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Abstract

The scattering of linear acoustic radiation by a periodic layered structure is a funda-
mental model in the geosciences as it closely approximates the propagation of pressure
waves in the earth’s crust. In this contribution the authors describe new algorithms for
(1.) the forward problem of prescribing incident radiation and, given known structure,
determining the scattered field, and (2.) the inverse problem of approximating the form
of the structure given prescribed incident radiation and measured scattered data. Each
of these algorithms is based upon a novel statement of the problem in terms of boundary
integral operators (Dirichlet–Neumann operators), and a Boundary Perturbation algo-
rithm (the Method of Operator Expansions) for their evaluation. Detailed formulas and
numerical simulations are presented to demonstrate the utility of these new approaches.

1 Introduction

The interior of the earth’s crust can effectively be modeled as a layered media: Largely
homogeneous blocks of material separated by sharp interfaces across which material prop-
erties change discontinuously. With such a model in mind one can pose two important and
related questions: (1.) Given knowledge of the material properties of the layers and the
shapes of the interfaces, can one compute scattering returns from such a structure given
incident radiation? (2.) Specifying incident radiation and measuring scattered waves, can
one deduce information about material properties and interface shapes within the layered
media? In this paper we take up both questions (the “forward” problem, (1.), and the
“inverse” problem (2.)) and propose novel algorithms for each. These algorithms are based
upon a new formulation of the problem in terms of Dirichlet–Neumann operators (DNOs),
and convenient Boundary Perturbation (BP) formulas for their simulation.

Unsurprisingly, the full complement of classical numerical methods have been brought
to bear upon both the forward and inverse problems we mention above. The Finite Differ-
ence (FDM) [MRE07, Pra90], Finite Element (FEM) [Zie77, KFI04], and Spectral Element
(SEM) [KT02a, KT02b] methods have been implemented but suffer from the fact that they
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discretize the full volume of the model incurring significant cost, and the difficulty of faithful
enforcement of far–field boundary conditions. A compelling alternative are surface meth-
ods [SSPRCP89, Bou03] (e.g. Boundary Integral Methods or Boundary Element Methods)
which only require a discretization of the layer interfaces (rather than the whole structure)
and which, due to the choice of the Green’s function, enforce the far–field boundary condi-
tion exactly. However, these methods, while capable of delivering high–accuracy solutions,
must not only utilize specially designed quadrature rules which respect the singularities in
the Green’s function, but also generate a dense system of linear equations to be solved which
require carefully designed preconditioned iterative methods (with accelerated matrix–vector
products, e.g., by the Fast–Multipole Method [GR87]).

The literature on methods for the inverse problem is as vast as that for the forward
problem, occupying hundreds of books and thousands of papers (the text of Colton & Kress
[CK98] is an excellent starting point). Interestingly, most of the work has concerned the
bounded–obstacle problem, but for the recovery of interface shapes in layered media we
point out some recent work based upon classical integral formulations and solution of the
resulting (nonlinear and ill–conditioned) equations [KT00, AKY06, LG11]. For a more
extensive review, we refer the interested reader to the bibliographies of these.

Here we propose a Boundary Perturbation method for both the forward and inverse
problem for irregularly shaped periodic layered media. Like Boundary Integral/Equation
Methods, our approach requires only the discretization of the layer interfaces while it avoids
not only the need for specialized quadrature rules but also the solution of dense linear
systems. Our approach is a generalization of the “Method of Operator Expansions” (OE)
of Milder [Mil91a, Mil91b, MS91, MS92, Mil96b, Mil96a] which we use precisely because
the interface shapes appear so explicitly in these formulations making them particularly
appealing for the development of an inversion algorithm. For a generalization of the closely
related “Method of Field Expansions” (FE) described by Bruno & Reitich [BR92, BR93a,
BR93b, BR93c] for dielectric structures with multiple layers (denoted there the “Method of
Variation of Boundaries”), we refer the interested reader to the authors’ recent publication
[MN10].

As with the OE method as it was originally designed by Milder, our new approach
is spectrally accurate (i.e., has convergence rates faster than any polynomial order) due
to both the analyticity of the scattered fields with respect to boundary perturbation, and
the optimal choice of spatial basis functions which arise naturally in the methodology.
Our inversion strategy is inspired by the work of Nicholls & Taber [NT08, NT09] on the
recovery of topography shape under a layer of an ideal fluid (e.g. the ocean) which also uses
the explicit nature of the OE formulas to great effect.

The organization of the paper is as follows: In § 2 we recall the governing equations.
In § 3 we discuss considerations of the forward problem, including a new algorithm for the
forward problem (§ 3.1) and formulas for Taylor series coefficients of the relevant boundary
operators (§§ 3.2, 3.3, 3.4). We also present the exact formula in the flat interface case
(§ 3.5) and a representative numerical result for a non–trivial interface (§ 3.6). In § 4 we
outline our new methods for solving the inverse problem, including both an iteration–free
(linear) algorithm (§ 4.1) and an iterative (nonlinear) method (§ 4.2); numerical results are
presented in § 4.3.
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Figure 1: Problem configuration with layer boundary (solid line); here g(x) =
0.2 exp(cos(2x)).

2 Governing Equations

It is well–known that the (reduced) scattered pressure inside a d–periodic structure satisfies
the Helmholtz equation with illumination conditions at the interface, and outgoing wave
conditions at positive and negative infinity. More precisely, we define the domains

Su = {(x, y) | y > g(x)} , Sv = {(x, y) | y < g(x)} , g(x+ d) = g(x),

with (upward pointing) normal
N = (−∂xg, 1)T ;

see Figure 1. Both domains are constant–density acoustic media with velocities cj (j = u, v);
we assume that plane–wave radiation of wavenumber (α,−β) = (α,−βu) is incident upon
the structure from above:

u(x, y, t) = e−iωtei(αx−βuy) = e−iωtui(x, y). (2.1)

With these specifications we can define in each layer the parameter kj = ω/cj which charac-
terizes both the properties of the material and the frequency of radiation in the structure. If
the reduced scattered fields (i.e., the full scattered fields with the periodic time dependence
factored out) in Su and Sv are respectively denoted {u, v} = {u(x, y), v(x, y)} then these
functions will be quasiperiodic [Pet80]

u(x+ d, y) = eiαdu(x, y), v(x+ d, y) = eiαdv(x, y),
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and the system of partial differential equations to be solved are:

∆u+ k2
uu = 0 y > g(x) (2.2a)

B{u} = 0 y →∞ (2.2b)

∆v + k2
vv = 0 y < g(x) (2.2c)

B{v} = 0 y → −∞ (2.2d)
u− v = ζ, ∂N (u− v) = ψ y = g(x), (2.2e)

where

ζ(x) := −ui(x, g(x)) = −ei(αx−βug(x)) (2.2f)

ψ(x) := − [∂Nui(x, y)]y=g(x) = (iβu + iα(∂xg))ei(αx−βug(x)). (2.2g)

In these equations the operator B enforces the condition that scattered solutions must either
be “outgoing” (upward in Su and downward in Sv) if they are propagating, or “decaying”
if they are evanescent. We make this “Outgoing Wave Condition” (OWC) [Pet80] more
precise in the Fourier series expression for the exact solution, see (2.3) below.

The quasiperiodic solutions of the Helmholtz equations— (2.2a) & (2.2c)—and the
OWCs—(2.2b) & (2.2d)— are given by [Pet80]

u(x, y) =
∞∑

p=−∞
ap exp(i(αpx+ βu,py)) (2.3a)

v(x, y) =
∞∑

p=−∞
bp exp(i(αpx− βv,py)), (2.3b)

where the OWC mandates that we choose the positive sign in front of βu,p in (2.3a) and
the negative sign in front of βv,p in (2.3b). These formulas are valid provided that (x, y)
are outside the grooves, i.e.

(x, y) ∈ {y > |g|L∞} ∪ {y < − |g|L∞}.

In these equations

αp = α+ (2π/d)p, βj,p =


√
k2
j − α2

p α2
p < k2

j

i
√
α2
p − k2

j α2
p > k2

j

, (2.4)

j = u, v and d is the period of the structure. Again, the OWC determines the choice of sign
for βj,p in the evanescent case α2

p > k2
j .

3 Forward Problem

For the forward problem we specify the grating g(x) and the Dirichlet and Neumann data
from the incident radiation: ζ(x) and ψ(x). From this we should produce the scattered fields
u(x, y) and v(x, y). However, it is not difficult to deduce that if we recover the Dirichlet
and Neumann traces of u and v

U(x) := u(x, g(x)), V (x) := v(x, g(x)),
U ′(x) := (∂Nu)(x, g(x)), V ′(x) := (∂Nv)(x, g(x)),
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then integral formulas will tell us u and v everywhere.
Furthermore, if we define the Dirichlet–Neumann Operators (DNOs)

G(g)[U(x)] := U ′(x), H(g)[V (x)] := V ′(x),

then it suffices to find simply the Dirichlet traces U and V . As the DNOs encapsulate the
solution of the Helmholtz equations and the OWCs, it is not difficult to see that (2.2) are
equivalent to the surface equations

U − V = ζ (3.1a)
G[U ]−H[V ] = ψ. (3.1b)

This can be simplified in a number of ways, but one which is convenient for our current
purposes uses the first equation to solve for V , V = U − ζ, which is then inserted into the
second equation yielding

(G−H)[U ] = ψ −H[ζ]. (3.2)

As the boundary quantity U will be inconvenient or impossible to recover, we note that an
alternative quantity to recover is the “far field” data

ũ(x) := u(x, a),

for some a > |g|L∞ . We point out that there is some ambiguity in the term “far field” as
some authors use this to characterize the propagating modes solely, whereas we use it to
mean “away” from the grating (where the evanescent modes will have exponentially small,
but nonzero, effect). As we comment later (§ 3.3), the location of the far–field hyperplane
y = a has a strong influence on the behavior of our inversion algorithm. This value encodes
the inherent ill–posedness of our recovery scheme and as a increases, the accuracy of our
method deteriorates rather rapidly.

If we define the “backward propagator” L by

L(g)[ũ(x)] := U(x),

then we can replace (3.2) with

(G−H)[L[ũ]] = ψ −H[ζ], (3.3)

or, for use with our inversion algorithms,

0 = Q(g)[ũ] := (G−H)[L[ũ]]− ψ +H[ζ]. (3.4)

3.1 A New Algorithm for the Forward Problem

We propose a perturbative approach to the solution of (3.3) based upon the assumption
g(x) = εf(x) where, a priori, ε is assumed small. If this is the case then it can be shown
that the data {ζ, ψ} and operators {G,H,L} depend analytically upon ε so that

ζ = ζ(x; ε) =
∞∑
n=0

ζn(x)εn, ψ = ψ(x; ε) =
∞∑
n=0

ψn(x)εn,

G = G(εf) =
∞∑
n=0

Gn(f)εn, H = H(εf) =
∞∑
n=0

Hn(f)εn,

L = L(εf) =
∞∑
n=0

Ln(f)εn,
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and we assume

ũ = ũ(x; ε) =
∞∑
n=0

ũnε
n.

A rigorous justification for these expansions can be found in the work of Coifman & Meyer
[CM85], Craig, Schanz, & Sulem [CSS97], and the authors (in collaboration with Reitich
and Hu) [NR01, NR03, NR04b, HN05, HN10]. Inserting this into (3.3) we see that( ∞∑

n=0

εn(Gn −Hn)

)[( ∞∑
s=0

εsLs

)[ ∞∑
m=0

ũmε
m

]]
=
∞∑
n=0

ψnε
n −

( ∞∑
n=0

εnHn

)[ ∞∑
m=0

ζmε
m

]
.

At order O(ε0)
ũ0 = L−1

0

[
(G0 −H0)−1[ψ0 −H0[ζ0]]

]
, (3.5)

while at order O(εn)

n∑
s=0

s∑
m=0

(Gn−s −Hn−s) [Ls−m [ũm]] = ψn −
n∑

m=0

Hn−m [ζm] .

Solving for ũn,

ũn = L−1
0 (G0 −H0)−1

{
ψn −

n∑
m=0

Hn−m [ζm]−
n−1∑
s=0

s∑
m=0

(Gn−s −Hn−s) [Ls−m [ũm]]

−
n−1∑
m=0

(G0 −H0) [Ln−m [ũm]]

}
. (3.6)

Note that at every perturbation order in this approach we repeatedly invert the common op-
erator (G0−H0)L0 which is, in Fourier space, diagonal and can, therefore, be accomplished
very rapidly.

3.2 Expansions: Surface Data

The key to both our forward and inverse algorithms are convenient, high order formulas for
the functions ζn and ψn, and the operators Gn, Hn, and Ln. We begin with ζ:

ζ(x; ε) = −ei(αx−βuεf(x)) = −eiαx
∞∑
n=0

Fn(x)(−iβu)nεn,

where Fn(x) := f(x)n/n!. Thus

ζn = −eiαxFn(x)(−iβu)n. (3.7)

Similarly, for ψ we have

ψ(x) = (iβu + iαε(∂xf))ei(αx−βuεf(x))

= eiαx

(
iβu

∞∑
n=0

Fn(x)(−iβu)nεn + iαε(∂xf)
∞∑
n=0

Fn(x)(−iβu)nεn
)
.

So
ψn = eiαx

(
−Fn(x)(−iβu)n+1 + (∂xf)Fn−1(x)(iα)(−iβu)n−1

)
. (3.8)
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3.3 Expansions: Backward Propagator Operator

The operators {L,G,H} are a bit more involved and we will use the method of “Operator
Expansions” (OE) [Mil91a, CS93, NR04a] to find the action of {Ln, Gn, Hn} on a Fourier
basis function which, of course, leads to its action on any L2 function. To begin we consider
the operator L which maps the far–field data ũ to the surface data U . The function

up(x, y) = ei(αpx+βu,p(y−a))

satisfies Helmholtz’s equation and the outgoing wave condition in the upper material. We
can insert this into the definition of the operator L giving

L(g) [up(x, a)] = up(x, g(x))

or
L(g)

[
eiαpx

]
= ei(αpx+βu,p(g(x)−a)).

Setting g(x) = εf(x), and expanding L and the exponential in Taylor series reveals( ∞∑
n=0

εnLn(f)

)[
eiαpx

]
= eiαpxe−iβu,pa

∞∑
n=0

Fn(x)(iβu,p)nεn.

At order O(ε0) we discover

L0[eiαpx] = e−iβu,paeiαpx = e−iβu,Daeiαpx

where we have introduced a Fourier multiplier

m(D)[ξ(x)] :=
∞∑

p=−∞
m(p)ξ̂peiαp .

Using the fact that any α–quasiperiodic L2 function can be expressed via its Fourier series
we deduce that

L0[ξ] = e−iβu,Daξ =
∞∑

p=−∞
e−iβu,paξ̂pe

iαp .

At order O(εn) we find

Ln(f)[eiαpx] = eiαpxe−iβu,paFn(x)(iβu,p)n = Fn(x)e−iβu,Da(iβu,D)neiαpx,

so that

Ln(f)[ξ] = Fn(x)e−iβu,Da(iβu,D)nξ = Fn(x)L0(iβu,D)nξ = Fn(x)(iβu,D)nL0ξ. (3.9)

Remark. We will soon introduce an inversion algorithm for the interface shape g based
upon the formulae presented in these sections. A fundamental feature of such problems
is severe ill–posedness and we point out that this is reflected in the operator L0. For p
corresponding to propagating waves (p sufficiently small) we have chosen βu,p real so that
the Fourier multiplier exp(−iβu,pa) is of modulus one. However, for p corresponding to
evanescent modes (p large) βu,p is purely imaginary with a positive imaginary part, c.f.
(2.4). Therefore, while the operator L−1

0 , which factors into the forward solve (see (3.5)),
is exponentially smoothing, the operator L0 amplifies Fourier coefficients of large index
exponentially.
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3.4 Expansions: Dirichlet–Neumann Operators

Consider now the DNO G which maps the surface Dirichlet data U to the surface normal
derivative U ′. We now (slightly) redefine the function

up(x, y) = ei(αpx+βu,py)

which again satisfies Helmholtz’s equation and the outgoing wave condition in the upper
material. We can insert this into the definition of the operator G giving

G(g) [up(x, g(x))] = (∂yup)(x, g(x))− (∂xg)(∂xup)(x, g(x)),

or
G(g)

[
ei(αpx+βu,pg(x))

]
= (iβu,p − (∂xg)iαp) ei(αpx+βu,pg(x)).

Again setting g(x) = εf(x), and expanding G and the exponentials in Taylor series gives( ∞∑
n=0

εnGn(f)

)[
eiαpx

∞∑
m=0

Fm(x)(iβu,p)mεm
]

= iβu,pe
iαpx

∞∑
n=0

Fn(x)(iβu,p)nεn

− ε(∂xf)(iαp)eiαpx
∞∑
n=0

Fn(x)(iβu,p)nεn.

At order O(ε0) we find

G0[eiαpx] = (iβu,p)eiαpx = (iβu,D)eiαpx

or
G0[ξ] = (iβu,D)ξ.

At order O(εn) we obtain

n∑
m=0

Gm
[
Fn−m(iβu,p)n−meiαpx

]
= Fn(x)(iβu,p)n+1eiαpx − (∂xf)Fn−1(x)(iαp)(iβu,p)n−1eiαpx

or

Gn
[
eiαpx

]
=
{
Fn(x)(iβu,p)2 − (∂xf)Fn−1(x)(iαp)

}
(iβu,p)n−1eiαpx

−
n−1∑
m=0

Gm
[
Fn−m(iβu,p)n−meiαpx

]
.

Since
α2
p + β2

u,p = k2
u

we have
(iαp)2 + (iβu,p)2 = −k2

u

and
(iβu,p)2 = −k2

u − (iαp)2.
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Thus

Gn
[
eiαpx

]
=
{
−k2

uFn(x)− Fn(x)(iαp)2 − (∂xf)Fn−1(x)(iαp)
}

(iβu,p)n−1eiαpx

−
n−1∑
m=0

Gm
[
Fn−m(iβu,p)n−meiαpx

]
= −k2

uFn(x)(iβu,D)n−1eiαpx − ∂x
[
Fn(x)∂x(iβu,D)n−1eiαpx

]
−

n−1∑
m=0

Gm
[
Fn−m(iβu,D)n−meiαpx

]
,

where we have used
∂xe

iαpx = (iαp)eiαpx.

Finally,

Gn[ξ] = −k2
uFn(x)(iβu,D)n−1ξ − ∂x

[
Fn(x)∂x(iβu,D)n−1ξ

]
−

n−1∑
m=0

Gm
[
Fn−m(iβu,D)n−mξ

]
.

(3.10)
In particular, for use in § 4.1,

G1[ξ] = −k2
ufξ − ∂x [f∂xξ]−G0 [f(iβu,D)ξ]

= −k2
ufξ − ∂x [f∂xξ]−G0 [fG0ξ] .

In an exactly analogous fashion, consider the DNO H which maps the surface Dirichlet
data V to the surface normal derivative V ′. Specify the function

vp(x, y) = ei(αpx−βv,py)

which satisfies Helmholtz’s equation and the outgoing wave condition in the lower material.
We can insert this into the definition of the operator H giving

H(g) [vp(x, g(x))] = (∂yvp)(x, g(x))− (∂xg)(∂xvp)(x, g(x)),

or
H(g)

[
ei(αpx−βv,pg(x))

]
= (−iβv,p − (∂xg)iαp) ei(αpx−βv,pg(x)).

Once again setting g(x) = εf(x), and expanding H and the exponentials in Taylor series
gives( ∞∑

n=0

εnHn(f)

)[
eiαpx

∞∑
m=0

Fm(x)(−iβv,p)mεm
]

= −iβv,peiαpx
∞∑
n=0

Fn(x)(−iβv,p)nεn

− ε(∂xf)(iαp)eiαpx
∞∑
n=0

Fn(x)(−iβv,p)nεn.

At order O(ε0) we find

H0[eiαpx] = −(iβv,p)eiαpx = −(iβv,D)eiαpx

or
H0[ξ] = −(iβv,D)ξ.
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At order O(εn) we obtain

n∑
m=0

Hm

[
Fn−m(−iβv,p)n−meiαpx

]
= Fn(x)(−iβv,p)n+1eiαpx

− (∂xf)Fn−1(x)(iαp)(−iβv,p)n−1eiαpx

or

Hn

[
eiαpx

]
=
{
Fn(x)(−iβv,p)2 − (∂xf)Fn−1(x)(iαp)

}
(−iβv,p)n−1eiαpx

−
n−1∑
m=0

Hm

[
Fn−m(−iβv,p)n−meiαpx

]
.

As before
(−iβv,p)2 = −k2

v − (−iαp)2 = −k2
v − (iαp)2.

Thus

Hn

[
eiαpx

]
=
{
−k2

vFn(x)− Fn(x)(iαp)2 − (∂xf)Fn−1(x)(iαp)
}

(−iβv,p)n−1eiαpx

−
n−1∑
m=0

Hm

[
Fn−m(−iβv,p)n−meiαpx

]
= −k2

vFn(x)(−iβv,D)n−1eiαpx − ∂x
[
Fn(x)∂x(−iβv,D)n−1eiαpx

]
−

n−1∑
m=0

Hm

[
Fn−m(−iβv,D)n−meiαpx

]
.

Finally,

Hn[ξ] = −k2
vFn(x)(−iβv,D)n−1ξ − ∂x

[
Fn(x)∂x(−iβv,D)n−1ξ

]
−

n−1∑
m=0

Hm

[
Fn−m(−iβv,D)n−mξ

]
. (3.11)

In particular, again for use in § 4.1,

H1[ξ] = −k2
vfξ − ∂x [f∂xξ]−H0 [f(−iβv,D)ξ]

= −k2
vfξ − ∂x [f∂xξ]−H0 [fH0ξ] .

3.5 Forward Solve: Flat Interface

With formulas for the operators now in place we can utilize formulas (3.5) and (3.6) to find
approximations to the ũn and form

ũN (x; ε) :=
N∑
n=0

ũn(x)εn. (3.12)

Before beginning we point out that the relevant Fourier multipliers (e.g., iβv,D) have a
particularly simple action on the single mode eiαx. For example, since

eiαx =
∞∑

p=−∞
dpe

iαpx, dp =

{
1 p = 0
0 p 6= 0

,
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we have

iβv,D
[
eiαx

]
= iβv,D

[ ∞∑
p=−∞

dpe
iαpx

]
=

∞∑
p=−∞

(iβv,p)dpeiαpx = iβve
iαx.

Returning to our solution algorithm, (3.5) can now be written as

ũ0 = eiβu,Da
[
(iβu,D + iβv,D)−1 [(iβu)eiαx + iβv,D[−eiαx]

]
= eiβu,Da

[
(iβu,D + iβv,D)−1 [(iβu − iβv)]eiαx

]
= eiβu,Da

[
(iβu − iβv)
(iβu + iβv)

eiαx
]

= eiβua (iβu − iβv)
(iβu + iβv)

eiαx, (3.13)

which is, of course, the exact solution in the flat interface (ε = 0) case, and recovers the
plane–wave reflection coefficients.
Remark. We note that in this simple flat–interface case

ψ0 = G0[ζ0]

so that (3.5) simplifies to

ũ0 = L−1
0

[
(G0 −H0)−1[(G0 −H0)[ζ0]]

]
= L−1

0 [ζ0]

as expected.
Remark. We point out here that this formula can be used also as a very primitive inverse
problem solver: If we specify the incident radiation (in particular βu) and measure the
far–field pattern ũ0 at the known plane y = a, then (3.13) can be solved for βv which gives
very rough material properties of the lower layer. Notice that (3.13) demands that ũ0 have
the rather trivial Fourier series

ũ0(x) = ũ0,0e
iα,

but, given this, one can use (3.13) to deduce that

βv = βu

(
eiβua − ũ0,0

eiβua + ũ0,0

)
. (3.14)

3.6 Numerical Results for a General Interface

To briefly test this new algorithm for the forward problem we select a configuration with
physical parameters

α = 0.1, βu = 1.1, βv = 5.5,

c.f. (2.2f) & (2.2g), with a d = 2π–periodic layer interface shaped by

g(x) = εf(x) = εecos(2x),

and “far–field” ũ at a = 1. To compute an “exact solution” we utilize the Method of Field
Expansions (FE) [BR93a] as implemented by the authors in the recent publication [MN10].
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N Absolute L∞ Error Relative L∞ Error
0 0.000196114 0.000294154
1 4.51806× 10−8 6.77671× 10−8

2 3.22802× 10−10 4.84176× 10−10

3 3.28269× 10−10 4.92377× 10−10

4 3.2827× 10−10 4.92377× 10−10

Table 1: Absolute and relative L∞ errors in approximation of the far–field pattern ũ at
a = 1. Physical parameters: α = 0.1, βu = 1.1, βv = 5.5, d = 2π, a = 1; numerical
parameter: Nx = 32.

While the methods are related (both are spectral collocation Boundary Perturbation ap-
proaches), they are not identical and one provides an excellent test for the other. For the
configuration mentioned above and ε = 0.0001 we performed a numerical simulation using
the FE approach with Nx = 128 collocation points and N = 40 Taylor orders (Taylor sum-
mation was used); please see [MN10] for more details regarding the algorithm and these
parameters.

In Table 1 we present results of a numerical implementation of (3.5) & (3.6) to deliver
(3.12), reporting perturbation order versus absolute and relative errors. Here we notice
the very stable and rapid (exponential) convergence of our numerical approximation to the
“exact solution” provided by the FE method.

4 Inverse Problem

Our real goal in this paper is to devise a technique for recovering the layer interface, g(x),
from surface measurements. In this initial contribution we propose as given data the incident
radiation,

ui(x, y) = eiαx−iβuy

(which includes the material properties of the upper layer through βu), the “far field pat-
tern,” ũ(x) at all values of x, and the most basic material properties of the lower layer: βv
(which we assume can be recovered from (3.14) or some other method).

4.1 Iteration–Free Linear Model

With these constraints in mind, consider the forward problem (3.4), and suppose that the
unknown interface can be expressed as g(x) = εf(x). In this case we have

(G0 + εG1 −H0 − εH1)[(L0 + εL1)[ũ]]− ψ0 − εψ1 + (H0 + εH1)[ζ0 + εζ1] = O(ε2).

More precisely, and making the f dependence explicit, we have

(G0 −H0)L0[ũ] + ε(G0 −H0)L1(f)[ũ] + ε(G1(f)−H1(f))L0[ũ]

− ψ0 − εψ1(f) +H0[ζ0] + εH1(f)[ζ0] + εH0[ζ1(f)] = O(ε2).

For a first algorithm we ignore the O(ε2) terms and gather the O(1) and O(ε) terms sepa-
rately

Q0(ũ) + εQ1(ũ)[f ] = 0, (4.1a)
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where

Q0(ũ) := (G0 −H0)L0[ũ]− ψ0 +H0[ζ0] (4.1b)
Q1(ũ)[f ] := (G0 −H0)L1(f)[ũ] + (G1(f)−H1(f))L0[ũ]

− ψ1(f) +H1(f)[ζ0] +H0[ζ1(f)]. (4.1c)

The operator Q1(·)[ũ] is linear in f , though in a rather implicit way, and we propose the
following solution formula:

g̃ = −{Q1(·)[ũ]}−1Q0[ũ], (4.2)

where g̃ ≈ g. Notice that this approach is “linear” (i.e., terms of order two and higher were
ignored) and the unique solution can be found rather directly (without iteration) by simply
inverting the linear operator (represented as a matrix in a numerical simulation), Q1(·)(ũ).
Remark. As we mentioned earlier (§ 3.3), the operators L0 and L1 = f(iβu,D)L0, (3.9), are
ill–conditioned resulting in potentially unstable numerics. However, such ill–conditioning is
a standard feature of inverse problems [CK98] and it is to be expected in such algorithms.

4.2 Iterative Nonlinear Model

To devise a second, and hopefully more accurate approach, we return to the forward problem
(3.4) and again suppose that the unknown interface can be expressed as g(x) = εf(x). Now,

Q0(ũ) + εQ1(ũ)[f ] +
N∑
n=2

εnQn(ũ, f) = O(εN+1), (4.3)

where

Qn(ũ, f) =
n∑

m=0

(Gn−m(f)−Hn−m(f)) [Lm(f) [ũ]]− ψn(f) +
n∑

m=0

Hn−m(f) [ζm(f)] .

A natural algorithm which suggests itself is to combine the higher accuracy of the expansion
(4.3) for N > 1 with the ease of inversion of (4.2); thus we drop the O(εN+1) term in (4.3),
mark the linear (in ε) term with iteration number k+ 1, and all other terms with iteration
number k resulting in the Picard iteration [BF97, AH01]

g̃k+1 = −{Q1(·)[ũ]}−1

[
Q0[ũ] +

N∑
n=2

Qn(ũ, g̃k)

]
. (4.4)

Note that in the case N = 1 this becomes our linear algorithm (4.2). However, in contrast
with (4.2), this new method is “nonlinear” (as we now retain quadratic and higher terms)
and requires an iteration scheme for its solution. As with any iterative scheme it is of
paramount importance to select a good initial guess. For this we recommend using the
linear approximation, (4.2),

g̃0 = −{Q1(·)[ũ]}−1Q0[ũ].

4.3 Results

We now demonstrate the capabilities of our new algorithms with a sequence of numerical
studies. To begin, we consider the analytic and d = 2π–periodic profile

g(x) = εecos(2x) (4.5)
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ε Absolute L∞ Error Relative L∞ Error
0.001 3.40341× 10−6 0.00125205
0.002 1.35404× 10−5 0.00249062
0.003 3.02975× 10−5 0.00371528
0.004 5.35726× 10−5 0.00492706
0.005 8.32629× 10−5 0.00612614
0.006 0.00011928 0.00731342
0.007 0.000161528 0.008489
0.008 0.000209926 0.00965343
0.009 0.000264389 0.010807
0.01 0.000324838 0.0119501

Table 2: Absolute and relative L∞ errors in approximation of the analytic profile y =
εecos(2x), (4.5), using the exact linear model, (4.2), for reconstruction. Physical parameters:
α = 0, βu = 1.1, βv = 5.5, d = 2π, a = 1; numerical parameters: Nx = 32, Nforward = 10.

ε Number of Iterations Absolute L∞ Error Relative L∞ Error
0.001 4 1.21923× 10−9 4.48531× 10−7

0.002 5 1.05361× 10−9 1.938× 10−7

0.003 6 1.50681× 10−9 1.84775× 10−7

0.004 7 3.99985× 10−9 3.67865× 10−7

0.005 8 7.41919× 10−9 5.45873× 10−7

0.006 9 2.03556× 10−8 1.24807× 10−6

0.007 10 4.26912× 10−8 2.2436× 10−6

0.008 11 8.29894× 10−8 3.81626× 10−6

0.009 12 1.50113× 10−7 6.13594× 10−6

0.01 13 2.56547× 10−7 9.43782× 10−6

Table 3: Absolute and relative L∞ errors in approximation of the analytic profile y =
εecos(2x), (4.5), using the nonlinear model, (4.4), for reconstruction. Physical parameters:
α = 0, βu = 1.1, βv = 5.5, d = 2π, a = 1; numerical parameters: Nx = 32, Nforward = 10,
τ = 10−8, Ninverse = 4.

(see Figure 1) as the shape of the interface between two materials with ku = 1.1 and
kv = 5.5. Utilizing our algorithm for the forward problem, (3.6), we generate a far–field
pattern ũ (with Nx = 32 equally spaced gridpoints and N = Nforward = 10 Taylor orders).
Using the “linear model” (4.2) we produce the approximation g̃0 and in Table 2 report on
the absolute and relative supremum norm errors in the recovery of g for various values of
ε. We note the rapid rate of convergence as ε → 0 which is repeated for all of the profiles
considered here. Additionally, we use the nonlinear iterative approach (4.4) to approximate
g (with initial guess g̃0, N = Ninverse = 4, and tolerance τ = 10−8 for the iteration) and
display these absolute and relative errors in Table 3. In these we see not only the rapid and
stable convergence of both of our new approaches to the specified boundary shape g(x), but
also the highly advantageous nature of the nonlinear iteration scheme which can generate
three to four more digits of accuracy with only a modest (4 to 13) number of iterations.
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Figure 2: Problem configuration with layer boundary (solid line); here g(x) = 0.2sech(2(x−
π)).

We now move on to two other profiles, one meant to resemble a Gaussian pulse

gG(x) = εsech(b(x− d/2)) (4.6)

and another meant to model a smoothed bar

gB(x) = ε [tanh(b((x− d/2) + c))− tanh(b(x− (d/2)− c))] ; (4.7)

see Figures 2 & 3. For these interfaces we select α = 0.2, and materials such that βu = 1.3
and βv = 6.8 (so that ku ≈ 1.3153 and kv ≈ 6.8029). Once again we produce a far–field
pattern using our forward algorithm, (3.6), with Nx = 32 equally spaced gridpoints and
Nforward = 10 Taylor orders. With the “linear model” (4.2) we produce the approximation
g̃0 and in Tables 4 & 6 report on the absolute and relative supremum norm errors in the
recovery of gG and gB, respectively. Additionally, we use the nonlinear iterative approach
(4.4) to approximate gG and gB (with initial guess g̃0, degree of nonlinearity Ninverse = 4,
and tolerance τ = 10−8) and display these absolute and relative errors in Tables 5 & 7. As
with the analytic profile above we note both the rapid convergence of our approach, and
the truly superior accuracy one can achieve with the nonlinear iterative methodology.
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(4.4), for reconstruction. Physical parameters: α = 0.2, βu = 1.3, βv = 6.8, d = 2π, a = 1;
numerical parameters: Nx = 32, Nforward = 10, τ = 10−8, Ninverse = 4.
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