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Abstract

This paper aims to model ultrasound vibro-acoustography to improve our under-

standing of the underlying physics of the technique thus facilitating the collection of

better images. Ultrasound vibro-acoustography is a novel imaging technique com-

bining the resolution of high-frequency imaging with the clean (speckle-free) images

obtained with lower frequency techniques. The challenge in modeling such an ex-

periment is in the variety of scales important to the final image. In contrast to other

approaches for modeling such problems, we break the experiment into three parts:

high frequency propagation, nonlinear interaction and the propagation of the low-

frequency acoustic emission. We then apply different modeling strategies to each
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part. For the high-frequency propagation we choose a parabolic approximation as

the field has a strong preferred direction and small propagation angles. The nonlin-

ear interaction is calculated directly with Fourier methods for computing derivatives.

Because of the low-frequency omnidirectional nature of the acoustic emission field

and the piecewise constant medium we model the low-frequency field with a surface

integral approach. We use our model to compare with experimental data and to

visualize the relevant fields at points in the experiment where laboratory data is

difficult to collect, in particular the source of the low-frequency field. To simulate

experimental conditions we perform the simulations with the two frequencies 3 and

3.05 MHz with an inclusion of varying velocity submerged in water.

Key words: ultrasound vibro-acoustography, one-way wave equation, integral

methods, radiation force, numerical modeling
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1 Introduction

Ultrasound vibro-acoustography was developed [1,2] to achieve the high-resolution

possible with high-frequency imaging modalities without the artifacts, caused

by scattering from small inclusions, present in high-frequency images. The

experiment, which is discussed in more detail in [1,2], breaks naturally into

three parts as illustrated in Figure 1. The first is the focusing of two beams

of ultrasound at two slightly different high (a few MHz) frequencies, f1 and

f2 (or ω1 and ω2 for angular frequency), on the region of interest. These two
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fields then interact nonlinearly to create a force at the difference frequency

∆ω = ω1 − ω2 (a few tens of kHz). The third step is the propagation of the

excited low-frequency field to a hydrophone located far from the focus point.

Similar experiments have been modeled with the finite element method [3,4],

without separating these scales; here we separate the different scales, through a

perturbation approach, for increased computational efficiency. This approach

was first discussed in [5] in which preliminary results were shown where all

of the modeling was done with a parabolic approximation. In [6] we further

develop this methodology introducing integral methods for modeling the low-

frequency emission and exploring the validity of 2D methods for modeling this

problem. In the present paper we summarize our modeling approach and focus

on the benefits of modeling in understanding the imaging modality.

Following the description of the experiment given in [1,2], the two high-

frequency fields are described by a first-order deviation from a background

state and propagate a few hundred wavelengths before interacting with an

object only a few wavelengths in size. The first property is difficult to accom-

modate in full-wave methods and the second in high-frequency approxima-

tions. The fields have a strong preferred direction (away from the transducer),

however, and the velocity variations in tissue are relatively small, making one-

way or parabolic approximations to the wave equation a good option for these

high-frequency fields. In such approximations, a preferred axis of propagation

is defined and waves are propagated in only one direction with respect to this

axis. The resulting wavefield is more accurate than high-frequency approxima-

tions such as ray theory, but faster to compute than full-wave methods such as

finite-difference, finite element or integral methods. An introduction to these

methods is found in [7,8]; these approximations have been used to simulate
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waves in tissue in [9].

It is the nonlinear interaction of these two high-frequency fields that is the

source of the low-frequency waves recorded to form an image. This interaction

is described by a second-order correction to the wave equation for a second-

order deviation from the background state derived, for example, in [10,11] and

related to the so-called radiation force or parametric radiation force. The idea

of mixing two high-frequency beams to generate a low-frequency signal was

suggested by [12] in extending his own work (see e.g. [13–15]) on the radiation

force. The technique discussed here is a refinement of this early suggestion for

the exploitation of the radiation force to generate low-frequency signal. The

ideas rest upon the same physics but in ultrasound vibro-acoustography, the

low-frequency field is generated only in a small region from the interaction

of two focused beams. We choose to use the differential model rather than

the integral force model because it is straightforward to implement and it

describes the relevant physics of the imaging technique. By recording only at

the difference frequency, the experiment ensures that only waves excited by

this nonlinear interaction are recorded. A key point in the design of ultrasound

vibro-acoustography is that the size of the focal area and thus the resolution

are governed by the high frequency.

The source of the low-frequency field is point-like, resulting in a relatively

omni-direction field at ∆ω, precluding the use of the parabolic approximation

in its computation. We choose an integral method to model this part of the

experiment because of the low-frequency of the field as compared with the

size of the inclusion (50 kHz field and an inclusion approximately 3 cm in

radius) and because an image is formed of several inclusions, each with con-

stant acoustic velocity, embedded in a background medium also with constant
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Fig. 1. Schematic of the experimental setup, as described in [1,2].

velocity. More specifically, we choose a surface integral method as discussed

in [16] which, along with [17] gives a good introduction to integral methods.

2 Experiment and Model

In the first step of the experiment, the high-frequency field is excited by a

confocal spherical transducer positioned so that the focal point is within the

region of interest; the inner circle of this transducer excites waves at one

frequency, f1 and the outer annulus at another frequency, f2. Following [18],

we model the transducer as a set of point sources so that, for example, in two

dimensions the simulated transducer consists of point sources arranged on a

circle. Although they rely on similar physics, as mentioned in the introduction,

the focused ultrasound beam used in [1,2] and modeled here differs from the

parametric arrays introduced by Westervelt [12] in that the low-frequency field

is generated in the vicinity of a small focal region within the region of interest

rather than over an extended region.

The two frequencies excited by the transducer, satisfy the acoustic wave equa-

tion

∂2
t φj − c(x)24φj = 0, j = 1, 2 , (1)

where c(x) is the (isotropic) acoustic velocity and φ is the first-order velocity
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potential (related to the particle velocity by v = ∇φ) considered as a per-

turbation from a background state. To explain the generation of the acoustic

emission at the difference frequency, ∆ω, we extend the linear wave-equation

to

∂2
t ψ − c24ψ = ∂t

[
|∇φ|2 +

γ − 1

2c2
|∂tφ|2

]
, (2)

with φ = φ1 + φ2, ψ the velocity potential associated with a second-order

perturbation from the background state, and γ describing the nonlinearity of

the medium. Equation (2) is derived (see e.g. [10,11]) from the Euler equa-

tions of motion, and the equation of continuity, under the constant entropy

assumption, which gives the constitutive relation

p = p0

(
ρ

ρ0

)γ

. (3)

The pressure, at the difference frequency, associated with the velocity poten-

tial, ψ, is recorded with a hydrophone; an image is then formed by plotting the

amplitude of ψ as a function of the position of the focal point. The squared

terms on the right-hand side of equation (2) result in the excitation of waves

at several different frequencies. In the experiment, the field resulting from

this excitation is recorded using a hydrophone sensitive to the difference fre-

quency, ∆ω, making only this component important in the calculations. As

this frequency is present only in ψ and not in φ1,2, the difference in pressure

from the unperturbed state is well approximated by ψ. The right-hand side

of equation (2) is related to the parametric radiation force in which the first

term constitutes the classical radiation force. By simulating the differential

equation explicitly, however, we do not enforce that the characteristics of the

image are governed entirely by the structure of this forcing but also include

explicitly the possibility that the variations in the image amplitude are a direct

result of the scattering of the low-frequency field. To relate the right-hand side
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of equation 2 to the radiation force, we note that from the discussion in both

[19] and [11], we expect the sum of these two responses to be the time average

of the integral, over the surface of the inclusion, of the difference between the

pressure in the perturbed and unperturbed states, here ψ.

Equations (1) and (2) give a complete, acoustic, model of the experiment.

An acoustic model is not expected to be sufficient for tissue modeling and an

elastic or even visco-elastic model would improve the model. The extension

of equation (2) to the visco-elastic case is discussed in [20]; extending our full

methodology to this case is left for future work.

3 Numerical Algorithm

The challenge of developing algorithms for UVA is in the exploitation of the

specific properties of the wave propagation over the range of scales present.

A first simplification comes in recognizing that there are three frequencies

involved in the experiment, ω1,2 and ∆ω; to exploit this sparsity we perform

all of the calculations in the temporal frequency domain. Each step of the

experiment requires a separate modeling strategy as discussed in the following

subsections.

3.1 High-frequency modeling

As mentioned in the introduction, one-way methods are ideal for the high-

frequency fields as they allow the accurate propagation over many wavelengths

with better accuracy than ray methods for scattering from small obstacles.

The idea behind one-way methods is to choose a preferred direction, z, of
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propagation (here away from the transducer along its axis) and then re-write

the wave-equation as a first-order system of partial differential equations in this

variable. This system is then diagonalized, analogous to the diagonalization

of a matrix, to split the wavefield φ, into two parts, φ±, with φ+ containing

waves that propagate in the positive z direction and φ− waves propagating in

the negative z direction. One-way methods then solve only one of the resulting

two equations,

∂zφ+ + iAφ+ = 0 , (4)

where A2 = −∂2
x − ω2

c(x,z)2
. If c(x, z) is independent of x, this equation can be

solved exactly by taking the Fourier transform (in x) of the wavefield at depth

z, multiplying by a phase-shift term

ei(z−z′)ω
√

c−2
0 (z)−‖kx‖2 (5)

where kx is the lateral wavenumber and then taking the inverse Fourier Trans-

form obtaining the field at depth z′. This process is repeated until the wavefield

has been calculated at all z of interest. In this experiment, we assume that

the background velocity is piecewise constant, with a single velocity for the

background medium and another velocity for each obstacle. In this case, we

can use a simplification of the phase-shift-plus-interpolation method of [21] in

which the field is propagated from z to z′ at each of the velocities and the

final field is obtained in the space domain (after inverse Fourier transform) by

taking the field propagated with the correct velocity for that spatial point.

There are two limitations to this type of approximation, which are discussed in

e.g. [7]. The first is the maximum angle, θ (measured away from the transducer

axis) to which the field can be accurately computed and the second is the

maximum lateral change in velocity that can be accurately dealt with. In
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the first case the accuracy is readily calculated, in a constant velocity model,

as the error is in ignoring the so-called Q operators discussed in [22] which

amounts to division by
√

cos(θ). For variable velocities we find approximately

a 1% error with a 10% velocity contrast; this error grows rapidly as the back-

scattered field becomes stronger as can be seen by examining the reflection

and transmission coefficients and noting that the reflected field is ignored.

3.2 Nonlinear Interaction

The nonlinear interaction given on the right-hand side of equation (2) is rela-

tively easy to compute directly. As the entire calculation is done in the tempo-

ral frequency domain, the time derivatives are computed through multiplica-

tion with iω. For the spatial derivatives, we first taper the high-frequency fields

to zero at the boundaries of the computational domain and then compute the

derivatives in the spatial frequency domain.

An alternative approach to the simulation of both the high-frequency propa-

gation and the nonlinear interaction is the TAWE method suggested in [23].

This method, which builds on a model suggested in [24], uses a similar strat-

egy to the so-called split-step techniques in one-way methods. Instead of a

correction for a variable velocity, however, these works include a correction

for the nonlinearity of the medium. They calculate, on the fly, a simplified

version of the right-hand side of equation (2) in which the gradient term is

ignored as justified in [25]. As it is fully nonlinear, the method solves directly

for, in our notation, both φ and ψ. This full nonlinearity, however, has rather

dramatic effects on the associated computational cost (as it leads to an opera-

tion count that grows quintically with the number of frequencies considered in
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the calculation [24]) which can be shown to be significantly higher than that

of the methodology proposed herein, although the difference in complexity

with respect to the number of spatial degrees of freedom is less clear. It is this

relative efficiency, along with the ability to look at intermediate results, such

as the high-frequency fields and their nonlinear interactions, that is behind

our choice of the three-step perturbative approach. In addition, the TAWE

method is limited to layered media and, in our case, the gradient term may

be significant and the velocity model will certainly deviate from the layered

case. Finally, because we model a continuous wave experiment the issues as-

sociated with computing a tone-burst as discussed in [23] are not relevant at

this time, although they may be a factor in future studies (and may increase

the computational complexity of our method).

3.3 Low-frequency modeling

Integral equation methods rely on knowledge of the Green’s function both

within and outside the inclusions, and on using this Green’s function to rewrite

the differential equations describing the system as integral equations. Denoting

by Gi the Green’s function inside the inclusions and by Ge the Green’s function

outside the inclusions, we arrive at the system of equations

ψe(x) = ψinc(x) +
∫

∂D

∂(Gi −Ge)

∂ny

(x, y)ψe(y)

− (Gi −Ge)(x, y)
∂ψe

∂ny

(y)dy x ∈ ∂D , (6)

∂ψe

∂nx

(x) =
∂ψinc

∂nx

(x) +
∫

∂D

∂2(Gi −Ge)

∂nx∂ny

(x, y)ψe(y)

− ∂x(Gi −Ge)

∂nx

(x, y)
∂ψe

∂ny

(y)dy x ∈ ∂D , (7)
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for the second-order velocity potential, ψ, and its normal derivative where

the normal is directed outward from the inclusions into the surroundings. In

the above equations a superscript inc denotes the incident field (field without

inclusions). We define ψinc = ψinc
i + ψinc

e where

ψinc
i (x) =

∫
D
Gi(x, y)f(y)dy x ∈ R2 ,

ψinc
e (x) =

∫
Dc
Ge(x, y)f(y)dy x ∈ R2 , (8)

with f(y) the right-hand side of equation (2). Note that equations (6) and

(7) are defined on the boundary of the inclusions rather than on the inclu-

sions themselves, reducing the dimensionality of the problem and thus allowing

faster computations. The solution of the equations (6),(7),(8) is complicated

by the singularities in the Green’s functions; to account for this, we use the

spectral quadratures defined by Colton and Kress [16, pp. 67-78] to discretize

these integrals. These methods can be further accelarated to improve com-

putational performance (e.g. via FFTs [26,27], Fast Multipole Methods [28],

etc).

4 Results

In this section we demonstrate the utility of the model developed above. We

use the experimental configuration depicted in Figure 2; the inhomogeneity is

characterized by an acoustic velocity different from the surrounding (water)

medium and has a diameter of 3 mm. All of the axis labels are given in terms

of the wavelength (λHI = 0.5 mm), in water (with velocity 1.5 mm/µs), at

3 MHz; the two frequencies are 3 and 3.05 MHz. In the notation used in the

previous section, the “image” is formed by plotting |ψ| as a function of the
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Fig. 2. Experimental configuration for both computational experiments shown be-

low.

focal point.

In our first experiment, we explore the changes in the image when the in-

ner and outer frequencies are interchanged; see Figure 3. We use a relatively

small velocity contrast of 1.65 mm/µs to ensure the validity of the parabolic

approximation and to mimic the relatively small contrasts found in different

types of tissue and a relatively large transducer aperture of 120◦ to make the

clearest image possible. Note that while the absolute value of the secondary,

low-frequency source remains relatively unchanged the phase, and thus the

image, changes drastically.

In our second experiment, which is compared to laboratory data, a cylindrical

Aluminum rod long in the y-direction was submerged in water and an image

was made of this rod using a transducer with an aperture of 30◦; a comparison

of real and simulated images is shown in Figure 4. Aluminum has a relatively

fast velocity of 6 mm/µs, beyond the expected range in medical imaging ap-

plications and also beyond the range where the parabolic approximation can

be guaranteed to be accurate. Despite these limitations we have captured the

basic structure of the image.
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Fig. 3. The upper plots show the real part of the right-hand side of equa-

tion (refeq:RHS), the middle plots the absolute value, and the lower plots images.

The frequencies f1 and f2 are interchanged between the left and right columns.
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Fig. 4. Upper left is the synthesized image, on the upper right is the experimental

image. Below is a comparison of a slice of the image for fixed z = 0.

5 Discussion and Conclusions

We have presented an acoustic model for ultrasound vibro-acoustography that

first uses a perturbation argument to break the experiment into three steps
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and then employs both exact methods and appropriate approximations, to

model the relevant physics of each step, for computational efficiency. With

this tool we are able to visualize the relevant wavefields at several stages in

the imaging process. Of particular importance is the ability to examine the

characteristics of the (high-frequency generated) source of the low frequency

excitation, the measurement of which is not straightforward in the laboratory.

We have demonstrated the ability of our model to capture the broad features

of the experimental data despite the limitation of our current model to 2D

acoustic materials. Future research along the lines presented here includes the

extension of this model to 3D and to visco-elastic materials to more accurately

simulate experimental configurations of clinical interest.
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