the design load is determined from a
specified load x;, and a load factor, @. Usually, three rules are used in the determination of
a specified load. They are, first, to specify the annual maximum load with an exceedance
probability, p,, usually 0.01; second, to specify the load with a retum period 7, usually 100
years; third, to specify the most probable maximum load in r years. For a frequent load,
the above mentioned three rules can arrive at the same or similar answer. This is
schematically illustrated by Figure 6.5, in which, the return period is the reciprocal of the
exceedance probability, and the most probable value of the ‘100 year maximum' also
corresponds to the yearly maximum with p, = 0.01. As leamed from the development of
CSA S.471 (eg. Jordaan and Maes, 1991), among the above mentioned three rules, the
first is more appropriate. This is because, first, the most probable maximum is difficult to
interpret and may not even exist for a rare event; second, the retum periods are often
misinterpreted. For instance, 2 100-year return period does not imply that one needs 100
years of data.

Environmental loads can be divided into three classes, namely frequent, occasional
and infrequent loads. For frequent loads, a large number of events occur in an one-year
period of time. Consequently, the probability density curve is very peaky as illustrated in
Figure 6.6(a). Examples of this kind of loads are wind, wave, current and certain sea ice
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loads. For occasional loads, the events are not as numerous as the former and result from

intermittent processes or seasonal events. The probability distribution is spread

Probability Density

Aost probable ;
valucin 100 5
yors H

il i
Load ¥ Load X
(a) frequent (®) occasional (©rinfrequent

Figure 6. 6 Three classes of loads (Maes, 1986)

out over a much larger interval as shown in Figure 6.6 (b). For infrequent loads, such as
earthquake and iceberg loads, events have a very low probability of occurrence. The
probability density curve is characterized by a tail and a spike at zero as shown in Figure
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6.6(c). The selection of a design load depends on which kind of load is considered. Fora
frequent load or an occasional load, a specified load with an exceedance probability of
0.01 is usually used and a load factor is applied. For infrequent events the specified load
usually has a low probability of exceedance, ie., 10” to 10 and no load factor is applied
to the design load.

It is also important to consider which limit state should be used for the design.
Usually two limit states, ie. serviceability and ultimate rupture, are considered. For a
frequent load, it is essential to prevent any dent to the plating of the hull in order to
maintain good serviceability. For an occasional load, such as multi-year ice impact to
(CAC4 class ships, both denting and rupture should be considered. The value of specified
load depends on which limit state is considered. IF the limit state is ultimate rupture, the
specified load should be the 100 year load to ensure safety. For denting, certain judgment
is needed. On one hand, allowing some denting will greatly reduce the cost of the struc-
ture; on the other hand, excessive denting means repeated repair and is uneconomical.
The designer has to find an appropriate balance. In this case, an optimization such as the
one carried out by Brown (1993) is appropriate. For a rare event, the limit state should be
ultimate rupture. The denting in this case is judged as acceptable.

The purpose of the load factor is to further reduce the probability of exceedance
for the design load. For instance, applying a safety factor of 1.35 to a 100-year load may
yield a design load with the probability of exceedance of 10*. However, such a safety
factor does not give the same safety margin to loads with all exposure as found by Maes
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(1986). To appreciate this, let us analyze the ice load on a 0.54 m” plate panel. The 100-

year loads for different exposure (expected number of impacts) obtained from Equations

Pressure (MP3) B

Figure 6. 7 Relationship between Safety Factors and Exceedance Probability

(3.9) and (3.14) are plotted in Figure 6.7 (curve B). Loads corresponding to a probability
of exceedance of 10™ are also plotted in the figure (curve A). A safety factor of 1.35 is
applied to 100-year loads and yields the design loads which are also plotted in Figure 6.7
(curve C). As indicated in the figure, the load factor of 1.35 results in a design load with a
probability of exceedance of 10” in the case when the expected number of impact is
10000; the same factor results in a design load with approximately no improvement in
exceedance probability for design load when the exposure 0.1 per year. The figure also
shows values of load factors (curve d: 4/B) necessary to give a design load with an uni-
form probability of exceedance of 10*. The results show that values of the safety factor



factor range from 1.35 to 4. It is concluded that use of a load factor is not appropriate for

rare loads.

6.3.3 Design Ice Load for the Concept Design

The main ice hazards for the concept design of this chapter are iceberg impacts.
The expected number of impacts are very small. Fuglem et al., (1996) showed that, for a
shuttle tanker traveling in Newfoundland waters, the expected number of impacts ranges
from 0.1 to 4 depending on the traveling route and the ice conditions. Tentatively we

specify the expected number of impact as one per year. The ice load in this case is an in-

frequent one and the specified load should toalow

In selecting a design load, one has to bear in mind that most designers are used to
the method of partial safety factor; and the load with 10 seems to be “unrealistic™. For
this reason, we propose a number of strategies in selecting the design load. This includes
the loads which correspond to 107,107 and 10 exceedance probabilities, and with safety

factors ranging from 1 to 2.4. We will calculate the safety for each strategy in Section 6.5

6.4 Resistance of the Structure

In Chapter 4, we proposed to model the strength of a plate by a long plate loaded
by uniform pressure. The resistance for plastic collapse and rupture from the design model

are:

R, =—* ,and 6.4)
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K:l.o]o;§ . ©.5)
respectively, where A, is the plastic moment resistance; s is frame spacing, 7 is the thick-
ness of the plate and o; is the dynamic yield stress. As we know from Chapter S, the re-
alistic ice load is not uniform. This causes uncertainties in the design model. For plastic
collapse, this uncertainty can be represented by a random factor Bs. B can be approxi-
mated by a lognormal distribution with a mean value of 1.553 and a COV of 0.206. I[n
addition, M, is also random due to the uncertainties in material strength and sizes. Ac-
cording to Maes (1986) and Kennedy and Baker (1984), M, has a lognormal distribution
with a mean of 1.22M,, and a COV of 0.1, where M, is the specified plastic moment re-
sistance. If we denote the random quantity M, as By, the real resistance of the plate can

be presented as:

R, =§-B,,B,. . (6.6)

A special point to note is that, in the case that both By and By have lognormal distribu-
tions, R, =16B,B, /s* also has a lognormal distribution (Ochi, 1990). The mean and
COV of R can be derived as 1.895(16M, s°) and 0.227 respectively.

In case of ultimate rupture, the probability distribution of the real resistance can be
derived similar to the case of three-hinge collapse. The uncertainty of the material prop-
erties include yield strength o, and plate thickness 7. According to Nessim (1991) and
Kennedy and Baker, (1984), the yield stress of steel has a lognormal distribution. The

mean and COV of this distribution are suggested as 1.080;, and 0.05 respectively
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(Galambos and Ravindra, 1978), where o;.. Is the specified yield stress. We assume that
the plate thickness also has a lognormal distribution. The mean and COV of the plate
thickness is assumed as 1.0147 and 0.01 respectively according to Kennedy and Aly
(1980), where ¢, is specified plate thickness. Consequently, o, also has a lognormal
distribution with 2 mean of 1.0950",.4, and a COV of 0.051. The resulting strength of the
plate R,, has a lognormal distribution with a mean of 1.371(1.035;, t,'s) and a COV of

0.182.

6.5 Design of the Plating

In the present section, the plating is designed to resist ice impact load. Consid-
eration of other environmental forces is not included. Both the method of reliability design
and the partial safety method are used in deriving plate thickness. Different strategies are
used to define design load. The expected number of impact with icebergs is one per year.
For such infrequent events, ultimate rupture is considered as the limit state for plate
failure. Three hinge collapse is considered acceptable. Plate thickness is calculated from
the design model (Equation (6.5). EH-36 steel is used for plating following the sug-
gestions in Carter et al. (1992). The dynamic yield and dynamic ultimate stresses of the
steel are used as the material strength. Probability distributions of ice load and pressure
strength defined in Section 6.3 and 6.4 are used in risk estimates. The probability of fail-
ure is calculated using First Order Reliability Method (FORM, Gollwitzer et al., 1988).



6.5.1 Dynamic Yield and Dynamic Ultimate Stresses

Since the ice-structure impact is characterized by high speed and short duration,
we will use dynamic yield and dynamic ultimate stress in calculating the plate strength.
The calculation of these stresses are based on the work of Nessim et al. (1992).

The dynamic yield stress of structural steel is dependent (among other factors) on
the service temperature and the strain rate. Results of Soroushian and Choi (1987) were
used to calculate the actual dynamic stress from specified (static) yield stress. The ratio
between the yield stress at strain rate &, Tma(¢) and the static yield stress, or0). is given as

follows:

Tams ()

=-031x10"q, (0) + 146} + (0634 x 105, (0) + 0093} log(s).  (6.7)
2,0 ’

The actual yield stress also depends on the temperature. This dependence was character-
ized using data given by Malik and Tomin (1991). This data is for EH-36 steel with a
specified yield stress of 355 MPa, and the tests were carried out at  strain rate of 5x/07s.

The ratio of the actual yield stress at temperature 7, o;(7), to the specified yield stress, 7.,

can be calculated based on the test data:
2D _ 14— 0007, (63)
L

where T'is in °C. Equations (6.7) and (6.8) are used to estimate the dynamic yield stress

for any combination of temperature and strain rate.



A similar analysis on dynamic ultimate stress was also carried out by Nessim et al.,
(1992). The analysis was based on the same data set reported by Malik and Tomin

(1991). The ratio between a..(7) and o}, as a function of the temperature is derived:

Tet = 162 -0.003T 69
T
The strain rate effect is given by the following relationship (Soroushain and Choi, 1987):

%% ={-047x107,(0) + 172} + (0944 x 105, (0) + 0144} log(e) .  (6.10)

where 0.{0) and 0,(0) are the static yield and ultimate stresses respectively. Equations
(6.9) and (6.10) can be used to calculate the ultimate strength for any combination of
temperature and strain rate.

The temperature used in present analysis is 0°C and the strain rate is 102 The
corresponding dynamic yield stress and dynamic ultimate stress was calculated and is
summarized below:

Material EH36 Steel
Temperature °C 0

Strain rate & 10

o, (MPa) 355

Gime (MPa) 388

ur (MPa) 537

&'y =(Capa*Tun )/2 (MP2) 462.5
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6.5.2 Design of Plate Thickness and Risk Analysis
Reliability Design:

The objective of the design is to find a minimum plate thickness which satisfies the
target safety. The accepted range of target values of annual reliability in offshore industry
is 1-(10* to 10®). For shipping, a higher reliability is desirable. The value of 1-10% is
chosen as our target value of annual reliability following the suggestion by Carter et al.,
(1995). An iterative process is carried out. In each iteration, a plate thickness is chosen
and the probability density of the resistance is derived. The probability density function of
ice load for an unsupported area of 0.54 m* can be derived from the method presented in

Chapter 3. The ility of failure is then calculated. The ility of failure is plotted

against the plate thickness in Figure 6.8. The optimal plate thickness, which corresponds
to a failure probability of 10%, is 20 mm. The figure also shows the failure probability
against the plate thickness for the case when the average rams per year, n, is 0.5 and 5.
The plate thickness varies between 27 to 33 mm for # between 0.5 to 5. For the purpose
of comparison, plate thickness for Arctic class CAC4 and for the Baltic class 1AS and
open water were also calculated and are presented in Table 6.2. It shows that, for the
present vessel, significant ice strengthening is required. The thickness is between that of
the Baltic class 1AS vessel and the open water.

Method Using Partial Safety Method

In the following, we use the method of partial safety factor (Equation 6.3) to de-

sign the plate thickness. First, we calculate the specified load, x,. [ce loads which corre-
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correspond to 1%, 0.1% and 0.01% of exceedance probabilities are used as the specified
load x;. The design load is then calculated by applying a safety factor a to the specified
load. Values of @ ranging from 1.0 to 2.4 are used. The specified strength is then

obtained by applying a material factor 8 to the design load. f usually equals to 0.75.

Probability of Failure/Year
10° ¢

a

10 20 30 40 S0 60
Plate Thickness (mm)

Figure 6. 8 Probability of Failure for Different Plate Thickness

Table 6. 2 Plate Thickness for Different Class Ships

Class of Ship Plate thickness (mm)
Reliability Design 29-30

Arctic Class CAC4 36

Baltic Class |AS 30

Open Water 16




Once the specified resistance is selected, the plate thickness can be calculated using
Equation (6.5). Values of plate thickness corresponding to different strategies are cal-
culated and results are presented in Figure 6.9. The probability distribution of ultimate
strength corresponds to each plate thickness is then derived from the results of Section 5.4
and the probability of failure is calculated using FORM. The results are presented in Fig-
ure 6.10. As shown in the figure, the combinations of a specified load with 10™ exceed-
ance probability and a safety factor @ = 1, and a specified load with 10 exceedance
probability and a safety factor a = 1.48 satisfy the target safety value of 10°. The prob-
ability density for three hinge failure was also derived for each plate thickness and the
probability of failure is calculated. The results are shown in Figure 6.11. As expected, the

probability of three hinge collapse is high.

6.6 Conclusions and R d

Structural design can be viewed as a decision process. The main objective is to
achieve required safety at minimum cost. This can be achieved by a risk analysis. Two
design methods, namely the reliability design method and the partial safety method, are
introduced and are applied to design of the plating of a concept design. To achieve an
optimal design of the structure, it is essential to understand the uncertainties associated
with the load and structure strength. Environmental load can be divided into three cate-

gories, namely frequent, infrequent and rare loads; accordingly, different strategies are



needed in specifying the design load. The partial safety method is most suitable for the
serviceability and ultimate failure. The limit state for a particular design also depends on
the kind of environmental loads considered. For frequent loads, serviceability should be
considered, while in a rare event the main consideration is the ultimate safety.

70 :Plate Thickness (mm)

60t .
i Petx) = 10"
/

50 - <
40 - Pefzy = 10" N
30- ) ’
Petxy = 10°
20+ ¥
10°
1 15 2 25
Load Factor a

Figure 6. 9 Plate Thickness for Different Design Strategies
Through the design of plating for an oil tanker for Offshore Newfoundland, for

rare loads such as the ice loads from the iceberg impacts, the design load can be chosen as
the one with a probability of exceedance of 10™. It was also found that a class between
Baltic class 1AS and open water needs to be developed for the design for Offshore New-

foundland waters.
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Figure 6. 10 Probability of Failure (ultimate Rupture)
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Figure 6. 11 Probability of Failure (Three hinge Failure)
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Chapter 7 Concluding Remarks

A comprehensive analysis of ship structural design for ice environments has been
presented. Mechanics of ice-structure interaction, statistics of ice loads and an analysis of
the structural response to ice loads were identified as three important and interlinked
aspects in the structural design. Localized high pressures (critical zones), the key element
in all of these aspects, are the focus of the present work.

From the view point of mechanics, ice impacts are characterized by ice fracture
and damage. This leads to pieces of ice spalling off and formation of critical zones. The
fracture process governs the size and location of these critical zones. Kendall’s double
cantilever beam is not suitable for the analysis of ice fracture since it is limited to the case
of a long central crack. The model of Hutchinson and Suo accounts for both shear and
tensile fractures and may provide a better solution for ice spalling. Since this model is also
derived for the case of a long crack, further development is needed for the modelling of
cracks, under the mixed mode of stresses, are the likely candidates for fracture spalling.
Due to the randomness of these cracks, spalling resulting from fracture and critical zones

are also random. As a result, critical zones are also random.

A probability distribution of ice loads can be estimated by probabilistic modelling
of critical zones. The ice loads on a design area can be assumed as a random number of
critical zones, each with a random force. The probability distribution of the maximum ice
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loads can be i by a double ial distributic This distribution is

dependent on the exposure of the structure to the ice loads. The exposure is related to the

design area, location of the structure and the design route for ship operations

For the design of ship plating, a long plate model is considered appropriate. This
has the advantage of been easily implemented by designers. The ice load on this plate can
be estimated from the yearly maximum load on a panel with an aspect ratio of 1.5. It
should be kept in mind that the real structure and the ice loads are quite different from the
idealization, and therefore model uncertainty associated with this idealization should be
considered in design.

A plate under localized loads such as critical zonal forces usually fails in a
dominant section. This dominant failure section behaves in a similar way to a 2-D plate
loaded by non-uniform pressure. The failure of this 2-D plate can be estimated by the
simple model derived in this study. In addition to the dominant section, additional factors
affecting the failure of the plate include the lateral support, the location of critical zones
and the interaction between critical zones. These factors can also be estimated by the
empirical formulae derived in this study.

The real strength of a structure can be calculated using the design strength and a

factor of model uncertainty. In the present study this factor is a random quantity which

can be i by a lognormal distributi In addition to the model uncertainty in

ice load, uncertainties also exist in material strength and sizes.

2



Reliability design yields an optimal solution yet it is difficult to implement in
practice. For the load factor design method, care must be taken when selecting the
specified load. For rare loads such as ice impact loads in offshore Newfoundland waters,
the load factor does not always increase the safety by the “expected amount”. As a result,
this method is not appropriate in the design of a structure for a rare event. The
characteristics of ice loads in offshore Newfoundland waters are quite different from that
of the Baltic and the Canadian arctic. A design rule for ships operating in this region is
needed. The present study can be used in the development of such a rule.
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