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SUMMARY

Changes in reservoir properties resulting from extracting hy-
drocarbons and injecting fluid are critical to optimize produc-
tion. These properties can be characterized using waveform
inversions of time-lapse seismic data. The conventional ap-
proach for analysis using waveform tomography is to take
the difference of seismic inversion obtained using baseline
and subsequent time-lapse datasets that are imaged indepen-
dently. By contrast, double-difference waveform inversion
(DDWI) jointly inverts time-lapse seismic datasets for reser-
voir changes. We use a 2D synthetic example to demonstrate
the advantage of DDWI in mitigating spurious estimates of
property changes. We then apply both conventional full wave-
form inversion(FWI) and DDWI to time-lapse datasets col-
lected by ocean bottom cables (OBC) in the Valhall field in the
North Sea. The data sets are acquired one year apart. DDWI
gives a cleaner and more easily interpreted image of the model
changes, as compared to that obtained with the conventional
FWI scheme.

INTRODUCTION

Time-lapse seismic monitoring is widely used in reservoir man-
agement in the oil industry to obtain information about reser-
voir changes caused by fluid injection and subsequent pro-
duction. The seismic responses change according to the fluid
saturations and pressures in the reservoir. The optimal goal
of time-lapse seismic is to track fluid flow in areas without
well logs (Lumley, 2001). During the time interval of produc-
tion, the geologic structures are assumed to be time-invariant.
Thus, differences between images formed with multiple time-
lapse datasets are assumed to show changes due to fluid flow.
Conventional analysis of time-lapse seismic data only gives
either qualitative information like seismic amplitude or indi-
rect quantitative parameters like image shifts and traveltime
differences. This information needs to be transferred to reser-
voir properties by matching reservoir modeling (Lumley and
Behrens, 1998).

Waveform inversion has the potential to estimate subsurface
density and elasticity parameters quantitatively (Tarantola, 1984),
and it has become feasible with recent increases in comput-
ing power. Ideally, by subtracting the models inverted from
each data set in a series of time-lapse surveys, the geophysi-
cal property changes over time can be quantified. Watanabe
et al. (2005) applied a differential waveform tomography in
the frequency domain for crosswell time-lapse data during gas
production and showed that the results are more accurate for
estimating velocity changes in small regions than those ob-
tained using the conventional method. Onishi et al. (2009)
also applied a similar strategy to conduct differential travel-
time tomography using crosswell surveys. Denli and Huang

(2009) developed a double-difference waveform tomography
algorithm using time-lapse reflection data in the time domain
and demonstrated using synthetic data that the method has the
potential to produce reliable estimates of reservoir changes.

In this work, a 2D synthetic example is used to demonstrate
how DDWI can improve the inversion quality in terms of sup-
pressing spurious model perturbations. We then apply this
strategy to the 4D OBC field data in an oil field in the North
Sea. By inverting the time-lapse data that are one year apart,
the resulting model reveals a zone with increased velocity un-
der the gas cloud. We compare our results with that obtained
from a conventional inversion scheme, and show that DDWI
produces a cleaner and more interpretable image of the reser-
voir change.

THEORY

The algorithm of DDWI consists of two parts. The first one
is a traditional waveform inversion of the data from a base-
line survey using an earth model obtained from standard model
building technologies, e.g., tomography. The waveform inver-
sion minimizes a cost or objective function of the difference
between modeled data and baseline data:

E(m) =
1
2
| ubaseline−dbaseline |2=

1
2

δuT
δu, (1)

where ubaseline and dbaseline are the displacements of forward
modeling and baseline data, respectively, δu= ubaseline−dbaseline,
the superscript T denotes the transpose, and m is the parame-
ter (P-wave velocity) to be updated. Gradient-based methods
are generally used to solve such waveform inversion problems,
resulting in a local minimum.

After the inversion of the baseline data, the inverted model
is used as the initial model in the DDWI for time-lapse seis-
mic data. DDWI is very similar to the inversion scheme de-
scribed above, with a modification of δu in the cost func-
tion (Equation.1) as

δu = (ulapse−ubaseline)− (dlapse−dbaseline), (2)

where ubaseline and ulapse are synthetics from the starting model
obtained from inversion of the baseline data and the model to
be updated, and dbaseline and dlapse are baseline and time-lapse
data, , respectively. DDWI inverts for the change in the model
that causes the waveform changes between time-lapse datasets.
It can reduce the effects of uncertainties in the initial model.

The first derivative of the cost function (Equation 3) with re-
spect to the time-lapse residual (ulapse− dlapse) is zero when
the two residuals are identical, leading to a minimum of the
function. In other words, the model difference is cleaned by
matching the two inversions’ local minima.

∂E(m)

∂ (ulapse−dlapse)
= (ulapse−dlapse)
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−(ubaseline−dbaseline) (3)

MARMOUSI MODEL

Figure 1: True P-wave velocity baseline model. The colorbar
denotes velocity values.

In this section, we use the Marmousi model to illustrate the
different behaviors of standard FWI and DDWI. Figure 1 is
the true baseline earth model. We use five shots marked as
red stars in Figure 1 that are evenly spaced near the water sur-
face and 350 receivers (yellow triangles) at the same depth as
sources. We generate synthetic acoustic data which are used
as the baseline data.
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Figure 2: (a) Starting velocity model for FWI. (b) The velocity
model obtained after 80 iterations. Colorscales are the same as
Figure 1.

We use a smoothed version of the Marmousi model (Figure 2(a))
as a starting model for the standard FWI and employ the conju-
gate gradient method to invert for the P-wave velocity model.

After 80 iterations, we obtain the recovered baseline model
shown in Figure 2(b). It contains the dominant features of the
structures and velocity distributions, while some of the finer
and deeper parts of the model are not well-recovered.

We simulate the injection by a decrease in velocity in a trian-
gular region marked with the arrow in Figure 3.

Starting from the model in Figure 2(b), there are two ways to
invert for the model change. One is to directly run FWI to
fit time-lapse data based on the baseline model. The other is
to apply DDWI to fit the seismic signal difference based on

Figure 3: True P-wave velocity time-lapse model with the
same colorscale as Figure(1)

the same model. The model changes inverted using these two
approaches are shown in Figures 4(a) and 4(b) respectively.

(a)

(b)

Figure 4: Time-lapse velocity change inverted by FWI (a), and
DDWI (b).

In the direct FWI result, the velocity anomaly is recovered well
both in shape and amplitude. However, outside the area of in-
terest, there are model perturbations almost everywhere fol-
lowing the background structures as indicated in Figure 1. The
amplitude of the undesired structures are relatively low, mainly
because the synthetic data are inverted up to 95% of their en-
ergy in an L-2 norm measure. The data residuals compared to
the actual seismic signal changes are small. Accordingly, the
model residuals are small compared to the reservoir changes.

The DDWI result (Figure 4(b)) recovers the anomaly, as the
conventional FWI does, but the background update is much
weaker, and less misleading because it is not following the ge-
ology structures. The non-reservoir-related updates here are
actually very small in amplitudes. We boost the image up to
better reveal the difference.

VALHALL LIFE-OF-FIELD SEISMIC

We test both the traditional FWI and DDWI on a 4D dataset in
the Valhall field in the North Sea. The field has been producing
for a long time, and various water injection projects are taking
place. The ocean bottom cable (Barkved et al., 2003) was in-
stalled for explorational survey and long term monitoring; 1-3
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repeat surveys are conducted every year. Each survey involves
about 2.5 thousand permanently emplaced receivers and tens
of thousands of shots on the water surface. The entire survey
covers an area of 15 km x 8 km.

Figure 5: Locations of the sources and receivers used in this
work.

To make the application computationally more practical, we
only use 379 receivers and all the shots in the surveys (Fig-
ure 5). The baseline survey and time-lapse survey are one year
apart. Shots were positioned, within a small deviation (< 5m),
on a regular grid. Since finite difference modeling requires the
shots to be on regular grids, we use the method in Hicks (2002)
to interpolate the shots of both surveys to the same regular lo-
cations.

Figure 6: Initial model for FWI.

Inversion Setup
A few assumptions are made in this inversion process. First,
only the pressure data are used in this work, and so the acoustic
wave equation is solved to simulate the wavefield. Second,
only the P-wave velocity is inverted. The density model is
derived from the Gardner Equation (Gardner et al., 1974) using
the updated velocity model in each iteration. Third, attenuation
and anisotropy are not included in the modeling.

Initial Velocity Model
The baseline inversion is a complicated process in practice
(Liu et al., 2012). It is difficult to use only FWI to invert for a
model with good quality starting from a poor initial guess. In
this study, we use a smoothed version of the velocity presented
in Liu et al. (2012) as shown in Figure 6, to avoid the elabo-
rate process of model building, since this study focuses on the

time-lapse application.

Figure 7: Baseline model obtained after 200 iterations.

Baseline Inversion Result
We run acoustic FWI for the baseline survey data starting from
the model in Figure 6. After 200 iterations, the baseline model
is considered to converge as shown in Figure 7. The final
model is of higher resolution than the input model, the image
of the gas cloud (y-z slice in Figure 7) is markedly improved,
and the thin layer under the gas cloud is well resolved.

Timelapse Inversion Result

(a) (b)

Figure 8: X-Y slice at the depth where maximum time-lapse
changes occur. (a) Time-lapse changes resolved by standard
FWI; (b) Time-lapse changes resolved by DDWI.

Starting from the model in Figure 7, we run the regular FWI
with the time-lapse dataset and also apply DDWI. To better
compare the results between the two inversion schemes, we
plot the 2D slices instead of the whole volume in Figures 8
and 9. Depth slices at the location of the maximum time-
lapse velocity changes are shown in Figure 8. The three black
squares mark the holes in the survey(Figure 5). The time-lapse
change from standard FWI(Fig 8(a)) is of larger amplitude and
covers a broader area than the result from DDWI(Fig 8(b)).
The change from DDWI is localized around the center of the
area.

The two Y-Z cross-sectional views in Figure 9 show the time-
lapse change in velocity for standard FWI and DDWI. The
model changes have completely different patterns. In the tra-
ditional FWI case, the velocity change spreads over most of
the area in the deeper part of the model, and some distinct
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changes are also found in the shallow parts. By contrast, in
the DDWI case, the dominant change is localized in the cen-
ter of the model beneath the gas cloud. The changes in other
parts are much weaker, and no evident changes are found in
the shallow part of the model.

(a)

(b)

Figure 9: Y-Z slice of the velocity change at the location
where maximum time-lapse changes occur along the X-axis.
(a) Time-lapse changes resolved by standard FWI; (b) Time-
lapse changes resolved by DDWI.

DISCUSSION

In this work we observed that the difference between tradi-
tional FWI and DDWI results are larger in amplitude and big-
ger in extent in field data than in synthetics. According to the
derivation in the theory, the difference is caused by how the
two methods treat the data residuals. Unlike the synthetic case
in which the baseline data are fit up to a very high level, the
fitting in the real baseline data application is limited because
of issues such as incomplete physics, imprecise source signa-
ture and noise contamination. In addition, the actual change
we set in the synthetic study is 600 m/s, which is much larger
than the strongest change we obtain in the field application.
The contrast between the background model residual and the
time-lapse change is smaller in the real data case. For standard
FWI, a better simulator with more physics included should im-
prove the data fitting in the real data case, and also suppress the
strong model changes that are not 4-D effects as in Figure 9(a).

If we take the field data results at face-value, DDWI is defi-
nitely finding a time-lapse velocity change that is cleaner and
easier to interpret. But to understand why this is the case, and
thus to increase our confidence in our interpretation, we first
need to describe what we are fitting in DDWI and how this
varies with traditional FWI. To this end, Figure 10 summa-
rizes the various effects that we expect to see in the data and
highlights those that are supressed with DDWI with colors as
compared with standard FWI. DDWI as described in the the-
ory section, is trying to fit the difference between baseline and
time-lapse data to invert for the corresponding model pertur-
bation. The data can be decomposed into two parts as shown
in Figure 10: signal and noise. In the noise branch, we clas-
sify noise as either coherent or random. The random compo-

Figure 10: The decomposition of the data.

nent will contribute relatively little to the final image because
of stacking. Coherent noise should lead to changes through-
out the model, if it is constructively interfering and significant
enough. In DDWI, the common part of coherent noise be-
tween two datasets is subtracted out. The signal that is not
modeled due to incomplete physics (Yellow in Figure 10) in
the model equations has a second-order effect on the velocity
change. For example, the common background anisotropy and
attenuation effects are subtracted out in DDWI, and those in-
duced by reservoir change are relatively weak and localized.
Within the signal branch, the residual signal that can be mod-
eled (Red in Figure10), and due to either under-fitting the data
or being caught in a local minimum is what we expect to cancel
in DDWI and not in FWI.

Because the model change in the DDWI example is clean and
localized, it is credible that the recovered velocity change is
actually the reservoir change rather than simply the movement
into a different local minimum of the objective function, or
simply the change one might expect if the inversion were to be
continued to additional iterations.

To further verify the results, we would apply DDWI on more
datasets to see if the 4-D effects are consistent and compare
our 4-D differences to those obtained by standard 4-D imag-
ing. Applications to Valhall life-of-field seismic datasets that
are farther apart in time would be expected to show similar but
stronger 4-D changes. Moreover, more physics should be in-
cluded in the modeling such as anisotropy and elasticity in our
future work.
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